builtins.def: (_Float<N> and _Float<N>X BUILT_IN_CEIL): Add _Float<N> and _Float...
[official-gcc.git] / gcc / ada / sem_res.adb
blob23a95a46c8e64e1185c2e1dc98e27a1ca244d042
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ R E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Debug_A; use Debug_A;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Tss; use Exp_Tss;
37 with Exp_Util; use Exp_Util;
38 with Freeze; use Freeze;
39 with Ghost; use Ghost;
40 with Inline; use Inline;
41 with Itypes; use Itypes;
42 with Lib; use Lib;
43 with Lib.Xref; use Lib.Xref;
44 with Namet; use Namet;
45 with Nmake; use Nmake;
46 with Nlists; use Nlists;
47 with Opt; use Opt;
48 with Output; use Output;
49 with Par_SCO; use Par_SCO;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Aggr; use Sem_Aggr;
56 with Sem_Attr; use Sem_Attr;
57 with Sem_Cat; use Sem_Cat;
58 with Sem_Ch4; use Sem_Ch4;
59 with Sem_Ch3; use Sem_Ch3;
60 with Sem_Ch6; use Sem_Ch6;
61 with Sem_Ch8; use Sem_Ch8;
62 with Sem_Ch13; use Sem_Ch13;
63 with Sem_Dim; use Sem_Dim;
64 with Sem_Disp; use Sem_Disp;
65 with Sem_Dist; use Sem_Dist;
66 with Sem_Elab; use Sem_Elab;
67 with Sem_Elim; use Sem_Elim;
68 with Sem_Eval; use Sem_Eval;
69 with Sem_Intr; use Sem_Intr;
70 with Sem_Util; use Sem_Util;
71 with Targparm; use Targparm;
72 with Sem_Type; use Sem_Type;
73 with Sem_Warn; use Sem_Warn;
74 with Sinfo; use Sinfo;
75 with Sinfo.CN; use Sinfo.CN;
76 with Snames; use Snames;
77 with Stand; use Stand;
78 with Stringt; use Stringt;
79 with Style; use Style;
80 with Tbuild; use Tbuild;
81 with Uintp; use Uintp;
82 with Urealp; use Urealp;
84 package body Sem_Res is
86 -----------------------
87 -- Local Subprograms --
88 -----------------------
90 -- Second pass (top-down) type checking and overload resolution procedures
91 -- Typ is the type required by context. These procedures propagate the
92 -- type information recursively to the descendants of N. If the node is not
93 -- overloaded, its Etype is established in the first pass. If overloaded,
94 -- the Resolve routines set the correct type. For arithmetic operators, the
95 -- Etype is the base type of the context.
97 -- Note that Resolve_Attribute is separated off in Sem_Attr
99 procedure Check_Discriminant_Use (N : Node_Id);
100 -- Enforce the restrictions on the use of discriminants when constraining
101 -- a component of a discriminated type (record or concurrent type).
103 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
104 -- Given a node for an operator associated with type T, check that the
105 -- operator is visible. Operators all of whose operands are universal must
106 -- be checked for visibility during resolution because their type is not
107 -- determinable based on their operands.
109 procedure Check_Fully_Declared_Prefix
110 (Typ : Entity_Id;
111 Pref : Node_Id);
112 -- Check that the type of the prefix of a dereference is not incomplete
114 function Check_Infinite_Recursion (N : Node_Id) return Boolean;
115 -- Given a call node, N, which is known to occur immediately within the
116 -- subprogram being called, determines whether it is a detectable case of
117 -- an infinite recursion, and if so, outputs appropriate messages. Returns
118 -- True if an infinite recursion is detected, and False otherwise.
120 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id);
121 -- If the type of the object being initialized uses the secondary stack
122 -- directly or indirectly, create a transient scope for the call to the
123 -- init proc. This is because we do not create transient scopes for the
124 -- initialization of individual components within the init proc itself.
125 -- Could be optimized away perhaps?
127 procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
128 -- N is the node for a logical operator. If the operator is predefined, and
129 -- the root type of the operands is Standard.Boolean, then a check is made
130 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
131 -- the style check for Style_Check_Boolean_And_Or.
133 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean;
134 -- N is either an indexed component or a selected component. This function
135 -- returns true if the prefix refers to an object that has an address
136 -- clause (the case in which we may want to issue a warning).
138 function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
139 -- Determine whether E is an access type declared by an access declaration,
140 -- and not an (anonymous) allocator type.
142 function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
143 -- Utility to check whether the entity for an operator is a predefined
144 -- operator, in which case the expression is left as an operator in the
145 -- tree (else it is rewritten into a call). An instance of an intrinsic
146 -- conversion operation may be given an operator name, but is not treated
147 -- like an operator. Note that an operator that is an imported back-end
148 -- builtin has convention Intrinsic, but is expected to be rewritten into
149 -- a call, so such an operator is not treated as predefined by this
150 -- predicate.
152 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
153 -- If a default expression in entry call N depends on the discriminants
154 -- of the task, it must be replaced with a reference to the discriminant
155 -- of the task being called.
157 procedure Resolve_Op_Concat_Arg
158 (N : Node_Id;
159 Arg : Node_Id;
160 Typ : Entity_Id;
161 Is_Comp : Boolean);
162 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
163 -- concatenation operator. The operand is either of the array type or of
164 -- the component type. If the operand is an aggregate, and the component
165 -- type is composite, this is ambiguous if component type has aggregates.
167 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
168 -- Does the first part of the work of Resolve_Op_Concat
170 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
171 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
172 -- has been resolved. See Resolve_Op_Concat for details.
174 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
175 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
176 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
177 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id);
178 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
179 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
180 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
181 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
182 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
183 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id);
184 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id);
185 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id);
186 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
187 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
188 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
189 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
190 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
191 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
192 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
193 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
194 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
195 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
196 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id);
197 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
198 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
199 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
200 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
201 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
202 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
203 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
204 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
205 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id);
206 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
207 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
208 procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
209 procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
211 function Operator_Kind
212 (Op_Name : Name_Id;
213 Is_Binary : Boolean) return Node_Kind;
214 -- Utility to map the name of an operator into the corresponding Node. Used
215 -- by other node rewriting procedures.
217 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
218 -- Resolve actuals of call, and add default expressions for missing ones.
219 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
220 -- called subprogram.
222 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
223 -- Called from Resolve_Call, when the prefix denotes an entry or element
224 -- of entry family. Actuals are resolved as for subprograms, and the node
225 -- is rebuilt as an entry call. Also called for protected operations. Typ
226 -- is the context type, which is used when the operation is a protected
227 -- function with no arguments, and the return value is indexed.
229 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
230 -- A call to a user-defined intrinsic operator is rewritten as a call to
231 -- the corresponding predefined operator, with suitable conversions. Note
232 -- that this applies only for intrinsic operators that denote predefined
233 -- operators, not ones that are intrinsic imports of back-end builtins.
235 procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
236 -- Ditto, for arithmetic unary operators
238 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
239 -- If an operator node resolves to a call to a user-defined operator,
240 -- rewrite the node as a function call.
242 procedure Make_Call_Into_Operator
243 (N : Node_Id;
244 Typ : Entity_Id;
245 Op_Id : Entity_Id);
246 -- Inverse transformation: if an operator is given in functional notation,
247 -- then after resolving the node, transform into an operator node, so that
248 -- operands are resolved properly. Recall that predefined operators do not
249 -- have a full signature and special resolution rules apply.
251 procedure Rewrite_Renamed_Operator
252 (N : Node_Id;
253 Op : Entity_Id;
254 Typ : Entity_Id);
255 -- An operator can rename another, e.g. in an instantiation. In that
256 -- case, the proper operator node must be constructed and resolved.
258 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
259 -- The String_Literal_Subtype is built for all strings that are not
260 -- operands of a static concatenation operation. If the argument is not
261 -- a N_String_Literal node, then the call has no effect.
263 procedure Set_Slice_Subtype (N : Node_Id);
264 -- Build subtype of array type, with the range specified by the slice
266 procedure Simplify_Type_Conversion (N : Node_Id);
267 -- Called after N has been resolved and evaluated, but before range checks
268 -- have been applied. Currently simplifies a combination of floating-point
269 -- to integer conversion and Rounding or Truncation attribute.
271 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
272 -- A universal_fixed expression in an universal context is unambiguous if
273 -- there is only one applicable fixed point type. Determining whether there
274 -- is only one requires a search over all visible entities, and happens
275 -- only in very pathological cases (see 6115-006).
277 -------------------------
278 -- Ambiguous_Character --
279 -------------------------
281 procedure Ambiguous_Character (C : Node_Id) is
282 E : Entity_Id;
284 begin
285 if Nkind (C) = N_Character_Literal then
286 Error_Msg_N ("ambiguous character literal", C);
288 -- First the ones in Standard
290 Error_Msg_N ("\\possible interpretation: Character!", C);
291 Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
293 -- Include Wide_Wide_Character in Ada 2005 mode
295 if Ada_Version >= Ada_2005 then
296 Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
297 end if;
299 -- Now any other types that match
301 E := Current_Entity (C);
302 while Present (E) loop
303 Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
304 E := Homonym (E);
305 end loop;
306 end if;
307 end Ambiguous_Character;
309 -------------------------
310 -- Analyze_And_Resolve --
311 -------------------------
313 procedure Analyze_And_Resolve (N : Node_Id) is
314 begin
315 Analyze (N);
316 Resolve (N);
317 end Analyze_And_Resolve;
319 procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
320 begin
321 Analyze (N);
322 Resolve (N, Typ);
323 end Analyze_And_Resolve;
325 -- Versions with check(s) suppressed
327 procedure Analyze_And_Resolve
328 (N : Node_Id;
329 Typ : Entity_Id;
330 Suppress : Check_Id)
332 Scop : constant Entity_Id := Current_Scope;
334 begin
335 if Suppress = All_Checks then
336 declare
337 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
338 begin
339 Scope_Suppress.Suppress := (others => True);
340 Analyze_And_Resolve (N, Typ);
341 Scope_Suppress.Suppress := Sva;
342 end;
344 else
345 declare
346 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
347 begin
348 Scope_Suppress.Suppress (Suppress) := True;
349 Analyze_And_Resolve (N, Typ);
350 Scope_Suppress.Suppress (Suppress) := Svg;
351 end;
352 end if;
354 if Current_Scope /= Scop
355 and then Scope_Is_Transient
356 then
357 -- This can only happen if a transient scope was created for an inner
358 -- expression, which will be removed upon completion of the analysis
359 -- of an enclosing construct. The transient scope must have the
360 -- suppress status of the enclosing environment, not of this Analyze
361 -- call.
363 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
364 Scope_Suppress;
365 end if;
366 end Analyze_And_Resolve;
368 procedure Analyze_And_Resolve
369 (N : Node_Id;
370 Suppress : Check_Id)
372 Scop : constant Entity_Id := Current_Scope;
374 begin
375 if Suppress = All_Checks then
376 declare
377 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
378 begin
379 Scope_Suppress.Suppress := (others => True);
380 Analyze_And_Resolve (N);
381 Scope_Suppress.Suppress := Sva;
382 end;
384 else
385 declare
386 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
387 begin
388 Scope_Suppress.Suppress (Suppress) := True;
389 Analyze_And_Resolve (N);
390 Scope_Suppress.Suppress (Suppress) := Svg;
391 end;
392 end if;
394 if Current_Scope /= Scop and then Scope_Is_Transient then
395 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
396 Scope_Suppress;
397 end if;
398 end Analyze_And_Resolve;
400 ----------------------------
401 -- Check_Discriminant_Use --
402 ----------------------------
404 procedure Check_Discriminant_Use (N : Node_Id) is
405 PN : constant Node_Id := Parent (N);
406 Disc : constant Entity_Id := Entity (N);
407 P : Node_Id;
408 D : Node_Id;
410 begin
411 -- Any use in a spec-expression is legal
413 if In_Spec_Expression then
414 null;
416 elsif Nkind (PN) = N_Range then
418 -- Discriminant cannot be used to constrain a scalar type
420 P := Parent (PN);
422 if Nkind (P) = N_Range_Constraint
423 and then Nkind (Parent (P)) = N_Subtype_Indication
424 and then Nkind (Parent (Parent (P))) = N_Component_Definition
425 then
426 Error_Msg_N ("discriminant cannot constrain scalar type", N);
428 elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
430 -- The following check catches the unusual case where a
431 -- discriminant appears within an index constraint that is part
432 -- of a larger expression within a constraint on a component,
433 -- e.g. "C : Int range 1 .. F (new A(1 .. D))". For now we only
434 -- check case of record components, and note that a similar check
435 -- should also apply in the case of discriminant constraints
436 -- below. ???
438 -- Note that the check for N_Subtype_Declaration below is to
439 -- detect the valid use of discriminants in the constraints of a
440 -- subtype declaration when this subtype declaration appears
441 -- inside the scope of a record type (which is syntactically
442 -- illegal, but which may be created as part of derived type
443 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
444 -- for more info.
446 if Ekind (Current_Scope) = E_Record_Type
447 and then Scope (Disc) = Current_Scope
448 and then not
449 (Nkind (Parent (P)) = N_Subtype_Indication
450 and then
451 Nkind_In (Parent (Parent (P)), N_Component_Definition,
452 N_Subtype_Declaration)
453 and then Paren_Count (N) = 0)
454 then
455 Error_Msg_N
456 ("discriminant must appear alone in component constraint", N);
457 return;
458 end if;
460 -- Detect a common error:
462 -- type R (D : Positive := 100) is record
463 -- Name : String (1 .. D);
464 -- end record;
466 -- The default value causes an object of type R to be allocated
467 -- with room for Positive'Last characters. The RM does not mandate
468 -- the allocation of the maximum size, but that is what GNAT does
469 -- so we should warn the programmer that there is a problem.
471 Check_Large : declare
472 SI : Node_Id;
473 T : Entity_Id;
474 TB : Node_Id;
475 CB : Entity_Id;
477 function Large_Storage_Type (T : Entity_Id) return Boolean;
478 -- Return True if type T has a large enough range that any
479 -- array whose index type covered the whole range of the type
480 -- would likely raise Storage_Error.
482 ------------------------
483 -- Large_Storage_Type --
484 ------------------------
486 function Large_Storage_Type (T : Entity_Id) return Boolean is
487 begin
488 -- The type is considered large if its bounds are known at
489 -- compile time and if it requires at least as many bits as
490 -- a Positive to store the possible values.
492 return Compile_Time_Known_Value (Type_Low_Bound (T))
493 and then Compile_Time_Known_Value (Type_High_Bound (T))
494 and then
495 Minimum_Size (T, Biased => True) >=
496 RM_Size (Standard_Positive);
497 end Large_Storage_Type;
499 -- Start of processing for Check_Large
501 begin
502 -- Check that the Disc has a large range
504 if not Large_Storage_Type (Etype (Disc)) then
505 goto No_Danger;
506 end if;
508 -- If the enclosing type is limited, we allocate only the
509 -- default value, not the maximum, and there is no need for
510 -- a warning.
512 if Is_Limited_Type (Scope (Disc)) then
513 goto No_Danger;
514 end if;
516 -- Check that it is the high bound
518 if N /= High_Bound (PN)
519 or else No (Discriminant_Default_Value (Disc))
520 then
521 goto No_Danger;
522 end if;
524 -- Check the array allows a large range at this bound. First
525 -- find the array
527 SI := Parent (P);
529 if Nkind (SI) /= N_Subtype_Indication then
530 goto No_Danger;
531 end if;
533 T := Entity (Subtype_Mark (SI));
535 if not Is_Array_Type (T) then
536 goto No_Danger;
537 end if;
539 -- Next, find the dimension
541 TB := First_Index (T);
542 CB := First (Constraints (P));
543 while True
544 and then Present (TB)
545 and then Present (CB)
546 and then CB /= PN
547 loop
548 Next_Index (TB);
549 Next (CB);
550 end loop;
552 if CB /= PN then
553 goto No_Danger;
554 end if;
556 -- Now, check the dimension has a large range
558 if not Large_Storage_Type (Etype (TB)) then
559 goto No_Danger;
560 end if;
562 -- Warn about the danger
564 Error_Msg_N
565 ("??creation of & object may raise Storage_Error!",
566 Scope (Disc));
568 <<No_Danger>>
569 null;
571 end Check_Large;
572 end if;
574 -- Legal case is in index or discriminant constraint
576 elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
577 N_Discriminant_Association)
578 then
579 if Paren_Count (N) > 0 then
580 Error_Msg_N
581 ("discriminant in constraint must appear alone", N);
583 elsif Nkind (N) = N_Expanded_Name
584 and then Comes_From_Source (N)
585 then
586 Error_Msg_N
587 ("discriminant must appear alone as a direct name", N);
588 end if;
590 return;
592 -- Otherwise, context is an expression. It should not be within (i.e. a
593 -- subexpression of) a constraint for a component.
595 else
596 D := PN;
597 P := Parent (PN);
598 while not Nkind_In (P, N_Component_Declaration,
599 N_Subtype_Indication,
600 N_Entry_Declaration)
601 loop
602 D := P;
603 P := Parent (P);
604 exit when No (P);
605 end loop;
607 -- If the discriminant is used in an expression that is a bound of a
608 -- scalar type, an Itype is created and the bounds are attached to
609 -- its range, not to the original subtype indication. Such use is of
610 -- course a double fault.
612 if (Nkind (P) = N_Subtype_Indication
613 and then Nkind_In (Parent (P), N_Component_Definition,
614 N_Derived_Type_Definition)
615 and then D = Constraint (P))
617 -- The constraint itself may be given by a subtype indication,
618 -- rather than by a more common discrete range.
620 or else (Nkind (P) = N_Subtype_Indication
621 and then
622 Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
623 or else Nkind (P) = N_Entry_Declaration
624 or else Nkind (D) = N_Defining_Identifier
625 then
626 Error_Msg_N
627 ("discriminant in constraint must appear alone", N);
628 end if;
629 end if;
630 end Check_Discriminant_Use;
632 --------------------------------
633 -- Check_For_Visible_Operator --
634 --------------------------------
636 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
637 begin
638 if Is_Invisible_Operator (N, T) then
639 Error_Msg_NE -- CODEFIX
640 ("operator for} is not directly visible!", N, First_Subtype (T));
641 Error_Msg_N -- CODEFIX
642 ("use clause would make operation legal!", N);
643 end if;
644 end Check_For_Visible_Operator;
646 ----------------------------------
647 -- Check_Fully_Declared_Prefix --
648 ----------------------------------
650 procedure Check_Fully_Declared_Prefix
651 (Typ : Entity_Id;
652 Pref : Node_Id)
654 begin
655 -- Check that the designated type of the prefix of a dereference is
656 -- not an incomplete type. This cannot be done unconditionally, because
657 -- dereferences of private types are legal in default expressions. This
658 -- case is taken care of in Check_Fully_Declared, called below. There
659 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
661 -- This consideration also applies to similar checks for allocators,
662 -- qualified expressions, and type conversions.
664 -- An additional exception concerns other per-object expressions that
665 -- are not directly related to component declarations, in particular
666 -- representation pragmas for tasks. These will be per-object
667 -- expressions if they depend on discriminants or some global entity.
668 -- If the task has access discriminants, the designated type may be
669 -- incomplete at the point the expression is resolved. This resolution
670 -- takes place within the body of the initialization procedure, where
671 -- the discriminant is replaced by its discriminal.
673 if Is_Entity_Name (Pref)
674 and then Ekind (Entity (Pref)) = E_In_Parameter
675 then
676 null;
678 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
679 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
680 -- Analyze_Object_Renaming, and Freeze_Entity.
682 elsif Ada_Version >= Ada_2005
683 and then Is_Entity_Name (Pref)
684 and then Is_Access_Type (Etype (Pref))
685 and then Ekind (Directly_Designated_Type (Etype (Pref))) =
686 E_Incomplete_Type
687 and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
688 then
689 null;
690 else
691 Check_Fully_Declared (Typ, Parent (Pref));
692 end if;
693 end Check_Fully_Declared_Prefix;
695 ------------------------------
696 -- Check_Infinite_Recursion --
697 ------------------------------
699 function Check_Infinite_Recursion (N : Node_Id) return Boolean is
700 P : Node_Id;
701 C : Node_Id;
703 function Same_Argument_List return Boolean;
704 -- Check whether list of actuals is identical to list of formals of
705 -- called function (which is also the enclosing scope).
707 ------------------------
708 -- Same_Argument_List --
709 ------------------------
711 function Same_Argument_List return Boolean is
712 A : Node_Id;
713 F : Entity_Id;
714 Subp : Entity_Id;
716 begin
717 if not Is_Entity_Name (Name (N)) then
718 return False;
719 else
720 Subp := Entity (Name (N));
721 end if;
723 F := First_Formal (Subp);
724 A := First_Actual (N);
725 while Present (F) and then Present (A) loop
726 if not Is_Entity_Name (A) or else Entity (A) /= F then
727 return False;
728 end if;
730 Next_Actual (A);
731 Next_Formal (F);
732 end loop;
734 return True;
735 end Same_Argument_List;
737 -- Start of processing for Check_Infinite_Recursion
739 begin
740 -- Special case, if this is a procedure call and is a call to the
741 -- current procedure with the same argument list, then this is for
742 -- sure an infinite recursion and we insert a call to raise SE.
744 if Is_List_Member (N)
745 and then List_Length (List_Containing (N)) = 1
746 and then Same_Argument_List
747 then
748 declare
749 P : constant Node_Id := Parent (N);
750 begin
751 if Nkind (P) = N_Handled_Sequence_Of_Statements
752 and then Nkind (Parent (P)) = N_Subprogram_Body
753 and then Is_Empty_List (Declarations (Parent (P)))
754 then
755 Error_Msg_Warn := SPARK_Mode /= On;
756 Error_Msg_N ("!infinite recursion<<", N);
757 Error_Msg_N ("\!Storage_Error [<<", N);
758 Insert_Action (N,
759 Make_Raise_Storage_Error (Sloc (N),
760 Reason => SE_Infinite_Recursion));
761 return True;
762 end if;
763 end;
764 end if;
766 -- If not that special case, search up tree, quitting if we reach a
767 -- construct (e.g. a conditional) that tells us that this is not a
768 -- case for an infinite recursion warning.
770 C := N;
771 loop
772 P := Parent (C);
774 -- If no parent, then we were not inside a subprogram, this can for
775 -- example happen when processing certain pragmas in a spec. Just
776 -- return False in this case.
778 if No (P) then
779 return False;
780 end if;
782 -- Done if we get to subprogram body, this is definitely an infinite
783 -- recursion case if we did not find anything to stop us.
785 exit when Nkind (P) = N_Subprogram_Body;
787 -- If appearing in conditional, result is false
789 if Nkind_In (P, N_Or_Else,
790 N_And_Then,
791 N_Case_Expression,
792 N_Case_Statement,
793 N_If_Expression,
794 N_If_Statement)
795 then
796 return False;
798 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
799 and then C /= First (Statements (P))
800 then
801 -- If the call is the expression of a return statement and the
802 -- actuals are identical to the formals, it's worth a warning.
803 -- However, we skip this if there is an immediately preceding
804 -- raise statement, since the call is never executed.
806 -- Furthermore, this corresponds to a common idiom:
808 -- function F (L : Thing) return Boolean is
809 -- begin
810 -- raise Program_Error;
811 -- return F (L);
812 -- end F;
814 -- for generating a stub function
816 if Nkind (Parent (N)) = N_Simple_Return_Statement
817 and then Same_Argument_List
818 then
819 exit when not Is_List_Member (Parent (N));
821 -- OK, return statement is in a statement list, look for raise
823 declare
824 Nod : Node_Id;
826 begin
827 -- Skip past N_Freeze_Entity nodes generated by expansion
829 Nod := Prev (Parent (N));
830 while Present (Nod)
831 and then Nkind (Nod) = N_Freeze_Entity
832 loop
833 Prev (Nod);
834 end loop;
836 -- If no raise statement, give warning. We look at the
837 -- original node, because in the case of "raise ... with
838 -- ...", the node has been transformed into a call.
840 exit when Nkind (Original_Node (Nod)) /= N_Raise_Statement
841 and then
842 (Nkind (Nod) not in N_Raise_xxx_Error
843 or else Present (Condition (Nod)));
844 end;
845 end if;
847 return False;
849 else
850 C := P;
851 end if;
852 end loop;
854 Error_Msg_Warn := SPARK_Mode /= On;
855 Error_Msg_N ("!possible infinite recursion<<", N);
856 Error_Msg_N ("\!??Storage_Error ]<<", N);
858 return True;
859 end Check_Infinite_Recursion;
861 -------------------------------
862 -- Check_Initialization_Call --
863 -------------------------------
865 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id) is
866 Typ : constant Entity_Id := Etype (First_Formal (Nam));
868 function Uses_SS (T : Entity_Id) return Boolean;
869 -- Check whether the creation of an object of the type will involve
870 -- use of the secondary stack. If T is a record type, this is true
871 -- if the expression for some component uses the secondary stack, e.g.
872 -- through a call to a function that returns an unconstrained value.
873 -- False if T is controlled, because cleanups occur elsewhere.
875 -------------
876 -- Uses_SS --
877 -------------
879 function Uses_SS (T : Entity_Id) return Boolean is
880 Comp : Entity_Id;
881 Expr : Node_Id;
882 Full_Type : Entity_Id := Underlying_Type (T);
884 begin
885 -- Normally we want to use the underlying type, but if it's not set
886 -- then continue with T.
888 if not Present (Full_Type) then
889 Full_Type := T;
890 end if;
892 if Is_Controlled (Full_Type) then
893 return False;
895 elsif Is_Array_Type (Full_Type) then
896 return Uses_SS (Component_Type (Full_Type));
898 elsif Is_Record_Type (Full_Type) then
899 Comp := First_Component (Full_Type);
900 while Present (Comp) loop
901 if Ekind (Comp) = E_Component
902 and then Nkind (Parent (Comp)) = N_Component_Declaration
903 then
904 -- The expression for a dynamic component may be rewritten
905 -- as a dereference, so retrieve original node.
907 Expr := Original_Node (Expression (Parent (Comp)));
909 -- Return True if the expression is a call to a function
910 -- (including an attribute function such as Image, or a
911 -- user-defined operator) with a result that requires a
912 -- transient scope.
914 if (Nkind (Expr) = N_Function_Call
915 or else Nkind (Expr) in N_Op
916 or else (Nkind (Expr) = N_Attribute_Reference
917 and then Present (Expressions (Expr))))
918 and then Requires_Transient_Scope (Etype (Expr))
919 then
920 return True;
922 elsif Uses_SS (Etype (Comp)) then
923 return True;
924 end if;
925 end if;
927 Next_Component (Comp);
928 end loop;
930 return False;
932 else
933 return False;
934 end if;
935 end Uses_SS;
937 -- Start of processing for Check_Initialization_Call
939 begin
940 -- Establish a transient scope if the type needs it
942 if Uses_SS (Typ) then
943 Establish_Transient_Scope (First_Actual (N), Sec_Stack => True);
944 end if;
945 end Check_Initialization_Call;
947 ---------------------------------------
948 -- Check_No_Direct_Boolean_Operators --
949 ---------------------------------------
951 procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
952 begin
953 if Scope (Entity (N)) = Standard_Standard
954 and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
955 then
956 -- Restriction only applies to original source code
958 if Comes_From_Source (N) then
959 Check_Restriction (No_Direct_Boolean_Operators, N);
960 end if;
961 end if;
963 -- Do style check (but skip if in instance, error is on template)
965 if Style_Check then
966 if not In_Instance then
967 Check_Boolean_Operator (N);
968 end if;
969 end if;
970 end Check_No_Direct_Boolean_Operators;
972 ------------------------------
973 -- Check_Parameterless_Call --
974 ------------------------------
976 procedure Check_Parameterless_Call (N : Node_Id) is
977 Nam : Node_Id;
979 function Prefix_Is_Access_Subp return Boolean;
980 -- If the prefix is of an access_to_subprogram type, the node must be
981 -- rewritten as a call. Ditto if the prefix is overloaded and all its
982 -- interpretations are access to subprograms.
984 ---------------------------
985 -- Prefix_Is_Access_Subp --
986 ---------------------------
988 function Prefix_Is_Access_Subp return Boolean is
989 I : Interp_Index;
990 It : Interp;
992 begin
993 -- If the context is an attribute reference that can apply to
994 -- functions, this is never a parameterless call (RM 4.1.4(6)).
996 if Nkind (Parent (N)) = N_Attribute_Reference
997 and then Nam_In (Attribute_Name (Parent (N)), Name_Address,
998 Name_Code_Address,
999 Name_Access)
1000 then
1001 return False;
1002 end if;
1004 if not Is_Overloaded (N) then
1005 return
1006 Ekind (Etype (N)) = E_Subprogram_Type
1007 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
1008 else
1009 Get_First_Interp (N, I, It);
1010 while Present (It.Typ) loop
1011 if Ekind (It.Typ) /= E_Subprogram_Type
1012 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
1013 then
1014 return False;
1015 end if;
1017 Get_Next_Interp (I, It);
1018 end loop;
1020 return True;
1021 end if;
1022 end Prefix_Is_Access_Subp;
1024 -- Start of processing for Check_Parameterless_Call
1026 begin
1027 -- Defend against junk stuff if errors already detected
1029 if Total_Errors_Detected /= 0 then
1030 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
1031 return;
1032 elsif Nkind (N) in N_Has_Chars
1033 and then not Is_Valid_Name (Chars (N))
1034 then
1035 return;
1036 end if;
1038 Require_Entity (N);
1039 end if;
1041 -- If the context expects a value, and the name is a procedure, this is
1042 -- most likely a missing 'Access. Don't try to resolve the parameterless
1043 -- call, error will be caught when the outer call is analyzed.
1045 if Is_Entity_Name (N)
1046 and then Ekind (Entity (N)) = E_Procedure
1047 and then not Is_Overloaded (N)
1048 and then
1049 Nkind_In (Parent (N), N_Parameter_Association,
1050 N_Function_Call,
1051 N_Procedure_Call_Statement)
1052 then
1053 return;
1054 end if;
1056 -- Rewrite as call if overloadable entity that is (or could be, in the
1057 -- overloaded case) a function call. If we know for sure that the entity
1058 -- is an enumeration literal, we do not rewrite it.
1060 -- If the entity is the name of an operator, it cannot be a call because
1061 -- operators cannot have default parameters. In this case, this must be
1062 -- a string whose contents coincide with an operator name. Set the kind
1063 -- of the node appropriately.
1065 if (Is_Entity_Name (N)
1066 and then Nkind (N) /= N_Operator_Symbol
1067 and then Is_Overloadable (Entity (N))
1068 and then (Ekind (Entity (N)) /= E_Enumeration_Literal
1069 or else Is_Overloaded (N)))
1071 -- Rewrite as call if it is an explicit dereference of an expression of
1072 -- a subprogram access type, and the subprogram type is not that of a
1073 -- procedure or entry.
1075 or else
1076 (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
1078 -- Rewrite as call if it is a selected component which is a function,
1079 -- this is the case of a call to a protected function (which may be
1080 -- overloaded with other protected operations).
1082 or else
1083 (Nkind (N) = N_Selected_Component
1084 and then (Ekind (Entity (Selector_Name (N))) = E_Function
1085 or else
1086 (Ekind_In (Entity (Selector_Name (N)), E_Entry,
1087 E_Procedure)
1088 and then Is_Overloaded (Selector_Name (N)))))
1090 -- If one of the above three conditions is met, rewrite as call. Apply
1091 -- the rewriting only once.
1093 then
1094 if Nkind (Parent (N)) /= N_Function_Call
1095 or else N /= Name (Parent (N))
1096 then
1098 -- This may be a prefixed call that was not fully analyzed, e.g.
1099 -- an actual in an instance.
1101 if Ada_Version >= Ada_2005
1102 and then Nkind (N) = N_Selected_Component
1103 and then Is_Dispatching_Operation (Entity (Selector_Name (N)))
1104 then
1105 Analyze_Selected_Component (N);
1107 if Nkind (N) /= N_Selected_Component then
1108 return;
1109 end if;
1110 end if;
1112 -- The node is the name of the parameterless call. Preserve its
1113 -- descendants, which may be complex expressions.
1115 Nam := Relocate_Node (N);
1117 -- If overloaded, overload set belongs to new copy
1119 Save_Interps (N, Nam);
1121 -- Change node to parameterless function call (note that the
1122 -- Parameter_Associations associations field is left set to Empty,
1123 -- its normal default value since there are no parameters)
1125 Change_Node (N, N_Function_Call);
1126 Set_Name (N, Nam);
1127 Set_Sloc (N, Sloc (Nam));
1128 Analyze_Call (N);
1129 end if;
1131 elsif Nkind (N) = N_Parameter_Association then
1132 Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1134 elsif Nkind (N) = N_Operator_Symbol then
1135 Change_Operator_Symbol_To_String_Literal (N);
1136 Set_Is_Overloaded (N, False);
1137 Set_Etype (N, Any_String);
1138 end if;
1139 end Check_Parameterless_Call;
1141 --------------------------------
1142 -- Is_Atomic_Ref_With_Address --
1143 --------------------------------
1145 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean is
1146 Pref : constant Node_Id := Prefix (N);
1148 begin
1149 if not Is_Entity_Name (Pref) then
1150 return False;
1152 else
1153 declare
1154 Pent : constant Entity_Id := Entity (Pref);
1155 Ptyp : constant Entity_Id := Etype (Pent);
1156 begin
1157 return not Is_Access_Type (Ptyp)
1158 and then (Is_Atomic (Ptyp) or else Is_Atomic (Pent))
1159 and then Present (Address_Clause (Pent));
1160 end;
1161 end if;
1162 end Is_Atomic_Ref_With_Address;
1164 -----------------------------
1165 -- Is_Definite_Access_Type --
1166 -----------------------------
1168 function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1169 Btyp : constant Entity_Id := Base_Type (E);
1170 begin
1171 return Ekind (Btyp) = E_Access_Type
1172 or else (Ekind (Btyp) = E_Access_Subprogram_Type
1173 and then Comes_From_Source (Btyp));
1174 end Is_Definite_Access_Type;
1176 ----------------------
1177 -- Is_Predefined_Op --
1178 ----------------------
1180 function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1181 begin
1182 -- Predefined operators are intrinsic subprograms
1184 if not Is_Intrinsic_Subprogram (Nam) then
1185 return False;
1186 end if;
1188 -- A call to a back-end builtin is never a predefined operator
1190 if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
1191 return False;
1192 end if;
1194 return not Is_Generic_Instance (Nam)
1195 and then Chars (Nam) in Any_Operator_Name
1196 and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
1197 end Is_Predefined_Op;
1199 -----------------------------
1200 -- Make_Call_Into_Operator --
1201 -----------------------------
1203 procedure Make_Call_Into_Operator
1204 (N : Node_Id;
1205 Typ : Entity_Id;
1206 Op_Id : Entity_Id)
1208 Op_Name : constant Name_Id := Chars (Op_Id);
1209 Act1 : Node_Id := First_Actual (N);
1210 Act2 : Node_Id := Next_Actual (Act1);
1211 Error : Boolean := False;
1212 Func : constant Entity_Id := Entity (Name (N));
1213 Is_Binary : constant Boolean := Present (Act2);
1214 Op_Node : Node_Id;
1215 Opnd_Type : Entity_Id := Empty;
1216 Orig_Type : Entity_Id := Empty;
1217 Pack : Entity_Id;
1219 type Kind_Test is access function (E : Entity_Id) return Boolean;
1221 function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1222 -- If the operand is not universal, and the operator is given by an
1223 -- expanded name, verify that the operand has an interpretation with a
1224 -- type defined in the given scope of the operator.
1226 function Type_In_P (Test : Kind_Test) return Entity_Id;
1227 -- Find a type of the given class in package Pack that contains the
1228 -- operator.
1230 ---------------------------
1231 -- Operand_Type_In_Scope --
1232 ---------------------------
1234 function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1235 Nod : constant Node_Id := Right_Opnd (Op_Node);
1236 I : Interp_Index;
1237 It : Interp;
1239 begin
1240 if not Is_Overloaded (Nod) then
1241 return Scope (Base_Type (Etype (Nod))) = S;
1243 else
1244 Get_First_Interp (Nod, I, It);
1245 while Present (It.Typ) loop
1246 if Scope (Base_Type (It.Typ)) = S then
1247 return True;
1248 end if;
1250 Get_Next_Interp (I, It);
1251 end loop;
1253 return False;
1254 end if;
1255 end Operand_Type_In_Scope;
1257 ---------------
1258 -- Type_In_P --
1259 ---------------
1261 function Type_In_P (Test : Kind_Test) return Entity_Id is
1262 E : Entity_Id;
1264 function In_Decl return Boolean;
1265 -- Verify that node is not part of the type declaration for the
1266 -- candidate type, which would otherwise be invisible.
1268 -------------
1269 -- In_Decl --
1270 -------------
1272 function In_Decl return Boolean is
1273 Decl_Node : constant Node_Id := Parent (E);
1274 N2 : Node_Id;
1276 begin
1277 N2 := N;
1279 if Etype (E) = Any_Type then
1280 return True;
1282 elsif No (Decl_Node) then
1283 return False;
1285 else
1286 while Present (N2)
1287 and then Nkind (N2) /= N_Compilation_Unit
1288 loop
1289 if N2 = Decl_Node then
1290 return True;
1291 else
1292 N2 := Parent (N2);
1293 end if;
1294 end loop;
1296 return False;
1297 end if;
1298 end In_Decl;
1300 -- Start of processing for Type_In_P
1302 begin
1303 -- If the context type is declared in the prefix package, this is the
1304 -- desired base type.
1306 if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
1307 return Base_Type (Typ);
1309 else
1310 E := First_Entity (Pack);
1311 while Present (E) loop
1312 if Test (E) and then not In_Decl then
1313 return E;
1314 end if;
1316 Next_Entity (E);
1317 end loop;
1319 return Empty;
1320 end if;
1321 end Type_In_P;
1323 -- Start of processing for Make_Call_Into_Operator
1325 begin
1326 Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1328 -- Ensure that the corresponding operator has the same parent as the
1329 -- original call. This guarantees that parent traversals performed by
1330 -- the ABE mechanism succeed.
1332 Set_Parent (Op_Node, Parent (N));
1334 -- Binary operator
1336 if Is_Binary then
1337 Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
1338 Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1339 Save_Interps (Act1, Left_Opnd (Op_Node));
1340 Save_Interps (Act2, Right_Opnd (Op_Node));
1341 Act1 := Left_Opnd (Op_Node);
1342 Act2 := Right_Opnd (Op_Node);
1344 -- Unary operator
1346 else
1347 Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1348 Save_Interps (Act1, Right_Opnd (Op_Node));
1349 Act1 := Right_Opnd (Op_Node);
1350 end if;
1352 -- If the operator is denoted by an expanded name, and the prefix is
1353 -- not Standard, but the operator is a predefined one whose scope is
1354 -- Standard, then this is an implicit_operator, inserted as an
1355 -- interpretation by the procedure of the same name. This procedure
1356 -- overestimates the presence of implicit operators, because it does
1357 -- not examine the type of the operands. Verify now that the operand
1358 -- type appears in the given scope. If right operand is universal,
1359 -- check the other operand. In the case of concatenation, either
1360 -- argument can be the component type, so check the type of the result.
1361 -- If both arguments are literals, look for a type of the right kind
1362 -- defined in the given scope. This elaborate nonsense is brought to
1363 -- you courtesy of b33302a. The type itself must be frozen, so we must
1364 -- find the type of the proper class in the given scope.
1366 -- A final wrinkle is the multiplication operator for fixed point types,
1367 -- which is defined in Standard only, and not in the scope of the
1368 -- fixed point type itself.
1370 if Nkind (Name (N)) = N_Expanded_Name then
1371 Pack := Entity (Prefix (Name (N)));
1373 -- If this is a package renaming, get renamed entity, which will be
1374 -- the scope of the operands if operaton is type-correct.
1376 if Present (Renamed_Entity (Pack)) then
1377 Pack := Renamed_Entity (Pack);
1378 end if;
1380 -- If the entity being called is defined in the given package, it is
1381 -- a renaming of a predefined operator, and known to be legal.
1383 if Scope (Entity (Name (N))) = Pack
1384 and then Pack /= Standard_Standard
1385 then
1386 null;
1388 -- Visibility does not need to be checked in an instance: if the
1389 -- operator was not visible in the generic it has been diagnosed
1390 -- already, else there is an implicit copy of it in the instance.
1392 elsif In_Instance then
1393 null;
1395 elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1396 and then Is_Fixed_Point_Type (Etype (Left_Opnd (Op_Node)))
1397 and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1398 then
1399 if Pack /= Standard_Standard then
1400 Error := True;
1401 end if;
1403 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1404 -- available.
1406 elsif Ada_Version >= Ada_2005
1407 and then Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1408 and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1409 then
1410 null;
1412 else
1413 Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1415 if Op_Name = Name_Op_Concat then
1416 Opnd_Type := Base_Type (Typ);
1418 elsif (Scope (Opnd_Type) = Standard_Standard
1419 and then Is_Binary)
1420 or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1421 and then Is_Binary
1422 and then not Comes_From_Source (Opnd_Type))
1423 then
1424 Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1425 end if;
1427 if Scope (Opnd_Type) = Standard_Standard then
1429 -- Verify that the scope contains a type that corresponds to
1430 -- the given literal. Optimize the case where Pack is Standard.
1432 if Pack /= Standard_Standard then
1433 if Opnd_Type = Universal_Integer then
1434 Orig_Type := Type_In_P (Is_Integer_Type'Access);
1436 elsif Opnd_Type = Universal_Real then
1437 Orig_Type := Type_In_P (Is_Real_Type'Access);
1439 elsif Opnd_Type = Any_String then
1440 Orig_Type := Type_In_P (Is_String_Type'Access);
1442 elsif Opnd_Type = Any_Access then
1443 Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1445 elsif Opnd_Type = Any_Composite then
1446 Orig_Type := Type_In_P (Is_Composite_Type'Access);
1448 if Present (Orig_Type) then
1449 if Has_Private_Component (Orig_Type) then
1450 Orig_Type := Empty;
1451 else
1452 Set_Etype (Act1, Orig_Type);
1454 if Is_Binary then
1455 Set_Etype (Act2, Orig_Type);
1456 end if;
1457 end if;
1458 end if;
1460 else
1461 Orig_Type := Empty;
1462 end if;
1464 Error := No (Orig_Type);
1465 end if;
1467 elsif Ekind (Opnd_Type) = E_Allocator_Type
1468 and then No (Type_In_P (Is_Definite_Access_Type'Access))
1469 then
1470 Error := True;
1472 -- If the type is defined elsewhere, and the operator is not
1473 -- defined in the given scope (by a renaming declaration, e.g.)
1474 -- then this is an error as well. If an extension of System is
1475 -- present, and the type may be defined there, Pack must be
1476 -- System itself.
1478 elsif Scope (Opnd_Type) /= Pack
1479 and then Scope (Op_Id) /= Pack
1480 and then (No (System_Aux_Id)
1481 or else Scope (Opnd_Type) /= System_Aux_Id
1482 or else Pack /= Scope (System_Aux_Id))
1483 then
1484 if not Is_Overloaded (Right_Opnd (Op_Node)) then
1485 Error := True;
1486 else
1487 Error := not Operand_Type_In_Scope (Pack);
1488 end if;
1490 elsif Pack = Standard_Standard
1491 and then not Operand_Type_In_Scope (Standard_Standard)
1492 then
1493 Error := True;
1494 end if;
1495 end if;
1497 if Error then
1498 Error_Msg_Node_2 := Pack;
1499 Error_Msg_NE
1500 ("& not declared in&", N, Selector_Name (Name (N)));
1501 Set_Etype (N, Any_Type);
1502 return;
1504 -- Detect a mismatch between the context type and the result type
1505 -- in the named package, which is otherwise not detected if the
1506 -- operands are universal. Check is only needed if source entity is
1507 -- an operator, not a function that renames an operator.
1509 elsif Nkind (Parent (N)) /= N_Type_Conversion
1510 and then Ekind (Entity (Name (N))) = E_Operator
1511 and then Is_Numeric_Type (Typ)
1512 and then not Is_Universal_Numeric_Type (Typ)
1513 and then Scope (Base_Type (Typ)) /= Pack
1514 and then not In_Instance
1515 then
1516 if Is_Fixed_Point_Type (Typ)
1517 and then Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1518 then
1519 -- Already checked above
1521 null;
1523 -- Operator may be defined in an extension of System
1525 elsif Present (System_Aux_Id)
1526 and then Present (Opnd_Type)
1527 and then Scope (Opnd_Type) = System_Aux_Id
1528 then
1529 null;
1531 else
1532 -- Could we use Wrong_Type here??? (this would require setting
1533 -- Etype (N) to the actual type found where Typ was expected).
1535 Error_Msg_NE ("expect }", N, Typ);
1536 end if;
1537 end if;
1538 end if;
1540 Set_Chars (Op_Node, Op_Name);
1542 if not Is_Private_Type (Etype (N)) then
1543 Set_Etype (Op_Node, Base_Type (Etype (N)));
1544 else
1545 Set_Etype (Op_Node, Etype (N));
1546 end if;
1548 -- If this is a call to a function that renames a predefined equality,
1549 -- the renaming declaration provides a type that must be used to
1550 -- resolve the operands. This must be done now because resolution of
1551 -- the equality node will not resolve any remaining ambiguity, and it
1552 -- assumes that the first operand is not overloaded.
1554 if Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1555 and then Ekind (Func) = E_Function
1556 and then Is_Overloaded (Act1)
1557 then
1558 Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1559 Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1560 end if;
1562 Set_Entity (Op_Node, Op_Id);
1563 Generate_Reference (Op_Id, N, ' ');
1565 -- Do rewrite setting Comes_From_Source on the result if the original
1566 -- call came from source. Although it is not strictly the case that the
1567 -- operator as such comes from the source, logically it corresponds
1568 -- exactly to the function call in the source, so it should be marked
1569 -- this way (e.g. to make sure that validity checks work fine).
1571 declare
1572 CS : constant Boolean := Comes_From_Source (N);
1573 begin
1574 Rewrite (N, Op_Node);
1575 Set_Comes_From_Source (N, CS);
1576 end;
1578 -- If this is an arithmetic operator and the result type is private,
1579 -- the operands and the result must be wrapped in conversion to
1580 -- expose the underlying numeric type and expand the proper checks,
1581 -- e.g. on division.
1583 if Is_Private_Type (Typ) then
1584 case Nkind (N) is
1585 when N_Op_Add
1586 | N_Op_Divide
1587 | N_Op_Expon
1588 | N_Op_Mod
1589 | N_Op_Multiply
1590 | N_Op_Rem
1591 | N_Op_Subtract
1593 Resolve_Intrinsic_Operator (N, Typ);
1595 when N_Op_Abs
1596 | N_Op_Minus
1597 | N_Op_Plus
1599 Resolve_Intrinsic_Unary_Operator (N, Typ);
1601 when others =>
1602 Resolve (N, Typ);
1603 end case;
1604 else
1605 Resolve (N, Typ);
1606 end if;
1608 -- If in ASIS_Mode, propagate operand types to original actuals of
1609 -- function call, which would otherwise not be fully resolved. If
1610 -- the call has already been constant-folded, nothing to do. We
1611 -- relocate the operand nodes rather than copy them, to preserve
1612 -- original_node pointers, given that the operands themselves may
1613 -- have been rewritten. If the call was itself a rewriting of an
1614 -- operator node, nothing to do.
1616 if ASIS_Mode
1617 and then Nkind (N) in N_Op
1618 and then Nkind (Original_Node (N)) = N_Function_Call
1619 then
1620 declare
1621 L : Node_Id;
1622 R : constant Node_Id := Right_Opnd (N);
1624 Old_First : constant Node_Id :=
1625 First (Parameter_Associations (Original_Node (N)));
1626 Old_Sec : Node_Id;
1628 begin
1629 if Is_Binary then
1630 L := Left_Opnd (N);
1631 Old_Sec := Next (Old_First);
1633 -- If the original call has named associations, replace the
1634 -- explicit actual parameter in the association with the proper
1635 -- resolved operand.
1637 if Nkind (Old_First) = N_Parameter_Association then
1638 if Chars (Selector_Name (Old_First)) =
1639 Chars (First_Entity (Op_Id))
1640 then
1641 Rewrite (Explicit_Actual_Parameter (Old_First),
1642 Relocate_Node (L));
1643 else
1644 Rewrite (Explicit_Actual_Parameter (Old_First),
1645 Relocate_Node (R));
1646 end if;
1648 else
1649 Rewrite (Old_First, Relocate_Node (L));
1650 end if;
1652 if Nkind (Old_Sec) = N_Parameter_Association then
1653 if Chars (Selector_Name (Old_Sec)) =
1654 Chars (First_Entity (Op_Id))
1655 then
1656 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1657 Relocate_Node (L));
1658 else
1659 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1660 Relocate_Node (R));
1661 end if;
1663 else
1664 Rewrite (Old_Sec, Relocate_Node (R));
1665 end if;
1667 else
1668 if Nkind (Old_First) = N_Parameter_Association then
1669 Rewrite (Explicit_Actual_Parameter (Old_First),
1670 Relocate_Node (R));
1671 else
1672 Rewrite (Old_First, Relocate_Node (R));
1673 end if;
1674 end if;
1675 end;
1677 Set_Parent (Original_Node (N), Parent (N));
1678 end if;
1679 end Make_Call_Into_Operator;
1681 -------------------
1682 -- Operator_Kind --
1683 -------------------
1685 function Operator_Kind
1686 (Op_Name : Name_Id;
1687 Is_Binary : Boolean) return Node_Kind
1689 Kind : Node_Kind;
1691 begin
1692 -- Use CASE statement or array???
1694 if Is_Binary then
1695 if Op_Name = Name_Op_And then
1696 Kind := N_Op_And;
1697 elsif Op_Name = Name_Op_Or then
1698 Kind := N_Op_Or;
1699 elsif Op_Name = Name_Op_Xor then
1700 Kind := N_Op_Xor;
1701 elsif Op_Name = Name_Op_Eq then
1702 Kind := N_Op_Eq;
1703 elsif Op_Name = Name_Op_Ne then
1704 Kind := N_Op_Ne;
1705 elsif Op_Name = Name_Op_Lt then
1706 Kind := N_Op_Lt;
1707 elsif Op_Name = Name_Op_Le then
1708 Kind := N_Op_Le;
1709 elsif Op_Name = Name_Op_Gt then
1710 Kind := N_Op_Gt;
1711 elsif Op_Name = Name_Op_Ge then
1712 Kind := N_Op_Ge;
1713 elsif Op_Name = Name_Op_Add then
1714 Kind := N_Op_Add;
1715 elsif Op_Name = Name_Op_Subtract then
1716 Kind := N_Op_Subtract;
1717 elsif Op_Name = Name_Op_Concat then
1718 Kind := N_Op_Concat;
1719 elsif Op_Name = Name_Op_Multiply then
1720 Kind := N_Op_Multiply;
1721 elsif Op_Name = Name_Op_Divide then
1722 Kind := N_Op_Divide;
1723 elsif Op_Name = Name_Op_Mod then
1724 Kind := N_Op_Mod;
1725 elsif Op_Name = Name_Op_Rem then
1726 Kind := N_Op_Rem;
1727 elsif Op_Name = Name_Op_Expon then
1728 Kind := N_Op_Expon;
1729 else
1730 raise Program_Error;
1731 end if;
1733 -- Unary operators
1735 else
1736 if Op_Name = Name_Op_Add then
1737 Kind := N_Op_Plus;
1738 elsif Op_Name = Name_Op_Subtract then
1739 Kind := N_Op_Minus;
1740 elsif Op_Name = Name_Op_Abs then
1741 Kind := N_Op_Abs;
1742 elsif Op_Name = Name_Op_Not then
1743 Kind := N_Op_Not;
1744 else
1745 raise Program_Error;
1746 end if;
1747 end if;
1749 return Kind;
1750 end Operator_Kind;
1752 ----------------------------
1753 -- Preanalyze_And_Resolve --
1754 ----------------------------
1756 procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1757 Save_Full_Analysis : constant Boolean := Full_Analysis;
1759 begin
1760 Full_Analysis := False;
1761 Expander_Mode_Save_And_Set (False);
1763 -- Normally, we suppress all checks for this preanalysis. There is no
1764 -- point in processing them now, since they will be applied properly
1765 -- and in the proper location when the default expressions reanalyzed
1766 -- and reexpanded later on. We will also have more information at that
1767 -- point for possible suppression of individual checks.
1769 -- However, in SPARK mode, most expansion is suppressed, and this
1770 -- later reanalysis and reexpansion may not occur. SPARK mode does
1771 -- require the setting of checking flags for proof purposes, so we
1772 -- do the SPARK preanalysis without suppressing checks.
1774 -- This special handling for SPARK mode is required for example in the
1775 -- case of Ada 2012 constructs such as quantified expressions, which are
1776 -- expanded in two separate steps.
1778 if GNATprove_Mode then
1779 Analyze_And_Resolve (N, T);
1780 else
1781 Analyze_And_Resolve (N, T, Suppress => All_Checks);
1782 end if;
1784 Expander_Mode_Restore;
1785 Full_Analysis := Save_Full_Analysis;
1786 end Preanalyze_And_Resolve;
1788 -- Version without context type
1790 procedure Preanalyze_And_Resolve (N : Node_Id) is
1791 Save_Full_Analysis : constant Boolean := Full_Analysis;
1793 begin
1794 Full_Analysis := False;
1795 Expander_Mode_Save_And_Set (False);
1797 Analyze (N);
1798 Resolve (N, Etype (N), Suppress => All_Checks);
1800 Expander_Mode_Restore;
1801 Full_Analysis := Save_Full_Analysis;
1802 end Preanalyze_And_Resolve;
1804 ----------------------------------
1805 -- Replace_Actual_Discriminants --
1806 ----------------------------------
1808 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1809 Loc : constant Source_Ptr := Sloc (N);
1810 Tsk : Node_Id := Empty;
1812 function Process_Discr (Nod : Node_Id) return Traverse_Result;
1813 -- Comment needed???
1815 -------------------
1816 -- Process_Discr --
1817 -------------------
1819 function Process_Discr (Nod : Node_Id) return Traverse_Result is
1820 Ent : Entity_Id;
1822 begin
1823 if Nkind (Nod) = N_Identifier then
1824 Ent := Entity (Nod);
1826 if Present (Ent)
1827 and then Ekind (Ent) = E_Discriminant
1828 then
1829 Rewrite (Nod,
1830 Make_Selected_Component (Loc,
1831 Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
1832 Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1834 Set_Etype (Nod, Etype (Ent));
1835 end if;
1837 end if;
1839 return OK;
1840 end Process_Discr;
1842 procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1844 -- Start of processing for Replace_Actual_Discriminants
1846 begin
1847 if Expander_Active then
1848 null;
1850 -- Allow the replacement of concurrent discriminants in GNATprove even
1851 -- though this is a light expansion activity. Note that generic units
1852 -- are not modified.
1854 elsif GNATprove_Mode and not Inside_A_Generic then
1855 null;
1857 else
1858 return;
1859 end if;
1861 if Nkind (Name (N)) = N_Selected_Component then
1862 Tsk := Prefix (Name (N));
1864 elsif Nkind (Name (N)) = N_Indexed_Component then
1865 Tsk := Prefix (Prefix (Name (N)));
1866 end if;
1868 if Present (Tsk) then
1869 Replace_Discrs (Default);
1870 end if;
1871 end Replace_Actual_Discriminants;
1873 -------------
1874 -- Resolve --
1875 -------------
1877 procedure Resolve (N : Node_Id; Typ : Entity_Id) is
1878 Ambiguous : Boolean := False;
1879 Ctx_Type : Entity_Id := Typ;
1880 Expr_Type : Entity_Id := Empty; -- prevent junk warning
1881 Err_Type : Entity_Id := Empty;
1882 Found : Boolean := False;
1883 From_Lib : Boolean;
1884 I : Interp_Index;
1885 I1 : Interp_Index := 0; -- prevent junk warning
1886 It : Interp;
1887 It1 : Interp;
1888 Seen : Entity_Id := Empty; -- prevent junk warning
1890 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
1891 -- Determine whether a node comes from a predefined library unit or
1892 -- Standard.
1894 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
1895 -- Try and fix up a literal so that it matches its expected type. New
1896 -- literals are manufactured if necessary to avoid cascaded errors.
1898 procedure Report_Ambiguous_Argument;
1899 -- Additional diagnostics when an ambiguous call has an ambiguous
1900 -- argument (typically a controlling actual).
1902 procedure Resolution_Failed;
1903 -- Called when attempt at resolving current expression fails
1905 ------------------------------------
1906 -- Comes_From_Predefined_Lib_Unit --
1907 -------------------------------------
1909 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
1910 begin
1911 return
1912 Sloc (Nod) = Standard_Location or else In_Predefined_Unit (Nod);
1913 end Comes_From_Predefined_Lib_Unit;
1915 --------------------
1916 -- Patch_Up_Value --
1917 --------------------
1919 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
1920 begin
1921 if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then
1922 Rewrite (N,
1923 Make_Real_Literal (Sloc (N),
1924 Realval => UR_From_Uint (Intval (N))));
1925 Set_Etype (N, Universal_Real);
1926 Set_Is_Static_Expression (N);
1928 elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then
1929 Rewrite (N,
1930 Make_Integer_Literal (Sloc (N),
1931 Intval => UR_To_Uint (Realval (N))));
1932 Set_Etype (N, Universal_Integer);
1933 Set_Is_Static_Expression (N);
1935 elsif Nkind (N) = N_String_Literal
1936 and then Is_Character_Type (Typ)
1937 then
1938 Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
1939 Rewrite (N,
1940 Make_Character_Literal (Sloc (N),
1941 Chars => Name_Find,
1942 Char_Literal_Value =>
1943 UI_From_Int (Character'Pos ('A'))));
1944 Set_Etype (N, Any_Character);
1945 Set_Is_Static_Expression (N);
1947 elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then
1948 Rewrite (N,
1949 Make_String_Literal (Sloc (N),
1950 Strval => End_String));
1952 elsif Nkind (N) = N_Range then
1953 Patch_Up_Value (Low_Bound (N), Typ);
1954 Patch_Up_Value (High_Bound (N), Typ);
1955 end if;
1956 end Patch_Up_Value;
1958 -------------------------------
1959 -- Report_Ambiguous_Argument --
1960 -------------------------------
1962 procedure Report_Ambiguous_Argument is
1963 Arg : constant Node_Id := First (Parameter_Associations (N));
1964 I : Interp_Index;
1965 It : Interp;
1967 begin
1968 if Nkind (Arg) = N_Function_Call
1969 and then Is_Entity_Name (Name (Arg))
1970 and then Is_Overloaded (Name (Arg))
1971 then
1972 Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
1974 -- Could use comments on what is going on here???
1976 Get_First_Interp (Name (Arg), I, It);
1977 while Present (It.Nam) loop
1978 Error_Msg_Sloc := Sloc (It.Nam);
1980 if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
1981 Error_Msg_N ("interpretation (inherited) #!", Arg);
1982 else
1983 Error_Msg_N ("interpretation #!", Arg);
1984 end if;
1986 Get_Next_Interp (I, It);
1987 end loop;
1988 end if;
1989 end Report_Ambiguous_Argument;
1991 -----------------------
1992 -- Resolution_Failed --
1993 -----------------------
1995 procedure Resolution_Failed is
1996 begin
1997 Patch_Up_Value (N, Typ);
1999 -- Set the type to the desired one to minimize cascaded errors. Note
2000 -- that this is an approximation and does not work in all cases.
2002 Set_Etype (N, Typ);
2004 Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
2005 Set_Is_Overloaded (N, False);
2007 -- The caller will return without calling the expander, so we need
2008 -- to set the analyzed flag. Note that it is fine to set Analyzed
2009 -- to True even if we are in the middle of a shallow analysis,
2010 -- (see the spec of sem for more details) since this is an error
2011 -- situation anyway, and there is no point in repeating the
2012 -- analysis later (indeed it won't work to repeat it later, since
2013 -- we haven't got a clear resolution of which entity is being
2014 -- referenced.)
2016 Set_Analyzed (N, True);
2017 return;
2018 end Resolution_Failed;
2020 -- Start of processing for Resolve
2022 begin
2023 if N = Error then
2024 return;
2025 end if;
2027 -- Access attribute on remote subprogram cannot be used for a non-remote
2028 -- access-to-subprogram type.
2030 if Nkind (N) = N_Attribute_Reference
2031 and then Nam_In (Attribute_Name (N), Name_Access,
2032 Name_Unrestricted_Access,
2033 Name_Unchecked_Access)
2034 and then Comes_From_Source (N)
2035 and then Is_Entity_Name (Prefix (N))
2036 and then Is_Subprogram (Entity (Prefix (N)))
2037 and then Is_Remote_Call_Interface (Entity (Prefix (N)))
2038 and then not Is_Remote_Access_To_Subprogram_Type (Typ)
2039 then
2040 Error_Msg_N
2041 ("prefix must statically denote a non-remote subprogram", N);
2042 end if;
2044 From_Lib := Comes_From_Predefined_Lib_Unit (N);
2046 -- If the context is a Remote_Access_To_Subprogram, access attributes
2047 -- must be resolved with the corresponding fat pointer. There is no need
2048 -- to check for the attribute name since the return type of an
2049 -- attribute is never a remote type.
2051 if Nkind (N) = N_Attribute_Reference
2052 and then Comes_From_Source (N)
2053 and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ))
2054 then
2055 declare
2056 Attr : constant Attribute_Id :=
2057 Get_Attribute_Id (Attribute_Name (N));
2058 Pref : constant Node_Id := Prefix (N);
2059 Decl : Node_Id;
2060 Spec : Node_Id;
2061 Is_Remote : Boolean := True;
2063 begin
2064 -- Check that Typ is a remote access-to-subprogram type
2066 if Is_Remote_Access_To_Subprogram_Type (Typ) then
2068 -- Prefix (N) must statically denote a remote subprogram
2069 -- declared in a package specification.
2071 if Attr = Attribute_Access or else
2072 Attr = Attribute_Unchecked_Access or else
2073 Attr = Attribute_Unrestricted_Access
2074 then
2075 Decl := Unit_Declaration_Node (Entity (Pref));
2077 if Nkind (Decl) = N_Subprogram_Body then
2078 Spec := Corresponding_Spec (Decl);
2080 if Present (Spec) then
2081 Decl := Unit_Declaration_Node (Spec);
2082 end if;
2083 end if;
2085 Spec := Parent (Decl);
2087 if not Is_Entity_Name (Prefix (N))
2088 or else Nkind (Spec) /= N_Package_Specification
2089 or else
2090 not Is_Remote_Call_Interface (Defining_Entity (Spec))
2091 then
2092 Is_Remote := False;
2093 Error_Msg_N
2094 ("prefix must statically denote a remote subprogram ",
2096 end if;
2098 -- If we are generating code in distributed mode, perform
2099 -- semantic checks against corresponding remote entities.
2101 if Expander_Active
2102 and then Get_PCS_Name /= Name_No_DSA
2103 then
2104 Check_Subtype_Conformant
2105 (New_Id => Entity (Prefix (N)),
2106 Old_Id => Designated_Type
2107 (Corresponding_Remote_Type (Typ)),
2108 Err_Loc => N);
2110 if Is_Remote then
2111 Process_Remote_AST_Attribute (N, Typ);
2112 end if;
2113 end if;
2114 end if;
2115 end if;
2116 end;
2117 end if;
2119 Debug_A_Entry ("resolving ", N);
2121 if Debug_Flag_V then
2122 Write_Overloads (N);
2123 end if;
2125 if Comes_From_Source (N) then
2126 if Is_Fixed_Point_Type (Typ) then
2127 Check_Restriction (No_Fixed_Point, N);
2129 elsif Is_Floating_Point_Type (Typ)
2130 and then Typ /= Universal_Real
2131 and then Typ /= Any_Real
2132 then
2133 Check_Restriction (No_Floating_Point, N);
2134 end if;
2135 end if;
2137 -- Return if already analyzed
2139 if Analyzed (N) then
2140 Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
2141 Analyze_Dimension (N);
2142 return;
2144 -- Any case of Any_Type as the Etype value means that we had a
2145 -- previous error.
2147 elsif Etype (N) = Any_Type then
2148 Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
2149 return;
2150 end if;
2152 Check_Parameterless_Call (N);
2154 -- The resolution of an Expression_With_Actions is determined by
2155 -- its Expression.
2157 if Nkind (N) = N_Expression_With_Actions then
2158 Resolve (Expression (N), Typ);
2160 Found := True;
2161 Expr_Type := Etype (Expression (N));
2163 -- If not overloaded, then we know the type, and all that needs doing
2164 -- is to check that this type is compatible with the context.
2166 elsif not Is_Overloaded (N) then
2167 Found := Covers (Typ, Etype (N));
2168 Expr_Type := Etype (N);
2170 -- In the overloaded case, we must select the interpretation that
2171 -- is compatible with the context (i.e. the type passed to Resolve)
2173 else
2174 -- Loop through possible interpretations
2176 Get_First_Interp (N, I, It);
2177 Interp_Loop : while Present (It.Typ) loop
2178 if Debug_Flag_V then
2179 Write_Str ("Interp: ");
2180 Write_Interp (It);
2181 end if;
2183 -- We are only interested in interpretations that are compatible
2184 -- with the expected type, any other interpretations are ignored.
2186 if not Covers (Typ, It.Typ) then
2187 if Debug_Flag_V then
2188 Write_Str (" interpretation incompatible with context");
2189 Write_Eol;
2190 end if;
2192 else
2193 -- Skip the current interpretation if it is disabled by an
2194 -- abstract operator. This action is performed only when the
2195 -- type against which we are resolving is the same as the
2196 -- type of the interpretation.
2198 if Ada_Version >= Ada_2005
2199 and then It.Typ = Typ
2200 and then Typ /= Universal_Integer
2201 and then Typ /= Universal_Real
2202 and then Present (It.Abstract_Op)
2203 then
2204 if Debug_Flag_V then
2205 Write_Line ("Skip.");
2206 end if;
2208 goto Continue;
2209 end if;
2211 -- First matching interpretation
2213 if not Found then
2214 Found := True;
2215 I1 := I;
2216 Seen := It.Nam;
2217 Expr_Type := It.Typ;
2219 -- Matching interpretation that is not the first, maybe an
2220 -- error, but there are some cases where preference rules are
2221 -- used to choose between the two possibilities. These and
2222 -- some more obscure cases are handled in Disambiguate.
2224 else
2225 -- If the current statement is part of a predefined library
2226 -- unit, then all interpretations which come from user level
2227 -- packages should not be considered. Check previous and
2228 -- current one.
2230 if From_Lib then
2231 if not Comes_From_Predefined_Lib_Unit (It.Nam) then
2232 goto Continue;
2234 elsif not Comes_From_Predefined_Lib_Unit (Seen) then
2236 -- Previous interpretation must be discarded
2238 I1 := I;
2239 Seen := It.Nam;
2240 Expr_Type := It.Typ;
2241 Set_Entity (N, Seen);
2242 goto Continue;
2243 end if;
2244 end if;
2246 -- Otherwise apply further disambiguation steps
2248 Error_Msg_Sloc := Sloc (Seen);
2249 It1 := Disambiguate (N, I1, I, Typ);
2251 -- Disambiguation has succeeded. Skip the remaining
2252 -- interpretations.
2254 if It1 /= No_Interp then
2255 Seen := It1.Nam;
2256 Expr_Type := It1.Typ;
2258 while Present (It.Typ) loop
2259 Get_Next_Interp (I, It);
2260 end loop;
2262 else
2263 -- Before we issue an ambiguity complaint, check for the
2264 -- case of a subprogram call where at least one of the
2265 -- arguments is Any_Type, and if so suppress the message,
2266 -- since it is a cascaded error. This can also happen for
2267 -- a generalized indexing operation.
2269 if Nkind (N) in N_Subprogram_Call
2270 or else (Nkind (N) = N_Indexed_Component
2271 and then Present (Generalized_Indexing (N)))
2272 then
2273 declare
2274 A : Node_Id;
2275 E : Node_Id;
2277 begin
2278 if Nkind (N) = N_Indexed_Component then
2279 Rewrite (N, Generalized_Indexing (N));
2280 end if;
2282 A := First_Actual (N);
2283 while Present (A) loop
2284 E := A;
2286 if Nkind (E) = N_Parameter_Association then
2287 E := Explicit_Actual_Parameter (E);
2288 end if;
2290 if Etype (E) = Any_Type then
2291 if Debug_Flag_V then
2292 Write_Str ("Any_Type in call");
2293 Write_Eol;
2294 end if;
2296 exit Interp_Loop;
2297 end if;
2299 Next_Actual (A);
2300 end loop;
2301 end;
2303 elsif Nkind (N) in N_Binary_Op
2304 and then (Etype (Left_Opnd (N)) = Any_Type
2305 or else Etype (Right_Opnd (N)) = Any_Type)
2306 then
2307 exit Interp_Loop;
2309 elsif Nkind (N) in N_Unary_Op
2310 and then Etype (Right_Opnd (N)) = Any_Type
2311 then
2312 exit Interp_Loop;
2313 end if;
2315 -- Not that special case, so issue message using the flag
2316 -- Ambiguous to control printing of the header message
2317 -- only at the start of an ambiguous set.
2319 if not Ambiguous then
2320 if Nkind (N) = N_Function_Call
2321 and then Nkind (Name (N)) = N_Explicit_Dereference
2322 then
2323 Error_Msg_N
2324 ("ambiguous expression (cannot resolve indirect "
2325 & "call)!", N);
2326 else
2327 Error_Msg_NE -- CODEFIX
2328 ("ambiguous expression (cannot resolve&)!",
2329 N, It.Nam);
2330 end if;
2332 Ambiguous := True;
2334 if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2335 Error_Msg_N
2336 ("\\possible interpretation (inherited)#!", N);
2337 else
2338 Error_Msg_N -- CODEFIX
2339 ("\\possible interpretation#!", N);
2340 end if;
2342 if Nkind (N) in N_Subprogram_Call
2343 and then Present (Parameter_Associations (N))
2344 then
2345 Report_Ambiguous_Argument;
2346 end if;
2347 end if;
2349 Error_Msg_Sloc := Sloc (It.Nam);
2351 -- By default, the error message refers to the candidate
2352 -- interpretation. But if it is a predefined operator, it
2353 -- is implicitly declared at the declaration of the type
2354 -- of the operand. Recover the sloc of that declaration
2355 -- for the error message.
2357 if Nkind (N) in N_Op
2358 and then Scope (It.Nam) = Standard_Standard
2359 and then not Is_Overloaded (Right_Opnd (N))
2360 and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2361 Standard_Standard
2362 then
2363 Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2365 if Comes_From_Source (Err_Type)
2366 and then Present (Parent (Err_Type))
2367 then
2368 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2369 end if;
2371 elsif Nkind (N) in N_Binary_Op
2372 and then Scope (It.Nam) = Standard_Standard
2373 and then not Is_Overloaded (Left_Opnd (N))
2374 and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2375 Standard_Standard
2376 then
2377 Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2379 if Comes_From_Source (Err_Type)
2380 and then Present (Parent (Err_Type))
2381 then
2382 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2383 end if;
2385 -- If this is an indirect call, use the subprogram_type
2386 -- in the message, to have a meaningful location. Also
2387 -- indicate if this is an inherited operation, created
2388 -- by a type declaration.
2390 elsif Nkind (N) = N_Function_Call
2391 and then Nkind (Name (N)) = N_Explicit_Dereference
2392 and then Is_Type (It.Nam)
2393 then
2394 Err_Type := It.Nam;
2395 Error_Msg_Sloc :=
2396 Sloc (Associated_Node_For_Itype (Err_Type));
2397 else
2398 Err_Type := Empty;
2399 end if;
2401 if Nkind (N) in N_Op
2402 and then Scope (It.Nam) = Standard_Standard
2403 and then Present (Err_Type)
2404 then
2405 -- Special-case the message for universal_fixed
2406 -- operators, which are not declared with the type
2407 -- of the operand, but appear forever in Standard.
2409 if It.Typ = Universal_Fixed
2410 and then Scope (It.Nam) = Standard_Standard
2411 then
2412 Error_Msg_N
2413 ("\\possible interpretation as universal_fixed "
2414 & "operation (RM 4.5.5 (19))", N);
2415 else
2416 Error_Msg_N
2417 ("\\possible interpretation (predefined)#!", N);
2418 end if;
2420 elsif
2421 Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2422 then
2423 Error_Msg_N
2424 ("\\possible interpretation (inherited)#!", N);
2425 else
2426 Error_Msg_N -- CODEFIX
2427 ("\\possible interpretation#!", N);
2428 end if;
2430 end if;
2431 end if;
2433 -- We have a matching interpretation, Expr_Type is the type
2434 -- from this interpretation, and Seen is the entity.
2436 -- For an operator, just set the entity name. The type will be
2437 -- set by the specific operator resolution routine.
2439 if Nkind (N) in N_Op then
2440 Set_Entity (N, Seen);
2441 Generate_Reference (Seen, N);
2443 elsif Nkind_In (N, N_Case_Expression,
2444 N_Character_Literal,
2445 N_Delta_Aggregate,
2446 N_If_Expression)
2447 then
2448 Set_Etype (N, Expr_Type);
2450 -- AI05-0139-2: Expression is overloaded because type has
2451 -- implicit dereference. If type matches context, no implicit
2452 -- dereference is involved. If the expression is an entity,
2453 -- generate a reference to it, as this is not done for an
2454 -- overloaded construct during analysis.
2456 elsif Has_Implicit_Dereference (Expr_Type) then
2457 Set_Etype (N, Expr_Type);
2458 Set_Is_Overloaded (N, False);
2460 if Is_Entity_Name (N) then
2461 Generate_Reference (Entity (N), N);
2462 end if;
2464 exit Interp_Loop;
2466 elsif Is_Overloaded (N)
2467 and then Present (It.Nam)
2468 and then Ekind (It.Nam) = E_Discriminant
2469 and then Has_Implicit_Dereference (It.Nam)
2470 then
2471 -- If the node is a general indexing, the dereference is
2472 -- is inserted when resolving the rewritten form, else
2473 -- insert it now.
2475 if Nkind (N) /= N_Indexed_Component
2476 or else No (Generalized_Indexing (N))
2477 then
2478 Build_Explicit_Dereference (N, It.Nam);
2479 end if;
2481 -- For an explicit dereference, attribute reference, range,
2482 -- short-circuit form (which is not an operator node), or call
2483 -- with a name that is an explicit dereference, there is
2484 -- nothing to be done at this point.
2486 elsif Nkind_In (N, N_Attribute_Reference,
2487 N_And_Then,
2488 N_Explicit_Dereference,
2489 N_Identifier,
2490 N_Indexed_Component,
2491 N_Or_Else,
2492 N_Range,
2493 N_Selected_Component,
2494 N_Slice)
2495 or else Nkind (Name (N)) = N_Explicit_Dereference
2496 then
2497 null;
2499 -- For procedure or function calls, set the type of the name,
2500 -- and also the entity pointer for the prefix.
2502 elsif Nkind (N) in N_Subprogram_Call
2503 and then Is_Entity_Name (Name (N))
2504 then
2505 Set_Etype (Name (N), Expr_Type);
2506 Set_Entity (Name (N), Seen);
2507 Generate_Reference (Seen, Name (N));
2509 elsif Nkind (N) = N_Function_Call
2510 and then Nkind (Name (N)) = N_Selected_Component
2511 then
2512 Set_Etype (Name (N), Expr_Type);
2513 Set_Entity (Selector_Name (Name (N)), Seen);
2514 Generate_Reference (Seen, Selector_Name (Name (N)));
2516 -- For all other cases, just set the type of the Name
2518 else
2519 Set_Etype (Name (N), Expr_Type);
2520 end if;
2522 end if;
2524 <<Continue>>
2526 -- Move to next interpretation
2528 exit Interp_Loop when No (It.Typ);
2530 Get_Next_Interp (I, It);
2531 end loop Interp_Loop;
2532 end if;
2534 -- At this stage Found indicates whether or not an acceptable
2535 -- interpretation exists. If not, then we have an error, except that if
2536 -- the context is Any_Type as a result of some other error, then we
2537 -- suppress the error report.
2539 if not Found then
2540 if Typ /= Any_Type then
2542 -- If type we are looking for is Void, then this is the procedure
2543 -- call case, and the error is simply that what we gave is not a
2544 -- procedure name (we think of procedure calls as expressions with
2545 -- types internally, but the user doesn't think of them this way).
2547 if Typ = Standard_Void_Type then
2549 -- Special case message if function used as a procedure
2551 if Nkind (N) = N_Procedure_Call_Statement
2552 and then Is_Entity_Name (Name (N))
2553 and then Ekind (Entity (Name (N))) = E_Function
2554 then
2555 Error_Msg_NE
2556 ("cannot use call to function & as a statement",
2557 Name (N), Entity (Name (N)));
2558 Error_Msg_N
2559 ("\return value of a function call cannot be ignored",
2560 Name (N));
2562 -- Otherwise give general message (not clear what cases this
2563 -- covers, but no harm in providing for them).
2565 else
2566 Error_Msg_N ("expect procedure name in procedure call", N);
2567 end if;
2569 Found := True;
2571 -- Otherwise we do have a subexpression with the wrong type
2573 -- Check for the case of an allocator which uses an access type
2574 -- instead of the designated type. This is a common error and we
2575 -- specialize the message, posting an error on the operand of the
2576 -- allocator, complaining that we expected the designated type of
2577 -- the allocator.
2579 elsif Nkind (N) = N_Allocator
2580 and then Is_Access_Type (Typ)
2581 and then Is_Access_Type (Etype (N))
2582 and then Designated_Type (Etype (N)) = Typ
2583 then
2584 Wrong_Type (Expression (N), Designated_Type (Typ));
2585 Found := True;
2587 -- Check for view mismatch on Null in instances, for which the
2588 -- view-swapping mechanism has no identifier.
2590 elsif (In_Instance or else In_Inlined_Body)
2591 and then (Nkind (N) = N_Null)
2592 and then Is_Private_Type (Typ)
2593 and then Is_Access_Type (Full_View (Typ))
2594 then
2595 Resolve (N, Full_View (Typ));
2596 Set_Etype (N, Typ);
2597 return;
2599 -- Check for an aggregate. Sometimes we can get bogus aggregates
2600 -- from misuse of parentheses, and we are about to complain about
2601 -- the aggregate without even looking inside it.
2603 -- Instead, if we have an aggregate of type Any_Composite, then
2604 -- analyze and resolve the component fields, and then only issue
2605 -- another message if we get no errors doing this (otherwise
2606 -- assume that the errors in the aggregate caused the problem).
2608 elsif Nkind (N) = N_Aggregate
2609 and then Etype (N) = Any_Composite
2610 then
2611 -- Disable expansion in any case. If there is a type mismatch
2612 -- it may be fatal to try to expand the aggregate. The flag
2613 -- would otherwise be set to false when the error is posted.
2615 Expander_Active := False;
2617 declare
2618 procedure Check_Aggr (Aggr : Node_Id);
2619 -- Check one aggregate, and set Found to True if we have a
2620 -- definite error in any of its elements
2622 procedure Check_Elmt (Aelmt : Node_Id);
2623 -- Check one element of aggregate and set Found to True if
2624 -- we definitely have an error in the element.
2626 ----------------
2627 -- Check_Aggr --
2628 ----------------
2630 procedure Check_Aggr (Aggr : Node_Id) is
2631 Elmt : Node_Id;
2633 begin
2634 if Present (Expressions (Aggr)) then
2635 Elmt := First (Expressions (Aggr));
2636 while Present (Elmt) loop
2637 Check_Elmt (Elmt);
2638 Next (Elmt);
2639 end loop;
2640 end if;
2642 if Present (Component_Associations (Aggr)) then
2643 Elmt := First (Component_Associations (Aggr));
2644 while Present (Elmt) loop
2646 -- If this is a default-initialized component, then
2647 -- there is nothing to check. The box will be
2648 -- replaced by the appropriate call during late
2649 -- expansion.
2651 if Nkind (Elmt) /= N_Iterated_Component_Association
2652 and then not Box_Present (Elmt)
2653 then
2654 Check_Elmt (Expression (Elmt));
2655 end if;
2657 Next (Elmt);
2658 end loop;
2659 end if;
2660 end Check_Aggr;
2662 ----------------
2663 -- Check_Elmt --
2664 ----------------
2666 procedure Check_Elmt (Aelmt : Node_Id) is
2667 begin
2668 -- If we have a nested aggregate, go inside it (to
2669 -- attempt a naked analyze-resolve of the aggregate can
2670 -- cause undesirable cascaded errors). Do not resolve
2671 -- expression if it needs a type from context, as for
2672 -- integer * fixed expression.
2674 if Nkind (Aelmt) = N_Aggregate then
2675 Check_Aggr (Aelmt);
2677 else
2678 Analyze (Aelmt);
2680 if not Is_Overloaded (Aelmt)
2681 and then Etype (Aelmt) /= Any_Fixed
2682 then
2683 Resolve (Aelmt);
2684 end if;
2686 if Etype (Aelmt) = Any_Type then
2687 Found := True;
2688 end if;
2689 end if;
2690 end Check_Elmt;
2692 begin
2693 Check_Aggr (N);
2694 end;
2695 end if;
2697 -- Looks like we have a type error, but check for special case
2698 -- of Address wanted, integer found, with the configuration pragma
2699 -- Allow_Integer_Address active. If we have this case, introduce
2700 -- an unchecked conversion to allow the integer expression to be
2701 -- treated as an Address. The reverse case of integer wanted,
2702 -- Address found, is treated in an analogous manner.
2704 if Address_Integer_Convert_OK (Typ, Etype (N)) then
2705 Rewrite (N, Unchecked_Convert_To (Typ, Relocate_Node (N)));
2706 Analyze_And_Resolve (N, Typ);
2707 return;
2709 -- Under relaxed RM semantics silently replace occurrences of null
2710 -- by System.Address_Null.
2712 elsif Null_To_Null_Address_Convert_OK (N, Typ) then
2713 Replace_Null_By_Null_Address (N);
2714 Analyze_And_Resolve (N, Typ);
2715 return;
2716 end if;
2718 -- That special Allow_Integer_Address check did not apply, so we
2719 -- have a real type error. If an error message was issued already,
2720 -- Found got reset to True, so if it's still False, issue standard
2721 -- Wrong_Type message.
2723 if not Found then
2724 if Is_Overloaded (N) and then Nkind (N) = N_Function_Call then
2725 declare
2726 Subp_Name : Node_Id;
2728 begin
2729 if Is_Entity_Name (Name (N)) then
2730 Subp_Name := Name (N);
2732 elsif Nkind (Name (N)) = N_Selected_Component then
2734 -- Protected operation: retrieve operation name
2736 Subp_Name := Selector_Name (Name (N));
2738 else
2739 raise Program_Error;
2740 end if;
2742 Error_Msg_Node_2 := Typ;
2743 Error_Msg_NE
2744 ("no visible interpretation of& matches expected type&",
2745 N, Subp_Name);
2746 end;
2748 if All_Errors_Mode then
2749 declare
2750 Index : Interp_Index;
2751 It : Interp;
2753 begin
2754 Error_Msg_N ("\\possible interpretations:", N);
2756 Get_First_Interp (Name (N), Index, It);
2757 while Present (It.Nam) loop
2758 Error_Msg_Sloc := Sloc (It.Nam);
2759 Error_Msg_Node_2 := It.Nam;
2760 Error_Msg_NE
2761 ("\\ type& for & declared#", N, It.Typ);
2762 Get_Next_Interp (Index, It);
2763 end loop;
2764 end;
2766 else
2767 Error_Msg_N ("\use -gnatf for details", N);
2768 end if;
2770 else
2771 Wrong_Type (N, Typ);
2772 end if;
2773 end if;
2774 end if;
2776 Resolution_Failed;
2777 return;
2779 -- Test if we have more than one interpretation for the context
2781 elsif Ambiguous then
2782 Resolution_Failed;
2783 return;
2785 -- Only one intepretation
2787 else
2788 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
2789 -- the "+" on T is abstract, and the operands are of universal type,
2790 -- the above code will have (incorrectly) resolved the "+" to the
2791 -- universal one in Standard. Therefore check for this case and give
2792 -- an error. We can't do this earlier, because it would cause legal
2793 -- cases to get errors (when some other type has an abstract "+").
2795 if Ada_Version >= Ada_2005
2796 and then Nkind (N) in N_Op
2797 and then Is_Overloaded (N)
2798 and then Is_Universal_Numeric_Type (Etype (Entity (N)))
2799 then
2800 Get_First_Interp (N, I, It);
2801 while Present (It.Typ) loop
2802 if Present (It.Abstract_Op) and then
2803 Etype (It.Abstract_Op) = Typ
2804 then
2805 Error_Msg_NE
2806 ("cannot call abstract subprogram &!", N, It.Abstract_Op);
2807 return;
2808 end if;
2810 Get_Next_Interp (I, It);
2811 end loop;
2812 end if;
2814 -- Here we have an acceptable interpretation for the context
2816 -- Propagate type information and normalize tree for various
2817 -- predefined operations. If the context only imposes a class of
2818 -- types, rather than a specific type, propagate the actual type
2819 -- downward.
2821 if Typ = Any_Integer or else
2822 Typ = Any_Boolean or else
2823 Typ = Any_Modular or else
2824 Typ = Any_Real or else
2825 Typ = Any_Discrete
2826 then
2827 Ctx_Type := Expr_Type;
2829 -- Any_Fixed is legal in a real context only if a specific fixed-
2830 -- point type is imposed. If Norman Cohen can be confused by this,
2831 -- it deserves a separate message.
2833 if Typ = Any_Real
2834 and then Expr_Type = Any_Fixed
2835 then
2836 Error_Msg_N ("illegal context for mixed mode operation", N);
2837 Set_Etype (N, Universal_Real);
2838 Ctx_Type := Universal_Real;
2839 end if;
2840 end if;
2842 -- A user-defined operator is transformed into a function call at
2843 -- this point, so that further processing knows that operators are
2844 -- really operators (i.e. are predefined operators). User-defined
2845 -- operators that are intrinsic are just renamings of the predefined
2846 -- ones, and need not be turned into calls either, but if they rename
2847 -- a different operator, we must transform the node accordingly.
2848 -- Instantiations of Unchecked_Conversion are intrinsic but are
2849 -- treated as functions, even if given an operator designator.
2851 if Nkind (N) in N_Op
2852 and then Present (Entity (N))
2853 and then Ekind (Entity (N)) /= E_Operator
2854 then
2855 if not Is_Predefined_Op (Entity (N)) then
2856 Rewrite_Operator_As_Call (N, Entity (N));
2858 elsif Present (Alias (Entity (N)))
2859 and then
2860 Nkind (Parent (Parent (Entity (N)))) =
2861 N_Subprogram_Renaming_Declaration
2862 then
2863 Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2865 -- If the node is rewritten, it will be fully resolved in
2866 -- Rewrite_Renamed_Operator.
2868 if Analyzed (N) then
2869 return;
2870 end if;
2871 end if;
2872 end if;
2874 case N_Subexpr'(Nkind (N)) is
2875 when N_Aggregate =>
2876 Resolve_Aggregate (N, Ctx_Type);
2878 when N_Allocator =>
2879 Resolve_Allocator (N, Ctx_Type);
2881 when N_Short_Circuit =>
2882 Resolve_Short_Circuit (N, Ctx_Type);
2884 when N_Attribute_Reference =>
2885 Resolve_Attribute (N, Ctx_Type);
2887 when N_Case_Expression =>
2888 Resolve_Case_Expression (N, Ctx_Type);
2890 when N_Character_Literal =>
2891 Resolve_Character_Literal (N, Ctx_Type);
2893 when N_Delta_Aggregate =>
2894 Resolve_Delta_Aggregate (N, Ctx_Type);
2896 when N_Expanded_Name =>
2897 Resolve_Entity_Name (N, Ctx_Type);
2899 when N_Explicit_Dereference =>
2900 Resolve_Explicit_Dereference (N, Ctx_Type);
2902 when N_Expression_With_Actions =>
2903 Resolve_Expression_With_Actions (N, Ctx_Type);
2905 when N_Extension_Aggregate =>
2906 Resolve_Extension_Aggregate (N, Ctx_Type);
2908 when N_Function_Call =>
2909 Resolve_Call (N, Ctx_Type);
2911 when N_Identifier =>
2912 Resolve_Entity_Name (N, Ctx_Type);
2914 when N_If_Expression =>
2915 Resolve_If_Expression (N, Ctx_Type);
2917 when N_Indexed_Component =>
2918 Resolve_Indexed_Component (N, Ctx_Type);
2920 when N_Integer_Literal =>
2921 Resolve_Integer_Literal (N, Ctx_Type);
2923 when N_Membership_Test =>
2924 Resolve_Membership_Op (N, Ctx_Type);
2926 when N_Null =>
2927 Resolve_Null (N, Ctx_Type);
2929 when N_Op_And
2930 | N_Op_Or
2931 | N_Op_Xor
2933 Resolve_Logical_Op (N, Ctx_Type);
2935 when N_Op_Eq
2936 | N_Op_Ne
2938 Resolve_Equality_Op (N, Ctx_Type);
2940 when N_Op_Ge
2941 | N_Op_Gt
2942 | N_Op_Le
2943 | N_Op_Lt
2945 Resolve_Comparison_Op (N, Ctx_Type);
2947 when N_Op_Not =>
2948 Resolve_Op_Not (N, Ctx_Type);
2950 when N_Op_Add
2951 | N_Op_Divide
2952 | N_Op_Mod
2953 | N_Op_Multiply
2954 | N_Op_Rem
2955 | N_Op_Subtract
2957 Resolve_Arithmetic_Op (N, Ctx_Type);
2959 when N_Op_Concat =>
2960 Resolve_Op_Concat (N, Ctx_Type);
2962 when N_Op_Expon =>
2963 Resolve_Op_Expon (N, Ctx_Type);
2965 when N_Op_Abs
2966 | N_Op_Minus
2967 | N_Op_Plus
2969 Resolve_Unary_Op (N, Ctx_Type);
2971 when N_Op_Shift =>
2972 Resolve_Shift (N, Ctx_Type);
2974 when N_Procedure_Call_Statement =>
2975 Resolve_Call (N, Ctx_Type);
2977 when N_Operator_Symbol =>
2978 Resolve_Operator_Symbol (N, Ctx_Type);
2980 when N_Qualified_Expression =>
2981 Resolve_Qualified_Expression (N, Ctx_Type);
2983 -- Why is the following null, needs a comment ???
2985 when N_Quantified_Expression =>
2986 null;
2988 when N_Raise_Expression =>
2989 Resolve_Raise_Expression (N, Ctx_Type);
2991 when N_Raise_xxx_Error =>
2992 Set_Etype (N, Ctx_Type);
2994 when N_Range =>
2995 Resolve_Range (N, Ctx_Type);
2997 when N_Real_Literal =>
2998 Resolve_Real_Literal (N, Ctx_Type);
3000 when N_Reduction_Expression =>
3001 null;
3002 -- Resolve (Expression (N), Ctx_Type);
3004 when N_Reduction_Expression_Parameter =>
3005 null;
3007 when N_Reference =>
3008 Resolve_Reference (N, Ctx_Type);
3010 when N_Selected_Component =>
3011 Resolve_Selected_Component (N, Ctx_Type);
3013 when N_Slice =>
3014 Resolve_Slice (N, Ctx_Type);
3016 when N_String_Literal =>
3017 Resolve_String_Literal (N, Ctx_Type);
3019 when N_Target_Name =>
3020 Resolve_Target_Name (N, Ctx_Type);
3022 when N_Type_Conversion =>
3023 Resolve_Type_Conversion (N, Ctx_Type);
3025 when N_Unchecked_Expression =>
3026 Resolve_Unchecked_Expression (N, Ctx_Type);
3028 when N_Unchecked_Type_Conversion =>
3029 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
3030 end case;
3032 -- Mark relevant use-type and use-package clauses as effective using
3033 -- the original node because constant folding may have occured and
3034 -- removed references that need to be examined.
3036 if Nkind (Original_Node (N)) in N_Op then
3037 Mark_Use_Clauses (Original_Node (N));
3038 end if;
3040 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
3041 -- expression of an anonymous access type that occurs in the context
3042 -- of a named general access type, except when the expression is that
3043 -- of a membership test. This ensures proper legality checking in
3044 -- terms of allowed conversions (expressions that would be illegal to
3045 -- convert implicitly are allowed in membership tests).
3047 if Ada_Version >= Ada_2012
3048 and then Ekind (Ctx_Type) = E_General_Access_Type
3049 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
3050 and then Nkind (Parent (N)) not in N_Membership_Test
3051 then
3052 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
3053 Analyze_And_Resolve (N, Ctx_Type);
3054 end if;
3056 -- If the subexpression was replaced by a non-subexpression, then
3057 -- all we do is to expand it. The only legitimate case we know of
3058 -- is converting procedure call statement to entry call statements,
3059 -- but there may be others, so we are making this test general.
3061 if Nkind (N) not in N_Subexpr then
3062 Debug_A_Exit ("resolving ", N, " (done)");
3063 Expand (N);
3064 return;
3065 end if;
3067 -- The expression is definitely NOT overloaded at this point, so
3068 -- we reset the Is_Overloaded flag to avoid any confusion when
3069 -- reanalyzing the node.
3071 Set_Is_Overloaded (N, False);
3073 -- Freeze expression type, entity if it is a name, and designated
3074 -- type if it is an allocator (RM 13.14(10,11,13)).
3076 -- Now that the resolution of the type of the node is complete, and
3077 -- we did not detect an error, we can expand this node. We skip the
3078 -- expand call if we are in a default expression, see section
3079 -- "Handling of Default Expressions" in Sem spec.
3081 Debug_A_Exit ("resolving ", N, " (done)");
3083 -- We unconditionally freeze the expression, even if we are in
3084 -- default expression mode (the Freeze_Expression routine tests this
3085 -- flag and only freezes static types if it is set).
3087 -- Ada 2012 (AI05-177): The declaration of an expression function
3088 -- does not cause freezing, but we never reach here in that case.
3089 -- Here we are resolving the corresponding expanded body, so we do
3090 -- need to perform normal freezing.
3092 -- As elsewhere we do not emit freeze node within a generic. We make
3093 -- an exception for entities that are expressions, only to detect
3094 -- misuses of deferred constants and preserve the output of various
3095 -- tests.
3097 if not Inside_A_Generic or else Is_Entity_Name (N) then
3098 Freeze_Expression (N);
3099 end if;
3101 -- Now we can do the expansion
3103 Expand (N);
3104 end if;
3105 end Resolve;
3107 -------------
3108 -- Resolve --
3109 -------------
3111 -- Version with check(s) suppressed
3113 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
3114 begin
3115 if Suppress = All_Checks then
3116 declare
3117 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
3118 begin
3119 Scope_Suppress.Suppress := (others => True);
3120 Resolve (N, Typ);
3121 Scope_Suppress.Suppress := Sva;
3122 end;
3124 else
3125 declare
3126 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
3127 begin
3128 Scope_Suppress.Suppress (Suppress) := True;
3129 Resolve (N, Typ);
3130 Scope_Suppress.Suppress (Suppress) := Svg;
3131 end;
3132 end if;
3133 end Resolve;
3135 -------------
3136 -- Resolve --
3137 -------------
3139 -- Version with implicit type
3141 procedure Resolve (N : Node_Id) is
3142 begin
3143 Resolve (N, Etype (N));
3144 end Resolve;
3146 ---------------------
3147 -- Resolve_Actuals --
3148 ---------------------
3150 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
3151 Loc : constant Source_Ptr := Sloc (N);
3152 A : Node_Id;
3153 A_Id : Entity_Id;
3154 A_Typ : Entity_Id := Empty; -- init to avoid warning
3155 F : Entity_Id;
3156 F_Typ : Entity_Id;
3157 Prev : Node_Id := Empty;
3158 Orig_A : Node_Id;
3159 Real_F : Entity_Id := Empty; -- init to avoid warning
3161 Real_Subp : Entity_Id;
3162 -- If the subprogram being called is an inherited operation for
3163 -- a formal derived type in an instance, Real_Subp is the subprogram
3164 -- that will be called. It may have different formal names than the
3165 -- operation of the formal in the generic, so after actual is resolved
3166 -- the name of the actual in a named association must carry the name
3167 -- of the actual of the subprogram being called.
3169 procedure Check_Aliased_Parameter;
3170 -- Check rules on aliased parameters and related accessibility rules
3171 -- in (RM 3.10.2 (10.2-10.4)).
3173 procedure Check_Argument_Order;
3174 -- Performs a check for the case where the actuals are all simple
3175 -- identifiers that correspond to the formal names, but in the wrong
3176 -- order, which is considered suspicious and cause for a warning.
3178 procedure Check_Prefixed_Call;
3179 -- If the original node is an overloaded call in prefix notation,
3180 -- insert an 'Access or a dereference as needed over the first actual.
3181 -- Try_Object_Operation has already verified that there is a valid
3182 -- interpretation, but the form of the actual can only be determined
3183 -- once the primitive operation is identified.
3185 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id);
3186 -- Emit an error concerning the illegal usage of an effectively volatile
3187 -- object in interfering context (SPARK RM 7.13(12)).
3189 procedure Insert_Default;
3190 -- If the actual is missing in a call, insert in the actuals list
3191 -- an instance of the default expression. The insertion is always
3192 -- a named association.
3194 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
3195 -- Check whether T1 and T2, or their full views, are derived from a
3196 -- common type. Used to enforce the restrictions on array conversions
3197 -- of AI95-00246.
3199 function Static_Concatenation (N : Node_Id) return Boolean;
3200 -- Predicate to determine whether an actual that is a concatenation
3201 -- will be evaluated statically and does not need a transient scope.
3202 -- This must be determined before the actual is resolved and expanded
3203 -- because if needed the transient scope must be introduced earlier.
3205 -----------------------------
3206 -- Check_Aliased_Parameter --
3207 -----------------------------
3209 procedure Check_Aliased_Parameter is
3210 Nominal_Subt : Entity_Id;
3212 begin
3213 if Is_Aliased (F) then
3214 if Is_Tagged_Type (A_Typ) then
3215 null;
3217 elsif Is_Aliased_View (A) then
3218 if Is_Constr_Subt_For_U_Nominal (A_Typ) then
3219 Nominal_Subt := Base_Type (A_Typ);
3220 else
3221 Nominal_Subt := A_Typ;
3222 end if;
3224 if Subtypes_Statically_Match (F_Typ, Nominal_Subt) then
3225 null;
3227 -- In a generic body assume the worst for generic formals:
3228 -- they can have a constrained partial view (AI05-041).
3230 elsif Has_Discriminants (F_Typ)
3231 and then not Is_Constrained (F_Typ)
3232 and then not Has_Constrained_Partial_View (F_Typ)
3233 and then not Is_Generic_Type (F_Typ)
3234 then
3235 null;
3237 else
3238 Error_Msg_NE ("untagged actual does not match "
3239 & "aliased formal&", A, F);
3240 end if;
3242 else
3243 Error_Msg_NE ("actual for aliased formal& must be "
3244 & "aliased object", A, F);
3245 end if;
3247 if Ekind (Nam) = E_Procedure then
3248 null;
3250 elsif Ekind (Etype (Nam)) = E_Anonymous_Access_Type then
3251 if Nkind (Parent (N)) = N_Type_Conversion
3252 and then Type_Access_Level (Etype (Parent (N))) <
3253 Object_Access_Level (A)
3254 then
3255 Error_Msg_N ("aliased actual has wrong accessibility", A);
3256 end if;
3258 elsif Nkind (Parent (N)) = N_Qualified_Expression
3259 and then Nkind (Parent (Parent (N))) = N_Allocator
3260 and then Type_Access_Level (Etype (Parent (Parent (N)))) <
3261 Object_Access_Level (A)
3262 then
3263 Error_Msg_N
3264 ("aliased actual in allocator has wrong accessibility", A);
3265 end if;
3266 end if;
3267 end Check_Aliased_Parameter;
3269 --------------------------
3270 -- Check_Argument_Order --
3271 --------------------------
3273 procedure Check_Argument_Order is
3274 begin
3275 -- Nothing to do if no parameters, or original node is neither a
3276 -- function call nor a procedure call statement (happens in the
3277 -- operator-transformed-to-function call case), or the call does
3278 -- not come from source, or this warning is off.
3280 if not Warn_On_Parameter_Order
3281 or else No (Parameter_Associations (N))
3282 or else Nkind (Original_Node (N)) not in N_Subprogram_Call
3283 or else not Comes_From_Source (N)
3284 then
3285 return;
3286 end if;
3288 declare
3289 Nargs : constant Nat := List_Length (Parameter_Associations (N));
3291 begin
3292 -- Nothing to do if only one parameter
3294 if Nargs < 2 then
3295 return;
3296 end if;
3298 -- Here if at least two arguments
3300 declare
3301 Actuals : array (1 .. Nargs) of Node_Id;
3302 Actual : Node_Id;
3303 Formal : Node_Id;
3305 Wrong_Order : Boolean := False;
3306 -- Set True if an out of order case is found
3308 begin
3309 -- Collect identifier names of actuals, fail if any actual is
3310 -- not a simple identifier, and record max length of name.
3312 Actual := First (Parameter_Associations (N));
3313 for J in Actuals'Range loop
3314 if Nkind (Actual) /= N_Identifier then
3315 return;
3316 else
3317 Actuals (J) := Actual;
3318 Next (Actual);
3319 end if;
3320 end loop;
3322 -- If we got this far, all actuals are identifiers and the list
3323 -- of their names is stored in the Actuals array.
3325 Formal := First_Formal (Nam);
3326 for J in Actuals'Range loop
3328 -- If we ran out of formals, that's odd, probably an error
3329 -- which will be detected elsewhere, but abandon the search.
3331 if No (Formal) then
3332 return;
3333 end if;
3335 -- If name matches and is in order OK
3337 if Chars (Formal) = Chars (Actuals (J)) then
3338 null;
3340 else
3341 -- If no match, see if it is elsewhere in list and if so
3342 -- flag potential wrong order if type is compatible.
3344 for K in Actuals'Range loop
3345 if Chars (Formal) = Chars (Actuals (K))
3346 and then
3347 Has_Compatible_Type (Actuals (K), Etype (Formal))
3348 then
3349 Wrong_Order := True;
3350 goto Continue;
3351 end if;
3352 end loop;
3354 -- No match
3356 return;
3357 end if;
3359 <<Continue>> Next_Formal (Formal);
3360 end loop;
3362 -- If Formals left over, also probably an error, skip warning
3364 if Present (Formal) then
3365 return;
3366 end if;
3368 -- Here we give the warning if something was out of order
3370 if Wrong_Order then
3371 Error_Msg_N
3372 ("?P?actuals for this call may be in wrong order", N);
3373 end if;
3374 end;
3375 end;
3376 end Check_Argument_Order;
3378 -------------------------
3379 -- Check_Prefixed_Call --
3380 -------------------------
3382 procedure Check_Prefixed_Call is
3383 Act : constant Node_Id := First_Actual (N);
3384 A_Type : constant Entity_Id := Etype (Act);
3385 F_Type : constant Entity_Id := Etype (First_Formal (Nam));
3386 Orig : constant Node_Id := Original_Node (N);
3387 New_A : Node_Id;
3389 begin
3390 -- Check whether the call is a prefixed call, with or without
3391 -- additional actuals.
3393 if Nkind (Orig) = N_Selected_Component
3394 or else
3395 (Nkind (Orig) = N_Indexed_Component
3396 and then Nkind (Prefix (Orig)) = N_Selected_Component
3397 and then Is_Entity_Name (Prefix (Prefix (Orig)))
3398 and then Is_Entity_Name (Act)
3399 and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
3400 then
3401 if Is_Access_Type (A_Type)
3402 and then not Is_Access_Type (F_Type)
3403 then
3404 -- Introduce dereference on object in prefix
3406 New_A :=
3407 Make_Explicit_Dereference (Sloc (Act),
3408 Prefix => Relocate_Node (Act));
3409 Rewrite (Act, New_A);
3410 Analyze (Act);
3412 elsif Is_Access_Type (F_Type)
3413 and then not Is_Access_Type (A_Type)
3414 then
3415 -- Introduce an implicit 'Access in prefix
3417 if not Is_Aliased_View (Act) then
3418 Error_Msg_NE
3419 ("object in prefixed call to& must be aliased "
3420 & "(RM 4.1.3 (13 1/2))",
3421 Prefix (Act), Nam);
3422 end if;
3424 Rewrite (Act,
3425 Make_Attribute_Reference (Loc,
3426 Attribute_Name => Name_Access,
3427 Prefix => Relocate_Node (Act)));
3428 end if;
3430 Analyze (Act);
3431 end if;
3432 end Check_Prefixed_Call;
3434 ---------------------------------------
3435 -- Flag_Effectively_Volatile_Objects --
3436 ---------------------------------------
3438 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id) is
3439 function Flag_Object (N : Node_Id) return Traverse_Result;
3440 -- Determine whether arbitrary node N denotes an effectively volatile
3441 -- object and if it does, emit an error.
3443 -----------------
3444 -- Flag_Object --
3445 -----------------
3447 function Flag_Object (N : Node_Id) return Traverse_Result is
3448 Id : Entity_Id;
3450 begin
3451 -- Do not consider nested function calls because they have already
3452 -- been processed during their own resolution.
3454 if Nkind (N) = N_Function_Call then
3455 return Skip;
3457 elsif Is_Entity_Name (N) and then Present (Entity (N)) then
3458 Id := Entity (N);
3460 if Is_Object (Id)
3461 and then Is_Effectively_Volatile (Id)
3462 and then (Async_Writers_Enabled (Id)
3463 or else Effective_Reads_Enabled (Id))
3464 then
3465 Error_Msg_N
3466 ("volatile object cannot appear in this context (SPARK "
3467 & "RM 7.1.3(11))", N);
3468 return Skip;
3469 end if;
3470 end if;
3472 return OK;
3473 end Flag_Object;
3475 procedure Flag_Objects is new Traverse_Proc (Flag_Object);
3477 -- Start of processing for Flag_Effectively_Volatile_Objects
3479 begin
3480 Flag_Objects (Expr);
3481 end Flag_Effectively_Volatile_Objects;
3483 --------------------
3484 -- Insert_Default --
3485 --------------------
3487 procedure Insert_Default is
3488 Actval : Node_Id;
3489 Assoc : Node_Id;
3491 begin
3492 -- Missing argument in call, nothing to insert
3494 if No (Default_Value (F)) then
3495 return;
3497 else
3498 -- Note that we do a full New_Copy_Tree, so that any associated
3499 -- Itypes are properly copied. This may not be needed any more,
3500 -- but it does no harm as a safety measure. Defaults of a generic
3501 -- formal may be out of bounds of the corresponding actual (see
3502 -- cc1311b) and an additional check may be required.
3504 Actval :=
3505 New_Copy_Tree
3506 (Default_Value (F),
3507 New_Scope => Current_Scope,
3508 New_Sloc => Loc);
3510 -- Propagate dimension information, if any.
3512 Copy_Dimensions (Default_Value (F), Actval);
3514 if Is_Concurrent_Type (Scope (Nam))
3515 and then Has_Discriminants (Scope (Nam))
3516 then
3517 Replace_Actual_Discriminants (N, Actval);
3518 end if;
3520 if Is_Overloadable (Nam)
3521 and then Present (Alias (Nam))
3522 then
3523 if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
3524 and then not Is_Tagged_Type (Etype (F))
3525 then
3526 -- If default is a real literal, do not introduce a
3527 -- conversion whose effect may depend on the run-time
3528 -- size of universal real.
3530 if Nkind (Actval) = N_Real_Literal then
3531 Set_Etype (Actval, Base_Type (Etype (F)));
3532 else
3533 Actval := Unchecked_Convert_To (Etype (F), Actval);
3534 end if;
3535 end if;
3537 if Is_Scalar_Type (Etype (F)) then
3538 Enable_Range_Check (Actval);
3539 end if;
3541 Set_Parent (Actval, N);
3543 -- Resolve aggregates with their base type, to avoid scope
3544 -- anomalies: the subtype was first built in the subprogram
3545 -- declaration, and the current call may be nested.
3547 if Nkind (Actval) = N_Aggregate then
3548 Analyze_And_Resolve (Actval, Etype (F));
3549 else
3550 Analyze_And_Resolve (Actval, Etype (Actval));
3551 end if;
3553 else
3554 Set_Parent (Actval, N);
3556 -- See note above concerning aggregates
3558 if Nkind (Actval) = N_Aggregate
3559 and then Has_Discriminants (Etype (Actval))
3560 then
3561 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
3563 -- Resolve entities with their own type, which may differ from
3564 -- the type of a reference in a generic context (the view
3565 -- swapping mechanism did not anticipate the re-analysis of
3566 -- default values in calls).
3568 elsif Is_Entity_Name (Actval) then
3569 Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
3571 else
3572 Analyze_And_Resolve (Actval, Etype (Actval));
3573 end if;
3574 end if;
3576 -- If default is a tag indeterminate function call, propagate tag
3577 -- to obtain proper dispatching.
3579 if Is_Controlling_Formal (F)
3580 and then Nkind (Default_Value (F)) = N_Function_Call
3581 then
3582 Set_Is_Controlling_Actual (Actval);
3583 end if;
3584 end if;
3586 -- If the default expression raises constraint error, then just
3587 -- silently replace it with an N_Raise_Constraint_Error node, since
3588 -- we already gave the warning on the subprogram spec. If node is
3589 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3590 -- the warnings removal machinery.
3592 if Raises_Constraint_Error (Actval)
3593 and then Nkind (Actval) /= N_Raise_Constraint_Error
3594 then
3595 Rewrite (Actval,
3596 Make_Raise_Constraint_Error (Loc,
3597 Reason => CE_Range_Check_Failed));
3599 Set_Raises_Constraint_Error (Actval);
3600 Set_Etype (Actval, Etype (F));
3601 end if;
3603 Assoc :=
3604 Make_Parameter_Association (Loc,
3605 Explicit_Actual_Parameter => Actval,
3606 Selector_Name => Make_Identifier (Loc, Chars (F)));
3608 -- Case of insertion is first named actual
3610 if No (Prev)
3611 or else Nkind (Parent (Prev)) /= N_Parameter_Association
3612 then
3613 Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
3614 Set_First_Named_Actual (N, Actval);
3616 if No (Prev) then
3617 if No (Parameter_Associations (N)) then
3618 Set_Parameter_Associations (N, New_List (Assoc));
3619 else
3620 Append (Assoc, Parameter_Associations (N));
3621 end if;
3623 else
3624 Insert_After (Prev, Assoc);
3625 end if;
3627 -- Case of insertion is not first named actual
3629 else
3630 Set_Next_Named_Actual
3631 (Assoc, Next_Named_Actual (Parent (Prev)));
3632 Set_Next_Named_Actual (Parent (Prev), Actval);
3633 Append (Assoc, Parameter_Associations (N));
3634 end if;
3636 Mark_Rewrite_Insertion (Assoc);
3637 Mark_Rewrite_Insertion (Actval);
3639 Prev := Actval;
3640 end Insert_Default;
3642 -------------------
3643 -- Same_Ancestor --
3644 -------------------
3646 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
3647 FT1 : Entity_Id := T1;
3648 FT2 : Entity_Id := T2;
3650 begin
3651 if Is_Private_Type (T1)
3652 and then Present (Full_View (T1))
3653 then
3654 FT1 := Full_View (T1);
3655 end if;
3657 if Is_Private_Type (T2)
3658 and then Present (Full_View (T2))
3659 then
3660 FT2 := Full_View (T2);
3661 end if;
3663 return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
3664 end Same_Ancestor;
3666 --------------------------
3667 -- Static_Concatenation --
3668 --------------------------
3670 function Static_Concatenation (N : Node_Id) return Boolean is
3671 begin
3672 case Nkind (N) is
3673 when N_String_Literal =>
3674 return True;
3676 when N_Op_Concat =>
3678 -- Concatenation is static when both operands are static and
3679 -- the concatenation operator is a predefined one.
3681 return Scope (Entity (N)) = Standard_Standard
3682 and then
3683 Static_Concatenation (Left_Opnd (N))
3684 and then
3685 Static_Concatenation (Right_Opnd (N));
3687 when others =>
3688 if Is_Entity_Name (N) then
3689 declare
3690 Ent : constant Entity_Id := Entity (N);
3691 begin
3692 return Ekind (Ent) = E_Constant
3693 and then Present (Constant_Value (Ent))
3694 and then
3695 Is_OK_Static_Expression (Constant_Value (Ent));
3696 end;
3698 else
3699 return False;
3700 end if;
3701 end case;
3702 end Static_Concatenation;
3704 -- Start of processing for Resolve_Actuals
3706 begin
3707 Check_Argument_Order;
3709 if Is_Overloadable (Nam)
3710 and then Is_Inherited_Operation (Nam)
3711 and then In_Instance
3712 and then Present (Alias (Nam))
3713 and then Present (Overridden_Operation (Alias (Nam)))
3714 then
3715 Real_Subp := Alias (Nam);
3716 else
3717 Real_Subp := Empty;
3718 end if;
3720 if Present (First_Actual (N)) then
3721 Check_Prefixed_Call;
3722 end if;
3724 A := First_Actual (N);
3725 F := First_Formal (Nam);
3727 if Present (Real_Subp) then
3728 Real_F := First_Formal (Real_Subp);
3729 end if;
3731 while Present (F) loop
3732 if No (A) and then Needs_No_Actuals (Nam) then
3733 null;
3735 -- If we have an error in any actual or formal, indicated by a type
3736 -- of Any_Type, then abandon resolution attempt, and set result type
3737 -- to Any_Type. Skip this if the actual is a Raise_Expression, whose
3738 -- type is imposed from context.
3740 elsif (Present (A) and then Etype (A) = Any_Type)
3741 or else Etype (F) = Any_Type
3742 then
3743 if Nkind (A) /= N_Raise_Expression then
3744 Set_Etype (N, Any_Type);
3745 return;
3746 end if;
3747 end if;
3749 -- Case where actual is present
3751 -- If the actual is an entity, generate a reference to it now. We
3752 -- do this before the actual is resolved, because a formal of some
3753 -- protected subprogram, or a task discriminant, will be rewritten
3754 -- during expansion, and the source entity reference may be lost.
3756 if Present (A)
3757 and then Is_Entity_Name (A)
3758 and then Comes_From_Source (A)
3759 then
3760 -- Annotate the tree by creating a variable reference marker when
3761 -- the actual denotes a variable reference, in case the reference
3762 -- is folded or optimized away. The variable reference marker is
3763 -- automatically saved for later examination by the ABE Processing
3764 -- phase. The status of the reference is set as follows:
3766 -- status mode
3767 -- read IN, IN OUT
3768 -- write IN OUT, OUT
3770 Build_Variable_Reference_Marker
3771 (N => A,
3772 Read => Ekind (F) /= E_Out_Parameter,
3773 Write => Ekind (F) /= E_In_Parameter);
3775 Orig_A := Entity (A);
3777 if Present (Orig_A) then
3778 if Is_Formal (Orig_A)
3779 and then Ekind (F) /= E_In_Parameter
3780 then
3781 Generate_Reference (Orig_A, A, 'm');
3783 elsif not Is_Overloaded (A) then
3784 if Ekind (F) /= E_Out_Parameter then
3785 Generate_Reference (Orig_A, A);
3787 -- RM 6.4.1(12): For an out parameter that is passed by
3788 -- copy, the formal parameter object is created, and:
3790 -- * For an access type, the formal parameter is initialized
3791 -- from the value of the actual, without checking that the
3792 -- value satisfies any constraint, any predicate, or any
3793 -- exclusion of the null value.
3795 -- * For a scalar type that has the Default_Value aspect
3796 -- specified, the formal parameter is initialized from the
3797 -- value of the actual, without checking that the value
3798 -- satisfies any constraint or any predicate.
3799 -- I do not understand why this case is included??? this is
3800 -- not a case where an OUT parameter is treated as IN OUT.
3802 -- * For a composite type with discriminants or that has
3803 -- implicit initial values for any subcomponents, the
3804 -- behavior is as for an in out parameter passed by copy.
3806 -- Hence for these cases we generate the read reference now
3807 -- (the write reference will be generated later by
3808 -- Note_Possible_Modification).
3810 elsif Is_By_Copy_Type (Etype (F))
3811 and then
3812 (Is_Access_Type (Etype (F))
3813 or else
3814 (Is_Scalar_Type (Etype (F))
3815 and then
3816 Present (Default_Aspect_Value (Etype (F))))
3817 or else
3818 (Is_Composite_Type (Etype (F))
3819 and then (Has_Discriminants (Etype (F))
3820 or else Is_Partially_Initialized_Type
3821 (Etype (F)))))
3822 then
3823 Generate_Reference (Orig_A, A);
3824 end if;
3825 end if;
3826 end if;
3827 end if;
3829 if Present (A)
3830 and then (Nkind (Parent (A)) /= N_Parameter_Association
3831 or else Chars (Selector_Name (Parent (A))) = Chars (F))
3832 then
3833 -- If style checking mode on, check match of formal name
3835 if Style_Check then
3836 if Nkind (Parent (A)) = N_Parameter_Association then
3837 Check_Identifier (Selector_Name (Parent (A)), F);
3838 end if;
3839 end if;
3841 -- If the formal is Out or In_Out, do not resolve and expand the
3842 -- conversion, because it is subsequently expanded into explicit
3843 -- temporaries and assignments. However, the object of the
3844 -- conversion can be resolved. An exception is the case of tagged
3845 -- type conversion with a class-wide actual. In that case we want
3846 -- the tag check to occur and no temporary will be needed (no
3847 -- representation change can occur) and the parameter is passed by
3848 -- reference, so we go ahead and resolve the type conversion.
3849 -- Another exception is the case of reference to component or
3850 -- subcomponent of a bit-packed array, in which case we want to
3851 -- defer expansion to the point the in and out assignments are
3852 -- performed.
3854 if Ekind (F) /= E_In_Parameter
3855 and then Nkind (A) = N_Type_Conversion
3856 and then not Is_Class_Wide_Type (Etype (Expression (A)))
3857 then
3858 if Ekind (F) = E_In_Out_Parameter
3859 and then Is_Array_Type (Etype (F))
3860 then
3861 -- In a view conversion, the conversion must be legal in
3862 -- both directions, and thus both component types must be
3863 -- aliased, or neither (4.6 (8)).
3865 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3866 -- the privacy requirement should not apply to generic
3867 -- types, and should be checked in an instance. ARG query
3868 -- is in order ???
3870 if Has_Aliased_Components (Etype (Expression (A))) /=
3871 Has_Aliased_Components (Etype (F))
3872 then
3873 Error_Msg_N
3874 ("both component types in a view conversion must be"
3875 & " aliased, or neither", A);
3877 -- Comment here??? what set of cases???
3879 elsif
3880 not Same_Ancestor (Etype (F), Etype (Expression (A)))
3881 then
3882 -- Check view conv between unrelated by ref array types
3884 if Is_By_Reference_Type (Etype (F))
3885 or else Is_By_Reference_Type (Etype (Expression (A)))
3886 then
3887 Error_Msg_N
3888 ("view conversion between unrelated by reference "
3889 & "array types not allowed (\'A'I-00246)", A);
3891 -- In Ada 2005 mode, check view conversion component
3892 -- type cannot be private, tagged, or volatile. Note
3893 -- that we only apply this to source conversions. The
3894 -- generated code can contain conversions which are
3895 -- not subject to this test, and we cannot extract the
3896 -- component type in such cases since it is not present.
3898 elsif Comes_From_Source (A)
3899 and then Ada_Version >= Ada_2005
3900 then
3901 declare
3902 Comp_Type : constant Entity_Id :=
3903 Component_Type
3904 (Etype (Expression (A)));
3905 begin
3906 if (Is_Private_Type (Comp_Type)
3907 and then not Is_Generic_Type (Comp_Type))
3908 or else Is_Tagged_Type (Comp_Type)
3909 or else Is_Volatile (Comp_Type)
3910 then
3911 Error_Msg_N
3912 ("component type of a view conversion cannot"
3913 & " be private, tagged, or volatile"
3914 & " (RM 4.6 (24))",
3915 Expression (A));
3916 end if;
3917 end;
3918 end if;
3919 end if;
3920 end if;
3922 -- Resolve expression if conversion is all OK
3924 if (Conversion_OK (A)
3925 or else Valid_Conversion (A, Etype (A), Expression (A)))
3926 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
3927 then
3928 Resolve (Expression (A));
3929 end if;
3931 -- If the actual is a function call that returns a limited
3932 -- unconstrained object that needs finalization, create a
3933 -- transient scope for it, so that it can receive the proper
3934 -- finalization list.
3936 elsif Nkind (A) = N_Function_Call
3937 and then Is_Limited_Record (Etype (F))
3938 and then not Is_Constrained (Etype (F))
3939 and then Expander_Active
3940 and then (Is_Controlled (Etype (F)) or else Has_Task (Etype (F)))
3941 then
3942 Establish_Transient_Scope (A, Sec_Stack => False);
3943 Resolve (A, Etype (F));
3945 -- A small optimization: if one of the actuals is a concatenation
3946 -- create a block around a procedure call to recover stack space.
3947 -- This alleviates stack usage when several procedure calls in
3948 -- the same statement list use concatenation. We do not perform
3949 -- this wrapping for code statements, where the argument is a
3950 -- static string, and we want to preserve warnings involving
3951 -- sequences of such statements.
3953 elsif Nkind (A) = N_Op_Concat
3954 and then Nkind (N) = N_Procedure_Call_Statement
3955 and then Expander_Active
3956 and then
3957 not (Is_Intrinsic_Subprogram (Nam)
3958 and then Chars (Nam) = Name_Asm)
3959 and then not Static_Concatenation (A)
3960 then
3961 Establish_Transient_Scope (A, Sec_Stack => False);
3962 Resolve (A, Etype (F));
3964 else
3965 if Nkind (A) = N_Type_Conversion
3966 and then Is_Array_Type (Etype (F))
3967 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
3968 and then
3969 (Is_Limited_Type (Etype (F))
3970 or else Is_Limited_Type (Etype (Expression (A))))
3971 then
3972 Error_Msg_N
3973 ("conversion between unrelated limited array types "
3974 & "not allowed ('A'I-00246)", A);
3976 if Is_Limited_Type (Etype (F)) then
3977 Explain_Limited_Type (Etype (F), A);
3978 end if;
3980 if Is_Limited_Type (Etype (Expression (A))) then
3981 Explain_Limited_Type (Etype (Expression (A)), A);
3982 end if;
3983 end if;
3985 -- (Ada 2005: AI-251): If the actual is an allocator whose
3986 -- directly designated type is a class-wide interface, we build
3987 -- an anonymous access type to use it as the type of the
3988 -- allocator. Later, when the subprogram call is expanded, if
3989 -- the interface has a secondary dispatch table the expander
3990 -- will add a type conversion to force the correct displacement
3991 -- of the pointer.
3993 if Nkind (A) = N_Allocator then
3994 declare
3995 DDT : constant Entity_Id :=
3996 Directly_Designated_Type (Base_Type (Etype (F)));
3998 New_Itype : Entity_Id;
4000 begin
4001 if Is_Class_Wide_Type (DDT)
4002 and then Is_Interface (DDT)
4003 then
4004 New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
4005 Set_Etype (New_Itype, Etype (A));
4006 Set_Directly_Designated_Type
4007 (New_Itype, Directly_Designated_Type (Etype (A)));
4008 Set_Etype (A, New_Itype);
4009 end if;
4011 -- Ada 2005, AI-162:If the actual is an allocator, the
4012 -- innermost enclosing statement is the master of the
4013 -- created object. This needs to be done with expansion
4014 -- enabled only, otherwise the transient scope will not
4015 -- be removed in the expansion of the wrapped construct.
4017 if (Is_Controlled (DDT) or else Has_Task (DDT))
4018 and then Expander_Active
4019 then
4020 Establish_Transient_Scope (A, Sec_Stack => False);
4021 end if;
4022 end;
4024 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4025 Check_Restriction (No_Access_Parameter_Allocators, A);
4026 end if;
4027 end if;
4029 -- (Ada 2005): The call may be to a primitive operation of a
4030 -- tagged synchronized type, declared outside of the type. In
4031 -- this case the controlling actual must be converted to its
4032 -- corresponding record type, which is the formal type. The
4033 -- actual may be a subtype, either because of a constraint or
4034 -- because it is a generic actual, so use base type to locate
4035 -- concurrent type.
4037 F_Typ := Base_Type (Etype (F));
4039 if Is_Tagged_Type (F_Typ)
4040 and then (Is_Concurrent_Type (F_Typ)
4041 or else Is_Concurrent_Record_Type (F_Typ))
4042 then
4043 -- If the actual is overloaded, look for an interpretation
4044 -- that has a synchronized type.
4046 if not Is_Overloaded (A) then
4047 A_Typ := Base_Type (Etype (A));
4049 else
4050 declare
4051 Index : Interp_Index;
4052 It : Interp;
4054 begin
4055 Get_First_Interp (A, Index, It);
4056 while Present (It.Typ) loop
4057 if Is_Concurrent_Type (It.Typ)
4058 or else Is_Concurrent_Record_Type (It.Typ)
4059 then
4060 A_Typ := Base_Type (It.Typ);
4061 exit;
4062 end if;
4064 Get_Next_Interp (Index, It);
4065 end loop;
4066 end;
4067 end if;
4069 declare
4070 Full_A_Typ : Entity_Id;
4072 begin
4073 if Present (Full_View (A_Typ)) then
4074 Full_A_Typ := Base_Type (Full_View (A_Typ));
4075 else
4076 Full_A_Typ := A_Typ;
4077 end if;
4079 -- Tagged synchronized type (case 1): the actual is a
4080 -- concurrent type.
4082 if Is_Concurrent_Type (A_Typ)
4083 and then Corresponding_Record_Type (A_Typ) = F_Typ
4084 then
4085 Rewrite (A,
4086 Unchecked_Convert_To
4087 (Corresponding_Record_Type (A_Typ), A));
4088 Resolve (A, Etype (F));
4090 -- Tagged synchronized type (case 2): the formal is a
4091 -- concurrent type.
4093 elsif Ekind (Full_A_Typ) = E_Record_Type
4094 and then Present
4095 (Corresponding_Concurrent_Type (Full_A_Typ))
4096 and then Is_Concurrent_Type (F_Typ)
4097 and then Present (Corresponding_Record_Type (F_Typ))
4098 and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
4099 then
4100 Resolve (A, Corresponding_Record_Type (F_Typ));
4102 -- Common case
4104 else
4105 Resolve (A, Etype (F));
4106 end if;
4107 end;
4109 -- Not a synchronized operation
4111 else
4112 Resolve (A, Etype (F));
4113 end if;
4114 end if;
4116 A_Typ := Etype (A);
4117 F_Typ := Etype (F);
4119 -- An actual cannot be an untagged formal incomplete type
4121 if Ekind (A_Typ) = E_Incomplete_Type
4122 and then not Is_Tagged_Type (A_Typ)
4123 and then Is_Generic_Type (A_Typ)
4124 then
4125 Error_Msg_N
4126 ("invalid use of untagged formal incomplete type", A);
4127 end if;
4129 if Comes_From_Source (Original_Node (N))
4130 and then Nkind_In (Original_Node (N), N_Function_Call,
4131 N_Procedure_Call_Statement)
4132 then
4133 -- In formal mode, check that actual parameters matching
4134 -- formals of tagged types are objects (or ancestor type
4135 -- conversions of objects), not general expressions.
4137 if Is_Actual_Tagged_Parameter (A) then
4138 if Is_SPARK_05_Object_Reference (A) then
4139 null;
4141 elsif Nkind (A) = N_Type_Conversion then
4142 declare
4143 Operand : constant Node_Id := Expression (A);
4144 Operand_Typ : constant Entity_Id := Etype (Operand);
4145 Target_Typ : constant Entity_Id := A_Typ;
4147 begin
4148 if not Is_SPARK_05_Object_Reference (Operand) then
4149 Check_SPARK_05_Restriction
4150 ("object required", Operand);
4152 -- In formal mode, the only view conversions are those
4153 -- involving ancestor conversion of an extended type.
4155 elsif not
4156 (Is_Tagged_Type (Target_Typ)
4157 and then not Is_Class_Wide_Type (Target_Typ)
4158 and then Is_Tagged_Type (Operand_Typ)
4159 and then not Is_Class_Wide_Type (Operand_Typ)
4160 and then Is_Ancestor (Target_Typ, Operand_Typ))
4161 then
4162 if Ekind_In
4163 (F, E_Out_Parameter, E_In_Out_Parameter)
4164 then
4165 Check_SPARK_05_Restriction
4166 ("ancestor conversion is the only permitted "
4167 & "view conversion", A);
4168 else
4169 Check_SPARK_05_Restriction
4170 ("ancestor conversion required", A);
4171 end if;
4173 else
4174 null;
4175 end if;
4176 end;
4178 else
4179 Check_SPARK_05_Restriction ("object required", A);
4180 end if;
4182 -- In formal mode, the only view conversions are those
4183 -- involving ancestor conversion of an extended type.
4185 elsif Nkind (A) = N_Type_Conversion
4186 and then Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
4187 then
4188 Check_SPARK_05_Restriction
4189 ("ancestor conversion is the only permitted view "
4190 & "conversion", A);
4191 end if;
4192 end if;
4194 -- has warnings suppressed, then we reset Never_Set_In_Source for
4195 -- the calling entity. The reason for this is to catch cases like
4196 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
4197 -- uses trickery to modify an IN parameter.
4199 if Ekind (F) = E_In_Parameter
4200 and then Is_Entity_Name (A)
4201 and then Present (Entity (A))
4202 and then Ekind (Entity (A)) = E_Variable
4203 and then Has_Warnings_Off (F_Typ)
4204 then
4205 Set_Never_Set_In_Source (Entity (A), False);
4206 end if;
4208 -- Perform error checks for IN and IN OUT parameters
4210 if Ekind (F) /= E_Out_Parameter then
4212 -- Check unset reference. For scalar parameters, it is clearly
4213 -- wrong to pass an uninitialized value as either an IN or
4214 -- IN-OUT parameter. For composites, it is also clearly an
4215 -- error to pass a completely uninitialized value as an IN
4216 -- parameter, but the case of IN OUT is trickier. We prefer
4217 -- not to give a warning here. For example, suppose there is
4218 -- a routine that sets some component of a record to False.
4219 -- It is perfectly reasonable to make this IN-OUT and allow
4220 -- either initialized or uninitialized records to be passed
4221 -- in this case.
4223 -- For partially initialized composite values, we also avoid
4224 -- warnings, since it is quite likely that we are passing a
4225 -- partially initialized value and only the initialized fields
4226 -- will in fact be read in the subprogram.
4228 if Is_Scalar_Type (A_Typ)
4229 or else (Ekind (F) = E_In_Parameter
4230 and then not Is_Partially_Initialized_Type (A_Typ))
4231 then
4232 Check_Unset_Reference (A);
4233 end if;
4235 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
4236 -- actual to a nested call, since this constitutes a reading of
4237 -- the parameter, which is not allowed.
4239 if Ada_Version = Ada_83
4240 and then Is_Entity_Name (A)
4241 and then Ekind (Entity (A)) = E_Out_Parameter
4242 then
4243 Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
4244 end if;
4245 end if;
4247 -- In -gnatd.q mode, forget that a given array is constant when
4248 -- it is passed as an IN parameter to a foreign-convention
4249 -- subprogram. This is in case the subprogram evilly modifies the
4250 -- object. Of course, correct code would use IN OUT.
4252 if Debug_Flag_Dot_Q
4253 and then Ekind (F) = E_In_Parameter
4254 and then Has_Foreign_Convention (Nam)
4255 and then Is_Array_Type (F_Typ)
4256 and then Nkind (A) in N_Has_Entity
4257 and then Present (Entity (A))
4258 then
4259 Set_Is_True_Constant (Entity (A), False);
4260 end if;
4262 -- Case of OUT or IN OUT parameter
4264 if Ekind (F) /= E_In_Parameter then
4266 -- For an Out parameter, check for useless assignment. Note
4267 -- that we can't set Last_Assignment this early, because we may
4268 -- kill current values in Resolve_Call, and that call would
4269 -- clobber the Last_Assignment field.
4271 -- Note: call Warn_On_Useless_Assignment before doing the check
4272 -- below for Is_OK_Variable_For_Out_Formal so that the setting
4273 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
4274 -- reflects the last assignment, not this one.
4276 if Ekind (F) = E_Out_Parameter then
4277 if Warn_On_Modified_As_Out_Parameter (F)
4278 and then Is_Entity_Name (A)
4279 and then Present (Entity (A))
4280 and then Comes_From_Source (N)
4281 then
4282 Warn_On_Useless_Assignment (Entity (A), A);
4283 end if;
4284 end if;
4286 -- Validate the form of the actual. Note that the call to
4287 -- Is_OK_Variable_For_Out_Formal generates the required
4288 -- reference in this case.
4290 -- A call to an initialization procedure for an aggregate
4291 -- component may initialize a nested component of a constant
4292 -- designated object. In this context the object is variable.
4294 if not Is_OK_Variable_For_Out_Formal (A)
4295 and then not Is_Init_Proc (Nam)
4296 then
4297 Error_Msg_NE ("actual for& must be a variable", A, F);
4299 if Is_Subprogram (Current_Scope) then
4300 if Is_Invariant_Procedure (Current_Scope)
4301 or else Is_Partial_Invariant_Procedure (Current_Scope)
4302 then
4303 Error_Msg_N
4304 ("function used in invariant cannot modify its "
4305 & "argument", F);
4307 elsif Is_Predicate_Function (Current_Scope) then
4308 Error_Msg_N
4309 ("function used in predicate cannot modify its "
4310 & "argument", F);
4311 end if;
4312 end if;
4313 end if;
4315 -- What's the following about???
4317 if Is_Entity_Name (A) then
4318 Kill_Checks (Entity (A));
4319 else
4320 Kill_All_Checks;
4321 end if;
4322 end if;
4324 if Etype (A) = Any_Type then
4325 Set_Etype (N, Any_Type);
4326 return;
4327 end if;
4329 -- Apply appropriate constraint/predicate checks for IN [OUT] case
4331 if Ekind_In (F, E_In_Parameter, E_In_Out_Parameter) then
4333 -- Apply predicate tests except in certain special cases. Note
4334 -- that it might be more consistent to apply these only when
4335 -- expansion is active (in Exp_Ch6.Expand_Actuals), as we do
4336 -- for the outbound predicate tests ??? In any case indicate
4337 -- the function being called, for better warnings if the call
4338 -- leads to an infinite recursion.
4340 if Predicate_Tests_On_Arguments (Nam) then
4341 Apply_Predicate_Check (A, F_Typ, Nam);
4342 end if;
4344 -- Apply required constraint checks
4346 -- Gigi looks at the check flag and uses the appropriate types.
4347 -- For now since one flag is used there is an optimization
4348 -- which might not be done in the IN OUT case since Gigi does
4349 -- not do any analysis. More thought required about this ???
4351 -- In fact is this comment obsolete??? doesn't the expander now
4352 -- generate all these tests anyway???
4354 if Is_Scalar_Type (Etype (A)) then
4355 Apply_Scalar_Range_Check (A, F_Typ);
4357 elsif Is_Array_Type (Etype (A)) then
4358 Apply_Length_Check (A, F_Typ);
4360 elsif Is_Record_Type (F_Typ)
4361 and then Has_Discriminants (F_Typ)
4362 and then Is_Constrained (F_Typ)
4363 and then (not Is_Derived_Type (F_Typ)
4364 or else Comes_From_Source (Nam))
4365 then
4366 Apply_Discriminant_Check (A, F_Typ);
4368 -- For view conversions of a discriminated object, apply
4369 -- check to object itself, the conversion alreay has the
4370 -- proper type.
4372 if Nkind (A) = N_Type_Conversion
4373 and then Is_Constrained (Etype (Expression (A)))
4374 then
4375 Apply_Discriminant_Check (Expression (A), F_Typ);
4376 end if;
4378 elsif Is_Access_Type (F_Typ)
4379 and then Is_Array_Type (Designated_Type (F_Typ))
4380 and then Is_Constrained (Designated_Type (F_Typ))
4381 then
4382 Apply_Length_Check (A, F_Typ);
4384 elsif Is_Access_Type (F_Typ)
4385 and then Has_Discriminants (Designated_Type (F_Typ))
4386 and then Is_Constrained (Designated_Type (F_Typ))
4387 then
4388 Apply_Discriminant_Check (A, F_Typ);
4390 else
4391 Apply_Range_Check (A, F_Typ);
4392 end if;
4394 -- Ada 2005 (AI-231): Note that the controlling parameter case
4395 -- already existed in Ada 95, which is partially checked
4396 -- elsewhere (see Checks), and we don't want the warning
4397 -- message to differ.
4399 if Is_Access_Type (F_Typ)
4400 and then Can_Never_Be_Null (F_Typ)
4401 and then Known_Null (A)
4402 then
4403 if Is_Controlling_Formal (F) then
4404 Apply_Compile_Time_Constraint_Error
4405 (N => A,
4406 Msg => "null value not allowed here??",
4407 Reason => CE_Access_Check_Failed);
4409 elsif Ada_Version >= Ada_2005 then
4410 Apply_Compile_Time_Constraint_Error
4411 (N => A,
4412 Msg => "(Ada 2005) null not allowed in "
4413 & "null-excluding formal??",
4414 Reason => CE_Null_Not_Allowed);
4415 end if;
4416 end if;
4417 end if;
4419 -- Checks for OUT parameters and IN OUT parameters
4421 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter) then
4423 -- If there is a type conversion, make sure the return value
4424 -- meets the constraints of the variable before the conversion.
4426 if Nkind (A) = N_Type_Conversion then
4427 if Is_Scalar_Type (A_Typ) then
4428 Apply_Scalar_Range_Check
4429 (Expression (A), Etype (Expression (A)), A_Typ);
4431 -- In addition, the returned value of the parameter must
4432 -- satisfy the bounds of the object type (see comment
4433 -- below).
4435 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4437 else
4438 Apply_Range_Check
4439 (Expression (A), Etype (Expression (A)), A_Typ);
4440 end if;
4442 -- If no conversion, apply scalar range checks and length check
4443 -- based on the subtype of the actual (NOT that of the formal).
4444 -- This indicates that the check takes place on return from the
4445 -- call. During expansion the required constraint checks are
4446 -- inserted. In GNATprove mode, in the absence of expansion,
4447 -- the flag indicates that the returned value is valid.
4449 else
4450 if Is_Scalar_Type (F_Typ) then
4451 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4453 elsif Is_Array_Type (F_Typ)
4454 and then Ekind (F) = E_Out_Parameter
4455 then
4456 Apply_Length_Check (A, F_Typ);
4457 else
4458 Apply_Range_Check (A, A_Typ, F_Typ);
4459 end if;
4460 end if;
4462 -- Note: we do not apply the predicate checks for the case of
4463 -- OUT and IN OUT parameters. They are instead applied in the
4464 -- Expand_Actuals routine in Exp_Ch6.
4465 end if;
4467 -- An actual associated with an access parameter is implicitly
4468 -- converted to the anonymous access type of the formal and must
4469 -- satisfy the legality checks for access conversions.
4471 if Ekind (F_Typ) = E_Anonymous_Access_Type then
4472 if not Valid_Conversion (A, F_Typ, A) then
4473 Error_Msg_N
4474 ("invalid implicit conversion for access parameter", A);
4475 end if;
4477 -- If the actual is an access selected component of a variable,
4478 -- the call may modify its designated object. It is reasonable
4479 -- to treat this as a potential modification of the enclosing
4480 -- record, to prevent spurious warnings that it should be
4481 -- declared as a constant, because intuitively programmers
4482 -- regard the designated subcomponent as part of the record.
4484 if Nkind (A) = N_Selected_Component
4485 and then Is_Entity_Name (Prefix (A))
4486 and then not Is_Constant_Object (Entity (Prefix (A)))
4487 then
4488 Note_Possible_Modification (A, Sure => False);
4489 end if;
4490 end if;
4492 -- Check bad case of atomic/volatile argument (RM C.6(12))
4494 if Is_By_Reference_Type (Etype (F))
4495 and then Comes_From_Source (N)
4496 then
4497 if Is_Atomic_Object (A)
4498 and then not Is_Atomic (Etype (F))
4499 then
4500 Error_Msg_NE
4501 ("cannot pass atomic argument to non-atomic formal&",
4502 A, F);
4504 elsif Is_Volatile_Object (A)
4505 and then not Is_Volatile (Etype (F))
4506 then
4507 Error_Msg_NE
4508 ("cannot pass volatile argument to non-volatile formal&",
4509 A, F);
4510 end if;
4511 end if;
4513 -- Check that subprograms don't have improper controlling
4514 -- arguments (RM 3.9.2 (9)).
4516 -- A primitive operation may have an access parameter of an
4517 -- incomplete tagged type, but a dispatching call is illegal
4518 -- if the type is still incomplete.
4520 if Is_Controlling_Formal (F) then
4521 Set_Is_Controlling_Actual (A);
4523 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4524 declare
4525 Desig : constant Entity_Id := Designated_Type (Etype (F));
4526 begin
4527 if Ekind (Desig) = E_Incomplete_Type
4528 and then No (Full_View (Desig))
4529 and then No (Non_Limited_View (Desig))
4530 then
4531 Error_Msg_NE
4532 ("premature use of incomplete type& "
4533 & "in dispatching call", A, Desig);
4534 end if;
4535 end;
4536 end if;
4538 elsif Nkind (A) = N_Explicit_Dereference then
4539 Validate_Remote_Access_To_Class_Wide_Type (A);
4540 end if;
4542 -- Apply legality rule 3.9.2 (9/1)
4544 if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
4545 and then not Is_Class_Wide_Type (F_Typ)
4546 and then not Is_Controlling_Formal (F)
4547 and then not In_Instance
4548 then
4549 Error_Msg_N ("class-wide argument not allowed here!", A);
4551 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4552 Error_Msg_Node_2 := F_Typ;
4553 Error_Msg_NE
4554 ("& is not a dispatching operation of &!", A, Nam);
4555 end if;
4557 -- Apply the checks described in 3.10.2(27): if the context is a
4558 -- specific access-to-object, the actual cannot be class-wide.
4559 -- Use base type to exclude access_to_subprogram cases.
4561 elsif Is_Access_Type (A_Typ)
4562 and then Is_Access_Type (F_Typ)
4563 and then not Is_Access_Subprogram_Type (Base_Type (F_Typ))
4564 and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
4565 or else (Nkind (A) = N_Attribute_Reference
4566 and then
4567 Is_Class_Wide_Type (Etype (Prefix (A)))))
4568 and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
4569 and then not Is_Controlling_Formal (F)
4571 -- Disable these checks for call to imported C++ subprograms
4573 and then not
4574 (Is_Entity_Name (Name (N))
4575 and then Is_Imported (Entity (Name (N)))
4576 and then Convention (Entity (Name (N))) = Convention_CPP)
4577 then
4578 Error_Msg_N
4579 ("access to class-wide argument not allowed here!", A);
4581 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4582 Error_Msg_Node_2 := Designated_Type (F_Typ);
4583 Error_Msg_NE
4584 ("& is not a dispatching operation of &!", A, Nam);
4585 end if;
4586 end if;
4588 Check_Aliased_Parameter;
4590 Eval_Actual (A);
4592 -- If it is a named association, treat the selector_name as a
4593 -- proper identifier, and mark the corresponding entity.
4595 if Nkind (Parent (A)) = N_Parameter_Association
4597 -- Ignore reference in SPARK mode, as it refers to an entity not
4598 -- in scope at the point of reference, so the reference should
4599 -- be ignored for computing effects of subprograms.
4601 and then not GNATprove_Mode
4602 then
4603 -- If subprogram is overridden, use name of formal that
4604 -- is being called.
4606 if Present (Real_Subp) then
4607 Set_Entity (Selector_Name (Parent (A)), Real_F);
4608 Set_Etype (Selector_Name (Parent (A)), Etype (Real_F));
4610 else
4611 Set_Entity (Selector_Name (Parent (A)), F);
4612 Generate_Reference (F, Selector_Name (Parent (A)));
4613 Set_Etype (Selector_Name (Parent (A)), F_Typ);
4614 Generate_Reference (F_Typ, N, ' ');
4615 end if;
4616 end if;
4618 Prev := A;
4620 if Ekind (F) /= E_Out_Parameter then
4621 Check_Unset_Reference (A);
4622 end if;
4624 -- The following checks are only relevant when SPARK_Mode is on as
4625 -- they are not standard Ada legality rule. Internally generated
4626 -- temporaries are ignored.
4628 if SPARK_Mode = On and then Comes_From_Source (A) then
4630 -- An effectively volatile object may act as an actual when the
4631 -- corresponding formal is of a non-scalar effectively volatile
4632 -- type (SPARK RM 7.1.3(11)).
4634 if not Is_Scalar_Type (Etype (F))
4635 and then Is_Effectively_Volatile (Etype (F))
4636 then
4637 null;
4639 -- An effectively volatile object may act as an actual in a
4640 -- call to an instance of Unchecked_Conversion.
4641 -- (SPARK RM 7.1.3(11)).
4643 elsif Is_Unchecked_Conversion_Instance (Nam) then
4644 null;
4646 -- The actual denotes an object
4648 elsif Is_Effectively_Volatile_Object (A) then
4649 Error_Msg_N
4650 ("volatile object cannot act as actual in a call (SPARK "
4651 & "RM 7.1.3(11))", A);
4653 -- Otherwise the actual denotes an expression. Inspect the
4654 -- expression and flag each effectively volatile object with
4655 -- enabled property Async_Writers or Effective_Reads as illegal
4656 -- because it apprears within an interfering context. Note that
4657 -- this is usually done in Resolve_Entity_Name, but when the
4658 -- effectively volatile object appears as an actual in a call,
4659 -- the call must be resolved first.
4661 else
4662 Flag_Effectively_Volatile_Objects (A);
4663 end if;
4665 -- An effectively volatile variable cannot act as an actual
4666 -- parameter in a procedure call when the variable has enabled
4667 -- property Effective_Reads and the corresponding formal is of
4668 -- mode IN (SPARK RM 7.1.3(10)).
4670 if Ekind (Nam) = E_Procedure
4671 and then Ekind (F) = E_In_Parameter
4672 and then Is_Entity_Name (A)
4673 then
4674 A_Id := Entity (A);
4676 if Ekind (A_Id) = E_Variable
4677 and then Is_Effectively_Volatile (Etype (A_Id))
4678 and then Effective_Reads_Enabled (A_Id)
4679 then
4680 Error_Msg_NE
4681 ("effectively volatile variable & cannot appear as "
4682 & "actual in procedure call", A, A_Id);
4684 Error_Msg_Name_1 := Name_Effective_Reads;
4685 Error_Msg_N ("\\variable has enabled property %", A);
4686 Error_Msg_N ("\\corresponding formal has mode IN", A);
4687 end if;
4688 end if;
4689 end if;
4691 -- A formal parameter of a specific tagged type whose related
4692 -- subprogram is subject to pragma Extensions_Visible with value
4693 -- "False" cannot act as an actual in a subprogram with value
4694 -- "True" (SPARK RM 6.1.7(3)).
4696 if Is_EVF_Expression (A)
4697 and then Extensions_Visible_Status (Nam) =
4698 Extensions_Visible_True
4699 then
4700 Error_Msg_N
4701 ("formal parameter cannot act as actual parameter when "
4702 & "Extensions_Visible is False", A);
4703 Error_Msg_NE
4704 ("\subprogram & has Extensions_Visible True", A, Nam);
4705 end if;
4707 -- The actual parameter of a Ghost subprogram whose formal is of
4708 -- mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(12)).
4710 if Comes_From_Source (Nam)
4711 and then Is_Ghost_Entity (Nam)
4712 and then Ekind_In (F, E_In_Out_Parameter, E_Out_Parameter)
4713 and then Is_Entity_Name (A)
4714 and then Present (Entity (A))
4715 and then not Is_Ghost_Entity (Entity (A))
4716 then
4717 Error_Msg_NE
4718 ("non-ghost variable & cannot appear as actual in call to "
4719 & "ghost procedure", A, Entity (A));
4721 if Ekind (F) = E_In_Out_Parameter then
4722 Error_Msg_N ("\corresponding formal has mode `IN OUT`", A);
4723 else
4724 Error_Msg_N ("\corresponding formal has mode OUT", A);
4725 end if;
4726 end if;
4728 Next_Actual (A);
4730 -- Case where actual is not present
4732 else
4733 Insert_Default;
4734 end if;
4736 Next_Formal (F);
4738 if Present (Real_Subp) then
4739 Next_Formal (Real_F);
4740 end if;
4741 end loop;
4742 end Resolve_Actuals;
4744 -----------------------
4745 -- Resolve_Allocator --
4746 -----------------------
4748 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
4749 Desig_T : constant Entity_Id := Designated_Type (Typ);
4750 E : constant Node_Id := Expression (N);
4751 Subtyp : Entity_Id;
4752 Discrim : Entity_Id;
4753 Constr : Node_Id;
4754 Aggr : Node_Id;
4755 Assoc : Node_Id := Empty;
4756 Disc_Exp : Node_Id;
4758 procedure Check_Allocator_Discrim_Accessibility
4759 (Disc_Exp : Node_Id;
4760 Alloc_Typ : Entity_Id);
4761 -- Check that accessibility level associated with an access discriminant
4762 -- initialized in an allocator by the expression Disc_Exp is not deeper
4763 -- than the level of the allocator type Alloc_Typ. An error message is
4764 -- issued if this condition is violated. Specialized checks are done for
4765 -- the cases of a constraint expression which is an access attribute or
4766 -- an access discriminant.
4768 function In_Dispatching_Context return Boolean;
4769 -- If the allocator is an actual in a call, it is allowed to be class-
4770 -- wide when the context is not because it is a controlling actual.
4772 -------------------------------------------
4773 -- Check_Allocator_Discrim_Accessibility --
4774 -------------------------------------------
4776 procedure Check_Allocator_Discrim_Accessibility
4777 (Disc_Exp : Node_Id;
4778 Alloc_Typ : Entity_Id)
4780 begin
4781 if Type_Access_Level (Etype (Disc_Exp)) >
4782 Deepest_Type_Access_Level (Alloc_Typ)
4783 then
4784 Error_Msg_N
4785 ("operand type has deeper level than allocator type", Disc_Exp);
4787 -- When the expression is an Access attribute the level of the prefix
4788 -- object must not be deeper than that of the allocator's type.
4790 elsif Nkind (Disc_Exp) = N_Attribute_Reference
4791 and then Get_Attribute_Id (Attribute_Name (Disc_Exp)) =
4792 Attribute_Access
4793 and then Object_Access_Level (Prefix (Disc_Exp)) >
4794 Deepest_Type_Access_Level (Alloc_Typ)
4795 then
4796 Error_Msg_N
4797 ("prefix of attribute has deeper level than allocator type",
4798 Disc_Exp);
4800 -- When the expression is an access discriminant the check is against
4801 -- the level of the prefix object.
4803 elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
4804 and then Nkind (Disc_Exp) = N_Selected_Component
4805 and then Object_Access_Level (Prefix (Disc_Exp)) >
4806 Deepest_Type_Access_Level (Alloc_Typ)
4807 then
4808 Error_Msg_N
4809 ("access discriminant has deeper level than allocator type",
4810 Disc_Exp);
4812 -- All other cases are legal
4814 else
4815 null;
4816 end if;
4817 end Check_Allocator_Discrim_Accessibility;
4819 ----------------------------
4820 -- In_Dispatching_Context --
4821 ----------------------------
4823 function In_Dispatching_Context return Boolean is
4824 Par : constant Node_Id := Parent (N);
4826 begin
4827 return Nkind (Par) in N_Subprogram_Call
4828 and then Is_Entity_Name (Name (Par))
4829 and then Is_Dispatching_Operation (Entity (Name (Par)));
4830 end In_Dispatching_Context;
4832 -- Start of processing for Resolve_Allocator
4834 begin
4835 -- Replace general access with specific type
4837 if Ekind (Etype (N)) = E_Allocator_Type then
4838 Set_Etype (N, Base_Type (Typ));
4839 end if;
4841 if Is_Abstract_Type (Typ) then
4842 Error_Msg_N ("type of allocator cannot be abstract", N);
4843 end if;
4845 -- For qualified expression, resolve the expression using the given
4846 -- subtype (nothing to do for type mark, subtype indication)
4848 if Nkind (E) = N_Qualified_Expression then
4849 if Is_Class_Wide_Type (Etype (E))
4850 and then not Is_Class_Wide_Type (Desig_T)
4851 and then not In_Dispatching_Context
4852 then
4853 Error_Msg_N
4854 ("class-wide allocator not allowed for this access type", N);
4855 end if;
4857 Resolve (Expression (E), Etype (E));
4858 Check_Non_Static_Context (Expression (E));
4859 Check_Unset_Reference (Expression (E));
4861 -- Allocators generated by the build-in-place expansion mechanism
4862 -- are explicitly marked as coming from source but do not need to be
4863 -- checked for limited initialization. To exclude this case, ensure
4864 -- that the parent of the allocator is a source node.
4865 -- The return statement constructed for an Expression_Function does
4866 -- not come from source but requires a limited check.
4868 if Is_Limited_Type (Etype (E))
4869 and then Comes_From_Source (N)
4870 and then
4871 (Comes_From_Source (Parent (N))
4872 or else
4873 (Ekind (Current_Scope) = E_Function
4874 and then Nkind (Original_Node (Unit_Declaration_Node
4875 (Current_Scope))) = N_Expression_Function))
4876 and then not In_Instance_Body
4877 then
4878 if not OK_For_Limited_Init (Etype (E), Expression (E)) then
4879 if Nkind (Parent (N)) = N_Assignment_Statement then
4880 Error_Msg_N
4881 ("illegal expression for initialized allocator of a "
4882 & "limited type (RM 7.5 (2.7/2))", N);
4883 else
4884 Error_Msg_N
4885 ("initialization not allowed for limited types", N);
4886 end if;
4888 Explain_Limited_Type (Etype (E), N);
4889 end if;
4890 end if;
4892 -- A qualified expression requires an exact match of the type. Class-
4893 -- wide matching is not allowed.
4895 if (Is_Class_Wide_Type (Etype (Expression (E)))
4896 or else Is_Class_Wide_Type (Etype (E)))
4897 and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
4898 then
4899 Wrong_Type (Expression (E), Etype (E));
4900 end if;
4902 -- Calls to build-in-place functions are not currently supported in
4903 -- allocators for access types associated with a simple storage pool.
4904 -- Supporting such allocators may require passing additional implicit
4905 -- parameters to build-in-place functions (or a significant revision
4906 -- of the current b-i-p implementation to unify the handling for
4907 -- multiple kinds of storage pools). ???
4909 if Is_Limited_View (Desig_T)
4910 and then Nkind (Expression (E)) = N_Function_Call
4911 then
4912 declare
4913 Pool : constant Entity_Id :=
4914 Associated_Storage_Pool (Root_Type (Typ));
4915 begin
4916 if Present (Pool)
4917 and then
4918 Present (Get_Rep_Pragma
4919 (Etype (Pool), Name_Simple_Storage_Pool_Type))
4920 then
4921 Error_Msg_N
4922 ("limited function calls not yet supported in simple "
4923 & "storage pool allocators", Expression (E));
4924 end if;
4925 end;
4926 end if;
4928 -- A special accessibility check is needed for allocators that
4929 -- constrain access discriminants. The level of the type of the
4930 -- expression used to constrain an access discriminant cannot be
4931 -- deeper than the type of the allocator (in contrast to access
4932 -- parameters, where the level of the actual can be arbitrary).
4934 -- We can't use Valid_Conversion to perform this check because in
4935 -- general the type of the allocator is unrelated to the type of
4936 -- the access discriminant.
4938 if Ekind (Typ) /= E_Anonymous_Access_Type
4939 or else Is_Local_Anonymous_Access (Typ)
4940 then
4941 Subtyp := Entity (Subtype_Mark (E));
4943 Aggr := Original_Node (Expression (E));
4945 if Has_Discriminants (Subtyp)
4946 and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
4947 then
4948 Discrim := First_Discriminant (Base_Type (Subtyp));
4950 -- Get the first component expression of the aggregate
4952 if Present (Expressions (Aggr)) then
4953 Disc_Exp := First (Expressions (Aggr));
4955 elsif Present (Component_Associations (Aggr)) then
4956 Assoc := First (Component_Associations (Aggr));
4958 if Present (Assoc) then
4959 Disc_Exp := Expression (Assoc);
4960 else
4961 Disc_Exp := Empty;
4962 end if;
4964 else
4965 Disc_Exp := Empty;
4966 end if;
4968 while Present (Discrim) and then Present (Disc_Exp) loop
4969 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4970 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4971 end if;
4973 Next_Discriminant (Discrim);
4975 if Present (Discrim) then
4976 if Present (Assoc) then
4977 Next (Assoc);
4978 Disc_Exp := Expression (Assoc);
4980 elsif Present (Next (Disc_Exp)) then
4981 Next (Disc_Exp);
4983 else
4984 Assoc := First (Component_Associations (Aggr));
4986 if Present (Assoc) then
4987 Disc_Exp := Expression (Assoc);
4988 else
4989 Disc_Exp := Empty;
4990 end if;
4991 end if;
4992 end if;
4993 end loop;
4994 end if;
4995 end if;
4997 -- For a subtype mark or subtype indication, freeze the subtype
4999 else
5000 Freeze_Expression (E);
5002 if Is_Access_Constant (Typ) and then not No_Initialization (N) then
5003 Error_Msg_N
5004 ("initialization required for access-to-constant allocator", N);
5005 end if;
5007 -- A special accessibility check is needed for allocators that
5008 -- constrain access discriminants. The level of the type of the
5009 -- expression used to constrain an access discriminant cannot be
5010 -- deeper than the type of the allocator (in contrast to access
5011 -- parameters, where the level of the actual can be arbitrary).
5012 -- We can't use Valid_Conversion to perform this check because
5013 -- in general the type of the allocator is unrelated to the type
5014 -- of the access discriminant.
5016 if Nkind (Original_Node (E)) = N_Subtype_Indication
5017 and then (Ekind (Typ) /= E_Anonymous_Access_Type
5018 or else Is_Local_Anonymous_Access (Typ))
5019 then
5020 Subtyp := Entity (Subtype_Mark (Original_Node (E)));
5022 if Has_Discriminants (Subtyp) then
5023 Discrim := First_Discriminant (Base_Type (Subtyp));
5024 Constr := First (Constraints (Constraint (Original_Node (E))));
5025 while Present (Discrim) and then Present (Constr) loop
5026 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
5027 if Nkind (Constr) = N_Discriminant_Association then
5028 Disc_Exp := Original_Node (Expression (Constr));
5029 else
5030 Disc_Exp := Original_Node (Constr);
5031 end if;
5033 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
5034 end if;
5036 Next_Discriminant (Discrim);
5037 Next (Constr);
5038 end loop;
5039 end if;
5040 end if;
5041 end if;
5043 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
5044 -- check that the level of the type of the created object is not deeper
5045 -- than the level of the allocator's access type, since extensions can
5046 -- now occur at deeper levels than their ancestor types. This is a
5047 -- static accessibility level check; a run-time check is also needed in
5048 -- the case of an initialized allocator with a class-wide argument (see
5049 -- Expand_Allocator_Expression).
5051 if Ada_Version >= Ada_2005
5052 and then Is_Class_Wide_Type (Desig_T)
5053 then
5054 declare
5055 Exp_Typ : Entity_Id;
5057 begin
5058 if Nkind (E) = N_Qualified_Expression then
5059 Exp_Typ := Etype (E);
5060 elsif Nkind (E) = N_Subtype_Indication then
5061 Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
5062 else
5063 Exp_Typ := Entity (E);
5064 end if;
5066 if Type_Access_Level (Exp_Typ) >
5067 Deepest_Type_Access_Level (Typ)
5068 then
5069 if In_Instance_Body then
5070 Error_Msg_Warn := SPARK_Mode /= On;
5071 Error_Msg_N
5072 ("type in allocator has deeper level than "
5073 & "designated class-wide type<<", E);
5074 Error_Msg_N ("\Program_Error [<<", E);
5075 Rewrite (N,
5076 Make_Raise_Program_Error (Sloc (N),
5077 Reason => PE_Accessibility_Check_Failed));
5078 Set_Etype (N, Typ);
5080 -- Do not apply Ada 2005 accessibility checks on a class-wide
5081 -- allocator if the type given in the allocator is a formal
5082 -- type. A run-time check will be performed in the instance.
5084 elsif not Is_Generic_Type (Exp_Typ) then
5085 Error_Msg_N ("type in allocator has deeper level than "
5086 & "designated class-wide type", E);
5087 end if;
5088 end if;
5089 end;
5090 end if;
5092 -- Check for allocation from an empty storage pool
5094 if No_Pool_Assigned (Typ) then
5095 Error_Msg_N ("allocation from empty storage pool!", N);
5097 -- If the context is an unchecked conversion, as may happen within an
5098 -- inlined subprogram, the allocator is being resolved with its own
5099 -- anonymous type. In that case, if the target type has a specific
5100 -- storage pool, it must be inherited explicitly by the allocator type.
5102 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
5103 and then No (Associated_Storage_Pool (Typ))
5104 then
5105 Set_Associated_Storage_Pool
5106 (Typ, Associated_Storage_Pool (Etype (Parent (N))));
5107 end if;
5109 if Ekind (Etype (N)) = E_Anonymous_Access_Type then
5110 Check_Restriction (No_Anonymous_Allocators, N);
5111 end if;
5113 -- Check that an allocator with task parts isn't for a nested access
5114 -- type when restriction No_Task_Hierarchy applies.
5116 if not Is_Library_Level_Entity (Base_Type (Typ))
5117 and then Has_Task (Base_Type (Desig_T))
5118 then
5119 Check_Restriction (No_Task_Hierarchy, N);
5120 end if;
5122 -- An illegal allocator may be rewritten as a raise Program_Error
5123 -- statement.
5125 if Nkind (N) = N_Allocator then
5127 -- Avoid coextension processing for an allocator that is the
5128 -- expansion of a build-in-place function call.
5130 if Nkind (Original_Node (N)) = N_Allocator
5131 and then Nkind (Expression (Original_Node (N))) =
5132 N_Qualified_Expression
5133 and then Nkind (Expression (Expression (Original_Node (N)))) =
5134 N_Function_Call
5135 and then Is_Expanded_Build_In_Place_Call
5136 (Expression (Expression (Original_Node (N))))
5137 then
5138 null; -- b-i-p function call case
5140 else
5141 -- An anonymous access discriminant is the definition of a
5142 -- coextension.
5144 if Ekind (Typ) = E_Anonymous_Access_Type
5145 and then Nkind (Associated_Node_For_Itype (Typ)) =
5146 N_Discriminant_Specification
5147 then
5148 declare
5149 Discr : constant Entity_Id :=
5150 Defining_Identifier (Associated_Node_For_Itype (Typ));
5152 begin
5153 Check_Restriction (No_Coextensions, N);
5155 -- Ada 2012 AI05-0052: If the designated type of the
5156 -- allocator is limited, then the allocator shall not
5157 -- be used to define the value of an access discriminant
5158 -- unless the discriminated type is immutably limited.
5160 if Ada_Version >= Ada_2012
5161 and then Is_Limited_Type (Desig_T)
5162 and then not Is_Limited_View (Scope (Discr))
5163 then
5164 Error_Msg_N
5165 ("only immutably limited types can have anonymous "
5166 & "access discriminants designating a limited type",
5168 end if;
5169 end;
5171 -- Avoid marking an allocator as a dynamic coextension if it is
5172 -- within a static construct.
5174 if not Is_Static_Coextension (N) then
5175 Set_Is_Dynamic_Coextension (N);
5177 -- Finalization and deallocation of coextensions utilizes an
5178 -- approximate implementation which does not directly adhere
5179 -- to the semantic rules. Warn on potential issues involving
5180 -- coextensions.
5182 if Is_Controlled (Desig_T) then
5183 Error_Msg_N
5184 ("??coextension will not be finalized when its "
5185 & "associated owner is deallocated or finalized", N);
5186 else
5187 Error_Msg_N
5188 ("??coextension will not be deallocated when its "
5189 & "associated owner is deallocated", N);
5190 end if;
5191 end if;
5193 -- Cleanup for potential static coextensions
5195 else
5196 Set_Is_Dynamic_Coextension (N, False);
5197 Set_Is_Static_Coextension (N, False);
5199 -- Anonymous access-to-controlled objects are not finalized on
5200 -- time because this involves run-time ownership and currently
5201 -- this property is not available. In rare cases the object may
5202 -- not be finalized at all. Warn on potential issues involving
5203 -- anonymous access-to-controlled objects.
5205 if Ekind (Typ) = E_Anonymous_Access_Type
5206 and then Is_Controlled_Active (Desig_T)
5207 then
5208 Error_Msg_N
5209 ("??object designated by anonymous access object might "
5210 & "not be finalized until its enclosing library unit "
5211 & "goes out of scope", N);
5212 Error_Msg_N ("\use named access type instead", N);
5213 end if;
5214 end if;
5215 end if;
5216 end if;
5218 -- Report a simple error: if the designated object is a local task,
5219 -- its body has not been seen yet, and its activation will fail an
5220 -- elaboration check.
5222 if Is_Task_Type (Desig_T)
5223 and then Scope (Base_Type (Desig_T)) = Current_Scope
5224 and then Is_Compilation_Unit (Current_Scope)
5225 and then Ekind (Current_Scope) = E_Package
5226 and then not In_Package_Body (Current_Scope)
5227 then
5228 Error_Msg_Warn := SPARK_Mode /= On;
5229 Error_Msg_N ("cannot activate task before body seen<<", N);
5230 Error_Msg_N ("\Program_Error [<<", N);
5231 end if;
5233 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
5234 -- type with a task component on a subpool. This action must raise
5235 -- Program_Error at runtime.
5237 if Ada_Version >= Ada_2012
5238 and then Nkind (N) = N_Allocator
5239 and then Present (Subpool_Handle_Name (N))
5240 and then Has_Task (Desig_T)
5241 then
5242 Error_Msg_Warn := SPARK_Mode /= On;
5243 Error_Msg_N ("cannot allocate task on subpool<<", N);
5244 Error_Msg_N ("\Program_Error [<<", N);
5246 Rewrite (N,
5247 Make_Raise_Program_Error (Sloc (N),
5248 Reason => PE_Explicit_Raise));
5249 Set_Etype (N, Typ);
5250 end if;
5251 end Resolve_Allocator;
5253 ---------------------------
5254 -- Resolve_Arithmetic_Op --
5255 ---------------------------
5257 -- Used for resolving all arithmetic operators except exponentiation
5259 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
5260 L : constant Node_Id := Left_Opnd (N);
5261 R : constant Node_Id := Right_Opnd (N);
5262 TL : constant Entity_Id := Base_Type (Etype (L));
5263 TR : constant Entity_Id := Base_Type (Etype (R));
5264 T : Entity_Id;
5265 Rop : Node_Id;
5267 B_Typ : constant Entity_Id := Base_Type (Typ);
5268 -- We do the resolution using the base type, because intermediate values
5269 -- in expressions always are of the base type, not a subtype of it.
5271 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
5272 -- Returns True if N is in a context that expects "any real type"
5274 function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
5275 -- Return True iff given type is Integer or universal real/integer
5277 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
5278 -- Choose type of integer literal in fixed-point operation to conform
5279 -- to available fixed-point type. T is the type of the other operand,
5280 -- which is needed to determine the expected type of N.
5282 procedure Set_Operand_Type (N : Node_Id);
5283 -- Set operand type to T if universal
5285 -------------------------------
5286 -- Expected_Type_Is_Any_Real --
5287 -------------------------------
5289 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
5290 begin
5291 -- N is the expression after "delta" in a fixed_point_definition;
5292 -- see RM-3.5.9(6):
5294 return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
5295 N_Decimal_Fixed_Point_Definition,
5297 -- N is one of the bounds in a real_range_specification;
5298 -- see RM-3.5.7(5):
5300 N_Real_Range_Specification,
5302 -- N is the expression of a delta_constraint;
5303 -- see RM-J.3(3):
5305 N_Delta_Constraint);
5306 end Expected_Type_Is_Any_Real;
5308 -----------------------------
5309 -- Is_Integer_Or_Universal --
5310 -----------------------------
5312 function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
5313 T : Entity_Id;
5314 Index : Interp_Index;
5315 It : Interp;
5317 begin
5318 if not Is_Overloaded (N) then
5319 T := Etype (N);
5320 return Base_Type (T) = Base_Type (Standard_Integer)
5321 or else T = Universal_Integer
5322 or else T = Universal_Real;
5323 else
5324 Get_First_Interp (N, Index, It);
5325 while Present (It.Typ) loop
5326 if Base_Type (It.Typ) = Base_Type (Standard_Integer)
5327 or else It.Typ = Universal_Integer
5328 or else It.Typ = Universal_Real
5329 then
5330 return True;
5331 end if;
5333 Get_Next_Interp (Index, It);
5334 end loop;
5335 end if;
5337 return False;
5338 end Is_Integer_Or_Universal;
5340 ----------------------------
5341 -- Set_Mixed_Mode_Operand --
5342 ----------------------------
5344 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
5345 Index : Interp_Index;
5346 It : Interp;
5348 begin
5349 if Universal_Interpretation (N) = Universal_Integer then
5351 -- A universal integer literal is resolved as standard integer
5352 -- except in the case of a fixed-point result, where we leave it
5353 -- as universal (to be handled by Exp_Fixd later on)
5355 if Is_Fixed_Point_Type (T) then
5356 Resolve (N, Universal_Integer);
5357 else
5358 Resolve (N, Standard_Integer);
5359 end if;
5361 elsif Universal_Interpretation (N) = Universal_Real
5362 and then (T = Base_Type (Standard_Integer)
5363 or else T = Universal_Integer
5364 or else T = Universal_Real)
5365 then
5366 -- A universal real can appear in a fixed-type context. We resolve
5367 -- the literal with that context, even though this might raise an
5368 -- exception prematurely (the other operand may be zero).
5370 Resolve (N, B_Typ);
5372 elsif Etype (N) = Base_Type (Standard_Integer)
5373 and then T = Universal_Real
5374 and then Is_Overloaded (N)
5375 then
5376 -- Integer arg in mixed-mode operation. Resolve with universal
5377 -- type, in case preference rule must be applied.
5379 Resolve (N, Universal_Integer);
5381 elsif Etype (N) = T
5382 and then B_Typ /= Universal_Fixed
5383 then
5384 -- Not a mixed-mode operation, resolve with context
5386 Resolve (N, B_Typ);
5388 elsif Etype (N) = Any_Fixed then
5390 -- N may itself be a mixed-mode operation, so use context type
5392 Resolve (N, B_Typ);
5394 elsif Is_Fixed_Point_Type (T)
5395 and then B_Typ = Universal_Fixed
5396 and then Is_Overloaded (N)
5397 then
5398 -- Must be (fixed * fixed) operation, operand must have one
5399 -- compatible interpretation.
5401 Resolve (N, Any_Fixed);
5403 elsif Is_Fixed_Point_Type (B_Typ)
5404 and then (T = Universal_Real or else Is_Fixed_Point_Type (T))
5405 and then Is_Overloaded (N)
5406 then
5407 -- C * F(X) in a fixed context, where C is a real literal or a
5408 -- fixed-point expression. F must have either a fixed type
5409 -- interpretation or an integer interpretation, but not both.
5411 Get_First_Interp (N, Index, It);
5412 while Present (It.Typ) loop
5413 if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
5414 if Analyzed (N) then
5415 Error_Msg_N ("ambiguous operand in fixed operation", N);
5416 else
5417 Resolve (N, Standard_Integer);
5418 end if;
5420 elsif Is_Fixed_Point_Type (It.Typ) then
5421 if Analyzed (N) then
5422 Error_Msg_N ("ambiguous operand in fixed operation", N);
5423 else
5424 Resolve (N, It.Typ);
5425 end if;
5426 end if;
5428 Get_Next_Interp (Index, It);
5429 end loop;
5431 -- Reanalyze the literal with the fixed type of the context. If
5432 -- context is Universal_Fixed, we are within a conversion, leave
5433 -- the literal as a universal real because there is no usable
5434 -- fixed type, and the target of the conversion plays no role in
5435 -- the resolution.
5437 declare
5438 Op2 : Node_Id;
5439 T2 : Entity_Id;
5441 begin
5442 if N = L then
5443 Op2 := R;
5444 else
5445 Op2 := L;
5446 end if;
5448 if B_Typ = Universal_Fixed
5449 and then Nkind (Op2) = N_Real_Literal
5450 then
5451 T2 := Universal_Real;
5452 else
5453 T2 := B_Typ;
5454 end if;
5456 Set_Analyzed (Op2, False);
5457 Resolve (Op2, T2);
5458 end;
5460 -- A universal real conditional expression can appear in a fixed-type
5461 -- context and must be resolved with that context to facilitate the
5462 -- code generation to the backend.
5464 elsif Nkind_In (N, N_Case_Expression, N_If_Expression)
5465 and then Etype (N) = Universal_Real
5466 and then Is_Fixed_Point_Type (B_Typ)
5467 then
5468 Resolve (N, B_Typ);
5470 else
5471 Resolve (N);
5472 end if;
5473 end Set_Mixed_Mode_Operand;
5475 ----------------------
5476 -- Set_Operand_Type --
5477 ----------------------
5479 procedure Set_Operand_Type (N : Node_Id) is
5480 begin
5481 if Etype (N) = Universal_Integer
5482 or else Etype (N) = Universal_Real
5483 then
5484 Set_Etype (N, T);
5485 end if;
5486 end Set_Operand_Type;
5488 -- Start of processing for Resolve_Arithmetic_Op
5490 begin
5491 if Comes_From_Source (N)
5492 and then Ekind (Entity (N)) = E_Function
5493 and then Is_Imported (Entity (N))
5494 and then Is_Intrinsic_Subprogram (Entity (N))
5495 then
5496 Resolve_Intrinsic_Operator (N, Typ);
5497 return;
5499 -- Special-case for mixed-mode universal expressions or fixed point type
5500 -- operation: each argument is resolved separately. The same treatment
5501 -- is required if one of the operands of a fixed point operation is
5502 -- universal real, since in this case we don't do a conversion to a
5503 -- specific fixed-point type (instead the expander handles the case).
5505 -- Set the type of the node to its universal interpretation because
5506 -- legality checks on an exponentiation operand need the context.
5508 elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
5509 and then Present (Universal_Interpretation (L))
5510 and then Present (Universal_Interpretation (R))
5511 then
5512 Set_Etype (N, B_Typ);
5513 Resolve (L, Universal_Interpretation (L));
5514 Resolve (R, Universal_Interpretation (R));
5516 elsif (B_Typ = Universal_Real
5517 or else Etype (N) = Universal_Fixed
5518 or else (Etype (N) = Any_Fixed
5519 and then Is_Fixed_Point_Type (B_Typ))
5520 or else (Is_Fixed_Point_Type (B_Typ)
5521 and then (Is_Integer_Or_Universal (L)
5522 or else
5523 Is_Integer_Or_Universal (R))))
5524 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5525 then
5526 if TL = Universal_Integer or else TR = Universal_Integer then
5527 Check_For_Visible_Operator (N, B_Typ);
5528 end if;
5530 -- If context is a fixed type and one operand is integer, the other
5531 -- is resolved with the type of the context.
5533 if Is_Fixed_Point_Type (B_Typ)
5534 and then (Base_Type (TL) = Base_Type (Standard_Integer)
5535 or else TL = Universal_Integer)
5536 then
5537 Resolve (R, B_Typ);
5538 Resolve (L, TL);
5540 elsif Is_Fixed_Point_Type (B_Typ)
5541 and then (Base_Type (TR) = Base_Type (Standard_Integer)
5542 or else TR = Universal_Integer)
5543 then
5544 Resolve (L, B_Typ);
5545 Resolve (R, TR);
5547 -- If both operands are universal and the context is a floating
5548 -- point type, the operands are resolved to the type of the context.
5550 elsif Is_Floating_Point_Type (B_Typ) then
5551 Resolve (L, B_Typ);
5552 Resolve (R, B_Typ);
5554 else
5555 Set_Mixed_Mode_Operand (L, TR);
5556 Set_Mixed_Mode_Operand (R, TL);
5557 end if;
5559 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
5560 -- multiplying operators from being used when the expected type is
5561 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
5562 -- some cases where the expected type is actually Any_Real;
5563 -- Expected_Type_Is_Any_Real takes care of that case.
5565 if Etype (N) = Universal_Fixed
5566 or else Etype (N) = Any_Fixed
5567 then
5568 if B_Typ = Universal_Fixed
5569 and then not Expected_Type_Is_Any_Real (N)
5570 and then not Nkind_In (Parent (N), N_Type_Conversion,
5571 N_Unchecked_Type_Conversion)
5572 then
5573 Error_Msg_N ("type cannot be determined from context!", N);
5574 Error_Msg_N ("\explicit conversion to result type required", N);
5576 Set_Etype (L, Any_Type);
5577 Set_Etype (R, Any_Type);
5579 else
5580 if Ada_Version = Ada_83
5581 and then Etype (N) = Universal_Fixed
5582 and then not
5583 Nkind_In (Parent (N), N_Type_Conversion,
5584 N_Unchecked_Type_Conversion)
5585 then
5586 Error_Msg_N
5587 ("(Ada 83) fixed-point operation needs explicit "
5588 & "conversion", N);
5589 end if;
5591 -- The expected type is "any real type" in contexts like
5593 -- type T is delta <universal_fixed-expression> ...
5595 -- in which case we need to set the type to Universal_Real
5596 -- so that static expression evaluation will work properly.
5598 if Expected_Type_Is_Any_Real (N) then
5599 Set_Etype (N, Universal_Real);
5600 else
5601 Set_Etype (N, B_Typ);
5602 end if;
5603 end if;
5605 elsif Is_Fixed_Point_Type (B_Typ)
5606 and then (Is_Integer_Or_Universal (L)
5607 or else Nkind (L) = N_Real_Literal
5608 or else Nkind (R) = N_Real_Literal
5609 or else Is_Integer_Or_Universal (R))
5610 then
5611 Set_Etype (N, B_Typ);
5613 elsif Etype (N) = Any_Fixed then
5615 -- If no previous errors, this is only possible if one operand is
5616 -- overloaded and the context is universal. Resolve as such.
5618 Set_Etype (N, B_Typ);
5619 end if;
5621 else
5622 if (TL = Universal_Integer or else TL = Universal_Real)
5623 and then
5624 (TR = Universal_Integer or else TR = Universal_Real)
5625 then
5626 Check_For_Visible_Operator (N, B_Typ);
5627 end if;
5629 -- If the context is Universal_Fixed and the operands are also
5630 -- universal fixed, this is an error, unless there is only one
5631 -- applicable fixed_point type (usually Duration).
5633 if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
5634 T := Unique_Fixed_Point_Type (N);
5636 if T = Any_Type then
5637 Set_Etype (N, T);
5638 return;
5639 else
5640 Resolve (L, T);
5641 Resolve (R, T);
5642 end if;
5644 else
5645 Resolve (L, B_Typ);
5646 Resolve (R, B_Typ);
5647 end if;
5649 -- If one of the arguments was resolved to a non-universal type.
5650 -- label the result of the operation itself with the same type.
5651 -- Do the same for the universal argument, if any.
5653 T := Intersect_Types (L, R);
5654 Set_Etype (N, Base_Type (T));
5655 Set_Operand_Type (L);
5656 Set_Operand_Type (R);
5657 end if;
5659 Generate_Operator_Reference (N, Typ);
5660 Analyze_Dimension (N);
5661 Eval_Arithmetic_Op (N);
5663 -- In SPARK, a multiplication or division with operands of fixed point
5664 -- types must be qualified or explicitly converted to identify the
5665 -- result type.
5667 if (Is_Fixed_Point_Type (Etype (L))
5668 or else Is_Fixed_Point_Type (Etype (R)))
5669 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5670 and then
5671 not Nkind_In (Parent (N), N_Qualified_Expression, N_Type_Conversion)
5672 then
5673 Check_SPARK_05_Restriction
5674 ("operation should be qualified or explicitly converted", N);
5675 end if;
5677 -- Set overflow and division checking bit
5679 if Nkind (N) in N_Op then
5680 if not Overflow_Checks_Suppressed (Etype (N)) then
5681 Enable_Overflow_Check (N);
5682 end if;
5684 -- Give warning if explicit division by zero
5686 if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
5687 and then not Division_Checks_Suppressed (Etype (N))
5688 then
5689 Rop := Right_Opnd (N);
5691 if Compile_Time_Known_Value (Rop)
5692 and then ((Is_Integer_Type (Etype (Rop))
5693 and then Expr_Value (Rop) = Uint_0)
5694 or else
5695 (Is_Real_Type (Etype (Rop))
5696 and then Expr_Value_R (Rop) = Ureal_0))
5697 then
5698 -- Specialize the warning message according to the operation.
5699 -- When SPARK_Mode is On, force a warning instead of an error
5700 -- in that case, as this likely corresponds to deactivated
5701 -- code. The following warnings are for the case
5703 case Nkind (N) is
5704 when N_Op_Divide =>
5706 -- For division, we have two cases, for float division
5707 -- of an unconstrained float type, on a machine where
5708 -- Machine_Overflows is false, we don't get an exception
5709 -- at run-time, but rather an infinity or Nan. The Nan
5710 -- case is pretty obscure, so just warn about infinities.
5712 if Is_Floating_Point_Type (Typ)
5713 and then not Is_Constrained (Typ)
5714 and then not Machine_Overflows_On_Target
5715 then
5716 Error_Msg_N
5717 ("float division by zero, may generate "
5718 & "'+'/'- infinity??", Right_Opnd (N));
5720 -- For all other cases, we get a Constraint_Error
5722 else
5723 Apply_Compile_Time_Constraint_Error
5724 (N, "division by zero??", CE_Divide_By_Zero,
5725 Loc => Sloc (Right_Opnd (N)),
5726 Warn => SPARK_Mode = On);
5727 end if;
5729 when N_Op_Rem =>
5730 Apply_Compile_Time_Constraint_Error
5731 (N, "rem with zero divisor??", CE_Divide_By_Zero,
5732 Loc => Sloc (Right_Opnd (N)),
5733 Warn => SPARK_Mode = On);
5735 when N_Op_Mod =>
5736 Apply_Compile_Time_Constraint_Error
5737 (N, "mod with zero divisor??", CE_Divide_By_Zero,
5738 Loc => Sloc (Right_Opnd (N)),
5739 Warn => SPARK_Mode = On);
5741 -- Division by zero can only happen with division, rem,
5742 -- and mod operations.
5744 when others =>
5745 raise Program_Error;
5746 end case;
5748 -- In GNATprove mode, we enable the division check so that
5749 -- GNATprove will issue a message if it cannot be proved.
5751 if GNATprove_Mode then
5752 Activate_Division_Check (N);
5753 end if;
5755 -- Otherwise just set the flag to check at run time
5757 else
5758 Activate_Division_Check (N);
5759 end if;
5760 end if;
5762 -- If Restriction No_Implicit_Conditionals is active, then it is
5763 -- violated if either operand can be negative for mod, or for rem
5764 -- if both operands can be negative.
5766 if Restriction_Check_Required (No_Implicit_Conditionals)
5767 and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
5768 then
5769 declare
5770 Lo : Uint;
5771 Hi : Uint;
5772 OK : Boolean;
5774 LNeg : Boolean;
5775 RNeg : Boolean;
5776 -- Set if corresponding operand might be negative
5778 begin
5779 Determine_Range
5780 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5781 LNeg := (not OK) or else Lo < 0;
5783 Determine_Range
5784 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5785 RNeg := (not OK) or else Lo < 0;
5787 -- Check if we will be generating conditionals. There are two
5788 -- cases where that can happen, first for REM, the only case
5789 -- is largest negative integer mod -1, where the division can
5790 -- overflow, but we still have to give the right result. The
5791 -- front end generates a test for this annoying case. Here we
5792 -- just test if both operands can be negative (that's what the
5793 -- expander does, so we match its logic here).
5795 -- The second case is mod where either operand can be negative.
5796 -- In this case, the back end has to generate additional tests.
5798 if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
5799 or else
5800 (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
5801 then
5802 Check_Restriction (No_Implicit_Conditionals, N);
5803 end if;
5804 end;
5805 end if;
5806 end if;
5808 Check_Unset_Reference (L);
5809 Check_Unset_Reference (R);
5810 end Resolve_Arithmetic_Op;
5812 ------------------
5813 -- Resolve_Call --
5814 ------------------
5816 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
5817 function Same_Or_Aliased_Subprograms
5818 (S : Entity_Id;
5819 E : Entity_Id) return Boolean;
5820 -- Returns True if the subprogram entity S is the same as E or else
5821 -- S is an alias of E.
5823 ---------------------------------
5824 -- Same_Or_Aliased_Subprograms --
5825 ---------------------------------
5827 function Same_Or_Aliased_Subprograms
5828 (S : Entity_Id;
5829 E : Entity_Id) return Boolean
5831 Subp_Alias : constant Entity_Id := Alias (S);
5832 begin
5833 return S = E or else (Present (Subp_Alias) and then Subp_Alias = E);
5834 end Same_Or_Aliased_Subprograms;
5836 -- Local variables
5838 Loc : constant Source_Ptr := Sloc (N);
5839 Subp : constant Node_Id := Name (N);
5840 Body_Id : Entity_Id;
5841 I : Interp_Index;
5842 It : Interp;
5843 Nam : Entity_Id;
5844 Nam_Decl : Node_Id;
5845 Nam_UA : Entity_Id;
5846 Norm_OK : Boolean;
5847 Rtype : Entity_Id;
5848 Scop : Entity_Id;
5850 -- Start of processing for Resolve_Call
5852 begin
5853 -- Preserve relevant elaboration-related attributes of the context which
5854 -- are no longer available or very expensive to recompute once analysis,
5855 -- resolution, and expansion are over.
5857 Mark_Elaboration_Attributes
5858 (N_Id => N,
5859 Checks => True,
5860 Modes => True,
5861 Warnings => True);
5863 -- The context imposes a unique interpretation with type Typ on a
5864 -- procedure or function call. Find the entity of the subprogram that
5865 -- yields the expected type, and propagate the corresponding formal
5866 -- constraints on the actuals. The caller has established that an
5867 -- interpretation exists, and emitted an error if not unique.
5869 -- First deal with the case of a call to an access-to-subprogram,
5870 -- dereference made explicit in Analyze_Call.
5872 if Ekind (Etype (Subp)) = E_Subprogram_Type then
5873 if not Is_Overloaded (Subp) then
5874 Nam := Etype (Subp);
5876 else
5877 -- Find the interpretation whose type (a subprogram type) has a
5878 -- return type that is compatible with the context. Analysis of
5879 -- the node has established that one exists.
5881 Nam := Empty;
5883 Get_First_Interp (Subp, I, It);
5884 while Present (It.Typ) loop
5885 if Covers (Typ, Etype (It.Typ)) then
5886 Nam := It.Typ;
5887 exit;
5888 end if;
5890 Get_Next_Interp (I, It);
5891 end loop;
5893 if No (Nam) then
5894 raise Program_Error;
5895 end if;
5896 end if;
5898 -- If the prefix is not an entity, then resolve it
5900 if not Is_Entity_Name (Subp) then
5901 Resolve (Subp, Nam);
5902 end if;
5904 -- For an indirect call, we always invalidate checks, since we do not
5905 -- know whether the subprogram is local or global. Yes we could do
5906 -- better here, e.g. by knowing that there are no local subprograms,
5907 -- but it does not seem worth the effort. Similarly, we kill all
5908 -- knowledge of current constant values.
5910 Kill_Current_Values;
5912 -- If this is a procedure call which is really an entry call, do
5913 -- the conversion of the procedure call to an entry call. Protected
5914 -- operations use the same circuitry because the name in the call
5915 -- can be an arbitrary expression with special resolution rules.
5917 elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
5918 or else (Is_Entity_Name (Subp)
5919 and then Ekind_In (Entity (Subp), E_Entry, E_Entry_Family))
5920 then
5921 Resolve_Entry_Call (N, Typ);
5923 if Legacy_Elaboration_Checks then
5924 Check_Elab_Call (N);
5925 end if;
5927 -- Annotate the tree by creating a call marker in case the original
5928 -- call is transformed by expansion. The call marker is automatically
5929 -- saved for later examination by the ABE Processing phase.
5931 Build_Call_Marker (N);
5933 -- Kill checks and constant values, as above for indirect case
5934 -- Who knows what happens when another task is activated?
5936 Kill_Current_Values;
5937 return;
5939 -- Normal subprogram call with name established in Resolve
5941 elsif not (Is_Type (Entity (Subp))) then
5942 Nam := Entity (Subp);
5943 Set_Entity_With_Checks (Subp, Nam);
5945 -- Otherwise we must have the case of an overloaded call
5947 else
5948 pragma Assert (Is_Overloaded (Subp));
5950 -- Initialize Nam to prevent warning (we know it will be assigned
5951 -- in the loop below, but the compiler does not know that).
5953 Nam := Empty;
5955 Get_First_Interp (Subp, I, It);
5956 while Present (It.Typ) loop
5957 if Covers (Typ, It.Typ) then
5958 Nam := It.Nam;
5959 Set_Entity_With_Checks (Subp, Nam);
5960 exit;
5961 end if;
5963 Get_Next_Interp (I, It);
5964 end loop;
5965 end if;
5967 if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
5968 and then not Is_Access_Subprogram_Type (Base_Type (Typ))
5969 and then Nkind (Subp) /= N_Explicit_Dereference
5970 and then Present (Parameter_Associations (N))
5971 then
5972 -- The prefix is a parameterless function call that returns an access
5973 -- to subprogram. If parameters are present in the current call, add
5974 -- add an explicit dereference. We use the base type here because
5975 -- within an instance these may be subtypes.
5977 -- The dereference is added either in Analyze_Call or here. Should
5978 -- be consolidated ???
5980 Set_Is_Overloaded (Subp, False);
5981 Set_Etype (Subp, Etype (Nam));
5982 Insert_Explicit_Dereference (Subp);
5983 Nam := Designated_Type (Etype (Nam));
5984 Resolve (Subp, Nam);
5985 end if;
5987 -- Check that a call to Current_Task does not occur in an entry body
5989 if Is_RTE (Nam, RE_Current_Task) then
5990 declare
5991 P : Node_Id;
5993 begin
5994 P := N;
5995 loop
5996 P := Parent (P);
5998 -- Exclude calls that occur within the default of a formal
5999 -- parameter of the entry, since those are evaluated outside
6000 -- of the body.
6002 exit when No (P) or else Nkind (P) = N_Parameter_Specification;
6004 if Nkind (P) = N_Entry_Body
6005 or else (Nkind (P) = N_Subprogram_Body
6006 and then Is_Entry_Barrier_Function (P))
6007 then
6008 Rtype := Etype (N);
6009 Error_Msg_Warn := SPARK_Mode /= On;
6010 Error_Msg_NE
6011 ("& should not be used in entry body (RM C.7(17))<<",
6012 N, Nam);
6013 Error_Msg_NE ("\Program_Error [<<", N, Nam);
6014 Rewrite (N,
6015 Make_Raise_Program_Error (Loc,
6016 Reason => PE_Current_Task_In_Entry_Body));
6017 Set_Etype (N, Rtype);
6018 return;
6019 end if;
6020 end loop;
6021 end;
6022 end if;
6024 -- Check that a procedure call does not occur in the context of the
6025 -- entry call statement of a conditional or timed entry call. Note that
6026 -- the case of a call to a subprogram renaming of an entry will also be
6027 -- rejected. The test for N not being an N_Entry_Call_Statement is
6028 -- defensive, covering the possibility that the processing of entry
6029 -- calls might reach this point due to later modifications of the code
6030 -- above.
6032 if Nkind (Parent (N)) = N_Entry_Call_Alternative
6033 and then Nkind (N) /= N_Entry_Call_Statement
6034 and then Entry_Call_Statement (Parent (N)) = N
6035 then
6036 if Ada_Version < Ada_2005 then
6037 Error_Msg_N ("entry call required in select statement", N);
6039 -- Ada 2005 (AI-345): If a procedure_call_statement is used
6040 -- for a procedure_or_entry_call, the procedure_name or
6041 -- procedure_prefix of the procedure_call_statement shall denote
6042 -- an entry renamed by a procedure, or (a view of) a primitive
6043 -- subprogram of a limited interface whose first parameter is
6044 -- a controlling parameter.
6046 elsif Nkind (N) = N_Procedure_Call_Statement
6047 and then not Is_Renamed_Entry (Nam)
6048 and then not Is_Controlling_Limited_Procedure (Nam)
6049 then
6050 Error_Msg_N
6051 ("entry call or dispatching primitive of interface required", N);
6052 end if;
6053 end if;
6055 -- If the SPARK_05 restriction is active, we are not allowed
6056 -- to have a call to a subprogram before we see its completion.
6058 if not Has_Completion (Nam)
6059 and then Restriction_Check_Required (SPARK_05)
6061 -- Don't flag strange internal calls
6063 and then Comes_From_Source (N)
6064 and then Comes_From_Source (Nam)
6066 -- Only flag calls in extended main source
6068 and then In_Extended_Main_Source_Unit (Nam)
6069 and then In_Extended_Main_Source_Unit (N)
6071 -- Exclude enumeration literals from this processing
6073 and then Ekind (Nam) /= E_Enumeration_Literal
6074 then
6075 Check_SPARK_05_Restriction
6076 ("call to subprogram cannot appear before its body", N);
6077 end if;
6079 -- Check that this is not a call to a protected procedure or entry from
6080 -- within a protected function.
6082 Check_Internal_Protected_Use (N, Nam);
6084 -- Freeze the subprogram name if not in a spec-expression. Note that
6085 -- we freeze procedure calls as well as function calls. Procedure calls
6086 -- are not frozen according to the rules (RM 13.14(14)) because it is
6087 -- impossible to have a procedure call to a non-frozen procedure in
6088 -- pure Ada, but in the code that we generate in the expander, this
6089 -- rule needs extending because we can generate procedure calls that
6090 -- need freezing.
6092 -- In Ada 2012, expression functions may be called within pre/post
6093 -- conditions of subsequent functions or expression functions. Such
6094 -- calls do not freeze when they appear within generated bodies,
6095 -- (including the body of another expression function) which would
6096 -- place the freeze node in the wrong scope. An expression function
6097 -- is frozen in the usual fashion, by the appearance of a real body,
6098 -- or at the end of a declarative part.
6100 if Is_Entity_Name (Subp)
6101 and then not In_Spec_Expression
6102 and then not Is_Expression_Function_Or_Completion (Current_Scope)
6103 and then
6104 (not Is_Expression_Function_Or_Completion (Entity (Subp))
6105 or else Scope (Entity (Subp)) = Current_Scope)
6106 then
6107 Freeze_Expression (Subp);
6108 end if;
6110 -- For a predefined operator, the type of the result is the type imposed
6111 -- by context, except for a predefined operation on universal fixed.
6112 -- Otherwise The type of the call is the type returned by the subprogram
6113 -- being called.
6115 if Is_Predefined_Op (Nam) then
6116 if Etype (N) /= Universal_Fixed then
6117 Set_Etype (N, Typ);
6118 end if;
6120 -- If the subprogram returns an array type, and the context requires the
6121 -- component type of that array type, the node is really an indexing of
6122 -- the parameterless call. Resolve as such. A pathological case occurs
6123 -- when the type of the component is an access to the array type. In
6124 -- this case the call is truly ambiguous. If the call is to an intrinsic
6125 -- subprogram, it can't be an indexed component. This check is necessary
6126 -- because if it's Unchecked_Conversion, and we have "type T_Ptr is
6127 -- access T;" and "type T is array (...) of T_Ptr;" (i.e. an array of
6128 -- pointers to the same array), the compiler gets confused and does an
6129 -- infinite recursion.
6131 elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
6132 and then
6133 ((Is_Array_Type (Etype (Nam))
6134 and then Covers (Typ, Component_Type (Etype (Nam))))
6135 or else
6136 (Is_Access_Type (Etype (Nam))
6137 and then Is_Array_Type (Designated_Type (Etype (Nam)))
6138 and then
6139 Covers (Typ, Component_Type (Designated_Type (Etype (Nam))))
6140 and then not Is_Intrinsic_Subprogram (Entity (Subp))))
6141 then
6142 declare
6143 Index_Node : Node_Id;
6144 New_Subp : Node_Id;
6145 Ret_Type : constant Entity_Id := Etype (Nam);
6147 begin
6148 if Is_Access_Type (Ret_Type)
6149 and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
6150 then
6151 Error_Msg_N
6152 ("cannot disambiguate function call and indexing", N);
6153 else
6154 New_Subp := Relocate_Node (Subp);
6156 -- The called entity may be an explicit dereference, in which
6157 -- case there is no entity to set.
6159 if Nkind (New_Subp) /= N_Explicit_Dereference then
6160 Set_Entity (Subp, Nam);
6161 end if;
6163 if (Is_Array_Type (Ret_Type)
6164 and then Component_Type (Ret_Type) /= Any_Type)
6165 or else
6166 (Is_Access_Type (Ret_Type)
6167 and then
6168 Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
6169 then
6170 if Needs_No_Actuals (Nam) then
6172 -- Indexed call to a parameterless function
6174 Index_Node :=
6175 Make_Indexed_Component (Loc,
6176 Prefix =>
6177 Make_Function_Call (Loc, Name => New_Subp),
6178 Expressions => Parameter_Associations (N));
6179 else
6180 -- An Ada 2005 prefixed call to a primitive operation
6181 -- whose first parameter is the prefix. This prefix was
6182 -- prepended to the parameter list, which is actually a
6183 -- list of indexes. Remove the prefix in order to build
6184 -- the proper indexed component.
6186 Index_Node :=
6187 Make_Indexed_Component (Loc,
6188 Prefix =>
6189 Make_Function_Call (Loc,
6190 Name => New_Subp,
6191 Parameter_Associations =>
6192 New_List
6193 (Remove_Head (Parameter_Associations (N)))),
6194 Expressions => Parameter_Associations (N));
6195 end if;
6197 -- Preserve the parenthesis count of the node
6199 Set_Paren_Count (Index_Node, Paren_Count (N));
6201 -- Since we are correcting a node classification error made
6202 -- by the parser, we call Replace rather than Rewrite.
6204 Replace (N, Index_Node);
6206 Set_Etype (Prefix (N), Ret_Type);
6207 Set_Etype (N, Typ);
6208 Resolve_Indexed_Component (N, Typ);
6210 if Legacy_Elaboration_Checks then
6211 Check_Elab_Call (Prefix (N));
6212 end if;
6214 -- Annotate the tree by creating a call marker in case
6215 -- the original call is transformed by expansion. The call
6216 -- marker is automatically saved for later examination by
6217 -- the ABE Processing phase.
6219 Build_Call_Marker (Prefix (N));
6220 end if;
6221 end if;
6223 return;
6224 end;
6226 else
6227 -- If the called function is not declared in the main unit and it
6228 -- returns the limited view of type then use the available view (as
6229 -- is done in Try_Object_Operation) to prevent back-end confusion;
6230 -- for the function entity itself. The call must appear in a context
6231 -- where the nonlimited view is available. If the function entity is
6232 -- in the extended main unit then no action is needed, because the
6233 -- back end handles this case. In either case the type of the call
6234 -- is the nonlimited view.
6236 if From_Limited_With (Etype (Nam))
6237 and then Present (Available_View (Etype (Nam)))
6238 then
6239 Set_Etype (N, Available_View (Etype (Nam)));
6241 if not In_Extended_Main_Code_Unit (Nam) then
6242 Set_Etype (Nam, Available_View (Etype (Nam)));
6243 end if;
6245 else
6246 Set_Etype (N, Etype (Nam));
6247 end if;
6248 end if;
6250 -- In the case where the call is to an overloaded subprogram, Analyze
6251 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
6252 -- such a case Normalize_Actuals needs to be called once more to order
6253 -- the actuals correctly. Otherwise the call will have the ordering
6254 -- given by the last overloaded subprogram whether this is the correct
6255 -- one being called or not.
6257 if Is_Overloaded (Subp) then
6258 Normalize_Actuals (N, Nam, False, Norm_OK);
6259 pragma Assert (Norm_OK);
6260 end if;
6262 -- In any case, call is fully resolved now. Reset Overload flag, to
6263 -- prevent subsequent overload resolution if node is analyzed again
6265 Set_Is_Overloaded (Subp, False);
6266 Set_Is_Overloaded (N, False);
6268 -- A Ghost entity must appear in a specific context
6270 if Is_Ghost_Entity (Nam) and then Comes_From_Source (N) then
6271 Check_Ghost_Context (Nam, N);
6272 end if;
6274 -- If we are calling the current subprogram from immediately within its
6275 -- body, then that is the case where we can sometimes detect cases of
6276 -- infinite recursion statically. Do not try this in case restriction
6277 -- No_Recursion is in effect anyway, and do it only for source calls.
6279 if Comes_From_Source (N) then
6280 Scop := Current_Scope;
6282 -- Check violation of SPARK_05 restriction which does not permit
6283 -- a subprogram body to contain a call to the subprogram directly.
6285 if Restriction_Check_Required (SPARK_05)
6286 and then Same_Or_Aliased_Subprograms (Nam, Scop)
6287 then
6288 Check_SPARK_05_Restriction
6289 ("subprogram may not contain direct call to itself", N);
6290 end if;
6292 -- Issue warning for possible infinite recursion in the absence
6293 -- of the No_Recursion restriction.
6295 if Same_Or_Aliased_Subprograms (Nam, Scop)
6296 and then not Restriction_Active (No_Recursion)
6297 and then Check_Infinite_Recursion (N)
6298 then
6299 -- Here we detected and flagged an infinite recursion, so we do
6300 -- not need to test the case below for further warnings. Also we
6301 -- are all done if we now have a raise SE node.
6303 if Nkind (N) = N_Raise_Storage_Error then
6304 return;
6305 end if;
6307 -- If call is to immediately containing subprogram, then check for
6308 -- the case of a possible run-time detectable infinite recursion.
6310 else
6311 Scope_Loop : while Scop /= Standard_Standard loop
6312 if Same_Or_Aliased_Subprograms (Nam, Scop) then
6314 -- Although in general case, recursion is not statically
6315 -- checkable, the case of calling an immediately containing
6316 -- subprogram is easy to catch.
6318 Check_Restriction (No_Recursion, N);
6320 -- If the recursive call is to a parameterless subprogram,
6321 -- then even if we can't statically detect infinite
6322 -- recursion, this is pretty suspicious, and we output a
6323 -- warning. Furthermore, we will try later to detect some
6324 -- cases here at run time by expanding checking code (see
6325 -- Detect_Infinite_Recursion in package Exp_Ch6).
6327 -- If the recursive call is within a handler, do not emit a
6328 -- warning, because this is a common idiom: loop until input
6329 -- is correct, catch illegal input in handler and restart.
6331 if No (First_Formal (Nam))
6332 and then Etype (Nam) = Standard_Void_Type
6333 and then not Error_Posted (N)
6334 and then Nkind (Parent (N)) /= N_Exception_Handler
6335 then
6336 -- For the case of a procedure call. We give the message
6337 -- only if the call is the first statement in a sequence
6338 -- of statements, or if all previous statements are
6339 -- simple assignments. This is simply a heuristic to
6340 -- decrease false positives, without losing too many good
6341 -- warnings. The idea is that these previous statements
6342 -- may affect global variables the procedure depends on.
6343 -- We also exclude raise statements, that may arise from
6344 -- constraint checks and are probably unrelated to the
6345 -- intended control flow.
6347 if Nkind (N) = N_Procedure_Call_Statement
6348 and then Is_List_Member (N)
6349 then
6350 declare
6351 P : Node_Id;
6352 begin
6353 P := Prev (N);
6354 while Present (P) loop
6355 if not Nkind_In (P, N_Assignment_Statement,
6356 N_Raise_Constraint_Error)
6357 then
6358 exit Scope_Loop;
6359 end if;
6361 Prev (P);
6362 end loop;
6363 end;
6364 end if;
6366 -- Do not give warning if we are in a conditional context
6368 declare
6369 K : constant Node_Kind := Nkind (Parent (N));
6370 begin
6371 if (K = N_Loop_Statement
6372 and then Present (Iteration_Scheme (Parent (N))))
6373 or else K = N_If_Statement
6374 or else K = N_Elsif_Part
6375 or else K = N_Case_Statement_Alternative
6376 then
6377 exit Scope_Loop;
6378 end if;
6379 end;
6381 -- Here warning is to be issued
6383 Set_Has_Recursive_Call (Nam);
6384 Error_Msg_Warn := SPARK_Mode /= On;
6385 Error_Msg_N ("possible infinite recursion<<!", N);
6386 Error_Msg_N ("\Storage_Error ]<<!", N);
6387 end if;
6389 exit Scope_Loop;
6390 end if;
6392 Scop := Scope (Scop);
6393 end loop Scope_Loop;
6394 end if;
6395 end if;
6397 -- Check obsolescent reference to Ada.Characters.Handling subprogram
6399 Check_Obsolescent_2005_Entity (Nam, Subp);
6401 -- If subprogram name is a predefined operator, it was given in
6402 -- functional notation. Replace call node with operator node, so
6403 -- that actuals can be resolved appropriately.
6405 if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
6406 Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
6407 return;
6409 elsif Present (Alias (Nam))
6410 and then Is_Predefined_Op (Alias (Nam))
6411 then
6412 Resolve_Actuals (N, Nam);
6413 Make_Call_Into_Operator (N, Typ, Alias (Nam));
6414 return;
6415 end if;
6417 -- Create a transient scope if the resulting type requires it
6419 -- There are several notable exceptions:
6421 -- a) In init procs, the transient scope overhead is not needed, and is
6422 -- even incorrect when the call is a nested initialization call for a
6423 -- component whose expansion may generate adjust calls. However, if the
6424 -- call is some other procedure call within an initialization procedure
6425 -- (for example a call to Create_Task in the init_proc of the task
6426 -- run-time record) a transient scope must be created around this call.
6428 -- b) Enumeration literal pseudo-calls need no transient scope
6430 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
6431 -- functions) do not use the secondary stack even though the return
6432 -- type may be unconstrained.
6434 -- d) Calls to a build-in-place function, since such functions may
6435 -- allocate their result directly in a target object, and cases where
6436 -- the result does get allocated in the secondary stack are checked for
6437 -- within the specialized Exp_Ch6 procedures for expanding those
6438 -- build-in-place calls.
6440 -- e) Calls to inlinable expression functions do not use the secondary
6441 -- stack (since the call will be replaced by its returned object).
6443 -- f) If the subprogram is marked Inline_Always, then even if it returns
6444 -- an unconstrained type the call does not require use of the secondary
6445 -- stack. However, inlining will only take place if the body to inline
6446 -- is already present. It may not be available if e.g. the subprogram is
6447 -- declared in a child instance.
6449 -- If this is an initialization call for a type whose construction
6450 -- uses the secondary stack, and it is not a nested call to initialize
6451 -- a component, we do need to create a transient scope for it. We
6452 -- check for this by traversing the type in Check_Initialization_Call.
6454 if Is_Inlined (Nam)
6455 and then Has_Pragma_Inline (Nam)
6456 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
6457 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
6458 then
6459 null;
6461 elsif Ekind (Nam) = E_Enumeration_Literal
6462 or else Is_Build_In_Place_Function (Nam)
6463 or else Is_Intrinsic_Subprogram (Nam)
6464 or else Is_Inlinable_Expression_Function (Nam)
6465 then
6466 null;
6468 elsif Expander_Active
6469 and then Is_Type (Etype (Nam))
6470 and then Requires_Transient_Scope (Etype (Nam))
6471 and then
6472 (not Within_Init_Proc
6473 or else
6474 (not Is_Init_Proc (Nam) and then Ekind (Nam) /= E_Function))
6475 then
6476 Establish_Transient_Scope (N, Sec_Stack => True);
6478 -- If the call appears within the bounds of a loop, it will
6479 -- be rewritten and reanalyzed, nothing left to do here.
6481 if Nkind (N) /= N_Function_Call then
6482 return;
6483 end if;
6485 elsif Is_Init_Proc (Nam)
6486 and then not Within_Init_Proc
6487 then
6488 Check_Initialization_Call (N, Nam);
6489 end if;
6491 -- A protected function cannot be called within the definition of the
6492 -- enclosing protected type, unless it is part of a pre/postcondition
6493 -- on another protected operation. This may appear in the entry wrapper
6494 -- created for an entry with preconditions.
6496 if Is_Protected_Type (Scope (Nam))
6497 and then In_Open_Scopes (Scope (Nam))
6498 and then not Has_Completion (Scope (Nam))
6499 and then not In_Spec_Expression
6500 and then not Is_Entry_Wrapper (Current_Scope)
6501 then
6502 Error_Msg_NE
6503 ("& cannot be called before end of protected definition", N, Nam);
6504 end if;
6506 -- Propagate interpretation to actuals, and add default expressions
6507 -- where needed.
6509 if Present (First_Formal (Nam)) then
6510 Resolve_Actuals (N, Nam);
6512 -- Overloaded literals are rewritten as function calls, for purpose of
6513 -- resolution. After resolution, we can replace the call with the
6514 -- literal itself.
6516 elsif Ekind (Nam) = E_Enumeration_Literal then
6517 Copy_Node (Subp, N);
6518 Resolve_Entity_Name (N, Typ);
6520 -- Avoid validation, since it is a static function call
6522 Generate_Reference (Nam, Subp);
6523 return;
6524 end if;
6526 -- If the subprogram is not global, then kill all saved values and
6527 -- checks. This is a bit conservative, since in many cases we could do
6528 -- better, but it is not worth the effort. Similarly, we kill constant
6529 -- values. However we do not need to do this for internal entities
6530 -- (unless they are inherited user-defined subprograms), since they
6531 -- are not in the business of molesting local values.
6533 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
6534 -- kill all checks and values for calls to global subprograms. This
6535 -- takes care of the case where an access to a local subprogram is
6536 -- taken, and could be passed directly or indirectly and then called
6537 -- from almost any context.
6539 -- Note: we do not do this step till after resolving the actuals. That
6540 -- way we still take advantage of the current value information while
6541 -- scanning the actuals.
6543 -- We suppress killing values if we are processing the nodes associated
6544 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
6545 -- type kills all the values as part of analyzing the code that
6546 -- initializes the dispatch tables.
6548 if Inside_Freezing_Actions = 0
6549 and then (not Is_Library_Level_Entity (Nam)
6550 or else Suppress_Value_Tracking_On_Call
6551 (Nearest_Dynamic_Scope (Current_Scope)))
6552 and then (Comes_From_Source (Nam)
6553 or else (Present (Alias (Nam))
6554 and then Comes_From_Source (Alias (Nam))))
6555 then
6556 Kill_Current_Values;
6557 end if;
6559 -- If we are warning about unread OUT parameters, this is the place to
6560 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
6561 -- after the above call to Kill_Current_Values (since that call clears
6562 -- the Last_Assignment field of all local variables).
6564 if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
6565 and then Comes_From_Source (N)
6566 and then In_Extended_Main_Source_Unit (N)
6567 then
6568 declare
6569 F : Entity_Id;
6570 A : Node_Id;
6572 begin
6573 F := First_Formal (Nam);
6574 A := First_Actual (N);
6575 while Present (F) and then Present (A) loop
6576 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
6577 and then Warn_On_Modified_As_Out_Parameter (F)
6578 and then Is_Entity_Name (A)
6579 and then Present (Entity (A))
6580 and then Comes_From_Source (N)
6581 and then Safe_To_Capture_Value (N, Entity (A))
6582 then
6583 Set_Last_Assignment (Entity (A), A);
6584 end if;
6586 Next_Formal (F);
6587 Next_Actual (A);
6588 end loop;
6589 end;
6590 end if;
6592 -- If the subprogram is a primitive operation, check whether or not
6593 -- it is a correct dispatching call.
6595 if Is_Overloadable (Nam)
6596 and then Is_Dispatching_Operation (Nam)
6597 then
6598 Check_Dispatching_Call (N);
6600 elsif Ekind (Nam) /= E_Subprogram_Type
6601 and then Is_Abstract_Subprogram (Nam)
6602 and then not In_Instance
6603 then
6604 Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
6605 end if;
6607 -- If this is a dispatching call, generate the appropriate reference,
6608 -- for better source navigation in GPS.
6610 if Is_Overloadable (Nam)
6611 and then Present (Controlling_Argument (N))
6612 then
6613 Generate_Reference (Nam, Subp, 'R');
6615 -- Normal case, not a dispatching call: generate a call reference
6617 else
6618 Generate_Reference (Nam, Subp, 's');
6619 end if;
6621 if Is_Intrinsic_Subprogram (Nam) then
6622 Check_Intrinsic_Call (N);
6623 end if;
6625 -- Check for violation of restriction No_Specific_Termination_Handlers
6626 -- and warn on a potentially blocking call to Abort_Task.
6628 if Restriction_Check_Required (No_Specific_Termination_Handlers)
6629 and then (Is_RTE (Nam, RE_Set_Specific_Handler)
6630 or else
6631 Is_RTE (Nam, RE_Specific_Handler))
6632 then
6633 Check_Restriction (No_Specific_Termination_Handlers, N);
6635 elsif Is_RTE (Nam, RE_Abort_Task) then
6636 Check_Potentially_Blocking_Operation (N);
6637 end if;
6639 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
6640 -- timing event violates restriction No_Relative_Delay (AI-0211). We
6641 -- need to check the second argument to determine whether it is an
6642 -- absolute or relative timing event.
6644 if Restriction_Check_Required (No_Relative_Delay)
6645 and then Is_RTE (Nam, RE_Set_Handler)
6646 and then Is_RTE (Etype (Next_Actual (First_Actual (N))), RE_Time_Span)
6647 then
6648 Check_Restriction (No_Relative_Delay, N);
6649 end if;
6651 -- Issue an error for a call to an eliminated subprogram. This routine
6652 -- will not perform the check if the call appears within a default
6653 -- expression.
6655 Check_For_Eliminated_Subprogram (Subp, Nam);
6657 -- In formal mode, the primitive operations of a tagged type or type
6658 -- extension do not include functions that return the tagged type.
6660 if Nkind (N) = N_Function_Call
6661 and then Is_Tagged_Type (Etype (N))
6662 and then Is_Entity_Name (Name (N))
6663 and then Is_Inherited_Operation_For_Type (Entity (Name (N)), Etype (N))
6664 then
6665 Check_SPARK_05_Restriction ("function not inherited", N);
6666 end if;
6668 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
6669 -- class-wide and the call dispatches on result in a context that does
6670 -- not provide a tag, the call raises Program_Error.
6672 if Nkind (N) = N_Function_Call
6673 and then In_Instance
6674 and then Is_Generic_Actual_Type (Typ)
6675 and then Is_Class_Wide_Type (Typ)
6676 and then Has_Controlling_Result (Nam)
6677 and then Nkind (Parent (N)) = N_Object_Declaration
6678 then
6679 -- Verify that none of the formals are controlling
6681 declare
6682 Call_OK : Boolean := False;
6683 F : Entity_Id;
6685 begin
6686 F := First_Formal (Nam);
6687 while Present (F) loop
6688 if Is_Controlling_Formal (F) then
6689 Call_OK := True;
6690 exit;
6691 end if;
6693 Next_Formal (F);
6694 end loop;
6696 if not Call_OK then
6697 Error_Msg_Warn := SPARK_Mode /= On;
6698 Error_Msg_N ("!cannot determine tag of result<<", N);
6699 Error_Msg_N ("\Program_Error [<<!", N);
6700 Insert_Action (N,
6701 Make_Raise_Program_Error (Sloc (N),
6702 Reason => PE_Explicit_Raise));
6703 end if;
6704 end;
6705 end if;
6707 -- Check for calling a function with OUT or IN OUT parameter when the
6708 -- calling context (us right now) is not Ada 2012, so does not allow
6709 -- OUT or IN OUT parameters in function calls. Functions declared in
6710 -- a predefined unit are OK, as they may be called indirectly from a
6711 -- user-declared instantiation.
6713 if Ada_Version < Ada_2012
6714 and then Ekind (Nam) = E_Function
6715 and then Has_Out_Or_In_Out_Parameter (Nam)
6716 and then not In_Predefined_Unit (Nam)
6717 then
6718 Error_Msg_NE ("& has at least one OUT or `IN OUT` parameter", N, Nam);
6719 Error_Msg_N ("\call to this function only allowed in Ada 2012", N);
6720 end if;
6722 -- Check the dimensions of the actuals in the call. For function calls,
6723 -- propagate the dimensions from the returned type to N.
6725 Analyze_Dimension_Call (N, Nam);
6727 -- All done, evaluate call and deal with elaboration issues
6729 Eval_Call (N);
6731 if Legacy_Elaboration_Checks then
6732 Check_Elab_Call (N);
6733 end if;
6735 -- Annotate the tree by creating a call marker in case the original call
6736 -- is transformed by expansion. The call marker is automatically saved
6737 -- for later examination by the ABE Processing phase.
6739 Build_Call_Marker (N);
6741 -- In GNATprove mode, expansion is disabled, but we want to inline some
6742 -- subprograms to facilitate formal verification. Indirect calls through
6743 -- a subprogram type or within a generic cannot be inlined. Inlining is
6744 -- performed only for calls subject to SPARK_Mode on.
6746 if GNATprove_Mode
6747 and then SPARK_Mode = On
6748 and then Is_Overloadable (Nam)
6749 and then not Inside_A_Generic
6750 then
6751 Nam_UA := Ultimate_Alias (Nam);
6752 Nam_Decl := Unit_Declaration_Node (Nam_UA);
6754 if Nkind (Nam_Decl) = N_Subprogram_Declaration then
6755 Body_Id := Corresponding_Body (Nam_Decl);
6757 -- Nothing to do if the subprogram is not eligible for inlining in
6758 -- GNATprove mode, or inlining is disabled with switch -gnatdm
6760 if not Is_Inlined_Always (Nam_UA)
6761 or else not Can_Be_Inlined_In_GNATprove_Mode (Nam_UA, Body_Id)
6762 or else Debug_Flag_M
6763 then
6764 null;
6766 -- Calls cannot be inlined inside assertions, as GNATprove treats
6767 -- assertions as logic expressions. Only issue a message when the
6768 -- body has been seen, otherwise this leads to spurious messages
6769 -- on expression functions.
6771 elsif In_Assertion_Expr /= 0 then
6772 if Present (Body_Id) then
6773 Cannot_Inline
6774 ("cannot inline & (in assertion expression)?", N, Nam_UA);
6775 end if;
6777 -- Calls cannot be inlined inside default expressions
6779 elsif In_Default_Expr then
6780 Cannot_Inline
6781 ("cannot inline & (in default expression)?", N, Nam_UA);
6783 -- Inlining should not be performed during pre-analysis
6785 elsif Full_Analysis then
6787 -- Do not inline calls inside expression functions, as this
6788 -- would prevent interpreting them as logical formulas in
6789 -- GNATprove. Only issue a message when the body has been seen,
6790 -- otherwise this leads to spurious messages on callees that
6791 -- are themselves expression functions.
6793 if Present (Current_Subprogram)
6794 and then Is_Expression_Function_Or_Completion
6795 (Current_Subprogram)
6796 then
6797 if Present (Body_Id)
6798 and then Present (Body_To_Inline (Nam_Decl))
6799 then
6800 Cannot_Inline
6801 ("cannot inline & (inside expression function)?",
6802 N, Nam_UA);
6803 end if;
6805 -- With the one-pass inlining technique, a call cannot be
6806 -- inlined if the corresponding body has not been seen yet.
6808 elsif No (Body_Id) then
6809 Cannot_Inline
6810 ("cannot inline & (body not seen yet)?", N, Nam_UA);
6812 -- Nothing to do if there is no body to inline, indicating that
6813 -- the subprogram is not suitable for inlining in GNATprove
6814 -- mode.
6816 elsif No (Body_To_Inline (Nam_Decl)) then
6817 null;
6819 -- Calls cannot be inlined inside potentially unevaluated
6820 -- expressions, as this would create complex actions inside
6821 -- expressions, that are not handled by GNATprove.
6823 elsif Is_Potentially_Unevaluated (N) then
6824 Cannot_Inline
6825 ("cannot inline & (in potentially unevaluated context)?",
6826 N, Nam_UA);
6828 -- Do not inline calls which would possibly lead to missing a
6829 -- type conversion check on an input parameter.
6831 elsif not Call_Can_Be_Inlined_In_GNATprove_Mode (N, Nam) then
6832 Cannot_Inline
6833 ("cannot inline & (possible check on input parameters)?",
6834 N, Nam_UA);
6836 -- Otherwise, inline the call
6838 else
6839 Expand_Inlined_Call (N, Nam_UA, Nam);
6840 end if;
6841 end if;
6842 end if;
6843 end if;
6845 Mark_Use_Clauses (Subp);
6847 Warn_On_Overlapping_Actuals (Nam, N);
6848 end Resolve_Call;
6850 -----------------------------
6851 -- Resolve_Case_Expression --
6852 -----------------------------
6854 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
6855 Alt : Node_Id;
6856 Alt_Expr : Node_Id;
6857 Alt_Typ : Entity_Id;
6858 Is_Dyn : Boolean;
6860 begin
6861 Alt := First (Alternatives (N));
6862 while Present (Alt) loop
6863 Alt_Expr := Expression (Alt);
6865 if Error_Posted (Alt_Expr) then
6866 return;
6867 end if;
6869 Resolve (Alt_Expr, Typ);
6870 Alt_Typ := Etype (Alt_Expr);
6872 -- When the expression is of a scalar subtype different from the
6873 -- result subtype, then insert a conversion to ensure the generation
6874 -- of a constraint check.
6876 if Is_Scalar_Type (Alt_Typ) and then Alt_Typ /= Typ then
6877 Rewrite (Alt_Expr, Convert_To (Typ, Alt_Expr));
6878 Analyze_And_Resolve (Alt_Expr, Typ);
6879 end if;
6881 Next (Alt);
6882 end loop;
6884 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
6885 -- dynamically tagged must be known statically.
6887 if Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
6888 Alt := First (Alternatives (N));
6889 Is_Dyn := Is_Dynamically_Tagged (Expression (Alt));
6891 while Present (Alt) loop
6892 if Is_Dynamically_Tagged (Expression (Alt)) /= Is_Dyn then
6893 Error_Msg_N
6894 ("all or none of the dependent expressions can be "
6895 & "dynamically tagged", N);
6896 end if;
6898 Next (Alt);
6899 end loop;
6900 end if;
6902 Set_Etype (N, Typ);
6903 Eval_Case_Expression (N);
6904 Analyze_Dimension (N);
6905 end Resolve_Case_Expression;
6907 -------------------------------
6908 -- Resolve_Character_Literal --
6909 -------------------------------
6911 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
6912 B_Typ : constant Entity_Id := Base_Type (Typ);
6913 C : Entity_Id;
6915 begin
6916 -- Verify that the character does belong to the type of the context
6918 Set_Etype (N, B_Typ);
6919 Eval_Character_Literal (N);
6921 -- Wide_Wide_Character literals must always be defined, since the set
6922 -- of wide wide character literals is complete, i.e. if a character
6923 -- literal is accepted by the parser, then it is OK for wide wide
6924 -- character (out of range character literals are rejected).
6926 if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6927 return;
6929 -- Always accept character literal for type Any_Character, which
6930 -- occurs in error situations and in comparisons of literals, both
6931 -- of which should accept all literals.
6933 elsif B_Typ = Any_Character then
6934 return;
6936 -- For Standard.Character or a type derived from it, check that the
6937 -- literal is in range.
6939 elsif Root_Type (B_Typ) = Standard_Character then
6940 if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6941 return;
6942 end if;
6944 -- For Standard.Wide_Character or a type derived from it, check that the
6945 -- literal is in range.
6947 elsif Root_Type (B_Typ) = Standard_Wide_Character then
6948 if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6949 return;
6950 end if;
6952 -- If the entity is already set, this has already been resolved in a
6953 -- generic context, or comes from expansion. Nothing else to do.
6955 elsif Present (Entity (N)) then
6956 return;
6958 -- Otherwise we have a user defined character type, and we can use the
6959 -- standard visibility mechanisms to locate the referenced entity.
6961 else
6962 C := Current_Entity (N);
6963 while Present (C) loop
6964 if Etype (C) = B_Typ then
6965 Set_Entity_With_Checks (N, C);
6966 Generate_Reference (C, N);
6967 return;
6968 end if;
6970 C := Homonym (C);
6971 end loop;
6972 end if;
6974 -- If we fall through, then the literal does not match any of the
6975 -- entries of the enumeration type. This isn't just a constraint error
6976 -- situation, it is an illegality (see RM 4.2).
6978 Error_Msg_NE
6979 ("character not defined for }", N, First_Subtype (B_Typ));
6980 end Resolve_Character_Literal;
6982 ---------------------------
6983 -- Resolve_Comparison_Op --
6984 ---------------------------
6986 -- Context requires a boolean type, and plays no role in resolution.
6987 -- Processing identical to that for equality operators. The result type is
6988 -- the base type, which matters when pathological subtypes of booleans with
6989 -- limited ranges are used.
6991 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
6992 L : constant Node_Id := Left_Opnd (N);
6993 R : constant Node_Id := Right_Opnd (N);
6994 T : Entity_Id;
6996 begin
6997 -- If this is an intrinsic operation which is not predefined, use the
6998 -- types of its declared arguments to resolve the possibly overloaded
6999 -- operands. Otherwise the operands are unambiguous and specify the
7000 -- expected type.
7002 if Scope (Entity (N)) /= Standard_Standard then
7003 T := Etype (First_Entity (Entity (N)));
7005 else
7006 T := Find_Unique_Type (L, R);
7008 if T = Any_Fixed then
7009 T := Unique_Fixed_Point_Type (L);
7010 end if;
7011 end if;
7013 Set_Etype (N, Base_Type (Typ));
7014 Generate_Reference (T, N, ' ');
7016 -- Skip remaining processing if already set to Any_Type
7018 if T = Any_Type then
7019 return;
7020 end if;
7022 -- Deal with other error cases
7024 if T = Any_String or else
7025 T = Any_Composite or else
7026 T = Any_Character
7027 then
7028 if T = Any_Character then
7029 Ambiguous_Character (L);
7030 else
7031 Error_Msg_N ("ambiguous operands for comparison", N);
7032 end if;
7034 Set_Etype (N, Any_Type);
7035 return;
7036 end if;
7038 -- Resolve the operands if types OK
7040 Resolve (L, T);
7041 Resolve (R, T);
7042 Check_Unset_Reference (L);
7043 Check_Unset_Reference (R);
7044 Generate_Operator_Reference (N, T);
7045 Check_Low_Bound_Tested (N);
7047 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
7048 -- types or array types except String.
7050 if Is_Boolean_Type (T) then
7051 Check_SPARK_05_Restriction
7052 ("comparison is not defined on Boolean type", N);
7054 elsif Is_Array_Type (T)
7055 and then Base_Type (T) /= Standard_String
7056 then
7057 Check_SPARK_05_Restriction
7058 ("comparison is not defined on array types other than String", N);
7059 end if;
7061 -- Check comparison on unordered enumeration
7063 if Bad_Unordered_Enumeration_Reference (N, Etype (L)) then
7064 Error_Msg_Sloc := Sloc (Etype (L));
7065 Error_Msg_NE
7066 ("comparison on unordered enumeration type& declared#?U?",
7067 N, Etype (L));
7068 end if;
7070 Analyze_Dimension (N);
7072 -- Evaluate the relation (note we do this after the above check since
7073 -- this Eval call may change N to True/False. Skip this evaluation
7074 -- inside assertions, in order to keep assertions as written by users
7075 -- for tools that rely on these, e.g. GNATprove for loop invariants.
7076 -- Except evaluation is still performed even inside assertions for
7077 -- comparisons between values of universal type, which are useless
7078 -- for static analysis tools, and not supported even by GNATprove.
7080 if In_Assertion_Expr = 0
7081 or else (Is_Universal_Numeric_Type (Etype (L))
7082 and then
7083 Is_Universal_Numeric_Type (Etype (R)))
7084 then
7085 Eval_Relational_Op (N);
7086 end if;
7087 end Resolve_Comparison_Op;
7089 -----------------------------------------
7090 -- Resolve_Discrete_Subtype_Indication --
7091 -----------------------------------------
7093 procedure Resolve_Discrete_Subtype_Indication
7094 (N : Node_Id;
7095 Typ : Entity_Id)
7097 R : Node_Id;
7098 S : Entity_Id;
7100 begin
7101 Analyze (Subtype_Mark (N));
7102 S := Entity (Subtype_Mark (N));
7104 if Nkind (Constraint (N)) /= N_Range_Constraint then
7105 Error_Msg_N ("expect range constraint for discrete type", N);
7106 Set_Etype (N, Any_Type);
7108 else
7109 R := Range_Expression (Constraint (N));
7111 if R = Error then
7112 return;
7113 end if;
7115 Analyze (R);
7117 if Base_Type (S) /= Base_Type (Typ) then
7118 Error_Msg_NE
7119 ("expect subtype of }", N, First_Subtype (Typ));
7121 -- Rewrite the constraint as a range of Typ
7122 -- to allow compilation to proceed further.
7124 Set_Etype (N, Typ);
7125 Rewrite (Low_Bound (R),
7126 Make_Attribute_Reference (Sloc (Low_Bound (R)),
7127 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
7128 Attribute_Name => Name_First));
7129 Rewrite (High_Bound (R),
7130 Make_Attribute_Reference (Sloc (High_Bound (R)),
7131 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
7132 Attribute_Name => Name_First));
7134 else
7135 Resolve (R, Typ);
7136 Set_Etype (N, Etype (R));
7138 -- Additionally, we must check that the bounds are compatible
7139 -- with the given subtype, which might be different from the
7140 -- type of the context.
7142 Apply_Range_Check (R, S);
7144 -- ??? If the above check statically detects a Constraint_Error
7145 -- it replaces the offending bound(s) of the range R with a
7146 -- Constraint_Error node. When the itype which uses these bounds
7147 -- is frozen the resulting call to Duplicate_Subexpr generates
7148 -- a new temporary for the bounds.
7150 -- Unfortunately there are other itypes that are also made depend
7151 -- on these bounds, so when Duplicate_Subexpr is called they get
7152 -- a forward reference to the newly created temporaries and Gigi
7153 -- aborts on such forward references. This is probably sign of a
7154 -- more fundamental problem somewhere else in either the order of
7155 -- itype freezing or the way certain itypes are constructed.
7157 -- To get around this problem we call Remove_Side_Effects right
7158 -- away if either bounds of R are a Constraint_Error.
7160 declare
7161 L : constant Node_Id := Low_Bound (R);
7162 H : constant Node_Id := High_Bound (R);
7164 begin
7165 if Nkind (L) = N_Raise_Constraint_Error then
7166 Remove_Side_Effects (L);
7167 end if;
7169 if Nkind (H) = N_Raise_Constraint_Error then
7170 Remove_Side_Effects (H);
7171 end if;
7172 end;
7174 Check_Unset_Reference (Low_Bound (R));
7175 Check_Unset_Reference (High_Bound (R));
7176 end if;
7177 end if;
7178 end Resolve_Discrete_Subtype_Indication;
7180 -------------------------
7181 -- Resolve_Entity_Name --
7182 -------------------------
7184 -- Used to resolve identifiers and expanded names
7186 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
7187 function Is_Assignment_Or_Object_Expression
7188 (Context : Node_Id;
7189 Expr : Node_Id) return Boolean;
7190 -- Determine whether node Context denotes an assignment statement or an
7191 -- object declaration whose expression is node Expr.
7193 ----------------------------------------
7194 -- Is_Assignment_Or_Object_Expression --
7195 ----------------------------------------
7197 function Is_Assignment_Or_Object_Expression
7198 (Context : Node_Id;
7199 Expr : Node_Id) return Boolean
7201 begin
7202 if Nkind_In (Context, N_Assignment_Statement,
7203 N_Object_Declaration)
7204 and then Expression (Context) = Expr
7205 then
7206 return True;
7208 -- Check whether a construct that yields a name is the expression of
7209 -- an assignment statement or an object declaration.
7211 elsif (Nkind_In (Context, N_Attribute_Reference,
7212 N_Explicit_Dereference,
7213 N_Indexed_Component,
7214 N_Selected_Component,
7215 N_Slice)
7216 and then Prefix (Context) = Expr)
7217 or else
7218 (Nkind_In (Context, N_Type_Conversion,
7219 N_Unchecked_Type_Conversion)
7220 and then Expression (Context) = Expr)
7221 then
7222 return
7223 Is_Assignment_Or_Object_Expression
7224 (Context => Parent (Context),
7225 Expr => Context);
7227 -- Otherwise the context is not an assignment statement or an object
7228 -- declaration.
7230 else
7231 return False;
7232 end if;
7233 end Is_Assignment_Or_Object_Expression;
7235 -- Local variables
7237 E : constant Entity_Id := Entity (N);
7238 Par : Node_Id;
7240 -- Start of processing for Resolve_Entity_Name
7242 begin
7243 -- If garbage from errors, set to Any_Type and return
7245 if No (E) and then Total_Errors_Detected /= 0 then
7246 Set_Etype (N, Any_Type);
7247 return;
7248 end if;
7250 -- Replace named numbers by corresponding literals. Note that this is
7251 -- the one case where Resolve_Entity_Name must reset the Etype, since
7252 -- it is currently marked as universal.
7254 if Ekind (E) = E_Named_Integer then
7255 Set_Etype (N, Typ);
7256 Eval_Named_Integer (N);
7258 elsif Ekind (E) = E_Named_Real then
7259 Set_Etype (N, Typ);
7260 Eval_Named_Real (N);
7262 -- For enumeration literals, we need to make sure that a proper style
7263 -- check is done, since such literals are overloaded, and thus we did
7264 -- not do a style check during the first phase of analysis.
7266 elsif Ekind (E) = E_Enumeration_Literal then
7267 Set_Entity_With_Checks (N, E);
7268 Eval_Entity_Name (N);
7270 -- Case of (sub)type name appearing in a context where an expression
7271 -- is expected. This is legal if occurrence is a current instance.
7272 -- See RM 8.6 (17/3).
7274 elsif Is_Type (E) then
7275 if Is_Current_Instance (N) then
7276 null;
7278 -- Any other use is an error
7280 else
7281 Error_Msg_N
7282 ("invalid use of subtype mark in expression or call", N);
7283 end if;
7285 -- Check discriminant use if entity is discriminant in current scope,
7286 -- i.e. discriminant of record or concurrent type currently being
7287 -- analyzed. Uses in corresponding body are unrestricted.
7289 elsif Ekind (E) = E_Discriminant
7290 and then Scope (E) = Current_Scope
7291 and then not Has_Completion (Current_Scope)
7292 then
7293 Check_Discriminant_Use (N);
7295 -- A parameterless generic function cannot appear in a context that
7296 -- requires resolution.
7298 elsif Ekind (E) = E_Generic_Function then
7299 Error_Msg_N ("illegal use of generic function", N);
7301 -- In Ada 83 an OUT parameter cannot be read, but attributes of
7302 -- array types (i.e. bounds and length) are legal.
7304 elsif Ekind (E) = E_Out_Parameter
7305 and then (Nkind (Parent (N)) /= N_Attribute_Reference
7306 or else Is_Scalar_Type (Etype (E)))
7308 and then (Nkind (Parent (N)) in N_Op
7309 or else Nkind (Parent (N)) = N_Explicit_Dereference
7310 or else Is_Assignment_Or_Object_Expression
7311 (Context => Parent (N),
7312 Expr => N))
7313 then
7314 if Ada_Version = Ada_83 then
7315 Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
7316 end if;
7318 -- In all other cases, just do the possible static evaluation
7320 else
7321 -- A deferred constant that appears in an expression must have a
7322 -- completion, unless it has been removed by in-place expansion of
7323 -- an aggregate. A constant that is a renaming does not need
7324 -- initialization.
7326 if Ekind (E) = E_Constant
7327 and then Comes_From_Source (E)
7328 and then No (Constant_Value (E))
7329 and then Is_Frozen (Etype (E))
7330 and then not In_Spec_Expression
7331 and then not Is_Imported (E)
7332 and then Nkind (Parent (E)) /= N_Object_Renaming_Declaration
7333 then
7334 if No_Initialization (Parent (E))
7335 or else (Present (Full_View (E))
7336 and then No_Initialization (Parent (Full_View (E))))
7337 then
7338 null;
7339 else
7340 Error_Msg_N
7341 ("deferred constant is frozen before completion", N);
7342 end if;
7343 end if;
7345 Eval_Entity_Name (N);
7346 end if;
7348 Par := Parent (N);
7350 -- When the entity appears in a parameter association, retrieve the
7351 -- related subprogram call.
7353 if Nkind (Par) = N_Parameter_Association then
7354 Par := Parent (Par);
7355 end if;
7357 if Comes_From_Source (N) then
7359 -- The following checks are only relevant when SPARK_Mode is on as
7360 -- they are not standard Ada legality rules.
7362 if SPARK_Mode = On then
7364 -- An effectively volatile object subject to enabled properties
7365 -- Async_Writers or Effective_Reads must appear in non-interfering
7366 -- context (SPARK RM 7.1.3(12)).
7368 if Is_Object (E)
7369 and then Is_Effectively_Volatile (E)
7370 and then (Async_Writers_Enabled (E)
7371 or else Effective_Reads_Enabled (E))
7372 and then not Is_OK_Volatile_Context (Par, N)
7373 then
7374 SPARK_Msg_N
7375 ("volatile object cannot appear in this context "
7376 & "(SPARK RM 7.1.3(12))", N);
7377 end if;
7379 -- Check for possible elaboration issues with respect to reads of
7380 -- variables. The act of renaming the variable is not considered a
7381 -- read as it simply establishes an alias.
7383 if Legacy_Elaboration_Checks
7384 and then Ekind (E) = E_Variable
7385 and then Dynamic_Elaboration_Checks
7386 and then Nkind (Par) /= N_Object_Renaming_Declaration
7387 then
7388 Check_Elab_Call (N);
7389 end if;
7390 end if;
7392 -- The variable may eventually become a constituent of a single
7393 -- protected/task type. Record the reference now and verify its
7394 -- legality when analyzing the contract of the variable
7395 -- (SPARK RM 9.3).
7397 if Ekind (E) = E_Variable then
7398 Record_Possible_Part_Of_Reference (E, N);
7399 end if;
7401 -- A Ghost entity must appear in a specific context
7403 if Is_Ghost_Entity (E) then
7404 Check_Ghost_Context (E, N);
7405 end if;
7406 end if;
7408 Mark_Use_Clauses (E);
7409 end Resolve_Entity_Name;
7411 -------------------
7412 -- Resolve_Entry --
7413 -------------------
7415 procedure Resolve_Entry (Entry_Name : Node_Id) is
7416 Loc : constant Source_Ptr := Sloc (Entry_Name);
7417 Nam : Entity_Id;
7418 New_N : Node_Id;
7419 S : Entity_Id;
7420 Tsk : Entity_Id;
7421 E_Name : Node_Id;
7422 Index : Node_Id;
7424 function Actual_Index_Type (E : Entity_Id) return Entity_Id;
7425 -- If the bounds of the entry family being called depend on task
7426 -- discriminants, build a new index subtype where a discriminant is
7427 -- replaced with the value of the discriminant of the target task.
7428 -- The target task is the prefix of the entry name in the call.
7430 -----------------------
7431 -- Actual_Index_Type --
7432 -----------------------
7434 function Actual_Index_Type (E : Entity_Id) return Entity_Id is
7435 Typ : constant Entity_Id := Entry_Index_Type (E);
7436 Tsk : constant Entity_Id := Scope (E);
7437 Lo : constant Node_Id := Type_Low_Bound (Typ);
7438 Hi : constant Node_Id := Type_High_Bound (Typ);
7439 New_T : Entity_Id;
7441 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
7442 -- If the bound is given by a discriminant, replace with a reference
7443 -- to the discriminant of the same name in the target task. If the
7444 -- entry name is the target of a requeue statement and the entry is
7445 -- in the current protected object, the bound to be used is the
7446 -- discriminal of the object (see Apply_Range_Checks for details of
7447 -- the transformation).
7449 -----------------------------
7450 -- Actual_Discriminant_Ref --
7451 -----------------------------
7453 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
7454 Typ : constant Entity_Id := Etype (Bound);
7455 Ref : Node_Id;
7457 begin
7458 Remove_Side_Effects (Bound);
7460 if not Is_Entity_Name (Bound)
7461 or else Ekind (Entity (Bound)) /= E_Discriminant
7462 then
7463 return Bound;
7465 elsif Is_Protected_Type (Tsk)
7466 and then In_Open_Scopes (Tsk)
7467 and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
7468 then
7469 -- Note: here Bound denotes a discriminant of the corresponding
7470 -- record type tskV, whose discriminal is a formal of the
7471 -- init-proc tskVIP. What we want is the body discriminal,
7472 -- which is associated to the discriminant of the original
7473 -- concurrent type tsk.
7475 return New_Occurrence_Of
7476 (Find_Body_Discriminal (Entity (Bound)), Loc);
7478 else
7479 Ref :=
7480 Make_Selected_Component (Loc,
7481 Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
7482 Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
7483 Analyze (Ref);
7484 Resolve (Ref, Typ);
7485 return Ref;
7486 end if;
7487 end Actual_Discriminant_Ref;
7489 -- Start of processing for Actual_Index_Type
7491 begin
7492 if not Has_Discriminants (Tsk)
7493 or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi))
7494 then
7495 return Entry_Index_Type (E);
7497 else
7498 New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
7499 Set_Etype (New_T, Base_Type (Typ));
7500 Set_Size_Info (New_T, Typ);
7501 Set_RM_Size (New_T, RM_Size (Typ));
7502 Set_Scalar_Range (New_T,
7503 Make_Range (Sloc (Entry_Name),
7504 Low_Bound => Actual_Discriminant_Ref (Lo),
7505 High_Bound => Actual_Discriminant_Ref (Hi)));
7507 return New_T;
7508 end if;
7509 end Actual_Index_Type;
7511 -- Start of processing for Resolve_Entry
7513 begin
7514 -- Find name of entry being called, and resolve prefix of name with its
7515 -- own type. The prefix can be overloaded, and the name and signature of
7516 -- the entry must be taken into account.
7518 if Nkind (Entry_Name) = N_Indexed_Component then
7520 -- Case of dealing with entry family within the current tasks
7522 E_Name := Prefix (Entry_Name);
7524 else
7525 E_Name := Entry_Name;
7526 end if;
7528 if Is_Entity_Name (E_Name) then
7530 -- Entry call to an entry (or entry family) in the current task. This
7531 -- is legal even though the task will deadlock. Rewrite as call to
7532 -- current task.
7534 -- This can also be a call to an entry in an enclosing task. If this
7535 -- is a single task, we have to retrieve its name, because the scope
7536 -- of the entry is the task type, not the object. If the enclosing
7537 -- task is a task type, the identity of the task is given by its own
7538 -- self variable.
7540 -- Finally this can be a requeue on an entry of the same task or
7541 -- protected object.
7543 S := Scope (Entity (E_Name));
7545 for J in reverse 0 .. Scope_Stack.Last loop
7546 if Is_Task_Type (Scope_Stack.Table (J).Entity)
7547 and then not Comes_From_Source (S)
7548 then
7549 -- S is an enclosing task or protected object. The concurrent
7550 -- declaration has been converted into a type declaration, and
7551 -- the object itself has an object declaration that follows
7552 -- the type in the same declarative part.
7554 Tsk := Next_Entity (S);
7555 while Etype (Tsk) /= S loop
7556 Next_Entity (Tsk);
7557 end loop;
7559 S := Tsk;
7560 exit;
7562 elsif S = Scope_Stack.Table (J).Entity then
7564 -- Call to current task. Will be transformed into call to Self
7566 exit;
7568 end if;
7569 end loop;
7571 New_N :=
7572 Make_Selected_Component (Loc,
7573 Prefix => New_Occurrence_Of (S, Loc),
7574 Selector_Name =>
7575 New_Occurrence_Of (Entity (E_Name), Loc));
7576 Rewrite (E_Name, New_N);
7577 Analyze (E_Name);
7579 elsif Nkind (Entry_Name) = N_Selected_Component
7580 and then Is_Overloaded (Prefix (Entry_Name))
7581 then
7582 -- Use the entry name (which must be unique at this point) to find
7583 -- the prefix that returns the corresponding task/protected type.
7585 declare
7586 Pref : constant Node_Id := Prefix (Entry_Name);
7587 Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
7588 I : Interp_Index;
7589 It : Interp;
7591 begin
7592 Get_First_Interp (Pref, I, It);
7593 while Present (It.Typ) loop
7594 if Scope (Ent) = It.Typ then
7595 Set_Etype (Pref, It.Typ);
7596 exit;
7597 end if;
7599 Get_Next_Interp (I, It);
7600 end loop;
7601 end;
7602 end if;
7604 if Nkind (Entry_Name) = N_Selected_Component then
7605 Resolve (Prefix (Entry_Name));
7607 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7608 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7609 Resolve (Prefix (Prefix (Entry_Name)));
7610 Index := First (Expressions (Entry_Name));
7611 Resolve (Index, Entry_Index_Type (Nam));
7613 -- Generate a reference for the index when it denotes an entity
7615 if Is_Entity_Name (Index) then
7616 Generate_Reference (Entity (Index), Nam);
7617 end if;
7619 -- Up to this point the expression could have been the actual in a
7620 -- simple entry call, and be given by a named association.
7622 if Nkind (Index) = N_Parameter_Association then
7623 Error_Msg_N ("expect expression for entry index", Index);
7624 else
7625 Apply_Range_Check (Index, Actual_Index_Type (Nam));
7626 end if;
7627 end if;
7628 end Resolve_Entry;
7630 ------------------------
7631 -- Resolve_Entry_Call --
7632 ------------------------
7634 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
7635 Entry_Name : constant Node_Id := Name (N);
7636 Loc : constant Source_Ptr := Sloc (Entry_Name);
7638 Nam : Entity_Id;
7639 Norm_OK : Boolean;
7640 Obj : Node_Id;
7641 Was_Over : Boolean;
7643 begin
7644 -- We kill all checks here, because it does not seem worth the effort to
7645 -- do anything better, an entry call is a big operation.
7647 Kill_All_Checks;
7649 -- Processing of the name is similar for entry calls and protected
7650 -- operation calls. Once the entity is determined, we can complete
7651 -- the resolution of the actuals.
7653 -- The selector may be overloaded, in the case of a protected object
7654 -- with overloaded functions. The type of the context is used for
7655 -- resolution.
7657 if Nkind (Entry_Name) = N_Selected_Component
7658 and then Is_Overloaded (Selector_Name (Entry_Name))
7659 and then Typ /= Standard_Void_Type
7660 then
7661 declare
7662 I : Interp_Index;
7663 It : Interp;
7665 begin
7666 Get_First_Interp (Selector_Name (Entry_Name), I, It);
7667 while Present (It.Typ) loop
7668 if Covers (Typ, It.Typ) then
7669 Set_Entity (Selector_Name (Entry_Name), It.Nam);
7670 Set_Etype (Entry_Name, It.Typ);
7672 Generate_Reference (It.Typ, N, ' ');
7673 end if;
7675 Get_Next_Interp (I, It);
7676 end loop;
7677 end;
7678 end if;
7680 Resolve_Entry (Entry_Name);
7682 if Nkind (Entry_Name) = N_Selected_Component then
7684 -- Simple entry or protected operation call
7686 Nam := Entity (Selector_Name (Entry_Name));
7687 Obj := Prefix (Entry_Name);
7689 if Is_Subprogram (Nam) then
7690 Check_For_Eliminated_Subprogram (Entry_Name, Nam);
7691 end if;
7693 Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
7695 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7697 -- Call to member of entry family
7699 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7700 Obj := Prefix (Prefix (Entry_Name));
7701 Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
7702 end if;
7704 -- We cannot in general check the maximum depth of protected entry calls
7705 -- at compile time. But we can tell that any protected entry call at all
7706 -- violates a specified nesting depth of zero.
7708 if Is_Protected_Type (Scope (Nam)) then
7709 Check_Restriction (Max_Entry_Queue_Length, N);
7710 end if;
7712 -- Use context type to disambiguate a protected function that can be
7713 -- called without actuals and that returns an array type, and where the
7714 -- argument list may be an indexing of the returned value.
7716 if Ekind (Nam) = E_Function
7717 and then Needs_No_Actuals (Nam)
7718 and then Present (Parameter_Associations (N))
7719 and then
7720 ((Is_Array_Type (Etype (Nam))
7721 and then Covers (Typ, Component_Type (Etype (Nam))))
7723 or else (Is_Access_Type (Etype (Nam))
7724 and then Is_Array_Type (Designated_Type (Etype (Nam)))
7725 and then
7726 Covers
7727 (Typ,
7728 Component_Type (Designated_Type (Etype (Nam))))))
7729 then
7730 declare
7731 Index_Node : Node_Id;
7733 begin
7734 Index_Node :=
7735 Make_Indexed_Component (Loc,
7736 Prefix =>
7737 Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)),
7738 Expressions => Parameter_Associations (N));
7740 -- Since we are correcting a node classification error made by the
7741 -- parser, we call Replace rather than Rewrite.
7743 Replace (N, Index_Node);
7744 Set_Etype (Prefix (N), Etype (Nam));
7745 Set_Etype (N, Typ);
7746 Resolve_Indexed_Component (N, Typ);
7747 return;
7748 end;
7749 end if;
7751 if Ekind_In (Nam, E_Entry, E_Entry_Family)
7752 and then Present (Contract_Wrapper (Nam))
7753 and then Current_Scope /= Contract_Wrapper (Nam)
7754 then
7755 -- Note the entity being called before rewriting the call, so that
7756 -- it appears used at this point.
7758 Generate_Reference (Nam, Entry_Name, 'r');
7760 -- Rewrite as call to the precondition wrapper, adding the task
7761 -- object to the list of actuals. If the call is to a member of an
7762 -- entry family, include the index as well.
7764 declare
7765 New_Call : Node_Id;
7766 New_Actuals : List_Id;
7768 begin
7769 New_Actuals := New_List (Obj);
7771 if Nkind (Entry_Name) = N_Indexed_Component then
7772 Append_To (New_Actuals,
7773 New_Copy_Tree (First (Expressions (Entry_Name))));
7774 end if;
7776 Append_List (Parameter_Associations (N), New_Actuals);
7777 New_Call :=
7778 Make_Procedure_Call_Statement (Loc,
7779 Name =>
7780 New_Occurrence_Of (Contract_Wrapper (Nam), Loc),
7781 Parameter_Associations => New_Actuals);
7782 Rewrite (N, New_Call);
7784 -- Preanalyze and resolve new call. Current procedure is called
7785 -- from Resolve_Call, after which expansion will take place.
7787 Preanalyze_And_Resolve (N);
7788 return;
7789 end;
7790 end if;
7792 -- The operation name may have been overloaded. Order the actuals
7793 -- according to the formals of the resolved entity, and set the return
7794 -- type to that of the operation.
7796 if Was_Over then
7797 Normalize_Actuals (N, Nam, False, Norm_OK);
7798 pragma Assert (Norm_OK);
7799 Set_Etype (N, Etype (Nam));
7801 -- Reset the Is_Overloaded flag, since resolution is now completed
7803 -- Simple entry call
7805 if Nkind (Entry_Name) = N_Selected_Component then
7806 Set_Is_Overloaded (Selector_Name (Entry_Name), False);
7808 -- Call to a member of an entry family
7810 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7811 Set_Is_Overloaded (Selector_Name (Prefix (Entry_Name)), False);
7812 end if;
7813 end if;
7815 Resolve_Actuals (N, Nam);
7816 Check_Internal_Protected_Use (N, Nam);
7818 -- Create a call reference to the entry
7820 Generate_Reference (Nam, Entry_Name, 's');
7822 if Ekind_In (Nam, E_Entry, E_Entry_Family) then
7823 Check_Potentially_Blocking_Operation (N);
7824 end if;
7826 -- Verify that a procedure call cannot masquerade as an entry
7827 -- call where an entry call is expected.
7829 if Ekind (Nam) = E_Procedure then
7830 if Nkind (Parent (N)) = N_Entry_Call_Alternative
7831 and then N = Entry_Call_Statement (Parent (N))
7832 then
7833 Error_Msg_N ("entry call required in select statement", N);
7835 elsif Nkind (Parent (N)) = N_Triggering_Alternative
7836 and then N = Triggering_Statement (Parent (N))
7837 then
7838 Error_Msg_N ("triggering statement cannot be procedure call", N);
7840 elsif Ekind (Scope (Nam)) = E_Task_Type
7841 and then not In_Open_Scopes (Scope (Nam))
7842 then
7843 Error_Msg_N ("task has no entry with this name", Entry_Name);
7844 end if;
7845 end if;
7847 -- After resolution, entry calls and protected procedure calls are
7848 -- changed into entry calls, for expansion. The structure of the node
7849 -- does not change, so it can safely be done in place. Protected
7850 -- function calls must keep their structure because they are
7851 -- subexpressions.
7853 if Ekind (Nam) /= E_Function then
7855 -- A protected operation that is not a function may modify the
7856 -- corresponding object, and cannot apply to a constant. If this
7857 -- is an internal call, the prefix is the type itself.
7859 if Is_Protected_Type (Scope (Nam))
7860 and then not Is_Variable (Obj)
7861 and then (not Is_Entity_Name (Obj)
7862 or else not Is_Type (Entity (Obj)))
7863 then
7864 Error_Msg_N
7865 ("prefix of protected procedure or entry call must be variable",
7866 Entry_Name);
7867 end if;
7869 declare
7870 Entry_Call : Node_Id;
7872 begin
7873 Entry_Call :=
7874 Make_Entry_Call_Statement (Loc,
7875 Name => Entry_Name,
7876 Parameter_Associations => Parameter_Associations (N));
7878 -- Inherit relevant attributes from the original call
7880 Set_First_Named_Actual
7881 (Entry_Call, First_Named_Actual (N));
7883 Set_Is_Elaboration_Checks_OK_Node
7884 (Entry_Call, Is_Elaboration_Checks_OK_Node (N));
7886 Set_Is_Elaboration_Warnings_OK_Node
7887 (Entry_Call, Is_Elaboration_Warnings_OK_Node (N));
7889 Set_Is_SPARK_Mode_On_Node
7890 (Entry_Call, Is_SPARK_Mode_On_Node (N));
7892 Rewrite (N, Entry_Call);
7893 Set_Analyzed (N, True);
7894 end;
7896 -- Protected functions can return on the secondary stack, in which
7897 -- case we must trigger the transient scope mechanism.
7899 elsif Expander_Active
7900 and then Requires_Transient_Scope (Etype (Nam))
7901 then
7902 Establish_Transient_Scope (N, Sec_Stack => True);
7903 end if;
7904 end Resolve_Entry_Call;
7906 -------------------------
7907 -- Resolve_Equality_Op --
7908 -------------------------
7910 -- Both arguments must have the same type, and the boolean context does
7911 -- not participate in the resolution. The first pass verifies that the
7912 -- interpretation is not ambiguous, and the type of the left argument is
7913 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
7914 -- are strings or aggregates, allocators, or Null, they are ambiguous even
7915 -- though they carry a single (universal) type. Diagnose this case here.
7917 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
7918 L : constant Node_Id := Left_Opnd (N);
7919 R : constant Node_Id := Right_Opnd (N);
7920 T : Entity_Id := Find_Unique_Type (L, R);
7922 procedure Check_If_Expression (Cond : Node_Id);
7923 -- The resolution rule for if expressions requires that each such must
7924 -- have a unique type. This means that if several dependent expressions
7925 -- are of a non-null anonymous access type, and the context does not
7926 -- impose an expected type (as can be the case in an equality operation)
7927 -- the expression must be rejected.
7929 procedure Explain_Redundancy (N : Node_Id);
7930 -- Attempt to explain the nature of a redundant comparison with True. If
7931 -- the expression N is too complex, this routine issues a general error
7932 -- message.
7934 function Find_Unique_Access_Type return Entity_Id;
7935 -- In the case of allocators and access attributes, the context must
7936 -- provide an indication of the specific access type to be used. If
7937 -- one operand is of such a "generic" access type, check whether there
7938 -- is a specific visible access type that has the same designated type.
7939 -- This is semantically dubious, and of no interest to any real code,
7940 -- but c48008a makes it all worthwhile.
7942 -------------------------
7943 -- Check_If_Expression --
7944 -------------------------
7946 procedure Check_If_Expression (Cond : Node_Id) is
7947 Then_Expr : Node_Id;
7948 Else_Expr : Node_Id;
7950 begin
7951 if Nkind (Cond) = N_If_Expression then
7952 Then_Expr := Next (First (Expressions (Cond)));
7953 Else_Expr := Next (Then_Expr);
7955 if Nkind (Then_Expr) /= N_Null
7956 and then Nkind (Else_Expr) /= N_Null
7957 then
7958 Error_Msg_N ("cannot determine type of if expression", Cond);
7959 end if;
7960 end if;
7961 end Check_If_Expression;
7963 ------------------------
7964 -- Explain_Redundancy --
7965 ------------------------
7967 procedure Explain_Redundancy (N : Node_Id) is
7968 Error : Name_Id;
7969 Val : Node_Id;
7970 Val_Id : Entity_Id;
7972 begin
7973 Val := N;
7975 -- Strip the operand down to an entity
7977 loop
7978 if Nkind (Val) = N_Selected_Component then
7979 Val := Selector_Name (Val);
7980 else
7981 exit;
7982 end if;
7983 end loop;
7985 -- The construct denotes an entity
7987 if Is_Entity_Name (Val) and then Present (Entity (Val)) then
7988 Val_Id := Entity (Val);
7990 -- Do not generate an error message when the comparison is done
7991 -- against the enumeration literal Standard.True.
7993 if Ekind (Val_Id) /= E_Enumeration_Literal then
7995 -- Build a customized error message
7997 Name_Len := 0;
7998 Add_Str_To_Name_Buffer ("?r?");
8000 if Ekind (Val_Id) = E_Component then
8001 Add_Str_To_Name_Buffer ("component ");
8003 elsif Ekind (Val_Id) = E_Constant then
8004 Add_Str_To_Name_Buffer ("constant ");
8006 elsif Ekind (Val_Id) = E_Discriminant then
8007 Add_Str_To_Name_Buffer ("discriminant ");
8009 elsif Is_Formal (Val_Id) then
8010 Add_Str_To_Name_Buffer ("parameter ");
8012 elsif Ekind (Val_Id) = E_Variable then
8013 Add_Str_To_Name_Buffer ("variable ");
8014 end if;
8016 Add_Str_To_Name_Buffer ("& is always True!");
8017 Error := Name_Find;
8019 Error_Msg_NE (Get_Name_String (Error), Val, Val_Id);
8020 end if;
8022 -- The construct is too complex to disect, issue a general message
8024 else
8025 Error_Msg_N ("?r?expression is always True!", Val);
8026 end if;
8027 end Explain_Redundancy;
8029 -----------------------------
8030 -- Find_Unique_Access_Type --
8031 -----------------------------
8033 function Find_Unique_Access_Type return Entity_Id is
8034 Acc : Entity_Id;
8035 E : Entity_Id;
8036 S : Entity_Id;
8038 begin
8039 if Ekind_In (Etype (R), E_Allocator_Type,
8040 E_Access_Attribute_Type)
8041 then
8042 Acc := Designated_Type (Etype (R));
8044 elsif Ekind_In (Etype (L), E_Allocator_Type,
8045 E_Access_Attribute_Type)
8046 then
8047 Acc := Designated_Type (Etype (L));
8048 else
8049 return Empty;
8050 end if;
8052 S := Current_Scope;
8053 while S /= Standard_Standard loop
8054 E := First_Entity (S);
8055 while Present (E) loop
8056 if Is_Type (E)
8057 and then Is_Access_Type (E)
8058 and then Ekind (E) /= E_Allocator_Type
8059 and then Designated_Type (E) = Base_Type (Acc)
8060 then
8061 return E;
8062 end if;
8064 Next_Entity (E);
8065 end loop;
8067 S := Scope (S);
8068 end loop;
8070 return Empty;
8071 end Find_Unique_Access_Type;
8073 -- Start of processing for Resolve_Equality_Op
8075 begin
8076 Set_Etype (N, Base_Type (Typ));
8077 Generate_Reference (T, N, ' ');
8079 if T = Any_Fixed then
8080 T := Unique_Fixed_Point_Type (L);
8081 end if;
8083 if T /= Any_Type then
8084 if T = Any_String or else
8085 T = Any_Composite or else
8086 T = Any_Character
8087 then
8088 if T = Any_Character then
8089 Ambiguous_Character (L);
8090 else
8091 Error_Msg_N ("ambiguous operands for equality", N);
8092 end if;
8094 Set_Etype (N, Any_Type);
8095 return;
8097 elsif T = Any_Access
8098 or else Ekind_In (T, E_Allocator_Type, E_Access_Attribute_Type)
8099 then
8100 T := Find_Unique_Access_Type;
8102 if No (T) then
8103 Error_Msg_N ("ambiguous operands for equality", N);
8104 Set_Etype (N, Any_Type);
8105 return;
8106 end if;
8108 -- If expressions must have a single type, and if the context does
8109 -- not impose one the dependent expressions cannot be anonymous
8110 -- access types.
8112 -- Why no similar processing for case expressions???
8114 elsif Ada_Version >= Ada_2012
8115 and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
8116 E_Anonymous_Access_Subprogram_Type)
8117 and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
8118 E_Anonymous_Access_Subprogram_Type)
8119 then
8120 Check_If_Expression (L);
8121 Check_If_Expression (R);
8122 end if;
8124 Resolve (L, T);
8125 Resolve (R, T);
8127 -- In SPARK, equality operators = and /= for array types other than
8128 -- String are only defined when, for each index position, the
8129 -- operands have equal static bounds.
8131 if Is_Array_Type (T) then
8133 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8134 -- operation if not needed.
8136 if Restriction_Check_Required (SPARK_05)
8137 and then Base_Type (T) /= Standard_String
8138 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
8139 and then Etype (L) /= Any_Composite -- or else L in error
8140 and then Etype (R) /= Any_Composite -- or else R in error
8141 and then not Matching_Static_Array_Bounds (Etype (L), Etype (R))
8142 then
8143 Check_SPARK_05_Restriction
8144 ("array types should have matching static bounds", N);
8145 end if;
8146 end if;
8148 -- If the unique type is a class-wide type then it will be expanded
8149 -- into a dispatching call to the predefined primitive. Therefore we
8150 -- check here for potential violation of such restriction.
8152 if Is_Class_Wide_Type (T) then
8153 Check_Restriction (No_Dispatching_Calls, N);
8154 end if;
8156 -- Only warn for redundant equality comparison to True for objects
8157 -- (e.g. "X = True") and operations (e.g. "(X < Y) = True"). For
8158 -- other expressions, it may be a matter of preference to write
8159 -- "Expr = True" or "Expr".
8161 if Warn_On_Redundant_Constructs
8162 and then Comes_From_Source (N)
8163 and then Comes_From_Source (R)
8164 and then Is_Entity_Name (R)
8165 and then Entity (R) = Standard_True
8166 and then
8167 ((Is_Entity_Name (L) and then Is_Object (Entity (L)))
8168 or else
8169 Nkind (L) in N_Op)
8170 then
8171 Error_Msg_N -- CODEFIX
8172 ("?r?comparison with True is redundant!", N);
8173 Explain_Redundancy (Original_Node (R));
8174 end if;
8176 Check_Unset_Reference (L);
8177 Check_Unset_Reference (R);
8178 Generate_Operator_Reference (N, T);
8179 Check_Low_Bound_Tested (N);
8181 -- If this is an inequality, it may be the implicit inequality
8182 -- created for a user-defined operation, in which case the corres-
8183 -- ponding equality operation is not intrinsic, and the operation
8184 -- cannot be constant-folded. Else fold.
8186 if Nkind (N) = N_Op_Eq
8187 or else Comes_From_Source (Entity (N))
8188 or else Ekind (Entity (N)) = E_Operator
8189 or else Is_Intrinsic_Subprogram
8190 (Corresponding_Equality (Entity (N)))
8191 then
8192 Analyze_Dimension (N);
8193 Eval_Relational_Op (N);
8195 elsif Nkind (N) = N_Op_Ne
8196 and then Is_Abstract_Subprogram (Entity (N))
8197 then
8198 Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
8199 end if;
8201 -- Ada 2005: If one operand is an anonymous access type, convert the
8202 -- other operand to it, to ensure that the underlying types match in
8203 -- the back-end. Same for access_to_subprogram, and the conversion
8204 -- verifies that the types are subtype conformant.
8206 -- We apply the same conversion in the case one of the operands is a
8207 -- private subtype of the type of the other.
8209 -- Why the Expander_Active test here ???
8211 if Expander_Active
8212 and then
8213 (Ekind_In (T, E_Anonymous_Access_Type,
8214 E_Anonymous_Access_Subprogram_Type)
8215 or else Is_Private_Type (T))
8216 then
8217 if Etype (L) /= T then
8218 Rewrite (L,
8219 Make_Unchecked_Type_Conversion (Sloc (L),
8220 Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
8221 Expression => Relocate_Node (L)));
8222 Analyze_And_Resolve (L, T);
8223 end if;
8225 if (Etype (R)) /= T then
8226 Rewrite (R,
8227 Make_Unchecked_Type_Conversion (Sloc (R),
8228 Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
8229 Expression => Relocate_Node (R)));
8230 Analyze_And_Resolve (R, T);
8231 end if;
8232 end if;
8233 end if;
8234 end Resolve_Equality_Op;
8236 ----------------------------------
8237 -- Resolve_Explicit_Dereference --
8238 ----------------------------------
8240 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
8241 Loc : constant Source_Ptr := Sloc (N);
8242 New_N : Node_Id;
8243 P : constant Node_Id := Prefix (N);
8245 P_Typ : Entity_Id;
8246 -- The candidate prefix type, if overloaded
8248 I : Interp_Index;
8249 It : Interp;
8251 begin
8252 Check_Fully_Declared_Prefix (Typ, P);
8253 P_Typ := Empty;
8255 -- A useful optimization: check whether the dereference denotes an
8256 -- element of a container, and if so rewrite it as a call to the
8257 -- corresponding Element function.
8259 -- Disabled for now, on advice of ARG. A more restricted form of the
8260 -- predicate might be acceptable ???
8262 -- if Is_Container_Element (N) then
8263 -- return;
8264 -- end if;
8266 if Is_Overloaded (P) then
8268 -- Use the context type to select the prefix that has the correct
8269 -- designated type. Keep the first match, which will be the inner-
8270 -- most.
8272 Get_First_Interp (P, I, It);
8274 while Present (It.Typ) loop
8275 if Is_Access_Type (It.Typ)
8276 and then Covers (Typ, Designated_Type (It.Typ))
8277 then
8278 if No (P_Typ) then
8279 P_Typ := It.Typ;
8280 end if;
8282 -- Remove access types that do not match, but preserve access
8283 -- to subprogram interpretations, in case a further dereference
8284 -- is needed (see below).
8286 elsif Ekind (It.Typ) /= E_Access_Subprogram_Type then
8287 Remove_Interp (I);
8288 end if;
8290 Get_Next_Interp (I, It);
8291 end loop;
8293 if Present (P_Typ) then
8294 Resolve (P, P_Typ);
8295 Set_Etype (N, Designated_Type (P_Typ));
8297 else
8298 -- If no interpretation covers the designated type of the prefix,
8299 -- this is the pathological case where not all implementations of
8300 -- the prefix allow the interpretation of the node as a call. Now
8301 -- that the expected type is known, Remove other interpretations
8302 -- from prefix, rewrite it as a call, and resolve again, so that
8303 -- the proper call node is generated.
8305 Get_First_Interp (P, I, It);
8306 while Present (It.Typ) loop
8307 if Ekind (It.Typ) /= E_Access_Subprogram_Type then
8308 Remove_Interp (I);
8309 end if;
8311 Get_Next_Interp (I, It);
8312 end loop;
8314 New_N :=
8315 Make_Function_Call (Loc,
8316 Name =>
8317 Make_Explicit_Dereference (Loc,
8318 Prefix => P),
8319 Parameter_Associations => New_List);
8321 Save_Interps (N, New_N);
8322 Rewrite (N, New_N);
8323 Analyze_And_Resolve (N, Typ);
8324 return;
8325 end if;
8327 -- If not overloaded, resolve P with its own type
8329 else
8330 Resolve (P);
8331 end if;
8333 -- If the prefix might be null, add an access check
8335 if Is_Access_Type (Etype (P))
8336 and then not Can_Never_Be_Null (Etype (P))
8337 then
8338 Apply_Access_Check (N);
8339 end if;
8341 -- If the designated type is a packed unconstrained array type, and the
8342 -- explicit dereference is not in the context of an attribute reference,
8343 -- then we must compute and set the actual subtype, since it is needed
8344 -- by Gigi. The reason we exclude the attribute case is that this is
8345 -- handled fine by Gigi, and in fact we use such attributes to build the
8346 -- actual subtype. We also exclude generated code (which builds actual
8347 -- subtypes directly if they are needed).
8349 if Is_Array_Type (Etype (N))
8350 and then Is_Packed (Etype (N))
8351 and then not Is_Constrained (Etype (N))
8352 and then Nkind (Parent (N)) /= N_Attribute_Reference
8353 and then Comes_From_Source (N)
8354 then
8355 Set_Etype (N, Get_Actual_Subtype (N));
8356 end if;
8358 Analyze_Dimension (N);
8360 -- Note: No Eval processing is required for an explicit dereference,
8361 -- because such a name can never be static.
8363 end Resolve_Explicit_Dereference;
8365 -------------------------------------
8366 -- Resolve_Expression_With_Actions --
8367 -------------------------------------
8369 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
8370 begin
8371 Set_Etype (N, Typ);
8373 -- If N has no actions, and its expression has been constant folded,
8374 -- then rewrite N as just its expression. Note, we can't do this in
8375 -- the general case of Is_Empty_List (Actions (N)) as this would cause
8376 -- Expression (N) to be expanded again.
8378 if Is_Empty_List (Actions (N))
8379 and then Compile_Time_Known_Value (Expression (N))
8380 then
8381 Rewrite (N, Expression (N));
8382 end if;
8383 end Resolve_Expression_With_Actions;
8385 ----------------------------------
8386 -- Resolve_Generalized_Indexing --
8387 ----------------------------------
8389 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id) is
8390 Indexing : constant Node_Id := Generalized_Indexing (N);
8391 Call : Node_Id;
8392 Indexes : List_Id;
8393 Pref : Node_Id;
8395 begin
8396 -- In ASIS mode, propagate the information about the indexes back to
8397 -- to the original indexing node. The generalized indexing is either
8398 -- a function call, or a dereference of one. The actuals include the
8399 -- prefix of the original node, which is the container expression.
8401 if ASIS_Mode then
8402 Resolve (Indexing, Typ);
8403 Set_Etype (N, Etype (Indexing));
8404 Set_Is_Overloaded (N, False);
8406 Call := Indexing;
8407 while Nkind_In (Call, N_Explicit_Dereference, N_Selected_Component)
8408 loop
8409 Call := Prefix (Call);
8410 end loop;
8412 if Nkind (Call) = N_Function_Call then
8413 Indexes := New_Copy_List (Parameter_Associations (Call));
8414 Pref := Remove_Head (Indexes);
8415 Set_Expressions (N, Indexes);
8417 -- If expression is to be reanalyzed, reset Generalized_Indexing
8418 -- to recreate call node, as is the case when the expression is
8419 -- part of an expression function.
8421 if In_Spec_Expression then
8422 Set_Generalized_Indexing (N, Empty);
8423 end if;
8425 Set_Prefix (N, Pref);
8426 end if;
8428 else
8429 Rewrite (N, Indexing);
8430 Resolve (N, Typ);
8431 end if;
8432 end Resolve_Generalized_Indexing;
8434 ---------------------------
8435 -- Resolve_If_Expression --
8436 ---------------------------
8438 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id) is
8439 Condition : constant Node_Id := First (Expressions (N));
8440 Then_Expr : Node_Id;
8441 Else_Expr : Node_Id;
8442 Else_Typ : Entity_Id;
8443 Then_Typ : Entity_Id;
8445 begin
8446 -- Defend against malformed expressions
8448 if No (Condition) then
8449 return;
8450 end if;
8452 Then_Expr := Next (Condition);
8454 if No (Then_Expr) then
8455 return;
8456 end if;
8458 Else_Expr := Next (Then_Expr);
8460 Resolve (Condition, Any_Boolean);
8461 Resolve (Then_Expr, Typ);
8462 Then_Typ := Etype (Then_Expr);
8464 -- When the "then" expression is of a scalar subtype different from the
8465 -- result subtype, then insert a conversion to ensure the generation of
8466 -- a constraint check. The same is done for the else part below, again
8467 -- comparing subtypes rather than base types.
8469 if Is_Scalar_Type (Then_Typ) and then Then_Typ /= Typ then
8470 Rewrite (Then_Expr, Convert_To (Typ, Then_Expr));
8471 Analyze_And_Resolve (Then_Expr, Typ);
8472 end if;
8474 -- If ELSE expression present, just resolve using the determined type
8475 -- If type is universal, resolve to any member of the class.
8477 if Present (Else_Expr) then
8478 if Typ = Universal_Integer then
8479 Resolve (Else_Expr, Any_Integer);
8481 elsif Typ = Universal_Real then
8482 Resolve (Else_Expr, Any_Real);
8484 else
8485 Resolve (Else_Expr, Typ);
8486 end if;
8488 Else_Typ := Etype (Else_Expr);
8490 if Is_Scalar_Type (Else_Typ) and then Else_Typ /= Typ then
8491 Rewrite (Else_Expr, Convert_To (Typ, Else_Expr));
8492 Analyze_And_Resolve (Else_Expr, Typ);
8494 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
8495 -- dynamically tagged must be known statically.
8497 elsif Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
8498 if Is_Dynamically_Tagged (Then_Expr) /=
8499 Is_Dynamically_Tagged (Else_Expr)
8500 then
8501 Error_Msg_N ("all or none of the dependent expressions "
8502 & "can be dynamically tagged", N);
8503 end if;
8504 end if;
8506 -- If no ELSE expression is present, root type must be Standard.Boolean
8507 -- and we provide a Standard.True result converted to the appropriate
8508 -- Boolean type (in case it is a derived boolean type).
8510 elsif Root_Type (Typ) = Standard_Boolean then
8511 Else_Expr :=
8512 Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
8513 Analyze_And_Resolve (Else_Expr, Typ);
8514 Append_To (Expressions (N), Else_Expr);
8516 else
8517 Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
8518 Append_To (Expressions (N), Error);
8519 end if;
8521 Set_Etype (N, Typ);
8523 if not Error_Posted (N) then
8524 Eval_If_Expression (N);
8525 end if;
8527 Analyze_Dimension (N);
8528 end Resolve_If_Expression;
8530 -------------------------------
8531 -- Resolve_Indexed_Component --
8532 -------------------------------
8534 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
8535 Name : constant Node_Id := Prefix (N);
8536 Expr : Node_Id;
8537 Array_Type : Entity_Id := Empty; -- to prevent junk warning
8538 Index : Node_Id;
8540 begin
8541 if Present (Generalized_Indexing (N)) then
8542 Resolve_Generalized_Indexing (N, Typ);
8543 return;
8544 end if;
8546 if Is_Overloaded (Name) then
8548 -- Use the context type to select the prefix that yields the correct
8549 -- component type.
8551 declare
8552 I : Interp_Index;
8553 It : Interp;
8554 I1 : Interp_Index := 0;
8555 P : constant Node_Id := Prefix (N);
8556 Found : Boolean := False;
8558 begin
8559 Get_First_Interp (P, I, It);
8560 while Present (It.Typ) loop
8561 if (Is_Array_Type (It.Typ)
8562 and then Covers (Typ, Component_Type (It.Typ)))
8563 or else (Is_Access_Type (It.Typ)
8564 and then Is_Array_Type (Designated_Type (It.Typ))
8565 and then
8566 Covers
8567 (Typ,
8568 Component_Type (Designated_Type (It.Typ))))
8569 then
8570 if Found then
8571 It := Disambiguate (P, I1, I, Any_Type);
8573 if It = No_Interp then
8574 Error_Msg_N ("ambiguous prefix for indexing", N);
8575 Set_Etype (N, Typ);
8576 return;
8578 else
8579 Found := True;
8580 Array_Type := It.Typ;
8581 I1 := I;
8582 end if;
8584 else
8585 Found := True;
8586 Array_Type := It.Typ;
8587 I1 := I;
8588 end if;
8589 end if;
8591 Get_Next_Interp (I, It);
8592 end loop;
8593 end;
8595 else
8596 Array_Type := Etype (Name);
8597 end if;
8599 Resolve (Name, Array_Type);
8600 Array_Type := Get_Actual_Subtype_If_Available (Name);
8602 -- If prefix is access type, dereference to get real array type.
8603 -- Note: we do not apply an access check because the expander always
8604 -- introduces an explicit dereference, and the check will happen there.
8606 if Is_Access_Type (Array_Type) then
8607 Array_Type := Designated_Type (Array_Type);
8608 end if;
8610 -- If name was overloaded, set component type correctly now
8611 -- If a misplaced call to an entry family (which has no index types)
8612 -- return. Error will be diagnosed from calling context.
8614 if Is_Array_Type (Array_Type) then
8615 Set_Etype (N, Component_Type (Array_Type));
8616 else
8617 return;
8618 end if;
8620 Index := First_Index (Array_Type);
8621 Expr := First (Expressions (N));
8623 -- The prefix may have resolved to a string literal, in which case its
8624 -- etype has a special representation. This is only possible currently
8625 -- if the prefix is a static concatenation, written in functional
8626 -- notation.
8628 if Ekind (Array_Type) = E_String_Literal_Subtype then
8629 Resolve (Expr, Standard_Positive);
8631 else
8632 while Present (Index) and Present (Expr) loop
8633 Resolve (Expr, Etype (Index));
8634 Check_Unset_Reference (Expr);
8636 if Is_Scalar_Type (Etype (Expr)) then
8637 Apply_Scalar_Range_Check (Expr, Etype (Index));
8638 else
8639 Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
8640 end if;
8642 Next_Index (Index);
8643 Next (Expr);
8644 end loop;
8645 end if;
8647 Analyze_Dimension (N);
8649 -- Do not generate the warning on suspicious index if we are analyzing
8650 -- package Ada.Tags; otherwise we will report the warning with the
8651 -- Prims_Ptr field of the dispatch table.
8653 if Scope (Etype (Prefix (N))) = Standard_Standard
8654 or else not
8655 Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
8656 Ada_Tags)
8657 then
8658 Warn_On_Suspicious_Index (Name, First (Expressions (N)));
8659 Eval_Indexed_Component (N);
8660 end if;
8662 -- If the array type is atomic, and the component is not atomic, then
8663 -- this is worth a warning, since we have a situation where the access
8664 -- to the component may cause extra read/writes of the atomic array
8665 -- object, or partial word accesses, which could be unexpected.
8667 if Nkind (N) = N_Indexed_Component
8668 and then Is_Atomic_Ref_With_Address (N)
8669 and then not (Has_Atomic_Components (Array_Type)
8670 or else (Is_Entity_Name (Prefix (N))
8671 and then Has_Atomic_Components
8672 (Entity (Prefix (N)))))
8673 and then not Is_Atomic (Component_Type (Array_Type))
8674 then
8675 Error_Msg_N
8676 ("??access to non-atomic component of atomic array", Prefix (N));
8677 Error_Msg_N
8678 ("??\may cause unexpected accesses to atomic object", Prefix (N));
8679 end if;
8680 end Resolve_Indexed_Component;
8682 -----------------------------
8683 -- Resolve_Integer_Literal --
8684 -----------------------------
8686 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
8687 begin
8688 Set_Etype (N, Typ);
8689 Eval_Integer_Literal (N);
8690 end Resolve_Integer_Literal;
8692 --------------------------------
8693 -- Resolve_Intrinsic_Operator --
8694 --------------------------------
8696 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
8697 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8698 Op : Entity_Id;
8699 Arg1 : Node_Id;
8700 Arg2 : Node_Id;
8702 function Convert_Operand (Opnd : Node_Id) return Node_Id;
8703 -- If the operand is a literal, it cannot be the expression in a
8704 -- conversion. Use a qualified expression instead.
8706 ---------------------
8707 -- Convert_Operand --
8708 ---------------------
8710 function Convert_Operand (Opnd : Node_Id) return Node_Id is
8711 Loc : constant Source_Ptr := Sloc (Opnd);
8712 Res : Node_Id;
8714 begin
8715 if Nkind_In (Opnd, N_Integer_Literal, N_Real_Literal) then
8716 Res :=
8717 Make_Qualified_Expression (Loc,
8718 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
8719 Expression => Relocate_Node (Opnd));
8720 Analyze (Res);
8722 else
8723 Res := Unchecked_Convert_To (Btyp, Opnd);
8724 end if;
8726 return Res;
8727 end Convert_Operand;
8729 -- Start of processing for Resolve_Intrinsic_Operator
8731 begin
8732 -- We must preserve the original entity in a generic setting, so that
8733 -- the legality of the operation can be verified in an instance.
8735 if not Expander_Active then
8736 return;
8737 end if;
8739 Op := Entity (N);
8740 while Scope (Op) /= Standard_Standard loop
8741 Op := Homonym (Op);
8742 pragma Assert (Present (Op));
8743 end loop;
8745 Set_Entity (N, Op);
8746 Set_Is_Overloaded (N, False);
8748 -- If the result or operand types are private, rewrite with unchecked
8749 -- conversions on the operands and the result, to expose the proper
8750 -- underlying numeric type.
8752 if Is_Private_Type (Typ)
8753 or else Is_Private_Type (Etype (Left_Opnd (N)))
8754 or else Is_Private_Type (Etype (Right_Opnd (N)))
8755 then
8756 Arg1 := Convert_Operand (Left_Opnd (N));
8758 if Nkind (N) = N_Op_Expon then
8759 Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
8760 else
8761 Arg2 := Convert_Operand (Right_Opnd (N));
8762 end if;
8764 if Nkind (Arg1) = N_Type_Conversion then
8765 Save_Interps (Left_Opnd (N), Expression (Arg1));
8766 end if;
8768 if Nkind (Arg2) = N_Type_Conversion then
8769 Save_Interps (Right_Opnd (N), Expression (Arg2));
8770 end if;
8772 Set_Left_Opnd (N, Arg1);
8773 Set_Right_Opnd (N, Arg2);
8775 Set_Etype (N, Btyp);
8776 Rewrite (N, Unchecked_Convert_To (Typ, N));
8777 Resolve (N, Typ);
8779 elsif Typ /= Etype (Left_Opnd (N))
8780 or else Typ /= Etype (Right_Opnd (N))
8781 then
8782 -- Add explicit conversion where needed, and save interpretations in
8783 -- case operands are overloaded.
8785 Arg1 := Convert_To (Typ, Left_Opnd (N));
8786 Arg2 := Convert_To (Typ, Right_Opnd (N));
8788 if Nkind (Arg1) = N_Type_Conversion then
8789 Save_Interps (Left_Opnd (N), Expression (Arg1));
8790 else
8791 Save_Interps (Left_Opnd (N), Arg1);
8792 end if;
8794 if Nkind (Arg2) = N_Type_Conversion then
8795 Save_Interps (Right_Opnd (N), Expression (Arg2));
8796 else
8797 Save_Interps (Right_Opnd (N), Arg2);
8798 end if;
8800 Rewrite (Left_Opnd (N), Arg1);
8801 Rewrite (Right_Opnd (N), Arg2);
8802 Analyze (Arg1);
8803 Analyze (Arg2);
8804 Resolve_Arithmetic_Op (N, Typ);
8806 else
8807 Resolve_Arithmetic_Op (N, Typ);
8808 end if;
8809 end Resolve_Intrinsic_Operator;
8811 --------------------------------------
8812 -- Resolve_Intrinsic_Unary_Operator --
8813 --------------------------------------
8815 procedure Resolve_Intrinsic_Unary_Operator
8816 (N : Node_Id;
8817 Typ : Entity_Id)
8819 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8820 Op : Entity_Id;
8821 Arg2 : Node_Id;
8823 begin
8824 Op := Entity (N);
8825 while Scope (Op) /= Standard_Standard loop
8826 Op := Homonym (Op);
8827 pragma Assert (Present (Op));
8828 end loop;
8830 Set_Entity (N, Op);
8832 if Is_Private_Type (Typ) then
8833 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
8834 Save_Interps (Right_Opnd (N), Expression (Arg2));
8836 Set_Right_Opnd (N, Arg2);
8838 Set_Etype (N, Btyp);
8839 Rewrite (N, Unchecked_Convert_To (Typ, N));
8840 Resolve (N, Typ);
8842 else
8843 Resolve_Unary_Op (N, Typ);
8844 end if;
8845 end Resolve_Intrinsic_Unary_Operator;
8847 ------------------------
8848 -- Resolve_Logical_Op --
8849 ------------------------
8851 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
8852 B_Typ : Entity_Id;
8854 begin
8855 Check_No_Direct_Boolean_Operators (N);
8857 -- Predefined operations on scalar types yield the base type. On the
8858 -- other hand, logical operations on arrays yield the type of the
8859 -- arguments (and the context).
8861 if Is_Array_Type (Typ) then
8862 B_Typ := Typ;
8863 else
8864 B_Typ := Base_Type (Typ);
8865 end if;
8867 -- The following test is required because the operands of the operation
8868 -- may be literals, in which case the resulting type appears to be
8869 -- compatible with a signed integer type, when in fact it is compatible
8870 -- only with modular types. If the context itself is universal, the
8871 -- operation is illegal.
8873 if not Valid_Boolean_Arg (Typ) then
8874 Error_Msg_N ("invalid context for logical operation", N);
8875 Set_Etype (N, Any_Type);
8876 return;
8878 elsif Typ = Any_Modular then
8879 Error_Msg_N
8880 ("no modular type available in this context", N);
8881 Set_Etype (N, Any_Type);
8882 return;
8884 elsif Is_Modular_Integer_Type (Typ)
8885 and then Etype (Left_Opnd (N)) = Universal_Integer
8886 and then Etype (Right_Opnd (N)) = Universal_Integer
8887 then
8888 Check_For_Visible_Operator (N, B_Typ);
8889 end if;
8891 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
8892 -- is active and the result type is standard Boolean (do not mess with
8893 -- ops that return a nonstandard Boolean type, because something strange
8894 -- is going on).
8896 -- Note: you might expect this replacement to be done during expansion,
8897 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
8898 -- is used, no part of the right operand of an "and" or "or" operator
8899 -- should be executed if the left operand would short-circuit the
8900 -- evaluation of the corresponding "and then" or "or else". If we left
8901 -- the replacement to expansion time, then run-time checks associated
8902 -- with such operands would be evaluated unconditionally, due to being
8903 -- before the condition prior to the rewriting as short-circuit forms
8904 -- during expansion.
8906 if Short_Circuit_And_Or
8907 and then B_Typ = Standard_Boolean
8908 and then Nkind_In (N, N_Op_And, N_Op_Or)
8909 then
8910 -- Mark the corresponding putative SCO operator as truly a logical
8911 -- (and short-circuit) operator.
8913 if Generate_SCO and then Comes_From_Source (N) then
8914 Set_SCO_Logical_Operator (N);
8915 end if;
8917 if Nkind (N) = N_Op_And then
8918 Rewrite (N,
8919 Make_And_Then (Sloc (N),
8920 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8921 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8922 Analyze_And_Resolve (N, B_Typ);
8924 -- Case of OR changed to OR ELSE
8926 else
8927 Rewrite (N,
8928 Make_Or_Else (Sloc (N),
8929 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8930 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8931 Analyze_And_Resolve (N, B_Typ);
8932 end if;
8934 -- Return now, since analysis of the rewritten ops will take care of
8935 -- other reference bookkeeping and expression folding.
8937 return;
8938 end if;
8940 Resolve (Left_Opnd (N), B_Typ);
8941 Resolve (Right_Opnd (N), B_Typ);
8943 Check_Unset_Reference (Left_Opnd (N));
8944 Check_Unset_Reference (Right_Opnd (N));
8946 Set_Etype (N, B_Typ);
8947 Generate_Operator_Reference (N, B_Typ);
8948 Eval_Logical_Op (N);
8950 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
8951 -- only when both operands have same static lower and higher bounds. Of
8952 -- course the types have to match, so only check if operands are
8953 -- compatible and the node itself has no errors.
8955 if Is_Array_Type (B_Typ)
8956 and then Nkind (N) in N_Binary_Op
8957 then
8958 declare
8959 Left_Typ : constant Node_Id := Etype (Left_Opnd (N));
8960 Right_Typ : constant Node_Id := Etype (Right_Opnd (N));
8962 begin
8963 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8964 -- operation if not needed.
8966 if Restriction_Check_Required (SPARK_05)
8967 and then Base_Type (Left_Typ) = Base_Type (Right_Typ)
8968 and then Left_Typ /= Any_Composite -- or Left_Opnd in error
8969 and then Right_Typ /= Any_Composite -- or Right_Opnd in error
8970 and then not Matching_Static_Array_Bounds (Left_Typ, Right_Typ)
8971 then
8972 Check_SPARK_05_Restriction
8973 ("array types should have matching static bounds", N);
8974 end if;
8975 end;
8976 end if;
8977 end Resolve_Logical_Op;
8979 ---------------------------
8980 -- Resolve_Membership_Op --
8981 ---------------------------
8983 -- The context can only be a boolean type, and does not determine the
8984 -- arguments. Arguments should be unambiguous, but the preference rule for
8985 -- universal types applies.
8987 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
8988 pragma Warnings (Off, Typ);
8990 L : constant Node_Id := Left_Opnd (N);
8991 R : constant Node_Id := Right_Opnd (N);
8992 T : Entity_Id;
8994 procedure Resolve_Set_Membership;
8995 -- Analysis has determined a unique type for the left operand. Use it to
8996 -- resolve the disjuncts.
8998 ----------------------------
8999 -- Resolve_Set_Membership --
9000 ----------------------------
9002 procedure Resolve_Set_Membership is
9003 Alt : Node_Id;
9004 Ltyp : Entity_Id;
9006 begin
9007 -- If the left operand is overloaded, find type compatible with not
9008 -- overloaded alternative of the right operand.
9010 if Is_Overloaded (L) then
9011 Ltyp := Empty;
9012 Alt := First (Alternatives (N));
9013 while Present (Alt) loop
9014 if not Is_Overloaded (Alt) then
9015 Ltyp := Intersect_Types (L, Alt);
9016 exit;
9017 else
9018 Next (Alt);
9019 end if;
9020 end loop;
9022 -- Unclear how to resolve expression if all alternatives are also
9023 -- overloaded.
9025 if No (Ltyp) then
9026 Error_Msg_N ("ambiguous expression", N);
9027 end if;
9029 else
9030 Ltyp := Etype (L);
9031 end if;
9033 Resolve (L, Ltyp);
9035 Alt := First (Alternatives (N));
9036 while Present (Alt) loop
9038 -- Alternative is an expression, a range
9039 -- or a subtype mark.
9041 if not Is_Entity_Name (Alt)
9042 or else not Is_Type (Entity (Alt))
9043 then
9044 Resolve (Alt, Ltyp);
9045 end if;
9047 Next (Alt);
9048 end loop;
9050 -- Check for duplicates for discrete case
9052 if Is_Discrete_Type (Ltyp) then
9053 declare
9054 type Ent is record
9055 Alt : Node_Id;
9056 Val : Uint;
9057 end record;
9059 Alts : array (0 .. List_Length (Alternatives (N))) of Ent;
9060 Nalts : Nat;
9062 begin
9063 -- Loop checking duplicates. This is quadratic, but giant sets
9064 -- are unlikely in this context so it's a reasonable choice.
9066 Nalts := 0;
9067 Alt := First (Alternatives (N));
9068 while Present (Alt) loop
9069 if Is_OK_Static_Expression (Alt)
9070 and then (Nkind_In (Alt, N_Integer_Literal,
9071 N_Character_Literal)
9072 or else Nkind (Alt) in N_Has_Entity)
9073 then
9074 Nalts := Nalts + 1;
9075 Alts (Nalts) := (Alt, Expr_Value (Alt));
9077 for J in 1 .. Nalts - 1 loop
9078 if Alts (J).Val = Alts (Nalts).Val then
9079 Error_Msg_Sloc := Sloc (Alts (J).Alt);
9080 Error_Msg_N ("duplicate of value given#??", Alt);
9081 end if;
9082 end loop;
9083 end if;
9085 Alt := Next (Alt);
9086 end loop;
9087 end;
9088 end if;
9090 -- RM 4.5.2 (28.1/3) specifies that for types other than records or
9091 -- limited types, evaluation of a membership test uses the predefined
9092 -- equality for the type. This may be confusing to users, and the
9093 -- following warning appears useful for the most common case.
9095 if Is_Scalar_Type (Ltyp)
9096 and then Present (Get_User_Defined_Eq (Ltyp))
9097 then
9098 Error_Msg_NE
9099 ("membership test on& uses predefined equality?", N, Ltyp);
9100 Error_Msg_N
9101 ("\even if user-defined equality exists (RM 4.5.2 (28.1/3)?", N);
9102 end if;
9104 end Resolve_Set_Membership;
9106 -- Start of processing for Resolve_Membership_Op
9108 begin
9109 if L = Error or else R = Error then
9110 return;
9111 end if;
9113 if Present (Alternatives (N)) then
9114 Resolve_Set_Membership;
9115 goto SM_Exit;
9117 elsif not Is_Overloaded (R)
9118 and then
9119 (Etype (R) = Universal_Integer
9120 or else
9121 Etype (R) = Universal_Real)
9122 and then Is_Overloaded (L)
9123 then
9124 T := Etype (R);
9126 -- Ada 2005 (AI-251): Support the following case:
9128 -- type I is interface;
9129 -- type T is tagged ...
9131 -- function Test (O : I'Class) is
9132 -- begin
9133 -- return O in T'Class.
9134 -- end Test;
9136 -- In this case we have nothing else to do. The membership test will be
9137 -- done at run time.
9139 elsif Ada_Version >= Ada_2005
9140 and then Is_Class_Wide_Type (Etype (L))
9141 and then Is_Interface (Etype (L))
9142 and then Is_Class_Wide_Type (Etype (R))
9143 and then not Is_Interface (Etype (R))
9144 then
9145 return;
9146 else
9147 T := Intersect_Types (L, R);
9148 end if;
9150 -- If mixed-mode operations are present and operands are all literal,
9151 -- the only interpretation involves Duration, which is probably not
9152 -- the intention of the programmer.
9154 if T = Any_Fixed then
9155 T := Unique_Fixed_Point_Type (N);
9157 if T = Any_Type then
9158 return;
9159 end if;
9160 end if;
9162 Resolve (L, T);
9163 Check_Unset_Reference (L);
9165 if Nkind (R) = N_Range
9166 and then not Is_Scalar_Type (T)
9167 then
9168 Error_Msg_N ("scalar type required for range", R);
9169 end if;
9171 if Is_Entity_Name (R) then
9172 Freeze_Expression (R);
9173 else
9174 Resolve (R, T);
9175 Check_Unset_Reference (R);
9176 end if;
9178 -- Here after resolving membership operation
9180 <<SM_Exit>>
9182 Eval_Membership_Op (N);
9183 end Resolve_Membership_Op;
9185 ------------------
9186 -- Resolve_Null --
9187 ------------------
9189 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
9190 Loc : constant Source_Ptr := Sloc (N);
9192 begin
9193 -- Handle restriction against anonymous null access values This
9194 -- restriction can be turned off using -gnatdj.
9196 -- Ada 2005 (AI-231): Remove restriction
9198 if Ada_Version < Ada_2005
9199 and then not Debug_Flag_J
9200 and then Ekind (Typ) = E_Anonymous_Access_Type
9201 and then Comes_From_Source (N)
9202 then
9203 -- In the common case of a call which uses an explicitly null value
9204 -- for an access parameter, give specialized error message.
9206 if Nkind (Parent (N)) in N_Subprogram_Call then
9207 Error_Msg_N
9208 ("null is not allowed as argument for an access parameter", N);
9210 -- Standard message for all other cases (are there any?)
9212 else
9213 Error_Msg_N
9214 ("null cannot be of an anonymous access type", N);
9215 end if;
9216 end if;
9218 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
9219 -- assignment to a null-excluding object
9221 if Ada_Version >= Ada_2005
9222 and then Can_Never_Be_Null (Typ)
9223 and then Nkind (Parent (N)) = N_Assignment_Statement
9224 then
9225 if not Inside_Init_Proc then
9226 Insert_Action
9227 (Compile_Time_Constraint_Error (N,
9228 "(Ada 2005) null not allowed in null-excluding objects??"),
9229 Make_Raise_Constraint_Error (Loc,
9230 Reason => CE_Access_Check_Failed));
9231 else
9232 Insert_Action (N,
9233 Make_Raise_Constraint_Error (Loc,
9234 Reason => CE_Access_Check_Failed));
9235 end if;
9236 end if;
9238 -- In a distributed context, null for a remote access to subprogram may
9239 -- need to be replaced with a special record aggregate. In this case,
9240 -- return after having done the transformation.
9242 if (Ekind (Typ) = E_Record_Type
9243 or else Is_Remote_Access_To_Subprogram_Type (Typ))
9244 and then Remote_AST_Null_Value (N, Typ)
9245 then
9246 return;
9247 end if;
9249 -- The null literal takes its type from the context
9251 Set_Etype (N, Typ);
9252 end Resolve_Null;
9254 -----------------------
9255 -- Resolve_Op_Concat --
9256 -----------------------
9258 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
9260 -- We wish to avoid deep recursion, because concatenations are often
9261 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
9262 -- operands nonrecursively until we find something that is not a simple
9263 -- concatenation (A in this case). We resolve that, and then walk back
9264 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
9265 -- to do the rest of the work at each level. The Parent pointers allow
9266 -- us to avoid recursion, and thus avoid running out of memory. See also
9267 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
9269 NN : Node_Id := N;
9270 Op1 : Node_Id;
9272 begin
9273 -- The following code is equivalent to:
9275 -- Resolve_Op_Concat_First (NN, Typ);
9276 -- Resolve_Op_Concat_Arg (N, ...);
9277 -- Resolve_Op_Concat_Rest (N, Typ);
9279 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
9280 -- operand is a concatenation.
9282 -- Walk down left operands
9284 loop
9285 Resolve_Op_Concat_First (NN, Typ);
9286 Op1 := Left_Opnd (NN);
9287 exit when not (Nkind (Op1) = N_Op_Concat
9288 and then not Is_Array_Type (Component_Type (Typ))
9289 and then Entity (Op1) = Entity (NN));
9290 NN := Op1;
9291 end loop;
9293 -- Now (given the above example) NN is A&B and Op1 is A
9295 -- First resolve Op1 ...
9297 Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN));
9299 -- ... then walk NN back up until we reach N (where we started), calling
9300 -- Resolve_Op_Concat_Rest along the way.
9302 loop
9303 Resolve_Op_Concat_Rest (NN, Typ);
9304 exit when NN = N;
9305 NN := Parent (NN);
9306 end loop;
9308 if Base_Type (Etype (N)) /= Standard_String then
9309 Check_SPARK_05_Restriction
9310 ("result of concatenation should have type String", N);
9311 end if;
9312 end Resolve_Op_Concat;
9314 ---------------------------
9315 -- Resolve_Op_Concat_Arg --
9316 ---------------------------
9318 procedure Resolve_Op_Concat_Arg
9319 (N : Node_Id;
9320 Arg : Node_Id;
9321 Typ : Entity_Id;
9322 Is_Comp : Boolean)
9324 Btyp : constant Entity_Id := Base_Type (Typ);
9325 Ctyp : constant Entity_Id := Component_Type (Typ);
9327 begin
9328 if In_Instance then
9329 if Is_Comp
9330 or else (not Is_Overloaded (Arg)
9331 and then Etype (Arg) /= Any_Composite
9332 and then Covers (Ctyp, Etype (Arg)))
9333 then
9334 Resolve (Arg, Ctyp);
9335 else
9336 Resolve (Arg, Btyp);
9337 end if;
9339 -- If both Array & Array and Array & Component are visible, there is a
9340 -- potential ambiguity that must be reported.
9342 elsif Has_Compatible_Type (Arg, Ctyp) then
9343 if Nkind (Arg) = N_Aggregate
9344 and then Is_Composite_Type (Ctyp)
9345 then
9346 if Is_Private_Type (Ctyp) then
9347 Resolve (Arg, Btyp);
9349 -- If the operation is user-defined and not overloaded use its
9350 -- profile. The operation may be a renaming, in which case it has
9351 -- been rewritten, and we want the original profile.
9353 elsif not Is_Overloaded (N)
9354 and then Comes_From_Source (Entity (Original_Node (N)))
9355 and then Ekind (Entity (Original_Node (N))) = E_Function
9356 then
9357 Resolve (Arg,
9358 Etype
9359 (Next_Formal (First_Formal (Entity (Original_Node (N))))));
9360 return;
9362 -- Otherwise an aggregate may match both the array type and the
9363 -- component type.
9365 else
9366 Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
9367 Set_Etype (Arg, Any_Type);
9368 end if;
9370 else
9371 if Is_Overloaded (Arg)
9372 and then Has_Compatible_Type (Arg, Typ)
9373 and then Etype (Arg) /= Any_Type
9374 then
9375 declare
9376 I : Interp_Index;
9377 It : Interp;
9378 Func : Entity_Id;
9380 begin
9381 Get_First_Interp (Arg, I, It);
9382 Func := It.Nam;
9383 Get_Next_Interp (I, It);
9385 -- Special-case the error message when the overloading is
9386 -- caused by a function that yields an array and can be
9387 -- called without parameters.
9389 if It.Nam = Func then
9390 Error_Msg_Sloc := Sloc (Func);
9391 Error_Msg_N ("ambiguous call to function#", Arg);
9392 Error_Msg_NE
9393 ("\\interpretation as call yields&", Arg, Typ);
9394 Error_Msg_NE
9395 ("\\interpretation as indexing of call yields&",
9396 Arg, Component_Type (Typ));
9398 else
9399 Error_Msg_N ("ambiguous operand for concatenation!", Arg);
9401 Get_First_Interp (Arg, I, It);
9402 while Present (It.Nam) loop
9403 Error_Msg_Sloc := Sloc (It.Nam);
9405 if Base_Type (It.Typ) = Btyp
9406 or else
9407 Base_Type (It.Typ) = Base_Type (Ctyp)
9408 then
9409 Error_Msg_N -- CODEFIX
9410 ("\\possible interpretation#", Arg);
9411 end if;
9413 Get_Next_Interp (I, It);
9414 end loop;
9415 end if;
9416 end;
9417 end if;
9419 Resolve (Arg, Component_Type (Typ));
9421 if Nkind (Arg) = N_String_Literal then
9422 Set_Etype (Arg, Component_Type (Typ));
9423 end if;
9425 if Arg = Left_Opnd (N) then
9426 Set_Is_Component_Left_Opnd (N);
9427 else
9428 Set_Is_Component_Right_Opnd (N);
9429 end if;
9430 end if;
9432 else
9433 Resolve (Arg, Btyp);
9434 end if;
9436 -- Concatenation is restricted in SPARK: each operand must be either a
9437 -- string literal, the name of a string constant, a static character or
9438 -- string expression, or another concatenation. Arg cannot be a
9439 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
9440 -- separately on each final operand, past concatenation operations.
9442 if Is_Character_Type (Etype (Arg)) then
9443 if not Is_OK_Static_Expression (Arg) then
9444 Check_SPARK_05_Restriction
9445 ("character operand for concatenation should be static", Arg);
9446 end if;
9448 elsif Is_String_Type (Etype (Arg)) then
9449 if not (Nkind_In (Arg, N_Identifier, N_Expanded_Name)
9450 and then Is_Constant_Object (Entity (Arg)))
9451 and then not Is_OK_Static_Expression (Arg)
9452 then
9453 Check_SPARK_05_Restriction
9454 ("string operand for concatenation should be static", Arg);
9455 end if;
9457 -- Do not issue error on an operand that is neither a character nor a
9458 -- string, as the error is issued in Resolve_Op_Concat.
9460 else
9461 null;
9462 end if;
9464 Check_Unset_Reference (Arg);
9465 end Resolve_Op_Concat_Arg;
9467 -----------------------------
9468 -- Resolve_Op_Concat_First --
9469 -----------------------------
9471 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
9472 Btyp : constant Entity_Id := Base_Type (Typ);
9473 Op1 : constant Node_Id := Left_Opnd (N);
9474 Op2 : constant Node_Id := Right_Opnd (N);
9476 begin
9477 -- The parser folds an enormous sequence of concatenations of string
9478 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
9479 -- in the right operand. If the expression resolves to a predefined "&"
9480 -- operator, all is well. Otherwise, the parser's folding is wrong, so
9481 -- we give an error. See P_Simple_Expression in Par.Ch4.
9483 if Nkind (Op2) = N_String_Literal
9484 and then Is_Folded_In_Parser (Op2)
9485 and then Ekind (Entity (N)) = E_Function
9486 then
9487 pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
9488 and then String_Length (Strval (Op1)) = 0);
9489 Error_Msg_N ("too many user-defined concatenations", N);
9490 return;
9491 end if;
9493 Set_Etype (N, Btyp);
9495 if Is_Limited_Composite (Btyp) then
9496 Error_Msg_N ("concatenation not available for limited array", N);
9497 Explain_Limited_Type (Btyp, N);
9498 end if;
9499 end Resolve_Op_Concat_First;
9501 ----------------------------
9502 -- Resolve_Op_Concat_Rest --
9503 ----------------------------
9505 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
9506 Op1 : constant Node_Id := Left_Opnd (N);
9507 Op2 : constant Node_Id := Right_Opnd (N);
9509 begin
9510 Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N));
9512 Generate_Operator_Reference (N, Typ);
9514 if Is_String_Type (Typ) then
9515 Eval_Concatenation (N);
9516 end if;
9518 -- If this is not a static concatenation, but the result is a string
9519 -- type (and not an array of strings) ensure that static string operands
9520 -- have their subtypes properly constructed.
9522 if Nkind (N) /= N_String_Literal
9523 and then Is_Character_Type (Component_Type (Typ))
9524 then
9525 Set_String_Literal_Subtype (Op1, Typ);
9526 Set_String_Literal_Subtype (Op2, Typ);
9527 end if;
9528 end Resolve_Op_Concat_Rest;
9530 ----------------------
9531 -- Resolve_Op_Expon --
9532 ----------------------
9534 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
9535 B_Typ : constant Entity_Id := Base_Type (Typ);
9537 begin
9538 -- Catch attempts to do fixed-point exponentiation with universal
9539 -- operands, which is a case where the illegality is not caught during
9540 -- normal operator analysis. This is not done in preanalysis mode
9541 -- since the tree is not fully decorated during preanalysis.
9543 if Full_Analysis then
9544 if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
9545 Error_Msg_N ("exponentiation not available for fixed point", N);
9546 return;
9548 elsif Nkind (Parent (N)) in N_Op
9549 and then Present (Etype (Parent (N)))
9550 and then Is_Fixed_Point_Type (Etype (Parent (N)))
9551 and then Etype (N) = Universal_Real
9552 and then Comes_From_Source (N)
9553 then
9554 Error_Msg_N ("exponentiation not available for fixed point", N);
9555 return;
9556 end if;
9557 end if;
9559 if Comes_From_Source (N)
9560 and then Ekind (Entity (N)) = E_Function
9561 and then Is_Imported (Entity (N))
9562 and then Is_Intrinsic_Subprogram (Entity (N))
9563 then
9564 Resolve_Intrinsic_Operator (N, Typ);
9565 return;
9566 end if;
9568 if Etype (Left_Opnd (N)) = Universal_Integer
9569 or else Etype (Left_Opnd (N)) = Universal_Real
9570 then
9571 Check_For_Visible_Operator (N, B_Typ);
9572 end if;
9574 -- We do the resolution using the base type, because intermediate values
9575 -- in expressions are always of the base type, not a subtype of it.
9577 Resolve (Left_Opnd (N), B_Typ);
9578 Resolve (Right_Opnd (N), Standard_Integer);
9580 -- For integer types, right argument must be in Natural range
9582 if Is_Integer_Type (Typ) then
9583 Apply_Scalar_Range_Check (Right_Opnd (N), Standard_Natural);
9584 end if;
9586 Check_Unset_Reference (Left_Opnd (N));
9587 Check_Unset_Reference (Right_Opnd (N));
9589 Set_Etype (N, B_Typ);
9590 Generate_Operator_Reference (N, B_Typ);
9592 Analyze_Dimension (N);
9594 if Ada_Version >= Ada_2012 and then Has_Dimension_System (B_Typ) then
9595 -- Evaluate the exponentiation operator for dimensioned type
9597 Eval_Op_Expon_For_Dimensioned_Type (N, B_Typ);
9598 else
9599 Eval_Op_Expon (N);
9600 end if;
9602 -- Set overflow checking bit. Much cleverer code needed here eventually
9603 -- and perhaps the Resolve routines should be separated for the various
9604 -- arithmetic operations, since they will need different processing. ???
9606 if Nkind (N) in N_Op then
9607 if not Overflow_Checks_Suppressed (Etype (N)) then
9608 Enable_Overflow_Check (N);
9609 end if;
9610 end if;
9611 end Resolve_Op_Expon;
9613 --------------------
9614 -- Resolve_Op_Not --
9615 --------------------
9617 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
9618 B_Typ : Entity_Id;
9620 function Parent_Is_Boolean return Boolean;
9621 -- This function determines if the parent node is a boolean operator or
9622 -- operation (comparison op, membership test, or short circuit form) and
9623 -- the not in question is the left operand of this operation. Note that
9624 -- if the not is in parens, then false is returned.
9626 -----------------------
9627 -- Parent_Is_Boolean --
9628 -----------------------
9630 function Parent_Is_Boolean return Boolean is
9631 begin
9632 if Paren_Count (N) /= 0 then
9633 return False;
9635 else
9636 case Nkind (Parent (N)) is
9637 when N_And_Then
9638 | N_In
9639 | N_Not_In
9640 | N_Op_And
9641 | N_Op_Eq
9642 | N_Op_Ge
9643 | N_Op_Gt
9644 | N_Op_Le
9645 | N_Op_Lt
9646 | N_Op_Ne
9647 | N_Op_Or
9648 | N_Op_Xor
9649 | N_Or_Else
9651 return Left_Opnd (Parent (N)) = N;
9653 when others =>
9654 return False;
9655 end case;
9656 end if;
9657 end Parent_Is_Boolean;
9659 -- Start of processing for Resolve_Op_Not
9661 begin
9662 -- Predefined operations on scalar types yield the base type. On the
9663 -- other hand, logical operations on arrays yield the type of the
9664 -- arguments (and the context).
9666 if Is_Array_Type (Typ) then
9667 B_Typ := Typ;
9668 else
9669 B_Typ := Base_Type (Typ);
9670 end if;
9672 -- Straightforward case of incorrect arguments
9674 if not Valid_Boolean_Arg (Typ) then
9675 Error_Msg_N ("invalid operand type for operator&", N);
9676 Set_Etype (N, Any_Type);
9677 return;
9679 -- Special case of probable missing parens
9681 elsif Typ = Universal_Integer or else Typ = Any_Modular then
9682 if Parent_Is_Boolean then
9683 Error_Msg_N
9684 ("operand of not must be enclosed in parentheses",
9685 Right_Opnd (N));
9686 else
9687 Error_Msg_N
9688 ("no modular type available in this context", N);
9689 end if;
9691 Set_Etype (N, Any_Type);
9692 return;
9694 -- OK resolution of NOT
9696 else
9697 -- Warn if non-boolean types involved. This is a case like not a < b
9698 -- where a and b are modular, where we will get (not a) < b and most
9699 -- likely not (a < b) was intended.
9701 if Warn_On_Questionable_Missing_Parens
9702 and then not Is_Boolean_Type (Typ)
9703 and then Parent_Is_Boolean
9704 then
9705 Error_Msg_N ("?q?not expression should be parenthesized here!", N);
9706 end if;
9708 -- Warn on double negation if checking redundant constructs
9710 if Warn_On_Redundant_Constructs
9711 and then Comes_From_Source (N)
9712 and then Comes_From_Source (Right_Opnd (N))
9713 and then Root_Type (Typ) = Standard_Boolean
9714 and then Nkind (Right_Opnd (N)) = N_Op_Not
9715 then
9716 Error_Msg_N ("redundant double negation?r?", N);
9717 end if;
9719 -- Complete resolution and evaluation of NOT
9721 Resolve (Right_Opnd (N), B_Typ);
9722 Check_Unset_Reference (Right_Opnd (N));
9723 Set_Etype (N, B_Typ);
9724 Generate_Operator_Reference (N, B_Typ);
9725 Eval_Op_Not (N);
9726 end if;
9727 end Resolve_Op_Not;
9729 -----------------------------
9730 -- Resolve_Operator_Symbol --
9731 -----------------------------
9733 -- Nothing to be done, all resolved already
9735 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
9736 pragma Warnings (Off, N);
9737 pragma Warnings (Off, Typ);
9739 begin
9740 null;
9741 end Resolve_Operator_Symbol;
9743 ----------------------------------
9744 -- Resolve_Qualified_Expression --
9745 ----------------------------------
9747 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
9748 pragma Warnings (Off, Typ);
9750 Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
9751 Expr : constant Node_Id := Expression (N);
9753 begin
9754 Resolve (Expr, Target_Typ);
9756 -- Protect call to Matching_Static_Array_Bounds to avoid costly
9757 -- operation if not needed.
9759 if Restriction_Check_Required (SPARK_05)
9760 and then Is_Array_Type (Target_Typ)
9761 and then Is_Array_Type (Etype (Expr))
9762 and then Etype (Expr) /= Any_Composite -- or else Expr in error
9763 and then not Matching_Static_Array_Bounds (Target_Typ, Etype (Expr))
9764 then
9765 Check_SPARK_05_Restriction
9766 ("array types should have matching static bounds", N);
9767 end if;
9769 -- A qualified expression requires an exact match of the type, class-
9770 -- wide matching is not allowed. However, if the qualifying type is
9771 -- specific and the expression has a class-wide type, it may still be
9772 -- okay, since it can be the result of the expansion of a call to a
9773 -- dispatching function, so we also have to check class-wideness of the
9774 -- type of the expression's original node.
9776 if (Is_Class_Wide_Type (Target_Typ)
9777 or else
9778 (Is_Class_Wide_Type (Etype (Expr))
9779 and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
9780 and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
9781 then
9782 Wrong_Type (Expr, Target_Typ);
9783 end if;
9785 -- If the target type is unconstrained, then we reset the type of the
9786 -- result from the type of the expression. For other cases, the actual
9787 -- subtype of the expression is the target type.
9789 if Is_Composite_Type (Target_Typ)
9790 and then not Is_Constrained (Target_Typ)
9791 then
9792 Set_Etype (N, Etype (Expr));
9793 end if;
9795 Analyze_Dimension (N);
9796 Eval_Qualified_Expression (N);
9798 -- If we still have a qualified expression after the static evaluation,
9799 -- then apply a scalar range check if needed. The reason that we do this
9800 -- after the Eval call is that otherwise, the application of the range
9801 -- check may convert an illegal static expression and result in warning
9802 -- rather than giving an error (e.g Integer'(Integer'Last + 1)).
9804 if Nkind (N) = N_Qualified_Expression and then Is_Scalar_Type (Typ) then
9805 Apply_Scalar_Range_Check (Expr, Typ);
9806 end if;
9808 -- Finally, check whether a predicate applies to the target type. This
9809 -- comes from AI12-0100. As for type conversions, check the enclosing
9810 -- context to prevent an infinite expansion.
9812 if Has_Predicates (Target_Typ) then
9813 if Nkind (Parent (N)) = N_Function_Call
9814 and then Present (Name (Parent (N)))
9815 and then (Is_Predicate_Function (Entity (Name (Parent (N))))
9816 or else
9817 Is_Predicate_Function_M (Entity (Name (Parent (N)))))
9818 then
9819 null;
9821 -- In the case of a qualified expression in an allocator, the check
9822 -- is applied when expanding the allocator, so avoid redundant check.
9824 elsif Nkind (N) = N_Qualified_Expression
9825 and then Nkind (Parent (N)) /= N_Allocator
9826 then
9827 Apply_Predicate_Check (N, Target_Typ);
9828 end if;
9829 end if;
9830 end Resolve_Qualified_Expression;
9832 ------------------------------
9833 -- Resolve_Raise_Expression --
9834 ------------------------------
9836 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id) is
9837 begin
9838 if Typ = Raise_Type then
9839 Error_Msg_N ("cannot find unique type for raise expression", N);
9840 Set_Etype (N, Any_Type);
9841 else
9842 Set_Etype (N, Typ);
9843 end if;
9844 end Resolve_Raise_Expression;
9846 -------------------
9847 -- Resolve_Range --
9848 -------------------
9850 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
9851 L : constant Node_Id := Low_Bound (N);
9852 H : constant Node_Id := High_Bound (N);
9854 function First_Last_Ref return Boolean;
9855 -- Returns True if N is of the form X'First .. X'Last where X is the
9856 -- same entity for both attributes.
9858 --------------------
9859 -- First_Last_Ref --
9860 --------------------
9862 function First_Last_Ref return Boolean is
9863 Lorig : constant Node_Id := Original_Node (L);
9864 Horig : constant Node_Id := Original_Node (H);
9866 begin
9867 if Nkind (Lorig) = N_Attribute_Reference
9868 and then Nkind (Horig) = N_Attribute_Reference
9869 and then Attribute_Name (Lorig) = Name_First
9870 and then Attribute_Name (Horig) = Name_Last
9871 then
9872 declare
9873 PL : constant Node_Id := Prefix (Lorig);
9874 PH : constant Node_Id := Prefix (Horig);
9875 begin
9876 if Is_Entity_Name (PL)
9877 and then Is_Entity_Name (PH)
9878 and then Entity (PL) = Entity (PH)
9879 then
9880 return True;
9881 end if;
9882 end;
9883 end if;
9885 return False;
9886 end First_Last_Ref;
9888 -- Start of processing for Resolve_Range
9890 begin
9891 Set_Etype (N, Typ);
9893 -- The lower bound should be in Typ. The higher bound can be in Typ's
9894 -- base type if the range is null. It may still be invalid if it is
9895 -- higher than the lower bound. This is checked later in the context in
9896 -- which the range appears.
9898 Resolve (L, Typ);
9899 Resolve (H, Base_Type (Typ));
9901 -- Check for inappropriate range on unordered enumeration type
9903 if Bad_Unordered_Enumeration_Reference (N, Typ)
9905 -- Exclude X'First .. X'Last if X is the same entity for both
9907 and then not First_Last_Ref
9908 then
9909 Error_Msg_Sloc := Sloc (Typ);
9910 Error_Msg_NE
9911 ("subrange of unordered enumeration type& declared#?U?", N, Typ);
9912 end if;
9914 Check_Unset_Reference (L);
9915 Check_Unset_Reference (H);
9917 -- We have to check the bounds for being within the base range as
9918 -- required for a non-static context. Normally this is automatic and
9919 -- done as part of evaluating expressions, but the N_Range node is an
9920 -- exception, since in GNAT we consider this node to be a subexpression,
9921 -- even though in Ada it is not. The circuit in Sem_Eval could check for
9922 -- this, but that would put the test on the main evaluation path for
9923 -- expressions.
9925 Check_Non_Static_Context (L);
9926 Check_Non_Static_Context (H);
9928 -- Check for an ambiguous range over character literals. This will
9929 -- happen with a membership test involving only literals.
9931 if Typ = Any_Character then
9932 Ambiguous_Character (L);
9933 Set_Etype (N, Any_Type);
9934 return;
9935 end if;
9937 -- If bounds are static, constant-fold them, so size computations are
9938 -- identical between front-end and back-end. Do not perform this
9939 -- transformation while analyzing generic units, as type information
9940 -- would be lost when reanalyzing the constant node in the instance.
9942 if Is_Discrete_Type (Typ) and then Expander_Active then
9943 if Is_OK_Static_Expression (L) then
9944 Fold_Uint (L, Expr_Value (L), Is_OK_Static_Expression (L));
9945 end if;
9947 if Is_OK_Static_Expression (H) then
9948 Fold_Uint (H, Expr_Value (H), Is_OK_Static_Expression (H));
9949 end if;
9950 end if;
9951 end Resolve_Range;
9953 --------------------------
9954 -- Resolve_Real_Literal --
9955 --------------------------
9957 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
9958 Actual_Typ : constant Entity_Id := Etype (N);
9960 begin
9961 -- Special processing for fixed-point literals to make sure that the
9962 -- value is an exact multiple of small where this is required. We skip
9963 -- this for the universal real case, and also for generic types.
9965 if Is_Fixed_Point_Type (Typ)
9966 and then Typ /= Universal_Fixed
9967 and then Typ /= Any_Fixed
9968 and then not Is_Generic_Type (Typ)
9969 then
9970 declare
9971 Val : constant Ureal := Realval (N);
9972 Cintr : constant Ureal := Val / Small_Value (Typ);
9973 Cint : constant Uint := UR_Trunc (Cintr);
9974 Den : constant Uint := Norm_Den (Cintr);
9975 Stat : Boolean;
9977 begin
9978 -- Case of literal is not an exact multiple of the Small
9980 if Den /= 1 then
9982 -- For a source program literal for a decimal fixed-point type,
9983 -- this is statically illegal (RM 4.9(36)).
9985 if Is_Decimal_Fixed_Point_Type (Typ)
9986 and then Actual_Typ = Universal_Real
9987 and then Comes_From_Source (N)
9988 then
9989 Error_Msg_N ("value has extraneous low order digits", N);
9990 end if;
9992 -- Generate a warning if literal from source
9994 if Is_OK_Static_Expression (N)
9995 and then Warn_On_Bad_Fixed_Value
9996 then
9997 Error_Msg_N
9998 ("?b?static fixed-point value is not a multiple of Small!",
10000 end if;
10002 -- Replace literal by a value that is the exact representation
10003 -- of a value of the type, i.e. a multiple of the small value,
10004 -- by truncation, since Machine_Rounds is false for all GNAT
10005 -- fixed-point types (RM 4.9(38)).
10007 Stat := Is_OK_Static_Expression (N);
10008 Rewrite (N,
10009 Make_Real_Literal (Sloc (N),
10010 Realval => Small_Value (Typ) * Cint));
10012 Set_Is_Static_Expression (N, Stat);
10013 end if;
10015 -- In all cases, set the corresponding integer field
10017 Set_Corresponding_Integer_Value (N, Cint);
10018 end;
10019 end if;
10021 -- Now replace the actual type by the expected type as usual
10023 Set_Etype (N, Typ);
10024 Eval_Real_Literal (N);
10025 end Resolve_Real_Literal;
10027 -----------------------
10028 -- Resolve_Reference --
10029 -----------------------
10031 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
10032 P : constant Node_Id := Prefix (N);
10034 begin
10035 -- Replace general access with specific type
10037 if Ekind (Etype (N)) = E_Allocator_Type then
10038 Set_Etype (N, Base_Type (Typ));
10039 end if;
10041 Resolve (P, Designated_Type (Etype (N)));
10043 -- If we are taking the reference of a volatile entity, then treat it as
10044 -- a potential modification of this entity. This is too conservative,
10045 -- but necessary because remove side effects can cause transformations
10046 -- of normal assignments into reference sequences that otherwise fail to
10047 -- notice the modification.
10049 if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
10050 Note_Possible_Modification (P, Sure => False);
10051 end if;
10052 end Resolve_Reference;
10054 --------------------------------
10055 -- Resolve_Selected_Component --
10056 --------------------------------
10058 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
10059 Comp : Entity_Id;
10060 Comp1 : Entity_Id := Empty; -- prevent junk warning
10061 P : constant Node_Id := Prefix (N);
10062 S : constant Node_Id := Selector_Name (N);
10063 T : Entity_Id := Etype (P);
10064 I : Interp_Index;
10065 I1 : Interp_Index := 0; -- prevent junk warning
10066 It : Interp;
10067 It1 : Interp;
10068 Found : Boolean;
10070 function Init_Component return Boolean;
10071 -- Check whether this is the initialization of a component within an
10072 -- init proc (by assignment or call to another init proc). If true,
10073 -- there is no need for a discriminant check.
10075 --------------------
10076 -- Init_Component --
10077 --------------------
10079 function Init_Component return Boolean is
10080 begin
10081 return Inside_Init_Proc
10082 and then Nkind (Prefix (N)) = N_Identifier
10083 and then Chars (Prefix (N)) = Name_uInit
10084 and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
10085 end Init_Component;
10087 -- Start of processing for Resolve_Selected_Component
10089 begin
10090 if Is_Overloaded (P) then
10092 -- Use the context type to select the prefix that has a selector
10093 -- of the correct name and type.
10095 Found := False;
10096 Get_First_Interp (P, I, It);
10098 Search : while Present (It.Typ) loop
10099 if Is_Access_Type (It.Typ) then
10100 T := Designated_Type (It.Typ);
10101 else
10102 T := It.Typ;
10103 end if;
10105 -- Locate selected component. For a private prefix the selector
10106 -- can denote a discriminant.
10108 if Is_Record_Type (T) or else Is_Private_Type (T) then
10110 -- The visible components of a class-wide type are those of
10111 -- the root type.
10113 if Is_Class_Wide_Type (T) then
10114 T := Etype (T);
10115 end if;
10117 Comp := First_Entity (T);
10118 while Present (Comp) loop
10119 if Chars (Comp) = Chars (S)
10120 and then Covers (Typ, Etype (Comp))
10121 then
10122 if not Found then
10123 Found := True;
10124 I1 := I;
10125 It1 := It;
10126 Comp1 := Comp;
10128 else
10129 It := Disambiguate (P, I1, I, Any_Type);
10131 if It = No_Interp then
10132 Error_Msg_N
10133 ("ambiguous prefix for selected component", N);
10134 Set_Etype (N, Typ);
10135 return;
10137 else
10138 It1 := It;
10140 -- There may be an implicit dereference. Retrieve
10141 -- designated record type.
10143 if Is_Access_Type (It1.Typ) then
10144 T := Designated_Type (It1.Typ);
10145 else
10146 T := It1.Typ;
10147 end if;
10149 if Scope (Comp1) /= T then
10151 -- Resolution chooses the new interpretation.
10152 -- Find the component with the right name.
10154 Comp1 := First_Entity (T);
10155 while Present (Comp1)
10156 and then Chars (Comp1) /= Chars (S)
10157 loop
10158 Comp1 := Next_Entity (Comp1);
10159 end loop;
10160 end if;
10162 exit Search;
10163 end if;
10164 end if;
10165 end if;
10167 Comp := Next_Entity (Comp);
10168 end loop;
10169 end if;
10171 Get_Next_Interp (I, It);
10172 end loop Search;
10174 -- There must be a legal interpretation at this point
10176 pragma Assert (Found);
10177 Resolve (P, It1.Typ);
10178 Set_Etype (N, Typ);
10179 Set_Entity_With_Checks (S, Comp1);
10181 else
10182 -- Resolve prefix with its type
10184 Resolve (P, T);
10185 end if;
10187 -- Generate cross-reference. We needed to wait until full overloading
10188 -- resolution was complete to do this, since otherwise we can't tell if
10189 -- we are an lvalue or not.
10191 if May_Be_Lvalue (N) then
10192 Generate_Reference (Entity (S), S, 'm');
10193 else
10194 Generate_Reference (Entity (S), S, 'r');
10195 end if;
10197 -- If prefix is an access type, the node will be transformed into an
10198 -- explicit dereference during expansion. The type of the node is the
10199 -- designated type of that of the prefix.
10201 if Is_Access_Type (Etype (P)) then
10202 T := Designated_Type (Etype (P));
10203 Check_Fully_Declared_Prefix (T, P);
10204 else
10205 T := Etype (P);
10206 end if;
10208 -- Set flag for expander if discriminant check required on a component
10209 -- appearing within a variant.
10211 if Has_Discriminants (T)
10212 and then Ekind (Entity (S)) = E_Component
10213 and then Present (Original_Record_Component (Entity (S)))
10214 and then Ekind (Original_Record_Component (Entity (S))) = E_Component
10215 and then
10216 Is_Declared_Within_Variant (Original_Record_Component (Entity (S)))
10217 and then not Discriminant_Checks_Suppressed (T)
10218 and then not Init_Component
10219 then
10220 Set_Do_Discriminant_Check (N);
10221 end if;
10223 if Ekind (Entity (S)) = E_Void then
10224 Error_Msg_N ("premature use of component", S);
10225 end if;
10227 -- If the prefix is a record conversion, this may be a renamed
10228 -- discriminant whose bounds differ from those of the original
10229 -- one, so we must ensure that a range check is performed.
10231 if Nkind (P) = N_Type_Conversion
10232 and then Ekind (Entity (S)) = E_Discriminant
10233 and then Is_Discrete_Type (Typ)
10234 then
10235 Set_Etype (N, Base_Type (Typ));
10236 end if;
10238 -- Note: No Eval processing is required, because the prefix is of a
10239 -- record type, or protected type, and neither can possibly be static.
10241 -- If the record type is atomic, and the component is non-atomic, then
10242 -- this is worth a warning, since we have a situation where the access
10243 -- to the component may cause extra read/writes of the atomic array
10244 -- object, or partial word accesses, both of which may be unexpected.
10246 if Nkind (N) = N_Selected_Component
10247 and then Is_Atomic_Ref_With_Address (N)
10248 and then not Is_Atomic (Entity (S))
10249 and then not Is_Atomic (Etype (Entity (S)))
10250 then
10251 Error_Msg_N
10252 ("??access to non-atomic component of atomic record",
10253 Prefix (N));
10254 Error_Msg_N
10255 ("\??may cause unexpected accesses to atomic object",
10256 Prefix (N));
10257 end if;
10259 Analyze_Dimension (N);
10260 end Resolve_Selected_Component;
10262 -------------------
10263 -- Resolve_Shift --
10264 -------------------
10266 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
10267 B_Typ : constant Entity_Id := Base_Type (Typ);
10268 L : constant Node_Id := Left_Opnd (N);
10269 R : constant Node_Id := Right_Opnd (N);
10271 begin
10272 -- We do the resolution using the base type, because intermediate values
10273 -- in expressions always are of the base type, not a subtype of it.
10275 Resolve (L, B_Typ);
10276 Resolve (R, Standard_Natural);
10278 Check_Unset_Reference (L);
10279 Check_Unset_Reference (R);
10281 Set_Etype (N, B_Typ);
10282 Generate_Operator_Reference (N, B_Typ);
10283 Eval_Shift (N);
10284 end Resolve_Shift;
10286 ---------------------------
10287 -- Resolve_Short_Circuit --
10288 ---------------------------
10290 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
10291 B_Typ : constant Entity_Id := Base_Type (Typ);
10292 L : constant Node_Id := Left_Opnd (N);
10293 R : constant Node_Id := Right_Opnd (N);
10295 begin
10296 -- Ensure all actions associated with the left operand (e.g.
10297 -- finalization of transient objects) are fully evaluated locally within
10298 -- an expression with actions. This is particularly helpful for coverage
10299 -- analysis. However this should not happen in generics or if option
10300 -- Minimize_Expression_With_Actions is set.
10302 if Expander_Active and not Minimize_Expression_With_Actions then
10303 declare
10304 Reloc_L : constant Node_Id := Relocate_Node (L);
10305 begin
10306 Save_Interps (Old_N => L, New_N => Reloc_L);
10308 Rewrite (L,
10309 Make_Expression_With_Actions (Sloc (L),
10310 Actions => New_List,
10311 Expression => Reloc_L));
10313 -- Set Comes_From_Source on L to preserve warnings for unset
10314 -- reference.
10316 Set_Comes_From_Source (L, Comes_From_Source (Reloc_L));
10317 end;
10318 end if;
10320 Resolve (L, B_Typ);
10321 Resolve (R, B_Typ);
10323 -- Check for issuing warning for always False assert/check, this happens
10324 -- when assertions are turned off, in which case the pragma Assert/Check
10325 -- was transformed into:
10327 -- if False and then <condition> then ...
10329 -- and we detect this pattern
10331 if Warn_On_Assertion_Failure
10332 and then Is_Entity_Name (R)
10333 and then Entity (R) = Standard_False
10334 and then Nkind (Parent (N)) = N_If_Statement
10335 and then Nkind (N) = N_And_Then
10336 and then Is_Entity_Name (L)
10337 and then Entity (L) = Standard_False
10338 then
10339 declare
10340 Orig : constant Node_Id := Original_Node (Parent (N));
10342 begin
10343 -- Special handling of Asssert pragma
10345 if Nkind (Orig) = N_Pragma
10346 and then Pragma_Name (Orig) = Name_Assert
10347 then
10348 declare
10349 Expr : constant Node_Id :=
10350 Original_Node
10351 (Expression
10352 (First (Pragma_Argument_Associations (Orig))));
10354 begin
10355 -- Don't warn if original condition is explicit False,
10356 -- since obviously the failure is expected in this case.
10358 if Is_Entity_Name (Expr)
10359 and then Entity (Expr) = Standard_False
10360 then
10361 null;
10363 -- Issue warning. We do not want the deletion of the
10364 -- IF/AND-THEN to take this message with it. We achieve this
10365 -- by making sure that the expanded code points to the Sloc
10366 -- of the expression, not the original pragma.
10368 else
10369 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
10370 -- The source location of the expression is not usually
10371 -- the best choice here. For example, it gets located on
10372 -- the last AND keyword in a chain of boolean expressiond
10373 -- AND'ed together. It is best to put the message on the
10374 -- first character of the assertion, which is the effect
10375 -- of the First_Node call here.
10377 Error_Msg_F
10378 ("?A?assertion would fail at run time!",
10379 Expression
10380 (First (Pragma_Argument_Associations (Orig))));
10381 end if;
10382 end;
10384 -- Similar processing for Check pragma
10386 elsif Nkind (Orig) = N_Pragma
10387 and then Pragma_Name (Orig) = Name_Check
10388 then
10389 -- Don't want to warn if original condition is explicit False
10391 declare
10392 Expr : constant Node_Id :=
10393 Original_Node
10394 (Expression
10395 (Next (First (Pragma_Argument_Associations (Orig)))));
10396 begin
10397 if Is_Entity_Name (Expr)
10398 and then Entity (Expr) = Standard_False
10399 then
10400 null;
10402 -- Post warning
10404 else
10405 -- Again use Error_Msg_F rather than Error_Msg_N, see
10406 -- comment above for an explanation of why we do this.
10408 Error_Msg_F
10409 ("?A?check would fail at run time!",
10410 Expression
10411 (Last (Pragma_Argument_Associations (Orig))));
10412 end if;
10413 end;
10414 end if;
10415 end;
10416 end if;
10418 -- Continue with processing of short circuit
10420 Check_Unset_Reference (L);
10421 Check_Unset_Reference (R);
10423 Set_Etype (N, B_Typ);
10424 Eval_Short_Circuit (N);
10425 end Resolve_Short_Circuit;
10427 -------------------
10428 -- Resolve_Slice --
10429 -------------------
10431 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
10432 Drange : constant Node_Id := Discrete_Range (N);
10433 Name : constant Node_Id := Prefix (N);
10434 Array_Type : Entity_Id := Empty;
10435 Dexpr : Node_Id := Empty;
10436 Index_Type : Entity_Id;
10438 begin
10439 if Is_Overloaded (Name) then
10441 -- Use the context type to select the prefix that yields the correct
10442 -- array type.
10444 declare
10445 I : Interp_Index;
10446 I1 : Interp_Index := 0;
10447 It : Interp;
10448 P : constant Node_Id := Prefix (N);
10449 Found : Boolean := False;
10451 begin
10452 Get_First_Interp (P, I, It);
10453 while Present (It.Typ) loop
10454 if (Is_Array_Type (It.Typ)
10455 and then Covers (Typ, It.Typ))
10456 or else (Is_Access_Type (It.Typ)
10457 and then Is_Array_Type (Designated_Type (It.Typ))
10458 and then Covers (Typ, Designated_Type (It.Typ)))
10459 then
10460 if Found then
10461 It := Disambiguate (P, I1, I, Any_Type);
10463 if It = No_Interp then
10464 Error_Msg_N ("ambiguous prefix for slicing", N);
10465 Set_Etype (N, Typ);
10466 return;
10467 else
10468 Found := True;
10469 Array_Type := It.Typ;
10470 I1 := I;
10471 end if;
10472 else
10473 Found := True;
10474 Array_Type := It.Typ;
10475 I1 := I;
10476 end if;
10477 end if;
10479 Get_Next_Interp (I, It);
10480 end loop;
10481 end;
10483 else
10484 Array_Type := Etype (Name);
10485 end if;
10487 Resolve (Name, Array_Type);
10489 if Is_Access_Type (Array_Type) then
10490 Apply_Access_Check (N);
10491 Array_Type := Designated_Type (Array_Type);
10493 -- If the prefix is an access to an unconstrained array, we must use
10494 -- the actual subtype of the object to perform the index checks. The
10495 -- object denoted by the prefix is implicit in the node, so we build
10496 -- an explicit representation for it in order to compute the actual
10497 -- subtype.
10499 if not Is_Constrained (Array_Type) then
10500 Remove_Side_Effects (Prefix (N));
10502 declare
10503 Obj : constant Node_Id :=
10504 Make_Explicit_Dereference (Sloc (N),
10505 Prefix => New_Copy_Tree (Prefix (N)));
10506 begin
10507 Set_Etype (Obj, Array_Type);
10508 Set_Parent (Obj, Parent (N));
10509 Array_Type := Get_Actual_Subtype (Obj);
10510 end;
10511 end if;
10513 elsif Is_Entity_Name (Name)
10514 or else Nkind (Name) = N_Explicit_Dereference
10515 or else (Nkind (Name) = N_Function_Call
10516 and then not Is_Constrained (Etype (Name)))
10517 then
10518 Array_Type := Get_Actual_Subtype (Name);
10520 -- If the name is a selected component that depends on discriminants,
10521 -- build an actual subtype for it. This can happen only when the name
10522 -- itself is overloaded; otherwise the actual subtype is created when
10523 -- the selected component is analyzed.
10525 elsif Nkind (Name) = N_Selected_Component
10526 and then Full_Analysis
10527 and then Depends_On_Discriminant (First_Index (Array_Type))
10528 then
10529 declare
10530 Act_Decl : constant Node_Id :=
10531 Build_Actual_Subtype_Of_Component (Array_Type, Name);
10532 begin
10533 Insert_Action (N, Act_Decl);
10534 Array_Type := Defining_Identifier (Act_Decl);
10535 end;
10537 -- Maybe this should just be "else", instead of checking for the
10538 -- specific case of slice??? This is needed for the case where the
10539 -- prefix is an Image attribute, which gets expanded to a slice, and so
10540 -- has a constrained subtype which we want to use for the slice range
10541 -- check applied below (the range check won't get done if the
10542 -- unconstrained subtype of the 'Image is used).
10544 elsif Nkind (Name) = N_Slice then
10545 Array_Type := Etype (Name);
10546 end if;
10548 -- Obtain the type of the array index
10550 if Ekind (Array_Type) = E_String_Literal_Subtype then
10551 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
10552 else
10553 Index_Type := Etype (First_Index (Array_Type));
10554 end if;
10556 -- If name was overloaded, set slice type correctly now
10558 Set_Etype (N, Array_Type);
10560 -- Handle the generation of a range check that compares the array index
10561 -- against the discrete_range. The check is not applied to internally
10562 -- built nodes associated with the expansion of dispatch tables. Check
10563 -- that Ada.Tags has already been loaded to avoid extra dependencies on
10564 -- the unit.
10566 if Tagged_Type_Expansion
10567 and then RTU_Loaded (Ada_Tags)
10568 and then Nkind (Prefix (N)) = N_Selected_Component
10569 and then Present (Entity (Selector_Name (Prefix (N))))
10570 and then Entity (Selector_Name (Prefix (N))) =
10571 RTE_Record_Component (RE_Prims_Ptr)
10572 then
10573 null;
10575 -- The discrete_range is specified by a subtype indication. Create a
10576 -- shallow copy and inherit the type, parent and source location from
10577 -- the discrete_range. This ensures that the range check is inserted
10578 -- relative to the slice and that the runtime exception points to the
10579 -- proper construct.
10581 elsif Is_Entity_Name (Drange) then
10582 Dexpr := New_Copy (Scalar_Range (Entity (Drange)));
10584 Set_Etype (Dexpr, Etype (Drange));
10585 Set_Parent (Dexpr, Parent (Drange));
10586 Set_Sloc (Dexpr, Sloc (Drange));
10588 -- The discrete_range is a regular range. Resolve the bounds and remove
10589 -- their side effects.
10591 else
10592 Resolve (Drange, Base_Type (Index_Type));
10594 if Nkind (Drange) = N_Range then
10595 Force_Evaluation (Low_Bound (Drange));
10596 Force_Evaluation (High_Bound (Drange));
10598 Dexpr := Drange;
10599 end if;
10600 end if;
10602 if Present (Dexpr) then
10603 Apply_Range_Check (Dexpr, Index_Type);
10604 end if;
10606 Set_Slice_Subtype (N);
10608 -- Check bad use of type with predicates
10610 declare
10611 Subt : Entity_Id;
10613 begin
10614 if Nkind (Drange) = N_Subtype_Indication
10615 and then Has_Predicates (Entity (Subtype_Mark (Drange)))
10616 then
10617 Subt := Entity (Subtype_Mark (Drange));
10618 else
10619 Subt := Etype (Drange);
10620 end if;
10622 if Has_Predicates (Subt) then
10623 Bad_Predicated_Subtype_Use
10624 ("subtype& has predicate, not allowed in slice", Drange, Subt);
10625 end if;
10626 end;
10628 -- Otherwise here is where we check suspicious indexes
10630 if Nkind (Drange) = N_Range then
10631 Warn_On_Suspicious_Index (Name, Low_Bound (Drange));
10632 Warn_On_Suspicious_Index (Name, High_Bound (Drange));
10633 end if;
10635 Analyze_Dimension (N);
10636 Eval_Slice (N);
10637 end Resolve_Slice;
10639 ----------------------------
10640 -- Resolve_String_Literal --
10641 ----------------------------
10643 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
10644 C_Typ : constant Entity_Id := Component_Type (Typ);
10645 R_Typ : constant Entity_Id := Root_Type (C_Typ);
10646 Loc : constant Source_Ptr := Sloc (N);
10647 Str : constant String_Id := Strval (N);
10648 Strlen : constant Nat := String_Length (Str);
10649 Subtype_Id : Entity_Id;
10650 Need_Check : Boolean;
10652 begin
10653 -- For a string appearing in a concatenation, defer creation of the
10654 -- string_literal_subtype until the end of the resolution of the
10655 -- concatenation, because the literal may be constant-folded away. This
10656 -- is a useful optimization for long concatenation expressions.
10658 -- If the string is an aggregate built for a single character (which
10659 -- happens in a non-static context) or a is null string to which special
10660 -- checks may apply, we build the subtype. Wide strings must also get a
10661 -- string subtype if they come from a one character aggregate. Strings
10662 -- generated by attributes might be static, but it is often hard to
10663 -- determine whether the enclosing context is static, so we generate
10664 -- subtypes for them as well, thus losing some rarer optimizations ???
10665 -- Same for strings that come from a static conversion.
10667 Need_Check :=
10668 (Strlen = 0 and then Typ /= Standard_String)
10669 or else Nkind (Parent (N)) /= N_Op_Concat
10670 or else (N /= Left_Opnd (Parent (N))
10671 and then N /= Right_Opnd (Parent (N)))
10672 or else ((Typ = Standard_Wide_String
10673 or else Typ = Standard_Wide_Wide_String)
10674 and then Nkind (Original_Node (N)) /= N_String_Literal);
10676 -- If the resolving type is itself a string literal subtype, we can just
10677 -- reuse it, since there is no point in creating another.
10679 if Ekind (Typ) = E_String_Literal_Subtype then
10680 Subtype_Id := Typ;
10682 elsif Nkind (Parent (N)) = N_Op_Concat
10683 and then not Need_Check
10684 and then not Nkind_In (Original_Node (N), N_Character_Literal,
10685 N_Attribute_Reference,
10686 N_Qualified_Expression,
10687 N_Type_Conversion)
10688 then
10689 Subtype_Id := Typ;
10691 -- Do not generate a string literal subtype for the default expression
10692 -- of a formal parameter in GNATprove mode. This is because the string
10693 -- subtype is associated with the freezing actions of the subprogram,
10694 -- however freezing is disabled in GNATprove mode and as a result the
10695 -- subtype is unavailable.
10697 elsif GNATprove_Mode
10698 and then Nkind (Parent (N)) = N_Parameter_Specification
10699 then
10700 Subtype_Id := Typ;
10702 -- Otherwise we must create a string literal subtype. Note that the
10703 -- whole idea of string literal subtypes is simply to avoid the need
10704 -- for building a full fledged array subtype for each literal.
10706 else
10707 Set_String_Literal_Subtype (N, Typ);
10708 Subtype_Id := Etype (N);
10709 end if;
10711 if Nkind (Parent (N)) /= N_Op_Concat
10712 or else Need_Check
10713 then
10714 Set_Etype (N, Subtype_Id);
10715 Eval_String_Literal (N);
10716 end if;
10718 if Is_Limited_Composite (Typ)
10719 or else Is_Private_Composite (Typ)
10720 then
10721 Error_Msg_N ("string literal not available for private array", N);
10722 Set_Etype (N, Any_Type);
10723 return;
10724 end if;
10726 -- The validity of a null string has been checked in the call to
10727 -- Eval_String_Literal.
10729 if Strlen = 0 then
10730 return;
10732 -- Always accept string literal with component type Any_Character, which
10733 -- occurs in error situations and in comparisons of literals, both of
10734 -- which should accept all literals.
10736 elsif R_Typ = Any_Character then
10737 return;
10739 -- If the type is bit-packed, then we always transform the string
10740 -- literal into a full fledged aggregate.
10742 elsif Is_Bit_Packed_Array (Typ) then
10743 null;
10745 -- Deal with cases of Wide_Wide_String, Wide_String, and String
10747 else
10748 -- For Standard.Wide_Wide_String, or any other type whose component
10749 -- type is Standard.Wide_Wide_Character, we know that all the
10750 -- characters in the string must be acceptable, since the parser
10751 -- accepted the characters as valid character literals.
10753 if R_Typ = Standard_Wide_Wide_Character then
10754 null;
10756 -- For the case of Standard.String, or any other type whose component
10757 -- type is Standard.Character, we must make sure that there are no
10758 -- wide characters in the string, i.e. that it is entirely composed
10759 -- of characters in range of type Character.
10761 -- If the string literal is the result of a static concatenation, the
10762 -- test has already been performed on the components, and need not be
10763 -- repeated.
10765 elsif R_Typ = Standard_Character
10766 and then Nkind (Original_Node (N)) /= N_Op_Concat
10767 then
10768 for J in 1 .. Strlen loop
10769 if not In_Character_Range (Get_String_Char (Str, J)) then
10771 -- If we are out of range, post error. This is one of the
10772 -- very few places that we place the flag in the middle of
10773 -- a token, right under the offending wide character. Not
10774 -- quite clear if this is right wrt wide character encoding
10775 -- sequences, but it's only an error message.
10777 Error_Msg
10778 ("literal out of range of type Standard.Character",
10779 Source_Ptr (Int (Loc) + J));
10780 return;
10781 end if;
10782 end loop;
10784 -- For the case of Standard.Wide_String, or any other type whose
10785 -- component type is Standard.Wide_Character, we must make sure that
10786 -- there are no wide characters in the string, i.e. that it is
10787 -- entirely composed of characters in range of type Wide_Character.
10789 -- If the string literal is the result of a static concatenation,
10790 -- the test has already been performed on the components, and need
10791 -- not be repeated.
10793 elsif R_Typ = Standard_Wide_Character
10794 and then Nkind (Original_Node (N)) /= N_Op_Concat
10795 then
10796 for J in 1 .. Strlen loop
10797 if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
10799 -- If we are out of range, post error. This is one of the
10800 -- very few places that we place the flag in the middle of
10801 -- a token, right under the offending wide character.
10803 -- This is not quite right, because characters in general
10804 -- will take more than one character position ???
10806 Error_Msg
10807 ("literal out of range of type Standard.Wide_Character",
10808 Source_Ptr (Int (Loc) + J));
10809 return;
10810 end if;
10811 end loop;
10813 -- If the root type is not a standard character, then we will convert
10814 -- the string into an aggregate and will let the aggregate code do
10815 -- the checking. Standard Wide_Wide_Character is also OK here.
10817 else
10818 null;
10819 end if;
10821 -- See if the component type of the array corresponding to the string
10822 -- has compile time known bounds. If yes we can directly check
10823 -- whether the evaluation of the string will raise constraint error.
10824 -- Otherwise we need to transform the string literal into the
10825 -- corresponding character aggregate and let the aggregate code do
10826 -- the checking.
10828 if Is_Standard_Character_Type (R_Typ) then
10830 -- Check for the case of full range, where we are definitely OK
10832 if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
10833 return;
10834 end if;
10836 -- Here the range is not the complete base type range, so check
10838 declare
10839 Comp_Typ_Lo : constant Node_Id :=
10840 Type_Low_Bound (Component_Type (Typ));
10841 Comp_Typ_Hi : constant Node_Id :=
10842 Type_High_Bound (Component_Type (Typ));
10844 Char_Val : Uint;
10846 begin
10847 if Compile_Time_Known_Value (Comp_Typ_Lo)
10848 and then Compile_Time_Known_Value (Comp_Typ_Hi)
10849 then
10850 for J in 1 .. Strlen loop
10851 Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
10853 if Char_Val < Expr_Value (Comp_Typ_Lo)
10854 or else Char_Val > Expr_Value (Comp_Typ_Hi)
10855 then
10856 Apply_Compile_Time_Constraint_Error
10857 (N, "character out of range??",
10858 CE_Range_Check_Failed,
10859 Loc => Source_Ptr (Int (Loc) + J));
10860 end if;
10861 end loop;
10863 return;
10864 end if;
10865 end;
10866 end if;
10867 end if;
10869 -- If we got here we meed to transform the string literal into the
10870 -- equivalent qualified positional array aggregate. This is rather
10871 -- heavy artillery for this situation, but it is hard work to avoid.
10873 declare
10874 Lits : constant List_Id := New_List;
10875 P : Source_Ptr := Loc + 1;
10876 C : Char_Code;
10878 begin
10879 -- Build the character literals, we give them source locations that
10880 -- correspond to the string positions, which is a bit tricky given
10881 -- the possible presence of wide character escape sequences.
10883 for J in 1 .. Strlen loop
10884 C := Get_String_Char (Str, J);
10885 Set_Character_Literal_Name (C);
10887 Append_To (Lits,
10888 Make_Character_Literal (P,
10889 Chars => Name_Find,
10890 Char_Literal_Value => UI_From_CC (C)));
10892 if In_Character_Range (C) then
10893 P := P + 1;
10895 -- Should we have a call to Skip_Wide here ???
10897 -- ??? else
10898 -- Skip_Wide (P);
10900 end if;
10901 end loop;
10903 Rewrite (N,
10904 Make_Qualified_Expression (Loc,
10905 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
10906 Expression =>
10907 Make_Aggregate (Loc, Expressions => Lits)));
10909 Analyze_And_Resolve (N, Typ);
10910 end;
10911 end Resolve_String_Literal;
10913 -------------------------
10914 -- Resolve_Target_Name --
10915 -------------------------
10917 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id) is
10918 begin
10919 Set_Etype (N, Typ);
10920 end Resolve_Target_Name;
10922 -----------------------------
10923 -- Resolve_Type_Conversion --
10924 -----------------------------
10926 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
10927 Conv_OK : constant Boolean := Conversion_OK (N);
10928 Operand : constant Node_Id := Expression (N);
10929 Operand_Typ : constant Entity_Id := Etype (Operand);
10930 Target_Typ : constant Entity_Id := Etype (N);
10931 Rop : Node_Id;
10932 Orig_N : Node_Id;
10933 Orig_T : Node_Id;
10935 Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
10936 -- Set to False to suppress cases where we want to suppress the test
10937 -- for redundancy to avoid possible false positives on this warning.
10939 begin
10940 if not Conv_OK
10941 and then not Valid_Conversion (N, Target_Typ, Operand)
10942 then
10943 return;
10944 end if;
10946 -- If the Operand Etype is Universal_Fixed, then the conversion is
10947 -- never redundant. We need this check because by the time we have
10948 -- finished the rather complex transformation, the conversion looks
10949 -- redundant when it is not.
10951 if Operand_Typ = Universal_Fixed then
10952 Test_Redundant := False;
10954 -- If the operand is marked as Any_Fixed, then special processing is
10955 -- required. This is also a case where we suppress the test for a
10956 -- redundant conversion, since most certainly it is not redundant.
10958 elsif Operand_Typ = Any_Fixed then
10959 Test_Redundant := False;
10961 -- Mixed-mode operation involving a literal. Context must be a fixed
10962 -- type which is applied to the literal subsequently.
10964 -- Multiplication and division involving two fixed type operands must
10965 -- yield a universal real because the result is computed in arbitrary
10966 -- precision.
10968 if Is_Fixed_Point_Type (Typ)
10969 and then Nkind_In (Operand, N_Op_Divide, N_Op_Multiply)
10970 and then Etype (Left_Opnd (Operand)) = Any_Fixed
10971 and then Etype (Right_Opnd (Operand)) = Any_Fixed
10972 then
10973 Set_Etype (Operand, Universal_Real);
10975 elsif Is_Numeric_Type (Typ)
10976 and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
10977 and then (Etype (Right_Opnd (Operand)) = Universal_Real
10978 or else
10979 Etype (Left_Opnd (Operand)) = Universal_Real)
10980 then
10981 -- Return if expression is ambiguous
10983 if Unique_Fixed_Point_Type (N) = Any_Type then
10984 return;
10986 -- If nothing else, the available fixed type is Duration
10988 else
10989 Set_Etype (Operand, Standard_Duration);
10990 end if;
10992 -- Resolve the real operand with largest available precision
10994 if Etype (Right_Opnd (Operand)) = Universal_Real then
10995 Rop := New_Copy_Tree (Right_Opnd (Operand));
10996 else
10997 Rop := New_Copy_Tree (Left_Opnd (Operand));
10998 end if;
11000 Resolve (Rop, Universal_Real);
11002 -- If the operand is a literal (it could be a non-static and
11003 -- illegal exponentiation) check whether the use of Duration
11004 -- is potentially inaccurate.
11006 if Nkind (Rop) = N_Real_Literal
11007 and then Realval (Rop) /= Ureal_0
11008 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
11009 then
11010 Error_Msg_N
11011 ("??universal real operand can only "
11012 & "be interpreted as Duration!", Rop);
11013 Error_Msg_N
11014 ("\??precision will be lost in the conversion!", Rop);
11015 end if;
11017 elsif Is_Numeric_Type (Typ)
11018 and then Nkind (Operand) in N_Op
11019 and then Unique_Fixed_Point_Type (N) /= Any_Type
11020 then
11021 Set_Etype (Operand, Standard_Duration);
11023 else
11024 Error_Msg_N ("invalid context for mixed mode operation", N);
11025 Set_Etype (Operand, Any_Type);
11026 return;
11027 end if;
11028 end if;
11030 Resolve (Operand);
11032 -- In SPARK, a type conversion between array types should be restricted
11033 -- to types which have matching static bounds.
11035 -- Protect call to Matching_Static_Array_Bounds to avoid costly
11036 -- operation if not needed.
11038 if Restriction_Check_Required (SPARK_05)
11039 and then Is_Array_Type (Target_Typ)
11040 and then Is_Array_Type (Operand_Typ)
11041 and then Operand_Typ /= Any_Composite -- or else Operand in error
11042 and then not Matching_Static_Array_Bounds (Target_Typ, Operand_Typ)
11043 then
11044 Check_SPARK_05_Restriction
11045 ("array types should have matching static bounds", N);
11046 end if;
11048 -- In formal mode, the operand of an ancestor type conversion must be an
11049 -- object (not an expression).
11051 if Is_Tagged_Type (Target_Typ)
11052 and then not Is_Class_Wide_Type (Target_Typ)
11053 and then Is_Tagged_Type (Operand_Typ)
11054 and then not Is_Class_Wide_Type (Operand_Typ)
11055 and then Is_Ancestor (Target_Typ, Operand_Typ)
11056 and then not Is_SPARK_05_Object_Reference (Operand)
11057 then
11058 Check_SPARK_05_Restriction ("object required", Operand);
11059 end if;
11061 Analyze_Dimension (N);
11063 -- Note: we do the Eval_Type_Conversion call before applying the
11064 -- required checks for a subtype conversion. This is important, since
11065 -- both are prepared under certain circumstances to change the type
11066 -- conversion to a constraint error node, but in the case of
11067 -- Eval_Type_Conversion this may reflect an illegality in the static
11068 -- case, and we would miss the illegality (getting only a warning
11069 -- message), if we applied the type conversion checks first.
11071 Eval_Type_Conversion (N);
11073 -- Even when evaluation is not possible, we may be able to simplify the
11074 -- conversion or its expression. This needs to be done before applying
11075 -- checks, since otherwise the checks may use the original expression
11076 -- and defeat the simplifications. This is specifically the case for
11077 -- elimination of the floating-point Truncation attribute in
11078 -- float-to-int conversions.
11080 Simplify_Type_Conversion (N);
11082 -- If after evaluation we still have a type conversion, then we may need
11083 -- to apply checks required for a subtype conversion.
11085 -- Skip these type conversion checks if universal fixed operands
11086 -- operands involved, since range checks are handled separately for
11087 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
11089 if Nkind (N) = N_Type_Conversion
11090 and then not Is_Generic_Type (Root_Type (Target_Typ))
11091 and then Target_Typ /= Universal_Fixed
11092 and then Operand_Typ /= Universal_Fixed
11093 then
11094 Apply_Type_Conversion_Checks (N);
11095 end if;
11097 -- Issue warning for conversion of simple object to its own type. We
11098 -- have to test the original nodes, since they may have been rewritten
11099 -- by various optimizations.
11101 Orig_N := Original_Node (N);
11103 -- Here we test for a redundant conversion if the warning mode is
11104 -- active (and was not locally reset), and we have a type conversion
11105 -- from source not appearing in a generic instance.
11107 if Test_Redundant
11108 and then Nkind (Orig_N) = N_Type_Conversion
11109 and then Comes_From_Source (Orig_N)
11110 and then not In_Instance
11111 then
11112 Orig_N := Original_Node (Expression (Orig_N));
11113 Orig_T := Target_Typ;
11115 -- If the node is part of a larger expression, the Target_Type
11116 -- may not be the original type of the node if the context is a
11117 -- condition. Recover original type to see if conversion is needed.
11119 if Is_Boolean_Type (Orig_T)
11120 and then Nkind (Parent (N)) in N_Op
11121 then
11122 Orig_T := Etype (Parent (N));
11123 end if;
11125 -- If we have an entity name, then give the warning if the entity
11126 -- is the right type, or if it is a loop parameter covered by the
11127 -- original type (that's needed because loop parameters have an
11128 -- odd subtype coming from the bounds).
11130 if (Is_Entity_Name (Orig_N)
11131 and then
11132 (Etype (Entity (Orig_N)) = Orig_T
11133 or else
11134 (Ekind (Entity (Orig_N)) = E_Loop_Parameter
11135 and then Covers (Orig_T, Etype (Entity (Orig_N))))))
11137 -- If not an entity, then type of expression must match
11139 or else Etype (Orig_N) = Orig_T
11140 then
11141 -- One more check, do not give warning if the analyzed conversion
11142 -- has an expression with non-static bounds, and the bounds of the
11143 -- target are static. This avoids junk warnings in cases where the
11144 -- conversion is necessary to establish staticness, for example in
11145 -- a case statement.
11147 if not Is_OK_Static_Subtype (Operand_Typ)
11148 and then Is_OK_Static_Subtype (Target_Typ)
11149 then
11150 null;
11152 -- Finally, if this type conversion occurs in a context requiring
11153 -- a prefix, and the expression is a qualified expression then the
11154 -- type conversion is not redundant, since a qualified expression
11155 -- is not a prefix, whereas a type conversion is. For example, "X
11156 -- := T'(Funx(...)).Y;" is illegal because a selected component
11157 -- requires a prefix, but a type conversion makes it legal: "X :=
11158 -- T(T'(Funx(...))).Y;"
11160 -- In Ada 2012, a qualified expression is a name, so this idiom is
11161 -- no longer needed, but we still suppress the warning because it
11162 -- seems unfriendly for warnings to pop up when you switch to the
11163 -- newer language version.
11165 elsif Nkind (Orig_N) = N_Qualified_Expression
11166 and then Nkind_In (Parent (N), N_Attribute_Reference,
11167 N_Indexed_Component,
11168 N_Selected_Component,
11169 N_Slice,
11170 N_Explicit_Dereference)
11171 then
11172 null;
11174 -- Never warn on conversion to Long_Long_Integer'Base since
11175 -- that is most likely an artifact of the extended overflow
11176 -- checking and comes from complex expanded code.
11178 elsif Orig_T = Base_Type (Standard_Long_Long_Integer) then
11179 null;
11181 -- Here we give the redundant conversion warning. If it is an
11182 -- entity, give the name of the entity in the message. If not,
11183 -- just mention the expression.
11185 -- Shoudn't we test Warn_On_Redundant_Constructs here ???
11187 else
11188 if Is_Entity_Name (Orig_N) then
11189 Error_Msg_Node_2 := Orig_T;
11190 Error_Msg_NE -- CODEFIX
11191 ("??redundant conversion, & is of type &!",
11192 N, Entity (Orig_N));
11193 else
11194 Error_Msg_NE
11195 ("??redundant conversion, expression is of type&!",
11196 N, Orig_T);
11197 end if;
11198 end if;
11199 end if;
11200 end if;
11202 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
11203 -- No need to perform any interface conversion if the type of the
11204 -- expression coincides with the target type.
11206 if Ada_Version >= Ada_2005
11207 and then Expander_Active
11208 and then Operand_Typ /= Target_Typ
11209 then
11210 declare
11211 Opnd : Entity_Id := Operand_Typ;
11212 Target : Entity_Id := Target_Typ;
11214 begin
11215 -- If the type of the operand is a limited view, use nonlimited
11216 -- view when available. If it is a class-wide type, recover the
11217 -- class-wide type of the nonlimited view.
11219 if From_Limited_With (Opnd)
11220 and then Has_Non_Limited_View (Opnd)
11221 then
11222 Opnd := Non_Limited_View (Opnd);
11223 Set_Etype (Expression (N), Opnd);
11224 end if;
11226 if Is_Access_Type (Opnd) then
11227 Opnd := Designated_Type (Opnd);
11228 end if;
11230 if Is_Access_Type (Target_Typ) then
11231 Target := Designated_Type (Target);
11232 end if;
11234 if Opnd = Target then
11235 null;
11237 -- Conversion from interface type
11239 elsif Is_Interface (Opnd) then
11241 -- Ada 2005 (AI-217): Handle entities from limited views
11243 if From_Limited_With (Opnd) then
11244 Error_Msg_Qual_Level := 99;
11245 Error_Msg_NE -- CODEFIX
11246 ("missing WITH clause on package &", N,
11247 Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
11248 Error_Msg_N
11249 ("type conversions require visibility of the full view",
11252 elsif From_Limited_With (Target)
11253 and then not
11254 (Is_Access_Type (Target_Typ)
11255 and then Present (Non_Limited_View (Etype (Target))))
11256 then
11257 Error_Msg_Qual_Level := 99;
11258 Error_Msg_NE -- CODEFIX
11259 ("missing WITH clause on package &", N,
11260 Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
11261 Error_Msg_N
11262 ("type conversions require visibility of the full view",
11265 else
11266 Expand_Interface_Conversion (N);
11267 end if;
11269 -- Conversion to interface type
11271 elsif Is_Interface (Target) then
11273 -- Handle subtypes
11275 if Ekind_In (Opnd, E_Protected_Subtype, E_Task_Subtype) then
11276 Opnd := Etype (Opnd);
11277 end if;
11279 if Is_Class_Wide_Type (Opnd)
11280 or else Interface_Present_In_Ancestor
11281 (Typ => Opnd,
11282 Iface => Target)
11283 then
11284 Expand_Interface_Conversion (N);
11285 else
11286 Error_Msg_Name_1 := Chars (Etype (Target));
11287 Error_Msg_Name_2 := Chars (Opnd);
11288 Error_Msg_N
11289 ("wrong interface conversion (% is not a progenitor "
11290 & "of %)", N);
11291 end if;
11292 end if;
11293 end;
11294 end if;
11296 -- Ada 2012: once the type conversion is resolved, check whether the
11297 -- operand statisfies the static predicate of the target type.
11299 if Has_Predicates (Target_Typ) then
11300 Check_Expression_Against_Static_Predicate (N, Target_Typ);
11301 end if;
11303 -- If at this stage we have a real to integer conversion, make sure that
11304 -- the Do_Range_Check flag is set, because such conversions in general
11305 -- need a range check. We only need this if expansion is off.
11306 -- In GNATprove mode, we only do that when converting from fixed-point
11307 -- (as floating-point to integer conversions are now handled in
11308 -- GNATprove mode).
11310 if Nkind (N) = N_Type_Conversion
11311 and then not Expander_Active
11312 and then Is_Integer_Type (Target_Typ)
11313 and then (Is_Fixed_Point_Type (Operand_Typ)
11314 or else (not GNATprove_Mode
11315 and then Is_Floating_Point_Type (Operand_Typ)))
11316 then
11317 Set_Do_Range_Check (Operand);
11318 end if;
11320 -- Generating C code a type conversion of an access to constrained
11321 -- array type to access to unconstrained array type involves building
11322 -- a fat pointer which in general cannot be generated on the fly. We
11323 -- remove side effects in order to store the result of the conversion
11324 -- into a temporary.
11326 if Modify_Tree_For_C
11327 and then Nkind (N) = N_Type_Conversion
11328 and then Nkind (Parent (N)) /= N_Object_Declaration
11329 and then Is_Access_Type (Etype (N))
11330 and then Is_Array_Type (Designated_Type (Etype (N)))
11331 and then not Is_Constrained (Designated_Type (Etype (N)))
11332 and then Is_Constrained (Designated_Type (Etype (Expression (N))))
11333 then
11334 Remove_Side_Effects (N);
11335 end if;
11336 end Resolve_Type_Conversion;
11338 ----------------------
11339 -- Resolve_Unary_Op --
11340 ----------------------
11342 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
11343 B_Typ : constant Entity_Id := Base_Type (Typ);
11344 R : constant Node_Id := Right_Opnd (N);
11345 OK : Boolean;
11346 Lo : Uint;
11347 Hi : Uint;
11349 begin
11350 if Is_Modular_Integer_Type (Typ) and then Nkind (N) /= N_Op_Not then
11351 Error_Msg_Name_1 := Chars (Typ);
11352 Check_SPARK_05_Restriction
11353 ("unary operator not defined for modular type%", N);
11354 end if;
11356 -- Deal with intrinsic unary operators
11358 if Comes_From_Source (N)
11359 and then Ekind (Entity (N)) = E_Function
11360 and then Is_Imported (Entity (N))
11361 and then Is_Intrinsic_Subprogram (Entity (N))
11362 then
11363 Resolve_Intrinsic_Unary_Operator (N, Typ);
11364 return;
11365 end if;
11367 -- Deal with universal cases
11369 if Etype (R) = Universal_Integer
11370 or else
11371 Etype (R) = Universal_Real
11372 then
11373 Check_For_Visible_Operator (N, B_Typ);
11374 end if;
11376 Set_Etype (N, B_Typ);
11377 Resolve (R, B_Typ);
11379 -- Generate warning for expressions like abs (x mod 2)
11381 if Warn_On_Redundant_Constructs
11382 and then Nkind (N) = N_Op_Abs
11383 then
11384 Determine_Range (Right_Opnd (N), OK, Lo, Hi);
11386 if OK and then Hi >= Lo and then Lo >= 0 then
11387 Error_Msg_N -- CODEFIX
11388 ("?r?abs applied to known non-negative value has no effect", N);
11389 end if;
11390 end if;
11392 -- Deal with reference generation
11394 Check_Unset_Reference (R);
11395 Generate_Operator_Reference (N, B_Typ);
11396 Analyze_Dimension (N);
11397 Eval_Unary_Op (N);
11399 -- Set overflow checking bit. Much cleverer code needed here eventually
11400 -- and perhaps the Resolve routines should be separated for the various
11401 -- arithmetic operations, since they will need different processing ???
11403 if Nkind (N) in N_Op then
11404 if not Overflow_Checks_Suppressed (Etype (N)) then
11405 Enable_Overflow_Check (N);
11406 end if;
11407 end if;
11409 -- Generate warning for expressions like -5 mod 3 for integers. No need
11410 -- to worry in the floating-point case, since parens do not affect the
11411 -- result so there is no point in giving in a warning.
11413 declare
11414 Norig : constant Node_Id := Original_Node (N);
11415 Rorig : Node_Id;
11416 Val : Uint;
11417 HB : Uint;
11418 LB : Uint;
11419 Lval : Uint;
11420 Opnd : Node_Id;
11422 begin
11423 if Warn_On_Questionable_Missing_Parens
11424 and then Comes_From_Source (Norig)
11425 and then Is_Integer_Type (Typ)
11426 and then Nkind (Norig) = N_Op_Minus
11427 then
11428 Rorig := Original_Node (Right_Opnd (Norig));
11430 -- We are looking for cases where the right operand is not
11431 -- parenthesized, and is a binary operator, multiply, divide, or
11432 -- mod. These are the cases where the grouping can affect results.
11434 if Paren_Count (Rorig) = 0
11435 and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
11436 then
11437 -- For mod, we always give the warning, since the value is
11438 -- affected by the parenthesization (e.g. (-5) mod 315 /=
11439 -- -(5 mod 315)). But for the other cases, the only concern is
11440 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
11441 -- overflows, but (-2) * 64 does not). So we try to give the
11442 -- message only when overflow is possible.
11444 if Nkind (Rorig) /= N_Op_Mod
11445 and then Compile_Time_Known_Value (R)
11446 then
11447 Val := Expr_Value (R);
11449 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
11450 HB := Expr_Value (Type_High_Bound (Typ));
11451 else
11452 HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
11453 end if;
11455 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
11456 LB := Expr_Value (Type_Low_Bound (Typ));
11457 else
11458 LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
11459 end if;
11461 -- Note that the test below is deliberately excluding the
11462 -- largest negative number, since that is a potentially
11463 -- troublesome case (e.g. -2 * x, where the result is the
11464 -- largest negative integer has an overflow with 2 * x).
11466 if Val > LB and then Val <= HB then
11467 return;
11468 end if;
11469 end if;
11471 -- For the multiplication case, the only case we have to worry
11472 -- about is when (-a)*b is exactly the largest negative number
11473 -- so that -(a*b) can cause overflow. This can only happen if
11474 -- a is a power of 2, and more generally if any operand is a
11475 -- constant that is not a power of 2, then the parentheses
11476 -- cannot affect whether overflow occurs. We only bother to
11477 -- test the left most operand
11479 -- Loop looking at left operands for one that has known value
11481 Opnd := Rorig;
11482 Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
11483 if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
11484 Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
11486 -- Operand value of 0 or 1 skips warning
11488 if Lval <= 1 then
11489 return;
11491 -- Otherwise check power of 2, if power of 2, warn, if
11492 -- anything else, skip warning.
11494 else
11495 while Lval /= 2 loop
11496 if Lval mod 2 = 1 then
11497 return;
11498 else
11499 Lval := Lval / 2;
11500 end if;
11501 end loop;
11503 exit Opnd_Loop;
11504 end if;
11505 end if;
11507 -- Keep looking at left operands
11509 Opnd := Left_Opnd (Opnd);
11510 end loop Opnd_Loop;
11512 -- For rem or "/" we can only have a problematic situation
11513 -- if the divisor has a value of minus one or one. Otherwise
11514 -- overflow is impossible (divisor > 1) or we have a case of
11515 -- division by zero in any case.
11517 if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
11518 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
11519 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
11520 then
11521 return;
11522 end if;
11524 -- If we fall through warning should be issued
11526 -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
11528 Error_Msg_N
11529 ("??unary minus expression should be parenthesized here!", N);
11530 end if;
11531 end if;
11532 end;
11533 end Resolve_Unary_Op;
11535 ----------------------------------
11536 -- Resolve_Unchecked_Expression --
11537 ----------------------------------
11539 procedure Resolve_Unchecked_Expression
11540 (N : Node_Id;
11541 Typ : Entity_Id)
11543 begin
11544 Resolve (Expression (N), Typ, Suppress => All_Checks);
11545 Set_Etype (N, Typ);
11546 end Resolve_Unchecked_Expression;
11548 ---------------------------------------
11549 -- Resolve_Unchecked_Type_Conversion --
11550 ---------------------------------------
11552 procedure Resolve_Unchecked_Type_Conversion
11553 (N : Node_Id;
11554 Typ : Entity_Id)
11556 pragma Warnings (Off, Typ);
11558 Operand : constant Node_Id := Expression (N);
11559 Opnd_Type : constant Entity_Id := Etype (Operand);
11561 begin
11562 -- Resolve operand using its own type
11564 Resolve (Operand, Opnd_Type);
11566 -- In an inlined context, the unchecked conversion may be applied
11567 -- to a literal, in which case its type is the type of the context.
11568 -- (In other contexts conversions cannot apply to literals).
11570 if In_Inlined_Body
11571 and then (Opnd_Type = Any_Character or else
11572 Opnd_Type = Any_Integer or else
11573 Opnd_Type = Any_Real)
11574 then
11575 Set_Etype (Operand, Typ);
11576 end if;
11578 Analyze_Dimension (N);
11579 Eval_Unchecked_Conversion (N);
11580 end Resolve_Unchecked_Type_Conversion;
11582 ------------------------------
11583 -- Rewrite_Operator_As_Call --
11584 ------------------------------
11586 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
11587 Loc : constant Source_Ptr := Sloc (N);
11588 Actuals : constant List_Id := New_List;
11589 New_N : Node_Id;
11591 begin
11592 if Nkind (N) in N_Binary_Op then
11593 Append (Left_Opnd (N), Actuals);
11594 end if;
11596 Append (Right_Opnd (N), Actuals);
11598 New_N :=
11599 Make_Function_Call (Sloc => Loc,
11600 Name => New_Occurrence_Of (Nam, Loc),
11601 Parameter_Associations => Actuals);
11603 Preserve_Comes_From_Source (New_N, N);
11604 Preserve_Comes_From_Source (Name (New_N), N);
11605 Rewrite (N, New_N);
11606 Set_Etype (N, Etype (Nam));
11607 end Rewrite_Operator_As_Call;
11609 ------------------------------
11610 -- Rewrite_Renamed_Operator --
11611 ------------------------------
11613 procedure Rewrite_Renamed_Operator
11614 (N : Node_Id;
11615 Op : Entity_Id;
11616 Typ : Entity_Id)
11618 Nam : constant Name_Id := Chars (Op);
11619 Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
11620 Op_Node : Node_Id;
11622 begin
11623 -- Do not perform this transformation within a pre/postcondition,
11624 -- because the expression will be reanalyzed, and the transformation
11625 -- might affect the visibility of the operator, e.g. in an instance.
11626 -- Note that fully analyzed and expanded pre/postconditions appear as
11627 -- pragma Check equivalents.
11629 if In_Pre_Post_Condition (N) then
11630 return;
11631 end if;
11633 -- Likewise when an expression function is being preanalyzed, since the
11634 -- expression will be reanalyzed as part of the generated body.
11636 if In_Spec_Expression then
11637 declare
11638 S : constant Entity_Id := Current_Scope_No_Loops;
11639 begin
11640 if Ekind (S) = E_Function
11641 and then Nkind (Original_Node (Unit_Declaration_Node (S))) =
11642 N_Expression_Function
11643 then
11644 return;
11645 end if;
11646 end;
11647 end if;
11649 -- Rewrite the operator node using the real operator, not its renaming.
11650 -- Exclude user-defined intrinsic operations of the same name, which are
11651 -- treated separately and rewritten as calls.
11653 if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
11654 Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
11655 Set_Chars (Op_Node, Nam);
11656 Set_Etype (Op_Node, Etype (N));
11657 Set_Entity (Op_Node, Op);
11658 Set_Right_Opnd (Op_Node, Right_Opnd (N));
11660 -- Indicate that both the original entity and its renaming are
11661 -- referenced at this point.
11663 Generate_Reference (Entity (N), N);
11664 Generate_Reference (Op, N);
11666 if Is_Binary then
11667 Set_Left_Opnd (Op_Node, Left_Opnd (N));
11668 end if;
11670 Rewrite (N, Op_Node);
11672 -- If the context type is private, add the appropriate conversions so
11673 -- that the operator is applied to the full view. This is done in the
11674 -- routines that resolve intrinsic operators.
11676 if Is_Intrinsic_Subprogram (Op) and then Is_Private_Type (Typ) then
11677 case Nkind (N) is
11678 when N_Op_Add
11679 | N_Op_Divide
11680 | N_Op_Expon
11681 | N_Op_Mod
11682 | N_Op_Multiply
11683 | N_Op_Rem
11684 | N_Op_Subtract
11686 Resolve_Intrinsic_Operator (N, Typ);
11688 when N_Op_Abs
11689 | N_Op_Minus
11690 | N_Op_Plus
11692 Resolve_Intrinsic_Unary_Operator (N, Typ);
11694 when others =>
11695 Resolve (N, Typ);
11696 end case;
11697 end if;
11699 elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then
11701 -- Operator renames a user-defined operator of the same name. Use the
11702 -- original operator in the node, which is the one Gigi knows about.
11704 Set_Entity (N, Op);
11705 Set_Is_Overloaded (N, False);
11706 end if;
11707 end Rewrite_Renamed_Operator;
11709 -----------------------
11710 -- Set_Slice_Subtype --
11711 -----------------------
11713 -- Build an implicit subtype declaration to represent the type delivered by
11714 -- the slice. This is an abbreviated version of an array subtype. We define
11715 -- an index subtype for the slice, using either the subtype name or the
11716 -- discrete range of the slice. To be consistent with index usage elsewhere
11717 -- we create a list header to hold the single index. This list is not
11718 -- otherwise attached to the syntax tree.
11720 procedure Set_Slice_Subtype (N : Node_Id) is
11721 Loc : constant Source_Ptr := Sloc (N);
11722 Index_List : constant List_Id := New_List;
11723 Index : Node_Id;
11724 Index_Subtype : Entity_Id;
11725 Index_Type : Entity_Id;
11726 Slice_Subtype : Entity_Id;
11727 Drange : constant Node_Id := Discrete_Range (N);
11729 begin
11730 Index_Type := Base_Type (Etype (Drange));
11732 if Is_Entity_Name (Drange) then
11733 Index_Subtype := Entity (Drange);
11735 else
11736 -- We force the evaluation of a range. This is definitely needed in
11737 -- the renamed case, and seems safer to do unconditionally. Note in
11738 -- any case that since we will create and insert an Itype referring
11739 -- to this range, we must make sure any side effect removal actions
11740 -- are inserted before the Itype definition.
11742 if Nkind (Drange) = N_Range then
11743 Force_Evaluation (Low_Bound (Drange));
11744 Force_Evaluation (High_Bound (Drange));
11746 -- If the discrete range is given by a subtype indication, the
11747 -- type of the slice is the base of the subtype mark.
11749 elsif Nkind (Drange) = N_Subtype_Indication then
11750 declare
11751 R : constant Node_Id := Range_Expression (Constraint (Drange));
11752 begin
11753 Index_Type := Base_Type (Entity (Subtype_Mark (Drange)));
11754 Force_Evaluation (Low_Bound (R));
11755 Force_Evaluation (High_Bound (R));
11756 end;
11757 end if;
11759 Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11761 -- Take a new copy of Drange (where bounds have been rewritten to
11762 -- reference side-effect-free names). Using a separate tree ensures
11763 -- that further expansion (e.g. while rewriting a slice assignment
11764 -- into a FOR loop) does not attempt to remove side effects on the
11765 -- bounds again (which would cause the bounds in the index subtype
11766 -- definition to refer to temporaries before they are defined) (the
11767 -- reason is that some names are considered side effect free here
11768 -- for the subtype, but not in the context of a loop iteration
11769 -- scheme).
11771 Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
11772 Set_Parent (Scalar_Range (Index_Subtype), Index_Subtype);
11773 Set_Etype (Index_Subtype, Index_Type);
11774 Set_Size_Info (Index_Subtype, Index_Type);
11775 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11776 end if;
11778 Slice_Subtype := Create_Itype (E_Array_Subtype, N);
11780 Index := New_Occurrence_Of (Index_Subtype, Loc);
11781 Set_Etype (Index, Index_Subtype);
11782 Append (Index, Index_List);
11784 Set_First_Index (Slice_Subtype, Index);
11785 Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
11786 Set_Is_Constrained (Slice_Subtype, True);
11788 Check_Compile_Time_Size (Slice_Subtype);
11790 -- The Etype of the existing Slice node is reset to this slice subtype.
11791 -- Its bounds are obtained from its first index.
11793 Set_Etype (N, Slice_Subtype);
11795 -- For bit-packed slice subtypes, freeze immediately (except in the case
11796 -- of being in a "spec expression" where we never freeze when we first
11797 -- see the expression).
11799 if Is_Bit_Packed_Array (Slice_Subtype) and not In_Spec_Expression then
11800 Freeze_Itype (Slice_Subtype, N);
11802 -- For all other cases insert an itype reference in the slice's actions
11803 -- so that the itype is frozen at the proper place in the tree (i.e. at
11804 -- the point where actions for the slice are analyzed). Note that this
11805 -- is different from freezing the itype immediately, which might be
11806 -- premature (e.g. if the slice is within a transient scope). This needs
11807 -- to be done only if expansion is enabled.
11809 elsif Expander_Active then
11810 Ensure_Defined (Typ => Slice_Subtype, N => N);
11811 end if;
11812 end Set_Slice_Subtype;
11814 --------------------------------
11815 -- Set_String_Literal_Subtype --
11816 --------------------------------
11818 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
11819 Loc : constant Source_Ptr := Sloc (N);
11820 Low_Bound : constant Node_Id :=
11821 Type_Low_Bound (Etype (First_Index (Typ)));
11822 Subtype_Id : Entity_Id;
11824 begin
11825 if Nkind (N) /= N_String_Literal then
11826 return;
11827 end if;
11829 Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
11830 Set_String_Literal_Length (Subtype_Id, UI_From_Int
11831 (String_Length (Strval (N))));
11832 Set_Etype (Subtype_Id, Base_Type (Typ));
11833 Set_Is_Constrained (Subtype_Id);
11834 Set_Etype (N, Subtype_Id);
11836 -- The low bound is set from the low bound of the corresponding index
11837 -- type. Note that we do not store the high bound in the string literal
11838 -- subtype, but it can be deduced if necessary from the length and the
11839 -- low bound.
11841 if Is_OK_Static_Expression (Low_Bound) then
11842 Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
11844 -- If the lower bound is not static we create a range for the string
11845 -- literal, using the index type and the known length of the literal.
11846 -- The index type is not necessarily Positive, so the upper bound is
11847 -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
11849 else
11850 declare
11851 Index_List : constant List_Id := New_List;
11852 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
11853 High_Bound : constant Node_Id :=
11854 Make_Attribute_Reference (Loc,
11855 Attribute_Name => Name_Val,
11856 Prefix =>
11857 New_Occurrence_Of (Index_Type, Loc),
11858 Expressions => New_List (
11859 Make_Op_Add (Loc,
11860 Left_Opnd =>
11861 Make_Attribute_Reference (Loc,
11862 Attribute_Name => Name_Pos,
11863 Prefix =>
11864 New_Occurrence_Of (Index_Type, Loc),
11865 Expressions =>
11866 New_List (New_Copy_Tree (Low_Bound))),
11867 Right_Opnd =>
11868 Make_Integer_Literal (Loc,
11869 String_Length (Strval (N)) - 1))));
11871 Array_Subtype : Entity_Id;
11872 Drange : Node_Id;
11873 Index : Node_Id;
11874 Index_Subtype : Entity_Id;
11876 begin
11877 if Is_Integer_Type (Index_Type) then
11878 Set_String_Literal_Low_Bound
11879 (Subtype_Id, Make_Integer_Literal (Loc, 1));
11881 else
11882 -- If the index type is an enumeration type, build bounds
11883 -- expression with attributes.
11885 Set_String_Literal_Low_Bound
11886 (Subtype_Id,
11887 Make_Attribute_Reference (Loc,
11888 Attribute_Name => Name_First,
11889 Prefix =>
11890 New_Occurrence_Of (Base_Type (Index_Type), Loc)));
11891 Set_Etype (String_Literal_Low_Bound (Subtype_Id), Index_Type);
11892 end if;
11894 Analyze_And_Resolve (String_Literal_Low_Bound (Subtype_Id));
11896 -- Build bona fide subtype for the string, and wrap it in an
11897 -- unchecked conversion, because the backend expects the
11898 -- String_Literal_Subtype to have a static lower bound.
11900 Index_Subtype :=
11901 Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11902 Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
11903 Set_Scalar_Range (Index_Subtype, Drange);
11904 Set_Parent (Drange, N);
11905 Analyze_And_Resolve (Drange, Index_Type);
11907 -- In the context, the Index_Type may already have a constraint,
11908 -- so use common base type on string subtype. The base type may
11909 -- be used when generating attributes of the string, for example
11910 -- in the context of a slice assignment.
11912 Set_Etype (Index_Subtype, Base_Type (Index_Type));
11913 Set_Size_Info (Index_Subtype, Index_Type);
11914 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11916 Array_Subtype := Create_Itype (E_Array_Subtype, N);
11918 Index := New_Occurrence_Of (Index_Subtype, Loc);
11919 Set_Etype (Index, Index_Subtype);
11920 Append (Index, Index_List);
11922 Set_First_Index (Array_Subtype, Index);
11923 Set_Etype (Array_Subtype, Base_Type (Typ));
11924 Set_Is_Constrained (Array_Subtype, True);
11926 Rewrite (N,
11927 Make_Unchecked_Type_Conversion (Loc,
11928 Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
11929 Expression => Relocate_Node (N)));
11930 Set_Etype (N, Array_Subtype);
11931 end;
11932 end if;
11933 end Set_String_Literal_Subtype;
11935 ------------------------------
11936 -- Simplify_Type_Conversion --
11937 ------------------------------
11939 procedure Simplify_Type_Conversion (N : Node_Id) is
11940 begin
11941 if Nkind (N) = N_Type_Conversion then
11942 declare
11943 Operand : constant Node_Id := Expression (N);
11944 Target_Typ : constant Entity_Id := Etype (N);
11945 Opnd_Typ : constant Entity_Id := Etype (Operand);
11947 begin
11948 -- Special processing if the conversion is the expression of a
11949 -- Rounding or Truncation attribute reference. In this case we
11950 -- replace:
11952 -- ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x))
11954 -- by
11956 -- ityp (x)
11958 -- with the Float_Truncate flag set to False or True respectively,
11959 -- which is more efficient.
11961 if Is_Floating_Point_Type (Opnd_Typ)
11962 and then
11963 (Is_Integer_Type (Target_Typ)
11964 or else (Is_Fixed_Point_Type (Target_Typ)
11965 and then Conversion_OK (N)))
11966 and then Nkind (Operand) = N_Attribute_Reference
11967 and then Nam_In (Attribute_Name (Operand), Name_Rounding,
11968 Name_Truncation)
11969 then
11970 declare
11971 Truncate : constant Boolean :=
11972 Attribute_Name (Operand) = Name_Truncation;
11973 begin
11974 Rewrite (Operand,
11975 Relocate_Node (First (Expressions (Operand))));
11976 Set_Float_Truncate (N, Truncate);
11977 end;
11978 end if;
11979 end;
11980 end if;
11981 end Simplify_Type_Conversion;
11983 -----------------------------
11984 -- Unique_Fixed_Point_Type --
11985 -----------------------------
11987 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
11988 procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id);
11989 -- Give error messages for true ambiguity. Messages are posted on node
11990 -- N, and entities T1, T2 are the possible interpretations.
11992 -----------------------
11993 -- Fixed_Point_Error --
11994 -----------------------
11996 procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id) is
11997 begin
11998 Error_Msg_N ("ambiguous universal_fixed_expression", N);
11999 Error_Msg_NE ("\\possible interpretation as}", N, T1);
12000 Error_Msg_NE ("\\possible interpretation as}", N, T2);
12001 end Fixed_Point_Error;
12003 -- Local variables
12005 ErrN : Node_Id;
12006 Item : Node_Id;
12007 Scop : Entity_Id;
12008 T1 : Entity_Id;
12009 T2 : Entity_Id;
12011 -- Start of processing for Unique_Fixed_Point_Type
12013 begin
12014 -- The operations on Duration are visible, so Duration is always a
12015 -- possible interpretation.
12017 T1 := Standard_Duration;
12019 -- Look for fixed-point types in enclosing scopes
12021 Scop := Current_Scope;
12022 while Scop /= Standard_Standard loop
12023 T2 := First_Entity (Scop);
12024 while Present (T2) loop
12025 if Is_Fixed_Point_Type (T2)
12026 and then Current_Entity (T2) = T2
12027 and then Scope (Base_Type (T2)) = Scop
12028 then
12029 if Present (T1) then
12030 Fixed_Point_Error (T1, T2);
12031 return Any_Type;
12032 else
12033 T1 := T2;
12034 end if;
12035 end if;
12037 Next_Entity (T2);
12038 end loop;
12040 Scop := Scope (Scop);
12041 end loop;
12043 -- Look for visible fixed type declarations in the context
12045 Item := First (Context_Items (Cunit (Current_Sem_Unit)));
12046 while Present (Item) loop
12047 if Nkind (Item) = N_With_Clause then
12048 Scop := Entity (Name (Item));
12049 T2 := First_Entity (Scop);
12050 while Present (T2) loop
12051 if Is_Fixed_Point_Type (T2)
12052 and then Scope (Base_Type (T2)) = Scop
12053 and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2))
12054 then
12055 if Present (T1) then
12056 Fixed_Point_Error (T1, T2);
12057 return Any_Type;
12058 else
12059 T1 := T2;
12060 end if;
12061 end if;
12063 Next_Entity (T2);
12064 end loop;
12065 end if;
12067 Next (Item);
12068 end loop;
12070 if Nkind (N) = N_Real_Literal then
12071 Error_Msg_NE ("??real literal interpreted as }!", N, T1);
12073 else
12074 -- When the context is a type conversion, issue the warning on the
12075 -- expression of the conversion because it is the actual operation.
12077 if Nkind_In (N, N_Type_Conversion, N_Unchecked_Type_Conversion) then
12078 ErrN := Expression (N);
12079 else
12080 ErrN := N;
12081 end if;
12083 Error_Msg_NE
12084 ("??universal_fixed expression interpreted as }!", ErrN, T1);
12085 end if;
12087 return T1;
12088 end Unique_Fixed_Point_Type;
12090 ----------------------
12091 -- Valid_Conversion --
12092 ----------------------
12094 function Valid_Conversion
12095 (N : Node_Id;
12096 Target : Entity_Id;
12097 Operand : Node_Id;
12098 Report_Errs : Boolean := True) return Boolean
12100 Target_Type : constant Entity_Id := Base_Type (Target);
12101 Opnd_Type : Entity_Id := Etype (Operand);
12102 Inc_Ancestor : Entity_Id;
12104 function Conversion_Check
12105 (Valid : Boolean;
12106 Msg : String) return Boolean;
12107 -- Little routine to post Msg if Valid is False, returns Valid value
12109 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id);
12110 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
12112 procedure Conversion_Error_NE
12113 (Msg : String;
12114 N : Node_Or_Entity_Id;
12115 E : Node_Or_Entity_Id);
12116 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
12118 function In_Instance_Code return Boolean;
12119 -- Return True if expression is within an instance but is not in one of
12120 -- the actuals of the instantiation. Type conversions within an instance
12121 -- are not rechecked because type visbility may lead to spurious errors,
12122 -- but conversions in an actual for a formal object must be checked.
12124 function Valid_Tagged_Conversion
12125 (Target_Type : Entity_Id;
12126 Opnd_Type : Entity_Id) return Boolean;
12127 -- Specifically test for validity of tagged conversions
12129 function Valid_Array_Conversion return Boolean;
12130 -- Check index and component conformance, and accessibility levels if
12131 -- the component types are anonymous access types (Ada 2005).
12133 ----------------------
12134 -- Conversion_Check --
12135 ----------------------
12137 function Conversion_Check
12138 (Valid : Boolean;
12139 Msg : String) return Boolean
12141 begin
12142 if not Valid
12144 -- A generic unit has already been analyzed and we have verified
12145 -- that a particular conversion is OK in that context. Since the
12146 -- instance is reanalyzed without relying on the relationships
12147 -- established during the analysis of the generic, it is possible
12148 -- to end up with inconsistent views of private types. Do not emit
12149 -- the error message in such cases. The rest of the machinery in
12150 -- Valid_Conversion still ensures the proper compatibility of
12151 -- target and operand types.
12153 and then not In_Instance_Code
12154 then
12155 Conversion_Error_N (Msg, Operand);
12156 end if;
12158 return Valid;
12159 end Conversion_Check;
12161 ------------------------
12162 -- Conversion_Error_N --
12163 ------------------------
12165 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id) is
12166 begin
12167 if Report_Errs then
12168 Error_Msg_N (Msg, N);
12169 end if;
12170 end Conversion_Error_N;
12172 -------------------------
12173 -- Conversion_Error_NE --
12174 -------------------------
12176 procedure Conversion_Error_NE
12177 (Msg : String;
12178 N : Node_Or_Entity_Id;
12179 E : Node_Or_Entity_Id)
12181 begin
12182 if Report_Errs then
12183 Error_Msg_NE (Msg, N, E);
12184 end if;
12185 end Conversion_Error_NE;
12187 ----------------------
12188 -- In_Instance_Code --
12189 ----------------------
12191 function In_Instance_Code return Boolean is
12192 Par : Node_Id;
12194 begin
12195 if not In_Instance then
12196 return False;
12198 else
12199 Par := Parent (N);
12200 while Present (Par) loop
12202 -- The expression is part of an actual object if it appears in
12203 -- the generated object declaration in the instance.
12205 if Nkind (Par) = N_Object_Declaration
12206 and then Present (Corresponding_Generic_Association (Par))
12207 then
12208 return False;
12210 else
12211 exit when
12212 Nkind (Par) in N_Statement_Other_Than_Procedure_Call
12213 or else Nkind (Par) in N_Subprogram_Call
12214 or else Nkind (Par) in N_Declaration;
12215 end if;
12217 Par := Parent (Par);
12218 end loop;
12220 -- Otherwise the expression appears within the instantiated unit
12222 return True;
12223 end if;
12224 end In_Instance_Code;
12226 ----------------------------
12227 -- Valid_Array_Conversion --
12228 ----------------------------
12230 function Valid_Array_Conversion return Boolean is
12231 Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
12232 Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
12234 Opnd_Index : Node_Id;
12235 Opnd_Index_Type : Entity_Id;
12237 Target_Comp_Type : constant Entity_Id :=
12238 Component_Type (Target_Type);
12239 Target_Comp_Base : constant Entity_Id :=
12240 Base_Type (Target_Comp_Type);
12242 Target_Index : Node_Id;
12243 Target_Index_Type : Entity_Id;
12245 begin
12246 -- Error if wrong number of dimensions
12249 Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
12250 then
12251 Conversion_Error_N
12252 ("incompatible number of dimensions for conversion", Operand);
12253 return False;
12255 -- Number of dimensions matches
12257 else
12258 -- Loop through indexes of the two arrays
12260 Target_Index := First_Index (Target_Type);
12261 Opnd_Index := First_Index (Opnd_Type);
12262 while Present (Target_Index) and then Present (Opnd_Index) loop
12263 Target_Index_Type := Etype (Target_Index);
12264 Opnd_Index_Type := Etype (Opnd_Index);
12266 -- Error if index types are incompatible
12268 if not (Is_Integer_Type (Target_Index_Type)
12269 and then Is_Integer_Type (Opnd_Index_Type))
12270 and then (Root_Type (Target_Index_Type)
12271 /= Root_Type (Opnd_Index_Type))
12272 then
12273 Conversion_Error_N
12274 ("incompatible index types for array conversion",
12275 Operand);
12276 return False;
12277 end if;
12279 Next_Index (Target_Index);
12280 Next_Index (Opnd_Index);
12281 end loop;
12283 -- If component types have same base type, all set
12285 if Target_Comp_Base = Opnd_Comp_Base then
12286 null;
12288 -- Here if base types of components are not the same. The only
12289 -- time this is allowed is if we have anonymous access types.
12291 -- The conversion of arrays of anonymous access types can lead
12292 -- to dangling pointers. AI-392 formalizes the accessibility
12293 -- checks that must be applied to such conversions to prevent
12294 -- out-of-scope references.
12296 elsif Ekind_In
12297 (Target_Comp_Base, E_Anonymous_Access_Type,
12298 E_Anonymous_Access_Subprogram_Type)
12299 and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
12300 and then
12301 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
12302 then
12303 if Type_Access_Level (Target_Type) <
12304 Deepest_Type_Access_Level (Opnd_Type)
12305 then
12306 if In_Instance_Body then
12307 Error_Msg_Warn := SPARK_Mode /= On;
12308 Conversion_Error_N
12309 ("source array type has deeper accessibility "
12310 & "level than target<<", Operand);
12311 Conversion_Error_N ("\Program_Error [<<", Operand);
12312 Rewrite (N,
12313 Make_Raise_Program_Error (Sloc (N),
12314 Reason => PE_Accessibility_Check_Failed));
12315 Set_Etype (N, Target_Type);
12316 return False;
12318 -- Conversion not allowed because of accessibility levels
12320 else
12321 Conversion_Error_N
12322 ("source array type has deeper accessibility "
12323 & "level than target", Operand);
12324 return False;
12325 end if;
12327 else
12328 null;
12329 end if;
12331 -- All other cases where component base types do not match
12333 else
12334 Conversion_Error_N
12335 ("incompatible component types for array conversion",
12336 Operand);
12337 return False;
12338 end if;
12340 -- Check that component subtypes statically match. For numeric
12341 -- types this means that both must be either constrained or
12342 -- unconstrained. For enumeration types the bounds must match.
12343 -- All of this is checked in Subtypes_Statically_Match.
12345 if not Subtypes_Statically_Match
12346 (Target_Comp_Type, Opnd_Comp_Type)
12347 then
12348 Conversion_Error_N
12349 ("component subtypes must statically match", Operand);
12350 return False;
12351 end if;
12352 end if;
12354 return True;
12355 end Valid_Array_Conversion;
12357 -----------------------------
12358 -- Valid_Tagged_Conversion --
12359 -----------------------------
12361 function Valid_Tagged_Conversion
12362 (Target_Type : Entity_Id;
12363 Opnd_Type : Entity_Id) return Boolean
12365 begin
12366 -- Upward conversions are allowed (RM 4.6(22))
12368 if Covers (Target_Type, Opnd_Type)
12369 or else Is_Ancestor (Target_Type, Opnd_Type)
12370 then
12371 return True;
12373 -- Downward conversion are allowed if the operand is class-wide
12374 -- (RM 4.6(23)).
12376 elsif Is_Class_Wide_Type (Opnd_Type)
12377 and then Covers (Opnd_Type, Target_Type)
12378 then
12379 return True;
12381 elsif Covers (Opnd_Type, Target_Type)
12382 or else Is_Ancestor (Opnd_Type, Target_Type)
12383 then
12384 return
12385 Conversion_Check (False,
12386 "downward conversion of tagged objects not allowed");
12388 -- Ada 2005 (AI-251): The conversion to/from interface types is
12389 -- always valid. The types involved may be class-wide (sub)types.
12391 elsif Is_Interface (Etype (Base_Type (Target_Type)))
12392 or else Is_Interface (Etype (Base_Type (Opnd_Type)))
12393 then
12394 return True;
12396 -- If the operand is a class-wide type obtained through a limited_
12397 -- with clause, and the context includes the nonlimited view, use
12398 -- it to determine whether the conversion is legal.
12400 elsif Is_Class_Wide_Type (Opnd_Type)
12401 and then From_Limited_With (Opnd_Type)
12402 and then Present (Non_Limited_View (Etype (Opnd_Type)))
12403 and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
12404 then
12405 return True;
12407 elsif Is_Access_Type (Opnd_Type)
12408 and then Is_Interface (Directly_Designated_Type (Opnd_Type))
12409 then
12410 return True;
12412 else
12413 Conversion_Error_NE
12414 ("invalid tagged conversion, not compatible with}",
12415 N, First_Subtype (Opnd_Type));
12416 return False;
12417 end if;
12418 end Valid_Tagged_Conversion;
12420 -- Start of processing for Valid_Conversion
12422 begin
12423 Check_Parameterless_Call (Operand);
12425 if Is_Overloaded (Operand) then
12426 declare
12427 I : Interp_Index;
12428 I1 : Interp_Index;
12429 It : Interp;
12430 It1 : Interp;
12431 N1 : Entity_Id;
12432 T1 : Entity_Id;
12434 begin
12435 -- Remove procedure calls, which syntactically cannot appear in
12436 -- this context, but which cannot be removed by type checking,
12437 -- because the context does not impose a type.
12439 -- The node may be labelled overloaded, but still contain only one
12440 -- interpretation because others were discarded earlier. If this
12441 -- is the case, retain the single interpretation if legal.
12443 Get_First_Interp (Operand, I, It);
12444 Opnd_Type := It.Typ;
12445 Get_Next_Interp (I, It);
12447 if Present (It.Typ)
12448 and then Opnd_Type /= Standard_Void_Type
12449 then
12450 -- More than one candidate interpretation is available
12452 Get_First_Interp (Operand, I, It);
12453 while Present (It.Typ) loop
12454 if It.Typ = Standard_Void_Type then
12455 Remove_Interp (I);
12456 end if;
12458 -- When compiling for a system where Address is of a visible
12459 -- integer type, spurious ambiguities can be produced when
12460 -- arithmetic operations have a literal operand and return
12461 -- System.Address or a descendant of it. These ambiguities
12462 -- are usually resolved by the context, but for conversions
12463 -- there is no context type and the removal of the spurious
12464 -- operations must be done explicitly here.
12466 if not Address_Is_Private
12467 and then Is_Descendant_Of_Address (It.Typ)
12468 then
12469 Remove_Interp (I);
12470 end if;
12472 Get_Next_Interp (I, It);
12473 end loop;
12474 end if;
12476 Get_First_Interp (Operand, I, It);
12477 I1 := I;
12478 It1 := It;
12480 if No (It.Typ) then
12481 Conversion_Error_N ("illegal operand in conversion", Operand);
12482 return False;
12483 end if;
12485 Get_Next_Interp (I, It);
12487 if Present (It.Typ) then
12488 N1 := It1.Nam;
12489 T1 := It1.Typ;
12490 It1 := Disambiguate (Operand, I1, I, Any_Type);
12492 if It1 = No_Interp then
12493 Conversion_Error_N
12494 ("ambiguous operand in conversion", Operand);
12496 -- If the interpretation involves a standard operator, use
12497 -- the location of the type, which may be user-defined.
12499 if Sloc (It.Nam) = Standard_Location then
12500 Error_Msg_Sloc := Sloc (It.Typ);
12501 else
12502 Error_Msg_Sloc := Sloc (It.Nam);
12503 end if;
12505 Conversion_Error_N -- CODEFIX
12506 ("\\possible interpretation#!", Operand);
12508 if Sloc (N1) = Standard_Location then
12509 Error_Msg_Sloc := Sloc (T1);
12510 else
12511 Error_Msg_Sloc := Sloc (N1);
12512 end if;
12514 Conversion_Error_N -- CODEFIX
12515 ("\\possible interpretation#!", Operand);
12517 return False;
12518 end if;
12519 end if;
12521 Set_Etype (Operand, It1.Typ);
12522 Opnd_Type := It1.Typ;
12523 end;
12524 end if;
12526 -- Deal with conversion of integer type to address if the pragma
12527 -- Allow_Integer_Address is in effect. We convert the conversion to
12528 -- an unchecked conversion in this case and we are all done.
12530 if Address_Integer_Convert_OK (Opnd_Type, Target_Type) then
12531 Rewrite (N, Unchecked_Convert_To (Target_Type, Expression (N)));
12532 Analyze_And_Resolve (N, Target_Type);
12533 return True;
12534 end if;
12536 -- If we are within a child unit, check whether the type of the
12537 -- expression has an ancestor in a parent unit, in which case it
12538 -- belongs to its derivation class even if the ancestor is private.
12539 -- See RM 7.3.1 (5.2/3).
12541 Inc_Ancestor := Get_Incomplete_View_Of_Ancestor (Opnd_Type);
12543 -- Numeric types
12545 if Is_Numeric_Type (Target_Type) then
12547 -- A universal fixed expression can be converted to any numeric type
12549 if Opnd_Type = Universal_Fixed then
12550 return True;
12552 -- Also no need to check when in an instance or inlined body, because
12553 -- the legality has been established when the template was analyzed.
12554 -- Furthermore, numeric conversions may occur where only a private
12555 -- view of the operand type is visible at the instantiation point.
12556 -- This results in a spurious error if we check that the operand type
12557 -- is a numeric type.
12559 -- Note: in a previous version of this unit, the following tests were
12560 -- applied only for generated code (Comes_From_Source set to False),
12561 -- but in fact the test is required for source code as well, since
12562 -- this situation can arise in source code.
12564 elsif In_Instance_Code or else In_Inlined_Body then
12565 return True;
12567 -- Otherwise we need the conversion check
12569 else
12570 return Conversion_Check
12571 (Is_Numeric_Type (Opnd_Type)
12572 or else
12573 (Present (Inc_Ancestor)
12574 and then Is_Numeric_Type (Inc_Ancestor)),
12575 "illegal operand for numeric conversion");
12576 end if;
12578 -- Array types
12580 elsif Is_Array_Type (Target_Type) then
12581 if not Is_Array_Type (Opnd_Type)
12582 or else Opnd_Type = Any_Composite
12583 or else Opnd_Type = Any_String
12584 then
12585 Conversion_Error_N
12586 ("illegal operand for array conversion", Operand);
12587 return False;
12589 else
12590 return Valid_Array_Conversion;
12591 end if;
12593 -- Ada 2005 (AI-251): Internally generated conversions of access to
12594 -- interface types added to force the displacement of the pointer to
12595 -- reference the corresponding dispatch table.
12597 elsif not Comes_From_Source (N)
12598 and then Is_Access_Type (Target_Type)
12599 and then Is_Interface (Designated_Type (Target_Type))
12600 then
12601 return True;
12603 -- Ada 2005 (AI-251): Anonymous access types where target references an
12604 -- interface type.
12606 elsif Is_Access_Type (Opnd_Type)
12607 and then Ekind_In (Target_Type, E_General_Access_Type,
12608 E_Anonymous_Access_Type)
12609 and then Is_Interface (Directly_Designated_Type (Target_Type))
12610 then
12611 -- Check the static accessibility rule of 4.6(17). Note that the
12612 -- check is not enforced when within an instance body, since the
12613 -- RM requires such cases to be caught at run time.
12615 -- If the operand is a rewriting of an allocator no check is needed
12616 -- because there are no accessibility issues.
12618 if Nkind (Original_Node (N)) = N_Allocator then
12619 null;
12621 elsif Ekind (Target_Type) /= E_Anonymous_Access_Type then
12622 if Type_Access_Level (Opnd_Type) >
12623 Deepest_Type_Access_Level (Target_Type)
12624 then
12625 -- In an instance, this is a run-time check, but one we know
12626 -- will fail, so generate an appropriate warning. The raise
12627 -- will be generated by Expand_N_Type_Conversion.
12629 if In_Instance_Body then
12630 Error_Msg_Warn := SPARK_Mode /= On;
12631 Conversion_Error_N
12632 ("cannot convert local pointer to non-local access type<<",
12633 Operand);
12634 Conversion_Error_N ("\Program_Error [<<", Operand);
12636 else
12637 Conversion_Error_N
12638 ("cannot convert local pointer to non-local access type",
12639 Operand);
12640 return False;
12641 end if;
12643 -- Special accessibility checks are needed in the case of access
12644 -- discriminants declared for a limited type.
12646 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12647 and then not Is_Local_Anonymous_Access (Opnd_Type)
12648 then
12649 -- When the operand is a selected access discriminant the check
12650 -- needs to be made against the level of the object denoted by
12651 -- the prefix of the selected name (Object_Access_Level handles
12652 -- checking the prefix of the operand for this case).
12654 if Nkind (Operand) = N_Selected_Component
12655 and then Object_Access_Level (Operand) >
12656 Deepest_Type_Access_Level (Target_Type)
12657 then
12658 -- In an instance, this is a run-time check, but one we know
12659 -- will fail, so generate an appropriate warning. The raise
12660 -- will be generated by Expand_N_Type_Conversion.
12662 if In_Instance_Body then
12663 Error_Msg_Warn := SPARK_Mode /= On;
12664 Conversion_Error_N
12665 ("cannot convert access discriminant to non-local "
12666 & "access type<<", Operand);
12667 Conversion_Error_N ("\Program_Error [<<", Operand);
12669 -- Real error if not in instance body
12671 else
12672 Conversion_Error_N
12673 ("cannot convert access discriminant to non-local "
12674 & "access type", Operand);
12675 return False;
12676 end if;
12677 end if;
12679 -- The case of a reference to an access discriminant from
12680 -- within a limited type declaration (which will appear as
12681 -- a discriminal) is always illegal because the level of the
12682 -- discriminant is considered to be deeper than any (nameable)
12683 -- access type.
12685 if Is_Entity_Name (Operand)
12686 and then not Is_Local_Anonymous_Access (Opnd_Type)
12687 and then
12688 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12689 and then Present (Discriminal_Link (Entity (Operand)))
12690 then
12691 Conversion_Error_N
12692 ("discriminant has deeper accessibility level than target",
12693 Operand);
12694 return False;
12695 end if;
12696 end if;
12697 end if;
12699 return True;
12701 -- General and anonymous access types
12703 elsif Ekind_In (Target_Type, E_General_Access_Type,
12704 E_Anonymous_Access_Type)
12705 and then
12706 Conversion_Check
12707 (Is_Access_Type (Opnd_Type)
12708 and then not
12709 Ekind_In (Opnd_Type, E_Access_Subprogram_Type,
12710 E_Access_Protected_Subprogram_Type),
12711 "must be an access-to-object type")
12712 then
12713 if Is_Access_Constant (Opnd_Type)
12714 and then not Is_Access_Constant (Target_Type)
12715 then
12716 Conversion_Error_N
12717 ("access-to-constant operand type not allowed", Operand);
12718 return False;
12719 end if;
12721 -- Check the static accessibility rule of 4.6(17). Note that the
12722 -- check is not enforced when within an instance body, since the RM
12723 -- requires such cases to be caught at run time.
12725 if Ekind (Target_Type) /= E_Anonymous_Access_Type
12726 or else Is_Local_Anonymous_Access (Target_Type)
12727 or else Nkind (Associated_Node_For_Itype (Target_Type)) =
12728 N_Object_Declaration
12729 then
12730 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
12731 -- conversions from an anonymous access type to a named general
12732 -- access type. Such conversions are not allowed in the case of
12733 -- access parameters and stand-alone objects of an anonymous
12734 -- access type. The implicit conversion case is recognized by
12735 -- testing that Comes_From_Source is False and that it's been
12736 -- rewritten. The Comes_From_Source test isn't sufficient because
12737 -- nodes in inlined calls to predefined library routines can have
12738 -- Comes_From_Source set to False. (Is there a better way to test
12739 -- for implicit conversions???)
12741 if Ada_Version >= Ada_2012
12742 and then not Comes_From_Source (N)
12743 and then N /= Original_Node (N)
12744 and then Ekind (Target_Type) = E_General_Access_Type
12745 and then Ekind (Opnd_Type) = E_Anonymous_Access_Type
12746 then
12747 if Is_Itype (Opnd_Type) then
12749 -- Implicit conversions aren't allowed for objects of an
12750 -- anonymous access type, since such objects have nonstatic
12751 -- levels in Ada 2012.
12753 if Nkind (Associated_Node_For_Itype (Opnd_Type)) =
12754 N_Object_Declaration
12755 then
12756 Conversion_Error_N
12757 ("implicit conversion of stand-alone anonymous "
12758 & "access object not allowed", Operand);
12759 return False;
12761 -- Implicit conversions aren't allowed for anonymous access
12762 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
12763 -- is done to exclude anonymous access results.
12765 elsif not Is_Local_Anonymous_Access (Opnd_Type)
12766 and then Nkind_In (Associated_Node_For_Itype (Opnd_Type),
12767 N_Function_Specification,
12768 N_Procedure_Specification)
12769 then
12770 Conversion_Error_N
12771 ("implicit conversion of anonymous access formal "
12772 & "not allowed", Operand);
12773 return False;
12775 -- This is a case where there's an enclosing object whose
12776 -- to which the "statically deeper than" relationship does
12777 -- not apply (such as an access discriminant selected from
12778 -- a dereference of an access parameter).
12780 elsif Object_Access_Level (Operand)
12781 = Scope_Depth (Standard_Standard)
12782 then
12783 Conversion_Error_N
12784 ("implicit conversion of anonymous access value "
12785 & "not allowed", Operand);
12786 return False;
12788 -- In other cases, the level of the operand's type must be
12789 -- statically less deep than that of the target type, else
12790 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
12792 elsif Type_Access_Level (Opnd_Type) >
12793 Deepest_Type_Access_Level (Target_Type)
12794 then
12795 Conversion_Error_N
12796 ("implicit conversion of anonymous access value "
12797 & "violates accessibility", Operand);
12798 return False;
12799 end if;
12800 end if;
12802 elsif Type_Access_Level (Opnd_Type) >
12803 Deepest_Type_Access_Level (Target_Type)
12804 then
12805 -- In an instance, this is a run-time check, but one we know
12806 -- will fail, so generate an appropriate warning. The raise
12807 -- will be generated by Expand_N_Type_Conversion.
12809 if In_Instance_Body then
12810 Error_Msg_Warn := SPARK_Mode /= On;
12811 Conversion_Error_N
12812 ("cannot convert local pointer to non-local access type<<",
12813 Operand);
12814 Conversion_Error_N ("\Program_Error [<<", Operand);
12816 -- If not in an instance body, this is a real error
12818 else
12819 -- Avoid generation of spurious error message
12821 if not Error_Posted (N) then
12822 Conversion_Error_N
12823 ("cannot convert local pointer to non-local access type",
12824 Operand);
12825 end if;
12827 return False;
12828 end if;
12830 -- Special accessibility checks are needed in the case of access
12831 -- discriminants declared for a limited type.
12833 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12834 and then not Is_Local_Anonymous_Access (Opnd_Type)
12835 then
12836 -- When the operand is a selected access discriminant the check
12837 -- needs to be made against the level of the object denoted by
12838 -- the prefix of the selected name (Object_Access_Level handles
12839 -- checking the prefix of the operand for this case).
12841 if Nkind (Operand) = N_Selected_Component
12842 and then Object_Access_Level (Operand) >
12843 Deepest_Type_Access_Level (Target_Type)
12844 then
12845 -- In an instance, this is a run-time check, but one we know
12846 -- will fail, so generate an appropriate warning. The raise
12847 -- will be generated by Expand_N_Type_Conversion.
12849 if In_Instance_Body then
12850 Error_Msg_Warn := SPARK_Mode /= On;
12851 Conversion_Error_N
12852 ("cannot convert access discriminant to non-local "
12853 & "access type<<", Operand);
12854 Conversion_Error_N ("\Program_Error [<<", Operand);
12856 -- If not in an instance body, this is a real error
12858 else
12859 Conversion_Error_N
12860 ("cannot convert access discriminant to non-local "
12861 & "access type", Operand);
12862 return False;
12863 end if;
12864 end if;
12866 -- The case of a reference to an access discriminant from
12867 -- within a limited type declaration (which will appear as
12868 -- a discriminal) is always illegal because the level of the
12869 -- discriminant is considered to be deeper than any (nameable)
12870 -- access type.
12872 if Is_Entity_Name (Operand)
12873 and then
12874 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12875 and then Present (Discriminal_Link (Entity (Operand)))
12876 then
12877 Conversion_Error_N
12878 ("discriminant has deeper accessibility level than target",
12879 Operand);
12880 return False;
12881 end if;
12882 end if;
12883 end if;
12885 -- In the presence of limited_with clauses we have to use nonlimited
12886 -- views, if available.
12888 Check_Limited : declare
12889 function Full_Designated_Type (T : Entity_Id) return Entity_Id;
12890 -- Helper function to handle limited views
12892 --------------------------
12893 -- Full_Designated_Type --
12894 --------------------------
12896 function Full_Designated_Type (T : Entity_Id) return Entity_Id is
12897 Desig : constant Entity_Id := Designated_Type (T);
12899 begin
12900 -- Handle the limited view of a type
12902 if From_Limited_With (Desig)
12903 and then Has_Non_Limited_View (Desig)
12904 then
12905 return Available_View (Desig);
12906 else
12907 return Desig;
12908 end if;
12909 end Full_Designated_Type;
12911 -- Local Declarations
12913 Target : constant Entity_Id := Full_Designated_Type (Target_Type);
12914 Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
12916 Same_Base : constant Boolean :=
12917 Base_Type (Target) = Base_Type (Opnd);
12919 -- Start of processing for Check_Limited
12921 begin
12922 if Is_Tagged_Type (Target) then
12923 return Valid_Tagged_Conversion (Target, Opnd);
12925 else
12926 if not Same_Base then
12927 Conversion_Error_NE
12928 ("target designated type not compatible with }",
12929 N, Base_Type (Opnd));
12930 return False;
12932 -- Ada 2005 AI-384: legality rule is symmetric in both
12933 -- designated types. The conversion is legal (with possible
12934 -- constraint check) if either designated type is
12935 -- unconstrained.
12937 elsif Subtypes_Statically_Match (Target, Opnd)
12938 or else
12939 (Has_Discriminants (Target)
12940 and then
12941 (not Is_Constrained (Opnd)
12942 or else not Is_Constrained (Target)))
12943 then
12944 -- Special case, if Value_Size has been used to make the
12945 -- sizes different, the conversion is not allowed even
12946 -- though the subtypes statically match.
12948 if Known_Static_RM_Size (Target)
12949 and then Known_Static_RM_Size (Opnd)
12950 and then RM_Size (Target) /= RM_Size (Opnd)
12951 then
12952 Conversion_Error_NE
12953 ("target designated subtype not compatible with }",
12954 N, Opnd);
12955 Conversion_Error_NE
12956 ("\because sizes of the two designated subtypes differ",
12957 N, Opnd);
12958 return False;
12960 -- Normal case where conversion is allowed
12962 else
12963 return True;
12964 end if;
12966 else
12967 Error_Msg_NE
12968 ("target designated subtype not compatible with }",
12969 N, Opnd);
12970 return False;
12971 end if;
12972 end if;
12973 end Check_Limited;
12975 -- Access to subprogram types. If the operand is an access parameter,
12976 -- the type has a deeper accessibility that any master, and cannot be
12977 -- assigned. We must make an exception if the conversion is part of an
12978 -- assignment and the target is the return object of an extended return
12979 -- statement, because in that case the accessibility check takes place
12980 -- after the return.
12982 elsif Is_Access_Subprogram_Type (Target_Type)
12984 -- Note: this test of Opnd_Type is there to prevent entering this
12985 -- branch in the case of a remote access to subprogram type, which
12986 -- is internally represented as an E_Record_Type.
12988 and then Is_Access_Type (Opnd_Type)
12989 then
12990 if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
12991 and then Is_Entity_Name (Operand)
12992 and then Ekind (Entity (Operand)) = E_In_Parameter
12993 and then
12994 (Nkind (Parent (N)) /= N_Assignment_Statement
12995 or else not Is_Entity_Name (Name (Parent (N)))
12996 or else not Is_Return_Object (Entity (Name (Parent (N)))))
12997 then
12998 Conversion_Error_N
12999 ("illegal attempt to store anonymous access to subprogram",
13000 Operand);
13001 Conversion_Error_N
13002 ("\value has deeper accessibility than any master "
13003 & "(RM 3.10.2 (13))",
13004 Operand);
13006 Error_Msg_NE
13007 ("\use named access type for& instead of access parameter",
13008 Operand, Entity (Operand));
13009 end if;
13011 -- Check that the designated types are subtype conformant
13013 Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
13014 Old_Id => Designated_Type (Opnd_Type),
13015 Err_Loc => N);
13017 -- Check the static accessibility rule of 4.6(20)
13019 if Type_Access_Level (Opnd_Type) >
13020 Deepest_Type_Access_Level (Target_Type)
13021 then
13022 Conversion_Error_N
13023 ("operand type has deeper accessibility level than target",
13024 Operand);
13026 -- Check that if the operand type is declared in a generic body,
13027 -- then the target type must be declared within that same body
13028 -- (enforces last sentence of 4.6(20)).
13030 elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
13031 declare
13032 O_Gen : constant Node_Id :=
13033 Enclosing_Generic_Body (Opnd_Type);
13035 T_Gen : Node_Id;
13037 begin
13038 T_Gen := Enclosing_Generic_Body (Target_Type);
13039 while Present (T_Gen) and then T_Gen /= O_Gen loop
13040 T_Gen := Enclosing_Generic_Body (T_Gen);
13041 end loop;
13043 if T_Gen /= O_Gen then
13044 Conversion_Error_N
13045 ("target type must be declared in same generic body "
13046 & "as operand type", N);
13047 end if;
13048 end;
13049 end if;
13051 return True;
13053 -- Remote access to subprogram types
13055 elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
13056 and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
13057 then
13058 -- It is valid to convert from one RAS type to another provided
13059 -- that their specification statically match.
13061 -- Note: at this point, remote access to subprogram types have been
13062 -- expanded to their E_Record_Type representation, and we need to
13063 -- go back to the original access type definition using the
13064 -- Corresponding_Remote_Type attribute in order to check that the
13065 -- designated profiles match.
13067 pragma Assert (Ekind (Target_Type) = E_Record_Type);
13068 pragma Assert (Ekind (Opnd_Type) = E_Record_Type);
13070 Check_Subtype_Conformant
13071 (New_Id =>
13072 Designated_Type (Corresponding_Remote_Type (Target_Type)),
13073 Old_Id =>
13074 Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
13075 Err_Loc =>
13077 return True;
13079 -- If it was legal in the generic, it's legal in the instance
13081 elsif In_Instance_Body then
13082 return True;
13084 -- If both are tagged types, check legality of view conversions
13086 elsif Is_Tagged_Type (Target_Type)
13087 and then
13088 Is_Tagged_Type (Opnd_Type)
13089 then
13090 return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
13092 -- Types derived from the same root type are convertible
13094 elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
13095 return True;
13097 -- In an instance or an inlined body, there may be inconsistent views of
13098 -- the same type, or of types derived from a common root.
13100 elsif (In_Instance or In_Inlined_Body)
13101 and then
13102 Root_Type (Underlying_Type (Target_Type)) =
13103 Root_Type (Underlying_Type (Opnd_Type))
13104 then
13105 return True;
13107 -- Special check for common access type error case
13109 elsif Ekind (Target_Type) = E_Access_Type
13110 and then Is_Access_Type (Opnd_Type)
13111 then
13112 Conversion_Error_N ("target type must be general access type!", N);
13113 Conversion_Error_NE -- CODEFIX
13114 ("add ALL to }!", N, Target_Type);
13115 return False;
13117 -- Here we have a real conversion error
13119 else
13120 Conversion_Error_NE
13121 ("invalid conversion, not compatible with }", N, Opnd_Type);
13122 return False;
13123 end if;
13124 end Valid_Conversion;
13126 end Sem_Res;