1 /* Alias analysis for GNU C
2 Copyright (C) 1997-2017 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
32 #include "gimple-ssa.h"
35 #include "fold-const.h"
38 #include "langhooks.h"
43 /* The aliasing API provided here solves related but different problems:
45 Say there exists (in c)
59 Consider the four questions:
61 Can a store to x1 interfere with px2->y1?
62 Can a store to x1 interfere with px2->z2?
63 Can a store to x1 change the value pointed to by with py?
64 Can a store to x1 change the value pointed to by with pz?
66 The answer to these questions can be yes, yes, yes, and maybe.
68 The first two questions can be answered with a simple examination
69 of the type system. If structure X contains a field of type Y then
70 a store through a pointer to an X can overwrite any field that is
71 contained (recursively) in an X (unless we know that px1 != px2).
73 The last two questions can be solved in the same way as the first
74 two questions but this is too conservative. The observation is
75 that in some cases we can know which (if any) fields are addressed
76 and if those addresses are used in bad ways. This analysis may be
77 language specific. In C, arbitrary operations may be applied to
78 pointers. However, there is some indication that this may be too
79 conservative for some C++ types.
81 The pass ipa-type-escape does this analysis for the types whose
82 instances do not escape across the compilation boundary.
84 Historically in GCC, these two problems were combined and a single
85 data structure that was used to represent the solution to these
86 problems. We now have two similar but different data structures,
87 The data structure to solve the last two questions is similar to
88 the first, but does not contain the fields whose address are never
89 taken. For types that do escape the compilation unit, the data
90 structures will have identical information.
93 /* The alias sets assigned to MEMs assist the back-end in determining
94 which MEMs can alias which other MEMs. In general, two MEMs in
95 different alias sets cannot alias each other, with one important
96 exception. Consider something like:
98 struct S { int i; double d; };
100 a store to an `S' can alias something of either type `int' or type
101 `double'. (However, a store to an `int' cannot alias a `double'
102 and vice versa.) We indicate this via a tree structure that looks
110 (The arrows are directed and point downwards.)
111 In this situation we say the alias set for `struct S' is the
112 `superset' and that those for `int' and `double' are `subsets'.
114 To see whether two alias sets can point to the same memory, we must
115 see if either alias set is a subset of the other. We need not trace
116 past immediate descendants, however, since we propagate all
117 grandchildren up one level.
119 Alias set zero is implicitly a superset of all other alias sets.
120 However, this is no actual entry for alias set zero. It is an
121 error to attempt to explicitly construct a subset of zero. */
123 struct alias_set_hash
: int_hash
<int, INT_MIN
, INT_MIN
+ 1> {};
125 struct GTY(()) alias_set_entry
{
126 /* The alias set number, as stored in MEM_ALIAS_SET. */
127 alias_set_type alias_set
;
129 /* Nonzero if would have a child of zero: this effectively makes this
130 alias set the same as alias set zero. */
132 /* Nonzero if alias set corresponds to pointer type itself (i.e. not to
133 aggregate contaiing pointer.
134 This is used for a special case where we need an universal pointer type
135 compatible with all other pointer types. */
137 /* Nonzero if is_pointer or if one of childs have has_pointer set. */
140 /* The children of the alias set. These are not just the immediate
141 children, but, in fact, all descendants. So, if we have:
143 struct T { struct S s; float f; }
145 continuing our example above, the children here will be all of
146 `int', `double', `float', and `struct S'. */
147 hash_map
<alias_set_hash
, int> *children
;
150 static int rtx_equal_for_memref_p (const_rtx
, const_rtx
);
151 static int memrefs_conflict_p (int, rtx
, int, rtx
, HOST_WIDE_INT
);
152 static void record_set (rtx
, const_rtx
, void *);
153 static int base_alias_check (rtx
, rtx
, rtx
, rtx
, machine_mode
,
155 static rtx
find_base_value (rtx
);
156 static int mems_in_disjoint_alias_sets_p (const_rtx
, const_rtx
);
157 static alias_set_entry
*get_alias_set_entry (alias_set_type
);
158 static tree
decl_for_component_ref (tree
);
159 static int write_dependence_p (const_rtx
,
160 const_rtx
, machine_mode
, rtx
,
162 static int compare_base_symbol_refs (const_rtx
, const_rtx
);
164 static void memory_modified_1 (rtx
, const_rtx
, void *);
166 /* Query statistics for the different low-level disambiguators.
167 A high-level query may trigger multiple of them. */
170 unsigned long long num_alias_zero
;
171 unsigned long long num_same_alias_set
;
172 unsigned long long num_same_objects
;
173 unsigned long long num_volatile
;
174 unsigned long long num_dag
;
175 unsigned long long num_universal
;
176 unsigned long long num_disambiguated
;
180 /* Set up all info needed to perform alias analysis on memory references. */
182 /* Returns the size in bytes of the mode of X. */
183 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
185 /* Cap the number of passes we make over the insns propagating alias
186 information through set chains.
187 ??? 10 is a completely arbitrary choice. This should be based on the
188 maximum loop depth in the CFG, but we do not have this information
189 available (even if current_loops _is_ available). */
190 #define MAX_ALIAS_LOOP_PASSES 10
192 /* reg_base_value[N] gives an address to which register N is related.
193 If all sets after the first add or subtract to the current value
194 or otherwise modify it so it does not point to a different top level
195 object, reg_base_value[N] is equal to the address part of the source
198 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
199 expressions represent three types of base:
201 1. incoming arguments. There is just one ADDRESS to represent all
202 arguments, since we do not know at this level whether accesses
203 based on different arguments can alias. The ADDRESS has id 0.
205 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
206 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
207 Each of these rtxes has a separate ADDRESS associated with it,
208 each with a negative id.
210 GCC is (and is required to be) precise in which register it
211 chooses to access a particular region of stack. We can therefore
212 assume that accesses based on one of these rtxes do not alias
213 accesses based on another of these rtxes.
215 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
216 Each such piece of memory has a separate ADDRESS associated
217 with it, each with an id greater than 0.
219 Accesses based on one ADDRESS do not alias accesses based on other
220 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
221 alias globals either; the ADDRESSes have Pmode to indicate this.
222 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
225 static GTY(()) vec
<rtx
, va_gc
> *reg_base_value
;
226 static rtx
*new_reg_base_value
;
228 /* The single VOIDmode ADDRESS that represents all argument bases.
230 static GTY(()) rtx arg_base_value
;
232 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
233 static int unique_id
;
235 /* We preserve the copy of old array around to avoid amount of garbage
236 produced. About 8% of garbage produced were attributed to this
238 static GTY((deletable
)) vec
<rtx
, va_gc
> *old_reg_base_value
;
240 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
242 #define UNIQUE_BASE_VALUE_SP -1
243 #define UNIQUE_BASE_VALUE_ARGP -2
244 #define UNIQUE_BASE_VALUE_FP -3
245 #define UNIQUE_BASE_VALUE_HFP -4
247 #define static_reg_base_value \
248 (this_target_rtl->x_static_reg_base_value)
250 #define REG_BASE_VALUE(X) \
251 (REGNO (X) < vec_safe_length (reg_base_value) \
252 ? (*reg_base_value)[REGNO (X)] : 0)
254 /* Vector indexed by N giving the initial (unchanging) value known for
255 pseudo-register N. This vector is initialized in init_alias_analysis,
256 and does not change until end_alias_analysis is called. */
257 static GTY(()) vec
<rtx
, va_gc
> *reg_known_value
;
259 /* Vector recording for each reg_known_value whether it is due to a
260 REG_EQUIV note. Future passes (viz., reload) may replace the
261 pseudo with the equivalent expression and so we account for the
262 dependences that would be introduced if that happens.
264 The REG_EQUIV notes created in assign_parms may mention the arg
265 pointer, and there are explicit insns in the RTL that modify the
266 arg pointer. Thus we must ensure that such insns don't get
267 scheduled across each other because that would invalidate the
268 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
269 wrong, but solving the problem in the scheduler will likely give
270 better code, so we do it here. */
271 static sbitmap reg_known_equiv_p
;
273 /* True when scanning insns from the start of the rtl to the
274 NOTE_INSN_FUNCTION_BEG note. */
275 static bool copying_arguments
;
278 /* The splay-tree used to store the various alias set entries. */
279 static GTY (()) vec
<alias_set_entry
*, va_gc
> *alias_sets
;
281 /* Build a decomposed reference object for querying the alias-oracle
282 from the MEM rtx and store it in *REF.
283 Returns false if MEM is not suitable for the alias-oracle. */
286 ao_ref_from_mem (ao_ref
*ref
, const_rtx mem
)
288 tree expr
= MEM_EXPR (mem
);
294 ao_ref_init (ref
, expr
);
296 /* Get the base of the reference and see if we have to reject or
298 base
= ao_ref_base (ref
);
299 if (base
== NULL_TREE
)
302 /* The tree oracle doesn't like bases that are neither decls
303 nor indirect references of SSA names. */
305 || (TREE_CODE (base
) == MEM_REF
306 && TREE_CODE (TREE_OPERAND (base
, 0)) == SSA_NAME
)
307 || (TREE_CODE (base
) == TARGET_MEM_REF
308 && TREE_CODE (TMR_BASE (base
)) == SSA_NAME
)))
311 /* If this is a reference based on a partitioned decl replace the
312 base with a MEM_REF of the pointer representative we
313 created during stack slot partitioning. */
315 && ! is_global_var (base
)
316 && cfun
->gimple_df
->decls_to_pointers
!= NULL
)
318 tree
*namep
= cfun
->gimple_df
->decls_to_pointers
->get (base
);
320 ref
->base
= build_simple_mem_ref (*namep
);
323 ref
->ref_alias_set
= MEM_ALIAS_SET (mem
);
325 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
326 is conservative, so trust it. */
327 if (!MEM_OFFSET_KNOWN_P (mem
)
328 || !MEM_SIZE_KNOWN_P (mem
))
331 /* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size
333 if (maybe_lt (MEM_OFFSET (mem
), 0)
334 || (ref
->max_size_known_p ()
335 && maybe_gt ((MEM_OFFSET (mem
) + MEM_SIZE (mem
)) * BITS_PER_UNIT
,
337 ref
->ref
= NULL_TREE
;
339 /* Refine size and offset we got from analyzing MEM_EXPR by using
340 MEM_SIZE and MEM_OFFSET. */
342 ref
->offset
+= MEM_OFFSET (mem
) * BITS_PER_UNIT
;
343 ref
->size
= MEM_SIZE (mem
) * BITS_PER_UNIT
;
345 /* The MEM may extend into adjacent fields, so adjust max_size if
347 if (ref
->max_size_known_p ())
348 ref
->max_size
= upper_bound (ref
->max_size
, ref
->size
);
350 /* If MEM_OFFSET and MEM_SIZE might get us outside of the base object of
351 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
352 if (MEM_EXPR (mem
) != get_spill_slot_decl (false)
353 && (maybe_lt (ref
->offset
, 0)
354 || (DECL_P (ref
->base
)
355 && (DECL_SIZE (ref
->base
) == NULL_TREE
356 || !poly_int_tree_p (DECL_SIZE (ref
->base
))
357 || maybe_lt (wi::to_poly_offset (DECL_SIZE (ref
->base
)),
358 ref
->offset
+ ref
->size
)))))
364 /* Query the alias-oracle on whether the two memory rtx X and MEM may
365 alias. If TBAA_P is set also apply TBAA. Returns true if the
366 two rtxen may alias, false otherwise. */
369 rtx_refs_may_alias_p (const_rtx x
, const_rtx mem
, bool tbaa_p
)
373 if (!ao_ref_from_mem (&ref1
, x
)
374 || !ao_ref_from_mem (&ref2
, mem
))
377 return refs_may_alias_p_1 (&ref1
, &ref2
,
379 && MEM_ALIAS_SET (x
) != 0
380 && MEM_ALIAS_SET (mem
) != 0);
383 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
384 such an entry, or NULL otherwise. */
386 static inline alias_set_entry
*
387 get_alias_set_entry (alias_set_type alias_set
)
389 return (*alias_sets
)[alias_set
];
392 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
393 the two MEMs cannot alias each other. */
396 mems_in_disjoint_alias_sets_p (const_rtx mem1
, const_rtx mem2
)
398 return (flag_strict_aliasing
399 && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1
),
400 MEM_ALIAS_SET (mem2
)));
403 /* Return true if the first alias set is a subset of the second. */
406 alias_set_subset_of (alias_set_type set1
, alias_set_type set2
)
408 alias_set_entry
*ase2
;
410 /* Disable TBAA oracle with !flag_strict_aliasing. */
411 if (!flag_strict_aliasing
)
414 /* Everything is a subset of the "aliases everything" set. */
418 /* Check if set1 is a subset of set2. */
419 ase2
= get_alias_set_entry (set2
);
421 && (ase2
->has_zero_child
422 || (ase2
->children
&& ase2
->children
->get (set1
))))
425 /* As a special case we consider alias set of "void *" to be both subset
426 and superset of every alias set of a pointer. This extra symmetry does
427 not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
428 to return true on the following testcase:
431 char **ptr2=(char **)&ptr;
434 Additionally if a set contains universal pointer, we consider every pointer
435 to be a subset of it, but we do not represent this explicitely - doing so
436 would require us to update transitive closure each time we introduce new
437 pointer type. This makes aliasing_component_refs_p to return true
438 on the following testcase:
440 struct a {void *ptr;}
441 char **ptr = (char **)&a.ptr;
444 This makes void * truly universal pointer type. See pointer handling in
445 get_alias_set for more details. */
446 if (ase2
&& ase2
->has_pointer
)
448 alias_set_entry
*ase1
= get_alias_set_entry (set1
);
450 if (ase1
&& ase1
->is_pointer
)
452 alias_set_type voidptr_set
= TYPE_ALIAS_SET (ptr_type_node
);
453 /* If one is ptr_type_node and other is pointer, then we consider
454 them subset of each other. */
455 if (set1
== voidptr_set
|| set2
== voidptr_set
)
457 /* If SET2 contains universal pointer's alias set, then we consdier
458 every (non-universal) pointer. */
459 if (ase2
->children
&& set1
!= voidptr_set
460 && ase2
->children
->get (voidptr_set
))
467 /* Return 1 if the two specified alias sets may conflict. */
470 alias_sets_conflict_p (alias_set_type set1
, alias_set_type set2
)
472 alias_set_entry
*ase1
;
473 alias_set_entry
*ase2
;
476 if (alias_sets_must_conflict_p (set1
, set2
))
479 /* See if the first alias set is a subset of the second. */
480 ase1
= get_alias_set_entry (set1
);
482 && ase1
->children
&& ase1
->children
->get (set2
))
484 ++alias_stats
.num_dag
;
488 /* Now do the same, but with the alias sets reversed. */
489 ase2
= get_alias_set_entry (set2
);
491 && ase2
->children
&& ase2
->children
->get (set1
))
493 ++alias_stats
.num_dag
;
497 /* We want void * to be compatible with any other pointer without
498 really dropping it to alias set 0. Doing so would make it
499 compatible with all non-pointer types too.
501 This is not strictly necessary by the C/C++ language
502 standards, but avoids common type punning mistakes. In
503 addition to that, we need the existence of such universal
504 pointer to implement Fortran's C_PTR type (which is defined as
505 type compatible with all C pointers). */
506 if (ase1
&& ase2
&& ase1
->has_pointer
&& ase2
->has_pointer
)
508 alias_set_type voidptr_set
= TYPE_ALIAS_SET (ptr_type_node
);
510 /* If one of the sets corresponds to universal pointer,
511 we consider it to conflict with anything that is
512 or contains pointer. */
513 if (set1
== voidptr_set
|| set2
== voidptr_set
)
515 ++alias_stats
.num_universal
;
518 /* If one of sets is (non-universal) pointer and the other
519 contains universal pointer, we also get conflict. */
520 if (ase1
->is_pointer
&& set2
!= voidptr_set
521 && ase2
->children
&& ase2
->children
->get (voidptr_set
))
523 ++alias_stats
.num_universal
;
526 if (ase2
->is_pointer
&& set1
!= voidptr_set
527 && ase1
->children
&& ase1
->children
->get (voidptr_set
))
529 ++alias_stats
.num_universal
;
534 ++alias_stats
.num_disambiguated
;
536 /* The two alias sets are distinct and neither one is the
537 child of the other. Therefore, they cannot conflict. */
541 /* Return 1 if the two specified alias sets will always conflict. */
544 alias_sets_must_conflict_p (alias_set_type set1
, alias_set_type set2
)
546 /* Disable TBAA oracle with !flag_strict_aliasing. */
547 if (!flag_strict_aliasing
)
549 if (set1
== 0 || set2
== 0)
551 ++alias_stats
.num_alias_zero
;
556 ++alias_stats
.num_same_alias_set
;
563 /* Return 1 if any MEM object of type T1 will always conflict (using the
564 dependency routines in this file) with any MEM object of type T2.
565 This is used when allocating temporary storage. If T1 and/or T2 are
566 NULL_TREE, it means we know nothing about the storage. */
569 objects_must_conflict_p (tree t1
, tree t2
)
571 alias_set_type set1
, set2
;
573 /* If neither has a type specified, we don't know if they'll conflict
574 because we may be using them to store objects of various types, for
575 example the argument and local variables areas of inlined functions. */
576 if (t1
== 0 && t2
== 0)
579 /* If they are the same type, they must conflict. */
582 ++alias_stats
.num_same_objects
;
585 /* Likewise if both are volatile. */
586 if (t1
!= 0 && TYPE_VOLATILE (t1
) && t2
!= 0 && TYPE_VOLATILE (t2
))
588 ++alias_stats
.num_volatile
;
592 set1
= t1
? get_alias_set (t1
) : 0;
593 set2
= t2
? get_alias_set (t2
) : 0;
595 /* We can't use alias_sets_conflict_p because we must make sure
596 that every subtype of t1 will conflict with every subtype of
597 t2 for which a pair of subobjects of these respective subtypes
598 overlaps on the stack. */
599 return alias_sets_must_conflict_p (set1
, set2
);
602 /* Return the outermost parent of component present in the chain of
603 component references handled by get_inner_reference in T with the
605 - the component is non-addressable, or
606 - the parent has alias set zero,
607 or NULL_TREE if no such parent exists. In the former cases, the alias
608 set of this parent is the alias set that must be used for T itself. */
611 component_uses_parent_alias_set_from (const_tree t
)
613 const_tree found
= NULL_TREE
;
615 if (AGGREGATE_TYPE_P (TREE_TYPE (t
))
616 && TYPE_TYPELESS_STORAGE (TREE_TYPE (t
)))
617 return const_cast <tree
> (t
);
619 while (handled_component_p (t
))
621 switch (TREE_CODE (t
))
624 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t
, 1)))
626 /* Permit type-punning when accessing a union, provided the access
627 is directly through the union. For example, this code does not
628 permit taking the address of a union member and then storing
629 through it. Even the type-punning allowed here is a GCC
630 extension, albeit a common and useful one; the C standard says
631 that such accesses have implementation-defined behavior. */
632 else if (TREE_CODE (TREE_TYPE (TREE_OPERAND (t
, 0))) == UNION_TYPE
)
637 case ARRAY_RANGE_REF
:
638 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t
, 0))))
647 case VIEW_CONVERT_EXPR
:
648 /* Bitfields and casts are never addressable. */
656 if (get_alias_set (TREE_TYPE (TREE_OPERAND (t
, 0))) == 0)
659 t
= TREE_OPERAND (t
, 0);
663 return TREE_OPERAND (found
, 0);
669 /* Return whether the pointer-type T effective for aliasing may
670 access everything and thus the reference has to be assigned
674 ref_all_alias_ptr_type_p (const_tree t
)
676 return (TREE_CODE (TREE_TYPE (t
)) == VOID_TYPE
677 || TYPE_REF_CAN_ALIAS_ALL (t
));
680 /* Return the alias set for the memory pointed to by T, which may be
681 either a type or an expression. Return -1 if there is nothing
682 special about dereferencing T. */
684 static alias_set_type
685 get_deref_alias_set_1 (tree t
)
687 /* All we care about is the type. */
691 /* If we have an INDIRECT_REF via a void pointer, we don't
692 know anything about what that might alias. Likewise if the
693 pointer is marked that way. */
694 if (ref_all_alias_ptr_type_p (t
))
700 /* Return the alias set for the memory pointed to by T, which may be
701 either a type or an expression. */
704 get_deref_alias_set (tree t
)
706 /* If we're not doing any alias analysis, just assume everything
707 aliases everything else. */
708 if (!flag_strict_aliasing
)
711 alias_set_type set
= get_deref_alias_set_1 (t
);
713 /* Fall back to the alias-set of the pointed-to type. */
718 set
= get_alias_set (TREE_TYPE (t
));
724 /* Return the pointer-type relevant for TBAA purposes from the
725 memory reference tree *T or NULL_TREE in which case *T is
726 adjusted to point to the outermost component reference that
727 can be used for assigning an alias set. */
730 reference_alias_ptr_type_1 (tree
*t
)
734 /* Get the base object of the reference. */
736 while (handled_component_p (inner
))
738 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
739 the type of any component references that wrap it to
740 determine the alias-set. */
741 if (TREE_CODE (inner
) == VIEW_CONVERT_EXPR
)
742 *t
= TREE_OPERAND (inner
, 0);
743 inner
= TREE_OPERAND (inner
, 0);
746 /* Handle pointer dereferences here, they can override the
748 if (INDIRECT_REF_P (inner
)
749 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner
, 0))))
750 return TREE_TYPE (TREE_OPERAND (inner
, 0));
751 else if (TREE_CODE (inner
) == TARGET_MEM_REF
)
752 return TREE_TYPE (TMR_OFFSET (inner
));
753 else if (TREE_CODE (inner
) == MEM_REF
754 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner
, 1))))
755 return TREE_TYPE (TREE_OPERAND (inner
, 1));
757 /* If the innermost reference is a MEM_REF that has a
758 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
759 using the memory access type for determining the alias-set. */
760 if (TREE_CODE (inner
) == MEM_REF
761 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner
))
763 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner
, 1))))))
764 return TREE_TYPE (TREE_OPERAND (inner
, 1));
766 /* Otherwise, pick up the outermost object that we could have
768 tree tem
= component_uses_parent_alias_set_from (*t
);
775 /* Return the pointer-type relevant for TBAA purposes from the
776 gimple memory reference tree T. This is the type to be used for
777 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
778 and guarantees that get_alias_set will return the same alias
779 set for T and the replacement. */
782 reference_alias_ptr_type (tree t
)
784 /* If the frontend assigns this alias-set zero, preserve that. */
785 if (lang_hooks
.get_alias_set (t
) == 0)
786 return ptr_type_node
;
788 tree ptype
= reference_alias_ptr_type_1 (&t
);
789 /* If there is a given pointer type for aliasing purposes, return it. */
790 if (ptype
!= NULL_TREE
)
793 /* Otherwise build one from the outermost component reference we
795 if (TREE_CODE (t
) == MEM_REF
796 || TREE_CODE (t
) == TARGET_MEM_REF
)
797 return TREE_TYPE (TREE_OPERAND (t
, 1));
799 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t
)));
802 /* Return whether the pointer-types T1 and T2 used to determine
803 two alias sets of two references will yield the same answer
804 from get_deref_alias_set. */
807 alias_ptr_types_compatible_p (tree t1
, tree t2
)
809 if (TYPE_MAIN_VARIANT (t1
) == TYPE_MAIN_VARIANT (t2
))
812 if (ref_all_alias_ptr_type_p (t1
)
813 || ref_all_alias_ptr_type_p (t2
))
816 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1
))
817 == TYPE_MAIN_VARIANT (TREE_TYPE (t2
)));
820 /* Create emptry alias set entry. */
823 init_alias_set_entry (alias_set_type set
)
825 alias_set_entry
*ase
= ggc_alloc
<alias_set_entry
> ();
826 ase
->alias_set
= set
;
827 ase
->children
= NULL
;
828 ase
->has_zero_child
= false;
829 ase
->is_pointer
= false;
830 ase
->has_pointer
= false;
831 gcc_checking_assert (!get_alias_set_entry (set
));
832 (*alias_sets
)[set
] = ase
;
836 /* Return the alias set for T, which may be either a type or an
837 expression. Call language-specific routine for help, if needed. */
840 get_alias_set (tree t
)
844 /* We can not give up with -fno-strict-aliasing because we need to build
845 proper type representation for possible functions which are build with
846 -fstrict-aliasing. */
848 /* return 0 if this or its type is an error. */
849 if (t
== error_mark_node
851 && (TREE_TYPE (t
) == 0 || TREE_TYPE (t
) == error_mark_node
)))
854 /* We can be passed either an expression or a type. This and the
855 language-specific routine may make mutually-recursive calls to each other
856 to figure out what to do. At each juncture, we see if this is a tree
857 that the language may need to handle specially. First handle things that
861 /* Give the language a chance to do something with this tree
862 before we look at it. */
864 set
= lang_hooks
.get_alias_set (t
);
868 /* Get the alias pointer-type to use or the outermost object
869 that we could have a pointer to. */
870 tree ptype
= reference_alias_ptr_type_1 (&t
);
872 return get_deref_alias_set (ptype
);
874 /* If we've already determined the alias set for a decl, just return
875 it. This is necessary for C++ anonymous unions, whose component
876 variables don't look like union members (boo!). */
878 && DECL_RTL_SET_P (t
) && MEM_P (DECL_RTL (t
)))
879 return MEM_ALIAS_SET (DECL_RTL (t
));
881 /* Now all we care about is the type. */
885 /* Variant qualifiers don't affect the alias set, so get the main
887 t
= TYPE_MAIN_VARIANT (t
);
889 if (AGGREGATE_TYPE_P (t
)
890 && TYPE_TYPELESS_STORAGE (t
))
893 /* Always use the canonical type as well. If this is a type that
894 requires structural comparisons to identify compatible types
895 use alias set zero. */
896 if (TYPE_STRUCTURAL_EQUALITY_P (t
))
898 /* Allow the language to specify another alias set for this
900 set
= lang_hooks
.get_alias_set (t
);
903 /* Handle structure type equality for pointer types, arrays and vectors.
904 This is easy to do, because the code bellow ignore canonical types on
905 these anyway. This is important for LTO, where TYPE_CANONICAL for
906 pointers can not be meaningfuly computed by the frotnend. */
907 if (canonical_type_used_p (t
))
909 /* In LTO we set canonical types for all types where it makes
910 sense to do so. Double check we did not miss some type. */
911 gcc_checking_assert (!in_lto_p
|| !type_with_alias_set_p (t
));
917 t
= TYPE_CANONICAL (t
);
918 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t
));
921 /* If this is a type with a known alias set, return it. */
922 gcc_checking_assert (t
== TYPE_MAIN_VARIANT (t
));
923 if (TYPE_ALIAS_SET_KNOWN_P (t
))
924 return TYPE_ALIAS_SET (t
);
926 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
927 if (!COMPLETE_TYPE_P (t
))
929 /* For arrays with unknown size the conservative answer is the
930 alias set of the element type. */
931 if (TREE_CODE (t
) == ARRAY_TYPE
)
932 return get_alias_set (TREE_TYPE (t
));
934 /* But return zero as a conservative answer for incomplete types. */
938 /* See if the language has special handling for this type. */
939 set
= lang_hooks
.get_alias_set (t
);
943 /* There are no objects of FUNCTION_TYPE, so there's no point in
944 using up an alias set for them. (There are, of course, pointers
945 and references to functions, but that's different.) */
946 else if (TREE_CODE (t
) == FUNCTION_TYPE
|| TREE_CODE (t
) == METHOD_TYPE
)
949 /* Unless the language specifies otherwise, let vector types alias
950 their components. This avoids some nasty type punning issues in
951 normal usage. And indeed lets vectors be treated more like an
953 else if (TREE_CODE (t
) == VECTOR_TYPE
)
954 set
= get_alias_set (TREE_TYPE (t
));
956 /* Unless the language specifies otherwise, treat array types the
957 same as their components. This avoids the asymmetry we get
958 through recording the components. Consider accessing a
959 character(kind=1) through a reference to a character(kind=1)[1:1].
960 Or consider if we want to assign integer(kind=4)[0:D.1387] and
961 integer(kind=4)[4] the same alias set or not.
962 Just be pragmatic here and make sure the array and its element
963 type get the same alias set assigned. */
964 else if (TREE_CODE (t
) == ARRAY_TYPE
965 && (!TYPE_NONALIASED_COMPONENT (t
)
966 || TYPE_STRUCTURAL_EQUALITY_P (t
)))
967 set
= get_alias_set (TREE_TYPE (t
));
969 /* From the former common C and C++ langhook implementation:
971 Unfortunately, there is no canonical form of a pointer type.
972 In particular, if we have `typedef int I', then `int *', and
973 `I *' are different types. So, we have to pick a canonical
974 representative. We do this below.
976 Technically, this approach is actually more conservative that
977 it needs to be. In particular, `const int *' and `int *'
978 should be in different alias sets, according to the C and C++
979 standard, since their types are not the same, and so,
980 technically, an `int **' and `const int **' cannot point at
983 But, the standard is wrong. In particular, this code is
988 const int* const* cipp = ipp;
989 And, it doesn't make sense for that to be legal unless you
990 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
991 the pointed-to types. This issue has been reported to the
994 For this reason go to canonical type of the unqalified pointer type.
995 Until GCC 6 this code set all pointers sets to have alias set of
996 ptr_type_node but that is a bad idea, because it prevents disabiguations
997 in between pointers. For Firefox this accounts about 20% of all
998 disambiguations in the program. */
999 else if (POINTER_TYPE_P (t
) && t
!= ptr_type_node
)
1002 auto_vec
<bool, 8> reference
;
1004 /* Unnest all pointers and references.
1005 We also want to make pointer to array/vector equivalent to pointer to
1006 its element (see the reasoning above). Skip all those types, too. */
1007 for (p
= t
; POINTER_TYPE_P (p
)
1008 || (TREE_CODE (p
) == ARRAY_TYPE
1009 && (!TYPE_NONALIASED_COMPONENT (p
)
1010 || !COMPLETE_TYPE_P (p
)
1011 || TYPE_STRUCTURAL_EQUALITY_P (p
)))
1012 || TREE_CODE (p
) == VECTOR_TYPE
;
1015 /* Ada supports recusive pointers. Instead of doing recrusion check
1016 just give up once the preallocated space of 8 elements is up.
1017 In this case just punt to void * alias set. */
1018 if (reference
.length () == 8)
1023 if (TREE_CODE (p
) == REFERENCE_TYPE
)
1024 /* In LTO we want languages that use references to be compatible
1025 with languages that use pointers. */
1026 reference
.safe_push (true && !in_lto_p
);
1027 if (TREE_CODE (p
) == POINTER_TYPE
)
1028 reference
.safe_push (false);
1030 p
= TYPE_MAIN_VARIANT (p
);
1032 /* Make void * compatible with char * and also void **.
1033 Programs are commonly violating TBAA by this.
1035 We also make void * to conflict with every pointer
1036 (see record_component_aliases) and thus it is safe it to use it for
1037 pointers to types with TYPE_STRUCTURAL_EQUALITY_P. */
1038 if (TREE_CODE (p
) == VOID_TYPE
|| TYPE_STRUCTURAL_EQUALITY_P (p
))
1039 set
= get_alias_set (ptr_type_node
);
1042 /* Rebuild pointer type starting from canonical types using
1043 unqualified pointers and references only. This way all such
1044 pointers will have the same alias set and will conflict with
1047 Most of time we already have pointers or references of a given type.
1048 If not we build new one just to be sure that if someone later
1049 (probably only middle-end can, as we should assign all alias
1050 classes only after finishing translation unit) builds the pointer
1051 type, the canonical type will match. */
1052 p
= TYPE_CANONICAL (p
);
1053 while (!reference
.is_empty ())
1055 if (reference
.pop ())
1056 p
= build_reference_type (p
);
1058 p
= build_pointer_type (p
);
1059 gcc_checking_assert (p
== TYPE_MAIN_VARIANT (p
));
1060 /* build_pointer_type should always return the canonical type.
1061 For LTO TYPE_CANOINCAL may be NULL, because we do not compute
1062 them. Be sure that frontends do not glob canonical types of
1063 pointers in unexpected way and that p == TYPE_CANONICAL (p)
1064 in all other cases. */
1065 gcc_checking_assert (!TYPE_CANONICAL (p
)
1066 || p
== TYPE_CANONICAL (p
));
1069 /* Assign the alias set to both p and t.
1070 We can not call get_alias_set (p) here as that would trigger
1071 infinite recursion when p == t. In other cases it would just
1072 trigger unnecesary legwork of rebuilding the pointer again. */
1073 gcc_checking_assert (p
== TYPE_MAIN_VARIANT (p
));
1074 if (TYPE_ALIAS_SET_KNOWN_P (p
))
1075 set
= TYPE_ALIAS_SET (p
);
1078 set
= new_alias_set ();
1079 TYPE_ALIAS_SET (p
) = set
;
1083 /* Alias set of ptr_type_node is special and serve as universal pointer which
1084 is TBAA compatible with every other pointer type. Be sure we have the
1085 alias set built even for LTO which otherwise keeps all TYPE_CANONICAL
1086 of pointer types NULL. */
1087 else if (t
== ptr_type_node
)
1088 set
= new_alias_set ();
1090 /* Otherwise make a new alias set for this type. */
1093 /* Each canonical type gets its own alias set, so canonical types
1094 shouldn't form a tree. It doesn't really matter for types
1095 we handle specially above, so only check it where it possibly
1096 would result in a bogus alias set. */
1097 gcc_checking_assert (TYPE_CANONICAL (t
) == t
);
1099 set
= new_alias_set ();
1102 TYPE_ALIAS_SET (t
) = set
;
1104 /* If this is an aggregate type or a complex type, we must record any
1105 component aliasing information. */
1106 if (AGGREGATE_TYPE_P (t
) || TREE_CODE (t
) == COMPLEX_TYPE
)
1107 record_component_aliases (t
);
1109 /* We treat pointer types specially in alias_set_subset_of. */
1110 if (POINTER_TYPE_P (t
) && set
)
1112 alias_set_entry
*ase
= get_alias_set_entry (set
);
1114 ase
= init_alias_set_entry (set
);
1115 ase
->is_pointer
= true;
1116 ase
->has_pointer
= true;
1122 /* Return a brand-new alias set. */
1125 new_alias_set (void)
1127 if (alias_sets
== 0)
1128 vec_safe_push (alias_sets
, (alias_set_entry
*) NULL
);
1129 vec_safe_push (alias_sets
, (alias_set_entry
*) NULL
);
1130 return alias_sets
->length () - 1;
1133 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
1134 not everything that aliases SUPERSET also aliases SUBSET. For example,
1135 in C, a store to an `int' can alias a load of a structure containing an
1136 `int', and vice versa. But it can't alias a load of a 'double' member
1137 of the same structure. Here, the structure would be the SUPERSET and
1138 `int' the SUBSET. This relationship is also described in the comment at
1139 the beginning of this file.
1141 This function should be called only once per SUPERSET/SUBSET pair.
1143 It is illegal for SUPERSET to be zero; everything is implicitly a
1144 subset of alias set zero. */
1147 record_alias_subset (alias_set_type superset
, alias_set_type subset
)
1149 alias_set_entry
*superset_entry
;
1150 alias_set_entry
*subset_entry
;
1152 /* It is possible in complex type situations for both sets to be the same,
1153 in which case we can ignore this operation. */
1154 if (superset
== subset
)
1157 gcc_assert (superset
);
1159 superset_entry
= get_alias_set_entry (superset
);
1160 if (superset_entry
== 0)
1162 /* Create an entry for the SUPERSET, so that we have a place to
1163 attach the SUBSET. */
1164 superset_entry
= init_alias_set_entry (superset
);
1168 superset_entry
->has_zero_child
= 1;
1171 subset_entry
= get_alias_set_entry (subset
);
1172 if (!superset_entry
->children
)
1173 superset_entry
->children
1174 = hash_map
<alias_set_hash
, int>::create_ggc (64);
1175 /* If there is an entry for the subset, enter all of its children
1176 (if they are not already present) as children of the SUPERSET. */
1179 if (subset_entry
->has_zero_child
)
1180 superset_entry
->has_zero_child
= true;
1181 if (subset_entry
->has_pointer
)
1182 superset_entry
->has_pointer
= true;
1184 if (subset_entry
->children
)
1186 hash_map
<alias_set_hash
, int>::iterator iter
1187 = subset_entry
->children
->begin ();
1188 for (; iter
!= subset_entry
->children
->end (); ++iter
)
1189 superset_entry
->children
->put ((*iter
).first
, (*iter
).second
);
1193 /* Enter the SUBSET itself as a child of the SUPERSET. */
1194 superset_entry
->children
->put (subset
, 0);
1198 /* Record that component types of TYPE, if any, are part of that type for
1199 aliasing purposes. For record types, we only record component types
1200 for fields that are not marked non-addressable. For array types, we
1201 only record the component type if it is not marked non-aliased. */
1204 record_component_aliases (tree type
)
1206 alias_set_type superset
= get_alias_set (type
);
1212 switch (TREE_CODE (type
))
1216 case QUAL_UNION_TYPE
:
1217 for (field
= TYPE_FIELDS (type
); field
!= 0; field
= DECL_CHAIN (field
))
1218 if (TREE_CODE (field
) == FIELD_DECL
&& !DECL_NONADDRESSABLE_P (field
))
1220 /* LTO type merging does not make any difference between
1221 component pointer types. We may have
1223 struct foo {int *a;};
1225 as TYPE_CANONICAL of
1227 struct bar {float *a;};
1229 Because accesses to int * and float * do not alias, we would get
1230 false negative when accessing the same memory location by
1231 float ** and bar *. We thus record the canonical type as:
1235 void * is special cased and works as a universal pointer type.
1236 Accesses to it conflicts with accesses to any other pointer
1238 tree t
= TREE_TYPE (field
);
1241 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1242 element type and that type has to be normalized to void *,
1243 too, in the case it is a pointer. */
1244 while (!canonical_type_used_p (t
) && !POINTER_TYPE_P (t
))
1246 gcc_checking_assert (TYPE_STRUCTURAL_EQUALITY_P (t
));
1249 if (POINTER_TYPE_P (t
))
1251 else if (flag_checking
)
1252 gcc_checking_assert (get_alias_set (t
)
1253 == get_alias_set (TREE_TYPE (field
)));
1256 record_alias_subset (superset
, get_alias_set (t
));
1261 record_alias_subset (superset
, get_alias_set (TREE_TYPE (type
)));
1264 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1272 /* Allocate an alias set for use in storing and reading from the varargs
1275 static GTY(()) alias_set_type varargs_set
= -1;
1278 get_varargs_alias_set (void)
1281 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1282 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1283 consistently use the varargs alias set for loads from the varargs
1284 area. So don't use it anywhere. */
1287 if (varargs_set
== -1)
1288 varargs_set
= new_alias_set ();
1294 /* Likewise, but used for the fixed portions of the frame, e.g., register
1297 static GTY(()) alias_set_type frame_set
= -1;
1300 get_frame_alias_set (void)
1302 if (frame_set
== -1)
1303 frame_set
= new_alias_set ();
1308 /* Create a new, unique base with id ID. */
1311 unique_base_value (HOST_WIDE_INT id
)
1313 return gen_rtx_ADDRESS (Pmode
, id
);
1316 /* Return true if accesses based on any other base value cannot alias
1317 those based on X. */
1320 unique_base_value_p (rtx x
)
1322 return GET_CODE (x
) == ADDRESS
&& GET_MODE (x
) == Pmode
;
1325 /* Return true if X is known to be a base value. */
1328 known_base_value_p (rtx x
)
1330 switch (GET_CODE (x
))
1337 /* Arguments may or may not be bases; we don't know for sure. */
1338 return GET_MODE (x
) != VOIDmode
;
1345 /* Inside SRC, the source of a SET, find a base address. */
1348 find_base_value (rtx src
)
1351 scalar_int_mode int_mode
;
1353 #if defined (FIND_BASE_TERM)
1354 /* Try machine-dependent ways to find the base term. */
1355 src
= FIND_BASE_TERM (src
);
1358 switch (GET_CODE (src
))
1365 regno
= REGNO (src
);
1366 /* At the start of a function, argument registers have known base
1367 values which may be lost later. Returning an ADDRESS
1368 expression here allows optimization based on argument values
1369 even when the argument registers are used for other purposes. */
1370 if (regno
< FIRST_PSEUDO_REGISTER
&& copying_arguments
)
1371 return new_reg_base_value
[regno
];
1373 /* If a pseudo has a known base value, return it. Do not do this
1374 for non-fixed hard regs since it can result in a circular
1375 dependency chain for registers which have values at function entry.
1377 The test above is not sufficient because the scheduler may move
1378 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1379 if ((regno
>= FIRST_PSEUDO_REGISTER
|| fixed_regs
[regno
])
1380 && regno
< vec_safe_length (reg_base_value
))
1382 /* If we're inside init_alias_analysis, use new_reg_base_value
1383 to reduce the number of relaxation iterations. */
1384 if (new_reg_base_value
&& new_reg_base_value
[regno
]
1385 && DF_REG_DEF_COUNT (regno
) == 1)
1386 return new_reg_base_value
[regno
];
1388 if ((*reg_base_value
)[regno
])
1389 return (*reg_base_value
)[regno
];
1395 /* Check for an argument passed in memory. Only record in the
1396 copying-arguments block; it is too hard to track changes
1398 if (copying_arguments
1399 && (XEXP (src
, 0) == arg_pointer_rtx
1400 || (GET_CODE (XEXP (src
, 0)) == PLUS
1401 && XEXP (XEXP (src
, 0), 0) == arg_pointer_rtx
)))
1402 return arg_base_value
;
1406 src
= XEXP (src
, 0);
1407 if (GET_CODE (src
) != PLUS
&& GET_CODE (src
) != MINUS
)
1415 rtx temp
, src_0
= XEXP (src
, 0), src_1
= XEXP (src
, 1);
1417 /* If either operand is a REG that is a known pointer, then it
1419 if (REG_P (src_0
) && REG_POINTER (src_0
))
1420 return find_base_value (src_0
);
1421 if (REG_P (src_1
) && REG_POINTER (src_1
))
1422 return find_base_value (src_1
);
1424 /* If either operand is a REG, then see if we already have
1425 a known value for it. */
1428 temp
= find_base_value (src_0
);
1435 temp
= find_base_value (src_1
);
1440 /* If either base is named object or a special address
1441 (like an argument or stack reference), then use it for the
1443 if (src_0
!= 0 && known_base_value_p (src_0
))
1446 if (src_1
!= 0 && known_base_value_p (src_1
))
1449 /* Guess which operand is the base address:
1450 If either operand is a symbol, then it is the base. If
1451 either operand is a CONST_INT, then the other is the base. */
1452 if (CONST_INT_P (src_1
) || CONSTANT_P (src_0
))
1453 return find_base_value (src_0
);
1454 else if (CONST_INT_P (src_0
) || CONSTANT_P (src_1
))
1455 return find_base_value (src_1
);
1461 /* The standard form is (lo_sum reg sym) so look only at the
1463 return find_base_value (XEXP (src
, 1));
1466 /* If the second operand is constant set the base
1467 address to the first operand. */
1468 if (CONST_INT_P (XEXP (src
, 1)) && INTVAL (XEXP (src
, 1)) != 0)
1469 return find_base_value (XEXP (src
, 0));
1473 /* As we do not know which address space the pointer is referring to, we can
1474 handle this only if the target does not support different pointer or
1475 address modes depending on the address space. */
1476 if (!target_default_pointer_address_modes_p ())
1478 if (!is_a
<scalar_int_mode
> (GET_MODE (src
), &int_mode
)
1479 || GET_MODE_PRECISION (int_mode
) < GET_MODE_PRECISION (Pmode
))
1489 return find_base_value (XEXP (src
, 0));
1492 case SIGN_EXTEND
: /* used for NT/Alpha pointers */
1493 /* As we do not know which address space the pointer is referring to, we can
1494 handle this only if the target does not support different pointer or
1495 address modes depending on the address space. */
1496 if (!target_default_pointer_address_modes_p ())
1500 rtx temp
= find_base_value (XEXP (src
, 0));
1502 if (temp
!= 0 && CONSTANT_P (temp
))
1503 temp
= convert_memory_address (Pmode
, temp
);
1515 /* Called from init_alias_analysis indirectly through note_stores,
1516 or directly if DEST is a register with a REG_NOALIAS note attached.
1517 SET is null in the latter case. */
1519 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1520 register N has been set in this function. */
1521 static sbitmap reg_seen
;
1524 record_set (rtx dest
, const_rtx set
, void *data ATTRIBUTE_UNUSED
)
1533 regno
= REGNO (dest
);
1535 gcc_checking_assert (regno
< reg_base_value
->length ());
1537 n
= REG_NREGS (dest
);
1542 bitmap_set_bit (reg_seen
, regno
+ n
);
1543 new_reg_base_value
[regno
+ n
] = 0;
1550 /* A CLOBBER wipes out any old value but does not prevent a previously
1551 unset register from acquiring a base address (i.e. reg_seen is not
1553 if (GET_CODE (set
) == CLOBBER
)
1555 new_reg_base_value
[regno
] = 0;
1558 src
= SET_SRC (set
);
1562 /* There's a REG_NOALIAS note against DEST. */
1563 if (bitmap_bit_p (reg_seen
, regno
))
1565 new_reg_base_value
[regno
] = 0;
1568 bitmap_set_bit (reg_seen
, regno
);
1569 new_reg_base_value
[regno
] = unique_base_value (unique_id
++);
1573 /* If this is not the first set of REGNO, see whether the new value
1574 is related to the old one. There are two cases of interest:
1576 (1) The register might be assigned an entirely new value
1577 that has the same base term as the original set.
1579 (2) The set might be a simple self-modification that
1580 cannot change REGNO's base value.
1582 If neither case holds, reject the original base value as invalid.
1583 Note that the following situation is not detected:
1585 extern int x, y; int *p = &x; p += (&y-&x);
1587 ANSI C does not allow computing the difference of addresses
1588 of distinct top level objects. */
1589 if (new_reg_base_value
[regno
] != 0
1590 && find_base_value (src
) != new_reg_base_value
[regno
])
1591 switch (GET_CODE (src
))
1595 if (XEXP (src
, 0) != dest
&& XEXP (src
, 1) != dest
)
1596 new_reg_base_value
[regno
] = 0;
1599 /* If the value we add in the PLUS is also a valid base value,
1600 this might be the actual base value, and the original value
1603 rtx other
= NULL_RTX
;
1605 if (XEXP (src
, 0) == dest
)
1606 other
= XEXP (src
, 1);
1607 else if (XEXP (src
, 1) == dest
)
1608 other
= XEXP (src
, 0);
1610 if (! other
|| find_base_value (other
))
1611 new_reg_base_value
[regno
] = 0;
1615 if (XEXP (src
, 0) != dest
|| !CONST_INT_P (XEXP (src
, 1)))
1616 new_reg_base_value
[regno
] = 0;
1619 new_reg_base_value
[regno
] = 0;
1622 /* If this is the first set of a register, record the value. */
1623 else if ((regno
>= FIRST_PSEUDO_REGISTER
|| ! fixed_regs
[regno
])
1624 && ! bitmap_bit_p (reg_seen
, regno
) && new_reg_base_value
[regno
] == 0)
1625 new_reg_base_value
[regno
] = find_base_value (src
);
1627 bitmap_set_bit (reg_seen
, regno
);
1630 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1631 using hard registers with non-null REG_BASE_VALUE for renaming. */
1633 get_reg_base_value (unsigned int regno
)
1635 return (*reg_base_value
)[regno
];
1638 /* If a value is known for REGNO, return it. */
1641 get_reg_known_value (unsigned int regno
)
1643 if (regno
>= FIRST_PSEUDO_REGISTER
)
1645 regno
-= FIRST_PSEUDO_REGISTER
;
1646 if (regno
< vec_safe_length (reg_known_value
))
1647 return (*reg_known_value
)[regno
];
1655 set_reg_known_value (unsigned int regno
, rtx val
)
1657 if (regno
>= FIRST_PSEUDO_REGISTER
)
1659 regno
-= FIRST_PSEUDO_REGISTER
;
1660 if (regno
< vec_safe_length (reg_known_value
))
1661 (*reg_known_value
)[regno
] = val
;
1665 /* Similarly for reg_known_equiv_p. */
1668 get_reg_known_equiv_p (unsigned int regno
)
1670 if (regno
>= FIRST_PSEUDO_REGISTER
)
1672 regno
-= FIRST_PSEUDO_REGISTER
;
1673 if (regno
< vec_safe_length (reg_known_value
))
1674 return bitmap_bit_p (reg_known_equiv_p
, regno
);
1680 set_reg_known_equiv_p (unsigned int regno
, bool val
)
1682 if (regno
>= FIRST_PSEUDO_REGISTER
)
1684 regno
-= FIRST_PSEUDO_REGISTER
;
1685 if (regno
< vec_safe_length (reg_known_value
))
1688 bitmap_set_bit (reg_known_equiv_p
, regno
);
1690 bitmap_clear_bit (reg_known_equiv_p
, regno
);
1696 /* Returns a canonical version of X, from the point of view alias
1697 analysis. (For example, if X is a MEM whose address is a register,
1698 and the register has a known value (say a SYMBOL_REF), then a MEM
1699 whose address is the SYMBOL_REF is returned.) */
1704 /* Recursively look for equivalences. */
1705 if (REG_P (x
) && REGNO (x
) >= FIRST_PSEUDO_REGISTER
)
1707 rtx t
= get_reg_known_value (REGNO (x
));
1711 return canon_rtx (t
);
1714 if (GET_CODE (x
) == PLUS
)
1716 rtx x0
= canon_rtx (XEXP (x
, 0));
1717 rtx x1
= canon_rtx (XEXP (x
, 1));
1719 if (x0
!= XEXP (x
, 0) || x1
!= XEXP (x
, 1))
1720 return simplify_gen_binary (PLUS
, GET_MODE (x
), x0
, x1
);
1723 /* This gives us much better alias analysis when called from
1724 the loop optimizer. Note we want to leave the original
1725 MEM alone, but need to return the canonicalized MEM with
1726 all the flags with their original values. */
1728 x
= replace_equiv_address_nv (x
, canon_rtx (XEXP (x
, 0)));
1733 /* Return 1 if X and Y are identical-looking rtx's.
1734 Expect that X and Y has been already canonicalized.
1736 We use the data in reg_known_value above to see if two registers with
1737 different numbers are, in fact, equivalent. */
1740 rtx_equal_for_memref_p (const_rtx x
, const_rtx y
)
1747 if (x
== 0 && y
== 0)
1749 if (x
== 0 || y
== 0)
1755 code
= GET_CODE (x
);
1756 /* Rtx's of different codes cannot be equal. */
1757 if (code
!= GET_CODE (y
))
1760 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1761 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1763 if (GET_MODE (x
) != GET_MODE (y
))
1766 /* Some RTL can be compared without a recursive examination. */
1770 return REGNO (x
) == REGNO (y
);
1773 return label_ref_label (x
) == label_ref_label (y
);
1776 return compare_base_symbol_refs (x
, y
) == 1;
1779 /* This is magic, don't go through canonicalization et al. */
1780 return rtx_equal_p (ENTRY_VALUE_EXP (x
), ENTRY_VALUE_EXP (y
));
1784 /* Pointer equality guarantees equality for these nodes. */
1791 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1793 return ((rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0))
1794 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 1)))
1795 || (rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 1))
1796 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 0))));
1797 /* For commutative operations, the RTX match if the operand match in any
1798 order. Also handle the simple binary and unary cases without a loop. */
1799 if (COMMUTATIVE_P (x
))
1801 rtx xop0
= canon_rtx (XEXP (x
, 0));
1802 rtx yop0
= canon_rtx (XEXP (y
, 0));
1803 rtx yop1
= canon_rtx (XEXP (y
, 1));
1805 return ((rtx_equal_for_memref_p (xop0
, yop0
)
1806 && rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 1)), yop1
))
1807 || (rtx_equal_for_memref_p (xop0
, yop1
)
1808 && rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 1)), yop0
)));
1810 else if (NON_COMMUTATIVE_P (x
))
1812 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 0)),
1813 canon_rtx (XEXP (y
, 0)))
1814 && rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 1)),
1815 canon_rtx (XEXP (y
, 1))));
1817 else if (UNARY_P (x
))
1818 return rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 0)),
1819 canon_rtx (XEXP (y
, 0)));
1821 /* Compare the elements. If any pair of corresponding elements
1822 fail to match, return 0 for the whole things.
1824 Limit cases to types which actually appear in addresses. */
1826 fmt
= GET_RTX_FORMAT (code
);
1827 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1832 if (XINT (x
, i
) != XINT (y
, i
))
1837 if (maybe_ne (SUBREG_BYTE (x
), SUBREG_BYTE (y
)))
1842 /* Two vectors must have the same length. */
1843 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1846 /* And the corresponding elements must match. */
1847 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1848 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x
, i
, j
)),
1849 canon_rtx (XVECEXP (y
, i
, j
))) == 0)
1854 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x
, i
)),
1855 canon_rtx (XEXP (y
, i
))) == 0)
1859 /* This can happen for asm operands. */
1861 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1865 /* This can happen for an asm which clobbers memory. */
1869 /* It is believed that rtx's at this level will never
1870 contain anything but integers and other rtx's,
1871 except for within LABEL_REFs and SYMBOL_REFs. */
1880 find_base_term (rtx x
)
1883 struct elt_loc_list
*l
, *f
;
1885 scalar_int_mode int_mode
;
1887 #if defined (FIND_BASE_TERM)
1888 /* Try machine-dependent ways to find the base term. */
1889 x
= FIND_BASE_TERM (x
);
1892 switch (GET_CODE (x
))
1895 return REG_BASE_VALUE (x
);
1898 /* As we do not know which address space the pointer is referring to, we can
1899 handle this only if the target does not support different pointer or
1900 address modes depending on the address space. */
1901 if (!target_default_pointer_address_modes_p ())
1903 if (!is_a
<scalar_int_mode
> (GET_MODE (x
), &int_mode
)
1904 || GET_MODE_PRECISION (int_mode
) < GET_MODE_PRECISION (Pmode
))
1914 return find_base_term (XEXP (x
, 0));
1917 case SIGN_EXTEND
: /* Used for Alpha/NT pointers */
1918 /* As we do not know which address space the pointer is referring to, we can
1919 handle this only if the target does not support different pointer or
1920 address modes depending on the address space. */
1921 if (!target_default_pointer_address_modes_p ())
1925 rtx temp
= find_base_term (XEXP (x
, 0));
1927 if (temp
!= 0 && CONSTANT_P (temp
))
1928 temp
= convert_memory_address (Pmode
, temp
);
1934 val
= CSELIB_VAL_PTR (x
);
1940 if (cselib_sp_based_value_p (val
))
1941 return static_reg_base_value
[STACK_POINTER_REGNUM
];
1944 /* Temporarily reset val->locs to avoid infinite recursion. */
1947 for (l
= f
; l
; l
= l
->next
)
1948 if (GET_CODE (l
->loc
) == VALUE
1949 && CSELIB_VAL_PTR (l
->loc
)->locs
1950 && !CSELIB_VAL_PTR (l
->loc
)->locs
->next
1951 && CSELIB_VAL_PTR (l
->loc
)->locs
->loc
== x
)
1953 else if ((ret
= find_base_term (l
->loc
)) != 0)
1960 /* The standard form is (lo_sum reg sym) so look only at the
1962 return find_base_term (XEXP (x
, 1));
1966 if (GET_CODE (x
) != PLUS
&& GET_CODE (x
) != MINUS
)
1972 rtx tmp1
= XEXP (x
, 0);
1973 rtx tmp2
= XEXP (x
, 1);
1975 /* This is a little bit tricky since we have to determine which of
1976 the two operands represents the real base address. Otherwise this
1977 routine may return the index register instead of the base register.
1979 That may cause us to believe no aliasing was possible, when in
1980 fact aliasing is possible.
1982 We use a few simple tests to guess the base register. Additional
1983 tests can certainly be added. For example, if one of the operands
1984 is a shift or multiply, then it must be the index register and the
1985 other operand is the base register. */
1987 if (tmp1
== pic_offset_table_rtx
&& CONSTANT_P (tmp2
))
1988 return find_base_term (tmp2
);
1990 /* If either operand is known to be a pointer, then prefer it
1991 to determine the base term. */
1992 if (REG_P (tmp1
) && REG_POINTER (tmp1
))
1994 else if (REG_P (tmp2
) && REG_POINTER (tmp2
))
1995 std::swap (tmp1
, tmp2
);
1996 /* If second argument is constant which has base term, prefer it
1997 over variable tmp1. See PR64025. */
1998 else if (CONSTANT_P (tmp2
) && !CONST_INT_P (tmp2
))
1999 std::swap (tmp1
, tmp2
);
2001 /* Go ahead and find the base term for both operands. If either base
2002 term is from a pointer or is a named object or a special address
2003 (like an argument or stack reference), then use it for the
2005 rtx base
= find_base_term (tmp1
);
2006 if (base
!= NULL_RTX
2007 && ((REG_P (tmp1
) && REG_POINTER (tmp1
))
2008 || known_base_value_p (base
)))
2010 base
= find_base_term (tmp2
);
2011 if (base
!= NULL_RTX
2012 && ((REG_P (tmp2
) && REG_POINTER (tmp2
))
2013 || known_base_value_p (base
)))
2016 /* We could not determine which of the two operands was the
2017 base register and which was the index. So we can determine
2018 nothing from the base alias check. */
2023 if (CONST_INT_P (XEXP (x
, 1)) && INTVAL (XEXP (x
, 1)) != 0)
2024 return find_base_term (XEXP (x
, 0));
2036 /* Return true if accesses to address X may alias accesses based
2037 on the stack pointer. */
2040 may_be_sp_based_p (rtx x
)
2042 rtx base
= find_base_term (x
);
2043 return !base
|| base
== static_reg_base_value
[STACK_POINTER_REGNUM
];
2046 /* BASE1 and BASE2 are decls. Return 1 if they refer to same object, 0
2047 if they refer to different objects and -1 if we can not decide. */
2050 compare_base_decls (tree base1
, tree base2
)
2053 gcc_checking_assert (DECL_P (base1
) && DECL_P (base2
));
2057 /* If we have two register decls with register specification we
2058 cannot decide unless their assembler names are the same. */
2059 if (DECL_REGISTER (base1
)
2060 && DECL_REGISTER (base2
)
2061 && HAS_DECL_ASSEMBLER_NAME_P (base1
)
2062 && HAS_DECL_ASSEMBLER_NAME_P (base2
)
2063 && DECL_ASSEMBLER_NAME_SET_P (base1
)
2064 && DECL_ASSEMBLER_NAME_SET_P (base2
))
2066 if (DECL_ASSEMBLER_NAME_RAW (base1
) == DECL_ASSEMBLER_NAME_RAW (base2
))
2071 /* Declarations of non-automatic variables may have aliases. All other
2072 decls are unique. */
2073 if (!decl_in_symtab_p (base1
)
2074 || !decl_in_symtab_p (base2
))
2077 /* Don't cause symbols to be inserted by the act of checking. */
2078 symtab_node
*node1
= symtab_node::get (base1
);
2081 symtab_node
*node2
= symtab_node::get (base2
);
2085 ret
= node1
->equal_address_to (node2
, true);
2089 /* Same as compare_base_decls but for SYMBOL_REF. */
2092 compare_base_symbol_refs (const_rtx x_base
, const_rtx y_base
)
2094 tree x_decl
= SYMBOL_REF_DECL (x_base
);
2095 tree y_decl
= SYMBOL_REF_DECL (y_base
);
2096 bool binds_def
= true;
2098 if (XSTR (x_base
, 0) == XSTR (y_base
, 0))
2100 if (x_decl
&& y_decl
)
2101 return compare_base_decls (x_decl
, y_decl
);
2102 if (x_decl
|| y_decl
)
2106 std::swap (x_decl
, y_decl
);
2107 std::swap (x_base
, y_base
);
2109 /* We handle specially only section anchors and assume that other
2110 labels may overlap with user variables in an arbitrary way. */
2111 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (y_base
))
2113 /* Anchors contains static VAR_DECLs and CONST_DECLs. We are safe
2114 to ignore CONST_DECLs because they are readonly. */
2116 || (!TREE_STATIC (x_decl
) && !TREE_PUBLIC (x_decl
)))
2119 symtab_node
*x_node
= symtab_node::get_create (x_decl
)
2120 ->ultimate_alias_target ();
2121 /* External variable can not be in section anchor. */
2122 if (!x_node
->definition
)
2124 x_base
= XEXP (DECL_RTL (x_node
->decl
), 0);
2125 /* If not in anchor, we can disambiguate. */
2126 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (x_base
))
2129 /* We have an alias of anchored variable. If it can be interposed;
2130 we must assume it may or may not alias its anchor. */
2131 binds_def
= decl_binds_to_current_def_p (x_decl
);
2133 /* If we have variable in section anchor, we can compare by offset. */
2134 if (SYMBOL_REF_HAS_BLOCK_INFO_P (x_base
)
2135 && SYMBOL_REF_HAS_BLOCK_INFO_P (y_base
))
2137 if (SYMBOL_REF_BLOCK (x_base
) != SYMBOL_REF_BLOCK (y_base
))
2139 if (SYMBOL_REF_BLOCK_OFFSET (x_base
) == SYMBOL_REF_BLOCK_OFFSET (y_base
))
2140 return binds_def
? 1 : -1;
2141 if (SYMBOL_REF_ANCHOR_P (x_base
) != SYMBOL_REF_ANCHOR_P (y_base
))
2145 /* In general we assume that memory locations pointed to by different labels
2146 may overlap in undefined ways. */
2150 /* Return 0 if the addresses X and Y are known to point to different
2151 objects, 1 if they might be pointers to the same object. */
2154 base_alias_check (rtx x
, rtx x_base
, rtx y
, rtx y_base
,
2155 machine_mode x_mode
, machine_mode y_mode
)
2157 /* If the address itself has no known base see if a known equivalent
2158 value has one. If either address still has no known base, nothing
2159 is known about aliasing. */
2164 if (! flag_expensive_optimizations
|| (x_c
= canon_rtx (x
)) == x
)
2167 x_base
= find_base_term (x_c
);
2175 if (! flag_expensive_optimizations
|| (y_c
= canon_rtx (y
)) == y
)
2178 y_base
= find_base_term (y_c
);
2183 /* If the base addresses are equal nothing is known about aliasing. */
2184 if (rtx_equal_p (x_base
, y_base
))
2187 /* The base addresses are different expressions. If they are not accessed
2188 via AND, there is no conflict. We can bring knowledge of object
2189 alignment into play here. For example, on alpha, "char a, b;" can
2190 alias one another, though "char a; long b;" cannot. AND addresses may
2191 implicitly alias surrounding objects; i.e. unaligned access in DImode
2192 via AND address can alias all surrounding object types except those
2193 with aligment 8 or higher. */
2194 if (GET_CODE (x
) == AND
&& GET_CODE (y
) == AND
)
2196 if (GET_CODE (x
) == AND
2197 && (!CONST_INT_P (XEXP (x
, 1))
2198 || (int) GET_MODE_UNIT_SIZE (y_mode
) < -INTVAL (XEXP (x
, 1))))
2200 if (GET_CODE (y
) == AND
2201 && (!CONST_INT_P (XEXP (y
, 1))
2202 || (int) GET_MODE_UNIT_SIZE (x_mode
) < -INTVAL (XEXP (y
, 1))))
2205 /* Differing symbols not accessed via AND never alias. */
2206 if (GET_CODE (x_base
) == SYMBOL_REF
&& GET_CODE (y_base
) == SYMBOL_REF
)
2207 return compare_base_symbol_refs (x_base
, y_base
) != 0;
2209 if (GET_CODE (x_base
) != ADDRESS
&& GET_CODE (y_base
) != ADDRESS
)
2212 if (unique_base_value_p (x_base
) || unique_base_value_p (y_base
))
2218 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
2219 (or equal to) that of V. */
2222 refs_newer_value_p (const_rtx expr
, rtx v
)
2224 int minuid
= CSELIB_VAL_PTR (v
)->uid
;
2225 subrtx_iterator::array_type array
;
2226 FOR_EACH_SUBRTX (iter
, array
, expr
, NONCONST
)
2227 if (GET_CODE (*iter
) == VALUE
&& CSELIB_VAL_PTR (*iter
)->uid
>= minuid
)
2232 /* Convert the address X into something we can use. This is done by returning
2233 it unchanged unless it is a VALUE or VALUE +/- constant; for VALUE
2234 we call cselib to get a more useful rtx. */
2240 struct elt_loc_list
*l
;
2242 if (GET_CODE (x
) != VALUE
)
2244 if ((GET_CODE (x
) == PLUS
|| GET_CODE (x
) == MINUS
)
2245 && GET_CODE (XEXP (x
, 0)) == VALUE
2246 && CONST_SCALAR_INT_P (XEXP (x
, 1)))
2248 rtx op0
= get_addr (XEXP (x
, 0));
2249 if (op0
!= XEXP (x
, 0))
2251 if (GET_CODE (x
) == PLUS
2252 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
2253 return plus_constant (GET_MODE (x
), op0
, INTVAL (XEXP (x
, 1)));
2254 return simplify_gen_binary (GET_CODE (x
), GET_MODE (x
),
2260 v
= CSELIB_VAL_PTR (x
);
2263 bool have_equivs
= cselib_have_permanent_equivalences ();
2265 v
= canonical_cselib_val (v
);
2266 for (l
= v
->locs
; l
; l
= l
->next
)
2267 if (CONSTANT_P (l
->loc
))
2269 for (l
= v
->locs
; l
; l
= l
->next
)
2270 if (!REG_P (l
->loc
) && !MEM_P (l
->loc
)
2271 /* Avoid infinite recursion when potentially dealing with
2272 var-tracking artificial equivalences, by skipping the
2273 equivalences themselves, and not choosing expressions
2274 that refer to newer VALUEs. */
2276 || (GET_CODE (l
->loc
) != VALUE
2277 && !refs_newer_value_p (l
->loc
, x
))))
2281 for (l
= v
->locs
; l
; l
= l
->next
)
2283 || (GET_CODE (l
->loc
) != VALUE
2284 && !refs_newer_value_p (l
->loc
, x
)))
2286 /* Return the canonical value. */
2290 return v
->locs
->loc
;
2295 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
2296 where SIZE is the size in bytes of the memory reference. If ADDR
2297 is not modified by the memory reference then ADDR is returned. */
2300 addr_side_effect_eval (rtx addr
, int size
, int n_refs
)
2304 switch (GET_CODE (addr
))
2307 offset
= (n_refs
+ 1) * size
;
2310 offset
= -(n_refs
+ 1) * size
;
2313 offset
= n_refs
* size
;
2316 offset
= -n_refs
* size
;
2324 addr
= gen_rtx_PLUS (GET_MODE (addr
), XEXP (addr
, 0),
2325 gen_int_mode (offset
, GET_MODE (addr
)));
2327 addr
= XEXP (addr
, 0);
2328 addr
= canon_rtx (addr
);
2333 /* Return TRUE if an object X sized at XSIZE bytes and another object
2334 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
2335 any of the sizes is zero, assume an overlap, otherwise use the
2336 absolute value of the sizes as the actual sizes. */
2339 offset_overlap_p (poly_int64 c
, poly_int64 xsize
, poly_int64 ysize
)
2341 if (known_eq (xsize
, 0) || known_eq (ysize
, 0))
2344 if (maybe_ge (c
, 0))
2345 return maybe_gt (maybe_lt (xsize
, 0) ? -xsize
: xsize
, c
);
2347 return maybe_gt (maybe_lt (ysize
, 0) ? -ysize
: ysize
, -c
);
2350 /* Return one if X and Y (memory addresses) reference the
2351 same location in memory or if the references overlap.
2352 Return zero if they do not overlap, else return
2353 minus one in which case they still might reference the same location.
2355 C is an offset accumulator. When
2356 C is nonzero, we are testing aliases between X and Y + C.
2357 XSIZE is the size in bytes of the X reference,
2358 similarly YSIZE is the size in bytes for Y.
2359 Expect that canon_rtx has been already called for X and Y.
2361 If XSIZE or YSIZE is zero, we do not know the amount of memory being
2362 referenced (the reference was BLKmode), so make the most pessimistic
2365 If XSIZE or YSIZE is negative, we may access memory outside the object
2366 being referenced as a side effect. This can happen when using AND to
2367 align memory references, as is done on the Alpha.
2369 Nice to notice that varying addresses cannot conflict with fp if no
2370 local variables had their addresses taken, but that's too hard now.
2372 ??? Contrary to the tree alias oracle this does not return
2373 one for X + non-constant and Y + non-constant when X and Y are equal.
2374 If that is fixed the TBAA hack for union type-punning can be removed. */
2377 memrefs_conflict_p (int xsize
, rtx x
, int ysize
, rtx y
, HOST_WIDE_INT c
)
2379 if (GET_CODE (x
) == VALUE
)
2383 struct elt_loc_list
*l
= NULL
;
2384 if (CSELIB_VAL_PTR (x
))
2385 for (l
= canonical_cselib_val (CSELIB_VAL_PTR (x
))->locs
;
2387 if (REG_P (l
->loc
) && rtx_equal_for_memref_p (l
->loc
, y
))
2394 /* Don't call get_addr if y is the same VALUE. */
2398 if (GET_CODE (y
) == VALUE
)
2402 struct elt_loc_list
*l
= NULL
;
2403 if (CSELIB_VAL_PTR (y
))
2404 for (l
= canonical_cselib_val (CSELIB_VAL_PTR (y
))->locs
;
2406 if (REG_P (l
->loc
) && rtx_equal_for_memref_p (l
->loc
, x
))
2413 /* Don't call get_addr if x is the same VALUE. */
2417 if (GET_CODE (x
) == HIGH
)
2419 else if (GET_CODE (x
) == LO_SUM
)
2422 x
= addr_side_effect_eval (x
, abs (xsize
), 0);
2423 if (GET_CODE (y
) == HIGH
)
2425 else if (GET_CODE (y
) == LO_SUM
)
2428 y
= addr_side_effect_eval (y
, abs (ysize
), 0);
2430 if (GET_CODE (x
) == SYMBOL_REF
&& GET_CODE (y
) == SYMBOL_REF
)
2432 int cmp
= compare_base_symbol_refs (x
,y
);
2434 /* If both decls are the same, decide by offsets. */
2436 return offset_overlap_p (c
, xsize
, ysize
);
2437 /* Assume a potential overlap for symbolic addresses that went
2438 through alignment adjustments (i.e., that have negative
2439 sizes), because we can't know how far they are from each
2441 if (xsize
< 0 || ysize
< 0)
2443 /* If decls are different or we know by offsets that there is no overlap,
2445 if (!cmp
|| !offset_overlap_p (c
, xsize
, ysize
))
2447 /* Decls may or may not be different and offsets overlap....*/
2450 else if (rtx_equal_for_memref_p (x
, y
))
2452 return offset_overlap_p (c
, xsize
, ysize
);
2455 /* This code used to check for conflicts involving stack references and
2456 globals but the base address alias code now handles these cases. */
2458 if (GET_CODE (x
) == PLUS
)
2460 /* The fact that X is canonicalized means that this
2461 PLUS rtx is canonicalized. */
2462 rtx x0
= XEXP (x
, 0);
2463 rtx x1
= XEXP (x
, 1);
2465 /* However, VALUEs might end up in different positions even in
2466 canonical PLUSes. Comparing their addresses is enough. */
2468 return memrefs_conflict_p (xsize
, x1
, ysize
, const0_rtx
, c
);
2470 return memrefs_conflict_p (xsize
, x0
, ysize
, const0_rtx
, c
);
2472 if (GET_CODE (y
) == PLUS
)
2474 /* The fact that Y is canonicalized means that this
2475 PLUS rtx is canonicalized. */
2476 rtx y0
= XEXP (y
, 0);
2477 rtx y1
= XEXP (y
, 1);
2480 return memrefs_conflict_p (xsize
, x1
, ysize
, y0
, c
);
2482 return memrefs_conflict_p (xsize
, x0
, ysize
, y1
, c
);
2484 if (rtx_equal_for_memref_p (x1
, y1
))
2485 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
2486 if (rtx_equal_for_memref_p (x0
, y0
))
2487 return memrefs_conflict_p (xsize
, x1
, ysize
, y1
, c
);
2488 if (CONST_INT_P (x1
))
2490 if (CONST_INT_P (y1
))
2491 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
,
2492 c
- INTVAL (x1
) + INTVAL (y1
));
2494 return memrefs_conflict_p (xsize
, x0
, ysize
, y
,
2497 else if (CONST_INT_P (y1
))
2498 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
2502 else if (CONST_INT_P (x1
))
2503 return memrefs_conflict_p (xsize
, x0
, ysize
, y
, c
- INTVAL (x1
));
2505 else if (GET_CODE (y
) == PLUS
)
2507 /* The fact that Y is canonicalized means that this
2508 PLUS rtx is canonicalized. */
2509 rtx y0
= XEXP (y
, 0);
2510 rtx y1
= XEXP (y
, 1);
2513 return memrefs_conflict_p (xsize
, const0_rtx
, ysize
, y1
, c
);
2515 return memrefs_conflict_p (xsize
, const0_rtx
, ysize
, y0
, c
);
2517 if (CONST_INT_P (y1
))
2518 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
2523 if (GET_CODE (x
) == GET_CODE (y
))
2524 switch (GET_CODE (x
))
2528 /* Handle cases where we expect the second operands to be the
2529 same, and check only whether the first operand would conflict
2532 rtx x1
= canon_rtx (XEXP (x
, 1));
2533 rtx y1
= canon_rtx (XEXP (y
, 1));
2534 if (! rtx_equal_for_memref_p (x1
, y1
))
2536 x0
= canon_rtx (XEXP (x
, 0));
2537 y0
= canon_rtx (XEXP (y
, 0));
2538 if (rtx_equal_for_memref_p (x0
, y0
))
2539 return offset_overlap_p (c
, xsize
, ysize
);
2541 /* Can't properly adjust our sizes. */
2542 if (!CONST_INT_P (x1
))
2544 xsize
/= INTVAL (x1
);
2545 ysize
/= INTVAL (x1
);
2547 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
2554 /* Deal with alignment ANDs by adjusting offset and size so as to
2555 cover the maximum range, without taking any previously known
2556 alignment into account. Make a size negative after such an
2557 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2558 assume a potential overlap, because they may end up in contiguous
2559 memory locations and the stricter-alignment access may span over
2561 if (GET_CODE (x
) == AND
&& CONST_INT_P (XEXP (x
, 1)))
2563 HOST_WIDE_INT sc
= INTVAL (XEXP (x
, 1));
2564 unsigned HOST_WIDE_INT uc
= sc
;
2565 if (sc
< 0 && pow2_or_zerop (-uc
))
2572 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
2576 if (GET_CODE (y
) == AND
&& CONST_INT_P (XEXP (y
, 1)))
2578 HOST_WIDE_INT sc
= INTVAL (XEXP (y
, 1));
2579 unsigned HOST_WIDE_INT uc
= sc
;
2580 if (sc
< 0 && pow2_or_zerop (-uc
))
2587 return memrefs_conflict_p (xsize
, x
,
2588 ysize
, canon_rtx (XEXP (y
, 0)), c
);
2594 if (CONST_INT_P (x
) && CONST_INT_P (y
))
2596 c
+= (INTVAL (y
) - INTVAL (x
));
2597 return offset_overlap_p (c
, xsize
, ysize
);
2600 if (GET_CODE (x
) == CONST
)
2602 if (GET_CODE (y
) == CONST
)
2603 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
2604 ysize
, canon_rtx (XEXP (y
, 0)), c
);
2606 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
2609 if (GET_CODE (y
) == CONST
)
2610 return memrefs_conflict_p (xsize
, x
, ysize
,
2611 canon_rtx (XEXP (y
, 0)), c
);
2613 /* Assume a potential overlap for symbolic addresses that went
2614 through alignment adjustments (i.e., that have negative
2615 sizes), because we can't know how far they are from each
2618 return (xsize
< 0 || ysize
< 0 || offset_overlap_p (c
, xsize
, ysize
));
2626 /* Functions to compute memory dependencies.
2628 Since we process the insns in execution order, we can build tables
2629 to keep track of what registers are fixed (and not aliased), what registers
2630 are varying in known ways, and what registers are varying in unknown
2633 If both memory references are volatile, then there must always be a
2634 dependence between the two references, since their order can not be
2635 changed. A volatile and non-volatile reference can be interchanged
2638 We also must allow AND addresses, because they may generate accesses
2639 outside the object being referenced. This is used to generate aligned
2640 addresses from unaligned addresses, for instance, the alpha
2641 storeqi_unaligned pattern. */
2643 /* Read dependence: X is read after read in MEM takes place. There can
2644 only be a dependence here if both reads are volatile, or if either is
2645 an explicit barrier. */
2648 read_dependence (const_rtx mem
, const_rtx x
)
2650 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2652 if (MEM_ALIAS_SET (x
) == ALIAS_SET_MEMORY_BARRIER
2653 || MEM_ALIAS_SET (mem
) == ALIAS_SET_MEMORY_BARRIER
)
2658 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2661 decl_for_component_ref (tree x
)
2665 x
= TREE_OPERAND (x
, 0);
2667 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
2669 return x
&& DECL_P (x
) ? x
: NULL_TREE
;
2672 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2673 for the offset of the field reference. *KNOWN_P says whether the
2677 adjust_offset_for_component_ref (tree x
, bool *known_p
,
2684 tree xoffset
= component_ref_field_offset (x
);
2685 tree field
= TREE_OPERAND (x
, 1);
2686 if (TREE_CODE (xoffset
) != INTEGER_CST
)
2693 = (wi::to_offset (xoffset
)
2694 + (wi::to_offset (DECL_FIELD_BIT_OFFSET (field
))
2695 >> LOG2_BITS_PER_UNIT
));
2696 if (!wi::fits_uhwi_p (woffset
))
2701 *offset
+= woffset
.to_uhwi ();
2703 x
= TREE_OPERAND (x
, 0);
2705 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
2708 /* Return nonzero if we can determine the exprs corresponding to memrefs
2709 X and Y and they do not overlap.
2710 If LOOP_VARIANT is set, skip offset-based disambiguation */
2713 nonoverlapping_memrefs_p (const_rtx x
, const_rtx y
, bool loop_invariant
)
2715 tree exprx
= MEM_EXPR (x
), expry
= MEM_EXPR (y
);
2718 bool moffsetx_known_p
, moffsety_known_p
;
2719 poly_int64 moffsetx
= 0, moffsety
= 0;
2720 poly_int64 offsetx
= 0, offsety
= 0, sizex
, sizey
;
2722 /* Unless both have exprs, we can't tell anything. */
2723 if (exprx
== 0 || expry
== 0)
2726 /* For spill-slot accesses make sure we have valid offsets. */
2727 if ((exprx
== get_spill_slot_decl (false)
2728 && ! MEM_OFFSET_KNOWN_P (x
))
2729 || (expry
== get_spill_slot_decl (false)
2730 && ! MEM_OFFSET_KNOWN_P (y
)))
2733 /* If the field reference test failed, look at the DECLs involved. */
2734 moffsetx_known_p
= MEM_OFFSET_KNOWN_P (x
);
2735 if (moffsetx_known_p
)
2736 moffsetx
= MEM_OFFSET (x
);
2737 if (TREE_CODE (exprx
) == COMPONENT_REF
)
2739 tree t
= decl_for_component_ref (exprx
);
2742 adjust_offset_for_component_ref (exprx
, &moffsetx_known_p
, &moffsetx
);
2746 moffsety_known_p
= MEM_OFFSET_KNOWN_P (y
);
2747 if (moffsety_known_p
)
2748 moffsety
= MEM_OFFSET (y
);
2749 if (TREE_CODE (expry
) == COMPONENT_REF
)
2751 tree t
= decl_for_component_ref (expry
);
2754 adjust_offset_for_component_ref (expry
, &moffsety_known_p
, &moffsety
);
2758 if (! DECL_P (exprx
) || ! DECL_P (expry
))
2761 /* If we refer to different gimple registers, or one gimple register
2762 and one non-gimple-register, we know they can't overlap. First,
2763 gimple registers don't have their addresses taken. Now, there
2764 could be more than one stack slot for (different versions of) the
2765 same gimple register, but we can presumably tell they don't
2766 overlap based on offsets from stack base addresses elsewhere.
2767 It's important that we don't proceed to DECL_RTL, because gimple
2768 registers may not pass DECL_RTL_SET_P, and make_decl_rtl won't be
2769 able to do anything about them since no SSA information will have
2770 remained to guide it. */
2771 if (is_gimple_reg (exprx
) || is_gimple_reg (expry
))
2772 return exprx
!= expry
2773 || (moffsetx_known_p
&& moffsety_known_p
2774 && MEM_SIZE_KNOWN_P (x
) && MEM_SIZE_KNOWN_P (y
)
2775 && !offset_overlap_p (moffsety
- moffsetx
,
2776 MEM_SIZE (x
), MEM_SIZE (y
)));
2778 /* With invalid code we can end up storing into the constant pool.
2779 Bail out to avoid ICEing when creating RTL for this.
2780 See gfortran.dg/lto/20091028-2_0.f90. */
2781 if (TREE_CODE (exprx
) == CONST_DECL
2782 || TREE_CODE (expry
) == CONST_DECL
)
2785 /* If one decl is known to be a function or label in a function and
2786 the other is some kind of data, they can't overlap. */
2787 if ((TREE_CODE (exprx
) == FUNCTION_DECL
2788 || TREE_CODE (exprx
) == LABEL_DECL
)
2789 != (TREE_CODE (expry
) == FUNCTION_DECL
2790 || TREE_CODE (expry
) == LABEL_DECL
))
2793 /* If either of the decls doesn't have DECL_RTL set (e.g. marked as
2794 living in multiple places), we can't tell anything. Exception
2795 are FUNCTION_DECLs for which we can create DECL_RTL on demand. */
2796 if ((!DECL_RTL_SET_P (exprx
) && TREE_CODE (exprx
) != FUNCTION_DECL
)
2797 || (!DECL_RTL_SET_P (expry
) && TREE_CODE (expry
) != FUNCTION_DECL
))
2800 rtlx
= DECL_RTL (exprx
);
2801 rtly
= DECL_RTL (expry
);
2803 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2804 can't overlap unless they are the same because we never reuse that part
2805 of the stack frame used for locals for spilled pseudos. */
2806 if ((!MEM_P (rtlx
) || !MEM_P (rtly
))
2807 && ! rtx_equal_p (rtlx
, rtly
))
2810 /* If we have MEMs referring to different address spaces (which can
2811 potentially overlap), we cannot easily tell from the addresses
2812 whether the references overlap. */
2813 if (MEM_P (rtlx
) && MEM_P (rtly
)
2814 && MEM_ADDR_SPACE (rtlx
) != MEM_ADDR_SPACE (rtly
))
2817 /* Get the base and offsets of both decls. If either is a register, we
2818 know both are and are the same, so use that as the base. The only
2819 we can avoid overlap is if we can deduce that they are nonoverlapping
2820 pieces of that decl, which is very rare. */
2821 basex
= MEM_P (rtlx
) ? XEXP (rtlx
, 0) : rtlx
;
2822 basex
= strip_offset_and_add (basex
, &offsetx
);
2824 basey
= MEM_P (rtly
) ? XEXP (rtly
, 0) : rtly
;
2825 basey
= strip_offset_and_add (basey
, &offsety
);
2827 /* If the bases are different, we know they do not overlap if both
2828 are constants or if one is a constant and the other a pointer into the
2829 stack frame. Otherwise a different base means we can't tell if they
2831 if (compare_base_decls (exprx
, expry
) == 0)
2832 return ((CONSTANT_P (basex
) && CONSTANT_P (basey
))
2833 || (CONSTANT_P (basex
) && REG_P (basey
)
2834 && REGNO_PTR_FRAME_P (REGNO (basey
)))
2835 || (CONSTANT_P (basey
) && REG_P (basex
)
2836 && REGNO_PTR_FRAME_P (REGNO (basex
))));
2838 /* Offset based disambiguation not appropriate for loop invariant */
2842 /* Offset based disambiguation is OK even if we do not know that the
2843 declarations are necessarily different
2844 (i.e. compare_base_decls (exprx, expry) == -1) */
2846 sizex
= (!MEM_P (rtlx
) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtlx
)))
2847 : MEM_SIZE_KNOWN_P (rtlx
) ? MEM_SIZE (rtlx
)
2849 sizey
= (!MEM_P (rtly
) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtly
)))
2850 : MEM_SIZE_KNOWN_P (rtly
) ? MEM_SIZE (rtly
)
2853 /* If we have an offset for either memref, it can update the values computed
2855 if (moffsetx_known_p
)
2856 offsetx
+= moffsetx
, sizex
-= moffsetx
;
2857 if (moffsety_known_p
)
2858 offsety
+= moffsety
, sizey
-= moffsety
;
2860 /* If a memref has both a size and an offset, we can use the smaller size.
2861 We can't do this if the offset isn't known because we must view this
2862 memref as being anywhere inside the DECL's MEM. */
2863 if (MEM_SIZE_KNOWN_P (x
) && moffsetx_known_p
)
2864 sizex
= MEM_SIZE (x
);
2865 if (MEM_SIZE_KNOWN_P (y
) && moffsety_known_p
)
2866 sizey
= MEM_SIZE (y
);
2868 return !ranges_maybe_overlap_p (offsetx
, sizex
, offsety
, sizey
);
2871 /* Helper for true_dependence and canon_true_dependence.
2872 Checks for true dependence: X is read after store in MEM takes place.
2874 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2875 NULL_RTX, and the canonical addresses of MEM and X are both computed
2876 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2878 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2880 Returns 1 if there is a true dependence, 0 otherwise. */
2883 true_dependence_1 (const_rtx mem
, machine_mode mem_mode
, rtx mem_addr
,
2884 const_rtx x
, rtx x_addr
, bool mem_canonicalized
)
2890 gcc_checking_assert (mem_canonicalized
? (mem_addr
!= NULL_RTX
)
2891 : (mem_addr
== NULL_RTX
&& x_addr
== NULL_RTX
));
2893 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2896 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2897 This is used in epilogue deallocation functions, and in cselib. */
2898 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2900 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2902 if (MEM_ALIAS_SET (x
) == ALIAS_SET_MEMORY_BARRIER
2903 || MEM_ALIAS_SET (mem
) == ALIAS_SET_MEMORY_BARRIER
)
2907 x_addr
= XEXP (x
, 0);
2908 x_addr
= get_addr (x_addr
);
2912 mem_addr
= XEXP (mem
, 0);
2913 if (mem_mode
== VOIDmode
)
2914 mem_mode
= GET_MODE (mem
);
2916 true_mem_addr
= get_addr (mem_addr
);
2918 /* Read-only memory is by definition never modified, and therefore can't
2919 conflict with anything. However, don't assume anything when AND
2920 addresses are involved and leave to the code below to determine
2921 dependence. We don't expect to find read-only set on MEM, but
2922 stupid user tricks can produce them, so don't die. */
2923 if (MEM_READONLY_P (x
)
2924 && GET_CODE (x_addr
) != AND
2925 && GET_CODE (true_mem_addr
) != AND
)
2928 /* If we have MEMs referring to different address spaces (which can
2929 potentially overlap), we cannot easily tell from the addresses
2930 whether the references overlap. */
2931 if (MEM_ADDR_SPACE (mem
) != MEM_ADDR_SPACE (x
))
2934 base
= find_base_term (x_addr
);
2935 if (base
&& (GET_CODE (base
) == LABEL_REF
2936 || (GET_CODE (base
) == SYMBOL_REF
2937 && CONSTANT_POOL_ADDRESS_P (base
))))
2940 rtx mem_base
= find_base_term (true_mem_addr
);
2941 if (! base_alias_check (x_addr
, base
, true_mem_addr
, mem_base
,
2942 GET_MODE (x
), mem_mode
))
2945 x_addr
= canon_rtx (x_addr
);
2946 if (!mem_canonicalized
)
2947 mem_addr
= canon_rtx (true_mem_addr
);
2949 if ((ret
= memrefs_conflict_p (GET_MODE_SIZE (mem_mode
), mem_addr
,
2950 SIZE_FOR_MODE (x
), x_addr
, 0)) != -1)
2953 if (mems_in_disjoint_alias_sets_p (x
, mem
))
2956 if (nonoverlapping_memrefs_p (mem
, x
, false))
2959 return rtx_refs_may_alias_p (x
, mem
, true);
2962 /* True dependence: X is read after store in MEM takes place. */
2965 true_dependence (const_rtx mem
, machine_mode mem_mode
, const_rtx x
)
2967 return true_dependence_1 (mem
, mem_mode
, NULL_RTX
,
2968 x
, NULL_RTX
, /*mem_canonicalized=*/false);
2971 /* Canonical true dependence: X is read after store in MEM takes place.
2972 Variant of true_dependence which assumes MEM has already been
2973 canonicalized (hence we no longer do that here).
2974 The mem_addr argument has been added, since true_dependence_1 computed
2975 this value prior to canonicalizing. */
2978 canon_true_dependence (const_rtx mem
, machine_mode mem_mode
, rtx mem_addr
,
2979 const_rtx x
, rtx x_addr
)
2981 return true_dependence_1 (mem
, mem_mode
, mem_addr
,
2982 x
, x_addr
, /*mem_canonicalized=*/true);
2985 /* Returns nonzero if a write to X might alias a previous read from
2986 (or, if WRITEP is true, a write to) MEM.
2987 If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
2988 and X_MODE the mode for that access.
2989 If MEM_CANONICALIZED is true, MEM is canonicalized. */
2992 write_dependence_p (const_rtx mem
,
2993 const_rtx x
, machine_mode x_mode
, rtx x_addr
,
2994 bool mem_canonicalized
, bool x_canonicalized
, bool writep
)
2997 rtx true_mem_addr
, true_x_addr
;
3001 gcc_checking_assert (x_canonicalized
3002 ? (x_addr
!= NULL_RTX
&& x_mode
!= VOIDmode
)
3003 : (x_addr
== NULL_RTX
&& x_mode
== VOIDmode
));
3005 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
3008 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3009 This is used in epilogue deallocation functions. */
3010 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
3012 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
3014 if (MEM_ALIAS_SET (x
) == ALIAS_SET_MEMORY_BARRIER
3015 || MEM_ALIAS_SET (mem
) == ALIAS_SET_MEMORY_BARRIER
)
3019 x_addr
= XEXP (x
, 0);
3020 true_x_addr
= get_addr (x_addr
);
3022 mem_addr
= XEXP (mem
, 0);
3023 true_mem_addr
= get_addr (mem_addr
);
3025 /* A read from read-only memory can't conflict with read-write memory.
3026 Don't assume anything when AND addresses are involved and leave to
3027 the code below to determine dependence. */
3029 && MEM_READONLY_P (mem
)
3030 && GET_CODE (true_x_addr
) != AND
3031 && GET_CODE (true_mem_addr
) != AND
)
3034 /* If we have MEMs referring to different address spaces (which can
3035 potentially overlap), we cannot easily tell from the addresses
3036 whether the references overlap. */
3037 if (MEM_ADDR_SPACE (mem
) != MEM_ADDR_SPACE (x
))
3040 base
= find_base_term (true_mem_addr
);
3043 && (GET_CODE (base
) == LABEL_REF
3044 || (GET_CODE (base
) == SYMBOL_REF
3045 && CONSTANT_POOL_ADDRESS_P (base
))))
3048 rtx x_base
= find_base_term (true_x_addr
);
3049 if (! base_alias_check (true_x_addr
, x_base
, true_mem_addr
, base
,
3050 GET_MODE (x
), GET_MODE (mem
)))
3053 if (!x_canonicalized
)
3055 x_addr
= canon_rtx (true_x_addr
);
3056 x_mode
= GET_MODE (x
);
3058 if (!mem_canonicalized
)
3059 mem_addr
= canon_rtx (true_mem_addr
);
3061 if ((ret
= memrefs_conflict_p (SIZE_FOR_MODE (mem
), mem_addr
,
3062 GET_MODE_SIZE (x_mode
), x_addr
, 0)) != -1)
3065 if (nonoverlapping_memrefs_p (x
, mem
, false))
3068 return rtx_refs_may_alias_p (x
, mem
, false);
3071 /* Anti dependence: X is written after read in MEM takes place. */
3074 anti_dependence (const_rtx mem
, const_rtx x
)
3076 return write_dependence_p (mem
, x
, VOIDmode
, NULL_RTX
,
3077 /*mem_canonicalized=*/false,
3078 /*x_canonicalized*/false, /*writep=*/false);
3081 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3082 Also, consider X in X_MODE (which might be from an enclosing
3083 STRICT_LOW_PART / ZERO_EXTRACT).
3084 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3087 canon_anti_dependence (const_rtx mem
, bool mem_canonicalized
,
3088 const_rtx x
, machine_mode x_mode
, rtx x_addr
)
3090 return write_dependence_p (mem
, x
, x_mode
, x_addr
,
3091 mem_canonicalized
, /*x_canonicalized=*/true,
3095 /* Output dependence: X is written after store in MEM takes place. */
3098 output_dependence (const_rtx mem
, const_rtx x
)
3100 return write_dependence_p (mem
, x
, VOIDmode
, NULL_RTX
,
3101 /*mem_canonicalized=*/false,
3102 /*x_canonicalized*/false, /*writep=*/true);
3105 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3106 Also, consider X in X_MODE (which might be from an enclosing
3107 STRICT_LOW_PART / ZERO_EXTRACT).
3108 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3111 canon_output_dependence (const_rtx mem
, bool mem_canonicalized
,
3112 const_rtx x
, machine_mode x_mode
, rtx x_addr
)
3114 return write_dependence_p (mem
, x
, x_mode
, x_addr
,
3115 mem_canonicalized
, /*x_canonicalized=*/true,
3121 /* Check whether X may be aliased with MEM. Don't do offset-based
3122 memory disambiguation & TBAA. */
3124 may_alias_p (const_rtx mem
, const_rtx x
)
3126 rtx x_addr
, mem_addr
;
3128 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
3131 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3132 This is used in epilogue deallocation functions. */
3133 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
3135 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
3137 if (MEM_ALIAS_SET (x
) == ALIAS_SET_MEMORY_BARRIER
3138 || MEM_ALIAS_SET (mem
) == ALIAS_SET_MEMORY_BARRIER
)
3141 x_addr
= XEXP (x
, 0);
3142 x_addr
= get_addr (x_addr
);
3144 mem_addr
= XEXP (mem
, 0);
3145 mem_addr
= get_addr (mem_addr
);
3147 /* Read-only memory is by definition never modified, and therefore can't
3148 conflict with anything. However, don't assume anything when AND
3149 addresses are involved and leave to the code below to determine
3150 dependence. We don't expect to find read-only set on MEM, but
3151 stupid user tricks can produce them, so don't die. */
3152 if (MEM_READONLY_P (x
)
3153 && GET_CODE (x_addr
) != AND
3154 && GET_CODE (mem_addr
) != AND
)
3157 /* If we have MEMs referring to different address spaces (which can
3158 potentially overlap), we cannot easily tell from the addresses
3159 whether the references overlap. */
3160 if (MEM_ADDR_SPACE (mem
) != MEM_ADDR_SPACE (x
))
3163 rtx x_base
= find_base_term (x_addr
);
3164 rtx mem_base
= find_base_term (mem_addr
);
3165 if (! base_alias_check (x_addr
, x_base
, mem_addr
, mem_base
,
3166 GET_MODE (x
), GET_MODE (mem_addr
)))
3169 if (nonoverlapping_memrefs_p (mem
, x
, true))
3172 /* TBAA not valid for loop_invarint */
3173 return rtx_refs_may_alias_p (x
, mem
, false);
3177 init_alias_target (void)
3181 if (!arg_base_value
)
3182 arg_base_value
= gen_rtx_ADDRESS (VOIDmode
, 0);
3184 memset (static_reg_base_value
, 0, sizeof static_reg_base_value
);
3186 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3187 /* Check whether this register can hold an incoming pointer
3188 argument. FUNCTION_ARG_REGNO_P tests outgoing register
3189 numbers, so translate if necessary due to register windows. */
3190 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i
))
3191 && targetm
.hard_regno_mode_ok (i
, Pmode
))
3192 static_reg_base_value
[i
] = arg_base_value
;
3194 static_reg_base_value
[STACK_POINTER_REGNUM
]
3195 = unique_base_value (UNIQUE_BASE_VALUE_SP
);
3196 static_reg_base_value
[ARG_POINTER_REGNUM
]
3197 = unique_base_value (UNIQUE_BASE_VALUE_ARGP
);
3198 static_reg_base_value
[FRAME_POINTER_REGNUM
]
3199 = unique_base_value (UNIQUE_BASE_VALUE_FP
);
3200 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
)
3201 static_reg_base_value
[HARD_FRAME_POINTER_REGNUM
]
3202 = unique_base_value (UNIQUE_BASE_VALUE_HFP
);
3205 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
3206 to be memory reference. */
3207 static bool memory_modified
;
3209 memory_modified_1 (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
3213 if (anti_dependence (x
, (const_rtx
)data
) || output_dependence (x
, (const_rtx
)data
))
3214 memory_modified
= true;
3219 /* Return true when INSN possibly modify memory contents of MEM
3220 (i.e. address can be modified). */
3222 memory_modified_in_insn_p (const_rtx mem
, const_rtx insn
)
3226 /* Conservatively assume all non-readonly MEMs might be modified in
3230 memory_modified
= false;
3231 note_stores (PATTERN (insn
), memory_modified_1
, CONST_CAST_RTX(mem
));
3232 return memory_modified
;
3235 /* Return TRUE if the destination of a set is rtx identical to
3238 set_dest_equal_p (const_rtx set
, const_rtx item
)
3240 rtx dest
= SET_DEST (set
);
3241 return rtx_equal_p (dest
, item
);
3244 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
3248 init_alias_analysis (void)
3250 unsigned int maxreg
= max_reg_num ();
3259 timevar_push (TV_ALIAS_ANALYSIS
);
3261 vec_safe_grow_cleared (reg_known_value
, maxreg
- FIRST_PSEUDO_REGISTER
);
3262 reg_known_equiv_p
= sbitmap_alloc (maxreg
- FIRST_PSEUDO_REGISTER
);
3263 bitmap_clear (reg_known_equiv_p
);
3265 /* If we have memory allocated from the previous run, use it. */
3266 if (old_reg_base_value
)
3267 reg_base_value
= old_reg_base_value
;
3270 reg_base_value
->truncate (0);
3272 vec_safe_grow_cleared (reg_base_value
, maxreg
);
3274 new_reg_base_value
= XNEWVEC (rtx
, maxreg
);
3275 reg_seen
= sbitmap_alloc (maxreg
);
3277 /* The basic idea is that each pass through this loop will use the
3278 "constant" information from the previous pass to propagate alias
3279 information through another level of assignments.
3281 The propagation is done on the CFG in reverse post-order, to propagate
3282 things forward as far as possible in each iteration.
3284 This could get expensive if the assignment chains are long. Maybe
3285 we should throttle the number of iterations, possibly based on
3286 the optimization level or flag_expensive_optimizations.
3288 We could propagate more information in the first pass by making use
3289 of DF_REG_DEF_COUNT to determine immediately that the alias information
3290 for a pseudo is "constant".
3292 A program with an uninitialized variable can cause an infinite loop
3293 here. Instead of doing a full dataflow analysis to detect such problems
3294 we just cap the number of iterations for the loop.
3296 The state of the arrays for the set chain in question does not matter
3297 since the program has undefined behavior. */
3299 rpo
= XNEWVEC (int, n_basic_blocks_for_fn (cfun
));
3300 rpo_cnt
= pre_and_rev_post_order_compute (NULL
, rpo
, false);
3302 /* The prologue/epilogue insns are not threaded onto the
3303 insn chain until after reload has completed. Thus,
3304 there is no sense wasting time checking if INSN is in
3305 the prologue/epilogue until after reload has completed. */
3306 bool could_be_prologue_epilogue
= ((targetm
.have_prologue ()
3307 || targetm
.have_epilogue ())
3308 && reload_completed
);
3313 /* Assume nothing will change this iteration of the loop. */
3316 /* We want to assign the same IDs each iteration of this loop, so
3317 start counting from one each iteration of the loop. */
3320 /* We're at the start of the function each iteration through the
3321 loop, so we're copying arguments. */
3322 copying_arguments
= true;
3324 /* Wipe the potential alias information clean for this pass. */
3325 memset (new_reg_base_value
, 0, maxreg
* sizeof (rtx
));
3327 /* Wipe the reg_seen array clean. */
3328 bitmap_clear (reg_seen
);
3330 /* Initialize the alias information for this pass. */
3331 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3332 if (static_reg_base_value
[i
])
3334 new_reg_base_value
[i
] = static_reg_base_value
[i
];
3335 bitmap_set_bit (reg_seen
, i
);
3338 /* Walk the insns adding values to the new_reg_base_value array. */
3339 for (i
= 0; i
< rpo_cnt
; i
++)
3341 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, rpo
[i
]);
3342 FOR_BB_INSNS (bb
, insn
)
3344 if (NONDEBUG_INSN_P (insn
))
3348 if (could_be_prologue_epilogue
3349 && prologue_epilogue_contains (insn
))
3352 /* If this insn has a noalias note, process it, Otherwise,
3353 scan for sets. A simple set will have no side effects
3354 which could change the base value of any other register. */
3356 if (GET_CODE (PATTERN (insn
)) == SET
3357 && REG_NOTES (insn
) != 0
3358 && find_reg_note (insn
, REG_NOALIAS
, NULL_RTX
))
3359 record_set (SET_DEST (PATTERN (insn
)), NULL_RTX
, NULL
);
3361 note_stores (PATTERN (insn
), record_set
, NULL
);
3363 set
= single_set (insn
);
3366 && REG_P (SET_DEST (set
))
3367 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
3369 unsigned int regno
= REGNO (SET_DEST (set
));
3370 rtx src
= SET_SRC (set
);
3373 note
= find_reg_equal_equiv_note (insn
);
3374 if (note
&& REG_NOTE_KIND (note
) == REG_EQUAL
3375 && DF_REG_DEF_COUNT (regno
) != 1)
3378 if (note
!= NULL_RTX
3379 && GET_CODE (XEXP (note
, 0)) != EXPR_LIST
3380 && ! rtx_varies_p (XEXP (note
, 0), 1)
3381 && ! reg_overlap_mentioned_p (SET_DEST (set
),
3384 set_reg_known_value (regno
, XEXP (note
, 0));
3385 set_reg_known_equiv_p (regno
,
3386 REG_NOTE_KIND (note
) == REG_EQUIV
);
3388 else if (DF_REG_DEF_COUNT (regno
) == 1
3389 && GET_CODE (src
) == PLUS
3390 && REG_P (XEXP (src
, 0))
3391 && (t
= get_reg_known_value (REGNO (XEXP (src
, 0))))
3392 && CONST_INT_P (XEXP (src
, 1)))
3394 t
= plus_constant (GET_MODE (src
), t
,
3395 INTVAL (XEXP (src
, 1)));
3396 set_reg_known_value (regno
, t
);
3397 set_reg_known_equiv_p (regno
, false);
3399 else if (DF_REG_DEF_COUNT (regno
) == 1
3400 && ! rtx_varies_p (src
, 1))
3402 set_reg_known_value (regno
, src
);
3403 set_reg_known_equiv_p (regno
, false);
3407 else if (NOTE_P (insn
)
3408 && NOTE_KIND (insn
) == NOTE_INSN_FUNCTION_BEG
)
3409 copying_arguments
= false;
3413 /* Now propagate values from new_reg_base_value to reg_base_value. */
3414 gcc_assert (maxreg
== (unsigned int) max_reg_num ());
3416 for (ui
= 0; ui
< maxreg
; ui
++)
3418 if (new_reg_base_value
[ui
]
3419 && new_reg_base_value
[ui
] != (*reg_base_value
)[ui
]
3420 && ! rtx_equal_p (new_reg_base_value
[ui
], (*reg_base_value
)[ui
]))
3422 (*reg_base_value
)[ui
] = new_reg_base_value
[ui
];
3427 while (changed
&& ++pass
< MAX_ALIAS_LOOP_PASSES
);
3430 /* Fill in the remaining entries. */
3431 FOR_EACH_VEC_ELT (*reg_known_value
, i
, val
)
3433 int regno
= i
+ FIRST_PSEUDO_REGISTER
;
3435 set_reg_known_value (regno
, regno_reg_rtx
[regno
]);
3439 free (new_reg_base_value
);
3440 new_reg_base_value
= 0;
3441 sbitmap_free (reg_seen
);
3443 timevar_pop (TV_ALIAS_ANALYSIS
);
3446 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3447 Special API for var-tracking pass purposes. */
3450 vt_equate_reg_base_value (const_rtx reg1
, const_rtx reg2
)
3452 (*reg_base_value
)[REGNO (reg1
)] = REG_BASE_VALUE (reg2
);
3456 end_alias_analysis (void)
3458 old_reg_base_value
= reg_base_value
;
3459 vec_free (reg_known_value
);
3460 sbitmap_free (reg_known_equiv_p
);
3464 dump_alias_stats_in_alias_c (FILE *s
)
3466 fprintf (s
, " TBAA oracle: %llu disambiguations %llu queries\n"
3467 " %llu are in alias set 0\n"
3468 " %llu queries asked about the same object\n"
3469 " %llu queries asked about the same alias set\n"
3470 " %llu access volatile\n"
3471 " %llu are dependent in the DAG\n"
3472 " %llu are aritificially in conflict with void *\n",
3473 alias_stats
.num_disambiguated
,
3474 alias_stats
.num_alias_zero
+ alias_stats
.num_same_alias_set
3475 + alias_stats
.num_same_objects
+ alias_stats
.num_volatile
3476 + alias_stats
.num_dag
+ alias_stats
.num_disambiguated
3477 + alias_stats
.num_universal
,
3478 alias_stats
.num_alias_zero
, alias_stats
.num_same_alias_set
,
3479 alias_stats
.num_same_objects
, alias_stats
.num_volatile
,
3480 alias_stats
.num_dag
, alias_stats
.num_universal
);
3482 #include "gt-alias.h"