* g++.dg/opt/pr85196.C: Fix for -std=c++17.
[official-gcc.git] / gcc / sel-sched.c
blobcd29df35666b9b752a679fa06a71dccf126e5381
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "rtl.h"
26 #include "df.h"
27 #include "memmodel.h"
28 #include "tm_p.h"
29 #include "regs.h"
30 #include "cfgbuild.h"
31 #include "insn-config.h"
32 #include "insn-attr.h"
33 #include "params.h"
34 #include "target.h"
35 #include "sched-int.h"
36 #include "rtlhooks-def.h"
37 #include "ira.h"
38 #include "ira-int.h"
39 #include "rtl-iter.h"
41 #ifdef INSN_SCHEDULING
42 #include "regset.h"
43 #include "cfgloop.h"
44 #include "sel-sched-ir.h"
45 #include "sel-sched-dump.h"
46 #include "sel-sched.h"
47 #include "dbgcnt.h"
49 /* Implementation of selective scheduling approach.
50 The below implementation follows the original approach with the following
51 changes:
53 o the scheduler works after register allocation (but can be also tuned
54 to work before RA);
55 o some instructions are not copied or register renamed;
56 o conditional jumps are not moved with code duplication;
57 o several jumps in one parallel group are not supported;
58 o when pipelining outer loops, code motion through inner loops
59 is not supported;
60 o control and data speculation are supported;
61 o some improvements for better compile time/performance were made.
63 Terminology
64 ===========
66 A vinsn, or virtual insn, is an insn with additional data characterizing
67 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
68 Vinsns also act as smart pointers to save memory by reusing them in
69 different expressions. A vinsn is described by vinsn_t type.
71 An expression is a vinsn with additional data characterizing its properties
72 at some point in the control flow graph. The data may be its usefulness,
73 priority, speculative status, whether it was renamed/subsituted, etc.
74 An expression is described by expr_t type.
76 Availability set (av_set) is a set of expressions at a given control flow
77 point. It is represented as av_set_t. The expressions in av sets are kept
78 sorted in the terms of expr_greater_p function. It allows to truncate
79 the set while leaving the best expressions.
81 A fence is a point through which code motion is prohibited. On each step,
82 we gather a parallel group of insns at a fence. It is possible to have
83 multiple fences. A fence is represented via fence_t.
85 A boundary is the border between the fence group and the rest of the code.
86 Currently, we never have more than one boundary per fence, as we finalize
87 the fence group when a jump is scheduled. A boundary is represented
88 via bnd_t.
90 High-level overview
91 ===================
93 The scheduler finds regions to schedule, schedules each one, and finalizes.
94 The regions are formed starting from innermost loops, so that when the inner
95 loop is pipelined, its prologue can be scheduled together with yet unprocessed
96 outer loop. The rest of acyclic regions are found using extend_rgns:
97 the blocks that are not yet allocated to any regions are traversed in top-down
98 order, and a block is added to a region to which all its predecessors belong;
99 otherwise, the block starts its own region.
101 The main scheduling loop (sel_sched_region_2) consists of just
102 scheduling on each fence and updating fences. For each fence,
103 we fill a parallel group of insns (fill_insns) until some insns can be added.
104 First, we compute available exprs (av-set) at the boundary of the current
105 group. Second, we choose the best expression from it. If the stall is
106 required to schedule any of the expressions, we advance the current cycle
107 appropriately. So, the final group does not exactly correspond to a VLIW
108 word. Third, we move the chosen expression to the boundary (move_op)
109 and update the intermediate av sets and liveness sets. We quit fill_insns
110 when either no insns left for scheduling or we have scheduled enough insns
111 so we feel like advancing a scheduling point.
113 Computing available expressions
114 ===============================
116 The computation (compute_av_set) is a bottom-up traversal. At each insn,
117 we're moving the union of its successors' sets through it via
118 moveup_expr_set. The dependent expressions are removed. Local
119 transformations (substitution, speculation) are applied to move more
120 exprs. Then the expr corresponding to the current insn is added.
121 The result is saved on each basic block header.
123 When traversing the CFG, we're moving down for no more than max_ws insns.
124 Also, we do not move down to ineligible successors (is_ineligible_successor),
125 which include moving along a back-edge, moving to already scheduled code,
126 and moving to another fence. The first two restrictions are lifted during
127 pipelining, which allows us to move insns along a back-edge. We always have
128 an acyclic region for scheduling because we forbid motion through fences.
130 Choosing the best expression
131 ============================
133 We sort the final availability set via sel_rank_for_schedule, then we remove
134 expressions which are not yet ready (tick_check_p) or which dest registers
135 cannot be used. For some of them, we choose another register via
136 find_best_reg. To do this, we run find_used_regs to calculate the set of
137 registers which cannot be used. The find_used_regs function performs
138 a traversal of code motion paths for an expr. We consider for renaming
139 only registers which are from the same regclass as the original one and
140 using which does not interfere with any live ranges. Finally, we convert
141 the resulting set to the ready list format and use max_issue and reorder*
142 hooks similarly to the Haifa scheduler.
144 Scheduling the best expression
145 ==============================
147 We run the move_op routine to perform the same type of code motion paths
148 traversal as in find_used_regs. (These are working via the same driver,
149 code_motion_path_driver.) When moving down the CFG, we look for original
150 instruction that gave birth to a chosen expression. We undo
151 the transformations performed on an expression via the history saved in it.
152 When found, we remove the instruction or leave a reg-reg copy/speculation
153 check if needed. On a way up, we insert bookkeeping copies at each join
154 point. If a copy is not needed, it will be removed later during this
155 traversal. We update the saved av sets and liveness sets on the way up, too.
157 Finalizing the schedule
158 =======================
160 When pipelining, we reschedule the blocks from which insns were pipelined
161 to get a tighter schedule. On Itanium, we also perform bundling via
162 the same routine from ia64.c.
164 Dependence analysis changes
165 ===========================
167 We augmented the sched-deps.c with hooks that get called when a particular
168 dependence is found in a particular part of an insn. Using these hooks, we
169 can do several actions such as: determine whether an insn can be moved through
170 another (has_dependence_p, moveup_expr); find out whether an insn can be
171 scheduled on the current cycle (tick_check_p); find out registers that
172 are set/used/clobbered by an insn and find out all the strange stuff that
173 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
174 init_global_and_expr_for_insn).
176 Initialization changes
177 ======================
179 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
180 reused in all of the schedulers. We have split up the initialization of data
181 of such parts into different functions prefixed with scheduler type and
182 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
183 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
184 The same splitting is done with current_sched_info structure:
185 dependence-related parts are in sched_deps_info, common part is in
186 common_sched_info, and haifa/sel/etc part is in current_sched_info.
188 Target contexts
189 ===============
191 As we now have multiple-point scheduling, this would not work with backends
192 which save some of the scheduler state to use it in the target hooks.
193 For this purpose, we introduce a concept of target contexts, which
194 encapsulate such information. The backend should implement simple routines
195 of allocating/freeing/setting such a context. The scheduler calls these
196 as target hooks and handles the target context as an opaque pointer (similar
197 to the DFA state type, state_t).
199 Various speedups
200 ================
202 As the correct data dependence graph is not supported during scheduling (which
203 is to be changed in mid-term), we cache as much of the dependence analysis
204 results as possible to avoid reanalyzing. This includes: bitmap caches on
205 each insn in stream of the region saying yes/no for a query with a pair of
206 UIDs; hashtables with the previously done transformations on each insn in
207 stream; a vector keeping a history of transformations on each expr.
209 Also, we try to minimize the dependence context used on each fence to check
210 whether the given expression is ready for scheduling by removing from it
211 insns that are definitely completed the execution. The results of
212 tick_check_p checks are also cached in a vector on each fence.
214 We keep a valid liveness set on each insn in a region to avoid the high
215 cost of recomputation on large basic blocks.
217 Finally, we try to minimize the number of needed updates to the availability
218 sets. The updates happen in two cases: when fill_insns terminates,
219 we advance all fences and increase the stage number to show that the region
220 has changed and the sets are to be recomputed; and when the next iteration
221 of a loop in fill_insns happens (but this one reuses the saved av sets
222 on bb headers.) Thus, we try to break the fill_insns loop only when
223 "significant" number of insns from the current scheduling window was
224 scheduled. This should be made a target param.
227 TODO: correctly support the data dependence graph at all stages and get rid
228 of all caches. This should speed up the scheduler.
229 TODO: implement moving cond jumps with bookkeeping copies on both targets.
230 TODO: tune the scheduler before RA so it does not create too much pseudos.
233 References:
234 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
235 selective scheduling and software pipelining.
236 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
238 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
239 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
240 for GCC. In Proceedings of GCC Developers' Summit 2006.
242 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
243 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
244 http://rogue.colorado.edu/EPIC7/.
248 /* True when pipelining is enabled. */
249 bool pipelining_p;
251 /* True if bookkeeping is enabled. */
252 bool bookkeeping_p;
254 /* Maximum number of insns that are eligible for renaming. */
255 int max_insns_to_rename;
258 /* Definitions of local types and macros. */
260 /* Represents possible outcomes of moving an expression through an insn. */
261 enum MOVEUP_EXPR_CODE
263 /* The expression is not changed. */
264 MOVEUP_EXPR_SAME,
266 /* Not changed, but requires a new destination register. */
267 MOVEUP_EXPR_AS_RHS,
269 /* Cannot be moved. */
270 MOVEUP_EXPR_NULL,
272 /* Changed (substituted or speculated). */
273 MOVEUP_EXPR_CHANGED
276 /* The container to be passed into rtx search & replace functions. */
277 struct rtx_search_arg
279 /* What we are searching for. */
280 rtx x;
282 /* The occurrence counter. */
283 int n;
286 typedef struct rtx_search_arg *rtx_search_arg_p;
288 /* This struct contains precomputed hard reg sets that are needed when
289 computing registers available for renaming. */
290 struct hard_regs_data
292 /* For every mode, this stores registers available for use with
293 that mode. */
294 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
296 /* True when regs_for_mode[mode] is initialized. */
297 bool regs_for_mode_ok[NUM_MACHINE_MODES];
299 /* For every register, it has regs that are ok to rename into it.
300 The register in question is always set. If not, this means
301 that the whole set is not computed yet. */
302 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
304 /* For every mode, this stores registers not available due to
305 call clobbering. */
306 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
308 /* All registers that are used or call used. */
309 HARD_REG_SET regs_ever_used;
311 #ifdef STACK_REGS
312 /* Stack registers. */
313 HARD_REG_SET stack_regs;
314 #endif
317 /* Holds the results of computation of available for renaming and
318 unavailable hard registers. */
319 struct reg_rename
321 /* These are unavailable due to calls crossing, globalness, etc. */
322 HARD_REG_SET unavailable_hard_regs;
324 /* These are *available* for renaming. */
325 HARD_REG_SET available_for_renaming;
327 /* Whether this code motion path crosses a call. */
328 bool crosses_call;
331 /* A global structure that contains the needed information about harg
332 regs. */
333 static struct hard_regs_data sel_hrd;
336 /* This structure holds local data used in code_motion_path_driver hooks on
337 the same or adjacent levels of recursion. Here we keep those parameters
338 that are not used in code_motion_path_driver routine itself, but only in
339 its hooks. Moreover, all parameters that can be modified in hooks are
340 in this structure, so all other parameters passed explicitly to hooks are
341 read-only. */
342 struct cmpd_local_params
344 /* Local params used in move_op_* functions. */
346 /* Edges for bookkeeping generation. */
347 edge e1, e2;
349 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
350 expr_t c_expr_merged, c_expr_local;
352 /* Local params used in fur_* functions. */
353 /* Copy of the ORIGINAL_INSN list, stores the original insns already
354 found before entering the current level of code_motion_path_driver. */
355 def_list_t old_original_insns;
357 /* Local params used in move_op_* functions. */
358 /* True when we have removed last insn in the block which was
359 also a boundary. Do not update anything or create bookkeeping copies. */
360 BOOL_BITFIELD removed_last_insn : 1;
363 /* Stores the static parameters for move_op_* calls. */
364 struct moveop_static_params
366 /* Destination register. */
367 rtx dest;
369 /* Current C_EXPR. */
370 expr_t c_expr;
372 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
373 they are to be removed. */
374 int uid;
376 /* This is initialized to the insn on which the driver stopped its traversal. */
377 insn_t failed_insn;
379 /* True if we scheduled an insn with different register. */
380 bool was_renamed;
383 /* Stores the static parameters for fur_* calls. */
384 struct fur_static_params
386 /* Set of registers unavailable on the code motion path. */
387 regset used_regs;
389 /* Pointer to the list of original insns definitions. */
390 def_list_t *original_insns;
392 /* True if a code motion path contains a CALL insn. */
393 bool crosses_call;
396 typedef struct fur_static_params *fur_static_params_p;
397 typedef struct cmpd_local_params *cmpd_local_params_p;
398 typedef struct moveop_static_params *moveop_static_params_p;
400 /* Set of hooks and parameters that determine behavior specific to
401 move_op or find_used_regs functions. */
402 struct code_motion_path_driver_info_def
404 /* Called on enter to the basic block. */
405 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
407 /* Called when original expr is found. */
408 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
410 /* Called while descending current basic block if current insn is not
411 the original EXPR we're searching for. */
412 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
414 /* Function to merge C_EXPRes from different successors. */
415 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
417 /* Function to finalize merge from different successors and possibly
418 deallocate temporary data structures used for merging. */
419 void (*after_merge_succs) (cmpd_local_params_p, void *);
421 /* Called on the backward stage of recursion to do moveup_expr.
422 Used only with move_op_*. */
423 void (*ascend) (insn_t, void *);
425 /* Called on the ascending pass, before returning from the current basic
426 block or from the whole traversal. */
427 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
429 /* When processing successors in move_op we need only descend into
430 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
431 int succ_flags;
433 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
434 const char *routine_name;
437 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
438 FUR_HOOKS. */
439 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
441 /* Set of hooks for performing move_op and find_used_regs routines with
442 code_motion_path_driver. */
443 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
445 /* True if/when we want to emulate Haifa scheduler in the common code.
446 This is used in sched_rgn_local_init and in various places in
447 sched-deps.c. */
448 int sched_emulate_haifa_p;
450 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
451 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
452 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
453 scheduling window. */
454 int global_level;
456 /* Current fences. */
457 flist_t fences;
459 /* True when separable insns should be scheduled as RHSes. */
460 static bool enable_schedule_as_rhs_p;
462 /* Used in verify_target_availability to assert that target reg is reported
463 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
464 we haven't scheduled anything on the previous fence.
465 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
466 have more conservative value than the one returned by the
467 find_used_regs, thus we shouldn't assert that these values are equal. */
468 static bool scheduled_something_on_previous_fence;
470 /* All newly emitted insns will have their uids greater than this value. */
471 static int first_emitted_uid;
473 /* Set of basic blocks that are forced to start new ebbs. This is a subset
474 of all the ebb heads. */
475 static bitmap_head _forced_ebb_heads;
476 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
478 /* Blocks that need to be rescheduled after pipelining. */
479 bitmap blocks_to_reschedule = NULL;
481 /* True when the first lv set should be ignored when updating liveness. */
482 static bool ignore_first = false;
484 /* Number of insns max_issue has initialized data structures for. */
485 static int max_issue_size = 0;
487 /* Whether we can issue more instructions. */
488 static int can_issue_more;
490 /* Maximum software lookahead window size, reduced when rescheduling after
491 pipelining. */
492 static int max_ws;
494 /* Number of insns scheduled in current region. */
495 static int num_insns_scheduled;
497 /* A vector of expressions is used to be able to sort them. */
498 static vec<expr_t> vec_av_set;
500 /* A vector of vinsns is used to hold temporary lists of vinsns. */
501 typedef vec<vinsn_t> vinsn_vec_t;
503 /* This vector has the exprs which may still present in av_sets, but actually
504 can't be moved up due to bookkeeping created during code motion to another
505 fence. See comment near the call to update_and_record_unavailable_insns
506 for the detailed explanations. */
507 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t ();
509 /* This vector has vinsns which are scheduled with renaming on the first fence
510 and then seen on the second. For expressions with such vinsns, target
511 availability information may be wrong. */
512 static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t ();
514 /* Vector to store temporary nops inserted in move_op to prevent removal
515 of empty bbs. */
516 static vec<insn_t> vec_temp_moveop_nops;
518 /* These bitmaps record original instructions scheduled on the current
519 iteration and bookkeeping copies created by them. */
520 static bitmap current_originators = NULL;
521 static bitmap current_copies = NULL;
523 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
524 visit them afterwards. */
525 static bitmap code_motion_visited_blocks = NULL;
527 /* Variables to accumulate different statistics. */
529 /* The number of bookkeeping copies created. */
530 static int stat_bookkeeping_copies;
532 /* The number of insns that required bookkeeiping for their scheduling. */
533 static int stat_insns_needed_bookkeeping;
535 /* The number of insns that got renamed. */
536 static int stat_renamed_scheduled;
538 /* The number of substitutions made during scheduling. */
539 static int stat_substitutions_total;
542 /* Forward declarations of static functions. */
543 static bool rtx_ok_for_substitution_p (rtx, rtx);
544 static int sel_rank_for_schedule (const void *, const void *);
545 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
546 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
548 static rtx get_dest_from_orig_ops (av_set_t);
549 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
550 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
551 def_list_t *);
552 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
553 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
554 cmpd_local_params_p, void *);
555 static void sel_sched_region_1 (void);
556 static void sel_sched_region_2 (int);
557 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
559 static void debug_state (state_t);
562 /* Functions that work with fences. */
564 /* Advance one cycle on FENCE. */
565 static void
566 advance_one_cycle (fence_t fence)
568 unsigned i;
569 int cycle;
570 rtx_insn *insn;
572 advance_state (FENCE_STATE (fence));
573 cycle = ++FENCE_CYCLE (fence);
574 FENCE_ISSUED_INSNS (fence) = 0;
575 FENCE_STARTS_CYCLE_P (fence) = 1;
576 can_issue_more = issue_rate;
577 FENCE_ISSUE_MORE (fence) = can_issue_more;
579 for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), i, &insn); )
581 if (INSN_READY_CYCLE (insn) < cycle)
583 remove_from_deps (FENCE_DC (fence), insn);
584 FENCE_EXECUTING_INSNS (fence)->unordered_remove (i);
585 continue;
587 i++;
589 if (sched_verbose >= 2)
591 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
592 debug_state (FENCE_STATE (fence));
596 /* Returns true when SUCC in a fallthru bb of INSN, possibly
597 skipping empty basic blocks. */
598 static bool
599 in_fallthru_bb_p (rtx_insn *insn, rtx succ)
601 basic_block bb = BLOCK_FOR_INSN (insn);
602 edge e;
604 if (bb == BLOCK_FOR_INSN (succ))
605 return true;
607 e = find_fallthru_edge_from (bb);
608 if (e)
609 bb = e->dest;
610 else
611 return false;
613 while (sel_bb_empty_p (bb))
614 bb = bb->next_bb;
616 return bb == BLOCK_FOR_INSN (succ);
619 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
620 When a successor will continue a ebb, transfer all parameters of a fence
621 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
622 of scheduling helping to distinguish between the old and the new code. */
623 static void
624 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
625 int orig_max_seqno)
627 bool was_here_p = false;
628 insn_t insn = NULL;
629 insn_t succ;
630 succ_iterator si;
631 ilist_iterator ii;
632 fence_t fence = FLIST_FENCE (old_fences);
633 basic_block bb;
635 /* Get the only element of FENCE_BNDS (fence). */
636 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
638 gcc_assert (!was_here_p);
639 was_here_p = true;
641 gcc_assert (was_here_p && insn != NULL_RTX);
643 /* When in the "middle" of the block, just move this fence
644 to the new list. */
645 bb = BLOCK_FOR_INSN (insn);
646 if (! sel_bb_end_p (insn)
647 || (single_succ_p (bb)
648 && single_pred_p (single_succ (bb))))
650 insn_t succ;
652 succ = (sel_bb_end_p (insn)
653 ? sel_bb_head (single_succ (bb))
654 : NEXT_INSN (insn));
656 if (INSN_SEQNO (succ) > 0
657 && INSN_SEQNO (succ) <= orig_max_seqno
658 && INSN_SCHED_TIMES (succ) <= 0)
660 FENCE_INSN (fence) = succ;
661 move_fence_to_fences (old_fences, new_fences);
663 if (sched_verbose >= 1)
664 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
665 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
667 return;
670 /* Otherwise copy fence's structures to (possibly) multiple successors. */
671 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
673 int seqno = INSN_SEQNO (succ);
675 if (seqno > 0 && seqno <= orig_max_seqno
676 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
678 bool b = (in_same_ebb_p (insn, succ)
679 || in_fallthru_bb_p (insn, succ));
681 if (sched_verbose >= 1)
682 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
683 INSN_UID (insn), INSN_UID (succ),
684 BLOCK_NUM (succ), b ? "continue" : "reset");
686 if (b)
687 add_dirty_fence_to_fences (new_fences, succ, fence);
688 else
690 /* Mark block of the SUCC as head of the new ebb. */
691 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
692 add_clean_fence_to_fences (new_fences, succ, fence);
699 /* Functions to support substitution. */
701 /* Returns whether INSN with dependence status DS is eligible for
702 substitution, i.e. it's a copy operation x := y, and RHS that is
703 moved up through this insn should be substituted. */
704 static bool
705 can_substitute_through_p (insn_t insn, ds_t ds)
707 /* We can substitute only true dependencies. */
708 if ((ds & DEP_OUTPUT)
709 || (ds & DEP_ANTI)
710 || ! INSN_RHS (insn)
711 || ! INSN_LHS (insn))
712 return false;
714 /* Now we just need to make sure the INSN_RHS consists of only one
715 simple REG rtx. */
716 if (REG_P (INSN_LHS (insn))
717 && REG_P (INSN_RHS (insn)))
718 return true;
719 return false;
722 /* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
723 source (if INSN is eligible for substitution). Returns TRUE if
724 substitution was actually performed, FALSE otherwise. Substitution might
725 be not performed because it's either EXPR' vinsn doesn't contain INSN's
726 destination or the resulting insn is invalid for the target machine.
727 When UNDO is true, perform unsubstitution instead (the difference is in
728 the part of rtx on which validate_replace_rtx is called). */
729 static bool
730 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
732 rtx *where;
733 bool new_insn_valid;
734 vinsn_t *vi = &EXPR_VINSN (expr);
735 bool has_rhs = VINSN_RHS (*vi) != NULL;
736 rtx old, new_rtx;
738 /* Do not try to replace in SET_DEST. Although we'll choose new
739 register for the RHS, we don't want to change RHS' original reg.
740 If the insn is not SET, we may still be able to substitute something
741 in it, and if we're here (don't have deps), it doesn't write INSN's
742 dest. */
743 where = (has_rhs
744 ? &VINSN_RHS (*vi)
745 : &PATTERN (VINSN_INSN_RTX (*vi)));
746 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
748 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
749 if (rtx_ok_for_substitution_p (old, *where))
751 rtx_insn *new_insn;
752 rtx *where_replace;
754 /* We should copy these rtxes before substitution. */
755 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
756 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
758 /* Where we'll replace.
759 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
760 used instead of SET_SRC. */
761 where_replace = (has_rhs
762 ? &SET_SRC (PATTERN (new_insn))
763 : &PATTERN (new_insn));
765 new_insn_valid
766 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
767 new_insn);
769 /* ??? Actually, constrain_operands result depends upon choice of
770 destination register. E.g. if we allow single register to be an rhs,
771 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
772 in invalid insn dx=dx, so we'll loose this rhs here.
773 Just can't come up with significant testcase for this, so just
774 leaving it for now. */
775 if (new_insn_valid)
777 change_vinsn_in_expr (expr,
778 create_vinsn_from_insn_rtx (new_insn, false));
780 /* Do not allow clobbering the address register of speculative
781 insns. */
782 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
783 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
784 expr_dest_reg (expr)))
785 EXPR_TARGET_AVAILABLE (expr) = false;
787 return true;
789 else
790 return false;
792 else
793 return false;
796 /* Return the number of places WHAT appears within WHERE.
797 Bail out when we found a reference occupying several hard registers. */
798 static int
799 count_occurrences_equiv (const_rtx what, const_rtx where)
801 int count = 0;
802 subrtx_iterator::array_type array;
803 FOR_EACH_SUBRTX (iter, array, where, NONCONST)
805 const_rtx x = *iter;
806 if (REG_P (x) && REGNO (x) == REGNO (what))
808 /* Bail out if mode is different or more than one register is
809 used. */
810 if (GET_MODE (x) != GET_MODE (what) || REG_NREGS (x) > 1)
811 return 0;
812 count += 1;
814 else if (GET_CODE (x) == SUBREG
815 && (!REG_P (SUBREG_REG (x))
816 || REGNO (SUBREG_REG (x)) == REGNO (what)))
817 /* ??? Do not support substituting regs inside subregs. In that case,
818 simplify_subreg will be called by validate_replace_rtx, and
819 unsubstitution will fail later. */
820 return 0;
822 return count;
825 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
826 static bool
827 rtx_ok_for_substitution_p (rtx what, rtx where)
829 return (count_occurrences_equiv (what, where) > 0);
833 /* Functions to support register renaming. */
835 /* Substitute VI's set source with REGNO. Returns newly created pattern
836 that has REGNO as its source. */
837 static rtx_insn *
838 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
840 rtx lhs_rtx;
841 rtx pattern;
842 rtx_insn *insn_rtx;
844 lhs_rtx = copy_rtx (VINSN_LHS (vi));
846 pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
847 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
849 return insn_rtx;
852 /* Returns whether INSN's src can be replaced with register number
853 NEW_SRC_REG. E.g. the following insn is valid for i386:
855 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
856 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
857 (reg:SI 0 ax [orig:770 c1 ] [770]))
858 (const_int 288 [0x120])) [0 str S1 A8])
859 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
860 (nil))
862 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
863 because of operand constraints:
865 (define_insn "*movqi_1"
866 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
867 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
870 So do constrain_operands here, before choosing NEW_SRC_REG as best
871 reg for rhs. */
873 static bool
874 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
876 vinsn_t vi = INSN_VINSN (insn);
877 machine_mode mode;
878 rtx dst_loc;
879 bool res;
881 gcc_assert (VINSN_SEPARABLE_P (vi));
883 get_dest_and_mode (insn, &dst_loc, &mode);
884 gcc_assert (mode == GET_MODE (new_src_reg));
886 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
887 return true;
889 /* See whether SET_SRC can be replaced with this register. */
890 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
891 res = verify_changes (0);
892 cancel_changes (0);
894 return res;
897 /* Returns whether INSN still be valid after replacing it's DEST with
898 register NEW_REG. */
899 static bool
900 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
902 vinsn_t vi = INSN_VINSN (insn);
903 bool res;
905 /* We should deal here only with separable insns. */
906 gcc_assert (VINSN_SEPARABLE_P (vi));
907 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
909 /* See whether SET_DEST can be replaced with this register. */
910 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
911 res = verify_changes (0);
912 cancel_changes (0);
914 return res;
917 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
918 static rtx_insn *
919 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
921 rtx rhs_rtx;
922 rtx pattern;
923 rtx_insn *insn_rtx;
925 rhs_rtx = copy_rtx (VINSN_RHS (vi));
927 pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
928 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
930 return insn_rtx;
933 /* Substitute lhs in the given expression EXPR for the register with number
934 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
935 static void
936 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
938 rtx_insn *insn_rtx;
939 vinsn_t vinsn;
941 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
942 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
944 change_vinsn_in_expr (expr, vinsn);
945 EXPR_WAS_RENAMED (expr) = 1;
946 EXPR_TARGET_AVAILABLE (expr) = 1;
949 /* Returns whether VI writes either one of the USED_REGS registers or,
950 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
951 static bool
952 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
953 HARD_REG_SET unavailable_hard_regs)
955 unsigned regno;
956 reg_set_iterator rsi;
958 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
960 if (REGNO_REG_SET_P (used_regs, regno))
961 return true;
962 if (HARD_REGISTER_NUM_P (regno)
963 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
964 return true;
967 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
969 if (REGNO_REG_SET_P (used_regs, regno))
970 return true;
971 if (HARD_REGISTER_NUM_P (regno)
972 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
973 return true;
976 return false;
979 /* Returns register class of the output register in INSN.
980 Returns NO_REGS for call insns because some targets have constraints on
981 destination register of a call insn.
983 Code adopted from regrename.c::build_def_use. */
984 static enum reg_class
985 get_reg_class (rtx_insn *insn)
987 int i, n_ops;
989 extract_constrain_insn (insn);
990 preprocess_constraints (insn);
991 n_ops = recog_data.n_operands;
993 const operand_alternative *op_alt = which_op_alt ();
994 if (asm_noperands (PATTERN (insn)) > 0)
996 for (i = 0; i < n_ops; i++)
997 if (recog_data.operand_type[i] == OP_OUT)
999 rtx *loc = recog_data.operand_loc[i];
1000 rtx op = *loc;
1001 enum reg_class cl = alternative_class (op_alt, i);
1003 if (REG_P (op)
1004 && REGNO (op) == ORIGINAL_REGNO (op))
1005 continue;
1007 return cl;
1010 else if (!CALL_P (insn))
1012 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1014 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1015 enum reg_class cl = alternative_class (op_alt, opn);
1017 if (recog_data.operand_type[opn] == OP_OUT ||
1018 recog_data.operand_type[opn] == OP_INOUT)
1019 return cl;
1023 /* Insns like
1024 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1025 may result in returning NO_REGS, cause flags is written implicitly through
1026 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1027 return NO_REGS;
1030 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1031 static void
1032 init_hard_regno_rename (int regno)
1034 int cur_reg;
1036 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1038 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1040 /* We are not interested in renaming in other regs. */
1041 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1042 continue;
1044 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1045 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1049 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1050 data first. */
1051 static inline bool
1052 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1054 /* Check whether this is all calculated. */
1055 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1056 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1058 init_hard_regno_rename (from);
1060 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1063 /* Calculate set of registers that are capable of holding MODE. */
1064 static void
1065 init_regs_for_mode (machine_mode mode)
1067 int cur_reg;
1069 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1070 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1072 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1074 int nregs;
1075 int i;
1077 /* See whether it accepts all modes that occur in
1078 original insns. */
1079 if (!targetm.hard_regno_mode_ok (cur_reg, mode))
1080 continue;
1082 nregs = hard_regno_nregs (cur_reg, mode);
1084 for (i = nregs - 1; i >= 0; --i)
1085 if (fixed_regs[cur_reg + i]
1086 || global_regs[cur_reg + i]
1087 /* Can't use regs which aren't saved by
1088 the prologue. */
1089 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1090 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1091 it affects aliasing globally and invalidates all AV sets. */
1092 || get_reg_base_value (cur_reg + i)
1093 #ifdef LEAF_REGISTERS
1094 /* We can't use a non-leaf register if we're in a
1095 leaf function. */
1096 || (crtl->is_leaf
1097 && !LEAF_REGISTERS[cur_reg + i])
1098 #endif
1100 break;
1102 if (i >= 0)
1103 continue;
1105 if (targetm.hard_regno_call_part_clobbered (cur_reg, mode))
1106 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1107 cur_reg);
1109 /* If the CUR_REG passed all the checks above,
1110 then it's ok. */
1111 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1114 sel_hrd.regs_for_mode_ok[mode] = true;
1117 /* Init all register sets gathered in HRD. */
1118 static void
1119 init_hard_regs_data (void)
1121 int cur_reg = 0;
1122 int cur_mode = 0;
1124 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1125 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1126 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1127 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1129 /* Initialize registers that are valid based on mode when this is
1130 really needed. */
1131 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1132 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1134 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1135 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1136 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1138 #ifdef STACK_REGS
1139 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1141 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1142 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1143 #endif
1146 /* Mark hardware regs in REG_RENAME_P that are not suitable
1147 for renaming rhs in INSN due to hardware restrictions (register class,
1148 modes compatibility etc). This doesn't affect original insn's dest reg,
1149 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1150 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1151 Registers that are in used_regs are always marked in
1152 unavailable_hard_regs as well. */
1154 static void
1155 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1156 regset used_regs ATTRIBUTE_UNUSED)
1158 machine_mode mode;
1159 enum reg_class cl = NO_REGS;
1160 rtx orig_dest;
1161 unsigned cur_reg, regno;
1162 hard_reg_set_iterator hrsi;
1164 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1165 gcc_assert (reg_rename_p);
1167 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1169 /* We have decided not to rename 'mem = something;' insns, as 'something'
1170 is usually a register. */
1171 if (!REG_P (orig_dest))
1172 return;
1174 regno = REGNO (orig_dest);
1176 /* If before reload, don't try to work with pseudos. */
1177 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1178 return;
1180 if (reload_completed)
1181 cl = get_reg_class (def->orig_insn);
1183 /* Stop if the original register is one of the fixed_regs, global_regs or
1184 frame pointer, or we could not discover its class. */
1185 if (fixed_regs[regno]
1186 || global_regs[regno]
1187 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed
1188 && regno == HARD_FRAME_POINTER_REGNUM)
1189 || (HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed
1190 && regno == FRAME_POINTER_REGNUM)
1191 || (reload_completed && cl == NO_REGS))
1193 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1195 /* Give a chance for original register, if it isn't in used_regs. */
1196 if (!def->crosses_call)
1197 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1199 return;
1202 /* If something allocated on stack in this function, mark frame pointer
1203 register unavailable, considering also modes.
1204 FIXME: it is enough to do this once per all original defs. */
1205 if (frame_pointer_needed)
1207 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1208 Pmode, FRAME_POINTER_REGNUM);
1210 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1211 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1212 Pmode, HARD_FRAME_POINTER_REGNUM);
1215 #ifdef STACK_REGS
1216 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1217 is equivalent to as if all stack regs were in this set.
1218 I.e. no stack register can be renamed, and even if it's an original
1219 register here we make sure it won't be lifted over it's previous def
1220 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1221 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1222 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1223 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1224 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1225 sel_hrd.stack_regs);
1226 #endif
1228 /* If there's a call on this path, make regs from call_used_reg_set
1229 unavailable. */
1230 if (def->crosses_call)
1231 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1232 call_used_reg_set);
1234 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1235 but not register classes. */
1236 if (!reload_completed)
1237 return;
1239 /* Leave regs as 'available' only from the current
1240 register class. */
1241 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1242 reg_class_contents[cl]);
1244 mode = GET_MODE (orig_dest);
1246 /* Leave only registers available for this mode. */
1247 if (!sel_hrd.regs_for_mode_ok[mode])
1248 init_regs_for_mode (mode);
1249 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1250 sel_hrd.regs_for_mode[mode]);
1252 /* Exclude registers that are partially call clobbered. */
1253 if (def->crosses_call
1254 && !targetm.hard_regno_call_part_clobbered (regno, mode))
1255 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1256 sel_hrd.regs_for_call_clobbered[mode]);
1258 /* Leave only those that are ok to rename. */
1259 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1260 0, cur_reg, hrsi)
1262 int nregs;
1263 int i;
1265 nregs = hard_regno_nregs (cur_reg, mode);
1266 gcc_assert (nregs > 0);
1268 for (i = nregs - 1; i >= 0; --i)
1269 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1270 break;
1272 if (i >= 0)
1273 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1274 cur_reg);
1277 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1278 reg_rename_p->unavailable_hard_regs);
1280 /* Regno is always ok from the renaming part of view, but it really
1281 could be in *unavailable_hard_regs already, so set it here instead
1282 of there. */
1283 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1286 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1287 best register more recently than REG2. */
1288 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1290 /* Indicates the number of times renaming happened before the current one. */
1291 static int reg_rename_this_tick;
1293 /* Choose the register among free, that is suitable for storing
1294 the rhs value.
1296 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1297 originally appears. There could be multiple original operations
1298 for single rhs since we moving it up and merging along different
1299 paths.
1301 Some code is adapted from regrename.c (regrename_optimize).
1302 If original register is available, function returns it.
1303 Otherwise it performs the checks, so the new register should
1304 comply with the following:
1305 - it should not violate any live ranges (such registers are in
1306 REG_RENAME_P->available_for_renaming set);
1307 - it should not be in the HARD_REGS_USED regset;
1308 - it should be in the class compatible with original uses;
1309 - it should not be clobbered through reference with different mode;
1310 - if we're in the leaf function, then the new register should
1311 not be in the LEAF_REGISTERS;
1312 - etc.
1314 If several registers meet the conditions, the register with smallest
1315 tick is returned to achieve more even register allocation.
1317 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1319 If no register satisfies the above conditions, NULL_RTX is returned. */
1320 static rtx
1321 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1322 struct reg_rename *reg_rename_p,
1323 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1325 int best_new_reg;
1326 unsigned cur_reg;
1327 machine_mode mode = VOIDmode;
1328 unsigned regno, i, n;
1329 hard_reg_set_iterator hrsi;
1330 def_list_iterator di;
1331 def_t def;
1333 /* If original register is available, return it. */
1334 *is_orig_reg_p_ptr = true;
1336 FOR_EACH_DEF (def, di, original_insns)
1338 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1340 gcc_assert (REG_P (orig_dest));
1342 /* Check that all original operations have the same mode.
1343 This is done for the next loop; if we'd return from this
1344 loop, we'd check only part of them, but in this case
1345 it doesn't matter. */
1346 if (mode == VOIDmode)
1347 mode = GET_MODE (orig_dest);
1348 gcc_assert (mode == GET_MODE (orig_dest));
1350 regno = REGNO (orig_dest);
1351 for (i = 0, n = REG_NREGS (orig_dest); i < n; i++)
1352 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1353 break;
1355 /* All hard registers are available. */
1356 if (i == n)
1358 gcc_assert (mode != VOIDmode);
1360 /* Hard registers should not be shared. */
1361 return gen_rtx_REG (mode, regno);
1365 *is_orig_reg_p_ptr = false;
1366 best_new_reg = -1;
1368 /* Among all available regs choose the register that was
1369 allocated earliest. */
1370 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1371 0, cur_reg, hrsi)
1372 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1374 /* Check that all hard regs for mode are available. */
1375 for (i = 1, n = hard_regno_nregs (cur_reg, mode); i < n; i++)
1376 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1377 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1378 cur_reg + i))
1379 break;
1381 if (i < n)
1382 continue;
1384 /* All hard registers are available. */
1385 if (best_new_reg < 0
1386 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1388 best_new_reg = cur_reg;
1390 /* Return immediately when we know there's no better reg. */
1391 if (! reg_rename_tick[best_new_reg])
1392 break;
1396 if (best_new_reg >= 0)
1398 /* Use the check from the above loop. */
1399 gcc_assert (mode != VOIDmode);
1400 return gen_rtx_REG (mode, best_new_reg);
1403 return NULL_RTX;
1406 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1407 assumptions about available registers in the function. */
1408 static rtx
1409 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1410 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1412 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1413 original_insns, is_orig_reg_p_ptr);
1415 /* FIXME loop over hard_regno_nregs here. */
1416 gcc_assert (best_reg == NULL_RTX
1417 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1419 return best_reg;
1422 /* Choose the pseudo register for storing rhs value. As this is supposed
1423 to work before reload, we return either the original register or make
1424 the new one. The parameters are the same that in choose_nest_reg_1
1425 functions, except that USED_REGS may contain pseudos.
1426 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1428 TODO: take into account register pressure while doing this. Up to this
1429 moment, this function would never return NULL for pseudos, but we should
1430 not rely on this. */
1431 static rtx
1432 choose_best_pseudo_reg (regset used_regs,
1433 struct reg_rename *reg_rename_p,
1434 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1436 def_list_iterator i;
1437 def_t def;
1438 machine_mode mode = VOIDmode;
1439 bool bad_hard_regs = false;
1441 /* We should not use this after reload. */
1442 gcc_assert (!reload_completed);
1444 /* If original register is available, return it. */
1445 *is_orig_reg_p_ptr = true;
1447 FOR_EACH_DEF (def, i, original_insns)
1449 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1450 int orig_regno;
1452 gcc_assert (REG_P (dest));
1454 /* Check that all original operations have the same mode. */
1455 if (mode == VOIDmode)
1456 mode = GET_MODE (dest);
1457 else
1458 gcc_assert (mode == GET_MODE (dest));
1459 orig_regno = REGNO (dest);
1461 /* Check that nothing in used_regs intersects with orig_regno. When
1462 we have a hard reg here, still loop over hard_regno_nregs. */
1463 if (HARD_REGISTER_NUM_P (orig_regno))
1465 int j, n;
1466 for (j = 0, n = REG_NREGS (dest); j < n; j++)
1467 if (REGNO_REG_SET_P (used_regs, orig_regno + j))
1468 break;
1469 if (j < n)
1470 continue;
1472 else
1474 if (REGNO_REG_SET_P (used_regs, orig_regno))
1475 continue;
1477 if (HARD_REGISTER_NUM_P (orig_regno))
1479 gcc_assert (df_regs_ever_live_p (orig_regno));
1481 /* For hard registers, we have to check hardware imposed
1482 limitations (frame/stack registers, calls crossed). */
1483 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1484 orig_regno))
1486 /* Don't let register cross a call if it doesn't already
1487 cross one. This condition is written in accordance with
1488 that in sched-deps.c sched_analyze_reg(). */
1489 if (!reg_rename_p->crosses_call
1490 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1491 return gen_rtx_REG (mode, orig_regno);
1494 bad_hard_regs = true;
1496 else
1497 return dest;
1500 *is_orig_reg_p_ptr = false;
1502 /* We had some original hard registers that couldn't be used.
1503 Those were likely special. Don't try to create a pseudo. */
1504 if (bad_hard_regs)
1505 return NULL_RTX;
1507 /* We haven't found a register from original operations. Get a new one.
1508 FIXME: control register pressure somehow. */
1510 rtx new_reg = gen_reg_rtx (mode);
1512 gcc_assert (mode != VOIDmode);
1514 max_regno = max_reg_num ();
1515 maybe_extend_reg_info_p ();
1516 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1518 return new_reg;
1522 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1523 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1524 static void
1525 verify_target_availability (expr_t expr, regset used_regs,
1526 struct reg_rename *reg_rename_p)
1528 unsigned n, i, regno;
1529 machine_mode mode;
1530 bool target_available, live_available, hard_available;
1532 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1533 return;
1535 regno = expr_dest_regno (expr);
1536 mode = GET_MODE (EXPR_LHS (expr));
1537 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1538 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs (regno, mode) : 1;
1540 live_available = hard_available = true;
1541 for (i = 0; i < n; i++)
1543 if (bitmap_bit_p (used_regs, regno + i))
1544 live_available = false;
1545 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1546 hard_available = false;
1549 /* When target is not available, it may be due to hard register
1550 restrictions, e.g. crosses calls, so we check hard_available too. */
1551 if (target_available)
1552 gcc_assert (live_available);
1553 else
1554 /* Check only if we haven't scheduled something on the previous fence,
1555 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1556 and having more than one fence, we may end having targ_un in a block
1557 in which successors target register is actually available.
1559 The last condition handles the case when a dependence from a call insn
1560 was created in sched-deps.c for insns with destination registers that
1561 never crossed a call before, but do cross one after our code motion.
1563 FIXME: in the latter case, we just uselessly called find_used_regs,
1564 because we can't move this expression with any other register
1565 as well. */
1566 gcc_assert (scheduled_something_on_previous_fence || !live_available
1567 || !hard_available
1568 || (!reload_completed && reg_rename_p->crosses_call
1569 && REG_N_CALLS_CROSSED (regno) == 0));
1572 /* Collect unavailable registers due to liveness for EXPR from BNDS
1573 into USED_REGS. Save additional information about available
1574 registers and unavailable due to hardware restriction registers
1575 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1576 list. */
1577 static void
1578 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1579 struct reg_rename *reg_rename_p,
1580 def_list_t *original_insns)
1582 for (; bnds; bnds = BLIST_NEXT (bnds))
1584 bool res;
1585 av_set_t orig_ops = NULL;
1586 bnd_t bnd = BLIST_BND (bnds);
1588 /* If the chosen best expr doesn't belong to current boundary,
1589 skip it. */
1590 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1591 continue;
1593 /* Put in ORIG_OPS all exprs from this boundary that became
1594 RES on top. */
1595 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1597 /* Compute used regs and OR it into the USED_REGS. */
1598 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1599 reg_rename_p, original_insns);
1601 /* FIXME: the assert is true until we'd have several boundaries. */
1602 gcc_assert (res);
1603 av_set_clear (&orig_ops);
1607 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1608 If BEST_REG is valid, replace LHS of EXPR with it. */
1609 static bool
1610 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1612 /* Try whether we'll be able to generate the insn
1613 'dest := best_reg' at the place of the original operation. */
1614 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1616 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1618 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1620 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1621 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1622 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1623 return false;
1626 /* Make sure that EXPR has the right destination
1627 register. */
1628 if (expr_dest_regno (expr) != REGNO (best_reg))
1629 replace_dest_with_reg_in_expr (expr, best_reg);
1630 else
1631 EXPR_TARGET_AVAILABLE (expr) = 1;
1633 return true;
1636 /* Select and assign best register to EXPR searching from BNDS.
1637 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1638 Return FALSE if no register can be chosen, which could happen when:
1639 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1640 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1641 that are used on the moving path. */
1642 static bool
1643 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1645 static struct reg_rename reg_rename_data;
1647 regset used_regs;
1648 def_list_t original_insns = NULL;
1649 bool reg_ok;
1651 *is_orig_reg_p = false;
1653 /* Don't bother to do anything if this insn doesn't set any registers. */
1654 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1655 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1656 return true;
1658 used_regs = get_clear_regset_from_pool ();
1659 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1661 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1662 &original_insns);
1664 /* If after reload, make sure we're working with hard regs here. */
1665 if (flag_checking && reload_completed)
1667 reg_set_iterator rsi;
1668 unsigned i;
1670 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1671 gcc_unreachable ();
1674 if (EXPR_SEPARABLE_P (expr))
1676 rtx best_reg = NULL_RTX;
1677 /* Check that we have computed availability of a target register
1678 correctly. */
1679 verify_target_availability (expr, used_regs, &reg_rename_data);
1681 /* Turn everything in hard regs after reload. */
1682 if (reload_completed)
1684 HARD_REG_SET hard_regs_used;
1685 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1687 /* Join hard registers unavailable due to register class
1688 restrictions and live range intersection. */
1689 IOR_HARD_REG_SET (hard_regs_used,
1690 reg_rename_data.unavailable_hard_regs);
1692 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1693 original_insns, is_orig_reg_p);
1695 else
1696 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1697 original_insns, is_orig_reg_p);
1699 if (!best_reg)
1700 reg_ok = false;
1701 else if (*is_orig_reg_p)
1703 /* In case of unification BEST_REG may be different from EXPR's LHS
1704 when EXPR's LHS is unavailable, and there is another LHS among
1705 ORIGINAL_INSNS. */
1706 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1708 else
1710 /* Forbid renaming of low-cost insns. */
1711 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1712 reg_ok = false;
1713 else
1714 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1717 else
1719 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1720 any of the HARD_REGS_USED set. */
1721 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1722 reg_rename_data.unavailable_hard_regs))
1724 reg_ok = false;
1725 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1727 else
1729 reg_ok = true;
1730 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1734 ilist_clear (&original_insns);
1735 return_regset_to_pool (used_regs);
1737 return reg_ok;
1741 /* Return true if dependence described by DS can be overcomed. */
1742 static bool
1743 can_speculate_dep_p (ds_t ds)
1745 if (spec_info == NULL)
1746 return false;
1748 /* Leave only speculative data. */
1749 ds &= SPECULATIVE;
1751 if (ds == 0)
1752 return false;
1755 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1756 that we can overcome. */
1757 ds_t spec_mask = spec_info->mask;
1759 if ((ds & spec_mask) != ds)
1760 return false;
1763 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1764 return false;
1766 return true;
1769 /* Get a speculation check instruction.
1770 C_EXPR is a speculative expression,
1771 CHECK_DS describes speculations that should be checked,
1772 ORIG_INSN is the original non-speculative insn in the stream. */
1773 static insn_t
1774 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1776 rtx check_pattern;
1777 rtx_insn *insn_rtx;
1778 insn_t insn;
1779 basic_block recovery_block;
1780 rtx_insn *label;
1782 /* Create a recovery block if target is going to emit branchy check, or if
1783 ORIG_INSN was speculative already. */
1784 if (targetm.sched.needs_block_p (check_ds)
1785 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1787 recovery_block = sel_create_recovery_block (orig_insn);
1788 label = BB_HEAD (recovery_block);
1790 else
1792 recovery_block = NULL;
1793 label = NULL;
1796 /* Get pattern of the check. */
1797 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1798 check_ds);
1800 gcc_assert (check_pattern != NULL);
1802 /* Emit check. */
1803 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1805 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1806 INSN_SEQNO (orig_insn), orig_insn);
1808 /* Make check to be non-speculative. */
1809 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1810 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1812 /* Decrease priority of check by difference of load/check instruction
1813 latencies. */
1814 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1815 - sel_vinsn_cost (INSN_VINSN (insn)));
1817 /* Emit copy of original insn (though with replaced target register,
1818 if needed) to the recovery block. */
1819 if (recovery_block != NULL)
1821 rtx twin_rtx;
1823 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1824 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1825 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1826 INSN_EXPR (orig_insn),
1827 INSN_SEQNO (insn),
1828 bb_note (recovery_block));
1831 /* If we've generated a data speculation check, make sure
1832 that all the bookkeeping instruction we'll create during
1833 this move_op () will allocate an ALAT entry so that the
1834 check won't fail.
1835 In case of control speculation we must convert C_EXPR to control
1836 speculative mode, because failing to do so will bring us an exception
1837 thrown by the non-control-speculative load. */
1838 check_ds = ds_get_max_dep_weak (check_ds);
1839 speculate_expr (c_expr, check_ds);
1841 return insn;
1844 /* True when INSN is a "regN = regN" copy. */
1845 static bool
1846 identical_copy_p (rtx_insn *insn)
1848 rtx lhs, rhs, pat;
1850 pat = PATTERN (insn);
1852 if (GET_CODE (pat) != SET)
1853 return false;
1855 lhs = SET_DEST (pat);
1856 if (!REG_P (lhs))
1857 return false;
1859 rhs = SET_SRC (pat);
1860 if (!REG_P (rhs))
1861 return false;
1863 return REGNO (lhs) == REGNO (rhs);
1866 /* Undo all transformations on *AV_PTR that were done when
1867 moving through INSN. */
1868 static void
1869 undo_transformations (av_set_t *av_ptr, rtx_insn *insn)
1871 av_set_iterator av_iter;
1872 expr_t expr;
1873 av_set_t new_set = NULL;
1875 /* First, kill any EXPR that uses registers set by an insn. This is
1876 required for correctness. */
1877 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1878 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1879 && bitmap_intersect_p (INSN_REG_SETS (insn),
1880 VINSN_REG_USES (EXPR_VINSN (expr)))
1881 /* When an insn looks like 'r1 = r1', we could substitute through
1882 it, but the above condition will still hold. This happened with
1883 gcc.c-torture/execute/961125-1.c. */
1884 && !identical_copy_p (insn))
1886 if (sched_verbose >= 6)
1887 sel_print ("Expr %d removed due to use/set conflict\n",
1888 INSN_UID (EXPR_INSN_RTX (expr)));
1889 av_set_iter_remove (&av_iter);
1892 /* Undo transformations looking at the history vector. */
1893 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1895 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1896 insn, EXPR_VINSN (expr), true);
1898 if (index >= 0)
1900 expr_history_def *phist;
1902 phist = &EXPR_HISTORY_OF_CHANGES (expr)[index];
1904 switch (phist->type)
1906 case TRANS_SPECULATION:
1908 ds_t old_ds, new_ds;
1910 /* Compute the difference between old and new speculative
1911 statuses: that's what we need to check.
1912 Earlier we used to assert that the status will really
1913 change. This no longer works because only the probability
1914 bits in the status may have changed during compute_av_set,
1915 and in the case of merging different probabilities of the
1916 same speculative status along different paths we do not
1917 record this in the history vector. */
1918 old_ds = phist->spec_ds;
1919 new_ds = EXPR_SPEC_DONE_DS (expr);
1921 old_ds &= SPECULATIVE;
1922 new_ds &= SPECULATIVE;
1923 new_ds &= ~old_ds;
1925 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1926 break;
1928 case TRANS_SUBSTITUTION:
1930 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1931 vinsn_t new_vi;
1932 bool add = true;
1934 new_vi = phist->old_expr_vinsn;
1936 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1937 == EXPR_SEPARABLE_P (expr));
1938 copy_expr (tmp_expr, expr);
1940 if (vinsn_equal_p (phist->new_expr_vinsn,
1941 EXPR_VINSN (tmp_expr)))
1942 change_vinsn_in_expr (tmp_expr, new_vi);
1943 else
1944 /* This happens when we're unsubstituting on a bookkeeping
1945 copy, which was in turn substituted. The history is wrong
1946 in this case. Do it the hard way. */
1947 add = substitute_reg_in_expr (tmp_expr, insn, true);
1948 if (add)
1949 av_set_add (&new_set, tmp_expr);
1950 clear_expr (tmp_expr);
1951 break;
1953 default:
1954 gcc_unreachable ();
1960 av_set_union_and_clear (av_ptr, &new_set, NULL);
1964 /* Moveup_* helpers for code motion and computing av sets. */
1966 /* Propagates EXPR inside an insn group through THROUGH_INSN.
1967 The difference from the below function is that only substitution is
1968 performed. */
1969 static enum MOVEUP_EXPR_CODE
1970 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
1972 vinsn_t vi = EXPR_VINSN (expr);
1973 ds_t *has_dep_p;
1974 ds_t full_ds;
1976 /* Do this only inside insn group. */
1977 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
1979 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
1980 if (full_ds == 0)
1981 return MOVEUP_EXPR_SAME;
1983 /* Substitution is the possible choice in this case. */
1984 if (has_dep_p[DEPS_IN_RHS])
1986 /* Can't substitute UNIQUE VINSNs. */
1987 gcc_assert (!VINSN_UNIQUE_P (vi));
1989 if (can_substitute_through_p (through_insn,
1990 has_dep_p[DEPS_IN_RHS])
1991 && substitute_reg_in_expr (expr, through_insn, false))
1993 EXPR_WAS_SUBSTITUTED (expr) = true;
1994 return MOVEUP_EXPR_CHANGED;
1997 /* Don't care about this, as even true dependencies may be allowed
1998 in an insn group. */
1999 return MOVEUP_EXPR_SAME;
2002 /* This can catch output dependencies in COND_EXECs. */
2003 if (has_dep_p[DEPS_IN_INSN])
2004 return MOVEUP_EXPR_NULL;
2006 /* This is either an output or an anti dependence, which usually have
2007 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2008 will fix this. */
2009 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2010 return MOVEUP_EXPR_AS_RHS;
2013 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2014 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2015 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2016 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2017 && !sel_insn_is_speculation_check (through_insn))
2019 /* True when a conflict on a target register was found during moveup_expr. */
2020 static bool was_target_conflict = false;
2022 /* Return true when moving a debug INSN across THROUGH_INSN will
2023 create a bookkeeping block. We don't want to create such blocks,
2024 for they would cause codegen differences between compilations with
2025 and without debug info. */
2027 static bool
2028 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2029 insn_t through_insn)
2031 basic_block bbi, bbt;
2032 edge e1, e2;
2033 edge_iterator ei1, ei2;
2035 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2037 if (sched_verbose >= 9)
2038 sel_print ("no bookkeeping required: ");
2039 return FALSE;
2042 bbi = BLOCK_FOR_INSN (insn);
2044 if (EDGE_COUNT (bbi->preds) == 1)
2046 if (sched_verbose >= 9)
2047 sel_print ("only one pred edge: ");
2048 return TRUE;
2051 bbt = BLOCK_FOR_INSN (through_insn);
2053 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2055 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2057 if (find_block_for_bookkeeping (e1, e2, TRUE))
2059 if (sched_verbose >= 9)
2060 sel_print ("found existing block: ");
2061 return FALSE;
2066 if (sched_verbose >= 9)
2067 sel_print ("would create bookkeeping block: ");
2069 return TRUE;
2072 /* Return true when the conflict with newly created implicit clobbers
2073 between EXPR and THROUGH_INSN is found because of renaming. */
2074 static bool
2075 implicit_clobber_conflict_p (insn_t through_insn, expr_t expr)
2077 HARD_REG_SET temp;
2078 rtx_insn *insn;
2079 rtx reg, rhs, pat;
2080 hard_reg_set_iterator hrsi;
2081 unsigned regno;
2082 bool valid;
2084 /* Make a new pseudo register. */
2085 reg = gen_reg_rtx (GET_MODE (EXPR_LHS (expr)));
2086 max_regno = max_reg_num ();
2087 maybe_extend_reg_info_p ();
2089 /* Validate a change and bail out early. */
2090 insn = EXPR_INSN_RTX (expr);
2091 validate_change (insn, &SET_DEST (PATTERN (insn)), reg, true);
2092 valid = verify_changes (0);
2093 cancel_changes (0);
2094 if (!valid)
2096 if (sched_verbose >= 6)
2097 sel_print ("implicit clobbers failed validation, ");
2098 return true;
2101 /* Make a new insn with it. */
2102 rhs = copy_rtx (VINSN_RHS (EXPR_VINSN (expr)));
2103 pat = gen_rtx_SET (reg, rhs);
2104 start_sequence ();
2105 insn = emit_insn (pat);
2106 end_sequence ();
2108 /* Calculate implicit clobbers. */
2109 extract_insn (insn);
2110 preprocess_constraints (insn);
2111 alternative_mask prefrred = get_preferred_alternatives (insn);
2112 ira_implicitly_set_insn_hard_regs (&temp, prefrred);
2113 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2115 /* If any implicit clobber registers intersect with regular ones in
2116 through_insn, we have a dependency and thus bail out. */
2117 EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2119 vinsn_t vi = INSN_VINSN (through_insn);
2120 if (bitmap_bit_p (VINSN_REG_SETS (vi), regno)
2121 || bitmap_bit_p (VINSN_REG_CLOBBERS (vi), regno)
2122 || bitmap_bit_p (VINSN_REG_USES (vi), regno))
2123 return true;
2126 return false;
2129 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2130 performing necessary transformations. Record the type of transformation
2131 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2132 permit all dependencies except true ones, and try to remove those
2133 too via forward substitution. All cases when a non-eliminable
2134 non-zero cost dependency exists inside an insn group will be fixed
2135 in tick_check_p instead. */
2136 static enum MOVEUP_EXPR_CODE
2137 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2138 enum local_trans_type *ptrans_type)
2140 vinsn_t vi = EXPR_VINSN (expr);
2141 insn_t insn = VINSN_INSN_RTX (vi);
2142 bool was_changed = false;
2143 bool as_rhs = false;
2144 ds_t *has_dep_p;
2145 ds_t full_ds;
2147 /* ??? We use dependencies of non-debug insns on debug insns to
2148 indicate that the debug insns need to be reset if the non-debug
2149 insn is pulled ahead of it. It's hard to figure out how to
2150 introduce such a notion in sel-sched, but it already fails to
2151 support debug insns in other ways, so we just go ahead and
2152 let the deug insns go corrupt for now. */
2153 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2154 return MOVEUP_EXPR_SAME;
2156 /* When inside_insn_group, delegate to the helper. */
2157 if (inside_insn_group)
2158 return moveup_expr_inside_insn_group (expr, through_insn);
2160 /* Deal with unique insns and control dependencies. */
2161 if (VINSN_UNIQUE_P (vi))
2163 /* We can move jumps without side-effects or jumps that are
2164 mutually exclusive with instruction THROUGH_INSN (all in cases
2165 dependencies allow to do so and jump is not speculative). */
2166 if (control_flow_insn_p (insn))
2168 basic_block fallthru_bb;
2170 /* Do not move checks and do not move jumps through other
2171 jumps. */
2172 if (control_flow_insn_p (through_insn)
2173 || sel_insn_is_speculation_check (insn))
2174 return MOVEUP_EXPR_NULL;
2176 /* Don't move jumps through CFG joins. */
2177 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2178 return MOVEUP_EXPR_NULL;
2180 /* The jump should have a clear fallthru block, and
2181 this block should be in the current region. */
2182 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2183 || ! in_current_region_p (fallthru_bb))
2184 return MOVEUP_EXPR_NULL;
2186 /* And it should be mutually exclusive with through_insn. */
2187 if (! sched_insns_conditions_mutex_p (insn, through_insn)
2188 && ! DEBUG_INSN_P (through_insn))
2189 return MOVEUP_EXPR_NULL;
2192 /* Don't move what we can't move. */
2193 if (EXPR_CANT_MOVE (expr)
2194 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2195 return MOVEUP_EXPR_NULL;
2197 /* Don't move SCHED_GROUP instruction through anything.
2198 If we don't force this, then it will be possible to start
2199 scheduling a sched_group before all its dependencies are
2200 resolved.
2201 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2202 as late as possible through rank_for_schedule. */
2203 if (SCHED_GROUP_P (insn))
2204 return MOVEUP_EXPR_NULL;
2206 else
2207 gcc_assert (!control_flow_insn_p (insn));
2209 /* Don't move debug insns if this would require bookkeeping. */
2210 if (DEBUG_INSN_P (insn)
2211 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2212 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2213 return MOVEUP_EXPR_NULL;
2215 /* Deal with data dependencies. */
2216 was_target_conflict = false;
2217 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2218 if (full_ds == 0)
2220 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2221 return MOVEUP_EXPR_SAME;
2223 else
2225 /* We can move UNIQUE insn up only as a whole and unchanged,
2226 so it shouldn't have any dependencies. */
2227 if (VINSN_UNIQUE_P (vi))
2228 return MOVEUP_EXPR_NULL;
2231 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2233 int res;
2235 res = speculate_expr (expr, full_ds);
2236 if (res >= 0)
2238 /* Speculation was successful. */
2239 full_ds = 0;
2240 was_changed = (res > 0);
2241 if (res == 2)
2242 was_target_conflict = true;
2243 if (ptrans_type)
2244 *ptrans_type = TRANS_SPECULATION;
2245 sel_clear_has_dependence ();
2249 if (has_dep_p[DEPS_IN_INSN])
2250 /* We have some dependency that cannot be discarded. */
2251 return MOVEUP_EXPR_NULL;
2253 if (has_dep_p[DEPS_IN_LHS])
2255 /* Only separable insns can be moved up with the new register.
2256 Anyways, we should mark that the original register is
2257 unavailable. */
2258 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2259 return MOVEUP_EXPR_NULL;
2261 /* When renaming a hard register to a pseudo before reload, extra
2262 dependencies can occur from the implicit clobbers of the insn.
2263 Filter out such cases here. */
2264 if (!reload_completed && REG_P (EXPR_LHS (expr))
2265 && HARD_REGISTER_P (EXPR_LHS (expr))
2266 && implicit_clobber_conflict_p (through_insn, expr))
2268 if (sched_verbose >= 6)
2269 sel_print ("implicit clobbers conflict detected, ");
2270 return MOVEUP_EXPR_NULL;
2272 EXPR_TARGET_AVAILABLE (expr) = false;
2273 was_target_conflict = true;
2274 as_rhs = true;
2277 /* At this point we have either separable insns, that will be lifted
2278 up only as RHSes, or non-separable insns with no dependency in lhs.
2279 If dependency is in RHS, then try to perform substitution and move up
2280 substituted RHS:
2282 Ex. 1: Ex.2
2283 y = x; y = x;
2284 z = y*2; y = y*2;
2286 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2287 moved above y=x assignment as z=x*2.
2289 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2290 side can be moved because of the output dependency. The operation was
2291 cropped to its rhs above. */
2292 if (has_dep_p[DEPS_IN_RHS])
2294 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2296 /* Can't substitute UNIQUE VINSNs. */
2297 gcc_assert (!VINSN_UNIQUE_P (vi));
2299 if (can_speculate_dep_p (*rhs_dsp))
2301 int res;
2303 res = speculate_expr (expr, *rhs_dsp);
2304 if (res >= 0)
2306 /* Speculation was successful. */
2307 *rhs_dsp = 0;
2308 was_changed = (res > 0);
2309 if (res == 2)
2310 was_target_conflict = true;
2311 if (ptrans_type)
2312 *ptrans_type = TRANS_SPECULATION;
2314 else
2315 return MOVEUP_EXPR_NULL;
2317 else if (can_substitute_through_p (through_insn,
2318 *rhs_dsp)
2319 && substitute_reg_in_expr (expr, through_insn, false))
2321 /* ??? We cannot perform substitution AND speculation on the same
2322 insn. */
2323 gcc_assert (!was_changed);
2324 was_changed = true;
2325 if (ptrans_type)
2326 *ptrans_type = TRANS_SUBSTITUTION;
2327 EXPR_WAS_SUBSTITUTED (expr) = true;
2329 else
2330 return MOVEUP_EXPR_NULL;
2333 /* Don't move trapping insns through jumps.
2334 This check should be at the end to give a chance to control speculation
2335 to perform its duties. */
2336 if (CANT_MOVE_TRAPPING (expr, through_insn))
2337 return MOVEUP_EXPR_NULL;
2339 return (was_changed
2340 ? MOVEUP_EXPR_CHANGED
2341 : (as_rhs
2342 ? MOVEUP_EXPR_AS_RHS
2343 : MOVEUP_EXPR_SAME));
2346 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2347 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2348 that can exist within a parallel group. Write to RES the resulting
2349 code for moveup_expr. */
2350 static bool
2351 try_bitmap_cache (expr_t expr, insn_t insn,
2352 bool inside_insn_group,
2353 enum MOVEUP_EXPR_CODE *res)
2355 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2357 /* First check whether we've analyzed this situation already. */
2358 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2360 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2362 if (sched_verbose >= 6)
2363 sel_print ("removed (cached)\n");
2364 *res = MOVEUP_EXPR_NULL;
2365 return true;
2367 else
2369 if (sched_verbose >= 6)
2370 sel_print ("unchanged (cached)\n");
2371 *res = MOVEUP_EXPR_SAME;
2372 return true;
2375 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2377 if (inside_insn_group)
2379 if (sched_verbose >= 6)
2380 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2381 *res = MOVEUP_EXPR_SAME;
2382 return true;
2385 else
2386 EXPR_TARGET_AVAILABLE (expr) = false;
2388 /* This is the only case when propagation result can change over time,
2389 as we can dynamically switch off scheduling as RHS. In this case,
2390 just check the flag to reach the correct decision. */
2391 if (enable_schedule_as_rhs_p)
2393 if (sched_verbose >= 6)
2394 sel_print ("unchanged (as RHS, cached)\n");
2395 *res = MOVEUP_EXPR_AS_RHS;
2396 return true;
2398 else
2400 if (sched_verbose >= 6)
2401 sel_print ("removed (cached as RHS, but renaming"
2402 " is now disabled)\n");
2403 *res = MOVEUP_EXPR_NULL;
2404 return true;
2408 return false;
2411 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2412 if successful. Write to RES the resulting code for moveup_expr. */
2413 static bool
2414 try_transformation_cache (expr_t expr, insn_t insn,
2415 enum MOVEUP_EXPR_CODE *res)
2417 struct transformed_insns *pti
2418 = (struct transformed_insns *)
2419 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2420 &EXPR_VINSN (expr),
2421 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2422 if (pti)
2424 /* This EXPR was already moved through this insn and was
2425 changed as a result. Fetch the proper data from
2426 the hashtable. */
2427 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2428 INSN_UID (insn), pti->type,
2429 pti->vinsn_old, pti->vinsn_new,
2430 EXPR_SPEC_DONE_DS (expr));
2432 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2433 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2434 change_vinsn_in_expr (expr, pti->vinsn_new);
2435 if (pti->was_target_conflict)
2436 EXPR_TARGET_AVAILABLE (expr) = false;
2437 if (pti->type == TRANS_SPECULATION)
2439 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2440 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2443 if (sched_verbose >= 6)
2445 sel_print ("changed (cached): ");
2446 dump_expr (expr);
2447 sel_print ("\n");
2450 *res = MOVEUP_EXPR_CHANGED;
2451 return true;
2454 return false;
2457 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2458 static void
2459 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2460 enum MOVEUP_EXPR_CODE res)
2462 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2464 /* Do not cache result of propagating jumps through an insn group,
2465 as it is always true, which is not useful outside the group. */
2466 if (inside_insn_group)
2467 return;
2469 if (res == MOVEUP_EXPR_NULL)
2471 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2472 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2474 else if (res == MOVEUP_EXPR_SAME)
2476 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2477 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2479 else if (res == MOVEUP_EXPR_AS_RHS)
2481 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2482 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2484 else
2485 gcc_unreachable ();
2488 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2489 and transformation type TRANS_TYPE. */
2490 static void
2491 update_transformation_cache (expr_t expr, insn_t insn,
2492 bool inside_insn_group,
2493 enum local_trans_type trans_type,
2494 vinsn_t expr_old_vinsn)
2496 struct transformed_insns *pti;
2498 if (inside_insn_group)
2499 return;
2501 pti = XNEW (struct transformed_insns);
2502 pti->vinsn_old = expr_old_vinsn;
2503 pti->vinsn_new = EXPR_VINSN (expr);
2504 pti->type = trans_type;
2505 pti->was_target_conflict = was_target_conflict;
2506 pti->ds = EXPR_SPEC_DONE_DS (expr);
2507 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2508 vinsn_attach (pti->vinsn_old);
2509 vinsn_attach (pti->vinsn_new);
2510 *((struct transformed_insns **)
2511 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2512 pti, VINSN_HASH_RTX (expr_old_vinsn),
2513 INSERT)) = pti;
2516 /* Same as moveup_expr, but first looks up the result of
2517 transformation in caches. */
2518 static enum MOVEUP_EXPR_CODE
2519 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2521 enum MOVEUP_EXPR_CODE res;
2522 bool got_answer = false;
2524 if (sched_verbose >= 6)
2526 sel_print ("Moving ");
2527 dump_expr (expr);
2528 sel_print (" through %d: ", INSN_UID (insn));
2531 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2532 && BLOCK_FOR_INSN (EXPR_INSN_RTX (expr))
2533 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2534 == EXPR_INSN_RTX (expr)))
2535 /* Don't use cached information for debug insns that are heads of
2536 basic blocks. */;
2537 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2538 /* When inside insn group, we do not want remove stores conflicting
2539 with previosly issued loads. */
2540 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2541 else if (try_transformation_cache (expr, insn, &res))
2542 got_answer = true;
2544 if (! got_answer)
2546 /* Invoke moveup_expr and record the results. */
2547 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2548 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2549 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2550 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2551 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2553 /* ??? Invent something better than this. We can't allow old_vinsn
2554 to go, we need it for the history vector. */
2555 vinsn_attach (expr_old_vinsn);
2557 res = moveup_expr (expr, insn, inside_insn_group,
2558 &trans_type);
2559 switch (res)
2561 case MOVEUP_EXPR_NULL:
2562 update_bitmap_cache (expr, insn, inside_insn_group, res);
2563 if (sched_verbose >= 6)
2564 sel_print ("removed\n");
2565 break;
2567 case MOVEUP_EXPR_SAME:
2568 update_bitmap_cache (expr, insn, inside_insn_group, res);
2569 if (sched_verbose >= 6)
2570 sel_print ("unchanged\n");
2571 break;
2573 case MOVEUP_EXPR_AS_RHS:
2574 gcc_assert (!unique_p || inside_insn_group);
2575 update_bitmap_cache (expr, insn, inside_insn_group, res);
2576 if (sched_verbose >= 6)
2577 sel_print ("unchanged (as RHS)\n");
2578 break;
2580 case MOVEUP_EXPR_CHANGED:
2581 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2582 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2583 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2584 INSN_UID (insn), trans_type,
2585 expr_old_vinsn, EXPR_VINSN (expr),
2586 expr_old_spec_ds);
2587 update_transformation_cache (expr, insn, inside_insn_group,
2588 trans_type, expr_old_vinsn);
2589 if (sched_verbose >= 6)
2591 sel_print ("changed: ");
2592 dump_expr (expr);
2593 sel_print ("\n");
2595 break;
2596 default:
2597 gcc_unreachable ();
2600 vinsn_detach (expr_old_vinsn);
2603 return res;
2606 /* Moves an av set AVP up through INSN, performing necessary
2607 transformations. */
2608 static void
2609 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2611 av_set_iterator i;
2612 expr_t expr;
2614 FOR_EACH_EXPR_1 (expr, i, avp)
2617 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2619 case MOVEUP_EXPR_SAME:
2620 case MOVEUP_EXPR_AS_RHS:
2621 break;
2623 case MOVEUP_EXPR_NULL:
2624 av_set_iter_remove (&i);
2625 break;
2627 case MOVEUP_EXPR_CHANGED:
2628 expr = merge_with_other_exprs (avp, &i, expr);
2629 break;
2631 default:
2632 gcc_unreachable ();
2637 /* Moves AVP set along PATH. */
2638 static void
2639 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2641 int last_cycle;
2643 if (sched_verbose >= 6)
2644 sel_print ("Moving expressions up in the insn group...\n");
2645 if (! path)
2646 return;
2647 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2648 while (path
2649 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2651 moveup_set_expr (avp, ILIST_INSN (path), true);
2652 path = ILIST_NEXT (path);
2656 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2657 static bool
2658 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2660 expr_def _tmp, *tmp = &_tmp;
2661 int last_cycle;
2662 bool res = true;
2664 copy_expr_onside (tmp, expr);
2665 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2666 while (path
2667 && res
2668 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2670 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2671 != MOVEUP_EXPR_NULL);
2672 path = ILIST_NEXT (path);
2675 if (res)
2677 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2678 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2680 if (tmp_vinsn != expr_vliw_vinsn)
2681 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2684 clear_expr (tmp);
2685 return res;
2689 /* Functions that compute av and lv sets. */
2691 /* Returns true if INSN is not a downward continuation of the given path P in
2692 the current stage. */
2693 static bool
2694 is_ineligible_successor (insn_t insn, ilist_t p)
2696 insn_t prev_insn;
2698 /* Check if insn is not deleted. */
2699 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2700 gcc_unreachable ();
2701 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2702 gcc_unreachable ();
2704 /* If it's the first insn visited, then the successor is ok. */
2705 if (!p)
2706 return false;
2708 prev_insn = ILIST_INSN (p);
2710 if (/* a backward edge. */
2711 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2712 /* is already visited. */
2713 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2714 && (ilist_is_in_p (p, insn)
2715 /* We can reach another fence here and still seqno of insn
2716 would be equal to seqno of prev_insn. This is possible
2717 when prev_insn is a previously created bookkeeping copy.
2718 In that case it'd get a seqno of insn. Thus, check here
2719 whether insn is in current fence too. */
2720 || IN_CURRENT_FENCE_P (insn)))
2721 /* Was already scheduled on this round. */
2722 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2723 && IN_CURRENT_FENCE_P (insn))
2724 /* An insn from another fence could also be
2725 scheduled earlier even if this insn is not in
2726 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2727 || (!pipelining_p
2728 && INSN_SCHED_TIMES (insn) > 0))
2729 return true;
2730 else
2731 return false;
2734 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2735 of handling multiple successors and properly merging its av_sets. P is
2736 the current path traversed. WS is the size of lookahead window.
2737 Return the av set computed. */
2738 static av_set_t
2739 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2741 struct succs_info *sinfo;
2742 av_set_t expr_in_all_succ_branches = NULL;
2743 int is;
2744 insn_t succ, zero_succ = NULL;
2745 av_set_t av1 = NULL;
2747 gcc_assert (sel_bb_end_p (insn));
2749 /* Find different kind of successors needed for correct computing of
2750 SPEC and TARGET_AVAILABLE attributes. */
2751 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2753 /* Debug output. */
2754 if (sched_verbose >= 6)
2756 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2757 dump_insn_vector (sinfo->succs_ok);
2758 sel_print ("\n");
2759 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2760 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2763 /* Add insn to the tail of current path. */
2764 ilist_add (&p, insn);
2766 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2768 av_set_t succ_set;
2770 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2771 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2773 av_set_split_usefulness (succ_set,
2774 sinfo->probs_ok[is],
2775 sinfo->all_prob);
2777 if (sinfo->all_succs_n > 1)
2779 /* Find EXPR'es that came from *all* successors and save them
2780 into expr_in_all_succ_branches. This set will be used later
2781 for calculating speculation attributes of EXPR'es. */
2782 if (is == 0)
2784 expr_in_all_succ_branches = av_set_copy (succ_set);
2786 /* Remember the first successor for later. */
2787 zero_succ = succ;
2789 else
2791 av_set_iterator i;
2792 expr_t expr;
2794 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2795 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2796 av_set_iter_remove (&i);
2800 /* Union the av_sets. Check liveness restrictions on target registers
2801 in special case of two successors. */
2802 if (sinfo->succs_ok_n == 2 && is == 1)
2804 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2805 basic_block bb1 = BLOCK_FOR_INSN (succ);
2807 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2808 av_set_union_and_live (&av1, &succ_set,
2809 BB_LV_SET (bb0),
2810 BB_LV_SET (bb1),
2811 insn);
2813 else
2814 av_set_union_and_clear (&av1, &succ_set, insn);
2817 /* Check liveness restrictions via hard way when there are more than
2818 two successors. */
2819 if (sinfo->succs_ok_n > 2)
2820 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2822 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2824 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2825 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2826 BB_LV_SET (succ_bb));
2829 /* Finally, check liveness restrictions on paths leaving the region. */
2830 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2831 FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ)
2832 mark_unavailable_targets
2833 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2835 if (sinfo->all_succs_n > 1)
2837 av_set_iterator i;
2838 expr_t expr;
2840 /* Increase the spec attribute of all EXPR'es that didn't come
2841 from all successors. */
2842 FOR_EACH_EXPR (expr, i, av1)
2843 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2844 EXPR_SPEC (expr)++;
2846 av_set_clear (&expr_in_all_succ_branches);
2848 /* Do not move conditional branches through other
2849 conditional branches. So, remove all conditional
2850 branches from av_set if current operator is a conditional
2851 branch. */
2852 av_set_substract_cond_branches (&av1);
2855 ilist_remove (&p);
2856 free_succs_info (sinfo);
2858 if (sched_verbose >= 6)
2860 sel_print ("av_succs (%d): ", INSN_UID (insn));
2861 dump_av_set (av1);
2862 sel_print ("\n");
2865 return av1;
2868 /* This function computes av_set for the FIRST_INSN by dragging valid
2869 av_set through all basic block insns either from the end of basic block
2870 (computed using compute_av_set_at_bb_end) or from the insn on which
2871 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2872 below the basic block and handling conditional branches.
2873 FIRST_INSN - the basic block head, P - path consisting of the insns
2874 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2875 and bb ends are added to the path), WS - current window size,
2876 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2877 static av_set_t
2878 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2879 bool need_copy_p)
2881 insn_t cur_insn;
2882 int end_ws = ws;
2883 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2884 insn_t after_bb_end = NEXT_INSN (bb_end);
2885 insn_t last_insn;
2886 av_set_t av = NULL;
2887 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2889 /* Return NULL if insn is not on the legitimate downward path. */
2890 if (is_ineligible_successor (first_insn, p))
2892 if (sched_verbose >= 6)
2893 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2895 return NULL;
2898 /* If insn already has valid av(insn) computed, just return it. */
2899 if (AV_SET_VALID_P (first_insn))
2901 av_set_t av_set;
2903 if (sel_bb_head_p (first_insn))
2904 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2905 else
2906 av_set = NULL;
2908 if (sched_verbose >= 6)
2910 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2911 dump_av_set (av_set);
2912 sel_print ("\n");
2915 return need_copy_p ? av_set_copy (av_set) : av_set;
2918 ilist_add (&p, first_insn);
2920 /* As the result after this loop have completed, in LAST_INSN we'll
2921 have the insn which has valid av_set to start backward computation
2922 from: it either will be NULL because on it the window size was exceeded
2923 or other valid av_set as returned by compute_av_set for the last insn
2924 of the basic block. */
2925 for (last_insn = first_insn; last_insn != after_bb_end;
2926 last_insn = NEXT_INSN (last_insn))
2928 /* We may encounter valid av_set not only on bb_head, but also on
2929 those insns on which previously MAX_WS was exceeded. */
2930 if (AV_SET_VALID_P (last_insn))
2932 if (sched_verbose >= 6)
2933 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2934 break;
2937 /* The special case: the last insn of the BB may be an
2938 ineligible_successor due to its SEQ_NO that was set on
2939 it as a bookkeeping. */
2940 if (last_insn != first_insn
2941 && is_ineligible_successor (last_insn, p))
2943 if (sched_verbose >= 6)
2944 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2945 break;
2948 if (DEBUG_INSN_P (last_insn))
2949 continue;
2951 if (end_ws > max_ws)
2953 /* We can reach max lookahead size at bb_header, so clean av_set
2954 first. */
2955 INSN_WS_LEVEL (last_insn) = global_level;
2957 if (sched_verbose >= 6)
2958 sel_print ("Insn %d is beyond the software lookahead window size\n",
2959 INSN_UID (last_insn));
2960 break;
2963 end_ws++;
2966 /* Get the valid av_set into AV above the LAST_INSN to start backward
2967 computation from. It either will be empty av_set or av_set computed from
2968 the successors on the last insn of the current bb. */
2969 if (last_insn != after_bb_end)
2971 av = NULL;
2973 /* This is needed only to obtain av_sets that are identical to
2974 those computed by the old compute_av_set version. */
2975 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2976 av_set_add (&av, INSN_EXPR (last_insn));
2978 else
2979 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2980 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2982 /* Compute av_set in AV starting from below the LAST_INSN up to
2983 location above the FIRST_INSN. */
2984 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2985 cur_insn = PREV_INSN (cur_insn))
2986 if (!INSN_NOP_P (cur_insn))
2988 expr_t expr;
2990 moveup_set_expr (&av, cur_insn, false);
2992 /* If the expression for CUR_INSN is already in the set,
2993 replace it by the new one. */
2994 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2995 if (expr != NULL)
2997 clear_expr (expr);
2998 copy_expr (expr, INSN_EXPR (cur_insn));
3000 else
3001 av_set_add (&av, INSN_EXPR (cur_insn));
3004 /* Clear stale bb_av_set. */
3005 if (sel_bb_head_p (first_insn))
3007 av_set_clear (&BB_AV_SET (cur_bb));
3008 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
3009 BB_AV_LEVEL (cur_bb) = global_level;
3012 if (sched_verbose >= 6)
3014 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
3015 dump_av_set (av);
3016 sel_print ("\n");
3019 ilist_remove (&p);
3020 return av;
3023 /* Compute av set before INSN.
3024 INSN - the current operation (actual rtx INSN)
3025 P - the current path, which is list of insns visited so far
3026 WS - software lookahead window size.
3027 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3028 if we want to save computed av_set in s_i_d, we should make a copy of it.
3030 In the resulting set we will have only expressions that don't have delay
3031 stalls and nonsubstitutable dependences. */
3032 static av_set_t
3033 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3035 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3038 /* Propagate a liveness set LV through INSN. */
3039 static void
3040 propagate_lv_set (regset lv, insn_t insn)
3042 gcc_assert (INSN_P (insn));
3044 if (INSN_NOP_P (insn))
3045 return;
3047 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3050 /* Return livness set at the end of BB. */
3051 static regset
3052 compute_live_after_bb (basic_block bb)
3054 edge e;
3055 edge_iterator ei;
3056 regset lv = get_clear_regset_from_pool ();
3058 gcc_assert (!ignore_first);
3060 FOR_EACH_EDGE (e, ei, bb->succs)
3061 if (sel_bb_empty_p (e->dest))
3063 if (! BB_LV_SET_VALID_P (e->dest))
3065 gcc_unreachable ();
3066 gcc_assert (BB_LV_SET (e->dest) == NULL);
3067 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3068 BB_LV_SET_VALID_P (e->dest) = true;
3070 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3072 else
3073 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3075 return lv;
3078 /* Compute the set of all live registers at the point before INSN and save
3079 it at INSN if INSN is bb header. */
3080 regset
3081 compute_live (insn_t insn)
3083 basic_block bb = BLOCK_FOR_INSN (insn);
3084 insn_t final, temp;
3085 regset lv;
3087 /* Return the valid set if we're already on it. */
3088 if (!ignore_first)
3090 regset src = NULL;
3092 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3093 src = BB_LV_SET (bb);
3094 else
3096 gcc_assert (in_current_region_p (bb));
3097 if (INSN_LIVE_VALID_P (insn))
3098 src = INSN_LIVE (insn);
3101 if (src)
3103 lv = get_regset_from_pool ();
3104 COPY_REG_SET (lv, src);
3106 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3108 COPY_REG_SET (BB_LV_SET (bb), lv);
3109 BB_LV_SET_VALID_P (bb) = true;
3112 return_regset_to_pool (lv);
3113 return lv;
3117 /* We've skipped the wrong lv_set. Don't skip the right one. */
3118 ignore_first = false;
3119 gcc_assert (in_current_region_p (bb));
3121 /* Find a valid LV set in this block or below, if needed.
3122 Start searching from the next insn: either ignore_first is true, or
3123 INSN doesn't have a correct live set. */
3124 temp = NEXT_INSN (insn);
3125 final = NEXT_INSN (BB_END (bb));
3126 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3127 temp = NEXT_INSN (temp);
3128 if (temp == final)
3130 lv = compute_live_after_bb (bb);
3131 temp = PREV_INSN (temp);
3133 else
3135 lv = get_regset_from_pool ();
3136 COPY_REG_SET (lv, INSN_LIVE (temp));
3139 /* Put correct lv sets on the insns which have bad sets. */
3140 final = PREV_INSN (insn);
3141 while (temp != final)
3143 propagate_lv_set (lv, temp);
3144 COPY_REG_SET (INSN_LIVE (temp), lv);
3145 INSN_LIVE_VALID_P (temp) = true;
3146 temp = PREV_INSN (temp);
3149 /* Also put it in a BB. */
3150 if (sel_bb_head_p (insn))
3152 basic_block bb = BLOCK_FOR_INSN (insn);
3154 COPY_REG_SET (BB_LV_SET (bb), lv);
3155 BB_LV_SET_VALID_P (bb) = true;
3158 /* We return LV to the pool, but will not clear it there. Thus we can
3159 legimatelly use LV till the next use of regset_pool_get (). */
3160 return_regset_to_pool (lv);
3161 return lv;
3164 /* Update liveness sets for INSN. */
3165 static inline void
3166 update_liveness_on_insn (rtx_insn *insn)
3168 ignore_first = true;
3169 compute_live (insn);
3172 /* Compute liveness below INSN and write it into REGS. */
3173 static inline void
3174 compute_live_below_insn (rtx_insn *insn, regset regs)
3176 rtx_insn *succ;
3177 succ_iterator si;
3179 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3180 IOR_REG_SET (regs, compute_live (succ));
3183 /* Update the data gathered in av and lv sets starting from INSN. */
3184 static void
3185 update_data_sets (rtx_insn *insn)
3187 update_liveness_on_insn (insn);
3188 if (sel_bb_head_p (insn))
3190 gcc_assert (AV_LEVEL (insn) != 0);
3191 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3192 compute_av_set (insn, NULL, 0, 0);
3197 /* Helper for move_op () and find_used_regs ().
3198 Return speculation type for which a check should be created on the place
3199 of INSN. EXPR is one of the original ops we are searching for. */
3200 static ds_t
3201 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3203 ds_t to_check_ds;
3204 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3206 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3208 if (targetm.sched.get_insn_checked_ds)
3209 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3211 if (spec_info != NULL
3212 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3213 already_checked_ds |= BEGIN_CONTROL;
3215 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3217 to_check_ds &= ~already_checked_ds;
3219 return to_check_ds;
3222 /* Find the set of registers that are unavailable for storing expres
3223 while moving ORIG_OPS up on the path starting from INSN due to
3224 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3226 All the original operations found during the traversal are saved in the
3227 ORIGINAL_INSNS list.
3229 REG_RENAME_P denotes the set of hardware registers that
3230 can not be used with renaming due to the register class restrictions,
3231 mode restrictions and other (the register we'll choose should be
3232 compatible class with the original uses, shouldn't be in call_used_regs,
3233 should be HARD_REGNO_RENAME_OK etc).
3235 Returns TRUE if we've found all original insns, FALSE otherwise.
3237 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3238 to traverse the code motion paths. This helper function finds registers
3239 that are not available for storing expres while moving ORIG_OPS up on the
3240 path starting from INSN. A register considered as used on the moving path,
3241 if one of the following conditions is not satisfied:
3243 (1) a register not set or read on any path from xi to an instance of
3244 the original operation,
3245 (2) not among the live registers of the point immediately following the
3246 first original operation on a given downward path, except for the
3247 original target register of the operation,
3248 (3) not live on the other path of any conditional branch that is passed
3249 by the operation, in case original operations are not present on
3250 both paths of the conditional branch.
3252 All the original operations found during the traversal are saved in the
3253 ORIGINAL_INSNS list.
3255 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3256 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3257 to unavailable hard regs at the point original operation is found. */
3259 static bool
3260 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3261 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3263 def_list_iterator i;
3264 def_t def;
3265 int res;
3266 bool needs_spec_check_p = false;
3267 expr_t expr;
3268 av_set_iterator expr_iter;
3269 struct fur_static_params sparams;
3270 struct cmpd_local_params lparams;
3272 /* We haven't visited any blocks yet. */
3273 bitmap_clear (code_motion_visited_blocks);
3275 /* Init parameters for code_motion_path_driver. */
3276 sparams.crosses_call = false;
3277 sparams.original_insns = original_insns;
3278 sparams.used_regs = used_regs;
3280 /* Set the appropriate hooks and data. */
3281 code_motion_path_driver_info = &fur_hooks;
3283 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3285 reg_rename_p->crosses_call |= sparams.crosses_call;
3287 gcc_assert (res == 1);
3288 gcc_assert (original_insns && *original_insns);
3290 /* ??? We calculate whether an expression needs a check when computing
3291 av sets. This information is not as precise as it could be due to
3292 merging this bit in merge_expr. We can do better in find_used_regs,
3293 but we want to avoid multiple traversals of the same code motion
3294 paths. */
3295 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3296 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3298 /* Mark hardware regs in REG_RENAME_P that are not suitable
3299 for renaming expr in INSN due to hardware restrictions (register class,
3300 modes compatibility etc). */
3301 FOR_EACH_DEF (def, i, *original_insns)
3303 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3305 if (VINSN_SEPARABLE_P (vinsn))
3306 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3308 /* Do not allow clobbering of ld.[sa] address in case some of the
3309 original operations need a check. */
3310 if (needs_spec_check_p)
3311 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3314 return true;
3318 /* Functions to choose the best insn from available ones. */
3320 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3321 static int
3322 sel_target_adjust_priority (expr_t expr)
3324 int priority = EXPR_PRIORITY (expr);
3325 int new_priority;
3327 if (targetm.sched.adjust_priority)
3328 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3329 else
3330 new_priority = priority;
3332 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3333 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3335 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3337 if (sched_verbose >= 4)
3338 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3339 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3340 EXPR_PRIORITY_ADJ (expr), new_priority);
3342 return new_priority;
3345 /* Rank two available exprs for schedule. Never return 0 here. */
3346 static int
3347 sel_rank_for_schedule (const void *x, const void *y)
3349 expr_t tmp = *(const expr_t *) y;
3350 expr_t tmp2 = *(const expr_t *) x;
3351 insn_t tmp_insn, tmp2_insn;
3352 vinsn_t tmp_vinsn, tmp2_vinsn;
3353 int val;
3355 tmp_vinsn = EXPR_VINSN (tmp);
3356 tmp2_vinsn = EXPR_VINSN (tmp2);
3357 tmp_insn = EXPR_INSN_RTX (tmp);
3358 tmp2_insn = EXPR_INSN_RTX (tmp2);
3360 /* Schedule debug insns as early as possible. */
3361 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3362 return -1;
3363 else if (DEBUG_INSN_P (tmp2_insn))
3364 return 1;
3366 /* Prefer SCHED_GROUP_P insns to any others. */
3367 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3369 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3370 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3372 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3373 cannot be cloned. */
3374 if (VINSN_UNIQUE_P (tmp2_vinsn))
3375 return 1;
3376 return -1;
3379 /* Discourage scheduling of speculative checks. */
3380 val = (sel_insn_is_speculation_check (tmp_insn)
3381 - sel_insn_is_speculation_check (tmp2_insn));
3382 if (val)
3383 return val;
3385 /* Prefer not scheduled insn over scheduled one. */
3386 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3388 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3389 if (val)
3390 return val;
3393 /* Prefer jump over non-jump instruction. */
3394 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3395 return -1;
3396 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3397 return 1;
3399 /* Prefer an expr with non-zero usefulness. */
3400 int u1 = EXPR_USEFULNESS (tmp), u2 = EXPR_USEFULNESS (tmp2);
3402 if (u1 == 0)
3404 if (u2 == 0)
3405 u1 = u2 = 1;
3406 else
3407 return 1;
3409 else if (u2 == 0)
3410 return -1;
3412 /* Prefer an expr with greater priority. */
3413 val = (u2 * (EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2))
3414 - u1 * (EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp)));
3415 if (val)
3416 return val;
3418 if (spec_info != NULL && spec_info->mask != 0)
3419 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3421 ds_t ds1, ds2;
3422 dw_t dw1, dw2;
3423 int dw;
3425 ds1 = EXPR_SPEC_DONE_DS (tmp);
3426 if (ds1)
3427 dw1 = ds_weak (ds1);
3428 else
3429 dw1 = NO_DEP_WEAK;
3431 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3432 if (ds2)
3433 dw2 = ds_weak (ds2);
3434 else
3435 dw2 = NO_DEP_WEAK;
3437 dw = dw2 - dw1;
3438 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3439 return dw;
3442 /* Prefer an old insn to a bookkeeping insn. */
3443 if (INSN_UID (tmp_insn) < first_emitted_uid
3444 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3445 return -1;
3446 if (INSN_UID (tmp_insn) >= first_emitted_uid
3447 && INSN_UID (tmp2_insn) < first_emitted_uid)
3448 return 1;
3450 /* Prefer an insn with smaller UID, as a last resort.
3451 We can't safely use INSN_LUID as it is defined only for those insns
3452 that are in the stream. */
3453 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3456 /* Filter out expressions from av set pointed to by AV_PTR
3457 that are pipelined too many times. */
3458 static void
3459 process_pipelined_exprs (av_set_t *av_ptr)
3461 expr_t expr;
3462 av_set_iterator si;
3464 /* Don't pipeline already pipelined code as that would increase
3465 number of unnecessary register moves. */
3466 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3468 if (EXPR_SCHED_TIMES (expr)
3469 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3470 av_set_iter_remove (&si);
3474 /* Filter speculative insns from AV_PTR if we don't want them. */
3475 static void
3476 process_spec_exprs (av_set_t *av_ptr)
3478 expr_t expr;
3479 av_set_iterator si;
3481 if (spec_info == NULL)
3482 return;
3484 /* Scan *AV_PTR to find out if we want to consider speculative
3485 instructions for scheduling. */
3486 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3488 ds_t ds;
3490 ds = EXPR_SPEC_DONE_DS (expr);
3492 /* The probability of a success is too low - don't speculate. */
3493 if ((ds & SPECULATIVE)
3494 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3495 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3496 || (pipelining_p && false
3497 && (ds & DATA_SPEC)
3498 && (ds & CONTROL_SPEC))))
3500 av_set_iter_remove (&si);
3501 continue;
3506 /* Search for any use-like insns in AV_PTR and decide on scheduling
3507 them. Return one when found, and NULL otherwise.
3508 Note that we check here whether a USE could be scheduled to avoid
3509 an infinite loop later. */
3510 static expr_t
3511 process_use_exprs (av_set_t *av_ptr)
3513 expr_t expr;
3514 av_set_iterator si;
3515 bool uses_present_p = false;
3516 bool try_uses_p = true;
3518 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3520 /* This will also initialize INSN_CODE for later use. */
3521 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3523 /* If we have a USE in *AV_PTR that was not scheduled yet,
3524 do so because it will do good only. */
3525 if (EXPR_SCHED_TIMES (expr) <= 0)
3527 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3528 return expr;
3530 av_set_iter_remove (&si);
3532 else
3534 gcc_assert (pipelining_p);
3536 uses_present_p = true;
3539 else
3540 try_uses_p = false;
3543 if (uses_present_p)
3545 /* If we don't want to schedule any USEs right now and we have some
3546 in *AV_PTR, remove them, else just return the first one found. */
3547 if (!try_uses_p)
3549 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3550 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3551 av_set_iter_remove (&si);
3553 else
3555 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3557 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3559 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3560 return expr;
3562 av_set_iter_remove (&si);
3567 return NULL;
3570 /* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
3571 EXPR's history of changes. */
3572 static bool
3573 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3575 vinsn_t vinsn, expr_vinsn;
3576 int n;
3577 unsigned i;
3579 /* Start with checking expr itself and then proceed with all the old forms
3580 of expr taken from its history vector. */
3581 for (i = 0, expr_vinsn = EXPR_VINSN (expr);
3582 expr_vinsn;
3583 expr_vinsn = (i < EXPR_HISTORY_OF_CHANGES (expr).length ()
3584 ? EXPR_HISTORY_OF_CHANGES (expr)[i++].old_expr_vinsn
3585 : NULL))
3586 FOR_EACH_VEC_ELT (vinsn_vec, n, vinsn)
3587 if (VINSN_SEPARABLE_P (vinsn))
3589 if (vinsn_equal_p (vinsn, expr_vinsn))
3590 return true;
3592 else
3594 /* For non-separable instructions, the blocking insn can have
3595 another pattern due to substitution, and we can't choose
3596 different register as in the above case. Check all registers
3597 being written instead. */
3598 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3599 VINSN_REG_SETS (expr_vinsn)))
3600 return true;
3603 return false;
3606 /* Return true if either of expressions from ORIG_OPS can be blocked
3607 by previously created bookkeeping code. STATIC_PARAMS points to static
3608 parameters of move_op. */
3609 static bool
3610 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3612 expr_t expr;
3613 av_set_iterator iter;
3614 moveop_static_params_p sparams;
3616 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3617 created while scheduling on another fence. */
3618 FOR_EACH_EXPR (expr, iter, orig_ops)
3619 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3620 return true;
3622 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3623 sparams = (moveop_static_params_p) static_params;
3625 /* Expressions can be also blocked by bookkeeping created during current
3626 move_op. */
3627 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3628 FOR_EACH_EXPR (expr, iter, orig_ops)
3629 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3630 return true;
3632 /* Expressions in ORIG_OPS may have wrong destination register due to
3633 renaming. Check with the right register instead. */
3634 if (sparams->dest && REG_P (sparams->dest))
3636 rtx reg = sparams->dest;
3637 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3639 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3640 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3641 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
3642 return true;
3645 return false;
3648 /* Clear VINSN_VEC and detach vinsns. */
3649 static void
3650 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3652 unsigned len = vinsn_vec->length ();
3653 if (len > 0)
3655 vinsn_t vinsn;
3656 int n;
3658 FOR_EACH_VEC_ELT (*vinsn_vec, n, vinsn)
3659 vinsn_detach (vinsn);
3660 vinsn_vec->block_remove (0, len);
3664 /* Add the vinsn of EXPR to the VINSN_VEC. */
3665 static void
3666 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3668 vinsn_attach (EXPR_VINSN (expr));
3669 vinsn_vec->safe_push (EXPR_VINSN (expr));
3672 /* Free the vector representing blocked expressions. */
3673 static void
3674 vinsn_vec_free (vinsn_vec_t &vinsn_vec)
3676 vinsn_vec.release ();
3679 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3681 void sel_add_to_insn_priority (rtx insn, int amount)
3683 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3685 if (sched_verbose >= 2)
3686 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3687 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3688 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3691 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3692 true if there is something to schedule. BNDS and FENCE are current
3693 boundaries and fence, respectively. If we need to stall for some cycles
3694 before an expr from AV would become available, write this number to
3695 *PNEED_STALL. */
3696 static bool
3697 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3698 int *pneed_stall)
3700 av_set_iterator si;
3701 expr_t expr;
3702 int sched_next_worked = 0, stalled, n;
3703 static int av_max_prio, est_ticks_till_branch;
3704 int min_need_stall = -1;
3705 deps_t dc = BND_DC (BLIST_BND (bnds));
3707 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3708 already scheduled. */
3709 if (av == NULL)
3710 return false;
3712 /* Empty vector from the previous stuff. */
3713 if (vec_av_set.length () > 0)
3714 vec_av_set.block_remove (0, vec_av_set.length ());
3716 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3717 for each insn. */
3718 gcc_assert (vec_av_set.is_empty ());
3719 FOR_EACH_EXPR (expr, si, av)
3721 vec_av_set.safe_push (expr);
3723 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3725 /* Adjust priority using target backend hook. */
3726 sel_target_adjust_priority (expr);
3729 /* Sort the vector. */
3730 vec_av_set.qsort (sel_rank_for_schedule);
3732 /* We record maximal priority of insns in av set for current instruction
3733 group. */
3734 if (FENCE_STARTS_CYCLE_P (fence))
3735 av_max_prio = est_ticks_till_branch = INT_MIN;
3737 /* Filter out inappropriate expressions. Loop's direction is reversed to
3738 visit "best" instructions first. We assume that vec::unordered_remove
3739 moves last element in place of one being deleted. */
3740 for (n = vec_av_set.length () - 1, stalled = 0; n >= 0; n--)
3742 expr_t expr = vec_av_set[n];
3743 insn_t insn = EXPR_INSN_RTX (expr);
3744 signed char target_available;
3745 bool is_orig_reg_p = true;
3746 int need_cycles, new_prio;
3747 bool fence_insn_p = INSN_UID (insn) == INSN_UID (FENCE_INSN (fence));
3749 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3750 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3752 vec_av_set.unordered_remove (n);
3753 continue;
3756 /* Set number of sched_next insns (just in case there
3757 could be several). */
3758 if (FENCE_SCHED_NEXT (fence))
3759 sched_next_worked++;
3761 /* Check all liveness requirements and try renaming.
3762 FIXME: try to minimize calls to this. */
3763 target_available = EXPR_TARGET_AVAILABLE (expr);
3765 /* If insn was already scheduled on the current fence,
3766 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3767 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr)
3768 && !fence_insn_p)
3769 target_available = -1;
3771 /* If the availability of the EXPR is invalidated by the insertion of
3772 bookkeeping earlier, make sure that we won't choose this expr for
3773 scheduling if it's not separable, and if it is separable, then
3774 we have to recompute the set of available registers for it. */
3775 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3777 vec_av_set.unordered_remove (n);
3778 if (sched_verbose >= 4)
3779 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3780 INSN_UID (insn));
3781 continue;
3784 if (target_available == true)
3786 /* Do nothing -- we can use an existing register. */
3787 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3789 else if (/* Non-separable instruction will never
3790 get another register. */
3791 (target_available == false
3792 && !EXPR_SEPARABLE_P (expr))
3793 /* Don't try to find a register for low-priority expression. */
3794 || (int) vec_av_set.length () - 1 - n >= max_insns_to_rename
3795 /* ??? FIXME: Don't try to rename data speculation. */
3796 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3797 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3799 vec_av_set.unordered_remove (n);
3800 if (sched_verbose >= 4)
3801 sel_print ("Expr %d has no suitable target register\n",
3802 INSN_UID (insn));
3804 /* A fence insn should not get here. */
3805 gcc_assert (!fence_insn_p);
3806 continue;
3809 /* At this point a fence insn should always be available. */
3810 gcc_assert (!fence_insn_p
3811 || INSN_UID (FENCE_INSN (fence)) == INSN_UID (EXPR_INSN_RTX (expr)));
3813 /* Filter expressions that need to be renamed or speculated when
3814 pipelining, because compensating register copies or speculation
3815 checks are likely to be placed near the beginning of the loop,
3816 causing a stall. */
3817 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3818 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3820 /* Estimation of number of cycles until loop branch for
3821 renaming/speculation to be successful. */
3822 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3824 if ((int) current_loop_nest->ninsns < 9)
3826 vec_av_set.unordered_remove (n);
3827 if (sched_verbose >= 4)
3828 sel_print ("Pipelining expr %d will likely cause stall\n",
3829 INSN_UID (insn));
3830 continue;
3833 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3834 < need_n_ticks_till_branch * issue_rate / 2
3835 && est_ticks_till_branch < need_n_ticks_till_branch)
3837 vec_av_set.unordered_remove (n);
3838 if (sched_verbose >= 4)
3839 sel_print ("Pipelining expr %d will likely cause stall\n",
3840 INSN_UID (insn));
3841 continue;
3845 /* We want to schedule speculation checks as late as possible. Discard
3846 them from av set if there are instructions with higher priority. */
3847 if (sel_insn_is_speculation_check (insn)
3848 && EXPR_PRIORITY (expr) < av_max_prio)
3850 stalled++;
3851 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3852 vec_av_set.unordered_remove (n);
3853 if (sched_verbose >= 4)
3854 sel_print ("Delaying speculation check %d until its first use\n",
3855 INSN_UID (insn));
3856 continue;
3859 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3860 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3861 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3863 /* Don't allow any insns whose data is not yet ready.
3864 Check first whether we've already tried them and failed. */
3865 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3867 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3868 - FENCE_CYCLE (fence));
3869 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3870 est_ticks_till_branch = MAX (est_ticks_till_branch,
3871 EXPR_PRIORITY (expr) + need_cycles);
3873 if (need_cycles > 0)
3875 stalled++;
3876 min_need_stall = (min_need_stall < 0
3877 ? need_cycles
3878 : MIN (min_need_stall, need_cycles));
3879 vec_av_set.unordered_remove (n);
3881 if (sched_verbose >= 4)
3882 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3883 INSN_UID (insn),
3884 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3885 continue;
3889 /* Now resort to dependence analysis to find whether EXPR might be
3890 stalled due to dependencies from FENCE's context. */
3891 need_cycles = tick_check_p (expr, dc, fence);
3892 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3894 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3895 est_ticks_till_branch = MAX (est_ticks_till_branch,
3896 new_prio);
3898 if (need_cycles > 0)
3900 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3902 int new_size = INSN_UID (insn) * 3 / 2;
3904 FENCE_READY_TICKS (fence)
3905 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3906 new_size, FENCE_READY_TICKS_SIZE (fence),
3907 sizeof (int));
3909 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3910 = FENCE_CYCLE (fence) + need_cycles;
3912 stalled++;
3913 min_need_stall = (min_need_stall < 0
3914 ? need_cycles
3915 : MIN (min_need_stall, need_cycles));
3917 vec_av_set.unordered_remove (n);
3919 if (sched_verbose >= 4)
3920 sel_print ("Expr %d is not ready yet until cycle %d\n",
3921 INSN_UID (insn),
3922 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3923 continue;
3926 if (sched_verbose >= 4)
3927 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3928 min_need_stall = 0;
3931 /* Clear SCHED_NEXT. */
3932 if (FENCE_SCHED_NEXT (fence))
3934 gcc_assert (sched_next_worked == 1);
3935 FENCE_SCHED_NEXT (fence) = NULL;
3938 /* No need to stall if this variable was not initialized. */
3939 if (min_need_stall < 0)
3940 min_need_stall = 0;
3942 if (vec_av_set.is_empty ())
3944 /* We need to set *pneed_stall here, because later we skip this code
3945 when ready list is empty. */
3946 *pneed_stall = min_need_stall;
3947 return false;
3949 else
3950 gcc_assert (min_need_stall == 0);
3952 /* Sort the vector. */
3953 vec_av_set.qsort (sel_rank_for_schedule);
3955 if (sched_verbose >= 4)
3957 sel_print ("Total ready exprs: %d, stalled: %d\n",
3958 vec_av_set.length (), stalled);
3959 sel_print ("Sorted av set (%d): ", vec_av_set.length ());
3960 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3961 dump_expr (expr);
3962 sel_print ("\n");
3965 *pneed_stall = 0;
3966 return true;
3969 /* Convert a vectored and sorted av set to the ready list that
3970 the rest of the backend wants to see. */
3971 static void
3972 convert_vec_av_set_to_ready (void)
3974 int n;
3975 expr_t expr;
3977 /* Allocate and fill the ready list from the sorted vector. */
3978 ready.n_ready = vec_av_set.length ();
3979 ready.first = ready.n_ready - 1;
3981 gcc_assert (ready.n_ready > 0);
3983 if (ready.n_ready > max_issue_size)
3985 max_issue_size = ready.n_ready;
3986 sched_extend_ready_list (ready.n_ready);
3989 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3991 vinsn_t vi = EXPR_VINSN (expr);
3992 insn_t insn = VINSN_INSN_RTX (vi);
3994 ready_try[n] = 0;
3995 ready.vec[n] = insn;
3999 /* Initialize ready list from *AV_PTR for the max_issue () call.
4000 If any unrecognizable insn found in *AV_PTR, return it (and skip
4001 max_issue). BND and FENCE are current boundary and fence,
4002 respectively. If we need to stall for some cycles before an expr
4003 from *AV_PTR would become available, write this number to *PNEED_STALL. */
4004 static expr_t
4005 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
4006 int *pneed_stall)
4008 expr_t expr;
4010 /* We do not support multiple boundaries per fence. */
4011 gcc_assert (BLIST_NEXT (bnds) == NULL);
4013 /* Process expressions required special handling, i.e. pipelined,
4014 speculative and recog() < 0 expressions first. */
4015 process_pipelined_exprs (av_ptr);
4016 process_spec_exprs (av_ptr);
4018 /* A USE could be scheduled immediately. */
4019 expr = process_use_exprs (av_ptr);
4020 if (expr)
4022 *pneed_stall = 0;
4023 return expr;
4026 /* Turn the av set to a vector for sorting. */
4027 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4029 ready.n_ready = 0;
4030 return NULL;
4033 /* Build the final ready list. */
4034 convert_vec_av_set_to_ready ();
4035 return NULL;
4038 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4039 static bool
4040 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4042 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4043 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4044 : FENCE_CYCLE (fence) - 1;
4045 bool res = false;
4046 int sort_p = 0;
4048 if (!targetm.sched.dfa_new_cycle)
4049 return false;
4051 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4053 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4054 insn, last_scheduled_cycle,
4055 FENCE_CYCLE (fence), &sort_p))
4057 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4058 advance_one_cycle (fence);
4059 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4060 res = true;
4063 return res;
4066 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4067 we can issue. FENCE is the current fence. */
4068 static int
4069 invoke_reorder_hooks (fence_t fence)
4071 int issue_more;
4072 bool ran_hook = false;
4074 /* Call the reorder hook at the beginning of the cycle, and call
4075 the reorder2 hook in the middle of the cycle. */
4076 if (FENCE_ISSUED_INSNS (fence) == 0)
4078 if (targetm.sched.reorder
4079 && !SCHED_GROUP_P (ready_element (&ready, 0))
4080 && ready.n_ready > 1)
4082 /* Don't give reorder the most prioritized insn as it can break
4083 pipelining. */
4084 if (pipelining_p)
4085 --ready.n_ready;
4087 issue_more
4088 = targetm.sched.reorder (sched_dump, sched_verbose,
4089 ready_lastpos (&ready),
4090 &ready.n_ready, FENCE_CYCLE (fence));
4092 if (pipelining_p)
4093 ++ready.n_ready;
4095 ran_hook = true;
4097 else
4098 /* Initialize can_issue_more for variable_issue. */
4099 issue_more = issue_rate;
4101 else if (targetm.sched.reorder2
4102 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4104 if (ready.n_ready == 1)
4105 issue_more =
4106 targetm.sched.reorder2 (sched_dump, sched_verbose,
4107 ready_lastpos (&ready),
4108 &ready.n_ready, FENCE_CYCLE (fence));
4109 else
4111 if (pipelining_p)
4112 --ready.n_ready;
4114 issue_more =
4115 targetm.sched.reorder2 (sched_dump, sched_verbose,
4116 ready.n_ready
4117 ? ready_lastpos (&ready) : NULL,
4118 &ready.n_ready, FENCE_CYCLE (fence));
4120 if (pipelining_p)
4121 ++ready.n_ready;
4124 ran_hook = true;
4126 else
4127 issue_more = FENCE_ISSUE_MORE (fence);
4129 /* Ensure that ready list and vec_av_set are in line with each other,
4130 i.e. vec_av_set[i] == ready_element (&ready, i). */
4131 if (issue_more && ran_hook)
4133 int i, j, n;
4134 rtx_insn **arr = ready.vec;
4135 expr_t *vec = vec_av_set.address ();
4137 for (i = 0, n = ready.n_ready; i < n; i++)
4138 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4140 for (j = i; j < n; j++)
4141 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4142 break;
4143 gcc_assert (j < n);
4145 std::swap (vec[i], vec[j]);
4149 return issue_more;
4152 /* Return an EXPR corresponding to INDEX element of ready list, if
4153 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4154 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4155 ready.vec otherwise. */
4156 static inline expr_t
4157 find_expr_for_ready (int index, bool follow_ready_element)
4159 expr_t expr;
4160 int real_index;
4162 real_index = follow_ready_element ? ready.first - index : index;
4164 expr = vec_av_set[real_index];
4165 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4167 return expr;
4170 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4171 of such insns found. */
4172 static int
4173 invoke_dfa_lookahead_guard (void)
4175 int i, n;
4176 bool have_hook
4177 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4179 if (sched_verbose >= 2)
4180 sel_print ("ready after reorder: ");
4182 for (i = 0, n = 0; i < ready.n_ready; i++)
4184 expr_t expr;
4185 insn_t insn;
4186 int r;
4188 /* In this loop insn is Ith element of the ready list given by
4189 ready_element, not Ith element of ready.vec. */
4190 insn = ready_element (&ready, i);
4192 if (! have_hook || i == 0)
4193 r = 0;
4194 else
4195 r = targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn, i);
4197 gcc_assert (INSN_CODE (insn) >= 0);
4199 /* Only insns with ready_try = 0 can get here
4200 from fill_ready_list. */
4201 gcc_assert (ready_try [i] == 0);
4202 ready_try[i] = r;
4203 if (!r)
4204 n++;
4206 expr = find_expr_for_ready (i, true);
4208 if (sched_verbose >= 2)
4210 dump_vinsn (EXPR_VINSN (expr));
4211 sel_print (":%d; ", ready_try[i]);
4215 if (sched_verbose >= 2)
4216 sel_print ("\n");
4217 return n;
4220 /* Calculate the number of privileged insns and return it. */
4221 static int
4222 calculate_privileged_insns (void)
4224 expr_t cur_expr, min_spec_expr = NULL;
4225 int privileged_n = 0, i;
4227 for (i = 0; i < ready.n_ready; i++)
4229 if (ready_try[i])
4230 continue;
4232 if (! min_spec_expr)
4233 min_spec_expr = find_expr_for_ready (i, true);
4235 cur_expr = find_expr_for_ready (i, true);
4237 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4238 break;
4240 ++privileged_n;
4243 if (i == ready.n_ready)
4244 privileged_n = 0;
4246 if (sched_verbose >= 2)
4247 sel_print ("privileged_n: %d insns with SPEC %d\n",
4248 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4249 return privileged_n;
4252 /* Call the rest of the hooks after the choice was made. Return
4253 the number of insns that still can be issued given that the current
4254 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4255 and the insn chosen for scheduling, respectively. */
4256 static int
4257 invoke_aftermath_hooks (fence_t fence, rtx_insn *best_insn, int issue_more)
4259 gcc_assert (INSN_P (best_insn));
4261 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4262 sel_dfa_new_cycle (best_insn, fence);
4264 if (targetm.sched.variable_issue)
4266 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4267 issue_more =
4268 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4269 issue_more);
4270 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4272 else if (!DEBUG_INSN_P (best_insn)
4273 && GET_CODE (PATTERN (best_insn)) != USE
4274 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4275 issue_more--;
4277 return issue_more;
4280 /* Estimate the cost of issuing INSN on DFA state STATE. */
4281 static int
4282 estimate_insn_cost (rtx_insn *insn, state_t state)
4284 static state_t temp = NULL;
4285 int cost;
4287 if (!temp)
4288 temp = xmalloc (dfa_state_size);
4290 memcpy (temp, state, dfa_state_size);
4291 cost = state_transition (temp, insn);
4293 if (cost < 0)
4294 return 0;
4295 else if (cost == 0)
4296 return 1;
4297 return cost;
4300 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4301 This function properly handles ASMs, USEs etc. */
4302 static int
4303 get_expr_cost (expr_t expr, fence_t fence)
4305 rtx_insn *insn = EXPR_INSN_RTX (expr);
4307 if (recog_memoized (insn) < 0)
4309 if (!FENCE_STARTS_CYCLE_P (fence)
4310 && INSN_ASM_P (insn))
4311 /* This is asm insn which is tryed to be issued on the
4312 cycle not first. Issue it on the next cycle. */
4313 return 1;
4314 else
4315 /* A USE insn, or something else we don't need to
4316 understand. We can't pass these directly to
4317 state_transition because it will trigger a
4318 fatal error for unrecognizable insns. */
4319 return 0;
4321 else
4322 return estimate_insn_cost (insn, FENCE_STATE (fence));
4325 /* Find the best insn for scheduling, either via max_issue or just take
4326 the most prioritized available. */
4327 static int
4328 choose_best_insn (fence_t fence, int privileged_n, int *index)
4330 int can_issue = 0;
4332 if (dfa_lookahead > 0)
4334 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4335 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4336 can_issue = max_issue (&ready, privileged_n,
4337 FENCE_STATE (fence), true, index);
4338 if (sched_verbose >= 2)
4339 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4340 can_issue, FENCE_ISSUED_INSNS (fence));
4342 else
4344 /* We can't use max_issue; just return the first available element. */
4345 int i;
4347 for (i = 0; i < ready.n_ready; i++)
4349 expr_t expr = find_expr_for_ready (i, true);
4351 if (get_expr_cost (expr, fence) < 1)
4353 can_issue = can_issue_more;
4354 *index = i;
4356 if (sched_verbose >= 2)
4357 sel_print ("using %dth insn from the ready list\n", i + 1);
4359 break;
4363 if (i == ready.n_ready)
4365 can_issue = 0;
4366 *index = -1;
4370 return can_issue;
4373 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4374 BNDS and FENCE are current boundaries and scheduling fence respectively.
4375 Return the expr found and NULL if nothing can be issued atm.
4376 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4377 static expr_t
4378 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4379 int *pneed_stall)
4381 expr_t best;
4383 /* Choose the best insn for scheduling via:
4384 1) sorting the ready list based on priority;
4385 2) calling the reorder hook;
4386 3) calling max_issue. */
4387 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4388 if (best == NULL && ready.n_ready > 0)
4390 int privileged_n, index;
4392 can_issue_more = invoke_reorder_hooks (fence);
4393 if (can_issue_more > 0)
4395 /* Try choosing the best insn until we find one that is could be
4396 scheduled due to liveness restrictions on its destination register.
4397 In the future, we'd like to choose once and then just probe insns
4398 in the order of their priority. */
4399 invoke_dfa_lookahead_guard ();
4400 privileged_n = calculate_privileged_insns ();
4401 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4402 if (can_issue_more)
4403 best = find_expr_for_ready (index, true);
4405 /* We had some available insns, so if we can't issue them,
4406 we have a stall. */
4407 if (can_issue_more == 0)
4409 best = NULL;
4410 *pneed_stall = 1;
4414 if (best != NULL)
4416 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4417 can_issue_more);
4418 if (targetm.sched.variable_issue
4419 && can_issue_more == 0)
4420 *pneed_stall = 1;
4423 if (sched_verbose >= 2)
4425 if (best != NULL)
4427 sel_print ("Best expression (vliw form): ");
4428 dump_expr (best);
4429 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4431 else
4432 sel_print ("No best expr found!\n");
4435 return best;
4439 /* Functions that implement the core of the scheduler. */
4442 /* Emit an instruction from EXPR with SEQNO and VINSN after
4443 PLACE_TO_INSERT. */
4444 static insn_t
4445 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4446 insn_t place_to_insert)
4448 /* This assert fails when we have identical instructions
4449 one of which dominates the other. In this case move_op ()
4450 finds the first instruction and doesn't search for second one.
4451 The solution would be to compute av_set after the first found
4452 insn and, if insn present in that set, continue searching.
4453 For now we workaround this issue in move_op. */
4454 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4456 if (EXPR_WAS_RENAMED (expr))
4458 unsigned regno = expr_dest_regno (expr);
4460 if (HARD_REGISTER_NUM_P (regno))
4462 df_set_regs_ever_live (regno, true);
4463 reg_rename_tick[regno] = ++reg_rename_this_tick;
4467 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4468 place_to_insert);
4471 /* Return TRUE if BB can hold bookkeeping code. */
4472 static bool
4473 block_valid_for_bookkeeping_p (basic_block bb)
4475 insn_t bb_end = BB_END (bb);
4477 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4478 return false;
4480 if (INSN_P (bb_end))
4482 if (INSN_SCHED_TIMES (bb_end) > 0)
4483 return false;
4485 else
4486 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4488 return true;
4491 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4492 into E2->dest, except from E1->src (there may be a sequence of empty basic
4493 blocks between E1->src and E2->dest). Return found block, or NULL if new
4494 one must be created. If LAX holds, don't assume there is a simple path
4495 from E1->src to E2->dest. */
4496 static basic_block
4497 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4499 basic_block candidate_block = NULL;
4500 edge e;
4502 /* Loop over edges from E1 to E2, inclusive. */
4503 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun); e =
4504 EDGE_SUCC (e->dest, 0))
4506 if (EDGE_COUNT (e->dest->preds) == 2)
4508 if (candidate_block == NULL)
4509 candidate_block = (EDGE_PRED (e->dest, 0) == e
4510 ? EDGE_PRED (e->dest, 1)->src
4511 : EDGE_PRED (e->dest, 0)->src);
4512 else
4513 /* Found additional edge leading to path from e1 to e2
4514 from aside. */
4515 return NULL;
4517 else if (EDGE_COUNT (e->dest->preds) > 2)
4518 /* Several edges leading to path from e1 to e2 from aside. */
4519 return NULL;
4521 if (e == e2)
4522 return ((!lax || candidate_block)
4523 && block_valid_for_bookkeeping_p (candidate_block)
4524 ? candidate_block
4525 : NULL);
4527 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4528 return NULL;
4531 if (lax)
4532 return NULL;
4534 gcc_unreachable ();
4537 /* Create new basic block for bookkeeping code for path(s) incoming into
4538 E2->dest, except from E1->src. Return created block. */
4539 static basic_block
4540 create_block_for_bookkeeping (edge e1, edge e2)
4542 basic_block new_bb, bb = e2->dest;
4544 /* Check that we don't spoil the loop structure. */
4545 if (current_loop_nest)
4547 basic_block latch = current_loop_nest->latch;
4549 /* We do not split header. */
4550 gcc_assert (e2->dest != current_loop_nest->header);
4552 /* We do not redirect the only edge to the latch block. */
4553 gcc_assert (e1->dest != latch
4554 || !single_pred_p (latch)
4555 || e1 != single_pred_edge (latch));
4558 /* Split BB to insert BOOK_INSN there. */
4559 new_bb = sched_split_block (bb, NULL);
4561 /* Move note_list from the upper bb. */
4562 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4563 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4564 BB_NOTE_LIST (bb) = NULL;
4566 gcc_assert (e2->dest == bb);
4568 /* Skip block for bookkeeping copy when leaving E1->src. */
4569 if (e1->flags & EDGE_FALLTHRU)
4570 sel_redirect_edge_and_branch_force (e1, new_bb);
4571 else
4572 sel_redirect_edge_and_branch (e1, new_bb);
4574 gcc_assert (e1->dest == new_bb);
4575 gcc_assert (sel_bb_empty_p (bb));
4577 /* To keep basic block numbers in sync between debug and non-debug
4578 compilations, we have to rotate blocks here. Consider that we
4579 started from (a,b)->d, (c,d)->e, and d contained only debug
4580 insns. It would have been removed before if the debug insns
4581 weren't there, so we'd have split e rather than d. So what we do
4582 now is to swap the block numbers of new_bb and
4583 single_succ(new_bb) == e, so that the insns that were in e before
4584 get the new block number. */
4586 if (MAY_HAVE_DEBUG_INSNS)
4588 basic_block succ;
4589 insn_t insn = sel_bb_head (new_bb);
4590 insn_t last;
4592 if (DEBUG_INSN_P (insn)
4593 && single_succ_p (new_bb)
4594 && (succ = single_succ (new_bb))
4595 && succ != EXIT_BLOCK_PTR_FOR_FN (cfun)
4596 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4598 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4599 insn = NEXT_INSN (insn);
4601 if (insn == last)
4603 sel_global_bb_info_def gbi;
4604 sel_region_bb_info_def rbi;
4606 if (sched_verbose >= 2)
4607 sel_print ("Swapping block ids %i and %i\n",
4608 new_bb->index, succ->index);
4610 std::swap (new_bb->index, succ->index);
4612 SET_BASIC_BLOCK_FOR_FN (cfun, new_bb->index, new_bb);
4613 SET_BASIC_BLOCK_FOR_FN (cfun, succ->index, succ);
4615 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4616 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4617 sizeof (gbi));
4618 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4620 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4621 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4622 sizeof (rbi));
4623 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4625 std::swap (BLOCK_TO_BB (new_bb->index),
4626 BLOCK_TO_BB (succ->index));
4628 std::swap (CONTAINING_RGN (new_bb->index),
4629 CONTAINING_RGN (succ->index));
4631 for (int i = 0; i < current_nr_blocks; i++)
4632 if (BB_TO_BLOCK (i) == succ->index)
4633 BB_TO_BLOCK (i) = new_bb->index;
4634 else if (BB_TO_BLOCK (i) == new_bb->index)
4635 BB_TO_BLOCK (i) = succ->index;
4637 FOR_BB_INSNS (new_bb, insn)
4638 if (INSN_P (insn))
4639 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4641 FOR_BB_INSNS (succ, insn)
4642 if (INSN_P (insn))
4643 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4645 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4646 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4648 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4649 && LABEL_P (BB_HEAD (succ)));
4651 if (sched_verbose >= 4)
4652 sel_print ("Swapping code labels %i and %i\n",
4653 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4654 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4656 std::swap (CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4657 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4662 return bb;
4665 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4666 into E2->dest, except from E1->src. If the returned insn immediately
4667 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
4668 static insn_t
4669 find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
4671 insn_t place_to_insert;
4672 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4673 create new basic block, but insert bookkeeping there. */
4674 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4676 if (book_block)
4678 place_to_insert = BB_END (book_block);
4680 /* Don't use a block containing only debug insns for
4681 bookkeeping, this causes scheduling differences between debug
4682 and non-debug compilations, for the block would have been
4683 removed already. */
4684 if (DEBUG_INSN_P (place_to_insert))
4686 rtx_insn *insn = sel_bb_head (book_block);
4688 while (insn != place_to_insert &&
4689 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4690 insn = NEXT_INSN (insn);
4692 if (insn == place_to_insert)
4693 book_block = NULL;
4697 if (!book_block)
4699 book_block = create_block_for_bookkeeping (e1, e2);
4700 place_to_insert = BB_END (book_block);
4701 if (sched_verbose >= 9)
4702 sel_print ("New block is %i, split from bookkeeping block %i\n",
4703 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4705 else
4707 if (sched_verbose >= 9)
4708 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4711 *fence_to_rewind = NULL;
4712 /* If basic block ends with a jump, insert bookkeeping code right before it.
4713 Notice if we are crossing a fence when taking PREV_INSN. */
4714 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4716 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4717 place_to_insert = PREV_INSN (place_to_insert);
4720 return place_to_insert;
4723 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4724 for JOIN_POINT. */
4725 static int
4726 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4728 int seqno;
4730 /* Check if we are about to insert bookkeeping copy before a jump, and use
4731 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4732 rtx_insn *next = NEXT_INSN (place_to_insert);
4733 if (INSN_P (next)
4734 && JUMP_P (next)
4735 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4737 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4738 seqno = INSN_SEQNO (next);
4740 else if (INSN_SEQNO (join_point) > 0)
4741 seqno = INSN_SEQNO (join_point);
4742 else
4744 seqno = get_seqno_by_preds (place_to_insert);
4746 /* Sometimes the fences can move in such a way that there will be
4747 no instructions with positive seqno around this bookkeeping.
4748 This means that there will be no way to get to it by a regular
4749 fence movement. Never mind because we pick up such pieces for
4750 rescheduling anyways, so any positive value will do for now. */
4751 if (seqno < 0)
4753 gcc_assert (pipelining_p);
4754 seqno = 1;
4758 gcc_assert (seqno > 0);
4759 return seqno;
4762 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4763 NEW_SEQNO to it. Return created insn. */
4764 static insn_t
4765 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4767 rtx_insn *new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4769 vinsn_t new_vinsn
4770 = create_vinsn_from_insn_rtx (new_insn_rtx,
4771 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4773 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4774 place_to_insert);
4776 INSN_SCHED_TIMES (new_insn) = 0;
4777 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4779 return new_insn;
4782 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4783 E2->dest, except from E1->src (there may be a sequence of empty blocks
4784 between E1->src and E2->dest). Return block containing the copy.
4785 All scheduler data is initialized for the newly created insn. */
4786 static basic_block
4787 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4789 insn_t join_point, place_to_insert, new_insn;
4790 int new_seqno;
4791 bool need_to_exchange_data_sets;
4792 fence_t fence_to_rewind;
4794 if (sched_verbose >= 4)
4795 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4796 e2->dest->index);
4798 join_point = sel_bb_head (e2->dest);
4799 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
4800 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4801 need_to_exchange_data_sets
4802 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4804 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4806 if (fence_to_rewind)
4807 FENCE_INSN (fence_to_rewind) = new_insn;
4809 /* When inserting bookkeeping insn in new block, av sets should be
4810 following: old basic block (that now holds bookkeeping) data sets are
4811 the same as was before generation of bookkeeping, and new basic block
4812 (that now hold all other insns of old basic block) data sets are
4813 invalid. So exchange data sets for these basic blocks as sel_split_block
4814 mistakenly exchanges them in this case. Cannot do it earlier because
4815 when single instruction is added to new basic block it should hold NULL
4816 lv_set. */
4817 if (need_to_exchange_data_sets)
4818 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4819 BLOCK_FOR_INSN (join_point));
4821 stat_bookkeeping_copies++;
4822 return BLOCK_FOR_INSN (new_insn);
4825 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4826 on FENCE, but we are unable to copy them. */
4827 static void
4828 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4830 expr_t expr;
4831 av_set_iterator i;
4833 /* An expression does not need bookkeeping if it is available on all paths
4834 from current block to original block and current block dominates
4835 original block. We check availability on all paths by examining
4836 EXPR_SPEC; this is not equivalent, because it may be positive even
4837 if expr is available on all paths (but if expr is not available on
4838 any path, EXPR_SPEC will be positive). */
4840 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4842 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4843 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4844 && (EXPR_SPEC (expr)
4845 || !EXPR_ORIG_BB_INDEX (expr)
4846 || !dominated_by_p (CDI_DOMINATORS,
4847 BASIC_BLOCK_FOR_FN (cfun,
4848 EXPR_ORIG_BB_INDEX (expr)),
4849 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4851 if (sched_verbose >= 4)
4852 sel_print ("Expr %d removed because it would need bookkeeping, which "
4853 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4854 av_set_iter_remove (&i);
4859 /* Moving conditional jump through some instructions.
4861 Consider example:
4863 ... <- current scheduling point
4864 NOTE BASIC BLOCK: <- bb header
4865 (p8) add r14=r14+0x9;;
4866 (p8) mov [r14]=r23
4867 (!p8) jump L1;;
4868 NOTE BASIC BLOCK:
4871 We can schedule jump one cycle earlier, than mov, because they cannot be
4872 executed together as their predicates are mutually exclusive.
4874 This is done in this way: first, new fallthrough basic block is created
4875 after jump (it is always can be done, because there already should be a
4876 fallthrough block, where control flow goes in case of predicate being true -
4877 in our example; otherwise there should be a dependence between those
4878 instructions and jump and we cannot schedule jump right now);
4879 next, all instructions between jump and current scheduling point are moved
4880 to this new block. And the result is this:
4882 NOTE BASIC BLOCK:
4883 (!p8) jump L1 <- current scheduling point
4884 NOTE BASIC BLOCK: <- bb header
4885 (p8) add r14=r14+0x9;;
4886 (p8) mov [r14]=r23
4887 NOTE BASIC BLOCK:
4890 static void
4891 move_cond_jump (rtx_insn *insn, bnd_t bnd)
4893 edge ft_edge;
4894 basic_block block_from, block_next, block_new, block_bnd, bb;
4895 rtx_insn *next, *prev, *link, *head;
4897 block_from = BLOCK_FOR_INSN (insn);
4898 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4899 prev = BND_TO (bnd);
4901 /* Moving of jump should not cross any other jumps or beginnings of new
4902 basic blocks. The only exception is when we move a jump through
4903 mutually exclusive insns along fallthru edges. */
4904 if (flag_checking && block_from != block_bnd)
4906 bb = block_from;
4907 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4908 link = PREV_INSN (link))
4910 if (INSN_P (link))
4911 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4912 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4914 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4915 bb = BLOCK_FOR_INSN (link);
4920 /* Jump is moved to the boundary. */
4921 next = PREV_INSN (insn);
4922 BND_TO (bnd) = insn;
4924 ft_edge = find_fallthru_edge_from (block_from);
4925 block_next = ft_edge->dest;
4926 /* There must be a fallthrough block (or where should go
4927 control flow in case of false jump predicate otherwise?). */
4928 gcc_assert (block_next);
4930 /* Create new empty basic block after source block. */
4931 block_new = sel_split_edge (ft_edge);
4932 gcc_assert (block_new->next_bb == block_next
4933 && block_from->next_bb == block_new);
4935 /* Move all instructions except INSN to BLOCK_NEW. */
4936 bb = block_bnd;
4937 head = BB_HEAD (block_new);
4938 while (bb != block_from->next_bb)
4940 rtx_insn *from, *to;
4941 from = bb == block_bnd ? prev : sel_bb_head (bb);
4942 to = bb == block_from ? next : sel_bb_end (bb);
4944 /* The jump being moved can be the first insn in the block.
4945 In this case we don't have to move anything in this block. */
4946 if (NEXT_INSN (to) != from)
4948 reorder_insns (from, to, head);
4950 for (link = to; link != head; link = PREV_INSN (link))
4951 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4952 head = to;
4955 /* Cleanup possibly empty blocks left. */
4956 block_next = bb->next_bb;
4957 if (bb != block_from)
4958 tidy_control_flow (bb, false);
4959 bb = block_next;
4962 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4963 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4965 gcc_assert (!sel_bb_empty_p (block_from)
4966 && !sel_bb_empty_p (block_new));
4968 /* Update data sets for BLOCK_NEW to represent that INSN and
4969 instructions from the other branch of INSN is no longer
4970 available at BLOCK_NEW. */
4971 BB_AV_LEVEL (block_new) = global_level;
4972 gcc_assert (BB_LV_SET (block_new) == NULL);
4973 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4974 update_data_sets (sel_bb_head (block_new));
4976 /* INSN is a new basic block header - so prepare its data
4977 structures and update availability and liveness sets. */
4978 update_data_sets (insn);
4980 if (sched_verbose >= 4)
4981 sel_print ("Moving jump %d\n", INSN_UID (insn));
4984 /* Remove nops generated during move_op for preventing removal of empty
4985 basic blocks. */
4986 static void
4987 remove_temp_moveop_nops (bool full_tidying)
4989 int i;
4990 insn_t insn;
4992 FOR_EACH_VEC_ELT (vec_temp_moveop_nops, i, insn)
4994 gcc_assert (INSN_NOP_P (insn));
4995 return_nop_to_pool (insn, full_tidying);
4998 /* Empty the vector. */
4999 if (vec_temp_moveop_nops.length () > 0)
5000 vec_temp_moveop_nops.block_remove (0, vec_temp_moveop_nops.length ());
5003 /* Records the maximal UID before moving up an instruction. Used for
5004 distinguishing between bookkeeping copies and original insns. */
5005 static int max_uid_before_move_op = 0;
5007 /* When true, we're always scheduling next insn on the already scheduled code
5008 to get the right insn data for the following bundling or other passes. */
5009 static int force_next_insn = 0;
5011 /* Remove from AV_VLIW_P all instructions but next when debug counter
5012 tells us so. Next instruction is fetched from BNDS. */
5013 static void
5014 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5016 if (! dbg_cnt (sel_sched_insn_cnt) || force_next_insn)
5017 /* Leave only the next insn in av_vliw. */
5019 av_set_iterator av_it;
5020 expr_t expr;
5021 bnd_t bnd = BLIST_BND (bnds);
5022 insn_t next = BND_TO (bnd);
5024 gcc_assert (BLIST_NEXT (bnds) == NULL);
5026 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5027 if (EXPR_INSN_RTX (expr) != next)
5028 av_set_iter_remove (&av_it);
5032 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5033 the computed set to *AV_VLIW_P. */
5034 static void
5035 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5037 if (sched_verbose >= 2)
5039 sel_print ("Boundaries: ");
5040 dump_blist (bnds);
5041 sel_print ("\n");
5044 for (; bnds; bnds = BLIST_NEXT (bnds))
5046 bnd_t bnd = BLIST_BND (bnds);
5047 av_set_t av1_copy;
5048 insn_t bnd_to = BND_TO (bnd);
5050 /* Rewind BND->TO to the basic block header in case some bookkeeping
5051 instructions were inserted before BND->TO and it needs to be
5052 adjusted. */
5053 if (sel_bb_head_p (bnd_to))
5054 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5055 else
5056 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5058 bnd_to = PREV_INSN (bnd_to);
5059 if (sel_bb_head_p (bnd_to))
5060 break;
5063 if (BND_TO (bnd) != bnd_to)
5065 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5066 FENCE_INSN (fence) = bnd_to;
5067 BND_TO (bnd) = bnd_to;
5070 av_set_clear (&BND_AV (bnd));
5071 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5073 av_set_clear (&BND_AV1 (bnd));
5074 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5076 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5078 av1_copy = av_set_copy (BND_AV1 (bnd));
5079 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5082 if (sched_verbose >= 2)
5084 sel_print ("Available exprs (vliw form): ");
5085 dump_av_set (*av_vliw_p);
5086 sel_print ("\n");
5090 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5091 expression. When FOR_MOVEOP is true, also replace the register of
5092 expressions found with the register from EXPR_VLIW. */
5093 static av_set_t
5094 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5096 av_set_t expr_seq = NULL;
5097 expr_t expr;
5098 av_set_iterator i;
5100 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5102 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5104 if (for_moveop)
5106 /* The sequential expression has the right form to pass
5107 to move_op except when renaming happened. Put the
5108 correct register in EXPR then. */
5109 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5111 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5113 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5114 stat_renamed_scheduled++;
5116 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5117 This is needed when renaming came up with original
5118 register. */
5119 else if (EXPR_TARGET_AVAILABLE (expr)
5120 != EXPR_TARGET_AVAILABLE (expr_vliw))
5122 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5123 EXPR_TARGET_AVAILABLE (expr) = 1;
5126 if (EXPR_WAS_SUBSTITUTED (expr))
5127 stat_substitutions_total++;
5130 av_set_add (&expr_seq, expr);
5132 /* With substitution inside insn group, it is possible
5133 that more than one expression in expr_seq will correspond
5134 to expr_vliw. In this case, choose one as the attempt to
5135 move both leads to miscompiles. */
5136 break;
5140 if (for_moveop && sched_verbose >= 2)
5142 sel_print ("Best expression(s) (sequential form): ");
5143 dump_av_set (expr_seq);
5144 sel_print ("\n");
5147 return expr_seq;
5151 /* Move nop to previous block. */
5152 static void ATTRIBUTE_UNUSED
5153 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5155 insn_t prev_insn, next_insn;
5157 gcc_assert (sel_bb_head_p (nop)
5158 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5159 rtx_note *note = bb_note (BLOCK_FOR_INSN (nop));
5160 prev_insn = sel_bb_end (prev_bb);
5161 next_insn = NEXT_INSN (nop);
5162 gcc_assert (prev_insn != NULL_RTX
5163 && PREV_INSN (note) == prev_insn);
5165 SET_NEXT_INSN (prev_insn) = nop;
5166 SET_PREV_INSN (nop) = prev_insn;
5168 SET_PREV_INSN (note) = nop;
5169 SET_NEXT_INSN (note) = next_insn;
5171 SET_NEXT_INSN (nop) = note;
5172 SET_PREV_INSN (next_insn) = note;
5174 BB_END (prev_bb) = nop;
5175 BLOCK_FOR_INSN (nop) = prev_bb;
5178 /* Prepare a place to insert the chosen expression on BND. */
5179 static insn_t
5180 prepare_place_to_insert (bnd_t bnd)
5182 insn_t place_to_insert;
5184 /* Init place_to_insert before calling move_op, as the later
5185 can possibly remove BND_TO (bnd). */
5186 if (/* If this is not the first insn scheduled. */
5187 BND_PTR (bnd))
5189 /* Add it after last scheduled. */
5190 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5191 if (DEBUG_INSN_P (place_to_insert))
5193 ilist_t l = BND_PTR (bnd);
5194 while ((l = ILIST_NEXT (l)) &&
5195 DEBUG_INSN_P (ILIST_INSN (l)))
5197 if (!l)
5198 place_to_insert = NULL;
5201 else
5202 place_to_insert = NULL;
5204 if (!place_to_insert)
5206 /* Add it before BND_TO. The difference is in the
5207 basic block, where INSN will be added. */
5208 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5209 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5210 == BLOCK_FOR_INSN (BND_TO (bnd)));
5213 return place_to_insert;
5216 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5217 Return the expression to emit in C_EXPR. */
5218 static bool
5219 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5220 av_set_t expr_seq, expr_t c_expr)
5222 bool b, should_move;
5223 unsigned book_uid;
5224 bitmap_iterator bi;
5225 int n_bookkeeping_copies_before_moveop;
5227 /* Make a move. This call will remove the original operation,
5228 insert all necessary bookkeeping instructions and update the
5229 data sets. After that all we have to do is add the operation
5230 at before BND_TO (BND). */
5231 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5232 max_uid_before_move_op = get_max_uid ();
5233 bitmap_clear (current_copies);
5234 bitmap_clear (current_originators);
5236 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5237 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5239 /* We should be able to find the expression we've chosen for
5240 scheduling. */
5241 gcc_assert (b);
5243 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5244 stat_insns_needed_bookkeeping++;
5246 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5248 unsigned uid;
5249 bitmap_iterator bi;
5251 /* We allocate these bitmaps lazily. */
5252 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5253 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5255 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5256 current_originators);
5258 /* Transitively add all originators' originators. */
5259 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5260 if (INSN_ORIGINATORS_BY_UID (uid))
5261 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5262 INSN_ORIGINATORS_BY_UID (uid));
5265 return should_move;
5269 /* Debug a DFA state as an array of bytes. */
5270 static void
5271 debug_state (state_t state)
5273 unsigned char *p;
5274 unsigned int i, size = dfa_state_size;
5276 sel_print ("state (%u):", size);
5277 for (i = 0, p = (unsigned char *) state; i < size; i++)
5278 sel_print (" %d", p[i]);
5279 sel_print ("\n");
5282 /* Advance state on FENCE with INSN. Return true if INSN is
5283 an ASM, and we should advance state once more. */
5284 static bool
5285 advance_state_on_fence (fence_t fence, insn_t insn)
5287 bool asm_p;
5289 if (recog_memoized (insn) >= 0)
5291 int res;
5292 state_t temp_state = alloca (dfa_state_size);
5294 gcc_assert (!INSN_ASM_P (insn));
5295 asm_p = false;
5297 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5298 res = state_transition (FENCE_STATE (fence), insn);
5299 gcc_assert (res < 0);
5301 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5303 FENCE_ISSUED_INSNS (fence)++;
5305 /* We should never issue more than issue_rate insns. */
5306 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5307 gcc_unreachable ();
5310 else
5312 /* This could be an ASM insn which we'd like to schedule
5313 on the next cycle. */
5314 asm_p = INSN_ASM_P (insn);
5315 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5316 advance_one_cycle (fence);
5319 if (sched_verbose >= 2)
5320 debug_state (FENCE_STATE (fence));
5321 if (!DEBUG_INSN_P (insn))
5322 FENCE_STARTS_CYCLE_P (fence) = 0;
5323 FENCE_ISSUE_MORE (fence) = can_issue_more;
5324 return asm_p;
5327 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5328 is nonzero if we need to stall after issuing INSN. */
5329 static void
5330 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5332 bool asm_p;
5334 /* First, reflect that something is scheduled on this fence. */
5335 asm_p = advance_state_on_fence (fence, insn);
5336 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5337 vec_safe_push (FENCE_EXECUTING_INSNS (fence), insn);
5338 if (SCHED_GROUP_P (insn))
5340 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5341 SCHED_GROUP_P (insn) = 0;
5343 else
5344 FENCE_SCHED_NEXT (fence) = NULL;
5345 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5346 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5348 /* Set instruction scheduling info. This will be used in bundling,
5349 pipelining, tick computations etc. */
5350 ++INSN_SCHED_TIMES (insn);
5351 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5352 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5353 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5354 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5356 /* This does not account for adjust_cost hooks, just add the biggest
5357 constant the hook may add to the latency. TODO: make this
5358 a target dependent constant. */
5359 INSN_READY_CYCLE (insn)
5360 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5362 : maximal_insn_latency (insn) + 1);
5364 /* Change these fields last, as they're used above. */
5365 FENCE_AFTER_STALL_P (fence) = 0;
5366 if (asm_p || need_stall)
5367 advance_one_cycle (fence);
5369 /* Indicate that we've scheduled something on this fence. */
5370 FENCE_SCHEDULED_P (fence) = true;
5371 scheduled_something_on_previous_fence = true;
5373 /* Print debug information when insn's fields are updated. */
5374 if (sched_verbose >= 2)
5376 sel_print ("Scheduling insn: ");
5377 dump_insn_1 (insn, 1);
5378 sel_print ("\n");
5382 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5383 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5384 return it. */
5385 static blist_t *
5386 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5387 blist_t *bnds_tailp)
5389 succ_iterator si;
5390 insn_t succ;
5392 advance_deps_context (BND_DC (bnd), insn);
5393 FOR_EACH_SUCC_1 (succ, si, insn,
5394 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5396 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5398 ilist_add (&ptr, insn);
5400 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5401 && is_ineligible_successor (succ, ptr))
5403 ilist_clear (&ptr);
5404 continue;
5407 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5409 if (sched_verbose >= 9)
5410 sel_print ("Updating fence insn from %i to %i\n",
5411 INSN_UID (insn), INSN_UID (succ));
5412 FENCE_INSN (fence) = succ;
5414 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5415 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5418 blist_remove (bndsp);
5419 return bnds_tailp;
5422 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5423 static insn_t
5424 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5426 av_set_t expr_seq;
5427 expr_t c_expr = XALLOCA (expr_def);
5428 insn_t place_to_insert;
5429 insn_t insn;
5430 bool should_move;
5432 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5434 /* In case of scheduling a jump skipping some other instructions,
5435 prepare CFG. After this, jump is at the boundary and can be
5436 scheduled as usual insn by MOVE_OP. */
5437 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5439 insn = EXPR_INSN_RTX (expr_vliw);
5441 /* Speculative jumps are not handled. */
5442 if (insn != BND_TO (bnd)
5443 && !sel_insn_is_speculation_check (insn))
5444 move_cond_jump (insn, bnd);
5447 /* Find a place for C_EXPR to schedule. */
5448 place_to_insert = prepare_place_to_insert (bnd);
5449 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5450 clear_expr (c_expr);
5452 /* Add the instruction. The corner case to care about is when
5453 the expr_seq set has more than one expr, and we chose the one that
5454 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5455 we can't use it. Generate the new vinsn. */
5456 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5458 vinsn_t vinsn_new;
5460 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5461 change_vinsn_in_expr (expr_vliw, vinsn_new);
5462 should_move = false;
5464 if (should_move)
5465 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5466 else
5467 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5468 place_to_insert);
5470 /* Return the nops generated for preserving of data sets back
5471 into pool. */
5472 if (INSN_NOP_P (place_to_insert))
5473 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5474 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5476 av_set_clear (&expr_seq);
5478 /* Save the expression scheduled so to reset target availability if we'll
5479 meet it later on the same fence. */
5480 if (EXPR_WAS_RENAMED (expr_vliw))
5481 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5483 /* Check that the recent movement didn't destroyed loop
5484 structure. */
5485 gcc_assert (!pipelining_p
5486 || current_loop_nest == NULL
5487 || loop_latch_edge (current_loop_nest));
5488 return insn;
5491 /* Stall for N cycles on FENCE. */
5492 static void
5493 stall_for_cycles (fence_t fence, int n)
5495 int could_more;
5497 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5498 while (n--)
5499 advance_one_cycle (fence);
5500 if (could_more)
5501 FENCE_AFTER_STALL_P (fence) = 1;
5504 /* Gather a parallel group of insns at FENCE and assign their seqno
5505 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5506 list for later recalculation of seqnos. */
5507 static void
5508 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5510 blist_t bnds = NULL, *bnds_tailp;
5511 av_set_t av_vliw = NULL;
5512 insn_t insn = FENCE_INSN (fence);
5514 if (sched_verbose >= 2)
5515 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5516 INSN_UID (insn), FENCE_CYCLE (fence));
5518 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5519 bnds_tailp = &BLIST_NEXT (bnds);
5520 set_target_context (FENCE_TC (fence));
5521 can_issue_more = FENCE_ISSUE_MORE (fence);
5522 target_bb = INSN_BB (insn);
5524 /* Do while we can add any operation to the current group. */
5527 blist_t *bnds_tailp1, *bndsp;
5528 expr_t expr_vliw;
5529 int need_stall = false;
5530 int was_stall = 0, scheduled_insns = 0;
5531 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5532 int max_stall = pipelining_p ? 1 : 3;
5533 bool last_insn_was_debug = false;
5534 bool was_debug_bb_end_p = false;
5536 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5537 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5538 remove_insns_for_debug (bnds, &av_vliw);
5540 /* Return early if we have nothing to schedule. */
5541 if (av_vliw == NULL)
5542 break;
5544 /* Choose the best expression and, if needed, destination register
5545 for it. */
5548 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5549 if (! expr_vliw && need_stall)
5551 /* All expressions required a stall. Do not recompute av sets
5552 as we'll get the same answer (modulo the insns between
5553 the fence and its boundary, which will not be available for
5554 pipelining).
5555 If we are going to stall for too long, break to recompute av
5556 sets and bring more insns for pipelining. */
5557 was_stall++;
5558 if (need_stall <= 3)
5559 stall_for_cycles (fence, need_stall);
5560 else
5562 stall_for_cycles (fence, 1);
5563 break;
5567 while (! expr_vliw && need_stall);
5569 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5570 if (!expr_vliw)
5572 av_set_clear (&av_vliw);
5573 break;
5576 bndsp = &bnds;
5577 bnds_tailp1 = bnds_tailp;
5580 /* This code will be executed only once until we'd have several
5581 boundaries per fence. */
5583 bnd_t bnd = BLIST_BND (*bndsp);
5585 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5587 bndsp = &BLIST_NEXT (*bndsp);
5588 continue;
5591 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5592 last_insn_was_debug = DEBUG_INSN_P (insn);
5593 if (last_insn_was_debug)
5594 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5595 update_fence_and_insn (fence, insn, need_stall);
5596 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5598 /* Add insn to the list of scheduled on this cycle instructions. */
5599 ilist_add (*scheduled_insns_tailpp, insn);
5600 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5602 while (*bndsp != *bnds_tailp1);
5604 av_set_clear (&av_vliw);
5605 if (!last_insn_was_debug)
5606 scheduled_insns++;
5608 /* We currently support information about candidate blocks only for
5609 one 'target_bb' block. Hence we can't schedule after jump insn,
5610 as this will bring two boundaries and, hence, necessity to handle
5611 information for two or more blocks concurrently. */
5612 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5613 || (was_stall
5614 && (was_stall >= max_stall
5615 || scheduled_insns >= max_insns)))
5616 break;
5618 while (bnds);
5620 gcc_assert (!FENCE_BNDS (fence));
5622 /* Update boundaries of the FENCE. */
5623 while (bnds)
5625 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5627 if (ptr)
5629 insn = ILIST_INSN (ptr);
5631 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5632 ilist_add (&FENCE_BNDS (fence), insn);
5635 blist_remove (&bnds);
5638 /* Update target context on the fence. */
5639 reset_target_context (FENCE_TC (fence), false);
5642 /* All exprs in ORIG_OPS must have the same destination register or memory.
5643 Return that destination. */
5644 static rtx
5645 get_dest_from_orig_ops (av_set_t orig_ops)
5647 rtx dest = NULL_RTX;
5648 av_set_iterator av_it;
5649 expr_t expr;
5650 bool first_p = true;
5652 FOR_EACH_EXPR (expr, av_it, orig_ops)
5654 rtx x = EXPR_LHS (expr);
5656 if (first_p)
5658 first_p = false;
5659 dest = x;
5661 else
5662 gcc_assert (dest == x
5663 || (dest != NULL_RTX && x != NULL_RTX
5664 && rtx_equal_p (dest, x)));
5667 return dest;
5670 /* Update data sets for the bookkeeping block and record those expressions
5671 which become no longer available after inserting this bookkeeping. */
5672 static void
5673 update_and_record_unavailable_insns (basic_block book_block)
5675 av_set_iterator i;
5676 av_set_t old_av_set = NULL;
5677 expr_t cur_expr;
5678 rtx_insn *bb_end = sel_bb_end (book_block);
5680 /* First, get correct liveness in the bookkeeping block. The problem is
5681 the range between the bookeeping insn and the end of block. */
5682 update_liveness_on_insn (bb_end);
5683 if (control_flow_insn_p (bb_end))
5684 update_liveness_on_insn (PREV_INSN (bb_end));
5686 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5687 fence above, where we may choose to schedule an insn which is
5688 actually blocked from moving up with the bookkeeping we create here. */
5689 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5691 old_av_set = av_set_copy (BB_AV_SET (book_block));
5692 update_data_sets (sel_bb_head (book_block));
5694 /* Traverse all the expressions in the old av_set and check whether
5695 CUR_EXPR is in new AV_SET. */
5696 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5698 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5699 EXPR_VINSN (cur_expr));
5701 if (! new_expr
5702 /* In this case, we can just turn off the E_T_A bit, but we can't
5703 represent this information with the current vector. */
5704 || EXPR_TARGET_AVAILABLE (new_expr)
5705 != EXPR_TARGET_AVAILABLE (cur_expr))
5706 /* Unfortunately, the below code could be also fired up on
5707 separable insns, e.g. when moving insns through the new
5708 speculation check as in PR 53701. */
5709 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5712 av_set_clear (&old_av_set);
5716 /* The main effect of this function is that sparams->c_expr is merged
5717 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5718 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5719 lparams->c_expr_merged is copied back to sparams->c_expr after all
5720 successors has been traversed. lparams->c_expr_local is an expr allocated
5721 on stack in the caller function, and is used if there is more than one
5722 successor.
5724 SUCC is one of the SUCCS_NORMAL successors of INSN,
5725 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5726 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5727 static void
5728 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5729 insn_t succ ATTRIBUTE_UNUSED,
5730 int moveop_drv_call_res,
5731 cmpd_local_params_p lparams, void *static_params)
5733 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5735 /* Nothing to do, if original expr wasn't found below. */
5736 if (moveop_drv_call_res != 1)
5737 return;
5739 /* If this is a first successor. */
5740 if (!lparams->c_expr_merged)
5742 lparams->c_expr_merged = sparams->c_expr;
5743 sparams->c_expr = lparams->c_expr_local;
5745 else
5747 /* We must merge all found expressions to get reasonable
5748 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5749 do so then we can first find the expr with epsilon
5750 speculation success probability and only then with the
5751 good probability. As a result the insn will get epsilon
5752 probability and will never be scheduled because of
5753 weakness_cutoff in find_best_expr.
5755 We call merge_expr_data here instead of merge_expr
5756 because due to speculation C_EXPR and X may have the
5757 same insns with different speculation types. And as of
5758 now such insns are considered non-equal.
5760 However, EXPR_SCHED_TIMES is different -- we must get
5761 SCHED_TIMES from a real insn, not a bookkeeping copy.
5762 We force this here. Instead, we may consider merging
5763 SCHED_TIMES to the maximum instead of minimum in the
5764 below function. */
5765 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5767 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5768 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5769 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5771 clear_expr (sparams->c_expr);
5775 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5777 SUCC is one of the SUCCS_NORMAL successors of INSN,
5778 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5779 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5780 STATIC_PARAMS contain USED_REGS set. */
5781 static void
5782 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5783 int moveop_drv_call_res,
5784 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5785 void *static_params)
5787 regset succ_live;
5788 fur_static_params_p sparams = (fur_static_params_p) static_params;
5790 /* Here we compute live regsets only for branches that do not lie
5791 on the code motion paths. These branches correspond to value
5792 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5793 for such branches code_motion_path_driver is not called. */
5794 if (moveop_drv_call_res != 0)
5795 return;
5797 /* Mark all registers that do not meet the following condition:
5798 (3) not live on the other path of any conditional branch
5799 that is passed by the operation, in case original
5800 operations are not present on both paths of the
5801 conditional branch. */
5802 succ_live = compute_live (succ);
5803 IOR_REG_SET (sparams->used_regs, succ_live);
5806 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5807 into SP->CEXPR. */
5808 static void
5809 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5811 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5813 sp->c_expr = lp->c_expr_merged;
5816 /* Track bookkeeping copies created, insns scheduled, and blocks for
5817 rescheduling when INSN is found by move_op. */
5818 static void
5819 track_scheduled_insns_and_blocks (rtx_insn *insn)
5821 /* Even if this insn can be a copy that will be removed during current move_op,
5822 we still need to count it as an originator. */
5823 bitmap_set_bit (current_originators, INSN_UID (insn));
5825 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5827 /* Note that original block needs to be rescheduled, as we pulled an
5828 instruction out of it. */
5829 if (INSN_SCHED_TIMES (insn) > 0)
5830 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5831 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5832 num_insns_scheduled++;
5835 /* For instructions we must immediately remove insn from the
5836 stream, so subsequent update_data_sets () won't include this
5837 insn into av_set.
5838 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5839 if (INSN_UID (insn) > max_uid_before_move_op)
5840 stat_bookkeeping_copies--;
5843 /* Emit a register-register copy for INSN if needed. Return true if
5844 emitted one. PARAMS is the move_op static parameters. */
5845 static bool
5846 maybe_emit_renaming_copy (rtx_insn *insn,
5847 moveop_static_params_p params)
5849 bool insn_emitted = false;
5850 rtx cur_reg;
5852 /* Bail out early when expression can not be renamed at all. */
5853 if (!EXPR_SEPARABLE_P (params->c_expr))
5854 return false;
5856 cur_reg = expr_dest_reg (params->c_expr);
5857 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5859 /* If original operation has expr and the register chosen for
5860 that expr is not original operation's dest reg, substitute
5861 operation's right hand side with the register chosen. */
5862 if (REGNO (params->dest) != REGNO (cur_reg))
5864 insn_t reg_move_insn, reg_move_insn_rtx;
5866 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5867 params->dest);
5868 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5869 INSN_EXPR (insn),
5870 INSN_SEQNO (insn),
5871 insn);
5872 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5873 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5875 insn_emitted = true;
5876 params->was_renamed = true;
5879 return insn_emitted;
5882 /* Emit a speculative check for INSN speculated as EXPR if needed.
5883 Return true if we've emitted one. PARAMS is the move_op static
5884 parameters. */
5885 static bool
5886 maybe_emit_speculative_check (rtx_insn *insn, expr_t expr,
5887 moveop_static_params_p params)
5889 bool insn_emitted = false;
5890 insn_t x;
5891 ds_t check_ds;
5893 check_ds = get_spec_check_type_for_insn (insn, expr);
5894 if (check_ds != 0)
5896 /* A speculation check should be inserted. */
5897 x = create_speculation_check (params->c_expr, check_ds, insn);
5898 insn_emitted = true;
5900 else
5902 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5903 x = insn;
5906 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5907 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5908 return insn_emitted;
5911 /* Handle transformations that leave an insn in place of original
5912 insn such as renaming/speculation. Return true if one of such
5913 transformations actually happened, and we have emitted this insn. */
5914 static bool
5915 handle_emitting_transformations (rtx_insn *insn, expr_t expr,
5916 moveop_static_params_p params)
5918 bool insn_emitted = false;
5920 insn_emitted = maybe_emit_renaming_copy (insn, params);
5921 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5923 return insn_emitted;
5926 /* If INSN is the only insn in the basic block (not counting JUMP,
5927 which may be a jump to next insn, and DEBUG_INSNs), we want to
5928 leave a NOP there till the return to fill_insns. */
5930 static bool
5931 need_nop_to_preserve_insn_bb (rtx_insn *insn)
5933 insn_t bb_head, bb_end, bb_next, in_next;
5934 basic_block bb = BLOCK_FOR_INSN (insn);
5936 bb_head = sel_bb_head (bb);
5937 bb_end = sel_bb_end (bb);
5939 if (bb_head == bb_end)
5940 return true;
5942 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5943 bb_head = NEXT_INSN (bb_head);
5945 if (bb_head == bb_end)
5946 return true;
5948 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5949 bb_end = PREV_INSN (bb_end);
5951 if (bb_head == bb_end)
5952 return true;
5954 bb_next = NEXT_INSN (bb_head);
5955 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5956 bb_next = NEXT_INSN (bb_next);
5958 if (bb_next == bb_end && JUMP_P (bb_end))
5959 return true;
5961 in_next = NEXT_INSN (insn);
5962 while (DEBUG_INSN_P (in_next))
5963 in_next = NEXT_INSN (in_next);
5965 if (IN_CURRENT_FENCE_P (in_next))
5966 return true;
5968 return false;
5971 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5972 is not removed but reused when INSN is re-emitted. */
5973 static void
5974 remove_insn_from_stream (rtx_insn *insn, bool only_disconnect)
5976 /* If there's only one insn in the BB, make sure that a nop is
5977 inserted into it, so the basic block won't disappear when we'll
5978 delete INSN below with sel_remove_insn. It should also survive
5979 till the return to fill_insns. */
5980 if (need_nop_to_preserve_insn_bb (insn))
5982 insn_t nop = get_nop_from_pool (insn);
5983 gcc_assert (INSN_NOP_P (nop));
5984 vec_temp_moveop_nops.safe_push (nop);
5987 sel_remove_insn (insn, only_disconnect, false);
5990 /* This function is called when original expr is found.
5991 INSN - current insn traversed, EXPR - the corresponding expr found.
5992 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5993 is static parameters of move_op. */
5994 static void
5995 move_op_orig_expr_found (insn_t insn, expr_t expr,
5996 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5997 void *static_params)
5999 bool only_disconnect;
6000 moveop_static_params_p params = (moveop_static_params_p) static_params;
6002 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
6003 track_scheduled_insns_and_blocks (insn);
6004 handle_emitting_transformations (insn, expr, params);
6005 only_disconnect = params->uid == INSN_UID (insn);
6007 /* Mark that we've disconnected an insn. */
6008 if (only_disconnect)
6009 params->uid = -1;
6010 remove_insn_from_stream (insn, only_disconnect);
6013 /* The function is called when original expr is found.
6014 INSN - current insn traversed, EXPR - the corresponding expr found,
6015 crosses_call and original_insns in STATIC_PARAMS are updated. */
6016 static void
6017 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6018 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6019 void *static_params)
6021 fur_static_params_p params = (fur_static_params_p) static_params;
6022 regset tmp;
6024 if (CALL_P (insn))
6025 params->crosses_call = true;
6027 def_list_add (params->original_insns, insn, params->crosses_call);
6029 /* Mark the registers that do not meet the following condition:
6030 (2) not among the live registers of the point
6031 immediately following the first original operation on
6032 a given downward path, except for the original target
6033 register of the operation. */
6034 tmp = get_clear_regset_from_pool ();
6035 compute_live_below_insn (insn, tmp);
6036 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6037 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6038 IOR_REG_SET (params->used_regs, tmp);
6039 return_regset_to_pool (tmp);
6041 /* (*1) We need to add to USED_REGS registers that are read by
6042 INSN's lhs. This may lead to choosing wrong src register.
6043 E.g. (scheduling const expr enabled):
6045 429: ax=0x0 <- Can't use AX for this expr (0x0)
6046 433: dx=[bp-0x18]
6047 427: [ax+dx+0x1]=ax
6048 REG_DEAD: ax
6049 168: di=dx
6050 REG_DEAD: dx
6052 /* FIXME: see comment above and enable MEM_P
6053 in vinsn_separable_p. */
6054 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6055 || !MEM_P (INSN_LHS (insn)));
6058 /* This function is called on the ascending pass, before returning from
6059 current basic block. */
6060 static void
6061 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6062 void *static_params)
6064 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6065 basic_block book_block = NULL;
6067 /* When we have removed the boundary insn for scheduling, which also
6068 happened to be the end insn in its bb, we don't need to update sets. */
6069 if (!lparams->removed_last_insn
6070 && lparams->e1
6071 && sel_bb_head_p (insn))
6073 /* We should generate bookkeeping code only if we are not at the
6074 top level of the move_op. */
6075 if (sel_num_cfg_preds_gt_1 (insn))
6076 book_block = generate_bookkeeping_insn (sparams->c_expr,
6077 lparams->e1, lparams->e2);
6078 /* Update data sets for the current insn. */
6079 update_data_sets (insn);
6082 /* If bookkeeping code was inserted, we need to update av sets of basic
6083 block that received bookkeeping. After generation of bookkeeping insn,
6084 bookkeeping block does not contain valid av set because we are not following
6085 the original algorithm in every detail with regards to e.g. renaming
6086 simple reg-reg copies. Consider example:
6088 bookkeeping block scheduling fence
6090 \ join /
6091 ----------
6093 ----------
6096 r1 := r2 r1 := r3
6098 We try to schedule insn "r1 := r3" on the current
6099 scheduling fence. Also, note that av set of bookkeeping block
6100 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6101 been scheduled, the CFG is as follows:
6103 r1 := r3 r1 := r3
6104 bookkeeping block scheduling fence
6106 \ join /
6107 ----------
6109 ----------
6112 r1 := r2
6114 Here, insn "r1 := r3" was scheduled at the current scheduling point
6115 and bookkeeping code was generated at the bookeeping block. This
6116 way insn "r1 := r2" is no longer available as a whole instruction
6117 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6118 This situation is handled by calling update_data_sets.
6120 Since update_data_sets is called only on the bookkeeping block, and
6121 it also may have predecessors with av_sets, containing instructions that
6122 are no longer available, we save all such expressions that become
6123 unavailable during data sets update on the bookkeeping block in
6124 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6125 expressions for scheduling. This allows us to avoid recomputation of
6126 av_sets outside the code motion path. */
6128 if (book_block)
6129 update_and_record_unavailable_insns (book_block);
6131 /* If INSN was previously marked for deletion, it's time to do it. */
6132 if (lparams->removed_last_insn)
6133 insn = PREV_INSN (insn);
6135 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6136 kill a block with a single nop in which the insn should be emitted. */
6137 if (lparams->e1)
6138 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6141 /* This function is called on the ascending pass, before returning from the
6142 current basic block. */
6143 static void
6144 fur_at_first_insn (insn_t insn,
6145 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6146 void *static_params ATTRIBUTE_UNUSED)
6148 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6149 || AV_LEVEL (insn) == -1);
6152 /* Called on the backward stage of recursion to call moveup_expr for insn
6153 and sparams->c_expr. */
6154 static void
6155 move_op_ascend (insn_t insn, void *static_params)
6157 enum MOVEUP_EXPR_CODE res;
6158 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6160 if (! INSN_NOP_P (insn))
6162 res = moveup_expr_cached (sparams->c_expr, insn, false);
6163 gcc_assert (res != MOVEUP_EXPR_NULL);
6166 /* Update liveness for this insn as it was invalidated. */
6167 update_liveness_on_insn (insn);
6170 /* This function is called on enter to the basic block.
6171 Returns TRUE if this block already have been visited and
6172 code_motion_path_driver should return 1, FALSE otherwise. */
6173 static int
6174 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6175 void *static_params, bool visited_p)
6177 fur_static_params_p sparams = (fur_static_params_p) static_params;
6179 if (visited_p)
6181 /* If we have found something below this block, there should be at
6182 least one insn in ORIGINAL_INSNS. */
6183 gcc_assert (*sparams->original_insns);
6185 /* Adjust CROSSES_CALL, since we may have come to this block along
6186 different path. */
6187 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6188 |= sparams->crosses_call;
6190 else
6191 local_params->old_original_insns = *sparams->original_insns;
6193 return 1;
6196 /* Same as above but for move_op. */
6197 static int
6198 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6199 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6200 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6202 if (visited_p)
6203 return -1;
6204 return 1;
6207 /* This function is called while descending current basic block if current
6208 insn is not the original EXPR we're searching for.
6210 Return value: FALSE, if code_motion_path_driver should perform a local
6211 cleanup and return 0 itself;
6212 TRUE, if code_motion_path_driver should continue. */
6213 static bool
6214 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6215 void *static_params)
6217 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6219 sparams->failed_insn = insn;
6221 /* If we're scheduling separate expr, in order to generate correct code
6222 we need to stop the search at bookkeeping code generated with the
6223 same destination register or memory. */
6224 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6225 return false;
6226 return true;
6229 /* This function is called while descending current basic block if current
6230 insn is not the original EXPR we're searching for.
6232 Return value: TRUE (code_motion_path_driver should continue). */
6233 static bool
6234 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6236 bool mutexed;
6237 expr_t r;
6238 av_set_iterator avi;
6239 fur_static_params_p sparams = (fur_static_params_p) static_params;
6241 if (CALL_P (insn))
6242 sparams->crosses_call = true;
6243 else if (DEBUG_INSN_P (insn))
6244 return true;
6246 /* If current insn we are looking at cannot be executed together
6247 with original insn, then we can skip it safely.
6249 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6250 INSN = (!p6) r14 = r14 + 1;
6252 Here we can schedule ORIG_OP with lhs = r14, though only
6253 looking at the set of used and set registers of INSN we must
6254 forbid it. So, add set/used in INSN registers to the
6255 untouchable set only if there is an insn in ORIG_OPS that can
6256 affect INSN. */
6257 mutexed = true;
6258 FOR_EACH_EXPR (r, avi, orig_ops)
6259 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6261 mutexed = false;
6262 break;
6265 /* Mark all registers that do not meet the following condition:
6266 (1) Not set or read on any path from xi to an instance of the
6267 original operation. */
6268 if (!mutexed)
6270 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6271 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6272 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6275 return true;
6278 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6279 struct code_motion_path_driver_info_def move_op_hooks = {
6280 move_op_on_enter,
6281 move_op_orig_expr_found,
6282 move_op_orig_expr_not_found,
6283 move_op_merge_succs,
6284 move_op_after_merge_succs,
6285 move_op_ascend,
6286 move_op_at_first_insn,
6287 SUCCS_NORMAL,
6288 "move_op"
6291 /* Hooks and data to perform find_used_regs operations
6292 with code_motion_path_driver. */
6293 struct code_motion_path_driver_info_def fur_hooks = {
6294 fur_on_enter,
6295 fur_orig_expr_found,
6296 fur_orig_expr_not_found,
6297 fur_merge_succs,
6298 NULL, /* fur_after_merge_succs */
6299 NULL, /* fur_ascend */
6300 fur_at_first_insn,
6301 SUCCS_ALL,
6302 "find_used_regs"
6305 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6306 code_motion_path_driver is called recursively. Original operation
6307 was found at least on one path that is starting with one of INSN's
6308 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6309 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6310 of either move_op or find_used_regs depending on the caller.
6312 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6313 know for sure at this point. */
6314 static int
6315 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6316 ilist_t path, void *static_params)
6318 int res = 0;
6319 succ_iterator succ_i;
6320 insn_t succ;
6321 basic_block bb;
6322 int old_index;
6323 unsigned old_succs;
6325 struct cmpd_local_params lparams;
6326 expr_def _x;
6328 lparams.c_expr_local = &_x;
6329 lparams.c_expr_merged = NULL;
6331 /* We need to process only NORMAL succs for move_op, and collect live
6332 registers from ALL branches (including those leading out of the
6333 region) for find_used_regs.
6335 In move_op, there can be a case when insn's bb number has changed
6336 due to created bookkeeping. This happens very rare, as we need to
6337 move expression from the beginning to the end of the same block.
6338 Rescan successors in this case. */
6340 rescan:
6341 bb = BLOCK_FOR_INSN (insn);
6342 old_index = bb->index;
6343 old_succs = EDGE_COUNT (bb->succs);
6345 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6347 int b;
6349 lparams.e1 = succ_i.e1;
6350 lparams.e2 = succ_i.e2;
6352 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6353 current region). */
6354 if (succ_i.current_flags == SUCCS_NORMAL)
6355 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6356 static_params);
6357 else
6358 b = 0;
6360 /* Merge c_expres found or unify live register sets from different
6361 successors. */
6362 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6363 static_params);
6364 if (b == 1)
6365 res = b;
6366 else if (b == -1 && res != 1)
6367 res = b;
6369 /* We have simplified the control flow below this point. In this case,
6370 the iterator becomes invalid. We need to try again.
6371 If we have removed the insn itself, it could be only an
6372 unconditional jump. Thus, do not rescan but break immediately --
6373 we have already visited the only successor block. */
6374 if (!BLOCK_FOR_INSN (insn))
6376 if (sched_verbose >= 6)
6377 sel_print ("Not doing rescan: already visited the only successor"
6378 " of block %d\n", old_index);
6379 break;
6381 if (BLOCK_FOR_INSN (insn)->index != old_index
6382 || EDGE_COUNT (bb->succs) != old_succs)
6384 if (sched_verbose >= 6)
6385 sel_print ("Rescan: CFG was simplified below insn %d, block %d\n",
6386 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index);
6387 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6388 goto rescan;
6392 /* Here, RES==1 if original expr was found at least for one of the
6393 successors. After the loop, RES may happen to have zero value
6394 only if at some point the expr searched is present in av_set, but is
6395 not found below. In most cases, this situation is an error.
6396 The exception is when the original operation is blocked by
6397 bookkeeping generated for another fence or for another path in current
6398 move_op. */
6399 gcc_checking_assert (res == 1
6400 || (res == 0
6401 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops, static_params))
6402 || res == -1);
6404 /* Merge data, clean up, etc. */
6405 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6406 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6408 return res;
6412 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6413 is the pointer to the av set with expressions we were looking for,
6414 PATH_P is the pointer to the traversed path. */
6415 static inline void
6416 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6418 ilist_remove (path_p);
6419 av_set_clear (orig_ops_p);
6422 /* The driver function that implements move_op or find_used_regs
6423 functionality dependent whether code_motion_path_driver_INFO is set to
6424 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6425 of code (CFG traversal etc) that are shared among both functions. INSN
6426 is the insn we're starting the search from, ORIG_OPS are the expressions
6427 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6428 parameters of the driver, and STATIC_PARAMS are static parameters of
6429 the caller.
6431 Returns whether original instructions were found. Note that top-level
6432 code_motion_path_driver always returns true. */
6433 static int
6434 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6435 cmpd_local_params_p local_params_in,
6436 void *static_params)
6438 expr_t expr = NULL;
6439 basic_block bb = BLOCK_FOR_INSN (insn);
6440 insn_t first_insn, bb_tail, before_first;
6441 bool removed_last_insn = false;
6443 if (sched_verbose >= 6)
6445 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6446 dump_insn (insn);
6447 sel_print (",");
6448 dump_av_set (orig_ops);
6449 sel_print (")\n");
6452 gcc_assert (orig_ops);
6454 /* If no original operations exist below this insn, return immediately. */
6455 if (is_ineligible_successor (insn, path))
6457 if (sched_verbose >= 6)
6458 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6459 return false;
6462 /* The block can have invalid av set, in which case it was created earlier
6463 during move_op. Return immediately. */
6464 if (sel_bb_head_p (insn))
6466 if (! AV_SET_VALID_P (insn))
6468 if (sched_verbose >= 6)
6469 sel_print ("Returned from block %d as it had invalid av set\n",
6470 bb->index);
6471 return false;
6474 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6476 /* We have already found an original operation on this branch, do not
6477 go any further and just return TRUE here. If we don't stop here,
6478 function can have exponential behavior even on the small code
6479 with many different paths (e.g. with data speculation and
6480 recovery blocks). */
6481 if (sched_verbose >= 6)
6482 sel_print ("Block %d already visited in this traversal\n", bb->index);
6483 if (code_motion_path_driver_info->on_enter)
6484 return code_motion_path_driver_info->on_enter (insn,
6485 local_params_in,
6486 static_params,
6487 true);
6491 if (code_motion_path_driver_info->on_enter)
6492 code_motion_path_driver_info->on_enter (insn, local_params_in,
6493 static_params, false);
6494 orig_ops = av_set_copy (orig_ops);
6496 /* Filter the orig_ops set. */
6497 if (AV_SET_VALID_P (insn))
6498 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6500 /* If no more original ops, return immediately. */
6501 if (!orig_ops)
6503 if (sched_verbose >= 6)
6504 sel_print ("No intersection with av set of block %d\n", bb->index);
6505 return false;
6508 /* For non-speculative insns we have to leave only one form of the
6509 original operation, because if we don't, we may end up with
6510 different C_EXPRes and, consequently, with bookkeepings for different
6511 expression forms along the same code motion path. That may lead to
6512 generation of incorrect code. So for each code motion we stick to
6513 the single form of the instruction, except for speculative insns
6514 which we need to keep in different forms with all speculation
6515 types. */
6516 av_set_leave_one_nonspec (&orig_ops);
6518 /* It is not possible that all ORIG_OPS are filtered out. */
6519 gcc_assert (orig_ops);
6521 /* It is enough to place only heads and tails of visited basic blocks into
6522 the PATH. */
6523 ilist_add (&path, insn);
6524 first_insn = insn;
6525 bb_tail = sel_bb_end (bb);
6527 /* Descend the basic block in search of the original expr; this part
6528 corresponds to the part of the original move_op procedure executed
6529 before the recursive call. */
6530 for (;;)
6532 /* Look at the insn and decide if it could be an ancestor of currently
6533 scheduling operation. If it is so, then the insn "dest = op" could
6534 either be replaced with "dest = reg", because REG now holds the result
6535 of OP, or just removed, if we've scheduled the insn as a whole.
6537 If this insn doesn't contain currently scheduling OP, then proceed
6538 with searching and look at its successors. Operations we're searching
6539 for could have changed when moving up through this insn via
6540 substituting. In this case, perform unsubstitution on them first.
6542 When traversing the DAG below this insn is finished, insert
6543 bookkeeping code, if the insn is a joint point, and remove
6544 leftovers. */
6546 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6547 if (expr)
6549 insn_t last_insn = PREV_INSN (insn);
6551 /* We have found the original operation. */
6552 if (sched_verbose >= 6)
6553 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6555 code_motion_path_driver_info->orig_expr_found
6556 (insn, expr, local_params_in, static_params);
6558 /* Step back, so on the way back we'll start traversing from the
6559 previous insn (or we'll see that it's bb_note and skip that
6560 loop). */
6561 if (insn == first_insn)
6563 first_insn = NEXT_INSN (last_insn);
6564 removed_last_insn = sel_bb_end_p (last_insn);
6566 insn = last_insn;
6567 break;
6569 else
6571 /* We haven't found the original expr, continue descending the basic
6572 block. */
6573 if (code_motion_path_driver_info->orig_expr_not_found
6574 (insn, orig_ops, static_params))
6576 /* Av set ops could have been changed when moving through this
6577 insn. To find them below it, we have to un-substitute them. */
6578 undo_transformations (&orig_ops, insn);
6580 else
6582 /* Clean up and return, if the hook tells us to do so. It may
6583 happen if we've encountered the previously created
6584 bookkeeping. */
6585 code_motion_path_driver_cleanup (&orig_ops, &path);
6586 return -1;
6589 gcc_assert (orig_ops);
6592 /* Stop at insn if we got to the end of BB. */
6593 if (insn == bb_tail)
6594 break;
6596 insn = NEXT_INSN (insn);
6599 /* Here INSN either points to the insn before the original insn (may be
6600 bb_note, if original insn was a bb_head) or to the bb_end. */
6601 if (!expr)
6603 int res;
6604 rtx_insn *last_insn = PREV_INSN (insn);
6605 bool added_to_path;
6607 gcc_assert (insn == sel_bb_end (bb));
6609 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6610 it's already in PATH then). */
6611 if (insn != first_insn)
6613 ilist_add (&path, insn);
6614 added_to_path = true;
6616 else
6617 added_to_path = false;
6619 /* Process_successors should be able to find at least one
6620 successor for which code_motion_path_driver returns TRUE. */
6621 res = code_motion_process_successors (insn, orig_ops,
6622 path, static_params);
6624 /* Jump in the end of basic block could have been removed or replaced
6625 during code_motion_process_successors, so recompute insn as the
6626 last insn in bb. */
6627 if (NEXT_INSN (last_insn) != insn)
6629 insn = sel_bb_end (bb);
6630 first_insn = sel_bb_head (bb);
6633 /* Remove bb tail from path. */
6634 if (added_to_path)
6635 ilist_remove (&path);
6637 if (res != 1)
6639 /* This is the case when one of the original expr is no longer available
6640 due to bookkeeping created on this branch with the same register.
6641 In the original algorithm, which doesn't have update_data_sets call
6642 on a bookkeeping block, it would simply result in returning
6643 FALSE when we've encountered a previously generated bookkeeping
6644 insn in moveop_orig_expr_not_found. */
6645 code_motion_path_driver_cleanup (&orig_ops, &path);
6646 return res;
6650 /* Don't need it any more. */
6651 av_set_clear (&orig_ops);
6653 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6654 the beginning of the basic block. */
6655 before_first = PREV_INSN (first_insn);
6656 while (insn != before_first)
6658 if (code_motion_path_driver_info->ascend)
6659 code_motion_path_driver_info->ascend (insn, static_params);
6661 insn = PREV_INSN (insn);
6664 /* Now we're at the bb head. */
6665 insn = first_insn;
6666 ilist_remove (&path);
6667 local_params_in->removed_last_insn = removed_last_insn;
6668 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6670 /* This should be the very last operation as at bb head we could change
6671 the numbering by creating bookkeeping blocks. */
6672 if (removed_last_insn)
6673 insn = PREV_INSN (insn);
6675 /* If we have simplified the control flow and removed the first jump insn,
6676 there's no point in marking this block in the visited blocks bitmap. */
6677 if (BLOCK_FOR_INSN (insn))
6678 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6679 return true;
6682 /* Move up the operations from ORIG_OPS set traversing the dag starting
6683 from INSN. PATH represents the edges traversed so far.
6684 DEST is the register chosen for scheduling the current expr. Insert
6685 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6686 C_EXPR is how it looks like at the given cfg point.
6687 Set *SHOULD_MOVE to indicate whether we have only disconnected
6688 one of the insns found.
6690 Returns whether original instructions were found, which is asserted
6691 to be true in the caller. */
6692 static bool
6693 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6694 rtx dest, expr_t c_expr, bool *should_move)
6696 struct moveop_static_params sparams;
6697 struct cmpd_local_params lparams;
6698 int res;
6700 /* Init params for code_motion_path_driver. */
6701 sparams.dest = dest;
6702 sparams.c_expr = c_expr;
6703 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6704 sparams.failed_insn = NULL;
6705 sparams.was_renamed = false;
6706 lparams.e1 = NULL;
6708 /* We haven't visited any blocks yet. */
6709 bitmap_clear (code_motion_visited_blocks);
6711 /* Set appropriate hooks and data. */
6712 code_motion_path_driver_info = &move_op_hooks;
6713 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6715 gcc_assert (res != -1);
6717 if (sparams.was_renamed)
6718 EXPR_WAS_RENAMED (expr_vliw) = true;
6720 *should_move = (sparams.uid == -1);
6722 return res;
6726 /* Functions that work with regions. */
6728 /* Current number of seqno used in init_seqno and init_seqno_1. */
6729 static int cur_seqno;
6731 /* A helper for init_seqno. Traverse the region starting from BB and
6732 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6733 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6734 static void
6735 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6737 int bbi = BLOCK_TO_BB (bb->index);
6738 insn_t insn;
6739 insn_t succ_insn;
6740 succ_iterator si;
6742 rtx_note *note = bb_note (bb);
6743 bitmap_set_bit (visited_bbs, bbi);
6744 if (blocks_to_reschedule)
6745 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6747 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6748 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6750 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6751 int succ_bbi = BLOCK_TO_BB (succ->index);
6753 gcc_assert (in_current_region_p (succ));
6755 if (!bitmap_bit_p (visited_bbs, succ_bbi))
6757 gcc_assert (succ_bbi > bbi);
6759 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6761 else if (blocks_to_reschedule)
6762 bitmap_set_bit (forced_ebb_heads, succ->index);
6765 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6766 INSN_SEQNO (insn) = cur_seqno--;
6769 /* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6770 blocks on which we're rescheduling when pipelining, FROM is the block where
6771 traversing region begins (it may not be the head of the region when
6772 pipelining, but the head of the loop instead).
6774 Returns the maximal seqno found. */
6775 static int
6776 init_seqno (bitmap blocks_to_reschedule, basic_block from)
6778 bitmap_iterator bi;
6779 unsigned bbi;
6781 auto_sbitmap visited_bbs (current_nr_blocks);
6783 if (blocks_to_reschedule)
6785 bitmap_ones (visited_bbs);
6786 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6788 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6789 bitmap_clear_bit (visited_bbs, BLOCK_TO_BB (bbi));
6792 else
6794 bitmap_clear (visited_bbs);
6795 from = EBB_FIRST_BB (0);
6798 cur_seqno = sched_max_luid - 1;
6799 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6801 /* cur_seqno may be positive if the number of instructions is less than
6802 sched_max_luid - 1 (when rescheduling or if some instructions have been
6803 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6804 gcc_assert (cur_seqno >= 0);
6806 return sched_max_luid - 1;
6809 /* Initialize scheduling parameters for current region. */
6810 static void
6811 sel_setup_region_sched_flags (void)
6813 enable_schedule_as_rhs_p = 1;
6814 bookkeeping_p = 1;
6815 pipelining_p = (bookkeeping_p
6816 && (flag_sel_sched_pipelining != 0)
6817 && current_loop_nest != NULL
6818 && loop_has_exit_edges (current_loop_nest));
6819 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6820 max_ws = MAX_WS;
6823 /* Return true if all basic blocks of current region are empty. */
6824 static bool
6825 current_region_empty_p (void)
6827 int i;
6828 for (i = 0; i < current_nr_blocks; i++)
6829 if (! sel_bb_empty_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))))
6830 return false;
6832 return true;
6835 /* Prepare and verify loop nest for pipelining. */
6836 static void
6837 setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6839 current_loop_nest = get_loop_nest_for_rgn (rgn);
6841 if (!current_loop_nest)
6842 return;
6844 /* If this loop has any saved loop preheaders from nested loops,
6845 add these basic blocks to the current region. */
6846 sel_add_loop_preheaders (bbs);
6848 /* Check that we're starting with a valid information. */
6849 gcc_assert (loop_latch_edge (current_loop_nest));
6850 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6853 /* Compute instruction priorities for current region. */
6854 static void
6855 sel_compute_priorities (int rgn)
6857 sched_rgn_compute_dependencies (rgn);
6859 /* Compute insn priorities in haifa style. Then free haifa style
6860 dependencies that we've calculated for this. */
6861 compute_priorities ();
6863 if (sched_verbose >= 5)
6864 debug_rgn_dependencies (0);
6866 free_rgn_deps ();
6869 /* Init scheduling data for RGN. Returns true when this region should not
6870 be scheduled. */
6871 static bool
6872 sel_region_init (int rgn)
6874 int i;
6875 bb_vec_t bbs;
6877 rgn_setup_region (rgn);
6879 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6880 do region initialization here so the region can be bundled correctly,
6881 but we'll skip the scheduling in sel_sched_region (). */
6882 if (current_region_empty_p ())
6883 return true;
6885 bbs.create (current_nr_blocks);
6887 for (i = 0; i < current_nr_blocks; i++)
6888 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
6890 sel_init_bbs (bbs);
6892 if (flag_sel_sched_pipelining)
6893 setup_current_loop_nest (rgn, &bbs);
6895 sel_setup_region_sched_flags ();
6897 /* Initialize luids and dependence analysis which both sel-sched and haifa
6898 need. */
6899 sched_init_luids (bbs);
6900 sched_deps_init (false);
6902 /* Initialize haifa data. */
6903 rgn_setup_sched_infos ();
6904 sel_set_sched_flags ();
6905 haifa_init_h_i_d (bbs);
6907 sel_compute_priorities (rgn);
6908 init_deps_global ();
6910 /* Main initialization. */
6911 sel_setup_sched_infos ();
6912 sel_init_global_and_expr (bbs);
6914 bbs.release ();
6916 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6918 /* Init correct liveness sets on each instruction of a single-block loop.
6919 This is the only situation when we can't update liveness when calling
6920 compute_live for the first insn of the loop. */
6921 if (current_loop_nest)
6923 int header =
6924 (sel_is_loop_preheader_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (0)))
6926 : 0);
6928 if (current_nr_blocks == header + 1)
6929 update_liveness_on_insn
6930 (sel_bb_head (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (header))));
6933 /* Set hooks so that no newly generated insn will go out unnoticed. */
6934 sel_register_cfg_hooks ();
6936 /* !!! We call target.sched.init () for the whole region, but we invoke
6937 targetm.sched.finish () for every ebb. */
6938 if (targetm.sched.init)
6939 /* None of the arguments are actually used in any target. */
6940 targetm.sched.init (sched_dump, sched_verbose, -1);
6942 first_emitted_uid = get_max_uid () + 1;
6943 preheader_removed = false;
6945 /* Reset register allocation ticks array. */
6946 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6947 reg_rename_this_tick = 0;
6949 bitmap_initialize (forced_ebb_heads, 0);
6950 bitmap_clear (forced_ebb_heads);
6952 setup_nop_vinsn ();
6953 current_copies = BITMAP_ALLOC (NULL);
6954 current_originators = BITMAP_ALLOC (NULL);
6955 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6957 return false;
6960 /* Simplify insns after the scheduling. */
6961 static void
6962 simplify_changed_insns (void)
6964 int i;
6966 for (i = 0; i < current_nr_blocks; i++)
6968 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6969 rtx_insn *insn;
6971 FOR_BB_INSNS (bb, insn)
6972 if (INSN_P (insn))
6974 expr_t expr = INSN_EXPR (insn);
6976 if (EXPR_WAS_SUBSTITUTED (expr))
6977 validate_simplify_insn (insn);
6982 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6983 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6984 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6985 static void
6986 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6988 rtx_insn *head, *tail;
6989 basic_block bb1 = bb;
6990 if (sched_verbose >= 2)
6991 sel_print ("Finishing schedule in bbs: ");
6995 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6997 if (sched_verbose >= 2)
6998 sel_print ("%d; ", bb1->index);
7000 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
7002 if (sched_verbose >= 2)
7003 sel_print ("\n");
7005 get_ebb_head_tail (bb, bb1, &head, &tail);
7007 current_sched_info->head = head;
7008 current_sched_info->tail = tail;
7009 current_sched_info->prev_head = PREV_INSN (head);
7010 current_sched_info->next_tail = NEXT_INSN (tail);
7013 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
7014 static void
7015 reset_sched_cycles_in_current_ebb (void)
7017 int last_clock = 0;
7018 int haifa_last_clock = -1;
7019 int haifa_clock = 0;
7020 int issued_insns = 0;
7021 insn_t insn;
7023 if (targetm.sched.init)
7025 /* None of the arguments are actually used in any target.
7026 NB: We should have md_reset () hook for cases like this. */
7027 targetm.sched.init (sched_dump, sched_verbose, -1);
7030 state_reset (curr_state);
7031 advance_state (curr_state);
7033 for (insn = current_sched_info->head;
7034 insn != current_sched_info->next_tail;
7035 insn = NEXT_INSN (insn))
7037 int cost, haifa_cost;
7038 int sort_p;
7039 bool asm_p, real_insn, after_stall, all_issued;
7040 int clock;
7042 if (!INSN_P (insn))
7043 continue;
7045 asm_p = false;
7046 real_insn = recog_memoized (insn) >= 0;
7047 clock = INSN_SCHED_CYCLE (insn);
7049 cost = clock - last_clock;
7051 /* Initialize HAIFA_COST. */
7052 if (! real_insn)
7054 asm_p = INSN_ASM_P (insn);
7056 if (asm_p)
7057 /* This is asm insn which *had* to be scheduled first
7058 on the cycle. */
7059 haifa_cost = 1;
7060 else
7061 /* This is a use/clobber insn. It should not change
7062 cost. */
7063 haifa_cost = 0;
7065 else
7066 haifa_cost = estimate_insn_cost (insn, curr_state);
7068 /* Stall for whatever cycles we've stalled before. */
7069 after_stall = 0;
7070 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7072 haifa_cost = cost;
7073 after_stall = 1;
7075 all_issued = issued_insns == issue_rate;
7076 if (haifa_cost == 0 && all_issued)
7077 haifa_cost = 1;
7078 if (haifa_cost > 0)
7080 int i = 0;
7082 while (haifa_cost--)
7084 advance_state (curr_state);
7085 issued_insns = 0;
7086 i++;
7088 if (sched_verbose >= 2)
7090 sel_print ("advance_state (state_transition)\n");
7091 debug_state (curr_state);
7094 /* The DFA may report that e.g. insn requires 2 cycles to be
7095 issued, but on the next cycle it says that insn is ready
7096 to go. Check this here. */
7097 if (!after_stall
7098 && real_insn
7099 && haifa_cost > 0
7100 && estimate_insn_cost (insn, curr_state) == 0)
7101 break;
7103 /* When the data dependency stall is longer than the DFA stall,
7104 and when we have issued exactly issue_rate insns and stalled,
7105 it could be that after this longer stall the insn will again
7106 become unavailable to the DFA restrictions. Looks strange
7107 but happens e.g. on x86-64. So recheck DFA on the last
7108 iteration. */
7109 if ((after_stall || all_issued)
7110 && real_insn
7111 && haifa_cost == 0)
7112 haifa_cost = estimate_insn_cost (insn, curr_state);
7115 haifa_clock += i;
7116 if (sched_verbose >= 2)
7117 sel_print ("haifa clock: %d\n", haifa_clock);
7119 else
7120 gcc_assert (haifa_cost == 0);
7122 if (sched_verbose >= 2)
7123 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7125 if (targetm.sched.dfa_new_cycle)
7126 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7127 haifa_last_clock, haifa_clock,
7128 &sort_p))
7130 advance_state (curr_state);
7131 issued_insns = 0;
7132 haifa_clock++;
7133 if (sched_verbose >= 2)
7135 sel_print ("advance_state (dfa_new_cycle)\n");
7136 debug_state (curr_state);
7137 sel_print ("haifa clock: %d\n", haifa_clock + 1);
7141 if (real_insn)
7143 static state_t temp = NULL;
7145 if (!temp)
7146 temp = xmalloc (dfa_state_size);
7147 memcpy (temp, curr_state, dfa_state_size);
7149 cost = state_transition (curr_state, insn);
7150 if (memcmp (temp, curr_state, dfa_state_size))
7151 issued_insns++;
7153 if (sched_verbose >= 2)
7155 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7156 haifa_clock + 1);
7157 debug_state (curr_state);
7159 gcc_assert (cost < 0);
7162 if (targetm.sched.variable_issue)
7163 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7165 INSN_SCHED_CYCLE (insn) = haifa_clock;
7167 last_clock = clock;
7168 haifa_last_clock = haifa_clock;
7172 /* Put TImode markers on insns starting a new issue group. */
7173 static void
7174 put_TImodes (void)
7176 int last_clock = -1;
7177 insn_t insn;
7179 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7180 insn = NEXT_INSN (insn))
7182 int cost, clock;
7184 if (!INSN_P (insn))
7185 continue;
7187 clock = INSN_SCHED_CYCLE (insn);
7188 cost = (last_clock == -1) ? 1 : clock - last_clock;
7190 gcc_assert (cost >= 0);
7192 if (issue_rate > 1
7193 && GET_CODE (PATTERN (insn)) != USE
7194 && GET_CODE (PATTERN (insn)) != CLOBBER)
7196 if (reload_completed && cost > 0)
7197 PUT_MODE (insn, TImode);
7199 last_clock = clock;
7202 if (sched_verbose >= 2)
7203 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7207 /* Perform MD_FINISH on EBBs comprising current region. When
7208 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7209 to produce correct sched cycles on insns. */
7210 static void
7211 sel_region_target_finish (bool reset_sched_cycles_p)
7213 int i;
7214 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7216 for (i = 0; i < current_nr_blocks; i++)
7218 if (bitmap_bit_p (scheduled_blocks, i))
7219 continue;
7221 /* While pipelining outer loops, skip bundling for loop
7222 preheaders. Those will be rescheduled in the outer loop. */
7223 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7224 continue;
7226 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7228 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7229 continue;
7231 if (reset_sched_cycles_p)
7232 reset_sched_cycles_in_current_ebb ();
7234 if (targetm.sched.init)
7235 targetm.sched.init (sched_dump, sched_verbose, -1);
7237 put_TImodes ();
7239 if (targetm.sched.finish)
7241 targetm.sched.finish (sched_dump, sched_verbose);
7243 /* Extend luids so that insns generated by the target will
7244 get zero luid. */
7245 sched_extend_luids ();
7249 BITMAP_FREE (scheduled_blocks);
7252 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7253 is true, make an additional pass emulating scheduler to get correct insn
7254 cycles for md_finish calls. */
7255 static void
7256 sel_region_finish (bool reset_sched_cycles_p)
7258 simplify_changed_insns ();
7259 sched_finish_ready_list ();
7260 free_nop_pool ();
7262 /* Free the vectors. */
7263 vec_av_set.release ();
7264 BITMAP_FREE (current_copies);
7265 BITMAP_FREE (current_originators);
7266 BITMAP_FREE (code_motion_visited_blocks);
7267 vinsn_vec_free (vec_bookkeeping_blocked_vinsns);
7268 vinsn_vec_free (vec_target_unavailable_vinsns);
7270 /* If LV_SET of the region head should be updated, do it now because
7271 there will be no other chance. */
7273 succ_iterator si;
7274 insn_t insn;
7276 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7277 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7279 basic_block bb = BLOCK_FOR_INSN (insn);
7281 if (!BB_LV_SET_VALID_P (bb))
7282 compute_live (insn);
7286 /* Emulate the Haifa scheduler for bundling. */
7287 if (reload_completed)
7288 sel_region_target_finish (reset_sched_cycles_p);
7290 sel_finish_global_and_expr ();
7292 bitmap_clear (forced_ebb_heads);
7294 free_nop_vinsn ();
7296 finish_deps_global ();
7297 sched_finish_luids ();
7298 h_d_i_d.release ();
7300 sel_finish_bbs ();
7301 BITMAP_FREE (blocks_to_reschedule);
7303 sel_unregister_cfg_hooks ();
7305 max_issue_size = 0;
7309 /* Functions that implement the scheduler driver. */
7311 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7312 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7313 of insns scheduled -- these would be postprocessed later. */
7314 static void
7315 schedule_on_fences (flist_t fences, int max_seqno,
7316 ilist_t **scheduled_insns_tailpp)
7318 flist_t old_fences = fences;
7320 if (sched_verbose >= 1)
7322 sel_print ("\nScheduling on fences: ");
7323 dump_flist (fences);
7324 sel_print ("\n");
7327 scheduled_something_on_previous_fence = false;
7328 for (; fences; fences = FLIST_NEXT (fences))
7330 fence_t fence = NULL;
7331 int seqno = 0;
7332 flist_t fences2;
7333 bool first_p = true;
7335 /* Choose the next fence group to schedule.
7336 The fact that insn can be scheduled only once
7337 on the cycle is guaranteed by two properties:
7338 1. seqnos of parallel groups decrease with each iteration.
7339 2. If is_ineligible_successor () sees the larger seqno, it
7340 checks if candidate insn is_in_current_fence_p (). */
7341 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7343 fence_t f = FLIST_FENCE (fences2);
7345 if (!FENCE_PROCESSED_P (f))
7347 int i = INSN_SEQNO (FENCE_INSN (f));
7349 if (first_p || i > seqno)
7351 seqno = i;
7352 fence = f;
7353 first_p = false;
7355 else
7356 /* ??? Seqnos of different groups should be different. */
7357 gcc_assert (1 || i != seqno);
7361 gcc_assert (fence);
7363 /* As FENCE is nonnull, SEQNO is initialized. */
7364 seqno -= max_seqno + 1;
7365 fill_insns (fence, seqno, scheduled_insns_tailpp);
7366 FENCE_PROCESSED_P (fence) = true;
7369 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7370 don't need to keep bookkeeping-invalidated and target-unavailable
7371 vinsns any more. */
7372 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7373 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7376 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7377 static void
7378 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7380 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7382 /* The first element is already processed. */
7383 while ((fences = FLIST_NEXT (fences)))
7385 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7387 if (*min_seqno > seqno)
7388 *min_seqno = seqno;
7389 else if (*max_seqno < seqno)
7390 *max_seqno = seqno;
7394 /* Calculate new fences from FENCES. Write the current time to PTIME. */
7395 static flist_t
7396 calculate_new_fences (flist_t fences, int orig_max_seqno, int *ptime)
7398 flist_t old_fences = fences;
7399 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7400 int max_time = 0;
7402 flist_tail_init (new_fences);
7403 for (; fences; fences = FLIST_NEXT (fences))
7405 fence_t fence = FLIST_FENCE (fences);
7406 insn_t insn;
7408 if (!FENCE_BNDS (fence))
7410 /* This fence doesn't have any successors. */
7411 if (!FENCE_SCHEDULED_P (fence))
7413 /* Nothing was scheduled on this fence. */
7414 int seqno;
7416 insn = FENCE_INSN (fence);
7417 seqno = INSN_SEQNO (insn);
7418 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7420 if (sched_verbose >= 1)
7421 sel_print ("Fence %d[%d] has not changed\n",
7422 INSN_UID (insn),
7423 BLOCK_NUM (insn));
7424 move_fence_to_fences (fences, new_fences);
7427 else
7428 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7429 max_time = MAX (max_time, FENCE_CYCLE (fence));
7432 flist_clear (&old_fences);
7433 *ptime = max_time;
7434 return FLIST_TAIL_HEAD (new_fences);
7437 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7438 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7439 the highest seqno used in a region. Return the updated highest seqno. */
7440 static int
7441 update_seqnos_and_stage (int min_seqno, int max_seqno,
7442 int highest_seqno_in_use,
7443 ilist_t *pscheduled_insns)
7445 int new_hs;
7446 ilist_iterator ii;
7447 insn_t insn;
7449 /* Actually, new_hs is the seqno of the instruction, that was
7450 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7451 if (*pscheduled_insns)
7453 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7454 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7455 gcc_assert (new_hs > highest_seqno_in_use);
7457 else
7458 new_hs = highest_seqno_in_use;
7460 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7462 gcc_assert (INSN_SEQNO (insn) < 0);
7463 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7464 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7466 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7467 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7468 require > 1GB of memory e.g. on limit-fnargs.c. */
7469 if (! pipelining_p)
7470 free_data_for_scheduled_insn (insn);
7473 ilist_clear (pscheduled_insns);
7474 global_level++;
7476 return new_hs;
7479 /* The main driver for scheduling a region. This function is responsible
7480 for correct propagation of fences (i.e. scheduling points) and creating
7481 a group of parallel insns at each of them. It also supports
7482 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7483 of scheduling. */
7484 static void
7485 sel_sched_region_2 (int orig_max_seqno)
7487 int highest_seqno_in_use = orig_max_seqno;
7488 int max_time = 0;
7490 stat_bookkeeping_copies = 0;
7491 stat_insns_needed_bookkeeping = 0;
7492 stat_renamed_scheduled = 0;
7493 stat_substitutions_total = 0;
7494 num_insns_scheduled = 0;
7496 while (fences)
7498 int min_seqno, max_seqno;
7499 ilist_t scheduled_insns = NULL;
7500 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7502 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7503 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7504 fences = calculate_new_fences (fences, orig_max_seqno, &max_time);
7505 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7506 highest_seqno_in_use,
7507 &scheduled_insns);
7510 if (sched_verbose >= 1)
7512 sel_print ("Total scheduling time: %d cycles\n", max_time);
7513 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7514 "bookkeeping, %d insns renamed, %d insns substituted\n",
7515 stat_bookkeeping_copies,
7516 stat_insns_needed_bookkeeping,
7517 stat_renamed_scheduled,
7518 stat_substitutions_total);
7522 /* Schedule a region. When pipelining, search for possibly never scheduled
7523 bookkeeping code and schedule it. Reschedule pipelined code without
7524 pipelining after. */
7525 static void
7526 sel_sched_region_1 (void)
7528 int orig_max_seqno;
7530 /* Remove empty blocks that might be in the region from the beginning. */
7531 purge_empty_blocks ();
7533 orig_max_seqno = init_seqno (NULL, NULL);
7534 gcc_assert (orig_max_seqno >= 1);
7536 /* When pipelining outer loops, create fences on the loop header,
7537 not preheader. */
7538 fences = NULL;
7539 if (current_loop_nest)
7540 init_fences (BB_END (EBB_FIRST_BB (0)));
7541 else
7542 init_fences (bb_note (EBB_FIRST_BB (0)));
7543 global_level = 1;
7545 sel_sched_region_2 (orig_max_seqno);
7547 gcc_assert (fences == NULL);
7549 if (pipelining_p)
7551 int i;
7552 basic_block bb;
7553 struct flist_tail_def _new_fences;
7554 flist_tail_t new_fences = &_new_fences;
7555 bool do_p = true;
7557 pipelining_p = false;
7558 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7559 bookkeeping_p = false;
7560 enable_schedule_as_rhs_p = false;
7562 /* Schedule newly created code, that has not been scheduled yet. */
7563 do_p = true;
7565 while (do_p)
7567 do_p = false;
7569 for (i = 0; i < current_nr_blocks; i++)
7571 basic_block bb = EBB_FIRST_BB (i);
7573 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7575 if (! bb_ends_ebb_p (bb))
7576 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7577 if (sel_bb_empty_p (bb))
7579 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7580 continue;
7582 clear_outdated_rtx_info (bb);
7583 if (sel_insn_is_speculation_check (BB_END (bb))
7584 && JUMP_P (BB_END (bb)))
7585 bitmap_set_bit (blocks_to_reschedule,
7586 BRANCH_EDGE (bb)->dest->index);
7588 else if (! sel_bb_empty_p (bb)
7589 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7590 bitmap_set_bit (blocks_to_reschedule, bb->index);
7593 for (i = 0; i < current_nr_blocks; i++)
7595 bb = EBB_FIRST_BB (i);
7597 /* While pipelining outer loops, skip bundling for loop
7598 preheaders. Those will be rescheduled in the outer
7599 loop. */
7600 if (sel_is_loop_preheader_p (bb))
7602 clear_outdated_rtx_info (bb);
7603 continue;
7606 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7608 flist_tail_init (new_fences);
7610 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7612 /* Mark BB as head of the new ebb. */
7613 bitmap_set_bit (forced_ebb_heads, bb->index);
7615 gcc_assert (fences == NULL);
7617 init_fences (bb_note (bb));
7619 sel_sched_region_2 (orig_max_seqno);
7621 do_p = true;
7622 break;
7629 /* Schedule the RGN region. */
7630 void
7631 sel_sched_region (int rgn)
7633 bool schedule_p;
7634 bool reset_sched_cycles_p;
7636 if (sel_region_init (rgn))
7637 return;
7639 if (sched_verbose >= 1)
7640 sel_print ("Scheduling region %d\n", rgn);
7642 schedule_p = (!sched_is_disabled_for_current_region_p ()
7643 && dbg_cnt (sel_sched_region_cnt));
7644 reset_sched_cycles_p = pipelining_p;
7645 if (schedule_p)
7646 sel_sched_region_1 ();
7647 else
7649 /* Schedule always selecting the next insn to make the correct data
7650 for bundling or other later passes. */
7651 pipelining_p = false;
7652 force_next_insn = 1;
7653 sel_sched_region_1 ();
7654 force_next_insn = 0;
7656 reset_sched_cycles_p = pipelining_p;
7657 sel_region_finish (reset_sched_cycles_p);
7660 /* Perform global init for the scheduler. */
7661 static void
7662 sel_global_init (void)
7664 calculate_dominance_info (CDI_DOMINATORS);
7665 alloc_sched_pools ();
7667 /* Setup the infos for sched_init. */
7668 sel_setup_sched_infos ();
7669 setup_sched_dump ();
7671 sched_rgn_init (false);
7672 sched_init ();
7674 sched_init_bbs ();
7675 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7676 after_recovery = 0;
7677 can_issue_more = issue_rate;
7679 sched_extend_target ();
7680 sched_deps_init (true);
7681 setup_nop_and_exit_insns ();
7682 sel_extend_global_bb_info ();
7683 init_lv_sets ();
7684 init_hard_regs_data ();
7687 /* Free the global data of the scheduler. */
7688 static void
7689 sel_global_finish (void)
7691 free_bb_note_pool ();
7692 free_lv_sets ();
7693 sel_finish_global_bb_info ();
7695 free_regset_pool ();
7696 free_nop_and_exit_insns ();
7698 sched_rgn_finish ();
7699 sched_deps_finish ();
7700 sched_finish ();
7702 if (current_loops)
7703 sel_finish_pipelining ();
7705 free_sched_pools ();
7706 free_dominance_info (CDI_DOMINATORS);
7709 /* Return true when we need to skip selective scheduling. Used for debugging. */
7710 bool
7711 maybe_skip_selective_scheduling (void)
7713 return ! dbg_cnt (sel_sched_cnt);
7716 /* The entry point. */
7717 void
7718 run_selective_scheduling (void)
7720 int rgn;
7722 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7723 return;
7725 sel_global_init ();
7727 for (rgn = 0; rgn < nr_regions; rgn++)
7728 sel_sched_region (rgn);
7730 sel_global_finish ();
7733 #endif