1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
28 /* The entry points in this file are fold, size_int_wide and size_binop.
30 fold takes a tree as argument and returns a simplified tree.
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
45 #include "coretypes.h"
54 #include "tree-ssa-operands.h"
55 #include "optabs-query.h"
57 #include "diagnostic-core.h"
60 #include "fold-const.h"
61 #include "fold-const-call.h"
62 #include "stor-layout.h"
64 #include "tree-iterator.h"
67 #include "langhooks.h"
72 #include "generic-match.h"
73 #include "gimple-fold.h"
75 #include "tree-into-ssa.h"
77 #include "case-cfn-macros.h"
78 #include "stringpool.h"
80 #include "tree-ssanames.h"
82 #include "stringpool.h"
84 #include "tree-vector-builder.h"
85 #include "vec-perm-indices.h"
87 /* Nonzero if we are folding constants inside an initializer; zero
89 int folding_initializer
= 0;
91 /* The following constants represent a bit based encoding of GCC's
92 comparison operators. This encoding simplifies transformations
93 on relational comparison operators, such as AND and OR. */
94 enum comparison_code
{
113 static bool negate_expr_p (tree
);
114 static tree
negate_expr (tree
);
115 static tree
associate_trees (location_t
, tree
, tree
, enum tree_code
, tree
);
116 static enum comparison_code
comparison_to_compcode (enum tree_code
);
117 static enum tree_code
compcode_to_comparison (enum comparison_code
);
118 static int twoval_comparison_p (tree
, tree
*, tree
*);
119 static tree
eval_subst (location_t
, tree
, tree
, tree
, tree
, tree
);
120 static tree
optimize_bit_field_compare (location_t
, enum tree_code
,
122 static int simple_operand_p (const_tree
);
123 static bool simple_operand_p_2 (tree
);
124 static tree
range_binop (enum tree_code
, tree
, tree
, int, tree
, int);
125 static tree
range_predecessor (tree
);
126 static tree
range_successor (tree
);
127 static tree
fold_range_test (location_t
, enum tree_code
, tree
, tree
, tree
);
128 static tree
fold_cond_expr_with_comparison (location_t
, tree
, tree
, tree
, tree
);
129 static tree
unextend (tree
, int, int, tree
);
130 static tree
extract_muldiv (tree
, tree
, enum tree_code
, tree
, bool *);
131 static tree
extract_muldiv_1 (tree
, tree
, enum tree_code
, tree
, bool *);
132 static tree
fold_binary_op_with_conditional_arg (location_t
,
133 enum tree_code
, tree
,
136 static tree
fold_negate_const (tree
, tree
);
137 static tree
fold_not_const (const_tree
, tree
);
138 static tree
fold_relational_const (enum tree_code
, tree
, tree
, tree
);
139 static tree
fold_convert_const (enum tree_code
, tree
, tree
);
140 static tree
fold_view_convert_expr (tree
, tree
);
141 static tree
fold_negate_expr (location_t
, tree
);
144 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
145 Otherwise, return LOC. */
148 expr_location_or (tree t
, location_t loc
)
150 location_t tloc
= EXPR_LOCATION (t
);
151 return tloc
== UNKNOWN_LOCATION
? loc
: tloc
;
154 /* Similar to protected_set_expr_location, but never modify x in place,
155 if location can and needs to be set, unshare it. */
158 protected_set_expr_location_unshare (tree x
, location_t loc
)
160 if (CAN_HAVE_LOCATION_P (x
)
161 && EXPR_LOCATION (x
) != loc
162 && !(TREE_CODE (x
) == SAVE_EXPR
163 || TREE_CODE (x
) == TARGET_EXPR
164 || TREE_CODE (x
) == BIND_EXPR
))
167 SET_EXPR_LOCATION (x
, loc
);
172 /* If ARG2 divides ARG1 with zero remainder, carries out the exact
173 division and returns the quotient. Otherwise returns
177 div_if_zero_remainder (const_tree arg1
, const_tree arg2
)
181 if (wi::multiple_of_p (wi::to_widest (arg1
), wi::to_widest (arg2
),
183 return wide_int_to_tree (TREE_TYPE (arg1
), quo
);
188 /* This is nonzero if we should defer warnings about undefined
189 overflow. This facility exists because these warnings are a
190 special case. The code to estimate loop iterations does not want
191 to issue any warnings, since it works with expressions which do not
192 occur in user code. Various bits of cleanup code call fold(), but
193 only use the result if it has certain characteristics (e.g., is a
194 constant); that code only wants to issue a warning if the result is
197 static int fold_deferring_overflow_warnings
;
199 /* If a warning about undefined overflow is deferred, this is the
200 warning. Note that this may cause us to turn two warnings into
201 one, but that is fine since it is sufficient to only give one
202 warning per expression. */
204 static const char* fold_deferred_overflow_warning
;
206 /* If a warning about undefined overflow is deferred, this is the
207 level at which the warning should be emitted. */
209 static enum warn_strict_overflow_code fold_deferred_overflow_code
;
211 /* Start deferring overflow warnings. We could use a stack here to
212 permit nested calls, but at present it is not necessary. */
215 fold_defer_overflow_warnings (void)
217 ++fold_deferring_overflow_warnings
;
220 /* Stop deferring overflow warnings. If there is a pending warning,
221 and ISSUE is true, then issue the warning if appropriate. STMT is
222 the statement with which the warning should be associated (used for
223 location information); STMT may be NULL. CODE is the level of the
224 warning--a warn_strict_overflow_code value. This function will use
225 the smaller of CODE and the deferred code when deciding whether to
226 issue the warning. CODE may be zero to mean to always use the
230 fold_undefer_overflow_warnings (bool issue
, const gimple
*stmt
, int code
)
235 gcc_assert (fold_deferring_overflow_warnings
> 0);
236 --fold_deferring_overflow_warnings
;
237 if (fold_deferring_overflow_warnings
> 0)
239 if (fold_deferred_overflow_warning
!= NULL
241 && code
< (int) fold_deferred_overflow_code
)
242 fold_deferred_overflow_code
= (enum warn_strict_overflow_code
) code
;
246 warnmsg
= fold_deferred_overflow_warning
;
247 fold_deferred_overflow_warning
= NULL
;
249 if (!issue
|| warnmsg
== NULL
)
252 if (gimple_no_warning_p (stmt
))
255 /* Use the smallest code level when deciding to issue the
257 if (code
== 0 || code
> (int) fold_deferred_overflow_code
)
258 code
= fold_deferred_overflow_code
;
260 if (!issue_strict_overflow_warning (code
))
264 locus
= input_location
;
266 locus
= gimple_location (stmt
);
267 warning_at (locus
, OPT_Wstrict_overflow
, "%s", warnmsg
);
270 /* Stop deferring overflow warnings, ignoring any deferred
274 fold_undefer_and_ignore_overflow_warnings (void)
276 fold_undefer_overflow_warnings (false, NULL
, 0);
279 /* Whether we are deferring overflow warnings. */
282 fold_deferring_overflow_warnings_p (void)
284 return fold_deferring_overflow_warnings
> 0;
287 /* This is called when we fold something based on the fact that signed
288 overflow is undefined. */
291 fold_overflow_warning (const char* gmsgid
, enum warn_strict_overflow_code wc
)
293 if (fold_deferring_overflow_warnings
> 0)
295 if (fold_deferred_overflow_warning
== NULL
296 || wc
< fold_deferred_overflow_code
)
298 fold_deferred_overflow_warning
= gmsgid
;
299 fold_deferred_overflow_code
= wc
;
302 else if (issue_strict_overflow_warning (wc
))
303 warning (OPT_Wstrict_overflow
, gmsgid
);
306 /* Return true if the built-in mathematical function specified by CODE
307 is odd, i.e. -f(x) == f(-x). */
310 negate_mathfn_p (combined_fn fn
)
343 return !flag_rounding_math
;
351 /* Check whether we may negate an integer constant T without causing
355 may_negate_without_overflow_p (const_tree t
)
359 gcc_assert (TREE_CODE (t
) == INTEGER_CST
);
361 type
= TREE_TYPE (t
);
362 if (TYPE_UNSIGNED (type
))
365 return !wi::only_sign_bit_p (wi::to_wide (t
));
368 /* Determine whether an expression T can be cheaply negated using
369 the function negate_expr without introducing undefined overflow. */
372 negate_expr_p (tree t
)
379 type
= TREE_TYPE (t
);
382 switch (TREE_CODE (t
))
385 if (INTEGRAL_TYPE_P (type
) && TYPE_UNSIGNED (type
))
388 /* Check that -CST will not overflow type. */
389 return may_negate_without_overflow_p (t
);
391 return (INTEGRAL_TYPE_P (type
)
392 && TYPE_OVERFLOW_WRAPS (type
));
398 return !TYPE_OVERFLOW_SANITIZED (type
);
401 /* We want to canonicalize to positive real constants. Pretend
402 that only negative ones can be easily negated. */
403 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t
));
406 return negate_expr_p (TREE_REALPART (t
))
407 && negate_expr_p (TREE_IMAGPART (t
));
411 if (FLOAT_TYPE_P (TREE_TYPE (type
)) || TYPE_OVERFLOW_WRAPS (type
))
414 /* Steps don't prevent negation. */
415 unsigned int count
= vector_cst_encoded_nelts (t
);
416 for (unsigned int i
= 0; i
< count
; ++i
)
417 if (!negate_expr_p (VECTOR_CST_ENCODED_ELT (t
, i
)))
424 return negate_expr_p (TREE_OPERAND (t
, 0))
425 && negate_expr_p (TREE_OPERAND (t
, 1));
428 return negate_expr_p (TREE_OPERAND (t
, 0));
431 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
432 || HONOR_SIGNED_ZEROS (element_mode (type
))
433 || (ANY_INTEGRAL_TYPE_P (type
)
434 && ! TYPE_OVERFLOW_WRAPS (type
)))
436 /* -(A + B) -> (-B) - A. */
437 if (negate_expr_p (TREE_OPERAND (t
, 1)))
439 /* -(A + B) -> (-A) - B. */
440 return negate_expr_p (TREE_OPERAND (t
, 0));
443 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
444 return !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
445 && !HONOR_SIGNED_ZEROS (element_mode (type
))
446 && (! ANY_INTEGRAL_TYPE_P (type
)
447 || TYPE_OVERFLOW_WRAPS (type
));
450 if (TYPE_UNSIGNED (type
))
452 /* INT_MIN/n * n doesn't overflow while negating one operand it does
453 if n is a (negative) power of two. */
454 if (INTEGRAL_TYPE_P (TREE_TYPE (t
))
455 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (t
))
456 && ! ((TREE_CODE (TREE_OPERAND (t
, 0)) == INTEGER_CST
458 (wi::abs (wi::to_wide (TREE_OPERAND (t
, 0))))) != 1)
459 || (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
461 (wi::abs (wi::to_wide (TREE_OPERAND (t
, 1))))) != 1)))
467 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (TREE_TYPE (t
))))
468 return negate_expr_p (TREE_OPERAND (t
, 1))
469 || negate_expr_p (TREE_OPERAND (t
, 0));
475 if (TYPE_UNSIGNED (type
))
477 if (negate_expr_p (TREE_OPERAND (t
, 0)))
479 /* In general we can't negate B in A / B, because if A is INT_MIN and
480 B is 1, we may turn this into INT_MIN / -1 which is undefined
481 and actually traps on some architectures. */
482 if (! INTEGRAL_TYPE_P (TREE_TYPE (t
))
483 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t
))
484 || (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
485 && ! integer_onep (TREE_OPERAND (t
, 1))))
486 return negate_expr_p (TREE_OPERAND (t
, 1));
490 /* Negate -((double)float) as (double)(-float). */
491 if (TREE_CODE (type
) == REAL_TYPE
)
493 tree tem
= strip_float_extensions (t
);
495 return negate_expr_p (tem
);
500 /* Negate -f(x) as f(-x). */
501 if (negate_mathfn_p (get_call_combined_fn (t
)))
502 return negate_expr_p (CALL_EXPR_ARG (t
, 0));
506 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
507 if (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
)
509 tree op1
= TREE_OPERAND (t
, 1);
510 if (wi::to_wide (op1
) == TYPE_PRECISION (type
) - 1)
521 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
522 simplification is possible.
523 If negate_expr_p would return true for T, NULL_TREE will never be
527 fold_negate_expr_1 (location_t loc
, tree t
)
529 tree type
= TREE_TYPE (t
);
532 switch (TREE_CODE (t
))
534 /* Convert - (~A) to A + 1. */
536 if (INTEGRAL_TYPE_P (type
))
537 return fold_build2_loc (loc
, PLUS_EXPR
, type
, TREE_OPERAND (t
, 0),
538 build_one_cst (type
));
542 tem
= fold_negate_const (t
, type
);
543 if (TREE_OVERFLOW (tem
) == TREE_OVERFLOW (t
)
544 || (ANY_INTEGRAL_TYPE_P (type
)
545 && !TYPE_OVERFLOW_TRAPS (type
)
546 && TYPE_OVERFLOW_WRAPS (type
))
547 || (flag_sanitize
& SANITIZE_SI_OVERFLOW
) == 0)
554 tem
= fold_negate_const (t
, type
);
559 tree rpart
= fold_negate_expr (loc
, TREE_REALPART (t
));
560 tree ipart
= fold_negate_expr (loc
, TREE_IMAGPART (t
));
562 return build_complex (type
, rpart
, ipart
);
568 tree_vector_builder elts
;
569 elts
.new_unary_operation (type
, t
, true);
570 unsigned int count
= elts
.encoded_nelts ();
571 for (unsigned int i
= 0; i
< count
; ++i
)
573 tree elt
= fold_negate_expr (loc
, VECTOR_CST_ELT (t
, i
));
574 if (elt
== NULL_TREE
)
576 elts
.quick_push (elt
);
579 return elts
.build ();
583 if (negate_expr_p (t
))
584 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
585 fold_negate_expr (loc
, TREE_OPERAND (t
, 0)),
586 fold_negate_expr (loc
, TREE_OPERAND (t
, 1)));
590 if (negate_expr_p (t
))
591 return fold_build1_loc (loc
, CONJ_EXPR
, type
,
592 fold_negate_expr (loc
, TREE_OPERAND (t
, 0)));
596 if (!TYPE_OVERFLOW_SANITIZED (type
))
597 return TREE_OPERAND (t
, 0);
601 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
602 && !HONOR_SIGNED_ZEROS (element_mode (type
)))
604 /* -(A + B) -> (-B) - A. */
605 if (negate_expr_p (TREE_OPERAND (t
, 1)))
607 tem
= negate_expr (TREE_OPERAND (t
, 1));
608 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
609 tem
, TREE_OPERAND (t
, 0));
612 /* -(A + B) -> (-A) - B. */
613 if (negate_expr_p (TREE_OPERAND (t
, 0)))
615 tem
= negate_expr (TREE_OPERAND (t
, 0));
616 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
617 tem
, TREE_OPERAND (t
, 1));
623 /* - (A - B) -> B - A */
624 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
625 && !HONOR_SIGNED_ZEROS (element_mode (type
)))
626 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
627 TREE_OPERAND (t
, 1), TREE_OPERAND (t
, 0));
631 if (TYPE_UNSIGNED (type
))
637 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
)))
639 tem
= TREE_OPERAND (t
, 1);
640 if (negate_expr_p (tem
))
641 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
642 TREE_OPERAND (t
, 0), negate_expr (tem
));
643 tem
= TREE_OPERAND (t
, 0);
644 if (negate_expr_p (tem
))
645 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
646 negate_expr (tem
), TREE_OPERAND (t
, 1));
653 if (TYPE_UNSIGNED (type
))
655 if (negate_expr_p (TREE_OPERAND (t
, 0)))
656 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
657 negate_expr (TREE_OPERAND (t
, 0)),
658 TREE_OPERAND (t
, 1));
659 /* In general we can't negate B in A / B, because if A is INT_MIN and
660 B is 1, we may turn this into INT_MIN / -1 which is undefined
661 and actually traps on some architectures. */
662 if ((! INTEGRAL_TYPE_P (TREE_TYPE (t
))
663 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t
))
664 || (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
665 && ! integer_onep (TREE_OPERAND (t
, 1))))
666 && negate_expr_p (TREE_OPERAND (t
, 1)))
667 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
669 negate_expr (TREE_OPERAND (t
, 1)));
673 /* Convert -((double)float) into (double)(-float). */
674 if (TREE_CODE (type
) == REAL_TYPE
)
676 tem
= strip_float_extensions (t
);
677 if (tem
!= t
&& negate_expr_p (tem
))
678 return fold_convert_loc (loc
, type
, negate_expr (tem
));
683 /* Negate -f(x) as f(-x). */
684 if (negate_mathfn_p (get_call_combined_fn (t
))
685 && negate_expr_p (CALL_EXPR_ARG (t
, 0)))
689 fndecl
= get_callee_fndecl (t
);
690 arg
= negate_expr (CALL_EXPR_ARG (t
, 0));
691 return build_call_expr_loc (loc
, fndecl
, 1, arg
);
696 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
697 if (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
)
699 tree op1
= TREE_OPERAND (t
, 1);
700 if (wi::to_wide (op1
) == TYPE_PRECISION (type
) - 1)
702 tree ntype
= TYPE_UNSIGNED (type
)
703 ? signed_type_for (type
)
704 : unsigned_type_for (type
);
705 tree temp
= fold_convert_loc (loc
, ntype
, TREE_OPERAND (t
, 0));
706 temp
= fold_build2_loc (loc
, RSHIFT_EXPR
, ntype
, temp
, op1
);
707 return fold_convert_loc (loc
, type
, temp
);
719 /* A wrapper for fold_negate_expr_1. */
722 fold_negate_expr (location_t loc
, tree t
)
724 tree type
= TREE_TYPE (t
);
726 tree tem
= fold_negate_expr_1 (loc
, t
);
727 if (tem
== NULL_TREE
)
729 return fold_convert_loc (loc
, type
, tem
);
732 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
733 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
745 loc
= EXPR_LOCATION (t
);
746 type
= TREE_TYPE (t
);
749 tem
= fold_negate_expr (loc
, t
);
751 tem
= build1_loc (loc
, NEGATE_EXPR
, TREE_TYPE (t
), t
);
752 return fold_convert_loc (loc
, type
, tem
);
755 /* Split a tree IN into a constant, literal and variable parts that could be
756 combined with CODE to make IN. "constant" means an expression with
757 TREE_CONSTANT but that isn't an actual constant. CODE must be a
758 commutative arithmetic operation. Store the constant part into *CONP,
759 the literal in *LITP and return the variable part. If a part isn't
760 present, set it to null. If the tree does not decompose in this way,
761 return the entire tree as the variable part and the other parts as null.
763 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
764 case, we negate an operand that was subtracted. Except if it is a
765 literal for which we use *MINUS_LITP instead.
767 If NEGATE_P is true, we are negating all of IN, again except a literal
768 for which we use *MINUS_LITP instead. If a variable part is of pointer
769 type, it is negated after converting to TYPE. This prevents us from
770 generating illegal MINUS pointer expression. LOC is the location of
771 the converted variable part.
773 If IN is itself a literal or constant, return it as appropriate.
775 Note that we do not guarantee that any of the three values will be the
776 same type as IN, but they will have the same signedness and mode. */
779 split_tree (tree in
, tree type
, enum tree_code code
,
780 tree
*minus_varp
, tree
*conp
, tree
*minus_conp
,
781 tree
*litp
, tree
*minus_litp
, int negate_p
)
790 /* Strip any conversions that don't change the machine mode or signedness. */
791 STRIP_SIGN_NOPS (in
);
793 if (TREE_CODE (in
) == INTEGER_CST
|| TREE_CODE (in
) == REAL_CST
794 || TREE_CODE (in
) == FIXED_CST
)
796 else if (TREE_CODE (in
) == code
797 || ((! FLOAT_TYPE_P (TREE_TYPE (in
)) || flag_associative_math
)
798 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in
))
799 /* We can associate addition and subtraction together (even
800 though the C standard doesn't say so) for integers because
801 the value is not affected. For reals, the value might be
802 affected, so we can't. */
803 && ((code
== PLUS_EXPR
&& TREE_CODE (in
) == POINTER_PLUS_EXPR
)
804 || (code
== PLUS_EXPR
&& TREE_CODE (in
) == MINUS_EXPR
)
805 || (code
== MINUS_EXPR
806 && (TREE_CODE (in
) == PLUS_EXPR
807 || TREE_CODE (in
) == POINTER_PLUS_EXPR
)))))
809 tree op0
= TREE_OPERAND (in
, 0);
810 tree op1
= TREE_OPERAND (in
, 1);
811 int neg1_p
= TREE_CODE (in
) == MINUS_EXPR
;
812 int neg_litp_p
= 0, neg_conp_p
= 0, neg_var_p
= 0;
814 /* First see if either of the operands is a literal, then a constant. */
815 if (TREE_CODE (op0
) == INTEGER_CST
|| TREE_CODE (op0
) == REAL_CST
816 || TREE_CODE (op0
) == FIXED_CST
)
817 *litp
= op0
, op0
= 0;
818 else if (TREE_CODE (op1
) == INTEGER_CST
|| TREE_CODE (op1
) == REAL_CST
819 || TREE_CODE (op1
) == FIXED_CST
)
820 *litp
= op1
, neg_litp_p
= neg1_p
, op1
= 0;
822 if (op0
!= 0 && TREE_CONSTANT (op0
))
823 *conp
= op0
, op0
= 0;
824 else if (op1
!= 0 && TREE_CONSTANT (op1
))
825 *conp
= op1
, neg_conp_p
= neg1_p
, op1
= 0;
827 /* If we haven't dealt with either operand, this is not a case we can
828 decompose. Otherwise, VAR is either of the ones remaining, if any. */
829 if (op0
!= 0 && op1
!= 0)
834 var
= op1
, neg_var_p
= neg1_p
;
836 /* Now do any needed negations. */
838 *minus_litp
= *litp
, *litp
= 0;
839 if (neg_conp_p
&& *conp
)
840 *minus_conp
= *conp
, *conp
= 0;
841 if (neg_var_p
&& var
)
842 *minus_varp
= var
, var
= 0;
844 else if (TREE_CONSTANT (in
))
846 else if (TREE_CODE (in
) == BIT_NOT_EXPR
847 && code
== PLUS_EXPR
)
849 /* -1 - X is folded to ~X, undo that here. Do _not_ do this
850 when IN is constant. */
851 *litp
= build_minus_one_cst (type
);
852 *minus_varp
= TREE_OPERAND (in
, 0);
860 *minus_litp
= *litp
, *litp
= 0;
861 else if (*minus_litp
)
862 *litp
= *minus_litp
, *minus_litp
= 0;
864 *minus_conp
= *conp
, *conp
= 0;
865 else if (*minus_conp
)
866 *conp
= *minus_conp
, *minus_conp
= 0;
868 *minus_varp
= var
, var
= 0;
869 else if (*minus_varp
)
870 var
= *minus_varp
, *minus_varp
= 0;
874 && TREE_OVERFLOW_P (*litp
))
875 *litp
= drop_tree_overflow (*litp
);
877 && TREE_OVERFLOW_P (*minus_litp
))
878 *minus_litp
= drop_tree_overflow (*minus_litp
);
883 /* Re-associate trees split by the above function. T1 and T2 are
884 either expressions to associate or null. Return the new
885 expression, if any. LOC is the location of the new expression. If
886 we build an operation, do it in TYPE and with CODE. */
889 associate_trees (location_t loc
, tree t1
, tree t2
, enum tree_code code
, tree type
)
893 gcc_assert (t2
== 0 || code
!= MINUS_EXPR
);
899 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
900 try to fold this since we will have infinite recursion. But do
901 deal with any NEGATE_EXPRs. */
902 if (TREE_CODE (t1
) == code
|| TREE_CODE (t2
) == code
903 || TREE_CODE (t1
) == PLUS_EXPR
|| TREE_CODE (t2
) == PLUS_EXPR
904 || TREE_CODE (t1
) == MINUS_EXPR
|| TREE_CODE (t2
) == MINUS_EXPR
)
906 if (code
== PLUS_EXPR
)
908 if (TREE_CODE (t1
) == NEGATE_EXPR
)
909 return build2_loc (loc
, MINUS_EXPR
, type
,
910 fold_convert_loc (loc
, type
, t2
),
911 fold_convert_loc (loc
, type
,
912 TREE_OPERAND (t1
, 0)));
913 else if (TREE_CODE (t2
) == NEGATE_EXPR
)
914 return build2_loc (loc
, MINUS_EXPR
, type
,
915 fold_convert_loc (loc
, type
, t1
),
916 fold_convert_loc (loc
, type
,
917 TREE_OPERAND (t2
, 0)));
918 else if (integer_zerop (t2
))
919 return fold_convert_loc (loc
, type
, t1
);
921 else if (code
== MINUS_EXPR
)
923 if (integer_zerop (t2
))
924 return fold_convert_loc (loc
, type
, t1
);
927 return build2_loc (loc
, code
, type
, fold_convert_loc (loc
, type
, t1
),
928 fold_convert_loc (loc
, type
, t2
));
931 return fold_build2_loc (loc
, code
, type
, fold_convert_loc (loc
, type
, t1
),
932 fold_convert_loc (loc
, type
, t2
));
935 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
936 for use in int_const_binop, size_binop and size_diffop. */
939 int_binop_types_match_p (enum tree_code code
, const_tree type1
, const_tree type2
)
941 if (!INTEGRAL_TYPE_P (type1
) && !POINTER_TYPE_P (type1
))
943 if (!INTEGRAL_TYPE_P (type2
) && !POINTER_TYPE_P (type2
))
958 return TYPE_UNSIGNED (type1
) == TYPE_UNSIGNED (type2
)
959 && TYPE_PRECISION (type1
) == TYPE_PRECISION (type2
)
960 && TYPE_MODE (type1
) == TYPE_MODE (type2
);
963 /* Subroutine of int_const_binop_1 that handles two INTEGER_CSTs. */
966 int_const_binop_2 (enum tree_code code
, const_tree parg1
, const_tree parg2
,
971 tree type
= TREE_TYPE (parg1
);
972 signop sign
= TYPE_SIGN (type
);
973 bool overflow
= false;
975 wi::tree_to_wide_ref arg1
= wi::to_wide (parg1
);
976 wide_int arg2
= wi::to_wide (parg2
, TYPE_PRECISION (type
));
981 res
= wi::bit_or (arg1
, arg2
);
985 res
= wi::bit_xor (arg1
, arg2
);
989 res
= wi::bit_and (arg1
, arg2
);
994 if (wi::neg_p (arg2
))
997 if (code
== RSHIFT_EXPR
)
1003 if (code
== RSHIFT_EXPR
)
1004 /* It's unclear from the C standard whether shifts can overflow.
1005 The following code ignores overflow; perhaps a C standard
1006 interpretation ruling is needed. */
1007 res
= wi::rshift (arg1
, arg2
, sign
);
1009 res
= wi::lshift (arg1
, arg2
);
1014 if (wi::neg_p (arg2
))
1017 if (code
== RROTATE_EXPR
)
1018 code
= LROTATE_EXPR
;
1020 code
= RROTATE_EXPR
;
1023 if (code
== RROTATE_EXPR
)
1024 res
= wi::rrotate (arg1
, arg2
);
1026 res
= wi::lrotate (arg1
, arg2
);
1030 res
= wi::add (arg1
, arg2
, sign
, &overflow
);
1034 res
= wi::sub (arg1
, arg2
, sign
, &overflow
);
1038 res
= wi::mul (arg1
, arg2
, sign
, &overflow
);
1041 case MULT_HIGHPART_EXPR
:
1042 res
= wi::mul_high (arg1
, arg2
, sign
);
1045 case TRUNC_DIV_EXPR
:
1046 case EXACT_DIV_EXPR
:
1049 res
= wi::div_trunc (arg1
, arg2
, sign
, &overflow
);
1052 case FLOOR_DIV_EXPR
:
1055 res
= wi::div_floor (arg1
, arg2
, sign
, &overflow
);
1061 res
= wi::div_ceil (arg1
, arg2
, sign
, &overflow
);
1064 case ROUND_DIV_EXPR
:
1067 res
= wi::div_round (arg1
, arg2
, sign
, &overflow
);
1070 case TRUNC_MOD_EXPR
:
1073 res
= wi::mod_trunc (arg1
, arg2
, sign
, &overflow
);
1076 case FLOOR_MOD_EXPR
:
1079 res
= wi::mod_floor (arg1
, arg2
, sign
, &overflow
);
1085 res
= wi::mod_ceil (arg1
, arg2
, sign
, &overflow
);
1088 case ROUND_MOD_EXPR
:
1091 res
= wi::mod_round (arg1
, arg2
, sign
, &overflow
);
1095 res
= wi::min (arg1
, arg2
, sign
);
1099 res
= wi::max (arg1
, arg2
, sign
);
1106 t
= force_fit_type (type
, res
, overflowable
,
1107 (((sign
== SIGNED
|| overflowable
== -1)
1109 | TREE_OVERFLOW (parg1
) | TREE_OVERFLOW (parg2
)));
1114 /* Combine two integer constants PARG1 and PARG2 under operation CODE
1115 to produce a new constant. Return NULL_TREE if we don't know how
1116 to evaluate CODE at compile-time. */
1119 int_const_binop_1 (enum tree_code code
, const_tree arg1
, const_tree arg2
,
1122 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg2
) == INTEGER_CST
)
1123 return int_const_binop_2 (code
, arg1
, arg2
, overflowable
);
1125 gcc_assert (NUM_POLY_INT_COEFFS
!= 1);
1127 if (poly_int_tree_p (arg1
) && poly_int_tree_p (arg2
))
1131 tree type
= TREE_TYPE (arg1
);
1132 signop sign
= TYPE_SIGN (type
);
1136 res
= wi::add (wi::to_poly_wide (arg1
),
1137 wi::to_poly_wide (arg2
), sign
, &overflow
);
1141 res
= wi::sub (wi::to_poly_wide (arg1
),
1142 wi::to_poly_wide (arg2
), sign
, &overflow
);
1146 if (TREE_CODE (arg2
) == INTEGER_CST
)
1147 res
= wi::mul (wi::to_poly_wide (arg1
),
1148 wi::to_wide (arg2
), sign
, &overflow
);
1149 else if (TREE_CODE (arg1
) == INTEGER_CST
)
1150 res
= wi::mul (wi::to_poly_wide (arg2
),
1151 wi::to_wide (arg1
), sign
, &overflow
);
1157 if (TREE_CODE (arg2
) == INTEGER_CST
)
1158 res
= wi::to_poly_wide (arg1
) << wi::to_wide (arg2
);
1164 if (TREE_CODE (arg2
) != INTEGER_CST
1165 || !can_ior_p (wi::to_poly_wide (arg1
), wi::to_wide (arg2
),
1173 return force_fit_type (type
, res
, overflowable
,
1174 (((sign
== SIGNED
|| overflowable
== -1)
1176 | TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
)));
1183 int_const_binop (enum tree_code code
, const_tree arg1
, const_tree arg2
)
1185 return int_const_binop_1 (code
, arg1
, arg2
, 1);
1188 /* Return true if binary operation OP distributes over addition in operand
1189 OPNO, with the other operand being held constant. OPNO counts from 1. */
1192 distributes_over_addition_p (tree_code op
, int opno
)
1209 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1210 constant. We assume ARG1 and ARG2 have the same data type, or at least
1211 are the same kind of constant and the same machine mode. Return zero if
1212 combining the constants is not allowed in the current operating mode. */
1215 const_binop (enum tree_code code
, tree arg1
, tree arg2
)
1217 /* Sanity check for the recursive cases. */
1224 if (poly_int_tree_p (arg1
) && poly_int_tree_p (arg2
))
1226 if (code
== POINTER_PLUS_EXPR
)
1227 return int_const_binop (PLUS_EXPR
,
1228 arg1
, fold_convert (TREE_TYPE (arg1
), arg2
));
1230 return int_const_binop (code
, arg1
, arg2
);
1233 if (TREE_CODE (arg1
) == REAL_CST
&& TREE_CODE (arg2
) == REAL_CST
)
1238 REAL_VALUE_TYPE value
;
1239 REAL_VALUE_TYPE result
;
1243 /* The following codes are handled by real_arithmetic. */
1258 d1
= TREE_REAL_CST (arg1
);
1259 d2
= TREE_REAL_CST (arg2
);
1261 type
= TREE_TYPE (arg1
);
1262 mode
= TYPE_MODE (type
);
1264 /* Don't perform operation if we honor signaling NaNs and
1265 either operand is a signaling NaN. */
1266 if (HONOR_SNANS (mode
)
1267 && (REAL_VALUE_ISSIGNALING_NAN (d1
)
1268 || REAL_VALUE_ISSIGNALING_NAN (d2
)))
1271 /* Don't perform operation if it would raise a division
1272 by zero exception. */
1273 if (code
== RDIV_EXPR
1274 && real_equal (&d2
, &dconst0
)
1275 && (flag_trapping_math
|| ! MODE_HAS_INFINITIES (mode
)))
1278 /* If either operand is a NaN, just return it. Otherwise, set up
1279 for floating-point trap; we return an overflow. */
1280 if (REAL_VALUE_ISNAN (d1
))
1282 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1285 t
= build_real (type
, d1
);
1288 else if (REAL_VALUE_ISNAN (d2
))
1290 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1293 t
= build_real (type
, d2
);
1297 inexact
= real_arithmetic (&value
, code
, &d1
, &d2
);
1298 real_convert (&result
, mode
, &value
);
1300 /* Don't constant fold this floating point operation if
1301 the result has overflowed and flag_trapping_math. */
1302 if (flag_trapping_math
1303 && MODE_HAS_INFINITIES (mode
)
1304 && REAL_VALUE_ISINF (result
)
1305 && !REAL_VALUE_ISINF (d1
)
1306 && !REAL_VALUE_ISINF (d2
))
1309 /* Don't constant fold this floating point operation if the
1310 result may dependent upon the run-time rounding mode and
1311 flag_rounding_math is set, or if GCC's software emulation
1312 is unable to accurately represent the result. */
1313 if ((flag_rounding_math
1314 || (MODE_COMPOSITE_P (mode
) && !flag_unsafe_math_optimizations
))
1315 && (inexact
|| !real_identical (&result
, &value
)))
1318 t
= build_real (type
, result
);
1320 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
);
1324 if (TREE_CODE (arg1
) == FIXED_CST
)
1326 FIXED_VALUE_TYPE f1
;
1327 FIXED_VALUE_TYPE f2
;
1328 FIXED_VALUE_TYPE result
;
1333 /* The following codes are handled by fixed_arithmetic. */
1339 case TRUNC_DIV_EXPR
:
1340 if (TREE_CODE (arg2
) != FIXED_CST
)
1342 f2
= TREE_FIXED_CST (arg2
);
1348 if (TREE_CODE (arg2
) != INTEGER_CST
)
1350 wi::tree_to_wide_ref w2
= wi::to_wide (arg2
);
1351 f2
.data
.high
= w2
.elt (1);
1352 f2
.data
.low
= w2
.ulow ();
1361 f1
= TREE_FIXED_CST (arg1
);
1362 type
= TREE_TYPE (arg1
);
1363 sat_p
= TYPE_SATURATING (type
);
1364 overflow_p
= fixed_arithmetic (&result
, code
, &f1
, &f2
, sat_p
);
1365 t
= build_fixed (type
, result
);
1366 /* Propagate overflow flags. */
1367 if (overflow_p
| TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
))
1368 TREE_OVERFLOW (t
) = 1;
1372 if (TREE_CODE (arg1
) == COMPLEX_CST
&& TREE_CODE (arg2
) == COMPLEX_CST
)
1374 tree type
= TREE_TYPE (arg1
);
1375 tree r1
= TREE_REALPART (arg1
);
1376 tree i1
= TREE_IMAGPART (arg1
);
1377 tree r2
= TREE_REALPART (arg2
);
1378 tree i2
= TREE_IMAGPART (arg2
);
1385 real
= const_binop (code
, r1
, r2
);
1386 imag
= const_binop (code
, i1
, i2
);
1390 if (COMPLEX_FLOAT_TYPE_P (type
))
1391 return do_mpc_arg2 (arg1
, arg2
, type
,
1392 /* do_nonfinite= */ folding_initializer
,
1395 real
= const_binop (MINUS_EXPR
,
1396 const_binop (MULT_EXPR
, r1
, r2
),
1397 const_binop (MULT_EXPR
, i1
, i2
));
1398 imag
= const_binop (PLUS_EXPR
,
1399 const_binop (MULT_EXPR
, r1
, i2
),
1400 const_binop (MULT_EXPR
, i1
, r2
));
1404 if (COMPLEX_FLOAT_TYPE_P (type
))
1405 return do_mpc_arg2 (arg1
, arg2
, type
,
1406 /* do_nonfinite= */ folding_initializer
,
1409 case TRUNC_DIV_EXPR
:
1411 case FLOOR_DIV_EXPR
:
1412 case ROUND_DIV_EXPR
:
1413 if (flag_complex_method
== 0)
1415 /* Keep this algorithm in sync with
1416 tree-complex.c:expand_complex_div_straight().
1418 Expand complex division to scalars, straightforward algorithm.
1419 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1423 = const_binop (PLUS_EXPR
,
1424 const_binop (MULT_EXPR
, r2
, r2
),
1425 const_binop (MULT_EXPR
, i2
, i2
));
1427 = const_binop (PLUS_EXPR
,
1428 const_binop (MULT_EXPR
, r1
, r2
),
1429 const_binop (MULT_EXPR
, i1
, i2
));
1431 = const_binop (MINUS_EXPR
,
1432 const_binop (MULT_EXPR
, i1
, r2
),
1433 const_binop (MULT_EXPR
, r1
, i2
));
1435 real
= const_binop (code
, t1
, magsquared
);
1436 imag
= const_binop (code
, t2
, magsquared
);
1440 /* Keep this algorithm in sync with
1441 tree-complex.c:expand_complex_div_wide().
1443 Expand complex division to scalars, modified algorithm to minimize
1444 overflow with wide input ranges. */
1445 tree compare
= fold_build2 (LT_EXPR
, boolean_type_node
,
1446 fold_abs_const (r2
, TREE_TYPE (type
)),
1447 fold_abs_const (i2
, TREE_TYPE (type
)));
1449 if (integer_nonzerop (compare
))
1451 /* In the TRUE branch, we compute
1453 div = (br * ratio) + bi;
1454 tr = (ar * ratio) + ai;
1455 ti = (ai * ratio) - ar;
1458 tree ratio
= const_binop (code
, r2
, i2
);
1459 tree div
= const_binop (PLUS_EXPR
, i2
,
1460 const_binop (MULT_EXPR
, r2
, ratio
));
1461 real
= const_binop (MULT_EXPR
, r1
, ratio
);
1462 real
= const_binop (PLUS_EXPR
, real
, i1
);
1463 real
= const_binop (code
, real
, div
);
1465 imag
= const_binop (MULT_EXPR
, i1
, ratio
);
1466 imag
= const_binop (MINUS_EXPR
, imag
, r1
);
1467 imag
= const_binop (code
, imag
, div
);
1471 /* In the FALSE branch, we compute
1473 divisor = (d * ratio) + c;
1474 tr = (b * ratio) + a;
1475 ti = b - (a * ratio);
1478 tree ratio
= const_binop (code
, i2
, r2
);
1479 tree div
= const_binop (PLUS_EXPR
, r2
,
1480 const_binop (MULT_EXPR
, i2
, ratio
));
1482 real
= const_binop (MULT_EXPR
, i1
, ratio
);
1483 real
= const_binop (PLUS_EXPR
, real
, r1
);
1484 real
= const_binop (code
, real
, div
);
1486 imag
= const_binop (MULT_EXPR
, r1
, ratio
);
1487 imag
= const_binop (MINUS_EXPR
, i1
, imag
);
1488 imag
= const_binop (code
, imag
, div
);
1498 return build_complex (type
, real
, imag
);
1501 if (TREE_CODE (arg1
) == VECTOR_CST
1502 && TREE_CODE (arg2
) == VECTOR_CST
1503 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1
)),
1504 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2
))))
1506 tree type
= TREE_TYPE (arg1
);
1508 if (VECTOR_CST_STEPPED_P (arg1
)
1509 && VECTOR_CST_STEPPED_P (arg2
))
1510 /* We can operate directly on the encoding if:
1512 a3 - a2 == a2 - a1 && b3 - b2 == b2 - b1
1514 (a3 op b3) - (a2 op b2) == (a2 op b2) - (a1 op b1)
1516 Addition and subtraction are the supported operators
1517 for which this is true. */
1518 step_ok_p
= (code
== PLUS_EXPR
|| code
== MINUS_EXPR
);
1519 else if (VECTOR_CST_STEPPED_P (arg1
))
1520 /* We can operate directly on stepped encodings if:
1524 (a3 op c) - (a2 op c) == (a2 op c) - (a1 op c)
1526 which is true if (x -> x op c) distributes over addition. */
1527 step_ok_p
= distributes_over_addition_p (code
, 1);
1529 /* Similarly in reverse. */
1530 step_ok_p
= distributes_over_addition_p (code
, 2);
1531 tree_vector_builder elts
;
1532 if (!elts
.new_binary_operation (type
, arg1
, arg2
, step_ok_p
))
1534 unsigned int count
= elts
.encoded_nelts ();
1535 for (unsigned int i
= 0; i
< count
; ++i
)
1537 tree elem1
= VECTOR_CST_ELT (arg1
, i
);
1538 tree elem2
= VECTOR_CST_ELT (arg2
, i
);
1540 tree elt
= const_binop (code
, elem1
, elem2
);
1542 /* It is possible that const_binop cannot handle the given
1543 code and return NULL_TREE */
1544 if (elt
== NULL_TREE
)
1546 elts
.quick_push (elt
);
1549 return elts
.build ();
1552 /* Shifts allow a scalar offset for a vector. */
1553 if (TREE_CODE (arg1
) == VECTOR_CST
1554 && TREE_CODE (arg2
) == INTEGER_CST
)
1556 tree type
= TREE_TYPE (arg1
);
1557 bool step_ok_p
= distributes_over_addition_p (code
, 1);
1558 tree_vector_builder elts
;
1559 if (!elts
.new_unary_operation (type
, arg1
, step_ok_p
))
1561 unsigned int count
= elts
.encoded_nelts ();
1562 for (unsigned int i
= 0; i
< count
; ++i
)
1564 tree elem1
= VECTOR_CST_ELT (arg1
, i
);
1566 tree elt
= const_binop (code
, elem1
, arg2
);
1568 /* It is possible that const_binop cannot handle the given
1569 code and return NULL_TREE. */
1570 if (elt
== NULL_TREE
)
1572 elts
.quick_push (elt
);
1575 return elts
.build ();
1580 /* Overload that adds a TYPE parameter to be able to dispatch
1581 to fold_relational_const. */
1584 const_binop (enum tree_code code
, tree type
, tree arg1
, tree arg2
)
1586 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
1587 return fold_relational_const (code
, type
, arg1
, arg2
);
1589 /* ??? Until we make the const_binop worker take the type of the
1590 result as argument put those cases that need it here. */
1593 case VEC_SERIES_EXPR
:
1594 if (CONSTANT_CLASS_P (arg1
)
1595 && CONSTANT_CLASS_P (arg2
))
1596 return build_vec_series (type
, arg1
, arg2
);
1600 if ((TREE_CODE (arg1
) == REAL_CST
1601 && TREE_CODE (arg2
) == REAL_CST
)
1602 || (TREE_CODE (arg1
) == INTEGER_CST
1603 && TREE_CODE (arg2
) == INTEGER_CST
))
1604 return build_complex (type
, arg1
, arg2
);
1607 case POINTER_DIFF_EXPR
:
1608 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg2
) == INTEGER_CST
)
1610 offset_int res
= wi::sub (wi::to_offset (arg1
),
1611 wi::to_offset (arg2
));
1612 return force_fit_type (type
, res
, 1,
1613 TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
));
1617 case VEC_PACK_TRUNC_EXPR
:
1618 case VEC_PACK_FIX_TRUNC_EXPR
:
1620 unsigned int HOST_WIDE_INT out_nelts
, in_nelts
, i
;
1622 if (TREE_CODE (arg1
) != VECTOR_CST
1623 || TREE_CODE (arg2
) != VECTOR_CST
)
1626 if (!VECTOR_CST_NELTS (arg1
).is_constant (&in_nelts
))
1629 out_nelts
= in_nelts
* 2;
1630 gcc_assert (known_eq (in_nelts
, VECTOR_CST_NELTS (arg2
))
1631 && known_eq (out_nelts
, TYPE_VECTOR_SUBPARTS (type
)));
1633 tree_vector_builder
elts (type
, out_nelts
, 1);
1634 for (i
= 0; i
< out_nelts
; i
++)
1636 tree elt
= (i
< in_nelts
1637 ? VECTOR_CST_ELT (arg1
, i
)
1638 : VECTOR_CST_ELT (arg2
, i
- in_nelts
));
1639 elt
= fold_convert_const (code
== VEC_PACK_TRUNC_EXPR
1640 ? NOP_EXPR
: FIX_TRUNC_EXPR
,
1641 TREE_TYPE (type
), elt
);
1642 if (elt
== NULL_TREE
|| !CONSTANT_CLASS_P (elt
))
1644 elts
.quick_push (elt
);
1647 return elts
.build ();
1650 case VEC_WIDEN_MULT_LO_EXPR
:
1651 case VEC_WIDEN_MULT_HI_EXPR
:
1652 case VEC_WIDEN_MULT_EVEN_EXPR
:
1653 case VEC_WIDEN_MULT_ODD_EXPR
:
1655 unsigned HOST_WIDE_INT out_nelts
, in_nelts
, out
, ofs
, scale
;
1657 if (TREE_CODE (arg1
) != VECTOR_CST
|| TREE_CODE (arg2
) != VECTOR_CST
)
1660 if (!VECTOR_CST_NELTS (arg1
).is_constant (&in_nelts
))
1662 out_nelts
= in_nelts
/ 2;
1663 gcc_assert (known_eq (in_nelts
, VECTOR_CST_NELTS (arg2
))
1664 && known_eq (out_nelts
, TYPE_VECTOR_SUBPARTS (type
)));
1666 if (code
== VEC_WIDEN_MULT_LO_EXPR
)
1667 scale
= 0, ofs
= BYTES_BIG_ENDIAN
? out_nelts
: 0;
1668 else if (code
== VEC_WIDEN_MULT_HI_EXPR
)
1669 scale
= 0, ofs
= BYTES_BIG_ENDIAN
? 0 : out_nelts
;
1670 else if (code
== VEC_WIDEN_MULT_EVEN_EXPR
)
1672 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
1675 tree_vector_builder
elts (type
, out_nelts
, 1);
1676 for (out
= 0; out
< out_nelts
; out
++)
1678 unsigned int in
= (out
<< scale
) + ofs
;
1679 tree t1
= fold_convert_const (NOP_EXPR
, TREE_TYPE (type
),
1680 VECTOR_CST_ELT (arg1
, in
));
1681 tree t2
= fold_convert_const (NOP_EXPR
, TREE_TYPE (type
),
1682 VECTOR_CST_ELT (arg2
, in
));
1684 if (t1
== NULL_TREE
|| t2
== NULL_TREE
)
1686 tree elt
= const_binop (MULT_EXPR
, t1
, t2
);
1687 if (elt
== NULL_TREE
|| !CONSTANT_CLASS_P (elt
))
1689 elts
.quick_push (elt
);
1692 return elts
.build ();
1698 if (TREE_CODE_CLASS (code
) != tcc_binary
)
1701 /* Make sure type and arg0 have the same saturating flag. */
1702 gcc_checking_assert (TYPE_SATURATING (type
)
1703 == TYPE_SATURATING (TREE_TYPE (arg1
)));
1705 return const_binop (code
, arg1
, arg2
);
1708 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant.
1709 Return zero if computing the constants is not possible. */
1712 const_unop (enum tree_code code
, tree type
, tree arg0
)
1714 /* Don't perform the operation, other than NEGATE and ABS, if
1715 flag_signaling_nans is on and the operand is a signaling NaN. */
1716 if (TREE_CODE (arg0
) == REAL_CST
1717 && HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0
)))
1718 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0
))
1719 && code
!= NEGATE_EXPR
1720 && code
!= ABS_EXPR
)
1727 case FIX_TRUNC_EXPR
:
1728 case FIXED_CONVERT_EXPR
:
1729 return fold_convert_const (code
, type
, arg0
);
1731 case ADDR_SPACE_CONVERT_EXPR
:
1732 /* If the source address is 0, and the source address space
1733 cannot have a valid object at 0, fold to dest type null. */
1734 if (integer_zerop (arg0
)
1735 && !(targetm
.addr_space
.zero_address_valid
1736 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0
))))))
1737 return fold_convert_const (code
, type
, arg0
);
1740 case VIEW_CONVERT_EXPR
:
1741 return fold_view_convert_expr (type
, arg0
);
1745 /* Can't call fold_negate_const directly here as that doesn't
1746 handle all cases and we might not be able to negate some
1748 tree tem
= fold_negate_expr (UNKNOWN_LOCATION
, arg0
);
1749 if (tem
&& CONSTANT_CLASS_P (tem
))
1755 if (TREE_CODE (arg0
) == INTEGER_CST
|| TREE_CODE (arg0
) == REAL_CST
)
1756 return fold_abs_const (arg0
, type
);
1760 if (TREE_CODE (arg0
) == COMPLEX_CST
)
1762 tree ipart
= fold_negate_const (TREE_IMAGPART (arg0
),
1764 return build_complex (type
, TREE_REALPART (arg0
), ipart
);
1769 if (TREE_CODE (arg0
) == INTEGER_CST
)
1770 return fold_not_const (arg0
, type
);
1771 else if (POLY_INT_CST_P (arg0
))
1772 return wide_int_to_tree (type
, -poly_int_cst_value (arg0
));
1773 /* Perform BIT_NOT_EXPR on each element individually. */
1774 else if (TREE_CODE (arg0
) == VECTOR_CST
)
1778 /* This can cope with stepped encodings because ~x == -1 - x. */
1779 tree_vector_builder elements
;
1780 elements
.new_unary_operation (type
, arg0
, true);
1781 unsigned int i
, count
= elements
.encoded_nelts ();
1782 for (i
= 0; i
< count
; ++i
)
1784 elem
= VECTOR_CST_ELT (arg0
, i
);
1785 elem
= const_unop (BIT_NOT_EXPR
, TREE_TYPE (type
), elem
);
1786 if (elem
== NULL_TREE
)
1788 elements
.quick_push (elem
);
1791 return elements
.build ();
1795 case TRUTH_NOT_EXPR
:
1796 if (TREE_CODE (arg0
) == INTEGER_CST
)
1797 return constant_boolean_node (integer_zerop (arg0
), type
);
1801 if (TREE_CODE (arg0
) == COMPLEX_CST
)
1802 return fold_convert (type
, TREE_REALPART (arg0
));
1806 if (TREE_CODE (arg0
) == COMPLEX_CST
)
1807 return fold_convert (type
, TREE_IMAGPART (arg0
));
1810 case VEC_UNPACK_LO_EXPR
:
1811 case VEC_UNPACK_HI_EXPR
:
1812 case VEC_UNPACK_FLOAT_LO_EXPR
:
1813 case VEC_UNPACK_FLOAT_HI_EXPR
:
1815 unsigned HOST_WIDE_INT out_nelts
, in_nelts
, i
;
1816 enum tree_code subcode
;
1818 if (TREE_CODE (arg0
) != VECTOR_CST
)
1821 if (!VECTOR_CST_NELTS (arg0
).is_constant (&in_nelts
))
1823 out_nelts
= in_nelts
/ 2;
1824 gcc_assert (known_eq (out_nelts
, TYPE_VECTOR_SUBPARTS (type
)));
1826 unsigned int offset
= 0;
1827 if ((!BYTES_BIG_ENDIAN
) ^ (code
== VEC_UNPACK_LO_EXPR
1828 || code
== VEC_UNPACK_FLOAT_LO_EXPR
))
1831 if (code
== VEC_UNPACK_LO_EXPR
|| code
== VEC_UNPACK_HI_EXPR
)
1834 subcode
= FLOAT_EXPR
;
1836 tree_vector_builder
elts (type
, out_nelts
, 1);
1837 for (i
= 0; i
< out_nelts
; i
++)
1839 tree elt
= fold_convert_const (subcode
, TREE_TYPE (type
),
1840 VECTOR_CST_ELT (arg0
, i
+ offset
));
1841 if (elt
== NULL_TREE
|| !CONSTANT_CLASS_P (elt
))
1843 elts
.quick_push (elt
);
1846 return elts
.build ();
1849 case VEC_DUPLICATE_EXPR
:
1850 if (CONSTANT_CLASS_P (arg0
))
1851 return build_vector_from_val (type
, arg0
);
1861 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND
1862 indicates which particular sizetype to create. */
1865 size_int_kind (poly_int64 number
, enum size_type_kind kind
)
1867 return build_int_cst (sizetype_tab
[(int) kind
], number
);
1870 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1871 is a tree code. The type of the result is taken from the operands.
1872 Both must be equivalent integer types, ala int_binop_types_match_p.
1873 If the operands are constant, so is the result. */
1876 size_binop_loc (location_t loc
, enum tree_code code
, tree arg0
, tree arg1
)
1878 tree type
= TREE_TYPE (arg0
);
1880 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
1881 return error_mark_node
;
1883 gcc_assert (int_binop_types_match_p (code
, TREE_TYPE (arg0
),
1886 /* Handle the special case of two poly_int constants faster. */
1887 if (poly_int_tree_p (arg0
) && poly_int_tree_p (arg1
))
1889 /* And some specific cases even faster than that. */
1890 if (code
== PLUS_EXPR
)
1892 if (integer_zerop (arg0
) && !TREE_OVERFLOW (arg0
))
1894 if (integer_zerop (arg1
) && !TREE_OVERFLOW (arg1
))
1897 else if (code
== MINUS_EXPR
)
1899 if (integer_zerop (arg1
) && !TREE_OVERFLOW (arg1
))
1902 else if (code
== MULT_EXPR
)
1904 if (integer_onep (arg0
) && !TREE_OVERFLOW (arg0
))
1908 /* Handle general case of two integer constants. For sizetype
1909 constant calculations we always want to know about overflow,
1910 even in the unsigned case. */
1911 tree res
= int_const_binop_1 (code
, arg0
, arg1
, -1);
1912 if (res
!= NULL_TREE
)
1916 return fold_build2_loc (loc
, code
, type
, arg0
, arg1
);
1919 /* Given two values, either both of sizetype or both of bitsizetype,
1920 compute the difference between the two values. Return the value
1921 in signed type corresponding to the type of the operands. */
1924 size_diffop_loc (location_t loc
, tree arg0
, tree arg1
)
1926 tree type
= TREE_TYPE (arg0
);
1929 gcc_assert (int_binop_types_match_p (MINUS_EXPR
, TREE_TYPE (arg0
),
1932 /* If the type is already signed, just do the simple thing. */
1933 if (!TYPE_UNSIGNED (type
))
1934 return size_binop_loc (loc
, MINUS_EXPR
, arg0
, arg1
);
1936 if (type
== sizetype
)
1938 else if (type
== bitsizetype
)
1939 ctype
= sbitsizetype
;
1941 ctype
= signed_type_for (type
);
1943 /* If either operand is not a constant, do the conversions to the signed
1944 type and subtract. The hardware will do the right thing with any
1945 overflow in the subtraction. */
1946 if (TREE_CODE (arg0
) != INTEGER_CST
|| TREE_CODE (arg1
) != INTEGER_CST
)
1947 return size_binop_loc (loc
, MINUS_EXPR
,
1948 fold_convert_loc (loc
, ctype
, arg0
),
1949 fold_convert_loc (loc
, ctype
, arg1
));
1951 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1952 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1953 overflow) and negate (which can't either). Special-case a result
1954 of zero while we're here. */
1955 if (tree_int_cst_equal (arg0
, arg1
))
1956 return build_int_cst (ctype
, 0);
1957 else if (tree_int_cst_lt (arg1
, arg0
))
1958 return fold_convert_loc (loc
, ctype
,
1959 size_binop_loc (loc
, MINUS_EXPR
, arg0
, arg1
));
1961 return size_binop_loc (loc
, MINUS_EXPR
, build_int_cst (ctype
, 0),
1962 fold_convert_loc (loc
, ctype
,
1963 size_binop_loc (loc
,
1968 /* A subroutine of fold_convert_const handling conversions of an
1969 INTEGER_CST to another integer type. */
1972 fold_convert_const_int_from_int (tree type
, const_tree arg1
)
1974 /* Given an integer constant, make new constant with new type,
1975 appropriately sign-extended or truncated. Use widest_int
1976 so that any extension is done according ARG1's type. */
1977 return force_fit_type (type
, wi::to_widest (arg1
),
1978 !POINTER_TYPE_P (TREE_TYPE (arg1
)),
1979 TREE_OVERFLOW (arg1
));
1982 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1983 to an integer type. */
1986 fold_convert_const_int_from_real (enum tree_code code
, tree type
, const_tree arg1
)
1988 bool overflow
= false;
1991 /* The following code implements the floating point to integer
1992 conversion rules required by the Java Language Specification,
1993 that IEEE NaNs are mapped to zero and values that overflow
1994 the target precision saturate, i.e. values greater than
1995 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
1996 are mapped to INT_MIN. These semantics are allowed by the
1997 C and C++ standards that simply state that the behavior of
1998 FP-to-integer conversion is unspecified upon overflow. */
2002 REAL_VALUE_TYPE x
= TREE_REAL_CST (arg1
);
2006 case FIX_TRUNC_EXPR
:
2007 real_trunc (&r
, VOIDmode
, &x
);
2014 /* If R is NaN, return zero and show we have an overflow. */
2015 if (REAL_VALUE_ISNAN (r
))
2018 val
= wi::zero (TYPE_PRECISION (type
));
2021 /* See if R is less than the lower bound or greater than the
2026 tree lt
= TYPE_MIN_VALUE (type
);
2027 REAL_VALUE_TYPE l
= real_value_from_int_cst (NULL_TREE
, lt
);
2028 if (real_less (&r
, &l
))
2031 val
= wi::to_wide (lt
);
2037 tree ut
= TYPE_MAX_VALUE (type
);
2040 REAL_VALUE_TYPE u
= real_value_from_int_cst (NULL_TREE
, ut
);
2041 if (real_less (&u
, &r
))
2044 val
= wi::to_wide (ut
);
2050 val
= real_to_integer (&r
, &overflow
, TYPE_PRECISION (type
));
2052 t
= force_fit_type (type
, val
, -1, overflow
| TREE_OVERFLOW (arg1
));
2056 /* A subroutine of fold_convert_const handling conversions of a
2057 FIXED_CST to an integer type. */
2060 fold_convert_const_int_from_fixed (tree type
, const_tree arg1
)
2063 double_int temp
, temp_trunc
;
2066 /* Right shift FIXED_CST to temp by fbit. */
2067 temp
= TREE_FIXED_CST (arg1
).data
;
2068 mode
= TREE_FIXED_CST (arg1
).mode
;
2069 if (GET_MODE_FBIT (mode
) < HOST_BITS_PER_DOUBLE_INT
)
2071 temp
= temp
.rshift (GET_MODE_FBIT (mode
),
2072 HOST_BITS_PER_DOUBLE_INT
,
2073 SIGNED_FIXED_POINT_MODE_P (mode
));
2075 /* Left shift temp to temp_trunc by fbit. */
2076 temp_trunc
= temp
.lshift (GET_MODE_FBIT (mode
),
2077 HOST_BITS_PER_DOUBLE_INT
,
2078 SIGNED_FIXED_POINT_MODE_P (mode
));
2082 temp
= double_int_zero
;
2083 temp_trunc
= double_int_zero
;
2086 /* If FIXED_CST is negative, we need to round the value toward 0.
2087 By checking if the fractional bits are not zero to add 1 to temp. */
2088 if (SIGNED_FIXED_POINT_MODE_P (mode
)
2089 && temp_trunc
.is_negative ()
2090 && TREE_FIXED_CST (arg1
).data
!= temp_trunc
)
2091 temp
+= double_int_one
;
2093 /* Given a fixed-point constant, make new constant with new type,
2094 appropriately sign-extended or truncated. */
2095 t
= force_fit_type (type
, temp
, -1,
2096 (temp
.is_negative ()
2097 && (TYPE_UNSIGNED (type
)
2098 < TYPE_UNSIGNED (TREE_TYPE (arg1
))))
2099 | TREE_OVERFLOW (arg1
));
2104 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2105 to another floating point type. */
2108 fold_convert_const_real_from_real (tree type
, const_tree arg1
)
2110 REAL_VALUE_TYPE value
;
2113 /* Don't perform the operation if flag_signaling_nans is on
2114 and the operand is a signaling NaN. */
2115 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1
)))
2116 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1
)))
2119 real_convert (&value
, TYPE_MODE (type
), &TREE_REAL_CST (arg1
));
2120 t
= build_real (type
, value
);
2122 /* If converting an infinity or NAN to a representation that doesn't
2123 have one, set the overflow bit so that we can produce some kind of
2124 error message at the appropriate point if necessary. It's not the
2125 most user-friendly message, but it's better than nothing. */
2126 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1
))
2127 && !MODE_HAS_INFINITIES (TYPE_MODE (type
)))
2128 TREE_OVERFLOW (t
) = 1;
2129 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1
))
2130 && !MODE_HAS_NANS (TYPE_MODE (type
)))
2131 TREE_OVERFLOW (t
) = 1;
2132 /* Regular overflow, conversion produced an infinity in a mode that
2133 can't represent them. */
2134 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type
))
2135 && REAL_VALUE_ISINF (value
)
2136 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1
)))
2137 TREE_OVERFLOW (t
) = 1;
2139 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
);
2143 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2144 to a floating point type. */
2147 fold_convert_const_real_from_fixed (tree type
, const_tree arg1
)
2149 REAL_VALUE_TYPE value
;
2152 real_convert_from_fixed (&value
, SCALAR_FLOAT_TYPE_MODE (type
),
2153 &TREE_FIXED_CST (arg1
));
2154 t
= build_real (type
, value
);
2156 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
);
2160 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2161 to another fixed-point type. */
2164 fold_convert_const_fixed_from_fixed (tree type
, const_tree arg1
)
2166 FIXED_VALUE_TYPE value
;
2170 overflow_p
= fixed_convert (&value
, SCALAR_TYPE_MODE (type
),
2171 &TREE_FIXED_CST (arg1
), TYPE_SATURATING (type
));
2172 t
= build_fixed (type
, value
);
2174 /* Propagate overflow flags. */
2175 if (overflow_p
| TREE_OVERFLOW (arg1
))
2176 TREE_OVERFLOW (t
) = 1;
2180 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2181 to a fixed-point type. */
2184 fold_convert_const_fixed_from_int (tree type
, const_tree arg1
)
2186 FIXED_VALUE_TYPE value
;
2191 gcc_assert (TREE_INT_CST_NUNITS (arg1
) <= 2);
2193 di
.low
= TREE_INT_CST_ELT (arg1
, 0);
2194 if (TREE_INT_CST_NUNITS (arg1
) == 1)
2195 di
.high
= (HOST_WIDE_INT
) di
.low
< 0 ? HOST_WIDE_INT_M1
: 0;
2197 di
.high
= TREE_INT_CST_ELT (arg1
, 1);
2199 overflow_p
= fixed_convert_from_int (&value
, SCALAR_TYPE_MODE (type
), di
,
2200 TYPE_UNSIGNED (TREE_TYPE (arg1
)),
2201 TYPE_SATURATING (type
));
2202 t
= build_fixed (type
, value
);
2204 /* Propagate overflow flags. */
2205 if (overflow_p
| TREE_OVERFLOW (arg1
))
2206 TREE_OVERFLOW (t
) = 1;
2210 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2211 to a fixed-point type. */
2214 fold_convert_const_fixed_from_real (tree type
, const_tree arg1
)
2216 FIXED_VALUE_TYPE value
;
2220 overflow_p
= fixed_convert_from_real (&value
, SCALAR_TYPE_MODE (type
),
2221 &TREE_REAL_CST (arg1
),
2222 TYPE_SATURATING (type
));
2223 t
= build_fixed (type
, value
);
2225 /* Propagate overflow flags. */
2226 if (overflow_p
| TREE_OVERFLOW (arg1
))
2227 TREE_OVERFLOW (t
) = 1;
2231 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2232 type TYPE. If no simplification can be done return NULL_TREE. */
2235 fold_convert_const (enum tree_code code
, tree type
, tree arg1
)
2237 tree arg_type
= TREE_TYPE (arg1
);
2238 if (arg_type
== type
)
2241 /* We can't widen types, since the runtime value could overflow the
2242 original type before being extended to the new type. */
2243 if (POLY_INT_CST_P (arg1
)
2244 && (POINTER_TYPE_P (type
) || INTEGRAL_TYPE_P (type
))
2245 && TYPE_PRECISION (type
) <= TYPE_PRECISION (arg_type
))
2246 return build_poly_int_cst (type
,
2247 poly_wide_int::from (poly_int_cst_value (arg1
),
2248 TYPE_PRECISION (type
),
2249 TYPE_SIGN (arg_type
)));
2251 if (POINTER_TYPE_P (type
) || INTEGRAL_TYPE_P (type
)
2252 || TREE_CODE (type
) == OFFSET_TYPE
)
2254 if (TREE_CODE (arg1
) == INTEGER_CST
)
2255 return fold_convert_const_int_from_int (type
, arg1
);
2256 else if (TREE_CODE (arg1
) == REAL_CST
)
2257 return fold_convert_const_int_from_real (code
, type
, arg1
);
2258 else if (TREE_CODE (arg1
) == FIXED_CST
)
2259 return fold_convert_const_int_from_fixed (type
, arg1
);
2261 else if (TREE_CODE (type
) == REAL_TYPE
)
2263 if (TREE_CODE (arg1
) == INTEGER_CST
)
2264 return build_real_from_int_cst (type
, arg1
);
2265 else if (TREE_CODE (arg1
) == REAL_CST
)
2266 return fold_convert_const_real_from_real (type
, arg1
);
2267 else if (TREE_CODE (arg1
) == FIXED_CST
)
2268 return fold_convert_const_real_from_fixed (type
, arg1
);
2270 else if (TREE_CODE (type
) == FIXED_POINT_TYPE
)
2272 if (TREE_CODE (arg1
) == FIXED_CST
)
2273 return fold_convert_const_fixed_from_fixed (type
, arg1
);
2274 else if (TREE_CODE (arg1
) == INTEGER_CST
)
2275 return fold_convert_const_fixed_from_int (type
, arg1
);
2276 else if (TREE_CODE (arg1
) == REAL_CST
)
2277 return fold_convert_const_fixed_from_real (type
, arg1
);
2279 else if (TREE_CODE (type
) == VECTOR_TYPE
)
2281 if (TREE_CODE (arg1
) == VECTOR_CST
2282 && known_eq (TYPE_VECTOR_SUBPARTS (type
), VECTOR_CST_NELTS (arg1
)))
2284 tree elttype
= TREE_TYPE (type
);
2285 tree arg1_elttype
= TREE_TYPE (TREE_TYPE (arg1
));
2286 /* We can't handle steps directly when extending, since the
2287 values need to wrap at the original precision first. */
2289 = (INTEGRAL_TYPE_P (elttype
)
2290 && INTEGRAL_TYPE_P (arg1_elttype
)
2291 && TYPE_PRECISION (elttype
) <= TYPE_PRECISION (arg1_elttype
));
2292 tree_vector_builder v
;
2293 if (!v
.new_unary_operation (type
, arg1
, step_ok_p
))
2295 unsigned int len
= v
.encoded_nelts ();
2296 for (unsigned int i
= 0; i
< len
; ++i
)
2298 tree elt
= VECTOR_CST_ELT (arg1
, i
);
2299 tree cvt
= fold_convert_const (code
, elttype
, elt
);
2300 if (cvt
== NULL_TREE
)
2310 /* Construct a vector of zero elements of vector type TYPE. */
2313 build_zero_vector (tree type
)
2317 t
= fold_convert_const (NOP_EXPR
, TREE_TYPE (type
), integer_zero_node
);
2318 return build_vector_from_val (type
, t
);
2321 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2324 fold_convertible_p (const_tree type
, const_tree arg
)
2326 tree orig
= TREE_TYPE (arg
);
2331 if (TREE_CODE (arg
) == ERROR_MARK
2332 || TREE_CODE (type
) == ERROR_MARK
2333 || TREE_CODE (orig
) == ERROR_MARK
)
2336 if (TYPE_MAIN_VARIANT (type
) == TYPE_MAIN_VARIANT (orig
))
2339 switch (TREE_CODE (type
))
2341 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
2342 case POINTER_TYPE
: case REFERENCE_TYPE
:
2344 return (INTEGRAL_TYPE_P (orig
) || POINTER_TYPE_P (orig
)
2345 || TREE_CODE (orig
) == OFFSET_TYPE
);
2348 case FIXED_POINT_TYPE
:
2351 return TREE_CODE (type
) == TREE_CODE (orig
);
2358 /* Convert expression ARG to type TYPE. Used by the middle-end for
2359 simple conversions in preference to calling the front-end's convert. */
2362 fold_convert_loc (location_t loc
, tree type
, tree arg
)
2364 tree orig
= TREE_TYPE (arg
);
2370 if (TREE_CODE (arg
) == ERROR_MARK
2371 || TREE_CODE (type
) == ERROR_MARK
2372 || TREE_CODE (orig
) == ERROR_MARK
)
2373 return error_mark_node
;
2375 switch (TREE_CODE (type
))
2378 case REFERENCE_TYPE
:
2379 /* Handle conversions between pointers to different address spaces. */
2380 if (POINTER_TYPE_P (orig
)
2381 && (TYPE_ADDR_SPACE (TREE_TYPE (type
))
2382 != TYPE_ADDR_SPACE (TREE_TYPE (orig
))))
2383 return fold_build1_loc (loc
, ADDR_SPACE_CONVERT_EXPR
, type
, arg
);
2386 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
2388 if (TREE_CODE (arg
) == INTEGER_CST
)
2390 tem
= fold_convert_const (NOP_EXPR
, type
, arg
);
2391 if (tem
!= NULL_TREE
)
2394 if (INTEGRAL_TYPE_P (orig
) || POINTER_TYPE_P (orig
)
2395 || TREE_CODE (orig
) == OFFSET_TYPE
)
2396 return fold_build1_loc (loc
, NOP_EXPR
, type
, arg
);
2397 if (TREE_CODE (orig
) == COMPLEX_TYPE
)
2398 return fold_convert_loc (loc
, type
,
2399 fold_build1_loc (loc
, REALPART_EXPR
,
2400 TREE_TYPE (orig
), arg
));
2401 gcc_assert (TREE_CODE (orig
) == VECTOR_TYPE
2402 && tree_int_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (orig
)));
2403 return fold_build1_loc (loc
, VIEW_CONVERT_EXPR
, type
, arg
);
2406 if (TREE_CODE (arg
) == INTEGER_CST
)
2408 tem
= fold_convert_const (FLOAT_EXPR
, type
, arg
);
2409 if (tem
!= NULL_TREE
)
2412 else if (TREE_CODE (arg
) == REAL_CST
)
2414 tem
= fold_convert_const (NOP_EXPR
, type
, arg
);
2415 if (tem
!= NULL_TREE
)
2418 else if (TREE_CODE (arg
) == FIXED_CST
)
2420 tem
= fold_convert_const (FIXED_CONVERT_EXPR
, type
, arg
);
2421 if (tem
!= NULL_TREE
)
2425 switch (TREE_CODE (orig
))
2428 case BOOLEAN_TYPE
: case ENUMERAL_TYPE
:
2429 case POINTER_TYPE
: case REFERENCE_TYPE
:
2430 return fold_build1_loc (loc
, FLOAT_EXPR
, type
, arg
);
2433 return fold_build1_loc (loc
, NOP_EXPR
, type
, arg
);
2435 case FIXED_POINT_TYPE
:
2436 return fold_build1_loc (loc
, FIXED_CONVERT_EXPR
, type
, arg
);
2439 tem
= fold_build1_loc (loc
, REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2440 return fold_convert_loc (loc
, type
, tem
);
2446 case FIXED_POINT_TYPE
:
2447 if (TREE_CODE (arg
) == FIXED_CST
|| TREE_CODE (arg
) == INTEGER_CST
2448 || TREE_CODE (arg
) == REAL_CST
)
2450 tem
= fold_convert_const (FIXED_CONVERT_EXPR
, type
, arg
);
2451 if (tem
!= NULL_TREE
)
2452 goto fold_convert_exit
;
2455 switch (TREE_CODE (orig
))
2457 case FIXED_POINT_TYPE
:
2462 return fold_build1_loc (loc
, FIXED_CONVERT_EXPR
, type
, arg
);
2465 tem
= fold_build1_loc (loc
, REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2466 return fold_convert_loc (loc
, type
, tem
);
2473 switch (TREE_CODE (orig
))
2476 case BOOLEAN_TYPE
: case ENUMERAL_TYPE
:
2477 case POINTER_TYPE
: case REFERENCE_TYPE
:
2479 case FIXED_POINT_TYPE
:
2480 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
2481 fold_convert_loc (loc
, TREE_TYPE (type
), arg
),
2482 fold_convert_loc (loc
, TREE_TYPE (type
),
2483 integer_zero_node
));
2488 if (TREE_CODE (arg
) == COMPLEX_EXPR
)
2490 rpart
= fold_convert_loc (loc
, TREE_TYPE (type
),
2491 TREE_OPERAND (arg
, 0));
2492 ipart
= fold_convert_loc (loc
, TREE_TYPE (type
),
2493 TREE_OPERAND (arg
, 1));
2494 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rpart
, ipart
);
2497 arg
= save_expr (arg
);
2498 rpart
= fold_build1_loc (loc
, REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2499 ipart
= fold_build1_loc (loc
, IMAGPART_EXPR
, TREE_TYPE (orig
), arg
);
2500 rpart
= fold_convert_loc (loc
, TREE_TYPE (type
), rpart
);
2501 ipart
= fold_convert_loc (loc
, TREE_TYPE (type
), ipart
);
2502 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rpart
, ipart
);
2510 if (integer_zerop (arg
))
2511 return build_zero_vector (type
);
2512 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (orig
)));
2513 gcc_assert (INTEGRAL_TYPE_P (orig
) || POINTER_TYPE_P (orig
)
2514 || TREE_CODE (orig
) == VECTOR_TYPE
);
2515 return fold_build1_loc (loc
, VIEW_CONVERT_EXPR
, type
, arg
);
2518 tem
= fold_ignored_result (arg
);
2519 return fold_build1_loc (loc
, NOP_EXPR
, type
, tem
);
2522 if (TYPE_MAIN_VARIANT (type
) == TYPE_MAIN_VARIANT (orig
))
2523 return fold_build1_loc (loc
, NOP_EXPR
, type
, arg
);
2527 protected_set_expr_location_unshare (tem
, loc
);
2531 /* Return false if expr can be assumed not to be an lvalue, true
2535 maybe_lvalue_p (const_tree x
)
2537 /* We only need to wrap lvalue tree codes. */
2538 switch (TREE_CODE (x
))
2551 case ARRAY_RANGE_REF
:
2557 case PREINCREMENT_EXPR
:
2558 case PREDECREMENT_EXPR
:
2560 case TRY_CATCH_EXPR
:
2561 case WITH_CLEANUP_EXPR
:
2570 /* Assume the worst for front-end tree codes. */
2571 if ((int)TREE_CODE (x
) >= NUM_TREE_CODES
)
2579 /* Return an expr equal to X but certainly not valid as an lvalue. */
2582 non_lvalue_loc (location_t loc
, tree x
)
2584 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2589 if (! maybe_lvalue_p (x
))
2591 return build1_loc (loc
, NON_LVALUE_EXPR
, TREE_TYPE (x
), x
);
2594 /* When pedantic, return an expr equal to X but certainly not valid as a
2595 pedantic lvalue. Otherwise, return X. */
2598 pedantic_non_lvalue_loc (location_t loc
, tree x
)
2600 return protected_set_expr_location_unshare (x
, loc
);
2603 /* Given a tree comparison code, return the code that is the logical inverse.
2604 It is generally not safe to do this for floating-point comparisons, except
2605 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2606 ERROR_MARK in this case. */
2609 invert_tree_comparison (enum tree_code code
, bool honor_nans
)
2611 if (honor_nans
&& flag_trapping_math
&& code
!= EQ_EXPR
&& code
!= NE_EXPR
2612 && code
!= ORDERED_EXPR
&& code
!= UNORDERED_EXPR
)
2622 return honor_nans
? UNLE_EXPR
: LE_EXPR
;
2624 return honor_nans
? UNLT_EXPR
: LT_EXPR
;
2626 return honor_nans
? UNGE_EXPR
: GE_EXPR
;
2628 return honor_nans
? UNGT_EXPR
: GT_EXPR
;
2642 return UNORDERED_EXPR
;
2643 case UNORDERED_EXPR
:
2644 return ORDERED_EXPR
;
2650 /* Similar, but return the comparison that results if the operands are
2651 swapped. This is safe for floating-point. */
2654 swap_tree_comparison (enum tree_code code
)
2661 case UNORDERED_EXPR
:
2687 /* Convert a comparison tree code from an enum tree_code representation
2688 into a compcode bit-based encoding. This function is the inverse of
2689 compcode_to_comparison. */
2691 static enum comparison_code
2692 comparison_to_compcode (enum tree_code code
)
2709 return COMPCODE_ORD
;
2710 case UNORDERED_EXPR
:
2711 return COMPCODE_UNORD
;
2713 return COMPCODE_UNLT
;
2715 return COMPCODE_UNEQ
;
2717 return COMPCODE_UNLE
;
2719 return COMPCODE_UNGT
;
2721 return COMPCODE_LTGT
;
2723 return COMPCODE_UNGE
;
2729 /* Convert a compcode bit-based encoding of a comparison operator back
2730 to GCC's enum tree_code representation. This function is the
2731 inverse of comparison_to_compcode. */
2733 static enum tree_code
2734 compcode_to_comparison (enum comparison_code code
)
2751 return ORDERED_EXPR
;
2752 case COMPCODE_UNORD
:
2753 return UNORDERED_EXPR
;
2771 /* Return a tree for the comparison which is the combination of
2772 doing the AND or OR (depending on CODE) of the two operations LCODE
2773 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2774 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2775 if this makes the transformation invalid. */
2778 combine_comparisons (location_t loc
,
2779 enum tree_code code
, enum tree_code lcode
,
2780 enum tree_code rcode
, tree truth_type
,
2781 tree ll_arg
, tree lr_arg
)
2783 bool honor_nans
= HONOR_NANS (ll_arg
);
2784 enum comparison_code lcompcode
= comparison_to_compcode (lcode
);
2785 enum comparison_code rcompcode
= comparison_to_compcode (rcode
);
2790 case TRUTH_AND_EXPR
: case TRUTH_ANDIF_EXPR
:
2791 compcode
= lcompcode
& rcompcode
;
2794 case TRUTH_OR_EXPR
: case TRUTH_ORIF_EXPR
:
2795 compcode
= lcompcode
| rcompcode
;
2804 /* Eliminate unordered comparisons, as well as LTGT and ORD
2805 which are not used unless the mode has NaNs. */
2806 compcode
&= ~COMPCODE_UNORD
;
2807 if (compcode
== COMPCODE_LTGT
)
2808 compcode
= COMPCODE_NE
;
2809 else if (compcode
== COMPCODE_ORD
)
2810 compcode
= COMPCODE_TRUE
;
2812 else if (flag_trapping_math
)
2814 /* Check that the original operation and the optimized ones will trap
2815 under the same condition. */
2816 bool ltrap
= (lcompcode
& COMPCODE_UNORD
) == 0
2817 && (lcompcode
!= COMPCODE_EQ
)
2818 && (lcompcode
!= COMPCODE_ORD
);
2819 bool rtrap
= (rcompcode
& COMPCODE_UNORD
) == 0
2820 && (rcompcode
!= COMPCODE_EQ
)
2821 && (rcompcode
!= COMPCODE_ORD
);
2822 bool trap
= (compcode
& COMPCODE_UNORD
) == 0
2823 && (compcode
!= COMPCODE_EQ
)
2824 && (compcode
!= COMPCODE_ORD
);
2826 /* In a short-circuited boolean expression the LHS might be
2827 such that the RHS, if evaluated, will never trap. For
2828 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2829 if neither x nor y is NaN. (This is a mixed blessing: for
2830 example, the expression above will never trap, hence
2831 optimizing it to x < y would be invalid). */
2832 if ((code
== TRUTH_ORIF_EXPR
&& (lcompcode
& COMPCODE_UNORD
))
2833 || (code
== TRUTH_ANDIF_EXPR
&& !(lcompcode
& COMPCODE_UNORD
)))
2836 /* If the comparison was short-circuited, and only the RHS
2837 trapped, we may now generate a spurious trap. */
2839 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
))
2842 /* If we changed the conditions that cause a trap, we lose. */
2843 if ((ltrap
|| rtrap
) != trap
)
2847 if (compcode
== COMPCODE_TRUE
)
2848 return constant_boolean_node (true, truth_type
);
2849 else if (compcode
== COMPCODE_FALSE
)
2850 return constant_boolean_node (false, truth_type
);
2853 enum tree_code tcode
;
2855 tcode
= compcode_to_comparison ((enum comparison_code
) compcode
);
2856 return fold_build2_loc (loc
, tcode
, truth_type
, ll_arg
, lr_arg
);
2860 /* Return nonzero if two operands (typically of the same tree node)
2861 are necessarily equal. FLAGS modifies behavior as follows:
2863 If OEP_ONLY_CONST is set, only return nonzero for constants.
2864 This function tests whether the operands are indistinguishable;
2865 it does not test whether they are equal using C's == operation.
2866 The distinction is important for IEEE floating point, because
2867 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2868 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2870 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2871 even though it may hold multiple values during a function.
2872 This is because a GCC tree node guarantees that nothing else is
2873 executed between the evaluation of its "operands" (which may often
2874 be evaluated in arbitrary order). Hence if the operands themselves
2875 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2876 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2877 unset means assuming isochronic (or instantaneous) tree equivalence.
2878 Unless comparing arbitrary expression trees, such as from different
2879 statements, this flag can usually be left unset.
2881 If OEP_PURE_SAME is set, then pure functions with identical arguments
2882 are considered the same. It is used when the caller has other ways
2883 to ensure that global memory is unchanged in between.
2885 If OEP_ADDRESS_OF is set, we are actually comparing addresses of objects,
2886 not values of expressions.
2888 If OEP_LEXICOGRAPHIC is set, then also handle expressions with side-effects
2889 such as MODIFY_EXPR, RETURN_EXPR, as well as STATEMENT_LISTs.
2891 Unless OEP_MATCH_SIDE_EFFECTS is set, the function returns false on
2892 any operand with side effect. This is unnecesarily conservative in the
2893 case we know that arg0 and arg1 are in disjoint code paths (such as in
2894 ?: operator). In addition OEP_MATCH_SIDE_EFFECTS is used when comparing
2895 addresses with TREE_CONSTANT flag set so we know that &var == &var
2896 even if var is volatile. */
2899 operand_equal_p (const_tree arg0
, const_tree arg1
, unsigned int flags
)
2901 /* When checking, verify at the outermost operand_equal_p call that
2902 if operand_equal_p returns non-zero then ARG0 and ARG1 has the same
2904 if (flag_checking
&& !(flags
& OEP_NO_HASH_CHECK
))
2906 if (operand_equal_p (arg0
, arg1
, flags
| OEP_NO_HASH_CHECK
))
2910 inchash::hash
hstate0 (0), hstate1 (0);
2911 inchash::add_expr (arg0
, hstate0
, flags
| OEP_HASH_CHECK
);
2912 inchash::add_expr (arg1
, hstate1
, flags
| OEP_HASH_CHECK
);
2913 hashval_t h0
= hstate0
.end ();
2914 hashval_t h1
= hstate1
.end ();
2915 gcc_assert (h0
== h1
);
2923 /* If either is ERROR_MARK, they aren't equal. */
2924 if (TREE_CODE (arg0
) == ERROR_MARK
|| TREE_CODE (arg1
) == ERROR_MARK
2925 || TREE_TYPE (arg0
) == error_mark_node
2926 || TREE_TYPE (arg1
) == error_mark_node
)
2929 /* Similar, if either does not have a type (like a released SSA name),
2930 they aren't equal. */
2931 if (!TREE_TYPE (arg0
) || !TREE_TYPE (arg1
))
2934 /* We cannot consider pointers to different address space equal. */
2935 if (POINTER_TYPE_P (TREE_TYPE (arg0
))
2936 && POINTER_TYPE_P (TREE_TYPE (arg1
))
2937 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0
)))
2938 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1
)))))
2941 /* Check equality of integer constants before bailing out due to
2942 precision differences. */
2943 if (TREE_CODE (arg0
) == INTEGER_CST
&& TREE_CODE (arg1
) == INTEGER_CST
)
2945 /* Address of INTEGER_CST is not defined; check that we did not forget
2946 to drop the OEP_ADDRESS_OF flags. */
2947 gcc_checking_assert (!(flags
& OEP_ADDRESS_OF
));
2948 return tree_int_cst_equal (arg0
, arg1
);
2951 if (!(flags
& OEP_ADDRESS_OF
))
2953 /* If both types don't have the same signedness, then we can't consider
2954 them equal. We must check this before the STRIP_NOPS calls
2955 because they may change the signedness of the arguments. As pointers
2956 strictly don't have a signedness, require either two pointers or
2957 two non-pointers as well. */
2958 if (TYPE_UNSIGNED (TREE_TYPE (arg0
)) != TYPE_UNSIGNED (TREE_TYPE (arg1
))
2959 || POINTER_TYPE_P (TREE_TYPE (arg0
))
2960 != POINTER_TYPE_P (TREE_TYPE (arg1
)))
2963 /* If both types don't have the same precision, then it is not safe
2965 if (element_precision (TREE_TYPE (arg0
))
2966 != element_precision (TREE_TYPE (arg1
)))
2973 /* FIXME: Fortran FE currently produce ADDR_EXPR of NOP_EXPR. Enable the
2974 sanity check once the issue is solved. */
2976 /* Addresses of conversions and SSA_NAMEs (and many other things)
2977 are not defined. Check that we did not forget to drop the
2978 OEP_ADDRESS_OF/OEP_CONSTANT_ADDRESS_OF flags. */
2979 gcc_checking_assert (!CONVERT_EXPR_P (arg0
) && !CONVERT_EXPR_P (arg1
)
2980 && TREE_CODE (arg0
) != SSA_NAME
);
2983 /* In case both args are comparisons but with different comparison
2984 code, try to swap the comparison operands of one arg to produce
2985 a match and compare that variant. */
2986 if (TREE_CODE (arg0
) != TREE_CODE (arg1
)
2987 && COMPARISON_CLASS_P (arg0
)
2988 && COMPARISON_CLASS_P (arg1
))
2990 enum tree_code swap_code
= swap_tree_comparison (TREE_CODE (arg1
));
2992 if (TREE_CODE (arg0
) == swap_code
)
2993 return operand_equal_p (TREE_OPERAND (arg0
, 0),
2994 TREE_OPERAND (arg1
, 1), flags
)
2995 && operand_equal_p (TREE_OPERAND (arg0
, 1),
2996 TREE_OPERAND (arg1
, 0), flags
);
2999 if (TREE_CODE (arg0
) != TREE_CODE (arg1
))
3001 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
3002 if (CONVERT_EXPR_P (arg0
) && CONVERT_EXPR_P (arg1
))
3004 else if (flags
& OEP_ADDRESS_OF
)
3006 /* If we are interested in comparing addresses ignore
3007 MEM_REF wrappings of the base that can appear just for
3009 if (TREE_CODE (arg0
) == MEM_REF
3011 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == ADDR_EXPR
3012 && TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0) == arg1
3013 && integer_zerop (TREE_OPERAND (arg0
, 1)))
3015 else if (TREE_CODE (arg1
) == MEM_REF
3017 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == ADDR_EXPR
3018 && TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0) == arg0
3019 && integer_zerop (TREE_OPERAND (arg1
, 1)))
3027 /* When not checking adddresses, this is needed for conversions and for
3028 COMPONENT_REF. Might as well play it safe and always test this. */
3029 if (TREE_CODE (TREE_TYPE (arg0
)) == ERROR_MARK
3030 || TREE_CODE (TREE_TYPE (arg1
)) == ERROR_MARK
3031 || (TYPE_MODE (TREE_TYPE (arg0
)) != TYPE_MODE (TREE_TYPE (arg1
))
3032 && !(flags
& OEP_ADDRESS_OF
)))
3035 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
3036 We don't care about side effects in that case because the SAVE_EXPR
3037 takes care of that for us. In all other cases, two expressions are
3038 equal if they have no side effects. If we have two identical
3039 expressions with side effects that should be treated the same due
3040 to the only side effects being identical SAVE_EXPR's, that will
3041 be detected in the recursive calls below.
3042 If we are taking an invariant address of two identical objects
3043 they are necessarily equal as well. */
3044 if (arg0
== arg1
&& ! (flags
& OEP_ONLY_CONST
)
3045 && (TREE_CODE (arg0
) == SAVE_EXPR
3046 || (flags
& OEP_MATCH_SIDE_EFFECTS
)
3047 || (! TREE_SIDE_EFFECTS (arg0
) && ! TREE_SIDE_EFFECTS (arg1
))))
3050 /* Next handle constant cases, those for which we can return 1 even
3051 if ONLY_CONST is set. */
3052 if (TREE_CONSTANT (arg0
) && TREE_CONSTANT (arg1
))
3053 switch (TREE_CODE (arg0
))
3056 return tree_int_cst_equal (arg0
, arg1
);
3059 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0
),
3060 TREE_FIXED_CST (arg1
));
3063 if (real_identical (&TREE_REAL_CST (arg0
), &TREE_REAL_CST (arg1
)))
3067 if (!HONOR_SIGNED_ZEROS (arg0
))
3069 /* If we do not distinguish between signed and unsigned zero,
3070 consider them equal. */
3071 if (real_zerop (arg0
) && real_zerop (arg1
))
3078 if (VECTOR_CST_LOG2_NPATTERNS (arg0
)
3079 != VECTOR_CST_LOG2_NPATTERNS (arg1
))
3082 if (VECTOR_CST_NELTS_PER_PATTERN (arg0
)
3083 != VECTOR_CST_NELTS_PER_PATTERN (arg1
))
3086 unsigned int count
= vector_cst_encoded_nelts (arg0
);
3087 for (unsigned int i
= 0; i
< count
; ++i
)
3088 if (!operand_equal_p (VECTOR_CST_ENCODED_ELT (arg0
, i
),
3089 VECTOR_CST_ENCODED_ELT (arg1
, i
), flags
))
3095 return (operand_equal_p (TREE_REALPART (arg0
), TREE_REALPART (arg1
),
3097 && operand_equal_p (TREE_IMAGPART (arg0
), TREE_IMAGPART (arg1
),
3101 return (TREE_STRING_LENGTH (arg0
) == TREE_STRING_LENGTH (arg1
)
3102 && ! memcmp (TREE_STRING_POINTER (arg0
),
3103 TREE_STRING_POINTER (arg1
),
3104 TREE_STRING_LENGTH (arg0
)));
3107 gcc_checking_assert (!(flags
& OEP_ADDRESS_OF
));
3108 return operand_equal_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg1
, 0),
3109 flags
| OEP_ADDRESS_OF
3110 | OEP_MATCH_SIDE_EFFECTS
);
3112 /* In GIMPLE empty constructors are allowed in initializers of
3114 return !CONSTRUCTOR_NELTS (arg0
) && !CONSTRUCTOR_NELTS (arg1
);
3119 if (flags
& OEP_ONLY_CONST
)
3122 /* Define macros to test an operand from arg0 and arg1 for equality and a
3123 variant that allows null and views null as being different from any
3124 non-null value. In the latter case, if either is null, the both
3125 must be; otherwise, do the normal comparison. */
3126 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
3127 TREE_OPERAND (arg1, N), flags)
3129 #define OP_SAME_WITH_NULL(N) \
3130 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
3131 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
3133 switch (TREE_CODE_CLASS (TREE_CODE (arg0
)))
3136 /* Two conversions are equal only if signedness and modes match. */
3137 switch (TREE_CODE (arg0
))
3140 case FIX_TRUNC_EXPR
:
3141 if (TYPE_UNSIGNED (TREE_TYPE (arg0
))
3142 != TYPE_UNSIGNED (TREE_TYPE (arg1
)))
3152 case tcc_comparison
:
3154 if (OP_SAME (0) && OP_SAME (1))
3157 /* For commutative ops, allow the other order. */
3158 return (commutative_tree_code (TREE_CODE (arg0
))
3159 && operand_equal_p (TREE_OPERAND (arg0
, 0),
3160 TREE_OPERAND (arg1
, 1), flags
)
3161 && operand_equal_p (TREE_OPERAND (arg0
, 1),
3162 TREE_OPERAND (arg1
, 0), flags
));
3165 /* If either of the pointer (or reference) expressions we are
3166 dereferencing contain a side effect, these cannot be equal,
3167 but their addresses can be. */
3168 if ((flags
& OEP_MATCH_SIDE_EFFECTS
) == 0
3169 && (TREE_SIDE_EFFECTS (arg0
)
3170 || TREE_SIDE_EFFECTS (arg1
)))
3173 switch (TREE_CODE (arg0
))
3176 if (!(flags
& OEP_ADDRESS_OF
)
3177 && (TYPE_ALIGN (TREE_TYPE (arg0
))
3178 != TYPE_ALIGN (TREE_TYPE (arg1
))))
3180 flags
&= ~OEP_ADDRESS_OF
;
3184 /* Require the same offset. */
3185 if (!operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0
)),
3186 TYPE_SIZE (TREE_TYPE (arg1
)),
3187 flags
& ~OEP_ADDRESS_OF
))
3192 case VIEW_CONVERT_EXPR
:
3195 case TARGET_MEM_REF
:
3197 if (!(flags
& OEP_ADDRESS_OF
))
3199 /* Require equal access sizes */
3200 if (TYPE_SIZE (TREE_TYPE (arg0
)) != TYPE_SIZE (TREE_TYPE (arg1
))
3201 && (!TYPE_SIZE (TREE_TYPE (arg0
))
3202 || !TYPE_SIZE (TREE_TYPE (arg1
))
3203 || !operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0
)),
3204 TYPE_SIZE (TREE_TYPE (arg1
)),
3207 /* Verify that access happens in similar types. */
3208 if (!types_compatible_p (TREE_TYPE (arg0
), TREE_TYPE (arg1
)))
3210 /* Verify that accesses are TBAA compatible. */
3211 if (!alias_ptr_types_compatible_p
3212 (TREE_TYPE (TREE_OPERAND (arg0
, 1)),
3213 TREE_TYPE (TREE_OPERAND (arg1
, 1)))
3214 || (MR_DEPENDENCE_CLIQUE (arg0
)
3215 != MR_DEPENDENCE_CLIQUE (arg1
))
3216 || (MR_DEPENDENCE_BASE (arg0
)
3217 != MR_DEPENDENCE_BASE (arg1
)))
3219 /* Verify that alignment is compatible. */
3220 if (TYPE_ALIGN (TREE_TYPE (arg0
))
3221 != TYPE_ALIGN (TREE_TYPE (arg1
)))
3224 flags
&= ~OEP_ADDRESS_OF
;
3225 return (OP_SAME (0) && OP_SAME (1)
3226 /* TARGET_MEM_REF require equal extra operands. */
3227 && (TREE_CODE (arg0
) != TARGET_MEM_REF
3228 || (OP_SAME_WITH_NULL (2)
3229 && OP_SAME_WITH_NULL (3)
3230 && OP_SAME_WITH_NULL (4))));
3233 case ARRAY_RANGE_REF
:
3236 flags
&= ~OEP_ADDRESS_OF
;
3237 /* Compare the array index by value if it is constant first as we
3238 may have different types but same value here. */
3239 return ((tree_int_cst_equal (TREE_OPERAND (arg0
, 1),
3240 TREE_OPERAND (arg1
, 1))
3242 && OP_SAME_WITH_NULL (2)
3243 && OP_SAME_WITH_NULL (3)
3244 /* Compare low bound and element size as with OEP_ADDRESS_OF
3245 we have to account for the offset of the ref. */
3246 && (TREE_TYPE (TREE_OPERAND (arg0
, 0))
3247 == TREE_TYPE (TREE_OPERAND (arg1
, 0))
3248 || (operand_equal_p (array_ref_low_bound
3249 (CONST_CAST_TREE (arg0
)),
3251 (CONST_CAST_TREE (arg1
)), flags
)
3252 && operand_equal_p (array_ref_element_size
3253 (CONST_CAST_TREE (arg0
)),
3254 array_ref_element_size
3255 (CONST_CAST_TREE (arg1
)),
3259 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
3260 may be NULL when we're called to compare MEM_EXPRs. */
3261 if (!OP_SAME_WITH_NULL (0)
3264 flags
&= ~OEP_ADDRESS_OF
;
3265 return OP_SAME_WITH_NULL (2);
3270 flags
&= ~OEP_ADDRESS_OF
;
3271 return OP_SAME (1) && OP_SAME (2);
3277 case tcc_expression
:
3278 switch (TREE_CODE (arg0
))
3281 /* Be sure we pass right ADDRESS_OF flag. */
3282 gcc_checking_assert (!(flags
& OEP_ADDRESS_OF
));
3283 return operand_equal_p (TREE_OPERAND (arg0
, 0),
3284 TREE_OPERAND (arg1
, 0),
3285 flags
| OEP_ADDRESS_OF
);
3287 case TRUTH_NOT_EXPR
:
3290 case TRUTH_ANDIF_EXPR
:
3291 case TRUTH_ORIF_EXPR
:
3292 return OP_SAME (0) && OP_SAME (1);
3295 case WIDEN_MULT_PLUS_EXPR
:
3296 case WIDEN_MULT_MINUS_EXPR
:
3299 /* The multiplcation operands are commutative. */
3302 case TRUTH_AND_EXPR
:
3304 case TRUTH_XOR_EXPR
:
3305 if (OP_SAME (0) && OP_SAME (1))
3308 /* Otherwise take into account this is a commutative operation. */
3309 return (operand_equal_p (TREE_OPERAND (arg0
, 0),
3310 TREE_OPERAND (arg1
, 1), flags
)
3311 && operand_equal_p (TREE_OPERAND (arg0
, 1),
3312 TREE_OPERAND (arg1
, 0), flags
));
3315 if (! OP_SAME (1) || ! OP_SAME_WITH_NULL (2))
3317 flags
&= ~OEP_ADDRESS_OF
;
3320 case BIT_INSERT_EXPR
:
3321 /* BIT_INSERT_EXPR has an implict operand as the type precision
3322 of op1. Need to check to make sure they are the same. */
3323 if (TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
3324 && TREE_CODE (TREE_OPERAND (arg1
, 1)) == INTEGER_CST
3325 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0
, 1)))
3326 != TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1
, 1))))
3332 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3337 case PREDECREMENT_EXPR
:
3338 case PREINCREMENT_EXPR
:
3339 case POSTDECREMENT_EXPR
:
3340 case POSTINCREMENT_EXPR
:
3341 if (flags
& OEP_LEXICOGRAPHIC
)
3342 return OP_SAME (0) && OP_SAME (1);
3345 case CLEANUP_POINT_EXPR
:
3347 if (flags
& OEP_LEXICOGRAPHIC
)
3356 switch (TREE_CODE (arg0
))
3359 if ((CALL_EXPR_FN (arg0
) == NULL_TREE
)
3360 != (CALL_EXPR_FN (arg1
) == NULL_TREE
))
3361 /* If not both CALL_EXPRs are either internal or normal function
3362 functions, then they are not equal. */
3364 else if (CALL_EXPR_FN (arg0
) == NULL_TREE
)
3366 /* If the CALL_EXPRs call different internal functions, then they
3368 if (CALL_EXPR_IFN (arg0
) != CALL_EXPR_IFN (arg1
))
3373 /* If the CALL_EXPRs call different functions, then they are not
3375 if (! operand_equal_p (CALL_EXPR_FN (arg0
), CALL_EXPR_FN (arg1
),
3380 /* FIXME: We could skip this test for OEP_MATCH_SIDE_EFFECTS. */
3382 unsigned int cef
= call_expr_flags (arg0
);
3383 if (flags
& OEP_PURE_SAME
)
3384 cef
&= ECF_CONST
| ECF_PURE
;
3387 if (!cef
&& !(flags
& OEP_LEXICOGRAPHIC
))
3391 /* Now see if all the arguments are the same. */
3393 const_call_expr_arg_iterator iter0
, iter1
;
3395 for (a0
= first_const_call_expr_arg (arg0
, &iter0
),
3396 a1
= first_const_call_expr_arg (arg1
, &iter1
);
3398 a0
= next_const_call_expr_arg (&iter0
),
3399 a1
= next_const_call_expr_arg (&iter1
))
3400 if (! operand_equal_p (a0
, a1
, flags
))
3403 /* If we get here and both argument lists are exhausted
3404 then the CALL_EXPRs are equal. */
3405 return ! (a0
|| a1
);
3411 case tcc_declaration
:
3412 /* Consider __builtin_sqrt equal to sqrt. */
3413 return (TREE_CODE (arg0
) == FUNCTION_DECL
3414 && DECL_BUILT_IN (arg0
) && DECL_BUILT_IN (arg1
)
3415 && DECL_BUILT_IN_CLASS (arg0
) == DECL_BUILT_IN_CLASS (arg1
)
3416 && DECL_FUNCTION_CODE (arg0
) == DECL_FUNCTION_CODE (arg1
));
3418 case tcc_exceptional
:
3419 if (TREE_CODE (arg0
) == CONSTRUCTOR
)
3421 /* In GIMPLE constructors are used only to build vectors from
3422 elements. Individual elements in the constructor must be
3423 indexed in increasing order and form an initial sequence.
3425 We make no effort to compare constructors in generic.
3426 (see sem_variable::equals in ipa-icf which can do so for
3428 if (!VECTOR_TYPE_P (TREE_TYPE (arg0
))
3429 || !VECTOR_TYPE_P (TREE_TYPE (arg1
)))
3432 /* Be sure that vectors constructed have the same representation.
3433 We only tested element precision and modes to match.
3434 Vectors may be BLKmode and thus also check that the number of
3436 if (maybe_ne (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
)),
3437 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1
))))
3440 vec
<constructor_elt
, va_gc
> *v0
= CONSTRUCTOR_ELTS (arg0
);
3441 vec
<constructor_elt
, va_gc
> *v1
= CONSTRUCTOR_ELTS (arg1
);
3442 unsigned int len
= vec_safe_length (v0
);
3444 if (len
!= vec_safe_length (v1
))
3447 for (unsigned int i
= 0; i
< len
; i
++)
3449 constructor_elt
*c0
= &(*v0
)[i
];
3450 constructor_elt
*c1
= &(*v1
)[i
];
3452 if (!operand_equal_p (c0
->value
, c1
->value
, flags
)
3453 /* In GIMPLE the indexes can be either NULL or matching i.
3454 Double check this so we won't get false
3455 positives for GENERIC. */
3457 && (TREE_CODE (c0
->index
) != INTEGER_CST
3458 || !compare_tree_int (c0
->index
, i
)))
3460 && (TREE_CODE (c1
->index
) != INTEGER_CST
3461 || !compare_tree_int (c1
->index
, i
))))
3466 else if (TREE_CODE (arg0
) == STATEMENT_LIST
3467 && (flags
& OEP_LEXICOGRAPHIC
))
3469 /* Compare the STATEMENT_LISTs. */
3470 tree_stmt_iterator tsi1
, tsi2
;
3471 tree body1
= CONST_CAST_TREE (arg0
);
3472 tree body2
= CONST_CAST_TREE (arg1
);
3473 for (tsi1
= tsi_start (body1
), tsi2
= tsi_start (body2
); ;
3474 tsi_next (&tsi1
), tsi_next (&tsi2
))
3476 /* The lists don't have the same number of statements. */
3477 if (tsi_end_p (tsi1
) ^ tsi_end_p (tsi2
))
3479 if (tsi_end_p (tsi1
) && tsi_end_p (tsi2
))
3481 if (!operand_equal_p (tsi_stmt (tsi1
), tsi_stmt (tsi2
),
3482 flags
& (OEP_LEXICOGRAPHIC
3483 | OEP_NO_HASH_CHECK
)))
3490 switch (TREE_CODE (arg0
))
3493 if (flags
& OEP_LEXICOGRAPHIC
)
3494 return OP_SAME_WITH_NULL (0);
3496 case DEBUG_BEGIN_STMT
:
3497 if (flags
& OEP_LEXICOGRAPHIC
)
3509 #undef OP_SAME_WITH_NULL
3512 /* Similar to operand_equal_p, but see if ARG0 might be a variant of ARG1
3513 with a different signedness or a narrower precision. */
3516 operand_equal_for_comparison_p (tree arg0
, tree arg1
)
3518 if (operand_equal_p (arg0
, arg1
, 0))
3521 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
3522 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1
)))
3525 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3526 and see if the inner values are the same. This removes any
3527 signedness comparison, which doesn't matter here. */
3532 if (operand_equal_p (op0
, op1
, 0))
3535 /* Discard a single widening conversion from ARG1 and see if the inner
3536 value is the same as ARG0. */
3537 if (CONVERT_EXPR_P (arg1
)
3538 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg1
, 0)))
3539 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1
, 0)))
3540 < TYPE_PRECISION (TREE_TYPE (arg1
))
3541 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
3547 /* See if ARG is an expression that is either a comparison or is performing
3548 arithmetic on comparisons. The comparisons must only be comparing
3549 two different values, which will be stored in *CVAL1 and *CVAL2; if
3550 they are nonzero it means that some operands have already been found.
3551 No variables may be used anywhere else in the expression except in the
3554 If this is true, return 1. Otherwise, return zero. */
3557 twoval_comparison_p (tree arg
, tree
*cval1
, tree
*cval2
)
3559 enum tree_code code
= TREE_CODE (arg
);
3560 enum tree_code_class tclass
= TREE_CODE_CLASS (code
);
3562 /* We can handle some of the tcc_expression cases here. */
3563 if (tclass
== tcc_expression
&& code
== TRUTH_NOT_EXPR
)
3565 else if (tclass
== tcc_expression
3566 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
3567 || code
== COMPOUND_EXPR
))
3568 tclass
= tcc_binary
;
3573 return twoval_comparison_p (TREE_OPERAND (arg
, 0), cval1
, cval2
);
3576 return (twoval_comparison_p (TREE_OPERAND (arg
, 0), cval1
, cval2
)
3577 && twoval_comparison_p (TREE_OPERAND (arg
, 1), cval1
, cval2
));
3582 case tcc_expression
:
3583 if (code
== COND_EXPR
)
3584 return (twoval_comparison_p (TREE_OPERAND (arg
, 0), cval1
, cval2
)
3585 && twoval_comparison_p (TREE_OPERAND (arg
, 1), cval1
, cval2
)
3586 && twoval_comparison_p (TREE_OPERAND (arg
, 2), cval1
, cval2
));
3589 case tcc_comparison
:
3590 /* First see if we can handle the first operand, then the second. For
3591 the second operand, we know *CVAL1 can't be zero. It must be that
3592 one side of the comparison is each of the values; test for the
3593 case where this isn't true by failing if the two operands
3596 if (operand_equal_p (TREE_OPERAND (arg
, 0),
3597 TREE_OPERAND (arg
, 1), 0))
3601 *cval1
= TREE_OPERAND (arg
, 0);
3602 else if (operand_equal_p (*cval1
, TREE_OPERAND (arg
, 0), 0))
3604 else if (*cval2
== 0)
3605 *cval2
= TREE_OPERAND (arg
, 0);
3606 else if (operand_equal_p (*cval2
, TREE_OPERAND (arg
, 0), 0))
3611 if (operand_equal_p (*cval1
, TREE_OPERAND (arg
, 1), 0))
3613 else if (*cval2
== 0)
3614 *cval2
= TREE_OPERAND (arg
, 1);
3615 else if (operand_equal_p (*cval2
, TREE_OPERAND (arg
, 1), 0))
3627 /* ARG is a tree that is known to contain just arithmetic operations and
3628 comparisons. Evaluate the operations in the tree substituting NEW0 for
3629 any occurrence of OLD0 as an operand of a comparison and likewise for
3633 eval_subst (location_t loc
, tree arg
, tree old0
, tree new0
,
3634 tree old1
, tree new1
)
3636 tree type
= TREE_TYPE (arg
);
3637 enum tree_code code
= TREE_CODE (arg
);
3638 enum tree_code_class tclass
= TREE_CODE_CLASS (code
);
3640 /* We can handle some of the tcc_expression cases here. */
3641 if (tclass
== tcc_expression
&& code
== TRUTH_NOT_EXPR
)
3643 else if (tclass
== tcc_expression
3644 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
))
3645 tclass
= tcc_binary
;
3650 return fold_build1_loc (loc
, code
, type
,
3651 eval_subst (loc
, TREE_OPERAND (arg
, 0),
3652 old0
, new0
, old1
, new1
));
3655 return fold_build2_loc (loc
, code
, type
,
3656 eval_subst (loc
, TREE_OPERAND (arg
, 0),
3657 old0
, new0
, old1
, new1
),
3658 eval_subst (loc
, TREE_OPERAND (arg
, 1),
3659 old0
, new0
, old1
, new1
));
3661 case tcc_expression
:
3665 return eval_subst (loc
, TREE_OPERAND (arg
, 0), old0
, new0
,
3669 return eval_subst (loc
, TREE_OPERAND (arg
, 1), old0
, new0
,
3673 return fold_build3_loc (loc
, code
, type
,
3674 eval_subst (loc
, TREE_OPERAND (arg
, 0),
3675 old0
, new0
, old1
, new1
),
3676 eval_subst (loc
, TREE_OPERAND (arg
, 1),
3677 old0
, new0
, old1
, new1
),
3678 eval_subst (loc
, TREE_OPERAND (arg
, 2),
3679 old0
, new0
, old1
, new1
));
3683 /* Fall through - ??? */
3685 case tcc_comparison
:
3687 tree arg0
= TREE_OPERAND (arg
, 0);
3688 tree arg1
= TREE_OPERAND (arg
, 1);
3690 /* We need to check both for exact equality and tree equality. The
3691 former will be true if the operand has a side-effect. In that
3692 case, we know the operand occurred exactly once. */
3694 if (arg0
== old0
|| operand_equal_p (arg0
, old0
, 0))
3696 else if (arg0
== old1
|| operand_equal_p (arg0
, old1
, 0))
3699 if (arg1
== old0
|| operand_equal_p (arg1
, old0
, 0))
3701 else if (arg1
== old1
|| operand_equal_p (arg1
, old1
, 0))
3704 return fold_build2_loc (loc
, code
, type
, arg0
, arg1
);
3712 /* Return a tree for the case when the result of an expression is RESULT
3713 converted to TYPE and OMITTED was previously an operand of the expression
3714 but is now not needed (e.g., we folded OMITTED * 0).
3716 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3717 the conversion of RESULT to TYPE. */
3720 omit_one_operand_loc (location_t loc
, tree type
, tree result
, tree omitted
)
3722 tree t
= fold_convert_loc (loc
, type
, result
);
3724 /* If the resulting operand is an empty statement, just return the omitted
3725 statement casted to void. */
3726 if (IS_EMPTY_STMT (t
) && TREE_SIDE_EFFECTS (omitted
))
3727 return build1_loc (loc
, NOP_EXPR
, void_type_node
,
3728 fold_ignored_result (omitted
));
3730 if (TREE_SIDE_EFFECTS (omitted
))
3731 return build2_loc (loc
, COMPOUND_EXPR
, type
,
3732 fold_ignored_result (omitted
), t
);
3734 return non_lvalue_loc (loc
, t
);
3737 /* Return a tree for the case when the result of an expression is RESULT
3738 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3739 of the expression but are now not needed.
3741 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3742 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3743 evaluated before OMITTED2. Otherwise, if neither has side effects,
3744 just do the conversion of RESULT to TYPE. */
3747 omit_two_operands_loc (location_t loc
, tree type
, tree result
,
3748 tree omitted1
, tree omitted2
)
3750 tree t
= fold_convert_loc (loc
, type
, result
);
3752 if (TREE_SIDE_EFFECTS (omitted2
))
3753 t
= build2_loc (loc
, COMPOUND_EXPR
, type
, omitted2
, t
);
3754 if (TREE_SIDE_EFFECTS (omitted1
))
3755 t
= build2_loc (loc
, COMPOUND_EXPR
, type
, omitted1
, t
);
3757 return TREE_CODE (t
) != COMPOUND_EXPR
? non_lvalue_loc (loc
, t
) : t
;
3761 /* Return a simplified tree node for the truth-negation of ARG. This
3762 never alters ARG itself. We assume that ARG is an operation that
3763 returns a truth value (0 or 1).
3765 FIXME: one would think we would fold the result, but it causes
3766 problems with the dominator optimizer. */
3769 fold_truth_not_expr (location_t loc
, tree arg
)
3771 tree type
= TREE_TYPE (arg
);
3772 enum tree_code code
= TREE_CODE (arg
);
3773 location_t loc1
, loc2
;
3775 /* If this is a comparison, we can simply invert it, except for
3776 floating-point non-equality comparisons, in which case we just
3777 enclose a TRUTH_NOT_EXPR around what we have. */
3779 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
3781 tree op_type
= TREE_TYPE (TREE_OPERAND (arg
, 0));
3782 if (FLOAT_TYPE_P (op_type
)
3783 && flag_trapping_math
3784 && code
!= ORDERED_EXPR
&& code
!= UNORDERED_EXPR
3785 && code
!= NE_EXPR
&& code
!= EQ_EXPR
)
3788 code
= invert_tree_comparison (code
, HONOR_NANS (op_type
));
3789 if (code
== ERROR_MARK
)
3792 tree ret
= build2_loc (loc
, code
, type
, TREE_OPERAND (arg
, 0),
3793 TREE_OPERAND (arg
, 1));
3794 if (TREE_NO_WARNING (arg
))
3795 TREE_NO_WARNING (ret
) = 1;
3802 return constant_boolean_node (integer_zerop (arg
), type
);
3804 case TRUTH_AND_EXPR
:
3805 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3806 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3807 return build2_loc (loc
, TRUTH_OR_EXPR
, type
,
3808 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3809 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3812 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3813 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3814 return build2_loc (loc
, TRUTH_AND_EXPR
, type
,
3815 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3816 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3818 case TRUTH_XOR_EXPR
:
3819 /* Here we can invert either operand. We invert the first operand
3820 unless the second operand is a TRUTH_NOT_EXPR in which case our
3821 result is the XOR of the first operand with the inside of the
3822 negation of the second operand. */
3824 if (TREE_CODE (TREE_OPERAND (arg
, 1)) == TRUTH_NOT_EXPR
)
3825 return build2_loc (loc
, TRUTH_XOR_EXPR
, type
, TREE_OPERAND (arg
, 0),
3826 TREE_OPERAND (TREE_OPERAND (arg
, 1), 0));
3828 return build2_loc (loc
, TRUTH_XOR_EXPR
, type
,
3829 invert_truthvalue_loc (loc
, TREE_OPERAND (arg
, 0)),
3830 TREE_OPERAND (arg
, 1));
3832 case TRUTH_ANDIF_EXPR
:
3833 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3834 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3835 return build2_loc (loc
, TRUTH_ORIF_EXPR
, type
,
3836 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3837 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3839 case TRUTH_ORIF_EXPR
:
3840 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3841 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3842 return build2_loc (loc
, TRUTH_ANDIF_EXPR
, type
,
3843 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3844 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3846 case TRUTH_NOT_EXPR
:
3847 return TREE_OPERAND (arg
, 0);
3851 tree arg1
= TREE_OPERAND (arg
, 1);
3852 tree arg2
= TREE_OPERAND (arg
, 2);
3854 loc1
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3855 loc2
= expr_location_or (TREE_OPERAND (arg
, 2), loc
);
3857 /* A COND_EXPR may have a throw as one operand, which
3858 then has void type. Just leave void operands
3860 return build3_loc (loc
, COND_EXPR
, type
, TREE_OPERAND (arg
, 0),
3861 VOID_TYPE_P (TREE_TYPE (arg1
))
3862 ? arg1
: invert_truthvalue_loc (loc1
, arg1
),
3863 VOID_TYPE_P (TREE_TYPE (arg2
))
3864 ? arg2
: invert_truthvalue_loc (loc2
, arg2
));
3868 loc1
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3869 return build2_loc (loc
, COMPOUND_EXPR
, type
,
3870 TREE_OPERAND (arg
, 0),
3871 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 1)));
3873 case NON_LVALUE_EXPR
:
3874 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3875 return invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0));
3878 if (TREE_CODE (TREE_TYPE (arg
)) == BOOLEAN_TYPE
)
3879 return build1_loc (loc
, TRUTH_NOT_EXPR
, type
, arg
);
3884 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3885 return build1_loc (loc
, TREE_CODE (arg
), type
,
3886 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)));
3889 if (!integer_onep (TREE_OPERAND (arg
, 1)))
3891 return build2_loc (loc
, EQ_EXPR
, type
, arg
, build_int_cst (type
, 0));
3894 return build1_loc (loc
, TRUTH_NOT_EXPR
, type
, arg
);
3896 case CLEANUP_POINT_EXPR
:
3897 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3898 return build1_loc (loc
, CLEANUP_POINT_EXPR
, type
,
3899 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)));
3906 /* Fold the truth-negation of ARG. This never alters ARG itself. We
3907 assume that ARG is an operation that returns a truth value (0 or 1
3908 for scalars, 0 or -1 for vectors). Return the folded expression if
3909 folding is successful. Otherwise, return NULL_TREE. */
3912 fold_invert_truthvalue (location_t loc
, tree arg
)
3914 tree type
= TREE_TYPE (arg
);
3915 return fold_unary_loc (loc
, VECTOR_TYPE_P (type
)
3921 /* Return a simplified tree node for the truth-negation of ARG. This
3922 never alters ARG itself. We assume that ARG is an operation that
3923 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
3926 invert_truthvalue_loc (location_t loc
, tree arg
)
3928 if (TREE_CODE (arg
) == ERROR_MARK
)
3931 tree type
= TREE_TYPE (arg
);
3932 return fold_build1_loc (loc
, VECTOR_TYPE_P (type
)
3938 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3939 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero
3940 and uses reverse storage order if REVERSEP is nonzero. ORIG_INNER
3941 is the original memory reference used to preserve the alias set of
3945 make_bit_field_ref (location_t loc
, tree inner
, tree orig_inner
, tree type
,
3946 HOST_WIDE_INT bitsize
, poly_int64 bitpos
,
3947 int unsignedp
, int reversep
)
3949 tree result
, bftype
;
3951 /* Attempt not to lose the access path if possible. */
3952 if (TREE_CODE (orig_inner
) == COMPONENT_REF
)
3954 tree ninner
= TREE_OPERAND (orig_inner
, 0);
3956 poly_int64 nbitsize
, nbitpos
;
3958 int nunsignedp
, nreversep
, nvolatilep
= 0;
3959 tree base
= get_inner_reference (ninner
, &nbitsize
, &nbitpos
,
3960 &noffset
, &nmode
, &nunsignedp
,
3961 &nreversep
, &nvolatilep
);
3963 && noffset
== NULL_TREE
3964 && known_subrange_p (bitpos
, bitsize
, nbitpos
, nbitsize
)
3974 alias_set_type iset
= get_alias_set (orig_inner
);
3975 if (iset
== 0 && get_alias_set (inner
) != iset
)
3976 inner
= fold_build2 (MEM_REF
, TREE_TYPE (inner
),
3977 build_fold_addr_expr (inner
),
3978 build_int_cst (ptr_type_node
, 0));
3980 if (known_eq (bitpos
, 0) && !reversep
)
3982 tree size
= TYPE_SIZE (TREE_TYPE (inner
));
3983 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner
))
3984 || POINTER_TYPE_P (TREE_TYPE (inner
)))
3985 && tree_fits_shwi_p (size
)
3986 && tree_to_shwi (size
) == bitsize
)
3987 return fold_convert_loc (loc
, type
, inner
);
3991 if (TYPE_PRECISION (bftype
) != bitsize
3992 || TYPE_UNSIGNED (bftype
) == !unsignedp
)
3993 bftype
= build_nonstandard_integer_type (bitsize
, 0);
3995 result
= build3_loc (loc
, BIT_FIELD_REF
, bftype
, inner
,
3996 bitsize_int (bitsize
), bitsize_int (bitpos
));
3997 REF_REVERSE_STORAGE_ORDER (result
) = reversep
;
4000 result
= fold_convert_loc (loc
, type
, result
);
4005 /* Optimize a bit-field compare.
4007 There are two cases: First is a compare against a constant and the
4008 second is a comparison of two items where the fields are at the same
4009 bit position relative to the start of a chunk (byte, halfword, word)
4010 large enough to contain it. In these cases we can avoid the shift
4011 implicit in bitfield extractions.
4013 For constants, we emit a compare of the shifted constant with the
4014 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
4015 compared. For two fields at the same position, we do the ANDs with the
4016 similar mask and compare the result of the ANDs.
4018 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
4019 COMPARE_TYPE is the type of the comparison, and LHS and RHS
4020 are the left and right operands of the comparison, respectively.
4022 If the optimization described above can be done, we return the resulting
4023 tree. Otherwise we return zero. */
4026 optimize_bit_field_compare (location_t loc
, enum tree_code code
,
4027 tree compare_type
, tree lhs
, tree rhs
)
4029 poly_int64 plbitpos
, plbitsize
, rbitpos
, rbitsize
;
4030 HOST_WIDE_INT lbitpos
, lbitsize
, nbitpos
, nbitsize
;
4031 tree type
= TREE_TYPE (lhs
);
4033 int const_p
= TREE_CODE (rhs
) == INTEGER_CST
;
4034 machine_mode lmode
, rmode
;
4035 scalar_int_mode nmode
;
4036 int lunsignedp
, runsignedp
;
4037 int lreversep
, rreversep
;
4038 int lvolatilep
= 0, rvolatilep
= 0;
4039 tree linner
, rinner
= NULL_TREE
;
4043 /* Get all the information about the extractions being done. If the bit size
4044 is the same as the size of the underlying object, we aren't doing an
4045 extraction at all and so can do nothing. We also don't want to
4046 do anything if the inner expression is a PLACEHOLDER_EXPR since we
4047 then will no longer be able to replace it. */
4048 linner
= get_inner_reference (lhs
, &plbitsize
, &plbitpos
, &offset
, &lmode
,
4049 &lunsignedp
, &lreversep
, &lvolatilep
);
4051 || !known_size_p (plbitsize
)
4052 || !plbitsize
.is_constant (&lbitsize
)
4053 || !plbitpos
.is_constant (&lbitpos
)
4054 || known_eq (lbitsize
, GET_MODE_BITSIZE (lmode
))
4056 || TREE_CODE (linner
) == PLACEHOLDER_EXPR
4061 rreversep
= lreversep
;
4064 /* If this is not a constant, we can only do something if bit positions,
4065 sizes, signedness and storage order are the same. */
4067 = get_inner_reference (rhs
, &rbitsize
, &rbitpos
, &offset
, &rmode
,
4068 &runsignedp
, &rreversep
, &rvolatilep
);
4071 || maybe_ne (lbitpos
, rbitpos
)
4072 || maybe_ne (lbitsize
, rbitsize
)
4073 || lunsignedp
!= runsignedp
4074 || lreversep
!= rreversep
4076 || TREE_CODE (rinner
) == PLACEHOLDER_EXPR
4081 /* Honor the C++ memory model and mimic what RTL expansion does. */
4082 poly_uint64 bitstart
= 0;
4083 poly_uint64 bitend
= 0;
4084 if (TREE_CODE (lhs
) == COMPONENT_REF
)
4086 get_bit_range (&bitstart
, &bitend
, lhs
, &plbitpos
, &offset
);
4087 if (!plbitpos
.is_constant (&lbitpos
) || offset
!= NULL_TREE
)
4091 /* See if we can find a mode to refer to this field. We should be able to,
4092 but fail if we can't. */
4093 if (!get_best_mode (lbitsize
, lbitpos
, bitstart
, bitend
,
4094 const_p
? TYPE_ALIGN (TREE_TYPE (linner
))
4095 : MIN (TYPE_ALIGN (TREE_TYPE (linner
)),
4096 TYPE_ALIGN (TREE_TYPE (rinner
))),
4097 BITS_PER_WORD
, false, &nmode
))
4100 /* Set signed and unsigned types of the precision of this mode for the
4102 unsigned_type
= lang_hooks
.types
.type_for_mode (nmode
, 1);
4104 /* Compute the bit position and size for the new reference and our offset
4105 within it. If the new reference is the same size as the original, we
4106 won't optimize anything, so return zero. */
4107 nbitsize
= GET_MODE_BITSIZE (nmode
);
4108 nbitpos
= lbitpos
& ~ (nbitsize
- 1);
4110 if (nbitsize
== lbitsize
)
4113 if (lreversep
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
4114 lbitpos
= nbitsize
- lbitsize
- lbitpos
;
4116 /* Make the mask to be used against the extracted field. */
4117 mask
= build_int_cst_type (unsigned_type
, -1);
4118 mask
= const_binop (LSHIFT_EXPR
, mask
, size_int (nbitsize
- lbitsize
));
4119 mask
= const_binop (RSHIFT_EXPR
, mask
,
4120 size_int (nbitsize
- lbitsize
- lbitpos
));
4127 /* If not comparing with constant, just rework the comparison
4129 tree t1
= make_bit_field_ref (loc
, linner
, lhs
, unsigned_type
,
4130 nbitsize
, nbitpos
, 1, lreversep
);
4131 t1
= fold_build2_loc (loc
, BIT_AND_EXPR
, unsigned_type
, t1
, mask
);
4132 tree t2
= make_bit_field_ref (loc
, rinner
, rhs
, unsigned_type
,
4133 nbitsize
, nbitpos
, 1, rreversep
);
4134 t2
= fold_build2_loc (loc
, BIT_AND_EXPR
, unsigned_type
, t2
, mask
);
4135 return fold_build2_loc (loc
, code
, compare_type
, t1
, t2
);
4138 /* Otherwise, we are handling the constant case. See if the constant is too
4139 big for the field. Warn and return a tree for 0 (false) if so. We do
4140 this not only for its own sake, but to avoid having to test for this
4141 error case below. If we didn't, we might generate wrong code.
4143 For unsigned fields, the constant shifted right by the field length should
4144 be all zero. For signed fields, the high-order bits should agree with
4149 if (wi::lrshift (wi::to_wide (rhs
), lbitsize
) != 0)
4151 warning (0, "comparison is always %d due to width of bit-field",
4153 return constant_boolean_node (code
== NE_EXPR
, compare_type
);
4158 wide_int tem
= wi::arshift (wi::to_wide (rhs
), lbitsize
- 1);
4159 if (tem
!= 0 && tem
!= -1)
4161 warning (0, "comparison is always %d due to width of bit-field",
4163 return constant_boolean_node (code
== NE_EXPR
, compare_type
);
4170 /* Single-bit compares should always be against zero. */
4171 if (lbitsize
== 1 && ! integer_zerop (rhs
))
4173 code
= code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
;
4174 rhs
= build_int_cst (type
, 0);
4177 /* Make a new bitfield reference, shift the constant over the
4178 appropriate number of bits and mask it with the computed mask
4179 (in case this was a signed field). If we changed it, make a new one. */
4180 lhs
= make_bit_field_ref (loc
, linner
, lhs
, unsigned_type
,
4181 nbitsize
, nbitpos
, 1, lreversep
);
4183 rhs
= const_binop (BIT_AND_EXPR
,
4184 const_binop (LSHIFT_EXPR
,
4185 fold_convert_loc (loc
, unsigned_type
, rhs
),
4186 size_int (lbitpos
)),
4189 lhs
= build2_loc (loc
, code
, compare_type
,
4190 build2 (BIT_AND_EXPR
, unsigned_type
, lhs
, mask
), rhs
);
4194 /* Subroutine for fold_truth_andor_1: decode a field reference.
4196 If EXP is a comparison reference, we return the innermost reference.
4198 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
4199 set to the starting bit number.
4201 If the innermost field can be completely contained in a mode-sized
4202 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
4204 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
4205 otherwise it is not changed.
4207 *PUNSIGNEDP is set to the signedness of the field.
4209 *PREVERSEP is set to the storage order of the field.
4211 *PMASK is set to the mask used. This is either contained in a
4212 BIT_AND_EXPR or derived from the width of the field.
4214 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
4216 Return 0 if this is not a component reference or is one that we can't
4217 do anything with. */
4220 decode_field_reference (location_t loc
, tree
*exp_
, HOST_WIDE_INT
*pbitsize
,
4221 HOST_WIDE_INT
*pbitpos
, machine_mode
*pmode
,
4222 int *punsignedp
, int *preversep
, int *pvolatilep
,
4223 tree
*pmask
, tree
*pand_mask
)
4226 tree outer_type
= 0;
4228 tree mask
, inner
, offset
;
4230 unsigned int precision
;
4232 /* All the optimizations using this function assume integer fields.
4233 There are problems with FP fields since the type_for_size call
4234 below can fail for, e.g., XFmode. */
4235 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp
)))
4238 /* We are interested in the bare arrangement of bits, so strip everything
4239 that doesn't affect the machine mode. However, record the type of the
4240 outermost expression if it may matter below. */
4241 if (CONVERT_EXPR_P (exp
)
4242 || TREE_CODE (exp
) == NON_LVALUE_EXPR
)
4243 outer_type
= TREE_TYPE (exp
);
4246 if (TREE_CODE (exp
) == BIT_AND_EXPR
)
4248 and_mask
= TREE_OPERAND (exp
, 1);
4249 exp
= TREE_OPERAND (exp
, 0);
4250 STRIP_NOPS (exp
); STRIP_NOPS (and_mask
);
4251 if (TREE_CODE (and_mask
) != INTEGER_CST
)
4255 poly_int64 poly_bitsize
, poly_bitpos
;
4256 inner
= get_inner_reference (exp
, &poly_bitsize
, &poly_bitpos
, &offset
,
4257 pmode
, punsignedp
, preversep
, pvolatilep
);
4258 if ((inner
== exp
&& and_mask
== 0)
4259 || !poly_bitsize
.is_constant (pbitsize
)
4260 || !poly_bitpos
.is_constant (pbitpos
)
4263 || TREE_CODE (inner
) == PLACEHOLDER_EXPR
4264 /* Reject out-of-bound accesses (PR79731). */
4265 || (! AGGREGATE_TYPE_P (TREE_TYPE (inner
))
4266 && compare_tree_int (TYPE_SIZE (TREE_TYPE (inner
)),
4267 *pbitpos
+ *pbitsize
) < 0))
4272 /* If the number of bits in the reference is the same as the bitsize of
4273 the outer type, then the outer type gives the signedness. Otherwise
4274 (in case of a small bitfield) the signedness is unchanged. */
4275 if (outer_type
&& *pbitsize
== TYPE_PRECISION (outer_type
))
4276 *punsignedp
= TYPE_UNSIGNED (outer_type
);
4278 /* Compute the mask to access the bitfield. */
4279 unsigned_type
= lang_hooks
.types
.type_for_size (*pbitsize
, 1);
4280 precision
= TYPE_PRECISION (unsigned_type
);
4282 mask
= build_int_cst_type (unsigned_type
, -1);
4284 mask
= const_binop (LSHIFT_EXPR
, mask
, size_int (precision
- *pbitsize
));
4285 mask
= const_binop (RSHIFT_EXPR
, mask
, size_int (precision
- *pbitsize
));
4287 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
4289 mask
= fold_build2_loc (loc
, BIT_AND_EXPR
, unsigned_type
,
4290 fold_convert_loc (loc
, unsigned_type
, and_mask
), mask
);
4293 *pand_mask
= and_mask
;
4297 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
4298 bit positions and MASK is SIGNED. */
4301 all_ones_mask_p (const_tree mask
, unsigned int size
)
4303 tree type
= TREE_TYPE (mask
);
4304 unsigned int precision
= TYPE_PRECISION (type
);
4306 /* If this function returns true when the type of the mask is
4307 UNSIGNED, then there will be errors. In particular see
4308 gcc.c-torture/execute/990326-1.c. There does not appear to be
4309 any documentation paper trail as to why this is so. But the pre
4310 wide-int worked with that restriction and it has been preserved
4312 if (size
> precision
|| TYPE_SIGN (type
) == UNSIGNED
)
4315 return wi::mask (size
, false, precision
) == wi::to_wide (mask
);
4318 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
4319 represents the sign bit of EXP's type. If EXP represents a sign
4320 or zero extension, also test VAL against the unextended type.
4321 The return value is the (sub)expression whose sign bit is VAL,
4322 or NULL_TREE otherwise. */
4325 sign_bit_p (tree exp
, const_tree val
)
4330 /* Tree EXP must have an integral type. */
4331 t
= TREE_TYPE (exp
);
4332 if (! INTEGRAL_TYPE_P (t
))
4335 /* Tree VAL must be an integer constant. */
4336 if (TREE_CODE (val
) != INTEGER_CST
4337 || TREE_OVERFLOW (val
))
4340 width
= TYPE_PRECISION (t
);
4341 if (wi::only_sign_bit_p (wi::to_wide (val
), width
))
4344 /* Handle extension from a narrower type. */
4345 if (TREE_CODE (exp
) == NOP_EXPR
4346 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp
, 0))) < width
)
4347 return sign_bit_p (TREE_OPERAND (exp
, 0), val
);
4352 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
4353 to be evaluated unconditionally. */
4356 simple_operand_p (const_tree exp
)
4358 /* Strip any conversions that don't change the machine mode. */
4361 return (CONSTANT_CLASS_P (exp
)
4362 || TREE_CODE (exp
) == SSA_NAME
4364 && ! TREE_ADDRESSABLE (exp
)
4365 && ! TREE_THIS_VOLATILE (exp
)
4366 && ! DECL_NONLOCAL (exp
)
4367 /* Don't regard global variables as simple. They may be
4368 allocated in ways unknown to the compiler (shared memory,
4369 #pragma weak, etc). */
4370 && ! TREE_PUBLIC (exp
)
4371 && ! DECL_EXTERNAL (exp
)
4372 /* Weakrefs are not safe to be read, since they can be NULL.
4373 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
4374 have DECL_WEAK flag set. */
4375 && (! VAR_OR_FUNCTION_DECL_P (exp
) || ! DECL_WEAK (exp
))
4376 /* Loading a static variable is unduly expensive, but global
4377 registers aren't expensive. */
4378 && (! TREE_STATIC (exp
) || DECL_REGISTER (exp
))));
4381 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
4382 to be evaluated unconditionally.
4383 I addition to simple_operand_p, we assume that comparisons, conversions,
4384 and logic-not operations are simple, if their operands are simple, too. */
4387 simple_operand_p_2 (tree exp
)
4389 enum tree_code code
;
4391 if (TREE_SIDE_EFFECTS (exp
)
4392 || tree_could_trap_p (exp
))
4395 while (CONVERT_EXPR_P (exp
))
4396 exp
= TREE_OPERAND (exp
, 0);
4398 code
= TREE_CODE (exp
);
4400 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
4401 return (simple_operand_p (TREE_OPERAND (exp
, 0))
4402 && simple_operand_p (TREE_OPERAND (exp
, 1)));
4404 if (code
== TRUTH_NOT_EXPR
)
4405 return simple_operand_p_2 (TREE_OPERAND (exp
, 0));
4407 return simple_operand_p (exp
);
4411 /* The following functions are subroutines to fold_range_test and allow it to
4412 try to change a logical combination of comparisons into a range test.
4415 X == 2 || X == 3 || X == 4 || X == 5
4419 (unsigned) (X - 2) <= 3
4421 We describe each set of comparisons as being either inside or outside
4422 a range, using a variable named like IN_P, and then describe the
4423 range with a lower and upper bound. If one of the bounds is omitted,
4424 it represents either the highest or lowest value of the type.
4426 In the comments below, we represent a range by two numbers in brackets
4427 preceded by a "+" to designate being inside that range, or a "-" to
4428 designate being outside that range, so the condition can be inverted by
4429 flipping the prefix. An omitted bound is represented by a "-". For
4430 example, "- [-, 10]" means being outside the range starting at the lowest
4431 possible value and ending at 10, in other words, being greater than 10.
4432 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4435 We set up things so that the missing bounds are handled in a consistent
4436 manner so neither a missing bound nor "true" and "false" need to be
4437 handled using a special case. */
4439 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4440 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4441 and UPPER1_P are nonzero if the respective argument is an upper bound
4442 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4443 must be specified for a comparison. ARG1 will be converted to ARG0's
4444 type if both are specified. */
4447 range_binop (enum tree_code code
, tree type
, tree arg0
, int upper0_p
,
4448 tree arg1
, int upper1_p
)
4454 /* If neither arg represents infinity, do the normal operation.
4455 Else, if not a comparison, return infinity. Else handle the special
4456 comparison rules. Note that most of the cases below won't occur, but
4457 are handled for consistency. */
4459 if (arg0
!= 0 && arg1
!= 0)
4461 tem
= fold_build2 (code
, type
!= 0 ? type
: TREE_TYPE (arg0
),
4462 arg0
, fold_convert (TREE_TYPE (arg0
), arg1
));
4464 return TREE_CODE (tem
) == INTEGER_CST
? tem
: 0;
4467 if (TREE_CODE_CLASS (code
) != tcc_comparison
)
4470 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4471 for neither. In real maths, we cannot assume open ended ranges are
4472 the same. But, this is computer arithmetic, where numbers are finite.
4473 We can therefore make the transformation of any unbounded range with
4474 the value Z, Z being greater than any representable number. This permits
4475 us to treat unbounded ranges as equal. */
4476 sgn0
= arg0
!= 0 ? 0 : (upper0_p
? 1 : -1);
4477 sgn1
= arg1
!= 0 ? 0 : (upper1_p
? 1 : -1);
4481 result
= sgn0
== sgn1
;
4484 result
= sgn0
!= sgn1
;
4487 result
= sgn0
< sgn1
;
4490 result
= sgn0
<= sgn1
;
4493 result
= sgn0
> sgn1
;
4496 result
= sgn0
>= sgn1
;
4502 return constant_boolean_node (result
, type
);
4505 /* Helper routine for make_range. Perform one step for it, return
4506 new expression if the loop should continue or NULL_TREE if it should
4510 make_range_step (location_t loc
, enum tree_code code
, tree arg0
, tree arg1
,
4511 tree exp_type
, tree
*p_low
, tree
*p_high
, int *p_in_p
,
4512 bool *strict_overflow_p
)
4514 tree arg0_type
= TREE_TYPE (arg0
);
4515 tree n_low
, n_high
, low
= *p_low
, high
= *p_high
;
4516 int in_p
= *p_in_p
, n_in_p
;
4520 case TRUTH_NOT_EXPR
:
4521 /* We can only do something if the range is testing for zero. */
4522 if (low
== NULL_TREE
|| high
== NULL_TREE
4523 || ! integer_zerop (low
) || ! integer_zerop (high
))
4528 case EQ_EXPR
: case NE_EXPR
:
4529 case LT_EXPR
: case LE_EXPR
: case GE_EXPR
: case GT_EXPR
:
4530 /* We can only do something if the range is testing for zero
4531 and if the second operand is an integer constant. Note that
4532 saying something is "in" the range we make is done by
4533 complementing IN_P since it will set in the initial case of
4534 being not equal to zero; "out" is leaving it alone. */
4535 if (low
== NULL_TREE
|| high
== NULL_TREE
4536 || ! integer_zerop (low
) || ! integer_zerop (high
)
4537 || TREE_CODE (arg1
) != INTEGER_CST
)
4542 case NE_EXPR
: /* - [c, c] */
4545 case EQ_EXPR
: /* + [c, c] */
4546 in_p
= ! in_p
, low
= high
= arg1
;
4548 case GT_EXPR
: /* - [-, c] */
4549 low
= 0, high
= arg1
;
4551 case GE_EXPR
: /* + [c, -] */
4552 in_p
= ! in_p
, low
= arg1
, high
= 0;
4554 case LT_EXPR
: /* - [c, -] */
4555 low
= arg1
, high
= 0;
4557 case LE_EXPR
: /* + [-, c] */
4558 in_p
= ! in_p
, low
= 0, high
= arg1
;
4564 /* If this is an unsigned comparison, we also know that EXP is
4565 greater than or equal to zero. We base the range tests we make
4566 on that fact, so we record it here so we can parse existing
4567 range tests. We test arg0_type since often the return type
4568 of, e.g. EQ_EXPR, is boolean. */
4569 if (TYPE_UNSIGNED (arg0_type
) && (low
== 0 || high
== 0))
4571 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
,
4573 build_int_cst (arg0_type
, 0),
4577 in_p
= n_in_p
, low
= n_low
, high
= n_high
;
4579 /* If the high bound is missing, but we have a nonzero low
4580 bound, reverse the range so it goes from zero to the low bound
4582 if (high
== 0 && low
&& ! integer_zerop (low
))
4585 high
= range_binop (MINUS_EXPR
, NULL_TREE
, low
, 0,
4586 build_int_cst (TREE_TYPE (low
), 1), 0);
4587 low
= build_int_cst (arg0_type
, 0);
4597 /* If flag_wrapv and ARG0_TYPE is signed, make sure
4598 low and high are non-NULL, then normalize will DTRT. */
4599 if (!TYPE_UNSIGNED (arg0_type
)
4600 && !TYPE_OVERFLOW_UNDEFINED (arg0_type
))
4602 if (low
== NULL_TREE
)
4603 low
= TYPE_MIN_VALUE (arg0_type
);
4604 if (high
== NULL_TREE
)
4605 high
= TYPE_MAX_VALUE (arg0_type
);
4608 /* (-x) IN [a,b] -> x in [-b, -a] */
4609 n_low
= range_binop (MINUS_EXPR
, exp_type
,
4610 build_int_cst (exp_type
, 0),
4612 n_high
= range_binop (MINUS_EXPR
, exp_type
,
4613 build_int_cst (exp_type
, 0),
4615 if (n_high
!= 0 && TREE_OVERFLOW (n_high
))
4621 return build2_loc (loc
, MINUS_EXPR
, exp_type
, negate_expr (arg0
),
4622 build_int_cst (exp_type
, 1));
4626 if (TREE_CODE (arg1
) != INTEGER_CST
)
4629 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4630 move a constant to the other side. */
4631 if (!TYPE_UNSIGNED (arg0_type
)
4632 && !TYPE_OVERFLOW_UNDEFINED (arg0_type
))
4635 /* If EXP is signed, any overflow in the computation is undefined,
4636 so we don't worry about it so long as our computations on
4637 the bounds don't overflow. For unsigned, overflow is defined
4638 and this is exactly the right thing. */
4639 n_low
= range_binop (code
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
,
4640 arg0_type
, low
, 0, arg1
, 0);
4641 n_high
= range_binop (code
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
,
4642 arg0_type
, high
, 1, arg1
, 0);
4643 if ((n_low
!= 0 && TREE_OVERFLOW (n_low
))
4644 || (n_high
!= 0 && TREE_OVERFLOW (n_high
)))
4647 if (TYPE_OVERFLOW_UNDEFINED (arg0_type
))
4648 *strict_overflow_p
= true;
4651 /* Check for an unsigned range which has wrapped around the maximum
4652 value thus making n_high < n_low, and normalize it. */
4653 if (n_low
&& n_high
&& tree_int_cst_lt (n_high
, n_low
))
4655 low
= range_binop (PLUS_EXPR
, arg0_type
, n_high
, 0,
4656 build_int_cst (TREE_TYPE (n_high
), 1), 0);
4657 high
= range_binop (MINUS_EXPR
, arg0_type
, n_low
, 0,
4658 build_int_cst (TREE_TYPE (n_low
), 1), 0);
4660 /* If the range is of the form +/- [ x+1, x ], we won't
4661 be able to normalize it. But then, it represents the
4662 whole range or the empty set, so make it
4664 if (tree_int_cst_equal (n_low
, low
)
4665 && tree_int_cst_equal (n_high
, high
))
4671 low
= n_low
, high
= n_high
;
4679 case NON_LVALUE_EXPR
:
4680 if (TYPE_PRECISION (arg0_type
) > TYPE_PRECISION (exp_type
))
4683 if (! INTEGRAL_TYPE_P (arg0_type
)
4684 || (low
!= 0 && ! int_fits_type_p (low
, arg0_type
))
4685 || (high
!= 0 && ! int_fits_type_p (high
, arg0_type
)))
4688 n_low
= low
, n_high
= high
;
4691 n_low
= fold_convert_loc (loc
, arg0_type
, n_low
);
4694 n_high
= fold_convert_loc (loc
, arg0_type
, n_high
);
4696 /* If we're converting arg0 from an unsigned type, to exp,
4697 a signed type, we will be doing the comparison as unsigned.
4698 The tests above have already verified that LOW and HIGH
4701 So we have to ensure that we will handle large unsigned
4702 values the same way that the current signed bounds treat
4705 if (!TYPE_UNSIGNED (exp_type
) && TYPE_UNSIGNED (arg0_type
))
4709 /* For fixed-point modes, we need to pass the saturating flag
4710 as the 2nd parameter. */
4711 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type
)))
4713 = lang_hooks
.types
.type_for_mode (TYPE_MODE (arg0_type
),
4714 TYPE_SATURATING (arg0_type
));
4717 = lang_hooks
.types
.type_for_mode (TYPE_MODE (arg0_type
), 1);
4719 /* A range without an upper bound is, naturally, unbounded.
4720 Since convert would have cropped a very large value, use
4721 the max value for the destination type. */
4723 = TYPE_MAX_VALUE (equiv_type
) ? TYPE_MAX_VALUE (equiv_type
)
4724 : TYPE_MAX_VALUE (arg0_type
);
4726 if (TYPE_PRECISION (exp_type
) == TYPE_PRECISION (arg0_type
))
4727 high_positive
= fold_build2_loc (loc
, RSHIFT_EXPR
, arg0_type
,
4728 fold_convert_loc (loc
, arg0_type
,
4730 build_int_cst (arg0_type
, 1));
4732 /* If the low bound is specified, "and" the range with the
4733 range for which the original unsigned value will be
4737 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
, 1, n_low
, n_high
,
4738 1, fold_convert_loc (loc
, arg0_type
,
4743 in_p
= (n_in_p
== in_p
);
4747 /* Otherwise, "or" the range with the range of the input
4748 that will be interpreted as negative. */
4749 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
, 0, n_low
, n_high
,
4750 1, fold_convert_loc (loc
, arg0_type
,
4755 in_p
= (in_p
!= n_in_p
);
4769 /* Given EXP, a logical expression, set the range it is testing into
4770 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4771 actually being tested. *PLOW and *PHIGH will be made of the same
4772 type as the returned expression. If EXP is not a comparison, we
4773 will most likely not be returning a useful value and range. Set
4774 *STRICT_OVERFLOW_P to true if the return value is only valid
4775 because signed overflow is undefined; otherwise, do not change
4776 *STRICT_OVERFLOW_P. */
4779 make_range (tree exp
, int *pin_p
, tree
*plow
, tree
*phigh
,
4780 bool *strict_overflow_p
)
4782 enum tree_code code
;
4783 tree arg0
, arg1
= NULL_TREE
;
4784 tree exp_type
, nexp
;
4787 location_t loc
= EXPR_LOCATION (exp
);
4789 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4790 and see if we can refine the range. Some of the cases below may not
4791 happen, but it doesn't seem worth worrying about this. We "continue"
4792 the outer loop when we've changed something; otherwise we "break"
4793 the switch, which will "break" the while. */
4796 low
= high
= build_int_cst (TREE_TYPE (exp
), 0);
4800 code
= TREE_CODE (exp
);
4801 exp_type
= TREE_TYPE (exp
);
4804 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code
)))
4806 if (TREE_OPERAND_LENGTH (exp
) > 0)
4807 arg0
= TREE_OPERAND (exp
, 0);
4808 if (TREE_CODE_CLASS (code
) == tcc_binary
4809 || TREE_CODE_CLASS (code
) == tcc_comparison
4810 || (TREE_CODE_CLASS (code
) == tcc_expression
4811 && TREE_OPERAND_LENGTH (exp
) > 1))
4812 arg1
= TREE_OPERAND (exp
, 1);
4814 if (arg0
== NULL_TREE
)
4817 nexp
= make_range_step (loc
, code
, arg0
, arg1
, exp_type
, &low
,
4818 &high
, &in_p
, strict_overflow_p
);
4819 if (nexp
== NULL_TREE
)
4824 /* If EXP is a constant, we can evaluate whether this is true or false. */
4825 if (TREE_CODE (exp
) == INTEGER_CST
)
4827 in_p
= in_p
== (integer_onep (range_binop (GE_EXPR
, integer_type_node
,
4829 && integer_onep (range_binop (LE_EXPR
, integer_type_node
,
4835 *pin_p
= in_p
, *plow
= low
, *phigh
= high
;
4839 /* Returns TRUE if [LOW, HIGH] range check can be optimized to
4840 a bitwise check i.e. when
4841 LOW == 0xXX...X00...0
4842 HIGH == 0xXX...X11...1
4843 Return corresponding mask in MASK and stem in VALUE. */
4846 maskable_range_p (const_tree low
, const_tree high
, tree type
, tree
*mask
,
4849 if (TREE_CODE (low
) != INTEGER_CST
4850 || TREE_CODE (high
) != INTEGER_CST
)
4853 unsigned prec
= TYPE_PRECISION (type
);
4854 wide_int lo
= wi::to_wide (low
, prec
);
4855 wide_int hi
= wi::to_wide (high
, prec
);
4857 wide_int end_mask
= lo
^ hi
;
4858 if ((end_mask
& (end_mask
+ 1)) != 0
4859 || (lo
& end_mask
) != 0)
4862 wide_int stem_mask
= ~end_mask
;
4863 wide_int stem
= lo
& stem_mask
;
4864 if (stem
!= (hi
& stem_mask
))
4867 *mask
= wide_int_to_tree (type
, stem_mask
);
4868 *value
= wide_int_to_tree (type
, stem
);
4873 /* Helper routine for build_range_check and match.pd. Return the type to
4874 perform the check or NULL if it shouldn't be optimized. */
4877 range_check_type (tree etype
)
4879 /* First make sure that arithmetics in this type is valid, then make sure
4880 that it wraps around. */
4881 if (TREE_CODE (etype
) == ENUMERAL_TYPE
|| TREE_CODE (etype
) == BOOLEAN_TYPE
)
4882 etype
= lang_hooks
.types
.type_for_size (TYPE_PRECISION (etype
),
4883 TYPE_UNSIGNED (etype
));
4885 if (TREE_CODE (etype
) == INTEGER_TYPE
&& !TYPE_OVERFLOW_WRAPS (etype
))
4887 tree utype
, minv
, maxv
;
4889 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4890 for the type in question, as we rely on this here. */
4891 utype
= unsigned_type_for (etype
);
4892 maxv
= fold_convert (utype
, TYPE_MAX_VALUE (etype
));
4893 maxv
= range_binop (PLUS_EXPR
, NULL_TREE
, maxv
, 1,
4894 build_int_cst (TREE_TYPE (maxv
), 1), 1);
4895 minv
= fold_convert (utype
, TYPE_MIN_VALUE (etype
));
4897 if (integer_zerop (range_binop (NE_EXPR
, integer_type_node
,
4906 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4907 type, TYPE, return an expression to test if EXP is in (or out of, depending
4908 on IN_P) the range. Return 0 if the test couldn't be created. */
4911 build_range_check (location_t loc
, tree type
, tree exp
, int in_p
,
4912 tree low
, tree high
)
4914 tree etype
= TREE_TYPE (exp
), mask
, value
;
4916 /* Disable this optimization for function pointer expressions
4917 on targets that require function pointer canonicalization. */
4918 if (targetm
.have_canonicalize_funcptr_for_compare ()
4919 && TREE_CODE (etype
) == POINTER_TYPE
4920 && TREE_CODE (TREE_TYPE (etype
)) == FUNCTION_TYPE
)
4925 value
= build_range_check (loc
, type
, exp
, 1, low
, high
);
4927 return invert_truthvalue_loc (loc
, value
);
4932 if (low
== 0 && high
== 0)
4933 return omit_one_operand_loc (loc
, type
, build_int_cst (type
, 1), exp
);
4936 return fold_build2_loc (loc
, LE_EXPR
, type
, exp
,
4937 fold_convert_loc (loc
, etype
, high
));
4940 return fold_build2_loc (loc
, GE_EXPR
, type
, exp
,
4941 fold_convert_loc (loc
, etype
, low
));
4943 if (operand_equal_p (low
, high
, 0))
4944 return fold_build2_loc (loc
, EQ_EXPR
, type
, exp
,
4945 fold_convert_loc (loc
, etype
, low
));
4947 if (TREE_CODE (exp
) == BIT_AND_EXPR
4948 && maskable_range_p (low
, high
, etype
, &mask
, &value
))
4949 return fold_build2_loc (loc
, EQ_EXPR
, type
,
4950 fold_build2_loc (loc
, BIT_AND_EXPR
, etype
,
4954 if (integer_zerop (low
))
4956 if (! TYPE_UNSIGNED (etype
))
4958 etype
= unsigned_type_for (etype
);
4959 high
= fold_convert_loc (loc
, etype
, high
);
4960 exp
= fold_convert_loc (loc
, etype
, exp
);
4962 return build_range_check (loc
, type
, exp
, 1, 0, high
);
4965 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4966 if (integer_onep (low
) && TREE_CODE (high
) == INTEGER_CST
)
4968 int prec
= TYPE_PRECISION (etype
);
4970 if (wi::mask
<widest_int
> (prec
- 1, false) == wi::to_widest (high
))
4972 if (TYPE_UNSIGNED (etype
))
4974 tree signed_etype
= signed_type_for (etype
);
4975 if (TYPE_PRECISION (signed_etype
) != TYPE_PRECISION (etype
))
4977 = build_nonstandard_integer_type (TYPE_PRECISION (etype
), 0);
4979 etype
= signed_etype
;
4980 exp
= fold_convert_loc (loc
, etype
, exp
);
4982 return fold_build2_loc (loc
, GT_EXPR
, type
, exp
,
4983 build_int_cst (etype
, 0));
4987 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
4988 This requires wrap-around arithmetics for the type of the expression. */
4989 etype
= range_check_type (etype
);
4990 if (etype
== NULL_TREE
)
4993 if (POINTER_TYPE_P (etype
))
4994 etype
= unsigned_type_for (etype
);
4996 high
= fold_convert_loc (loc
, etype
, high
);
4997 low
= fold_convert_loc (loc
, etype
, low
);
4998 exp
= fold_convert_loc (loc
, etype
, exp
);
5000 value
= const_binop (MINUS_EXPR
, high
, low
);
5002 if (value
!= 0 && !TREE_OVERFLOW (value
))
5003 return build_range_check (loc
, type
,
5004 fold_build2_loc (loc
, MINUS_EXPR
, etype
, exp
, low
),
5005 1, build_int_cst (etype
, 0), value
);
5010 /* Return the predecessor of VAL in its type, handling the infinite case. */
5013 range_predecessor (tree val
)
5015 tree type
= TREE_TYPE (val
);
5017 if (INTEGRAL_TYPE_P (type
)
5018 && operand_equal_p (val
, TYPE_MIN_VALUE (type
), 0))
5021 return range_binop (MINUS_EXPR
, NULL_TREE
, val
, 0,
5022 build_int_cst (TREE_TYPE (val
), 1), 0);
5025 /* Return the successor of VAL in its type, handling the infinite case. */
5028 range_successor (tree val
)
5030 tree type
= TREE_TYPE (val
);
5032 if (INTEGRAL_TYPE_P (type
)
5033 && operand_equal_p (val
, TYPE_MAX_VALUE (type
), 0))
5036 return range_binop (PLUS_EXPR
, NULL_TREE
, val
, 0,
5037 build_int_cst (TREE_TYPE (val
), 1), 0);
5040 /* Given two ranges, see if we can merge them into one. Return 1 if we
5041 can, 0 if we can't. Set the output range into the specified parameters. */
5044 merge_ranges (int *pin_p
, tree
*plow
, tree
*phigh
, int in0_p
, tree low0
,
5045 tree high0
, int in1_p
, tree low1
, tree high1
)
5053 int lowequal
= ((low0
== 0 && low1
== 0)
5054 || integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
5055 low0
, 0, low1
, 0)));
5056 int highequal
= ((high0
== 0 && high1
== 0)
5057 || integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
5058 high0
, 1, high1
, 1)));
5060 /* Make range 0 be the range that starts first, or ends last if they
5061 start at the same value. Swap them if it isn't. */
5062 if (integer_onep (range_binop (GT_EXPR
, integer_type_node
,
5065 && integer_onep (range_binop (GT_EXPR
, integer_type_node
,
5066 high1
, 1, high0
, 1))))
5068 temp
= in0_p
, in0_p
= in1_p
, in1_p
= temp
;
5069 tem
= low0
, low0
= low1
, low1
= tem
;
5070 tem
= high0
, high0
= high1
, high1
= tem
;
5073 /* Now flag two cases, whether the ranges are disjoint or whether the
5074 second range is totally subsumed in the first. Note that the tests
5075 below are simplified by the ones above. */
5076 no_overlap
= integer_onep (range_binop (LT_EXPR
, integer_type_node
,
5077 high0
, 1, low1
, 0));
5078 subset
= integer_onep (range_binop (LE_EXPR
, integer_type_node
,
5079 high1
, 1, high0
, 1));
5081 /* We now have four cases, depending on whether we are including or
5082 excluding the two ranges. */
5085 /* If they don't overlap, the result is false. If the second range
5086 is a subset it is the result. Otherwise, the range is from the start
5087 of the second to the end of the first. */
5089 in_p
= 0, low
= high
= 0;
5091 in_p
= 1, low
= low1
, high
= high1
;
5093 in_p
= 1, low
= low1
, high
= high0
;
5096 else if (in0_p
&& ! in1_p
)
5098 /* If they don't overlap, the result is the first range. If they are
5099 equal, the result is false. If the second range is a subset of the
5100 first, and the ranges begin at the same place, we go from just after
5101 the end of the second range to the end of the first. If the second
5102 range is not a subset of the first, or if it is a subset and both
5103 ranges end at the same place, the range starts at the start of the
5104 first range and ends just before the second range.
5105 Otherwise, we can't describe this as a single range. */
5107 in_p
= 1, low
= low0
, high
= high0
;
5108 else if (lowequal
&& highequal
)
5109 in_p
= 0, low
= high
= 0;
5110 else if (subset
&& lowequal
)
5112 low
= range_successor (high1
);
5117 /* We are in the weird situation where high0 > high1 but
5118 high1 has no successor. Punt. */
5122 else if (! subset
|| highequal
)
5125 high
= range_predecessor (low1
);
5129 /* low0 < low1 but low1 has no predecessor. Punt. */
5137 else if (! in0_p
&& in1_p
)
5139 /* If they don't overlap, the result is the second range. If the second
5140 is a subset of the first, the result is false. Otherwise,
5141 the range starts just after the first range and ends at the
5142 end of the second. */
5144 in_p
= 1, low
= low1
, high
= high1
;
5145 else if (subset
|| highequal
)
5146 in_p
= 0, low
= high
= 0;
5149 low
= range_successor (high0
);
5154 /* high1 > high0 but high0 has no successor. Punt. */
5162 /* The case where we are excluding both ranges. Here the complex case
5163 is if they don't overlap. In that case, the only time we have a
5164 range is if they are adjacent. If the second is a subset of the
5165 first, the result is the first. Otherwise, the range to exclude
5166 starts at the beginning of the first range and ends at the end of the
5170 if (integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
5171 range_successor (high0
),
5173 in_p
= 0, low
= low0
, high
= high1
;
5176 /* Canonicalize - [min, x] into - [-, x]. */
5177 if (low0
&& TREE_CODE (low0
) == INTEGER_CST
)
5178 switch (TREE_CODE (TREE_TYPE (low0
)))
5181 if (maybe_ne (TYPE_PRECISION (TREE_TYPE (low0
)),
5183 (TYPE_MODE (TREE_TYPE (low0
)))))
5187 if (tree_int_cst_equal (low0
,
5188 TYPE_MIN_VALUE (TREE_TYPE (low0
))))
5192 if (TYPE_UNSIGNED (TREE_TYPE (low0
))
5193 && integer_zerop (low0
))
5200 /* Canonicalize - [x, max] into - [x, -]. */
5201 if (high1
&& TREE_CODE (high1
) == INTEGER_CST
)
5202 switch (TREE_CODE (TREE_TYPE (high1
)))
5205 if (maybe_ne (TYPE_PRECISION (TREE_TYPE (high1
)),
5207 (TYPE_MODE (TREE_TYPE (high1
)))))
5211 if (tree_int_cst_equal (high1
,
5212 TYPE_MAX_VALUE (TREE_TYPE (high1
))))
5216 if (TYPE_UNSIGNED (TREE_TYPE (high1
))
5217 && integer_zerop (range_binop (PLUS_EXPR
, NULL_TREE
,
5219 build_int_cst (TREE_TYPE (high1
), 1),
5227 /* The ranges might be also adjacent between the maximum and
5228 minimum values of the given type. For
5229 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
5230 return + [x + 1, y - 1]. */
5231 if (low0
== 0 && high1
== 0)
5233 low
= range_successor (high0
);
5234 high
= range_predecessor (low1
);
5235 if (low
== 0 || high
== 0)
5245 in_p
= 0, low
= low0
, high
= high0
;
5247 in_p
= 0, low
= low0
, high
= high1
;
5250 *pin_p
= in_p
, *plow
= low
, *phigh
= high
;
5255 /* Subroutine of fold, looking inside expressions of the form
5256 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
5257 of the COND_EXPR. This function is being used also to optimize
5258 A op B ? C : A, by reversing the comparison first.
5260 Return a folded expression whose code is not a COND_EXPR
5261 anymore, or NULL_TREE if no folding opportunity is found. */
5264 fold_cond_expr_with_comparison (location_t loc
, tree type
,
5265 tree arg0
, tree arg1
, tree arg2
)
5267 enum tree_code comp_code
= TREE_CODE (arg0
);
5268 tree arg00
= TREE_OPERAND (arg0
, 0);
5269 tree arg01
= TREE_OPERAND (arg0
, 1);
5270 tree arg1_type
= TREE_TYPE (arg1
);
5276 /* If we have A op 0 ? A : -A, consider applying the following
5279 A == 0? A : -A same as -A
5280 A != 0? A : -A same as A
5281 A >= 0? A : -A same as abs (A)
5282 A > 0? A : -A same as abs (A)
5283 A <= 0? A : -A same as -abs (A)
5284 A < 0? A : -A same as -abs (A)
5286 None of these transformations work for modes with signed
5287 zeros. If A is +/-0, the first two transformations will
5288 change the sign of the result (from +0 to -0, or vice
5289 versa). The last four will fix the sign of the result,
5290 even though the original expressions could be positive or
5291 negative, depending on the sign of A.
5293 Note that all these transformations are correct if A is
5294 NaN, since the two alternatives (A and -A) are also NaNs. */
5295 if (!HONOR_SIGNED_ZEROS (element_mode (type
))
5296 && (FLOAT_TYPE_P (TREE_TYPE (arg01
))
5297 ? real_zerop (arg01
)
5298 : integer_zerop (arg01
))
5299 && ((TREE_CODE (arg2
) == NEGATE_EXPR
5300 && operand_equal_p (TREE_OPERAND (arg2
, 0), arg1
, 0))
5301 /* In the case that A is of the form X-Y, '-A' (arg2) may
5302 have already been folded to Y-X, check for that. */
5303 || (TREE_CODE (arg1
) == MINUS_EXPR
5304 && TREE_CODE (arg2
) == MINUS_EXPR
5305 && operand_equal_p (TREE_OPERAND (arg1
, 0),
5306 TREE_OPERAND (arg2
, 1), 0)
5307 && operand_equal_p (TREE_OPERAND (arg1
, 1),
5308 TREE_OPERAND (arg2
, 0), 0))))
5313 tem
= fold_convert_loc (loc
, arg1_type
, arg1
);
5314 return fold_convert_loc (loc
, type
, negate_expr (tem
));
5317 return fold_convert_loc (loc
, type
, arg1
);
5320 if (flag_trapping_math
)
5325 if (TYPE_UNSIGNED (TREE_TYPE (arg1
)))
5327 tem
= fold_build1_loc (loc
, ABS_EXPR
, TREE_TYPE (arg1
), arg1
);
5328 return fold_convert_loc (loc
, type
, tem
);
5331 if (flag_trapping_math
)
5336 if (TYPE_UNSIGNED (TREE_TYPE (arg1
)))
5338 tem
= fold_build1_loc (loc
, ABS_EXPR
, TREE_TYPE (arg1
), arg1
);
5339 return negate_expr (fold_convert_loc (loc
, type
, tem
));
5341 gcc_assert (TREE_CODE_CLASS (comp_code
) == tcc_comparison
);
5345 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
5346 A == 0 ? A : 0 is always 0 unless A is -0. Note that
5347 both transformations are correct when A is NaN: A != 0
5348 is then true, and A == 0 is false. */
5350 if (!HONOR_SIGNED_ZEROS (element_mode (type
))
5351 && integer_zerop (arg01
) && integer_zerop (arg2
))
5353 if (comp_code
== NE_EXPR
)
5354 return fold_convert_loc (loc
, type
, arg1
);
5355 else if (comp_code
== EQ_EXPR
)
5356 return build_zero_cst (type
);
5359 /* Try some transformations of A op B ? A : B.
5361 A == B? A : B same as B
5362 A != B? A : B same as A
5363 A >= B? A : B same as max (A, B)
5364 A > B? A : B same as max (B, A)
5365 A <= B? A : B same as min (A, B)
5366 A < B? A : B same as min (B, A)
5368 As above, these transformations don't work in the presence
5369 of signed zeros. For example, if A and B are zeros of
5370 opposite sign, the first two transformations will change
5371 the sign of the result. In the last four, the original
5372 expressions give different results for (A=+0, B=-0) and
5373 (A=-0, B=+0), but the transformed expressions do not.
5375 The first two transformations are correct if either A or B
5376 is a NaN. In the first transformation, the condition will
5377 be false, and B will indeed be chosen. In the case of the
5378 second transformation, the condition A != B will be true,
5379 and A will be chosen.
5381 The conversions to max() and min() are not correct if B is
5382 a number and A is not. The conditions in the original
5383 expressions will be false, so all four give B. The min()
5384 and max() versions would give a NaN instead. */
5385 if (!HONOR_SIGNED_ZEROS (element_mode (type
))
5386 && operand_equal_for_comparison_p (arg01
, arg2
)
5387 /* Avoid these transformations if the COND_EXPR may be used
5388 as an lvalue in the C++ front-end. PR c++/19199. */
5390 || VECTOR_TYPE_P (type
)
5391 || (! lang_GNU_CXX ()
5392 && strcmp (lang_hooks
.name
, "GNU Objective-C++") != 0)
5393 || ! maybe_lvalue_p (arg1
)
5394 || ! maybe_lvalue_p (arg2
)))
5396 tree comp_op0
= arg00
;
5397 tree comp_op1
= arg01
;
5398 tree comp_type
= TREE_TYPE (comp_op0
);
5403 return fold_convert_loc (loc
, type
, arg2
);
5405 return fold_convert_loc (loc
, type
, arg1
);
5410 /* In C++ a ?: expression can be an lvalue, so put the
5411 operand which will be used if they are equal first
5412 so that we can convert this back to the
5413 corresponding COND_EXPR. */
5414 if (!HONOR_NANS (arg1
))
5416 comp_op0
= fold_convert_loc (loc
, comp_type
, comp_op0
);
5417 comp_op1
= fold_convert_loc (loc
, comp_type
, comp_op1
);
5418 tem
= (comp_code
== LE_EXPR
|| comp_code
== UNLE_EXPR
)
5419 ? fold_build2_loc (loc
, MIN_EXPR
, comp_type
, comp_op0
, comp_op1
)
5420 : fold_build2_loc (loc
, MIN_EXPR
, comp_type
,
5421 comp_op1
, comp_op0
);
5422 return fold_convert_loc (loc
, type
, tem
);
5429 if (!HONOR_NANS (arg1
))
5431 comp_op0
= fold_convert_loc (loc
, comp_type
, comp_op0
);
5432 comp_op1
= fold_convert_loc (loc
, comp_type
, comp_op1
);
5433 tem
= (comp_code
== GE_EXPR
|| comp_code
== UNGE_EXPR
)
5434 ? fold_build2_loc (loc
, MAX_EXPR
, comp_type
, comp_op0
, comp_op1
)
5435 : fold_build2_loc (loc
, MAX_EXPR
, comp_type
,
5436 comp_op1
, comp_op0
);
5437 return fold_convert_loc (loc
, type
, tem
);
5441 if (!HONOR_NANS (arg1
))
5442 return fold_convert_loc (loc
, type
, arg2
);
5445 if (!HONOR_NANS (arg1
))
5446 return fold_convert_loc (loc
, type
, arg1
);
5449 gcc_assert (TREE_CODE_CLASS (comp_code
) == tcc_comparison
);
5459 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5460 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
5461 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
5465 /* EXP is some logical combination of boolean tests. See if we can
5466 merge it into some range test. Return the new tree if so. */
5469 fold_range_test (location_t loc
, enum tree_code code
, tree type
,
5472 int or_op
= (code
== TRUTH_ORIF_EXPR
5473 || code
== TRUTH_OR_EXPR
);
5474 int in0_p
, in1_p
, in_p
;
5475 tree low0
, low1
, low
, high0
, high1
, high
;
5476 bool strict_overflow_p
= false;
5478 const char * const warnmsg
= G_("assuming signed overflow does not occur "
5479 "when simplifying range test");
5481 if (!INTEGRAL_TYPE_P (type
))
5484 lhs
= make_range (op0
, &in0_p
, &low0
, &high0
, &strict_overflow_p
);
5485 rhs
= make_range (op1
, &in1_p
, &low1
, &high1
, &strict_overflow_p
);
5487 /* If this is an OR operation, invert both sides; we will invert
5488 again at the end. */
5490 in0_p
= ! in0_p
, in1_p
= ! in1_p
;
5492 /* If both expressions are the same, if we can merge the ranges, and we
5493 can build the range test, return it or it inverted. If one of the
5494 ranges is always true or always false, consider it to be the same
5495 expression as the other. */
5496 if ((lhs
== 0 || rhs
== 0 || operand_equal_p (lhs
, rhs
, 0))
5497 && merge_ranges (&in_p
, &low
, &high
, in0_p
, low0
, high0
,
5499 && (tem
= (build_range_check (loc
, type
,
5501 : rhs
!= 0 ? rhs
: integer_zero_node
,
5502 in_p
, low
, high
))) != 0)
5504 if (strict_overflow_p
)
5505 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
5506 return or_op
? invert_truthvalue_loc (loc
, tem
) : tem
;
5509 /* On machines where the branch cost is expensive, if this is a
5510 short-circuited branch and the underlying object on both sides
5511 is the same, make a non-short-circuit operation. */
5512 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
5513 && !flag_sanitize_coverage
5514 && lhs
!= 0 && rhs
!= 0
5515 && (code
== TRUTH_ANDIF_EXPR
5516 || code
== TRUTH_ORIF_EXPR
)
5517 && operand_equal_p (lhs
, rhs
, 0))
5519 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5520 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5521 which cases we can't do this. */
5522 if (simple_operand_p (lhs
))
5523 return build2_loc (loc
, code
== TRUTH_ANDIF_EXPR
5524 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
,
5527 else if (!lang_hooks
.decls
.global_bindings_p ()
5528 && !CONTAINS_PLACEHOLDER_P (lhs
))
5530 tree common
= save_expr (lhs
);
5532 if ((lhs
= build_range_check (loc
, type
, common
,
5533 or_op
? ! in0_p
: in0_p
,
5535 && (rhs
= build_range_check (loc
, type
, common
,
5536 or_op
? ! in1_p
: in1_p
,
5539 if (strict_overflow_p
)
5540 fold_overflow_warning (warnmsg
,
5541 WARN_STRICT_OVERFLOW_COMPARISON
);
5542 return build2_loc (loc
, code
== TRUTH_ANDIF_EXPR
5543 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
,
5552 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
5553 bit value. Arrange things so the extra bits will be set to zero if and
5554 only if C is signed-extended to its full width. If MASK is nonzero,
5555 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5558 unextend (tree c
, int p
, int unsignedp
, tree mask
)
5560 tree type
= TREE_TYPE (c
);
5561 int modesize
= GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (type
));
5564 if (p
== modesize
|| unsignedp
)
5567 /* We work by getting just the sign bit into the low-order bit, then
5568 into the high-order bit, then sign-extend. We then XOR that value
5570 temp
= build_int_cst (TREE_TYPE (c
),
5571 wi::extract_uhwi (wi::to_wide (c
), p
- 1, 1));
5573 /* We must use a signed type in order to get an arithmetic right shift.
5574 However, we must also avoid introducing accidental overflows, so that
5575 a subsequent call to integer_zerop will work. Hence we must
5576 do the type conversion here. At this point, the constant is either
5577 zero or one, and the conversion to a signed type can never overflow.
5578 We could get an overflow if this conversion is done anywhere else. */
5579 if (TYPE_UNSIGNED (type
))
5580 temp
= fold_convert (signed_type_for (type
), temp
);
5582 temp
= const_binop (LSHIFT_EXPR
, temp
, size_int (modesize
- 1));
5583 temp
= const_binop (RSHIFT_EXPR
, temp
, size_int (modesize
- p
- 1));
5585 temp
= const_binop (BIT_AND_EXPR
, temp
,
5586 fold_convert (TREE_TYPE (c
), mask
));
5587 /* If necessary, convert the type back to match the type of C. */
5588 if (TYPE_UNSIGNED (type
))
5589 temp
= fold_convert (type
, temp
);
5591 return fold_convert (type
, const_binop (BIT_XOR_EXPR
, c
, temp
));
5594 /* For an expression that has the form
5598 we can drop one of the inner expressions and simplify to
5602 LOC is the location of the resulting expression. OP is the inner
5603 logical operation; the left-hand side in the examples above, while CMPOP
5604 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
5605 removing a condition that guards another, as in
5606 (A != NULL && A->...) || A == NULL
5607 which we must not transform. If RHS_ONLY is true, only eliminate the
5608 right-most operand of the inner logical operation. */
5611 merge_truthop_with_opposite_arm (location_t loc
, tree op
, tree cmpop
,
5614 tree type
= TREE_TYPE (cmpop
);
5615 enum tree_code code
= TREE_CODE (cmpop
);
5616 enum tree_code truthop_code
= TREE_CODE (op
);
5617 tree lhs
= TREE_OPERAND (op
, 0);
5618 tree rhs
= TREE_OPERAND (op
, 1);
5619 tree orig_lhs
= lhs
, orig_rhs
= rhs
;
5620 enum tree_code rhs_code
= TREE_CODE (rhs
);
5621 enum tree_code lhs_code
= TREE_CODE (lhs
);
5622 enum tree_code inv_code
;
5624 if (TREE_SIDE_EFFECTS (op
) || TREE_SIDE_EFFECTS (cmpop
))
5627 if (TREE_CODE_CLASS (code
) != tcc_comparison
)
5630 if (rhs_code
== truthop_code
)
5632 tree newrhs
= merge_truthop_with_opposite_arm (loc
, rhs
, cmpop
, rhs_only
);
5633 if (newrhs
!= NULL_TREE
)
5636 rhs_code
= TREE_CODE (rhs
);
5639 if (lhs_code
== truthop_code
&& !rhs_only
)
5641 tree newlhs
= merge_truthop_with_opposite_arm (loc
, lhs
, cmpop
, false);
5642 if (newlhs
!= NULL_TREE
)
5645 lhs_code
= TREE_CODE (lhs
);
5649 inv_code
= invert_tree_comparison (code
, HONOR_NANS (type
));
5650 if (inv_code
== rhs_code
5651 && operand_equal_p (TREE_OPERAND (rhs
, 0), TREE_OPERAND (cmpop
, 0), 0)
5652 && operand_equal_p (TREE_OPERAND (rhs
, 1), TREE_OPERAND (cmpop
, 1), 0))
5654 if (!rhs_only
&& inv_code
== lhs_code
5655 && operand_equal_p (TREE_OPERAND (lhs
, 0), TREE_OPERAND (cmpop
, 0), 0)
5656 && operand_equal_p (TREE_OPERAND (lhs
, 1), TREE_OPERAND (cmpop
, 1), 0))
5658 if (rhs
!= orig_rhs
|| lhs
!= orig_lhs
)
5659 return fold_build2_loc (loc
, truthop_code
, TREE_TYPE (cmpop
),
5664 /* Find ways of folding logical expressions of LHS and RHS:
5665 Try to merge two comparisons to the same innermost item.
5666 Look for range tests like "ch >= '0' && ch <= '9'".
5667 Look for combinations of simple terms on machines with expensive branches
5668 and evaluate the RHS unconditionally.
5670 For example, if we have p->a == 2 && p->b == 4 and we can make an
5671 object large enough to span both A and B, we can do this with a comparison
5672 against the object ANDed with the a mask.
5674 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5675 operations to do this with one comparison.
5677 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5678 function and the one above.
5680 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5681 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5683 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5686 We return the simplified tree or 0 if no optimization is possible. */
5689 fold_truth_andor_1 (location_t loc
, enum tree_code code
, tree truth_type
,
5692 /* If this is the "or" of two comparisons, we can do something if
5693 the comparisons are NE_EXPR. If this is the "and", we can do something
5694 if the comparisons are EQ_EXPR. I.e.,
5695 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5697 WANTED_CODE is this operation code. For single bit fields, we can
5698 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5699 comparison for one-bit fields. */
5701 enum tree_code wanted_code
;
5702 enum tree_code lcode
, rcode
;
5703 tree ll_arg
, lr_arg
, rl_arg
, rr_arg
;
5704 tree ll_inner
, lr_inner
, rl_inner
, rr_inner
;
5705 HOST_WIDE_INT ll_bitsize
, ll_bitpos
, lr_bitsize
, lr_bitpos
;
5706 HOST_WIDE_INT rl_bitsize
, rl_bitpos
, rr_bitsize
, rr_bitpos
;
5707 HOST_WIDE_INT xll_bitpos
, xlr_bitpos
, xrl_bitpos
, xrr_bitpos
;
5708 HOST_WIDE_INT lnbitsize
, lnbitpos
, rnbitsize
, rnbitpos
;
5709 int ll_unsignedp
, lr_unsignedp
, rl_unsignedp
, rr_unsignedp
;
5710 int ll_reversep
, lr_reversep
, rl_reversep
, rr_reversep
;
5711 machine_mode ll_mode
, lr_mode
, rl_mode
, rr_mode
;
5712 scalar_int_mode lnmode
, rnmode
;
5713 tree ll_mask
, lr_mask
, rl_mask
, rr_mask
;
5714 tree ll_and_mask
, lr_and_mask
, rl_and_mask
, rr_and_mask
;
5715 tree l_const
, r_const
;
5716 tree lntype
, rntype
, result
;
5717 HOST_WIDE_INT first_bit
, end_bit
;
5720 /* Start by getting the comparison codes. Fail if anything is volatile.
5721 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5722 it were surrounded with a NE_EXPR. */
5724 if (TREE_SIDE_EFFECTS (lhs
) || TREE_SIDE_EFFECTS (rhs
))
5727 lcode
= TREE_CODE (lhs
);
5728 rcode
= TREE_CODE (rhs
);
5730 if (lcode
== BIT_AND_EXPR
&& integer_onep (TREE_OPERAND (lhs
, 1)))
5732 lhs
= build2 (NE_EXPR
, truth_type
, lhs
,
5733 build_int_cst (TREE_TYPE (lhs
), 0));
5737 if (rcode
== BIT_AND_EXPR
&& integer_onep (TREE_OPERAND (rhs
, 1)))
5739 rhs
= build2 (NE_EXPR
, truth_type
, rhs
,
5740 build_int_cst (TREE_TYPE (rhs
), 0));
5744 if (TREE_CODE_CLASS (lcode
) != tcc_comparison
5745 || TREE_CODE_CLASS (rcode
) != tcc_comparison
)
5748 ll_arg
= TREE_OPERAND (lhs
, 0);
5749 lr_arg
= TREE_OPERAND (lhs
, 1);
5750 rl_arg
= TREE_OPERAND (rhs
, 0);
5751 rr_arg
= TREE_OPERAND (rhs
, 1);
5753 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5754 if (simple_operand_p (ll_arg
)
5755 && simple_operand_p (lr_arg
))
5757 if (operand_equal_p (ll_arg
, rl_arg
, 0)
5758 && operand_equal_p (lr_arg
, rr_arg
, 0))
5760 result
= combine_comparisons (loc
, code
, lcode
, rcode
,
5761 truth_type
, ll_arg
, lr_arg
);
5765 else if (operand_equal_p (ll_arg
, rr_arg
, 0)
5766 && operand_equal_p (lr_arg
, rl_arg
, 0))
5768 result
= combine_comparisons (loc
, code
, lcode
,
5769 swap_tree_comparison (rcode
),
5770 truth_type
, ll_arg
, lr_arg
);
5776 code
= ((code
== TRUTH_AND_EXPR
|| code
== TRUTH_ANDIF_EXPR
)
5777 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
);
5779 /* If the RHS can be evaluated unconditionally and its operands are
5780 simple, it wins to evaluate the RHS unconditionally on machines
5781 with expensive branches. In this case, this isn't a comparison
5782 that can be merged. */
5784 if (BRANCH_COST (optimize_function_for_speed_p (cfun
),
5786 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg
))
5787 && simple_operand_p (rl_arg
)
5788 && simple_operand_p (rr_arg
))
5790 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5791 if (code
== TRUTH_OR_EXPR
5792 && lcode
== NE_EXPR
&& integer_zerop (lr_arg
)
5793 && rcode
== NE_EXPR
&& integer_zerop (rr_arg
)
5794 && TREE_TYPE (ll_arg
) == TREE_TYPE (rl_arg
)
5795 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg
)))
5796 return build2_loc (loc
, NE_EXPR
, truth_type
,
5797 build2 (BIT_IOR_EXPR
, TREE_TYPE (ll_arg
),
5799 build_int_cst (TREE_TYPE (ll_arg
), 0));
5801 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5802 if (code
== TRUTH_AND_EXPR
5803 && lcode
== EQ_EXPR
&& integer_zerop (lr_arg
)
5804 && rcode
== EQ_EXPR
&& integer_zerop (rr_arg
)
5805 && TREE_TYPE (ll_arg
) == TREE_TYPE (rl_arg
)
5806 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg
)))
5807 return build2_loc (loc
, EQ_EXPR
, truth_type
,
5808 build2 (BIT_IOR_EXPR
, TREE_TYPE (ll_arg
),
5810 build_int_cst (TREE_TYPE (ll_arg
), 0));
5813 /* See if the comparisons can be merged. Then get all the parameters for
5816 if ((lcode
!= EQ_EXPR
&& lcode
!= NE_EXPR
)
5817 || (rcode
!= EQ_EXPR
&& rcode
!= NE_EXPR
))
5820 ll_reversep
= lr_reversep
= rl_reversep
= rr_reversep
= 0;
5822 ll_inner
= decode_field_reference (loc
, &ll_arg
,
5823 &ll_bitsize
, &ll_bitpos
, &ll_mode
,
5824 &ll_unsignedp
, &ll_reversep
, &volatilep
,
5825 &ll_mask
, &ll_and_mask
);
5826 lr_inner
= decode_field_reference (loc
, &lr_arg
,
5827 &lr_bitsize
, &lr_bitpos
, &lr_mode
,
5828 &lr_unsignedp
, &lr_reversep
, &volatilep
,
5829 &lr_mask
, &lr_and_mask
);
5830 rl_inner
= decode_field_reference (loc
, &rl_arg
,
5831 &rl_bitsize
, &rl_bitpos
, &rl_mode
,
5832 &rl_unsignedp
, &rl_reversep
, &volatilep
,
5833 &rl_mask
, &rl_and_mask
);
5834 rr_inner
= decode_field_reference (loc
, &rr_arg
,
5835 &rr_bitsize
, &rr_bitpos
, &rr_mode
,
5836 &rr_unsignedp
, &rr_reversep
, &volatilep
,
5837 &rr_mask
, &rr_and_mask
);
5839 /* It must be true that the inner operation on the lhs of each
5840 comparison must be the same if we are to be able to do anything.
5841 Then see if we have constants. If not, the same must be true for
5844 || ll_reversep
!= rl_reversep
5845 || ll_inner
== 0 || rl_inner
== 0
5846 || ! operand_equal_p (ll_inner
, rl_inner
, 0))
5849 if (TREE_CODE (lr_arg
) == INTEGER_CST
5850 && TREE_CODE (rr_arg
) == INTEGER_CST
)
5852 l_const
= lr_arg
, r_const
= rr_arg
;
5853 lr_reversep
= ll_reversep
;
5855 else if (lr_reversep
!= rr_reversep
5856 || lr_inner
== 0 || rr_inner
== 0
5857 || ! operand_equal_p (lr_inner
, rr_inner
, 0))
5860 l_const
= r_const
= 0;
5862 /* If either comparison code is not correct for our logical operation,
5863 fail. However, we can convert a one-bit comparison against zero into
5864 the opposite comparison against that bit being set in the field. */
5866 wanted_code
= (code
== TRUTH_AND_EXPR
? EQ_EXPR
: NE_EXPR
);
5867 if (lcode
!= wanted_code
)
5869 if (l_const
&& integer_zerop (l_const
) && integer_pow2p (ll_mask
))
5871 /* Make the left operand unsigned, since we are only interested
5872 in the value of one bit. Otherwise we are doing the wrong
5881 /* This is analogous to the code for l_const above. */
5882 if (rcode
!= wanted_code
)
5884 if (r_const
&& integer_zerop (r_const
) && integer_pow2p (rl_mask
))
5893 /* See if we can find a mode that contains both fields being compared on
5894 the left. If we can't, fail. Otherwise, update all constants and masks
5895 to be relative to a field of that size. */
5896 first_bit
= MIN (ll_bitpos
, rl_bitpos
);
5897 end_bit
= MAX (ll_bitpos
+ ll_bitsize
, rl_bitpos
+ rl_bitsize
);
5898 if (!get_best_mode (end_bit
- first_bit
, first_bit
, 0, 0,
5899 TYPE_ALIGN (TREE_TYPE (ll_inner
)), BITS_PER_WORD
,
5900 volatilep
, &lnmode
))
5903 lnbitsize
= GET_MODE_BITSIZE (lnmode
);
5904 lnbitpos
= first_bit
& ~ (lnbitsize
- 1);
5905 lntype
= lang_hooks
.types
.type_for_size (lnbitsize
, 1);
5906 xll_bitpos
= ll_bitpos
- lnbitpos
, xrl_bitpos
= rl_bitpos
- lnbitpos
;
5908 if (ll_reversep
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
5910 xll_bitpos
= lnbitsize
- xll_bitpos
- ll_bitsize
;
5911 xrl_bitpos
= lnbitsize
- xrl_bitpos
- rl_bitsize
;
5914 ll_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
, lntype
, ll_mask
),
5915 size_int (xll_bitpos
));
5916 rl_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
, lntype
, rl_mask
),
5917 size_int (xrl_bitpos
));
5921 l_const
= fold_convert_loc (loc
, lntype
, l_const
);
5922 l_const
= unextend (l_const
, ll_bitsize
, ll_unsignedp
, ll_and_mask
);
5923 l_const
= const_binop (LSHIFT_EXPR
, l_const
, size_int (xll_bitpos
));
5924 if (! integer_zerop (const_binop (BIT_AND_EXPR
, l_const
,
5925 fold_build1_loc (loc
, BIT_NOT_EXPR
,
5928 warning (0, "comparison is always %d", wanted_code
== NE_EXPR
);
5930 return constant_boolean_node (wanted_code
== NE_EXPR
, truth_type
);
5935 r_const
= fold_convert_loc (loc
, lntype
, r_const
);
5936 r_const
= unextend (r_const
, rl_bitsize
, rl_unsignedp
, rl_and_mask
);
5937 r_const
= const_binop (LSHIFT_EXPR
, r_const
, size_int (xrl_bitpos
));
5938 if (! integer_zerop (const_binop (BIT_AND_EXPR
, r_const
,
5939 fold_build1_loc (loc
, BIT_NOT_EXPR
,
5942 warning (0, "comparison is always %d", wanted_code
== NE_EXPR
);
5944 return constant_boolean_node (wanted_code
== NE_EXPR
, truth_type
);
5948 /* If the right sides are not constant, do the same for it. Also,
5949 disallow this optimization if a size or signedness mismatch occurs
5950 between the left and right sides. */
5953 if (ll_bitsize
!= lr_bitsize
|| rl_bitsize
!= rr_bitsize
5954 || ll_unsignedp
!= lr_unsignedp
|| rl_unsignedp
!= rr_unsignedp
5955 /* Make sure the two fields on the right
5956 correspond to the left without being swapped. */
5957 || ll_bitpos
- rl_bitpos
!= lr_bitpos
- rr_bitpos
)
5960 first_bit
= MIN (lr_bitpos
, rr_bitpos
);
5961 end_bit
= MAX (lr_bitpos
+ lr_bitsize
, rr_bitpos
+ rr_bitsize
);
5962 if (!get_best_mode (end_bit
- first_bit
, first_bit
, 0, 0,
5963 TYPE_ALIGN (TREE_TYPE (lr_inner
)), BITS_PER_WORD
,
5964 volatilep
, &rnmode
))
5967 rnbitsize
= GET_MODE_BITSIZE (rnmode
);
5968 rnbitpos
= first_bit
& ~ (rnbitsize
- 1);
5969 rntype
= lang_hooks
.types
.type_for_size (rnbitsize
, 1);
5970 xlr_bitpos
= lr_bitpos
- rnbitpos
, xrr_bitpos
= rr_bitpos
- rnbitpos
;
5972 if (lr_reversep
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
5974 xlr_bitpos
= rnbitsize
- xlr_bitpos
- lr_bitsize
;
5975 xrr_bitpos
= rnbitsize
- xrr_bitpos
- rr_bitsize
;
5978 lr_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
,
5980 size_int (xlr_bitpos
));
5981 rr_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
,
5983 size_int (xrr_bitpos
));
5985 /* Make a mask that corresponds to both fields being compared.
5986 Do this for both items being compared. If the operands are the
5987 same size and the bits being compared are in the same position
5988 then we can do this by masking both and comparing the masked
5990 ll_mask
= const_binop (BIT_IOR_EXPR
, ll_mask
, rl_mask
);
5991 lr_mask
= const_binop (BIT_IOR_EXPR
, lr_mask
, rr_mask
);
5992 if (lnbitsize
== rnbitsize
5993 && xll_bitpos
== xlr_bitpos
5997 lhs
= make_bit_field_ref (loc
, ll_inner
, ll_arg
,
5998 lntype
, lnbitsize
, lnbitpos
,
5999 ll_unsignedp
|| rl_unsignedp
, ll_reversep
);
6000 if (! all_ones_mask_p (ll_mask
, lnbitsize
))
6001 lhs
= build2 (BIT_AND_EXPR
, lntype
, lhs
, ll_mask
);
6003 rhs
= make_bit_field_ref (loc
, lr_inner
, lr_arg
,
6004 rntype
, rnbitsize
, rnbitpos
,
6005 lr_unsignedp
|| rr_unsignedp
, lr_reversep
);
6006 if (! all_ones_mask_p (lr_mask
, rnbitsize
))
6007 rhs
= build2 (BIT_AND_EXPR
, rntype
, rhs
, lr_mask
);
6009 return build2_loc (loc
, wanted_code
, truth_type
, lhs
, rhs
);
6012 /* There is still another way we can do something: If both pairs of
6013 fields being compared are adjacent, we may be able to make a wider
6014 field containing them both.
6016 Note that we still must mask the lhs/rhs expressions. Furthermore,
6017 the mask must be shifted to account for the shift done by
6018 make_bit_field_ref. */
6019 if (((ll_bitsize
+ ll_bitpos
== rl_bitpos
6020 && lr_bitsize
+ lr_bitpos
== rr_bitpos
)
6021 || (ll_bitpos
== rl_bitpos
+ rl_bitsize
6022 && lr_bitpos
== rr_bitpos
+ rr_bitsize
))
6030 lhs
= make_bit_field_ref (loc
, ll_inner
, ll_arg
, lntype
,
6031 ll_bitsize
+ rl_bitsize
,
6032 MIN (ll_bitpos
, rl_bitpos
),
6033 ll_unsignedp
, ll_reversep
);
6034 rhs
= make_bit_field_ref (loc
, lr_inner
, lr_arg
, rntype
,
6035 lr_bitsize
+ rr_bitsize
,
6036 MIN (lr_bitpos
, rr_bitpos
),
6037 lr_unsignedp
, lr_reversep
);
6039 ll_mask
= const_binop (RSHIFT_EXPR
, ll_mask
,
6040 size_int (MIN (xll_bitpos
, xrl_bitpos
)));
6041 lr_mask
= const_binop (RSHIFT_EXPR
, lr_mask
,
6042 size_int (MIN (xlr_bitpos
, xrr_bitpos
)));
6044 /* Convert to the smaller type before masking out unwanted bits. */
6046 if (lntype
!= rntype
)
6048 if (lnbitsize
> rnbitsize
)
6050 lhs
= fold_convert_loc (loc
, rntype
, lhs
);
6051 ll_mask
= fold_convert_loc (loc
, rntype
, ll_mask
);
6054 else if (lnbitsize
< rnbitsize
)
6056 rhs
= fold_convert_loc (loc
, lntype
, rhs
);
6057 lr_mask
= fold_convert_loc (loc
, lntype
, lr_mask
);
6062 if (! all_ones_mask_p (ll_mask
, ll_bitsize
+ rl_bitsize
))
6063 lhs
= build2 (BIT_AND_EXPR
, type
, lhs
, ll_mask
);
6065 if (! all_ones_mask_p (lr_mask
, lr_bitsize
+ rr_bitsize
))
6066 rhs
= build2 (BIT_AND_EXPR
, type
, rhs
, lr_mask
);
6068 return build2_loc (loc
, wanted_code
, truth_type
, lhs
, rhs
);
6074 /* Handle the case of comparisons with constants. If there is something in
6075 common between the masks, those bits of the constants must be the same.
6076 If not, the condition is always false. Test for this to avoid generating
6077 incorrect code below. */
6078 result
= const_binop (BIT_AND_EXPR
, ll_mask
, rl_mask
);
6079 if (! integer_zerop (result
)
6080 && simple_cst_equal (const_binop (BIT_AND_EXPR
, result
, l_const
),
6081 const_binop (BIT_AND_EXPR
, result
, r_const
)) != 1)
6083 if (wanted_code
== NE_EXPR
)
6085 warning (0, "%<or%> of unmatched not-equal tests is always 1");
6086 return constant_boolean_node (true, truth_type
);
6090 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
6091 return constant_boolean_node (false, truth_type
);
6098 /* Construct the expression we will return. First get the component
6099 reference we will make. Unless the mask is all ones the width of
6100 that field, perform the mask operation. Then compare with the
6102 result
= make_bit_field_ref (loc
, ll_inner
, ll_arg
,
6103 lntype
, lnbitsize
, lnbitpos
,
6104 ll_unsignedp
|| rl_unsignedp
, ll_reversep
);
6106 ll_mask
= const_binop (BIT_IOR_EXPR
, ll_mask
, rl_mask
);
6107 if (! all_ones_mask_p (ll_mask
, lnbitsize
))
6108 result
= build2_loc (loc
, BIT_AND_EXPR
, lntype
, result
, ll_mask
);
6110 return build2_loc (loc
, wanted_code
, truth_type
, result
,
6111 const_binop (BIT_IOR_EXPR
, l_const
, r_const
));
6114 /* T is an integer expression that is being multiplied, divided, or taken a
6115 modulus (CODE says which and what kind of divide or modulus) by a
6116 constant C. See if we can eliminate that operation by folding it with
6117 other operations already in T. WIDE_TYPE, if non-null, is a type that
6118 should be used for the computation if wider than our type.
6120 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
6121 (X * 2) + (Y * 4). We must, however, be assured that either the original
6122 expression would not overflow or that overflow is undefined for the type
6123 in the language in question.
6125 If we return a non-null expression, it is an equivalent form of the
6126 original computation, but need not be in the original type.
6128 We set *STRICT_OVERFLOW_P to true if the return values depends on
6129 signed overflow being undefined. Otherwise we do not change
6130 *STRICT_OVERFLOW_P. */
6133 extract_muldiv (tree t
, tree c
, enum tree_code code
, tree wide_type
,
6134 bool *strict_overflow_p
)
6136 /* To avoid exponential search depth, refuse to allow recursion past
6137 three levels. Beyond that (1) it's highly unlikely that we'll find
6138 something interesting and (2) we've probably processed it before
6139 when we built the inner expression. */
6148 ret
= extract_muldiv_1 (t
, c
, code
, wide_type
, strict_overflow_p
);
6155 extract_muldiv_1 (tree t
, tree c
, enum tree_code code
, tree wide_type
,
6156 bool *strict_overflow_p
)
6158 tree type
= TREE_TYPE (t
);
6159 enum tree_code tcode
= TREE_CODE (t
);
6160 tree ctype
= (wide_type
!= 0
6161 && (GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (wide_type
))
6162 > GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type
)))
6163 ? wide_type
: type
);
6165 int same_p
= tcode
== code
;
6166 tree op0
= NULL_TREE
, op1
= NULL_TREE
;
6167 bool sub_strict_overflow_p
;
6169 /* Don't deal with constants of zero here; they confuse the code below. */
6170 if (integer_zerop (c
))
6173 if (TREE_CODE_CLASS (tcode
) == tcc_unary
)
6174 op0
= TREE_OPERAND (t
, 0);
6176 if (TREE_CODE_CLASS (tcode
) == tcc_binary
)
6177 op0
= TREE_OPERAND (t
, 0), op1
= TREE_OPERAND (t
, 1);
6179 /* Note that we need not handle conditional operations here since fold
6180 already handles those cases. So just do arithmetic here. */
6184 /* For a constant, we can always simplify if we are a multiply
6185 or (for divide and modulus) if it is a multiple of our constant. */
6186 if (code
== MULT_EXPR
6187 || wi::multiple_of_p (wi::to_wide (t
), wi::to_wide (c
),
6190 tree tem
= const_binop (code
, fold_convert (ctype
, t
),
6191 fold_convert (ctype
, c
));
6192 /* If the multiplication overflowed, we lost information on it.
6193 See PR68142 and PR69845. */
6194 if (TREE_OVERFLOW (tem
))
6200 CASE_CONVERT
: case NON_LVALUE_EXPR
:
6201 /* If op0 is an expression ... */
6202 if ((COMPARISON_CLASS_P (op0
)
6203 || UNARY_CLASS_P (op0
)
6204 || BINARY_CLASS_P (op0
)
6205 || VL_EXP_CLASS_P (op0
)
6206 || EXPRESSION_CLASS_P (op0
))
6207 /* ... and has wrapping overflow, and its type is smaller
6208 than ctype, then we cannot pass through as widening. */
6209 && (((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0
))
6210 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0
)))
6211 && (TYPE_PRECISION (ctype
)
6212 > TYPE_PRECISION (TREE_TYPE (op0
))))
6213 /* ... or this is a truncation (t is narrower than op0),
6214 then we cannot pass through this narrowing. */
6215 || (TYPE_PRECISION (type
)
6216 < TYPE_PRECISION (TREE_TYPE (op0
)))
6217 /* ... or signedness changes for division or modulus,
6218 then we cannot pass through this conversion. */
6219 || (code
!= MULT_EXPR
6220 && (TYPE_UNSIGNED (ctype
)
6221 != TYPE_UNSIGNED (TREE_TYPE (op0
))))
6222 /* ... or has undefined overflow while the converted to
6223 type has not, we cannot do the operation in the inner type
6224 as that would introduce undefined overflow. */
6225 || ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0
))
6226 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0
)))
6227 && !TYPE_OVERFLOW_UNDEFINED (type
))))
6230 /* Pass the constant down and see if we can make a simplification. If
6231 we can, replace this expression with the inner simplification for
6232 possible later conversion to our or some other type. */
6233 if ((t2
= fold_convert (TREE_TYPE (op0
), c
)) != 0
6234 && TREE_CODE (t2
) == INTEGER_CST
6235 && !TREE_OVERFLOW (t2
)
6236 && (t1
= extract_muldiv (op0
, t2
, code
,
6237 code
== MULT_EXPR
? ctype
: NULL_TREE
,
6238 strict_overflow_p
)) != 0)
6243 /* If widening the type changes it from signed to unsigned, then we
6244 must avoid building ABS_EXPR itself as unsigned. */
6245 if (TYPE_UNSIGNED (ctype
) && !TYPE_UNSIGNED (type
))
6247 tree cstype
= (*signed_type_for
) (ctype
);
6248 if ((t1
= extract_muldiv (op0
, c
, code
, cstype
, strict_overflow_p
))
6251 t1
= fold_build1 (tcode
, cstype
, fold_convert (cstype
, t1
));
6252 return fold_convert (ctype
, t1
);
6256 /* If the constant is negative, we cannot simplify this. */
6257 if (tree_int_cst_sgn (c
) == -1)
6261 /* For division and modulus, type can't be unsigned, as e.g.
6262 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
6263 For signed types, even with wrapping overflow, this is fine. */
6264 if (code
!= MULT_EXPR
&& TYPE_UNSIGNED (type
))
6266 if ((t1
= extract_muldiv (op0
, c
, code
, wide_type
, strict_overflow_p
))
6268 return fold_build1 (tcode
, ctype
, fold_convert (ctype
, t1
));
6271 case MIN_EXPR
: case MAX_EXPR
:
6272 /* If widening the type changes the signedness, then we can't perform
6273 this optimization as that changes the result. */
6274 if (TYPE_UNSIGNED (ctype
) != TYPE_UNSIGNED (type
))
6277 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
6278 sub_strict_overflow_p
= false;
6279 if ((t1
= extract_muldiv (op0
, c
, code
, wide_type
,
6280 &sub_strict_overflow_p
)) != 0
6281 && (t2
= extract_muldiv (op1
, c
, code
, wide_type
,
6282 &sub_strict_overflow_p
)) != 0)
6284 if (tree_int_cst_sgn (c
) < 0)
6285 tcode
= (tcode
== MIN_EXPR
? MAX_EXPR
: MIN_EXPR
);
6286 if (sub_strict_overflow_p
)
6287 *strict_overflow_p
= true;
6288 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
6289 fold_convert (ctype
, t2
));
6293 case LSHIFT_EXPR
: case RSHIFT_EXPR
:
6294 /* If the second operand is constant, this is a multiplication
6295 or floor division, by a power of two, so we can treat it that
6296 way unless the multiplier or divisor overflows. Signed
6297 left-shift overflow is implementation-defined rather than
6298 undefined in C90, so do not convert signed left shift into
6300 if (TREE_CODE (op1
) == INTEGER_CST
6301 && (tcode
== RSHIFT_EXPR
|| TYPE_UNSIGNED (TREE_TYPE (op0
)))
6302 /* const_binop may not detect overflow correctly,
6303 so check for it explicitly here. */
6304 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node
)),
6306 && (t1
= fold_convert (ctype
,
6307 const_binop (LSHIFT_EXPR
, size_one_node
,
6309 && !TREE_OVERFLOW (t1
))
6310 return extract_muldiv (build2 (tcode
== LSHIFT_EXPR
6311 ? MULT_EXPR
: FLOOR_DIV_EXPR
,
6313 fold_convert (ctype
, op0
),
6315 c
, code
, wide_type
, strict_overflow_p
);
6318 case PLUS_EXPR
: case MINUS_EXPR
:
6319 /* See if we can eliminate the operation on both sides. If we can, we
6320 can return a new PLUS or MINUS. If we can't, the only remaining
6321 cases where we can do anything are if the second operand is a
6323 sub_strict_overflow_p
= false;
6324 t1
= extract_muldiv (op0
, c
, code
, wide_type
, &sub_strict_overflow_p
);
6325 t2
= extract_muldiv (op1
, c
, code
, wide_type
, &sub_strict_overflow_p
);
6326 if (t1
!= 0 && t2
!= 0
6327 && TYPE_OVERFLOW_WRAPS (ctype
)
6328 && (code
== MULT_EXPR
6329 /* If not multiplication, we can only do this if both operands
6330 are divisible by c. */
6331 || (multiple_of_p (ctype
, op0
, c
)
6332 && multiple_of_p (ctype
, op1
, c
))))
6334 if (sub_strict_overflow_p
)
6335 *strict_overflow_p
= true;
6336 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
6337 fold_convert (ctype
, t2
));
6340 /* If this was a subtraction, negate OP1 and set it to be an addition.
6341 This simplifies the logic below. */
6342 if (tcode
== MINUS_EXPR
)
6344 tcode
= PLUS_EXPR
, op1
= negate_expr (op1
);
6345 /* If OP1 was not easily negatable, the constant may be OP0. */
6346 if (TREE_CODE (op0
) == INTEGER_CST
)
6348 std::swap (op0
, op1
);
6353 if (TREE_CODE (op1
) != INTEGER_CST
)
6356 /* If either OP1 or C are negative, this optimization is not safe for
6357 some of the division and remainder types while for others we need
6358 to change the code. */
6359 if (tree_int_cst_sgn (op1
) < 0 || tree_int_cst_sgn (c
) < 0)
6361 if (code
== CEIL_DIV_EXPR
)
6362 code
= FLOOR_DIV_EXPR
;
6363 else if (code
== FLOOR_DIV_EXPR
)
6364 code
= CEIL_DIV_EXPR
;
6365 else if (code
!= MULT_EXPR
6366 && code
!= CEIL_MOD_EXPR
&& code
!= FLOOR_MOD_EXPR
)
6370 /* If it's a multiply or a division/modulus operation of a multiple
6371 of our constant, do the operation and verify it doesn't overflow. */
6372 if (code
== MULT_EXPR
6373 || wi::multiple_of_p (wi::to_wide (op1
), wi::to_wide (c
),
6376 op1
= const_binop (code
, fold_convert (ctype
, op1
),
6377 fold_convert (ctype
, c
));
6378 /* We allow the constant to overflow with wrapping semantics. */
6380 || (TREE_OVERFLOW (op1
) && !TYPE_OVERFLOW_WRAPS (ctype
)))
6386 /* If we have an unsigned type, we cannot widen the operation since it
6387 will change the result if the original computation overflowed. */
6388 if (TYPE_UNSIGNED (ctype
) && ctype
!= type
)
6391 /* The last case is if we are a multiply. In that case, we can
6392 apply the distributive law to commute the multiply and addition
6393 if the multiplication of the constants doesn't overflow
6394 and overflow is defined. With undefined overflow
6395 op0 * c might overflow, while (op0 + orig_op1) * c doesn't. */
6396 if (code
== MULT_EXPR
&& TYPE_OVERFLOW_WRAPS (ctype
))
6397 return fold_build2 (tcode
, ctype
,
6398 fold_build2 (code
, ctype
,
6399 fold_convert (ctype
, op0
),
6400 fold_convert (ctype
, c
)),
6406 /* We have a special case here if we are doing something like
6407 (C * 8) % 4 since we know that's zero. */
6408 if ((code
== TRUNC_MOD_EXPR
|| code
== CEIL_MOD_EXPR
6409 || code
== FLOOR_MOD_EXPR
|| code
== ROUND_MOD_EXPR
)
6410 /* If the multiplication can overflow we cannot optimize this. */
6411 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t
))
6412 && TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
6413 && wi::multiple_of_p (wi::to_wide (op1
), wi::to_wide (c
),
6416 *strict_overflow_p
= true;
6417 return omit_one_operand (type
, integer_zero_node
, op0
);
6420 /* ... fall through ... */
6422 case TRUNC_DIV_EXPR
: case CEIL_DIV_EXPR
: case FLOOR_DIV_EXPR
:
6423 case ROUND_DIV_EXPR
: case EXACT_DIV_EXPR
:
6424 /* If we can extract our operation from the LHS, do so and return a
6425 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6426 do something only if the second operand is a constant. */
6428 && TYPE_OVERFLOW_WRAPS (ctype
)
6429 && (t1
= extract_muldiv (op0
, c
, code
, wide_type
,
6430 strict_overflow_p
)) != 0)
6431 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
6432 fold_convert (ctype
, op1
));
6433 else if (tcode
== MULT_EXPR
&& code
== MULT_EXPR
6434 && TYPE_OVERFLOW_WRAPS (ctype
)
6435 && (t1
= extract_muldiv (op1
, c
, code
, wide_type
,
6436 strict_overflow_p
)) != 0)
6437 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
6438 fold_convert (ctype
, t1
));
6439 else if (TREE_CODE (op1
) != INTEGER_CST
)
6442 /* If these are the same operation types, we can associate them
6443 assuming no overflow. */
6446 bool overflow_p
= false;
6447 bool overflow_mul_p
;
6448 signop sign
= TYPE_SIGN (ctype
);
6449 unsigned prec
= TYPE_PRECISION (ctype
);
6450 wide_int mul
= wi::mul (wi::to_wide (op1
, prec
),
6451 wi::to_wide (c
, prec
),
6452 sign
, &overflow_mul_p
);
6453 overflow_p
= TREE_OVERFLOW (c
) | TREE_OVERFLOW (op1
);
6455 && ((sign
== UNSIGNED
&& tcode
!= MULT_EXPR
) || sign
== SIGNED
))
6458 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
6459 wide_int_to_tree (ctype
, mul
));
6462 /* If these operations "cancel" each other, we have the main
6463 optimizations of this pass, which occur when either constant is a
6464 multiple of the other, in which case we replace this with either an
6465 operation or CODE or TCODE.
6467 If we have an unsigned type, we cannot do this since it will change
6468 the result if the original computation overflowed. */
6469 if (TYPE_OVERFLOW_UNDEFINED (ctype
)
6470 && ((code
== MULT_EXPR
&& tcode
== EXACT_DIV_EXPR
)
6471 || (tcode
== MULT_EXPR
6472 && code
!= TRUNC_MOD_EXPR
&& code
!= CEIL_MOD_EXPR
6473 && code
!= FLOOR_MOD_EXPR
&& code
!= ROUND_MOD_EXPR
6474 && code
!= MULT_EXPR
)))
6476 if (wi::multiple_of_p (wi::to_wide (op1
), wi::to_wide (c
),
6479 if (TYPE_OVERFLOW_UNDEFINED (ctype
))
6480 *strict_overflow_p
= true;
6481 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
6482 fold_convert (ctype
,
6483 const_binop (TRUNC_DIV_EXPR
,
6486 else if (wi::multiple_of_p (wi::to_wide (c
), wi::to_wide (op1
),
6489 if (TYPE_OVERFLOW_UNDEFINED (ctype
))
6490 *strict_overflow_p
= true;
6491 return fold_build2 (code
, ctype
, fold_convert (ctype
, op0
),
6492 fold_convert (ctype
,
6493 const_binop (TRUNC_DIV_EXPR
,
6506 /* Return a node which has the indicated constant VALUE (either 0 or
6507 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
6508 and is of the indicated TYPE. */
6511 constant_boolean_node (bool value
, tree type
)
6513 if (type
== integer_type_node
)
6514 return value
? integer_one_node
: integer_zero_node
;
6515 else if (type
== boolean_type_node
)
6516 return value
? boolean_true_node
: boolean_false_node
;
6517 else if (TREE_CODE (type
) == VECTOR_TYPE
)
6518 return build_vector_from_val (type
,
6519 build_int_cst (TREE_TYPE (type
),
6522 return fold_convert (type
, value
? integer_one_node
: integer_zero_node
);
6526 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6527 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6528 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6529 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6530 COND is the first argument to CODE; otherwise (as in the example
6531 given here), it is the second argument. TYPE is the type of the
6532 original expression. Return NULL_TREE if no simplification is
6536 fold_binary_op_with_conditional_arg (location_t loc
,
6537 enum tree_code code
,
6538 tree type
, tree op0
, tree op1
,
6539 tree cond
, tree arg
, int cond_first_p
)
6541 tree cond_type
= cond_first_p
? TREE_TYPE (op0
) : TREE_TYPE (op1
);
6542 tree arg_type
= cond_first_p
? TREE_TYPE (op1
) : TREE_TYPE (op0
);
6543 tree test
, true_value
, false_value
;
6544 tree lhs
= NULL_TREE
;
6545 tree rhs
= NULL_TREE
;
6546 enum tree_code cond_code
= COND_EXPR
;
6548 if (TREE_CODE (cond
) == COND_EXPR
6549 || TREE_CODE (cond
) == VEC_COND_EXPR
)
6551 test
= TREE_OPERAND (cond
, 0);
6552 true_value
= TREE_OPERAND (cond
, 1);
6553 false_value
= TREE_OPERAND (cond
, 2);
6554 /* If this operand throws an expression, then it does not make
6555 sense to try to perform a logical or arithmetic operation
6557 if (VOID_TYPE_P (TREE_TYPE (true_value
)))
6559 if (VOID_TYPE_P (TREE_TYPE (false_value
)))
6562 else if (!(TREE_CODE (type
) != VECTOR_TYPE
6563 && TREE_CODE (TREE_TYPE (cond
)) == VECTOR_TYPE
))
6565 tree testtype
= TREE_TYPE (cond
);
6567 true_value
= constant_boolean_node (true, testtype
);
6568 false_value
= constant_boolean_node (false, testtype
);
6571 /* Detect the case of mixing vector and scalar types - bail out. */
6574 if (TREE_CODE (TREE_TYPE (test
)) == VECTOR_TYPE
)
6575 cond_code
= VEC_COND_EXPR
;
6577 /* This transformation is only worthwhile if we don't have to wrap ARG
6578 in a SAVE_EXPR and the operation can be simplified without recursing
6579 on at least one of the branches once its pushed inside the COND_EXPR. */
6580 if (!TREE_CONSTANT (arg
)
6581 && (TREE_SIDE_EFFECTS (arg
)
6582 || TREE_CODE (arg
) == COND_EXPR
|| TREE_CODE (arg
) == VEC_COND_EXPR
6583 || TREE_CONSTANT (true_value
) || TREE_CONSTANT (false_value
)))
6586 arg
= fold_convert_loc (loc
, arg_type
, arg
);
6589 true_value
= fold_convert_loc (loc
, cond_type
, true_value
);
6591 lhs
= fold_build2_loc (loc
, code
, type
, true_value
, arg
);
6593 lhs
= fold_build2_loc (loc
, code
, type
, arg
, true_value
);
6597 false_value
= fold_convert_loc (loc
, cond_type
, false_value
);
6599 rhs
= fold_build2_loc (loc
, code
, type
, false_value
, arg
);
6601 rhs
= fold_build2_loc (loc
, code
, type
, arg
, false_value
);
6604 /* Check that we have simplified at least one of the branches. */
6605 if (!TREE_CONSTANT (arg
) && !TREE_CONSTANT (lhs
) && !TREE_CONSTANT (rhs
))
6608 return fold_build3_loc (loc
, cond_code
, type
, test
, lhs
, rhs
);
6612 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6614 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6615 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6616 ADDEND is the same as X.
6618 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6619 and finite. The problematic cases are when X is zero, and its mode
6620 has signed zeros. In the case of rounding towards -infinity,
6621 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6622 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6625 fold_real_zero_addition_p (const_tree type
, const_tree addend
, int negate
)
6627 if (!real_zerop (addend
))
6630 /* Don't allow the fold with -fsignaling-nans. */
6631 if (HONOR_SNANS (element_mode (type
)))
6634 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6635 if (!HONOR_SIGNED_ZEROS (element_mode (type
)))
6638 /* In a vector or complex, we would need to check the sign of all zeros. */
6639 if (TREE_CODE (addend
) != REAL_CST
)
6642 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6643 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend
)))
6646 /* The mode has signed zeros, and we have to honor their sign.
6647 In this situation, there is only one case we can return true for.
6648 X - 0 is the same as X unless rounding towards -infinity is
6650 return negate
&& !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
));
6653 /* Subroutine of match.pd that optimizes comparisons of a division by
6654 a nonzero integer constant against an integer constant, i.e.
6657 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6658 GE_EXPR or LE_EXPR. ARG01 and ARG1 must be a INTEGER_CST. */
6661 fold_div_compare (enum tree_code code
, tree c1
, tree c2
, tree
*lo
,
6662 tree
*hi
, bool *neg_overflow
)
6664 tree prod
, tmp
, type
= TREE_TYPE (c1
);
6665 signop sign
= TYPE_SIGN (type
);
6668 /* We have to do this the hard way to detect unsigned overflow.
6669 prod = int_const_binop (MULT_EXPR, c1, c2); */
6670 wide_int val
= wi::mul (wi::to_wide (c1
), wi::to_wide (c2
), sign
, &overflow
);
6671 prod
= force_fit_type (type
, val
, -1, overflow
);
6672 *neg_overflow
= false;
6674 if (sign
== UNSIGNED
)
6676 tmp
= int_const_binop (MINUS_EXPR
, c1
, build_int_cst (type
, 1));
6679 /* Likewise *hi = int_const_binop (PLUS_EXPR, prod, tmp). */
6680 val
= wi::add (wi::to_wide (prod
), wi::to_wide (tmp
), sign
, &overflow
);
6681 *hi
= force_fit_type (type
, val
, -1, overflow
| TREE_OVERFLOW (prod
));
6683 else if (tree_int_cst_sgn (c1
) >= 0)
6685 tmp
= int_const_binop (MINUS_EXPR
, c1
, build_int_cst (type
, 1));
6686 switch (tree_int_cst_sgn (c2
))
6689 *neg_overflow
= true;
6690 *lo
= int_const_binop (MINUS_EXPR
, prod
, tmp
);
6695 *lo
= fold_negate_const (tmp
, type
);
6700 *hi
= int_const_binop (PLUS_EXPR
, prod
, tmp
);
6710 /* A negative divisor reverses the relational operators. */
6711 code
= swap_tree_comparison (code
);
6713 tmp
= int_const_binop (PLUS_EXPR
, c1
, build_int_cst (type
, 1));
6714 switch (tree_int_cst_sgn (c2
))
6717 *hi
= int_const_binop (MINUS_EXPR
, prod
, tmp
);
6722 *hi
= fold_negate_const (tmp
, type
);
6727 *neg_overflow
= true;
6728 *lo
= int_const_binop (PLUS_EXPR
, prod
, tmp
);
6737 if (code
!= EQ_EXPR
&& code
!= NE_EXPR
)
6740 if (TREE_OVERFLOW (*lo
)
6741 || operand_equal_p (*lo
, TYPE_MIN_VALUE (type
), 0))
6743 if (TREE_OVERFLOW (*hi
)
6744 || operand_equal_p (*hi
, TYPE_MAX_VALUE (type
), 0))
6751 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6752 equality/inequality test, then return a simplified form of the test
6753 using a sign testing. Otherwise return NULL. TYPE is the desired
6757 fold_single_bit_test_into_sign_test (location_t loc
,
6758 enum tree_code code
, tree arg0
, tree arg1
,
6761 /* If this is testing a single bit, we can optimize the test. */
6762 if ((code
== NE_EXPR
|| code
== EQ_EXPR
)
6763 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
6764 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
6766 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6767 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6768 tree arg00
= sign_bit_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg0
, 1));
6770 if (arg00
!= NULL_TREE
6771 /* This is only a win if casting to a signed type is cheap,
6772 i.e. when arg00's type is not a partial mode. */
6773 && type_has_mode_precision_p (TREE_TYPE (arg00
)))
6775 tree stype
= signed_type_for (TREE_TYPE (arg00
));
6776 return fold_build2_loc (loc
, code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
,
6778 fold_convert_loc (loc
, stype
, arg00
),
6779 build_int_cst (stype
, 0));
6786 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6787 equality/inequality test, then return a simplified form of
6788 the test using shifts and logical operations. Otherwise return
6789 NULL. TYPE is the desired result type. */
6792 fold_single_bit_test (location_t loc
, enum tree_code code
,
6793 tree arg0
, tree arg1
, tree result_type
)
6795 /* If this is testing a single bit, we can optimize the test. */
6796 if ((code
== NE_EXPR
|| code
== EQ_EXPR
)
6797 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
6798 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
6800 tree inner
= TREE_OPERAND (arg0
, 0);
6801 tree type
= TREE_TYPE (arg0
);
6802 int bitnum
= tree_log2 (TREE_OPERAND (arg0
, 1));
6803 scalar_int_mode operand_mode
= SCALAR_INT_TYPE_MODE (type
);
6805 tree signed_type
, unsigned_type
, intermediate_type
;
6808 /* First, see if we can fold the single bit test into a sign-bit
6810 tem
= fold_single_bit_test_into_sign_test (loc
, code
, arg0
, arg1
,
6815 /* Otherwise we have (A & C) != 0 where C is a single bit,
6816 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6817 Similarly for (A & C) == 0. */
6819 /* If INNER is a right shift of a constant and it plus BITNUM does
6820 not overflow, adjust BITNUM and INNER. */
6821 if (TREE_CODE (inner
) == RSHIFT_EXPR
6822 && TREE_CODE (TREE_OPERAND (inner
, 1)) == INTEGER_CST
6823 && bitnum
< TYPE_PRECISION (type
)
6824 && wi::ltu_p (wi::to_wide (TREE_OPERAND (inner
, 1)),
6825 TYPE_PRECISION (type
) - bitnum
))
6827 bitnum
+= tree_to_uhwi (TREE_OPERAND (inner
, 1));
6828 inner
= TREE_OPERAND (inner
, 0);
6831 /* If we are going to be able to omit the AND below, we must do our
6832 operations as unsigned. If we must use the AND, we have a choice.
6833 Normally unsigned is faster, but for some machines signed is. */
6834 ops_unsigned
= (load_extend_op (operand_mode
) == SIGN_EXTEND
6835 && !flag_syntax_only
) ? 0 : 1;
6837 signed_type
= lang_hooks
.types
.type_for_mode (operand_mode
, 0);
6838 unsigned_type
= lang_hooks
.types
.type_for_mode (operand_mode
, 1);
6839 intermediate_type
= ops_unsigned
? unsigned_type
: signed_type
;
6840 inner
= fold_convert_loc (loc
, intermediate_type
, inner
);
6843 inner
= build2 (RSHIFT_EXPR
, intermediate_type
,
6844 inner
, size_int (bitnum
));
6846 one
= build_int_cst (intermediate_type
, 1);
6848 if (code
== EQ_EXPR
)
6849 inner
= fold_build2_loc (loc
, BIT_XOR_EXPR
, intermediate_type
, inner
, one
);
6851 /* Put the AND last so it can combine with more things. */
6852 inner
= build2 (BIT_AND_EXPR
, intermediate_type
, inner
, one
);
6854 /* Make sure to return the proper type. */
6855 inner
= fold_convert_loc (loc
, result_type
, inner
);
6862 /* Test whether it is preferable two swap two operands, ARG0 and
6863 ARG1, for example because ARG0 is an integer constant and ARG1
6867 tree_swap_operands_p (const_tree arg0
, const_tree arg1
)
6869 if (CONSTANT_CLASS_P (arg1
))
6871 if (CONSTANT_CLASS_P (arg0
))
6877 if (TREE_CONSTANT (arg1
))
6879 if (TREE_CONSTANT (arg0
))
6882 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6883 for commutative and comparison operators. Ensuring a canonical
6884 form allows the optimizers to find additional redundancies without
6885 having to explicitly check for both orderings. */
6886 if (TREE_CODE (arg0
) == SSA_NAME
6887 && TREE_CODE (arg1
) == SSA_NAME
6888 && SSA_NAME_VERSION (arg0
) > SSA_NAME_VERSION (arg1
))
6891 /* Put SSA_NAMEs last. */
6892 if (TREE_CODE (arg1
) == SSA_NAME
)
6894 if (TREE_CODE (arg0
) == SSA_NAME
)
6897 /* Put variables last. */
6907 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
6908 means A >= Y && A != MAX, but in this case we know that
6909 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
6912 fold_to_nonsharp_ineq_using_bound (location_t loc
, tree ineq
, tree bound
)
6914 tree a
, typea
, type
= TREE_TYPE (ineq
), a1
, diff
, y
;
6916 if (TREE_CODE (bound
) == LT_EXPR
)
6917 a
= TREE_OPERAND (bound
, 0);
6918 else if (TREE_CODE (bound
) == GT_EXPR
)
6919 a
= TREE_OPERAND (bound
, 1);
6923 typea
= TREE_TYPE (a
);
6924 if (!INTEGRAL_TYPE_P (typea
)
6925 && !POINTER_TYPE_P (typea
))
6928 if (TREE_CODE (ineq
) == LT_EXPR
)
6930 a1
= TREE_OPERAND (ineq
, 1);
6931 y
= TREE_OPERAND (ineq
, 0);
6933 else if (TREE_CODE (ineq
) == GT_EXPR
)
6935 a1
= TREE_OPERAND (ineq
, 0);
6936 y
= TREE_OPERAND (ineq
, 1);
6941 if (TREE_TYPE (a1
) != typea
)
6944 if (POINTER_TYPE_P (typea
))
6946 /* Convert the pointer types into integer before taking the difference. */
6947 tree ta
= fold_convert_loc (loc
, ssizetype
, a
);
6948 tree ta1
= fold_convert_loc (loc
, ssizetype
, a1
);
6949 diff
= fold_binary_loc (loc
, MINUS_EXPR
, ssizetype
, ta1
, ta
);
6952 diff
= fold_binary_loc (loc
, MINUS_EXPR
, typea
, a1
, a
);
6954 if (!diff
|| !integer_onep (diff
))
6957 return fold_build2_loc (loc
, GE_EXPR
, type
, a
, y
);
6960 /* Fold a sum or difference of at least one multiplication.
6961 Returns the folded tree or NULL if no simplification could be made. */
6964 fold_plusminus_mult_expr (location_t loc
, enum tree_code code
, tree type
,
6965 tree arg0
, tree arg1
)
6967 tree arg00
, arg01
, arg10
, arg11
;
6968 tree alt0
= NULL_TREE
, alt1
= NULL_TREE
, same
;
6970 /* (A * C) +- (B * C) -> (A+-B) * C.
6971 (A * C) +- A -> A * (C+-1).
6972 We are most concerned about the case where C is a constant,
6973 but other combinations show up during loop reduction. Since
6974 it is not difficult, try all four possibilities. */
6976 if (TREE_CODE (arg0
) == MULT_EXPR
)
6978 arg00
= TREE_OPERAND (arg0
, 0);
6979 arg01
= TREE_OPERAND (arg0
, 1);
6981 else if (TREE_CODE (arg0
) == INTEGER_CST
)
6983 arg00
= build_one_cst (type
);
6988 /* We cannot generate constant 1 for fract. */
6989 if (ALL_FRACT_MODE_P (TYPE_MODE (type
)))
6992 arg01
= build_one_cst (type
);
6994 if (TREE_CODE (arg1
) == MULT_EXPR
)
6996 arg10
= TREE_OPERAND (arg1
, 0);
6997 arg11
= TREE_OPERAND (arg1
, 1);
6999 else if (TREE_CODE (arg1
) == INTEGER_CST
)
7001 arg10
= build_one_cst (type
);
7002 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
7003 the purpose of this canonicalization. */
7004 if (wi::neg_p (wi::to_wide (arg1
), TYPE_SIGN (TREE_TYPE (arg1
)))
7005 && negate_expr_p (arg1
)
7006 && code
== PLUS_EXPR
)
7008 arg11
= negate_expr (arg1
);
7016 /* We cannot generate constant 1 for fract. */
7017 if (ALL_FRACT_MODE_P (TYPE_MODE (type
)))
7020 arg11
= build_one_cst (type
);
7024 /* Prefer factoring a common non-constant. */
7025 if (operand_equal_p (arg00
, arg10
, 0))
7026 same
= arg00
, alt0
= arg01
, alt1
= arg11
;
7027 else if (operand_equal_p (arg01
, arg11
, 0))
7028 same
= arg01
, alt0
= arg00
, alt1
= arg10
;
7029 else if (operand_equal_p (arg00
, arg11
, 0))
7030 same
= arg00
, alt0
= arg01
, alt1
= arg10
;
7031 else if (operand_equal_p (arg01
, arg10
, 0))
7032 same
= arg01
, alt0
= arg00
, alt1
= arg11
;
7034 /* No identical multiplicands; see if we can find a common
7035 power-of-two factor in non-power-of-two multiplies. This
7036 can help in multi-dimensional array access. */
7037 else if (tree_fits_shwi_p (arg01
)
7038 && tree_fits_shwi_p (arg11
))
7040 HOST_WIDE_INT int01
, int11
, tmp
;
7043 int01
= tree_to_shwi (arg01
);
7044 int11
= tree_to_shwi (arg11
);
7046 /* Move min of absolute values to int11. */
7047 if (absu_hwi (int01
) < absu_hwi (int11
))
7049 tmp
= int01
, int01
= int11
, int11
= tmp
;
7050 alt0
= arg00
, arg00
= arg10
, arg10
= alt0
;
7057 if (exact_log2 (absu_hwi (int11
)) > 0 && int01
% int11
== 0
7058 /* The remainder should not be a constant, otherwise we
7059 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
7060 increased the number of multiplications necessary. */
7061 && TREE_CODE (arg10
) != INTEGER_CST
)
7063 alt0
= fold_build2_loc (loc
, MULT_EXPR
, TREE_TYPE (arg00
), arg00
,
7064 build_int_cst (TREE_TYPE (arg00
),
7069 maybe_same
= alt0
, alt0
= alt1
, alt1
= maybe_same
;
7076 if (! INTEGRAL_TYPE_P (type
)
7077 || TYPE_OVERFLOW_WRAPS (type
)
7078 /* We are neither factoring zero nor minus one. */
7079 || TREE_CODE (same
) == INTEGER_CST
)
7080 return fold_build2_loc (loc
, MULT_EXPR
, type
,
7081 fold_build2_loc (loc
, code
, type
,
7082 fold_convert_loc (loc
, type
, alt0
),
7083 fold_convert_loc (loc
, type
, alt1
)),
7084 fold_convert_loc (loc
, type
, same
));
7086 /* Same may be zero and thus the operation 'code' may overflow. Likewise
7087 same may be minus one and thus the multiplication may overflow. Perform
7088 the sum operation in an unsigned type. */
7089 tree utype
= unsigned_type_for (type
);
7090 tree tem
= fold_build2_loc (loc
, code
, utype
,
7091 fold_convert_loc (loc
, utype
, alt0
),
7092 fold_convert_loc (loc
, utype
, alt1
));
7093 /* If the sum evaluated to a constant that is not -INF the multiplication
7095 if (TREE_CODE (tem
) == INTEGER_CST
7096 && (wi::to_wide (tem
)
7097 != wi::min_value (TYPE_PRECISION (utype
), SIGNED
)))
7098 return fold_build2_loc (loc
, MULT_EXPR
, type
,
7099 fold_convert (type
, tem
), same
);
7101 /* Do not resort to unsigned multiplication because
7102 we lose the no-overflow property of the expression. */
7106 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
7107 specified by EXPR into the buffer PTR of length LEN bytes.
7108 Return the number of bytes placed in the buffer, or zero
7112 native_encode_int (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7114 tree type
= TREE_TYPE (expr
);
7115 int total_bytes
= GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type
));
7116 int byte
, offset
, word
, words
;
7117 unsigned char value
;
7119 if ((off
== -1 && total_bytes
> len
) || off
>= total_bytes
)
7126 return MIN (len
, total_bytes
- off
);
7128 words
= total_bytes
/ UNITS_PER_WORD
;
7130 for (byte
= 0; byte
< total_bytes
; byte
++)
7132 int bitpos
= byte
* BITS_PER_UNIT
;
7133 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole
7135 value
= wi::extract_uhwi (wi::to_widest (expr
), bitpos
, BITS_PER_UNIT
);
7137 if (total_bytes
> UNITS_PER_WORD
)
7139 word
= byte
/ UNITS_PER_WORD
;
7140 if (WORDS_BIG_ENDIAN
)
7141 word
= (words
- 1) - word
;
7142 offset
= word
* UNITS_PER_WORD
;
7143 if (BYTES_BIG_ENDIAN
)
7144 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7146 offset
+= byte
% UNITS_PER_WORD
;
7149 offset
= BYTES_BIG_ENDIAN
? (total_bytes
- 1) - byte
: byte
;
7150 if (offset
>= off
&& offset
- off
< len
)
7151 ptr
[offset
- off
] = value
;
7153 return MIN (len
, total_bytes
- off
);
7157 /* Subroutine of native_encode_expr. Encode the FIXED_CST
7158 specified by EXPR into the buffer PTR of length LEN bytes.
7159 Return the number of bytes placed in the buffer, or zero
7163 native_encode_fixed (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7165 tree type
= TREE_TYPE (expr
);
7166 scalar_mode mode
= SCALAR_TYPE_MODE (type
);
7167 int total_bytes
= GET_MODE_SIZE (mode
);
7168 FIXED_VALUE_TYPE value
;
7169 tree i_value
, i_type
;
7171 if (total_bytes
* BITS_PER_UNIT
> HOST_BITS_PER_DOUBLE_INT
)
7174 i_type
= lang_hooks
.types
.type_for_size (GET_MODE_BITSIZE (mode
), 1);
7176 if (NULL_TREE
== i_type
|| TYPE_PRECISION (i_type
) != total_bytes
)
7179 value
= TREE_FIXED_CST (expr
);
7180 i_value
= double_int_to_tree (i_type
, value
.data
);
7182 return native_encode_int (i_value
, ptr
, len
, off
);
7186 /* Subroutine of native_encode_expr. Encode the REAL_CST
7187 specified by EXPR into the buffer PTR of length LEN bytes.
7188 Return the number of bytes placed in the buffer, or zero
7192 native_encode_real (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7194 tree type
= TREE_TYPE (expr
);
7195 int total_bytes
= GET_MODE_SIZE (SCALAR_FLOAT_TYPE_MODE (type
));
7196 int byte
, offset
, word
, words
, bitpos
;
7197 unsigned char value
;
7199 /* There are always 32 bits in each long, no matter the size of
7200 the hosts long. We handle floating point representations with
7204 if ((off
== -1 && total_bytes
> len
) || off
>= total_bytes
)
7211 return MIN (len
, total_bytes
- off
);
7213 words
= (32 / BITS_PER_UNIT
) / UNITS_PER_WORD
;
7215 real_to_target (tmp
, TREE_REAL_CST_PTR (expr
), TYPE_MODE (type
));
7217 for (bitpos
= 0; bitpos
< total_bytes
* BITS_PER_UNIT
;
7218 bitpos
+= BITS_PER_UNIT
)
7220 byte
= (bitpos
/ BITS_PER_UNIT
) & 3;
7221 value
= (unsigned char) (tmp
[bitpos
/ 32] >> (bitpos
& 31));
7223 if (UNITS_PER_WORD
< 4)
7225 word
= byte
/ UNITS_PER_WORD
;
7226 if (WORDS_BIG_ENDIAN
)
7227 word
= (words
- 1) - word
;
7228 offset
= word
* UNITS_PER_WORD
;
7229 if (BYTES_BIG_ENDIAN
)
7230 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7232 offset
+= byte
% UNITS_PER_WORD
;
7237 if (BYTES_BIG_ENDIAN
)
7239 /* Reverse bytes within each long, or within the entire float
7240 if it's smaller than a long (for HFmode). */
7241 offset
= MIN (3, total_bytes
- 1) - offset
;
7242 gcc_assert (offset
>= 0);
7245 offset
= offset
+ ((bitpos
/ BITS_PER_UNIT
) & ~3);
7247 && offset
- off
< len
)
7248 ptr
[offset
- off
] = value
;
7250 return MIN (len
, total_bytes
- off
);
7253 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7254 specified by EXPR into the buffer PTR of length LEN bytes.
7255 Return the number of bytes placed in the buffer, or zero
7259 native_encode_complex (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7264 part
= TREE_REALPART (expr
);
7265 rsize
= native_encode_expr (part
, ptr
, len
, off
);
7266 if (off
== -1 && rsize
== 0)
7268 part
= TREE_IMAGPART (expr
);
7270 off
= MAX (0, off
- GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (part
))));
7271 isize
= native_encode_expr (part
, ptr
? ptr
+ rsize
: NULL
,
7273 if (off
== -1 && isize
!= rsize
)
7275 return rsize
+ isize
;
7279 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7280 specified by EXPR into the buffer PTR of length LEN bytes.
7281 Return the number of bytes placed in the buffer, or zero
7285 native_encode_vector (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7287 unsigned HOST_WIDE_INT i
, count
;
7292 if (!VECTOR_CST_NELTS (expr
).is_constant (&count
))
7294 itype
= TREE_TYPE (TREE_TYPE (expr
));
7295 size
= GET_MODE_SIZE (SCALAR_TYPE_MODE (itype
));
7296 for (i
= 0; i
< count
; i
++)
7303 elem
= VECTOR_CST_ELT (expr
, i
);
7304 int res
= native_encode_expr (elem
, ptr
? ptr
+ offset
: NULL
,
7306 if ((off
== -1 && res
!= size
) || res
== 0)
7310 return (off
== -1 && i
< count
- 1) ? 0 : offset
;
7318 /* Subroutine of native_encode_expr. Encode the STRING_CST
7319 specified by EXPR into the buffer PTR of length LEN bytes.
7320 Return the number of bytes placed in the buffer, or zero
7324 native_encode_string (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7326 tree type
= TREE_TYPE (expr
);
7328 /* Wide-char strings are encoded in target byte-order so native
7329 encoding them is trivial. */
7330 if (BITS_PER_UNIT
!= CHAR_BIT
7331 || TREE_CODE (type
) != ARRAY_TYPE
7332 || TREE_CODE (TREE_TYPE (type
)) != INTEGER_TYPE
7333 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type
)))
7336 HOST_WIDE_INT total_bytes
= tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (expr
)));
7337 if ((off
== -1 && total_bytes
> len
) || off
>= total_bytes
)
7343 else if (TREE_STRING_LENGTH (expr
) - off
< MIN (total_bytes
, len
))
7346 if (off
< TREE_STRING_LENGTH (expr
))
7348 written
= MIN (len
, TREE_STRING_LENGTH (expr
) - off
);
7349 memcpy (ptr
, TREE_STRING_POINTER (expr
) + off
, written
);
7351 memset (ptr
+ written
, 0,
7352 MIN (total_bytes
- written
, len
- written
));
7355 memcpy (ptr
, TREE_STRING_POINTER (expr
) + off
, MIN (total_bytes
, len
));
7356 return MIN (total_bytes
- off
, len
);
7360 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7361 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7362 buffer PTR of length LEN bytes. If PTR is NULL, don't actually store
7363 anything, just do a dry run. If OFF is not -1 then start
7364 the encoding at byte offset OFF and encode at most LEN bytes.
7365 Return the number of bytes placed in the buffer, or zero upon failure. */
7368 native_encode_expr (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7370 /* We don't support starting at negative offset and -1 is special. */
7374 switch (TREE_CODE (expr
))
7377 return native_encode_int (expr
, ptr
, len
, off
);
7380 return native_encode_real (expr
, ptr
, len
, off
);
7383 return native_encode_fixed (expr
, ptr
, len
, off
);
7386 return native_encode_complex (expr
, ptr
, len
, off
);
7389 return native_encode_vector (expr
, ptr
, len
, off
);
7392 return native_encode_string (expr
, ptr
, len
, off
);
7400 /* Subroutine of native_interpret_expr. Interpret the contents of
7401 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7402 If the buffer cannot be interpreted, return NULL_TREE. */
7405 native_interpret_int (tree type
, const unsigned char *ptr
, int len
)
7407 int total_bytes
= GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type
));
7409 if (total_bytes
> len
7410 || total_bytes
* BITS_PER_UNIT
> HOST_BITS_PER_DOUBLE_INT
)
7413 wide_int result
= wi::from_buffer (ptr
, total_bytes
);
7415 return wide_int_to_tree (type
, result
);
7419 /* Subroutine of native_interpret_expr. Interpret the contents of
7420 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
7421 If the buffer cannot be interpreted, return NULL_TREE. */
7424 native_interpret_fixed (tree type
, const unsigned char *ptr
, int len
)
7426 scalar_mode mode
= SCALAR_TYPE_MODE (type
);
7427 int total_bytes
= GET_MODE_SIZE (mode
);
7429 FIXED_VALUE_TYPE fixed_value
;
7431 if (total_bytes
> len
7432 || total_bytes
* BITS_PER_UNIT
> HOST_BITS_PER_DOUBLE_INT
)
7435 result
= double_int::from_buffer (ptr
, total_bytes
);
7436 fixed_value
= fixed_from_double_int (result
, mode
);
7438 return build_fixed (type
, fixed_value
);
7442 /* Subroutine of native_interpret_expr. Interpret the contents of
7443 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7444 If the buffer cannot be interpreted, return NULL_TREE. */
7447 native_interpret_real (tree type
, const unsigned char *ptr
, int len
)
7449 scalar_float_mode mode
= SCALAR_FLOAT_TYPE_MODE (type
);
7450 int total_bytes
= GET_MODE_SIZE (mode
);
7451 unsigned char value
;
7452 /* There are always 32 bits in each long, no matter the size of
7453 the hosts long. We handle floating point representations with
7458 if (total_bytes
> len
|| total_bytes
> 24)
7460 int words
= (32 / BITS_PER_UNIT
) / UNITS_PER_WORD
;
7462 memset (tmp
, 0, sizeof (tmp
));
7463 for (int bitpos
= 0; bitpos
< total_bytes
* BITS_PER_UNIT
;
7464 bitpos
+= BITS_PER_UNIT
)
7466 /* Both OFFSET and BYTE index within a long;
7467 bitpos indexes the whole float. */
7468 int offset
, byte
= (bitpos
/ BITS_PER_UNIT
) & 3;
7469 if (UNITS_PER_WORD
< 4)
7471 int word
= byte
/ UNITS_PER_WORD
;
7472 if (WORDS_BIG_ENDIAN
)
7473 word
= (words
- 1) - word
;
7474 offset
= word
* UNITS_PER_WORD
;
7475 if (BYTES_BIG_ENDIAN
)
7476 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7478 offset
+= byte
% UNITS_PER_WORD
;
7483 if (BYTES_BIG_ENDIAN
)
7485 /* Reverse bytes within each long, or within the entire float
7486 if it's smaller than a long (for HFmode). */
7487 offset
= MIN (3, total_bytes
- 1) - offset
;
7488 gcc_assert (offset
>= 0);
7491 value
= ptr
[offset
+ ((bitpos
/ BITS_PER_UNIT
) & ~3)];
7493 tmp
[bitpos
/ 32] |= (unsigned long)value
<< (bitpos
& 31);
7496 real_from_target (&r
, tmp
, mode
);
7497 return build_real (type
, r
);
7501 /* Subroutine of native_interpret_expr. Interpret the contents of
7502 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7503 If the buffer cannot be interpreted, return NULL_TREE. */
7506 native_interpret_complex (tree type
, const unsigned char *ptr
, int len
)
7508 tree etype
, rpart
, ipart
;
7511 etype
= TREE_TYPE (type
);
7512 size
= GET_MODE_SIZE (SCALAR_TYPE_MODE (etype
));
7515 rpart
= native_interpret_expr (etype
, ptr
, size
);
7518 ipart
= native_interpret_expr (etype
, ptr
+size
, size
);
7521 return build_complex (type
, rpart
, ipart
);
7525 /* Subroutine of native_interpret_expr. Interpret the contents of
7526 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7527 If the buffer cannot be interpreted, return NULL_TREE. */
7530 native_interpret_vector (tree type
, const unsigned char *ptr
, unsigned int len
)
7533 unsigned int i
, size
;
7534 unsigned HOST_WIDE_INT count
;
7536 etype
= TREE_TYPE (type
);
7537 size
= GET_MODE_SIZE (SCALAR_TYPE_MODE (etype
));
7538 if (!TYPE_VECTOR_SUBPARTS (type
).is_constant (&count
)
7539 || size
* count
> len
)
7542 tree_vector_builder
elements (type
, count
, 1);
7543 for (i
= 0; i
< count
; ++i
)
7545 elem
= native_interpret_expr (etype
, ptr
+(i
*size
), size
);
7548 elements
.quick_push (elem
);
7550 return elements
.build ();
7554 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7555 the buffer PTR of length LEN as a constant of type TYPE. For
7556 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7557 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7558 return NULL_TREE. */
7561 native_interpret_expr (tree type
, const unsigned char *ptr
, int len
)
7563 switch (TREE_CODE (type
))
7569 case REFERENCE_TYPE
:
7570 return native_interpret_int (type
, ptr
, len
);
7573 return native_interpret_real (type
, ptr
, len
);
7575 case FIXED_POINT_TYPE
:
7576 return native_interpret_fixed (type
, ptr
, len
);
7579 return native_interpret_complex (type
, ptr
, len
);
7582 return native_interpret_vector (type
, ptr
, len
);
7589 /* Returns true if we can interpret the contents of a native encoding
7593 can_native_interpret_type_p (tree type
)
7595 switch (TREE_CODE (type
))
7601 case REFERENCE_TYPE
:
7602 case FIXED_POINT_TYPE
:
7613 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7614 TYPE at compile-time. If we're unable to perform the conversion
7615 return NULL_TREE. */
7618 fold_view_convert_expr (tree type
, tree expr
)
7620 /* We support up to 512-bit values (for V8DFmode). */
7621 unsigned char buffer
[64];
7624 /* Check that the host and target are sane. */
7625 if (CHAR_BIT
!= 8 || BITS_PER_UNIT
!= 8)
7628 len
= native_encode_expr (expr
, buffer
, sizeof (buffer
));
7632 return native_interpret_expr (type
, buffer
, len
);
7635 /* Build an expression for the address of T. Folds away INDIRECT_REF
7636 to avoid confusing the gimplify process. */
7639 build_fold_addr_expr_with_type_loc (location_t loc
, tree t
, tree ptrtype
)
7641 /* The size of the object is not relevant when talking about its address. */
7642 if (TREE_CODE (t
) == WITH_SIZE_EXPR
)
7643 t
= TREE_OPERAND (t
, 0);
7645 if (TREE_CODE (t
) == INDIRECT_REF
)
7647 t
= TREE_OPERAND (t
, 0);
7649 if (TREE_TYPE (t
) != ptrtype
)
7650 t
= build1_loc (loc
, NOP_EXPR
, ptrtype
, t
);
7652 else if (TREE_CODE (t
) == MEM_REF
7653 && integer_zerop (TREE_OPERAND (t
, 1)))
7654 return TREE_OPERAND (t
, 0);
7655 else if (TREE_CODE (t
) == MEM_REF
7656 && TREE_CODE (TREE_OPERAND (t
, 0)) == INTEGER_CST
)
7657 return fold_binary (POINTER_PLUS_EXPR
, ptrtype
,
7658 TREE_OPERAND (t
, 0),
7659 convert_to_ptrofftype (TREE_OPERAND (t
, 1)));
7660 else if (TREE_CODE (t
) == VIEW_CONVERT_EXPR
)
7662 t
= build_fold_addr_expr_loc (loc
, TREE_OPERAND (t
, 0));
7664 if (TREE_TYPE (t
) != ptrtype
)
7665 t
= fold_convert_loc (loc
, ptrtype
, t
);
7668 t
= build1_loc (loc
, ADDR_EXPR
, ptrtype
, t
);
7673 /* Build an expression for the address of T. */
7676 build_fold_addr_expr_loc (location_t loc
, tree t
)
7678 tree ptrtype
= build_pointer_type (TREE_TYPE (t
));
7680 return build_fold_addr_expr_with_type_loc (loc
, t
, ptrtype
);
7683 /* Fold a unary expression of code CODE and type TYPE with operand
7684 OP0. Return the folded expression if folding is successful.
7685 Otherwise, return NULL_TREE. */
7688 fold_unary_loc (location_t loc
, enum tree_code code
, tree type
, tree op0
)
7692 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
7694 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
7695 && TREE_CODE_LENGTH (code
) == 1);
7700 if (CONVERT_EXPR_CODE_P (code
)
7701 || code
== FLOAT_EXPR
|| code
== ABS_EXPR
|| code
== NEGATE_EXPR
)
7703 /* Don't use STRIP_NOPS, because signedness of argument type
7705 STRIP_SIGN_NOPS (arg0
);
7709 /* Strip any conversions that don't change the mode. This
7710 is safe for every expression, except for a comparison
7711 expression because its signedness is derived from its
7714 Note that this is done as an internal manipulation within
7715 the constant folder, in order to find the simplest
7716 representation of the arguments so that their form can be
7717 studied. In any cases, the appropriate type conversions
7718 should be put back in the tree that will get out of the
7723 if (CONSTANT_CLASS_P (arg0
))
7725 tree tem
= const_unop (code
, type
, arg0
);
7728 if (TREE_TYPE (tem
) != type
)
7729 tem
= fold_convert_loc (loc
, type
, tem
);
7735 tem
= generic_simplify (loc
, code
, type
, op0
);
7739 if (TREE_CODE_CLASS (code
) == tcc_unary
)
7741 if (TREE_CODE (arg0
) == COMPOUND_EXPR
)
7742 return build2 (COMPOUND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
7743 fold_build1_loc (loc
, code
, type
,
7744 fold_convert_loc (loc
, TREE_TYPE (op0
),
7745 TREE_OPERAND (arg0
, 1))));
7746 else if (TREE_CODE (arg0
) == COND_EXPR
)
7748 tree arg01
= TREE_OPERAND (arg0
, 1);
7749 tree arg02
= TREE_OPERAND (arg0
, 2);
7750 if (! VOID_TYPE_P (TREE_TYPE (arg01
)))
7751 arg01
= fold_build1_loc (loc
, code
, type
,
7752 fold_convert_loc (loc
,
7753 TREE_TYPE (op0
), arg01
));
7754 if (! VOID_TYPE_P (TREE_TYPE (arg02
)))
7755 arg02
= fold_build1_loc (loc
, code
, type
,
7756 fold_convert_loc (loc
,
7757 TREE_TYPE (op0
), arg02
));
7758 tem
= fold_build3_loc (loc
, COND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
7761 /* If this was a conversion, and all we did was to move into
7762 inside the COND_EXPR, bring it back out. But leave it if
7763 it is a conversion from integer to integer and the
7764 result precision is no wider than a word since such a
7765 conversion is cheap and may be optimized away by combine,
7766 while it couldn't if it were outside the COND_EXPR. Then return
7767 so we don't get into an infinite recursion loop taking the
7768 conversion out and then back in. */
7770 if ((CONVERT_EXPR_CODE_P (code
)
7771 || code
== NON_LVALUE_EXPR
)
7772 && TREE_CODE (tem
) == COND_EXPR
7773 && TREE_CODE (TREE_OPERAND (tem
, 1)) == code
7774 && TREE_CODE (TREE_OPERAND (tem
, 2)) == code
7775 && ! VOID_TYPE_P (TREE_OPERAND (tem
, 1))
7776 && ! VOID_TYPE_P (TREE_OPERAND (tem
, 2))
7777 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 1), 0))
7778 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 2), 0)))
7779 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem
))
7781 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 1), 0))))
7782 && TYPE_PRECISION (TREE_TYPE (tem
)) <= BITS_PER_WORD
)
7783 || flag_syntax_only
))
7784 tem
= build1_loc (loc
, code
, type
,
7786 TREE_TYPE (TREE_OPERAND
7787 (TREE_OPERAND (tem
, 1), 0)),
7788 TREE_OPERAND (tem
, 0),
7789 TREE_OPERAND (TREE_OPERAND (tem
, 1), 0),
7790 TREE_OPERAND (TREE_OPERAND (tem
, 2),
7798 case NON_LVALUE_EXPR
:
7799 if (!maybe_lvalue_p (op0
))
7800 return fold_convert_loc (loc
, type
, op0
);
7805 case FIX_TRUNC_EXPR
:
7806 if (COMPARISON_CLASS_P (op0
))
7808 /* If we have (type) (a CMP b) and type is an integral type, return
7809 new expression involving the new type. Canonicalize
7810 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
7812 Do not fold the result as that would not simplify further, also
7813 folding again results in recursions. */
7814 if (TREE_CODE (type
) == BOOLEAN_TYPE
)
7815 return build2_loc (loc
, TREE_CODE (op0
), type
,
7816 TREE_OPERAND (op0
, 0),
7817 TREE_OPERAND (op0
, 1));
7818 else if (!INTEGRAL_TYPE_P (type
) && !VOID_TYPE_P (type
)
7819 && TREE_CODE (type
) != VECTOR_TYPE
)
7820 return build3_loc (loc
, COND_EXPR
, type
, op0
,
7821 constant_boolean_node (true, type
),
7822 constant_boolean_node (false, type
));
7825 /* Handle (T *)&A.B.C for A being of type T and B and C
7826 living at offset zero. This occurs frequently in
7827 C++ upcasting and then accessing the base. */
7828 if (TREE_CODE (op0
) == ADDR_EXPR
7829 && POINTER_TYPE_P (type
)
7830 && handled_component_p (TREE_OPERAND (op0
, 0)))
7832 poly_int64 bitsize
, bitpos
;
7835 int unsignedp
, reversep
, volatilep
;
7837 = get_inner_reference (TREE_OPERAND (op0
, 0), &bitsize
, &bitpos
,
7838 &offset
, &mode
, &unsignedp
, &reversep
,
7840 /* If the reference was to a (constant) zero offset, we can use
7841 the address of the base if it has the same base type
7842 as the result type and the pointer type is unqualified. */
7844 && known_eq (bitpos
, 0)
7845 && (TYPE_MAIN_VARIANT (TREE_TYPE (type
))
7846 == TYPE_MAIN_VARIANT (TREE_TYPE (base
)))
7847 && TYPE_QUALS (type
) == TYPE_UNQUALIFIED
)
7848 return fold_convert_loc (loc
, type
,
7849 build_fold_addr_expr_loc (loc
, base
));
7852 if (TREE_CODE (op0
) == MODIFY_EXPR
7853 && TREE_CONSTANT (TREE_OPERAND (op0
, 1))
7854 /* Detect assigning a bitfield. */
7855 && !(TREE_CODE (TREE_OPERAND (op0
, 0)) == COMPONENT_REF
7857 (TREE_OPERAND (TREE_OPERAND (op0
, 0), 1))))
7859 /* Don't leave an assignment inside a conversion
7860 unless assigning a bitfield. */
7861 tem
= fold_build1_loc (loc
, code
, type
, TREE_OPERAND (op0
, 1));
7862 /* First do the assignment, then return converted constant. */
7863 tem
= build2_loc (loc
, COMPOUND_EXPR
, TREE_TYPE (tem
), op0
, tem
);
7864 TREE_NO_WARNING (tem
) = 1;
7865 TREE_USED (tem
) = 1;
7869 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
7870 constants (if x has signed type, the sign bit cannot be set
7871 in c). This folds extension into the BIT_AND_EXPR.
7872 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
7873 very likely don't have maximal range for their precision and this
7874 transformation effectively doesn't preserve non-maximal ranges. */
7875 if (TREE_CODE (type
) == INTEGER_TYPE
7876 && TREE_CODE (op0
) == BIT_AND_EXPR
7877 && TREE_CODE (TREE_OPERAND (op0
, 1)) == INTEGER_CST
)
7879 tree and_expr
= op0
;
7880 tree and0
= TREE_OPERAND (and_expr
, 0);
7881 tree and1
= TREE_OPERAND (and_expr
, 1);
7884 if (TYPE_UNSIGNED (TREE_TYPE (and_expr
))
7885 || (TYPE_PRECISION (type
)
7886 <= TYPE_PRECISION (TREE_TYPE (and_expr
))))
7888 else if (TYPE_PRECISION (TREE_TYPE (and1
))
7889 <= HOST_BITS_PER_WIDE_INT
7890 && tree_fits_uhwi_p (and1
))
7892 unsigned HOST_WIDE_INT cst
;
7894 cst
= tree_to_uhwi (and1
);
7895 cst
&= HOST_WIDE_INT_M1U
7896 << (TYPE_PRECISION (TREE_TYPE (and1
)) - 1);
7897 change
= (cst
== 0);
7899 && !flag_syntax_only
7900 && (load_extend_op (TYPE_MODE (TREE_TYPE (and0
)))
7903 tree uns
= unsigned_type_for (TREE_TYPE (and0
));
7904 and0
= fold_convert_loc (loc
, uns
, and0
);
7905 and1
= fold_convert_loc (loc
, uns
, and1
);
7910 tem
= force_fit_type (type
, wi::to_widest (and1
), 0,
7911 TREE_OVERFLOW (and1
));
7912 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
7913 fold_convert_loc (loc
, type
, and0
), tem
);
7917 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type, when the new
7918 cast (T1)X will fold away. We assume that this happens when X itself
7920 if (POINTER_TYPE_P (type
)
7921 && TREE_CODE (arg0
) == POINTER_PLUS_EXPR
7922 && CONVERT_EXPR_P (TREE_OPERAND (arg0
, 0)))
7924 tree arg00
= TREE_OPERAND (arg0
, 0);
7925 tree arg01
= TREE_OPERAND (arg0
, 1);
7927 return fold_build_pointer_plus_loc
7928 (loc
, fold_convert_loc (loc
, type
, arg00
), arg01
);
7931 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
7932 of the same precision, and X is an integer type not narrower than
7933 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
7934 if (INTEGRAL_TYPE_P (type
)
7935 && TREE_CODE (op0
) == BIT_NOT_EXPR
7936 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
7937 && CONVERT_EXPR_P (TREE_OPERAND (op0
, 0))
7938 && TYPE_PRECISION (type
) == TYPE_PRECISION (TREE_TYPE (op0
)))
7940 tem
= TREE_OPERAND (TREE_OPERAND (op0
, 0), 0);
7941 if (INTEGRAL_TYPE_P (TREE_TYPE (tem
))
7942 && TYPE_PRECISION (type
) <= TYPE_PRECISION (TREE_TYPE (tem
)))
7943 return fold_build1_loc (loc
, BIT_NOT_EXPR
, type
,
7944 fold_convert_loc (loc
, type
, tem
));
7947 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
7948 type of X and Y (integer types only). */
7949 if (INTEGRAL_TYPE_P (type
)
7950 && TREE_CODE (op0
) == MULT_EXPR
7951 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
7952 && TYPE_PRECISION (type
) < TYPE_PRECISION (TREE_TYPE (op0
)))
7954 /* Be careful not to introduce new overflows. */
7956 if (TYPE_OVERFLOW_WRAPS (type
))
7959 mult_type
= unsigned_type_for (type
);
7961 if (TYPE_PRECISION (mult_type
) < TYPE_PRECISION (TREE_TYPE (op0
)))
7963 tem
= fold_build2_loc (loc
, MULT_EXPR
, mult_type
,
7964 fold_convert_loc (loc
, mult_type
,
7965 TREE_OPERAND (op0
, 0)),
7966 fold_convert_loc (loc
, mult_type
,
7967 TREE_OPERAND (op0
, 1)));
7968 return fold_convert_loc (loc
, type
, tem
);
7974 case VIEW_CONVERT_EXPR
:
7975 if (TREE_CODE (op0
) == MEM_REF
)
7977 if (TYPE_ALIGN (TREE_TYPE (op0
)) != TYPE_ALIGN (type
))
7978 type
= build_aligned_type (type
, TYPE_ALIGN (TREE_TYPE (op0
)));
7979 tem
= fold_build2_loc (loc
, MEM_REF
, type
,
7980 TREE_OPERAND (op0
, 0), TREE_OPERAND (op0
, 1));
7981 REF_REVERSE_STORAGE_ORDER (tem
) = REF_REVERSE_STORAGE_ORDER (op0
);
7988 tem
= fold_negate_expr (loc
, arg0
);
7990 return fold_convert_loc (loc
, type
, tem
);
7994 /* Convert fabs((double)float) into (double)fabsf(float). */
7995 if (TREE_CODE (arg0
) == NOP_EXPR
7996 && TREE_CODE (type
) == REAL_TYPE
)
7998 tree targ0
= strip_float_extensions (arg0
);
8000 return fold_convert_loc (loc
, type
,
8001 fold_build1_loc (loc
, ABS_EXPR
,
8008 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
8009 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
8010 && (tem
= fold_unary_loc (loc
, BIT_NOT_EXPR
, type
,
8011 fold_convert_loc (loc
, type
,
8012 TREE_OPERAND (arg0
, 0)))))
8013 return fold_build2_loc (loc
, BIT_XOR_EXPR
, type
, tem
,
8014 fold_convert_loc (loc
, type
,
8015 TREE_OPERAND (arg0
, 1)));
8016 else if (TREE_CODE (arg0
) == BIT_XOR_EXPR
8017 && (tem
= fold_unary_loc (loc
, BIT_NOT_EXPR
, type
,
8018 fold_convert_loc (loc
, type
,
8019 TREE_OPERAND (arg0
, 1)))))
8020 return fold_build2_loc (loc
, BIT_XOR_EXPR
, type
,
8021 fold_convert_loc (loc
, type
,
8022 TREE_OPERAND (arg0
, 0)), tem
);
8026 case TRUTH_NOT_EXPR
:
8027 /* Note that the operand of this must be an int
8028 and its values must be 0 or 1.
8029 ("true" is a fixed value perhaps depending on the language,
8030 but we don't handle values other than 1 correctly yet.) */
8031 tem
= fold_truth_not_expr (loc
, arg0
);
8034 return fold_convert_loc (loc
, type
, tem
);
8037 /* Fold *&X to X if X is an lvalue. */
8038 if (TREE_CODE (op0
) == ADDR_EXPR
)
8040 tree op00
= TREE_OPERAND (op0
, 0);
8042 || TREE_CODE (op00
) == PARM_DECL
8043 || TREE_CODE (op00
) == RESULT_DECL
)
8044 && !TREE_READONLY (op00
))
8051 } /* switch (code) */
8055 /* If the operation was a conversion do _not_ mark a resulting constant
8056 with TREE_OVERFLOW if the original constant was not. These conversions
8057 have implementation defined behavior and retaining the TREE_OVERFLOW
8058 flag here would confuse later passes such as VRP. */
8060 fold_unary_ignore_overflow_loc (location_t loc
, enum tree_code code
,
8061 tree type
, tree op0
)
8063 tree res
= fold_unary_loc (loc
, code
, type
, op0
);
8065 && TREE_CODE (res
) == INTEGER_CST
8066 && TREE_CODE (op0
) == INTEGER_CST
8067 && CONVERT_EXPR_CODE_P (code
))
8068 TREE_OVERFLOW (res
) = TREE_OVERFLOW (op0
);
8073 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
8074 operands OP0 and OP1. LOC is the location of the resulting expression.
8075 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
8076 Return the folded expression if folding is successful. Otherwise,
8077 return NULL_TREE. */
8079 fold_truth_andor (location_t loc
, enum tree_code code
, tree type
,
8080 tree arg0
, tree arg1
, tree op0
, tree op1
)
8084 /* We only do these simplifications if we are optimizing. */
8088 /* Check for things like (A || B) && (A || C). We can convert this
8089 to A || (B && C). Note that either operator can be any of the four
8090 truth and/or operations and the transformation will still be
8091 valid. Also note that we only care about order for the
8092 ANDIF and ORIF operators. If B contains side effects, this
8093 might change the truth-value of A. */
8094 if (TREE_CODE (arg0
) == TREE_CODE (arg1
)
8095 && (TREE_CODE (arg0
) == TRUTH_ANDIF_EXPR
8096 || TREE_CODE (arg0
) == TRUTH_ORIF_EXPR
8097 || TREE_CODE (arg0
) == TRUTH_AND_EXPR
8098 || TREE_CODE (arg0
) == TRUTH_OR_EXPR
)
8099 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0
, 1)))
8101 tree a00
= TREE_OPERAND (arg0
, 0);
8102 tree a01
= TREE_OPERAND (arg0
, 1);
8103 tree a10
= TREE_OPERAND (arg1
, 0);
8104 tree a11
= TREE_OPERAND (arg1
, 1);
8105 int commutative
= ((TREE_CODE (arg0
) == TRUTH_OR_EXPR
8106 || TREE_CODE (arg0
) == TRUTH_AND_EXPR
)
8107 && (code
== TRUTH_AND_EXPR
8108 || code
== TRUTH_OR_EXPR
));
8110 if (operand_equal_p (a00
, a10
, 0))
8111 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
, a00
,
8112 fold_build2_loc (loc
, code
, type
, a01
, a11
));
8113 else if (commutative
&& operand_equal_p (a00
, a11
, 0))
8114 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
, a00
,
8115 fold_build2_loc (loc
, code
, type
, a01
, a10
));
8116 else if (commutative
&& operand_equal_p (a01
, a10
, 0))
8117 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
, a01
,
8118 fold_build2_loc (loc
, code
, type
, a00
, a11
));
8120 /* This case if tricky because we must either have commutative
8121 operators or else A10 must not have side-effects. */
8123 else if ((commutative
|| ! TREE_SIDE_EFFECTS (a10
))
8124 && operand_equal_p (a01
, a11
, 0))
8125 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
,
8126 fold_build2_loc (loc
, code
, type
, a00
, a10
),
8130 /* See if we can build a range comparison. */
8131 if ((tem
= fold_range_test (loc
, code
, type
, op0
, op1
)) != 0)
8134 if ((code
== TRUTH_ANDIF_EXPR
&& TREE_CODE (arg0
) == TRUTH_ORIF_EXPR
)
8135 || (code
== TRUTH_ORIF_EXPR
&& TREE_CODE (arg0
) == TRUTH_ANDIF_EXPR
))
8137 tem
= merge_truthop_with_opposite_arm (loc
, arg0
, arg1
, true);
8139 return fold_build2_loc (loc
, code
, type
, tem
, arg1
);
8142 if ((code
== TRUTH_ANDIF_EXPR
&& TREE_CODE (arg1
) == TRUTH_ORIF_EXPR
)
8143 || (code
== TRUTH_ORIF_EXPR
&& TREE_CODE (arg1
) == TRUTH_ANDIF_EXPR
))
8145 tem
= merge_truthop_with_opposite_arm (loc
, arg1
, arg0
, false);
8147 return fold_build2_loc (loc
, code
, type
, arg0
, tem
);
8150 /* Check for the possibility of merging component references. If our
8151 lhs is another similar operation, try to merge its rhs with our
8152 rhs. Then try to merge our lhs and rhs. */
8153 if (TREE_CODE (arg0
) == code
8154 && (tem
= fold_truth_andor_1 (loc
, code
, type
,
8155 TREE_OPERAND (arg0
, 1), arg1
)) != 0)
8156 return fold_build2_loc (loc
, code
, type
, TREE_OPERAND (arg0
, 0), tem
);
8158 if ((tem
= fold_truth_andor_1 (loc
, code
, type
, arg0
, arg1
)) != 0)
8161 if (LOGICAL_OP_NON_SHORT_CIRCUIT
8162 && !flag_sanitize_coverage
8163 && (code
== TRUTH_AND_EXPR
8164 || code
== TRUTH_ANDIF_EXPR
8165 || code
== TRUTH_OR_EXPR
8166 || code
== TRUTH_ORIF_EXPR
))
8168 enum tree_code ncode
, icode
;
8170 ncode
= (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_AND_EXPR
)
8171 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
;
8172 icode
= ncode
== TRUTH_AND_EXPR
? TRUTH_ANDIF_EXPR
: TRUTH_ORIF_EXPR
;
8174 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
8175 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
8176 We don't want to pack more than two leafs to a non-IF AND/OR
8178 If tree-code of left-hand operand isn't an AND/OR-IF code and not
8179 equal to IF-CODE, then we don't want to add right-hand operand.
8180 If the inner right-hand side of left-hand operand has
8181 side-effects, or isn't simple, then we can't add to it,
8182 as otherwise we might destroy if-sequence. */
8183 if (TREE_CODE (arg0
) == icode
8184 && simple_operand_p_2 (arg1
)
8185 /* Needed for sequence points to handle trappings, and
8187 && simple_operand_p_2 (TREE_OPERAND (arg0
, 1)))
8189 tem
= fold_build2_loc (loc
, ncode
, type
, TREE_OPERAND (arg0
, 1),
8191 return fold_build2_loc (loc
, icode
, type
, TREE_OPERAND (arg0
, 0),
8194 /* Same as above but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
8195 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
8196 else if (TREE_CODE (arg1
) == icode
8197 && simple_operand_p_2 (arg0
)
8198 /* Needed for sequence points to handle trappings, and
8200 && simple_operand_p_2 (TREE_OPERAND (arg1
, 0)))
8202 tem
= fold_build2_loc (loc
, ncode
, type
,
8203 arg0
, TREE_OPERAND (arg1
, 0));
8204 return fold_build2_loc (loc
, icode
, type
, tem
,
8205 TREE_OPERAND (arg1
, 1));
8207 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
8209 For sequence point consistancy, we need to check for trapping,
8210 and side-effects. */
8211 else if (code
== icode
&& simple_operand_p_2 (arg0
)
8212 && simple_operand_p_2 (arg1
))
8213 return fold_build2_loc (loc
, ncode
, type
, arg0
, arg1
);
8219 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8220 by changing CODE to reduce the magnitude of constants involved in
8221 ARG0 of the comparison.
8222 Returns a canonicalized comparison tree if a simplification was
8223 possible, otherwise returns NULL_TREE.
8224 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8225 valid if signed overflow is undefined. */
8228 maybe_canonicalize_comparison_1 (location_t loc
, enum tree_code code
, tree type
,
8229 tree arg0
, tree arg1
,
8230 bool *strict_overflow_p
)
8232 enum tree_code code0
= TREE_CODE (arg0
);
8233 tree t
, cst0
= NULL_TREE
;
8236 /* Match A +- CST code arg1. We can change this only if overflow
8238 if (!((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
8239 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
)))
8240 /* In principle pointers also have undefined overflow behavior,
8241 but that causes problems elsewhere. */
8242 && !POINTER_TYPE_P (TREE_TYPE (arg0
))
8243 && (code0
== MINUS_EXPR
8244 || code0
== PLUS_EXPR
)
8245 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
))
8248 /* Identify the constant in arg0 and its sign. */
8249 cst0
= TREE_OPERAND (arg0
, 1);
8250 sgn0
= tree_int_cst_sgn (cst0
);
8252 /* Overflowed constants and zero will cause problems. */
8253 if (integer_zerop (cst0
)
8254 || TREE_OVERFLOW (cst0
))
8257 /* See if we can reduce the magnitude of the constant in
8258 arg0 by changing the comparison code. */
8259 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8261 && code0
== ((sgn0
== -1) ? PLUS_EXPR
: MINUS_EXPR
))
8263 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8264 else if (code
== GT_EXPR
8265 && code0
== ((sgn0
== -1) ? MINUS_EXPR
: PLUS_EXPR
))
8267 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8268 else if (code
== LE_EXPR
8269 && code0
== ((sgn0
== -1) ? MINUS_EXPR
: PLUS_EXPR
))
8271 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8272 else if (code
== GE_EXPR
8273 && code0
== ((sgn0
== -1) ? PLUS_EXPR
: MINUS_EXPR
))
8277 *strict_overflow_p
= true;
8279 /* Now build the constant reduced in magnitude. But not if that
8280 would produce one outside of its types range. */
8281 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0
))
8283 && TYPE_MIN_VALUE (TREE_TYPE (cst0
))
8284 && tree_int_cst_equal (cst0
, TYPE_MIN_VALUE (TREE_TYPE (cst0
))))
8286 && TYPE_MAX_VALUE (TREE_TYPE (cst0
))
8287 && tree_int_cst_equal (cst0
, TYPE_MAX_VALUE (TREE_TYPE (cst0
))))))
8290 t
= int_const_binop (sgn0
== -1 ? PLUS_EXPR
: MINUS_EXPR
,
8291 cst0
, build_int_cst (TREE_TYPE (cst0
), 1));
8292 t
= fold_build2_loc (loc
, code0
, TREE_TYPE (arg0
), TREE_OPERAND (arg0
, 0), t
);
8293 t
= fold_convert (TREE_TYPE (arg1
), t
);
8295 return fold_build2_loc (loc
, code
, type
, t
, arg1
);
8298 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8299 overflow further. Try to decrease the magnitude of constants involved
8300 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8301 and put sole constants at the second argument position.
8302 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8305 maybe_canonicalize_comparison (location_t loc
, enum tree_code code
, tree type
,
8306 tree arg0
, tree arg1
)
8309 bool strict_overflow_p
;
8310 const char * const warnmsg
= G_("assuming signed overflow does not occur "
8311 "when reducing constant in comparison");
8313 /* Try canonicalization by simplifying arg0. */
8314 strict_overflow_p
= false;
8315 t
= maybe_canonicalize_comparison_1 (loc
, code
, type
, arg0
, arg1
,
8316 &strict_overflow_p
);
8319 if (strict_overflow_p
)
8320 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_MAGNITUDE
);
8324 /* Try canonicalization by simplifying arg1 using the swapped
8326 code
= swap_tree_comparison (code
);
8327 strict_overflow_p
= false;
8328 t
= maybe_canonicalize_comparison_1 (loc
, code
, type
, arg1
, arg0
,
8329 &strict_overflow_p
);
8330 if (t
&& strict_overflow_p
)
8331 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_MAGNITUDE
);
8335 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8336 space. This is used to avoid issuing overflow warnings for
8337 expressions like &p->x which can not wrap. */
8340 pointer_may_wrap_p (tree base
, tree offset
, poly_int64 bitpos
)
8342 if (!POINTER_TYPE_P (TREE_TYPE (base
)))
8345 if (maybe_lt (bitpos
, 0))
8348 poly_wide_int wi_offset
;
8349 int precision
= TYPE_PRECISION (TREE_TYPE (base
));
8350 if (offset
== NULL_TREE
)
8351 wi_offset
= wi::zero (precision
);
8352 else if (!poly_int_tree_p (offset
) || TREE_OVERFLOW (offset
))
8355 wi_offset
= wi::to_poly_wide (offset
);
8358 poly_wide_int units
= wi::shwi (bits_to_bytes_round_down (bitpos
),
8360 poly_wide_int total
= wi::add (wi_offset
, units
, UNSIGNED
, &overflow
);
8364 poly_uint64 total_hwi
, size
;
8365 if (!total
.to_uhwi (&total_hwi
)
8366 || !poly_int_tree_p (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (base
))),
8368 || known_eq (size
, 0U))
8371 if (known_le (total_hwi
, size
))
8374 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8376 if (TREE_CODE (base
) == ADDR_EXPR
8377 && poly_int_tree_p (TYPE_SIZE_UNIT (TREE_TYPE (TREE_OPERAND (base
, 0))),
8379 && maybe_ne (size
, 0U)
8380 && known_le (total_hwi
, size
))
8386 /* Return a positive integer when the symbol DECL is known to have
8387 a nonzero address, zero when it's known not to (e.g., it's a weak
8388 symbol), and a negative integer when the symbol is not yet in the
8389 symbol table and so whether or not its address is zero is unknown.
8390 For function local objects always return positive integer. */
8392 maybe_nonzero_address (tree decl
)
8394 if (DECL_P (decl
) && decl_in_symtab_p (decl
))
8395 if (struct symtab_node
*symbol
= symtab_node::get_create (decl
))
8396 return symbol
->nonzero_address ();
8398 /* Function local objects are never NULL. */
8400 && (DECL_CONTEXT (decl
)
8401 && TREE_CODE (DECL_CONTEXT (decl
)) == FUNCTION_DECL
8402 && auto_var_in_fn_p (decl
, DECL_CONTEXT (decl
))))
8408 /* Subroutine of fold_binary. This routine performs all of the
8409 transformations that are common to the equality/inequality
8410 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8411 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8412 fold_binary should call fold_binary. Fold a comparison with
8413 tree code CODE and type TYPE with operands OP0 and OP1. Return
8414 the folded comparison or NULL_TREE. */
8417 fold_comparison (location_t loc
, enum tree_code code
, tree type
,
8420 const bool equality_code
= (code
== EQ_EXPR
|| code
== NE_EXPR
);
8421 tree arg0
, arg1
, tem
;
8426 STRIP_SIGN_NOPS (arg0
);
8427 STRIP_SIGN_NOPS (arg1
);
8429 /* For comparisons of pointers we can decompose it to a compile time
8430 comparison of the base objects and the offsets into the object.
8431 This requires at least one operand being an ADDR_EXPR or a
8432 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
8433 if (POINTER_TYPE_P (TREE_TYPE (arg0
))
8434 && (TREE_CODE (arg0
) == ADDR_EXPR
8435 || TREE_CODE (arg1
) == ADDR_EXPR
8436 || TREE_CODE (arg0
) == POINTER_PLUS_EXPR
8437 || TREE_CODE (arg1
) == POINTER_PLUS_EXPR
))
8439 tree base0
, base1
, offset0
= NULL_TREE
, offset1
= NULL_TREE
;
8440 poly_int64 bitsize
, bitpos0
= 0, bitpos1
= 0;
8442 int volatilep
, reversep
, unsignedp
;
8443 bool indirect_base0
= false, indirect_base1
= false;
8445 /* Get base and offset for the access. Strip ADDR_EXPR for
8446 get_inner_reference, but put it back by stripping INDIRECT_REF
8447 off the base object if possible. indirect_baseN will be true
8448 if baseN is not an address but refers to the object itself. */
8450 if (TREE_CODE (arg0
) == ADDR_EXPR
)
8453 = get_inner_reference (TREE_OPERAND (arg0
, 0),
8454 &bitsize
, &bitpos0
, &offset0
, &mode
,
8455 &unsignedp
, &reversep
, &volatilep
);
8456 if (TREE_CODE (base0
) == INDIRECT_REF
)
8457 base0
= TREE_OPERAND (base0
, 0);
8459 indirect_base0
= true;
8461 else if (TREE_CODE (arg0
) == POINTER_PLUS_EXPR
)
8463 base0
= TREE_OPERAND (arg0
, 0);
8464 STRIP_SIGN_NOPS (base0
);
8465 if (TREE_CODE (base0
) == ADDR_EXPR
)
8468 = get_inner_reference (TREE_OPERAND (base0
, 0),
8469 &bitsize
, &bitpos0
, &offset0
, &mode
,
8470 &unsignedp
, &reversep
, &volatilep
);
8471 if (TREE_CODE (base0
) == INDIRECT_REF
)
8472 base0
= TREE_OPERAND (base0
, 0);
8474 indirect_base0
= true;
8476 if (offset0
== NULL_TREE
|| integer_zerop (offset0
))
8477 offset0
= TREE_OPERAND (arg0
, 1);
8479 offset0
= size_binop (PLUS_EXPR
, offset0
,
8480 TREE_OPERAND (arg0
, 1));
8481 if (poly_int_tree_p (offset0
))
8483 poly_offset_int tem
= wi::sext (wi::to_poly_offset (offset0
),
8484 TYPE_PRECISION (sizetype
));
8485 tem
<<= LOG2_BITS_PER_UNIT
;
8487 if (tem
.to_shwi (&bitpos0
))
8488 offset0
= NULL_TREE
;
8493 if (TREE_CODE (arg1
) == ADDR_EXPR
)
8496 = get_inner_reference (TREE_OPERAND (arg1
, 0),
8497 &bitsize
, &bitpos1
, &offset1
, &mode
,
8498 &unsignedp
, &reversep
, &volatilep
);
8499 if (TREE_CODE (base1
) == INDIRECT_REF
)
8500 base1
= TREE_OPERAND (base1
, 0);
8502 indirect_base1
= true;
8504 else if (TREE_CODE (arg1
) == POINTER_PLUS_EXPR
)
8506 base1
= TREE_OPERAND (arg1
, 0);
8507 STRIP_SIGN_NOPS (base1
);
8508 if (TREE_CODE (base1
) == ADDR_EXPR
)
8511 = get_inner_reference (TREE_OPERAND (base1
, 0),
8512 &bitsize
, &bitpos1
, &offset1
, &mode
,
8513 &unsignedp
, &reversep
, &volatilep
);
8514 if (TREE_CODE (base1
) == INDIRECT_REF
)
8515 base1
= TREE_OPERAND (base1
, 0);
8517 indirect_base1
= true;
8519 if (offset1
== NULL_TREE
|| integer_zerop (offset1
))
8520 offset1
= TREE_OPERAND (arg1
, 1);
8522 offset1
= size_binop (PLUS_EXPR
, offset1
,
8523 TREE_OPERAND (arg1
, 1));
8524 if (poly_int_tree_p (offset1
))
8526 poly_offset_int tem
= wi::sext (wi::to_poly_offset (offset1
),
8527 TYPE_PRECISION (sizetype
));
8528 tem
<<= LOG2_BITS_PER_UNIT
;
8530 if (tem
.to_shwi (&bitpos1
))
8531 offset1
= NULL_TREE
;
8535 /* If we have equivalent bases we might be able to simplify. */
8536 if (indirect_base0
== indirect_base1
8537 && operand_equal_p (base0
, base1
,
8538 indirect_base0
? OEP_ADDRESS_OF
: 0))
8540 /* We can fold this expression to a constant if the non-constant
8541 offset parts are equal. */
8542 if ((offset0
== offset1
8543 || (offset0
&& offset1
8544 && operand_equal_p (offset0
, offset1
, 0)))
8547 && (DECL_P (base0
) || CONSTANT_CLASS_P (base0
)))
8548 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
))))
8551 && maybe_ne (bitpos0
, bitpos1
)
8552 && (pointer_may_wrap_p (base0
, offset0
, bitpos0
)
8553 || pointer_may_wrap_p (base1
, offset1
, bitpos1
)))
8554 fold_overflow_warning (("assuming pointer wraparound does not "
8555 "occur when comparing P +- C1 with "
8557 WARN_STRICT_OVERFLOW_CONDITIONAL
);
8562 if (known_eq (bitpos0
, bitpos1
))
8563 return constant_boolean_node (true, type
);
8564 if (known_ne (bitpos0
, bitpos1
))
8565 return constant_boolean_node (false, type
);
8568 if (known_ne (bitpos0
, bitpos1
))
8569 return constant_boolean_node (true, type
);
8570 if (known_eq (bitpos0
, bitpos1
))
8571 return constant_boolean_node (false, type
);
8574 if (known_lt (bitpos0
, bitpos1
))
8575 return constant_boolean_node (true, type
);
8576 if (known_ge (bitpos0
, bitpos1
))
8577 return constant_boolean_node (false, type
);
8580 if (known_le (bitpos0
, bitpos1
))
8581 return constant_boolean_node (true, type
);
8582 if (known_gt (bitpos0
, bitpos1
))
8583 return constant_boolean_node (false, type
);
8586 if (known_ge (bitpos0
, bitpos1
))
8587 return constant_boolean_node (true, type
);
8588 if (known_lt (bitpos0
, bitpos1
))
8589 return constant_boolean_node (false, type
);
8592 if (known_gt (bitpos0
, bitpos1
))
8593 return constant_boolean_node (true, type
);
8594 if (known_le (bitpos0
, bitpos1
))
8595 return constant_boolean_node (false, type
);
8600 /* We can simplify the comparison to a comparison of the variable
8601 offset parts if the constant offset parts are equal.
8602 Be careful to use signed sizetype here because otherwise we
8603 mess with array offsets in the wrong way. This is possible
8604 because pointer arithmetic is restricted to retain within an
8605 object and overflow on pointer differences is undefined as of
8606 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8607 else if (known_eq (bitpos0
, bitpos1
)
8610 && (DECL_P (base0
) || CONSTANT_CLASS_P (base0
)))
8611 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
))))
8613 /* By converting to signed sizetype we cover middle-end pointer
8614 arithmetic which operates on unsigned pointer types of size
8615 type size and ARRAY_REF offsets which are properly sign or
8616 zero extended from their type in case it is narrower than
8618 if (offset0
== NULL_TREE
)
8619 offset0
= build_int_cst (ssizetype
, 0);
8621 offset0
= fold_convert_loc (loc
, ssizetype
, offset0
);
8622 if (offset1
== NULL_TREE
)
8623 offset1
= build_int_cst (ssizetype
, 0);
8625 offset1
= fold_convert_loc (loc
, ssizetype
, offset1
);
8628 && (pointer_may_wrap_p (base0
, offset0
, bitpos0
)
8629 || pointer_may_wrap_p (base1
, offset1
, bitpos1
)))
8630 fold_overflow_warning (("assuming pointer wraparound does not "
8631 "occur when comparing P +- C1 with "
8633 WARN_STRICT_OVERFLOW_COMPARISON
);
8635 return fold_build2_loc (loc
, code
, type
, offset0
, offset1
);
8638 /* For equal offsets we can simplify to a comparison of the
8640 else if (known_eq (bitpos0
, bitpos1
)
8642 ? base0
!= TREE_OPERAND (arg0
, 0) : base0
!= arg0
)
8644 ? base1
!= TREE_OPERAND (arg1
, 0) : base1
!= arg1
)
8645 && ((offset0
== offset1
)
8646 || (offset0
&& offset1
8647 && operand_equal_p (offset0
, offset1
, 0))))
8650 base0
= build_fold_addr_expr_loc (loc
, base0
);
8652 base1
= build_fold_addr_expr_loc (loc
, base1
);
8653 return fold_build2_loc (loc
, code
, type
, base0
, base1
);
8655 /* Comparison between an ordinary (non-weak) symbol and a null
8656 pointer can be eliminated since such symbols must have a non
8657 null address. In C, relational expressions between pointers
8658 to objects and null pointers are undefined. The results
8659 below follow the C++ rules with the additional property that
8660 every object pointer compares greater than a null pointer.
8662 else if (((DECL_P (base0
)
8663 && maybe_nonzero_address (base0
) > 0
8664 /* Avoid folding references to struct members at offset 0 to
8665 prevent tests like '&ptr->firstmember == 0' from getting
8666 eliminated. When ptr is null, although the -> expression
8667 is strictly speaking invalid, GCC retains it as a matter
8668 of QoI. See PR c/44555. */
8669 && (offset0
== NULL_TREE
&& known_ne (bitpos0
, 0)))
8670 || CONSTANT_CLASS_P (base0
))
8672 /* The caller guarantees that when one of the arguments is
8673 constant (i.e., null in this case) it is second. */
8674 && integer_zerop (arg1
))
8681 return constant_boolean_node (false, type
);
8685 return constant_boolean_node (true, type
);
8692 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
8693 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
8694 the resulting offset is smaller in absolute value than the
8695 original one and has the same sign. */
8696 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
8697 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
))
8698 && (TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
8699 && (TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
8700 && !TREE_OVERFLOW (TREE_OPERAND (arg0
, 1)))
8701 && (TREE_CODE (arg1
) == PLUS_EXPR
|| TREE_CODE (arg1
) == MINUS_EXPR
)
8702 && (TREE_CODE (TREE_OPERAND (arg1
, 1)) == INTEGER_CST
8703 && !TREE_OVERFLOW (TREE_OPERAND (arg1
, 1))))
8705 tree const1
= TREE_OPERAND (arg0
, 1);
8706 tree const2
= TREE_OPERAND (arg1
, 1);
8707 tree variable1
= TREE_OPERAND (arg0
, 0);
8708 tree variable2
= TREE_OPERAND (arg1
, 0);
8710 const char * const warnmsg
= G_("assuming signed overflow does not "
8711 "occur when combining constants around "
8714 /* Put the constant on the side where it doesn't overflow and is
8715 of lower absolute value and of same sign than before. */
8716 cst
= int_const_binop (TREE_CODE (arg0
) == TREE_CODE (arg1
)
8717 ? MINUS_EXPR
: PLUS_EXPR
,
8719 if (!TREE_OVERFLOW (cst
)
8720 && tree_int_cst_compare (const2
, cst
) == tree_int_cst_sgn (const2
)
8721 && tree_int_cst_sgn (cst
) == tree_int_cst_sgn (const2
))
8723 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
8724 return fold_build2_loc (loc
, code
, type
,
8726 fold_build2_loc (loc
, TREE_CODE (arg1
),
8731 cst
= int_const_binop (TREE_CODE (arg0
) == TREE_CODE (arg1
)
8732 ? MINUS_EXPR
: PLUS_EXPR
,
8734 if (!TREE_OVERFLOW (cst
)
8735 && tree_int_cst_compare (const1
, cst
) == tree_int_cst_sgn (const1
)
8736 && tree_int_cst_sgn (cst
) == tree_int_cst_sgn (const1
))
8738 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
8739 return fold_build2_loc (loc
, code
, type
,
8740 fold_build2_loc (loc
, TREE_CODE (arg0
),
8747 tem
= maybe_canonicalize_comparison (loc
, code
, type
, arg0
, arg1
);
8751 /* If we are comparing an expression that just has comparisons
8752 of two integer values, arithmetic expressions of those comparisons,
8753 and constants, we can simplify it. There are only three cases
8754 to check: the two values can either be equal, the first can be
8755 greater, or the second can be greater. Fold the expression for
8756 those three values. Since each value must be 0 or 1, we have
8757 eight possibilities, each of which corresponds to the constant 0
8758 or 1 or one of the six possible comparisons.
8760 This handles common cases like (a > b) == 0 but also handles
8761 expressions like ((x > y) - (y > x)) > 0, which supposedly
8762 occur in macroized code. */
8764 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg0
) != INTEGER_CST
)
8766 tree cval1
= 0, cval2
= 0;
8768 if (twoval_comparison_p (arg0
, &cval1
, &cval2
)
8769 /* Don't handle degenerate cases here; they should already
8770 have been handled anyway. */
8771 && cval1
!= 0 && cval2
!= 0
8772 && ! (TREE_CONSTANT (cval1
) && TREE_CONSTANT (cval2
))
8773 && TREE_TYPE (cval1
) == TREE_TYPE (cval2
)
8774 && INTEGRAL_TYPE_P (TREE_TYPE (cval1
))
8775 && TYPE_MAX_VALUE (TREE_TYPE (cval1
))
8776 && TYPE_MAX_VALUE (TREE_TYPE (cval2
))
8777 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1
)),
8778 TYPE_MAX_VALUE (TREE_TYPE (cval2
)), 0))
8780 tree maxval
= TYPE_MAX_VALUE (TREE_TYPE (cval1
));
8781 tree minval
= TYPE_MIN_VALUE (TREE_TYPE (cval1
));
8783 /* We can't just pass T to eval_subst in case cval1 or cval2
8784 was the same as ARG1. */
8787 = fold_build2_loc (loc
, code
, type
,
8788 eval_subst (loc
, arg0
, cval1
, maxval
,
8792 = fold_build2_loc (loc
, code
, type
,
8793 eval_subst (loc
, arg0
, cval1
, maxval
,
8797 = fold_build2_loc (loc
, code
, type
,
8798 eval_subst (loc
, arg0
, cval1
, minval
,
8802 /* All three of these results should be 0 or 1. Confirm they are.
8803 Then use those values to select the proper code to use. */
8805 if (TREE_CODE (high_result
) == INTEGER_CST
8806 && TREE_CODE (equal_result
) == INTEGER_CST
8807 && TREE_CODE (low_result
) == INTEGER_CST
)
8809 /* Make a 3-bit mask with the high-order bit being the
8810 value for `>', the next for '=', and the low for '<'. */
8811 switch ((integer_onep (high_result
) * 4)
8812 + (integer_onep (equal_result
) * 2)
8813 + integer_onep (low_result
))
8817 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
8838 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
8841 return fold_build2_loc (loc
, code
, type
, cval1
, cval2
);
8850 /* Subroutine of fold_binary. Optimize complex multiplications of the
8851 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
8852 argument EXPR represents the expression "z" of type TYPE. */
8855 fold_mult_zconjz (location_t loc
, tree type
, tree expr
)
8857 tree itype
= TREE_TYPE (type
);
8858 tree rpart
, ipart
, tem
;
8860 if (TREE_CODE (expr
) == COMPLEX_EXPR
)
8862 rpart
= TREE_OPERAND (expr
, 0);
8863 ipart
= TREE_OPERAND (expr
, 1);
8865 else if (TREE_CODE (expr
) == COMPLEX_CST
)
8867 rpart
= TREE_REALPART (expr
);
8868 ipart
= TREE_IMAGPART (expr
);
8872 expr
= save_expr (expr
);
8873 rpart
= fold_build1_loc (loc
, REALPART_EXPR
, itype
, expr
);
8874 ipart
= fold_build1_loc (loc
, IMAGPART_EXPR
, itype
, expr
);
8877 rpart
= save_expr (rpart
);
8878 ipart
= save_expr (ipart
);
8879 tem
= fold_build2_loc (loc
, PLUS_EXPR
, itype
,
8880 fold_build2_loc (loc
, MULT_EXPR
, itype
, rpart
, rpart
),
8881 fold_build2_loc (loc
, MULT_EXPR
, itype
, ipart
, ipart
));
8882 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, tem
,
8883 build_zero_cst (itype
));
8887 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
8888 CONSTRUCTOR ARG into array ELTS, which has NELTS elements, and return
8889 true if successful. */
8892 vec_cst_ctor_to_array (tree arg
, unsigned int nelts
, tree
*elts
)
8894 unsigned HOST_WIDE_INT i
, nunits
;
8896 if (TREE_CODE (arg
) == VECTOR_CST
8897 && VECTOR_CST_NELTS (arg
).is_constant (&nunits
))
8899 for (i
= 0; i
< nunits
; ++i
)
8900 elts
[i
] = VECTOR_CST_ELT (arg
, i
);
8902 else if (TREE_CODE (arg
) == CONSTRUCTOR
)
8904 constructor_elt
*elt
;
8906 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg
), i
, elt
)
8907 if (i
>= nelts
|| TREE_CODE (TREE_TYPE (elt
->value
)) == VECTOR_TYPE
)
8910 elts
[i
] = elt
->value
;
8914 for (; i
< nelts
; i
++)
8916 = fold_convert (TREE_TYPE (TREE_TYPE (arg
)), integer_zero_node
);
8920 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
8921 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
8922 NULL_TREE otherwise. */
8925 fold_vec_perm (tree type
, tree arg0
, tree arg1
, const vec_perm_indices
&sel
)
8928 unsigned HOST_WIDE_INT nelts
;
8929 bool need_ctor
= false;
8931 if (!sel
.length ().is_constant (&nelts
))
8933 gcc_assert (known_eq (TYPE_VECTOR_SUBPARTS (type
), nelts
)
8934 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
)), nelts
)
8935 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1
)), nelts
));
8936 if (TREE_TYPE (TREE_TYPE (arg0
)) != TREE_TYPE (type
)
8937 || TREE_TYPE (TREE_TYPE (arg1
)) != TREE_TYPE (type
))
8940 tree
*in_elts
= XALLOCAVEC (tree
, nelts
* 2);
8941 if (!vec_cst_ctor_to_array (arg0
, nelts
, in_elts
)
8942 || !vec_cst_ctor_to_array (arg1
, nelts
, in_elts
+ nelts
))
8945 tree_vector_builder
out_elts (type
, nelts
, 1);
8946 for (i
= 0; i
< nelts
; i
++)
8948 HOST_WIDE_INT index
;
8949 if (!sel
[i
].is_constant (&index
))
8951 if (!CONSTANT_CLASS_P (in_elts
[index
]))
8953 out_elts
.quick_push (unshare_expr (in_elts
[index
]));
8958 vec
<constructor_elt
, va_gc
> *v
;
8959 vec_alloc (v
, nelts
);
8960 for (i
= 0; i
< nelts
; i
++)
8961 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, out_elts
[i
]);
8962 return build_constructor (type
, v
);
8965 return out_elts
.build ();
8968 /* Try to fold a pointer difference of type TYPE two address expressions of
8969 array references AREF0 and AREF1 using location LOC. Return a
8970 simplified expression for the difference or NULL_TREE. */
8973 fold_addr_of_array_ref_difference (location_t loc
, tree type
,
8974 tree aref0
, tree aref1
,
8975 bool use_pointer_diff
)
8977 tree base0
= TREE_OPERAND (aref0
, 0);
8978 tree base1
= TREE_OPERAND (aref1
, 0);
8979 tree base_offset
= build_int_cst (type
, 0);
8981 /* If the bases are array references as well, recurse. If the bases
8982 are pointer indirections compute the difference of the pointers.
8983 If the bases are equal, we are set. */
8984 if ((TREE_CODE (base0
) == ARRAY_REF
8985 && TREE_CODE (base1
) == ARRAY_REF
8987 = fold_addr_of_array_ref_difference (loc
, type
, base0
, base1
,
8989 || (INDIRECT_REF_P (base0
)
8990 && INDIRECT_REF_P (base1
)
8993 ? fold_binary_loc (loc
, POINTER_DIFF_EXPR
, type
,
8994 TREE_OPERAND (base0
, 0),
8995 TREE_OPERAND (base1
, 0))
8996 : fold_binary_loc (loc
, MINUS_EXPR
, type
,
8998 TREE_OPERAND (base0
, 0)),
9000 TREE_OPERAND (base1
, 0)))))
9001 || operand_equal_p (base0
, base1
, OEP_ADDRESS_OF
))
9003 tree op0
= fold_convert_loc (loc
, type
, TREE_OPERAND (aref0
, 1));
9004 tree op1
= fold_convert_loc (loc
, type
, TREE_OPERAND (aref1
, 1));
9005 tree esz
= fold_convert_loc (loc
, type
, array_ref_element_size (aref0
));
9006 tree diff
= fold_build2_loc (loc
, MINUS_EXPR
, type
, op0
, op1
);
9007 return fold_build2_loc (loc
, PLUS_EXPR
, type
,
9009 fold_build2_loc (loc
, MULT_EXPR
, type
,
9015 /* If the real or vector real constant CST of type TYPE has an exact
9016 inverse, return it, else return NULL. */
9019 exact_inverse (tree type
, tree cst
)
9025 switch (TREE_CODE (cst
))
9028 r
= TREE_REAL_CST (cst
);
9030 if (exact_real_inverse (TYPE_MODE (type
), &r
))
9031 return build_real (type
, r
);
9037 unit_type
= TREE_TYPE (type
);
9038 mode
= TYPE_MODE (unit_type
);
9040 tree_vector_builder elts
;
9041 if (!elts
.new_unary_operation (type
, cst
, false))
9043 unsigned int count
= elts
.encoded_nelts ();
9044 for (unsigned int i
= 0; i
< count
; ++i
)
9046 r
= TREE_REAL_CST (VECTOR_CST_ELT (cst
, i
));
9047 if (!exact_real_inverse (mode
, &r
))
9049 elts
.quick_push (build_real (unit_type
, r
));
9052 return elts
.build ();
9060 /* Mask out the tz least significant bits of X of type TYPE where
9061 tz is the number of trailing zeroes in Y. */
9063 mask_with_tz (tree type
, const wide_int
&x
, const wide_int
&y
)
9065 int tz
= wi::ctz (y
);
9067 return wi::mask (tz
, true, TYPE_PRECISION (type
)) & x
;
9071 /* Return true when T is an address and is known to be nonzero.
9072 For floating point we further ensure that T is not denormal.
9073 Similar logic is present in nonzero_address in rtlanal.h.
9075 If the return value is based on the assumption that signed overflow
9076 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
9077 change *STRICT_OVERFLOW_P. */
9080 tree_expr_nonzero_warnv_p (tree t
, bool *strict_overflow_p
)
9082 tree type
= TREE_TYPE (t
);
9083 enum tree_code code
;
9085 /* Doing something useful for floating point would need more work. */
9086 if (!INTEGRAL_TYPE_P (type
) && !POINTER_TYPE_P (type
))
9089 code
= TREE_CODE (t
);
9090 switch (TREE_CODE_CLASS (code
))
9093 return tree_unary_nonzero_warnv_p (code
, type
, TREE_OPERAND (t
, 0),
9096 case tcc_comparison
:
9097 return tree_binary_nonzero_warnv_p (code
, type
,
9098 TREE_OPERAND (t
, 0),
9099 TREE_OPERAND (t
, 1),
9102 case tcc_declaration
:
9104 return tree_single_nonzero_warnv_p (t
, strict_overflow_p
);
9112 case TRUTH_NOT_EXPR
:
9113 return tree_unary_nonzero_warnv_p (code
, type
, TREE_OPERAND (t
, 0),
9116 case TRUTH_AND_EXPR
:
9118 case TRUTH_XOR_EXPR
:
9119 return tree_binary_nonzero_warnv_p (code
, type
,
9120 TREE_OPERAND (t
, 0),
9121 TREE_OPERAND (t
, 1),
9129 case WITH_SIZE_EXPR
:
9131 return tree_single_nonzero_warnv_p (t
, strict_overflow_p
);
9136 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 1),
9140 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 0),
9145 tree fndecl
= get_callee_fndecl (t
);
9146 if (!fndecl
) return false;
9147 if (flag_delete_null_pointer_checks
&& !flag_check_new
9148 && DECL_IS_OPERATOR_NEW (fndecl
)
9149 && !TREE_NOTHROW (fndecl
))
9151 if (flag_delete_null_pointer_checks
9152 && lookup_attribute ("returns_nonnull",
9153 TYPE_ATTRIBUTES (TREE_TYPE (fndecl
))))
9155 return alloca_call_p (t
);
9164 /* Return true when T is an address and is known to be nonzero.
9165 Handle warnings about undefined signed overflow. */
9168 tree_expr_nonzero_p (tree t
)
9170 bool ret
, strict_overflow_p
;
9172 strict_overflow_p
= false;
9173 ret
= tree_expr_nonzero_warnv_p (t
, &strict_overflow_p
);
9174 if (strict_overflow_p
)
9175 fold_overflow_warning (("assuming signed overflow does not occur when "
9176 "determining that expression is always "
9178 WARN_STRICT_OVERFLOW_MISC
);
9182 /* Return true if T is known not to be equal to an integer W. */
9185 expr_not_equal_to (tree t
, const wide_int
&w
)
9187 wide_int min
, max
, nz
;
9188 value_range_type rtype
;
9189 switch (TREE_CODE (t
))
9192 return wi::to_wide (t
) != w
;
9195 if (!INTEGRAL_TYPE_P (TREE_TYPE (t
)))
9197 rtype
= get_range_info (t
, &min
, &max
);
9198 if (rtype
== VR_RANGE
)
9200 if (wi::lt_p (max
, w
, TYPE_SIGN (TREE_TYPE (t
))))
9202 if (wi::lt_p (w
, min
, TYPE_SIGN (TREE_TYPE (t
))))
9205 else if (rtype
== VR_ANTI_RANGE
9206 && wi::le_p (min
, w
, TYPE_SIGN (TREE_TYPE (t
)))
9207 && wi::le_p (w
, max
, TYPE_SIGN (TREE_TYPE (t
))))
9209 /* If T has some known zero bits and W has any of those bits set,
9210 then T is known not to be equal to W. */
9211 if (wi::ne_p (wi::zext (wi::bit_and_not (w
, get_nonzero_bits (t
)),
9212 TYPE_PRECISION (TREE_TYPE (t
))), 0))
9221 /* Fold a binary expression of code CODE and type TYPE with operands
9222 OP0 and OP1. LOC is the location of the resulting expression.
9223 Return the folded expression if folding is successful. Otherwise,
9224 return NULL_TREE. */
9227 fold_binary_loc (location_t loc
, enum tree_code code
, tree type
,
9230 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
9231 tree arg0
, arg1
, tem
;
9232 tree t1
= NULL_TREE
;
9233 bool strict_overflow_p
;
9236 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
9237 && TREE_CODE_LENGTH (code
) == 2
9239 && op1
!= NULL_TREE
);
9244 /* Strip any conversions that don't change the mode. This is
9245 safe for every expression, except for a comparison expression
9246 because its signedness is derived from its operands. So, in
9247 the latter case, only strip conversions that don't change the
9248 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
9251 Note that this is done as an internal manipulation within the
9252 constant folder, in order to find the simplest representation
9253 of the arguments so that their form can be studied. In any
9254 cases, the appropriate type conversions should be put back in
9255 the tree that will get out of the constant folder. */
9257 if (kind
== tcc_comparison
|| code
== MIN_EXPR
|| code
== MAX_EXPR
)
9259 STRIP_SIGN_NOPS (arg0
);
9260 STRIP_SIGN_NOPS (arg1
);
9268 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9269 constant but we can't do arithmetic on them. */
9270 if (CONSTANT_CLASS_P (arg0
) && CONSTANT_CLASS_P (arg1
))
9272 tem
= const_binop (code
, type
, arg0
, arg1
);
9273 if (tem
!= NULL_TREE
)
9275 if (TREE_TYPE (tem
) != type
)
9276 tem
= fold_convert_loc (loc
, type
, tem
);
9281 /* If this is a commutative operation, and ARG0 is a constant, move it
9282 to ARG1 to reduce the number of tests below. */
9283 if (commutative_tree_code (code
)
9284 && tree_swap_operands_p (arg0
, arg1
))
9285 return fold_build2_loc (loc
, code
, type
, op1
, op0
);
9287 /* Likewise if this is a comparison, and ARG0 is a constant, move it
9288 to ARG1 to reduce the number of tests below. */
9289 if (kind
== tcc_comparison
9290 && tree_swap_operands_p (arg0
, arg1
))
9291 return fold_build2_loc (loc
, swap_tree_comparison (code
), type
, op1
, op0
);
9293 tem
= generic_simplify (loc
, code
, type
, op0
, op1
);
9297 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9299 First check for cases where an arithmetic operation is applied to a
9300 compound, conditional, or comparison operation. Push the arithmetic
9301 operation inside the compound or conditional to see if any folding
9302 can then be done. Convert comparison to conditional for this purpose.
9303 The also optimizes non-constant cases that used to be done in
9306 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9307 one of the operands is a comparison and the other is a comparison, a
9308 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9309 code below would make the expression more complex. Change it to a
9310 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9311 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9313 if ((code
== BIT_AND_EXPR
|| code
== BIT_IOR_EXPR
9314 || code
== EQ_EXPR
|| code
== NE_EXPR
)
9315 && !VECTOR_TYPE_P (TREE_TYPE (arg0
))
9316 && ((truth_value_p (TREE_CODE (arg0
))
9317 && (truth_value_p (TREE_CODE (arg1
))
9318 || (TREE_CODE (arg1
) == BIT_AND_EXPR
9319 && integer_onep (TREE_OPERAND (arg1
, 1)))))
9320 || (truth_value_p (TREE_CODE (arg1
))
9321 && (truth_value_p (TREE_CODE (arg0
))
9322 || (TREE_CODE (arg0
) == BIT_AND_EXPR
9323 && integer_onep (TREE_OPERAND (arg0
, 1)))))))
9325 tem
= fold_build2_loc (loc
, code
== BIT_AND_EXPR
? TRUTH_AND_EXPR
9326 : code
== BIT_IOR_EXPR
? TRUTH_OR_EXPR
9329 fold_convert_loc (loc
, boolean_type_node
, arg0
),
9330 fold_convert_loc (loc
, boolean_type_node
, arg1
));
9332 if (code
== EQ_EXPR
)
9333 tem
= invert_truthvalue_loc (loc
, tem
);
9335 return fold_convert_loc (loc
, type
, tem
);
9338 if (TREE_CODE_CLASS (code
) == tcc_binary
9339 || TREE_CODE_CLASS (code
) == tcc_comparison
)
9341 if (TREE_CODE (arg0
) == COMPOUND_EXPR
)
9343 tem
= fold_build2_loc (loc
, code
, type
,
9344 fold_convert_loc (loc
, TREE_TYPE (op0
),
9345 TREE_OPERAND (arg0
, 1)), op1
);
9346 return build2_loc (loc
, COMPOUND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
9349 if (TREE_CODE (arg1
) == COMPOUND_EXPR
)
9351 tem
= fold_build2_loc (loc
, code
, type
, op0
,
9352 fold_convert_loc (loc
, TREE_TYPE (op1
),
9353 TREE_OPERAND (arg1
, 1)));
9354 return build2_loc (loc
, COMPOUND_EXPR
, type
, TREE_OPERAND (arg1
, 0),
9358 if (TREE_CODE (arg0
) == COND_EXPR
9359 || TREE_CODE (arg0
) == VEC_COND_EXPR
9360 || COMPARISON_CLASS_P (arg0
))
9362 tem
= fold_binary_op_with_conditional_arg (loc
, code
, type
, op0
, op1
,
9364 /*cond_first_p=*/1);
9365 if (tem
!= NULL_TREE
)
9369 if (TREE_CODE (arg1
) == COND_EXPR
9370 || TREE_CODE (arg1
) == VEC_COND_EXPR
9371 || COMPARISON_CLASS_P (arg1
))
9373 tem
= fold_binary_op_with_conditional_arg (loc
, code
, type
, op0
, op1
,
9375 /*cond_first_p=*/0);
9376 if (tem
!= NULL_TREE
)
9384 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
9385 if (TREE_CODE (arg0
) == ADDR_EXPR
9386 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == MEM_REF
)
9388 tree iref
= TREE_OPERAND (arg0
, 0);
9389 return fold_build2 (MEM_REF
, type
,
9390 TREE_OPERAND (iref
, 0),
9391 int_const_binop (PLUS_EXPR
, arg1
,
9392 TREE_OPERAND (iref
, 1)));
9395 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
9396 if (TREE_CODE (arg0
) == ADDR_EXPR
9397 && handled_component_p (TREE_OPERAND (arg0
, 0)))
9401 base
= get_addr_base_and_unit_offset (TREE_OPERAND (arg0
, 0),
9405 return fold_build2 (MEM_REF
, type
,
9406 build_fold_addr_expr (base
),
9407 int_const_binop (PLUS_EXPR
, arg1
,
9408 size_int (coffset
)));
9413 case POINTER_PLUS_EXPR
:
9414 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
9415 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1
))
9416 && INTEGRAL_TYPE_P (TREE_TYPE (arg0
)))
9417 return fold_convert_loc (loc
, type
,
9418 fold_build2_loc (loc
, PLUS_EXPR
, sizetype
,
9419 fold_convert_loc (loc
, sizetype
,
9421 fold_convert_loc (loc
, sizetype
,
9427 if (INTEGRAL_TYPE_P (type
) || VECTOR_INTEGER_TYPE_P (type
))
9429 /* X + (X / CST) * -CST is X % CST. */
9430 if (TREE_CODE (arg1
) == MULT_EXPR
9431 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == TRUNC_DIV_EXPR
9432 && operand_equal_p (arg0
,
9433 TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0), 0))
9435 tree cst0
= TREE_OPERAND (TREE_OPERAND (arg1
, 0), 1);
9436 tree cst1
= TREE_OPERAND (arg1
, 1);
9437 tree sum
= fold_binary_loc (loc
, PLUS_EXPR
, TREE_TYPE (cst1
),
9439 if (sum
&& integer_zerop (sum
))
9440 return fold_convert_loc (loc
, type
,
9441 fold_build2_loc (loc
, TRUNC_MOD_EXPR
,
9442 TREE_TYPE (arg0
), arg0
,
9447 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
9448 one. Make sure the type is not saturating and has the signedness of
9449 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9450 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9451 if ((TREE_CODE (arg0
) == MULT_EXPR
9452 || TREE_CODE (arg1
) == MULT_EXPR
)
9453 && !TYPE_SATURATING (type
)
9454 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg0
))
9455 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg1
))
9456 && (!FLOAT_TYPE_P (type
) || flag_associative_math
))
9458 tree tem
= fold_plusminus_mult_expr (loc
, code
, type
, arg0
, arg1
);
9463 if (! FLOAT_TYPE_P (type
))
9465 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
9466 (plus (plus (mult) (mult)) (foo)) so that we can
9467 take advantage of the factoring cases below. */
9468 if (ANY_INTEGRAL_TYPE_P (type
)
9469 && TYPE_OVERFLOW_WRAPS (type
)
9470 && (((TREE_CODE (arg0
) == PLUS_EXPR
9471 || TREE_CODE (arg0
) == MINUS_EXPR
)
9472 && TREE_CODE (arg1
) == MULT_EXPR
)
9473 || ((TREE_CODE (arg1
) == PLUS_EXPR
9474 || TREE_CODE (arg1
) == MINUS_EXPR
)
9475 && TREE_CODE (arg0
) == MULT_EXPR
)))
9477 tree parg0
, parg1
, parg
, marg
;
9478 enum tree_code pcode
;
9480 if (TREE_CODE (arg1
) == MULT_EXPR
)
9481 parg
= arg0
, marg
= arg1
;
9483 parg
= arg1
, marg
= arg0
;
9484 pcode
= TREE_CODE (parg
);
9485 parg0
= TREE_OPERAND (parg
, 0);
9486 parg1
= TREE_OPERAND (parg
, 1);
9490 if (TREE_CODE (parg0
) == MULT_EXPR
9491 && TREE_CODE (parg1
) != MULT_EXPR
)
9492 return fold_build2_loc (loc
, pcode
, type
,
9493 fold_build2_loc (loc
, PLUS_EXPR
, type
,
9494 fold_convert_loc (loc
, type
,
9496 fold_convert_loc (loc
, type
,
9498 fold_convert_loc (loc
, type
, parg1
));
9499 if (TREE_CODE (parg0
) != MULT_EXPR
9500 && TREE_CODE (parg1
) == MULT_EXPR
)
9502 fold_build2_loc (loc
, PLUS_EXPR
, type
,
9503 fold_convert_loc (loc
, type
, parg0
),
9504 fold_build2_loc (loc
, pcode
, type
,
9505 fold_convert_loc (loc
, type
, marg
),
9506 fold_convert_loc (loc
, type
,
9512 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
9513 to __complex__ ( x, y ). This is not the same for SNaNs or
9514 if signed zeros are involved. */
9515 if (!HONOR_SNANS (element_mode (arg0
))
9516 && !HONOR_SIGNED_ZEROS (element_mode (arg0
))
9517 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
)))
9519 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
9520 tree arg0r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg0
);
9521 tree arg0i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg0
);
9522 bool arg0rz
= false, arg0iz
= false;
9523 if ((arg0r
&& (arg0rz
= real_zerop (arg0r
)))
9524 || (arg0i
&& (arg0iz
= real_zerop (arg0i
))))
9526 tree arg1r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg1
);
9527 tree arg1i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg1
);
9528 if (arg0rz
&& arg1i
&& real_zerop (arg1i
))
9530 tree rp
= arg1r
? arg1r
9531 : build1 (REALPART_EXPR
, rtype
, arg1
);
9532 tree ip
= arg0i
? arg0i
9533 : build1 (IMAGPART_EXPR
, rtype
, arg0
);
9534 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
9536 else if (arg0iz
&& arg1r
&& real_zerop (arg1r
))
9538 tree rp
= arg0r
? arg0r
9539 : build1 (REALPART_EXPR
, rtype
, arg0
);
9540 tree ip
= arg1i
? arg1i
9541 : build1 (IMAGPART_EXPR
, rtype
, arg1
);
9542 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
9547 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
9548 We associate floats only if the user has specified
9549 -fassociative-math. */
9550 if (flag_associative_math
9551 && TREE_CODE (arg1
) == PLUS_EXPR
9552 && TREE_CODE (arg0
) != MULT_EXPR
)
9554 tree tree10
= TREE_OPERAND (arg1
, 0);
9555 tree tree11
= TREE_OPERAND (arg1
, 1);
9556 if (TREE_CODE (tree11
) == MULT_EXPR
9557 && TREE_CODE (tree10
) == MULT_EXPR
)
9560 tree0
= fold_build2_loc (loc
, PLUS_EXPR
, type
, arg0
, tree10
);
9561 return fold_build2_loc (loc
, PLUS_EXPR
, type
, tree0
, tree11
);
9564 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
9565 We associate floats only if the user has specified
9566 -fassociative-math. */
9567 if (flag_associative_math
9568 && TREE_CODE (arg0
) == PLUS_EXPR
9569 && TREE_CODE (arg1
) != MULT_EXPR
)
9571 tree tree00
= TREE_OPERAND (arg0
, 0);
9572 tree tree01
= TREE_OPERAND (arg0
, 1);
9573 if (TREE_CODE (tree01
) == MULT_EXPR
9574 && TREE_CODE (tree00
) == MULT_EXPR
)
9577 tree0
= fold_build2_loc (loc
, PLUS_EXPR
, type
, tree01
, arg1
);
9578 return fold_build2_loc (loc
, PLUS_EXPR
, type
, tree00
, tree0
);
9584 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
9585 is a rotate of A by C1 bits. */
9586 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
9587 is a rotate of A by B bits.
9588 Similarly for (A << B) | (A >> (-B & C3)) where C3 is Z-1,
9589 though in this case CODE must be | and not + or ^, otherwise
9590 it doesn't return A when B is 0. */
9592 enum tree_code code0
, code1
;
9594 code0
= TREE_CODE (arg0
);
9595 code1
= TREE_CODE (arg1
);
9596 if (((code0
== RSHIFT_EXPR
&& code1
== LSHIFT_EXPR
)
9597 || (code1
== RSHIFT_EXPR
&& code0
== LSHIFT_EXPR
))
9598 && operand_equal_p (TREE_OPERAND (arg0
, 0),
9599 TREE_OPERAND (arg1
, 0), 0)
9600 && (rtype
= TREE_TYPE (TREE_OPERAND (arg0
, 0)),
9601 TYPE_UNSIGNED (rtype
))
9602 /* Only create rotates in complete modes. Other cases are not
9603 expanded properly. */
9604 && (element_precision (rtype
)
9605 == GET_MODE_UNIT_PRECISION (TYPE_MODE (rtype
))))
9607 tree tree01
, tree11
;
9608 tree orig_tree01
, orig_tree11
;
9609 enum tree_code code01
, code11
;
9611 tree01
= orig_tree01
= TREE_OPERAND (arg0
, 1);
9612 tree11
= orig_tree11
= TREE_OPERAND (arg1
, 1);
9613 STRIP_NOPS (tree01
);
9614 STRIP_NOPS (tree11
);
9615 code01
= TREE_CODE (tree01
);
9616 code11
= TREE_CODE (tree11
);
9617 if (code11
!= MINUS_EXPR
9618 && (code01
== MINUS_EXPR
|| code01
== BIT_AND_EXPR
))
9620 std::swap (code0
, code1
);
9621 std::swap (code01
, code11
);
9622 std::swap (tree01
, tree11
);
9623 std::swap (orig_tree01
, orig_tree11
);
9625 if (code01
== INTEGER_CST
9626 && code11
== INTEGER_CST
9627 && (wi::to_widest (tree01
) + wi::to_widest (tree11
)
9628 == element_precision (rtype
)))
9630 tem
= build2_loc (loc
, LROTATE_EXPR
,
9631 rtype
, TREE_OPERAND (arg0
, 0),
9632 code0
== LSHIFT_EXPR
9633 ? orig_tree01
: orig_tree11
);
9634 return fold_convert_loc (loc
, type
, tem
);
9636 else if (code11
== MINUS_EXPR
)
9638 tree tree110
, tree111
;
9639 tree110
= TREE_OPERAND (tree11
, 0);
9640 tree111
= TREE_OPERAND (tree11
, 1);
9641 STRIP_NOPS (tree110
);
9642 STRIP_NOPS (tree111
);
9643 if (TREE_CODE (tree110
) == INTEGER_CST
9644 && compare_tree_int (tree110
,
9645 element_precision (rtype
)) == 0
9646 && operand_equal_p (tree01
, tree111
, 0))
9648 tem
= build2_loc (loc
, (code0
== LSHIFT_EXPR
9649 ? LROTATE_EXPR
: RROTATE_EXPR
),
9650 rtype
, TREE_OPERAND (arg0
, 0),
9652 return fold_convert_loc (loc
, type
, tem
);
9655 else if (code
== BIT_IOR_EXPR
9656 && code11
== BIT_AND_EXPR
9657 && pow2p_hwi (element_precision (rtype
)))
9659 tree tree110
, tree111
;
9660 tree110
= TREE_OPERAND (tree11
, 0);
9661 tree111
= TREE_OPERAND (tree11
, 1);
9662 STRIP_NOPS (tree110
);
9663 STRIP_NOPS (tree111
);
9664 if (TREE_CODE (tree110
) == NEGATE_EXPR
9665 && TREE_CODE (tree111
) == INTEGER_CST
9666 && compare_tree_int (tree111
,
9667 element_precision (rtype
) - 1) == 0
9668 && operand_equal_p (tree01
, TREE_OPERAND (tree110
, 0), 0))
9670 tem
= build2_loc (loc
, (code0
== LSHIFT_EXPR
9671 ? LROTATE_EXPR
: RROTATE_EXPR
),
9672 rtype
, TREE_OPERAND (arg0
, 0),
9674 return fold_convert_loc (loc
, type
, tem
);
9681 /* In most languages, can't associate operations on floats through
9682 parentheses. Rather than remember where the parentheses were, we
9683 don't associate floats at all, unless the user has specified
9685 And, we need to make sure type is not saturating. */
9687 if ((! FLOAT_TYPE_P (type
) || flag_associative_math
)
9688 && !TYPE_SATURATING (type
))
9690 tree var0
, minus_var0
, con0
, minus_con0
, lit0
, minus_lit0
;
9691 tree var1
, minus_var1
, con1
, minus_con1
, lit1
, minus_lit1
;
9695 /* Split both trees into variables, constants, and literals. Then
9696 associate each group together, the constants with literals,
9697 then the result with variables. This increases the chances of
9698 literals being recombined later and of generating relocatable
9699 expressions for the sum of a constant and literal. */
9700 var0
= split_tree (arg0
, type
, code
,
9701 &minus_var0
, &con0
, &minus_con0
,
9702 &lit0
, &minus_lit0
, 0);
9703 var1
= split_tree (arg1
, type
, code
,
9704 &minus_var1
, &con1
, &minus_con1
,
9705 &lit1
, &minus_lit1
, code
== MINUS_EXPR
);
9707 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
9708 if (code
== MINUS_EXPR
)
9711 /* With undefined overflow prefer doing association in a type
9712 which wraps on overflow, if that is one of the operand types. */
9713 if ((POINTER_TYPE_P (type
) || INTEGRAL_TYPE_P (type
))
9714 && !TYPE_OVERFLOW_WRAPS (type
))
9716 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
9717 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0
)))
9718 atype
= TREE_TYPE (arg0
);
9719 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1
))
9720 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1
)))
9721 atype
= TREE_TYPE (arg1
);
9722 gcc_assert (TYPE_PRECISION (atype
) == TYPE_PRECISION (type
));
9725 /* With undefined overflow we can only associate constants with one
9726 variable, and constants whose association doesn't overflow. */
9727 if ((POINTER_TYPE_P (atype
) || INTEGRAL_TYPE_P (atype
))
9728 && !TYPE_OVERFLOW_WRAPS (atype
))
9730 if ((var0
&& var1
) || (minus_var0
&& minus_var1
))
9732 /* ??? If split_tree would handle NEGATE_EXPR we could
9733 simply reject these cases and the allowed cases would
9734 be the var0/minus_var1 ones. */
9735 tree tmp0
= var0
? var0
: minus_var0
;
9736 tree tmp1
= var1
? var1
: minus_var1
;
9737 bool one_neg
= false;
9739 if (TREE_CODE (tmp0
) == NEGATE_EXPR
)
9741 tmp0
= TREE_OPERAND (tmp0
, 0);
9744 if (CONVERT_EXPR_P (tmp0
)
9745 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0
, 0)))
9746 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0
, 0)))
9747 <= TYPE_PRECISION (atype
)))
9748 tmp0
= TREE_OPERAND (tmp0
, 0);
9749 if (TREE_CODE (tmp1
) == NEGATE_EXPR
)
9751 tmp1
= TREE_OPERAND (tmp1
, 0);
9754 if (CONVERT_EXPR_P (tmp1
)
9755 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1
, 0)))
9756 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1
, 0)))
9757 <= TYPE_PRECISION (atype
)))
9758 tmp1
= TREE_OPERAND (tmp1
, 0);
9759 /* The only case we can still associate with two variables
9760 is if they cancel out. */
9762 || !operand_equal_p (tmp0
, tmp1
, 0))
9765 else if ((var0
&& minus_var1
9766 && ! operand_equal_p (var0
, minus_var1
, 0))
9767 || (minus_var0
&& var1
9768 && ! operand_equal_p (minus_var0
, var1
, 0)))
9772 /* Only do something if we found more than two objects. Otherwise,
9773 nothing has changed and we risk infinite recursion. */
9775 && ((var0
!= 0) + (var1
!= 0)
9776 + (minus_var0
!= 0) + (minus_var1
!= 0)
9777 + (con0
!= 0) + (con1
!= 0)
9778 + (minus_con0
!= 0) + (minus_con1
!= 0)
9779 + (lit0
!= 0) + (lit1
!= 0)
9780 + (minus_lit0
!= 0) + (minus_lit1
!= 0)) > 2)
9782 var0
= associate_trees (loc
, var0
, var1
, code
, atype
);
9783 minus_var0
= associate_trees (loc
, minus_var0
, minus_var1
,
9785 con0
= associate_trees (loc
, con0
, con1
, code
, atype
);
9786 minus_con0
= associate_trees (loc
, minus_con0
, minus_con1
,
9788 lit0
= associate_trees (loc
, lit0
, lit1
, code
, atype
);
9789 minus_lit0
= associate_trees (loc
, minus_lit0
, minus_lit1
,
9792 if (minus_var0
&& var0
)
9794 var0
= associate_trees (loc
, var0
, minus_var0
,
9798 if (minus_con0
&& con0
)
9800 con0
= associate_trees (loc
, con0
, minus_con0
,
9805 /* Preserve the MINUS_EXPR if the negative part of the literal is
9806 greater than the positive part. Otherwise, the multiplicative
9807 folding code (i.e extract_muldiv) may be fooled in case
9808 unsigned constants are subtracted, like in the following
9809 example: ((X*2 + 4) - 8U)/2. */
9810 if (minus_lit0
&& lit0
)
9812 if (TREE_CODE (lit0
) == INTEGER_CST
9813 && TREE_CODE (minus_lit0
) == INTEGER_CST
9814 && tree_int_cst_lt (lit0
, minus_lit0
)
9815 /* But avoid ending up with only negated parts. */
9818 minus_lit0
= associate_trees (loc
, minus_lit0
, lit0
,
9824 lit0
= associate_trees (loc
, lit0
, minus_lit0
,
9830 /* Don't introduce overflows through reassociation. */
9831 if ((lit0
&& TREE_OVERFLOW_P (lit0
))
9832 || (minus_lit0
&& TREE_OVERFLOW_P (minus_lit0
)))
9835 /* Eliminate lit0 and minus_lit0 to con0 and minus_con0. */
9836 con0
= associate_trees (loc
, con0
, lit0
, code
, atype
);
9838 minus_con0
= associate_trees (loc
, minus_con0
, minus_lit0
,
9842 /* Eliminate minus_con0. */
9846 con0
= associate_trees (loc
, con0
, minus_con0
,
9849 var0
= associate_trees (loc
, var0
, minus_con0
,
9856 /* Eliminate minus_var0. */
9860 con0
= associate_trees (loc
, con0
, minus_var0
,
9868 fold_convert_loc (loc
, type
, associate_trees (loc
, var0
, con0
,
9875 case POINTER_DIFF_EXPR
:
9877 /* Fold &a[i] - &a[j] to i-j. */
9878 if (TREE_CODE (arg0
) == ADDR_EXPR
9879 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == ARRAY_REF
9880 && TREE_CODE (arg1
) == ADDR_EXPR
9881 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == ARRAY_REF
)
9883 tree tem
= fold_addr_of_array_ref_difference (loc
, type
,
9884 TREE_OPERAND (arg0
, 0),
9885 TREE_OPERAND (arg1
, 0),
9887 == POINTER_DIFF_EXPR
);
9892 /* Further transformations are not for pointers. */
9893 if (code
== POINTER_DIFF_EXPR
)
9896 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
9897 if (TREE_CODE (arg0
) == NEGATE_EXPR
9898 && negate_expr_p (op1
)
9899 /* If arg0 is e.g. unsigned int and type is int, then this could
9900 introduce UB, because if A is INT_MIN at runtime, the original
9901 expression can be well defined while the latter is not.
9903 && !(ANY_INTEGRAL_TYPE_P (type
)
9904 && TYPE_OVERFLOW_UNDEFINED (type
)
9905 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
9906 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
))))
9907 return fold_build2_loc (loc
, MINUS_EXPR
, type
, negate_expr (op1
),
9908 fold_convert_loc (loc
, type
,
9909 TREE_OPERAND (arg0
, 0)));
9911 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
9912 __complex__ ( x, -y ). This is not the same for SNaNs or if
9913 signed zeros are involved. */
9914 if (!HONOR_SNANS (element_mode (arg0
))
9915 && !HONOR_SIGNED_ZEROS (element_mode (arg0
))
9916 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
)))
9918 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
9919 tree arg0r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg0
);
9920 tree arg0i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg0
);
9921 bool arg0rz
= false, arg0iz
= false;
9922 if ((arg0r
&& (arg0rz
= real_zerop (arg0r
)))
9923 || (arg0i
&& (arg0iz
= real_zerop (arg0i
))))
9925 tree arg1r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg1
);
9926 tree arg1i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg1
);
9927 if (arg0rz
&& arg1i
&& real_zerop (arg1i
))
9929 tree rp
= fold_build1_loc (loc
, NEGATE_EXPR
, rtype
,
9931 : build1 (REALPART_EXPR
, rtype
, arg1
));
9932 tree ip
= arg0i
? arg0i
9933 : build1 (IMAGPART_EXPR
, rtype
, arg0
);
9934 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
9936 else if (arg0iz
&& arg1r
&& real_zerop (arg1r
))
9938 tree rp
= arg0r
? arg0r
9939 : build1 (REALPART_EXPR
, rtype
, arg0
);
9940 tree ip
= fold_build1_loc (loc
, NEGATE_EXPR
, rtype
,
9942 : build1 (IMAGPART_EXPR
, rtype
, arg1
));
9943 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
9948 /* A - B -> A + (-B) if B is easily negatable. */
9949 if (negate_expr_p (op1
)
9950 && ! TYPE_OVERFLOW_SANITIZED (type
)
9951 && ((FLOAT_TYPE_P (type
)
9952 /* Avoid this transformation if B is a positive REAL_CST. */
9953 && (TREE_CODE (op1
) != REAL_CST
9954 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (op1
))))
9955 || INTEGRAL_TYPE_P (type
)))
9956 return fold_build2_loc (loc
, PLUS_EXPR
, type
,
9957 fold_convert_loc (loc
, type
, arg0
),
9960 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
9961 one. Make sure the type is not saturating and has the signedness of
9962 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9963 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9964 if ((TREE_CODE (arg0
) == MULT_EXPR
9965 || TREE_CODE (arg1
) == MULT_EXPR
)
9966 && !TYPE_SATURATING (type
)
9967 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg0
))
9968 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg1
))
9969 && (!FLOAT_TYPE_P (type
) || flag_associative_math
))
9971 tree tem
= fold_plusminus_mult_expr (loc
, code
, type
, arg0
, arg1
);
9979 if (! FLOAT_TYPE_P (type
))
9981 /* Transform x * -C into -x * C if x is easily negatable. */
9982 if (TREE_CODE (op1
) == INTEGER_CST
9983 && tree_int_cst_sgn (op1
) == -1
9984 && negate_expr_p (op0
)
9985 && negate_expr_p (op1
)
9986 && (tem
= negate_expr (op1
)) != op1
9987 && ! TREE_OVERFLOW (tem
))
9988 return fold_build2_loc (loc
, MULT_EXPR
, type
,
9989 fold_convert_loc (loc
, type
,
9990 negate_expr (op0
)), tem
);
9992 strict_overflow_p
= false;
9993 if (TREE_CODE (arg1
) == INTEGER_CST
9994 && (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
,
9995 &strict_overflow_p
)) != 0)
9997 if (strict_overflow_p
)
9998 fold_overflow_warning (("assuming signed overflow does not "
9999 "occur when simplifying "
10001 WARN_STRICT_OVERFLOW_MISC
);
10002 return fold_convert_loc (loc
, type
, tem
);
10005 /* Optimize z * conj(z) for integer complex numbers. */
10006 if (TREE_CODE (arg0
) == CONJ_EXPR
10007 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10008 return fold_mult_zconjz (loc
, type
, arg1
);
10009 if (TREE_CODE (arg1
) == CONJ_EXPR
10010 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10011 return fold_mult_zconjz (loc
, type
, arg0
);
10015 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
10016 This is not the same for NaNs or if signed zeros are
10018 if (!HONOR_NANS (arg0
)
10019 && !HONOR_SIGNED_ZEROS (element_mode (arg0
))
10020 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
))
10021 && TREE_CODE (arg1
) == COMPLEX_CST
10022 && real_zerop (TREE_REALPART (arg1
)))
10024 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
10025 if (real_onep (TREE_IMAGPART (arg1
)))
10027 fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
10028 negate_expr (fold_build1_loc (loc
, IMAGPART_EXPR
,
10030 fold_build1_loc (loc
, REALPART_EXPR
, rtype
, arg0
));
10031 else if (real_minus_onep (TREE_IMAGPART (arg1
)))
10033 fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
10034 fold_build1_loc (loc
, IMAGPART_EXPR
, rtype
, arg0
),
10035 negate_expr (fold_build1_loc (loc
, REALPART_EXPR
,
10039 /* Optimize z * conj(z) for floating point complex numbers.
10040 Guarded by flag_unsafe_math_optimizations as non-finite
10041 imaginary components don't produce scalar results. */
10042 if (flag_unsafe_math_optimizations
10043 && TREE_CODE (arg0
) == CONJ_EXPR
10044 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10045 return fold_mult_zconjz (loc
, type
, arg1
);
10046 if (flag_unsafe_math_optimizations
10047 && TREE_CODE (arg1
) == CONJ_EXPR
10048 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10049 return fold_mult_zconjz (loc
, type
, arg0
);
10054 /* Canonicalize (X & C1) | C2. */
10055 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10056 && TREE_CODE (arg1
) == INTEGER_CST
10057 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10059 int width
= TYPE_PRECISION (type
), w
;
10060 wide_int c1
= wi::to_wide (TREE_OPERAND (arg0
, 1));
10061 wide_int c2
= wi::to_wide (arg1
);
10063 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
10064 if ((c1
& c2
) == c1
)
10065 return omit_one_operand_loc (loc
, type
, arg1
,
10066 TREE_OPERAND (arg0
, 0));
10068 wide_int msk
= wi::mask (width
, false,
10069 TYPE_PRECISION (TREE_TYPE (arg1
)));
10071 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
10072 if (wi::bit_and_not (msk
, c1
| c2
) == 0)
10074 tem
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10075 return fold_build2_loc (loc
, BIT_IOR_EXPR
, type
, tem
, arg1
);
10078 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
10079 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
10080 mode which allows further optimizations. */
10083 wide_int c3
= wi::bit_and_not (c1
, c2
);
10084 for (w
= BITS_PER_UNIT
; w
<= width
; w
<<= 1)
10086 wide_int mask
= wi::mask (w
, false,
10087 TYPE_PRECISION (type
));
10088 if (((c1
| c2
) & mask
) == mask
10089 && wi::bit_and_not (c1
, mask
) == 0)
10098 tem
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10099 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, type
, tem
,
10100 wide_int_to_tree (type
, c3
));
10101 return fold_build2_loc (loc
, BIT_IOR_EXPR
, type
, tem
, arg1
);
10105 /* See if this can be simplified into a rotate first. If that
10106 is unsuccessful continue in the association code. */
10110 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
10111 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10112 && INTEGRAL_TYPE_P (type
)
10113 && integer_onep (TREE_OPERAND (arg0
, 1))
10114 && integer_onep (arg1
))
10115 return fold_build2_loc (loc
, EQ_EXPR
, type
, arg0
,
10116 build_zero_cst (TREE_TYPE (arg0
)));
10118 /* See if this can be simplified into a rotate first. If that
10119 is unsuccessful continue in the association code. */
10123 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
10124 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
10125 && INTEGRAL_TYPE_P (type
)
10126 && integer_onep (TREE_OPERAND (arg0
, 1))
10127 && integer_onep (arg1
))
10130 tem
= TREE_OPERAND (arg0
, 0);
10131 tem2
= fold_convert_loc (loc
, TREE_TYPE (tem
), arg1
);
10132 tem2
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (tem
),
10134 return fold_build2_loc (loc
, EQ_EXPR
, type
, tem2
,
10135 build_zero_cst (TREE_TYPE (tem
)));
10137 /* Fold ~X & 1 as (X & 1) == 0. */
10138 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
10139 && INTEGRAL_TYPE_P (type
)
10140 && integer_onep (arg1
))
10143 tem
= TREE_OPERAND (arg0
, 0);
10144 tem2
= fold_convert_loc (loc
, TREE_TYPE (tem
), arg1
);
10145 tem2
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (tem
),
10147 return fold_build2_loc (loc
, EQ_EXPR
, type
, tem2
,
10148 build_zero_cst (TREE_TYPE (tem
)));
10150 /* Fold !X & 1 as X == 0. */
10151 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
10152 && integer_onep (arg1
))
10154 tem
= TREE_OPERAND (arg0
, 0);
10155 return fold_build2_loc (loc
, EQ_EXPR
, type
, tem
,
10156 build_zero_cst (TREE_TYPE (tem
)));
10159 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
10160 multiple of 1 << CST. */
10161 if (TREE_CODE (arg1
) == INTEGER_CST
)
10163 wi::tree_to_wide_ref cst1
= wi::to_wide (arg1
);
10164 wide_int ncst1
= -cst1
;
10165 if ((cst1
& ncst1
) == ncst1
10166 && multiple_of_p (type
, arg0
,
10167 wide_int_to_tree (TREE_TYPE (arg1
), ncst1
)))
10168 return fold_convert_loc (loc
, type
, arg0
);
10171 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
10173 if (TREE_CODE (arg1
) == INTEGER_CST
10174 && TREE_CODE (arg0
) == MULT_EXPR
10175 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10177 wi::tree_to_wide_ref warg1
= wi::to_wide (arg1
);
10179 = mask_with_tz (type
, warg1
, wi::to_wide (TREE_OPERAND (arg0
, 1)));
10182 return omit_two_operands_loc (loc
, type
, build_zero_cst (type
),
10184 else if (masked
!= warg1
)
10186 /* Avoid the transform if arg1 is a mask of some
10187 mode which allows further optimizations. */
10188 int pop
= wi::popcount (warg1
);
10189 if (!(pop
>= BITS_PER_UNIT
10191 && wi::mask (pop
, false, warg1
.get_precision ()) == warg1
))
10192 return fold_build2_loc (loc
, code
, type
, op0
,
10193 wide_int_to_tree (type
, masked
));
10197 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
10198 ((A & N) + B) & M -> (A + B) & M
10199 Similarly if (N & M) == 0,
10200 ((A | N) + B) & M -> (A + B) & M
10201 and for - instead of + (or unary - instead of +)
10202 and/or ^ instead of |.
10203 If B is constant and (B & M) == 0, fold into A & M. */
10204 if (TREE_CODE (arg1
) == INTEGER_CST
)
10206 wi::tree_to_wide_ref cst1
= wi::to_wide (arg1
);
10207 if ((~cst1
!= 0) && (cst1
& (cst1
+ 1)) == 0
10208 && INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
10209 && (TREE_CODE (arg0
) == PLUS_EXPR
10210 || TREE_CODE (arg0
) == MINUS_EXPR
10211 || TREE_CODE (arg0
) == NEGATE_EXPR
)
10212 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0
))
10213 || TREE_CODE (TREE_TYPE (arg0
)) == INTEGER_TYPE
))
10219 /* Now we know that arg0 is (C + D) or (C - D) or
10220 -C and arg1 (M) is == (1LL << cst) - 1.
10221 Store C into PMOP[0] and D into PMOP[1]. */
10222 pmop
[0] = TREE_OPERAND (arg0
, 0);
10224 if (TREE_CODE (arg0
) != NEGATE_EXPR
)
10226 pmop
[1] = TREE_OPERAND (arg0
, 1);
10230 if ((wi::max_value (TREE_TYPE (arg0
)) & cst1
) != cst1
)
10233 for (; which
>= 0; which
--)
10234 switch (TREE_CODE (pmop
[which
]))
10239 if (TREE_CODE (TREE_OPERAND (pmop
[which
], 1))
10242 cst0
= wi::to_wide (TREE_OPERAND (pmop
[which
], 1)) & cst1
;
10243 if (TREE_CODE (pmop
[which
]) == BIT_AND_EXPR
)
10248 else if (cst0
!= 0)
10250 /* If C or D is of the form (A & N) where
10251 (N & M) == M, or of the form (A | N) or
10252 (A ^ N) where (N & M) == 0, replace it with A. */
10253 pmop
[which
] = TREE_OPERAND (pmop
[which
], 0);
10256 /* If C or D is a N where (N & M) == 0, it can be
10257 omitted (assumed 0). */
10258 if ((TREE_CODE (arg0
) == PLUS_EXPR
10259 || (TREE_CODE (arg0
) == MINUS_EXPR
&& which
== 0))
10260 && (cst1
& wi::to_wide (pmop
[which
])) == 0)
10261 pmop
[which
] = NULL
;
10267 /* Only build anything new if we optimized one or both arguments
10269 if (pmop
[0] != TREE_OPERAND (arg0
, 0)
10270 || (TREE_CODE (arg0
) != NEGATE_EXPR
10271 && pmop
[1] != TREE_OPERAND (arg0
, 1)))
10273 tree utype
= TREE_TYPE (arg0
);
10274 if (! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0
)))
10276 /* Perform the operations in a type that has defined
10277 overflow behavior. */
10278 utype
= unsigned_type_for (TREE_TYPE (arg0
));
10279 if (pmop
[0] != NULL
)
10280 pmop
[0] = fold_convert_loc (loc
, utype
, pmop
[0]);
10281 if (pmop
[1] != NULL
)
10282 pmop
[1] = fold_convert_loc (loc
, utype
, pmop
[1]);
10285 if (TREE_CODE (arg0
) == NEGATE_EXPR
)
10286 tem
= fold_build1_loc (loc
, NEGATE_EXPR
, utype
, pmop
[0]);
10287 else if (TREE_CODE (arg0
) == PLUS_EXPR
)
10289 if (pmop
[0] != NULL
&& pmop
[1] != NULL
)
10290 tem
= fold_build2_loc (loc
, PLUS_EXPR
, utype
,
10292 else if (pmop
[0] != NULL
)
10294 else if (pmop
[1] != NULL
)
10297 return build_int_cst (type
, 0);
10299 else if (pmop
[0] == NULL
)
10300 tem
= fold_build1_loc (loc
, NEGATE_EXPR
, utype
, pmop
[1]);
10302 tem
= fold_build2_loc (loc
, MINUS_EXPR
, utype
,
10304 /* TEM is now the new binary +, - or unary - replacement. */
10305 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, utype
, tem
,
10306 fold_convert_loc (loc
, utype
, arg1
));
10307 return fold_convert_loc (loc
, type
, tem
);
10312 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
10313 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg0
) == NOP_EXPR
10314 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0
, 0))))
10316 prec
= element_precision (TREE_TYPE (TREE_OPERAND (arg0
, 0)));
10318 wide_int mask
= wide_int::from (wi::to_wide (arg1
), prec
, UNSIGNED
);
10321 fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10327 /* Don't touch a floating-point divide by zero unless the mode
10328 of the constant can represent infinity. */
10329 if (TREE_CODE (arg1
) == REAL_CST
10330 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1
)))
10331 && real_zerop (arg1
))
10334 /* (-A) / (-B) -> A / B */
10335 if (TREE_CODE (arg0
) == NEGATE_EXPR
&& negate_expr_p (arg1
))
10336 return fold_build2_loc (loc
, RDIV_EXPR
, type
,
10337 TREE_OPERAND (arg0
, 0),
10338 negate_expr (arg1
));
10339 if (TREE_CODE (arg1
) == NEGATE_EXPR
&& negate_expr_p (arg0
))
10340 return fold_build2_loc (loc
, RDIV_EXPR
, type
,
10341 negate_expr (arg0
),
10342 TREE_OPERAND (arg1
, 0));
10345 case TRUNC_DIV_EXPR
:
10348 case FLOOR_DIV_EXPR
:
10349 /* Simplify A / (B << N) where A and B are positive and B is
10350 a power of 2, to A >> (N + log2(B)). */
10351 strict_overflow_p
= false;
10352 if (TREE_CODE (arg1
) == LSHIFT_EXPR
10353 && (TYPE_UNSIGNED (type
)
10354 || tree_expr_nonnegative_warnv_p (op0
, &strict_overflow_p
)))
10356 tree sval
= TREE_OPERAND (arg1
, 0);
10357 if (integer_pow2p (sval
) && tree_int_cst_sgn (sval
) > 0)
10359 tree sh_cnt
= TREE_OPERAND (arg1
, 1);
10360 tree pow2
= build_int_cst (TREE_TYPE (sh_cnt
),
10361 wi::exact_log2 (wi::to_wide (sval
)));
10363 if (strict_overflow_p
)
10364 fold_overflow_warning (("assuming signed overflow does not "
10365 "occur when simplifying A / (B << N)"),
10366 WARN_STRICT_OVERFLOW_MISC
);
10368 sh_cnt
= fold_build2_loc (loc
, PLUS_EXPR
, TREE_TYPE (sh_cnt
),
10370 return fold_build2_loc (loc
, RSHIFT_EXPR
, type
,
10371 fold_convert_loc (loc
, type
, arg0
), sh_cnt
);
10377 case ROUND_DIV_EXPR
:
10378 case CEIL_DIV_EXPR
:
10379 case EXACT_DIV_EXPR
:
10380 if (integer_zerop (arg1
))
10383 /* Convert -A / -B to A / B when the type is signed and overflow is
10385 if ((!INTEGRAL_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
10386 && TREE_CODE (op0
) == NEGATE_EXPR
10387 && negate_expr_p (op1
))
10389 if (INTEGRAL_TYPE_P (type
))
10390 fold_overflow_warning (("assuming signed overflow does not occur "
10391 "when distributing negation across "
10393 WARN_STRICT_OVERFLOW_MISC
);
10394 return fold_build2_loc (loc
, code
, type
,
10395 fold_convert_loc (loc
, type
,
10396 TREE_OPERAND (arg0
, 0)),
10397 negate_expr (op1
));
10399 if ((!INTEGRAL_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
10400 && TREE_CODE (arg1
) == NEGATE_EXPR
10401 && negate_expr_p (op0
))
10403 if (INTEGRAL_TYPE_P (type
))
10404 fold_overflow_warning (("assuming signed overflow does not occur "
10405 "when distributing negation across "
10407 WARN_STRICT_OVERFLOW_MISC
);
10408 return fold_build2_loc (loc
, code
, type
,
10410 fold_convert_loc (loc
, type
,
10411 TREE_OPERAND (arg1
, 0)));
10414 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
10415 operation, EXACT_DIV_EXPR.
10417 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
10418 At one time others generated faster code, it's not clear if they do
10419 after the last round to changes to the DIV code in expmed.c. */
10420 if ((code
== CEIL_DIV_EXPR
|| code
== FLOOR_DIV_EXPR
)
10421 && multiple_of_p (type
, arg0
, arg1
))
10422 return fold_build2_loc (loc
, EXACT_DIV_EXPR
, type
,
10423 fold_convert (type
, arg0
),
10424 fold_convert (type
, arg1
));
10426 strict_overflow_p
= false;
10427 if (TREE_CODE (arg1
) == INTEGER_CST
10428 && (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
,
10429 &strict_overflow_p
)) != 0)
10431 if (strict_overflow_p
)
10432 fold_overflow_warning (("assuming signed overflow does not occur "
10433 "when simplifying division"),
10434 WARN_STRICT_OVERFLOW_MISC
);
10435 return fold_convert_loc (loc
, type
, tem
);
10440 case CEIL_MOD_EXPR
:
10441 case FLOOR_MOD_EXPR
:
10442 case ROUND_MOD_EXPR
:
10443 case TRUNC_MOD_EXPR
:
10444 strict_overflow_p
= false;
10445 if (TREE_CODE (arg1
) == INTEGER_CST
10446 && (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
,
10447 &strict_overflow_p
)) != 0)
10449 if (strict_overflow_p
)
10450 fold_overflow_warning (("assuming signed overflow does not occur "
10451 "when simplifying modulus"),
10452 WARN_STRICT_OVERFLOW_MISC
);
10453 return fold_convert_loc (loc
, type
, tem
);
10462 /* Since negative shift count is not well-defined,
10463 don't try to compute it in the compiler. */
10464 if (TREE_CODE (arg1
) == INTEGER_CST
&& tree_int_cst_sgn (arg1
) < 0)
10467 prec
= element_precision (type
);
10469 /* If we have a rotate of a bit operation with the rotate count and
10470 the second operand of the bit operation both constant,
10471 permute the two operations. */
10472 if (code
== RROTATE_EXPR
&& TREE_CODE (arg1
) == INTEGER_CST
10473 && (TREE_CODE (arg0
) == BIT_AND_EXPR
10474 || TREE_CODE (arg0
) == BIT_IOR_EXPR
10475 || TREE_CODE (arg0
) == BIT_XOR_EXPR
)
10476 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10478 tree arg00
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10479 tree arg01
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 1));
10480 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
,
10481 fold_build2_loc (loc
, code
, type
,
10483 fold_build2_loc (loc
, code
, type
,
10487 /* Two consecutive rotates adding up to the some integer
10488 multiple of the precision of the type can be ignored. */
10489 if (code
== RROTATE_EXPR
&& TREE_CODE (arg1
) == INTEGER_CST
10490 && TREE_CODE (arg0
) == RROTATE_EXPR
10491 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
10492 && wi::umod_trunc (wi::to_wide (arg1
)
10493 + wi::to_wide (TREE_OPERAND (arg0
, 1)),
10495 return fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10503 case TRUTH_ANDIF_EXPR
:
10504 /* Note that the operands of this must be ints
10505 and their values must be 0 or 1.
10506 ("true" is a fixed value perhaps depending on the language.) */
10507 /* If first arg is constant zero, return it. */
10508 if (integer_zerop (arg0
))
10509 return fold_convert_loc (loc
, type
, arg0
);
10511 case TRUTH_AND_EXPR
:
10512 /* If either arg is constant true, drop it. */
10513 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
10514 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg1
));
10515 if (TREE_CODE (arg1
) == INTEGER_CST
&& ! integer_zerop (arg1
)
10516 /* Preserve sequence points. */
10517 && (code
!= TRUTH_ANDIF_EXPR
|| ! TREE_SIDE_EFFECTS (arg0
)))
10518 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10519 /* If second arg is constant zero, result is zero, but first arg
10520 must be evaluated. */
10521 if (integer_zerop (arg1
))
10522 return omit_one_operand_loc (loc
, type
, arg1
, arg0
);
10523 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
10524 case will be handled here. */
10525 if (integer_zerop (arg0
))
10526 return omit_one_operand_loc (loc
, type
, arg0
, arg1
);
10528 /* !X && X is always false. */
10529 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
10530 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10531 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg1
);
10532 /* X && !X is always false. */
10533 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
10534 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10535 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
10537 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
10538 means A >= Y && A != MAX, but in this case we know that
10541 if (!TREE_SIDE_EFFECTS (arg0
)
10542 && !TREE_SIDE_EFFECTS (arg1
))
10544 tem
= fold_to_nonsharp_ineq_using_bound (loc
, arg0
, arg1
);
10545 if (tem
&& !operand_equal_p (tem
, arg0
, 0))
10546 return fold_build2_loc (loc
, code
, type
, tem
, arg1
);
10548 tem
= fold_to_nonsharp_ineq_using_bound (loc
, arg1
, arg0
);
10549 if (tem
&& !operand_equal_p (tem
, arg1
, 0))
10550 return fold_build2_loc (loc
, code
, type
, arg0
, tem
);
10553 if ((tem
= fold_truth_andor (loc
, code
, type
, arg0
, arg1
, op0
, op1
))
10559 case TRUTH_ORIF_EXPR
:
10560 /* Note that the operands of this must be ints
10561 and their values must be 0 or true.
10562 ("true" is a fixed value perhaps depending on the language.) */
10563 /* If first arg is constant true, return it. */
10564 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
10565 return fold_convert_loc (loc
, type
, arg0
);
10567 case TRUTH_OR_EXPR
:
10568 /* If either arg is constant zero, drop it. */
10569 if (TREE_CODE (arg0
) == INTEGER_CST
&& integer_zerop (arg0
))
10570 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg1
));
10571 if (TREE_CODE (arg1
) == INTEGER_CST
&& integer_zerop (arg1
)
10572 /* Preserve sequence points. */
10573 && (code
!= TRUTH_ORIF_EXPR
|| ! TREE_SIDE_EFFECTS (arg0
)))
10574 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10575 /* If second arg is constant true, result is true, but we must
10576 evaluate first arg. */
10577 if (TREE_CODE (arg1
) == INTEGER_CST
&& ! integer_zerop (arg1
))
10578 return omit_one_operand_loc (loc
, type
, arg1
, arg0
);
10579 /* Likewise for first arg, but note this only occurs here for
10581 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
10582 return omit_one_operand_loc (loc
, type
, arg0
, arg1
);
10584 /* !X || X is always true. */
10585 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
10586 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10587 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg1
);
10588 /* X || !X is always true. */
10589 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
10590 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10591 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
10593 /* (X && !Y) || (!X && Y) is X ^ Y */
10594 if (TREE_CODE (arg0
) == TRUTH_AND_EXPR
10595 && TREE_CODE (arg1
) == TRUTH_AND_EXPR
)
10597 tree a0
, a1
, l0
, l1
, n0
, n1
;
10599 a0
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 0));
10600 a1
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 1));
10602 l0
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10603 l1
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 1));
10605 n0
= fold_build1_loc (loc
, TRUTH_NOT_EXPR
, type
, l0
);
10606 n1
= fold_build1_loc (loc
, TRUTH_NOT_EXPR
, type
, l1
);
10608 if ((operand_equal_p (n0
, a0
, 0)
10609 && operand_equal_p (n1
, a1
, 0))
10610 || (operand_equal_p (n0
, a1
, 0)
10611 && operand_equal_p (n1
, a0
, 0)))
10612 return fold_build2_loc (loc
, TRUTH_XOR_EXPR
, type
, l0
, n1
);
10615 if ((tem
= fold_truth_andor (loc
, code
, type
, arg0
, arg1
, op0
, op1
))
10621 case TRUTH_XOR_EXPR
:
10622 /* If the second arg is constant zero, drop it. */
10623 if (integer_zerop (arg1
))
10624 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10625 /* If the second arg is constant true, this is a logical inversion. */
10626 if (integer_onep (arg1
))
10628 tem
= invert_truthvalue_loc (loc
, arg0
);
10629 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, tem
));
10631 /* Identical arguments cancel to zero. */
10632 if (operand_equal_p (arg0
, arg1
, 0))
10633 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
10635 /* !X ^ X is always true. */
10636 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
10637 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10638 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg1
);
10640 /* X ^ !X is always true. */
10641 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
10642 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10643 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
10652 tem
= fold_comparison (loc
, code
, type
, op0
, op1
);
10653 if (tem
!= NULL_TREE
)
10656 /* bool_var != 1 becomes !bool_var. */
10657 if (TREE_CODE (TREE_TYPE (arg0
)) == BOOLEAN_TYPE
&& integer_onep (arg1
)
10658 && code
== NE_EXPR
)
10659 return fold_convert_loc (loc
, type
,
10660 fold_build1_loc (loc
, TRUTH_NOT_EXPR
,
10661 TREE_TYPE (arg0
), arg0
));
10663 /* bool_var == 0 becomes !bool_var. */
10664 if (TREE_CODE (TREE_TYPE (arg0
)) == BOOLEAN_TYPE
&& integer_zerop (arg1
)
10665 && code
== EQ_EXPR
)
10666 return fold_convert_loc (loc
, type
,
10667 fold_build1_loc (loc
, TRUTH_NOT_EXPR
,
10668 TREE_TYPE (arg0
), arg0
));
10670 /* !exp != 0 becomes !exp */
10671 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
&& integer_zerop (arg1
)
10672 && code
== NE_EXPR
)
10673 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10675 /* If this is an EQ or NE comparison with zero and ARG0 is
10676 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
10677 two operations, but the latter can be done in one less insn
10678 on machines that have only two-operand insns or on which a
10679 constant cannot be the first operand. */
10680 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10681 && integer_zerop (arg1
))
10683 tree arg00
= TREE_OPERAND (arg0
, 0);
10684 tree arg01
= TREE_OPERAND (arg0
, 1);
10685 if (TREE_CODE (arg00
) == LSHIFT_EXPR
10686 && integer_onep (TREE_OPERAND (arg00
, 0)))
10688 tree tem
= fold_build2_loc (loc
, RSHIFT_EXPR
, TREE_TYPE (arg00
),
10689 arg01
, TREE_OPERAND (arg00
, 1));
10690 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
), tem
,
10691 build_int_cst (TREE_TYPE (arg0
), 1));
10692 return fold_build2_loc (loc
, code
, type
,
10693 fold_convert_loc (loc
, TREE_TYPE (arg1
), tem
),
10696 else if (TREE_CODE (arg01
) == LSHIFT_EXPR
10697 && integer_onep (TREE_OPERAND (arg01
, 0)))
10699 tree tem
= fold_build2_loc (loc
, RSHIFT_EXPR
, TREE_TYPE (arg01
),
10700 arg00
, TREE_OPERAND (arg01
, 1));
10701 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
), tem
,
10702 build_int_cst (TREE_TYPE (arg0
), 1));
10703 return fold_build2_loc (loc
, code
, type
,
10704 fold_convert_loc (loc
, TREE_TYPE (arg1
), tem
),
10709 /* If this is an NE or EQ comparison of zero against the result of a
10710 signed MOD operation whose second operand is a power of 2, make
10711 the MOD operation unsigned since it is simpler and equivalent. */
10712 if (integer_zerop (arg1
)
10713 && !TYPE_UNSIGNED (TREE_TYPE (arg0
))
10714 && (TREE_CODE (arg0
) == TRUNC_MOD_EXPR
10715 || TREE_CODE (arg0
) == CEIL_MOD_EXPR
10716 || TREE_CODE (arg0
) == FLOOR_MOD_EXPR
10717 || TREE_CODE (arg0
) == ROUND_MOD_EXPR
)
10718 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
10720 tree newtype
= unsigned_type_for (TREE_TYPE (arg0
));
10721 tree newmod
= fold_build2_loc (loc
, TREE_CODE (arg0
), newtype
,
10722 fold_convert_loc (loc
, newtype
,
10723 TREE_OPERAND (arg0
, 0)),
10724 fold_convert_loc (loc
, newtype
,
10725 TREE_OPERAND (arg0
, 1)));
10727 return fold_build2_loc (loc
, code
, type
, newmod
,
10728 fold_convert_loc (loc
, newtype
, arg1
));
10731 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
10732 C1 is a valid shift constant, and C2 is a power of two, i.e.
10734 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10735 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == RSHIFT_EXPR
10736 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1))
10738 && integer_pow2p (TREE_OPERAND (arg0
, 1))
10739 && integer_zerop (arg1
))
10741 tree itype
= TREE_TYPE (arg0
);
10742 tree arg001
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1);
10743 prec
= TYPE_PRECISION (itype
);
10745 /* Check for a valid shift count. */
10746 if (wi::ltu_p (wi::to_wide (arg001
), prec
))
10748 tree arg01
= TREE_OPERAND (arg0
, 1);
10749 tree arg000
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0);
10750 unsigned HOST_WIDE_INT log2
= tree_log2 (arg01
);
10751 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
10752 can be rewritten as (X & (C2 << C1)) != 0. */
10753 if ((log2
+ TREE_INT_CST_LOW (arg001
)) < prec
)
10755 tem
= fold_build2_loc (loc
, LSHIFT_EXPR
, itype
, arg01
, arg001
);
10756 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, arg000
, tem
);
10757 return fold_build2_loc (loc
, code
, type
, tem
,
10758 fold_convert_loc (loc
, itype
, arg1
));
10760 /* Otherwise, for signed (arithmetic) shifts,
10761 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
10762 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
10763 else if (!TYPE_UNSIGNED (itype
))
10764 return fold_build2_loc (loc
, code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
, type
,
10765 arg000
, build_int_cst (itype
, 0));
10766 /* Otherwise, of unsigned (logical) shifts,
10767 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
10768 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
10770 return omit_one_operand_loc (loc
, type
,
10771 code
== EQ_EXPR
? integer_one_node
10772 : integer_zero_node
,
10777 /* If this is a comparison of a field, we may be able to simplify it. */
10778 if ((TREE_CODE (arg0
) == COMPONENT_REF
10779 || TREE_CODE (arg0
) == BIT_FIELD_REF
)
10780 /* Handle the constant case even without -O
10781 to make sure the warnings are given. */
10782 && (optimize
|| TREE_CODE (arg1
) == INTEGER_CST
))
10784 t1
= optimize_bit_field_compare (loc
, code
, type
, arg0
, arg1
);
10789 /* Optimize comparisons of strlen vs zero to a compare of the
10790 first character of the string vs zero. To wit,
10791 strlen(ptr) == 0 => *ptr == 0
10792 strlen(ptr) != 0 => *ptr != 0
10793 Other cases should reduce to one of these two (or a constant)
10794 due to the return value of strlen being unsigned. */
10795 if (TREE_CODE (arg0
) == CALL_EXPR
10796 && integer_zerop (arg1
))
10798 tree fndecl
= get_callee_fndecl (arg0
);
10801 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
10802 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_STRLEN
10803 && call_expr_nargs (arg0
) == 1
10804 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0
, 0))) == POINTER_TYPE
)
10806 tree iref
= build_fold_indirect_ref_loc (loc
,
10807 CALL_EXPR_ARG (arg0
, 0));
10808 return fold_build2_loc (loc
, code
, type
, iref
,
10809 build_int_cst (TREE_TYPE (iref
), 0));
10813 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
10814 of X. Similarly fold (X >> C) == 0 into X >= 0. */
10815 if (TREE_CODE (arg0
) == RSHIFT_EXPR
10816 && integer_zerop (arg1
)
10817 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10819 tree arg00
= TREE_OPERAND (arg0
, 0);
10820 tree arg01
= TREE_OPERAND (arg0
, 1);
10821 tree itype
= TREE_TYPE (arg00
);
10822 if (wi::to_wide (arg01
) == element_precision (itype
) - 1)
10824 if (TYPE_UNSIGNED (itype
))
10826 itype
= signed_type_for (itype
);
10827 arg00
= fold_convert_loc (loc
, itype
, arg00
);
10829 return fold_build2_loc (loc
, code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
,
10830 type
, arg00
, build_zero_cst (itype
));
10834 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
10835 (X & C) == 0 when C is a single bit. */
10836 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10837 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_NOT_EXPR
10838 && integer_zerop (arg1
)
10839 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
10841 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
),
10842 TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0),
10843 TREE_OPERAND (arg0
, 1));
10844 return fold_build2_loc (loc
, code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
,
10846 fold_convert_loc (loc
, TREE_TYPE (arg0
),
10850 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
10851 constant C is a power of two, i.e. a single bit. */
10852 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
10853 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_AND_EXPR
10854 && integer_zerop (arg1
)
10855 && integer_pow2p (TREE_OPERAND (arg0
, 1))
10856 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
10857 TREE_OPERAND (arg0
, 1), OEP_ONLY_CONST
))
10859 tree arg00
= TREE_OPERAND (arg0
, 0);
10860 return fold_build2_loc (loc
, code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
, type
,
10861 arg00
, build_int_cst (TREE_TYPE (arg00
), 0));
10864 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
10865 when is C is a power of two, i.e. a single bit. */
10866 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10867 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_XOR_EXPR
10868 && integer_zerop (arg1
)
10869 && integer_pow2p (TREE_OPERAND (arg0
, 1))
10870 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
10871 TREE_OPERAND (arg0
, 1), OEP_ONLY_CONST
))
10873 tree arg000
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0);
10874 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg000
),
10875 arg000
, TREE_OPERAND (arg0
, 1));
10876 return fold_build2_loc (loc
, code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
, type
,
10877 tem
, build_int_cst (TREE_TYPE (tem
), 0));
10880 if (integer_zerop (arg1
)
10881 && tree_expr_nonzero_p (arg0
))
10883 tree res
= constant_boolean_node (code
==NE_EXPR
, type
);
10884 return omit_one_operand_loc (loc
, type
, res
, arg0
);
10887 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
10888 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10889 && TREE_CODE (arg1
) == BIT_AND_EXPR
)
10891 tree arg00
= TREE_OPERAND (arg0
, 0);
10892 tree arg01
= TREE_OPERAND (arg0
, 1);
10893 tree arg10
= TREE_OPERAND (arg1
, 0);
10894 tree arg11
= TREE_OPERAND (arg1
, 1);
10895 tree itype
= TREE_TYPE (arg0
);
10897 if (operand_equal_p (arg01
, arg11
, 0))
10899 tem
= fold_convert_loc (loc
, itype
, arg10
);
10900 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg00
, tem
);
10901 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, tem
, arg01
);
10902 return fold_build2_loc (loc
, code
, type
, tem
,
10903 build_zero_cst (itype
));
10905 if (operand_equal_p (arg01
, arg10
, 0))
10907 tem
= fold_convert_loc (loc
, itype
, arg11
);
10908 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg00
, tem
);
10909 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, tem
, arg01
);
10910 return fold_build2_loc (loc
, code
, type
, tem
,
10911 build_zero_cst (itype
));
10913 if (operand_equal_p (arg00
, arg11
, 0))
10915 tem
= fold_convert_loc (loc
, itype
, arg10
);
10916 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg01
, tem
);
10917 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, tem
, arg00
);
10918 return fold_build2_loc (loc
, code
, type
, tem
,
10919 build_zero_cst (itype
));
10921 if (operand_equal_p (arg00
, arg10
, 0))
10923 tem
= fold_convert_loc (loc
, itype
, arg11
);
10924 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg01
, tem
);
10925 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, tem
, arg00
);
10926 return fold_build2_loc (loc
, code
, type
, tem
,
10927 build_zero_cst (itype
));
10931 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
10932 && TREE_CODE (arg1
) == BIT_XOR_EXPR
)
10934 tree arg00
= TREE_OPERAND (arg0
, 0);
10935 tree arg01
= TREE_OPERAND (arg0
, 1);
10936 tree arg10
= TREE_OPERAND (arg1
, 0);
10937 tree arg11
= TREE_OPERAND (arg1
, 1);
10938 tree itype
= TREE_TYPE (arg0
);
10940 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
10941 operand_equal_p guarantees no side-effects so we don't need
10942 to use omit_one_operand on Z. */
10943 if (operand_equal_p (arg01
, arg11
, 0))
10944 return fold_build2_loc (loc
, code
, type
, arg00
,
10945 fold_convert_loc (loc
, TREE_TYPE (arg00
),
10947 if (operand_equal_p (arg01
, arg10
, 0))
10948 return fold_build2_loc (loc
, code
, type
, arg00
,
10949 fold_convert_loc (loc
, TREE_TYPE (arg00
),
10951 if (operand_equal_p (arg00
, arg11
, 0))
10952 return fold_build2_loc (loc
, code
, type
, arg01
,
10953 fold_convert_loc (loc
, TREE_TYPE (arg01
),
10955 if (operand_equal_p (arg00
, arg10
, 0))
10956 return fold_build2_loc (loc
, code
, type
, arg01
,
10957 fold_convert_loc (loc
, TREE_TYPE (arg01
),
10960 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
10961 if (TREE_CODE (arg01
) == INTEGER_CST
10962 && TREE_CODE (arg11
) == INTEGER_CST
)
10964 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg01
,
10965 fold_convert_loc (loc
, itype
, arg11
));
10966 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg00
, tem
);
10967 return fold_build2_loc (loc
, code
, type
, tem
,
10968 fold_convert_loc (loc
, itype
, arg10
));
10972 /* Attempt to simplify equality/inequality comparisons of complex
10973 values. Only lower the comparison if the result is known or
10974 can be simplified to a single scalar comparison. */
10975 if ((TREE_CODE (arg0
) == COMPLEX_EXPR
10976 || TREE_CODE (arg0
) == COMPLEX_CST
)
10977 && (TREE_CODE (arg1
) == COMPLEX_EXPR
10978 || TREE_CODE (arg1
) == COMPLEX_CST
))
10980 tree real0
, imag0
, real1
, imag1
;
10983 if (TREE_CODE (arg0
) == COMPLEX_EXPR
)
10985 real0
= TREE_OPERAND (arg0
, 0);
10986 imag0
= TREE_OPERAND (arg0
, 1);
10990 real0
= TREE_REALPART (arg0
);
10991 imag0
= TREE_IMAGPART (arg0
);
10994 if (TREE_CODE (arg1
) == COMPLEX_EXPR
)
10996 real1
= TREE_OPERAND (arg1
, 0);
10997 imag1
= TREE_OPERAND (arg1
, 1);
11001 real1
= TREE_REALPART (arg1
);
11002 imag1
= TREE_IMAGPART (arg1
);
11005 rcond
= fold_binary_loc (loc
, code
, type
, real0
, real1
);
11006 if (rcond
&& TREE_CODE (rcond
) == INTEGER_CST
)
11008 if (integer_zerop (rcond
))
11010 if (code
== EQ_EXPR
)
11011 return omit_two_operands_loc (loc
, type
, boolean_false_node
,
11013 return fold_build2_loc (loc
, NE_EXPR
, type
, imag0
, imag1
);
11017 if (code
== NE_EXPR
)
11018 return omit_two_operands_loc (loc
, type
, boolean_true_node
,
11020 return fold_build2_loc (loc
, EQ_EXPR
, type
, imag0
, imag1
);
11024 icond
= fold_binary_loc (loc
, code
, type
, imag0
, imag1
);
11025 if (icond
&& TREE_CODE (icond
) == INTEGER_CST
)
11027 if (integer_zerop (icond
))
11029 if (code
== EQ_EXPR
)
11030 return omit_two_operands_loc (loc
, type
, boolean_false_node
,
11032 return fold_build2_loc (loc
, NE_EXPR
, type
, real0
, real1
);
11036 if (code
== NE_EXPR
)
11037 return omit_two_operands_loc (loc
, type
, boolean_true_node
,
11039 return fold_build2_loc (loc
, EQ_EXPR
, type
, real0
, real1
);
11050 tem
= fold_comparison (loc
, code
, type
, op0
, op1
);
11051 if (tem
!= NULL_TREE
)
11054 /* Transform comparisons of the form X +- C CMP X. */
11055 if ((TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
11056 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0)
11057 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == REAL_CST
11058 && !HONOR_SNANS (arg0
))
11060 tree arg01
= TREE_OPERAND (arg0
, 1);
11061 enum tree_code code0
= TREE_CODE (arg0
);
11062 int is_positive
= REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01
)) ? -1 : 1;
11064 /* (X - c) > X becomes false. */
11065 if (code
== GT_EXPR
11066 && ((code0
== MINUS_EXPR
&& is_positive
>= 0)
11067 || (code0
== PLUS_EXPR
&& is_positive
<= 0)))
11068 return constant_boolean_node (0, type
);
11070 /* Likewise (X + c) < X becomes false. */
11071 if (code
== LT_EXPR
11072 && ((code0
== PLUS_EXPR
&& is_positive
>= 0)
11073 || (code0
== MINUS_EXPR
&& is_positive
<= 0)))
11074 return constant_boolean_node (0, type
);
11076 /* Convert (X - c) <= X to true. */
11077 if (!HONOR_NANS (arg1
)
11079 && ((code0
== MINUS_EXPR
&& is_positive
>= 0)
11080 || (code0
== PLUS_EXPR
&& is_positive
<= 0)))
11081 return constant_boolean_node (1, type
);
11083 /* Convert (X + c) >= X to true. */
11084 if (!HONOR_NANS (arg1
)
11086 && ((code0
== PLUS_EXPR
&& is_positive
>= 0)
11087 || (code0
== MINUS_EXPR
&& is_positive
<= 0)))
11088 return constant_boolean_node (1, type
);
11091 /* If we are comparing an ABS_EXPR with a constant, we can
11092 convert all the cases into explicit comparisons, but they may
11093 well not be faster than doing the ABS and one comparison.
11094 But ABS (X) <= C is a range comparison, which becomes a subtraction
11095 and a comparison, and is probably faster. */
11096 if (code
== LE_EXPR
11097 && TREE_CODE (arg1
) == INTEGER_CST
11098 && TREE_CODE (arg0
) == ABS_EXPR
11099 && ! TREE_SIDE_EFFECTS (arg0
)
11100 && (tem
= negate_expr (arg1
)) != 0
11101 && TREE_CODE (tem
) == INTEGER_CST
11102 && !TREE_OVERFLOW (tem
))
11103 return fold_build2_loc (loc
, TRUTH_ANDIF_EXPR
, type
,
11104 build2 (GE_EXPR
, type
,
11105 TREE_OPERAND (arg0
, 0), tem
),
11106 build2 (LE_EXPR
, type
,
11107 TREE_OPERAND (arg0
, 0), arg1
));
11109 /* Convert ABS_EXPR<x> >= 0 to true. */
11110 strict_overflow_p
= false;
11111 if (code
== GE_EXPR
11112 && (integer_zerop (arg1
)
11113 || (! HONOR_NANS (arg0
)
11114 && real_zerop (arg1
)))
11115 && tree_expr_nonnegative_warnv_p (arg0
, &strict_overflow_p
))
11117 if (strict_overflow_p
)
11118 fold_overflow_warning (("assuming signed overflow does not occur "
11119 "when simplifying comparison of "
11120 "absolute value and zero"),
11121 WARN_STRICT_OVERFLOW_CONDITIONAL
);
11122 return omit_one_operand_loc (loc
, type
,
11123 constant_boolean_node (true, type
),
11127 /* Convert ABS_EXPR<x> < 0 to false. */
11128 strict_overflow_p
= false;
11129 if (code
== LT_EXPR
11130 && (integer_zerop (arg1
) || real_zerop (arg1
))
11131 && tree_expr_nonnegative_warnv_p (arg0
, &strict_overflow_p
))
11133 if (strict_overflow_p
)
11134 fold_overflow_warning (("assuming signed overflow does not occur "
11135 "when simplifying comparison of "
11136 "absolute value and zero"),
11137 WARN_STRICT_OVERFLOW_CONDITIONAL
);
11138 return omit_one_operand_loc (loc
, type
,
11139 constant_boolean_node (false, type
),
11143 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
11144 and similarly for >= into !=. */
11145 if ((code
== LT_EXPR
|| code
== GE_EXPR
)
11146 && TYPE_UNSIGNED (TREE_TYPE (arg0
))
11147 && TREE_CODE (arg1
) == LSHIFT_EXPR
11148 && integer_onep (TREE_OPERAND (arg1
, 0)))
11149 return build2_loc (loc
, code
== LT_EXPR
? EQ_EXPR
: NE_EXPR
, type
,
11150 build2 (RSHIFT_EXPR
, TREE_TYPE (arg0
), arg0
,
11151 TREE_OPERAND (arg1
, 1)),
11152 build_zero_cst (TREE_TYPE (arg0
)));
11154 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
11155 otherwise Y might be >= # of bits in X's type and thus e.g.
11156 (unsigned char) (1 << Y) for Y 15 might be 0.
11157 If the cast is widening, then 1 << Y should have unsigned type,
11158 otherwise if Y is number of bits in the signed shift type minus 1,
11159 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
11160 31 might be 0xffffffff80000000. */
11161 if ((code
== LT_EXPR
|| code
== GE_EXPR
)
11162 && TYPE_UNSIGNED (TREE_TYPE (arg0
))
11163 && CONVERT_EXPR_P (arg1
)
11164 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == LSHIFT_EXPR
11165 && (element_precision (TREE_TYPE (arg1
))
11166 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1
, 0))))
11167 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1
, 0)))
11168 || (element_precision (TREE_TYPE (arg1
))
11169 == element_precision (TREE_TYPE (TREE_OPERAND (arg1
, 0)))))
11170 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0)))
11172 tem
= build2 (RSHIFT_EXPR
, TREE_TYPE (arg0
), arg0
,
11173 TREE_OPERAND (TREE_OPERAND (arg1
, 0), 1));
11174 return build2_loc (loc
, code
== LT_EXPR
? EQ_EXPR
: NE_EXPR
, type
,
11175 fold_convert_loc (loc
, TREE_TYPE (arg0
), tem
),
11176 build_zero_cst (TREE_TYPE (arg0
)));
11181 case UNORDERED_EXPR
:
11189 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
11191 tree targ0
= strip_float_extensions (arg0
);
11192 tree targ1
= strip_float_extensions (arg1
);
11193 tree newtype
= TREE_TYPE (targ0
);
11195 if (TYPE_PRECISION (TREE_TYPE (targ1
)) > TYPE_PRECISION (newtype
))
11196 newtype
= TREE_TYPE (targ1
);
11198 if (TYPE_PRECISION (newtype
) < TYPE_PRECISION (TREE_TYPE (arg0
)))
11199 return fold_build2_loc (loc
, code
, type
,
11200 fold_convert_loc (loc
, newtype
, targ0
),
11201 fold_convert_loc (loc
, newtype
, targ1
));
11206 case COMPOUND_EXPR
:
11207 /* When pedantic, a compound expression can be neither an lvalue
11208 nor an integer constant expression. */
11209 if (TREE_SIDE_EFFECTS (arg0
) || TREE_CONSTANT (arg1
))
11211 /* Don't let (0, 0) be null pointer constant. */
11212 tem
= integer_zerop (arg1
) ? build1 (NOP_EXPR
, type
, arg1
)
11213 : fold_convert_loc (loc
, type
, arg1
);
11214 return pedantic_non_lvalue_loc (loc
, tem
);
11217 /* An ASSERT_EXPR should never be passed to fold_binary. */
11218 gcc_unreachable ();
11222 } /* switch (code) */
11225 /* Used by contains_label_[p1]. */
11227 struct contains_label_data
11229 hash_set
<tree
> *pset
;
11230 bool inside_switch_p
;
11233 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
11234 a LABEL_EXPR or CASE_LABEL_EXPR not inside of another SWITCH_EXPR; otherwise
11235 return NULL_TREE. Do not check the subtrees of GOTO_EXPR. */
11238 contains_label_1 (tree
*tp
, int *walk_subtrees
, void *data
)
11240 contains_label_data
*d
= (contains_label_data
*) data
;
11241 switch (TREE_CODE (*tp
))
11246 case CASE_LABEL_EXPR
:
11247 if (!d
->inside_switch_p
)
11252 if (!d
->inside_switch_p
)
11254 if (walk_tree (&SWITCH_COND (*tp
), contains_label_1
, data
, d
->pset
))
11256 d
->inside_switch_p
= true;
11257 if (walk_tree (&SWITCH_BODY (*tp
), contains_label_1
, data
, d
->pset
))
11259 d
->inside_switch_p
= false;
11260 *walk_subtrees
= 0;
11265 *walk_subtrees
= 0;
11273 /* Return whether the sub-tree ST contains a label which is accessible from
11274 outside the sub-tree. */
11277 contains_label_p (tree st
)
11279 hash_set
<tree
> pset
;
11280 contains_label_data data
= { &pset
, false };
11281 return walk_tree (&st
, contains_label_1
, &data
, &pset
) != NULL_TREE
;
11284 /* Fold a ternary expression of code CODE and type TYPE with operands
11285 OP0, OP1, and OP2. Return the folded expression if folding is
11286 successful. Otherwise, return NULL_TREE. */
11289 fold_ternary_loc (location_t loc
, enum tree_code code
, tree type
,
11290 tree op0
, tree op1
, tree op2
)
11293 tree arg0
= NULL_TREE
, arg1
= NULL_TREE
, arg2
= NULL_TREE
;
11294 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
11296 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
11297 && TREE_CODE_LENGTH (code
) == 3);
11299 /* If this is a commutative operation, and OP0 is a constant, move it
11300 to OP1 to reduce the number of tests below. */
11301 if (commutative_ternary_tree_code (code
)
11302 && tree_swap_operands_p (op0
, op1
))
11303 return fold_build3_loc (loc
, code
, type
, op1
, op0
, op2
);
11305 tem
= generic_simplify (loc
, code
, type
, op0
, op1
, op2
);
11309 /* Strip any conversions that don't change the mode. This is safe
11310 for every expression, except for a comparison expression because
11311 its signedness is derived from its operands. So, in the latter
11312 case, only strip conversions that don't change the signedness.
11314 Note that this is done as an internal manipulation within the
11315 constant folder, in order to find the simplest representation of
11316 the arguments so that their form can be studied. In any cases,
11317 the appropriate type conversions should be put back in the tree
11318 that will get out of the constant folder. */
11339 case COMPONENT_REF
:
11340 if (TREE_CODE (arg0
) == CONSTRUCTOR
11341 && ! type_contains_placeholder_p (TREE_TYPE (arg0
)))
11343 unsigned HOST_WIDE_INT idx
;
11345 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0
), idx
, field
, value
)
11352 case VEC_COND_EXPR
:
11353 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
11354 so all simple results must be passed through pedantic_non_lvalue. */
11355 if (TREE_CODE (arg0
) == INTEGER_CST
)
11357 tree unused_op
= integer_zerop (arg0
) ? op1
: op2
;
11358 tem
= integer_zerop (arg0
) ? op2
: op1
;
11359 /* Only optimize constant conditions when the selected branch
11360 has the same type as the COND_EXPR. This avoids optimizing
11361 away "c ? x : throw", where the throw has a void type.
11362 Avoid throwing away that operand which contains label. */
11363 if ((!TREE_SIDE_EFFECTS (unused_op
)
11364 || !contains_label_p (unused_op
))
11365 && (! VOID_TYPE_P (TREE_TYPE (tem
))
11366 || VOID_TYPE_P (type
)))
11367 return pedantic_non_lvalue_loc (loc
, tem
);
11370 else if (TREE_CODE (arg0
) == VECTOR_CST
)
11372 unsigned HOST_WIDE_INT nelts
;
11373 if ((TREE_CODE (arg1
) == VECTOR_CST
11374 || TREE_CODE (arg1
) == CONSTRUCTOR
)
11375 && (TREE_CODE (arg2
) == VECTOR_CST
11376 || TREE_CODE (arg2
) == CONSTRUCTOR
)
11377 && TYPE_VECTOR_SUBPARTS (type
).is_constant (&nelts
))
11379 vec_perm_builder
sel (nelts
, nelts
, 1);
11380 for (unsigned int i
= 0; i
< nelts
; i
++)
11382 tree val
= VECTOR_CST_ELT (arg0
, i
);
11383 if (integer_all_onesp (val
))
11384 sel
.quick_push (i
);
11385 else if (integer_zerop (val
))
11386 sel
.quick_push (nelts
+ i
);
11387 else /* Currently unreachable. */
11390 vec_perm_indices
indices (sel
, 2, nelts
);
11391 tree t
= fold_vec_perm (type
, arg1
, arg2
, indices
);
11392 if (t
!= NULL_TREE
)
11397 /* If we have A op B ? A : C, we may be able to convert this to a
11398 simpler expression, depending on the operation and the values
11399 of B and C. Signed zeros prevent all of these transformations,
11400 for reasons given above each one.
11402 Also try swapping the arguments and inverting the conditional. */
11403 if (COMPARISON_CLASS_P (arg0
)
11404 && operand_equal_for_comparison_p (TREE_OPERAND (arg0
, 0), op1
)
11405 && !HONOR_SIGNED_ZEROS (element_mode (op1
)))
11407 tem
= fold_cond_expr_with_comparison (loc
, type
, arg0
, op1
, op2
);
11412 if (COMPARISON_CLASS_P (arg0
)
11413 && operand_equal_for_comparison_p (TREE_OPERAND (arg0
, 0), op2
)
11414 && !HONOR_SIGNED_ZEROS (element_mode (op2
)))
11416 location_t loc0
= expr_location_or (arg0
, loc
);
11417 tem
= fold_invert_truthvalue (loc0
, arg0
);
11418 if (tem
&& COMPARISON_CLASS_P (tem
))
11420 tem
= fold_cond_expr_with_comparison (loc
, type
, tem
, op2
, op1
);
11426 /* If the second operand is simpler than the third, swap them
11427 since that produces better jump optimization results. */
11428 if (truth_value_p (TREE_CODE (arg0
))
11429 && tree_swap_operands_p (op1
, op2
))
11431 location_t loc0
= expr_location_or (arg0
, loc
);
11432 /* See if this can be inverted. If it can't, possibly because
11433 it was a floating-point inequality comparison, don't do
11435 tem
= fold_invert_truthvalue (loc0
, arg0
);
11437 return fold_build3_loc (loc
, code
, type
, tem
, op2
, op1
);
11440 /* Convert A ? 1 : 0 to simply A. */
11441 if ((code
== VEC_COND_EXPR
? integer_all_onesp (op1
)
11442 : (integer_onep (op1
)
11443 && !VECTOR_TYPE_P (type
)))
11444 && integer_zerop (op2
)
11445 /* If we try to convert OP0 to our type, the
11446 call to fold will try to move the conversion inside
11447 a COND, which will recurse. In that case, the COND_EXPR
11448 is probably the best choice, so leave it alone. */
11449 && type
== TREE_TYPE (arg0
))
11450 return pedantic_non_lvalue_loc (loc
, arg0
);
11452 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
11453 over COND_EXPR in cases such as floating point comparisons. */
11454 if (integer_zerop (op1
)
11455 && code
== COND_EXPR
11456 && integer_onep (op2
)
11457 && !VECTOR_TYPE_P (type
)
11458 && truth_value_p (TREE_CODE (arg0
)))
11459 return pedantic_non_lvalue_loc (loc
,
11460 fold_convert_loc (loc
, type
,
11461 invert_truthvalue_loc (loc
,
11464 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
11465 if (TREE_CODE (arg0
) == LT_EXPR
11466 && integer_zerop (TREE_OPERAND (arg0
, 1))
11467 && integer_zerop (op2
)
11468 && (tem
= sign_bit_p (TREE_OPERAND (arg0
, 0), arg1
)))
11470 /* sign_bit_p looks through both zero and sign extensions,
11471 but for this optimization only sign extensions are
11473 tree tem2
= TREE_OPERAND (arg0
, 0);
11474 while (tem
!= tem2
)
11476 if (TREE_CODE (tem2
) != NOP_EXPR
11477 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2
, 0))))
11482 tem2
= TREE_OPERAND (tem2
, 0);
11484 /* sign_bit_p only checks ARG1 bits within A's precision.
11485 If <sign bit of A> has wider type than A, bits outside
11486 of A's precision in <sign bit of A> need to be checked.
11487 If they are all 0, this optimization needs to be done
11488 in unsigned A's type, if they are all 1 in signed A's type,
11489 otherwise this can't be done. */
11491 && TYPE_PRECISION (TREE_TYPE (tem
))
11492 < TYPE_PRECISION (TREE_TYPE (arg1
))
11493 && TYPE_PRECISION (TREE_TYPE (tem
))
11494 < TYPE_PRECISION (type
))
11496 int inner_width
, outer_width
;
11499 inner_width
= TYPE_PRECISION (TREE_TYPE (tem
));
11500 outer_width
= TYPE_PRECISION (TREE_TYPE (arg1
));
11501 if (outer_width
> TYPE_PRECISION (type
))
11502 outer_width
= TYPE_PRECISION (type
);
11504 wide_int mask
= wi::shifted_mask
11505 (inner_width
, outer_width
- inner_width
, false,
11506 TYPE_PRECISION (TREE_TYPE (arg1
)));
11508 wide_int common
= mask
& wi::to_wide (arg1
);
11509 if (common
== mask
)
11511 tem_type
= signed_type_for (TREE_TYPE (tem
));
11512 tem
= fold_convert_loc (loc
, tem_type
, tem
);
11514 else if (common
== 0)
11516 tem_type
= unsigned_type_for (TREE_TYPE (tem
));
11517 tem
= fold_convert_loc (loc
, tem_type
, tem
);
11525 fold_convert_loc (loc
, type
,
11526 fold_build2_loc (loc
, BIT_AND_EXPR
,
11527 TREE_TYPE (tem
), tem
,
11528 fold_convert_loc (loc
,
11533 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
11534 already handled above. */
11535 if (TREE_CODE (arg0
) == BIT_AND_EXPR
11536 && integer_onep (TREE_OPERAND (arg0
, 1))
11537 && integer_zerop (op2
)
11538 && integer_pow2p (arg1
))
11540 tree tem
= TREE_OPERAND (arg0
, 0);
11542 if (TREE_CODE (tem
) == RSHIFT_EXPR
11543 && tree_fits_uhwi_p (TREE_OPERAND (tem
, 1))
11544 && (unsigned HOST_WIDE_INT
) tree_log2 (arg1
)
11545 == tree_to_uhwi (TREE_OPERAND (tem
, 1)))
11546 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
11547 fold_convert_loc (loc
, type
,
11548 TREE_OPERAND (tem
, 0)),
11552 /* A & N ? N : 0 is simply A & N if N is a power of two. This
11553 is probably obsolete because the first operand should be a
11554 truth value (that's why we have the two cases above), but let's
11555 leave it in until we can confirm this for all front-ends. */
11556 if (integer_zerop (op2
)
11557 && TREE_CODE (arg0
) == NE_EXPR
11558 && integer_zerop (TREE_OPERAND (arg0
, 1))
11559 && integer_pow2p (arg1
)
11560 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_AND_EXPR
11561 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
11562 arg1
, OEP_ONLY_CONST
))
11563 return pedantic_non_lvalue_loc (loc
,
11564 fold_convert_loc (loc
, type
,
11565 TREE_OPERAND (arg0
, 0)));
11567 /* Disable the transformations below for vectors, since
11568 fold_binary_op_with_conditional_arg may undo them immediately,
11569 yielding an infinite loop. */
11570 if (code
== VEC_COND_EXPR
)
11573 /* Convert A ? B : 0 into A && B if A and B are truth values. */
11574 if (integer_zerop (op2
)
11575 && truth_value_p (TREE_CODE (arg0
))
11576 && truth_value_p (TREE_CODE (arg1
))
11577 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11578 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
? BIT_AND_EXPR
11579 : TRUTH_ANDIF_EXPR
,
11580 type
, fold_convert_loc (loc
, type
, arg0
), op1
);
11582 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
11583 if (code
== VEC_COND_EXPR
? integer_all_onesp (op2
) : integer_onep (op2
)
11584 && truth_value_p (TREE_CODE (arg0
))
11585 && truth_value_p (TREE_CODE (arg1
))
11586 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11588 location_t loc0
= expr_location_or (arg0
, loc
);
11589 /* Only perform transformation if ARG0 is easily inverted. */
11590 tem
= fold_invert_truthvalue (loc0
, arg0
);
11592 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
11595 type
, fold_convert_loc (loc
, type
, tem
),
11599 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
11600 if (integer_zerop (arg1
)
11601 && truth_value_p (TREE_CODE (arg0
))
11602 && truth_value_p (TREE_CODE (op2
))
11603 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11605 location_t loc0
= expr_location_or (arg0
, loc
);
11606 /* Only perform transformation if ARG0 is easily inverted. */
11607 tem
= fold_invert_truthvalue (loc0
, arg0
);
11609 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
11610 ? BIT_AND_EXPR
: TRUTH_ANDIF_EXPR
,
11611 type
, fold_convert_loc (loc
, type
, tem
),
11615 /* Convert A ? 1 : B into A || B if A and B are truth values. */
11616 if (code
== VEC_COND_EXPR
? integer_all_onesp (arg1
) : integer_onep (arg1
)
11617 && truth_value_p (TREE_CODE (arg0
))
11618 && truth_value_p (TREE_CODE (op2
))
11619 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11620 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
11621 ? BIT_IOR_EXPR
: TRUTH_ORIF_EXPR
,
11622 type
, fold_convert_loc (loc
, type
, arg0
), op2
);
11627 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
11628 of fold_ternary on them. */
11629 gcc_unreachable ();
11631 case BIT_FIELD_REF
:
11632 if (TREE_CODE (arg0
) == VECTOR_CST
11633 && (type
== TREE_TYPE (TREE_TYPE (arg0
))
11634 || (TREE_CODE (type
) == VECTOR_TYPE
11635 && TREE_TYPE (type
) == TREE_TYPE (TREE_TYPE (arg0
))))
11636 && tree_fits_uhwi_p (op1
)
11637 && tree_fits_uhwi_p (op2
))
11639 tree eltype
= TREE_TYPE (TREE_TYPE (arg0
));
11640 unsigned HOST_WIDE_INT width
= tree_to_uhwi (TYPE_SIZE (eltype
));
11641 unsigned HOST_WIDE_INT n
= tree_to_uhwi (arg1
);
11642 unsigned HOST_WIDE_INT idx
= tree_to_uhwi (op2
);
11645 && (idx
% width
) == 0
11646 && (n
% width
) == 0
11647 && known_le ((idx
+ n
) / width
,
11648 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
))))
11653 if (TREE_CODE (arg0
) == VECTOR_CST
)
11656 return VECTOR_CST_ELT (arg0
, idx
);
11658 tree_vector_builder
vals (type
, n
, 1);
11659 for (unsigned i
= 0; i
< n
; ++i
)
11660 vals
.quick_push (VECTOR_CST_ELT (arg0
, idx
+ i
));
11661 return vals
.build ();
11666 /* On constants we can use native encode/interpret to constant
11667 fold (nearly) all BIT_FIELD_REFs. */
11668 if (CONSTANT_CLASS_P (arg0
)
11669 && can_native_interpret_type_p (type
)
11670 && BITS_PER_UNIT
== 8
11671 && tree_fits_uhwi_p (op1
)
11672 && tree_fits_uhwi_p (op2
))
11674 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (op2
);
11675 unsigned HOST_WIDE_INT bitsize
= tree_to_uhwi (op1
);
11676 /* Limit us to a reasonable amount of work. To relax the
11677 other limitations we need bit-shifting of the buffer
11678 and rounding up the size. */
11679 if (bitpos
% BITS_PER_UNIT
== 0
11680 && bitsize
% BITS_PER_UNIT
== 0
11681 && bitsize
<= MAX_BITSIZE_MODE_ANY_MODE
)
11683 unsigned char b
[MAX_BITSIZE_MODE_ANY_MODE
/ BITS_PER_UNIT
];
11684 unsigned HOST_WIDE_INT len
11685 = native_encode_expr (arg0
, b
, bitsize
/ BITS_PER_UNIT
,
11686 bitpos
/ BITS_PER_UNIT
);
11688 && len
* BITS_PER_UNIT
>= bitsize
)
11690 tree v
= native_interpret_expr (type
, b
,
11691 bitsize
/ BITS_PER_UNIT
);
11701 /* For integers we can decompose the FMA if possible. */
11702 if (TREE_CODE (arg0
) == INTEGER_CST
11703 && TREE_CODE (arg1
) == INTEGER_CST
)
11704 return fold_build2_loc (loc
, PLUS_EXPR
, type
,
11705 const_binop (MULT_EXPR
, arg0
, arg1
), arg2
);
11706 if (integer_zerop (arg2
))
11707 return fold_build2_loc (loc
, MULT_EXPR
, type
, arg0
, arg1
);
11709 return fold_fma (loc
, type
, arg0
, arg1
, arg2
);
11711 case VEC_PERM_EXPR
:
11712 if (TREE_CODE (arg2
) == VECTOR_CST
)
11714 /* Build a vector of integers from the tree mask. */
11715 vec_perm_builder builder
;
11716 if (!tree_to_vec_perm_builder (&builder
, arg2
))
11719 /* Create a vec_perm_indices for the integer vector. */
11720 poly_uint64 nelts
= TYPE_VECTOR_SUBPARTS (type
);
11721 bool single_arg
= (op0
== op1
);
11722 vec_perm_indices
sel (builder
, single_arg
? 1 : 2, nelts
);
11724 /* Check for cases that fold to OP0 or OP1 in their original
11726 if (sel
.series_p (0, 1, 0, 1))
11728 if (sel
.series_p (0, 1, nelts
, 1))
11733 if (sel
.all_from_input_p (0))
11735 else if (sel
.all_from_input_p (1))
11738 sel
.rotate_inputs (1);
11742 if ((TREE_CODE (op0
) == VECTOR_CST
11743 || TREE_CODE (op0
) == CONSTRUCTOR
)
11744 && (TREE_CODE (op1
) == VECTOR_CST
11745 || TREE_CODE (op1
) == CONSTRUCTOR
))
11747 tree t
= fold_vec_perm (type
, op0
, op1
, sel
);
11748 if (t
!= NULL_TREE
)
11752 bool changed
= (op0
== op1
&& !single_arg
);
11754 /* Generate a canonical form of the selector. */
11755 if (arg2
== op2
&& sel
.encoding () != builder
)
11757 /* Some targets are deficient and fail to expand a single
11758 argument permutation while still allowing an equivalent
11759 2-argument version. */
11760 if (sel
.ninputs () == 2
11761 || can_vec_perm_const_p (TYPE_MODE (type
), sel
, false))
11762 op2
= vec_perm_indices_to_tree (TREE_TYPE (arg2
), sel
);
11765 vec_perm_indices
sel2 (builder
, 2, nelts
);
11766 if (can_vec_perm_const_p (TYPE_MODE (type
), sel2
, false))
11767 op2
= vec_perm_indices_to_tree (TREE_TYPE (arg2
), sel2
);
11769 /* Not directly supported with either encoding,
11770 so use the preferred form. */
11771 op2
= vec_perm_indices_to_tree (TREE_TYPE (arg2
), sel
);
11777 return build3_loc (loc
, VEC_PERM_EXPR
, type
, op0
, op1
, op2
);
11781 case BIT_INSERT_EXPR
:
11782 /* Perform (partial) constant folding of BIT_INSERT_EXPR. */
11783 if (TREE_CODE (arg0
) == INTEGER_CST
11784 && TREE_CODE (arg1
) == INTEGER_CST
)
11786 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (op2
);
11787 unsigned bitsize
= TYPE_PRECISION (TREE_TYPE (arg1
));
11788 wide_int tem
= (wi::to_wide (arg0
)
11789 & wi::shifted_mask (bitpos
, bitsize
, true,
11790 TYPE_PRECISION (type
)));
11792 = wi::lshift (wi::zext (wi::to_wide (arg1
, TYPE_PRECISION (type
)),
11794 return wide_int_to_tree (type
, wi::bit_or (tem
, tem2
));
11796 else if (TREE_CODE (arg0
) == VECTOR_CST
11797 && CONSTANT_CLASS_P (arg1
)
11798 && types_compatible_p (TREE_TYPE (TREE_TYPE (arg0
)),
11801 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (op2
);
11802 unsigned HOST_WIDE_INT elsize
11803 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (arg1
)));
11804 if (bitpos
% elsize
== 0)
11806 unsigned k
= bitpos
/ elsize
;
11807 unsigned HOST_WIDE_INT nelts
;
11808 if (operand_equal_p (VECTOR_CST_ELT (arg0
, k
), arg1
, 0))
11810 else if (VECTOR_CST_NELTS (arg0
).is_constant (&nelts
))
11812 tree_vector_builder
elts (type
, nelts
, 1);
11813 elts
.quick_grow (nelts
);
11814 for (unsigned HOST_WIDE_INT i
= 0; i
< nelts
; ++i
)
11815 elts
[i
] = (i
== k
? arg1
: VECTOR_CST_ELT (arg0
, i
));
11816 return elts
.build ();
11824 } /* switch (code) */
11827 /* Gets the element ACCESS_INDEX from CTOR, which must be a CONSTRUCTOR
11828 of an array (or vector). */
11831 get_array_ctor_element_at_index (tree ctor
, offset_int access_index
)
11833 tree index_type
= NULL_TREE
;
11834 offset_int low_bound
= 0;
11836 if (TREE_CODE (TREE_TYPE (ctor
)) == ARRAY_TYPE
)
11838 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (ctor
));
11839 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
11841 /* Static constructors for variably sized objects makes no sense. */
11842 gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type
)) == INTEGER_CST
);
11843 index_type
= TREE_TYPE (TYPE_MIN_VALUE (domain_type
));
11844 low_bound
= wi::to_offset (TYPE_MIN_VALUE (domain_type
));
11849 access_index
= wi::ext (access_index
, TYPE_PRECISION (index_type
),
11850 TYPE_SIGN (index_type
));
11852 offset_int index
= low_bound
- 1;
11854 index
= wi::ext (index
, TYPE_PRECISION (index_type
),
11855 TYPE_SIGN (index_type
));
11857 offset_int max_index
;
11858 unsigned HOST_WIDE_INT cnt
;
11861 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), cnt
, cfield
, cval
)
11863 /* Array constructor might explicitly set index, or specify a range,
11864 or leave index NULL meaning that it is next index after previous
11868 if (TREE_CODE (cfield
) == INTEGER_CST
)
11869 max_index
= index
= wi::to_offset (cfield
);
11872 gcc_assert (TREE_CODE (cfield
) == RANGE_EXPR
);
11873 index
= wi::to_offset (TREE_OPERAND (cfield
, 0));
11874 max_index
= wi::to_offset (TREE_OPERAND (cfield
, 1));
11881 index
= wi::ext (index
, TYPE_PRECISION (index_type
),
11882 TYPE_SIGN (index_type
));
11886 /* Do we have match? */
11887 if (wi::cmpu (access_index
, index
) >= 0
11888 && wi::cmpu (access_index
, max_index
) <= 0)
11894 /* Perform constant folding and related simplification of EXPR.
11895 The related simplifications include x*1 => x, x*0 => 0, etc.,
11896 and application of the associative law.
11897 NOP_EXPR conversions may be removed freely (as long as we
11898 are careful not to change the type of the overall expression).
11899 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
11900 but we can constant-fold them if they have constant operands. */
11902 #ifdef ENABLE_FOLD_CHECKING
11903 # define fold(x) fold_1 (x)
11904 static tree
fold_1 (tree
);
11910 const tree t
= expr
;
11911 enum tree_code code
= TREE_CODE (t
);
11912 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
11914 location_t loc
= EXPR_LOCATION (expr
);
11916 /* Return right away if a constant. */
11917 if (kind
== tcc_constant
)
11920 /* CALL_EXPR-like objects with variable numbers of operands are
11921 treated specially. */
11922 if (kind
== tcc_vl_exp
)
11924 if (code
== CALL_EXPR
)
11926 tem
= fold_call_expr (loc
, expr
, false);
11927 return tem
? tem
: expr
;
11932 if (IS_EXPR_CODE_CLASS (kind
))
11934 tree type
= TREE_TYPE (t
);
11935 tree op0
, op1
, op2
;
11937 switch (TREE_CODE_LENGTH (code
))
11940 op0
= TREE_OPERAND (t
, 0);
11941 tem
= fold_unary_loc (loc
, code
, type
, op0
);
11942 return tem
? tem
: expr
;
11944 op0
= TREE_OPERAND (t
, 0);
11945 op1
= TREE_OPERAND (t
, 1);
11946 tem
= fold_binary_loc (loc
, code
, type
, op0
, op1
);
11947 return tem
? tem
: expr
;
11949 op0
= TREE_OPERAND (t
, 0);
11950 op1
= TREE_OPERAND (t
, 1);
11951 op2
= TREE_OPERAND (t
, 2);
11952 tem
= fold_ternary_loc (loc
, code
, type
, op0
, op1
, op2
);
11953 return tem
? tem
: expr
;
11963 tree op0
= TREE_OPERAND (t
, 0);
11964 tree op1
= TREE_OPERAND (t
, 1);
11966 if (TREE_CODE (op1
) == INTEGER_CST
11967 && TREE_CODE (op0
) == CONSTRUCTOR
11968 && ! type_contains_placeholder_p (TREE_TYPE (op0
)))
11970 tree val
= get_array_ctor_element_at_index (op0
,
11971 wi::to_offset (op1
));
11979 /* Return a VECTOR_CST if possible. */
11982 tree type
= TREE_TYPE (t
);
11983 if (TREE_CODE (type
) != VECTOR_TYPE
)
11988 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t
), i
, val
)
11989 if (! CONSTANT_CLASS_P (val
))
11992 return build_vector_from_ctor (type
, CONSTRUCTOR_ELTS (t
));
11996 return fold (DECL_INITIAL (t
));
12000 } /* switch (code) */
12003 #ifdef ENABLE_FOLD_CHECKING
12006 static void fold_checksum_tree (const_tree
, struct md5_ctx
*,
12007 hash_table
<nofree_ptr_hash
<const tree_node
> > *);
12008 static void fold_check_failed (const_tree
, const_tree
);
12009 void print_fold_checksum (const_tree
);
12011 /* When --enable-checking=fold, compute a digest of expr before
12012 and after actual fold call to see if fold did not accidentally
12013 change original expr. */
12019 struct md5_ctx ctx
;
12020 unsigned char checksum_before
[16], checksum_after
[16];
12021 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12023 md5_init_ctx (&ctx
);
12024 fold_checksum_tree (expr
, &ctx
, &ht
);
12025 md5_finish_ctx (&ctx
, checksum_before
);
12028 ret
= fold_1 (expr
);
12030 md5_init_ctx (&ctx
);
12031 fold_checksum_tree (expr
, &ctx
, &ht
);
12032 md5_finish_ctx (&ctx
, checksum_after
);
12034 if (memcmp (checksum_before
, checksum_after
, 16))
12035 fold_check_failed (expr
, ret
);
12041 print_fold_checksum (const_tree expr
)
12043 struct md5_ctx ctx
;
12044 unsigned char checksum
[16], cnt
;
12045 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12047 md5_init_ctx (&ctx
);
12048 fold_checksum_tree (expr
, &ctx
, &ht
);
12049 md5_finish_ctx (&ctx
, checksum
);
12050 for (cnt
= 0; cnt
< 16; ++cnt
)
12051 fprintf (stderr
, "%02x", checksum
[cnt
]);
12052 putc ('\n', stderr
);
12056 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED
, const_tree ret ATTRIBUTE_UNUSED
)
12058 internal_error ("fold check: original tree changed by fold");
12062 fold_checksum_tree (const_tree expr
, struct md5_ctx
*ctx
,
12063 hash_table
<nofree_ptr_hash
<const tree_node
> > *ht
)
12065 const tree_node
**slot
;
12066 enum tree_code code
;
12067 union tree_node buf
;
12073 slot
= ht
->find_slot (expr
, INSERT
);
12077 code
= TREE_CODE (expr
);
12078 if (TREE_CODE_CLASS (code
) == tcc_declaration
12079 && HAS_DECL_ASSEMBLER_NAME_P (expr
))
12081 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */
12082 memcpy ((char *) &buf
, expr
, tree_size (expr
));
12083 SET_DECL_ASSEMBLER_NAME ((tree
)&buf
, NULL
);
12084 buf
.decl_with_vis
.symtab_node
= NULL
;
12085 expr
= (tree
) &buf
;
12087 else if (TREE_CODE_CLASS (code
) == tcc_type
12088 && (TYPE_POINTER_TO (expr
)
12089 || TYPE_REFERENCE_TO (expr
)
12090 || TYPE_CACHED_VALUES_P (expr
)
12091 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr
)
12092 || TYPE_NEXT_VARIANT (expr
)
12093 || TYPE_ALIAS_SET_KNOWN_P (expr
)))
12095 /* Allow these fields to be modified. */
12097 memcpy ((char *) &buf
, expr
, tree_size (expr
));
12098 expr
= tmp
= (tree
) &buf
;
12099 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp
) = 0;
12100 TYPE_POINTER_TO (tmp
) = NULL
;
12101 TYPE_REFERENCE_TO (tmp
) = NULL
;
12102 TYPE_NEXT_VARIANT (tmp
) = NULL
;
12103 TYPE_ALIAS_SET (tmp
) = -1;
12104 if (TYPE_CACHED_VALUES_P (tmp
))
12106 TYPE_CACHED_VALUES_P (tmp
) = 0;
12107 TYPE_CACHED_VALUES (tmp
) = NULL
;
12110 md5_process_bytes (expr
, tree_size (expr
), ctx
);
12111 if (CODE_CONTAINS_STRUCT (code
, TS_TYPED
))
12112 fold_checksum_tree (TREE_TYPE (expr
), ctx
, ht
);
12113 if (TREE_CODE_CLASS (code
) != tcc_type
12114 && TREE_CODE_CLASS (code
) != tcc_declaration
12115 && code
!= TREE_LIST
12116 && code
!= SSA_NAME
12117 && CODE_CONTAINS_STRUCT (code
, TS_COMMON
))
12118 fold_checksum_tree (TREE_CHAIN (expr
), ctx
, ht
);
12119 switch (TREE_CODE_CLASS (code
))
12125 md5_process_bytes (TREE_STRING_POINTER (expr
),
12126 TREE_STRING_LENGTH (expr
), ctx
);
12129 fold_checksum_tree (TREE_REALPART (expr
), ctx
, ht
);
12130 fold_checksum_tree (TREE_IMAGPART (expr
), ctx
, ht
);
12133 len
= vector_cst_encoded_nelts (expr
);
12134 for (i
= 0; i
< len
; ++i
)
12135 fold_checksum_tree (VECTOR_CST_ENCODED_ELT (expr
, i
), ctx
, ht
);
12141 case tcc_exceptional
:
12145 fold_checksum_tree (TREE_PURPOSE (expr
), ctx
, ht
);
12146 fold_checksum_tree (TREE_VALUE (expr
), ctx
, ht
);
12147 expr
= TREE_CHAIN (expr
);
12148 goto recursive_label
;
12151 for (i
= 0; i
< TREE_VEC_LENGTH (expr
); ++i
)
12152 fold_checksum_tree (TREE_VEC_ELT (expr
, i
), ctx
, ht
);
12158 case tcc_expression
:
12159 case tcc_reference
:
12160 case tcc_comparison
:
12163 case tcc_statement
:
12165 len
= TREE_OPERAND_LENGTH (expr
);
12166 for (i
= 0; i
< len
; ++i
)
12167 fold_checksum_tree (TREE_OPERAND (expr
, i
), ctx
, ht
);
12169 case tcc_declaration
:
12170 fold_checksum_tree (DECL_NAME (expr
), ctx
, ht
);
12171 fold_checksum_tree (DECL_CONTEXT (expr
), ctx
, ht
);
12172 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr
), TS_DECL_COMMON
))
12174 fold_checksum_tree (DECL_SIZE (expr
), ctx
, ht
);
12175 fold_checksum_tree (DECL_SIZE_UNIT (expr
), ctx
, ht
);
12176 fold_checksum_tree (DECL_INITIAL (expr
), ctx
, ht
);
12177 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr
), ctx
, ht
);
12178 fold_checksum_tree (DECL_ATTRIBUTES (expr
), ctx
, ht
);
12181 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr
), TS_DECL_NON_COMMON
))
12183 if (TREE_CODE (expr
) == FUNCTION_DECL
)
12185 fold_checksum_tree (DECL_VINDEX (expr
), ctx
, ht
);
12186 fold_checksum_tree (DECL_ARGUMENTS (expr
), ctx
, ht
);
12188 fold_checksum_tree (DECL_RESULT_FLD (expr
), ctx
, ht
);
12192 if (TREE_CODE (expr
) == ENUMERAL_TYPE
)
12193 fold_checksum_tree (TYPE_VALUES (expr
), ctx
, ht
);
12194 fold_checksum_tree (TYPE_SIZE (expr
), ctx
, ht
);
12195 fold_checksum_tree (TYPE_SIZE_UNIT (expr
), ctx
, ht
);
12196 fold_checksum_tree (TYPE_ATTRIBUTES (expr
), ctx
, ht
);
12197 fold_checksum_tree (TYPE_NAME (expr
), ctx
, ht
);
12198 if (INTEGRAL_TYPE_P (expr
)
12199 || SCALAR_FLOAT_TYPE_P (expr
))
12201 fold_checksum_tree (TYPE_MIN_VALUE (expr
), ctx
, ht
);
12202 fold_checksum_tree (TYPE_MAX_VALUE (expr
), ctx
, ht
);
12204 fold_checksum_tree (TYPE_MAIN_VARIANT (expr
), ctx
, ht
);
12205 if (TREE_CODE (expr
) == RECORD_TYPE
12206 || TREE_CODE (expr
) == UNION_TYPE
12207 || TREE_CODE (expr
) == QUAL_UNION_TYPE
)
12208 fold_checksum_tree (TYPE_BINFO (expr
), ctx
, ht
);
12209 fold_checksum_tree (TYPE_CONTEXT (expr
), ctx
, ht
);
12216 /* Helper function for outputting the checksum of a tree T. When
12217 debugging with gdb, you can "define mynext" to be "next" followed
12218 by "call debug_fold_checksum (op0)", then just trace down till the
12221 DEBUG_FUNCTION
void
12222 debug_fold_checksum (const_tree t
)
12225 unsigned char checksum
[16];
12226 struct md5_ctx ctx
;
12227 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12229 md5_init_ctx (&ctx
);
12230 fold_checksum_tree (t
, &ctx
, &ht
);
12231 md5_finish_ctx (&ctx
, checksum
);
12234 for (i
= 0; i
< 16; i
++)
12235 fprintf (stderr
, "%d ", checksum
[i
]);
12237 fprintf (stderr
, "\n");
12242 /* Fold a unary tree expression with code CODE of type TYPE with an
12243 operand OP0. LOC is the location of the resulting expression.
12244 Return a folded expression if successful. Otherwise, return a tree
12245 expression with code CODE of type TYPE with an operand OP0. */
12248 fold_build1_loc (location_t loc
,
12249 enum tree_code code
, tree type
, tree op0 MEM_STAT_DECL
)
12252 #ifdef ENABLE_FOLD_CHECKING
12253 unsigned char checksum_before
[16], checksum_after
[16];
12254 struct md5_ctx ctx
;
12255 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12257 md5_init_ctx (&ctx
);
12258 fold_checksum_tree (op0
, &ctx
, &ht
);
12259 md5_finish_ctx (&ctx
, checksum_before
);
12263 tem
= fold_unary_loc (loc
, code
, type
, op0
);
12265 tem
= build1_loc (loc
, code
, type
, op0 PASS_MEM_STAT
);
12267 #ifdef ENABLE_FOLD_CHECKING
12268 md5_init_ctx (&ctx
);
12269 fold_checksum_tree (op0
, &ctx
, &ht
);
12270 md5_finish_ctx (&ctx
, checksum_after
);
12272 if (memcmp (checksum_before
, checksum_after
, 16))
12273 fold_check_failed (op0
, tem
);
12278 /* Fold a binary tree expression with code CODE of type TYPE with
12279 operands OP0 and OP1. LOC is the location of the resulting
12280 expression. Return a folded expression if successful. Otherwise,
12281 return a tree expression with code CODE of type TYPE with operands
12285 fold_build2_loc (location_t loc
,
12286 enum tree_code code
, tree type
, tree op0
, tree op1
12290 #ifdef ENABLE_FOLD_CHECKING
12291 unsigned char checksum_before_op0
[16],
12292 checksum_before_op1
[16],
12293 checksum_after_op0
[16],
12294 checksum_after_op1
[16];
12295 struct md5_ctx ctx
;
12296 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12298 md5_init_ctx (&ctx
);
12299 fold_checksum_tree (op0
, &ctx
, &ht
);
12300 md5_finish_ctx (&ctx
, checksum_before_op0
);
12303 md5_init_ctx (&ctx
);
12304 fold_checksum_tree (op1
, &ctx
, &ht
);
12305 md5_finish_ctx (&ctx
, checksum_before_op1
);
12309 tem
= fold_binary_loc (loc
, code
, type
, op0
, op1
);
12311 tem
= build2_loc (loc
, code
, type
, op0
, op1 PASS_MEM_STAT
);
12313 #ifdef ENABLE_FOLD_CHECKING
12314 md5_init_ctx (&ctx
);
12315 fold_checksum_tree (op0
, &ctx
, &ht
);
12316 md5_finish_ctx (&ctx
, checksum_after_op0
);
12319 if (memcmp (checksum_before_op0
, checksum_after_op0
, 16))
12320 fold_check_failed (op0
, tem
);
12322 md5_init_ctx (&ctx
);
12323 fold_checksum_tree (op1
, &ctx
, &ht
);
12324 md5_finish_ctx (&ctx
, checksum_after_op1
);
12326 if (memcmp (checksum_before_op1
, checksum_after_op1
, 16))
12327 fold_check_failed (op1
, tem
);
12332 /* Fold a ternary tree expression with code CODE of type TYPE with
12333 operands OP0, OP1, and OP2. Return a folded expression if
12334 successful. Otherwise, return a tree expression with code CODE of
12335 type TYPE with operands OP0, OP1, and OP2. */
12338 fold_build3_loc (location_t loc
, enum tree_code code
, tree type
,
12339 tree op0
, tree op1
, tree op2 MEM_STAT_DECL
)
12342 #ifdef ENABLE_FOLD_CHECKING
12343 unsigned char checksum_before_op0
[16],
12344 checksum_before_op1
[16],
12345 checksum_before_op2
[16],
12346 checksum_after_op0
[16],
12347 checksum_after_op1
[16],
12348 checksum_after_op2
[16];
12349 struct md5_ctx ctx
;
12350 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12352 md5_init_ctx (&ctx
);
12353 fold_checksum_tree (op0
, &ctx
, &ht
);
12354 md5_finish_ctx (&ctx
, checksum_before_op0
);
12357 md5_init_ctx (&ctx
);
12358 fold_checksum_tree (op1
, &ctx
, &ht
);
12359 md5_finish_ctx (&ctx
, checksum_before_op1
);
12362 md5_init_ctx (&ctx
);
12363 fold_checksum_tree (op2
, &ctx
, &ht
);
12364 md5_finish_ctx (&ctx
, checksum_before_op2
);
12368 gcc_assert (TREE_CODE_CLASS (code
) != tcc_vl_exp
);
12369 tem
= fold_ternary_loc (loc
, code
, type
, op0
, op1
, op2
);
12371 tem
= build3_loc (loc
, code
, type
, op0
, op1
, op2 PASS_MEM_STAT
);
12373 #ifdef ENABLE_FOLD_CHECKING
12374 md5_init_ctx (&ctx
);
12375 fold_checksum_tree (op0
, &ctx
, &ht
);
12376 md5_finish_ctx (&ctx
, checksum_after_op0
);
12379 if (memcmp (checksum_before_op0
, checksum_after_op0
, 16))
12380 fold_check_failed (op0
, tem
);
12382 md5_init_ctx (&ctx
);
12383 fold_checksum_tree (op1
, &ctx
, &ht
);
12384 md5_finish_ctx (&ctx
, checksum_after_op1
);
12387 if (memcmp (checksum_before_op1
, checksum_after_op1
, 16))
12388 fold_check_failed (op1
, tem
);
12390 md5_init_ctx (&ctx
);
12391 fold_checksum_tree (op2
, &ctx
, &ht
);
12392 md5_finish_ctx (&ctx
, checksum_after_op2
);
12394 if (memcmp (checksum_before_op2
, checksum_after_op2
, 16))
12395 fold_check_failed (op2
, tem
);
12400 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
12401 arguments in ARGARRAY, and a null static chain.
12402 Return a folded expression if successful. Otherwise, return a CALL_EXPR
12403 of type TYPE from the given operands as constructed by build_call_array. */
12406 fold_build_call_array_loc (location_t loc
, tree type
, tree fn
,
12407 int nargs
, tree
*argarray
)
12410 #ifdef ENABLE_FOLD_CHECKING
12411 unsigned char checksum_before_fn
[16],
12412 checksum_before_arglist
[16],
12413 checksum_after_fn
[16],
12414 checksum_after_arglist
[16];
12415 struct md5_ctx ctx
;
12416 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12419 md5_init_ctx (&ctx
);
12420 fold_checksum_tree (fn
, &ctx
, &ht
);
12421 md5_finish_ctx (&ctx
, checksum_before_fn
);
12424 md5_init_ctx (&ctx
);
12425 for (i
= 0; i
< nargs
; i
++)
12426 fold_checksum_tree (argarray
[i
], &ctx
, &ht
);
12427 md5_finish_ctx (&ctx
, checksum_before_arglist
);
12431 tem
= fold_builtin_call_array (loc
, type
, fn
, nargs
, argarray
);
12433 tem
= build_call_array_loc (loc
, type
, fn
, nargs
, argarray
);
12435 #ifdef ENABLE_FOLD_CHECKING
12436 md5_init_ctx (&ctx
);
12437 fold_checksum_tree (fn
, &ctx
, &ht
);
12438 md5_finish_ctx (&ctx
, checksum_after_fn
);
12441 if (memcmp (checksum_before_fn
, checksum_after_fn
, 16))
12442 fold_check_failed (fn
, tem
);
12444 md5_init_ctx (&ctx
);
12445 for (i
= 0; i
< nargs
; i
++)
12446 fold_checksum_tree (argarray
[i
], &ctx
, &ht
);
12447 md5_finish_ctx (&ctx
, checksum_after_arglist
);
12449 if (memcmp (checksum_before_arglist
, checksum_after_arglist
, 16))
12450 fold_check_failed (NULL_TREE
, tem
);
12455 /* Perform constant folding and related simplification of initializer
12456 expression EXPR. These behave identically to "fold_buildN" but ignore
12457 potential run-time traps and exceptions that fold must preserve. */
12459 #define START_FOLD_INIT \
12460 int saved_signaling_nans = flag_signaling_nans;\
12461 int saved_trapping_math = flag_trapping_math;\
12462 int saved_rounding_math = flag_rounding_math;\
12463 int saved_trapv = flag_trapv;\
12464 int saved_folding_initializer = folding_initializer;\
12465 flag_signaling_nans = 0;\
12466 flag_trapping_math = 0;\
12467 flag_rounding_math = 0;\
12469 folding_initializer = 1;
12471 #define END_FOLD_INIT \
12472 flag_signaling_nans = saved_signaling_nans;\
12473 flag_trapping_math = saved_trapping_math;\
12474 flag_rounding_math = saved_rounding_math;\
12475 flag_trapv = saved_trapv;\
12476 folding_initializer = saved_folding_initializer;
12479 fold_build1_initializer_loc (location_t loc
, enum tree_code code
,
12480 tree type
, tree op
)
12485 result
= fold_build1_loc (loc
, code
, type
, op
);
12492 fold_build2_initializer_loc (location_t loc
, enum tree_code code
,
12493 tree type
, tree op0
, tree op1
)
12498 result
= fold_build2_loc (loc
, code
, type
, op0
, op1
);
12505 fold_build_call_array_initializer_loc (location_t loc
, tree type
, tree fn
,
12506 int nargs
, tree
*argarray
)
12511 result
= fold_build_call_array_loc (loc
, type
, fn
, nargs
, argarray
);
12517 #undef START_FOLD_INIT
12518 #undef END_FOLD_INIT
12520 /* Determine if first argument is a multiple of second argument. Return 0 if
12521 it is not, or we cannot easily determined it to be.
12523 An example of the sort of thing we care about (at this point; this routine
12524 could surely be made more general, and expanded to do what the *_DIV_EXPR's
12525 fold cases do now) is discovering that
12527 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12533 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
12535 This code also handles discovering that
12537 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12539 is a multiple of 8 so we don't have to worry about dealing with a
12540 possible remainder.
12542 Note that we *look* inside a SAVE_EXPR only to determine how it was
12543 calculated; it is not safe for fold to do much of anything else with the
12544 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
12545 at run time. For example, the latter example above *cannot* be implemented
12546 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
12547 evaluation time of the original SAVE_EXPR is not necessarily the same at
12548 the time the new expression is evaluated. The only optimization of this
12549 sort that would be valid is changing
12551 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
12555 SAVE_EXPR (I) * SAVE_EXPR (J)
12557 (where the same SAVE_EXPR (J) is used in the original and the
12558 transformed version). */
12561 multiple_of_p (tree type
, const_tree top
, const_tree bottom
)
12566 if (operand_equal_p (top
, bottom
, 0))
12569 if (TREE_CODE (type
) != INTEGER_TYPE
)
12572 switch (TREE_CODE (top
))
12575 /* Bitwise and provides a power of two multiple. If the mask is
12576 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
12577 if (!integer_pow2p (bottom
))
12579 return (multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
)
12580 || multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
));
12583 if (TREE_CODE (bottom
) == INTEGER_CST
)
12585 op1
= TREE_OPERAND (top
, 0);
12586 op2
= TREE_OPERAND (top
, 1);
12587 if (TREE_CODE (op1
) == INTEGER_CST
)
12588 std::swap (op1
, op2
);
12589 if (TREE_CODE (op2
) == INTEGER_CST
)
12591 if (multiple_of_p (type
, op2
, bottom
))
12593 /* Handle multiple_of_p ((x * 2 + 2) * 4, 8). */
12594 if (multiple_of_p (type
, bottom
, op2
))
12596 widest_int w
= wi::sdiv_trunc (wi::to_widest (bottom
),
12597 wi::to_widest (op2
));
12598 if (wi::fits_to_tree_p (w
, TREE_TYPE (bottom
)))
12600 op2
= wide_int_to_tree (TREE_TYPE (bottom
), w
);
12601 return multiple_of_p (type
, op1
, op2
);
12604 return multiple_of_p (type
, op1
, bottom
);
12607 return (multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
)
12608 || multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
));
12611 /* It is impossible to prove if op0 - op1 is multiple of bottom
12612 precisely, so be conservative here checking if both op0 and op1
12613 are multiple of bottom. Note we check the second operand first
12614 since it's usually simpler. */
12615 return (multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
)
12616 && multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
));
12619 /* The same as MINUS_EXPR, but handle cases like op0 + 0xfffffffd
12620 as op0 - 3 if the expression has unsigned type. For example,
12621 (X / 3) + 0xfffffffd is multiple of 3, but 0xfffffffd is not. */
12622 op1
= TREE_OPERAND (top
, 1);
12623 if (TYPE_UNSIGNED (type
)
12624 && TREE_CODE (op1
) == INTEGER_CST
&& tree_int_cst_sign_bit (op1
))
12625 op1
= fold_build1 (NEGATE_EXPR
, type
, op1
);
12626 return (multiple_of_p (type
, op1
, bottom
)
12627 && multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
));
12630 if (TREE_CODE (TREE_OPERAND (top
, 1)) == INTEGER_CST
)
12632 op1
= TREE_OPERAND (top
, 1);
12633 /* const_binop may not detect overflow correctly,
12634 so check for it explicitly here. */
12635 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node
)),
12637 && (t1
= fold_convert (type
,
12638 const_binop (LSHIFT_EXPR
, size_one_node
,
12640 && !TREE_OVERFLOW (t1
))
12641 return multiple_of_p (type
, t1
, bottom
);
12646 /* Can't handle conversions from non-integral or wider integral type. */
12647 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top
, 0))) != INTEGER_TYPE
)
12648 || (TYPE_PRECISION (type
)
12649 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top
, 0)))))
12655 return multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
);
12658 return (multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
)
12659 && multiple_of_p (type
, TREE_OPERAND (top
, 2), bottom
));
12662 if (TREE_CODE (bottom
) != INTEGER_CST
12663 || integer_zerop (bottom
)
12664 || (TYPE_UNSIGNED (type
)
12665 && (tree_int_cst_sgn (top
) < 0
12666 || tree_int_cst_sgn (bottom
) < 0)))
12668 return wi::multiple_of_p (wi::to_widest (top
), wi::to_widest (bottom
),
12672 if (TREE_CODE (bottom
) == INTEGER_CST
12673 && (stmt
= SSA_NAME_DEF_STMT (top
)) != NULL
12674 && gimple_code (stmt
) == GIMPLE_ASSIGN
)
12676 enum tree_code code
= gimple_assign_rhs_code (stmt
);
12678 /* Check for special cases to see if top is defined as multiple
12681 top = (X & ~(bottom - 1) ; bottom is power of 2
12687 if (code
== BIT_AND_EXPR
12688 && (op2
= gimple_assign_rhs2 (stmt
)) != NULL_TREE
12689 && TREE_CODE (op2
) == INTEGER_CST
12690 && integer_pow2p (bottom
)
12691 && wi::multiple_of_p (wi::to_widest (op2
),
12692 wi::to_widest (bottom
), UNSIGNED
))
12695 op1
= gimple_assign_rhs1 (stmt
);
12696 if (code
== MINUS_EXPR
12697 && (op2
= gimple_assign_rhs2 (stmt
)) != NULL_TREE
12698 && TREE_CODE (op2
) == SSA_NAME
12699 && (stmt
= SSA_NAME_DEF_STMT (op2
)) != NULL
12700 && gimple_code (stmt
) == GIMPLE_ASSIGN
12701 && (code
= gimple_assign_rhs_code (stmt
)) == TRUNC_MOD_EXPR
12702 && operand_equal_p (op1
, gimple_assign_rhs1 (stmt
), 0)
12703 && operand_equal_p (bottom
, gimple_assign_rhs2 (stmt
), 0))
12710 if (POLY_INT_CST_P (top
) && poly_int_tree_p (bottom
))
12711 return multiple_p (wi::to_poly_widest (top
),
12712 wi::to_poly_widest (bottom
));
12718 #define tree_expr_nonnegative_warnv_p(X, Y) \
12719 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
12721 #define RECURSE(X) \
12722 ((tree_expr_nonnegative_warnv_p) (X, strict_overflow_p, depth + 1))
12724 /* Return true if CODE or TYPE is known to be non-negative. */
12727 tree_simple_nonnegative_warnv_p (enum tree_code code
, tree type
)
12729 if ((TYPE_PRECISION (type
) != 1 || TYPE_UNSIGNED (type
))
12730 && truth_value_p (code
))
12731 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
12732 have a signed:1 type (where the value is -1 and 0). */
12737 /* Return true if (CODE OP0) is known to be non-negative. If the return
12738 value is based on the assumption that signed overflow is undefined,
12739 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12740 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12743 tree_unary_nonnegative_warnv_p (enum tree_code code
, tree type
, tree op0
,
12744 bool *strict_overflow_p
, int depth
)
12746 if (TYPE_UNSIGNED (type
))
12752 /* We can't return 1 if flag_wrapv is set because
12753 ABS_EXPR<INT_MIN> = INT_MIN. */
12754 if (!ANY_INTEGRAL_TYPE_P (type
))
12756 if (TYPE_OVERFLOW_UNDEFINED (type
))
12758 *strict_overflow_p
= true;
12763 case NON_LVALUE_EXPR
:
12765 case FIX_TRUNC_EXPR
:
12766 return RECURSE (op0
);
12770 tree inner_type
= TREE_TYPE (op0
);
12771 tree outer_type
= type
;
12773 if (TREE_CODE (outer_type
) == REAL_TYPE
)
12775 if (TREE_CODE (inner_type
) == REAL_TYPE
)
12776 return RECURSE (op0
);
12777 if (INTEGRAL_TYPE_P (inner_type
))
12779 if (TYPE_UNSIGNED (inner_type
))
12781 return RECURSE (op0
);
12784 else if (INTEGRAL_TYPE_P (outer_type
))
12786 if (TREE_CODE (inner_type
) == REAL_TYPE
)
12787 return RECURSE (op0
);
12788 if (INTEGRAL_TYPE_P (inner_type
))
12789 return TYPE_PRECISION (inner_type
) < TYPE_PRECISION (outer_type
)
12790 && TYPE_UNSIGNED (inner_type
);
12796 return tree_simple_nonnegative_warnv_p (code
, type
);
12799 /* We don't know sign of `t', so be conservative and return false. */
12803 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
12804 value is based on the assumption that signed overflow is undefined,
12805 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12806 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12809 tree_binary_nonnegative_warnv_p (enum tree_code code
, tree type
, tree op0
,
12810 tree op1
, bool *strict_overflow_p
,
12813 if (TYPE_UNSIGNED (type
))
12818 case POINTER_PLUS_EXPR
:
12820 if (FLOAT_TYPE_P (type
))
12821 return RECURSE (op0
) && RECURSE (op1
);
12823 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
12824 both unsigned and at least 2 bits shorter than the result. */
12825 if (TREE_CODE (type
) == INTEGER_TYPE
12826 && TREE_CODE (op0
) == NOP_EXPR
12827 && TREE_CODE (op1
) == NOP_EXPR
)
12829 tree inner1
= TREE_TYPE (TREE_OPERAND (op0
, 0));
12830 tree inner2
= TREE_TYPE (TREE_OPERAND (op1
, 0));
12831 if (TREE_CODE (inner1
) == INTEGER_TYPE
&& TYPE_UNSIGNED (inner1
)
12832 && TREE_CODE (inner2
) == INTEGER_TYPE
&& TYPE_UNSIGNED (inner2
))
12834 unsigned int prec
= MAX (TYPE_PRECISION (inner1
),
12835 TYPE_PRECISION (inner2
)) + 1;
12836 return prec
< TYPE_PRECISION (type
);
12842 if (FLOAT_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
12844 /* x * x is always non-negative for floating point x
12845 or without overflow. */
12846 if (operand_equal_p (op0
, op1
, 0)
12847 || (RECURSE (op0
) && RECURSE (op1
)))
12849 if (ANY_INTEGRAL_TYPE_P (type
)
12850 && TYPE_OVERFLOW_UNDEFINED (type
))
12851 *strict_overflow_p
= true;
12856 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
12857 both unsigned and their total bits is shorter than the result. */
12858 if (TREE_CODE (type
) == INTEGER_TYPE
12859 && (TREE_CODE (op0
) == NOP_EXPR
|| TREE_CODE (op0
) == INTEGER_CST
)
12860 && (TREE_CODE (op1
) == NOP_EXPR
|| TREE_CODE (op1
) == INTEGER_CST
))
12862 tree inner0
= (TREE_CODE (op0
) == NOP_EXPR
)
12863 ? TREE_TYPE (TREE_OPERAND (op0
, 0))
12865 tree inner1
= (TREE_CODE (op1
) == NOP_EXPR
)
12866 ? TREE_TYPE (TREE_OPERAND (op1
, 0))
12869 bool unsigned0
= TYPE_UNSIGNED (inner0
);
12870 bool unsigned1
= TYPE_UNSIGNED (inner1
);
12872 if (TREE_CODE (op0
) == INTEGER_CST
)
12873 unsigned0
= unsigned0
|| tree_int_cst_sgn (op0
) >= 0;
12875 if (TREE_CODE (op1
) == INTEGER_CST
)
12876 unsigned1
= unsigned1
|| tree_int_cst_sgn (op1
) >= 0;
12878 if (TREE_CODE (inner0
) == INTEGER_TYPE
&& unsigned0
12879 && TREE_CODE (inner1
) == INTEGER_TYPE
&& unsigned1
)
12881 unsigned int precision0
= (TREE_CODE (op0
) == INTEGER_CST
)
12882 ? tree_int_cst_min_precision (op0
, UNSIGNED
)
12883 : TYPE_PRECISION (inner0
);
12885 unsigned int precision1
= (TREE_CODE (op1
) == INTEGER_CST
)
12886 ? tree_int_cst_min_precision (op1
, UNSIGNED
)
12887 : TYPE_PRECISION (inner1
);
12889 return precision0
+ precision1
< TYPE_PRECISION (type
);
12896 return RECURSE (op0
) || RECURSE (op1
);
12902 case TRUNC_DIV_EXPR
:
12903 case CEIL_DIV_EXPR
:
12904 case FLOOR_DIV_EXPR
:
12905 case ROUND_DIV_EXPR
:
12906 return RECURSE (op0
) && RECURSE (op1
);
12908 case TRUNC_MOD_EXPR
:
12909 return RECURSE (op0
);
12911 case FLOOR_MOD_EXPR
:
12912 return RECURSE (op1
);
12914 case CEIL_MOD_EXPR
:
12915 case ROUND_MOD_EXPR
:
12917 return tree_simple_nonnegative_warnv_p (code
, type
);
12920 /* We don't know sign of `t', so be conservative and return false. */
12924 /* Return true if T is known to be non-negative. If the return
12925 value is based on the assumption that signed overflow is undefined,
12926 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12927 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12930 tree_single_nonnegative_warnv_p (tree t
, bool *strict_overflow_p
, int depth
)
12932 if (TYPE_UNSIGNED (TREE_TYPE (t
)))
12935 switch (TREE_CODE (t
))
12938 return tree_int_cst_sgn (t
) >= 0;
12941 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t
));
12944 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t
));
12947 return RECURSE (TREE_OPERAND (t
, 1)) && RECURSE (TREE_OPERAND (t
, 2));
12950 /* Limit the depth of recursion to avoid quadratic behavior.
12951 This is expected to catch almost all occurrences in practice.
12952 If this code misses important cases that unbounded recursion
12953 would not, passes that need this information could be revised
12954 to provide it through dataflow propagation. */
12955 return (!name_registered_for_update_p (t
)
12956 && depth
< PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH
)
12957 && gimple_stmt_nonnegative_warnv_p (SSA_NAME_DEF_STMT (t
),
12958 strict_overflow_p
, depth
));
12961 return tree_simple_nonnegative_warnv_p (TREE_CODE (t
), TREE_TYPE (t
));
12965 /* Return true if T is known to be non-negative. If the return
12966 value is based on the assumption that signed overflow is undefined,
12967 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12968 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12971 tree_call_nonnegative_warnv_p (tree type
, combined_fn fn
, tree arg0
, tree arg1
,
12972 bool *strict_overflow_p
, int depth
)
12993 case CFN_BUILT_IN_BSWAP32
:
12994 case CFN_BUILT_IN_BSWAP64
:
13000 /* sqrt(-0.0) is -0.0. */
13001 if (!HONOR_SIGNED_ZEROS (element_mode (type
)))
13003 return RECURSE (arg0
);
13031 CASE_CFN_NEARBYINT
:
13032 CASE_CFN_NEARBYINT_FN
:
13041 CASE_CFN_SIGNIFICAND
:
13046 /* True if the 1st argument is nonnegative. */
13047 return RECURSE (arg0
);
13051 /* True if the 1st OR 2nd arguments are nonnegative. */
13052 return RECURSE (arg0
) || RECURSE (arg1
);
13056 /* True if the 1st AND 2nd arguments are nonnegative. */
13057 return RECURSE (arg0
) && RECURSE (arg1
);
13060 CASE_CFN_COPYSIGN_FN
:
13061 /* True if the 2nd argument is nonnegative. */
13062 return RECURSE (arg1
);
13065 /* True if the 1st argument is nonnegative or the second
13066 argument is an even integer. */
13067 if (TREE_CODE (arg1
) == INTEGER_CST
13068 && (TREE_INT_CST_LOW (arg1
) & 1) == 0)
13070 return RECURSE (arg0
);
13073 /* True if the 1st argument is nonnegative or the second
13074 argument is an even integer valued real. */
13075 if (TREE_CODE (arg1
) == REAL_CST
)
13080 c
= TREE_REAL_CST (arg1
);
13081 n
= real_to_integer (&c
);
13084 REAL_VALUE_TYPE cint
;
13085 real_from_integer (&cint
, VOIDmode
, n
, SIGNED
);
13086 if (real_identical (&c
, &cint
))
13090 return RECURSE (arg0
);
13095 return tree_simple_nonnegative_warnv_p (CALL_EXPR
, type
);
13098 /* Return true if T is known to be non-negative. If the return
13099 value is based on the assumption that signed overflow is undefined,
13100 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13101 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13104 tree_invalid_nonnegative_warnv_p (tree t
, bool *strict_overflow_p
, int depth
)
13106 enum tree_code code
= TREE_CODE (t
);
13107 if (TYPE_UNSIGNED (TREE_TYPE (t
)))
13114 tree temp
= TARGET_EXPR_SLOT (t
);
13115 t
= TARGET_EXPR_INITIAL (t
);
13117 /* If the initializer is non-void, then it's a normal expression
13118 that will be assigned to the slot. */
13119 if (!VOID_TYPE_P (t
))
13120 return RECURSE (t
);
13122 /* Otherwise, the initializer sets the slot in some way. One common
13123 way is an assignment statement at the end of the initializer. */
13126 if (TREE_CODE (t
) == BIND_EXPR
)
13127 t
= expr_last (BIND_EXPR_BODY (t
));
13128 else if (TREE_CODE (t
) == TRY_FINALLY_EXPR
13129 || TREE_CODE (t
) == TRY_CATCH_EXPR
)
13130 t
= expr_last (TREE_OPERAND (t
, 0));
13131 else if (TREE_CODE (t
) == STATEMENT_LIST
)
13136 if (TREE_CODE (t
) == MODIFY_EXPR
13137 && TREE_OPERAND (t
, 0) == temp
)
13138 return RECURSE (TREE_OPERAND (t
, 1));
13145 tree arg0
= call_expr_nargs (t
) > 0 ? CALL_EXPR_ARG (t
, 0) : NULL_TREE
;
13146 tree arg1
= call_expr_nargs (t
) > 1 ? CALL_EXPR_ARG (t
, 1) : NULL_TREE
;
13148 return tree_call_nonnegative_warnv_p (TREE_TYPE (t
),
13149 get_call_combined_fn (t
),
13152 strict_overflow_p
, depth
);
13154 case COMPOUND_EXPR
:
13156 return RECURSE (TREE_OPERAND (t
, 1));
13159 return RECURSE (expr_last (TREE_OPERAND (t
, 1)));
13162 return RECURSE (TREE_OPERAND (t
, 0));
13165 return tree_simple_nonnegative_warnv_p (TREE_CODE (t
), TREE_TYPE (t
));
13170 #undef tree_expr_nonnegative_warnv_p
13172 /* Return true if T is known to be non-negative. If the return
13173 value is based on the assumption that signed overflow is undefined,
13174 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13175 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13178 tree_expr_nonnegative_warnv_p (tree t
, bool *strict_overflow_p
, int depth
)
13180 enum tree_code code
;
13181 if (t
== error_mark_node
)
13184 code
= TREE_CODE (t
);
13185 switch (TREE_CODE_CLASS (code
))
13188 case tcc_comparison
:
13189 return tree_binary_nonnegative_warnv_p (TREE_CODE (t
),
13191 TREE_OPERAND (t
, 0),
13192 TREE_OPERAND (t
, 1),
13193 strict_overflow_p
, depth
);
13196 return tree_unary_nonnegative_warnv_p (TREE_CODE (t
),
13198 TREE_OPERAND (t
, 0),
13199 strict_overflow_p
, depth
);
13202 case tcc_declaration
:
13203 case tcc_reference
:
13204 return tree_single_nonnegative_warnv_p (t
, strict_overflow_p
, depth
);
13212 case TRUTH_AND_EXPR
:
13213 case TRUTH_OR_EXPR
:
13214 case TRUTH_XOR_EXPR
:
13215 return tree_binary_nonnegative_warnv_p (TREE_CODE (t
),
13217 TREE_OPERAND (t
, 0),
13218 TREE_OPERAND (t
, 1),
13219 strict_overflow_p
, depth
);
13220 case TRUTH_NOT_EXPR
:
13221 return tree_unary_nonnegative_warnv_p (TREE_CODE (t
),
13223 TREE_OPERAND (t
, 0),
13224 strict_overflow_p
, depth
);
13231 case WITH_SIZE_EXPR
:
13233 return tree_single_nonnegative_warnv_p (t
, strict_overflow_p
, depth
);
13236 return tree_invalid_nonnegative_warnv_p (t
, strict_overflow_p
, depth
);
13240 /* Return true if `t' is known to be non-negative. Handle warnings
13241 about undefined signed overflow. */
13244 tree_expr_nonnegative_p (tree t
)
13246 bool ret
, strict_overflow_p
;
13248 strict_overflow_p
= false;
13249 ret
= tree_expr_nonnegative_warnv_p (t
, &strict_overflow_p
);
13250 if (strict_overflow_p
)
13251 fold_overflow_warning (("assuming signed overflow does not occur when "
13252 "determining that expression is always "
13254 WARN_STRICT_OVERFLOW_MISC
);
13259 /* Return true when (CODE OP0) is an address and is known to be nonzero.
13260 For floating point we further ensure that T is not denormal.
13261 Similar logic is present in nonzero_address in rtlanal.h.
13263 If the return value is based on the assumption that signed overflow
13264 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13265 change *STRICT_OVERFLOW_P. */
13268 tree_unary_nonzero_warnv_p (enum tree_code code
, tree type
, tree op0
,
13269 bool *strict_overflow_p
)
13274 return tree_expr_nonzero_warnv_p (op0
,
13275 strict_overflow_p
);
13279 tree inner_type
= TREE_TYPE (op0
);
13280 tree outer_type
= type
;
13282 return (TYPE_PRECISION (outer_type
) >= TYPE_PRECISION (inner_type
)
13283 && tree_expr_nonzero_warnv_p (op0
,
13284 strict_overflow_p
));
13288 case NON_LVALUE_EXPR
:
13289 return tree_expr_nonzero_warnv_p (op0
,
13290 strict_overflow_p
);
13299 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
13300 For floating point we further ensure that T is not denormal.
13301 Similar logic is present in nonzero_address in rtlanal.h.
13303 If the return value is based on the assumption that signed overflow
13304 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13305 change *STRICT_OVERFLOW_P. */
13308 tree_binary_nonzero_warnv_p (enum tree_code code
,
13311 tree op1
, bool *strict_overflow_p
)
13313 bool sub_strict_overflow_p
;
13316 case POINTER_PLUS_EXPR
:
13318 if (ANY_INTEGRAL_TYPE_P (type
) && TYPE_OVERFLOW_UNDEFINED (type
))
13320 /* With the presence of negative values it is hard
13321 to say something. */
13322 sub_strict_overflow_p
= false;
13323 if (!tree_expr_nonnegative_warnv_p (op0
,
13324 &sub_strict_overflow_p
)
13325 || !tree_expr_nonnegative_warnv_p (op1
,
13326 &sub_strict_overflow_p
))
13328 /* One of operands must be positive and the other non-negative. */
13329 /* We don't set *STRICT_OVERFLOW_P here: even if this value
13330 overflows, on a twos-complement machine the sum of two
13331 nonnegative numbers can never be zero. */
13332 return (tree_expr_nonzero_warnv_p (op0
,
13334 || tree_expr_nonzero_warnv_p (op1
,
13335 strict_overflow_p
));
13340 if (TYPE_OVERFLOW_UNDEFINED (type
))
13342 if (tree_expr_nonzero_warnv_p (op0
,
13344 && tree_expr_nonzero_warnv_p (op1
,
13345 strict_overflow_p
))
13347 *strict_overflow_p
= true;
13354 sub_strict_overflow_p
= false;
13355 if (tree_expr_nonzero_warnv_p (op0
,
13356 &sub_strict_overflow_p
)
13357 && tree_expr_nonzero_warnv_p (op1
,
13358 &sub_strict_overflow_p
))
13360 if (sub_strict_overflow_p
)
13361 *strict_overflow_p
= true;
13366 sub_strict_overflow_p
= false;
13367 if (tree_expr_nonzero_warnv_p (op0
,
13368 &sub_strict_overflow_p
))
13370 if (sub_strict_overflow_p
)
13371 *strict_overflow_p
= true;
13373 /* When both operands are nonzero, then MAX must be too. */
13374 if (tree_expr_nonzero_warnv_p (op1
,
13375 strict_overflow_p
))
13378 /* MAX where operand 0 is positive is positive. */
13379 return tree_expr_nonnegative_warnv_p (op0
,
13380 strict_overflow_p
);
13382 /* MAX where operand 1 is positive is positive. */
13383 else if (tree_expr_nonzero_warnv_p (op1
,
13384 &sub_strict_overflow_p
)
13385 && tree_expr_nonnegative_warnv_p (op1
,
13386 &sub_strict_overflow_p
))
13388 if (sub_strict_overflow_p
)
13389 *strict_overflow_p
= true;
13395 return (tree_expr_nonzero_warnv_p (op1
,
13397 || tree_expr_nonzero_warnv_p (op0
,
13398 strict_overflow_p
));
13407 /* Return true when T is an address and is known to be nonzero.
13408 For floating point we further ensure that T is not denormal.
13409 Similar logic is present in nonzero_address in rtlanal.h.
13411 If the return value is based on the assumption that signed overflow
13412 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13413 change *STRICT_OVERFLOW_P. */
13416 tree_single_nonzero_warnv_p (tree t
, bool *strict_overflow_p
)
13418 bool sub_strict_overflow_p
;
13419 switch (TREE_CODE (t
))
13422 return !integer_zerop (t
);
13426 tree base
= TREE_OPERAND (t
, 0);
13428 if (!DECL_P (base
))
13429 base
= get_base_address (base
);
13431 if (base
&& TREE_CODE (base
) == TARGET_EXPR
)
13432 base
= TARGET_EXPR_SLOT (base
);
13437 /* For objects in symbol table check if we know they are non-zero.
13438 Don't do anything for variables and functions before symtab is built;
13439 it is quite possible that they will be declared weak later. */
13440 int nonzero_addr
= maybe_nonzero_address (base
);
13441 if (nonzero_addr
>= 0)
13442 return nonzero_addr
;
13444 /* Constants are never weak. */
13445 if (CONSTANT_CLASS_P (base
))
13452 sub_strict_overflow_p
= false;
13453 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 1),
13454 &sub_strict_overflow_p
)
13455 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 2),
13456 &sub_strict_overflow_p
))
13458 if (sub_strict_overflow_p
)
13459 *strict_overflow_p
= true;
13465 if (!INTEGRAL_TYPE_P (TREE_TYPE (t
)))
13467 return expr_not_equal_to (t
, wi::zero (TYPE_PRECISION (TREE_TYPE (t
))));
13475 #define integer_valued_real_p(X) \
13476 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
13478 #define RECURSE(X) \
13479 ((integer_valued_real_p) (X, depth + 1))
13481 /* Return true if the floating point result of (CODE OP0) has an
13482 integer value. We also allow +Inf, -Inf and NaN to be considered
13483 integer values. Return false for signaling NaN.
13485 DEPTH is the current nesting depth of the query. */
13488 integer_valued_real_unary_p (tree_code code
, tree op0
, int depth
)
13496 return RECURSE (op0
);
13500 tree type
= TREE_TYPE (op0
);
13501 if (TREE_CODE (type
) == INTEGER_TYPE
)
13503 if (TREE_CODE (type
) == REAL_TYPE
)
13504 return RECURSE (op0
);
13514 /* Return true if the floating point result of (CODE OP0 OP1) has an
13515 integer value. We also allow +Inf, -Inf and NaN to be considered
13516 integer values. Return false for signaling NaN.
13518 DEPTH is the current nesting depth of the query. */
13521 integer_valued_real_binary_p (tree_code code
, tree op0
, tree op1
, int depth
)
13530 return RECURSE (op0
) && RECURSE (op1
);
13538 /* Return true if the floating point result of calling FNDECL with arguments
13539 ARG0 and ARG1 has an integer value. We also allow +Inf, -Inf and NaN to be
13540 considered integer values. Return false for signaling NaN. If FNDECL
13541 takes fewer than 2 arguments, the remaining ARGn are null.
13543 DEPTH is the current nesting depth of the query. */
13546 integer_valued_real_call_p (combined_fn fn
, tree arg0
, tree arg1
, int depth
)
13554 CASE_CFN_NEARBYINT
:
13555 CASE_CFN_NEARBYINT_FN
:
13568 return RECURSE (arg0
) && RECURSE (arg1
);
13576 /* Return true if the floating point expression T (a GIMPLE_SINGLE_RHS)
13577 has an integer value. We also allow +Inf, -Inf and NaN to be
13578 considered integer values. Return false for signaling NaN.
13580 DEPTH is the current nesting depth of the query. */
13583 integer_valued_real_single_p (tree t
, int depth
)
13585 switch (TREE_CODE (t
))
13588 return real_isinteger (TREE_REAL_CST_PTR (t
), TYPE_MODE (TREE_TYPE (t
)));
13591 return RECURSE (TREE_OPERAND (t
, 1)) && RECURSE (TREE_OPERAND (t
, 2));
13594 /* Limit the depth of recursion to avoid quadratic behavior.
13595 This is expected to catch almost all occurrences in practice.
13596 If this code misses important cases that unbounded recursion
13597 would not, passes that need this information could be revised
13598 to provide it through dataflow propagation. */
13599 return (!name_registered_for_update_p (t
)
13600 && depth
< PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH
)
13601 && gimple_stmt_integer_valued_real_p (SSA_NAME_DEF_STMT (t
),
13610 /* Return true if the floating point expression T (a GIMPLE_INVALID_RHS)
13611 has an integer value. We also allow +Inf, -Inf and NaN to be
13612 considered integer values. Return false for signaling NaN.
13614 DEPTH is the current nesting depth of the query. */
13617 integer_valued_real_invalid_p (tree t
, int depth
)
13619 switch (TREE_CODE (t
))
13621 case COMPOUND_EXPR
:
13624 return RECURSE (TREE_OPERAND (t
, 1));
13627 return RECURSE (TREE_OPERAND (t
, 0));
13636 #undef integer_valued_real_p
13638 /* Return true if the floating point expression T has an integer value.
13639 We also allow +Inf, -Inf and NaN to be considered integer values.
13640 Return false for signaling NaN.
13642 DEPTH is the current nesting depth of the query. */
13645 integer_valued_real_p (tree t
, int depth
)
13647 if (t
== error_mark_node
)
13650 tree_code code
= TREE_CODE (t
);
13651 switch (TREE_CODE_CLASS (code
))
13654 case tcc_comparison
:
13655 return integer_valued_real_binary_p (code
, TREE_OPERAND (t
, 0),
13656 TREE_OPERAND (t
, 1), depth
);
13659 return integer_valued_real_unary_p (code
, TREE_OPERAND (t
, 0), depth
);
13662 case tcc_declaration
:
13663 case tcc_reference
:
13664 return integer_valued_real_single_p (t
, depth
);
13674 return integer_valued_real_single_p (t
, depth
);
13678 tree arg0
= (call_expr_nargs (t
) > 0
13679 ? CALL_EXPR_ARG (t
, 0)
13681 tree arg1
= (call_expr_nargs (t
) > 1
13682 ? CALL_EXPR_ARG (t
, 1)
13684 return integer_valued_real_call_p (get_call_combined_fn (t
),
13685 arg0
, arg1
, depth
);
13689 return integer_valued_real_invalid_p (t
, depth
);
13693 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
13694 attempt to fold the expression to a constant without modifying TYPE,
13697 If the expression could be simplified to a constant, then return
13698 the constant. If the expression would not be simplified to a
13699 constant, then return NULL_TREE. */
13702 fold_binary_to_constant (enum tree_code code
, tree type
, tree op0
, tree op1
)
13704 tree tem
= fold_binary (code
, type
, op0
, op1
);
13705 return (tem
&& TREE_CONSTANT (tem
)) ? tem
: NULL_TREE
;
13708 /* Given the components of a unary expression CODE, TYPE and OP0,
13709 attempt to fold the expression to a constant without modifying
13712 If the expression could be simplified to a constant, then return
13713 the constant. If the expression would not be simplified to a
13714 constant, then return NULL_TREE. */
13717 fold_unary_to_constant (enum tree_code code
, tree type
, tree op0
)
13719 tree tem
= fold_unary (code
, type
, op0
);
13720 return (tem
&& TREE_CONSTANT (tem
)) ? tem
: NULL_TREE
;
13723 /* If EXP represents referencing an element in a constant string
13724 (either via pointer arithmetic or array indexing), return the
13725 tree representing the value accessed, otherwise return NULL. */
13728 fold_read_from_constant_string (tree exp
)
13730 if ((TREE_CODE (exp
) == INDIRECT_REF
13731 || TREE_CODE (exp
) == ARRAY_REF
)
13732 && TREE_CODE (TREE_TYPE (exp
)) == INTEGER_TYPE
)
13734 tree exp1
= TREE_OPERAND (exp
, 0);
13737 location_t loc
= EXPR_LOCATION (exp
);
13739 if (TREE_CODE (exp
) == INDIRECT_REF
)
13740 string
= string_constant (exp1
, &index
);
13743 tree low_bound
= array_ref_low_bound (exp
);
13744 index
= fold_convert_loc (loc
, sizetype
, TREE_OPERAND (exp
, 1));
13746 /* Optimize the special-case of a zero lower bound.
13748 We convert the low_bound to sizetype to avoid some problems
13749 with constant folding. (E.g. suppose the lower bound is 1,
13750 and its mode is QI. Without the conversion,l (ARRAY
13751 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
13752 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
13753 if (! integer_zerop (low_bound
))
13754 index
= size_diffop_loc (loc
, index
,
13755 fold_convert_loc (loc
, sizetype
, low_bound
));
13760 scalar_int_mode char_mode
;
13762 && TYPE_MODE (TREE_TYPE (exp
)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string
)))
13763 && TREE_CODE (string
) == STRING_CST
13764 && TREE_CODE (index
) == INTEGER_CST
13765 && compare_tree_int (index
, TREE_STRING_LENGTH (string
)) < 0
13766 && is_int_mode (TYPE_MODE (TREE_TYPE (TREE_TYPE (string
))),
13768 && GET_MODE_SIZE (char_mode
) == 1)
13769 return build_int_cst_type (TREE_TYPE (exp
),
13770 (TREE_STRING_POINTER (string
)
13771 [TREE_INT_CST_LOW (index
)]));
13776 /* Return the tree for neg (ARG0) when ARG0 is known to be either
13777 an integer constant, real, or fixed-point constant.
13779 TYPE is the type of the result. */
13782 fold_negate_const (tree arg0
, tree type
)
13784 tree t
= NULL_TREE
;
13786 switch (TREE_CODE (arg0
))
13789 t
= build_real (type
, real_value_negate (&TREE_REAL_CST (arg0
)));
13794 FIXED_VALUE_TYPE f
;
13795 bool overflow_p
= fixed_arithmetic (&f
, NEGATE_EXPR
,
13796 &(TREE_FIXED_CST (arg0
)), NULL
,
13797 TYPE_SATURATING (type
));
13798 t
= build_fixed (type
, f
);
13799 /* Propagate overflow flags. */
13800 if (overflow_p
| TREE_OVERFLOW (arg0
))
13801 TREE_OVERFLOW (t
) = 1;
13806 if (poly_int_tree_p (arg0
))
13809 poly_wide_int res
= wi::neg (wi::to_poly_wide (arg0
), &overflow
);
13810 t
= force_fit_type (type
, res
, 1,
13811 (overflow
&& ! TYPE_UNSIGNED (type
))
13812 || TREE_OVERFLOW (arg0
));
13816 gcc_unreachable ();
13822 /* Return the tree for abs (ARG0) when ARG0 is known to be either
13823 an integer constant or real constant.
13825 TYPE is the type of the result. */
13828 fold_abs_const (tree arg0
, tree type
)
13830 tree t
= NULL_TREE
;
13832 switch (TREE_CODE (arg0
))
13836 /* If the value is unsigned or non-negative, then the absolute value
13837 is the same as the ordinary value. */
13838 if (!wi::neg_p (wi::to_wide (arg0
), TYPE_SIGN (type
)))
13841 /* If the value is negative, then the absolute value is
13846 wide_int val
= wi::neg (wi::to_wide (arg0
), &overflow
);
13847 t
= force_fit_type (type
, val
, -1,
13848 overflow
| TREE_OVERFLOW (arg0
));
13854 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0
)))
13855 t
= build_real (type
, real_value_negate (&TREE_REAL_CST (arg0
)));
13861 gcc_unreachable ();
13867 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
13868 constant. TYPE is the type of the result. */
13871 fold_not_const (const_tree arg0
, tree type
)
13873 gcc_assert (TREE_CODE (arg0
) == INTEGER_CST
);
13875 return force_fit_type (type
, ~wi::to_wide (arg0
), 0, TREE_OVERFLOW (arg0
));
13878 /* Given CODE, a relational operator, the target type, TYPE and two
13879 constant operands OP0 and OP1, return the result of the
13880 relational operation. If the result is not a compile time
13881 constant, then return NULL_TREE. */
13884 fold_relational_const (enum tree_code code
, tree type
, tree op0
, tree op1
)
13886 int result
, invert
;
13888 /* From here on, the only cases we handle are when the result is
13889 known to be a constant. */
13891 if (TREE_CODE (op0
) == REAL_CST
&& TREE_CODE (op1
) == REAL_CST
)
13893 const REAL_VALUE_TYPE
*c0
= TREE_REAL_CST_PTR (op0
);
13894 const REAL_VALUE_TYPE
*c1
= TREE_REAL_CST_PTR (op1
);
13896 /* Handle the cases where either operand is a NaN. */
13897 if (real_isnan (c0
) || real_isnan (c1
))
13907 case UNORDERED_EXPR
:
13921 if (flag_trapping_math
)
13927 gcc_unreachable ();
13930 return constant_boolean_node (result
, type
);
13933 return constant_boolean_node (real_compare (code
, c0
, c1
), type
);
13936 if (TREE_CODE (op0
) == FIXED_CST
&& TREE_CODE (op1
) == FIXED_CST
)
13938 const FIXED_VALUE_TYPE
*c0
= TREE_FIXED_CST_PTR (op0
);
13939 const FIXED_VALUE_TYPE
*c1
= TREE_FIXED_CST_PTR (op1
);
13940 return constant_boolean_node (fixed_compare (code
, c0
, c1
), type
);
13943 /* Handle equality/inequality of complex constants. */
13944 if (TREE_CODE (op0
) == COMPLEX_CST
&& TREE_CODE (op1
) == COMPLEX_CST
)
13946 tree rcond
= fold_relational_const (code
, type
,
13947 TREE_REALPART (op0
),
13948 TREE_REALPART (op1
));
13949 tree icond
= fold_relational_const (code
, type
,
13950 TREE_IMAGPART (op0
),
13951 TREE_IMAGPART (op1
));
13952 if (code
== EQ_EXPR
)
13953 return fold_build2 (TRUTH_ANDIF_EXPR
, type
, rcond
, icond
);
13954 else if (code
== NE_EXPR
)
13955 return fold_build2 (TRUTH_ORIF_EXPR
, type
, rcond
, icond
);
13960 if (TREE_CODE (op0
) == VECTOR_CST
&& TREE_CODE (op1
) == VECTOR_CST
)
13962 if (!VECTOR_TYPE_P (type
))
13964 /* Have vector comparison with scalar boolean result. */
13965 gcc_assert ((code
== EQ_EXPR
|| code
== NE_EXPR
)
13966 && known_eq (VECTOR_CST_NELTS (op0
),
13967 VECTOR_CST_NELTS (op1
)));
13968 unsigned HOST_WIDE_INT nunits
;
13969 if (!VECTOR_CST_NELTS (op0
).is_constant (&nunits
))
13971 for (unsigned i
= 0; i
< nunits
; i
++)
13973 tree elem0
= VECTOR_CST_ELT (op0
, i
);
13974 tree elem1
= VECTOR_CST_ELT (op1
, i
);
13975 tree tmp
= fold_relational_const (code
, type
, elem0
, elem1
);
13976 if (tmp
== NULL_TREE
)
13978 if (integer_zerop (tmp
))
13979 return constant_boolean_node (false, type
);
13981 return constant_boolean_node (true, type
);
13983 tree_vector_builder elts
;
13984 if (!elts
.new_binary_operation (type
, op0
, op1
, false))
13986 unsigned int count
= elts
.encoded_nelts ();
13987 for (unsigned i
= 0; i
< count
; i
++)
13989 tree elem_type
= TREE_TYPE (type
);
13990 tree elem0
= VECTOR_CST_ELT (op0
, i
);
13991 tree elem1
= VECTOR_CST_ELT (op1
, i
);
13993 tree tem
= fold_relational_const (code
, elem_type
,
13996 if (tem
== NULL_TREE
)
13999 elts
.quick_push (build_int_cst (elem_type
,
14000 integer_zerop (tem
) ? 0 : -1));
14003 return elts
.build ();
14006 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
14008 To compute GT, swap the arguments and do LT.
14009 To compute GE, do LT and invert the result.
14010 To compute LE, swap the arguments, do LT and invert the result.
14011 To compute NE, do EQ and invert the result.
14013 Therefore, the code below must handle only EQ and LT. */
14015 if (code
== LE_EXPR
|| code
== GT_EXPR
)
14017 std::swap (op0
, op1
);
14018 code
= swap_tree_comparison (code
);
14021 /* Note that it is safe to invert for real values here because we
14022 have already handled the one case that it matters. */
14025 if (code
== NE_EXPR
|| code
== GE_EXPR
)
14028 code
= invert_tree_comparison (code
, false);
14031 /* Compute a result for LT or EQ if args permit;
14032 Otherwise return T. */
14033 if (TREE_CODE (op0
) == INTEGER_CST
&& TREE_CODE (op1
) == INTEGER_CST
)
14035 if (code
== EQ_EXPR
)
14036 result
= tree_int_cst_equal (op0
, op1
);
14038 result
= tree_int_cst_lt (op0
, op1
);
14045 return constant_boolean_node (result
, type
);
14048 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
14049 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
14053 fold_build_cleanup_point_expr (tree type
, tree expr
)
14055 /* If the expression does not have side effects then we don't have to wrap
14056 it with a cleanup point expression. */
14057 if (!TREE_SIDE_EFFECTS (expr
))
14060 /* If the expression is a return, check to see if the expression inside the
14061 return has no side effects or the right hand side of the modify expression
14062 inside the return. If either don't have side effects set we don't need to
14063 wrap the expression in a cleanup point expression. Note we don't check the
14064 left hand side of the modify because it should always be a return decl. */
14065 if (TREE_CODE (expr
) == RETURN_EXPR
)
14067 tree op
= TREE_OPERAND (expr
, 0);
14068 if (!op
|| !TREE_SIDE_EFFECTS (op
))
14070 op
= TREE_OPERAND (op
, 1);
14071 if (!TREE_SIDE_EFFECTS (op
))
14075 return build1_loc (EXPR_LOCATION (expr
), CLEANUP_POINT_EXPR
, type
, expr
);
14078 /* Given a pointer value OP0 and a type TYPE, return a simplified version
14079 of an indirection through OP0, or NULL_TREE if no simplification is
14083 fold_indirect_ref_1 (location_t loc
, tree type
, tree op0
)
14087 poly_uint64 const_op01
;
14090 subtype
= TREE_TYPE (sub
);
14091 if (!POINTER_TYPE_P (subtype
)
14092 || TYPE_REF_CAN_ALIAS_ALL (TREE_TYPE (op0
)))
14095 if (TREE_CODE (sub
) == ADDR_EXPR
)
14097 tree op
= TREE_OPERAND (sub
, 0);
14098 tree optype
= TREE_TYPE (op
);
14100 /* *&CONST_DECL -> to the value of the const decl. */
14101 if (TREE_CODE (op
) == CONST_DECL
)
14102 return DECL_INITIAL (op
);
14103 /* *&p => p; make sure to handle *&"str"[cst] here. */
14104 if (type
== optype
)
14106 tree fop
= fold_read_from_constant_string (op
);
14112 /* *(foo *)&fooarray => fooarray[0] */
14113 else if (TREE_CODE (optype
) == ARRAY_TYPE
14114 && type
== TREE_TYPE (optype
)
14115 && (!in_gimple_form
14116 || TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
))
14118 tree type_domain
= TYPE_DOMAIN (optype
);
14119 tree min_val
= size_zero_node
;
14120 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
14121 min_val
= TYPE_MIN_VALUE (type_domain
);
14123 && TREE_CODE (min_val
) != INTEGER_CST
)
14125 return build4_loc (loc
, ARRAY_REF
, type
, op
, min_val
,
14126 NULL_TREE
, NULL_TREE
);
14128 /* *(foo *)&complexfoo => __real__ complexfoo */
14129 else if (TREE_CODE (optype
) == COMPLEX_TYPE
14130 && type
== TREE_TYPE (optype
))
14131 return fold_build1_loc (loc
, REALPART_EXPR
, type
, op
);
14132 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
14133 else if (VECTOR_TYPE_P (optype
)
14134 && type
== TREE_TYPE (optype
))
14136 tree part_width
= TYPE_SIZE (type
);
14137 tree index
= bitsize_int (0);
14138 return fold_build3_loc (loc
, BIT_FIELD_REF
, type
, op
, part_width
,
14143 if (TREE_CODE (sub
) == POINTER_PLUS_EXPR
14144 && poly_int_tree_p (TREE_OPERAND (sub
, 1), &const_op01
))
14146 tree op00
= TREE_OPERAND (sub
, 0);
14147 tree op01
= TREE_OPERAND (sub
, 1);
14150 if (TREE_CODE (op00
) == ADDR_EXPR
)
14153 op00
= TREE_OPERAND (op00
, 0);
14154 op00type
= TREE_TYPE (op00
);
14156 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
14157 if (VECTOR_TYPE_P (op00type
)
14158 && type
== TREE_TYPE (op00type
)
14159 /* POINTER_PLUS_EXPR second operand is sizetype, unsigned,
14160 but we want to treat offsets with MSB set as negative.
14161 For the code below negative offsets are invalid and
14162 TYPE_SIZE of the element is something unsigned, so
14163 check whether op01 fits into poly_int64, which implies
14164 it is from 0 to INTTYPE_MAXIMUM (HOST_WIDE_INT), and
14165 then just use poly_uint64 because we want to treat the
14166 value as unsigned. */
14167 && tree_fits_poly_int64_p (op01
))
14169 tree part_width
= TYPE_SIZE (type
);
14170 poly_uint64 max_offset
14171 = (tree_to_uhwi (part_width
) / BITS_PER_UNIT
14172 * TYPE_VECTOR_SUBPARTS (op00type
));
14173 if (known_lt (const_op01
, max_offset
))
14175 tree index
= bitsize_int (const_op01
* BITS_PER_UNIT
);
14176 return fold_build3_loc (loc
,
14177 BIT_FIELD_REF
, type
, op00
,
14178 part_width
, index
);
14181 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
14182 else if (TREE_CODE (op00type
) == COMPLEX_TYPE
14183 && type
== TREE_TYPE (op00type
))
14185 if (known_eq (wi::to_poly_offset (TYPE_SIZE_UNIT (type
)),
14187 return fold_build1_loc (loc
, IMAGPART_EXPR
, type
, op00
);
14189 /* ((foo *)&fooarray)[1] => fooarray[1] */
14190 else if (TREE_CODE (op00type
) == ARRAY_TYPE
14191 && type
== TREE_TYPE (op00type
))
14193 tree type_domain
= TYPE_DOMAIN (op00type
);
14194 tree min_val
= size_zero_node
;
14195 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
14196 min_val
= TYPE_MIN_VALUE (type_domain
);
14197 offset_int off
= wi::to_offset (op01
);
14198 offset_int el_sz
= wi::to_offset (TYPE_SIZE_UNIT (type
));
14199 offset_int remainder
;
14200 off
= wi::divmod_trunc (off
, el_sz
, SIGNED
, &remainder
);
14201 if (remainder
== 0 && TREE_CODE (min_val
) == INTEGER_CST
)
14203 off
= off
+ wi::to_offset (min_val
);
14204 op01
= wide_int_to_tree (sizetype
, off
);
14205 return build4_loc (loc
, ARRAY_REF
, type
, op00
, op01
,
14206 NULL_TREE
, NULL_TREE
);
14212 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
14213 if (TREE_CODE (TREE_TYPE (subtype
)) == ARRAY_TYPE
14214 && type
== TREE_TYPE (TREE_TYPE (subtype
))
14215 && (!in_gimple_form
14216 || TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
))
14219 tree min_val
= size_zero_node
;
14220 sub
= build_fold_indirect_ref_loc (loc
, sub
);
14221 type_domain
= TYPE_DOMAIN (TREE_TYPE (sub
));
14222 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
14223 min_val
= TYPE_MIN_VALUE (type_domain
);
14225 && TREE_CODE (min_val
) != INTEGER_CST
)
14227 return build4_loc (loc
, ARRAY_REF
, type
, sub
, min_val
, NULL_TREE
,
14234 /* Builds an expression for an indirection through T, simplifying some
14238 build_fold_indirect_ref_loc (location_t loc
, tree t
)
14240 tree type
= TREE_TYPE (TREE_TYPE (t
));
14241 tree sub
= fold_indirect_ref_1 (loc
, type
, t
);
14246 return build1_loc (loc
, INDIRECT_REF
, type
, t
);
14249 /* Given an INDIRECT_REF T, return either T or a simplified version. */
14252 fold_indirect_ref_loc (location_t loc
, tree t
)
14254 tree sub
= fold_indirect_ref_1 (loc
, TREE_TYPE (t
), TREE_OPERAND (t
, 0));
14262 /* Strip non-trapping, non-side-effecting tree nodes from an expression
14263 whose result is ignored. The type of the returned tree need not be
14264 the same as the original expression. */
14267 fold_ignored_result (tree t
)
14269 if (!TREE_SIDE_EFFECTS (t
))
14270 return integer_zero_node
;
14273 switch (TREE_CODE_CLASS (TREE_CODE (t
)))
14276 t
= TREE_OPERAND (t
, 0);
14280 case tcc_comparison
:
14281 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1)))
14282 t
= TREE_OPERAND (t
, 0);
14283 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 0)))
14284 t
= TREE_OPERAND (t
, 1);
14289 case tcc_expression
:
14290 switch (TREE_CODE (t
))
14292 case COMPOUND_EXPR
:
14293 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1)))
14295 t
= TREE_OPERAND (t
, 0);
14299 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1))
14300 || TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 2)))
14302 t
= TREE_OPERAND (t
, 0);
14315 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
14318 round_up_loc (location_t loc
, tree value
, unsigned int divisor
)
14320 tree div
= NULL_TREE
;
14325 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14326 have to do anything. Only do this when we are not given a const,
14327 because in that case, this check is more expensive than just
14329 if (TREE_CODE (value
) != INTEGER_CST
)
14331 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14333 if (multiple_of_p (TREE_TYPE (value
), value
, div
))
14337 /* If divisor is a power of two, simplify this to bit manipulation. */
14338 if (pow2_or_zerop (divisor
))
14340 if (TREE_CODE (value
) == INTEGER_CST
)
14342 wide_int val
= wi::to_wide (value
);
14345 if ((val
& (divisor
- 1)) == 0)
14348 overflow_p
= TREE_OVERFLOW (value
);
14349 val
+= divisor
- 1;
14350 val
&= (int) -divisor
;
14354 return force_fit_type (TREE_TYPE (value
), val
, -1, overflow_p
);
14360 t
= build_int_cst (TREE_TYPE (value
), divisor
- 1);
14361 value
= size_binop_loc (loc
, PLUS_EXPR
, value
, t
);
14362 t
= build_int_cst (TREE_TYPE (value
), - (int) divisor
);
14363 value
= size_binop_loc (loc
, BIT_AND_EXPR
, value
, t
);
14369 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14370 value
= size_binop_loc (loc
, CEIL_DIV_EXPR
, value
, div
);
14371 value
= size_binop_loc (loc
, MULT_EXPR
, value
, div
);
14377 /* Likewise, but round down. */
14380 round_down_loc (location_t loc
, tree value
, int divisor
)
14382 tree div
= NULL_TREE
;
14384 gcc_assert (divisor
> 0);
14388 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14389 have to do anything. Only do this when we are not given a const,
14390 because in that case, this check is more expensive than just
14392 if (TREE_CODE (value
) != INTEGER_CST
)
14394 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14396 if (multiple_of_p (TREE_TYPE (value
), value
, div
))
14400 /* If divisor is a power of two, simplify this to bit manipulation. */
14401 if (pow2_or_zerop (divisor
))
14405 t
= build_int_cst (TREE_TYPE (value
), -divisor
);
14406 value
= size_binop_loc (loc
, BIT_AND_EXPR
, value
, t
);
14411 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14412 value
= size_binop_loc (loc
, FLOOR_DIV_EXPR
, value
, div
);
14413 value
= size_binop_loc (loc
, MULT_EXPR
, value
, div
);
14419 /* Returns the pointer to the base of the object addressed by EXP and
14420 extracts the information about the offset of the access, storing it
14421 to PBITPOS and POFFSET. */
14424 split_address_to_core_and_offset (tree exp
,
14425 poly_int64_pod
*pbitpos
, tree
*poffset
)
14429 int unsignedp
, reversep
, volatilep
;
14430 poly_int64 bitsize
;
14431 location_t loc
= EXPR_LOCATION (exp
);
14433 if (TREE_CODE (exp
) == ADDR_EXPR
)
14435 core
= get_inner_reference (TREE_OPERAND (exp
, 0), &bitsize
, pbitpos
,
14436 poffset
, &mode
, &unsignedp
, &reversep
,
14438 core
= build_fold_addr_expr_loc (loc
, core
);
14440 else if (TREE_CODE (exp
) == POINTER_PLUS_EXPR
)
14442 core
= TREE_OPERAND (exp
, 0);
14445 *poffset
= TREE_OPERAND (exp
, 1);
14446 if (poly_int_tree_p (*poffset
))
14448 poly_offset_int tem
14449 = wi::sext (wi::to_poly_offset (*poffset
),
14450 TYPE_PRECISION (TREE_TYPE (*poffset
)));
14451 tem
<<= LOG2_BITS_PER_UNIT
;
14452 if (tem
.to_shwi (pbitpos
))
14453 *poffset
= NULL_TREE
;
14460 *poffset
= NULL_TREE
;
14466 /* Returns true if addresses of E1 and E2 differ by a constant, false
14467 otherwise. If they do, E1 - E2 is stored in *DIFF. */
14470 ptr_difference_const (tree e1
, tree e2
, poly_int64_pod
*diff
)
14473 poly_int64 bitpos1
, bitpos2
;
14474 tree toffset1
, toffset2
, tdiff
, type
;
14476 core1
= split_address_to_core_and_offset (e1
, &bitpos1
, &toffset1
);
14477 core2
= split_address_to_core_and_offset (e2
, &bitpos2
, &toffset2
);
14479 poly_int64 bytepos1
, bytepos2
;
14480 if (!multiple_p (bitpos1
, BITS_PER_UNIT
, &bytepos1
)
14481 || !multiple_p (bitpos2
, BITS_PER_UNIT
, &bytepos2
)
14482 || !operand_equal_p (core1
, core2
, 0))
14485 if (toffset1
&& toffset2
)
14487 type
= TREE_TYPE (toffset1
);
14488 if (type
!= TREE_TYPE (toffset2
))
14489 toffset2
= fold_convert (type
, toffset2
);
14491 tdiff
= fold_build2 (MINUS_EXPR
, type
, toffset1
, toffset2
);
14492 if (!cst_and_fits_in_hwi (tdiff
))
14495 *diff
= int_cst_value (tdiff
);
14497 else if (toffset1
|| toffset2
)
14499 /* If only one of the offsets is non-constant, the difference cannot
14506 *diff
+= bytepos1
- bytepos2
;
14510 /* Return OFF converted to a pointer offset type suitable as offset for
14511 POINTER_PLUS_EXPR. Use location LOC for this conversion. */
14513 convert_to_ptrofftype_loc (location_t loc
, tree off
)
14515 return fold_convert_loc (loc
, sizetype
, off
);
14518 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14520 fold_build_pointer_plus_loc (location_t loc
, tree ptr
, tree off
)
14522 return fold_build2_loc (loc
, POINTER_PLUS_EXPR
, TREE_TYPE (ptr
),
14523 ptr
, convert_to_ptrofftype_loc (loc
, off
));
14526 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14528 fold_build_pointer_plus_hwi_loc (location_t loc
, tree ptr
, HOST_WIDE_INT off
)
14530 return fold_build2_loc (loc
, POINTER_PLUS_EXPR
, TREE_TYPE (ptr
),
14531 ptr
, size_int (off
));
14534 /* Return a char pointer for a C string if it is a string constant
14535 or sum of string constant and integer constant. We only support
14536 string constants properly terminated with '\0' character.
14537 If STRLEN is a valid pointer, length (including terminating character)
14538 of returned string is stored to the argument. */
14541 c_getstr (tree src
, unsigned HOST_WIDE_INT
*strlen
)
14548 src
= string_constant (src
, &offset_node
);
14552 unsigned HOST_WIDE_INT offset
= 0;
14553 if (offset_node
!= NULL_TREE
)
14555 if (!tree_fits_uhwi_p (offset_node
))
14558 offset
= tree_to_uhwi (offset_node
);
14561 unsigned HOST_WIDE_INT string_length
= TREE_STRING_LENGTH (src
);
14562 const char *string
= TREE_STRING_POINTER (src
);
14564 /* Support only properly null-terminated strings. */
14565 if (string_length
== 0
14566 || string
[string_length
- 1] != '\0'
14567 || offset
>= string_length
)
14571 *strlen
= string_length
- offset
;
14572 return string
+ offset
;
14577 namespace selftest
{
14579 /* Helper functions for writing tests of folding trees. */
14581 /* Verify that the binary op (LHS CODE RHS) folds to CONSTANT. */
14584 assert_binop_folds_to_const (tree lhs
, enum tree_code code
, tree rhs
,
14587 ASSERT_EQ (constant
, fold_build2 (code
, TREE_TYPE (lhs
), lhs
, rhs
));
14590 /* Verify that the binary op (LHS CODE RHS) folds to an NON_LVALUE_EXPR
14591 wrapping WRAPPED_EXPR. */
14594 assert_binop_folds_to_nonlvalue (tree lhs
, enum tree_code code
, tree rhs
,
14597 tree result
= fold_build2 (code
, TREE_TYPE (lhs
), lhs
, rhs
);
14598 ASSERT_NE (wrapped_expr
, result
);
14599 ASSERT_EQ (NON_LVALUE_EXPR
, TREE_CODE (result
));
14600 ASSERT_EQ (wrapped_expr
, TREE_OPERAND (result
, 0));
14603 /* Verify that various arithmetic binary operations are folded
14607 test_arithmetic_folding ()
14609 tree type
= integer_type_node
;
14610 tree x
= create_tmp_var_raw (type
, "x");
14611 tree zero
= build_zero_cst (type
);
14612 tree one
= build_int_cst (type
, 1);
14615 /* 1 <-- (0 + 1) */
14616 assert_binop_folds_to_const (zero
, PLUS_EXPR
, one
,
14618 assert_binop_folds_to_const (one
, PLUS_EXPR
, zero
,
14621 /* (nonlvalue)x <-- (x + 0) */
14622 assert_binop_folds_to_nonlvalue (x
, PLUS_EXPR
, zero
,
14626 /* 0 <-- (x - x) */
14627 assert_binop_folds_to_const (x
, MINUS_EXPR
, x
,
14629 assert_binop_folds_to_nonlvalue (x
, MINUS_EXPR
, zero
,
14632 /* Multiplication. */
14633 /* 0 <-- (x * 0) */
14634 assert_binop_folds_to_const (x
, MULT_EXPR
, zero
,
14637 /* (nonlvalue)x <-- (x * 1) */
14638 assert_binop_folds_to_nonlvalue (x
, MULT_EXPR
, one
,
14642 /* Verify that various binary operations on vectors are folded
14646 test_vector_folding ()
14648 tree inner_type
= integer_type_node
;
14649 tree type
= build_vector_type (inner_type
, 4);
14650 tree zero
= build_zero_cst (type
);
14651 tree one
= build_one_cst (type
);
14653 /* Verify equality tests that return a scalar boolean result. */
14654 tree res_type
= boolean_type_node
;
14655 ASSERT_FALSE (integer_nonzerop (fold_build2 (EQ_EXPR
, res_type
, zero
, one
)));
14656 ASSERT_TRUE (integer_nonzerop (fold_build2 (EQ_EXPR
, res_type
, zero
, zero
)));
14657 ASSERT_TRUE (integer_nonzerop (fold_build2 (NE_EXPR
, res_type
, zero
, one
)));
14658 ASSERT_FALSE (integer_nonzerop (fold_build2 (NE_EXPR
, res_type
, one
, one
)));
14661 /* Verify folding of VEC_DUPLICATE_EXPRs. */
14664 test_vec_duplicate_folding ()
14666 scalar_int_mode int_mode
= SCALAR_INT_TYPE_MODE (ssizetype
);
14667 machine_mode vec_mode
= targetm
.vectorize
.preferred_simd_mode (int_mode
);
14668 /* This will be 1 if VEC_MODE isn't a vector mode. */
14669 poly_uint64 nunits
= GET_MODE_NUNITS (vec_mode
);
14671 tree type
= build_vector_type (ssizetype
, nunits
);
14672 tree dup5_expr
= fold_unary (VEC_DUPLICATE_EXPR
, type
, ssize_int (5));
14673 tree dup5_cst
= build_vector_from_val (type
, ssize_int (5));
14674 ASSERT_TRUE (operand_equal_p (dup5_expr
, dup5_cst
, 0));
14677 /* Run all of the selftests within this file. */
14680 fold_const_c_tests ()
14682 test_arithmetic_folding ();
14683 test_vector_folding ();
14684 test_vec_duplicate_folding ();
14687 } // namespace selftest
14689 #endif /* CHECKING_P */