PR sanitize/80932
[official-gcc.git] / gcc / sel-sched-ir.c
blobc1e2c24d950e5992b7c2f1945c0a0361bdee11ac
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "cfghooks.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "df.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "cfgrtl.h"
31 #include "cfganal.h"
32 #include "cfgbuild.h"
33 #include "insn-config.h"
34 #include "insn-attr.h"
35 #include "recog.h"
36 #include "params.h"
37 #include "target.h"
38 #include "sched-int.h"
39 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
41 #ifdef INSN_SCHEDULING
42 #include "regset.h"
43 #include "cfgloop.h"
44 #include "sel-sched-ir.h"
45 /* We don't have to use it except for sel_print_insn. */
46 #include "sel-sched-dump.h"
48 /* A vector holding bb info for whole scheduling pass. */
49 vec<sel_global_bb_info_def> sel_global_bb_info;
51 /* A vector holding bb info. */
52 vec<sel_region_bb_info_def> sel_region_bb_info;
54 /* A pool for allocating all lists. */
55 object_allocator<_list_node> sched_lists_pool ("sel-sched-lists");
57 /* This contains information about successors for compute_av_set. */
58 struct succs_info current_succs;
60 /* Data structure to describe interaction with the generic scheduler utils. */
61 static struct common_sched_info_def sel_common_sched_info;
63 /* The loop nest being pipelined. */
64 struct loop *current_loop_nest;
66 /* LOOP_NESTS is a vector containing the corresponding loop nest for
67 each region. */
68 static vec<loop_p> loop_nests;
70 /* Saves blocks already in loop regions, indexed by bb->index. */
71 static sbitmap bbs_in_loop_rgns = NULL;
73 /* CFG hooks that are saved before changing create_basic_block hook. */
74 static struct cfg_hooks orig_cfg_hooks;
77 /* Array containing reverse topological index of function basic blocks,
78 indexed by BB->INDEX. */
79 static int *rev_top_order_index = NULL;
81 /* Length of the above array. */
82 static int rev_top_order_index_len = -1;
84 /* A regset pool structure. */
85 static struct
87 /* The stack to which regsets are returned. */
88 regset *v;
90 /* Its pointer. */
91 int n;
93 /* Its size. */
94 int s;
96 /* In VV we save all generated regsets so that, when destructing the
97 pool, we can compare it with V and check that every regset was returned
98 back to pool. */
99 regset *vv;
101 /* The pointer of VV stack. */
102 int nn;
104 /* Its size. */
105 int ss;
107 /* The difference between allocated and returned regsets. */
108 int diff;
109 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
111 /* This represents the nop pool. */
112 static struct
114 /* The vector which holds previously emitted nops. */
115 insn_t *v;
117 /* Its pointer. */
118 int n;
120 /* Its size. */
121 int s;
122 } nop_pool = { NULL, 0, 0 };
124 /* The pool for basic block notes. */
125 static vec<rtx_note *> bb_note_pool;
127 /* A NOP pattern used to emit placeholder insns. */
128 rtx nop_pattern = NULL_RTX;
129 /* A special instruction that resides in EXIT_BLOCK.
130 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
131 rtx_insn *exit_insn = NULL;
133 /* TRUE if while scheduling current region, which is loop, its preheader
134 was removed. */
135 bool preheader_removed = false;
138 /* Forward static declarations. */
139 static void fence_clear (fence_t);
141 static void deps_init_id (idata_t, insn_t, bool);
142 static void init_id_from_df (idata_t, insn_t, bool);
143 static expr_t set_insn_init (expr_t, vinsn_t, int);
145 static void cfg_preds (basic_block, insn_t **, int *);
146 static void prepare_insn_expr (insn_t, int);
147 static void free_history_vect (vec<expr_history_def> &);
149 static void move_bb_info (basic_block, basic_block);
150 static void remove_empty_bb (basic_block, bool);
151 static void sel_merge_blocks (basic_block, basic_block);
152 static void sel_remove_loop_preheader (void);
153 static bool bb_has_removable_jump_to_p (basic_block, basic_block);
155 static bool insn_is_the_only_one_in_bb_p (insn_t);
156 static void create_initial_data_sets (basic_block);
158 static void free_av_set (basic_block);
159 static void invalidate_av_set (basic_block);
160 static void extend_insn_data (void);
161 static void sel_init_new_insn (insn_t, int, int = -1);
162 static void finish_insns (void);
164 /* Various list functions. */
166 /* Copy an instruction list L. */
167 ilist_t
168 ilist_copy (ilist_t l)
170 ilist_t head = NULL, *tailp = &head;
172 while (l)
174 ilist_add (tailp, ILIST_INSN (l));
175 tailp = &ILIST_NEXT (*tailp);
176 l = ILIST_NEXT (l);
179 return head;
182 /* Invert an instruction list L. */
183 ilist_t
184 ilist_invert (ilist_t l)
186 ilist_t res = NULL;
188 while (l)
190 ilist_add (&res, ILIST_INSN (l));
191 l = ILIST_NEXT (l);
194 return res;
197 /* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
198 void
199 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
201 bnd_t bnd;
203 _list_add (lp);
204 bnd = BLIST_BND (*lp);
206 BND_TO (bnd) = to;
207 BND_PTR (bnd) = ptr;
208 BND_AV (bnd) = NULL;
209 BND_AV1 (bnd) = NULL;
210 BND_DC (bnd) = dc;
213 /* Remove the list note pointed to by LP. */
214 void
215 blist_remove (blist_t *lp)
217 bnd_t b = BLIST_BND (*lp);
219 av_set_clear (&BND_AV (b));
220 av_set_clear (&BND_AV1 (b));
221 ilist_clear (&BND_PTR (b));
223 _list_remove (lp);
226 /* Init a fence tail L. */
227 void
228 flist_tail_init (flist_tail_t l)
230 FLIST_TAIL_HEAD (l) = NULL;
231 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
234 /* Try to find fence corresponding to INSN in L. */
235 fence_t
236 flist_lookup (flist_t l, insn_t insn)
238 while (l)
240 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
241 return FLIST_FENCE (l);
243 l = FLIST_NEXT (l);
246 return NULL;
249 /* Init the fields of F before running fill_insns. */
250 static void
251 init_fence_for_scheduling (fence_t f)
253 FENCE_BNDS (f) = NULL;
254 FENCE_PROCESSED_P (f) = false;
255 FENCE_SCHEDULED_P (f) = false;
258 /* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
259 static void
260 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
261 insn_t last_scheduled_insn, vec<rtx_insn *, va_gc> *executing_insns,
262 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
263 int cycle, int cycle_issued_insns, int issue_more,
264 bool starts_cycle_p, bool after_stall_p)
266 fence_t f;
268 _list_add (lp);
269 f = FLIST_FENCE (*lp);
271 FENCE_INSN (f) = insn;
273 gcc_assert (state != NULL);
274 FENCE_STATE (f) = state;
276 FENCE_CYCLE (f) = cycle;
277 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
278 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
279 FENCE_AFTER_STALL_P (f) = after_stall_p;
281 gcc_assert (dc != NULL);
282 FENCE_DC (f) = dc;
284 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
285 FENCE_TC (f) = tc;
287 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
288 FENCE_ISSUE_MORE (f) = issue_more;
289 FENCE_EXECUTING_INSNS (f) = executing_insns;
290 FENCE_READY_TICKS (f) = ready_ticks;
291 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
292 FENCE_SCHED_NEXT (f) = sched_next;
294 init_fence_for_scheduling (f);
297 /* Remove the head node of the list pointed to by LP. */
298 static void
299 flist_remove (flist_t *lp)
301 if (FENCE_INSN (FLIST_FENCE (*lp)))
302 fence_clear (FLIST_FENCE (*lp));
303 _list_remove (lp);
306 /* Clear the fence list pointed to by LP. */
307 void
308 flist_clear (flist_t *lp)
310 while (*lp)
311 flist_remove (lp);
314 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
315 void
316 def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
318 def_t d;
320 _list_add (dl);
321 d = DEF_LIST_DEF (*dl);
323 d->orig_insn = original_insn;
324 d->crosses_call = crosses_call;
328 /* Functions to work with target contexts. */
330 /* Bulk target context. It is convenient for debugging purposes to ensure
331 that there are no uninitialized (null) target contexts. */
332 static tc_t bulk_tc = (tc_t) 1;
334 /* Target hooks wrappers. In the future we can provide some default
335 implementations for them. */
337 /* Allocate a store for the target context. */
338 static tc_t
339 alloc_target_context (void)
341 return (targetm.sched.alloc_sched_context
342 ? targetm.sched.alloc_sched_context () : bulk_tc);
345 /* Init target context TC.
346 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
347 Overwise, copy current backend context to TC. */
348 static void
349 init_target_context (tc_t tc, bool clean_p)
351 if (targetm.sched.init_sched_context)
352 targetm.sched.init_sched_context (tc, clean_p);
355 /* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
356 int init_target_context (). */
357 tc_t
358 create_target_context (bool clean_p)
360 tc_t tc = alloc_target_context ();
362 init_target_context (tc, clean_p);
363 return tc;
366 /* Copy TC to the current backend context. */
367 void
368 set_target_context (tc_t tc)
370 if (targetm.sched.set_sched_context)
371 targetm.sched.set_sched_context (tc);
374 /* TC is about to be destroyed. Free any internal data. */
375 static void
376 clear_target_context (tc_t tc)
378 if (targetm.sched.clear_sched_context)
379 targetm.sched.clear_sched_context (tc);
382 /* Clear and free it. */
383 static void
384 delete_target_context (tc_t tc)
386 clear_target_context (tc);
388 if (targetm.sched.free_sched_context)
389 targetm.sched.free_sched_context (tc);
392 /* Make a copy of FROM in TO.
393 NB: May be this should be a hook. */
394 static void
395 copy_target_context (tc_t to, tc_t from)
397 tc_t tmp = create_target_context (false);
399 set_target_context (from);
400 init_target_context (to, false);
402 set_target_context (tmp);
403 delete_target_context (tmp);
406 /* Create a copy of TC. */
407 static tc_t
408 create_copy_of_target_context (tc_t tc)
410 tc_t copy = alloc_target_context ();
412 copy_target_context (copy, tc);
414 return copy;
417 /* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
418 is the same as in init_target_context (). */
419 void
420 reset_target_context (tc_t tc, bool clean_p)
422 clear_target_context (tc);
423 init_target_context (tc, clean_p);
426 /* Functions to work with dependence contexts.
427 Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
428 context. It accumulates information about processed insns to decide if
429 current insn is dependent on the processed ones. */
431 /* Make a copy of FROM in TO. */
432 static void
433 copy_deps_context (deps_t to, deps_t from)
435 init_deps (to, false);
436 deps_join (to, from);
439 /* Allocate store for dep context. */
440 static deps_t
441 alloc_deps_context (void)
443 return XNEW (struct deps_desc);
446 /* Allocate and initialize dep context. */
447 static deps_t
448 create_deps_context (void)
450 deps_t dc = alloc_deps_context ();
452 init_deps (dc, false);
453 return dc;
456 /* Create a copy of FROM. */
457 static deps_t
458 create_copy_of_deps_context (deps_t from)
460 deps_t to = alloc_deps_context ();
462 copy_deps_context (to, from);
463 return to;
466 /* Clean up internal data of DC. */
467 static void
468 clear_deps_context (deps_t dc)
470 free_deps (dc);
473 /* Clear and free DC. */
474 static void
475 delete_deps_context (deps_t dc)
477 clear_deps_context (dc);
478 free (dc);
481 /* Clear and init DC. */
482 static void
483 reset_deps_context (deps_t dc)
485 clear_deps_context (dc);
486 init_deps (dc, false);
489 /* This structure describes the dependence analysis hooks for advancing
490 dependence context. */
491 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
493 NULL,
495 NULL, /* start_insn */
496 NULL, /* finish_insn */
497 NULL, /* start_lhs */
498 NULL, /* finish_lhs */
499 NULL, /* start_rhs */
500 NULL, /* finish_rhs */
501 haifa_note_reg_set,
502 haifa_note_reg_clobber,
503 haifa_note_reg_use,
504 NULL, /* note_mem_dep */
505 NULL, /* note_dep */
507 0, 0, 0
510 /* Process INSN and add its impact on DC. */
511 void
512 advance_deps_context (deps_t dc, insn_t insn)
514 sched_deps_info = &advance_deps_context_sched_deps_info;
515 deps_analyze_insn (dc, insn);
519 /* Functions to work with DFA states. */
521 /* Allocate store for a DFA state. */
522 static state_t
523 state_alloc (void)
525 return xmalloc (dfa_state_size);
528 /* Allocate and initialize DFA state. */
529 static state_t
530 state_create (void)
532 state_t state = state_alloc ();
534 state_reset (state);
535 advance_state (state);
536 return state;
539 /* Free DFA state. */
540 static void
541 state_free (state_t state)
543 free (state);
546 /* Make a copy of FROM in TO. */
547 static void
548 state_copy (state_t to, state_t from)
550 memcpy (to, from, dfa_state_size);
553 /* Create a copy of FROM. */
554 static state_t
555 state_create_copy (state_t from)
557 state_t to = state_alloc ();
559 state_copy (to, from);
560 return to;
564 /* Functions to work with fences. */
566 /* Clear the fence. */
567 static void
568 fence_clear (fence_t f)
570 state_t s = FENCE_STATE (f);
571 deps_t dc = FENCE_DC (f);
572 void *tc = FENCE_TC (f);
574 ilist_clear (&FENCE_BNDS (f));
576 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
577 || (s == NULL && dc == NULL && tc == NULL));
579 free (s);
581 if (dc != NULL)
582 delete_deps_context (dc);
584 if (tc != NULL)
585 delete_target_context (tc);
586 vec_free (FENCE_EXECUTING_INSNS (f));
587 free (FENCE_READY_TICKS (f));
588 FENCE_READY_TICKS (f) = NULL;
591 /* Init a list of fences with successors of OLD_FENCE. */
592 void
593 init_fences (insn_t old_fence)
595 insn_t succ;
596 succ_iterator si;
597 bool first = true;
598 int ready_ticks_size = get_max_uid () + 1;
600 FOR_EACH_SUCC_1 (succ, si, old_fence,
601 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
604 if (first)
605 first = false;
606 else
607 gcc_assert (flag_sel_sched_pipelining_outer_loops);
609 flist_add (&fences, succ,
610 state_create (),
611 create_deps_context () /* dc */,
612 create_target_context (true) /* tc */,
613 NULL /* last_scheduled_insn */,
614 NULL, /* executing_insns */
615 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
616 ready_ticks_size,
617 NULL /* sched_next */,
618 1 /* cycle */, 0 /* cycle_issued_insns */,
619 issue_rate, /* issue_more */
620 1 /* starts_cycle_p */, 0 /* after_stall_p */);
624 /* Merges two fences (filling fields of fence F with resulting values) by
625 following rules: 1) state, target context and last scheduled insn are
626 propagated from fallthrough edge if it is available;
627 2) deps context and cycle is propagated from more probable edge;
628 3) all other fields are set to corresponding constant values.
630 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
631 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
632 and AFTER_STALL_P are the corresponding fields of the second fence. */
633 static void
634 merge_fences (fence_t f, insn_t insn,
635 state_t state, deps_t dc, void *tc,
636 rtx_insn *last_scheduled_insn,
637 vec<rtx_insn *, va_gc> *executing_insns,
638 int *ready_ticks, int ready_ticks_size,
639 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
641 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
643 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
644 && !sched_next && !FENCE_SCHED_NEXT (f));
646 /* Check if we can decide which path fences came.
647 If we can't (or don't want to) - reset all. */
648 if (last_scheduled_insn == NULL
649 || last_scheduled_insn_old == NULL
650 /* This is a case when INSN is reachable on several paths from
651 one insn (this can happen when pipelining of outer loops is on and
652 there are two edges: one going around of inner loop and the other -
653 right through it; in such case just reset everything). */
654 || last_scheduled_insn == last_scheduled_insn_old)
656 state_reset (FENCE_STATE (f));
657 state_free (state);
659 reset_deps_context (FENCE_DC (f));
660 delete_deps_context (dc);
662 reset_target_context (FENCE_TC (f), true);
663 delete_target_context (tc);
665 if (cycle > FENCE_CYCLE (f))
666 FENCE_CYCLE (f) = cycle;
668 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
669 FENCE_ISSUE_MORE (f) = issue_rate;
670 vec_free (executing_insns);
671 free (ready_ticks);
672 if (FENCE_EXECUTING_INSNS (f))
673 FENCE_EXECUTING_INSNS (f)->block_remove (0,
674 FENCE_EXECUTING_INSNS (f)->length ());
675 if (FENCE_READY_TICKS (f))
676 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
678 else
680 edge edge_old = NULL, edge_new = NULL;
681 edge candidate;
682 succ_iterator si;
683 insn_t succ;
685 /* Find fallthrough edge. */
686 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
687 candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
689 if (!candidate
690 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
691 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
693 /* No fallthrough edge leading to basic block of INSN. */
694 state_reset (FENCE_STATE (f));
695 state_free (state);
697 reset_target_context (FENCE_TC (f), true);
698 delete_target_context (tc);
700 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
701 FENCE_ISSUE_MORE (f) = issue_rate;
703 else
704 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
706 /* Would be weird if same insn is successor of several fallthrough
707 edges. */
708 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
709 != BLOCK_FOR_INSN (last_scheduled_insn_old));
711 state_free (FENCE_STATE (f));
712 FENCE_STATE (f) = state;
714 delete_target_context (FENCE_TC (f));
715 FENCE_TC (f) = tc;
717 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
718 FENCE_ISSUE_MORE (f) = issue_more;
720 else
722 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
723 state_free (state);
724 delete_target_context (tc);
726 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
727 != BLOCK_FOR_INSN (last_scheduled_insn));
730 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
731 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
732 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
734 if (succ == insn)
736 /* No same successor allowed from several edges. */
737 gcc_assert (!edge_old);
738 edge_old = si.e1;
741 /* Find edge of second predecessor (last_scheduled_insn->insn). */
742 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
743 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
745 if (succ == insn)
747 /* No same successor allowed from several edges. */
748 gcc_assert (!edge_new);
749 edge_new = si.e1;
753 /* Check if we can choose most probable predecessor. */
754 if (edge_old == NULL || edge_new == NULL)
756 reset_deps_context (FENCE_DC (f));
757 delete_deps_context (dc);
758 vec_free (executing_insns);
759 free (ready_ticks);
761 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
762 if (FENCE_EXECUTING_INSNS (f))
763 FENCE_EXECUTING_INSNS (f)->block_remove (0,
764 FENCE_EXECUTING_INSNS (f)->length ());
765 if (FENCE_READY_TICKS (f))
766 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
768 else
769 if (edge_new->probability > edge_old->probability)
771 delete_deps_context (FENCE_DC (f));
772 FENCE_DC (f) = dc;
773 vec_free (FENCE_EXECUTING_INSNS (f));
774 FENCE_EXECUTING_INSNS (f) = executing_insns;
775 free (FENCE_READY_TICKS (f));
776 FENCE_READY_TICKS (f) = ready_ticks;
777 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
778 FENCE_CYCLE (f) = cycle;
780 else
782 /* Leave DC and CYCLE untouched. */
783 delete_deps_context (dc);
784 vec_free (executing_insns);
785 free (ready_ticks);
789 /* Fill remaining invariant fields. */
790 if (after_stall_p)
791 FENCE_AFTER_STALL_P (f) = 1;
793 FENCE_ISSUED_INSNS (f) = 0;
794 FENCE_STARTS_CYCLE_P (f) = 1;
795 FENCE_SCHED_NEXT (f) = NULL;
798 /* Add a new fence to NEW_FENCES list, initializing it from all
799 other parameters. */
800 static void
801 add_to_fences (flist_tail_t new_fences, insn_t insn,
802 state_t state, deps_t dc, void *tc,
803 rtx_insn *last_scheduled_insn,
804 vec<rtx_insn *, va_gc> *executing_insns, int *ready_ticks,
805 int ready_ticks_size, rtx_insn *sched_next, int cycle,
806 int cycle_issued_insns, int issue_rate,
807 bool starts_cycle_p, bool after_stall_p)
809 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
811 if (! f)
813 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
814 last_scheduled_insn, executing_insns, ready_ticks,
815 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
816 issue_rate, starts_cycle_p, after_stall_p);
818 FLIST_TAIL_TAILP (new_fences)
819 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
821 else
823 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
824 executing_insns, ready_ticks, ready_ticks_size,
825 sched_next, cycle, issue_rate, after_stall_p);
829 /* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
830 void
831 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
833 fence_t f, old;
834 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
836 old = FLIST_FENCE (old_fences);
837 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
838 FENCE_INSN (FLIST_FENCE (old_fences)));
839 if (f)
841 merge_fences (f, old->insn, old->state, old->dc, old->tc,
842 old->last_scheduled_insn, old->executing_insns,
843 old->ready_ticks, old->ready_ticks_size,
844 old->sched_next, old->cycle, old->issue_more,
845 old->after_stall_p);
847 else
849 _list_add (tailp);
850 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
851 *FLIST_FENCE (*tailp) = *old;
852 init_fence_for_scheduling (FLIST_FENCE (*tailp));
854 FENCE_INSN (old) = NULL;
857 /* Add a new fence to NEW_FENCES list and initialize most of its data
858 as a clean one. */
859 void
860 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
862 int ready_ticks_size = get_max_uid () + 1;
864 add_to_fences (new_fences,
865 succ, state_create (), create_deps_context (),
866 create_target_context (true),
867 NULL, NULL,
868 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
869 NULL, FENCE_CYCLE (fence) + 1,
870 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
873 /* Add a new fence to NEW_FENCES list and initialize all of its data
874 from FENCE and SUCC. */
875 void
876 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
878 int * new_ready_ticks
879 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
881 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
882 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
883 add_to_fences (new_fences,
884 succ, state_create_copy (FENCE_STATE (fence)),
885 create_copy_of_deps_context (FENCE_DC (fence)),
886 create_copy_of_target_context (FENCE_TC (fence)),
887 FENCE_LAST_SCHEDULED_INSN (fence),
888 vec_safe_copy (FENCE_EXECUTING_INSNS (fence)),
889 new_ready_ticks,
890 FENCE_READY_TICKS_SIZE (fence),
891 FENCE_SCHED_NEXT (fence),
892 FENCE_CYCLE (fence),
893 FENCE_ISSUED_INSNS (fence),
894 FENCE_ISSUE_MORE (fence),
895 FENCE_STARTS_CYCLE_P (fence),
896 FENCE_AFTER_STALL_P (fence));
900 /* Functions to work with regset and nop pools. */
902 /* Returns the new regset from pool. It might have some of the bits set
903 from the previous usage. */
904 regset
905 get_regset_from_pool (void)
907 regset rs;
909 if (regset_pool.n != 0)
910 rs = regset_pool.v[--regset_pool.n];
911 else
912 /* We need to create the regset. */
914 rs = ALLOC_REG_SET (&reg_obstack);
916 if (regset_pool.nn == regset_pool.ss)
917 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
918 (regset_pool.ss = 2 * regset_pool.ss + 1));
919 regset_pool.vv[regset_pool.nn++] = rs;
922 regset_pool.diff++;
924 return rs;
927 /* Same as above, but returns the empty regset. */
928 regset
929 get_clear_regset_from_pool (void)
931 regset rs = get_regset_from_pool ();
933 CLEAR_REG_SET (rs);
934 return rs;
937 /* Return regset RS to the pool for future use. */
938 void
939 return_regset_to_pool (regset rs)
941 gcc_assert (rs);
942 regset_pool.diff--;
944 if (regset_pool.n == regset_pool.s)
945 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
946 (regset_pool.s = 2 * regset_pool.s + 1));
947 regset_pool.v[regset_pool.n++] = rs;
950 /* This is used as a qsort callback for sorting regset pool stacks.
951 X and XX are addresses of two regsets. They are never equal. */
952 static int
953 cmp_v_in_regset_pool (const void *x, const void *xx)
955 uintptr_t r1 = (uintptr_t) *((const regset *) x);
956 uintptr_t r2 = (uintptr_t) *((const regset *) xx);
957 if (r1 > r2)
958 return 1;
959 else if (r1 < r2)
960 return -1;
961 gcc_unreachable ();
964 /* Free the regset pool possibly checking for memory leaks. */
965 void
966 free_regset_pool (void)
968 if (flag_checking)
970 regset *v = regset_pool.v;
971 int i = 0;
972 int n = regset_pool.n;
974 regset *vv = regset_pool.vv;
975 int ii = 0;
976 int nn = regset_pool.nn;
978 int diff = 0;
980 gcc_assert (n <= nn);
982 /* Sort both vectors so it will be possible to compare them. */
983 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
984 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
986 while (ii < nn)
988 if (v[i] == vv[ii])
989 i++;
990 else
991 /* VV[II] was lost. */
992 diff++;
994 ii++;
997 gcc_assert (diff == regset_pool.diff);
1000 /* If not true - we have a memory leak. */
1001 gcc_assert (regset_pool.diff == 0);
1003 while (regset_pool.n)
1005 --regset_pool.n;
1006 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1009 free (regset_pool.v);
1010 regset_pool.v = NULL;
1011 regset_pool.s = 0;
1013 free (regset_pool.vv);
1014 regset_pool.vv = NULL;
1015 regset_pool.nn = 0;
1016 regset_pool.ss = 0;
1018 regset_pool.diff = 0;
1022 /* Functions to work with nop pools. NOP insns are used as temporary
1023 placeholders of the insns being scheduled to allow correct update of
1024 the data sets. When update is finished, NOPs are deleted. */
1026 /* A vinsn that is used to represent a nop. This vinsn is shared among all
1027 nops sel-sched generates. */
1028 static vinsn_t nop_vinsn = NULL;
1030 /* Emit a nop before INSN, taking it from pool. */
1031 insn_t
1032 get_nop_from_pool (insn_t insn)
1034 rtx nop_pat;
1035 insn_t nop;
1036 bool old_p = nop_pool.n != 0;
1037 int flags;
1039 if (old_p)
1040 nop_pat = nop_pool.v[--nop_pool.n];
1041 else
1042 nop_pat = nop_pattern;
1044 nop = emit_insn_before (nop_pat, insn);
1046 if (old_p)
1047 flags = INSN_INIT_TODO_SSID;
1048 else
1049 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1051 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1052 sel_init_new_insn (nop, flags);
1054 return nop;
1057 /* Remove NOP from the instruction stream and return it to the pool. */
1058 void
1059 return_nop_to_pool (insn_t nop, bool full_tidying)
1061 gcc_assert (INSN_IN_STREAM_P (nop));
1062 sel_remove_insn (nop, false, full_tidying);
1064 /* We'll recycle this nop. */
1065 nop->set_undeleted ();
1067 if (nop_pool.n == nop_pool.s)
1068 nop_pool.v = XRESIZEVEC (rtx_insn *, nop_pool.v,
1069 (nop_pool.s = 2 * nop_pool.s + 1));
1070 nop_pool.v[nop_pool.n++] = nop;
1073 /* Free the nop pool. */
1074 void
1075 free_nop_pool (void)
1077 nop_pool.n = 0;
1078 nop_pool.s = 0;
1079 free (nop_pool.v);
1080 nop_pool.v = NULL;
1084 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1085 The callback is given two rtxes XX and YY and writes the new rtxes
1086 to NX and NY in case some needs to be skipped. */
1087 static int
1088 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1090 const_rtx x = *xx;
1091 const_rtx y = *yy;
1093 if (GET_CODE (x) == UNSPEC
1094 && (targetm.sched.skip_rtx_p == NULL
1095 || targetm.sched.skip_rtx_p (x)))
1097 *nx = XVECEXP (x, 0, 0);
1098 *ny = CONST_CAST_RTX (y);
1099 return 1;
1102 if (GET_CODE (y) == UNSPEC
1103 && (targetm.sched.skip_rtx_p == NULL
1104 || targetm.sched.skip_rtx_p (y)))
1106 *nx = CONST_CAST_RTX (x);
1107 *ny = XVECEXP (y, 0, 0);
1108 return 1;
1111 return 0;
1114 /* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
1115 to support ia64 speculation. When changes are needed, new rtx X and new mode
1116 NMODE are written, and the callback returns true. */
1117 static int
1118 hash_with_unspec_callback (const_rtx x, machine_mode mode ATTRIBUTE_UNUSED,
1119 rtx *nx, machine_mode* nmode)
1121 if (GET_CODE (x) == UNSPEC
1122 && targetm.sched.skip_rtx_p
1123 && targetm.sched.skip_rtx_p (x))
1125 *nx = XVECEXP (x, 0 ,0);
1126 *nmode = VOIDmode;
1127 return 1;
1130 return 0;
1133 /* Returns LHS and RHS are ok to be scheduled separately. */
1134 static bool
1135 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1137 if (lhs == NULL || rhs == NULL)
1138 return false;
1140 /* Do not schedule constants as rhs: no point to use reg, if const
1141 can be used. Moreover, scheduling const as rhs may lead to mode
1142 mismatch cause consts don't have modes but they could be merged
1143 from branches where the same const used in different modes. */
1144 if (CONSTANT_P (rhs))
1145 return false;
1147 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1148 if (COMPARISON_P (rhs))
1149 return false;
1151 /* Do not allow single REG to be an rhs. */
1152 if (REG_P (rhs))
1153 return false;
1155 /* See comment at find_used_regs_1 (*1) for explanation of this
1156 restriction. */
1157 /* FIXME: remove this later. */
1158 if (MEM_P (lhs))
1159 return false;
1161 /* This will filter all tricky things like ZERO_EXTRACT etc.
1162 For now we don't handle it. */
1163 if (!REG_P (lhs) && !MEM_P (lhs))
1164 return false;
1166 return true;
1169 /* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1170 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
1171 used e.g. for insns from recovery blocks. */
1172 static void
1173 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1175 hash_rtx_callback_function hrcf;
1176 int insn_class;
1178 VINSN_INSN_RTX (vi) = insn;
1179 VINSN_COUNT (vi) = 0;
1180 vi->cost = -1;
1182 if (INSN_NOP_P (insn))
1183 return;
1185 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1186 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1187 else
1188 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1190 /* Hash vinsn depending on whether it is separable or not. */
1191 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1192 if (VINSN_SEPARABLE_P (vi))
1194 rtx rhs = VINSN_RHS (vi);
1196 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1197 NULL, NULL, false, hrcf);
1198 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1199 VOIDmode, NULL, NULL,
1200 false, hrcf);
1202 else
1204 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1205 NULL, NULL, false, hrcf);
1206 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1209 insn_class = haifa_classify_insn (insn);
1210 if (insn_class >= 2
1211 && (!targetm.sched.get_insn_spec_ds
1212 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1213 == 0)))
1214 VINSN_MAY_TRAP_P (vi) = true;
1215 else
1216 VINSN_MAY_TRAP_P (vi) = false;
1219 /* Indicate that VI has become the part of an rtx object. */
1220 void
1221 vinsn_attach (vinsn_t vi)
1223 /* Assert that VI is not pending for deletion. */
1224 gcc_assert (VINSN_INSN_RTX (vi));
1226 VINSN_COUNT (vi)++;
1229 /* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
1230 VINSN_TYPE (VI). */
1231 static vinsn_t
1232 vinsn_create (insn_t insn, bool force_unique_p)
1234 vinsn_t vi = XCNEW (struct vinsn_def);
1236 vinsn_init (vi, insn, force_unique_p);
1237 return vi;
1240 /* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1241 the copy. */
1242 vinsn_t
1243 vinsn_copy (vinsn_t vi, bool reattach_p)
1245 rtx_insn *copy;
1246 bool unique = VINSN_UNIQUE_P (vi);
1247 vinsn_t new_vi;
1249 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1250 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1251 if (reattach_p)
1253 vinsn_detach (vi);
1254 vinsn_attach (new_vi);
1257 return new_vi;
1260 /* Delete the VI vinsn and free its data. */
1261 static void
1262 vinsn_delete (vinsn_t vi)
1264 gcc_assert (VINSN_COUNT (vi) == 0);
1266 if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1268 return_regset_to_pool (VINSN_REG_SETS (vi));
1269 return_regset_to_pool (VINSN_REG_USES (vi));
1270 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1273 free (vi);
1276 /* Indicate that VI is no longer a part of some rtx object.
1277 Remove VI if it is no longer needed. */
1278 void
1279 vinsn_detach (vinsn_t vi)
1281 gcc_assert (VINSN_COUNT (vi) > 0);
1283 if (--VINSN_COUNT (vi) == 0)
1284 vinsn_delete (vi);
1287 /* Returns TRUE if VI is a branch. */
1288 bool
1289 vinsn_cond_branch_p (vinsn_t vi)
1291 insn_t insn;
1293 if (!VINSN_UNIQUE_P (vi))
1294 return false;
1296 insn = VINSN_INSN_RTX (vi);
1297 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1298 return false;
1300 return control_flow_insn_p (insn);
1303 /* Return latency of INSN. */
1304 static int
1305 sel_insn_rtx_cost (rtx_insn *insn)
1307 int cost;
1309 /* A USE insn, or something else we don't need to
1310 understand. We can't pass these directly to
1311 result_ready_cost or insn_default_latency because it will
1312 trigger a fatal error for unrecognizable insns. */
1313 if (recog_memoized (insn) < 0)
1314 cost = 0;
1315 else
1317 cost = insn_default_latency (insn);
1319 if (cost < 0)
1320 cost = 0;
1323 return cost;
1326 /* Return the cost of the VI.
1327 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1329 sel_vinsn_cost (vinsn_t vi)
1331 int cost = vi->cost;
1333 if (cost < 0)
1335 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1336 vi->cost = cost;
1339 return cost;
1343 /* Functions for insn emitting. */
1345 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1346 EXPR and SEQNO. */
1347 insn_t
1348 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1350 insn_t new_insn;
1352 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1354 new_insn = emit_insn_after (pattern, after);
1355 set_insn_init (expr, NULL, seqno);
1356 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1358 return new_insn;
1361 /* Force newly generated vinsns to be unique. */
1362 static bool init_insn_force_unique_p = false;
1364 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1365 initialize its data from EXPR and SEQNO. */
1366 insn_t
1367 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1368 insn_t after)
1370 insn_t insn;
1372 gcc_assert (!init_insn_force_unique_p);
1374 init_insn_force_unique_p = true;
1375 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1376 CANT_MOVE (insn) = 1;
1377 init_insn_force_unique_p = false;
1379 return insn;
1382 /* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
1383 take it as a new vinsn instead of EXPR's vinsn.
1384 We simplify insns later, after scheduling region in
1385 simplify_changed_insns. */
1386 insn_t
1387 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1388 insn_t after)
1390 expr_t emit_expr;
1391 insn_t insn;
1392 int flags;
1394 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1395 seqno);
1396 insn = EXPR_INSN_RTX (emit_expr);
1398 /* The insn may come from the transformation cache, which may hold already
1399 deleted insns, so mark it as not deleted. */
1400 insn->set_undeleted ();
1402 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1404 flags = INSN_INIT_TODO_SSID;
1405 if (INSN_LUID (insn) == 0)
1406 flags |= INSN_INIT_TODO_LUID;
1407 sel_init_new_insn (insn, flags);
1409 return insn;
1412 /* Move insn from EXPR after AFTER. */
1413 insn_t
1414 sel_move_insn (expr_t expr, int seqno, insn_t after)
1416 insn_t insn = EXPR_INSN_RTX (expr);
1417 basic_block bb = BLOCK_FOR_INSN (after);
1418 insn_t next = NEXT_INSN (after);
1420 /* Assert that in move_op we disconnected this insn properly. */
1421 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1422 SET_PREV_INSN (insn) = after;
1423 SET_NEXT_INSN (insn) = next;
1425 SET_NEXT_INSN (after) = insn;
1426 SET_PREV_INSN (next) = insn;
1428 /* Update links from insn to bb and vice versa. */
1429 df_insn_change_bb (insn, bb);
1430 if (BB_END (bb) == after)
1431 BB_END (bb) = insn;
1433 prepare_insn_expr (insn, seqno);
1434 return insn;
1438 /* Functions to work with right-hand sides. */
1440 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1441 VECT and return true when found. Use NEW_VINSN for comparison only when
1442 COMPARE_VINSNS is true. Write to INDP the index on which
1443 the search has stopped, such that inserting the new element at INDP will
1444 retain VECT's sort order. */
1445 static bool
1446 find_in_history_vect_1 (vec<expr_history_def> vect,
1447 unsigned uid, vinsn_t new_vinsn,
1448 bool compare_vinsns, int *indp)
1450 expr_history_def *arr;
1451 int i, j, len = vect.length ();
1453 if (len == 0)
1455 *indp = 0;
1456 return false;
1459 arr = vect.address ();
1460 i = 0, j = len - 1;
1462 while (i <= j)
1464 unsigned auid = arr[i].uid;
1465 vinsn_t avinsn = arr[i].new_expr_vinsn;
1467 if (auid == uid
1468 /* When undoing transformation on a bookkeeping copy, the new vinsn
1469 may not be exactly equal to the one that is saved in the vector.
1470 This is because the insn whose copy we're checking was possibly
1471 substituted itself. */
1472 && (! compare_vinsns
1473 || vinsn_equal_p (avinsn, new_vinsn)))
1475 *indp = i;
1476 return true;
1478 else if (auid > uid)
1479 break;
1480 i++;
1483 *indp = i;
1484 return false;
1487 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1488 the position found or -1, if no such value is in vector.
1489 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1491 find_in_history_vect (vec<expr_history_def> vect, rtx insn,
1492 vinsn_t new_vinsn, bool originators_p)
1494 int ind;
1496 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1497 false, &ind))
1498 return ind;
1500 if (INSN_ORIGINATORS (insn) && originators_p)
1502 unsigned uid;
1503 bitmap_iterator bi;
1505 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1506 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1507 return ind;
1510 return -1;
1513 /* Insert new element in a sorted history vector pointed to by PVECT,
1514 if it is not there already. The element is searched using
1515 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1516 the history of a transformation. */
1517 void
1518 insert_in_history_vect (vec<expr_history_def> *pvect,
1519 unsigned uid, enum local_trans_type type,
1520 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1521 ds_t spec_ds)
1523 vec<expr_history_def> vect = *pvect;
1524 expr_history_def temp;
1525 bool res;
1526 int ind;
1528 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1530 if (res)
1532 expr_history_def *phist = &vect[ind];
1534 /* It is possible that speculation types of expressions that were
1535 propagated through different paths will be different here. In this
1536 case, merge the status to get the correct check later. */
1537 if (phist->spec_ds != spec_ds)
1538 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1539 return;
1542 temp.uid = uid;
1543 temp.old_expr_vinsn = old_expr_vinsn;
1544 temp.new_expr_vinsn = new_expr_vinsn;
1545 temp.spec_ds = spec_ds;
1546 temp.type = type;
1548 vinsn_attach (old_expr_vinsn);
1549 vinsn_attach (new_expr_vinsn);
1550 vect.safe_insert (ind, temp);
1551 *pvect = vect;
1554 /* Free history vector PVECT. */
1555 static void
1556 free_history_vect (vec<expr_history_def> &pvect)
1558 unsigned i;
1559 expr_history_def *phist;
1561 if (! pvect.exists ())
1562 return;
1564 for (i = 0; pvect.iterate (i, &phist); i++)
1566 vinsn_detach (phist->old_expr_vinsn);
1567 vinsn_detach (phist->new_expr_vinsn);
1570 pvect.release ();
1573 /* Merge vector FROM to PVECT. */
1574 static void
1575 merge_history_vect (vec<expr_history_def> *pvect,
1576 vec<expr_history_def> from)
1578 expr_history_def *phist;
1579 int i;
1581 /* We keep this vector sorted. */
1582 for (i = 0; from.iterate (i, &phist); i++)
1583 insert_in_history_vect (pvect, phist->uid, phist->type,
1584 phist->old_expr_vinsn, phist->new_expr_vinsn,
1585 phist->spec_ds);
1588 /* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1589 bool
1590 vinsn_equal_p (vinsn_t x, vinsn_t y)
1592 rtx_equal_p_callback_function repcf;
1594 if (x == y)
1595 return true;
1597 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1598 return false;
1600 if (VINSN_HASH (x) != VINSN_HASH (y))
1601 return false;
1603 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1604 if (VINSN_SEPARABLE_P (x))
1606 /* Compare RHSes of VINSNs. */
1607 gcc_assert (VINSN_RHS (x));
1608 gcc_assert (VINSN_RHS (y));
1610 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1613 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1617 /* Functions for working with expressions. */
1619 /* Initialize EXPR. */
1620 static void
1621 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1622 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1623 ds_t spec_to_check_ds, int orig_sched_cycle,
1624 vec<expr_history_def> history,
1625 signed char target_available,
1626 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1627 bool cant_move)
1629 vinsn_attach (vi);
1631 EXPR_VINSN (expr) = vi;
1632 EXPR_SPEC (expr) = spec;
1633 EXPR_USEFULNESS (expr) = use;
1634 EXPR_PRIORITY (expr) = priority;
1635 EXPR_PRIORITY_ADJ (expr) = 0;
1636 EXPR_SCHED_TIMES (expr) = sched_times;
1637 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1638 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1639 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1640 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1642 if (history.exists ())
1643 EXPR_HISTORY_OF_CHANGES (expr) = history;
1644 else
1645 EXPR_HISTORY_OF_CHANGES (expr).create (0);
1647 EXPR_TARGET_AVAILABLE (expr) = target_available;
1648 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1649 EXPR_WAS_RENAMED (expr) = was_renamed;
1650 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1651 EXPR_CANT_MOVE (expr) = cant_move;
1654 /* Make a copy of the expr FROM into the expr TO. */
1655 void
1656 copy_expr (expr_t to, expr_t from)
1658 vec<expr_history_def> temp = vNULL;
1660 if (EXPR_HISTORY_OF_CHANGES (from).exists ())
1662 unsigned i;
1663 expr_history_def *phist;
1665 temp = EXPR_HISTORY_OF_CHANGES (from).copy ();
1666 for (i = 0;
1667 temp.iterate (i, &phist);
1668 i++)
1670 vinsn_attach (phist->old_expr_vinsn);
1671 vinsn_attach (phist->new_expr_vinsn);
1675 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1676 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1677 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1678 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1679 EXPR_ORIG_SCHED_CYCLE (from), temp,
1680 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1681 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1682 EXPR_CANT_MOVE (from));
1685 /* Same, but the final expr will not ever be in av sets, so don't copy
1686 "uninteresting" data such as bitmap cache. */
1687 void
1688 copy_expr_onside (expr_t to, expr_t from)
1690 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1691 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1692 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0,
1693 vNULL,
1694 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1695 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1696 EXPR_CANT_MOVE (from));
1699 /* Prepare the expr of INSN for scheduling. Used when moving insn and when
1700 initializing new insns. */
1701 static void
1702 prepare_insn_expr (insn_t insn, int seqno)
1704 expr_t expr = INSN_EXPR (insn);
1705 ds_t ds;
1707 INSN_SEQNO (insn) = seqno;
1708 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1709 EXPR_SPEC (expr) = 0;
1710 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1711 EXPR_WAS_SUBSTITUTED (expr) = 0;
1712 EXPR_WAS_RENAMED (expr) = 0;
1713 EXPR_TARGET_AVAILABLE (expr) = 1;
1714 INSN_LIVE_VALID_P (insn) = false;
1716 /* ??? If this expression is speculative, make its dependence
1717 as weak as possible. We can filter this expression later
1718 in process_spec_exprs, because we do not distinguish
1719 between the status we got during compute_av_set and the
1720 existing status. To be fixed. */
1721 ds = EXPR_SPEC_DONE_DS (expr);
1722 if (ds)
1723 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1725 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1728 /* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
1729 is non-null when expressions are merged from different successors at
1730 a split point. */
1731 static void
1732 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1734 if (EXPR_TARGET_AVAILABLE (to) < 0
1735 || EXPR_TARGET_AVAILABLE (from) < 0)
1736 EXPR_TARGET_AVAILABLE (to) = -1;
1737 else
1739 /* We try to detect the case when one of the expressions
1740 can only be reached through another one. In this case,
1741 we can do better. */
1742 if (split_point == NULL)
1744 int toind, fromind;
1746 toind = EXPR_ORIG_BB_INDEX (to);
1747 fromind = EXPR_ORIG_BB_INDEX (from);
1749 if (toind && toind == fromind)
1750 /* Do nothing -- everything is done in
1751 merge_with_other_exprs. */
1753 else
1754 EXPR_TARGET_AVAILABLE (to) = -1;
1756 else if (EXPR_TARGET_AVAILABLE (from) == 0
1757 && EXPR_LHS (from)
1758 && REG_P (EXPR_LHS (from))
1759 && REGNO (EXPR_LHS (to)) != REGNO (EXPR_LHS (from)))
1760 EXPR_TARGET_AVAILABLE (to) = -1;
1761 else
1762 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1766 /* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
1767 is non-null when expressions are merged from different successors at
1768 a split point. */
1769 static void
1770 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1772 ds_t old_to_ds, old_from_ds;
1774 old_to_ds = EXPR_SPEC_DONE_DS (to);
1775 old_from_ds = EXPR_SPEC_DONE_DS (from);
1777 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1778 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1779 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1781 /* When merging e.g. control & data speculative exprs, or a control
1782 speculative with a control&data speculative one, we really have
1783 to change vinsn too. Also, when speculative status is changed,
1784 we also need to record this as a transformation in expr's history. */
1785 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1787 old_to_ds = ds_get_speculation_types (old_to_ds);
1788 old_from_ds = ds_get_speculation_types (old_from_ds);
1790 if (old_to_ds != old_from_ds)
1792 ds_t record_ds;
1794 /* When both expressions are speculative, we need to change
1795 the vinsn first. */
1796 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1798 int res;
1800 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1801 gcc_assert (res >= 0);
1804 if (split_point != NULL)
1806 /* Record the change with proper status. */
1807 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1808 record_ds &= ~(old_to_ds & SPECULATIVE);
1809 record_ds &= ~(old_from_ds & SPECULATIVE);
1811 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1812 INSN_UID (split_point), TRANS_SPECULATION,
1813 EXPR_VINSN (from), EXPR_VINSN (to),
1814 record_ds);
1821 /* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1822 this is done along different paths. */
1823 void
1824 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1826 /* Choose the maximum of the specs of merged exprs. This is required
1827 for correctness of bookkeeping. */
1828 if (EXPR_SPEC (to) < EXPR_SPEC (from))
1829 EXPR_SPEC (to) = EXPR_SPEC (from);
1831 if (split_point)
1832 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1833 else
1834 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1835 EXPR_USEFULNESS (from));
1837 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1838 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1840 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1841 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1843 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1844 EXPR_ORIG_BB_INDEX (to) = 0;
1846 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1847 EXPR_ORIG_SCHED_CYCLE (from));
1849 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1850 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1851 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1853 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1854 EXPR_HISTORY_OF_CHANGES (from));
1855 update_target_availability (to, from, split_point);
1856 update_speculative_bits (to, from, split_point);
1859 /* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
1860 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
1861 are merged from different successors at a split point. */
1862 void
1863 merge_expr (expr_t to, expr_t from, insn_t split_point)
1865 vinsn_t to_vi = EXPR_VINSN (to);
1866 vinsn_t from_vi = EXPR_VINSN (from);
1868 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1870 /* Make sure that speculative pattern is propagated into exprs that
1871 have non-speculative one. This will provide us with consistent
1872 speculative bits and speculative patterns inside expr. */
1873 if (EXPR_SPEC_DONE_DS (to) == 0
1874 && (EXPR_SPEC_DONE_DS (from) != 0
1875 /* Do likewise for volatile insns, so that we always retain
1876 the may_trap_p bit on the resulting expression. However,
1877 avoid propagating the trapping bit into the instructions
1878 already speculated. This would result in replacing the
1879 speculative pattern with the non-speculative one and breaking
1880 the speculation support. */
1881 || (!VINSN_MAY_TRAP_P (EXPR_VINSN (to))
1882 && VINSN_MAY_TRAP_P (EXPR_VINSN (from)))))
1883 change_vinsn_in_expr (to, EXPR_VINSN (from));
1885 merge_expr_data (to, from, split_point);
1886 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1889 /* Clear the information of this EXPR. */
1890 void
1891 clear_expr (expr_t expr)
1894 vinsn_detach (EXPR_VINSN (expr));
1895 EXPR_VINSN (expr) = NULL;
1897 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1900 /* For a given LV_SET, mark EXPR having unavailable target register. */
1901 static void
1902 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1904 if (EXPR_SEPARABLE_P (expr))
1906 if (REG_P (EXPR_LHS (expr))
1907 && register_unavailable_p (lv_set, EXPR_LHS (expr)))
1909 /* If it's an insn like r1 = use (r1, ...), and it exists in
1910 different forms in each of the av_sets being merged, we can't say
1911 whether original destination register is available or not.
1912 However, this still works if destination register is not used
1913 in the original expression: if the branch at which LV_SET we're
1914 looking here is not actually 'other branch' in sense that same
1915 expression is available through it (but it can't be determined
1916 at computation stage because of transformations on one of the
1917 branches), it still won't affect the availability.
1918 Liveness of a register somewhere on a code motion path means
1919 it's either read somewhere on a codemotion path, live on
1920 'other' branch, live at the point immediately following
1921 the original operation, or is read by the original operation.
1922 The latter case is filtered out in the condition below.
1923 It still doesn't cover the case when register is defined and used
1924 somewhere within the code motion path, and in this case we could
1925 miss a unifying code motion along both branches using a renamed
1926 register, but it won't affect a code correctness since upon
1927 an actual code motion a bookkeeping code would be generated. */
1928 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1929 EXPR_LHS (expr)))
1930 EXPR_TARGET_AVAILABLE (expr) = -1;
1931 else
1932 EXPR_TARGET_AVAILABLE (expr) = false;
1935 else
1937 unsigned regno;
1938 reg_set_iterator rsi;
1940 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1941 0, regno, rsi)
1942 if (bitmap_bit_p (lv_set, regno))
1944 EXPR_TARGET_AVAILABLE (expr) = false;
1945 break;
1948 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1949 0, regno, rsi)
1950 if (bitmap_bit_p (lv_set, regno))
1952 EXPR_TARGET_AVAILABLE (expr) = false;
1953 break;
1958 /* Try to make EXPR speculative. Return 1 when EXPR's pattern
1959 or dependence status have changed, 2 when also the target register
1960 became unavailable, 0 if nothing had to be changed. */
1962 speculate_expr (expr_t expr, ds_t ds)
1964 int res;
1965 rtx_insn *orig_insn_rtx;
1966 rtx spec_pat;
1967 ds_t target_ds, current_ds;
1969 /* Obtain the status we need to put on EXPR. */
1970 target_ds = (ds & SPECULATIVE);
1971 current_ds = EXPR_SPEC_DONE_DS (expr);
1972 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1974 orig_insn_rtx = EXPR_INSN_RTX (expr);
1976 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1978 switch (res)
1980 case 0:
1981 EXPR_SPEC_DONE_DS (expr) = ds;
1982 return current_ds != ds ? 1 : 0;
1984 case 1:
1986 rtx_insn *spec_insn_rtx =
1987 create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1988 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1990 change_vinsn_in_expr (expr, spec_vinsn);
1991 EXPR_SPEC_DONE_DS (expr) = ds;
1992 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1994 /* Do not allow clobbering the address register of speculative
1995 insns. */
1996 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1997 expr_dest_reg (expr)))
1999 EXPR_TARGET_AVAILABLE (expr) = false;
2000 return 2;
2003 return 1;
2006 case -1:
2007 return -1;
2009 default:
2010 gcc_unreachable ();
2011 return -1;
2015 /* Return a destination register, if any, of EXPR. */
2017 expr_dest_reg (expr_t expr)
2019 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
2021 if (dest != NULL_RTX && REG_P (dest))
2022 return dest;
2024 return NULL_RTX;
2027 /* Returns the REGNO of the R's destination. */
2028 unsigned
2029 expr_dest_regno (expr_t expr)
2031 rtx dest = expr_dest_reg (expr);
2033 gcc_assert (dest != NULL_RTX);
2034 return REGNO (dest);
2037 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2038 AV_SET having unavailable target register. */
2039 void
2040 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2042 expr_t expr;
2043 av_set_iterator avi;
2045 FOR_EACH_EXPR (expr, avi, join_set)
2046 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2047 set_unavailable_target_for_expr (expr, lv_set);
2051 /* Returns true if REG (at least partially) is present in REGS. */
2052 bool
2053 register_unavailable_p (regset regs, rtx reg)
2055 unsigned regno, end_regno;
2057 regno = REGNO (reg);
2058 if (bitmap_bit_p (regs, regno))
2059 return true;
2061 end_regno = END_REGNO (reg);
2063 while (++regno < end_regno)
2064 if (bitmap_bit_p (regs, regno))
2065 return true;
2067 return false;
2070 /* Av set functions. */
2072 /* Add a new element to av set SETP.
2073 Return the element added. */
2074 static av_set_t
2075 av_set_add_element (av_set_t *setp)
2077 /* Insert at the beginning of the list. */
2078 _list_add (setp);
2079 return *setp;
2082 /* Add EXPR to SETP. */
2083 void
2084 av_set_add (av_set_t *setp, expr_t expr)
2086 av_set_t elem;
2088 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2089 elem = av_set_add_element (setp);
2090 copy_expr (_AV_SET_EXPR (elem), expr);
2093 /* Same, but do not copy EXPR. */
2094 static void
2095 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2097 av_set_t elem;
2099 elem = av_set_add_element (setp);
2100 *_AV_SET_EXPR (elem) = *expr;
2103 /* Remove expr pointed to by IP from the av_set. */
2104 void
2105 av_set_iter_remove (av_set_iterator *ip)
2107 clear_expr (_AV_SET_EXPR (*ip->lp));
2108 _list_iter_remove (ip);
2111 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2112 sense of vinsn_equal_p function. Return NULL if no such expr is
2113 in SET was found. */
2114 expr_t
2115 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2117 expr_t expr;
2118 av_set_iterator i;
2120 FOR_EACH_EXPR (expr, i, set)
2121 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2122 return expr;
2123 return NULL;
2126 /* Same, but also remove the EXPR found. */
2127 static expr_t
2128 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2130 expr_t expr;
2131 av_set_iterator i;
2133 FOR_EACH_EXPR_1 (expr, i, setp)
2134 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2136 _list_iter_remove_nofree (&i);
2137 return expr;
2139 return NULL;
2142 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2143 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2144 Returns NULL if no such expr is in SET was found. */
2145 static expr_t
2146 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2148 expr_t cur_expr;
2149 av_set_iterator i;
2151 FOR_EACH_EXPR (cur_expr, i, set)
2153 if (cur_expr == expr)
2154 continue;
2155 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2156 return cur_expr;
2159 return NULL;
2162 /* If other expression is already in AVP, remove one of them. */
2163 expr_t
2164 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2166 expr_t expr2;
2168 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2169 if (expr2 != NULL)
2171 /* Reset target availability on merge, since taking it only from one
2172 of the exprs would be controversial for different code. */
2173 EXPR_TARGET_AVAILABLE (expr2) = -1;
2174 EXPR_USEFULNESS (expr2) = 0;
2176 merge_expr (expr2, expr, NULL);
2178 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2179 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2181 av_set_iter_remove (ip);
2182 return expr2;
2185 return expr;
2188 /* Return true if there is an expr that correlates to VI in SET. */
2189 bool
2190 av_set_is_in_p (av_set_t set, vinsn_t vi)
2192 return av_set_lookup (set, vi) != NULL;
2195 /* Return a copy of SET. */
2196 av_set_t
2197 av_set_copy (av_set_t set)
2199 expr_t expr;
2200 av_set_iterator i;
2201 av_set_t res = NULL;
2203 FOR_EACH_EXPR (expr, i, set)
2204 av_set_add (&res, expr);
2206 return res;
2209 /* Join two av sets that do not have common elements by attaching second set
2210 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2211 _AV_SET_NEXT of first set's last element). */
2212 static void
2213 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2215 gcc_assert (*to_tailp == NULL);
2216 *to_tailp = *fromp;
2217 *fromp = NULL;
2220 /* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2221 pointed to by FROMP afterwards. */
2222 void
2223 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2225 expr_t expr1;
2226 av_set_iterator i;
2228 /* Delete from TOP all exprs, that present in FROMP. */
2229 FOR_EACH_EXPR_1 (expr1, i, top)
2231 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2233 if (expr2)
2235 merge_expr (expr2, expr1, insn);
2236 av_set_iter_remove (&i);
2240 join_distinct_sets (i.lp, fromp);
2243 /* Same as above, but also update availability of target register in
2244 TOP judging by TO_LV_SET and FROM_LV_SET. */
2245 void
2246 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2247 regset from_lv_set, insn_t insn)
2249 expr_t expr1;
2250 av_set_iterator i;
2251 av_set_t *to_tailp, in_both_set = NULL;
2253 /* Delete from TOP all expres, that present in FROMP. */
2254 FOR_EACH_EXPR_1 (expr1, i, top)
2256 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2258 if (expr2)
2260 /* It may be that the expressions have different destination
2261 registers, in which case we need to check liveness here. */
2262 if (EXPR_SEPARABLE_P (expr1))
2264 int regno1 = (REG_P (EXPR_LHS (expr1))
2265 ? (int) expr_dest_regno (expr1) : -1);
2266 int regno2 = (REG_P (EXPR_LHS (expr2))
2267 ? (int) expr_dest_regno (expr2) : -1);
2269 /* ??? We don't have a way to check restrictions for
2270 *other* register on the current path, we did it only
2271 for the current target register. Give up. */
2272 if (regno1 != regno2)
2273 EXPR_TARGET_AVAILABLE (expr2) = -1;
2275 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2276 EXPR_TARGET_AVAILABLE (expr2) = -1;
2278 merge_expr (expr2, expr1, insn);
2279 av_set_add_nocopy (&in_both_set, expr2);
2280 av_set_iter_remove (&i);
2282 else
2283 /* EXPR1 is present in TOP, but not in FROMP. Check it on
2284 FROM_LV_SET. */
2285 set_unavailable_target_for_expr (expr1, from_lv_set);
2287 to_tailp = i.lp;
2289 /* These expressions are not present in TOP. Check liveness
2290 restrictions on TO_LV_SET. */
2291 FOR_EACH_EXPR (expr1, i, *fromp)
2292 set_unavailable_target_for_expr (expr1, to_lv_set);
2294 join_distinct_sets (i.lp, &in_both_set);
2295 join_distinct_sets (to_tailp, fromp);
2298 /* Clear av_set pointed to by SETP. */
2299 void
2300 av_set_clear (av_set_t *setp)
2302 expr_t expr;
2303 av_set_iterator i;
2305 FOR_EACH_EXPR_1 (expr, i, setp)
2306 av_set_iter_remove (&i);
2308 gcc_assert (*setp == NULL);
2311 /* Leave only one non-speculative element in the SETP. */
2312 void
2313 av_set_leave_one_nonspec (av_set_t *setp)
2315 expr_t expr;
2316 av_set_iterator i;
2317 bool has_one_nonspec = false;
2319 /* Keep all speculative exprs, and leave one non-speculative
2320 (the first one). */
2321 FOR_EACH_EXPR_1 (expr, i, setp)
2323 if (!EXPR_SPEC_DONE_DS (expr))
2325 if (has_one_nonspec)
2326 av_set_iter_remove (&i);
2327 else
2328 has_one_nonspec = true;
2333 /* Return the N'th element of the SET. */
2334 expr_t
2335 av_set_element (av_set_t set, int n)
2337 expr_t expr;
2338 av_set_iterator i;
2340 FOR_EACH_EXPR (expr, i, set)
2341 if (n-- == 0)
2342 return expr;
2344 gcc_unreachable ();
2345 return NULL;
2348 /* Deletes all expressions from AVP that are conditional branches (IFs). */
2349 void
2350 av_set_substract_cond_branches (av_set_t *avp)
2352 av_set_iterator i;
2353 expr_t expr;
2355 FOR_EACH_EXPR_1 (expr, i, avp)
2356 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2357 av_set_iter_remove (&i);
2360 /* Multiplies usefulness attribute of each member of av-set *AVP by
2361 value PROB / ALL_PROB. */
2362 void
2363 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2365 av_set_iterator i;
2366 expr_t expr;
2368 FOR_EACH_EXPR (expr, i, av)
2369 EXPR_USEFULNESS (expr) = (all_prob
2370 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2371 : 0);
2374 /* Leave in AVP only those expressions, which are present in AV,
2375 and return it, merging history expressions. */
2376 void
2377 av_set_code_motion_filter (av_set_t *avp, av_set_t av)
2379 av_set_iterator i;
2380 expr_t expr, expr2;
2382 FOR_EACH_EXPR_1 (expr, i, avp)
2383 if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
2384 av_set_iter_remove (&i);
2385 else
2386 /* When updating av sets in bookkeeping blocks, we can add more insns
2387 there which will be transformed but the upper av sets will not
2388 reflect those transformations. We then fail to undo those
2389 when searching for such insns. So merge the history saved
2390 in the av set of the block we are processing. */
2391 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2392 EXPR_HISTORY_OF_CHANGES (expr2));
2397 /* Dependence hooks to initialize insn data. */
2399 /* This is used in hooks callable from dependence analysis when initializing
2400 instruction's data. */
2401 static struct
2403 /* Where the dependence was found (lhs/rhs). */
2404 deps_where_t where;
2406 /* The actual data object to initialize. */
2407 idata_t id;
2409 /* True when the insn should not be made clonable. */
2410 bool force_unique_p;
2412 /* True when insn should be treated as of type USE, i.e. never renamed. */
2413 bool force_use_p;
2414 } deps_init_id_data;
2417 /* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
2418 clonable. */
2419 static void
2420 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2422 int type;
2424 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2425 That clonable insns which can be separated into lhs and rhs have type SET.
2426 Other clonable insns have type USE. */
2427 type = GET_CODE (insn);
2429 /* Only regular insns could be cloned. */
2430 if (type == INSN && !force_unique_p)
2431 type = SET;
2432 else if (type == JUMP_INSN && simplejump_p (insn))
2433 type = PC;
2434 else if (type == DEBUG_INSN)
2435 type = !force_unique_p ? USE : INSN;
2437 IDATA_TYPE (id) = type;
2438 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2439 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2440 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2443 /* Start initializing insn data. */
2444 static void
2445 deps_init_id_start_insn (insn_t insn)
2447 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2449 setup_id_for_insn (deps_init_id_data.id, insn,
2450 deps_init_id_data.force_unique_p);
2451 deps_init_id_data.where = DEPS_IN_INSN;
2454 /* Start initializing lhs data. */
2455 static void
2456 deps_init_id_start_lhs (rtx lhs)
2458 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2459 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2461 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2463 IDATA_LHS (deps_init_id_data.id) = lhs;
2464 deps_init_id_data.where = DEPS_IN_LHS;
2468 /* Finish initializing lhs data. */
2469 static void
2470 deps_init_id_finish_lhs (void)
2472 deps_init_id_data.where = DEPS_IN_INSN;
2475 /* Note a set of REGNO. */
2476 static void
2477 deps_init_id_note_reg_set (int regno)
2479 haifa_note_reg_set (regno);
2481 if (deps_init_id_data.where == DEPS_IN_RHS)
2482 deps_init_id_data.force_use_p = true;
2484 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2485 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2487 #ifdef STACK_REGS
2488 /* Make instructions that set stack registers to be ineligible for
2489 renaming to avoid issues with find_used_regs. */
2490 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2491 deps_init_id_data.force_use_p = true;
2492 #endif
2495 /* Note a clobber of REGNO. */
2496 static void
2497 deps_init_id_note_reg_clobber (int regno)
2499 haifa_note_reg_clobber (regno);
2501 if (deps_init_id_data.where == DEPS_IN_RHS)
2502 deps_init_id_data.force_use_p = true;
2504 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2505 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2508 /* Note a use of REGNO. */
2509 static void
2510 deps_init_id_note_reg_use (int regno)
2512 haifa_note_reg_use (regno);
2514 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2515 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2518 /* Start initializing rhs data. */
2519 static void
2520 deps_init_id_start_rhs (rtx rhs)
2522 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2524 /* And there was no sel_deps_reset_to_insn (). */
2525 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2527 IDATA_RHS (deps_init_id_data.id) = rhs;
2528 deps_init_id_data.where = DEPS_IN_RHS;
2532 /* Finish initializing rhs data. */
2533 static void
2534 deps_init_id_finish_rhs (void)
2536 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2537 || deps_init_id_data.where == DEPS_IN_INSN);
2538 deps_init_id_data.where = DEPS_IN_INSN;
2541 /* Finish initializing insn data. */
2542 static void
2543 deps_init_id_finish_insn (void)
2545 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2547 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2549 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2550 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2552 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2553 || deps_init_id_data.force_use_p)
2555 /* This should be a USE, as we don't want to schedule its RHS
2556 separately. However, we still want to have them recorded
2557 for the purposes of substitution. That's why we don't
2558 simply call downgrade_to_use () here. */
2559 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2560 gcc_assert (!lhs == !rhs);
2562 IDATA_TYPE (deps_init_id_data.id) = USE;
2566 deps_init_id_data.where = DEPS_IN_NOWHERE;
2569 /* This is dependence info used for initializing insn's data. */
2570 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2572 /* This initializes most of the static part of the above structure. */
2573 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2575 NULL,
2577 deps_init_id_start_insn,
2578 deps_init_id_finish_insn,
2579 deps_init_id_start_lhs,
2580 deps_init_id_finish_lhs,
2581 deps_init_id_start_rhs,
2582 deps_init_id_finish_rhs,
2583 deps_init_id_note_reg_set,
2584 deps_init_id_note_reg_clobber,
2585 deps_init_id_note_reg_use,
2586 NULL, /* note_mem_dep */
2587 NULL, /* note_dep */
2589 0, /* use_cselib */
2590 0, /* use_deps_list */
2591 0 /* generate_spec_deps */
2594 /* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2595 we don't actually need information about lhs and rhs. */
2596 static void
2597 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2599 rtx pat = PATTERN (insn);
2601 if (NONJUMP_INSN_P (insn)
2602 && GET_CODE (pat) == SET
2603 && !force_unique_p)
2605 IDATA_RHS (id) = SET_SRC (pat);
2606 IDATA_LHS (id) = SET_DEST (pat);
2608 else
2609 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2612 /* Possibly downgrade INSN to USE. */
2613 static void
2614 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2616 bool must_be_use = false;
2617 df_ref def;
2618 rtx lhs = IDATA_LHS (id);
2619 rtx rhs = IDATA_RHS (id);
2621 /* We downgrade only SETs. */
2622 if (IDATA_TYPE (id) != SET)
2623 return;
2625 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2627 IDATA_TYPE (id) = USE;
2628 return;
2631 FOR_EACH_INSN_DEF (def, insn)
2633 if (DF_REF_INSN (def)
2634 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2635 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2637 must_be_use = true;
2638 break;
2641 #ifdef STACK_REGS
2642 /* Make instructions that set stack registers to be ineligible for
2643 renaming to avoid issues with find_used_regs. */
2644 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2646 must_be_use = true;
2647 break;
2649 #endif
2652 if (must_be_use)
2653 IDATA_TYPE (id) = USE;
2656 /* Setup implicit register clobbers calculated by sched-deps for INSN
2657 before reload and save them in ID. */
2658 static void
2659 setup_id_implicit_regs (idata_t id, insn_t insn)
2661 if (reload_completed)
2662 return;
2664 HARD_REG_SET temp;
2665 unsigned regno;
2666 hard_reg_set_iterator hrsi;
2668 get_implicit_reg_pending_clobbers (&temp, insn);
2669 EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2670 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2673 /* Setup register sets describing INSN in ID. */
2674 static void
2675 setup_id_reg_sets (idata_t id, insn_t insn)
2677 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2678 df_ref def, use;
2679 regset tmp = get_clear_regset_from_pool ();
2681 FOR_EACH_INSN_INFO_DEF (def, insn_info)
2683 unsigned int regno = DF_REF_REGNO (def);
2685 /* Post modifies are treated like clobbers by sched-deps.c. */
2686 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2687 | DF_REF_PRE_POST_MODIFY)))
2688 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2689 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2691 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2693 #ifdef STACK_REGS
2694 /* For stack registers, treat writes to them as writes
2695 to the first one to be consistent with sched-deps.c. */
2696 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2697 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2698 #endif
2700 /* Mark special refs that generate read/write def pair. */
2701 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2702 || regno == STACK_POINTER_REGNUM)
2703 bitmap_set_bit (tmp, regno);
2706 FOR_EACH_INSN_INFO_USE (use, insn_info)
2708 unsigned int regno = DF_REF_REGNO (use);
2710 /* When these refs are met for the first time, skip them, as
2711 these uses are just counterparts of some defs. */
2712 if (bitmap_bit_p (tmp, regno))
2713 bitmap_clear_bit (tmp, regno);
2714 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2716 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2718 #ifdef STACK_REGS
2719 /* For stack registers, treat reads from them as reads from
2720 the first one to be consistent with sched-deps.c. */
2721 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2722 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2723 #endif
2727 /* Also get implicit reg clobbers from sched-deps. */
2728 setup_id_implicit_regs (id, insn);
2730 return_regset_to_pool (tmp);
2733 /* Initialize instruction data for INSN in ID using DF's data. */
2734 static void
2735 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2737 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2739 setup_id_for_insn (id, insn, force_unique_p);
2740 setup_id_lhs_rhs (id, insn, force_unique_p);
2742 if (INSN_NOP_P (insn))
2743 return;
2745 maybe_downgrade_id_to_use (id, insn);
2746 setup_id_reg_sets (id, insn);
2749 /* Initialize instruction data for INSN in ID. */
2750 static void
2751 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2753 struct deps_desc _dc, *dc = &_dc;
2755 deps_init_id_data.where = DEPS_IN_NOWHERE;
2756 deps_init_id_data.id = id;
2757 deps_init_id_data.force_unique_p = force_unique_p;
2758 deps_init_id_data.force_use_p = false;
2760 init_deps (dc, false);
2761 memcpy (&deps_init_id_sched_deps_info,
2762 &const_deps_init_id_sched_deps_info,
2763 sizeof (deps_init_id_sched_deps_info));
2764 if (spec_info != NULL)
2765 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2766 sched_deps_info = &deps_init_id_sched_deps_info;
2768 deps_analyze_insn (dc, insn);
2769 /* Implicit reg clobbers received from sched-deps separately. */
2770 setup_id_implicit_regs (id, insn);
2772 free_deps (dc);
2773 deps_init_id_data.id = NULL;
2777 struct sched_scan_info_def
2779 /* This hook notifies scheduler frontend to extend its internal per basic
2780 block data structures. This hook should be called once before a series of
2781 calls to bb_init (). */
2782 void (*extend_bb) (void);
2784 /* This hook makes scheduler frontend to initialize its internal data
2785 structures for the passed basic block. */
2786 void (*init_bb) (basic_block);
2788 /* This hook notifies scheduler frontend to extend its internal per insn data
2789 structures. This hook should be called once before a series of calls to
2790 insn_init (). */
2791 void (*extend_insn) (void);
2793 /* This hook makes scheduler frontend to initialize its internal data
2794 structures for the passed insn. */
2795 void (*init_insn) (insn_t);
2798 /* A driver function to add a set of basic blocks (BBS) to the
2799 scheduling region. */
2800 static void
2801 sched_scan (const struct sched_scan_info_def *ssi, bb_vec_t bbs)
2803 unsigned i;
2804 basic_block bb;
2806 if (ssi->extend_bb)
2807 ssi->extend_bb ();
2809 if (ssi->init_bb)
2810 FOR_EACH_VEC_ELT (bbs, i, bb)
2811 ssi->init_bb (bb);
2813 if (ssi->extend_insn)
2814 ssi->extend_insn ();
2816 if (ssi->init_insn)
2817 FOR_EACH_VEC_ELT (bbs, i, bb)
2819 rtx_insn *insn;
2821 FOR_BB_INSNS (bb, insn)
2822 ssi->init_insn (insn);
2826 /* Implement hooks for collecting fundamental insn properties like if insn is
2827 an ASM or is within a SCHED_GROUP. */
2829 /* True when a "one-time init" data for INSN was already inited. */
2830 static bool
2831 first_time_insn_init (insn_t insn)
2833 return INSN_LIVE (insn) == NULL;
2836 /* Hash an entry in a transformed_insns hashtable. */
2837 static hashval_t
2838 hash_transformed_insns (const void *p)
2840 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2843 /* Compare the entries in a transformed_insns hashtable. */
2844 static int
2845 eq_transformed_insns (const void *p, const void *q)
2847 rtx_insn *i1 =
2848 VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2849 rtx_insn *i2 =
2850 VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2852 if (INSN_UID (i1) == INSN_UID (i2))
2853 return 1;
2854 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2857 /* Free an entry in a transformed_insns hashtable. */
2858 static void
2859 free_transformed_insns (void *p)
2861 struct transformed_insns *pti = (struct transformed_insns *) p;
2863 vinsn_detach (pti->vinsn_old);
2864 vinsn_detach (pti->vinsn_new);
2865 free (pti);
2868 /* Init the s_i_d data for INSN which should be inited just once, when
2869 we first see the insn. */
2870 static void
2871 init_first_time_insn_data (insn_t insn)
2873 /* This should not be set if this is the first time we init data for
2874 insn. */
2875 gcc_assert (first_time_insn_init (insn));
2877 /* These are needed for nops too. */
2878 INSN_LIVE (insn) = get_regset_from_pool ();
2879 INSN_LIVE_VALID_P (insn) = false;
2881 if (!INSN_NOP_P (insn))
2883 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2884 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2885 INSN_TRANSFORMED_INSNS (insn)
2886 = htab_create (16, hash_transformed_insns,
2887 eq_transformed_insns, free_transformed_insns);
2888 init_deps (&INSN_DEPS_CONTEXT (insn), true);
2892 /* Free almost all above data for INSN that is scheduled already.
2893 Used for extra-large basic blocks. */
2894 void
2895 free_data_for_scheduled_insn (insn_t insn)
2897 gcc_assert (! first_time_insn_init (insn));
2899 if (! INSN_ANALYZED_DEPS (insn))
2900 return;
2902 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2903 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2904 htab_delete (INSN_TRANSFORMED_INSNS (insn));
2906 /* This is allocated only for bookkeeping insns. */
2907 if (INSN_ORIGINATORS (insn))
2908 BITMAP_FREE (INSN_ORIGINATORS (insn));
2909 free_deps (&INSN_DEPS_CONTEXT (insn));
2911 INSN_ANALYZED_DEPS (insn) = NULL;
2913 /* Clear the readonly flag so we would ICE when trying to recalculate
2914 the deps context (as we believe that it should not happen). */
2915 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2918 /* Free the same data as above for INSN. */
2919 static void
2920 free_first_time_insn_data (insn_t insn)
2922 gcc_assert (! first_time_insn_init (insn));
2924 free_data_for_scheduled_insn (insn);
2925 return_regset_to_pool (INSN_LIVE (insn));
2926 INSN_LIVE (insn) = NULL;
2927 INSN_LIVE_VALID_P (insn) = false;
2930 /* Initialize region-scope data structures for basic blocks. */
2931 static void
2932 init_global_and_expr_for_bb (basic_block bb)
2934 if (sel_bb_empty_p (bb))
2935 return;
2937 invalidate_av_set (bb);
2940 /* Data for global dependency analysis (to initialize CANT_MOVE and
2941 SCHED_GROUP_P). */
2942 static struct
2944 /* Previous insn. */
2945 insn_t prev_insn;
2946 } init_global_data;
2948 /* Determine if INSN is in the sched_group, is an asm or should not be
2949 cloned. After that initialize its expr. */
2950 static void
2951 init_global_and_expr_for_insn (insn_t insn)
2953 if (LABEL_P (insn))
2954 return;
2956 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2958 init_global_data.prev_insn = NULL;
2959 return;
2962 gcc_assert (INSN_P (insn));
2964 if (SCHED_GROUP_P (insn))
2965 /* Setup a sched_group. */
2967 insn_t prev_insn = init_global_data.prev_insn;
2969 if (prev_insn)
2970 INSN_SCHED_NEXT (prev_insn) = insn;
2972 init_global_data.prev_insn = insn;
2974 else
2975 init_global_data.prev_insn = NULL;
2977 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2978 || asm_noperands (PATTERN (insn)) >= 0)
2979 /* Mark INSN as an asm. */
2980 INSN_ASM_P (insn) = true;
2983 bool force_unique_p;
2984 ds_t spec_done_ds;
2986 /* Certain instructions cannot be cloned, and frame related insns and
2987 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2988 their block. */
2989 if (prologue_epilogue_contains (insn))
2991 if (RTX_FRAME_RELATED_P (insn))
2992 CANT_MOVE (insn) = 1;
2993 else
2995 rtx note;
2996 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2997 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2998 && ((enum insn_note) INTVAL (XEXP (note, 0))
2999 == NOTE_INSN_EPILOGUE_BEG))
3001 CANT_MOVE (insn) = 1;
3002 break;
3005 force_unique_p = true;
3007 else
3008 if (CANT_MOVE (insn)
3009 || INSN_ASM_P (insn)
3010 || SCHED_GROUP_P (insn)
3011 || CALL_P (insn)
3012 /* Exception handling insns are always unique. */
3013 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
3014 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
3015 || control_flow_insn_p (insn)
3016 || volatile_insn_p (PATTERN (insn))
3017 || (targetm.cannot_copy_insn_p
3018 && targetm.cannot_copy_insn_p (insn)))
3019 force_unique_p = true;
3020 else
3021 force_unique_p = false;
3023 if (targetm.sched.get_insn_spec_ds)
3025 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
3026 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
3028 else
3029 spec_done_ds = 0;
3031 /* Initialize INSN's expr. */
3032 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
3033 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
3034 spec_done_ds, 0, 0, vNULL, true,
3035 false, false, false, CANT_MOVE (insn));
3038 init_first_time_insn_data (insn);
3041 /* Scan the region and initialize instruction data for basic blocks BBS. */
3042 void
3043 sel_init_global_and_expr (bb_vec_t bbs)
3045 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
3046 const struct sched_scan_info_def ssi =
3048 NULL, /* extend_bb */
3049 init_global_and_expr_for_bb, /* init_bb */
3050 extend_insn_data, /* extend_insn */
3051 init_global_and_expr_for_insn /* init_insn */
3054 sched_scan (&ssi, bbs);
3057 /* Finalize region-scope data structures for basic blocks. */
3058 static void
3059 finish_global_and_expr_for_bb (basic_block bb)
3061 av_set_clear (&BB_AV_SET (bb));
3062 BB_AV_LEVEL (bb) = 0;
3065 /* Finalize INSN's data. */
3066 static void
3067 finish_global_and_expr_insn (insn_t insn)
3069 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
3070 return;
3072 gcc_assert (INSN_P (insn));
3074 if (INSN_LUID (insn) > 0)
3076 free_first_time_insn_data (insn);
3077 INSN_WS_LEVEL (insn) = 0;
3078 CANT_MOVE (insn) = 0;
3080 /* We can no longer assert this, as vinsns of this insn could be
3081 easily live in other insn's caches. This should be changed to
3082 a counter-like approach among all vinsns. */
3083 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
3084 clear_expr (INSN_EXPR (insn));
3088 /* Finalize per instruction data for the whole region. */
3089 void
3090 sel_finish_global_and_expr (void)
3093 bb_vec_t bbs;
3094 int i;
3096 bbs.create (current_nr_blocks);
3098 for (i = 0; i < current_nr_blocks; i++)
3099 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
3101 /* Clear AV_SETs and INSN_EXPRs. */
3103 const struct sched_scan_info_def ssi =
3105 NULL, /* extend_bb */
3106 finish_global_and_expr_for_bb, /* init_bb */
3107 NULL, /* extend_insn */
3108 finish_global_and_expr_insn /* init_insn */
3111 sched_scan (&ssi, bbs);
3114 bbs.release ();
3117 finish_insns ();
3121 /* In the below hooks, we merely calculate whether or not a dependence
3122 exists, and in what part of insn. However, we will need more data
3123 when we'll start caching dependence requests. */
3125 /* Container to hold information for dependency analysis. */
3126 static struct
3128 deps_t dc;
3130 /* A variable to track which part of rtx we are scanning in
3131 sched-deps.c: sched_analyze_insn (). */
3132 deps_where_t where;
3134 /* Current producer. */
3135 insn_t pro;
3137 /* Current consumer. */
3138 vinsn_t con;
3140 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3141 X is from { INSN, LHS, RHS }. */
3142 ds_t has_dep_p[DEPS_IN_NOWHERE];
3143 } has_dependence_data;
3145 /* Start analyzing dependencies of INSN. */
3146 static void
3147 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3149 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3151 has_dependence_data.where = DEPS_IN_INSN;
3154 /* Finish analyzing dependencies of an insn. */
3155 static void
3156 has_dependence_finish_insn (void)
3158 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3160 has_dependence_data.where = DEPS_IN_NOWHERE;
3163 /* Start analyzing dependencies of LHS. */
3164 static void
3165 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3167 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3169 if (VINSN_LHS (has_dependence_data.con) != NULL)
3170 has_dependence_data.where = DEPS_IN_LHS;
3173 /* Finish analyzing dependencies of an lhs. */
3174 static void
3175 has_dependence_finish_lhs (void)
3177 has_dependence_data.where = DEPS_IN_INSN;
3180 /* Start analyzing dependencies of RHS. */
3181 static void
3182 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3184 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3186 if (VINSN_RHS (has_dependence_data.con) != NULL)
3187 has_dependence_data.where = DEPS_IN_RHS;
3190 /* Start analyzing dependencies of an rhs. */
3191 static void
3192 has_dependence_finish_rhs (void)
3194 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3195 || has_dependence_data.where == DEPS_IN_INSN);
3197 has_dependence_data.where = DEPS_IN_INSN;
3200 /* Note a set of REGNO. */
3201 static void
3202 has_dependence_note_reg_set (int regno)
3204 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3206 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3207 VINSN_INSN_RTX
3208 (has_dependence_data.con)))
3210 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3212 if (reg_last->sets != NULL
3213 || reg_last->clobbers != NULL)
3214 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3216 if (reg_last->uses || reg_last->implicit_sets)
3217 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3221 /* Note a clobber of REGNO. */
3222 static void
3223 has_dependence_note_reg_clobber (int regno)
3225 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3227 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3228 VINSN_INSN_RTX
3229 (has_dependence_data.con)))
3231 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3233 if (reg_last->sets)
3234 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3236 if (reg_last->uses || reg_last->implicit_sets)
3237 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3241 /* Note a use of REGNO. */
3242 static void
3243 has_dependence_note_reg_use (int regno)
3245 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3247 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3248 VINSN_INSN_RTX
3249 (has_dependence_data.con)))
3251 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3253 if (reg_last->sets)
3254 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3256 if (reg_last->clobbers || reg_last->implicit_sets)
3257 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3259 /* Merge BE_IN_SPEC bits into *DSP when the dependency producer
3260 is actually a check insn. We need to do this for any register
3261 read-read dependency with the check unless we track properly
3262 all registers written by BE_IN_SPEC-speculated insns, as
3263 we don't have explicit dependence lists. See PR 53975. */
3264 if (reg_last->uses)
3266 ds_t pro_spec_checked_ds;
3268 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3269 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3271 if (pro_spec_checked_ds != 0)
3272 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3273 NULL_RTX, NULL_RTX);
3278 /* Note a memory dependence. */
3279 static void
3280 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3281 rtx pending_mem ATTRIBUTE_UNUSED,
3282 insn_t pending_insn ATTRIBUTE_UNUSED,
3283 ds_t ds ATTRIBUTE_UNUSED)
3285 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3286 VINSN_INSN_RTX (has_dependence_data.con)))
3288 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3290 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3294 /* Note a dependence. */
3295 static void
3296 has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3297 ds_t ds ATTRIBUTE_UNUSED)
3299 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3300 VINSN_INSN_RTX (has_dependence_data.con)))
3302 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3304 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3308 /* Mark the insn as having a hard dependence that prevents speculation. */
3309 void
3310 sel_mark_hard_insn (rtx insn)
3312 int i;
3314 /* Only work when we're in has_dependence_p mode.
3315 ??? This is a hack, this should actually be a hook. */
3316 if (!has_dependence_data.dc || !has_dependence_data.pro)
3317 return;
3319 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3320 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3322 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3323 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3326 /* This structure holds the hooks for the dependency analysis used when
3327 actually processing dependencies in the scheduler. */
3328 static struct sched_deps_info_def has_dependence_sched_deps_info;
3330 /* This initializes most of the fields of the above structure. */
3331 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3333 NULL,
3335 has_dependence_start_insn,
3336 has_dependence_finish_insn,
3337 has_dependence_start_lhs,
3338 has_dependence_finish_lhs,
3339 has_dependence_start_rhs,
3340 has_dependence_finish_rhs,
3341 has_dependence_note_reg_set,
3342 has_dependence_note_reg_clobber,
3343 has_dependence_note_reg_use,
3344 has_dependence_note_mem_dep,
3345 has_dependence_note_dep,
3347 0, /* use_cselib */
3348 0, /* use_deps_list */
3349 0 /* generate_spec_deps */
3352 /* Initialize has_dependence_sched_deps_info with extra spec field. */
3353 static void
3354 setup_has_dependence_sched_deps_info (void)
3356 memcpy (&has_dependence_sched_deps_info,
3357 &const_has_dependence_sched_deps_info,
3358 sizeof (has_dependence_sched_deps_info));
3360 if (spec_info != NULL)
3361 has_dependence_sched_deps_info.generate_spec_deps = 1;
3363 sched_deps_info = &has_dependence_sched_deps_info;
3366 /* Remove all dependences found and recorded in has_dependence_data array. */
3367 void
3368 sel_clear_has_dependence (void)
3370 int i;
3372 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3373 has_dependence_data.has_dep_p[i] = 0;
3376 /* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3377 to the dependence information array in HAS_DEP_PP. */
3378 ds_t
3379 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3381 int i;
3382 ds_t ds;
3383 struct deps_desc *dc;
3385 if (INSN_SIMPLEJUMP_P (pred))
3386 /* Unconditional jump is just a transfer of control flow.
3387 Ignore it. */
3388 return false;
3390 dc = &INSN_DEPS_CONTEXT (pred);
3392 /* We init this field lazily. */
3393 if (dc->reg_last == NULL)
3394 init_deps_reg_last (dc);
3396 if (!dc->readonly)
3398 has_dependence_data.pro = NULL;
3399 /* Initialize empty dep context with information about PRED. */
3400 advance_deps_context (dc, pred);
3401 dc->readonly = 1;
3404 has_dependence_data.where = DEPS_IN_NOWHERE;
3405 has_dependence_data.pro = pred;
3406 has_dependence_data.con = EXPR_VINSN (expr);
3407 has_dependence_data.dc = dc;
3409 sel_clear_has_dependence ();
3411 /* Now catch all dependencies that would be generated between PRED and
3412 INSN. */
3413 setup_has_dependence_sched_deps_info ();
3414 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3415 has_dependence_data.dc = NULL;
3417 /* When a barrier was found, set DEPS_IN_INSN bits. */
3418 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3419 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3420 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3421 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3423 /* Do not allow stores to memory to move through checks. Currently
3424 we don't move this to sched-deps.c as the check doesn't have
3425 obvious places to which this dependence can be attached.
3426 FIMXE: this should go to a hook. */
3427 if (EXPR_LHS (expr)
3428 && MEM_P (EXPR_LHS (expr))
3429 && sel_insn_is_speculation_check (pred))
3430 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3432 *has_dep_pp = has_dependence_data.has_dep_p;
3433 ds = 0;
3434 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3435 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3436 NULL_RTX, NULL_RTX);
3438 return ds;
3442 /* Dependence hooks implementation that checks dependence latency constraints
3443 on the insns being scheduled. The entry point for these routines is
3444 tick_check_p predicate. */
3446 static struct
3448 /* An expr we are currently checking. */
3449 expr_t expr;
3451 /* A minimal cycle for its scheduling. */
3452 int cycle;
3454 /* Whether we have seen a true dependence while checking. */
3455 bool seen_true_dep_p;
3456 } tick_check_data;
3458 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3459 on PRO with status DS and weight DW. */
3460 static void
3461 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3463 expr_t con_expr = tick_check_data.expr;
3464 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3466 if (con_insn != pro_insn)
3468 enum reg_note dt;
3469 int tick;
3471 if (/* PROducer was removed from above due to pipelining. */
3472 !INSN_IN_STREAM_P (pro_insn)
3473 /* Or PROducer was originally on the next iteration regarding the
3474 CONsumer. */
3475 || (INSN_SCHED_TIMES (pro_insn)
3476 - EXPR_SCHED_TIMES (con_expr)) > 1)
3477 /* Don't count this dependence. */
3478 return;
3480 dt = ds_to_dt (ds);
3481 if (dt == REG_DEP_TRUE)
3482 tick_check_data.seen_true_dep_p = true;
3484 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3487 dep_def _dep, *dep = &_dep;
3489 init_dep (dep, pro_insn, con_insn, dt);
3491 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3494 /* When there are several kinds of dependencies between pro and con,
3495 only REG_DEP_TRUE should be taken into account. */
3496 if (tick > tick_check_data.cycle
3497 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3498 tick_check_data.cycle = tick;
3502 /* An implementation of note_dep hook. */
3503 static void
3504 tick_check_note_dep (insn_t pro, ds_t ds)
3506 tick_check_dep_with_dw (pro, ds, 0);
3509 /* An implementation of note_mem_dep hook. */
3510 static void
3511 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3513 dw_t dw;
3515 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3516 ? estimate_dep_weak (mem1, mem2)
3517 : 0);
3519 tick_check_dep_with_dw (pro, ds, dw);
3522 /* This structure contains hooks for dependence analysis used when determining
3523 whether an insn is ready for scheduling. */
3524 static struct sched_deps_info_def tick_check_sched_deps_info =
3526 NULL,
3528 NULL,
3529 NULL,
3530 NULL,
3531 NULL,
3532 NULL,
3533 NULL,
3534 haifa_note_reg_set,
3535 haifa_note_reg_clobber,
3536 haifa_note_reg_use,
3537 tick_check_note_mem_dep,
3538 tick_check_note_dep,
3540 0, 0, 0
3543 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3544 scheduled. Return 0 if all data from producers in DC is ready. */
3546 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3548 int cycles_left;
3549 /* Initialize variables. */
3550 tick_check_data.expr = expr;
3551 tick_check_data.cycle = 0;
3552 tick_check_data.seen_true_dep_p = false;
3553 sched_deps_info = &tick_check_sched_deps_info;
3555 gcc_assert (!dc->readonly);
3556 dc->readonly = 1;
3557 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3558 dc->readonly = 0;
3560 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3562 return cycles_left >= 0 ? cycles_left : 0;
3566 /* Functions to work with insns. */
3568 /* Returns true if LHS of INSN is the same as DEST of an insn
3569 being moved. */
3570 bool
3571 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3573 rtx lhs = INSN_LHS (insn);
3575 if (lhs == NULL || dest == NULL)
3576 return false;
3578 return rtx_equal_p (lhs, dest);
3581 /* Return s_i_d entry of INSN. Callable from debugger. */
3582 sel_insn_data_def
3583 insn_sid (insn_t insn)
3585 return *SID (insn);
3588 /* True when INSN is a speculative check. We can tell this by looking
3589 at the data structures of the selective scheduler, not by examining
3590 the pattern. */
3591 bool
3592 sel_insn_is_speculation_check (rtx insn)
3594 return s_i_d.exists () && !! INSN_SPEC_CHECKED_DS (insn);
3597 /* Extracts machine mode MODE and destination location DST_LOC
3598 for given INSN. */
3599 void
3600 get_dest_and_mode (rtx insn, rtx *dst_loc, machine_mode *mode)
3602 rtx pat = PATTERN (insn);
3604 gcc_assert (dst_loc);
3605 gcc_assert (GET_CODE (pat) == SET);
3607 *dst_loc = SET_DEST (pat);
3609 gcc_assert (*dst_loc);
3610 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3612 if (mode)
3613 *mode = GET_MODE (*dst_loc);
3616 /* Returns true when moving through JUMP will result in bookkeeping
3617 creation. */
3618 bool
3619 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3621 insn_t succ;
3622 succ_iterator si;
3624 FOR_EACH_SUCC (succ, si, jump)
3625 if (sel_num_cfg_preds_gt_1 (succ))
3626 return true;
3628 return false;
3631 /* Return 'true' if INSN is the only one in its basic block. */
3632 static bool
3633 insn_is_the_only_one_in_bb_p (insn_t insn)
3635 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3638 /* Check that the region we're scheduling still has at most one
3639 backedge. */
3640 static void
3641 verify_backedges (void)
3643 if (pipelining_p)
3645 int i, n = 0;
3646 edge e;
3647 edge_iterator ei;
3649 for (i = 0; i < current_nr_blocks; i++)
3650 FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))->succs)
3651 if (in_current_region_p (e->dest)
3652 && BLOCK_TO_BB (e->dest->index) < i)
3653 n++;
3655 gcc_assert (n <= 1);
3660 /* Functions to work with control flow. */
3662 /* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3663 are sorted in topological order (it might have been invalidated by
3664 redirecting an edge). */
3665 static void
3666 sel_recompute_toporder (void)
3668 int i, n, rgn;
3669 int *postorder, n_blocks;
3671 postorder = XALLOCAVEC (int, n_basic_blocks_for_fn (cfun));
3672 n_blocks = post_order_compute (postorder, false, false);
3674 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3675 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3676 if (CONTAINING_RGN (postorder[i]) == rgn)
3678 BLOCK_TO_BB (postorder[i]) = n;
3679 BB_TO_BLOCK (n) = postorder[i];
3680 n++;
3683 /* Assert that we updated info for all blocks. We may miss some blocks if
3684 this function is called when redirecting an edge made a block
3685 unreachable, but that block is not deleted yet. */
3686 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3689 /* Tidy the possibly empty block BB. */
3690 static bool
3691 maybe_tidy_empty_bb (basic_block bb)
3693 basic_block succ_bb, pred_bb, note_bb;
3694 vec<basic_block> dom_bbs;
3695 edge e;
3696 edge_iterator ei;
3697 bool rescan_p;
3699 /* Keep empty bb only if this block immediately precedes EXIT and
3700 has incoming non-fallthrough edge, or it has no predecessors or
3701 successors. Otherwise remove it. */
3702 if (!sel_bb_empty_p (bb)
3703 || (single_succ_p (bb)
3704 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
3705 && (!single_pred_p (bb)
3706 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3707 || EDGE_COUNT (bb->preds) == 0
3708 || EDGE_COUNT (bb->succs) == 0)
3709 return false;
3711 /* Do not attempt to redirect complex edges. */
3712 FOR_EACH_EDGE (e, ei, bb->preds)
3713 if (e->flags & EDGE_COMPLEX)
3714 return false;
3715 else if (e->flags & EDGE_FALLTHRU)
3717 rtx note;
3718 /* If prev bb ends with asm goto, see if any of the
3719 ASM_OPERANDS_LABELs don't point to the fallthru
3720 label. Do not attempt to redirect it in that case. */
3721 if (JUMP_P (BB_END (e->src))
3722 && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
3724 int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
3726 for (i = 0; i < n; ++i)
3727 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (bb))
3728 return false;
3732 free_data_sets (bb);
3734 /* Do not delete BB if it has more than one successor.
3735 That can occur when we moving a jump. */
3736 if (!single_succ_p (bb))
3738 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3739 sel_merge_blocks (bb->prev_bb, bb);
3740 return true;
3743 succ_bb = single_succ (bb);
3744 rescan_p = true;
3745 pred_bb = NULL;
3746 dom_bbs.create (0);
3748 /* Save a pred/succ from the current region to attach the notes to. */
3749 note_bb = NULL;
3750 FOR_EACH_EDGE (e, ei, bb->preds)
3751 if (in_current_region_p (e->src))
3753 note_bb = e->src;
3754 break;
3756 if (note_bb == NULL)
3757 note_bb = succ_bb;
3759 /* Redirect all non-fallthru edges to the next bb. */
3760 while (rescan_p)
3762 rescan_p = false;
3764 FOR_EACH_EDGE (e, ei, bb->preds)
3766 pred_bb = e->src;
3768 if (!(e->flags & EDGE_FALLTHRU))
3770 /* We can not invalidate computed topological order by moving
3771 the edge destination block (E->SUCC) along a fallthru edge.
3773 We will update dominators here only when we'll get
3774 an unreachable block when redirecting, otherwise
3775 sel_redirect_edge_and_branch will take care of it. */
3776 if (e->dest != bb
3777 && single_pred_p (e->dest))
3778 dom_bbs.safe_push (e->dest);
3779 sel_redirect_edge_and_branch (e, succ_bb);
3780 rescan_p = true;
3781 break;
3783 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3784 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3785 still have to adjust it. */
3786 else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3788 /* If possible, try to remove the unneeded conditional jump. */
3789 if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3790 && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3792 if (!sel_remove_insn (BB_END (pred_bb), false, false))
3793 tidy_fallthru_edge (e);
3795 else
3796 sel_redirect_edge_and_branch (e, succ_bb);
3797 rescan_p = true;
3798 break;
3803 if (can_merge_blocks_p (bb->prev_bb, bb))
3804 sel_merge_blocks (bb->prev_bb, bb);
3805 else
3807 /* This is a block without fallthru predecessor. Just delete it. */
3808 gcc_assert (note_bb);
3809 move_bb_info (note_bb, bb);
3810 remove_empty_bb (bb, true);
3813 if (!dom_bbs.is_empty ())
3815 dom_bbs.safe_push (succ_bb);
3816 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3817 dom_bbs.release ();
3820 return true;
3823 /* Tidy the control flow after we have removed original insn from
3824 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3825 is true, also try to optimize control flow on non-empty blocks. */
3826 bool
3827 tidy_control_flow (basic_block xbb, bool full_tidying)
3829 bool changed = true;
3830 insn_t first, last;
3832 /* First check whether XBB is empty. */
3833 changed = maybe_tidy_empty_bb (xbb);
3834 if (changed || !full_tidying)
3835 return changed;
3837 /* Check if there is a unnecessary jump after insn left. */
3838 if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
3839 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3840 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3842 if (sel_remove_insn (BB_END (xbb), false, false))
3843 return true;
3844 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3847 first = sel_bb_head (xbb);
3848 last = sel_bb_end (xbb);
3849 if (MAY_HAVE_DEBUG_INSNS)
3851 if (first != last && DEBUG_INSN_P (first))
3853 first = NEXT_INSN (first);
3854 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3856 if (first != last && DEBUG_INSN_P (last))
3858 last = PREV_INSN (last);
3859 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3861 /* Check if there is an unnecessary jump in previous basic block leading
3862 to next basic block left after removing INSN from stream.
3863 If it is so, remove that jump and redirect edge to current
3864 basic block (where there was INSN before deletion). This way
3865 when NOP will be deleted several instructions later with its
3866 basic block we will not get a jump to next instruction, which
3867 can be harmful. */
3868 if (first == last
3869 && !sel_bb_empty_p (xbb)
3870 && INSN_NOP_P (last)
3871 /* Flow goes fallthru from current block to the next. */
3872 && EDGE_COUNT (xbb->succs) == 1
3873 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3874 /* When successor is an EXIT block, it may not be the next block. */
3875 && single_succ (xbb) != EXIT_BLOCK_PTR_FOR_FN (cfun)
3876 /* And unconditional jump in previous basic block leads to
3877 next basic block of XBB and this jump can be safely removed. */
3878 && in_current_region_p (xbb->prev_bb)
3879 && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
3880 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3881 /* Also this jump is not at the scheduling boundary. */
3882 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3884 bool recompute_toporder_p;
3885 /* Clear data structures of jump - jump itself will be removed
3886 by sel_redirect_edge_and_branch. */
3887 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3888 recompute_toporder_p
3889 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3891 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3893 /* It can turn out that after removing unused jump, basic block
3894 that contained that jump, becomes empty too. In such case
3895 remove it too. */
3896 if (sel_bb_empty_p (xbb->prev_bb))
3897 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3898 if (recompute_toporder_p)
3899 sel_recompute_toporder ();
3902 /* TODO: use separate flag for CFG checking. */
3903 if (flag_checking)
3905 verify_backedges ();
3906 verify_dominators (CDI_DOMINATORS);
3909 return changed;
3912 /* Purge meaningless empty blocks in the middle of a region. */
3913 void
3914 purge_empty_blocks (void)
3916 int i;
3918 /* Do not attempt to delete the first basic block in the region. */
3919 for (i = 1; i < current_nr_blocks; )
3921 basic_block b = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
3923 if (maybe_tidy_empty_bb (b))
3924 continue;
3926 i++;
3930 /* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3931 do not delete insn's data, because it will be later re-emitted.
3932 Return true if we have removed some blocks afterwards. */
3933 bool
3934 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3936 basic_block bb = BLOCK_FOR_INSN (insn);
3938 gcc_assert (INSN_IN_STREAM_P (insn));
3940 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3942 expr_t expr;
3943 av_set_iterator i;
3945 /* When we remove a debug insn that is head of a BB, it remains
3946 in the AV_SET of the block, but it shouldn't. */
3947 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3948 if (EXPR_INSN_RTX (expr) == insn)
3950 av_set_iter_remove (&i);
3951 break;
3955 if (only_disconnect)
3956 remove_insn (insn);
3957 else
3959 delete_insn (insn);
3960 clear_expr (INSN_EXPR (insn));
3963 /* It is necessary to NULL these fields in case we are going to re-insert
3964 INSN into the insns stream, as will usually happen in the ONLY_DISCONNECT
3965 case, but also for NOPs that we will return to the nop pool. */
3966 SET_PREV_INSN (insn) = NULL_RTX;
3967 SET_NEXT_INSN (insn) = NULL_RTX;
3968 set_block_for_insn (insn, NULL);
3970 return tidy_control_flow (bb, full_tidying);
3973 /* Estimate number of the insns in BB. */
3974 static int
3975 sel_estimate_number_of_insns (basic_block bb)
3977 int res = 0;
3978 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3980 for (; insn != next_tail; insn = NEXT_INSN (insn))
3981 if (NONDEBUG_INSN_P (insn))
3982 res++;
3984 return res;
3987 /* We don't need separate luids for notes or labels. */
3988 static int
3989 sel_luid_for_non_insn (rtx x)
3991 gcc_assert (NOTE_P (x) || LABEL_P (x));
3993 return -1;
3996 /* Find the proper seqno for inserting at INSN by successors.
3997 Return -1 if no successors with positive seqno exist. */
3998 static int
3999 get_seqno_by_succs (rtx_insn *insn)
4001 basic_block bb = BLOCK_FOR_INSN (insn);
4002 rtx_insn *tmp = insn, *end = BB_END (bb);
4003 int seqno;
4004 insn_t succ = NULL;
4005 succ_iterator si;
4007 while (tmp != end)
4009 tmp = NEXT_INSN (tmp);
4010 if (INSN_P (tmp))
4011 return INSN_SEQNO (tmp);
4014 seqno = INT_MAX;
4016 FOR_EACH_SUCC_1 (succ, si, end, SUCCS_NORMAL)
4017 if (INSN_SEQNO (succ) > 0)
4018 seqno = MIN (seqno, INSN_SEQNO (succ));
4020 if (seqno == INT_MAX)
4021 return -1;
4023 return seqno;
4026 /* Compute seqno for INSN by its preds or succs. Use OLD_SEQNO to compute
4027 seqno in corner cases. */
4028 static int
4029 get_seqno_for_a_jump (insn_t insn, int old_seqno)
4031 int seqno;
4033 gcc_assert (INSN_SIMPLEJUMP_P (insn));
4035 if (!sel_bb_head_p (insn))
4036 seqno = INSN_SEQNO (PREV_INSN (insn));
4037 else
4039 basic_block bb = BLOCK_FOR_INSN (insn);
4041 if (single_pred_p (bb)
4042 && !in_current_region_p (single_pred (bb)))
4044 /* We can have preds outside a region when splitting edges
4045 for pipelining of an outer loop. Use succ instead.
4046 There should be only one of them. */
4047 insn_t succ = NULL;
4048 succ_iterator si;
4049 bool first = true;
4051 gcc_assert (flag_sel_sched_pipelining_outer_loops
4052 && current_loop_nest);
4053 FOR_EACH_SUCC_1 (succ, si, insn,
4054 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
4056 gcc_assert (first);
4057 first = false;
4060 gcc_assert (succ != NULL);
4061 seqno = INSN_SEQNO (succ);
4063 else
4065 insn_t *preds;
4066 int n;
4068 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
4070 gcc_assert (n > 0);
4071 /* For one predecessor, use simple method. */
4072 if (n == 1)
4073 seqno = INSN_SEQNO (preds[0]);
4074 else
4075 seqno = get_seqno_by_preds (insn);
4077 free (preds);
4081 /* We were unable to find a good seqno among preds. */
4082 if (seqno < 0)
4083 seqno = get_seqno_by_succs (insn);
4085 if (seqno < 0)
4087 /* The only case where this could be here legally is that the only
4088 unscheduled insn was a conditional jump that got removed and turned
4089 into this unconditional one. Initialize from the old seqno
4090 of that jump passed down to here. */
4091 seqno = old_seqno;
4094 gcc_assert (seqno >= 0);
4095 return seqno;
4098 /* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
4099 with positive seqno exist. */
4101 get_seqno_by_preds (rtx_insn *insn)
4103 basic_block bb = BLOCK_FOR_INSN (insn);
4104 rtx_insn *tmp = insn, *head = BB_HEAD (bb);
4105 insn_t *preds;
4106 int n, i, seqno;
4108 /* Loop backwards from INSN to HEAD including both. */
4109 while (1)
4111 if (INSN_P (tmp))
4112 return INSN_SEQNO (tmp);
4113 if (tmp == head)
4114 break;
4115 tmp = PREV_INSN (tmp);
4118 cfg_preds (bb, &preds, &n);
4119 for (i = 0, seqno = -1; i < n; i++)
4120 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
4122 return seqno;
4127 /* Extend pass-scope data structures for basic blocks. */
4128 void
4129 sel_extend_global_bb_info (void)
4131 sel_global_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
4134 /* Extend region-scope data structures for basic blocks. */
4135 static void
4136 extend_region_bb_info (void)
4138 sel_region_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
4141 /* Extend all data structures to fit for all basic blocks. */
4142 static void
4143 extend_bb_info (void)
4145 sel_extend_global_bb_info ();
4146 extend_region_bb_info ();
4149 /* Finalize pass-scope data structures for basic blocks. */
4150 void
4151 sel_finish_global_bb_info (void)
4153 sel_global_bb_info.release ();
4156 /* Finalize region-scope data structures for basic blocks. */
4157 static void
4158 finish_region_bb_info (void)
4160 sel_region_bb_info.release ();
4164 /* Data for each insn in current region. */
4165 vec<sel_insn_data_def> s_i_d;
4167 /* Extend data structures for insns from current region. */
4168 static void
4169 extend_insn_data (void)
4171 int reserve;
4173 sched_extend_target ();
4174 sched_deps_init (false);
4176 /* Extend data structures for insns from current region. */
4177 reserve = (sched_max_luid + 1 - s_i_d.length ());
4178 if (reserve > 0 && ! s_i_d.space (reserve))
4180 int size;
4182 if (sched_max_luid / 2 > 1024)
4183 size = sched_max_luid + 1024;
4184 else
4185 size = 3 * sched_max_luid / 2;
4188 s_i_d.safe_grow_cleared (size);
4192 /* Finalize data structures for insns from current region. */
4193 static void
4194 finish_insns (void)
4196 unsigned i;
4198 /* Clear here all dependence contexts that may have left from insns that were
4199 removed during the scheduling. */
4200 for (i = 0; i < s_i_d.length (); i++)
4202 sel_insn_data_def *sid_entry = &s_i_d[i];
4204 if (sid_entry->live)
4205 return_regset_to_pool (sid_entry->live);
4206 if (sid_entry->analyzed_deps)
4208 BITMAP_FREE (sid_entry->analyzed_deps);
4209 BITMAP_FREE (sid_entry->found_deps);
4210 htab_delete (sid_entry->transformed_insns);
4211 free_deps (&sid_entry->deps_context);
4213 if (EXPR_VINSN (&sid_entry->expr))
4215 clear_expr (&sid_entry->expr);
4217 /* Also, clear CANT_MOVE bit here, because we really don't want it
4218 to be passed to the next region. */
4219 CANT_MOVE_BY_LUID (i) = 0;
4223 s_i_d.release ();
4226 /* A proxy to pass initialization data to init_insn (). */
4227 static sel_insn_data_def _insn_init_ssid;
4228 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4230 /* If true create a new vinsn. Otherwise use the one from EXPR. */
4231 static bool insn_init_create_new_vinsn_p;
4233 /* Set all necessary data for initialization of the new insn[s]. */
4234 static expr_t
4235 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4237 expr_t x = &insn_init_ssid->expr;
4239 copy_expr_onside (x, expr);
4240 if (vi != NULL)
4242 insn_init_create_new_vinsn_p = false;
4243 change_vinsn_in_expr (x, vi);
4245 else
4246 insn_init_create_new_vinsn_p = true;
4248 insn_init_ssid->seqno = seqno;
4249 return x;
4252 /* Init data for INSN. */
4253 static void
4254 init_insn_data (insn_t insn)
4256 expr_t expr;
4257 sel_insn_data_t ssid = insn_init_ssid;
4259 /* The fields mentioned below are special and hence are not being
4260 propagated to the new insns. */
4261 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4262 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4263 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4265 expr = INSN_EXPR (insn);
4266 copy_expr (expr, &ssid->expr);
4267 prepare_insn_expr (insn, ssid->seqno);
4269 if (insn_init_create_new_vinsn_p)
4270 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
4272 if (first_time_insn_init (insn))
4273 init_first_time_insn_data (insn);
4276 /* This is used to initialize spurious jumps generated by
4277 sel_redirect_edge (). OLD_SEQNO is used for initializing seqnos
4278 in corner cases within get_seqno_for_a_jump. */
4279 static void
4280 init_simplejump_data (insn_t insn, int old_seqno)
4282 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
4283 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0,
4284 vNULL, true, false, false,
4285 false, true);
4286 INSN_SEQNO (insn) = get_seqno_for_a_jump (insn, old_seqno);
4287 init_first_time_insn_data (insn);
4290 /* Perform deferred initialization of insns. This is used to process
4291 a new jump that may be created by redirect_edge. OLD_SEQNO is used
4292 for initializing simplejumps in init_simplejump_data. */
4293 static void
4294 sel_init_new_insn (insn_t insn, int flags, int old_seqno)
4296 /* We create data structures for bb when the first insn is emitted in it. */
4297 if (INSN_P (insn)
4298 && INSN_IN_STREAM_P (insn)
4299 && insn_is_the_only_one_in_bb_p (insn))
4301 extend_bb_info ();
4302 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4305 if (flags & INSN_INIT_TODO_LUID)
4307 sched_extend_luids ();
4308 sched_init_insn_luid (insn);
4311 if (flags & INSN_INIT_TODO_SSID)
4313 extend_insn_data ();
4314 init_insn_data (insn);
4315 clear_expr (&insn_init_ssid->expr);
4318 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4320 extend_insn_data ();
4321 init_simplejump_data (insn, old_seqno);
4324 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4325 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4329 /* Functions to init/finish work with lv sets. */
4331 /* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4332 static void
4333 init_lv_set (basic_block bb)
4335 gcc_assert (!BB_LV_SET_VALID_P (bb));
4337 BB_LV_SET (bb) = get_regset_from_pool ();
4338 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4339 BB_LV_SET_VALID_P (bb) = true;
4342 /* Copy liveness information to BB from FROM_BB. */
4343 static void
4344 copy_lv_set_from (basic_block bb, basic_block from_bb)
4346 gcc_assert (!BB_LV_SET_VALID_P (bb));
4348 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4349 BB_LV_SET_VALID_P (bb) = true;
4352 /* Initialize lv set of all bb headers. */
4353 void
4354 init_lv_sets (void)
4356 basic_block bb;
4358 /* Initialize of LV sets. */
4359 FOR_EACH_BB_FN (bb, cfun)
4360 init_lv_set (bb);
4362 /* Don't forget EXIT_BLOCK. */
4363 init_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4366 /* Release lv set of HEAD. */
4367 static void
4368 free_lv_set (basic_block bb)
4370 gcc_assert (BB_LV_SET (bb) != NULL);
4372 return_regset_to_pool (BB_LV_SET (bb));
4373 BB_LV_SET (bb) = NULL;
4374 BB_LV_SET_VALID_P (bb) = false;
4377 /* Finalize lv sets of all bb headers. */
4378 void
4379 free_lv_sets (void)
4381 basic_block bb;
4383 /* Don't forget EXIT_BLOCK. */
4384 free_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4386 /* Free LV sets. */
4387 FOR_EACH_BB_FN (bb, cfun)
4388 if (BB_LV_SET (bb))
4389 free_lv_set (bb);
4392 /* Mark AV_SET for BB as invalid, so this set will be updated the next time
4393 compute_av() processes BB. This function is called when creating new basic
4394 blocks, as well as for blocks (either new or existing) where new jumps are
4395 created when the control flow is being updated. */
4396 static void
4397 invalidate_av_set (basic_block bb)
4399 BB_AV_LEVEL (bb) = -1;
4402 /* Create initial data sets for BB (they will be invalid). */
4403 static void
4404 create_initial_data_sets (basic_block bb)
4406 if (BB_LV_SET (bb))
4407 BB_LV_SET_VALID_P (bb) = false;
4408 else
4409 BB_LV_SET (bb) = get_regset_from_pool ();
4410 invalidate_av_set (bb);
4413 /* Free av set of BB. */
4414 static void
4415 free_av_set (basic_block bb)
4417 av_set_clear (&BB_AV_SET (bb));
4418 BB_AV_LEVEL (bb) = 0;
4421 /* Free data sets of BB. */
4422 void
4423 free_data_sets (basic_block bb)
4425 free_lv_set (bb);
4426 free_av_set (bb);
4429 /* Exchange data sets of TO and FROM. */
4430 void
4431 exchange_data_sets (basic_block to, basic_block from)
4433 /* Exchange lv sets of TO and FROM. */
4434 std::swap (BB_LV_SET (from), BB_LV_SET (to));
4435 std::swap (BB_LV_SET_VALID_P (from), BB_LV_SET_VALID_P (to));
4437 /* Exchange av sets of TO and FROM. */
4438 std::swap (BB_AV_SET (from), BB_AV_SET (to));
4439 std::swap (BB_AV_LEVEL (from), BB_AV_LEVEL (to));
4442 /* Copy data sets of FROM to TO. */
4443 void
4444 copy_data_sets (basic_block to, basic_block from)
4446 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4447 gcc_assert (BB_AV_SET (to) == NULL);
4449 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4450 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4452 if (BB_AV_SET_VALID_P (from))
4454 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4456 if (BB_LV_SET_VALID_P (from))
4458 gcc_assert (BB_LV_SET (to) != NULL);
4459 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4463 /* Return an av set for INSN, if any. */
4464 av_set_t
4465 get_av_set (insn_t insn)
4467 av_set_t av_set;
4469 gcc_assert (AV_SET_VALID_P (insn));
4471 if (sel_bb_head_p (insn))
4472 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4473 else
4474 av_set = NULL;
4476 return av_set;
4479 /* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4481 get_av_level (insn_t insn)
4483 int av_level;
4485 gcc_assert (INSN_P (insn));
4487 if (sel_bb_head_p (insn))
4488 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4489 else
4490 av_level = INSN_WS_LEVEL (insn);
4492 return av_level;
4497 /* Variables to work with control-flow graph. */
4499 /* The basic block that already has been processed by the sched_data_update (),
4500 but hasn't been in sel_add_bb () yet. */
4501 static vec<basic_block> last_added_blocks;
4503 /* A pool for allocating successor infos. */
4504 static struct
4506 /* A stack for saving succs_info structures. */
4507 struct succs_info *stack;
4509 /* Its size. */
4510 int size;
4512 /* Top of the stack. */
4513 int top;
4515 /* Maximal value of the top. */
4516 int max_top;
4517 } succs_info_pool;
4519 /* Functions to work with control-flow graph. */
4521 /* Return basic block note of BB. */
4522 rtx_insn *
4523 sel_bb_head (basic_block bb)
4525 rtx_insn *head;
4527 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4529 gcc_assert (exit_insn != NULL_RTX);
4530 head = exit_insn;
4532 else
4534 rtx_note *note = bb_note (bb);
4535 head = next_nonnote_insn (note);
4537 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
4538 head = NULL;
4541 return head;
4544 /* Return true if INSN is a basic block header. */
4545 bool
4546 sel_bb_head_p (insn_t insn)
4548 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4551 /* Return last insn of BB. */
4552 rtx_insn *
4553 sel_bb_end (basic_block bb)
4555 if (sel_bb_empty_p (bb))
4556 return NULL;
4558 gcc_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
4560 return BB_END (bb);
4563 /* Return true if INSN is the last insn in its basic block. */
4564 bool
4565 sel_bb_end_p (insn_t insn)
4567 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4570 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4571 bool
4572 sel_bb_empty_p (basic_block bb)
4574 return sel_bb_head (bb) == NULL;
4577 /* True when BB belongs to the current scheduling region. */
4578 bool
4579 in_current_region_p (basic_block bb)
4581 if (bb->index < NUM_FIXED_BLOCKS)
4582 return false;
4584 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4587 /* Return the block which is a fallthru bb of a conditional jump JUMP. */
4588 basic_block
4589 fallthru_bb_of_jump (const rtx_insn *jump)
4591 if (!JUMP_P (jump))
4592 return NULL;
4594 if (!any_condjump_p (jump))
4595 return NULL;
4597 /* A basic block that ends with a conditional jump may still have one successor
4598 (and be followed by a barrier), we are not interested. */
4599 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4600 return NULL;
4602 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4605 /* Remove all notes from BB. */
4606 static void
4607 init_bb (basic_block bb)
4609 remove_notes (bb_note (bb), BB_END (bb));
4610 BB_NOTE_LIST (bb) = note_list;
4613 void
4614 sel_init_bbs (bb_vec_t bbs)
4616 const struct sched_scan_info_def ssi =
4618 extend_bb_info, /* extend_bb */
4619 init_bb, /* init_bb */
4620 NULL, /* extend_insn */
4621 NULL /* init_insn */
4624 sched_scan (&ssi, bbs);
4627 /* Restore notes for the whole region. */
4628 static void
4629 sel_restore_notes (void)
4631 int bb;
4632 insn_t insn;
4634 for (bb = 0; bb < current_nr_blocks; bb++)
4636 basic_block first, last;
4638 first = EBB_FIRST_BB (bb);
4639 last = EBB_LAST_BB (bb)->next_bb;
4643 note_list = BB_NOTE_LIST (first);
4644 restore_other_notes (NULL, first);
4645 BB_NOTE_LIST (first) = NULL;
4647 FOR_BB_INSNS (first, insn)
4648 if (NONDEBUG_INSN_P (insn))
4649 reemit_notes (insn);
4651 first = first->next_bb;
4653 while (first != last);
4657 /* Free per-bb data structures. */
4658 void
4659 sel_finish_bbs (void)
4661 sel_restore_notes ();
4663 /* Remove current loop preheader from this loop. */
4664 if (current_loop_nest)
4665 sel_remove_loop_preheader ();
4667 finish_region_bb_info ();
4670 /* Return true if INSN has a single successor of type FLAGS. */
4671 bool
4672 sel_insn_has_single_succ_p (insn_t insn, int flags)
4674 insn_t succ;
4675 succ_iterator si;
4676 bool first_p = true;
4678 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4680 if (first_p)
4681 first_p = false;
4682 else
4683 return false;
4686 return true;
4689 /* Allocate successor's info. */
4690 static struct succs_info *
4691 alloc_succs_info (void)
4693 if (succs_info_pool.top == succs_info_pool.max_top)
4695 int i;
4697 if (++succs_info_pool.max_top >= succs_info_pool.size)
4698 gcc_unreachable ();
4700 i = ++succs_info_pool.top;
4701 succs_info_pool.stack[i].succs_ok.create (10);
4702 succs_info_pool.stack[i].succs_other.create (10);
4703 succs_info_pool.stack[i].probs_ok.create (10);
4705 else
4706 succs_info_pool.top++;
4708 return &succs_info_pool.stack[succs_info_pool.top];
4711 /* Free successor's info. */
4712 void
4713 free_succs_info (struct succs_info * sinfo)
4715 gcc_assert (succs_info_pool.top >= 0
4716 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4717 succs_info_pool.top--;
4719 /* Clear stale info. */
4720 sinfo->succs_ok.block_remove (0, sinfo->succs_ok.length ());
4721 sinfo->succs_other.block_remove (0, sinfo->succs_other.length ());
4722 sinfo->probs_ok.block_remove (0, sinfo->probs_ok.length ());
4723 sinfo->all_prob = 0;
4724 sinfo->succs_ok_n = 0;
4725 sinfo->all_succs_n = 0;
4728 /* Compute successor info for INSN. FLAGS are the flags passed
4729 to the FOR_EACH_SUCC_1 iterator. */
4730 struct succs_info *
4731 compute_succs_info (insn_t insn, short flags)
4733 succ_iterator si;
4734 insn_t succ;
4735 struct succs_info *sinfo = alloc_succs_info ();
4737 /* Traverse *all* successors and decide what to do with each. */
4738 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4740 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4741 perform code motion through inner loops. */
4742 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4744 if (current_flags & flags)
4746 sinfo->succs_ok.safe_push (succ);
4747 sinfo->probs_ok.safe_push (
4748 /* FIXME: Improve calculation when skipping
4749 inner loop to exits. */
4750 si.bb_end ? si.e1->probability : REG_BR_PROB_BASE);
4751 sinfo->succs_ok_n++;
4753 else
4754 sinfo->succs_other.safe_push (succ);
4756 /* Compute all_prob. */
4757 if (!si.bb_end)
4758 sinfo->all_prob = REG_BR_PROB_BASE;
4759 else
4760 sinfo->all_prob += si.e1->probability;
4762 sinfo->all_succs_n++;
4765 return sinfo;
4768 /* Return the predecessors of BB in PREDS and their number in N.
4769 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4770 static void
4771 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4773 edge e;
4774 edge_iterator ei;
4776 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4778 FOR_EACH_EDGE (e, ei, bb->preds)
4780 basic_block pred_bb = e->src;
4781 insn_t bb_end = BB_END (pred_bb);
4783 if (!in_current_region_p (pred_bb))
4785 gcc_assert (flag_sel_sched_pipelining_outer_loops
4786 && current_loop_nest);
4787 continue;
4790 if (sel_bb_empty_p (pred_bb))
4791 cfg_preds_1 (pred_bb, preds, n, size);
4792 else
4794 if (*n == *size)
4795 *preds = XRESIZEVEC (insn_t, *preds,
4796 (*size = 2 * *size + 1));
4797 (*preds)[(*n)++] = bb_end;
4801 gcc_assert (*n != 0
4802 || (flag_sel_sched_pipelining_outer_loops
4803 && current_loop_nest));
4806 /* Find all predecessors of BB and record them in PREDS and their number
4807 in N. Empty blocks are skipped, and only normal (forward in-region)
4808 edges are processed. */
4809 static void
4810 cfg_preds (basic_block bb, insn_t **preds, int *n)
4812 int size = 0;
4814 *preds = NULL;
4815 *n = 0;
4816 cfg_preds_1 (bb, preds, n, &size);
4819 /* Returns true if we are moving INSN through join point. */
4820 bool
4821 sel_num_cfg_preds_gt_1 (insn_t insn)
4823 basic_block bb;
4825 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4826 return false;
4828 bb = BLOCK_FOR_INSN (insn);
4830 while (1)
4832 if (EDGE_COUNT (bb->preds) > 1)
4833 return true;
4835 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4836 bb = EDGE_PRED (bb, 0)->src;
4838 if (!sel_bb_empty_p (bb))
4839 break;
4842 return false;
4845 /* Returns true when BB should be the end of an ebb. Adapted from the
4846 code in sched-ebb.c. */
4847 bool
4848 bb_ends_ebb_p (basic_block bb)
4850 basic_block next_bb = bb_next_bb (bb);
4851 edge e;
4853 if (next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4854 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4855 || (LABEL_P (BB_HEAD (next_bb))
4856 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4857 Work around that. */
4858 && !single_pred_p (next_bb)))
4859 return true;
4861 if (!in_current_region_p (next_bb))
4862 return true;
4864 e = find_fallthru_edge (bb->succs);
4865 if (e)
4867 gcc_assert (e->dest == next_bb);
4869 return false;
4872 return true;
4875 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4876 successor of INSN. */
4877 bool
4878 in_same_ebb_p (insn_t insn, insn_t succ)
4880 basic_block ptr = BLOCK_FOR_INSN (insn);
4882 for (;;)
4884 if (ptr == BLOCK_FOR_INSN (succ))
4885 return true;
4887 if (bb_ends_ebb_p (ptr))
4888 return false;
4890 ptr = bb_next_bb (ptr);
4893 gcc_unreachable ();
4894 return false;
4897 /* Recomputes the reverse topological order for the function and
4898 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4899 modified appropriately. */
4900 static void
4901 recompute_rev_top_order (void)
4903 int *postorder;
4904 int n_blocks, i;
4906 if (!rev_top_order_index
4907 || rev_top_order_index_len < last_basic_block_for_fn (cfun))
4909 rev_top_order_index_len = last_basic_block_for_fn (cfun);
4910 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4911 rev_top_order_index_len);
4914 postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
4916 n_blocks = post_order_compute (postorder, true, false);
4917 gcc_assert (n_basic_blocks_for_fn (cfun) == n_blocks);
4919 /* Build reverse function: for each basic block with BB->INDEX == K
4920 rev_top_order_index[K] is it's reverse topological sort number. */
4921 for (i = 0; i < n_blocks; i++)
4923 gcc_assert (postorder[i] < rev_top_order_index_len);
4924 rev_top_order_index[postorder[i]] = i;
4927 free (postorder);
4930 /* Clear all flags from insns in BB that could spoil its rescheduling. */
4931 void
4932 clear_outdated_rtx_info (basic_block bb)
4934 rtx_insn *insn;
4936 FOR_BB_INSNS (bb, insn)
4937 if (INSN_P (insn))
4939 SCHED_GROUP_P (insn) = 0;
4940 INSN_AFTER_STALL_P (insn) = 0;
4941 INSN_SCHED_TIMES (insn) = 0;
4942 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4944 /* We cannot use the changed caches, as previously we could ignore
4945 the LHS dependence due to enabled renaming and transform
4946 the expression, and currently we'll be unable to do this. */
4947 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4951 /* Add BB_NOTE to the pool of available basic block notes. */
4952 static void
4953 return_bb_to_pool (basic_block bb)
4955 rtx_note *note = bb_note (bb);
4957 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4958 && bb->aux == NULL);
4960 /* It turns out that current cfg infrastructure does not support
4961 reuse of basic blocks. Don't bother for now. */
4962 /*bb_note_pool.safe_push (note);*/
4965 /* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4966 static rtx_note *
4967 get_bb_note_from_pool (void)
4969 if (bb_note_pool.is_empty ())
4970 return NULL;
4971 else
4973 rtx_note *note = bb_note_pool.pop ();
4975 SET_PREV_INSN (note) = NULL_RTX;
4976 SET_NEXT_INSN (note) = NULL_RTX;
4978 return note;
4982 /* Free bb_note_pool. */
4983 void
4984 free_bb_note_pool (void)
4986 bb_note_pool.release ();
4989 /* Setup scheduler pool and successor structure. */
4990 void
4991 alloc_sched_pools (void)
4993 int succs_size;
4995 succs_size = MAX_WS + 1;
4996 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
4997 succs_info_pool.size = succs_size;
4998 succs_info_pool.top = -1;
4999 succs_info_pool.max_top = -1;
5002 /* Free the pools. */
5003 void
5004 free_sched_pools (void)
5006 int i;
5008 sched_lists_pool.release ();
5009 gcc_assert (succs_info_pool.top == -1);
5010 for (i = 0; i <= succs_info_pool.max_top; i++)
5012 succs_info_pool.stack[i].succs_ok.release ();
5013 succs_info_pool.stack[i].succs_other.release ();
5014 succs_info_pool.stack[i].probs_ok.release ();
5016 free (succs_info_pool.stack);
5020 /* Returns a position in RGN where BB can be inserted retaining
5021 topological order. */
5022 static int
5023 find_place_to_insert_bb (basic_block bb, int rgn)
5025 bool has_preds_outside_rgn = false;
5026 edge e;
5027 edge_iterator ei;
5029 /* Find whether we have preds outside the region. */
5030 FOR_EACH_EDGE (e, ei, bb->preds)
5031 if (!in_current_region_p (e->src))
5033 has_preds_outside_rgn = true;
5034 break;
5037 /* Recompute the top order -- needed when we have > 1 pred
5038 and in case we don't have preds outside. */
5039 if (flag_sel_sched_pipelining_outer_loops
5040 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
5042 int i, bbi = bb->index, cur_bbi;
5044 recompute_rev_top_order ();
5045 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
5047 cur_bbi = BB_TO_BLOCK (i);
5048 if (rev_top_order_index[bbi]
5049 < rev_top_order_index[cur_bbi])
5050 break;
5053 /* We skipped the right block, so we increase i. We accommodate
5054 it for increasing by step later, so we decrease i. */
5055 return (i + 1) - 1;
5057 else if (has_preds_outside_rgn)
5059 /* This is the case when we generate an extra empty block
5060 to serve as region head during pipelining. */
5061 e = EDGE_SUCC (bb, 0);
5062 gcc_assert (EDGE_COUNT (bb->succs) == 1
5063 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
5064 && (BLOCK_TO_BB (e->dest->index) == 0));
5065 return -1;
5068 /* We don't have preds outside the region. We should have
5069 the only pred, because the multiple preds case comes from
5070 the pipelining of outer loops, and that is handled above.
5071 Just take the bbi of this single pred. */
5072 if (EDGE_COUNT (bb->succs) > 0)
5074 int pred_bbi;
5076 gcc_assert (EDGE_COUNT (bb->preds) == 1);
5078 pred_bbi = EDGE_PRED (bb, 0)->src->index;
5079 return BLOCK_TO_BB (pred_bbi);
5081 else
5082 /* BB has no successors. It is safe to put it in the end. */
5083 return current_nr_blocks - 1;
5086 /* Deletes an empty basic block freeing its data. */
5087 static void
5088 delete_and_free_basic_block (basic_block bb)
5090 gcc_assert (sel_bb_empty_p (bb));
5092 if (BB_LV_SET (bb))
5093 free_lv_set (bb);
5095 bitmap_clear_bit (blocks_to_reschedule, bb->index);
5097 /* Can't assert av_set properties because we use sel_aremove_bb
5098 when removing loop preheader from the region. At the point of
5099 removing the preheader we already have deallocated sel_region_bb_info. */
5100 gcc_assert (BB_LV_SET (bb) == NULL
5101 && !BB_LV_SET_VALID_P (bb)
5102 && BB_AV_LEVEL (bb) == 0
5103 && BB_AV_SET (bb) == NULL);
5105 delete_basic_block (bb);
5108 /* Add BB to the current region and update the region data. */
5109 static void
5110 add_block_to_current_region (basic_block bb)
5112 int i, pos, bbi = -2, rgn;
5114 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5115 bbi = find_place_to_insert_bb (bb, rgn);
5116 bbi += 1;
5117 pos = RGN_BLOCKS (rgn) + bbi;
5119 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5120 && ebb_head[bbi] == pos);
5122 /* Make a place for the new block. */
5123 extend_regions ();
5125 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5126 BLOCK_TO_BB (rgn_bb_table[i])++;
5128 memmove (rgn_bb_table + pos + 1,
5129 rgn_bb_table + pos,
5130 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5132 /* Initialize data for BB. */
5133 rgn_bb_table[pos] = bb->index;
5134 BLOCK_TO_BB (bb->index) = bbi;
5135 CONTAINING_RGN (bb->index) = rgn;
5137 RGN_NR_BLOCKS (rgn)++;
5139 for (i = rgn + 1; i <= nr_regions; i++)
5140 RGN_BLOCKS (i)++;
5143 /* Remove BB from the current region and update the region data. */
5144 static void
5145 remove_bb_from_region (basic_block bb)
5147 int i, pos, bbi = -2, rgn;
5149 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5150 bbi = BLOCK_TO_BB (bb->index);
5151 pos = RGN_BLOCKS (rgn) + bbi;
5153 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5154 && ebb_head[bbi] == pos);
5156 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5157 BLOCK_TO_BB (rgn_bb_table[i])--;
5159 memmove (rgn_bb_table + pos,
5160 rgn_bb_table + pos + 1,
5161 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5163 RGN_NR_BLOCKS (rgn)--;
5164 for (i = rgn + 1; i <= nr_regions; i++)
5165 RGN_BLOCKS (i)--;
5168 /* Add BB to the current region and update all data. If BB is NULL, add all
5169 blocks from last_added_blocks vector. */
5170 static void
5171 sel_add_bb (basic_block bb)
5173 /* Extend luids so that new notes will receive zero luids. */
5174 sched_extend_luids ();
5175 sched_init_bbs ();
5176 sel_init_bbs (last_added_blocks);
5178 /* When bb is passed explicitly, the vector should contain
5179 the only element that equals to bb; otherwise, the vector
5180 should not be NULL. */
5181 gcc_assert (last_added_blocks.exists ());
5183 if (bb != NULL)
5185 gcc_assert (last_added_blocks.length () == 1
5186 && last_added_blocks[0] == bb);
5187 add_block_to_current_region (bb);
5189 /* We associate creating/deleting data sets with the first insn
5190 appearing / disappearing in the bb. */
5191 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5192 create_initial_data_sets (bb);
5194 last_added_blocks.release ();
5196 else
5197 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5199 int i;
5200 basic_block temp_bb = NULL;
5202 for (i = 0;
5203 last_added_blocks.iterate (i, &bb); i++)
5205 add_block_to_current_region (bb);
5206 temp_bb = bb;
5209 /* We need to fetch at least one bb so we know the region
5210 to update. */
5211 gcc_assert (temp_bb != NULL);
5212 bb = temp_bb;
5214 last_added_blocks.release ();
5217 rgn_setup_region (CONTAINING_RGN (bb->index));
5220 /* Remove BB from the current region and update all data.
5221 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5222 static void
5223 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5225 unsigned idx = bb->index;
5227 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
5229 remove_bb_from_region (bb);
5230 return_bb_to_pool (bb);
5231 bitmap_clear_bit (blocks_to_reschedule, idx);
5233 if (remove_from_cfg_p)
5235 basic_block succ = single_succ (bb);
5236 delete_and_free_basic_block (bb);
5237 set_immediate_dominator (CDI_DOMINATORS, succ,
5238 recompute_dominator (CDI_DOMINATORS, succ));
5241 rgn_setup_region (CONTAINING_RGN (idx));
5244 /* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5245 static void
5246 move_bb_info (basic_block merge_bb, basic_block empty_bb)
5248 if (in_current_region_p (merge_bb))
5249 concat_note_lists (BB_NOTE_LIST (empty_bb),
5250 &BB_NOTE_LIST (merge_bb));
5251 BB_NOTE_LIST (empty_bb) = NULL;
5255 /* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5256 region, but keep it in CFG. */
5257 static void
5258 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5260 /* The block should contain just a note or a label.
5261 We try to check whether it is unused below. */
5262 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5263 || LABEL_P (BB_HEAD (empty_bb)));
5265 /* If basic block has predecessors or successors, redirect them. */
5266 if (remove_from_cfg_p
5267 && (EDGE_COUNT (empty_bb->preds) > 0
5268 || EDGE_COUNT (empty_bb->succs) > 0))
5270 basic_block pred;
5271 basic_block succ;
5273 /* We need to init PRED and SUCC before redirecting edges. */
5274 if (EDGE_COUNT (empty_bb->preds) > 0)
5276 edge e;
5278 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5280 e = EDGE_PRED (empty_bb, 0);
5281 gcc_assert (e->src == empty_bb->prev_bb
5282 && (e->flags & EDGE_FALLTHRU));
5284 pred = empty_bb->prev_bb;
5286 else
5287 pred = NULL;
5289 if (EDGE_COUNT (empty_bb->succs) > 0)
5291 /* We do not check fallthruness here as above, because
5292 after removing a jump the edge may actually be not fallthru. */
5293 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5294 succ = EDGE_SUCC (empty_bb, 0)->dest;
5296 else
5297 succ = NULL;
5299 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5301 edge e = EDGE_PRED (empty_bb, 0);
5303 if (e->flags & EDGE_FALLTHRU)
5304 redirect_edge_succ_nodup (e, succ);
5305 else
5306 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5309 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5311 edge e = EDGE_SUCC (empty_bb, 0);
5313 if (find_edge (pred, e->dest) == NULL)
5314 redirect_edge_pred (e, pred);
5318 /* Finish removing. */
5319 sel_remove_bb (empty_bb, remove_from_cfg_p);
5322 /* An implementation of create_basic_block hook, which additionally updates
5323 per-bb data structures. */
5324 static basic_block
5325 sel_create_basic_block (void *headp, void *endp, basic_block after)
5327 basic_block new_bb;
5328 rtx_note *new_bb_note;
5330 gcc_assert (flag_sel_sched_pipelining_outer_loops
5331 || !last_added_blocks.exists ());
5333 new_bb_note = get_bb_note_from_pool ();
5335 if (new_bb_note == NULL_RTX)
5336 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5337 else
5339 new_bb = create_basic_block_structure ((rtx_insn *) headp,
5340 (rtx_insn *) endp,
5341 new_bb_note, after);
5342 new_bb->aux = NULL;
5345 last_added_blocks.safe_push (new_bb);
5347 return new_bb;
5350 /* Implement sched_init_only_bb (). */
5351 static void
5352 sel_init_only_bb (basic_block bb, basic_block after)
5354 gcc_assert (after == NULL);
5356 extend_regions ();
5357 rgn_make_new_region_out_of_new_block (bb);
5360 /* Update the latch when we've splitted or merged it from FROM block to TO.
5361 This should be checked for all outer loops, too. */
5362 static void
5363 change_loops_latches (basic_block from, basic_block to)
5365 gcc_assert (from != to);
5367 if (current_loop_nest)
5369 struct loop *loop;
5371 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5372 if (considered_for_pipelining_p (loop) && loop->latch == from)
5374 gcc_assert (loop == current_loop_nest);
5375 loop->latch = to;
5376 gcc_assert (loop_latch_edge (loop));
5381 /* Splits BB on two basic blocks, adding it to the region and extending
5382 per-bb data structures. Returns the newly created bb. */
5383 static basic_block
5384 sel_split_block (basic_block bb, rtx after)
5386 basic_block new_bb;
5387 insn_t insn;
5389 new_bb = sched_split_block_1 (bb, after);
5390 sel_add_bb (new_bb);
5392 /* This should be called after sel_add_bb, because this uses
5393 CONTAINING_RGN for the new block, which is not yet initialized.
5394 FIXME: this function may be a no-op now. */
5395 change_loops_latches (bb, new_bb);
5397 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5398 FOR_BB_INSNS (new_bb, insn)
5399 if (INSN_P (insn))
5400 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5402 if (sel_bb_empty_p (bb))
5404 gcc_assert (!sel_bb_empty_p (new_bb));
5406 /* NEW_BB has data sets that need to be updated and BB holds
5407 data sets that should be removed. Exchange these data sets
5408 so that we won't lose BB's valid data sets. */
5409 exchange_data_sets (new_bb, bb);
5410 free_data_sets (bb);
5413 if (!sel_bb_empty_p (new_bb)
5414 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5415 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5417 return new_bb;
5420 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5421 Otherwise returns NULL. */
5422 static rtx_insn *
5423 check_for_new_jump (basic_block bb, int prev_max_uid)
5425 rtx_insn *end;
5427 end = sel_bb_end (bb);
5428 if (end && INSN_UID (end) >= prev_max_uid)
5429 return end;
5430 return NULL;
5433 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5434 New means having UID at least equal to PREV_MAX_UID. */
5435 static rtx_insn *
5436 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5438 rtx_insn *jump;
5440 /* Return immediately if no new insns were emitted. */
5441 if (get_max_uid () == prev_max_uid)
5442 return NULL;
5444 /* Now check both blocks for new jumps. It will ever be only one. */
5445 if ((jump = check_for_new_jump (from, prev_max_uid)))
5446 return jump;
5448 if (jump_bb != NULL
5449 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5450 return jump;
5451 return NULL;
5454 /* Splits E and adds the newly created basic block to the current region.
5455 Returns this basic block. */
5456 basic_block
5457 sel_split_edge (edge e)
5459 basic_block new_bb, src, other_bb = NULL;
5460 int prev_max_uid;
5461 rtx_insn *jump;
5463 src = e->src;
5464 prev_max_uid = get_max_uid ();
5465 new_bb = split_edge (e);
5467 if (flag_sel_sched_pipelining_outer_loops
5468 && current_loop_nest)
5470 int i;
5471 basic_block bb;
5473 /* Some of the basic blocks might not have been added to the loop.
5474 Add them here, until this is fixed in force_fallthru. */
5475 for (i = 0;
5476 last_added_blocks.iterate (i, &bb); i++)
5477 if (!bb->loop_father)
5479 add_bb_to_loop (bb, e->dest->loop_father);
5481 gcc_assert (!other_bb && (new_bb->index != bb->index));
5482 other_bb = bb;
5486 /* Add all last_added_blocks to the region. */
5487 sel_add_bb (NULL);
5489 jump = find_new_jump (src, new_bb, prev_max_uid);
5490 if (jump)
5491 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5493 /* Put the correct lv set on this block. */
5494 if (other_bb && !sel_bb_empty_p (other_bb))
5495 compute_live (sel_bb_head (other_bb));
5497 return new_bb;
5500 /* Implement sched_create_empty_bb (). */
5501 static basic_block
5502 sel_create_empty_bb (basic_block after)
5504 basic_block new_bb;
5506 new_bb = sched_create_empty_bb_1 (after);
5508 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5509 later. */
5510 gcc_assert (last_added_blocks.length () == 1
5511 && last_added_blocks[0] == new_bb);
5513 last_added_blocks.release ();
5514 return new_bb;
5517 /* Implement sched_create_recovery_block. ORIG_INSN is where block
5518 will be splitted to insert a check. */
5519 basic_block
5520 sel_create_recovery_block (insn_t orig_insn)
5522 basic_block first_bb, second_bb, recovery_block;
5523 basic_block before_recovery = NULL;
5524 rtx_insn *jump;
5526 first_bb = BLOCK_FOR_INSN (orig_insn);
5527 if (sel_bb_end_p (orig_insn))
5529 /* Avoid introducing an empty block while splitting. */
5530 gcc_assert (single_succ_p (first_bb));
5531 second_bb = single_succ (first_bb);
5533 else
5534 second_bb = sched_split_block (first_bb, orig_insn);
5536 recovery_block = sched_create_recovery_block (&before_recovery);
5537 if (before_recovery)
5538 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR_FOR_FN (cfun));
5540 gcc_assert (sel_bb_empty_p (recovery_block));
5541 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5542 if (current_loops != NULL)
5543 add_bb_to_loop (recovery_block, first_bb->loop_father);
5545 sel_add_bb (recovery_block);
5547 jump = BB_END (recovery_block);
5548 gcc_assert (sel_bb_head (recovery_block) == jump);
5549 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5551 return recovery_block;
5554 /* Merge basic block B into basic block A. */
5555 static void
5556 sel_merge_blocks (basic_block a, basic_block b)
5558 gcc_assert (sel_bb_empty_p (b)
5559 && EDGE_COUNT (b->preds) == 1
5560 && EDGE_PRED (b, 0)->src == b->prev_bb);
5562 move_bb_info (b->prev_bb, b);
5563 remove_empty_bb (b, false);
5564 merge_blocks (a, b);
5565 change_loops_latches (b, a);
5568 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5569 data structures for possibly created bb and insns. */
5570 void
5571 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5573 basic_block jump_bb, src, orig_dest = e->dest;
5574 int prev_max_uid;
5575 rtx_insn *jump;
5576 int old_seqno = -1;
5578 /* This function is now used only for bookkeeping code creation, where
5579 we'll never get the single pred of orig_dest block and thus will not
5580 hit unreachable blocks when updating dominator info. */
5581 gcc_assert (!sel_bb_empty_p (e->src)
5582 && !single_pred_p (orig_dest));
5583 src = e->src;
5584 prev_max_uid = get_max_uid ();
5585 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5586 when the conditional jump being redirected may become unconditional. */
5587 if (any_condjump_p (BB_END (src))
5588 && INSN_SEQNO (BB_END (src)) >= 0)
5589 old_seqno = INSN_SEQNO (BB_END (src));
5591 jump_bb = redirect_edge_and_branch_force (e, to);
5592 if (jump_bb != NULL)
5593 sel_add_bb (jump_bb);
5595 /* This function could not be used to spoil the loop structure by now,
5596 thus we don't care to update anything. But check it to be sure. */
5597 if (current_loop_nest
5598 && pipelining_p)
5599 gcc_assert (loop_latch_edge (current_loop_nest));
5601 jump = find_new_jump (src, jump_bb, prev_max_uid);
5602 if (jump)
5603 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP,
5604 old_seqno);
5605 set_immediate_dominator (CDI_DOMINATORS, to,
5606 recompute_dominator (CDI_DOMINATORS, to));
5607 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5608 recompute_dominator (CDI_DOMINATORS, orig_dest));
5611 /* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5612 redirected edge are in reverse topological order. */
5613 bool
5614 sel_redirect_edge_and_branch (edge e, basic_block to)
5616 bool latch_edge_p;
5617 basic_block src, orig_dest = e->dest;
5618 int prev_max_uid;
5619 rtx_insn *jump;
5620 edge redirected;
5621 bool recompute_toporder_p = false;
5622 bool maybe_unreachable = single_pred_p (orig_dest);
5623 int old_seqno = -1;
5625 latch_edge_p = (pipelining_p
5626 && current_loop_nest
5627 && e == loop_latch_edge (current_loop_nest));
5629 src = e->src;
5630 prev_max_uid = get_max_uid ();
5632 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5633 when the conditional jump being redirected may become unconditional. */
5634 if (any_condjump_p (BB_END (src))
5635 && INSN_SEQNO (BB_END (src)) >= 0)
5636 old_seqno = INSN_SEQNO (BB_END (src));
5638 redirected = redirect_edge_and_branch (e, to);
5640 gcc_assert (redirected && !last_added_blocks.exists ());
5642 /* When we've redirected a latch edge, update the header. */
5643 if (latch_edge_p)
5645 current_loop_nest->header = to;
5646 gcc_assert (loop_latch_edge (current_loop_nest));
5649 /* In rare situations, the topological relation between the blocks connected
5650 by the redirected edge can change (see PR42245 for an example). Update
5651 block_to_bb/bb_to_block. */
5652 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5653 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5654 recompute_toporder_p = true;
5656 jump = find_new_jump (src, NULL, prev_max_uid);
5657 if (jump)
5658 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP, old_seqno);
5660 /* Only update dominator info when we don't have unreachable blocks.
5661 Otherwise we'll update in maybe_tidy_empty_bb. */
5662 if (!maybe_unreachable)
5664 set_immediate_dominator (CDI_DOMINATORS, to,
5665 recompute_dominator (CDI_DOMINATORS, to));
5666 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5667 recompute_dominator (CDI_DOMINATORS, orig_dest));
5669 return recompute_toporder_p;
5672 /* This variable holds the cfg hooks used by the selective scheduler. */
5673 static struct cfg_hooks sel_cfg_hooks;
5675 /* Register sel-sched cfg hooks. */
5676 void
5677 sel_register_cfg_hooks (void)
5679 sched_split_block = sel_split_block;
5681 orig_cfg_hooks = get_cfg_hooks ();
5682 sel_cfg_hooks = orig_cfg_hooks;
5684 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5686 set_cfg_hooks (sel_cfg_hooks);
5688 sched_init_only_bb = sel_init_only_bb;
5689 sched_split_block = sel_split_block;
5690 sched_create_empty_bb = sel_create_empty_bb;
5693 /* Unregister sel-sched cfg hooks. */
5694 void
5695 sel_unregister_cfg_hooks (void)
5697 sched_create_empty_bb = NULL;
5698 sched_split_block = NULL;
5699 sched_init_only_bb = NULL;
5701 set_cfg_hooks (orig_cfg_hooks);
5705 /* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5706 LABEL is where this jump should be directed. */
5707 rtx_insn *
5708 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5710 rtx_insn *insn_rtx;
5712 gcc_assert (!INSN_P (pattern));
5714 start_sequence ();
5716 if (label == NULL_RTX)
5717 insn_rtx = emit_insn (pattern);
5718 else if (DEBUG_INSN_P (label))
5719 insn_rtx = emit_debug_insn (pattern);
5720 else
5722 insn_rtx = emit_jump_insn (pattern);
5723 JUMP_LABEL (insn_rtx) = label;
5724 ++LABEL_NUSES (label);
5727 end_sequence ();
5729 sched_extend_luids ();
5730 sched_extend_target ();
5731 sched_deps_init (false);
5733 /* Initialize INSN_CODE now. */
5734 recog_memoized (insn_rtx);
5735 return insn_rtx;
5738 /* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5739 must not be clonable. */
5740 vinsn_t
5741 create_vinsn_from_insn_rtx (rtx_insn *insn_rtx, bool force_unique_p)
5743 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5745 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5746 return vinsn_create (insn_rtx, force_unique_p);
5749 /* Create a copy of INSN_RTX. */
5750 rtx_insn *
5751 create_copy_of_insn_rtx (rtx insn_rtx)
5753 rtx_insn *res;
5754 rtx link;
5756 if (DEBUG_INSN_P (insn_rtx))
5757 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5758 insn_rtx);
5760 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5762 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5763 NULL_RTX);
5765 /* Locate the end of existing REG_NOTES in NEW_RTX. */
5766 rtx *ptail = &REG_NOTES (res);
5767 while (*ptail != NULL_RTX)
5768 ptail = &XEXP (*ptail, 1);
5770 /* Copy all REG_NOTES except REG_EQUAL/REG_EQUIV and REG_LABEL_OPERAND
5771 since mark_jump_label will make them. REG_LABEL_TARGETs are created
5772 there too, but are supposed to be sticky, so we copy them. */
5773 for (link = REG_NOTES (insn_rtx); link; link = XEXP (link, 1))
5774 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND
5775 && REG_NOTE_KIND (link) != REG_EQUAL
5776 && REG_NOTE_KIND (link) != REG_EQUIV)
5778 *ptail = duplicate_reg_note (link);
5779 ptail = &XEXP (*ptail, 1);
5782 return res;
5785 /* Change vinsn field of EXPR to hold NEW_VINSN. */
5786 void
5787 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5789 vinsn_detach (EXPR_VINSN (expr));
5791 EXPR_VINSN (expr) = new_vinsn;
5792 vinsn_attach (new_vinsn);
5795 /* Helpers for global init. */
5796 /* This structure is used to be able to call existing bundling mechanism
5797 and calculate insn priorities. */
5798 static struct haifa_sched_info sched_sel_haifa_sched_info =
5800 NULL, /* init_ready_list */
5801 NULL, /* can_schedule_ready_p */
5802 NULL, /* schedule_more_p */
5803 NULL, /* new_ready */
5804 NULL, /* rgn_rank */
5805 sel_print_insn, /* rgn_print_insn */
5806 contributes_to_priority,
5807 NULL, /* insn_finishes_block_p */
5809 NULL, NULL,
5810 NULL, NULL,
5811 0, 0,
5813 NULL, /* add_remove_insn */
5814 NULL, /* begin_schedule_ready */
5815 NULL, /* begin_move_insn */
5816 NULL, /* advance_target_bb */
5818 NULL,
5819 NULL,
5821 SEL_SCHED | NEW_BBS
5824 /* Setup special insns used in the scheduler. */
5825 void
5826 setup_nop_and_exit_insns (void)
5828 gcc_assert (nop_pattern == NULL_RTX
5829 && exit_insn == NULL_RTX);
5831 nop_pattern = constm1_rtx;
5833 start_sequence ();
5834 emit_insn (nop_pattern);
5835 exit_insn = get_insns ();
5836 end_sequence ();
5837 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR_FOR_FN (cfun));
5840 /* Free special insns used in the scheduler. */
5841 void
5842 free_nop_and_exit_insns (void)
5844 exit_insn = NULL;
5845 nop_pattern = NULL_RTX;
5848 /* Setup a special vinsn used in new insns initialization. */
5849 void
5850 setup_nop_vinsn (void)
5852 nop_vinsn = vinsn_create (exit_insn, false);
5853 vinsn_attach (nop_vinsn);
5856 /* Free a special vinsn used in new insns initialization. */
5857 void
5858 free_nop_vinsn (void)
5860 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5861 vinsn_detach (nop_vinsn);
5862 nop_vinsn = NULL;
5865 /* Call a set_sched_flags hook. */
5866 void
5867 sel_set_sched_flags (void)
5869 /* ??? This means that set_sched_flags were called, and we decided to
5870 support speculation. However, set_sched_flags also modifies flags
5871 on current_sched_info, doing this only at global init. And we
5872 sometimes change c_s_i later. So put the correct flags again. */
5873 if (spec_info && targetm.sched.set_sched_flags)
5874 targetm.sched.set_sched_flags (spec_info);
5877 /* Setup pointers to global sched info structures. */
5878 void
5879 sel_setup_sched_infos (void)
5881 rgn_setup_common_sched_info ();
5883 memcpy (&sel_common_sched_info, common_sched_info,
5884 sizeof (sel_common_sched_info));
5886 sel_common_sched_info.fix_recovery_cfg = NULL;
5887 sel_common_sched_info.add_block = NULL;
5888 sel_common_sched_info.estimate_number_of_insns
5889 = sel_estimate_number_of_insns;
5890 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5891 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5893 common_sched_info = &sel_common_sched_info;
5895 current_sched_info = &sched_sel_haifa_sched_info;
5896 current_sched_info->sched_max_insns_priority =
5897 get_rgn_sched_max_insns_priority ();
5899 sel_set_sched_flags ();
5903 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5904 *BB_ORD_INDEX after that is increased. */
5905 static void
5906 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5908 RGN_NR_BLOCKS (rgn) += 1;
5909 RGN_DONT_CALC_DEPS (rgn) = 0;
5910 RGN_HAS_REAL_EBB (rgn) = 0;
5911 CONTAINING_RGN (bb->index) = rgn;
5912 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5913 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5914 (*bb_ord_index)++;
5916 /* FIXME: it is true only when not scheduling ebbs. */
5917 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5920 /* Functions to support pipelining of outer loops. */
5922 /* Creates a new empty region and returns it's number. */
5923 static int
5924 sel_create_new_region (void)
5926 int new_rgn_number = nr_regions;
5928 RGN_NR_BLOCKS (new_rgn_number) = 0;
5930 /* FIXME: This will work only when EBBs are not created. */
5931 if (new_rgn_number != 0)
5932 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5933 RGN_NR_BLOCKS (new_rgn_number - 1);
5934 else
5935 RGN_BLOCKS (new_rgn_number) = 0;
5937 /* Set the blocks of the next region so the other functions may
5938 calculate the number of blocks in the region. */
5939 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5940 RGN_NR_BLOCKS (new_rgn_number);
5942 nr_regions++;
5944 return new_rgn_number;
5947 /* If X has a smaller topological sort number than Y, returns -1;
5948 if greater, returns 1. */
5949 static int
5950 bb_top_order_comparator (const void *x, const void *y)
5952 basic_block bb1 = *(const basic_block *) x;
5953 basic_block bb2 = *(const basic_block *) y;
5955 gcc_assert (bb1 == bb2
5956 || rev_top_order_index[bb1->index]
5957 != rev_top_order_index[bb2->index]);
5959 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5960 bbs with greater number should go earlier. */
5961 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5962 return -1;
5963 else
5964 return 1;
5967 /* Create a region for LOOP and return its number. If we don't want
5968 to pipeline LOOP, return -1. */
5969 static int
5970 make_region_from_loop (struct loop *loop)
5972 unsigned int i;
5973 int new_rgn_number = -1;
5974 struct loop *inner;
5976 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5977 int bb_ord_index = 0;
5978 basic_block *loop_blocks;
5979 basic_block preheader_block;
5981 if (loop->num_nodes
5982 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5983 return -1;
5985 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
5986 for (inner = loop->inner; inner; inner = inner->inner)
5987 if (flow_bb_inside_loop_p (inner, loop->latch))
5988 return -1;
5990 loop->ninsns = num_loop_insns (loop);
5991 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
5992 return -1;
5994 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
5996 for (i = 0; i < loop->num_nodes; i++)
5997 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
5999 free (loop_blocks);
6000 return -1;
6003 preheader_block = loop_preheader_edge (loop)->src;
6004 gcc_assert (preheader_block);
6005 gcc_assert (loop_blocks[0] == loop->header);
6007 new_rgn_number = sel_create_new_region ();
6009 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
6010 bitmap_set_bit (bbs_in_loop_rgns, preheader_block->index);
6012 for (i = 0; i < loop->num_nodes; i++)
6014 /* Add only those blocks that haven't been scheduled in the inner loop.
6015 The exception is the basic blocks with bookkeeping code - they should
6016 be added to the region (and they actually don't belong to the loop
6017 body, but to the region containing that loop body). */
6019 gcc_assert (new_rgn_number >= 0);
6021 if (! bitmap_bit_p (bbs_in_loop_rgns, loop_blocks[i]->index))
6023 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
6024 new_rgn_number);
6025 bitmap_set_bit (bbs_in_loop_rgns, loop_blocks[i]->index);
6029 free (loop_blocks);
6030 MARK_LOOP_FOR_PIPELINING (loop);
6032 return new_rgn_number;
6035 /* Create a new region from preheader blocks LOOP_BLOCKS. */
6036 void
6037 make_region_from_loop_preheader (vec<basic_block> *&loop_blocks)
6039 unsigned int i;
6040 int new_rgn_number = -1;
6041 basic_block bb;
6043 /* Basic block index, to be assigned to BLOCK_TO_BB. */
6044 int bb_ord_index = 0;
6046 new_rgn_number = sel_create_new_region ();
6048 FOR_EACH_VEC_ELT (*loop_blocks, i, bb)
6050 gcc_assert (new_rgn_number >= 0);
6052 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
6055 vec_free (loop_blocks);
6059 /* Create region(s) from loop nest LOOP, such that inner loops will be
6060 pipelined before outer loops. Returns true when a region for LOOP
6061 is created. */
6062 static bool
6063 make_regions_from_loop_nest (struct loop *loop)
6065 struct loop *cur_loop;
6066 int rgn_number;
6068 /* Traverse all inner nodes of the loop. */
6069 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
6070 if (! bitmap_bit_p (bbs_in_loop_rgns, cur_loop->header->index))
6071 return false;
6073 /* At this moment all regular inner loops should have been pipelined.
6074 Try to create a region from this loop. */
6075 rgn_number = make_region_from_loop (loop);
6077 if (rgn_number < 0)
6078 return false;
6080 loop_nests.safe_push (loop);
6081 return true;
6084 /* Initalize data structures needed. */
6085 void
6086 sel_init_pipelining (void)
6088 /* Collect loop information to be used in outer loops pipelining. */
6089 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
6090 | LOOPS_HAVE_FALLTHRU_PREHEADERS
6091 | LOOPS_HAVE_RECORDED_EXITS
6092 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
6093 current_loop_nest = NULL;
6095 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block_for_fn (cfun));
6096 bitmap_clear (bbs_in_loop_rgns);
6098 recompute_rev_top_order ();
6101 /* Returns a struct loop for region RGN. */
6102 loop_p
6103 get_loop_nest_for_rgn (unsigned int rgn)
6105 /* Regions created with extend_rgns don't have corresponding loop nests,
6106 because they don't represent loops. */
6107 if (rgn < loop_nests.length ())
6108 return loop_nests[rgn];
6109 else
6110 return NULL;
6113 /* True when LOOP was included into pipelining regions. */
6114 bool
6115 considered_for_pipelining_p (struct loop *loop)
6117 if (loop_depth (loop) == 0)
6118 return false;
6120 /* Now, the loop could be too large or irreducible. Check whether its
6121 region is in LOOP_NESTS.
6122 We determine the region number of LOOP as the region number of its
6123 latch. We can't use header here, because this header could be
6124 just removed preheader and it will give us the wrong region number.
6125 Latch can't be used because it could be in the inner loop too. */
6126 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
6128 int rgn = CONTAINING_RGN (loop->latch->index);
6130 gcc_assert ((unsigned) rgn < loop_nests.length ());
6131 return true;
6134 return false;
6137 /* Makes regions from the rest of the blocks, after loops are chosen
6138 for pipelining. */
6139 static void
6140 make_regions_from_the_rest (void)
6142 int cur_rgn_blocks;
6143 int *loop_hdr;
6144 int i;
6146 basic_block bb;
6147 edge e;
6148 edge_iterator ei;
6149 int *degree;
6151 /* Index in rgn_bb_table where to start allocating new regions. */
6152 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
6154 /* Make regions from all the rest basic blocks - those that don't belong to
6155 any loop or belong to irreducible loops. Prepare the data structures
6156 for extend_rgns. */
6158 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
6159 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
6160 loop. */
6161 loop_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
6162 degree = XCNEWVEC (int, last_basic_block_for_fn (cfun));
6165 /* For each basic block that belongs to some loop assign the number
6166 of innermost loop it belongs to. */
6167 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
6168 loop_hdr[i] = -1;
6170 FOR_EACH_BB_FN (bb, cfun)
6172 if (bb->loop_father && bb->loop_father->num != 0
6173 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6174 loop_hdr[bb->index] = bb->loop_father->num;
6177 /* For each basic block degree is calculated as the number of incoming
6178 edges, that are going out of bbs that are not yet scheduled.
6179 The basic blocks that are scheduled have degree value of zero. */
6180 FOR_EACH_BB_FN (bb, cfun)
6182 degree[bb->index] = 0;
6184 if (!bitmap_bit_p (bbs_in_loop_rgns, bb->index))
6186 FOR_EACH_EDGE (e, ei, bb->preds)
6187 if (!bitmap_bit_p (bbs_in_loop_rgns, e->src->index))
6188 degree[bb->index]++;
6190 else
6191 degree[bb->index] = -1;
6194 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6196 /* Any block that did not end up in a region is placed into a region
6197 by itself. */
6198 FOR_EACH_BB_FN (bb, cfun)
6199 if (degree[bb->index] >= 0)
6201 rgn_bb_table[cur_rgn_blocks] = bb->index;
6202 RGN_NR_BLOCKS (nr_regions) = 1;
6203 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6204 RGN_DONT_CALC_DEPS (nr_regions) = 0;
6205 RGN_HAS_REAL_EBB (nr_regions) = 0;
6206 CONTAINING_RGN (bb->index) = nr_regions++;
6207 BLOCK_TO_BB (bb->index) = 0;
6210 free (degree);
6211 free (loop_hdr);
6214 /* Free data structures used in pipelining of loops. */
6215 void sel_finish_pipelining (void)
6217 struct loop *loop;
6219 /* Release aux fields so we don't free them later by mistake. */
6220 FOR_EACH_LOOP (loop, 0)
6221 loop->aux = NULL;
6223 loop_optimizer_finalize ();
6225 loop_nests.release ();
6227 free (rev_top_order_index);
6228 rev_top_order_index = NULL;
6231 /* This function replaces the find_rgns when
6232 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
6233 void
6234 sel_find_rgns (void)
6236 sel_init_pipelining ();
6237 extend_regions ();
6239 if (current_loops)
6241 loop_p loop;
6243 FOR_EACH_LOOP (loop, (flag_sel_sched_pipelining_outer_loops
6244 ? LI_FROM_INNERMOST
6245 : LI_ONLY_INNERMOST))
6246 make_regions_from_loop_nest (loop);
6249 /* Make regions from all the rest basic blocks and schedule them.
6250 These blocks include blocks that don't belong to any loop or belong
6251 to irreducible loops. */
6252 make_regions_from_the_rest ();
6254 /* We don't need bbs_in_loop_rgns anymore. */
6255 sbitmap_free (bbs_in_loop_rgns);
6256 bbs_in_loop_rgns = NULL;
6259 /* Add the preheader blocks from previous loop to current region taking
6260 it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
6261 This function is only used with -fsel-sched-pipelining-outer-loops. */
6262 void
6263 sel_add_loop_preheaders (bb_vec_t *bbs)
6265 int i;
6266 basic_block bb;
6267 vec<basic_block> *preheader_blocks
6268 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6270 if (!preheader_blocks)
6271 return;
6273 for (i = 0; preheader_blocks->iterate (i, &bb); i++)
6275 bbs->safe_push (bb);
6276 last_added_blocks.safe_push (bb);
6277 sel_add_bb (bb);
6280 vec_free (preheader_blocks);
6283 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6284 Please note that the function should also work when pipelining_p is
6285 false, because it is used when deciding whether we should or should
6286 not reschedule pipelined code. */
6287 bool
6288 sel_is_loop_preheader_p (basic_block bb)
6290 if (current_loop_nest)
6292 struct loop *outer;
6294 if (preheader_removed)
6295 return false;
6297 /* Preheader is the first block in the region. */
6298 if (BLOCK_TO_BB (bb->index) == 0)
6299 return true;
6301 /* We used to find a preheader with the topological information.
6302 Check that the above code is equivalent to what we did before. */
6304 if (in_current_region_p (current_loop_nest->header))
6305 gcc_assert (!(BLOCK_TO_BB (bb->index)
6306 < BLOCK_TO_BB (current_loop_nest->header->index)));
6308 /* Support the situation when the latch block of outer loop
6309 could be from here. */
6310 for (outer = loop_outer (current_loop_nest);
6311 outer;
6312 outer = loop_outer (outer))
6313 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6314 gcc_unreachable ();
6317 return false;
6320 /* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6321 can be removed, making the corresponding edge fallthrough (assuming that
6322 all basic blocks between JUMP_BB and DEST_BB are empty). */
6323 static bool
6324 bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
6326 if (!onlyjump_p (BB_END (jump_bb))
6327 || tablejump_p (BB_END (jump_bb), NULL, NULL))
6328 return false;
6330 /* Several outgoing edges, abnormal edge or destination of jump is
6331 not DEST_BB. */
6332 if (EDGE_COUNT (jump_bb->succs) != 1
6333 || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
6334 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6335 return false;
6337 /* If not anything of the upper. */
6338 return true;
6341 /* Removes the loop preheader from the current region and saves it in
6342 PREHEADER_BLOCKS of the father loop, so they will be added later to
6343 region that represents an outer loop. */
6344 static void
6345 sel_remove_loop_preheader (void)
6347 int i, old_len;
6348 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6349 basic_block bb;
6350 bool all_empty_p = true;
6351 vec<basic_block> *preheader_blocks
6352 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6354 vec_check_alloc (preheader_blocks, 0);
6356 gcc_assert (current_loop_nest);
6357 old_len = preheader_blocks->length ();
6359 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6360 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6362 bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6364 /* If the basic block belongs to region, but doesn't belong to
6365 corresponding loop, then it should be a preheader. */
6366 if (sel_is_loop_preheader_p (bb))
6368 preheader_blocks->safe_push (bb);
6369 if (BB_END (bb) != bb_note (bb))
6370 all_empty_p = false;
6374 /* Remove these blocks only after iterating over the whole region. */
6375 for (i = preheader_blocks->length () - 1; i >= old_len; i--)
6377 bb = (*preheader_blocks)[i];
6378 sel_remove_bb (bb, false);
6381 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6383 if (!all_empty_p)
6384 /* Immediately create new region from preheader. */
6385 make_region_from_loop_preheader (preheader_blocks);
6386 else
6388 /* If all preheader blocks are empty - dont create new empty region.
6389 Instead, remove them completely. */
6390 FOR_EACH_VEC_ELT (*preheader_blocks, i, bb)
6392 edge e;
6393 edge_iterator ei;
6394 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6396 /* Redirect all incoming edges to next basic block. */
6397 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6399 if (! (e->flags & EDGE_FALLTHRU))
6400 redirect_edge_and_branch (e, bb->next_bb);
6401 else
6402 redirect_edge_succ (e, bb->next_bb);
6404 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6405 delete_and_free_basic_block (bb);
6407 /* Check if after deleting preheader there is a nonconditional
6408 jump in PREV_BB that leads to the next basic block NEXT_BB.
6409 If it is so - delete this jump and clear data sets of its
6410 basic block if it becomes empty. */
6411 if (next_bb->prev_bb == prev_bb
6412 && prev_bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)
6413 && bb_has_removable_jump_to_p (prev_bb, next_bb))
6415 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6416 if (BB_END (prev_bb) == bb_note (prev_bb))
6417 free_data_sets (prev_bb);
6420 set_immediate_dominator (CDI_DOMINATORS, next_bb,
6421 recompute_dominator (CDI_DOMINATORS,
6422 next_bb));
6425 vec_free (preheader_blocks);
6427 else
6428 /* Store preheader within the father's loop structure. */
6429 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6430 preheader_blocks);
6433 #endif