builtins.def: (_Float<N> and _Float<N>X BUILT_IN_CEIL): Add _Float<N> and _Float...
[official-gcc.git] / gcc / ada / sem_ch6.adb
blobcb5b3e7bd9aea09fbb7a674417d2dfaf6cfb61ce
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Elists; use Elists;
33 with Errout; use Errout;
34 with Expander; use Expander;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Ch7; use Exp_Ch7;
37 with Exp_Ch9; use Exp_Ch9;
38 with Exp_Dbug; use Exp_Dbug;
39 with Exp_Disp; use Exp_Disp;
40 with Exp_Tss; use Exp_Tss;
41 with Exp_Util; use Exp_Util;
42 with Freeze; use Freeze;
43 with Ghost; use Ghost;
44 with Inline; use Inline;
45 with Itypes; use Itypes;
46 with Lib.Xref; use Lib.Xref;
47 with Layout; use Layout;
48 with Namet; use Namet;
49 with Lib; use Lib;
50 with Nlists; use Nlists;
51 with Nmake; use Nmake;
52 with Opt; use Opt;
53 with Output; use Output;
54 with Restrict; use Restrict;
55 with Rident; use Rident;
56 with Rtsfind; use Rtsfind;
57 with Sem; use Sem;
58 with Sem_Aux; use Sem_Aux;
59 with Sem_Cat; use Sem_Cat;
60 with Sem_Ch3; use Sem_Ch3;
61 with Sem_Ch4; use Sem_Ch4;
62 with Sem_Ch5; use Sem_Ch5;
63 with Sem_Ch8; use Sem_Ch8;
64 with Sem_Ch9; use Sem_Ch9;
65 with Sem_Ch10; use Sem_Ch10;
66 with Sem_Ch12; use Sem_Ch12;
67 with Sem_Ch13; use Sem_Ch13;
68 with Sem_Dim; use Sem_Dim;
69 with Sem_Disp; use Sem_Disp;
70 with Sem_Dist; use Sem_Dist;
71 with Sem_Elim; use Sem_Elim;
72 with Sem_Eval; use Sem_Eval;
73 with Sem_Mech; use Sem_Mech;
74 with Sem_Prag; use Sem_Prag;
75 with Sem_Res; use Sem_Res;
76 with Sem_Util; use Sem_Util;
77 with Sem_Type; use Sem_Type;
78 with Sem_Warn; use Sem_Warn;
79 with Sinput; use Sinput;
80 with Stand; use Stand;
81 with Sinfo; use Sinfo;
82 with Sinfo.CN; use Sinfo.CN;
83 with Snames; use Snames;
84 with Stringt; use Stringt;
85 with Style;
86 with Stylesw; use Stylesw;
87 with Tbuild; use Tbuild;
88 with Uintp; use Uintp;
89 with Urealp; use Urealp;
90 with Validsw; use Validsw;
92 package body Sem_Ch6 is
94 May_Hide_Profile : Boolean := False;
95 -- This flag is used to indicate that two formals in two subprograms being
96 -- checked for conformance differ only in that one is an access parameter
97 -- while the other is of a general access type with the same designated
98 -- type. In this case, if the rest of the signatures match, a call to
99 -- either subprogram may be ambiguous, which is worth a warning. The flag
100 -- is set in Compatible_Types, and the warning emitted in
101 -- New_Overloaded_Entity.
103 -----------------------
104 -- Local Subprograms --
105 -----------------------
107 procedure Analyze_Function_Return (N : Node_Id);
108 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
109 -- applies to a [generic] function.
111 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
112 -- Analyze a generic subprogram body. N is the body to be analyzed, and
113 -- Gen_Id is the defining entity Id for the corresponding spec.
115 procedure Analyze_Null_Procedure
116 (N : Node_Id;
117 Is_Completion : out Boolean);
118 -- A null procedure can be a declaration or (Ada 2012) a completion
120 procedure Analyze_Return_Statement (N : Node_Id);
121 -- Common processing for simple and extended return statements
123 procedure Analyze_Return_Type (N : Node_Id);
124 -- Subsidiary to Process_Formals: analyze subtype mark in function
125 -- specification in a context where the formals are visible and hide
126 -- outer homographs.
128 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
129 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
130 -- that we can use RETURN but not skip the debug output at the end.
132 function Can_Override_Operator (Subp : Entity_Id) return Boolean;
133 -- Returns true if Subp can override a predefined operator.
135 procedure Check_Conformance
136 (New_Id : Entity_Id;
137 Old_Id : Entity_Id;
138 Ctype : Conformance_Type;
139 Errmsg : Boolean;
140 Conforms : out Boolean;
141 Err_Loc : Node_Id := Empty;
142 Get_Inst : Boolean := False;
143 Skip_Controlling_Formals : Boolean := False);
144 -- Given two entities, this procedure checks that the profiles associated
145 -- with these entities meet the conformance criterion given by the third
146 -- parameter. If they conform, Conforms is set True and control returns
147 -- to the caller. If they do not conform, Conforms is set to False, and
148 -- in addition, if Errmsg is True on the call, proper messages are output
149 -- to complain about the conformance failure. If Err_Loc is non_Empty
150 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
151 -- error messages are placed on the appropriate part of the construct
152 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
153 -- against a formal access-to-subprogram type so Get_Instance_Of must
154 -- be called.
156 procedure Check_Limited_Return
157 (N : Node_Id;
158 Expr : Node_Id;
159 R_Type : Entity_Id);
160 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning limited
161 -- types. Used only for simple return statements. Expr is the expression
162 -- returned.
164 procedure Check_Subprogram_Order (N : Node_Id);
165 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
166 -- the alpha ordering rule for N if this ordering requirement applicable.
168 procedure Check_Returns
169 (HSS : Node_Id;
170 Mode : Character;
171 Err : out Boolean;
172 Proc : Entity_Id := Empty);
173 -- Called to check for missing return statements in a function body, or for
174 -- returns present in a procedure body which has No_Return set. HSS is the
175 -- handled statement sequence for the subprogram body. This procedure
176 -- checks all flow paths to make sure they either have return (Mode = 'F',
177 -- used for functions) or do not have a return (Mode = 'P', used for
178 -- No_Return procedures). The flag Err is set if there are any control
179 -- paths not explicitly terminated by a return in the function case, and is
180 -- True otherwise. Proc is the entity for the procedure case and is used
181 -- in posting the warning message.
183 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
184 -- In Ada 2012, a primitive equality operator on an untagged record type
185 -- must appear before the type is frozen, and have the same visibility as
186 -- that of the type. This procedure checks that this rule is met, and
187 -- otherwise emits an error on the subprogram declaration and a warning
188 -- on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
189 -- this routine outputs errors (or warnings if -gnatd.E is set). In earlier
190 -- versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
191 -- is set, otherwise the call has no effect.
193 procedure Enter_Overloaded_Entity (S : Entity_Id);
194 -- This procedure makes S, a new overloaded entity, into the first visible
195 -- entity with that name.
197 function Is_Non_Overriding_Operation
198 (Prev_E : Entity_Id;
199 New_E : Entity_Id) return Boolean;
200 -- Enforce the rule given in 12.3(18): a private operation in an instance
201 -- overrides an inherited operation only if the corresponding operation
202 -- was overriding in the generic. This needs to be checked for primitive
203 -- operations of types derived (in the generic unit) from formal private
204 -- or formal derived types.
206 procedure Make_Inequality_Operator (S : Entity_Id);
207 -- Create the declaration for an inequality operator that is implicitly
208 -- created by a user-defined equality operator that yields a boolean.
210 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
211 -- Formal_Id is an formal parameter entity. This procedure deals with
212 -- setting the proper validity status for this entity, which depends on
213 -- the kind of parameter and the validity checking mode.
215 ---------------------------------------------
216 -- Analyze_Abstract_Subprogram_Declaration --
217 ---------------------------------------------
219 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
220 Scop : constant Entity_Id := Current_Scope;
221 Subp_Id : constant Entity_Id :=
222 Analyze_Subprogram_Specification (Specification (N));
224 begin
225 Check_SPARK_05_Restriction ("abstract subprogram is not allowed", N);
227 Generate_Definition (Subp_Id);
229 -- Set the SPARK mode from the current context (may be overwritten later
230 -- with explicit pragma).
232 Set_SPARK_Pragma (Subp_Id, SPARK_Mode_Pragma);
233 Set_SPARK_Pragma_Inherited (Subp_Id);
235 -- Preserve relevant elaboration-related attributes of the context which
236 -- are no longer available or very expensive to recompute once analysis,
237 -- resolution, and expansion are over.
239 Mark_Elaboration_Attributes
240 (N_Id => Subp_Id,
241 Checks => True);
243 Set_Is_Abstract_Subprogram (Subp_Id);
244 New_Overloaded_Entity (Subp_Id);
245 Check_Delayed_Subprogram (Subp_Id);
247 Set_Categorization_From_Scope (Subp_Id, Scop);
249 if Ekind (Scope (Subp_Id)) = E_Protected_Type then
250 Error_Msg_N ("abstract subprogram not allowed in protected type", N);
252 -- Issue a warning if the abstract subprogram is neither a dispatching
253 -- operation nor an operation that overrides an inherited subprogram or
254 -- predefined operator, since this most likely indicates a mistake.
256 elsif Warn_On_Redundant_Constructs
257 and then not Is_Dispatching_Operation (Subp_Id)
258 and then not Present (Overridden_Operation (Subp_Id))
259 and then (not Is_Operator_Symbol_Name (Chars (Subp_Id))
260 or else Scop /= Scope (Etype (First_Formal (Subp_Id))))
261 then
262 Error_Msg_N
263 ("abstract subprogram is not dispatching or overriding?r?", N);
264 end if;
266 Generate_Reference_To_Formals (Subp_Id);
267 Check_Eliminated (Subp_Id);
269 if Has_Aspects (N) then
270 Analyze_Aspect_Specifications (N, Subp_Id);
271 end if;
272 end Analyze_Abstract_Subprogram_Declaration;
274 ---------------------------------
275 -- Analyze_Expression_Function --
276 ---------------------------------
278 procedure Analyze_Expression_Function (N : Node_Id) is
279 Expr : constant Node_Id := Expression (N);
280 Loc : constant Source_Ptr := Sloc (N);
281 LocX : constant Source_Ptr := Sloc (Expr);
282 Spec : constant Node_Id := Specification (N);
284 procedure Freeze_Expr_Types (Def_Id : Entity_Id);
285 -- N is an expression function that is a completion and Def_Id its
286 -- defining entity. Freeze before N all the types referenced by the
287 -- expression of the function.
289 -----------------------
290 -- Freeze_Expr_Types --
291 -----------------------
293 procedure Freeze_Expr_Types (Def_Id : Entity_Id) is
294 function Cloned_Expression return Node_Id;
295 -- Build a duplicate of the expression of the return statement that
296 -- has no defining entities shared with the original expression.
298 function Freeze_Type_Refs (Node : Node_Id) return Traverse_Result;
299 -- Freeze all types referenced in the subtree rooted at Node
301 -----------------------
302 -- Cloned_Expression --
303 -----------------------
305 function Cloned_Expression return Node_Id is
306 function Clone_Id (Node : Node_Id) return Traverse_Result;
307 -- Tree traversal routine that clones the defining identifier of
308 -- iterator and loop parameter specification nodes.
310 ----------------
311 -- Check_Node --
312 ----------------
314 function Clone_Id (Node : Node_Id) return Traverse_Result is
315 begin
316 if Nkind_In (Node, N_Iterator_Specification,
317 N_Loop_Parameter_Specification)
318 then
319 Set_Defining_Identifier (Node,
320 New_Copy (Defining_Identifier (Node)));
321 end if;
323 return OK;
324 end Clone_Id;
326 procedure Clone_Def_Ids is new Traverse_Proc (Clone_Id);
328 -- Local variable
330 Dup_Expr : constant Node_Id := New_Copy_Tree (Expr);
332 -- Start of processing for Cloned_Expression
334 begin
335 -- We must duplicate the expression with semantic information to
336 -- inherit the decoration of global entities in generic instances.
337 -- Set the parent of the new node to be the parent of the original
338 -- to get the proper context, which is needed for complete error
339 -- reporting and for semantic analysis.
341 Set_Parent (Dup_Expr, Parent (Expr));
343 -- Replace the defining identifier of iterators and loop param
344 -- specifications by a clone to ensure that the cloned expression
345 -- and the original expression don't have shared identifiers;
346 -- otherwise, as part of the preanalysis of the expression, these
347 -- shared identifiers may be left decorated with itypes which
348 -- will not be available in the tree passed to the backend.
350 Clone_Def_Ids (Dup_Expr);
352 return Dup_Expr;
353 end Cloned_Expression;
355 ----------------------
356 -- Freeze_Type_Refs --
357 ----------------------
359 function Freeze_Type_Refs (Node : Node_Id) return Traverse_Result is
360 procedure Check_And_Freeze_Type (Typ : Entity_Id);
361 -- Check that Typ is fully declared and freeze it if so
363 ---------------------------
364 -- Check_And_Freeze_Type --
365 ---------------------------
367 procedure Check_And_Freeze_Type (Typ : Entity_Id) is
368 begin
369 -- Skip Itypes created by the preanalysis, and itypes whose
370 -- scope is another type (i.e. component subtypes that depend
371 -- on a discriminant),
373 if Is_Itype (Typ)
374 and then (Scope_Within_Or_Same (Scope (Typ), Def_Id)
375 or else Is_Type (Scope (Typ)))
376 then
377 return;
378 end if;
380 -- This provides a better error message than generating
381 -- primitives whose compilation fails much later. Refine
382 -- the error message if possible.
384 Check_Fully_Declared (Typ, Node);
386 if Error_Posted (Node) then
387 if Has_Private_Component (Typ)
388 and then not Is_Private_Type (Typ)
389 then
390 Error_Msg_NE ("\type& has private component", Node, Typ);
391 end if;
393 else
394 Freeze_Before (N, Typ);
395 end if;
396 end Check_And_Freeze_Type;
398 -- Start of processing for Freeze_Type_Refs
400 begin
401 -- Check that a type referenced by an entity can be frozen
403 if Is_Entity_Name (Node) and then Present (Entity (Node)) then
404 Check_And_Freeze_Type (Etype (Entity (Node)));
406 -- Check that the enclosing record type can be frozen
408 if Ekind_In (Entity (Node), E_Component, E_Discriminant) then
409 Check_And_Freeze_Type (Scope (Entity (Node)));
410 end if;
412 -- Freezing an access type does not freeze the designated type,
413 -- but freezing conversions between access to interfaces requires
414 -- that the interface types themselves be frozen, so that dispatch
415 -- table entities are properly created.
417 -- Unclear whether a more general rule is needed ???
419 elsif Nkind (Node) = N_Type_Conversion
420 and then Is_Access_Type (Etype (Node))
421 and then Is_Interface (Designated_Type (Etype (Node)))
422 then
423 Check_And_Freeze_Type (Designated_Type (Etype (Node)));
424 end if;
426 -- No point in posting several errors on the same expression
428 if Serious_Errors_Detected > 0 then
429 return Abandon;
430 else
431 return OK;
432 end if;
433 end Freeze_Type_Refs;
435 procedure Freeze_References is new Traverse_Proc (Freeze_Type_Refs);
437 -- Local variables
439 Saved_First_Entity : constant Entity_Id := First_Entity (Def_Id);
440 Saved_Last_Entity : constant Entity_Id := Last_Entity (Def_Id);
441 Dup_Expr : constant Node_Id := Cloned_Expression;
443 -- Start of processing for Freeze_Expr_Types
445 begin
446 -- Preanalyze a duplicate of the expression to have available the
447 -- minimum decoration needed to locate referenced unfrozen types
448 -- without adding any decoration to the function expression.
450 Push_Scope (Def_Id);
451 Install_Formals (Def_Id);
453 Preanalyze_Spec_Expression (Dup_Expr, Etype (Def_Id));
454 End_Scope;
456 -- Restore certain attributes of Def_Id since the preanalysis may
457 -- have introduced itypes to this scope, thus modifying attributes
458 -- First_Entity and Last_Entity.
460 Set_First_Entity (Def_Id, Saved_First_Entity);
461 Set_Last_Entity (Def_Id, Saved_Last_Entity);
463 if Present (Last_Entity (Def_Id)) then
464 Set_Next_Entity (Last_Entity (Def_Id), Empty);
465 end if;
467 -- Freeze all types referenced in the expression
469 Freeze_References (Dup_Expr);
470 end Freeze_Expr_Types;
472 -- Local variables
474 Asp : Node_Id;
475 New_Body : Node_Id;
476 New_Spec : Node_Id;
477 Orig_N : Node_Id;
478 Ret : Node_Id;
480 Def_Id : Entity_Id := Empty;
481 Prev : Entity_Id;
482 -- If the expression is a completion, Prev is the entity whose
483 -- declaration is completed. Def_Id is needed to analyze the spec.
485 -- Start of processing for Analyze_Expression_Function
487 begin
488 -- This is one of the occasions on which we transform the tree during
489 -- semantic analysis. If this is a completion, transform the expression
490 -- function into an equivalent subprogram body, and analyze it.
492 -- Expression functions are inlined unconditionally. The back-end will
493 -- determine whether this is possible.
495 Inline_Processing_Required := True;
497 -- Create a specification for the generated body. This must be done
498 -- prior to the analysis of the initial declaration.
500 New_Spec := Copy_Subprogram_Spec (Spec);
501 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
503 -- If there are previous overloadable entities with the same name,
504 -- check whether any of them is completed by the expression function.
505 -- In a generic context a formal subprogram has no completion.
507 if Present (Prev)
508 and then Is_Overloadable (Prev)
509 and then not Is_Formal_Subprogram (Prev)
510 then
511 Def_Id := Analyze_Subprogram_Specification (Spec);
512 Prev := Find_Corresponding_Spec (N);
514 -- The previous entity may be an expression function as well, in
515 -- which case the redeclaration is illegal.
517 if Present (Prev)
518 and then Nkind (Original_Node (Unit_Declaration_Node (Prev))) =
519 N_Expression_Function
520 then
521 Error_Msg_Sloc := Sloc (Prev);
522 Error_Msg_N ("& conflicts with declaration#", Def_Id);
523 return;
524 end if;
525 end if;
527 Ret := Make_Simple_Return_Statement (LocX, Expr);
529 New_Body :=
530 Make_Subprogram_Body (Loc,
531 Specification => New_Spec,
532 Declarations => Empty_List,
533 Handled_Statement_Sequence =>
534 Make_Handled_Sequence_Of_Statements (LocX,
535 Statements => New_List (Ret)));
536 Set_Was_Expression_Function (New_Body);
538 -- If the expression completes a generic subprogram, we must create a
539 -- separate node for the body, because at instantiation the original
540 -- node of the generic copy must be a generic subprogram body, and
541 -- cannot be a expression function. Otherwise we just rewrite the
542 -- expression with the non-generic body.
544 if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
545 Insert_After (N, New_Body);
547 -- Propagate any aspects or pragmas that apply to the expression
548 -- function to the proper body when the expression function acts
549 -- as a completion.
551 if Has_Aspects (N) then
552 Move_Aspects (N, To => New_Body);
553 end if;
555 Relocate_Pragmas_To_Body (New_Body);
557 Rewrite (N, Make_Null_Statement (Loc));
558 Set_Has_Completion (Prev, False);
559 Analyze (N);
560 Analyze (New_Body);
561 Set_Is_Inlined (Prev);
563 -- If the expression function is a completion, the previous declaration
564 -- must come from source. We know already that it appears in the current
565 -- scope. The entity itself may be internally created if within a body
566 -- to be inlined.
568 elsif Present (Prev)
569 and then Is_Overloadable (Prev)
570 and then not Is_Formal_Subprogram (Prev)
571 and then Comes_From_Source (Parent (Prev))
572 then
573 Set_Has_Completion (Prev, False);
574 Set_Is_Inlined (Prev);
576 -- AI12-0103: Expression functions that are a completion freeze their
577 -- expression but don't freeze anything else (unlike regular bodies).
579 -- Note that we cannot defer this freezing to the analysis of the
580 -- expression itself, because a freeze node might appear in a nested
581 -- scope, leading to an elaboration order issue in gigi.
582 -- As elsewhere, we do not emit freeze nodes within a generic unit.
584 if not Inside_A_Generic then
585 Freeze_Expr_Types (Def_Id);
586 end if;
588 -- For navigation purposes, indicate that the function is a body
590 Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
591 Rewrite (N, New_Body);
593 -- Remove any existing aspects from the original node because the act
594 -- of rewriting causes the list to be shared between the two nodes.
596 Orig_N := Original_Node (N);
597 Remove_Aspects (Orig_N);
599 -- Propagate any pragmas that apply to expression function to the
600 -- proper body when the expression function acts as a completion.
601 -- Aspects are automatically transfered because of node rewriting.
603 Relocate_Pragmas_To_Body (N);
604 Analyze (N);
606 -- Once the aspects of the generated body have been analyzed, create
607 -- a copy for ASIS purposes and associate it with the original node.
609 if Has_Aspects (N) then
610 Set_Aspect_Specifications (Orig_N,
611 New_Copy_List_Tree (Aspect_Specifications (N)));
612 end if;
614 -- Prev is the previous entity with the same name, but it is can
615 -- be an unrelated spec that is not completed by the expression
616 -- function. In that case the relevant entity is the one in the body.
617 -- Not clear that the backend can inline it in this case ???
619 if Has_Completion (Prev) then
621 -- The formals of the expression function are body formals,
622 -- and do not appear in the ali file, which will only contain
623 -- references to the formals of the original subprogram spec.
625 declare
626 F1 : Entity_Id;
627 F2 : Entity_Id;
629 begin
630 F1 := First_Formal (Def_Id);
631 F2 := First_Formal (Prev);
633 while Present (F1) loop
634 Set_Spec_Entity (F1, F2);
635 Next_Formal (F1);
636 Next_Formal (F2);
637 end loop;
638 end;
640 else
641 Set_Is_Inlined (Defining_Entity (New_Body));
642 end if;
644 -- If this is not a completion, create both a declaration and a body, so
645 -- that the expression can be inlined whenever possible.
647 else
648 -- An expression function that is not a completion is not a
649 -- subprogram declaration, and thus cannot appear in a protected
650 -- definition.
652 if Nkind (Parent (N)) = N_Protected_Definition then
653 Error_Msg_N
654 ("an expression function is not a legal protected operation", N);
655 end if;
657 Rewrite (N, Make_Subprogram_Declaration (Loc, Specification => Spec));
659 -- Remove any existing aspects from the original node because the act
660 -- of rewriting causes the list to be shared between the two nodes.
662 Orig_N := Original_Node (N);
663 Remove_Aspects (Orig_N);
665 Analyze (N);
667 -- Once the aspects of the generated spec have been analyzed, create
668 -- a copy for ASIS purposes and associate it with the original node.
670 if Has_Aspects (N) then
671 Set_Aspect_Specifications (Orig_N,
672 New_Copy_List_Tree (Aspect_Specifications (N)));
673 end if;
675 -- If aspect SPARK_Mode was specified on the body, it needs to be
676 -- repeated both on the generated spec and the body.
678 Asp := Find_Aspect (Defining_Unit_Name (Spec), Aspect_SPARK_Mode);
680 if Present (Asp) then
681 Asp := New_Copy_Tree (Asp);
682 Set_Analyzed (Asp, False);
683 Set_Aspect_Specifications (New_Body, New_List (Asp));
684 end if;
686 Def_Id := Defining_Entity (N);
687 Set_Is_Inlined (Def_Id);
689 -- Establish the linkages between the spec and the body. These are
690 -- used when the expression function acts as the prefix of attribute
691 -- 'Access in order to freeze the original expression which has been
692 -- moved to the generated body.
694 Set_Corresponding_Body (N, Defining_Entity (New_Body));
695 Set_Corresponding_Spec (New_Body, Def_Id);
697 -- Within a generic pre-analyze the original expression for name
698 -- capture. The body is also generated but plays no role in
699 -- this because it is not part of the original source.
701 if Inside_A_Generic then
702 Set_Has_Completion (Def_Id);
703 Push_Scope (Def_Id);
704 Install_Formals (Def_Id);
705 Preanalyze_Spec_Expression (Expr, Etype (Def_Id));
706 End_Scope;
707 end if;
709 -- To prevent premature freeze action, insert the new body at the end
710 -- of the current declarations, or at the end of the package spec.
711 -- However, resolve usage names now, to prevent spurious visibility
712 -- on later entities. Note that the function can now be called in
713 -- the current declarative part, which will appear to be prior to
714 -- the presence of the body in the code. There are nevertheless no
715 -- order of elaboration issues because all name resolution has taken
716 -- place at the point of declaration.
718 declare
719 Decls : List_Id := List_Containing (N);
720 Expr : constant Node_Id := Expression (Ret);
721 Par : constant Node_Id := Parent (Decls);
722 Typ : constant Entity_Id := Etype (Def_Id);
724 begin
725 -- If this is a wrapper created for in an instance for a formal
726 -- subprogram, insert body after declaration, to be analyzed when
727 -- the enclosing instance is analyzed.
729 if GNATprove_Mode
730 and then Is_Generic_Actual_Subprogram (Def_Id)
731 then
732 Insert_After (N, New_Body);
734 else
735 if Nkind (Par) = N_Package_Specification
736 and then Decls = Visible_Declarations (Par)
737 and then Present (Private_Declarations (Par))
738 and then not Is_Empty_List (Private_Declarations (Par))
739 then
740 Decls := Private_Declarations (Par);
741 end if;
743 Insert_After (Last (Decls), New_Body);
745 -- Preanalyze the expression if not already done above
747 if not Inside_A_Generic then
748 Push_Scope (Def_Id);
749 Install_Formals (Def_Id);
750 Preanalyze_Spec_Expression (Expr, Typ);
751 Check_Limited_Return (Original_Node (N), Expr, Typ);
752 End_Scope;
753 end if;
754 end if;
755 end;
756 end if;
758 -- Check incorrect use of dynamically tagged expression. This doesn't
759 -- fall out automatically when analyzing the generated function body,
760 -- because Check_Dynamically_Tagged_Expression deliberately ignores
761 -- nodes that don't come from source.
763 if Present (Def_Id)
764 and then Nkind (Def_Id) in N_Has_Etype
765 and then Is_Tagged_Type (Etype (Def_Id))
766 then
767 Check_Dynamically_Tagged_Expression
768 (Expr => Expr,
769 Typ => Etype (Def_Id),
770 Related_Nod => Original_Node (N));
771 end if;
773 -- If the return expression is a static constant, we suppress warning
774 -- messages on unused formals, which in most cases will be noise.
776 Set_Is_Trivial_Subprogram
777 (Defining_Entity (New_Body), Is_OK_Static_Expression (Expr));
778 end Analyze_Expression_Function;
780 ----------------------------------------
781 -- Analyze_Extended_Return_Statement --
782 ----------------------------------------
784 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
785 begin
786 Check_Compiler_Unit ("extended return statement", N);
787 Analyze_Return_Statement (N);
788 end Analyze_Extended_Return_Statement;
790 ----------------------------
791 -- Analyze_Function_Call --
792 ----------------------------
794 procedure Analyze_Function_Call (N : Node_Id) is
795 Actuals : constant List_Id := Parameter_Associations (N);
796 Func_Nam : constant Node_Id := Name (N);
797 Actual : Node_Id;
799 begin
800 Analyze (Func_Nam);
802 -- A call of the form A.B (X) may be an Ada 2005 call, which is
803 -- rewritten as B (A, X). If the rewriting is successful, the call
804 -- has been analyzed and we just return.
806 if Nkind (Func_Nam) = N_Selected_Component
807 and then Name (N) /= Func_Nam
808 and then Is_Rewrite_Substitution (N)
809 and then Present (Etype (N))
810 then
811 return;
812 end if;
814 -- If error analyzing name, then set Any_Type as result type and return
816 if Etype (Func_Nam) = Any_Type then
817 Set_Etype (N, Any_Type);
818 return;
819 end if;
821 -- Otherwise analyze the parameters
823 if Present (Actuals) then
824 Actual := First (Actuals);
825 while Present (Actual) loop
826 Analyze (Actual);
827 Check_Parameterless_Call (Actual);
828 Next (Actual);
829 end loop;
830 end if;
832 Analyze_Call (N);
833 end Analyze_Function_Call;
835 -----------------------------
836 -- Analyze_Function_Return --
837 -----------------------------
839 procedure Analyze_Function_Return (N : Node_Id) is
840 Loc : constant Source_Ptr := Sloc (N);
841 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
842 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
844 R_Type : constant Entity_Id := Etype (Scope_Id);
845 -- Function result subtype
847 procedure Check_Aggregate_Accessibility (Aggr : Node_Id);
848 -- Apply legality rule of 6.5 (5.8) to the access discriminants of an
849 -- aggregate in a return statement.
851 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
852 -- Check that the return_subtype_indication properly matches the result
853 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
855 -----------------------------------
856 -- Check_Aggregate_Accessibility --
857 -----------------------------------
859 procedure Check_Aggregate_Accessibility (Aggr : Node_Id) is
860 Typ : constant Entity_Id := Etype (Aggr);
861 Assoc : Node_Id;
862 Discr : Entity_Id;
863 Expr : Node_Id;
864 Obj : Node_Id;
866 begin
867 if Is_Record_Type (Typ) and then Has_Discriminants (Typ) then
868 Discr := First_Discriminant (Typ);
869 Assoc := First (Component_Associations (Aggr));
870 while Present (Discr) loop
871 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
872 Expr := Expression (Assoc);
874 if Nkind (Expr) = N_Attribute_Reference
875 and then Attribute_Name (Expr) /= Name_Unrestricted_Access
876 then
877 Obj := Prefix (Expr);
878 while Nkind_In (Obj, N_Indexed_Component,
879 N_Selected_Component)
880 loop
881 Obj := Prefix (Obj);
882 end loop;
884 -- Do not check aliased formals or function calls. A
885 -- run-time check may still be needed ???
887 if Is_Entity_Name (Obj)
888 and then Comes_From_Source (Obj)
889 then
890 if Is_Formal (Entity (Obj))
891 and then Is_Aliased (Entity (Obj))
892 then
893 null;
895 elsif Object_Access_Level (Obj) >
896 Scope_Depth (Scope (Scope_Id))
897 then
898 Error_Msg_N
899 ("access discriminant in return aggregate would "
900 & "be a dangling reference", Obj);
901 end if;
902 end if;
903 end if;
904 end if;
906 Next_Discriminant (Discr);
907 end loop;
908 end if;
909 end Check_Aggregate_Accessibility;
911 -------------------------------------
912 -- Check_Return_Subtype_Indication --
913 -------------------------------------
915 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
916 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
918 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
919 -- Subtype given in the extended return statement (must match R_Type)
921 Subtype_Ind : constant Node_Id :=
922 Object_Definition (Original_Node (Obj_Decl));
924 procedure Error_No_Match (N : Node_Id);
925 -- Output error messages for case where types do not statically
926 -- match. N is the location for the messages.
928 --------------------
929 -- Error_No_Match --
930 --------------------
932 procedure Error_No_Match (N : Node_Id) is
933 begin
934 Error_Msg_N
935 ("subtype must statically match function result subtype", N);
937 if not Predicates_Match (R_Stm_Type, R_Type) then
938 Error_Msg_Node_2 := R_Type;
939 Error_Msg_NE
940 ("\predicate of& does not match predicate of&",
941 N, R_Stm_Type);
942 end if;
943 end Error_No_Match;
945 -- Start of processing for Check_Return_Subtype_Indication
947 begin
948 -- First, avoid cascaded errors
950 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
951 return;
952 end if;
954 -- "return access T" case; check that the return statement also has
955 -- "access T", and that the subtypes statically match:
956 -- if this is an access to subprogram the signatures must match.
958 if Is_Anonymous_Access_Type (R_Type) then
959 if Is_Anonymous_Access_Type (R_Stm_Type) then
960 if Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
961 then
962 if Base_Type (Designated_Type (R_Stm_Type)) /=
963 Base_Type (Designated_Type (R_Type))
964 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
965 then
966 Error_No_Match (Subtype_Mark (Subtype_Ind));
967 end if;
969 else
970 -- For two anonymous access to subprogram types, the types
971 -- themselves must be type conformant.
973 if not Conforming_Types
974 (R_Stm_Type, R_Type, Fully_Conformant)
975 then
976 Error_No_Match (Subtype_Ind);
977 end if;
978 end if;
980 else
981 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
982 end if;
984 -- If the return object is of an anonymous access type, then report
985 -- an error if the function's result type is not also anonymous.
987 elsif Is_Anonymous_Access_Type (R_Stm_Type) then
988 pragma Assert (not Is_Anonymous_Access_Type (R_Type));
989 Error_Msg_N
990 ("anonymous access not allowed for function with named access "
991 & "result", Subtype_Ind);
993 -- Subtype indication case: check that the return object's type is
994 -- covered by the result type, and that the subtypes statically match
995 -- when the result subtype is constrained. Also handle record types
996 -- with unknown discriminants for which we have built the underlying
997 -- record view. Coverage is needed to allow specific-type return
998 -- objects when the result type is class-wide (see AI05-32).
1000 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
1001 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
1002 and then
1003 Covers
1004 (Base_Type (R_Type),
1005 Underlying_Record_View (Base_Type (R_Stm_Type))))
1006 then
1007 -- A null exclusion may be present on the return type, on the
1008 -- function specification, on the object declaration or on the
1009 -- subtype itself.
1011 if Is_Access_Type (R_Type)
1012 and then
1013 (Can_Never_Be_Null (R_Type)
1014 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
1015 Can_Never_Be_Null (R_Stm_Type)
1016 then
1017 Error_No_Match (Subtype_Ind);
1018 end if;
1020 -- AI05-103: for elementary types, subtypes must statically match
1022 if Is_Constrained (R_Type) or else Is_Access_Type (R_Type) then
1023 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
1024 Error_No_Match (Subtype_Ind);
1025 end if;
1026 end if;
1028 -- All remaining cases are illegal
1030 -- Note: previous versions of this subprogram allowed the return
1031 -- value to be the ancestor of the return type if the return type
1032 -- was a null extension. This was plainly incorrect.
1034 else
1035 Error_Msg_N
1036 ("wrong type for return_subtype_indication", Subtype_Ind);
1037 end if;
1038 end Check_Return_Subtype_Indication;
1040 ---------------------
1041 -- Local Variables --
1042 ---------------------
1044 Expr : Node_Id;
1045 Obj_Decl : Node_Id := Empty;
1047 -- Start of processing for Analyze_Function_Return
1049 begin
1050 Set_Return_Present (Scope_Id);
1052 if Nkind (N) = N_Simple_Return_Statement then
1053 Expr := Expression (N);
1055 -- Guard against a malformed expression. The parser may have tried to
1056 -- recover but the node is not analyzable.
1058 if Nkind (Expr) = N_Error then
1059 Set_Etype (Expr, Any_Type);
1060 Expander_Mode_Save_And_Set (False);
1061 return;
1063 else
1064 -- The resolution of a controlled [extension] aggregate associated
1065 -- with a return statement creates a temporary which needs to be
1066 -- finalized on function exit. Wrap the return statement inside a
1067 -- block so that the finalization machinery can detect this case.
1068 -- This early expansion is done only when the return statement is
1069 -- not part of a handled sequence of statements.
1071 if Nkind_In (Expr, N_Aggregate,
1072 N_Extension_Aggregate)
1073 and then Needs_Finalization (R_Type)
1074 and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
1075 then
1076 Rewrite (N,
1077 Make_Block_Statement (Loc,
1078 Handled_Statement_Sequence =>
1079 Make_Handled_Sequence_Of_Statements (Loc,
1080 Statements => New_List (Relocate_Node (N)))));
1082 Analyze (N);
1083 return;
1084 end if;
1086 Analyze (Expr);
1088 -- Ada 2005 (AI-251): If the type of the returned object is
1089 -- an access to an interface type then we add an implicit type
1090 -- conversion to force the displacement of the "this" pointer to
1091 -- reference the secondary dispatch table. We cannot delay the
1092 -- generation of this implicit conversion until the expansion
1093 -- because in this case the type resolution changes the decoration
1094 -- of the expression node to match R_Type; by contrast, if the
1095 -- returned object is a class-wide interface type then it is too
1096 -- early to generate here the implicit conversion since the return
1097 -- statement may be rewritten by the expander into an extended
1098 -- return statement whose expansion takes care of adding the
1099 -- implicit type conversion to displace the pointer to the object.
1101 if Expander_Active
1102 and then Serious_Errors_Detected = 0
1103 and then Is_Access_Type (R_Type)
1104 and then not Nkind_In (Expr, N_Null, N_Raise_Expression)
1105 and then Is_Interface (Designated_Type (R_Type))
1106 and then Is_Progenitor (Designated_Type (R_Type),
1107 Designated_Type (Etype (Expr)))
1108 then
1109 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1110 Analyze (Expr);
1111 end if;
1113 Resolve (Expr, R_Type);
1114 Check_Limited_Return (N, Expr, R_Type);
1116 if Present (Expr) and then Nkind (Expr) = N_Aggregate then
1117 Check_Aggregate_Accessibility (Expr);
1118 end if;
1119 end if;
1121 -- RETURN only allowed in SPARK as the last statement in function
1123 if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
1124 and then
1125 (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
1126 or else Present (Next (N)))
1127 then
1128 Check_SPARK_05_Restriction
1129 ("RETURN should be the last statement in function", N);
1130 end if;
1132 else
1133 Check_SPARK_05_Restriction ("extended RETURN is not allowed", N);
1134 Obj_Decl := Last (Return_Object_Declarations (N));
1136 -- Analyze parts specific to extended_return_statement:
1138 declare
1139 Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
1140 HSS : constant Node_Id := Handled_Statement_Sequence (N);
1142 begin
1143 Expr := Expression (Obj_Decl);
1145 -- Note: The check for OK_For_Limited_Init will happen in
1146 -- Analyze_Object_Declaration; we treat it as a normal
1147 -- object declaration.
1149 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
1150 Analyze (Obj_Decl);
1152 Check_Return_Subtype_Indication (Obj_Decl);
1154 if Present (HSS) then
1155 Analyze (HSS);
1157 if Present (Exception_Handlers (HSS)) then
1159 -- ???Has_Nested_Block_With_Handler needs to be set.
1160 -- Probably by creating an actual N_Block_Statement.
1161 -- Probably in Expand.
1163 null;
1164 end if;
1165 end if;
1167 -- Mark the return object as referenced, since the return is an
1168 -- implicit reference of the object.
1170 Set_Referenced (Defining_Identifier (Obj_Decl));
1172 Check_References (Stm_Entity);
1174 -- Check RM 6.5 (5.9/3)
1176 if Has_Aliased then
1177 if Ada_Version < Ada_2012 then
1179 -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
1180 -- Can it really happen (extended return???)
1182 Error_Msg_N
1183 ("aliased only allowed for limited return objects "
1184 & "in Ada 2012??", N);
1186 elsif not Is_Limited_View (R_Type) then
1187 Error_Msg_N
1188 ("aliased only allowed for limited return objects", N);
1189 end if;
1190 end if;
1191 end;
1192 end if;
1194 -- Case of Expr present
1196 if Present (Expr) then
1198 -- Defend against previous errors
1200 if Nkind (Expr) = N_Empty
1201 or else No (Etype (Expr))
1202 then
1203 return;
1204 end if;
1206 -- Apply constraint check. Note that this is done before the implicit
1207 -- conversion of the expression done for anonymous access types to
1208 -- ensure correct generation of the null-excluding check associated
1209 -- with null-excluding expressions found in return statements.
1211 Apply_Constraint_Check (Expr, R_Type);
1213 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
1214 -- type, apply an implicit conversion of the expression to that type
1215 -- to force appropriate static and run-time accessibility checks.
1217 if Ada_Version >= Ada_2005
1218 and then Ekind (R_Type) = E_Anonymous_Access_Type
1219 then
1220 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1221 Analyze_And_Resolve (Expr, R_Type);
1223 -- If this is a local anonymous access to subprogram, the
1224 -- accessibility check can be applied statically. The return is
1225 -- illegal if the access type of the return expression is declared
1226 -- inside of the subprogram (except if it is the subtype indication
1227 -- of an extended return statement).
1229 elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
1230 if not Comes_From_Source (Current_Scope)
1231 or else Ekind (Current_Scope) = E_Return_Statement
1232 then
1233 null;
1235 elsif
1236 Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
1237 then
1238 Error_Msg_N ("cannot return local access to subprogram", N);
1239 end if;
1241 -- The expression cannot be of a formal incomplete type
1243 elsif Ekind (Etype (Expr)) = E_Incomplete_Type
1244 and then Is_Generic_Type (Etype (Expr))
1245 then
1246 Error_Msg_N
1247 ("cannot return expression of a formal incomplete type", N);
1248 end if;
1250 -- If the result type is class-wide, then check that the return
1251 -- expression's type is not declared at a deeper level than the
1252 -- function (RM05-6.5(5.6/2)).
1254 if Ada_Version >= Ada_2005
1255 and then Is_Class_Wide_Type (R_Type)
1256 then
1257 if Type_Access_Level (Etype (Expr)) >
1258 Subprogram_Access_Level (Scope_Id)
1259 then
1260 Error_Msg_N
1261 ("level of return expression type is deeper than "
1262 & "class-wide function!", Expr);
1263 end if;
1264 end if;
1266 -- Check incorrect use of dynamically tagged expression
1268 if Is_Tagged_Type (R_Type) then
1269 Check_Dynamically_Tagged_Expression
1270 (Expr => Expr,
1271 Typ => R_Type,
1272 Related_Nod => N);
1273 end if;
1275 -- ??? A real run-time accessibility check is needed in cases
1276 -- involving dereferences of access parameters. For now we just
1277 -- check the static cases.
1279 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
1280 and then Is_Limited_View (Etype (Scope_Id))
1281 and then Object_Access_Level (Expr) >
1282 Subprogram_Access_Level (Scope_Id)
1283 then
1284 -- Suppress the message in a generic, where the rewriting
1285 -- is irrelevant.
1287 if Inside_A_Generic then
1288 null;
1290 else
1291 Rewrite (N,
1292 Make_Raise_Program_Error (Loc,
1293 Reason => PE_Accessibility_Check_Failed));
1294 Analyze (N);
1296 Error_Msg_Warn := SPARK_Mode /= On;
1297 Error_Msg_N ("cannot return a local value by reference<<", N);
1298 Error_Msg_NE ("\& [<<", N, Standard_Program_Error);
1299 end if;
1300 end if;
1302 if Known_Null (Expr)
1303 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
1304 and then Null_Exclusion_Present (Parent (Scope_Id))
1305 then
1306 Apply_Compile_Time_Constraint_Error
1307 (N => Expr,
1308 Msg => "(Ada 2005) null not allowed for "
1309 & "null-excluding return??",
1310 Reason => CE_Null_Not_Allowed);
1311 end if;
1313 -- RM 6.5 (5.4/3): accessibility checks also apply if the return object
1314 -- has no initializing expression.
1316 elsif Ada_Version > Ada_2005 and then Is_Class_Wide_Type (R_Type) then
1317 if Type_Access_Level (Etype (Defining_Identifier (Obj_Decl))) >
1318 Subprogram_Access_Level (Scope_Id)
1319 then
1320 Error_Msg_N
1321 ("level of return expression type is deeper than "
1322 & "class-wide function!", Obj_Decl);
1323 end if;
1324 end if;
1325 end Analyze_Function_Return;
1327 -------------------------------------
1328 -- Analyze_Generic_Subprogram_Body --
1329 -------------------------------------
1331 procedure Analyze_Generic_Subprogram_Body
1332 (N : Node_Id;
1333 Gen_Id : Entity_Id)
1335 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
1336 Kind : constant Entity_Kind := Ekind (Gen_Id);
1337 Body_Id : Entity_Id;
1338 New_N : Node_Id;
1339 Spec : Node_Id;
1341 begin
1342 -- Copy body and disable expansion while analyzing the generic For a
1343 -- stub, do not copy the stub (which would load the proper body), this
1344 -- will be done when the proper body is analyzed.
1346 if Nkind (N) /= N_Subprogram_Body_Stub then
1347 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
1348 Rewrite (N, New_N);
1350 -- Once the contents of the generic copy and the template are
1351 -- swapped, do the same for their respective aspect specifications.
1353 Exchange_Aspects (N, New_N);
1355 -- Collect all contract-related source pragmas found within the
1356 -- template and attach them to the contract of the subprogram body.
1357 -- This contract is used in the capture of global references within
1358 -- annotations.
1360 Create_Generic_Contract (N);
1362 Start_Generic;
1363 end if;
1365 Spec := Specification (N);
1367 -- Within the body of the generic, the subprogram is callable, and
1368 -- behaves like the corresponding non-generic unit.
1370 Body_Id := Defining_Entity (Spec);
1372 if Kind = E_Generic_Procedure
1373 and then Nkind (Spec) /= N_Procedure_Specification
1374 then
1375 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
1376 return;
1378 elsif Kind = E_Generic_Function
1379 and then Nkind (Spec) /= N_Function_Specification
1380 then
1381 Error_Msg_N ("invalid body for generic function ", Body_Id);
1382 return;
1383 end if;
1385 Set_Corresponding_Body (Gen_Decl, Body_Id);
1387 if Has_Completion (Gen_Id)
1388 and then Nkind (Parent (N)) /= N_Subunit
1389 then
1390 Error_Msg_N ("duplicate generic body", N);
1391 return;
1392 else
1393 Set_Has_Completion (Gen_Id);
1394 end if;
1396 if Nkind (N) = N_Subprogram_Body_Stub then
1397 Set_Ekind (Defining_Entity (Specification (N)), Kind);
1398 else
1399 Set_Corresponding_Spec (N, Gen_Id);
1400 end if;
1402 if Nkind (Parent (N)) = N_Compilation_Unit then
1403 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
1404 end if;
1406 -- Make generic parameters immediately visible in the body. They are
1407 -- needed to process the formals declarations. Then make the formals
1408 -- visible in a separate step.
1410 Push_Scope (Gen_Id);
1412 declare
1413 E : Entity_Id;
1414 First_Ent : Entity_Id;
1416 begin
1417 First_Ent := First_Entity (Gen_Id);
1419 E := First_Ent;
1420 while Present (E) and then not Is_Formal (E) loop
1421 Install_Entity (E);
1422 Next_Entity (E);
1423 end loop;
1425 Set_Use (Generic_Formal_Declarations (Gen_Decl));
1427 -- Now generic formals are visible, and the specification can be
1428 -- analyzed, for subsequent conformance check.
1430 Body_Id := Analyze_Subprogram_Specification (Spec);
1432 -- Make formal parameters visible
1434 if Present (E) then
1436 -- E is the first formal parameter, we loop through the formals
1437 -- installing them so that they will be visible.
1439 Set_First_Entity (Gen_Id, E);
1440 while Present (E) loop
1441 Install_Entity (E);
1442 Next_Formal (E);
1443 end loop;
1444 end if;
1446 -- Visible generic entity is callable within its own body
1448 Set_Ekind (Gen_Id, Ekind (Body_Id));
1449 Set_Ekind (Body_Id, E_Subprogram_Body);
1450 Set_Convention (Body_Id, Convention (Gen_Id));
1451 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1452 Set_Scope (Body_Id, Scope (Gen_Id));
1454 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1456 if Nkind (N) = N_Subprogram_Body_Stub then
1458 -- No body to analyze, so restore state of generic unit
1460 Set_Ekind (Gen_Id, Kind);
1461 Set_Ekind (Body_Id, Kind);
1463 if Present (First_Ent) then
1464 Set_First_Entity (Gen_Id, First_Ent);
1465 end if;
1467 End_Scope;
1468 return;
1469 end if;
1471 -- If this is a compilation unit, it must be made visible explicitly,
1472 -- because the compilation of the declaration, unlike other library
1473 -- unit declarations, does not. If it is not a unit, the following
1474 -- is redundant but harmless.
1476 Set_Is_Immediately_Visible (Gen_Id);
1477 Reference_Body_Formals (Gen_Id, Body_Id);
1479 if Is_Child_Unit (Gen_Id) then
1480 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1481 end if;
1483 Set_Actual_Subtypes (N, Current_Scope);
1485 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
1486 Set_SPARK_Pragma_Inherited (Body_Id);
1488 -- Analyze any aspect specifications that appear on the generic
1489 -- subprogram body.
1491 if Has_Aspects (N) then
1492 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
1493 end if;
1495 Analyze_Declarations (Declarations (N));
1496 Check_Completion;
1498 -- Process the contract of the subprogram body after all declarations
1499 -- have been analyzed. This ensures that any contract-related pragmas
1500 -- are available through the N_Contract node of the body.
1502 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
1504 Analyze (Handled_Statement_Sequence (N));
1505 Save_Global_References (Original_Node (N));
1507 -- Prior to exiting the scope, include generic formals again (if any
1508 -- are present) in the set of local entities.
1510 if Present (First_Ent) then
1511 Set_First_Entity (Gen_Id, First_Ent);
1512 end if;
1514 Check_References (Gen_Id);
1515 end;
1517 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
1518 Update_Use_Clause_Chain;
1519 Validate_Categorization_Dependency (N, Gen_Id);
1520 End_Scope;
1521 Check_Subprogram_Order (N);
1523 -- Outside of its body, unit is generic again
1525 Set_Ekind (Gen_Id, Kind);
1526 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
1528 if Style_Check then
1529 Style.Check_Identifier (Body_Id, Gen_Id);
1530 end if;
1532 End_Generic;
1533 end Analyze_Generic_Subprogram_Body;
1535 ----------------------------
1536 -- Analyze_Null_Procedure --
1537 ----------------------------
1539 procedure Analyze_Null_Procedure
1540 (N : Node_Id;
1541 Is_Completion : out Boolean)
1543 Loc : constant Source_Ptr := Sloc (N);
1544 Spec : constant Node_Id := Specification (N);
1545 Designator : Entity_Id;
1546 Form : Node_Id;
1547 Null_Body : Node_Id := Empty;
1548 Null_Stmt : Node_Id := Null_Statement (Spec);
1549 Prev : Entity_Id;
1551 begin
1552 -- Capture the profile of the null procedure before analysis, for
1553 -- expansion at the freeze point and at each point of call. The body is
1554 -- used if the procedure has preconditions, or if it is a completion. In
1555 -- the first case the body is analyzed at the freeze point, in the other
1556 -- it replaces the null procedure declaration.
1558 -- For a null procedure that comes from source, a NULL statement is
1559 -- provided by the parser, which carries the source location of the
1560 -- NULL keyword, and has Comes_From_Source set. For a null procedure
1561 -- from expansion, create one now.
1563 if No (Null_Stmt) then
1564 Null_Stmt := Make_Null_Statement (Loc);
1565 end if;
1567 Null_Body :=
1568 Make_Subprogram_Body (Loc,
1569 Specification => New_Copy_Tree (Spec),
1570 Declarations => New_List,
1571 Handled_Statement_Sequence =>
1572 Make_Handled_Sequence_Of_Statements (Loc,
1573 Statements => New_List (Null_Stmt)));
1575 -- Create new entities for body and formals
1577 Set_Defining_Unit_Name (Specification (Null_Body),
1578 Make_Defining_Identifier
1579 (Sloc (Defining_Entity (N)),
1580 Chars (Defining_Entity (N))));
1582 Form := First (Parameter_Specifications (Specification (Null_Body)));
1583 while Present (Form) loop
1584 Set_Defining_Identifier (Form,
1585 Make_Defining_Identifier
1586 (Sloc (Defining_Identifier (Form)),
1587 Chars (Defining_Identifier (Form))));
1588 Next (Form);
1589 end loop;
1591 -- Determine whether the null procedure may be a completion of a generic
1592 -- suprogram, in which case we use the new null body as the completion
1593 -- and set minimal semantic information on the original declaration,
1594 -- which is rewritten as a null statement.
1596 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
1598 if Present (Prev) and then Is_Generic_Subprogram (Prev) then
1599 Insert_Before (N, Null_Body);
1600 Set_Ekind (Defining_Entity (N), Ekind (Prev));
1602 Rewrite (N, Make_Null_Statement (Loc));
1603 Analyze_Generic_Subprogram_Body (Null_Body, Prev);
1604 Is_Completion := True;
1605 return;
1607 else
1608 -- Resolve the types of the formals now, because the freeze point may
1609 -- appear in a different context, e.g. an instantiation.
1611 Form := First (Parameter_Specifications (Specification (Null_Body)));
1612 while Present (Form) loop
1613 if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
1614 Find_Type (Parameter_Type (Form));
1616 elsif No (Access_To_Subprogram_Definition
1617 (Parameter_Type (Form)))
1618 then
1619 Find_Type (Subtype_Mark (Parameter_Type (Form)));
1621 -- The case of a null procedure with a formal that is an
1622 -- access-to-subprogram type, and that is used as an actual
1623 -- in an instantiation is left to the enthusiastic reader.
1625 else
1626 null;
1627 end if;
1629 Next (Form);
1630 end loop;
1631 end if;
1633 -- If there are previous overloadable entities with the same name, check
1634 -- whether any of them is completed by the null procedure.
1636 if Present (Prev) and then Is_Overloadable (Prev) then
1637 Designator := Analyze_Subprogram_Specification (Spec);
1638 Prev := Find_Corresponding_Spec (N);
1639 end if;
1641 if No (Prev) or else not Comes_From_Source (Prev) then
1642 Designator := Analyze_Subprogram_Specification (Spec);
1643 Set_Has_Completion (Designator);
1645 -- Signal to caller that this is a procedure declaration
1647 Is_Completion := False;
1649 -- Null procedures are always inlined, but generic formal subprograms
1650 -- which appear as such in the internal instance of formal packages,
1651 -- need no completion and are not marked Inline.
1653 if Expander_Active
1654 and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
1655 then
1656 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
1657 Set_Body_To_Inline (N, Null_Body);
1658 Set_Is_Inlined (Designator);
1659 end if;
1661 else
1662 -- The null procedure is a completion. We unconditionally rewrite
1663 -- this as a null body (even if expansion is not active), because
1664 -- there are various error checks that are applied on this body
1665 -- when it is analyzed (e.g. correct aspect placement).
1667 if Has_Completion (Prev) then
1668 Error_Msg_Sloc := Sloc (Prev);
1669 Error_Msg_NE ("duplicate body for & declared#", N, Prev);
1670 end if;
1672 Check_Previous_Null_Procedure (N, Prev);
1674 Is_Completion := True;
1675 Rewrite (N, Null_Body);
1676 Analyze (N);
1677 end if;
1678 end Analyze_Null_Procedure;
1680 -----------------------------
1681 -- Analyze_Operator_Symbol --
1682 -----------------------------
1684 -- An operator symbol such as "+" or "and" may appear in context where the
1685 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1686 -- is just a string, as in (conjunction = "or"). In these cases the parser
1687 -- generates this node, and the semantics does the disambiguation. Other
1688 -- such case are actuals in an instantiation, the generic unit in an
1689 -- instantiation, and pragma arguments.
1691 procedure Analyze_Operator_Symbol (N : Node_Id) is
1692 Par : constant Node_Id := Parent (N);
1694 begin
1695 if (Nkind (Par) = N_Function_Call and then N = Name (Par))
1696 or else Nkind (Par) = N_Function_Instantiation
1697 or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
1698 or else (Nkind (Par) = N_Pragma_Argument_Association
1699 and then not Is_Pragma_String_Literal (Par))
1700 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
1701 or else (Nkind (Par) = N_Attribute_Reference
1702 and then Attribute_Name (Par) /= Name_Value)
1703 then
1704 Find_Direct_Name (N);
1706 else
1707 Change_Operator_Symbol_To_String_Literal (N);
1708 Analyze (N);
1709 end if;
1710 end Analyze_Operator_Symbol;
1712 -----------------------------------
1713 -- Analyze_Parameter_Association --
1714 -----------------------------------
1716 procedure Analyze_Parameter_Association (N : Node_Id) is
1717 begin
1718 Analyze (Explicit_Actual_Parameter (N));
1719 end Analyze_Parameter_Association;
1721 ----------------------------
1722 -- Analyze_Procedure_Call --
1723 ----------------------------
1725 -- WARNING: This routine manages Ghost regions. Return statements must be
1726 -- replaced by gotos which jump to the end of the routine and restore the
1727 -- Ghost mode.
1729 procedure Analyze_Procedure_Call (N : Node_Id) is
1730 procedure Analyze_Call_And_Resolve;
1731 -- Do Analyze and Resolve calls for procedure call. At the end, check
1732 -- for illegal order dependence.
1733 -- ??? where is the check for illegal order dependencies?
1735 ------------------------------
1736 -- Analyze_Call_And_Resolve --
1737 ------------------------------
1739 procedure Analyze_Call_And_Resolve is
1740 begin
1741 if Nkind (N) = N_Procedure_Call_Statement then
1742 Analyze_Call (N);
1743 Resolve (N, Standard_Void_Type);
1744 else
1745 Analyze (N);
1746 end if;
1747 end Analyze_Call_And_Resolve;
1749 -- Local variables
1751 Actuals : constant List_Id := Parameter_Associations (N);
1752 Loc : constant Source_Ptr := Sloc (N);
1753 P : constant Node_Id := Name (N);
1755 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
1756 -- Save the Ghost mode to restore on exit
1758 Actual : Node_Id;
1759 New_N : Node_Id;
1761 -- Start of processing for Analyze_Procedure_Call
1763 begin
1764 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1765 -- a procedure call or an entry call. The prefix may denote an access
1766 -- to subprogram type, in which case an implicit dereference applies.
1767 -- If the prefix is an indexed component (without implicit dereference)
1768 -- then the construct denotes a call to a member of an entire family.
1769 -- If the prefix is a simple name, it may still denote a call to a
1770 -- parameterless member of an entry family. Resolution of these various
1771 -- interpretations is delicate.
1773 -- Do not analyze machine code statements to avoid rejecting them in
1774 -- CodePeer mode.
1776 if CodePeer_Mode and then Nkind (P) = N_Qualified_Expression then
1777 Set_Etype (P, Standard_Void_Type);
1778 else
1779 Analyze (P);
1780 end if;
1782 -- If this is a call of the form Obj.Op, the call may have been analyzed
1783 -- and possibly rewritten into a block, in which case we are done.
1785 if Analyzed (N) then
1786 return;
1788 -- If there is an error analyzing the name (which may have been
1789 -- rewritten if the original call was in prefix notation) then error
1790 -- has been emitted already, mark node and return.
1792 elsif Error_Posted (N) or else Etype (Name (N)) = Any_Type then
1793 Set_Etype (N, Any_Type);
1794 return;
1795 end if;
1797 -- A procedure call is Ghost when its name denotes a Ghost procedure.
1798 -- Set the mode now to ensure that any nodes generated during analysis
1799 -- and expansion are properly marked as Ghost.
1801 Mark_And_Set_Ghost_Procedure_Call (N);
1803 -- Otherwise analyze the parameters
1805 if Present (Actuals) then
1806 Actual := First (Actuals);
1808 while Present (Actual) loop
1809 Analyze (Actual);
1810 Check_Parameterless_Call (Actual);
1811 Next (Actual);
1812 end loop;
1813 end if;
1815 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1817 if Nkind (P) = N_Attribute_Reference
1818 and then Nam_In (Attribute_Name (P), Name_Elab_Spec,
1819 Name_Elab_Body,
1820 Name_Elab_Subp_Body)
1821 then
1822 if Present (Actuals) then
1823 Error_Msg_N
1824 ("no parameters allowed for this call", First (Actuals));
1825 goto Leave;
1826 end if;
1828 Set_Etype (N, Standard_Void_Type);
1829 Set_Analyzed (N);
1831 elsif Is_Entity_Name (P)
1832 and then Is_Record_Type (Etype (Entity (P)))
1833 and then Remote_AST_I_Dereference (P)
1834 then
1835 goto Leave;
1837 elsif Is_Entity_Name (P)
1838 and then Ekind (Entity (P)) /= E_Entry_Family
1839 then
1840 if Is_Access_Type (Etype (P))
1841 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1842 and then No (Actuals)
1843 and then Comes_From_Source (N)
1844 then
1845 Error_Msg_N ("missing explicit dereference in call", N);
1846 end if;
1848 Analyze_Call_And_Resolve;
1850 -- If the prefix is the simple name of an entry family, this is a
1851 -- parameterless call from within the task body itself.
1853 elsif Is_Entity_Name (P)
1854 and then Nkind (P) = N_Identifier
1855 and then Ekind (Entity (P)) = E_Entry_Family
1856 and then Present (Actuals)
1857 and then No (Next (First (Actuals)))
1858 then
1859 -- Can be call to parameterless entry family. What appears to be the
1860 -- sole argument is in fact the entry index. Rewrite prefix of node
1861 -- accordingly. Source representation is unchanged by this
1862 -- transformation.
1864 New_N :=
1865 Make_Indexed_Component (Loc,
1866 Prefix =>
1867 Make_Selected_Component (Loc,
1868 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1869 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1870 Expressions => Actuals);
1871 Set_Name (N, New_N);
1872 Set_Etype (New_N, Standard_Void_Type);
1873 Set_Parameter_Associations (N, No_List);
1874 Analyze_Call_And_Resolve;
1876 elsif Nkind (P) = N_Explicit_Dereference then
1877 if Ekind (Etype (P)) = E_Subprogram_Type then
1878 Analyze_Call_And_Resolve;
1879 else
1880 Error_Msg_N ("expect access to procedure in call", P);
1881 end if;
1883 -- The name can be a selected component or an indexed component that
1884 -- yields an access to subprogram. Such a prefix is legal if the call
1885 -- has parameter associations.
1887 elsif Is_Access_Type (Etype (P))
1888 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1889 then
1890 if Present (Actuals) then
1891 Analyze_Call_And_Resolve;
1892 else
1893 Error_Msg_N ("missing explicit dereference in call ", N);
1894 end if;
1896 -- If not an access to subprogram, then the prefix must resolve to the
1897 -- name of an entry, entry family, or protected operation.
1899 -- For the case of a simple entry call, P is a selected component where
1900 -- the prefix is the task and the selector name is the entry. A call to
1901 -- a protected procedure will have the same syntax. If the protected
1902 -- object contains overloaded operations, the entity may appear as a
1903 -- function, the context will select the operation whose type is Void.
1905 elsif Nkind (P) = N_Selected_Component
1906 and then Ekind_In (Entity (Selector_Name (P)), E_Entry,
1907 E_Function,
1908 E_Procedure)
1909 then
1910 -- When front-end inlining is enabled, as with SPARK_Mode, a call
1911 -- in prefix notation may still be missing its controlling argument,
1912 -- so perform the transformation now.
1914 if SPARK_Mode = On and then In_Inlined_Body then
1915 declare
1916 Subp : constant Entity_Id := Entity (Selector_Name (P));
1917 Typ : constant Entity_Id := Etype (Prefix (P));
1919 begin
1920 if Is_Tagged_Type (Typ)
1921 and then Present (First_Formal (Subp))
1922 and then Etype (First_Formal (Subp)) = Typ
1923 and then Try_Object_Operation (P)
1924 then
1925 return;
1927 else
1928 Analyze_Call_And_Resolve;
1929 end if;
1930 end;
1932 else
1933 Analyze_Call_And_Resolve;
1934 end if;
1936 elsif Nkind (P) = N_Selected_Component
1937 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1938 and then Present (Actuals)
1939 and then No (Next (First (Actuals)))
1940 then
1941 -- Can be call to parameterless entry family. What appears to be the
1942 -- sole argument is in fact the entry index. Rewrite prefix of node
1943 -- accordingly. Source representation is unchanged by this
1944 -- transformation.
1946 New_N :=
1947 Make_Indexed_Component (Loc,
1948 Prefix => New_Copy (P),
1949 Expressions => Actuals);
1950 Set_Name (N, New_N);
1951 Set_Etype (New_N, Standard_Void_Type);
1952 Set_Parameter_Associations (N, No_List);
1953 Analyze_Call_And_Resolve;
1955 -- For the case of a reference to an element of an entry family, P is
1956 -- an indexed component whose prefix is a selected component (task and
1957 -- entry family), and whose index is the entry family index.
1959 elsif Nkind (P) = N_Indexed_Component
1960 and then Nkind (Prefix (P)) = N_Selected_Component
1961 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1962 then
1963 Analyze_Call_And_Resolve;
1965 -- If the prefix is the name of an entry family, it is a call from
1966 -- within the task body itself.
1968 elsif Nkind (P) = N_Indexed_Component
1969 and then Nkind (Prefix (P)) = N_Identifier
1970 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1971 then
1972 New_N :=
1973 Make_Selected_Component (Loc,
1974 Prefix =>
1975 New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1976 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1977 Rewrite (Prefix (P), New_N);
1978 Analyze (P);
1979 Analyze_Call_And_Resolve;
1981 -- In Ada 2012. a qualified expression is a name, but it cannot be a
1982 -- procedure name, so the construct can only be a qualified expression.
1984 elsif Nkind (P) = N_Qualified_Expression
1985 and then Ada_Version >= Ada_2012
1986 then
1987 Rewrite (N, Make_Code_Statement (Loc, Expression => P));
1988 Analyze (N);
1990 -- Anything else is an error
1992 else
1993 Error_Msg_N ("invalid procedure or entry call", N);
1994 end if;
1996 <<Leave>>
1997 Restore_Ghost_Mode (Saved_GM);
1998 end Analyze_Procedure_Call;
2000 ------------------------------
2001 -- Analyze_Return_Statement --
2002 ------------------------------
2004 procedure Analyze_Return_Statement (N : Node_Id) is
2005 pragma Assert (Nkind_In (N, N_Extended_Return_Statement,
2006 N_Simple_Return_Statement));
2008 Returns_Object : constant Boolean :=
2009 Nkind (N) = N_Extended_Return_Statement
2010 or else
2011 (Nkind (N) = N_Simple_Return_Statement
2012 and then Present (Expression (N)));
2013 -- True if we're returning something; that is, "return <expression>;"
2014 -- or "return Result : T [:= ...]". False for "return;". Used for error
2015 -- checking: If Returns_Object is True, N should apply to a function
2016 -- body; otherwise N should apply to a procedure body, entry body,
2017 -- accept statement, or extended return statement.
2019 function Find_What_It_Applies_To return Entity_Id;
2020 -- Find the entity representing the innermost enclosing body, accept
2021 -- statement, or extended return statement. If the result is a callable
2022 -- construct or extended return statement, then this will be the value
2023 -- of the Return_Applies_To attribute. Otherwise, the program is
2024 -- illegal. See RM-6.5(4/2).
2026 -----------------------------
2027 -- Find_What_It_Applies_To --
2028 -----------------------------
2030 function Find_What_It_Applies_To return Entity_Id is
2031 Result : Entity_Id := Empty;
2033 begin
2034 -- Loop outward through the Scope_Stack, skipping blocks, loops,
2035 -- and postconditions.
2037 for J in reverse 0 .. Scope_Stack.Last loop
2038 Result := Scope_Stack.Table (J).Entity;
2039 exit when not Ekind_In (Result, E_Block, E_Loop)
2040 and then Chars (Result) /= Name_uPostconditions;
2041 end loop;
2043 pragma Assert (Present (Result));
2044 return Result;
2045 end Find_What_It_Applies_To;
2047 -- Local declarations
2049 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
2050 Kind : constant Entity_Kind := Ekind (Scope_Id);
2051 Loc : constant Source_Ptr := Sloc (N);
2052 Stm_Entity : constant Entity_Id :=
2053 New_Internal_Entity
2054 (E_Return_Statement, Current_Scope, Loc, 'R');
2056 -- Start of processing for Analyze_Return_Statement
2058 begin
2059 Set_Return_Statement_Entity (N, Stm_Entity);
2061 Set_Etype (Stm_Entity, Standard_Void_Type);
2062 Set_Return_Applies_To (Stm_Entity, Scope_Id);
2064 -- Place Return entity on scope stack, to simplify enforcement of 6.5
2065 -- (4/2): an inner return statement will apply to this extended return.
2067 if Nkind (N) = N_Extended_Return_Statement then
2068 Push_Scope (Stm_Entity);
2069 end if;
2071 -- Check that pragma No_Return is obeyed. Don't complain about the
2072 -- implicitly-generated return that is placed at the end.
2074 if No_Return (Scope_Id) and then Comes_From_Source (N) then
2075 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
2076 end if;
2078 -- Warn on any unassigned OUT parameters if in procedure
2080 if Ekind (Scope_Id) = E_Procedure then
2081 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
2082 end if;
2084 -- Check that functions return objects, and other things do not
2086 if Kind = E_Function or else Kind = E_Generic_Function then
2087 if not Returns_Object then
2088 Error_Msg_N ("missing expression in return from function", N);
2089 end if;
2091 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
2092 if Returns_Object then
2093 Error_Msg_N ("procedure cannot return value (use function)", N);
2094 end if;
2096 elsif Kind = E_Entry or else Kind = E_Entry_Family then
2097 if Returns_Object then
2098 if Is_Protected_Type (Scope (Scope_Id)) then
2099 Error_Msg_N ("entry body cannot return value", N);
2100 else
2101 Error_Msg_N ("accept statement cannot return value", N);
2102 end if;
2103 end if;
2105 elsif Kind = E_Return_Statement then
2107 -- We are nested within another return statement, which must be an
2108 -- extended_return_statement.
2110 if Returns_Object then
2111 if Nkind (N) = N_Extended_Return_Statement then
2112 Error_Msg_N
2113 ("extended return statement cannot be nested (use `RETURN;`)",
2116 -- Case of a simple return statement with a value inside extended
2117 -- return statement.
2119 else
2120 Error_Msg_N
2121 ("return nested in extended return statement cannot return "
2122 & "value (use `RETURN;`)", N);
2123 end if;
2124 end if;
2126 else
2127 Error_Msg_N ("illegal context for return statement", N);
2128 end if;
2130 if Ekind_In (Kind, E_Function, E_Generic_Function) then
2131 Analyze_Function_Return (N);
2133 elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
2134 Set_Return_Present (Scope_Id);
2135 end if;
2137 if Nkind (N) = N_Extended_Return_Statement then
2138 End_Scope;
2139 end if;
2141 Kill_Current_Values (Last_Assignment_Only => True);
2142 Check_Unreachable_Code (N);
2144 Analyze_Dimension (N);
2145 end Analyze_Return_Statement;
2147 -------------------------------------
2148 -- Analyze_Simple_Return_Statement --
2149 -------------------------------------
2151 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
2152 begin
2153 if Present (Expression (N)) then
2154 Mark_Coextensions (N, Expression (N));
2155 end if;
2157 Analyze_Return_Statement (N);
2158 end Analyze_Simple_Return_Statement;
2160 -------------------------
2161 -- Analyze_Return_Type --
2162 -------------------------
2164 procedure Analyze_Return_Type (N : Node_Id) is
2165 Designator : constant Entity_Id := Defining_Entity (N);
2166 Typ : Entity_Id := Empty;
2168 begin
2169 -- Normal case where result definition does not indicate an error
2171 if Result_Definition (N) /= Error then
2172 if Nkind (Result_Definition (N)) = N_Access_Definition then
2173 Check_SPARK_05_Restriction
2174 ("access result is not allowed", Result_Definition (N));
2176 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
2178 declare
2179 AD : constant Node_Id :=
2180 Access_To_Subprogram_Definition (Result_Definition (N));
2181 begin
2182 if Present (AD) and then Protected_Present (AD) then
2183 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
2184 else
2185 Typ := Access_Definition (N, Result_Definition (N));
2186 end if;
2187 end;
2189 Set_Parent (Typ, Result_Definition (N));
2190 Set_Is_Local_Anonymous_Access (Typ);
2191 Set_Etype (Designator, Typ);
2193 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2195 Null_Exclusion_Static_Checks (N);
2197 -- Subtype_Mark case
2199 else
2200 Find_Type (Result_Definition (N));
2201 Typ := Entity (Result_Definition (N));
2202 Set_Etype (Designator, Typ);
2204 -- Unconstrained array as result is not allowed in SPARK
2206 if Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
2207 Check_SPARK_05_Restriction
2208 ("returning an unconstrained array is not allowed",
2209 Result_Definition (N));
2210 end if;
2212 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2214 Null_Exclusion_Static_Checks (N);
2216 -- If a null exclusion is imposed on the result type, then create
2217 -- a null-excluding itype (an access subtype) and use it as the
2218 -- function's Etype. Note that the null exclusion checks are done
2219 -- right before this, because they don't get applied to types that
2220 -- do not come from source.
2222 if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
2223 Set_Etype (Designator,
2224 Create_Null_Excluding_Itype
2225 (T => Typ,
2226 Related_Nod => N,
2227 Scope_Id => Scope (Current_Scope)));
2229 -- The new subtype must be elaborated before use because
2230 -- it is visible outside of the function. However its base
2231 -- type may not be frozen yet, so the reference that will
2232 -- force elaboration must be attached to the freezing of
2233 -- the base type.
2235 -- If the return specification appears on a proper body,
2236 -- the subtype will have been created already on the spec.
2238 if Is_Frozen (Typ) then
2239 if Nkind (Parent (N)) = N_Subprogram_Body
2240 and then Nkind (Parent (Parent (N))) = N_Subunit
2241 then
2242 null;
2243 else
2244 Build_Itype_Reference (Etype (Designator), Parent (N));
2245 end if;
2247 else
2248 Ensure_Freeze_Node (Typ);
2250 declare
2251 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
2252 begin
2253 Set_Itype (IR, Etype (Designator));
2254 Append_Freeze_Actions (Typ, New_List (IR));
2255 end;
2256 end if;
2258 else
2259 Set_Etype (Designator, Typ);
2260 end if;
2262 if Ekind (Typ) = E_Incomplete_Type
2263 or else (Is_Class_Wide_Type (Typ)
2264 and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
2265 then
2266 -- AI05-0151: Tagged incomplete types are allowed in all formal
2267 -- parts. Untagged incomplete types are not allowed in bodies.
2268 -- As a consequence, limited views cannot appear in a basic
2269 -- declaration that is itself within a body, because there is
2270 -- no point at which the non-limited view will become visible.
2272 if Ada_Version >= Ada_2012 then
2273 if From_Limited_With (Typ) and then In_Package_Body then
2274 Error_Msg_NE
2275 ("invalid use of incomplete type&",
2276 Result_Definition (N), Typ);
2278 -- The return type of a subprogram body cannot be of a
2279 -- formal incomplete type.
2281 elsif Is_Generic_Type (Typ)
2282 and then Nkind (Parent (N)) = N_Subprogram_Body
2283 then
2284 Error_Msg_N
2285 ("return type cannot be a formal incomplete type",
2286 Result_Definition (N));
2288 elsif Is_Class_Wide_Type (Typ)
2289 and then Is_Generic_Type (Root_Type (Typ))
2290 and then Nkind (Parent (N)) = N_Subprogram_Body
2291 then
2292 Error_Msg_N
2293 ("return type cannot be a formal incomplete type",
2294 Result_Definition (N));
2296 elsif Is_Tagged_Type (Typ) then
2297 null;
2299 -- Use is legal in a thunk generated for an operation
2300 -- inherited from a progenitor.
2302 elsif Is_Thunk (Designator)
2303 and then Present (Non_Limited_View (Typ))
2304 then
2305 null;
2307 elsif Nkind (Parent (N)) = N_Subprogram_Body
2308 or else Nkind_In (Parent (Parent (N)), N_Accept_Statement,
2309 N_Entry_Body)
2310 then
2311 Error_Msg_NE
2312 ("invalid use of untagged incomplete type&",
2313 Designator, Typ);
2314 end if;
2316 -- The type must be completed in the current package. This
2317 -- is checked at the end of the package declaration when
2318 -- Taft-amendment types are identified. If the return type
2319 -- is class-wide, there is no required check, the type can
2320 -- be a bona fide TAT.
2322 if Ekind (Scope (Current_Scope)) = E_Package
2323 and then In_Private_Part (Scope (Current_Scope))
2324 and then not Is_Class_Wide_Type (Typ)
2325 then
2326 Append_Elmt (Designator, Private_Dependents (Typ));
2327 end if;
2329 else
2330 Error_Msg_NE
2331 ("invalid use of incomplete type&", Designator, Typ);
2332 end if;
2333 end if;
2334 end if;
2336 -- Case where result definition does indicate an error
2338 else
2339 Set_Etype (Designator, Any_Type);
2340 end if;
2341 end Analyze_Return_Type;
2343 -----------------------------
2344 -- Analyze_Subprogram_Body --
2345 -----------------------------
2347 procedure Analyze_Subprogram_Body (N : Node_Id) is
2348 Loc : constant Source_Ptr := Sloc (N);
2349 Body_Spec : constant Node_Id := Specification (N);
2350 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2352 begin
2353 if Debug_Flag_C then
2354 Write_Str ("==> subprogram body ");
2355 Write_Name (Chars (Body_Id));
2356 Write_Str (" from ");
2357 Write_Location (Loc);
2358 Write_Eol;
2359 Indent;
2360 end if;
2362 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
2364 -- The real work is split out into the helper, so it can do "return;"
2365 -- without skipping the debug output:
2367 Analyze_Subprogram_Body_Helper (N);
2369 if Debug_Flag_C then
2370 Outdent;
2371 Write_Str ("<== subprogram body ");
2372 Write_Name (Chars (Body_Id));
2373 Write_Str (" from ");
2374 Write_Location (Loc);
2375 Write_Eol;
2376 end if;
2377 end Analyze_Subprogram_Body;
2379 ------------------------------------
2380 -- Analyze_Subprogram_Body_Helper --
2381 ------------------------------------
2383 -- This procedure is called for regular subprogram bodies, generic bodies,
2384 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2385 -- specification matters, and is used to create a proper declaration for
2386 -- the subprogram, or to perform conformance checks.
2388 -- WARNING: This routine manages Ghost regions. Return statements must be
2389 -- replaced by gotos which jump to the end of the routine and restore the
2390 -- Ghost mode.
2392 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
2393 Body_Spec : Node_Id := Specification (N);
2394 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
2395 Loc : constant Source_Ptr := Sloc (N);
2396 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
2398 Conformant : Boolean;
2399 Desig_View : Entity_Id := Empty;
2400 Exch_Views : Elist_Id := No_Elist;
2401 HSS : Node_Id;
2402 Mask_Types : Elist_Id := No_Elist;
2403 Prot_Typ : Entity_Id := Empty;
2404 Spec_Decl : Node_Id := Empty;
2405 Spec_Id : Entity_Id;
2407 Last_Real_Spec_Entity : Entity_Id := Empty;
2408 -- When we analyze a separate spec, the entity chain ends up containing
2409 -- the formals, as well as any itypes generated during analysis of the
2410 -- default expressions for parameters, or the arguments of associated
2411 -- precondition/postcondition pragmas (which are analyzed in the context
2412 -- of the spec since they have visibility on formals).
2414 -- These entities belong with the spec and not the body. However we do
2415 -- the analysis of the body in the context of the spec (again to obtain
2416 -- visibility to the formals), and all the entities generated during
2417 -- this analysis end up also chained to the entity chain of the spec.
2418 -- But they really belong to the body, and there is circuitry to move
2419 -- them from the spec to the body.
2421 -- However, when we do this move, we don't want to move the real spec
2422 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2423 -- variable points to the last real spec entity, so we only move those
2424 -- chained beyond that point. It is initialized to Empty to deal with
2425 -- the case where there is no separate spec.
2427 function Body_Has_Contract return Boolean;
2428 -- Check whether unanalyzed body has an aspect or pragma that may
2429 -- generate a SPARK contract.
2431 function Body_Has_SPARK_Mode_On return Boolean;
2432 -- Check whether SPARK_Mode On applies to the subprogram body, either
2433 -- because it is specified directly on the body, or because it is
2434 -- inherited from the enclosing subprogram or package.
2436 procedure Build_Subprogram_Declaration;
2437 -- Create a matching subprogram declaration for subprogram body N
2439 procedure Check_Anonymous_Return;
2440 -- Ada 2005: if a function returns an access type that denotes a task,
2441 -- or a type that contains tasks, we must create a master entity for
2442 -- the anonymous type, which typically will be used in an allocator
2443 -- in the body of the function.
2445 procedure Check_Inline_Pragma (Spec : in out Node_Id);
2446 -- Look ahead to recognize a pragma that may appear after the body.
2447 -- If there is a previous spec, check that it appears in the same
2448 -- declarative part. If the pragma is Inline_Always, perform inlining
2449 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2450 -- If the body acts as a spec, and inlining is required, we create a
2451 -- subprogram declaration for it, in order to attach the body to inline.
2452 -- If pragma does not appear after the body, check whether there is
2453 -- an inline pragma before any local declarations.
2455 procedure Check_Missing_Return;
2456 -- Checks for a function with a no return statements, and also performs
2457 -- the warning checks implemented by Check_Returns. In formal mode, also
2458 -- verify that a function ends with a RETURN and that a procedure does
2459 -- not contain any RETURN.
2461 function Disambiguate_Spec return Entity_Id;
2462 -- When a primitive is declared between the private view and the full
2463 -- view of a concurrent type which implements an interface, a special
2464 -- mechanism is used to find the corresponding spec of the primitive
2465 -- body.
2467 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id;
2468 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2469 -- incomplete types coming from a limited context and replace their
2470 -- limited views with the non-limited ones. Return the list of changes
2471 -- to be used to undo the transformation.
2473 function Is_Private_Concurrent_Primitive
2474 (Subp_Id : Entity_Id) return Boolean;
2475 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2476 -- type that implements an interface and has a private view.
2478 function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id;
2479 -- N is the body generated for an expression function that is not a
2480 -- completion and Spec_Id the defining entity of its spec. Mark all
2481 -- the not-yet-frozen types referenced by the simple return statement
2482 -- of the function as formally frozen.
2484 procedure Restore_Limited_Views (Restore_List : Elist_Id);
2485 -- Undo the transformation done by Exchange_Limited_Views.
2487 procedure Set_Trivial_Subprogram (N : Node_Id);
2488 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2489 -- subprogram whose body is being analyzed. N is the statement node
2490 -- causing the flag to be set, if the following statement is a return
2491 -- of an entity, we mark the entity as set in source to suppress any
2492 -- warning on the stylized use of function stubs with a dummy return.
2494 procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id);
2495 -- Undo the transformation done by Mask_Unfrozen_Types
2497 procedure Verify_Overriding_Indicator;
2498 -- If there was a previous spec, the entity has been entered in the
2499 -- current scope previously. If the body itself carries an overriding
2500 -- indicator, check that it is consistent with the known status of the
2501 -- entity.
2503 -----------------------
2504 -- Body_Has_Contract --
2505 -----------------------
2507 function Body_Has_Contract return Boolean is
2508 Decls : constant List_Id := Declarations (N);
2509 Item : Node_Id;
2511 begin
2512 -- Check for aspects that may generate a contract
2514 if Present (Aspect_Specifications (N)) then
2515 Item := First (Aspect_Specifications (N));
2516 while Present (Item) loop
2517 if Is_Subprogram_Contract_Annotation (Item) then
2518 return True;
2519 end if;
2521 Next (Item);
2522 end loop;
2523 end if;
2525 -- Check for pragmas that may generate a contract
2527 if Present (Decls) then
2528 Item := First (Decls);
2529 while Present (Item) loop
2530 if Nkind (Item) = N_Pragma
2531 and then Is_Subprogram_Contract_Annotation (Item)
2532 then
2533 return True;
2534 end if;
2536 Next (Item);
2537 end loop;
2538 end if;
2540 return False;
2541 end Body_Has_Contract;
2543 ----------------------------
2544 -- Body_Has_SPARK_Mode_On --
2545 ----------------------------
2547 function Body_Has_SPARK_Mode_On return Boolean is
2548 Decls : constant List_Id := Declarations (N);
2549 Item : Node_Id;
2551 begin
2552 -- Check for SPARK_Mode aspect
2554 if Present (Aspect_Specifications (N)) then
2555 Item := First (Aspect_Specifications (N));
2556 while Present (Item) loop
2557 if Get_Aspect_Id (Item) = Aspect_SPARK_Mode then
2558 return Get_SPARK_Mode_From_Annotation (Item) = On;
2559 end if;
2561 Next (Item);
2562 end loop;
2563 end if;
2565 -- Check for SPARK_Mode pragma
2567 if Present (Decls) then
2568 Item := First (Decls);
2569 while Present (Item) loop
2571 -- Pragmas that apply to a subprogram body are usually grouped
2572 -- together. Look for a potential pragma SPARK_Mode among them.
2574 if Nkind (Item) = N_Pragma then
2575 if Get_Pragma_Id (Item) = Pragma_SPARK_Mode then
2576 return Get_SPARK_Mode_From_Annotation (Item) = On;
2577 end if;
2579 -- Otherwise the first non-pragma declarative item terminates
2580 -- the region where pragma SPARK_Mode may appear.
2582 else
2583 exit;
2584 end if;
2586 Next (Item);
2587 end loop;
2588 end if;
2590 -- Otherwise, the applicable SPARK_Mode is inherited from the
2591 -- enclosing subprogram or package.
2593 return SPARK_Mode = On;
2594 end Body_Has_SPARK_Mode_On;
2596 ----------------------------------
2597 -- Build_Subprogram_Declaration --
2598 ----------------------------------
2600 procedure Build_Subprogram_Declaration is
2601 procedure Move_Pragmas (From : Node_Id; To : Node_Id);
2602 -- Relocate certain categorization pragmas from the declarative list
2603 -- of subprogram body From and insert them after node To. The pragmas
2604 -- in question are:
2605 -- Ghost
2606 -- Volatile_Function
2607 -- Also copy pragma SPARK_Mode if present in the declarative list
2608 -- of subprogram body From and insert it after node To. This pragma
2609 -- should not be moved, as it applies to the body too.
2611 ------------------
2612 -- Move_Pragmas --
2613 ------------------
2615 procedure Move_Pragmas (From : Node_Id; To : Node_Id) is
2616 Decl : Node_Id;
2617 Next_Decl : Node_Id;
2619 begin
2620 pragma Assert (Nkind (From) = N_Subprogram_Body);
2622 -- The destination node must be part of a list, as the pragmas are
2623 -- inserted after it.
2625 pragma Assert (Is_List_Member (To));
2627 -- Inspect the declarations of the subprogram body looking for
2628 -- specific pragmas.
2630 Decl := First (Declarations (N));
2631 while Present (Decl) loop
2632 Next_Decl := Next (Decl);
2634 if Nkind (Decl) = N_Pragma then
2635 if Pragma_Name_Unmapped (Decl) = Name_SPARK_Mode then
2636 Insert_After (To, New_Copy_Tree (Decl));
2638 elsif Nam_In (Pragma_Name_Unmapped (Decl),
2639 Name_Ghost,
2640 Name_Volatile_Function)
2641 then
2642 Remove (Decl);
2643 Insert_After (To, Decl);
2644 end if;
2645 end if;
2647 Decl := Next_Decl;
2648 end loop;
2649 end Move_Pragmas;
2651 -- Local variables
2653 Decl : Node_Id;
2654 Subp_Decl : Node_Id;
2656 -- Start of processing for Build_Subprogram_Declaration
2658 begin
2659 -- Create a matching subprogram spec using the profile of the body.
2660 -- The structure of the tree is identical, but has new entities for
2661 -- the defining unit name and formal parameters.
2663 Subp_Decl :=
2664 Make_Subprogram_Declaration (Loc,
2665 Specification => Copy_Subprogram_Spec (Body_Spec));
2666 Set_Comes_From_Source (Subp_Decl, True);
2668 -- Relocate the aspects and relevant pragmas from the subprogram body
2669 -- to the generated spec because it acts as the initial declaration.
2671 Insert_Before (N, Subp_Decl);
2672 Move_Aspects (N, To => Subp_Decl);
2673 Move_Pragmas (N, To => Subp_Decl);
2675 -- Ensure that the generated corresponding spec and original body
2676 -- share the same SPARK_Mode pragma or aspect. As a result, both have
2677 -- the same SPARK_Mode attributes, and the global SPARK_Mode value is
2678 -- correctly set for local subprograms.
2680 Copy_SPARK_Mode_Aspect (Subp_Decl, To => N);
2682 Analyze (Subp_Decl);
2684 -- Propagate the attributes Rewritten_For_C and Corresponding_Proc to
2685 -- the body since the expander may generate calls using that entity.
2686 -- Required to ensure that Expand_Call rewrites calls to this
2687 -- function by calls to the built procedure.
2689 if Modify_Tree_For_C
2690 and then Nkind (Body_Spec) = N_Function_Specification
2691 and then
2692 Rewritten_For_C (Defining_Entity (Specification (Subp_Decl)))
2693 then
2694 Set_Rewritten_For_C (Defining_Entity (Body_Spec));
2695 Set_Corresponding_Procedure (Defining_Entity (Body_Spec),
2696 Corresponding_Procedure
2697 (Defining_Entity (Specification (Subp_Decl))));
2698 end if;
2700 -- Analyze any relocated source pragmas or pragmas created for aspect
2701 -- specifications.
2703 Decl := Next (Subp_Decl);
2704 while Present (Decl) loop
2706 -- Stop the search for pragmas once the body has been reached as
2707 -- this terminates the region where pragmas may appear.
2709 if Decl = N then
2710 exit;
2712 elsif Nkind (Decl) = N_Pragma then
2713 Analyze (Decl);
2714 end if;
2716 Next (Decl);
2717 end loop;
2719 Spec_Id := Defining_Entity (Subp_Decl);
2720 Set_Corresponding_Spec (N, Spec_Id);
2722 -- Mark the generated spec as a source construct to ensure that all
2723 -- calls to it are properly registered in ALI files for GNATprove.
2725 Set_Comes_From_Source (Spec_Id, True);
2727 -- Ensure that the specs of the subprogram declaration and its body
2728 -- are identical, otherwise they will appear non-conformant due to
2729 -- rewritings in the default values of formal parameters.
2731 Body_Spec := Copy_Subprogram_Spec (Body_Spec);
2732 Set_Specification (N, Body_Spec);
2733 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
2734 end Build_Subprogram_Declaration;
2736 ----------------------------
2737 -- Check_Anonymous_Return --
2738 ----------------------------
2740 procedure Check_Anonymous_Return is
2741 Decl : Node_Id;
2742 Par : Node_Id;
2743 Scop : Entity_Id;
2745 begin
2746 if Present (Spec_Id) then
2747 Scop := Spec_Id;
2748 else
2749 Scop := Body_Id;
2750 end if;
2752 if Ekind (Scop) = E_Function
2753 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
2754 and then not Is_Thunk (Scop)
2756 -- Skip internally built functions which handle the case of
2757 -- a null access (see Expand_Interface_Conversion)
2759 and then not (Is_Interface (Designated_Type (Etype (Scop)))
2760 and then not Comes_From_Source (Parent (Scop)))
2762 and then (Has_Task (Designated_Type (Etype (Scop)))
2763 or else
2764 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
2765 and then
2766 Is_Limited_Record (Designated_Type (Etype (Scop)))))
2767 and then Expander_Active
2769 -- Avoid cases with no tasking support
2771 and then RTE_Available (RE_Current_Master)
2772 and then not Restriction_Active (No_Task_Hierarchy)
2773 then
2774 Decl :=
2775 Make_Object_Declaration (Loc,
2776 Defining_Identifier =>
2777 Make_Defining_Identifier (Loc, Name_uMaster),
2778 Constant_Present => True,
2779 Object_Definition =>
2780 New_Occurrence_Of (RTE (RE_Master_Id), Loc),
2781 Expression =>
2782 Make_Explicit_Dereference (Loc,
2783 New_Occurrence_Of (RTE (RE_Current_Master), Loc)));
2785 if Present (Declarations (N)) then
2786 Prepend (Decl, Declarations (N));
2787 else
2788 Set_Declarations (N, New_List (Decl));
2789 end if;
2791 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
2792 Set_Has_Master_Entity (Scop);
2794 -- Now mark the containing scope as a task master
2796 Par := N;
2797 while Nkind (Par) /= N_Compilation_Unit loop
2798 Par := Parent (Par);
2799 pragma Assert (Present (Par));
2801 -- If we fall off the top, we are at the outer level, and
2802 -- the environment task is our effective master, so nothing
2803 -- to mark.
2805 if Nkind_In
2806 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
2807 then
2808 Set_Is_Task_Master (Par, True);
2809 exit;
2810 end if;
2811 end loop;
2812 end if;
2813 end Check_Anonymous_Return;
2815 -------------------------
2816 -- Check_Inline_Pragma --
2817 -------------------------
2819 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
2820 Prag : Node_Id;
2821 Plist : List_Id;
2823 function Is_Inline_Pragma (N : Node_Id) return Boolean;
2824 -- True when N is a pragma Inline or Inline_Always that applies
2825 -- to this subprogram.
2827 -----------------------
2828 -- Is_Inline_Pragma --
2829 -----------------------
2831 function Is_Inline_Pragma (N : Node_Id) return Boolean is
2832 begin
2833 if Nkind (N) = N_Pragma
2834 and then
2835 (Pragma_Name_Unmapped (N) = Name_Inline_Always
2836 or else (Pragma_Name_Unmapped (N) = Name_Inline
2837 and then
2838 (Front_End_Inlining or else Optimization_Level > 0)))
2839 and then Present (Pragma_Argument_Associations (N))
2840 then
2841 declare
2842 Pragma_Arg : Node_Id :=
2843 Expression (First (Pragma_Argument_Associations (N)));
2844 begin
2845 if Nkind (Pragma_Arg) = N_Selected_Component then
2846 Pragma_Arg := Selector_Name (Pragma_Arg);
2847 end if;
2849 return Chars (Pragma_Arg) = Chars (Body_Id);
2850 end;
2852 else
2853 return False;
2854 end if;
2855 end Is_Inline_Pragma;
2857 -- Start of processing for Check_Inline_Pragma
2859 begin
2860 if not Expander_Active then
2861 return;
2862 end if;
2864 if Is_List_Member (N)
2865 and then Present (Next (N))
2866 and then Is_Inline_Pragma (Next (N))
2867 then
2868 Prag := Next (N);
2870 elsif Nkind (N) /= N_Subprogram_Body_Stub
2871 and then Present (Declarations (N))
2872 and then Is_Inline_Pragma (First (Declarations (N)))
2873 then
2874 Prag := First (Declarations (N));
2876 else
2877 Prag := Empty;
2878 end if;
2880 if Present (Prag) then
2881 if Present (Spec_Id) then
2882 if Is_List_Member (N)
2883 and then Is_List_Member (Unit_Declaration_Node (Spec_Id))
2884 and then In_Same_List (N, Unit_Declaration_Node (Spec_Id))
2885 then
2886 Analyze (Prag);
2887 end if;
2889 else
2890 -- Create a subprogram declaration, to make treatment uniform.
2891 -- Make the sloc of the subprogram name that of the entity in
2892 -- the body, so that style checks find identical strings.
2894 declare
2895 Subp : constant Entity_Id :=
2896 Make_Defining_Identifier
2897 (Sloc (Body_Id), Chars (Body_Id));
2898 Decl : constant Node_Id :=
2899 Make_Subprogram_Declaration (Loc,
2900 Specification =>
2901 New_Copy_Tree (Specification (N)));
2903 begin
2904 -- Link the body and the generated spec
2906 Set_Corresponding_Body (Decl, Body_Id);
2907 Set_Corresponding_Spec (N, Subp);
2909 Set_Defining_Unit_Name (Specification (Decl), Subp);
2911 -- To ensure proper coverage when body is inlined, indicate
2912 -- whether the subprogram comes from source.
2914 Set_Comes_From_Source (Subp, Comes_From_Source (N));
2916 if Present (First_Formal (Body_Id)) then
2917 Plist := Copy_Parameter_List (Body_Id);
2918 Set_Parameter_Specifications
2919 (Specification (Decl), Plist);
2920 end if;
2922 -- Move aspects to the new spec
2924 if Has_Aspects (N) then
2925 Move_Aspects (N, To => Decl);
2926 end if;
2928 Insert_Before (N, Decl);
2929 Analyze (Decl);
2930 Analyze (Prag);
2931 Set_Has_Pragma_Inline (Subp);
2933 if Pragma_Name (Prag) = Name_Inline_Always then
2934 Set_Is_Inlined (Subp);
2935 Set_Has_Pragma_Inline_Always (Subp);
2936 end if;
2938 -- Prior to copying the subprogram body to create a template
2939 -- for it for subsequent inlining, remove the pragma from
2940 -- the current body so that the copy that will produce the
2941 -- new body will start from a completely unanalyzed tree.
2943 if Nkind (Parent (Prag)) = N_Subprogram_Body then
2944 Rewrite (Prag, Make_Null_Statement (Sloc (Prag)));
2945 end if;
2947 Spec := Subp;
2948 end;
2949 end if;
2950 end if;
2951 end Check_Inline_Pragma;
2953 --------------------------
2954 -- Check_Missing_Return --
2955 --------------------------
2957 procedure Check_Missing_Return is
2958 Id : Entity_Id;
2959 Missing_Ret : Boolean;
2961 begin
2962 if Nkind (Body_Spec) = N_Function_Specification then
2963 if Present (Spec_Id) then
2964 Id := Spec_Id;
2965 else
2966 Id := Body_Id;
2967 end if;
2969 if Return_Present (Id) then
2970 Check_Returns (HSS, 'F', Missing_Ret);
2972 if Missing_Ret then
2973 Set_Has_Missing_Return (Id);
2974 end if;
2976 -- Within a premature instantiation of a package with no body, we
2977 -- build completions of the functions therein, with a Raise
2978 -- statement. No point in complaining about a missing return in
2979 -- this case.
2981 elsif Ekind (Id) = E_Function
2982 and then In_Instance
2983 and then Present (Statements (HSS))
2984 and then Nkind (First (Statements (HSS))) = N_Raise_Program_Error
2985 then
2986 null;
2988 elsif Is_Generic_Subprogram (Id)
2989 or else not Is_Machine_Code_Subprogram (Id)
2990 then
2991 Error_Msg_N ("missing RETURN statement in function body", N);
2992 end if;
2994 -- If procedure with No_Return, check returns
2996 elsif Nkind (Body_Spec) = N_Procedure_Specification
2997 and then Present (Spec_Id)
2998 and then No_Return (Spec_Id)
2999 then
3000 Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
3001 end if;
3003 -- Special checks in SPARK mode
3005 if Nkind (Body_Spec) = N_Function_Specification then
3007 -- In SPARK mode, last statement of a function should be a return
3009 declare
3010 Stat : constant Node_Id := Last_Source_Statement (HSS);
3011 begin
3012 if Present (Stat)
3013 and then not Nkind_In (Stat, N_Simple_Return_Statement,
3014 N_Extended_Return_Statement)
3015 then
3016 Check_SPARK_05_Restriction
3017 ("last statement in function should be RETURN", Stat);
3018 end if;
3019 end;
3021 -- In SPARK mode, verify that a procedure has no return
3023 elsif Nkind (Body_Spec) = N_Procedure_Specification then
3024 if Present (Spec_Id) then
3025 Id := Spec_Id;
3026 else
3027 Id := Body_Id;
3028 end if;
3030 -- Would be nice to point to return statement here, can we
3031 -- borrow the Check_Returns procedure here ???
3033 if Return_Present (Id) then
3034 Check_SPARK_05_Restriction
3035 ("procedure should not have RETURN", N);
3036 end if;
3037 end if;
3038 end Check_Missing_Return;
3040 -----------------------
3041 -- Disambiguate_Spec --
3042 -----------------------
3044 function Disambiguate_Spec return Entity_Id is
3045 Priv_Spec : Entity_Id;
3046 Spec_N : Entity_Id;
3048 procedure Replace_Types (To_Corresponding : Boolean);
3049 -- Depending on the flag, replace the type of formal parameters of
3050 -- Body_Id if it is a concurrent type implementing interfaces with
3051 -- the corresponding record type or the other way around.
3053 procedure Replace_Types (To_Corresponding : Boolean) is
3054 Formal : Entity_Id;
3055 Formal_Typ : Entity_Id;
3057 begin
3058 Formal := First_Formal (Body_Id);
3059 while Present (Formal) loop
3060 Formal_Typ := Etype (Formal);
3062 if Is_Class_Wide_Type (Formal_Typ) then
3063 Formal_Typ := Root_Type (Formal_Typ);
3064 end if;
3066 -- From concurrent type to corresponding record
3068 if To_Corresponding then
3069 if Is_Concurrent_Type (Formal_Typ)
3070 and then Present (Corresponding_Record_Type (Formal_Typ))
3071 and then
3072 Present (Interfaces
3073 (Corresponding_Record_Type (Formal_Typ)))
3074 then
3075 Set_Etype (Formal,
3076 Corresponding_Record_Type (Formal_Typ));
3077 end if;
3079 -- From corresponding record to concurrent type
3081 else
3082 if Is_Concurrent_Record_Type (Formal_Typ)
3083 and then Present (Interfaces (Formal_Typ))
3084 then
3085 Set_Etype (Formal,
3086 Corresponding_Concurrent_Type (Formal_Typ));
3087 end if;
3088 end if;
3090 Next_Formal (Formal);
3091 end loop;
3092 end Replace_Types;
3094 -- Start of processing for Disambiguate_Spec
3096 begin
3097 -- Try to retrieve the specification of the body as is. All error
3098 -- messages are suppressed because the body may not have a spec in
3099 -- its current state.
3101 Spec_N := Find_Corresponding_Spec (N, False);
3103 -- It is possible that this is the body of a primitive declared
3104 -- between a private and a full view of a concurrent type. The
3105 -- controlling parameter of the spec carries the concurrent type,
3106 -- not the corresponding record type as transformed by Analyze_
3107 -- Subprogram_Specification. In such cases, we undo the change
3108 -- made by the analysis of the specification and try to find the
3109 -- spec again.
3111 -- Note that wrappers already have their corresponding specs and
3112 -- bodies set during their creation, so if the candidate spec is
3113 -- a wrapper, then we definitely need to swap all types to their
3114 -- original concurrent status.
3116 if No (Spec_N)
3117 or else Is_Primitive_Wrapper (Spec_N)
3118 then
3119 -- Restore all references of corresponding record types to the
3120 -- original concurrent types.
3122 Replace_Types (To_Corresponding => False);
3123 Priv_Spec := Find_Corresponding_Spec (N, False);
3125 -- The current body truly belongs to a primitive declared between
3126 -- a private and a full view. We leave the modified body as is,
3127 -- and return the true spec.
3129 if Present (Priv_Spec)
3130 and then Is_Private_Primitive (Priv_Spec)
3131 then
3132 return Priv_Spec;
3133 end if;
3135 -- In case that this is some sort of error, restore the original
3136 -- state of the body.
3138 Replace_Types (To_Corresponding => True);
3139 end if;
3141 return Spec_N;
3142 end Disambiguate_Spec;
3144 ----------------------------
3145 -- Exchange_Limited_Views --
3146 ----------------------------
3148 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id is
3149 Result : Elist_Id := No_Elist;
3151 procedure Detect_And_Exchange (Id : Entity_Id);
3152 -- Determine whether Id's type denotes an incomplete type associated
3153 -- with a limited with clause and exchange the limited view with the
3154 -- non-limited one when available. Note that the non-limited view
3155 -- may exist because of a with_clause in another unit in the context,
3156 -- but cannot be used because the current view of the enclosing unit
3157 -- is still a limited view.
3159 -------------------------
3160 -- Detect_And_Exchange --
3161 -------------------------
3163 procedure Detect_And_Exchange (Id : Entity_Id) is
3164 Typ : constant Entity_Id := Etype (Id);
3165 begin
3166 if From_Limited_With (Typ)
3167 and then Has_Non_Limited_View (Typ)
3168 and then not From_Limited_With (Scope (Typ))
3169 then
3170 if No (Result) then
3171 Result := New_Elmt_List;
3172 end if;
3174 Prepend_Elmt (Typ, Result);
3175 Prepend_Elmt (Id, Result);
3176 Set_Etype (Id, Non_Limited_View (Typ));
3177 end if;
3178 end Detect_And_Exchange;
3180 -- Local variables
3182 Formal : Entity_Id;
3184 -- Start of processing for Exchange_Limited_Views
3186 begin
3187 -- Do not process subprogram bodies as they already use the non-
3188 -- limited view of types.
3190 if not Ekind_In (Subp_Id, E_Function, E_Procedure) then
3191 return No_Elist;
3192 end if;
3194 -- Examine all formals and swap views when applicable
3196 Formal := First_Formal (Subp_Id);
3197 while Present (Formal) loop
3198 Detect_And_Exchange (Formal);
3200 Next_Formal (Formal);
3201 end loop;
3203 -- Process the return type of a function
3205 if Ekind (Subp_Id) = E_Function then
3206 Detect_And_Exchange (Subp_Id);
3207 end if;
3209 return Result;
3210 end Exchange_Limited_Views;
3212 -------------------------------------
3213 -- Is_Private_Concurrent_Primitive --
3214 -------------------------------------
3216 function Is_Private_Concurrent_Primitive
3217 (Subp_Id : Entity_Id) return Boolean
3219 Formal_Typ : Entity_Id;
3221 begin
3222 if Present (First_Formal (Subp_Id)) then
3223 Formal_Typ := Etype (First_Formal (Subp_Id));
3225 if Is_Concurrent_Record_Type (Formal_Typ) then
3226 if Is_Class_Wide_Type (Formal_Typ) then
3227 Formal_Typ := Root_Type (Formal_Typ);
3228 end if;
3230 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
3231 end if;
3233 -- The type of the first formal is a concurrent tagged type with
3234 -- a private view.
3236 return
3237 Is_Concurrent_Type (Formal_Typ)
3238 and then Is_Tagged_Type (Formal_Typ)
3239 and then Has_Private_Declaration (Formal_Typ);
3240 end if;
3242 return False;
3243 end Is_Private_Concurrent_Primitive;
3245 -------------------------
3246 -- Mask_Unfrozen_Types --
3247 -------------------------
3249 function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id is
3250 Result : Elist_Id := No_Elist;
3252 function Mask_Type_Refs (Node : Node_Id) return Traverse_Result;
3253 -- Mask all types referenced in the subtree rooted at Node
3255 --------------------
3256 -- Mask_Type_Refs --
3257 --------------------
3259 function Mask_Type_Refs (Node : Node_Id) return Traverse_Result is
3260 procedure Mask_Type (Typ : Entity_Id);
3261 -- ??? what does this do?
3263 ---------------
3264 -- Mask_Type --
3265 ---------------
3267 procedure Mask_Type (Typ : Entity_Id) is
3268 begin
3269 -- Skip Itypes created by the preanalysis
3271 if Is_Itype (Typ)
3272 and then Scope_Within_Or_Same (Scope (Typ), Spec_Id)
3273 then
3274 return;
3275 end if;
3277 if not Is_Frozen (Typ) then
3278 Set_Is_Frozen (Typ);
3279 Append_New_Elmt (Typ, Result);
3280 end if;
3281 end Mask_Type;
3283 -- Start of processing for Mask_Type_Refs
3285 begin
3286 if Is_Entity_Name (Node) and then Present (Entity (Node)) then
3287 Mask_Type (Etype (Entity (Node)));
3289 if Ekind_In (Entity (Node), E_Component, E_Discriminant) then
3290 Mask_Type (Scope (Entity (Node)));
3291 end if;
3293 elsif Nkind_In (Node, N_Aggregate, N_Null, N_Type_Conversion)
3294 and then Present (Etype (Node))
3295 then
3296 Mask_Type (Etype (Node));
3297 end if;
3299 return OK;
3300 end Mask_Type_Refs;
3302 procedure Mask_References is new Traverse_Proc (Mask_Type_Refs);
3304 -- Local variables
3306 Return_Stmt : constant Node_Id :=
3307 First (Statements (Handled_Statement_Sequence (N)));
3309 -- Start of processing for Mask_Unfrozen_Types
3311 begin
3312 pragma Assert (Nkind (Return_Stmt) = N_Simple_Return_Statement);
3314 Mask_References (Expression (Return_Stmt));
3316 return Result;
3317 end Mask_Unfrozen_Types;
3319 ---------------------------
3320 -- Restore_Limited_Views --
3321 ---------------------------
3323 procedure Restore_Limited_Views (Restore_List : Elist_Id) is
3324 Elmt : Elmt_Id := First_Elmt (Restore_List);
3325 Id : Entity_Id;
3327 begin
3328 while Present (Elmt) loop
3329 Id := Node (Elmt);
3330 Next_Elmt (Elmt);
3331 Set_Etype (Id, Node (Elmt));
3332 Next_Elmt (Elmt);
3333 end loop;
3334 end Restore_Limited_Views;
3336 ----------------------------
3337 -- Set_Trivial_Subprogram --
3338 ----------------------------
3340 procedure Set_Trivial_Subprogram (N : Node_Id) is
3341 Nxt : constant Node_Id := Next (N);
3343 begin
3344 Set_Is_Trivial_Subprogram (Body_Id);
3346 if Present (Spec_Id) then
3347 Set_Is_Trivial_Subprogram (Spec_Id);
3348 end if;
3350 if Present (Nxt)
3351 and then Nkind (Nxt) = N_Simple_Return_Statement
3352 and then No (Next (Nxt))
3353 and then Present (Expression (Nxt))
3354 and then Is_Entity_Name (Expression (Nxt))
3355 then
3356 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
3357 end if;
3358 end Set_Trivial_Subprogram;
3360 ---------------------------
3361 -- Unmask_Unfrozen_Types --
3362 ---------------------------
3364 procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id) is
3365 Elmt : Elmt_Id := First_Elmt (Unmask_List);
3367 begin
3368 while Present (Elmt) loop
3369 Set_Is_Frozen (Node (Elmt), False);
3370 Next_Elmt (Elmt);
3371 end loop;
3372 end Unmask_Unfrozen_Types;
3374 ---------------------------------
3375 -- Verify_Overriding_Indicator --
3376 ---------------------------------
3378 procedure Verify_Overriding_Indicator is
3379 begin
3380 if Must_Override (Body_Spec) then
3381 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
3382 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3383 then
3384 null;
3386 elsif not Present (Overridden_Operation (Spec_Id)) then
3387 Error_Msg_NE
3388 ("subprogram& is not overriding", Body_Spec, Spec_Id);
3390 -- Overriding indicators aren't allowed for protected subprogram
3391 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3392 -- this to a warning if -gnatd.E is enabled.
3394 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3395 Error_Msg_Warn := Error_To_Warning;
3396 Error_Msg_N
3397 ("<<overriding indicator not allowed for protected "
3398 & "subprogram body", Body_Spec);
3399 end if;
3401 elsif Must_Not_Override (Body_Spec) then
3402 if Present (Overridden_Operation (Spec_Id)) then
3403 Error_Msg_NE
3404 ("subprogram& overrides inherited operation",
3405 Body_Spec, Spec_Id);
3407 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
3408 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3409 then
3410 Error_Msg_NE
3411 ("subprogram& overrides predefined operator ",
3412 Body_Spec, Spec_Id);
3414 -- Overriding indicators aren't allowed for protected subprogram
3415 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3416 -- this to a warning if -gnatd.E is enabled.
3418 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3419 Error_Msg_Warn := Error_To_Warning;
3421 Error_Msg_N
3422 ("<<overriding indicator not allowed "
3423 & "for protected subprogram body", Body_Spec);
3425 -- If this is not a primitive operation, then the overriding
3426 -- indicator is altogether illegal.
3428 elsif not Is_Primitive (Spec_Id) then
3429 Error_Msg_N
3430 ("overriding indicator only allowed "
3431 & "if subprogram is primitive", Body_Spec);
3432 end if;
3434 -- If checking the style rule and the operation overrides, then
3435 -- issue a warning about a missing overriding_indicator. Protected
3436 -- subprogram bodies are excluded from this style checking, since
3437 -- they aren't primitives (even though their declarations can
3438 -- override) and aren't allowed to have an overriding_indicator.
3440 elsif Style_Check
3441 and then Present (Overridden_Operation (Spec_Id))
3442 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
3443 then
3444 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3445 Style.Missing_Overriding (N, Body_Id);
3447 elsif Style_Check
3448 and then Can_Override_Operator (Spec_Id)
3449 and then not In_Predefined_Unit (Spec_Id)
3450 then
3451 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3452 Style.Missing_Overriding (N, Body_Id);
3453 end if;
3454 end Verify_Overriding_Indicator;
3456 -- Local variables
3458 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
3459 Saved_ISMP : constant Boolean :=
3460 Ignore_SPARK_Mode_Pragmas_In_Instance;
3461 -- Save the Ghost and SPARK mode-related data to restore on exit
3463 -- Start of processing for Analyze_Subprogram_Body_Helper
3465 begin
3466 -- A [generic] subprogram body freezes the contract of the nearest
3467 -- enclosing package body and all other contracts encountered in the
3468 -- same declarative part up to and excluding the subprogram body:
3470 -- package body Nearest_Enclosing_Package
3471 -- with Refined_State => (State => Constit)
3472 -- is
3473 -- Constit : ...;
3475 -- procedure Freezes_Enclosing_Package_Body
3476 -- with Refined_Depends => (Input => Constit) ...
3478 -- This ensures that any annotations referenced by the contract of the
3479 -- [generic] subprogram body are available. This form of freezing is
3480 -- decoupled from the usual Freeze_xxx mechanism because it must also
3481 -- work in the context of generics where normal freezing is disabled.
3483 -- Only bodies coming from source should cause this type of freezing.
3484 -- Expression functions that act as bodies and complete an initial
3485 -- declaration must be included in this category, hence the use of
3486 -- Original_Node.
3488 if Comes_From_Source (Original_Node (N)) then
3489 Freeze_Previous_Contracts (N);
3490 end if;
3492 -- Generic subprograms are handled separately. They always have a
3493 -- generic specification. Determine whether current scope has a
3494 -- previous declaration.
3496 -- If the subprogram body is defined within an instance of the same
3497 -- name, the instance appears as a package renaming, and will be hidden
3498 -- within the subprogram.
3500 if Present (Prev_Id)
3501 and then not Is_Overloadable (Prev_Id)
3502 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
3503 or else Comes_From_Source (Prev_Id))
3504 then
3505 if Is_Generic_Subprogram (Prev_Id) then
3506 Spec_Id := Prev_Id;
3508 -- A subprogram body is Ghost when it is stand alone and subject
3509 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3510 -- the mode now to ensure that any nodes generated during analysis
3511 -- and expansion are properly marked as Ghost.
3513 Mark_And_Set_Ghost_Body (N, Spec_Id);
3515 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3516 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3518 Analyze_Generic_Subprogram_Body (N, Spec_Id);
3520 if Nkind (N) = N_Subprogram_Body then
3521 HSS := Handled_Statement_Sequence (N);
3522 Check_Missing_Return;
3523 end if;
3525 goto Leave;
3527 -- Otherwise a previous entity conflicts with the subprogram name.
3528 -- Attempting to enter name will post error.
3530 else
3531 Enter_Name (Body_Id);
3532 goto Leave;
3533 end if;
3535 -- Non-generic case, find the subprogram declaration, if one was seen,
3536 -- or enter new overloaded entity in the current scope. If the
3537 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
3538 -- part of the context of one of its subunits. No need to redo the
3539 -- analysis.
3541 elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
3542 goto Leave;
3544 else
3545 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
3547 if Nkind (N) = N_Subprogram_Body_Stub
3548 or else No (Corresponding_Spec (N))
3549 then
3550 if Is_Private_Concurrent_Primitive (Body_Id) then
3551 Spec_Id := Disambiguate_Spec;
3553 -- A subprogram body is Ghost when it is stand alone and
3554 -- subject to pragma Ghost or when the corresponding spec is
3555 -- Ghost. Set the mode now to ensure that any nodes generated
3556 -- during analysis and expansion are properly marked as Ghost.
3558 Mark_And_Set_Ghost_Body (N, Spec_Id);
3560 else
3561 Spec_Id := Find_Corresponding_Spec (N);
3563 -- A subprogram body is Ghost when it is stand alone and
3564 -- subject to pragma Ghost or when the corresponding spec is
3565 -- Ghost. Set the mode now to ensure that any nodes generated
3566 -- during analysis and expansion are properly marked as Ghost.
3568 Mark_And_Set_Ghost_Body (N, Spec_Id);
3570 -- In GNATprove mode, if the body has no previous spec, create
3571 -- one so that the inlining machinery can operate properly.
3572 -- Transfer aspects, if any, to the new spec, so that they
3573 -- are legal and can be processed ahead of the body.
3574 -- We make two copies of the given spec, one for the new
3575 -- declaration, and one for the body.
3577 if No (Spec_Id) and then GNATprove_Mode
3579 -- Inlining does not apply during pre-analysis of code
3581 and then Full_Analysis
3583 -- Inlining only applies to full bodies, not stubs
3585 and then Nkind (N) /= N_Subprogram_Body_Stub
3587 -- Inlining only applies to bodies in the source code, not to
3588 -- those generated by the compiler. In particular, expression
3589 -- functions, whose body is generated by the compiler, are
3590 -- treated specially by GNATprove.
3592 and then Comes_From_Source (Body_Id)
3594 -- This cannot be done for a compilation unit, which is not
3595 -- in a context where we can insert a new spec.
3597 and then Is_List_Member (N)
3599 -- Inlining only applies to subprograms without contracts,
3600 -- as a contract is a sign that GNATprove should perform a
3601 -- modular analysis of the subprogram instead of a contextual
3602 -- analysis at each call site. The same test is performed in
3603 -- Inline.Can_Be_Inlined_In_GNATprove_Mode. It is repeated
3604 -- here in another form (because the contract has not been
3605 -- attached to the body) to avoid front-end errors in case
3606 -- pragmas are used instead of aspects, because the
3607 -- corresponding pragmas in the body would not be transferred
3608 -- to the spec, leading to legality errors.
3610 and then not Body_Has_Contract
3611 and then not Inside_A_Generic
3612 then
3613 Build_Subprogram_Declaration;
3615 -- If this is a function that returns a constrained array, and
3616 -- we are generating SPARK_For_C, create subprogram declaration
3617 -- to simplify subsequent C generation.
3619 elsif No (Spec_Id)
3620 and then Modify_Tree_For_C
3621 and then Nkind (Body_Spec) = N_Function_Specification
3622 and then Is_Array_Type (Etype (Body_Id))
3623 and then Is_Constrained (Etype (Body_Id))
3624 then
3625 Build_Subprogram_Declaration;
3626 end if;
3627 end if;
3629 -- If this is a duplicate body, no point in analyzing it
3631 if Error_Posted (N) then
3632 goto Leave;
3633 end if;
3635 -- A subprogram body should cause freezing of its own declaration,
3636 -- but if there was no previous explicit declaration, then the
3637 -- subprogram will get frozen too late (there may be code within
3638 -- the body that depends on the subprogram having been frozen,
3639 -- such as uses of extra formals), so we force it to be frozen
3640 -- here. Same holds if the body and spec are compilation units.
3641 -- Finally, if the return type is an anonymous access to protected
3642 -- subprogram, it must be frozen before the body because its
3643 -- expansion has generated an equivalent type that is used when
3644 -- elaborating the body.
3646 -- An exception in the case of Ada 2012, AI05-177: The bodies
3647 -- created for expression functions do not freeze.
3649 if No (Spec_Id)
3650 and then Nkind (Original_Node (N)) /= N_Expression_Function
3651 then
3652 Freeze_Before (N, Body_Id);
3654 elsif Nkind (Parent (N)) = N_Compilation_Unit then
3655 Freeze_Before (N, Spec_Id);
3657 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
3658 Freeze_Before (N, Etype (Body_Id));
3659 end if;
3661 else
3662 Spec_Id := Corresponding_Spec (N);
3664 -- A subprogram body is Ghost when it is stand alone and subject
3665 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3666 -- the mode now to ensure that any nodes generated during analysis
3667 -- and expansion are properly marked as Ghost.
3669 Mark_And_Set_Ghost_Body (N, Spec_Id);
3670 end if;
3671 end if;
3673 -- Previously we scanned the body to look for nested subprograms, and
3674 -- rejected an inline directive if nested subprograms were present,
3675 -- because the back-end would generate conflicting symbols for the
3676 -- nested bodies. This is now unnecessary.
3678 -- Look ahead to recognize a pragma Inline that appears after the body
3680 Check_Inline_Pragma (Spec_Id);
3682 -- Deal with special case of a fully private operation in the body of
3683 -- the protected type. We must create a declaration for the subprogram,
3684 -- in order to attach the protected subprogram that will be used in
3685 -- internal calls. We exclude compiler generated bodies from the
3686 -- expander since the issue does not arise for those cases.
3688 if No (Spec_Id)
3689 and then Comes_From_Source (N)
3690 and then Is_Protected_Type (Current_Scope)
3691 then
3692 Spec_Id := Build_Private_Protected_Declaration (N);
3693 end if;
3695 -- If we are generating C and this is a function returning a constrained
3696 -- array type for which we must create a procedure with an extra out
3697 -- parameter, build and analyze the body now. The procedure declaration
3698 -- has already been created. We reuse the source body of the function,
3699 -- because in an instance it may contain global references that cannot
3700 -- be reanalyzed. The source function itself is not used any further,
3701 -- so we mark it as having a completion. If the subprogram is a stub the
3702 -- transformation is done later, when the proper body is analyzed.
3704 if Expander_Active
3705 and then Modify_Tree_For_C
3706 and then Present (Spec_Id)
3707 and then Ekind (Spec_Id) = E_Function
3708 and then Nkind (N) /= N_Subprogram_Body_Stub
3709 and then Rewritten_For_C (Spec_Id)
3710 then
3711 Set_Has_Completion (Spec_Id);
3713 Rewrite (N, Build_Procedure_Body_Form (Spec_Id, N));
3714 Analyze (N);
3716 -- The entity for the created procedure must remain invisible, so it
3717 -- does not participate in resolution of subsequent references to the
3718 -- function.
3720 Set_Is_Immediately_Visible (Corresponding_Spec (N), False);
3721 goto Leave;
3722 end if;
3724 -- If a separate spec is present, then deal with freezing issues
3726 if Present (Spec_Id) then
3727 Spec_Decl := Unit_Declaration_Node (Spec_Id);
3728 Verify_Overriding_Indicator;
3730 -- In general, the spec will be frozen when we start analyzing the
3731 -- body. However, for internally generated operations, such as
3732 -- wrapper functions for inherited operations with controlling
3733 -- results, the spec may not have been frozen by the time we expand
3734 -- the freeze actions that include the bodies. In particular, extra
3735 -- formals for accessibility or for return-in-place may need to be
3736 -- generated. Freeze nodes, if any, are inserted before the current
3737 -- body. These freeze actions are also needed in ASIS mode and in
3738 -- Compile_Only mode to enable the proper back-end type annotations.
3739 -- They are necessary in any case to insure order of elaboration
3740 -- in gigi.
3742 if not Is_Frozen (Spec_Id)
3743 and then (Expander_Active
3744 or else ASIS_Mode
3745 or else (Operating_Mode = Check_Semantics
3746 and then Serious_Errors_Detected = 0))
3747 then
3748 -- The body generated for an expression function that is not a
3749 -- completion is a freeze point neither for the profile nor for
3750 -- anything else. That's why, in order to prevent any freezing
3751 -- during analysis, we need to mask types declared outside the
3752 -- expression that are not yet frozen.
3754 if Nkind (N) = N_Subprogram_Body
3755 and then Was_Expression_Function (N)
3756 and then not Has_Completion (Spec_Id)
3757 then
3758 Set_Is_Frozen (Spec_Id);
3759 Mask_Types := Mask_Unfrozen_Types (Spec_Id);
3760 else
3761 Set_Has_Delayed_Freeze (Spec_Id);
3762 Freeze_Before (N, Spec_Id);
3763 end if;
3764 end if;
3765 end if;
3767 -- If the subprogram has a class-wide clone, build its body as a copy
3768 -- of the original body, and rewrite body of original subprogram as a
3769 -- wrapper that calls the clone.
3771 if Present (Spec_Id)
3772 and then Present (Class_Wide_Clone (Spec_Id))
3773 and then (Comes_From_Source (N) or else Was_Expression_Function (N))
3774 then
3775 Build_Class_Wide_Clone_Body (Spec_Id, N);
3777 -- This is the new body for the existing primitive operation
3779 Rewrite (N, Build_Class_Wide_Clone_Call
3780 (Sloc (N), New_List, Spec_Id, Parent (Spec_Id)));
3781 Set_Has_Completion (Spec_Id, False);
3782 Analyze (N);
3783 return;
3784 end if;
3786 -- Place subprogram on scope stack, and make formals visible. If there
3787 -- is a spec, the visible entity remains that of the spec.
3789 if Present (Spec_Id) then
3790 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
3792 if Is_Child_Unit (Spec_Id) then
3793 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
3794 end if;
3796 if Style_Check then
3797 Style.Check_Identifier (Body_Id, Spec_Id);
3798 end if;
3800 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3801 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3803 if Is_Abstract_Subprogram (Spec_Id) then
3804 Error_Msg_N ("an abstract subprogram cannot have a body", N);
3805 goto Leave;
3807 else
3808 Set_Convention (Body_Id, Convention (Spec_Id));
3809 Set_Has_Completion (Spec_Id);
3811 if Is_Protected_Type (Scope (Spec_Id)) then
3812 Prot_Typ := Scope (Spec_Id);
3813 end if;
3815 -- If this is a body generated for a renaming, do not check for
3816 -- full conformance. The check is redundant, because the spec of
3817 -- the body is a copy of the spec in the renaming declaration,
3818 -- and the test can lead to spurious errors on nested defaults.
3820 if Present (Spec_Decl)
3821 and then not Comes_From_Source (N)
3822 and then
3823 (Nkind (Original_Node (Spec_Decl)) =
3824 N_Subprogram_Renaming_Declaration
3825 or else (Present (Corresponding_Body (Spec_Decl))
3826 and then
3827 Nkind (Unit_Declaration_Node
3828 (Corresponding_Body (Spec_Decl))) =
3829 N_Subprogram_Renaming_Declaration))
3830 then
3831 Conformant := True;
3833 -- Conversely, the spec may have been generated for specless body
3834 -- with an inline pragma. The entity comes from source, which is
3835 -- both semantically correct and necessary for proper inlining.
3836 -- The subprogram declaration itself is not in the source.
3838 elsif Comes_From_Source (N)
3839 and then Present (Spec_Decl)
3840 and then not Comes_From_Source (Spec_Decl)
3841 and then Has_Pragma_Inline (Spec_Id)
3842 then
3843 Conformant := True;
3845 else
3846 Check_Conformance
3847 (Body_Id, Spec_Id,
3848 Fully_Conformant, True, Conformant, Body_Id);
3849 end if;
3851 -- If the body is not fully conformant, we have to decide if we
3852 -- should analyze it or not. If it has a really messed up profile
3853 -- then we probably should not analyze it, since we will get too
3854 -- many bogus messages.
3856 -- Our decision is to go ahead in the non-fully conformant case
3857 -- only if it is at least mode conformant with the spec. Note
3858 -- that the call to Check_Fully_Conformant has issued the proper
3859 -- error messages to complain about the lack of conformance.
3861 if not Conformant
3862 and then not Mode_Conformant (Body_Id, Spec_Id)
3863 then
3864 goto Leave;
3865 end if;
3866 end if;
3868 if Spec_Id /= Body_Id then
3869 Reference_Body_Formals (Spec_Id, Body_Id);
3870 end if;
3872 Set_Ekind (Body_Id, E_Subprogram_Body);
3874 if Nkind (N) = N_Subprogram_Body_Stub then
3875 Set_Corresponding_Spec_Of_Stub (N, Spec_Id);
3877 -- Regular body
3879 else
3880 Set_Corresponding_Spec (N, Spec_Id);
3882 -- Ada 2005 (AI-345): If the operation is a primitive operation
3883 -- of a concurrent type, the type of the first parameter has been
3884 -- replaced with the corresponding record, which is the proper
3885 -- run-time structure to use. However, within the body there may
3886 -- be uses of the formals that depend on primitive operations
3887 -- of the type (in particular calls in prefixed form) for which
3888 -- we need the original concurrent type. The operation may have
3889 -- several controlling formals, so the replacement must be done
3890 -- for all of them.
3892 if Comes_From_Source (Spec_Id)
3893 and then Present (First_Entity (Spec_Id))
3894 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
3895 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
3896 and then Present (Interfaces (Etype (First_Entity (Spec_Id))))
3897 and then Present (Corresponding_Concurrent_Type
3898 (Etype (First_Entity (Spec_Id))))
3899 then
3900 declare
3901 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
3902 Form : Entity_Id;
3904 begin
3905 Form := First_Formal (Spec_Id);
3906 while Present (Form) loop
3907 if Etype (Form) = Typ then
3908 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
3909 end if;
3911 Next_Formal (Form);
3912 end loop;
3913 end;
3914 end if;
3916 -- Make the formals visible, and place subprogram on scope stack.
3917 -- This is also the point at which we set Last_Real_Spec_Entity
3918 -- to mark the entities which will not be moved to the body.
3920 Install_Formals (Spec_Id);
3921 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
3923 -- Within an instance, add local renaming declarations so that
3924 -- gdb can retrieve the values of actuals more easily. This is
3925 -- only relevant if generating code (and indeed we definitely
3926 -- do not want these definitions -gnatc mode, because that would
3927 -- confuse ASIS).
3929 if Is_Generic_Instance (Spec_Id)
3930 and then Is_Wrapper_Package (Current_Scope)
3931 and then Expander_Active
3932 then
3933 Build_Subprogram_Instance_Renamings (N, Current_Scope);
3934 end if;
3936 Push_Scope (Spec_Id);
3938 -- Make sure that the subprogram is immediately visible. For
3939 -- child units that have no separate spec this is indispensable.
3940 -- Otherwise it is safe albeit redundant.
3942 Set_Is_Immediately_Visible (Spec_Id);
3943 end if;
3945 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
3946 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
3947 Set_Scope (Body_Id, Scope (Spec_Id));
3949 -- Case of subprogram body with no previous spec
3951 else
3952 -- Check for style warning required
3954 if Style_Check
3956 -- Only apply check for source level subprograms for which checks
3957 -- have not been suppressed.
3959 and then Comes_From_Source (Body_Id)
3960 and then not Suppress_Style_Checks (Body_Id)
3962 -- No warnings within an instance
3964 and then not In_Instance
3966 -- No warnings for expression functions
3968 and then Nkind (Original_Node (N)) /= N_Expression_Function
3969 then
3970 Style.Body_With_No_Spec (N);
3971 end if;
3973 New_Overloaded_Entity (Body_Id);
3975 if Nkind (N) /= N_Subprogram_Body_Stub then
3976 Set_Acts_As_Spec (N);
3977 Generate_Definition (Body_Id);
3978 Generate_Reference
3979 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
3981 -- If the body is an entry wrapper created for an entry with
3982 -- preconditions, it must be compiled in the context of the
3983 -- enclosing synchronized object, because it may mention other
3984 -- operations of the type.
3986 if Is_Entry_Wrapper (Body_Id) then
3987 declare
3988 Prot : constant Entity_Id := Etype (First_Entity (Body_Id));
3989 begin
3990 Push_Scope (Prot);
3991 Install_Declarations (Prot);
3992 end;
3993 end if;
3995 Install_Formals (Body_Id);
3997 Push_Scope (Body_Id);
3998 end if;
4000 -- For stubs and bodies with no previous spec, generate references to
4001 -- formals.
4003 Generate_Reference_To_Formals (Body_Id);
4004 end if;
4006 -- Entry barrier functions are generated outside the protected type and
4007 -- should not carry the SPARK_Mode of the enclosing context.
4009 if Nkind (N) = N_Subprogram_Body
4010 and then Is_Entry_Barrier_Function (N)
4011 then
4012 null;
4014 -- The body is generated as part of expression function expansion. When
4015 -- the expression function appears in the visible declarations of a
4016 -- package, the body is added to the private declarations. Since both
4017 -- declarative lists may be subject to a different SPARK_Mode, inherit
4018 -- the mode of the spec.
4020 -- package P with SPARK_Mode is
4021 -- function Expr_Func ... is (...); -- original
4022 -- [function Expr_Func ...;] -- generated spec
4023 -- -- mode is ON
4024 -- private
4025 -- pragma SPARK_Mode (Off);
4026 -- [function Expr_Func ... is return ...;] -- generated body
4027 -- end P; -- mode is ON
4029 elsif not Comes_From_Source (N)
4030 and then Present (Spec_Id)
4031 and then Is_Expression_Function (Spec_Id)
4032 then
4033 Set_SPARK_Pragma (Body_Id, SPARK_Pragma (Spec_Id));
4034 Set_SPARK_Pragma_Inherited
4035 (Body_Id, SPARK_Pragma_Inherited (Spec_Id));
4037 -- Set the SPARK_Mode from the current context (may be overwritten later
4038 -- with explicit pragma). Exclude the case where the SPARK_Mode appears
4039 -- initially on a stand-alone subprogram body, but is then relocated to
4040 -- a generated corresponding spec. In this scenario the mode is shared
4041 -- between the spec and body.
4043 elsif No (SPARK_Pragma (Body_Id)) then
4044 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
4045 Set_SPARK_Pragma_Inherited (Body_Id);
4046 end if;
4048 -- A subprogram body may be instantiated or inlined at a later pass.
4049 -- Restore the state of Ignore_SPARK_Mode_Pragmas_In_Instance when it
4050 -- applied to the initial declaration of the body.
4052 if Present (Spec_Id) then
4053 if Ignore_SPARK_Mode_Pragmas (Spec_Id) then
4054 Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4055 end if;
4057 else
4058 -- Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in
4059 -- case the body is instantiated or inlined later and out of context.
4060 -- The body uses this attribute to restore the value of the global
4061 -- flag.
4063 if Ignore_SPARK_Mode_Pragmas_In_Instance then
4064 Set_Ignore_SPARK_Mode_Pragmas (Body_Id);
4066 elsif Ignore_SPARK_Mode_Pragmas (Body_Id) then
4067 Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4068 end if;
4069 end if;
4071 -- If this is the proper body of a stub, we must verify that the stub
4072 -- conforms to the body, and to the previous spec if one was present.
4073 -- We know already that the body conforms to that spec. This test is
4074 -- only required for subprograms that come from source.
4076 if Nkind (Parent (N)) = N_Subunit
4077 and then Comes_From_Source (N)
4078 and then not Error_Posted (Body_Id)
4079 and then Nkind (Corresponding_Stub (Parent (N))) =
4080 N_Subprogram_Body_Stub
4081 then
4082 declare
4083 Old_Id : constant Entity_Id :=
4084 Defining_Entity
4085 (Specification (Corresponding_Stub (Parent (N))));
4087 Conformant : Boolean := False;
4089 begin
4090 if No (Spec_Id) then
4091 Check_Fully_Conformant (Body_Id, Old_Id);
4093 else
4094 Check_Conformance
4095 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
4097 if not Conformant then
4099 -- The stub was taken to be a new declaration. Indicate that
4100 -- it lacks a body.
4102 Set_Has_Completion (Old_Id, False);
4103 end if;
4104 end if;
4105 end;
4106 end if;
4108 Set_Has_Completion (Body_Id);
4109 Check_Eliminated (Body_Id);
4111 -- Analyze any aspect specifications that appear on the subprogram body
4112 -- stub. Stop the analysis now as the stub does not have a declarative
4113 -- or a statement part, and it cannot be inlined.
4115 if Nkind (N) = N_Subprogram_Body_Stub then
4116 if Has_Aspects (N) then
4117 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
4118 end if;
4120 goto Leave;
4121 end if;
4123 -- Handle inlining
4125 -- Note: Normally we don't do any inlining if expansion is off, since
4126 -- we won't generate code in any case. An exception arises in GNATprove
4127 -- mode where we want to expand some calls in place, even with expansion
4128 -- disabled, since the inlining eases formal verification.
4130 if not GNATprove_Mode
4131 and then Expander_Active
4132 and then Serious_Errors_Detected = 0
4133 and then Present (Spec_Id)
4134 and then Has_Pragma_Inline (Spec_Id)
4135 then
4136 -- Legacy implementation (relying on front-end inlining)
4138 if not Back_End_Inlining then
4139 if (Has_Pragma_Inline_Always (Spec_Id)
4140 and then not Opt.Disable_FE_Inline_Always)
4141 or else (Front_End_Inlining
4142 and then not Opt.Disable_FE_Inline)
4143 then
4144 Build_Body_To_Inline (N, Spec_Id);
4145 end if;
4147 -- New implementation (relying on back-end inlining)
4149 else
4150 if Has_Pragma_Inline_Always (Spec_Id)
4151 or else Optimization_Level > 0
4152 then
4153 -- Handle function returning an unconstrained type
4155 if Comes_From_Source (Body_Id)
4156 and then Ekind (Spec_Id) = E_Function
4157 and then Returns_Unconstrained_Type (Spec_Id)
4159 -- If function builds in place, i.e. returns a limited type,
4160 -- inlining cannot be done.
4162 and then not Is_Limited_Type (Etype (Spec_Id))
4163 then
4164 Check_And_Split_Unconstrained_Function (N, Spec_Id, Body_Id);
4166 else
4167 declare
4168 Subp_Body : constant Node_Id :=
4169 Unit_Declaration_Node (Body_Id);
4170 Subp_Decl : constant List_Id := Declarations (Subp_Body);
4172 begin
4173 -- Do not pass inlining to the backend if the subprogram
4174 -- has declarations or statements which cannot be inlined
4175 -- by the backend. This check is done here to emit an
4176 -- error instead of the generic warning message reported
4177 -- by the GCC backend (ie. "function might not be
4178 -- inlinable").
4180 if Present (Subp_Decl)
4181 and then Has_Excluded_Declaration (Spec_Id, Subp_Decl)
4182 then
4183 null;
4185 elsif Has_Excluded_Statement
4186 (Spec_Id,
4187 Statements
4188 (Handled_Statement_Sequence (Subp_Body)))
4189 then
4190 null;
4192 -- If the backend inlining is available then at this
4193 -- stage we only have to mark the subprogram as inlined.
4194 -- The expander will take care of registering it in the
4195 -- table of subprograms inlined by the backend a part of
4196 -- processing calls to it (cf. Expand_Call)
4198 else
4199 Set_Is_Inlined (Spec_Id);
4200 end if;
4201 end;
4202 end if;
4203 end if;
4204 end if;
4206 -- In GNATprove mode, inline only when there is a separate subprogram
4207 -- declaration for now, as inlining of subprogram bodies acting as
4208 -- declarations, or subprogram stubs, are not supported by front-end
4209 -- inlining. This inlining should occur after analysis of the body, so
4210 -- that it is known whether the value of SPARK_Mode, which can be
4211 -- defined by a pragma inside the body, is applicable to the body.
4212 -- Inlining can be disabled with switch -gnatdm
4214 elsif GNATprove_Mode
4215 and then Full_Analysis
4216 and then not Inside_A_Generic
4217 and then Present (Spec_Id)
4218 and then
4219 Nkind (Unit_Declaration_Node (Spec_Id)) = N_Subprogram_Declaration
4220 and then Body_Has_SPARK_Mode_On
4221 and then Can_Be_Inlined_In_GNATprove_Mode (Spec_Id, Body_Id)
4222 and then not Body_Has_Contract
4223 and then not Debug_Flag_M
4224 then
4225 Build_Body_To_Inline (N, Spec_Id);
4226 end if;
4228 -- When generating code, inherited pre/postconditions are handled when
4229 -- expanding the corresponding contract.
4231 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
4232 -- of the specification we have to install the private withed units.
4233 -- This holds for child units as well.
4235 if Is_Compilation_Unit (Body_Id)
4236 or else Nkind (Parent (N)) = N_Compilation_Unit
4237 then
4238 Install_Private_With_Clauses (Body_Id);
4239 end if;
4241 Check_Anonymous_Return;
4243 -- Set the Protected_Formal field of each extra formal of the protected
4244 -- subprogram to reference the corresponding extra formal of the
4245 -- subprogram that implements it. For regular formals this occurs when
4246 -- the protected subprogram's declaration is expanded, but the extra
4247 -- formals don't get created until the subprogram is frozen. We need to
4248 -- do this before analyzing the protected subprogram's body so that any
4249 -- references to the original subprogram's extra formals will be changed
4250 -- refer to the implementing subprogram's formals (see Expand_Formal).
4252 if Present (Spec_Id)
4253 and then Is_Protected_Type (Scope (Spec_Id))
4254 and then Present (Protected_Body_Subprogram (Spec_Id))
4255 then
4256 declare
4257 Impl_Subp : constant Entity_Id :=
4258 Protected_Body_Subprogram (Spec_Id);
4259 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
4260 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
4262 begin
4263 while Present (Prot_Ext_Formal) loop
4264 pragma Assert (Present (Impl_Ext_Formal));
4265 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
4266 Next_Formal_With_Extras (Prot_Ext_Formal);
4267 Next_Formal_With_Extras (Impl_Ext_Formal);
4268 end loop;
4269 end;
4270 end if;
4272 -- Now we can go on to analyze the body
4274 HSS := Handled_Statement_Sequence (N);
4275 Set_Actual_Subtypes (N, Current_Scope);
4277 -- Add a declaration for the Protection object, renaming declarations
4278 -- for discriminals and privals and finally a declaration for the entry
4279 -- family index (if applicable). This form of early expansion is done
4280 -- when the Expander is active because Install_Private_Data_Declarations
4281 -- references entities which were created during regular expansion. The
4282 -- subprogram entity must come from source, and not be an internally
4283 -- generated subprogram.
4285 if Expander_Active
4286 and then Present (Prot_Typ)
4287 and then Present (Spec_Id)
4288 and then Comes_From_Source (Spec_Id)
4289 and then not Is_Eliminated (Spec_Id)
4290 then
4291 Install_Private_Data_Declarations
4292 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
4293 end if;
4295 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
4296 -- may now appear in parameter and result profiles. Since the analysis
4297 -- of a subprogram body may use the parameter and result profile of the
4298 -- spec, swap any limited views with their non-limited counterpart.
4300 if Ada_Version >= Ada_2012 and then Present (Spec_Id) then
4301 Exch_Views := Exchange_Limited_Views (Spec_Id);
4302 end if;
4304 -- If the return type is an anonymous access type whose designated type
4305 -- is the limited view of a class-wide type and the non-limited view is
4306 -- available, update the return type accordingly.
4308 if Ada_Version >= Ada_2005 and then Present (Spec_Id) then
4309 declare
4310 Etyp : Entity_Id;
4311 Rtyp : Entity_Id;
4313 begin
4314 Rtyp := Etype (Spec_Id);
4316 if Ekind (Rtyp) = E_Anonymous_Access_Type then
4317 Etyp := Directly_Designated_Type (Rtyp);
4319 if Is_Class_Wide_Type (Etyp)
4320 and then From_Limited_With (Etyp)
4321 then
4322 Desig_View := Etyp;
4323 Set_Directly_Designated_Type (Rtyp, Available_View (Etyp));
4324 end if;
4325 end if;
4326 end;
4327 end if;
4329 -- Analyze any aspect specifications that appear on the subprogram body
4331 if Has_Aspects (N) then
4332 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
4333 end if;
4335 Analyze_Declarations (Declarations (N));
4337 -- Verify that the SPARK_Mode of the body agrees with that of its spec
4339 if Present (Spec_Id) and then Present (SPARK_Pragma (Body_Id)) then
4340 if Present (SPARK_Pragma (Spec_Id)) then
4341 if Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Spec_Id)) = Off
4342 and then
4343 Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Body_Id)) = On
4344 then
4345 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4346 Error_Msg_N ("incorrect application of SPARK_Mode#", N);
4347 Error_Msg_Sloc := Sloc (SPARK_Pragma (Spec_Id));
4348 Error_Msg_NE
4349 ("\value Off was set for SPARK_Mode on & #", N, Spec_Id);
4350 end if;
4352 elsif Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Body_Stub then
4353 null;
4355 else
4356 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4357 Error_Msg_N ("incorrect application of SPARK_Mode #", N);
4358 Error_Msg_Sloc := Sloc (Spec_Id);
4359 Error_Msg_NE
4360 ("\no value was set for SPARK_Mode on & #", N, Spec_Id);
4361 end if;
4362 end if;
4364 -- A subprogram body freezes its own contract. Analyze the contract
4365 -- after the declarations of the body have been processed as pragmas
4366 -- are now chained on the contract of the subprogram body.
4368 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
4370 -- Check completion, and analyze the statements
4372 Check_Completion;
4373 Inspect_Deferred_Constant_Completion (Declarations (N));
4374 Analyze (HSS);
4376 -- Deal with end of scope processing for the body
4378 Process_End_Label (HSS, 't', Current_Scope);
4379 Update_Use_Clause_Chain;
4380 End_Scope;
4382 -- If we are compiling an entry wrapper, remove the enclosing
4383 -- synchronized object from the stack.
4385 if Is_Entry_Wrapper (Body_Id) then
4386 End_Scope;
4387 end if;
4389 Check_Subprogram_Order (N);
4390 Set_Analyzed (Body_Id);
4392 -- If we have a separate spec, then the analysis of the declarations
4393 -- caused the entities in the body to be chained to the spec id, but
4394 -- we want them chained to the body id. Only the formal parameters
4395 -- end up chained to the spec id in this case.
4397 if Present (Spec_Id) then
4399 -- We must conform to the categorization of our spec
4401 Validate_Categorization_Dependency (N, Spec_Id);
4403 -- And if this is a child unit, the parent units must conform
4405 if Is_Child_Unit (Spec_Id) then
4406 Validate_Categorization_Dependency
4407 (Unit_Declaration_Node (Spec_Id), Spec_Id);
4408 end if;
4410 -- Here is where we move entities from the spec to the body
4412 -- Case where there are entities that stay with the spec
4414 if Present (Last_Real_Spec_Entity) then
4416 -- No body entities (happens when the only real spec entities come
4417 -- from precondition and postcondition pragmas).
4419 if No (Last_Entity (Body_Id)) then
4420 Set_First_Entity (Body_Id, Next_Entity (Last_Real_Spec_Entity));
4422 -- Body entities present (formals), so chain stuff past them
4424 else
4425 Set_Next_Entity
4426 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
4427 end if;
4429 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
4430 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4431 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
4433 -- Case where there are no spec entities, in this case there can be
4434 -- no body entities either, so just move everything.
4436 -- If the body is generated for an expression function, it may have
4437 -- been preanalyzed already, if 'access was applied to it.
4439 else
4440 if Nkind (Original_Node (Unit_Declaration_Node (Spec_Id))) /=
4441 N_Expression_Function
4442 then
4443 pragma Assert (No (Last_Entity (Body_Id)));
4444 null;
4445 end if;
4447 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
4448 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4449 Set_First_Entity (Spec_Id, Empty);
4450 Set_Last_Entity (Spec_Id, Empty);
4451 end if;
4452 end if;
4454 Check_Missing_Return;
4456 -- Now we are going to check for variables that are never modified in
4457 -- the body of the procedure. But first we deal with a special case
4458 -- where we want to modify this check. If the body of the subprogram
4459 -- starts with a raise statement or its equivalent, or if the body
4460 -- consists entirely of a null statement, then it is pretty obvious that
4461 -- it is OK to not reference the parameters. For example, this might be
4462 -- the following common idiom for a stubbed function: statement of the
4463 -- procedure raises an exception. In particular this deals with the
4464 -- common idiom of a stubbed function, which appears something like:
4466 -- function F (A : Integer) return Some_Type;
4467 -- X : Some_Type;
4468 -- begin
4469 -- raise Program_Error;
4470 -- return X;
4471 -- end F;
4473 -- Here the purpose of X is simply to satisfy the annoying requirement
4474 -- in Ada that there be at least one return, and we certainly do not
4475 -- want to go posting warnings on X that it is not initialized. On
4476 -- the other hand, if X is entirely unreferenced that should still
4477 -- get a warning.
4479 -- What we do is to detect these cases, and if we find them, flag the
4480 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
4481 -- suppress unwanted warnings. For the case of the function stub above
4482 -- we have a special test to set X as apparently assigned to suppress
4483 -- the warning.
4485 declare
4486 Stm : Node_Id;
4488 begin
4489 -- Skip call markers installed by the ABE mechanism, labels, and
4490 -- Push_xxx_Error_Label to find the first real statement.
4492 Stm := First (Statements (HSS));
4493 while Nkind_In (Stm, N_Call_Marker, N_Label)
4494 or else Nkind (Stm) in N_Push_xxx_Label
4495 loop
4496 Next (Stm);
4497 end loop;
4499 -- Do the test on the original statement before expansion
4501 declare
4502 Ostm : constant Node_Id := Original_Node (Stm);
4504 begin
4505 -- If explicit raise statement, turn on flag
4507 if Nkind (Ostm) = N_Raise_Statement then
4508 Set_Trivial_Subprogram (Stm);
4510 -- If null statement, and no following statements, turn on flag
4512 elsif Nkind (Stm) = N_Null_Statement
4513 and then Comes_From_Source (Stm)
4514 and then No (Next (Stm))
4515 then
4516 Set_Trivial_Subprogram (Stm);
4518 -- Check for explicit call cases which likely raise an exception
4520 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
4521 if Is_Entity_Name (Name (Ostm)) then
4522 declare
4523 Ent : constant Entity_Id := Entity (Name (Ostm));
4525 begin
4526 -- If the procedure is marked No_Return, then likely it
4527 -- raises an exception, but in any case it is not coming
4528 -- back here, so turn on the flag.
4530 if Present (Ent)
4531 and then Ekind (Ent) = E_Procedure
4532 and then No_Return (Ent)
4533 then
4534 Set_Trivial_Subprogram (Stm);
4535 end if;
4536 end;
4537 end if;
4538 end if;
4539 end;
4540 end;
4542 -- Check for variables that are never modified
4544 declare
4545 E1 : Entity_Id;
4546 E2 : Entity_Id;
4548 begin
4549 -- If there is a separate spec, then transfer Never_Set_In_Source
4550 -- flags from out parameters to the corresponding entities in the
4551 -- body. The reason we do that is we want to post error flags on
4552 -- the body entities, not the spec entities.
4554 if Present (Spec_Id) then
4555 E1 := First_Entity (Spec_Id);
4556 while Present (E1) loop
4557 if Ekind (E1) = E_Out_Parameter then
4558 E2 := First_Entity (Body_Id);
4559 while Present (E2) loop
4560 exit when Chars (E1) = Chars (E2);
4561 Next_Entity (E2);
4562 end loop;
4564 if Present (E2) then
4565 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
4566 end if;
4567 end if;
4569 Next_Entity (E1);
4570 end loop;
4571 end if;
4573 -- Check references in body
4575 Check_References (Body_Id);
4576 end;
4578 -- Check for nested subprogram, and mark outer level subprogram if so
4580 declare
4581 Ent : Entity_Id;
4583 begin
4584 if Present (Spec_Id) then
4585 Ent := Spec_Id;
4586 else
4587 Ent := Body_Id;
4588 end if;
4590 loop
4591 Ent := Enclosing_Subprogram (Ent);
4592 exit when No (Ent) or else Is_Subprogram (Ent);
4593 end loop;
4595 if Present (Ent) then
4596 Set_Has_Nested_Subprogram (Ent);
4597 end if;
4598 end;
4600 -- Restore the limited views in the spec, if any, to let the back end
4601 -- process it without running into circularities.
4603 if Exch_Views /= No_Elist then
4604 Restore_Limited_Views (Exch_Views);
4605 end if;
4607 if Mask_Types /= No_Elist then
4608 Unmask_Unfrozen_Types (Mask_Types);
4609 end if;
4611 if Present (Desig_View) then
4612 Set_Directly_Designated_Type (Etype (Spec_Id), Desig_View);
4613 end if;
4615 <<Leave>>
4616 Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
4617 Restore_Ghost_Mode (Saved_GM);
4618 end Analyze_Subprogram_Body_Helper;
4620 ------------------------------------
4621 -- Analyze_Subprogram_Declaration --
4622 ------------------------------------
4624 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
4625 Scop : constant Entity_Id := Current_Scope;
4626 Designator : Entity_Id;
4628 Is_Completion : Boolean;
4629 -- Indicates whether a null procedure declaration is a completion
4631 begin
4632 -- Null procedures are not allowed in SPARK
4634 if Nkind (Specification (N)) = N_Procedure_Specification
4635 and then Null_Present (Specification (N))
4636 then
4637 Check_SPARK_05_Restriction ("null procedure is not allowed", N);
4639 -- Null procedures are allowed in protected types, following the
4640 -- recent AI12-0147.
4642 if Is_Protected_Type (Current_Scope)
4643 and then Ada_Version < Ada_2012
4644 then
4645 Error_Msg_N ("protected operation cannot be a null procedure", N);
4646 end if;
4648 Analyze_Null_Procedure (N, Is_Completion);
4650 -- The null procedure acts as a body, nothing further is needed
4652 if Is_Completion then
4653 return;
4654 end if;
4655 end if;
4657 Designator := Analyze_Subprogram_Specification (Specification (N));
4659 -- A reference may already have been generated for the unit name, in
4660 -- which case the following call is redundant. However it is needed for
4661 -- declarations that are the rewriting of an expression function.
4663 Generate_Definition (Designator);
4665 -- Set the SPARK mode from the current context (may be overwritten later
4666 -- with explicit pragma). This is not done for entry barrier functions
4667 -- because they are generated outside the protected type and should not
4668 -- carry the mode of the enclosing context.
4670 if Nkind (N) = N_Subprogram_Declaration
4671 and then Is_Entry_Barrier_Function (N)
4672 then
4673 null;
4675 else
4676 Set_SPARK_Pragma (Designator, SPARK_Mode_Pragma);
4677 Set_SPARK_Pragma_Inherited (Designator);
4678 end if;
4680 -- Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in case
4681 -- the body of this subprogram is instantiated or inlined later and out
4682 -- of context. The body uses this attribute to restore the value of the
4683 -- global flag.
4685 if Ignore_SPARK_Mode_Pragmas_In_Instance then
4686 Set_Ignore_SPARK_Mode_Pragmas (Designator);
4687 end if;
4689 -- Preserve relevant elaboration-related attributes of the context which
4690 -- are no longer available or very expensive to recompute once analysis,
4691 -- resolution, and expansion are over.
4693 Mark_Elaboration_Attributes
4694 (N_Id => Designator,
4695 Checks => True);
4697 if Debug_Flag_C then
4698 Write_Str ("==> subprogram spec ");
4699 Write_Name (Chars (Designator));
4700 Write_Str (" from ");
4701 Write_Location (Sloc (N));
4702 Write_Eol;
4703 Indent;
4704 end if;
4706 Validate_RCI_Subprogram_Declaration (N);
4707 New_Overloaded_Entity (Designator);
4708 Check_Delayed_Subprogram (Designator);
4710 -- If the type of the first formal of the current subprogram is a non-
4711 -- generic tagged private type, mark the subprogram as being a private
4712 -- primitive. Ditto if this is a function with controlling result, and
4713 -- the return type is currently private. In both cases, the type of the
4714 -- controlling argument or result must be in the current scope for the
4715 -- operation to be primitive.
4717 if Has_Controlling_Result (Designator)
4718 and then Is_Private_Type (Etype (Designator))
4719 and then Scope (Etype (Designator)) = Current_Scope
4720 and then not Is_Generic_Actual_Type (Etype (Designator))
4721 then
4722 Set_Is_Private_Primitive (Designator);
4724 elsif Present (First_Formal (Designator)) then
4725 declare
4726 Formal_Typ : constant Entity_Id :=
4727 Etype (First_Formal (Designator));
4728 begin
4729 Set_Is_Private_Primitive (Designator,
4730 Is_Tagged_Type (Formal_Typ)
4731 and then Scope (Formal_Typ) = Current_Scope
4732 and then Is_Private_Type (Formal_Typ)
4733 and then not Is_Generic_Actual_Type (Formal_Typ));
4734 end;
4735 end if;
4737 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
4738 -- or null.
4740 if Ada_Version >= Ada_2005
4741 and then Comes_From_Source (N)
4742 and then Is_Dispatching_Operation (Designator)
4743 then
4744 declare
4745 E : Entity_Id;
4746 Etyp : Entity_Id;
4748 begin
4749 if Has_Controlling_Result (Designator) then
4750 Etyp := Etype (Designator);
4752 else
4753 E := First_Entity (Designator);
4754 while Present (E)
4755 and then Is_Formal (E)
4756 and then not Is_Controlling_Formal (E)
4757 loop
4758 Next_Entity (E);
4759 end loop;
4761 Etyp := Etype (E);
4762 end if;
4764 if Is_Access_Type (Etyp) then
4765 Etyp := Directly_Designated_Type (Etyp);
4766 end if;
4768 if Is_Interface (Etyp)
4769 and then not Is_Abstract_Subprogram (Designator)
4770 and then not (Ekind (Designator) = E_Procedure
4771 and then Null_Present (Specification (N)))
4772 then
4773 Error_Msg_Name_1 := Chars (Defining_Entity (N));
4775 -- Specialize error message based on procedures vs. functions,
4776 -- since functions can't be null subprograms.
4778 if Ekind (Designator) = E_Procedure then
4779 Error_Msg_N
4780 ("interface procedure % must be abstract or null", N);
4781 else
4782 Error_Msg_N
4783 ("interface function % must be abstract", N);
4784 end if;
4785 end if;
4786 end;
4787 end if;
4789 -- What is the following code for, it used to be
4791 -- ??? Set_Suppress_Elaboration_Checks
4792 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
4794 -- The following seems equivalent, but a bit dubious
4796 if Elaboration_Checks_Suppressed (Designator) then
4797 Set_Kill_Elaboration_Checks (Designator);
4798 end if;
4800 if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
4801 Set_Categorization_From_Scope (Designator, Scop);
4803 else
4804 -- For a compilation unit, check for library-unit pragmas
4806 Push_Scope (Designator);
4807 Set_Categorization_From_Pragmas (N);
4808 Validate_Categorization_Dependency (N, Designator);
4809 Pop_Scope;
4810 end if;
4812 -- For a compilation unit, set body required. This flag will only be
4813 -- reset if a valid Import or Interface pragma is processed later on.
4815 if Nkind (Parent (N)) = N_Compilation_Unit then
4816 Set_Body_Required (Parent (N), True);
4818 if Ada_Version >= Ada_2005
4819 and then Nkind (Specification (N)) = N_Procedure_Specification
4820 and then Null_Present (Specification (N))
4821 then
4822 Error_Msg_N
4823 ("null procedure cannot be declared at library level", N);
4824 end if;
4825 end if;
4827 Generate_Reference_To_Formals (Designator);
4828 Check_Eliminated (Designator);
4830 if Debug_Flag_C then
4831 Outdent;
4832 Write_Str ("<== subprogram spec ");
4833 Write_Name (Chars (Designator));
4834 Write_Str (" from ");
4835 Write_Location (Sloc (N));
4836 Write_Eol;
4837 end if;
4839 if Is_Protected_Type (Current_Scope) then
4841 -- Indicate that this is a protected operation, because it may be
4842 -- used in subsequent declarations within the protected type.
4844 Set_Convention (Designator, Convention_Protected);
4845 end if;
4847 List_Inherited_Pre_Post_Aspects (Designator);
4849 if Has_Aspects (N) then
4850 Analyze_Aspect_Specifications (N, Designator);
4851 end if;
4852 end Analyze_Subprogram_Declaration;
4854 --------------------------------------
4855 -- Analyze_Subprogram_Specification --
4856 --------------------------------------
4858 -- Reminder: N here really is a subprogram specification (not a subprogram
4859 -- declaration). This procedure is called to analyze the specification in
4860 -- both subprogram bodies and subprogram declarations (specs).
4862 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
4863 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean;
4864 -- Determine whether entity E denotes the spec or body of an invariant
4865 -- procedure.
4867 ------------------------------------
4868 -- Is_Invariant_Procedure_Or_Body --
4869 ------------------------------------
4871 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean is
4872 Decl : constant Node_Id := Unit_Declaration_Node (E);
4873 Spec : Entity_Id;
4875 begin
4876 if Nkind (Decl) = N_Subprogram_Body then
4877 Spec := Corresponding_Spec (Decl);
4878 else
4879 Spec := E;
4880 end if;
4882 return
4883 Present (Spec)
4884 and then Ekind (Spec) = E_Procedure
4885 and then (Is_Partial_Invariant_Procedure (Spec)
4886 or else Is_Invariant_Procedure (Spec));
4887 end Is_Invariant_Procedure_Or_Body;
4889 -- Local variables
4891 Designator : constant Entity_Id := Defining_Entity (N);
4892 Formals : constant List_Id := Parameter_Specifications (N);
4894 -- Start of processing for Analyze_Subprogram_Specification
4896 begin
4897 -- User-defined operator is not allowed in SPARK, except as a renaming
4899 if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
4900 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
4901 then
4902 Check_SPARK_05_Restriction
4903 ("user-defined operator is not allowed", N);
4904 end if;
4906 -- Proceed with analysis. Do not emit a cross-reference entry if the
4907 -- specification comes from an expression function, because it may be
4908 -- the completion of a previous declaration. If it is not, the cross-
4909 -- reference entry will be emitted for the new subprogram declaration.
4911 if Nkind (Parent (N)) /= N_Expression_Function then
4912 Generate_Definition (Designator);
4913 end if;
4915 if Nkind (N) = N_Function_Specification then
4916 Set_Ekind (Designator, E_Function);
4917 Set_Mechanism (Designator, Default_Mechanism);
4918 else
4919 Set_Ekind (Designator, E_Procedure);
4920 Set_Etype (Designator, Standard_Void_Type);
4921 end if;
4923 -- Flag Is_Inlined_Always is True by default, and reversed to False for
4924 -- those subprograms which could be inlined in GNATprove mode (because
4925 -- Body_To_Inline is non-Empty) but should not be inlined.
4927 if GNATprove_Mode then
4928 Set_Is_Inlined_Always (Designator);
4929 end if;
4931 -- Introduce new scope for analysis of the formals and the return type
4933 Set_Scope (Designator, Current_Scope);
4935 if Present (Formals) then
4936 Push_Scope (Designator);
4937 Process_Formals (Formals, N);
4939 -- Check dimensions in N for formals with default expression
4941 Analyze_Dimension_Formals (N, Formals);
4943 -- Ada 2005 (AI-345): If this is an overriding operation of an
4944 -- inherited interface operation, and the controlling type is
4945 -- a synchronized type, replace the type with its corresponding
4946 -- record, to match the proper signature of an overriding operation.
4947 -- Same processing for an access parameter whose designated type is
4948 -- derived from a synchronized interface.
4950 -- This modification is not done for invariant procedures because
4951 -- the corresponding record may not necessarely be visible when the
4952 -- concurrent type acts as the full view of a private type.
4954 -- package Pack is
4955 -- type Prot is private with Type_Invariant => ...;
4956 -- procedure ConcInvariant (Obj : Prot);
4957 -- private
4958 -- protected type Prot is ...;
4959 -- type Concurrent_Record_Prot is record ...;
4960 -- procedure ConcInvariant (Obj : Prot) is
4961 -- ...
4962 -- end ConcInvariant;
4963 -- end Pack;
4965 -- In the example above, both the spec and body of the invariant
4966 -- procedure must utilize the private type as the controlling type.
4968 if Ada_Version >= Ada_2005
4969 and then not Is_Invariant_Procedure_Or_Body (Designator)
4970 then
4971 declare
4972 Formal : Entity_Id;
4973 Formal_Typ : Entity_Id;
4974 Rec_Typ : Entity_Id;
4975 Desig_Typ : Entity_Id;
4977 begin
4978 Formal := First_Formal (Designator);
4979 while Present (Formal) loop
4980 Formal_Typ := Etype (Formal);
4982 if Is_Concurrent_Type (Formal_Typ)
4983 and then Present (Corresponding_Record_Type (Formal_Typ))
4984 then
4985 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
4987 if Present (Interfaces (Rec_Typ)) then
4988 Set_Etype (Formal, Rec_Typ);
4989 end if;
4991 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
4992 Desig_Typ := Designated_Type (Formal_Typ);
4994 if Is_Concurrent_Type (Desig_Typ)
4995 and then Present (Corresponding_Record_Type (Desig_Typ))
4996 then
4997 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
4999 if Present (Interfaces (Rec_Typ)) then
5000 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
5001 end if;
5002 end if;
5003 end if;
5005 Next_Formal (Formal);
5006 end loop;
5007 end;
5008 end if;
5010 End_Scope;
5012 -- The subprogram scope is pushed and popped around the processing of
5013 -- the return type for consistency with call above to Process_Formals
5014 -- (which itself can call Analyze_Return_Type), and to ensure that any
5015 -- itype created for the return type will be associated with the proper
5016 -- scope.
5018 elsif Nkind (N) = N_Function_Specification then
5019 Push_Scope (Designator);
5020 Analyze_Return_Type (N);
5021 End_Scope;
5022 end if;
5024 -- Function case
5026 if Nkind (N) = N_Function_Specification then
5028 -- Deal with operator symbol case
5030 if Nkind (Designator) = N_Defining_Operator_Symbol then
5031 Valid_Operator_Definition (Designator);
5032 end if;
5034 May_Need_Actuals (Designator);
5036 -- Ada 2005 (AI-251): If the return type is abstract, verify that
5037 -- the subprogram is abstract also. This does not apply to renaming
5038 -- declarations, where abstractness is inherited, and to subprogram
5039 -- bodies generated for stream operations, which become renamings as
5040 -- bodies.
5042 -- In case of primitives associated with abstract interface types
5043 -- the check is applied later (see Analyze_Subprogram_Declaration).
5045 if not Nkind_In (Original_Node (Parent (N)),
5046 N_Abstract_Subprogram_Declaration,
5047 N_Formal_Abstract_Subprogram_Declaration,
5048 N_Subprogram_Renaming_Declaration)
5049 then
5050 if Is_Abstract_Type (Etype (Designator))
5051 and then not Is_Interface (Etype (Designator))
5052 then
5053 Error_Msg_N
5054 ("function that returns abstract type must be abstract", N);
5056 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
5057 -- access result whose designated type is abstract.
5059 elsif Ada_Version >= Ada_2012
5060 and then Nkind (Result_Definition (N)) = N_Access_Definition
5061 and then
5062 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
5063 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
5064 then
5065 Error_Msg_N
5066 ("function whose access result designates abstract type "
5067 & "must be abstract", N);
5068 end if;
5069 end if;
5070 end if;
5072 return Designator;
5073 end Analyze_Subprogram_Specification;
5075 -----------------------
5076 -- Check_Conformance --
5077 -----------------------
5079 procedure Check_Conformance
5080 (New_Id : Entity_Id;
5081 Old_Id : Entity_Id;
5082 Ctype : Conformance_Type;
5083 Errmsg : Boolean;
5084 Conforms : out Boolean;
5085 Err_Loc : Node_Id := Empty;
5086 Get_Inst : Boolean := False;
5087 Skip_Controlling_Formals : Boolean := False)
5089 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
5090 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
5091 -- If Errmsg is True, then processing continues to post an error message
5092 -- for conformance error on given node. Two messages are output. The
5093 -- first message points to the previous declaration with a general "no
5094 -- conformance" message. The second is the detailed reason, supplied as
5095 -- Msg. The parameter N provide information for a possible & insertion
5096 -- in the message, and also provides the location for posting the
5097 -- message in the absence of a specified Err_Loc location.
5099 function Conventions_Match
5100 (Id1 : Entity_Id;
5101 Id2 : Entity_Id) return Boolean;
5102 -- Determine whether the conventions of arbitrary entities Id1 and Id2
5103 -- match.
5105 -----------------------
5106 -- Conformance_Error --
5107 -----------------------
5109 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
5110 Enode : Node_Id;
5112 begin
5113 Conforms := False;
5115 if Errmsg then
5116 if No (Err_Loc) then
5117 Enode := N;
5118 else
5119 Enode := Err_Loc;
5120 end if;
5122 Error_Msg_Sloc := Sloc (Old_Id);
5124 case Ctype is
5125 when Type_Conformant =>
5126 Error_Msg_N -- CODEFIX
5127 ("not type conformant with declaration#!", Enode);
5129 when Mode_Conformant =>
5130 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5131 Error_Msg_N
5132 ("not mode conformant with operation inherited#!",
5133 Enode);
5134 else
5135 Error_Msg_N
5136 ("not mode conformant with declaration#!", Enode);
5137 end if;
5139 when Subtype_Conformant =>
5140 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5141 Error_Msg_N
5142 ("not subtype conformant with operation inherited#!",
5143 Enode);
5144 else
5145 Error_Msg_N
5146 ("not subtype conformant with declaration#!", Enode);
5147 end if;
5149 when Fully_Conformant =>
5150 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5151 Error_Msg_N -- CODEFIX
5152 ("not fully conformant with operation inherited#!",
5153 Enode);
5154 else
5155 Error_Msg_N -- CODEFIX
5156 ("not fully conformant with declaration#!", Enode);
5157 end if;
5158 end case;
5160 Error_Msg_NE (Msg, Enode, N);
5161 end if;
5162 end Conformance_Error;
5164 -----------------------
5165 -- Conventions_Match --
5166 -----------------------
5168 function Conventions_Match
5169 (Id1 : Entity_Id;
5170 Id2 : Entity_Id) return Boolean
5172 begin
5173 -- Ignore the conventions of anonymous access-to-subprogram types
5174 -- and subprogram types because these are internally generated and
5175 -- the only way these may receive a convention is if they inherit
5176 -- the convention of a related subprogram.
5178 if Ekind_In (Id1, E_Anonymous_Access_Subprogram_Type,
5179 E_Subprogram_Type)
5180 or else
5181 Ekind_In (Id2, E_Anonymous_Access_Subprogram_Type,
5182 E_Subprogram_Type)
5183 then
5184 return True;
5186 -- Otherwise compare the conventions directly
5188 else
5189 return Convention (Id1) = Convention (Id2);
5190 end if;
5191 end Conventions_Match;
5193 -- Local Variables
5195 Old_Type : constant Entity_Id := Etype (Old_Id);
5196 New_Type : constant Entity_Id := Etype (New_Id);
5197 Old_Formal : Entity_Id;
5198 New_Formal : Entity_Id;
5199 Access_Types_Match : Boolean;
5200 Old_Formal_Base : Entity_Id;
5201 New_Formal_Base : Entity_Id;
5203 -- Start of processing for Check_Conformance
5205 begin
5206 Conforms := True;
5208 -- We need a special case for operators, since they don't appear
5209 -- explicitly.
5211 if Ctype = Type_Conformant then
5212 if Ekind (New_Id) = E_Operator
5213 and then Operator_Matches_Spec (New_Id, Old_Id)
5214 then
5215 return;
5216 end if;
5217 end if;
5219 -- If both are functions/operators, check return types conform
5221 if Old_Type /= Standard_Void_Type
5222 and then
5223 New_Type /= Standard_Void_Type
5224 then
5225 -- If we are checking interface conformance we omit controlling
5226 -- arguments and result, because we are only checking the conformance
5227 -- of the remaining parameters.
5229 if Has_Controlling_Result (Old_Id)
5230 and then Has_Controlling_Result (New_Id)
5231 and then Skip_Controlling_Formals
5232 then
5233 null;
5235 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
5236 if Ctype >= Subtype_Conformant
5237 and then not Predicates_Match (Old_Type, New_Type)
5238 then
5239 Conformance_Error
5240 ("\predicate of return type does not match!", New_Id);
5241 else
5242 Conformance_Error
5243 ("\return type does not match!", New_Id);
5244 end if;
5246 return;
5247 end if;
5249 -- Ada 2005 (AI-231): In case of anonymous access types check the
5250 -- null-exclusion and access-to-constant attributes match.
5252 if Ada_Version >= Ada_2005
5253 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
5254 and then
5255 (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
5256 or else Is_Access_Constant (Etype (Old_Type)) /=
5257 Is_Access_Constant (Etype (New_Type)))
5258 then
5259 Conformance_Error ("\return type does not match!", New_Id);
5260 return;
5261 end if;
5263 -- If either is a function/operator and the other isn't, error
5265 elsif Old_Type /= Standard_Void_Type
5266 or else New_Type /= Standard_Void_Type
5267 then
5268 Conformance_Error ("\functions can only match functions!", New_Id);
5269 return;
5270 end if;
5272 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
5273 -- If this is a renaming as body, refine error message to indicate that
5274 -- the conflict is with the original declaration. If the entity is not
5275 -- frozen, the conventions don't have to match, the one of the renamed
5276 -- entity is inherited.
5278 if Ctype >= Subtype_Conformant then
5279 if not Conventions_Match (Old_Id, New_Id) then
5280 if not Is_Frozen (New_Id) then
5281 null;
5283 elsif Present (Err_Loc)
5284 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
5285 and then Present (Corresponding_Spec (Err_Loc))
5286 then
5287 Error_Msg_Name_1 := Chars (New_Id);
5288 Error_Msg_Name_2 :=
5289 Name_Ada + Convention_Id'Pos (Convention (New_Id));
5290 Conformance_Error ("\prior declaration for% has convention %!");
5292 else
5293 Conformance_Error ("\calling conventions do not match!");
5294 end if;
5296 return;
5298 elsif Is_Formal_Subprogram (Old_Id)
5299 or else Is_Formal_Subprogram (New_Id)
5300 then
5301 Conformance_Error ("\formal subprograms not allowed!");
5302 return;
5303 end if;
5304 end if;
5306 -- Deal with parameters
5308 -- Note: we use the entity information, rather than going directly
5309 -- to the specification in the tree. This is not only simpler, but
5310 -- absolutely necessary for some cases of conformance tests between
5311 -- operators, where the declaration tree simply does not exist.
5313 Old_Formal := First_Formal (Old_Id);
5314 New_Formal := First_Formal (New_Id);
5315 while Present (Old_Formal) and then Present (New_Formal) loop
5316 if Is_Controlling_Formal (Old_Formal)
5317 and then Is_Controlling_Formal (New_Formal)
5318 and then Skip_Controlling_Formals
5319 then
5320 -- The controlling formals will have different types when
5321 -- comparing an interface operation with its match, but both
5322 -- or neither must be access parameters.
5324 if Is_Access_Type (Etype (Old_Formal))
5326 Is_Access_Type (Etype (New_Formal))
5327 then
5328 goto Skip_Controlling_Formal;
5329 else
5330 Conformance_Error
5331 ("\access parameter does not match!", New_Formal);
5332 end if;
5333 end if;
5335 -- Ada 2012: Mode conformance also requires that formal parameters
5336 -- be both aliased, or neither.
5338 if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
5339 if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
5340 Conformance_Error
5341 ("\aliased parameter mismatch!", New_Formal);
5342 end if;
5343 end if;
5345 if Ctype = Fully_Conformant then
5347 -- Names must match. Error message is more accurate if we do
5348 -- this before checking that the types of the formals match.
5350 if Chars (Old_Formal) /= Chars (New_Formal) then
5351 Conformance_Error ("\name& does not match!", New_Formal);
5353 -- Set error posted flag on new formal as well to stop
5354 -- junk cascaded messages in some cases.
5356 Set_Error_Posted (New_Formal);
5357 return;
5358 end if;
5360 -- Null exclusion must match
5362 if Null_Exclusion_Present (Parent (Old_Formal))
5364 Null_Exclusion_Present (Parent (New_Formal))
5365 then
5366 -- Only give error if both come from source. This should be
5367 -- investigated some time, since it should not be needed ???
5369 if Comes_From_Source (Old_Formal)
5370 and then
5371 Comes_From_Source (New_Formal)
5372 then
5373 Conformance_Error
5374 ("\null exclusion for& does not match", New_Formal);
5376 -- Mark error posted on the new formal to avoid duplicated
5377 -- complaint about types not matching.
5379 Set_Error_Posted (New_Formal);
5380 end if;
5381 end if;
5382 end if;
5384 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
5385 -- case occurs whenever a subprogram is being renamed and one of its
5386 -- parameters imposes a null exclusion. For example:
5388 -- type T is null record;
5389 -- type Acc_T is access T;
5390 -- subtype Acc_T_Sub is Acc_T;
5392 -- procedure P (Obj : not null Acc_T_Sub); -- itype
5393 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
5394 -- renames P;
5396 Old_Formal_Base := Etype (Old_Formal);
5397 New_Formal_Base := Etype (New_Formal);
5399 if Get_Inst then
5400 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
5401 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
5402 end if;
5404 Access_Types_Match := Ada_Version >= Ada_2005
5406 -- Ensure that this rule is only applied when New_Id is a
5407 -- renaming of Old_Id.
5409 and then Nkind (Parent (Parent (New_Id))) =
5410 N_Subprogram_Renaming_Declaration
5411 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
5412 and then Present (Entity (Name (Parent (Parent (New_Id)))))
5413 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
5415 -- Now handle the allowed access-type case
5417 and then Is_Access_Type (Old_Formal_Base)
5418 and then Is_Access_Type (New_Formal_Base)
5420 -- The type kinds must match. The only exception occurs with
5421 -- multiple generics of the form:
5423 -- generic generic
5424 -- type F is private; type A is private;
5425 -- type F_Ptr is access F; type A_Ptr is access A;
5426 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
5427 -- package F_Pack is ... package A_Pack is
5428 -- package F_Inst is
5429 -- new F_Pack (A, A_Ptr, A_P);
5431 -- When checking for conformance between the parameters of A_P
5432 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
5433 -- because the compiler has transformed A_Ptr into a subtype of
5434 -- F_Ptr. We catch this case in the code below.
5436 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
5437 or else
5438 (Is_Generic_Type (Old_Formal_Base)
5439 and then Is_Generic_Type (New_Formal_Base)
5440 and then Is_Internal (New_Formal_Base)
5441 and then Etype (Etype (New_Formal_Base)) =
5442 Old_Formal_Base))
5443 and then Directly_Designated_Type (Old_Formal_Base) =
5444 Directly_Designated_Type (New_Formal_Base)
5445 and then ((Is_Itype (Old_Formal_Base)
5446 and then Can_Never_Be_Null (Old_Formal_Base))
5447 or else
5448 (Is_Itype (New_Formal_Base)
5449 and then Can_Never_Be_Null (New_Formal_Base)));
5451 -- Types must always match. In the visible part of an instance,
5452 -- usual overloading rules for dispatching operations apply, and
5453 -- we check base types (not the actual subtypes).
5455 if In_Instance_Visible_Part
5456 and then Is_Dispatching_Operation (New_Id)
5457 then
5458 if not Conforming_Types
5459 (T1 => Base_Type (Etype (Old_Formal)),
5460 T2 => Base_Type (Etype (New_Formal)),
5461 Ctype => Ctype,
5462 Get_Inst => Get_Inst)
5463 and then not Access_Types_Match
5464 then
5465 Conformance_Error ("\type of & does not match!", New_Formal);
5466 return;
5467 end if;
5469 elsif not Conforming_Types
5470 (T1 => Old_Formal_Base,
5471 T2 => New_Formal_Base,
5472 Ctype => Ctype,
5473 Get_Inst => Get_Inst)
5474 and then not Access_Types_Match
5475 then
5476 -- Don't give error message if old type is Any_Type. This test
5477 -- avoids some cascaded errors, e.g. in case of a bad spec.
5479 if Errmsg and then Old_Formal_Base = Any_Type then
5480 Conforms := False;
5481 else
5482 if Ctype >= Subtype_Conformant
5483 and then
5484 not Predicates_Match (Old_Formal_Base, New_Formal_Base)
5485 then
5486 Conformance_Error
5487 ("\predicate of & does not match!", New_Formal);
5488 else
5489 Conformance_Error
5490 ("\type of & does not match!", New_Formal);
5492 if not Dimensions_Match (Old_Formal_Base, New_Formal_Base)
5493 then
5494 Error_Msg_N ("\dimensions mismatch!", New_Formal);
5495 end if;
5496 end if;
5497 end if;
5499 return;
5500 end if;
5502 -- For mode conformance, mode must match
5504 if Ctype >= Mode_Conformant then
5505 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
5506 if not Ekind_In (New_Id, E_Function, E_Procedure)
5507 or else not Is_Primitive_Wrapper (New_Id)
5508 then
5509 Conformance_Error ("\mode of & does not match!", New_Formal);
5511 else
5512 declare
5513 T : constant Entity_Id := Find_Dispatching_Type (New_Id);
5514 begin
5515 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
5516 then
5517 Error_Msg_PT (New_Id, Ultimate_Alias (Old_Id));
5518 else
5519 Conformance_Error
5520 ("\mode of & does not match!", New_Formal);
5521 end if;
5522 end;
5523 end if;
5525 return;
5527 -- Part of mode conformance for access types is having the same
5528 -- constant modifier.
5530 elsif Access_Types_Match
5531 and then Is_Access_Constant (Old_Formal_Base) /=
5532 Is_Access_Constant (New_Formal_Base)
5533 then
5534 Conformance_Error
5535 ("\constant modifier does not match!", New_Formal);
5536 return;
5537 end if;
5538 end if;
5540 if Ctype >= Subtype_Conformant then
5542 -- Ada 2005 (AI-231): In case of anonymous access types check
5543 -- the null-exclusion and access-to-constant attributes must
5544 -- match. For null exclusion, we test the types rather than the
5545 -- formals themselves, since the attribute is only set reliably
5546 -- on the formals in the Ada 95 case, and we exclude the case
5547 -- where Old_Formal is marked as controlling, to avoid errors
5548 -- when matching completing bodies with dispatching declarations
5549 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
5551 if Ada_Version >= Ada_2005
5552 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
5553 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
5554 and then
5555 ((Can_Never_Be_Null (Etype (Old_Formal)) /=
5556 Can_Never_Be_Null (Etype (New_Formal))
5557 and then
5558 not Is_Controlling_Formal (Old_Formal))
5559 or else
5560 Is_Access_Constant (Etype (Old_Formal)) /=
5561 Is_Access_Constant (Etype (New_Formal)))
5563 -- Do not complain if error already posted on New_Formal. This
5564 -- avoids some redundant error messages.
5566 and then not Error_Posted (New_Formal)
5567 then
5568 -- It is allowed to omit the null-exclusion in case of stream
5569 -- attribute subprograms. We recognize stream subprograms
5570 -- through their TSS-generated suffix.
5572 declare
5573 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
5575 begin
5576 if TSS_Name /= TSS_Stream_Read
5577 and then TSS_Name /= TSS_Stream_Write
5578 and then TSS_Name /= TSS_Stream_Input
5579 and then TSS_Name /= TSS_Stream_Output
5580 then
5581 -- Here we have a definite conformance error. It is worth
5582 -- special casing the error message for the case of a
5583 -- controlling formal (which excludes null).
5585 if Is_Controlling_Formal (New_Formal) then
5586 Error_Msg_Node_2 := Scope (New_Formal);
5587 Conformance_Error
5588 ("\controlling formal & of & excludes null, "
5589 & "declaration must exclude null as well",
5590 New_Formal);
5592 -- Normal case (couldn't we give more detail here???)
5594 else
5595 Conformance_Error
5596 ("\type of & does not match!", New_Formal);
5597 end if;
5599 return;
5600 end if;
5601 end;
5602 end if;
5603 end if;
5605 -- Full conformance checks
5607 if Ctype = Fully_Conformant then
5609 -- We have checked already that names match
5611 if Parameter_Mode (Old_Formal) = E_In_Parameter then
5613 -- Check default expressions for in parameters
5615 declare
5616 NewD : constant Boolean :=
5617 Present (Default_Value (New_Formal));
5618 OldD : constant Boolean :=
5619 Present (Default_Value (Old_Formal));
5620 begin
5621 if NewD or OldD then
5623 -- The old default value has been analyzed because the
5624 -- current full declaration will have frozen everything
5625 -- before. The new default value has not been analyzed,
5626 -- so analyze it now before we check for conformance.
5628 if NewD then
5629 Push_Scope (New_Id);
5630 Preanalyze_Spec_Expression
5631 (Default_Value (New_Formal), Etype (New_Formal));
5632 End_Scope;
5633 end if;
5635 if not (NewD and OldD)
5636 or else not Fully_Conformant_Expressions
5637 (Default_Value (Old_Formal),
5638 Default_Value (New_Formal))
5639 then
5640 Conformance_Error
5641 ("\default expression for & does not match!",
5642 New_Formal);
5643 return;
5644 end if;
5645 end if;
5646 end;
5647 end if;
5648 end if;
5650 -- A couple of special checks for Ada 83 mode. These checks are
5651 -- skipped if either entity is an operator in package Standard,
5652 -- or if either old or new instance is not from the source program.
5654 if Ada_Version = Ada_83
5655 and then Sloc (Old_Id) > Standard_Location
5656 and then Sloc (New_Id) > Standard_Location
5657 and then Comes_From_Source (Old_Id)
5658 and then Comes_From_Source (New_Id)
5659 then
5660 declare
5661 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
5662 New_Param : constant Node_Id := Declaration_Node (New_Formal);
5664 begin
5665 -- Explicit IN must be present or absent in both cases. This
5666 -- test is required only in the full conformance case.
5668 if In_Present (Old_Param) /= In_Present (New_Param)
5669 and then Ctype = Fully_Conformant
5670 then
5671 Conformance_Error
5672 ("\(Ada 83) IN must appear in both declarations",
5673 New_Formal);
5674 return;
5675 end if;
5677 -- Grouping (use of comma in param lists) must be the same
5678 -- This is where we catch a misconformance like:
5680 -- A, B : Integer
5681 -- A : Integer; B : Integer
5683 -- which are represented identically in the tree except
5684 -- for the setting of the flags More_Ids and Prev_Ids.
5686 if More_Ids (Old_Param) /= More_Ids (New_Param)
5687 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
5688 then
5689 Conformance_Error
5690 ("\grouping of & does not match!", New_Formal);
5691 return;
5692 end if;
5693 end;
5694 end if;
5696 -- This label is required when skipping controlling formals
5698 <<Skip_Controlling_Formal>>
5700 Next_Formal (Old_Formal);
5701 Next_Formal (New_Formal);
5702 end loop;
5704 if Present (Old_Formal) then
5705 Conformance_Error ("\too few parameters!");
5706 return;
5708 elsif Present (New_Formal) then
5709 Conformance_Error ("\too many parameters!", New_Formal);
5710 return;
5711 end if;
5712 end Check_Conformance;
5714 -----------------------
5715 -- Check_Conventions --
5716 -----------------------
5718 procedure Check_Conventions (Typ : Entity_Id) is
5719 Ifaces_List : Elist_Id;
5721 procedure Check_Convention (Op : Entity_Id);
5722 -- Verify that the convention of inherited dispatching operation Op is
5723 -- consistent among all subprograms it overrides. In order to minimize
5724 -- the search, Search_From is utilized to designate a specific point in
5725 -- the list rather than iterating over the whole list once more.
5727 ----------------------
5728 -- Check_Convention --
5729 ----------------------
5731 procedure Check_Convention (Op : Entity_Id) is
5732 Op_Conv : constant Convention_Id := Convention (Op);
5733 Iface_Conv : Convention_Id;
5734 Iface_Elmt : Elmt_Id;
5735 Iface_Prim_Elmt : Elmt_Id;
5736 Iface_Prim : Entity_Id;
5738 begin
5739 Iface_Elmt := First_Elmt (Ifaces_List);
5740 while Present (Iface_Elmt) loop
5741 Iface_Prim_Elmt :=
5742 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
5743 while Present (Iface_Prim_Elmt) loop
5744 Iface_Prim := Node (Iface_Prim_Elmt);
5745 Iface_Conv := Convention (Iface_Prim);
5747 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
5748 and then Iface_Conv /= Op_Conv
5749 then
5750 Error_Msg_N
5751 ("inconsistent conventions in primitive operations", Typ);
5753 Error_Msg_Name_1 := Chars (Op);
5754 Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
5755 Error_Msg_Sloc := Sloc (Op);
5757 if Comes_From_Source (Op) or else No (Alias (Op)) then
5758 if not Present (Overridden_Operation (Op)) then
5759 Error_Msg_N ("\\primitive % defined #", Typ);
5760 else
5761 Error_Msg_N
5762 ("\\overriding operation % with "
5763 & "convention % defined #", Typ);
5764 end if;
5766 else pragma Assert (Present (Alias (Op)));
5767 Error_Msg_Sloc := Sloc (Alias (Op));
5768 Error_Msg_N ("\\inherited operation % with "
5769 & "convention % defined #", Typ);
5770 end if;
5772 Error_Msg_Name_1 := Chars (Op);
5773 Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
5774 Error_Msg_Sloc := Sloc (Iface_Prim);
5775 Error_Msg_N ("\\overridden operation % with "
5776 & "convention % defined #", Typ);
5778 -- Avoid cascading errors
5780 return;
5781 end if;
5783 Next_Elmt (Iface_Prim_Elmt);
5784 end loop;
5786 Next_Elmt (Iface_Elmt);
5787 end loop;
5788 end Check_Convention;
5790 -- Local variables
5792 Prim_Op : Entity_Id;
5793 Prim_Op_Elmt : Elmt_Id;
5795 -- Start of processing for Check_Conventions
5797 begin
5798 if not Has_Interfaces (Typ) then
5799 return;
5800 end if;
5802 Collect_Interfaces (Typ, Ifaces_List);
5804 -- The algorithm checks every overriding dispatching operation against
5805 -- all the corresponding overridden dispatching operations, detecting
5806 -- differences in conventions.
5808 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
5809 while Present (Prim_Op_Elmt) loop
5810 Prim_Op := Node (Prim_Op_Elmt);
5812 -- A small optimization: skip the predefined dispatching operations
5813 -- since they always have the same convention.
5815 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
5816 Check_Convention (Prim_Op);
5817 end if;
5819 Next_Elmt (Prim_Op_Elmt);
5820 end loop;
5821 end Check_Conventions;
5823 ------------------------------
5824 -- Check_Delayed_Subprogram --
5825 ------------------------------
5827 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
5828 procedure Possible_Freeze (T : Entity_Id);
5829 -- T is the type of either a formal parameter or of the return type. If
5830 -- T is not yet frozen and needs a delayed freeze, then the subprogram
5831 -- itself must be delayed.
5833 ---------------------
5834 -- Possible_Freeze --
5835 ---------------------
5837 procedure Possible_Freeze (T : Entity_Id) is
5838 Scop : constant Entity_Id := Scope (Designator);
5840 begin
5841 -- If the subprogram appears within a package instance (which may be
5842 -- the wrapper package of a subprogram instance) the freeze node for
5843 -- that package will freeze the subprogram at the proper place, so
5844 -- do not emit a freeze node for the subprogram, given that it may
5845 -- appear in the wrong scope.
5847 if Ekind (Scop) = E_Package
5848 and then not Comes_From_Source (Scop)
5849 and then Is_Generic_Instance (Scop)
5850 then
5851 null;
5853 elsif Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
5854 Set_Has_Delayed_Freeze (Designator);
5856 elsif Is_Access_Type (T)
5857 and then Has_Delayed_Freeze (Designated_Type (T))
5858 and then not Is_Frozen (Designated_Type (T))
5859 then
5860 Set_Has_Delayed_Freeze (Designator);
5861 end if;
5862 end Possible_Freeze;
5864 -- Local variables
5866 F : Entity_Id;
5868 -- Start of processing for Check_Delayed_Subprogram
5870 begin
5871 -- All subprograms, including abstract subprograms, may need a freeze
5872 -- node if some formal type or the return type needs one.
5874 Possible_Freeze (Etype (Designator));
5875 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
5877 -- Need delayed freeze if any of the formal types themselves need a
5878 -- delayed freeze and are not yet frozen.
5880 F := First_Formal (Designator);
5881 while Present (F) loop
5882 Possible_Freeze (Etype (F));
5883 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
5884 Next_Formal (F);
5885 end loop;
5887 -- Mark functions that return by reference. Note that it cannot be done
5888 -- for delayed_freeze subprograms because the underlying returned type
5889 -- may not be known yet (for private types).
5891 if not Has_Delayed_Freeze (Designator) and then Expander_Active then
5892 declare
5893 Typ : constant Entity_Id := Etype (Designator);
5894 Utyp : constant Entity_Id := Underlying_Type (Typ);
5896 begin
5897 if Is_Limited_View (Typ) then
5898 Set_Returns_By_Ref (Designator);
5900 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
5901 Set_Returns_By_Ref (Designator);
5902 end if;
5903 end;
5904 end if;
5905 end Check_Delayed_Subprogram;
5907 ------------------------------------
5908 -- Check_Discriminant_Conformance --
5909 ------------------------------------
5911 procedure Check_Discriminant_Conformance
5912 (N : Node_Id;
5913 Prev : Entity_Id;
5914 Prev_Loc : Node_Id)
5916 Old_Discr : Entity_Id := First_Discriminant (Prev);
5917 New_Discr : Node_Id := First (Discriminant_Specifications (N));
5918 New_Discr_Id : Entity_Id;
5919 New_Discr_Type : Entity_Id;
5921 procedure Conformance_Error (Msg : String; N : Node_Id);
5922 -- Post error message for conformance error on given node. Two messages
5923 -- are output. The first points to the previous declaration with a
5924 -- general "no conformance" message. The second is the detailed reason,
5925 -- supplied as Msg. The parameter N provide information for a possible
5926 -- & insertion in the message.
5928 -----------------------
5929 -- Conformance_Error --
5930 -----------------------
5932 procedure Conformance_Error (Msg : String; N : Node_Id) is
5933 begin
5934 Error_Msg_Sloc := Sloc (Prev_Loc);
5935 Error_Msg_N -- CODEFIX
5936 ("not fully conformant with declaration#!", N);
5937 Error_Msg_NE (Msg, N, N);
5938 end Conformance_Error;
5940 -- Start of processing for Check_Discriminant_Conformance
5942 begin
5943 while Present (Old_Discr) and then Present (New_Discr) loop
5944 New_Discr_Id := Defining_Identifier (New_Discr);
5946 -- The subtype mark of the discriminant on the full type has not
5947 -- been analyzed so we do it here. For an access discriminant a new
5948 -- type is created.
5950 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
5951 New_Discr_Type :=
5952 Access_Definition (N, Discriminant_Type (New_Discr));
5954 else
5955 Analyze (Discriminant_Type (New_Discr));
5956 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
5958 -- Ada 2005: if the discriminant definition carries a null
5959 -- exclusion, create an itype to check properly for consistency
5960 -- with partial declaration.
5962 if Is_Access_Type (New_Discr_Type)
5963 and then Null_Exclusion_Present (New_Discr)
5964 then
5965 New_Discr_Type :=
5966 Create_Null_Excluding_Itype
5967 (T => New_Discr_Type,
5968 Related_Nod => New_Discr,
5969 Scope_Id => Current_Scope);
5970 end if;
5971 end if;
5973 if not Conforming_Types
5974 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
5975 then
5976 Conformance_Error ("type of & does not match!", New_Discr_Id);
5977 return;
5978 else
5979 -- Treat the new discriminant as an occurrence of the old one,
5980 -- for navigation purposes, and fill in some semantic
5981 -- information, for completeness.
5983 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
5984 Set_Etype (New_Discr_Id, Etype (Old_Discr));
5985 Set_Scope (New_Discr_Id, Scope (Old_Discr));
5986 end if;
5988 -- Names must match
5990 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
5991 Conformance_Error ("name & does not match!", New_Discr_Id);
5992 return;
5993 end if;
5995 -- Default expressions must match
5997 declare
5998 NewD : constant Boolean :=
5999 Present (Expression (New_Discr));
6000 OldD : constant Boolean :=
6001 Present (Expression (Parent (Old_Discr)));
6003 begin
6004 if NewD or OldD then
6006 -- The old default value has been analyzed and expanded,
6007 -- because the current full declaration will have frozen
6008 -- everything before. The new default values have not been
6009 -- expanded, so expand now to check conformance.
6011 if NewD then
6012 Preanalyze_Spec_Expression
6013 (Expression (New_Discr), New_Discr_Type);
6014 end if;
6016 if not (NewD and OldD)
6017 or else not Fully_Conformant_Expressions
6018 (Expression (Parent (Old_Discr)),
6019 Expression (New_Discr))
6021 then
6022 Conformance_Error
6023 ("default expression for & does not match!",
6024 New_Discr_Id);
6025 return;
6026 end if;
6027 end if;
6028 end;
6030 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
6032 if Ada_Version = Ada_83 then
6033 declare
6034 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
6036 begin
6037 -- Grouping (use of comma in param lists) must be the same
6038 -- This is where we catch a misconformance like:
6040 -- A, B : Integer
6041 -- A : Integer; B : Integer
6043 -- which are represented identically in the tree except
6044 -- for the setting of the flags More_Ids and Prev_Ids.
6046 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
6047 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
6048 then
6049 Conformance_Error
6050 ("grouping of & does not match!", New_Discr_Id);
6051 return;
6052 end if;
6053 end;
6054 end if;
6056 Next_Discriminant (Old_Discr);
6057 Next (New_Discr);
6058 end loop;
6060 if Present (Old_Discr) then
6061 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
6062 return;
6064 elsif Present (New_Discr) then
6065 Conformance_Error
6066 ("too many discriminants!", Defining_Identifier (New_Discr));
6067 return;
6068 end if;
6069 end Check_Discriminant_Conformance;
6071 ----------------------------
6072 -- Check_Fully_Conformant --
6073 ----------------------------
6075 procedure Check_Fully_Conformant
6076 (New_Id : Entity_Id;
6077 Old_Id : Entity_Id;
6078 Err_Loc : Node_Id := Empty)
6080 Result : Boolean;
6081 pragma Warnings (Off, Result);
6082 begin
6083 Check_Conformance
6084 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
6085 end Check_Fully_Conformant;
6087 --------------------------
6088 -- Check_Limited_Return --
6089 --------------------------
6091 procedure Check_Limited_Return
6092 (N : Node_Id;
6093 Expr : Node_Id;
6094 R_Type : Entity_Id)
6096 begin
6097 -- Ada 2005 (AI-318-02): Return-by-reference types have been removed and
6098 -- replaced by anonymous access results. This is an incompatibility with
6099 -- Ada 95. Not clear whether this should be enforced yet or perhaps
6100 -- controllable with special switch. ???
6102 -- A limited interface that is not immutably limited is OK
6104 if Is_Limited_Interface (R_Type)
6105 and then
6106 not (Is_Task_Interface (R_Type)
6107 or else Is_Protected_Interface (R_Type)
6108 or else Is_Synchronized_Interface (R_Type))
6109 then
6110 null;
6112 elsif Is_Limited_Type (R_Type)
6113 and then not Is_Interface (R_Type)
6114 and then Comes_From_Source (N)
6115 and then not In_Instance_Body
6116 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
6117 then
6118 -- Error in Ada 2005
6120 if Ada_Version >= Ada_2005
6121 and then not Debug_Flag_Dot_L
6122 and then not GNAT_Mode
6123 then
6124 Error_Msg_N
6125 ("(Ada 2005) cannot copy object of a limited type "
6126 & "(RM-2005 6.5(5.5/2))", Expr);
6128 if Is_Limited_View (R_Type) then
6129 Error_Msg_N
6130 ("\return by reference not permitted in Ada 2005", Expr);
6131 end if;
6133 -- Warn in Ada 95 mode, to give folks a heads up about this
6134 -- incompatibility.
6136 -- In GNAT mode, this is just a warning, to allow it to be evilly
6137 -- turned off. Otherwise it is a real error.
6139 -- In a generic context, simplify the warning because it makes no
6140 -- sense to discuss pass-by-reference or copy.
6142 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
6143 if Inside_A_Generic then
6144 Error_Msg_N
6145 ("return of limited object not permitted in Ada 2005 "
6146 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6148 elsif Is_Limited_View (R_Type) then
6149 Error_Msg_N
6150 ("return by reference not permitted in Ada 2005 "
6151 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6152 else
6153 Error_Msg_N
6154 ("cannot copy object of a limited type in Ada 2005 "
6155 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6156 end if;
6158 -- Ada 95 mode, and compatibility warnings disabled
6160 else
6161 pragma Assert (Ada_Version <= Ada_95);
6162 pragma Assert (not (Warn_On_Ada_2005_Compatibility or GNAT_Mode));
6163 return; -- skip continuation messages below
6164 end if;
6166 if not Inside_A_Generic then
6167 Error_Msg_N
6168 ("\consider switching to return of access type", Expr);
6169 Explain_Limited_Type (R_Type, Expr);
6170 end if;
6171 end if;
6172 end Check_Limited_Return;
6174 ---------------------------
6175 -- Check_Mode_Conformant --
6176 ---------------------------
6178 procedure Check_Mode_Conformant
6179 (New_Id : Entity_Id;
6180 Old_Id : Entity_Id;
6181 Err_Loc : Node_Id := Empty;
6182 Get_Inst : Boolean := False)
6184 Result : Boolean;
6185 pragma Warnings (Off, Result);
6186 begin
6187 Check_Conformance
6188 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
6189 end Check_Mode_Conformant;
6191 --------------------------------
6192 -- Check_Overriding_Indicator --
6193 --------------------------------
6195 procedure Check_Overriding_Indicator
6196 (Subp : Entity_Id;
6197 Overridden_Subp : Entity_Id;
6198 Is_Primitive : Boolean)
6200 Decl : Node_Id;
6201 Spec : Node_Id;
6203 begin
6204 -- No overriding indicator for literals
6206 if Ekind (Subp) = E_Enumeration_Literal then
6207 return;
6209 elsif Ekind (Subp) = E_Entry then
6210 Decl := Parent (Subp);
6212 -- No point in analyzing a malformed operator
6214 elsif Nkind (Subp) = N_Defining_Operator_Symbol
6215 and then Error_Posted (Subp)
6216 then
6217 return;
6219 else
6220 Decl := Unit_Declaration_Node (Subp);
6221 end if;
6223 if Nkind_In (Decl, N_Subprogram_Body,
6224 N_Subprogram_Body_Stub,
6225 N_Subprogram_Declaration,
6226 N_Abstract_Subprogram_Declaration,
6227 N_Subprogram_Renaming_Declaration)
6228 then
6229 Spec := Specification (Decl);
6231 elsif Nkind (Decl) = N_Entry_Declaration then
6232 Spec := Decl;
6234 else
6235 return;
6236 end if;
6238 -- The overriding operation is type conformant with the overridden one,
6239 -- but the names of the formals are not required to match. If the names
6240 -- appear permuted in the overriding operation, this is a possible
6241 -- source of confusion that is worth diagnosing. Controlling formals
6242 -- often carry names that reflect the type, and it is not worthwhile
6243 -- requiring that their names match.
6245 if Present (Overridden_Subp)
6246 and then Nkind (Subp) /= N_Defining_Operator_Symbol
6247 then
6248 declare
6249 Form1 : Entity_Id;
6250 Form2 : Entity_Id;
6252 begin
6253 Form1 := First_Formal (Subp);
6254 Form2 := First_Formal (Overridden_Subp);
6256 -- If the overriding operation is a synchronized operation, skip
6257 -- the first parameter of the overridden operation, which is
6258 -- implicit in the new one. If the operation is declared in the
6259 -- body it is not primitive and all formals must match.
6261 if Is_Concurrent_Type (Scope (Subp))
6262 and then Is_Tagged_Type (Scope (Subp))
6263 and then not Has_Completion (Scope (Subp))
6264 then
6265 Form2 := Next_Formal (Form2);
6266 end if;
6268 if Present (Form1) then
6269 Form1 := Next_Formal (Form1);
6270 Form2 := Next_Formal (Form2);
6271 end if;
6273 while Present (Form1) loop
6274 if not Is_Controlling_Formal (Form1)
6275 and then Present (Next_Formal (Form2))
6276 and then Chars (Form1) = Chars (Next_Formal (Form2))
6277 then
6278 Error_Msg_Node_2 := Alias (Overridden_Subp);
6279 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
6280 Error_Msg_NE
6281 ("& does not match corresponding formal of&#",
6282 Form1, Form1);
6283 exit;
6284 end if;
6286 Next_Formal (Form1);
6287 Next_Formal (Form2);
6288 end loop;
6289 end;
6290 end if;
6292 -- If there is an overridden subprogram, then check that there is no
6293 -- "not overriding" indicator, and mark the subprogram as overriding.
6294 -- This is not done if the overridden subprogram is marked as hidden,
6295 -- which can occur for the case of inherited controlled operations
6296 -- (see Derive_Subprogram), unless the inherited subprogram's parent
6297 -- subprogram is not itself hidden. (Note: This condition could probably
6298 -- be simplified, leaving out the testing for the specific controlled
6299 -- cases, but it seems safer and clearer this way, and echoes similar
6300 -- special-case tests of this kind in other places.)
6302 if Present (Overridden_Subp)
6303 and then (not Is_Hidden (Overridden_Subp)
6304 or else
6305 (Nam_In (Chars (Overridden_Subp), Name_Initialize,
6306 Name_Adjust,
6307 Name_Finalize)
6308 and then Present (Alias (Overridden_Subp))
6309 and then not Is_Hidden (Alias (Overridden_Subp))))
6310 then
6311 if Must_Not_Override (Spec) then
6312 Error_Msg_Sloc := Sloc (Overridden_Subp);
6314 if Ekind (Subp) = E_Entry then
6315 Error_Msg_NE
6316 ("entry & overrides inherited operation #", Spec, Subp);
6317 else
6318 Error_Msg_NE
6319 ("subprogram & overrides inherited operation #", Spec, Subp);
6320 end if;
6322 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
6323 -- as an extension of Root_Controlled, and thus has a useless Adjust
6324 -- operation. This operation should not be inherited by other limited
6325 -- controlled types. An explicit Adjust for them is not overriding.
6327 elsif Must_Override (Spec)
6328 and then Chars (Overridden_Subp) = Name_Adjust
6329 and then Is_Limited_Type (Etype (First_Formal (Subp)))
6330 and then Present (Alias (Overridden_Subp))
6331 and then In_Predefined_Unit (Alias (Overridden_Subp))
6332 then
6333 Get_Name_String
6334 (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))));
6335 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6337 elsif Is_Subprogram (Subp) then
6338 if Is_Init_Proc (Subp) then
6339 null;
6341 elsif No (Overridden_Operation (Subp)) then
6343 -- For entities generated by Derive_Subprograms the overridden
6344 -- operation is the inherited primitive (which is available
6345 -- through the attribute alias)
6347 if (Is_Dispatching_Operation (Subp)
6348 or else Is_Dispatching_Operation (Overridden_Subp))
6349 and then not Comes_From_Source (Overridden_Subp)
6350 and then Find_Dispatching_Type (Overridden_Subp) =
6351 Find_Dispatching_Type (Subp)
6352 and then Present (Alias (Overridden_Subp))
6353 and then Comes_From_Source (Alias (Overridden_Subp))
6354 then
6355 Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
6356 Inherit_Subprogram_Contract (Subp, Alias (Overridden_Subp));
6358 else
6359 Set_Overridden_Operation (Subp, Overridden_Subp);
6360 Inherit_Subprogram_Contract (Subp, Overridden_Subp);
6361 end if;
6362 end if;
6363 end if;
6365 -- If primitive flag is set or this is a protected operation, then
6366 -- the operation is overriding at the point of its declaration, so
6367 -- warn if necessary. Otherwise it may have been declared before the
6368 -- operation it overrides and no check is required.
6370 if Style_Check
6371 and then not Must_Override (Spec)
6372 and then (Is_Primitive
6373 or else Ekind (Scope (Subp)) = E_Protected_Type)
6374 then
6375 Style.Missing_Overriding (Decl, Subp);
6376 end if;
6378 -- If Subp is an operator, it may override a predefined operation, if
6379 -- it is defined in the same scope as the type to which it applies.
6380 -- In that case Overridden_Subp is empty because of our implicit
6381 -- representation for predefined operators. We have to check whether the
6382 -- signature of Subp matches that of a predefined operator. Note that
6383 -- first argument provides the name of the operator, and the second
6384 -- argument the signature that may match that of a standard operation.
6385 -- If the indicator is overriding, then the operator must match a
6386 -- predefined signature, because we know already that there is no
6387 -- explicit overridden operation.
6389 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
6390 if Must_Not_Override (Spec) then
6392 -- If this is not a primitive or a protected subprogram, then
6393 -- "not overriding" is illegal.
6395 if not Is_Primitive
6396 and then Ekind (Scope (Subp)) /= E_Protected_Type
6397 then
6398 Error_Msg_N ("overriding indicator only allowed "
6399 & "if subprogram is primitive", Subp);
6401 elsif Can_Override_Operator (Subp) then
6402 Error_Msg_NE
6403 ("subprogram& overrides predefined operator ", Spec, Subp);
6404 end if;
6406 elsif Must_Override (Spec) then
6407 if No (Overridden_Operation (Subp))
6408 and then not Can_Override_Operator (Subp)
6409 then
6410 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6411 end if;
6413 elsif not Error_Posted (Subp)
6414 and then Style_Check
6415 and then Can_Override_Operator (Subp)
6416 and then not In_Predefined_Unit (Subp)
6417 then
6418 -- If style checks are enabled, indicate that the indicator is
6419 -- missing. However, at the point of declaration, the type of
6420 -- which this is a primitive operation may be private, in which
6421 -- case the indicator would be premature.
6423 if Has_Private_Declaration (Etype (Subp))
6424 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
6425 then
6426 null;
6427 else
6428 Style.Missing_Overriding (Decl, Subp);
6429 end if;
6430 end if;
6432 elsif Must_Override (Spec) then
6433 if Ekind (Subp) = E_Entry then
6434 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
6435 else
6436 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6437 end if;
6439 -- If the operation is marked "not overriding" and it's not primitive
6440 -- then an error is issued, unless this is an operation of a task or
6441 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
6442 -- has been specified have already been checked above.
6444 elsif Must_Not_Override (Spec)
6445 and then not Is_Primitive
6446 and then Ekind (Subp) /= E_Entry
6447 and then Ekind (Scope (Subp)) /= E_Protected_Type
6448 then
6449 Error_Msg_N
6450 ("overriding indicator only allowed if subprogram is primitive",
6451 Subp);
6452 return;
6453 end if;
6454 end Check_Overriding_Indicator;
6456 -------------------
6457 -- Check_Returns --
6458 -------------------
6460 -- Note: this procedure needs to know far too much about how the expander
6461 -- messes with exceptions. The use of the flag Exception_Junk and the
6462 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
6463 -- works, but is not very clean. It would be better if the expansion
6464 -- routines would leave Original_Node working nicely, and we could use
6465 -- Original_Node here to ignore all the peculiar expander messing ???
6467 procedure Check_Returns
6468 (HSS : Node_Id;
6469 Mode : Character;
6470 Err : out Boolean;
6471 Proc : Entity_Id := Empty)
6473 Handler : Node_Id;
6475 procedure Check_Statement_Sequence (L : List_Id);
6476 -- Internal recursive procedure to check a list of statements for proper
6477 -- termination by a return statement (or a transfer of control or a
6478 -- compound statement that is itself internally properly terminated).
6480 ------------------------------
6481 -- Check_Statement_Sequence --
6482 ------------------------------
6484 procedure Check_Statement_Sequence (L : List_Id) is
6485 Last_Stm : Node_Id;
6486 Stm : Node_Id;
6487 Kind : Node_Kind;
6489 function Assert_False return Boolean;
6490 -- Returns True if Last_Stm is a pragma Assert (False) that has been
6491 -- rewritten as a null statement when assertions are off. The assert
6492 -- is not active, but it is still enough to kill the warning.
6494 ------------------
6495 -- Assert_False --
6496 ------------------
6498 function Assert_False return Boolean is
6499 Orig : constant Node_Id := Original_Node (Last_Stm);
6501 begin
6502 if Nkind (Orig) = N_Pragma
6503 and then Pragma_Name (Orig) = Name_Assert
6504 and then not Error_Posted (Orig)
6505 then
6506 declare
6507 Arg : constant Node_Id :=
6508 First (Pragma_Argument_Associations (Orig));
6509 Exp : constant Node_Id := Expression (Arg);
6510 begin
6511 return Nkind (Exp) = N_Identifier
6512 and then Chars (Exp) = Name_False;
6513 end;
6515 else
6516 return False;
6517 end if;
6518 end Assert_False;
6520 -- Local variables
6522 Raise_Exception_Call : Boolean;
6523 -- Set True if statement sequence terminated by Raise_Exception call
6524 -- or a Reraise_Occurrence call.
6526 -- Start of processing for Check_Statement_Sequence
6528 begin
6529 Raise_Exception_Call := False;
6531 -- Get last real statement
6533 Last_Stm := Last (L);
6535 -- Deal with digging out exception handler statement sequences that
6536 -- have been transformed by the local raise to goto optimization.
6537 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
6538 -- optimization has occurred, we are looking at something like:
6540 -- begin
6541 -- original stmts in block
6543 -- exception \
6544 -- when excep1 => |
6545 -- goto L1; | omitted if No_Exception_Propagation
6546 -- when excep2 => |
6547 -- goto L2; /
6548 -- end;
6550 -- goto L3; -- skip handler when exception not raised
6552 -- <<L1>> -- target label for local exception
6553 -- begin
6554 -- estmts1
6555 -- end;
6557 -- goto L3;
6559 -- <<L2>>
6560 -- begin
6561 -- estmts2
6562 -- end;
6564 -- <<L3>>
6566 -- and what we have to do is to dig out the estmts1 and estmts2
6567 -- sequences (which were the original sequences of statements in
6568 -- the exception handlers) and check them.
6570 if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
6571 Stm := Last_Stm;
6572 loop
6573 Prev (Stm);
6574 exit when No (Stm);
6575 exit when Nkind (Stm) /= N_Block_Statement;
6576 exit when not Exception_Junk (Stm);
6577 Prev (Stm);
6578 exit when No (Stm);
6579 exit when Nkind (Stm) /= N_Label;
6580 exit when not Exception_Junk (Stm);
6581 Check_Statement_Sequence
6582 (Statements (Handled_Statement_Sequence (Next (Stm))));
6584 Prev (Stm);
6585 Last_Stm := Stm;
6586 exit when No (Stm);
6587 exit when Nkind (Stm) /= N_Goto_Statement;
6588 exit when not Exception_Junk (Stm);
6589 end loop;
6590 end if;
6592 -- Don't count pragmas
6594 while Nkind (Last_Stm) = N_Pragma
6596 -- Don't count call to SS_Release (can happen after Raise_Exception)
6598 or else
6599 (Nkind (Last_Stm) = N_Procedure_Call_Statement
6600 and then
6601 Nkind (Name (Last_Stm)) = N_Identifier
6602 and then
6603 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
6605 -- Don't count exception junk
6607 or else
6608 (Nkind_In (Last_Stm, N_Goto_Statement,
6609 N_Label,
6610 N_Object_Declaration)
6611 and then Exception_Junk (Last_Stm))
6612 or else Nkind (Last_Stm) in N_Push_xxx_Label
6613 or else Nkind (Last_Stm) in N_Pop_xxx_Label
6615 -- Inserted code, such as finalization calls, is irrelevant: we only
6616 -- need to check original source.
6618 or else Is_Rewrite_Insertion (Last_Stm)
6619 loop
6620 Prev (Last_Stm);
6621 end loop;
6623 -- Here we have the "real" last statement
6625 Kind := Nkind (Last_Stm);
6627 -- Transfer of control, OK. Note that in the No_Return procedure
6628 -- case, we already diagnosed any explicit return statements, so
6629 -- we can treat them as OK in this context.
6631 if Is_Transfer (Last_Stm) then
6632 return;
6634 -- Check cases of explicit non-indirect procedure calls
6636 elsif Kind = N_Procedure_Call_Statement
6637 and then Is_Entity_Name (Name (Last_Stm))
6638 then
6639 -- Check call to Raise_Exception procedure which is treated
6640 -- specially, as is a call to Reraise_Occurrence.
6642 -- We suppress the warning in these cases since it is likely that
6643 -- the programmer really does not expect to deal with the case
6644 -- of Null_Occurrence, and thus would find a warning about a
6645 -- missing return curious, and raising Program_Error does not
6646 -- seem such a bad behavior if this does occur.
6648 -- Note that in the Ada 2005 case for Raise_Exception, the actual
6649 -- behavior will be to raise Constraint_Error (see AI-329).
6651 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
6652 or else
6653 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
6654 then
6655 Raise_Exception_Call := True;
6657 -- For Raise_Exception call, test first argument, if it is
6658 -- an attribute reference for a 'Identity call, then we know
6659 -- that the call cannot possibly return.
6661 declare
6662 Arg : constant Node_Id :=
6663 Original_Node (First_Actual (Last_Stm));
6664 begin
6665 if Nkind (Arg) = N_Attribute_Reference
6666 and then Attribute_Name (Arg) = Name_Identity
6667 then
6668 return;
6669 end if;
6670 end;
6671 end if;
6673 -- If statement, need to look inside if there is an else and check
6674 -- each constituent statement sequence for proper termination.
6676 elsif Kind = N_If_Statement
6677 and then Present (Else_Statements (Last_Stm))
6678 then
6679 Check_Statement_Sequence (Then_Statements (Last_Stm));
6680 Check_Statement_Sequence (Else_Statements (Last_Stm));
6682 if Present (Elsif_Parts (Last_Stm)) then
6683 declare
6684 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
6686 begin
6687 while Present (Elsif_Part) loop
6688 Check_Statement_Sequence (Then_Statements (Elsif_Part));
6689 Next (Elsif_Part);
6690 end loop;
6691 end;
6692 end if;
6694 return;
6696 -- Case statement, check each case for proper termination
6698 elsif Kind = N_Case_Statement then
6699 declare
6700 Case_Alt : Node_Id;
6701 begin
6702 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
6703 while Present (Case_Alt) loop
6704 Check_Statement_Sequence (Statements (Case_Alt));
6705 Next_Non_Pragma (Case_Alt);
6706 end loop;
6707 end;
6709 return;
6711 -- Block statement, check its handled sequence of statements
6713 elsif Kind = N_Block_Statement then
6714 declare
6715 Err1 : Boolean;
6717 begin
6718 Check_Returns
6719 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
6721 if Err1 then
6722 Err := True;
6723 end if;
6725 return;
6726 end;
6728 -- Loop statement. If there is an iteration scheme, we can definitely
6729 -- fall out of the loop. Similarly if there is an exit statement, we
6730 -- can fall out. In either case we need a following return.
6732 elsif Kind = N_Loop_Statement then
6733 if Present (Iteration_Scheme (Last_Stm))
6734 or else Has_Exit (Entity (Identifier (Last_Stm)))
6735 then
6736 null;
6738 -- A loop with no exit statement or iteration scheme is either
6739 -- an infinite loop, or it has some other exit (raise/return).
6740 -- In either case, no warning is required.
6742 else
6743 return;
6744 end if;
6746 -- Timed entry call, check entry call and delay alternatives
6748 -- Note: in expanded code, the timed entry call has been converted
6749 -- to a set of expanded statements on which the check will work
6750 -- correctly in any case.
6752 elsif Kind = N_Timed_Entry_Call then
6753 declare
6754 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6755 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
6757 begin
6758 -- If statement sequence of entry call alternative is missing,
6759 -- then we can definitely fall through, and we post the error
6760 -- message on the entry call alternative itself.
6762 if No (Statements (ECA)) then
6763 Last_Stm := ECA;
6765 -- If statement sequence of delay alternative is missing, then
6766 -- we can definitely fall through, and we post the error
6767 -- message on the delay alternative itself.
6769 -- Note: if both ECA and DCA are missing the return, then we
6770 -- post only one message, should be enough to fix the bugs.
6771 -- If not we will get a message next time on the DCA when the
6772 -- ECA is fixed.
6774 elsif No (Statements (DCA)) then
6775 Last_Stm := DCA;
6777 -- Else check both statement sequences
6779 else
6780 Check_Statement_Sequence (Statements (ECA));
6781 Check_Statement_Sequence (Statements (DCA));
6782 return;
6783 end if;
6784 end;
6786 -- Conditional entry call, check entry call and else part
6788 -- Note: in expanded code, the conditional entry call has been
6789 -- converted to a set of expanded statements on which the check
6790 -- will work correctly in any case.
6792 elsif Kind = N_Conditional_Entry_Call then
6793 declare
6794 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6796 begin
6797 -- If statement sequence of entry call alternative is missing,
6798 -- then we can definitely fall through, and we post the error
6799 -- message on the entry call alternative itself.
6801 if No (Statements (ECA)) then
6802 Last_Stm := ECA;
6804 -- Else check statement sequence and else part
6806 else
6807 Check_Statement_Sequence (Statements (ECA));
6808 Check_Statement_Sequence (Else_Statements (Last_Stm));
6809 return;
6810 end if;
6811 end;
6812 end if;
6814 -- If we fall through, issue appropriate message
6816 if Mode = 'F' then
6818 -- Kill warning if last statement is a raise exception call,
6819 -- or a pragma Assert (False). Note that with assertions enabled,
6820 -- such a pragma has been converted into a raise exception call
6821 -- already, so the Assert_False is for the assertions off case.
6823 if not Raise_Exception_Call and then not Assert_False then
6825 -- In GNATprove mode, it is an error to have a missing return
6827 Error_Msg_Warn := SPARK_Mode /= On;
6829 -- Issue error message or warning
6831 Error_Msg_N
6832 ("RETURN statement missing following this statement<<!",
6833 Last_Stm);
6834 Error_Msg_N
6835 ("\Program_Error ]<<!", Last_Stm);
6836 end if;
6838 -- Note: we set Err even though we have not issued a warning
6839 -- because we still have a case of a missing return. This is
6840 -- an extremely marginal case, probably will never be noticed
6841 -- but we might as well get it right.
6843 Err := True;
6845 -- Otherwise we have the case of a procedure marked No_Return
6847 else
6848 if not Raise_Exception_Call then
6849 if GNATprove_Mode then
6850 Error_Msg_N
6851 ("implied return after this statement would have raised "
6852 & "Program_Error", Last_Stm);
6854 -- In normal compilation mode, do not warn on a generated call
6855 -- (e.g. in the body of a renaming as completion).
6857 elsif Comes_From_Source (Last_Stm) then
6858 Error_Msg_N
6859 ("implied return after this statement will raise "
6860 & "Program_Error??", Last_Stm);
6861 end if;
6863 Error_Msg_Warn := SPARK_Mode /= On;
6864 Error_Msg_NE
6865 ("\procedure & is marked as No_Return<<!", Last_Stm, Proc);
6866 end if;
6868 declare
6869 RE : constant Node_Id :=
6870 Make_Raise_Program_Error (Sloc (Last_Stm),
6871 Reason => PE_Implicit_Return);
6872 begin
6873 Insert_After (Last_Stm, RE);
6874 Analyze (RE);
6875 end;
6876 end if;
6877 end Check_Statement_Sequence;
6879 -- Start of processing for Check_Returns
6881 begin
6882 Err := False;
6883 Check_Statement_Sequence (Statements (HSS));
6885 if Present (Exception_Handlers (HSS)) then
6886 Handler := First_Non_Pragma (Exception_Handlers (HSS));
6887 while Present (Handler) loop
6888 Check_Statement_Sequence (Statements (Handler));
6889 Next_Non_Pragma (Handler);
6890 end loop;
6891 end if;
6892 end Check_Returns;
6894 ----------------------------
6895 -- Check_Subprogram_Order --
6896 ----------------------------
6898 procedure Check_Subprogram_Order (N : Node_Id) is
6900 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
6901 -- This is used to check if S1 > S2 in the sense required by this test,
6902 -- for example nameab < namec, but name2 < name10.
6904 -----------------------------
6905 -- Subprogram_Name_Greater --
6906 -----------------------------
6908 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
6909 L1, L2 : Positive;
6910 N1, N2 : Natural;
6912 begin
6913 -- Deal with special case where names are identical except for a
6914 -- numerical suffix. These are handled specially, taking the numeric
6915 -- ordering from the suffix into account.
6917 L1 := S1'Last;
6918 while S1 (L1) in '0' .. '9' loop
6919 L1 := L1 - 1;
6920 end loop;
6922 L2 := S2'Last;
6923 while S2 (L2) in '0' .. '9' loop
6924 L2 := L2 - 1;
6925 end loop;
6927 -- If non-numeric parts non-equal, do straight compare
6929 if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
6930 return S1 > S2;
6932 -- If non-numeric parts equal, compare suffixed numeric parts. Note
6933 -- that a missing suffix is treated as numeric zero in this test.
6935 else
6936 N1 := 0;
6937 while L1 < S1'Last loop
6938 L1 := L1 + 1;
6939 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
6940 end loop;
6942 N2 := 0;
6943 while L2 < S2'Last loop
6944 L2 := L2 + 1;
6945 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
6946 end loop;
6948 return N1 > N2;
6949 end if;
6950 end Subprogram_Name_Greater;
6952 -- Start of processing for Check_Subprogram_Order
6954 begin
6955 -- Check body in alpha order if this is option
6957 if Style_Check
6958 and then Style_Check_Order_Subprograms
6959 and then Nkind (N) = N_Subprogram_Body
6960 and then Comes_From_Source (N)
6961 and then In_Extended_Main_Source_Unit (N)
6962 then
6963 declare
6964 LSN : String_Ptr
6965 renames Scope_Stack.Table
6966 (Scope_Stack.Last).Last_Subprogram_Name;
6968 Body_Id : constant Entity_Id :=
6969 Defining_Entity (Specification (N));
6971 begin
6972 Get_Decoded_Name_String (Chars (Body_Id));
6974 if LSN /= null then
6975 if Subprogram_Name_Greater
6976 (LSN.all, Name_Buffer (1 .. Name_Len))
6977 then
6978 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
6979 end if;
6981 Free (LSN);
6982 end if;
6984 LSN := new String'(Name_Buffer (1 .. Name_Len));
6985 end;
6986 end if;
6987 end Check_Subprogram_Order;
6989 ------------------------------
6990 -- Check_Subtype_Conformant --
6991 ------------------------------
6993 procedure Check_Subtype_Conformant
6994 (New_Id : Entity_Id;
6995 Old_Id : Entity_Id;
6996 Err_Loc : Node_Id := Empty;
6997 Skip_Controlling_Formals : Boolean := False;
6998 Get_Inst : Boolean := False)
7000 Result : Boolean;
7001 pragma Warnings (Off, Result);
7002 begin
7003 Check_Conformance
7004 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
7005 Skip_Controlling_Formals => Skip_Controlling_Formals,
7006 Get_Inst => Get_Inst);
7007 end Check_Subtype_Conformant;
7009 -----------------------------------
7010 -- Check_Synchronized_Overriding --
7011 -----------------------------------
7013 procedure Check_Synchronized_Overriding
7014 (Def_Id : Entity_Id;
7015 Overridden_Subp : out Entity_Id)
7017 Ifaces_List : Elist_Id;
7018 In_Scope : Boolean;
7019 Typ : Entity_Id;
7021 function Matches_Prefixed_View_Profile
7022 (Prim_Params : List_Id;
7023 Iface_Params : List_Id) return Boolean;
7024 -- Determine whether a subprogram's parameter profile Prim_Params
7025 -- matches that of a potentially overridden interface subprogram
7026 -- Iface_Params. Also determine if the type of first parameter of
7027 -- Iface_Params is an implemented interface.
7029 -----------------------------------
7030 -- Matches_Prefixed_View_Profile --
7031 -----------------------------------
7033 function Matches_Prefixed_View_Profile
7034 (Prim_Params : List_Id;
7035 Iface_Params : List_Id) return Boolean
7037 function Is_Implemented
7038 (Ifaces_List : Elist_Id;
7039 Iface : Entity_Id) return Boolean;
7040 -- Determine if Iface is implemented by the current task or
7041 -- protected type.
7043 --------------------
7044 -- Is_Implemented --
7045 --------------------
7047 function Is_Implemented
7048 (Ifaces_List : Elist_Id;
7049 Iface : Entity_Id) return Boolean
7051 Iface_Elmt : Elmt_Id;
7053 begin
7054 Iface_Elmt := First_Elmt (Ifaces_List);
7055 while Present (Iface_Elmt) loop
7056 if Node (Iface_Elmt) = Iface then
7057 return True;
7058 end if;
7060 Next_Elmt (Iface_Elmt);
7061 end loop;
7063 return False;
7064 end Is_Implemented;
7066 -- Local variables
7068 Iface_Id : Entity_Id;
7069 Iface_Param : Node_Id;
7070 Iface_Typ : Entity_Id;
7071 Prim_Id : Entity_Id;
7072 Prim_Param : Node_Id;
7073 Prim_Typ : Entity_Id;
7075 -- Start of processing for Matches_Prefixed_View_Profile
7077 begin
7078 Iface_Param := First (Iface_Params);
7079 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
7081 if Is_Access_Type (Iface_Typ) then
7082 Iface_Typ := Designated_Type (Iface_Typ);
7083 end if;
7085 Prim_Param := First (Prim_Params);
7087 -- The first parameter of the potentially overridden subprogram must
7088 -- be an interface implemented by Prim.
7090 if not Is_Interface (Iface_Typ)
7091 or else not Is_Implemented (Ifaces_List, Iface_Typ)
7092 then
7093 return False;
7094 end if;
7096 -- The checks on the object parameters are done, so move on to the
7097 -- rest of the parameters.
7099 if not In_Scope then
7100 Prim_Param := Next (Prim_Param);
7101 end if;
7103 Iface_Param := Next (Iface_Param);
7104 while Present (Iface_Param) and then Present (Prim_Param) loop
7105 Iface_Id := Defining_Identifier (Iface_Param);
7106 Iface_Typ := Find_Parameter_Type (Iface_Param);
7108 Prim_Id := Defining_Identifier (Prim_Param);
7109 Prim_Typ := Find_Parameter_Type (Prim_Param);
7111 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
7112 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
7113 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
7114 then
7115 Iface_Typ := Designated_Type (Iface_Typ);
7116 Prim_Typ := Designated_Type (Prim_Typ);
7117 end if;
7119 -- Case of multiple interface types inside a parameter profile
7121 -- (Obj_Param : in out Iface; ...; Param : Iface)
7123 -- If the interface type is implemented, then the matching type in
7124 -- the primitive should be the implementing record type.
7126 if Ekind (Iface_Typ) = E_Record_Type
7127 and then Is_Interface (Iface_Typ)
7128 and then Is_Implemented (Ifaces_List, Iface_Typ)
7129 then
7130 if Prim_Typ /= Typ then
7131 return False;
7132 end if;
7134 -- The two parameters must be both mode and subtype conformant
7136 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
7137 or else not
7138 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
7139 then
7140 return False;
7141 end if;
7143 Next (Iface_Param);
7144 Next (Prim_Param);
7145 end loop;
7147 -- One of the two lists contains more parameters than the other
7149 if Present (Iface_Param) or else Present (Prim_Param) then
7150 return False;
7151 end if;
7153 return True;
7154 end Matches_Prefixed_View_Profile;
7156 -- Start of processing for Check_Synchronized_Overriding
7158 begin
7159 Overridden_Subp := Empty;
7161 -- Def_Id must be an entry or a subprogram. We should skip predefined
7162 -- primitives internally generated by the front end; however at this
7163 -- stage predefined primitives are still not fully decorated. As a
7164 -- minor optimization we skip here internally generated subprograms.
7166 if (Ekind (Def_Id) /= E_Entry
7167 and then Ekind (Def_Id) /= E_Function
7168 and then Ekind (Def_Id) /= E_Procedure)
7169 or else not Comes_From_Source (Def_Id)
7170 then
7171 return;
7172 end if;
7174 -- Search for the concurrent declaration since it contains the list of
7175 -- all implemented interfaces. In this case, the subprogram is declared
7176 -- within the scope of a protected or a task type.
7178 if Present (Scope (Def_Id))
7179 and then Is_Concurrent_Type (Scope (Def_Id))
7180 and then not Is_Generic_Actual_Type (Scope (Def_Id))
7181 then
7182 Typ := Scope (Def_Id);
7183 In_Scope := True;
7185 -- The enclosing scope is not a synchronized type and the subprogram
7186 -- has no formals.
7188 elsif No (First_Formal (Def_Id)) then
7189 return;
7191 -- The subprogram has formals and hence it may be a primitive of a
7192 -- concurrent type.
7194 else
7195 Typ := Etype (First_Formal (Def_Id));
7197 if Is_Access_Type (Typ) then
7198 Typ := Directly_Designated_Type (Typ);
7199 end if;
7201 if Is_Concurrent_Type (Typ)
7202 and then not Is_Generic_Actual_Type (Typ)
7203 then
7204 In_Scope := False;
7206 -- This case occurs when the concurrent type is declared within a
7207 -- generic unit. As a result the corresponding record has been built
7208 -- and used as the type of the first formal, we just have to retrieve
7209 -- the corresponding concurrent type.
7211 elsif Is_Concurrent_Record_Type (Typ)
7212 and then not Is_Class_Wide_Type (Typ)
7213 and then Present (Corresponding_Concurrent_Type (Typ))
7214 then
7215 Typ := Corresponding_Concurrent_Type (Typ);
7216 In_Scope := False;
7218 else
7219 return;
7220 end if;
7221 end if;
7223 -- There is no overriding to check if this is an inherited operation in
7224 -- a type derivation for a generic actual.
7226 Collect_Interfaces (Typ, Ifaces_List);
7228 if Is_Empty_Elmt_List (Ifaces_List) then
7229 return;
7230 end if;
7232 -- Determine whether entry or subprogram Def_Id overrides a primitive
7233 -- operation that belongs to one of the interfaces in Ifaces_List.
7235 declare
7236 Candidate : Entity_Id := Empty;
7237 Hom : Entity_Id := Empty;
7238 Subp : Entity_Id := Empty;
7240 begin
7241 -- Traverse the homonym chain, looking for a potentially overridden
7242 -- subprogram that belongs to an implemented interface.
7244 Hom := Current_Entity_In_Scope (Def_Id);
7245 while Present (Hom) loop
7246 Subp := Hom;
7248 if Subp = Def_Id
7249 or else not Is_Overloadable (Subp)
7250 or else not Is_Primitive (Subp)
7251 or else not Is_Dispatching_Operation (Subp)
7252 or else not Present (Find_Dispatching_Type (Subp))
7253 or else not Is_Interface (Find_Dispatching_Type (Subp))
7254 then
7255 null;
7257 -- Entries and procedures can override abstract or null interface
7258 -- procedures.
7260 elsif Ekind_In (Def_Id, E_Entry, E_Procedure)
7261 and then Ekind (Subp) = E_Procedure
7262 and then Matches_Prefixed_View_Profile
7263 (Parameter_Specifications (Parent (Def_Id)),
7264 Parameter_Specifications (Parent (Subp)))
7265 then
7266 Candidate := Subp;
7268 -- For an overridden subprogram Subp, check whether the mode
7269 -- of its first parameter is correct depending on the kind of
7270 -- synchronized type.
7272 declare
7273 Formal : constant Node_Id := First_Formal (Candidate);
7275 begin
7276 -- In order for an entry or a protected procedure to
7277 -- override, the first parameter of the overridden routine
7278 -- must be of mode "out", "in out", or access-to-variable.
7280 if Ekind_In (Candidate, E_Entry, E_Procedure)
7281 and then Is_Protected_Type (Typ)
7282 and then Ekind (Formal) /= E_In_Out_Parameter
7283 and then Ekind (Formal) /= E_Out_Parameter
7284 and then Nkind (Parameter_Type (Parent (Formal))) /=
7285 N_Access_Definition
7286 then
7287 null;
7289 -- All other cases are OK since a task entry or routine does
7290 -- not have a restriction on the mode of the first parameter
7291 -- of the overridden interface routine.
7293 else
7294 Overridden_Subp := Candidate;
7295 return;
7296 end if;
7297 end;
7299 -- Functions can override abstract interface functions
7301 elsif Ekind (Def_Id) = E_Function
7302 and then Ekind (Subp) = E_Function
7303 and then Matches_Prefixed_View_Profile
7304 (Parameter_Specifications (Parent (Def_Id)),
7305 Parameter_Specifications (Parent (Subp)))
7306 and then Etype (Def_Id) = Etype (Subp)
7307 then
7308 Candidate := Subp;
7310 -- If an inherited subprogram is implemented by a protected
7311 -- function, then the first parameter of the inherited
7312 -- subprogram shall be of mode in, but not an access-to-
7313 -- variable parameter (RM 9.4(11/9)).
7315 if Present (First_Formal (Subp))
7316 and then Ekind (First_Formal (Subp)) = E_In_Parameter
7317 and then
7318 (not Is_Access_Type (Etype (First_Formal (Subp)))
7319 or else
7320 Is_Access_Constant (Etype (First_Formal (Subp))))
7321 then
7322 Overridden_Subp := Subp;
7323 return;
7324 end if;
7325 end if;
7327 Hom := Homonym (Hom);
7328 end loop;
7330 -- After examining all candidates for overriding, we are left with
7331 -- the best match, which is a mode-incompatible interface routine.
7333 if In_Scope and then Present (Candidate) then
7334 Error_Msg_PT (Def_Id, Candidate);
7335 end if;
7337 Overridden_Subp := Candidate;
7338 return;
7339 end;
7340 end Check_Synchronized_Overriding;
7342 ---------------------------
7343 -- Check_Type_Conformant --
7344 ---------------------------
7346 procedure Check_Type_Conformant
7347 (New_Id : Entity_Id;
7348 Old_Id : Entity_Id;
7349 Err_Loc : Node_Id := Empty)
7351 Result : Boolean;
7352 pragma Warnings (Off, Result);
7353 begin
7354 Check_Conformance
7355 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
7356 end Check_Type_Conformant;
7358 ---------------------------
7359 -- Can_Override_Operator --
7360 ---------------------------
7362 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
7363 Typ : Entity_Id;
7365 begin
7366 if Nkind (Subp) /= N_Defining_Operator_Symbol then
7367 return False;
7369 else
7370 Typ := Base_Type (Etype (First_Formal (Subp)));
7372 -- Check explicitly that the operation is a primitive of the type
7374 return Operator_Matches_Spec (Subp, Subp)
7375 and then not Is_Generic_Type (Typ)
7376 and then Scope (Subp) = Scope (Typ)
7377 and then not Is_Class_Wide_Type (Typ);
7378 end if;
7379 end Can_Override_Operator;
7381 ----------------------
7382 -- Conforming_Types --
7383 ----------------------
7385 function Conforming_Types
7386 (T1 : Entity_Id;
7387 T2 : Entity_Id;
7388 Ctype : Conformance_Type;
7389 Get_Inst : Boolean := False) return Boolean
7391 function Base_Types_Match
7392 (Typ_1 : Entity_Id;
7393 Typ_2 : Entity_Id) return Boolean;
7394 -- If neither Typ_1 nor Typ_2 are generic actual types, or if they are
7395 -- in different scopes (e.g. parent and child instances), then verify
7396 -- that the base types are equal. Otherwise Typ_1 and Typ_2 must be on
7397 -- the same subtype chain. The whole purpose of this procedure is to
7398 -- prevent spurious ambiguities in an instantiation that may arise if
7399 -- two distinct generic types are instantiated with the same actual.
7401 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id;
7402 -- An access parameter can designate an incomplete type. If the
7403 -- incomplete type is the limited view of a type from a limited_
7404 -- with_clause, check whether the non-limited view is available.
7405 -- If it is a (non-limited) incomplete type, get the full view.
7407 function Matches_Limited_With_View
7408 (Typ_1 : Entity_Id;
7409 Typ_2 : Entity_Id) return Boolean;
7410 -- Returns True if and only if either Typ_1 denotes a limited view of
7411 -- Typ_2 or Typ_2 denotes a limited view of Typ_1. This can arise when
7412 -- the limited with view of a type is used in a subprogram declaration
7413 -- and the subprogram body is in the scope of a regular with clause for
7414 -- the same unit. In such a case, the two type entities are considered
7415 -- identical for purposes of conformance checking.
7417 ----------------------
7418 -- Base_Types_Match --
7419 ----------------------
7421 function Base_Types_Match
7422 (Typ_1 : Entity_Id;
7423 Typ_2 : Entity_Id) return Boolean
7425 Base_1 : constant Entity_Id := Base_Type (Typ_1);
7426 Base_2 : constant Entity_Id := Base_Type (Typ_2);
7428 begin
7429 if Typ_1 = Typ_2 then
7430 return True;
7432 elsif Base_1 = Base_2 then
7434 -- The following is too permissive. A more precise test should
7435 -- check that the generic actual is an ancestor subtype of the
7436 -- other ???.
7438 -- See code in Find_Corresponding_Spec that applies an additional
7439 -- filter to handle accidental amiguities in instances.
7441 return
7442 not Is_Generic_Actual_Type (Typ_1)
7443 or else not Is_Generic_Actual_Type (Typ_2)
7444 or else Scope (Typ_1) /= Scope (Typ_2);
7446 -- If Typ_2 is a generic actual type it is declared as the subtype of
7447 -- the actual. If that actual is itself a subtype we need to use its
7448 -- own base type to check for compatibility.
7450 elsif Ekind (Base_2) = Ekind (Typ_2)
7451 and then Base_1 = Base_Type (Base_2)
7452 then
7453 return True;
7455 elsif Ekind (Base_1) = Ekind (Typ_1)
7456 and then Base_2 = Base_Type (Base_1)
7457 then
7458 return True;
7460 else
7461 return False;
7462 end if;
7463 end Base_Types_Match;
7465 --------------------------
7466 -- Find_Designated_Type --
7467 --------------------------
7469 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id is
7470 Desig : Entity_Id;
7472 begin
7473 Desig := Directly_Designated_Type (Typ);
7475 if Ekind (Desig) = E_Incomplete_Type then
7477 -- If regular incomplete type, get full view if available
7479 if Present (Full_View (Desig)) then
7480 Desig := Full_View (Desig);
7482 -- If limited view of a type, get non-limited view if available,
7483 -- and check again for a regular incomplete type.
7485 elsif Present (Non_Limited_View (Desig)) then
7486 Desig := Get_Full_View (Non_Limited_View (Desig));
7487 end if;
7488 end if;
7490 return Desig;
7491 end Find_Designated_Type;
7493 -------------------------------
7494 -- Matches_Limited_With_View --
7495 -------------------------------
7497 function Matches_Limited_With_View
7498 (Typ_1 : Entity_Id;
7499 Typ_2 : Entity_Id) return Boolean
7501 function Is_Matching_Limited_View
7502 (Typ : Entity_Id;
7503 View : Entity_Id) return Boolean;
7504 -- Determine whether non-limited view View denotes type Typ in some
7505 -- conformant fashion.
7507 ------------------------------
7508 -- Is_Matching_Limited_View --
7509 ------------------------------
7511 function Is_Matching_Limited_View
7512 (Typ : Entity_Id;
7513 View : Entity_Id) return Boolean
7515 Root_Typ : Entity_Id;
7516 Root_View : Entity_Id;
7518 begin
7519 -- The non-limited view directly denotes the type
7521 if Typ = View then
7522 return True;
7524 -- The type is a subtype of the non-limited view
7526 elsif Is_Subtype_Of (Typ, View) then
7527 return True;
7529 -- Both the non-limited view and the type denote class-wide types
7531 elsif Is_Class_Wide_Type (Typ)
7532 and then Is_Class_Wide_Type (View)
7533 then
7534 Root_Typ := Root_Type (Typ);
7535 Root_View := Root_Type (View);
7537 if Root_Typ = Root_View then
7538 return True;
7540 -- An incomplete tagged type and its full view may receive two
7541 -- distinct class-wide types when the related package has not
7542 -- been analyzed yet.
7544 -- package Pack is
7545 -- type T is tagged; -- CW_1
7546 -- type T is tagged null record; -- CW_2
7547 -- end Pack;
7549 -- This is because the package lacks any semantic information
7550 -- that may eventually link both views of T. As a consequence,
7551 -- a client of the limited view of Pack will see CW_2 while a
7552 -- client of the non-limited view of Pack will see CW_1.
7554 elsif Is_Incomplete_Type (Root_Typ)
7555 and then Present (Full_View (Root_Typ))
7556 and then Full_View (Root_Typ) = Root_View
7557 then
7558 return True;
7560 elsif Is_Incomplete_Type (Root_View)
7561 and then Present (Full_View (Root_View))
7562 and then Full_View (Root_View) = Root_Typ
7563 then
7564 return True;
7565 end if;
7566 end if;
7568 return False;
7569 end Is_Matching_Limited_View;
7571 -- Start of processing for Matches_Limited_With_View
7573 begin
7574 -- In some cases a type imported through a limited_with clause, and
7575 -- its non-limited view are both visible, for example in an anonymous
7576 -- access-to-class-wide type in a formal, or when building the body
7577 -- for a subprogram renaming after the subprogram has been frozen.
7578 -- In these cases both entities designate the same type. In addition,
7579 -- if one of them is an actual in an instance, it may be a subtype of
7580 -- the non-limited view of the other.
7582 if From_Limited_With (Typ_1)
7583 and then From_Limited_With (Typ_2)
7584 and then Available_View (Typ_1) = Available_View (Typ_2)
7585 then
7586 return True;
7588 elsif From_Limited_With (Typ_1) then
7589 return Is_Matching_Limited_View (Typ_2, Available_View (Typ_1));
7591 elsif From_Limited_With (Typ_2) then
7592 return Is_Matching_Limited_View (Typ_1, Available_View (Typ_2));
7594 else
7595 return False;
7596 end if;
7597 end Matches_Limited_With_View;
7599 -- Local variables
7601 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
7603 Type_1 : Entity_Id := T1;
7604 Type_2 : Entity_Id := T2;
7606 -- Start of processing for Conforming_Types
7608 begin
7609 -- The context is an instance association for a formal access-to-
7610 -- subprogram type; the formal parameter types require mapping because
7611 -- they may denote other formal parameters of the generic unit.
7613 if Get_Inst then
7614 Type_1 := Get_Instance_Of (T1);
7615 Type_2 := Get_Instance_Of (T2);
7616 end if;
7618 -- If one of the types is a view of the other introduced by a limited
7619 -- with clause, treat these as conforming for all purposes.
7621 if Matches_Limited_With_View (T1, T2) then
7622 return True;
7624 elsif Base_Types_Match (Type_1, Type_2) then
7625 if Ctype <= Mode_Conformant then
7626 return True;
7628 else
7629 return
7630 Subtypes_Statically_Match (Type_1, Type_2)
7631 and then Dimensions_Match (Type_1, Type_2);
7632 end if;
7634 elsif Is_Incomplete_Or_Private_Type (Type_1)
7635 and then Present (Full_View (Type_1))
7636 and then Base_Types_Match (Full_View (Type_1), Type_2)
7637 then
7638 return
7639 Ctype <= Mode_Conformant
7640 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
7642 elsif Ekind (Type_2) = E_Incomplete_Type
7643 and then Present (Full_View (Type_2))
7644 and then Base_Types_Match (Type_1, Full_View (Type_2))
7645 then
7646 return
7647 Ctype <= Mode_Conformant
7648 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7650 elsif Is_Private_Type (Type_2)
7651 and then In_Instance
7652 and then Present (Full_View (Type_2))
7653 and then Base_Types_Match (Type_1, Full_View (Type_2))
7654 then
7655 return
7656 Ctype <= Mode_Conformant
7657 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7659 -- Another confusion between views in a nested instance with an
7660 -- actual private type whose full view is not in scope.
7662 elsif Ekind (Type_2) = E_Private_Subtype
7663 and then In_Instance
7664 and then Etype (Type_2) = Type_1
7665 then
7666 return True;
7668 -- In Ada 2012, incomplete types (including limited views) can appear
7669 -- as actuals in instantiations, where they are conformant to the
7670 -- corresponding incomplete formal.
7672 elsif Is_Incomplete_Type (Type_1)
7673 and then Is_Incomplete_Type (Type_2)
7674 and then In_Instance
7675 and then (Used_As_Generic_Actual (Type_1)
7676 or else Used_As_Generic_Actual (Type_2))
7677 then
7678 return True;
7679 end if;
7681 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
7682 -- treated recursively because they carry a signature. As far as
7683 -- conformance is concerned, convention plays no role, and either
7684 -- or both could be access to protected subprograms.
7686 Are_Anonymous_Access_To_Subprogram_Types :=
7687 Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
7688 E_Anonymous_Access_Protected_Subprogram_Type)
7689 and then
7690 Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
7691 E_Anonymous_Access_Protected_Subprogram_Type);
7693 -- Test anonymous access type case. For this case, static subtype
7694 -- matching is required for mode conformance (RM 6.3.1(15)). We check
7695 -- the base types because we may have built internal subtype entities
7696 -- to handle null-excluding types (see Process_Formals).
7698 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
7699 and then
7700 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
7702 -- Ada 2005 (AI-254)
7704 or else Are_Anonymous_Access_To_Subprogram_Types
7705 then
7706 declare
7707 Desig_1 : Entity_Id;
7708 Desig_2 : Entity_Id;
7710 begin
7711 -- In Ada 2005, access constant indicators must match for
7712 -- subtype conformance.
7714 if Ada_Version >= Ada_2005
7715 and then Ctype >= Subtype_Conformant
7716 and then
7717 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
7718 then
7719 return False;
7720 end if;
7722 Desig_1 := Find_Designated_Type (Type_1);
7723 Desig_2 := Find_Designated_Type (Type_2);
7725 -- If the context is an instance association for a formal
7726 -- access-to-subprogram type; formal access parameter designated
7727 -- types require mapping because they may denote other formal
7728 -- parameters of the generic unit.
7730 if Get_Inst then
7731 Desig_1 := Get_Instance_Of (Desig_1);
7732 Desig_2 := Get_Instance_Of (Desig_2);
7733 end if;
7735 -- It is possible for a Class_Wide_Type to be introduced for an
7736 -- incomplete type, in which case there is a separate class_ wide
7737 -- type for the full view. The types conform if their Etypes
7738 -- conform, i.e. one may be the full view of the other. This can
7739 -- only happen in the context of an access parameter, other uses
7740 -- of an incomplete Class_Wide_Type are illegal.
7742 if Is_Class_Wide_Type (Desig_1)
7743 and then
7744 Is_Class_Wide_Type (Desig_2)
7745 then
7746 return
7747 Conforming_Types
7748 (Etype (Base_Type (Desig_1)),
7749 Etype (Base_Type (Desig_2)), Ctype);
7751 elsif Are_Anonymous_Access_To_Subprogram_Types then
7752 if Ada_Version < Ada_2005 then
7753 return
7754 Ctype = Type_Conformant
7755 or else Subtypes_Statically_Match (Desig_1, Desig_2);
7757 -- We must check the conformance of the signatures themselves
7759 else
7760 declare
7761 Conformant : Boolean;
7762 begin
7763 Check_Conformance
7764 (Desig_1, Desig_2, Ctype, False, Conformant);
7765 return Conformant;
7766 end;
7767 end if;
7769 -- A limited view of an actual matches the corresponding
7770 -- incomplete formal.
7772 elsif Ekind (Desig_2) = E_Incomplete_Subtype
7773 and then From_Limited_With (Desig_2)
7774 and then Used_As_Generic_Actual (Etype (Desig_2))
7775 then
7776 return True;
7778 else
7779 return Base_Type (Desig_1) = Base_Type (Desig_2)
7780 and then (Ctype = Type_Conformant
7781 or else
7782 Subtypes_Statically_Match (Desig_1, Desig_2));
7783 end if;
7784 end;
7786 -- Otherwise definitely no match
7788 else
7789 if ((Ekind (Type_1) = E_Anonymous_Access_Type
7790 and then Is_Access_Type (Type_2))
7791 or else (Ekind (Type_2) = E_Anonymous_Access_Type
7792 and then Is_Access_Type (Type_1)))
7793 and then
7794 Conforming_Types
7795 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
7796 then
7797 May_Hide_Profile := True;
7798 end if;
7800 return False;
7801 end if;
7802 end Conforming_Types;
7804 --------------------------
7805 -- Create_Extra_Formals --
7806 --------------------------
7808 procedure Create_Extra_Formals (E : Entity_Id) is
7809 First_Extra : Entity_Id := Empty;
7810 Formal : Entity_Id;
7811 Last_Extra : Entity_Id := Empty;
7813 function Add_Extra_Formal
7814 (Assoc_Entity : Entity_Id;
7815 Typ : Entity_Id;
7816 Scope : Entity_Id;
7817 Suffix : String) return Entity_Id;
7818 -- Add an extra formal to the current list of formals and extra formals.
7819 -- The extra formal is added to the end of the list of extra formals,
7820 -- and also returned as the result. These formals are always of mode IN.
7821 -- The new formal has the type Typ, is declared in Scope, and its name
7822 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
7823 -- The following suffixes are currently used. They should not be changed
7824 -- without coordinating with CodePeer, which makes use of these to
7825 -- provide better messages.
7827 -- O denotes the Constrained bit.
7828 -- L denotes the accessibility level.
7829 -- BIP_xxx denotes an extra formal for a build-in-place function. See
7830 -- the full list in exp_ch6.BIP_Formal_Kind.
7832 ----------------------
7833 -- Add_Extra_Formal --
7834 ----------------------
7836 function Add_Extra_Formal
7837 (Assoc_Entity : Entity_Id;
7838 Typ : Entity_Id;
7839 Scope : Entity_Id;
7840 Suffix : String) return Entity_Id
7842 EF : constant Entity_Id :=
7843 Make_Defining_Identifier (Sloc (Assoc_Entity),
7844 Chars => New_External_Name (Chars (Assoc_Entity),
7845 Suffix => Suffix));
7847 begin
7848 -- A little optimization. Never generate an extra formal for the
7849 -- _init operand of an initialization procedure, since it could
7850 -- never be used.
7852 if Chars (Formal) = Name_uInit then
7853 return Empty;
7854 end if;
7856 Set_Ekind (EF, E_In_Parameter);
7857 Set_Actual_Subtype (EF, Typ);
7858 Set_Etype (EF, Typ);
7859 Set_Scope (EF, Scope);
7860 Set_Mechanism (EF, Default_Mechanism);
7861 Set_Formal_Validity (EF);
7863 if No (First_Extra) then
7864 First_Extra := EF;
7865 Set_Extra_Formals (Scope, EF);
7866 end if;
7868 if Present (Last_Extra) then
7869 Set_Extra_Formal (Last_Extra, EF);
7870 end if;
7872 Last_Extra := EF;
7874 return EF;
7875 end Add_Extra_Formal;
7877 -- Local variables
7879 Formal_Type : Entity_Id;
7880 P_Formal : Entity_Id := Empty;
7882 -- Start of processing for Create_Extra_Formals
7884 begin
7885 -- We never generate extra formals if expansion is not active because we
7886 -- don't need them unless we are generating code.
7888 if not Expander_Active then
7889 return;
7890 end if;
7892 -- No need to generate extra formals in interface thunks whose target
7893 -- primitive has no extra formals.
7895 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
7896 return;
7897 end if;
7899 -- If this is a derived subprogram then the subtypes of the parent
7900 -- subprogram's formal parameters will be used to determine the need
7901 -- for extra formals.
7903 if Is_Overloadable (E) and then Present (Alias (E)) then
7904 P_Formal := First_Formal (Alias (E));
7905 end if;
7907 Formal := First_Formal (E);
7908 while Present (Formal) loop
7909 Last_Extra := Formal;
7910 Next_Formal (Formal);
7911 end loop;
7913 -- If Extra_Formals were already created, don't do it again. This
7914 -- situation may arise for subprogram types created as part of
7915 -- dispatching calls (see Expand_Dispatching_Call).
7917 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
7918 return;
7919 end if;
7921 -- If the subprogram is a predefined dispatching subprogram then don't
7922 -- generate any extra constrained or accessibility level formals. In
7923 -- general we suppress these for internal subprograms (by not calling
7924 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
7925 -- generated stream attributes do get passed through because extra
7926 -- build-in-place formals are needed in some cases (limited 'Input).
7928 if Is_Predefined_Internal_Operation (E) then
7929 goto Test_For_Func_Result_Extras;
7930 end if;
7932 Formal := First_Formal (E);
7933 while Present (Formal) loop
7935 -- Create extra formal for supporting the attribute 'Constrained.
7936 -- The case of a private type view without discriminants also
7937 -- requires the extra formal if the underlying type has defaulted
7938 -- discriminants.
7940 if Ekind (Formal) /= E_In_Parameter then
7941 if Present (P_Formal) then
7942 Formal_Type := Etype (P_Formal);
7943 else
7944 Formal_Type := Etype (Formal);
7945 end if;
7947 -- Do not produce extra formals for Unchecked_Union parameters.
7948 -- Jump directly to the end of the loop.
7950 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
7951 goto Skip_Extra_Formal_Generation;
7952 end if;
7954 if not Has_Discriminants (Formal_Type)
7955 and then Ekind (Formal_Type) in Private_Kind
7956 and then Present (Underlying_Type (Formal_Type))
7957 then
7958 Formal_Type := Underlying_Type (Formal_Type);
7959 end if;
7961 -- Suppress the extra formal if formal's subtype is constrained or
7962 -- indefinite, or we're compiling for Ada 2012 and the underlying
7963 -- type is tagged and limited. In Ada 2012, a limited tagged type
7964 -- can have defaulted discriminants, but 'Constrained is required
7965 -- to return True, so the formal is never needed (see AI05-0214).
7966 -- Note that this ensures consistency of calling sequences for
7967 -- dispatching operations when some types in a class have defaults
7968 -- on discriminants and others do not (and requiring the extra
7969 -- formal would introduce distributed overhead).
7971 -- If the type does not have a completion yet, treat as prior to
7972 -- Ada 2012 for consistency.
7974 if Has_Discriminants (Formal_Type)
7975 and then not Is_Constrained (Formal_Type)
7976 and then Is_Definite_Subtype (Formal_Type)
7977 and then (Ada_Version < Ada_2012
7978 or else No (Underlying_Type (Formal_Type))
7979 or else not
7980 (Is_Limited_Type (Formal_Type)
7981 and then
7982 (Is_Tagged_Type
7983 (Underlying_Type (Formal_Type)))))
7984 then
7985 Set_Extra_Constrained
7986 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
7987 end if;
7988 end if;
7990 -- Create extra formal for supporting accessibility checking. This
7991 -- is done for both anonymous access formals and formals of named
7992 -- access types that are marked as controlling formals. The latter
7993 -- case can occur when Expand_Dispatching_Call creates a subprogram
7994 -- type and substitutes the types of access-to-class-wide actuals
7995 -- for the anonymous access-to-specific-type of controlling formals.
7996 -- Base_Type is applied because in cases where there is a null
7997 -- exclusion the formal may have an access subtype.
7999 -- This is suppressed if we specifically suppress accessibility
8000 -- checks at the package level for either the subprogram, or the
8001 -- package in which it resides. However, we do not suppress it
8002 -- simply if the scope has accessibility checks suppressed, since
8003 -- this could cause trouble when clients are compiled with a
8004 -- different suppression setting. The explicit checks at the
8005 -- package level are safe from this point of view.
8007 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
8008 or else (Is_Controlling_Formal (Formal)
8009 and then Is_Access_Type (Base_Type (Etype (Formal)))))
8010 and then not
8011 (Explicit_Suppress (E, Accessibility_Check)
8012 or else
8013 Explicit_Suppress (Scope (E), Accessibility_Check))
8014 and then
8015 (No (P_Formal)
8016 or else Present (Extra_Accessibility (P_Formal)))
8017 then
8018 Set_Extra_Accessibility
8019 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
8020 end if;
8022 -- This label is required when skipping extra formal generation for
8023 -- Unchecked_Union parameters.
8025 <<Skip_Extra_Formal_Generation>>
8027 if Present (P_Formal) then
8028 Next_Formal (P_Formal);
8029 end if;
8031 Next_Formal (Formal);
8032 end loop;
8034 <<Test_For_Func_Result_Extras>>
8036 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
8037 -- function call is ... determined by the point of call ...".
8039 if Needs_Result_Accessibility_Level (E) then
8040 Set_Extra_Accessibility_Of_Result
8041 (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
8042 end if;
8044 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
8045 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
8047 if Is_Build_In_Place_Function (E) then
8048 declare
8049 Result_Subt : constant Entity_Id := Etype (E);
8050 Full_Subt : constant Entity_Id := Available_View (Result_Subt);
8051 Formal_Typ : Entity_Id;
8052 Subp_Decl : Node_Id;
8053 Discard : Entity_Id;
8055 begin
8056 -- In the case of functions with unconstrained result subtypes,
8057 -- add a 4-state formal indicating whether the return object is
8058 -- allocated by the caller (1), or should be allocated by the
8059 -- callee on the secondary stack (2), in the global heap (3), or
8060 -- in a user-defined storage pool (4). For the moment we just use
8061 -- Natural for the type of this formal. Note that this formal
8062 -- isn't usually needed in the case where the result subtype is
8063 -- constrained, but it is needed when the function has a tagged
8064 -- result, because generally such functions can be called in a
8065 -- dispatching context and such calls must be handled like calls
8066 -- to a class-wide function.
8068 if Needs_BIP_Alloc_Form (E) then
8069 Discard :=
8070 Add_Extra_Formal
8071 (E, Standard_Natural,
8072 E, BIP_Formal_Suffix (BIP_Alloc_Form));
8074 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
8075 -- use a user-defined pool. This formal is not added on
8076 -- ZFP as those targets do not support pools.
8078 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
8079 Discard :=
8080 Add_Extra_Formal
8081 (E, RTE (RE_Root_Storage_Pool_Ptr),
8082 E, BIP_Formal_Suffix (BIP_Storage_Pool));
8083 end if;
8084 end if;
8086 -- In the case of functions whose result type needs finalization,
8087 -- add an extra formal which represents the finalization master.
8089 if Needs_BIP_Finalization_Master (E) then
8090 Discard :=
8091 Add_Extra_Formal
8092 (E, RTE (RE_Finalization_Master_Ptr),
8093 E, BIP_Formal_Suffix (BIP_Finalization_Master));
8094 end if;
8096 -- When the result type contains tasks, add two extra formals: the
8097 -- master of the tasks to be created, and the caller's activation
8098 -- chain.
8100 if Has_Task (Full_Subt) then
8101 Discard :=
8102 Add_Extra_Formal
8103 (E, RTE (RE_Master_Id),
8104 E, BIP_Formal_Suffix (BIP_Task_Master));
8105 Discard :=
8106 Add_Extra_Formal
8107 (E, RTE (RE_Activation_Chain_Access),
8108 E, BIP_Formal_Suffix (BIP_Activation_Chain));
8109 end if;
8111 -- All build-in-place functions get an extra formal that will be
8112 -- passed the address of the return object within the caller.
8114 Formal_Typ :=
8115 Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
8117 -- Incomplete_View_From_Limited_With is needed here because
8118 -- gigi gets confused if the designated type is the full view
8119 -- coming from a limited-with'ed package. In the normal case,
8120 -- (no limited with) Incomplete_View_From_Limited_With
8121 -- returns Result_Subt.
8123 Set_Directly_Designated_Type
8124 (Formal_Typ, Incomplete_View_From_Limited_With (Result_Subt));
8125 Set_Etype (Formal_Typ, Formal_Typ);
8126 Set_Depends_On_Private
8127 (Formal_Typ, Has_Private_Component (Formal_Typ));
8128 Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
8129 Set_Is_Access_Constant (Formal_Typ, False);
8131 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
8132 -- the designated type comes from the limited view (for back-end
8133 -- purposes).
8135 Set_From_Limited_With
8136 (Formal_Typ, From_Limited_With (Result_Subt));
8138 Layout_Type (Formal_Typ);
8140 -- Force the definition of the Itype in case of internal function
8141 -- calls within the same or nested scope.
8143 if Is_Subprogram_Or_Generic_Subprogram (E) then
8144 Subp_Decl := Parent (E);
8146 -- The insertion point for an Itype reference should be after
8147 -- the unit declaration node of the subprogram. An exception
8148 -- to this are inherited operations from a parent type in which
8149 -- case the derived type acts as their parent.
8151 if Nkind_In (Subp_Decl, N_Function_Specification,
8152 N_Procedure_Specification)
8153 then
8154 Subp_Decl := Parent (Subp_Decl);
8155 end if;
8157 Build_Itype_Reference (Formal_Typ, Subp_Decl);
8158 end if;
8160 Discard :=
8161 Add_Extra_Formal
8162 (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
8163 end;
8164 end if;
8166 -- If this is an instance of a generic, we need to have extra formals
8167 -- for the Alias.
8169 if Is_Generic_Instance (E) and then Present (Alias (E)) then
8170 Set_Extra_Formals (Alias (E), Extra_Formals (E));
8171 end if;
8172 end Create_Extra_Formals;
8174 -----------------------------
8175 -- Enter_Overloaded_Entity --
8176 -----------------------------
8178 procedure Enter_Overloaded_Entity (S : Entity_Id) is
8179 function Matches_Predefined_Op return Boolean;
8180 -- This returns an approximation of whether S matches a predefined
8181 -- operator, based on the operator symbol, and the parameter and result
8182 -- types. The rules are scattered throughout chapter 4 of the Ada RM.
8184 ---------------------------
8185 -- Matches_Predefined_Op --
8186 ---------------------------
8188 function Matches_Predefined_Op return Boolean is
8189 Formal_1 : constant Entity_Id := First_Formal (S);
8190 Formal_2 : constant Entity_Id := Next_Formal (Formal_1);
8191 Op : constant Name_Id := Chars (S);
8192 Result_Type : constant Entity_Id := Base_Type (Etype (S));
8193 Type_1 : constant Entity_Id := Base_Type (Etype (Formal_1));
8195 begin
8196 -- Binary operator
8198 if Present (Formal_2) then
8199 declare
8200 Type_2 : constant Entity_Id := Base_Type (Etype (Formal_2));
8202 begin
8203 -- All but "&" and "**" have same-types parameters
8205 case Op is
8206 when Name_Op_Concat
8207 | Name_Op_Expon
8209 null;
8211 when others =>
8212 if Type_1 /= Type_2 then
8213 return False;
8214 end if;
8215 end case;
8217 -- Check parameter and result types
8219 case Op is
8220 when Name_Op_And
8221 | Name_Op_Or
8222 | Name_Op_Xor
8224 return
8225 Is_Boolean_Type (Result_Type)
8226 and then Result_Type = Type_1;
8228 when Name_Op_Mod
8229 | Name_Op_Rem
8231 return
8232 Is_Integer_Type (Result_Type)
8233 and then Result_Type = Type_1;
8235 when Name_Op_Add
8236 | Name_Op_Divide
8237 | Name_Op_Multiply
8238 | Name_Op_Subtract
8240 return
8241 Is_Numeric_Type (Result_Type)
8242 and then Result_Type = Type_1;
8244 when Name_Op_Eq
8245 | Name_Op_Ne
8247 return
8248 Is_Boolean_Type (Result_Type)
8249 and then not Is_Limited_Type (Type_1);
8251 when Name_Op_Ge
8252 | Name_Op_Gt
8253 | Name_Op_Le
8254 | Name_Op_Lt
8256 return
8257 Is_Boolean_Type (Result_Type)
8258 and then (Is_Array_Type (Type_1)
8259 or else Is_Scalar_Type (Type_1));
8261 when Name_Op_Concat =>
8262 return Is_Array_Type (Result_Type);
8264 when Name_Op_Expon =>
8265 return
8266 (Is_Integer_Type (Result_Type)
8267 or else Is_Floating_Point_Type (Result_Type))
8268 and then Result_Type = Type_1
8269 and then Type_2 = Standard_Integer;
8271 when others =>
8272 raise Program_Error;
8273 end case;
8274 end;
8276 -- Unary operator
8278 else
8279 case Op is
8280 when Name_Op_Abs
8281 | Name_Op_Add
8282 | Name_Op_Subtract
8284 return
8285 Is_Numeric_Type (Result_Type)
8286 and then Result_Type = Type_1;
8288 when Name_Op_Not =>
8289 return
8290 Is_Boolean_Type (Result_Type)
8291 and then Result_Type = Type_1;
8293 when others =>
8294 raise Program_Error;
8295 end case;
8296 end if;
8297 end Matches_Predefined_Op;
8299 -- Local variables
8301 E : Entity_Id := Current_Entity_In_Scope (S);
8302 C_E : Entity_Id := Current_Entity (S);
8304 -- Start of processing for Enter_Overloaded_Entity
8306 begin
8307 if Present (E) then
8308 Set_Has_Homonym (E);
8309 Set_Has_Homonym (S);
8310 end if;
8312 Set_Is_Immediately_Visible (S);
8313 Set_Scope (S, Current_Scope);
8315 -- Chain new entity if front of homonym in current scope, so that
8316 -- homonyms are contiguous.
8318 if Present (E) and then E /= C_E then
8319 while Homonym (C_E) /= E loop
8320 C_E := Homonym (C_E);
8321 end loop;
8323 Set_Homonym (C_E, S);
8325 else
8326 E := C_E;
8327 Set_Current_Entity (S);
8328 end if;
8330 Set_Homonym (S, E);
8332 if Is_Inherited_Operation (S) then
8333 Append_Inherited_Subprogram (S);
8334 else
8335 Append_Entity (S, Current_Scope);
8336 end if;
8338 Set_Public_Status (S);
8340 if Debug_Flag_E then
8341 Write_Str ("New overloaded entity chain: ");
8342 Write_Name (Chars (S));
8344 E := S;
8345 while Present (E) loop
8346 Write_Str (" "); Write_Int (Int (E));
8347 E := Homonym (E);
8348 end loop;
8350 Write_Eol;
8351 end if;
8353 -- Generate warning for hiding
8355 if Warn_On_Hiding
8356 and then Comes_From_Source (S)
8357 and then In_Extended_Main_Source_Unit (S)
8358 then
8359 E := S;
8360 loop
8361 E := Homonym (E);
8362 exit when No (E);
8364 -- Warn unless genuine overloading. Do not emit warning on
8365 -- hiding predefined operators in Standard (these are either an
8366 -- (artifact of our implicit declarations, or simple noise) but
8367 -- keep warning on a operator defined on a local subtype, because
8368 -- of the real danger that different operators may be applied in
8369 -- various parts of the program.
8371 -- Note that if E and S have the same scope, there is never any
8372 -- hiding. Either the two conflict, and the program is illegal,
8373 -- or S is overriding an implicit inherited subprogram.
8375 if Scope (E) /= Scope (S)
8376 and then (not Is_Overloadable (E)
8377 or else Subtype_Conformant (E, S))
8378 and then (Is_Immediately_Visible (E)
8379 or else Is_Potentially_Use_Visible (S))
8380 then
8381 if Scope (E) = Standard_Standard then
8382 if Nkind (S) = N_Defining_Operator_Symbol
8383 and then Scope (Base_Type (Etype (First_Formal (S)))) /=
8384 Scope (S)
8385 and then Matches_Predefined_Op
8386 then
8387 Error_Msg_N
8388 ("declaration of & hides predefined operator?h?", S);
8389 end if;
8391 -- E not immediately within Standard
8393 else
8394 Error_Msg_Sloc := Sloc (E);
8395 Error_Msg_N ("declaration of & hides one #?h?", S);
8396 end if;
8397 end if;
8398 end loop;
8399 end if;
8400 end Enter_Overloaded_Entity;
8402 -----------------------------
8403 -- Check_Untagged_Equality --
8404 -----------------------------
8406 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
8407 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
8408 Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
8409 Obj_Decl : Node_Id;
8411 begin
8412 -- This check applies only if we have a subprogram declaration with an
8413 -- untagged record type.
8415 if Nkind (Decl) /= N_Subprogram_Declaration
8416 or else not Is_Record_Type (Typ)
8417 or else Is_Tagged_Type (Typ)
8418 then
8419 return;
8420 end if;
8422 -- In Ada 2012 case, we will output errors or warnings depending on
8423 -- the setting of debug flag -gnatd.E.
8425 if Ada_Version >= Ada_2012 then
8426 Error_Msg_Warn := Debug_Flag_Dot_EE;
8428 -- In earlier versions of Ada, nothing to do unless we are warning on
8429 -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
8431 else
8432 if not Warn_On_Ada_2012_Compatibility then
8433 return;
8434 end if;
8435 end if;
8437 -- Cases where the type has already been frozen
8439 if Is_Frozen (Typ) then
8441 -- If the type is not declared in a package, or if we are in the body
8442 -- of the package or in some other scope, the new operation is not
8443 -- primitive, and therefore legal, though suspicious. Should we
8444 -- generate a warning in this case ???
8446 if Ekind (Scope (Typ)) /= E_Package
8447 or else Scope (Typ) /= Current_Scope
8448 then
8449 return;
8451 -- If the type is a generic actual (sub)type, the operation is not
8452 -- primitive either because the base type is declared elsewhere.
8454 elsif Is_Generic_Actual_Type (Typ) then
8455 return;
8457 -- Here we have a definite error of declaration after freezing
8459 else
8460 if Ada_Version >= Ada_2012 then
8461 Error_Msg_NE
8462 ("equality operator must be declared before type & is "
8463 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op, Typ);
8465 -- In Ada 2012 mode with error turned to warning, output one
8466 -- more warning to warn that the equality operation may not
8467 -- compose. This is the consequence of ignoring the error.
8469 if Error_Msg_Warn then
8470 Error_Msg_N ("\equality operation may not compose??", Eq_Op);
8471 end if;
8473 else
8474 Error_Msg_NE
8475 ("equality operator must be declared before type& is "
8476 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op, Typ);
8477 end if;
8479 -- If we are in the package body, we could just move the
8480 -- declaration to the package spec, so add a message saying that.
8482 if In_Package_Body (Scope (Typ)) then
8483 if Ada_Version >= Ada_2012 then
8484 Error_Msg_N
8485 ("\move declaration to package spec<<", Eq_Op);
8486 else
8487 Error_Msg_N
8488 ("\move declaration to package spec (Ada 2012)?y?", Eq_Op);
8489 end if;
8491 -- Otherwise try to find the freezing point
8493 else
8494 Obj_Decl := Next (Parent (Typ));
8495 while Present (Obj_Decl) and then Obj_Decl /= Decl loop
8496 if Nkind (Obj_Decl) = N_Object_Declaration
8497 and then Etype (Defining_Identifier (Obj_Decl)) = Typ
8498 then
8499 -- Freezing point, output warnings
8501 if Ada_Version >= Ada_2012 then
8502 Error_Msg_NE
8503 ("type& is frozen by declaration??", Obj_Decl, Typ);
8504 Error_Msg_N
8505 ("\an equality operator cannot be declared after "
8506 & "this point??",
8507 Obj_Decl);
8508 else
8509 Error_Msg_NE
8510 ("type& is frozen by declaration (Ada 2012)?y?",
8511 Obj_Decl, Typ);
8512 Error_Msg_N
8513 ("\an equality operator cannot be declared after "
8514 & "this point (Ada 2012)?y?",
8515 Obj_Decl);
8516 end if;
8518 exit;
8519 end if;
8521 Next (Obj_Decl);
8522 end loop;
8523 end if;
8524 end if;
8526 -- Here if type is not frozen yet. It is illegal to have a primitive
8527 -- equality declared in the private part if the type is visible.
8529 elsif not In_Same_List (Parent (Typ), Decl)
8530 and then not Is_Limited_Type (Typ)
8531 then
8532 -- Shouldn't we give an RM reference here???
8534 if Ada_Version >= Ada_2012 then
8535 Error_Msg_N
8536 ("equality operator appears too late<<", Eq_Op);
8537 else
8538 Error_Msg_N
8539 ("equality operator appears too late (Ada 2012)?y?", Eq_Op);
8540 end if;
8542 -- No error detected
8544 else
8545 return;
8546 end if;
8547 end Check_Untagged_Equality;
8549 -----------------------------
8550 -- Find_Corresponding_Spec --
8551 -----------------------------
8553 function Find_Corresponding_Spec
8554 (N : Node_Id;
8555 Post_Error : Boolean := True) return Entity_Id
8557 Spec : constant Node_Id := Specification (N);
8558 Designator : constant Entity_Id := Defining_Entity (Spec);
8560 E : Entity_Id;
8562 function Different_Generic_Profile (E : Entity_Id) return Boolean;
8563 -- Even if fully conformant, a body may depend on a generic actual when
8564 -- the spec does not, or vice versa, in which case they were distinct
8565 -- entities in the generic.
8567 -------------------------------
8568 -- Different_Generic_Profile --
8569 -------------------------------
8571 function Different_Generic_Profile (E : Entity_Id) return Boolean is
8572 F1, F2 : Entity_Id;
8574 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
8575 -- Check that the types of corresponding formals have the same
8576 -- generic actual if any. We have to account for subtypes of a
8577 -- generic formal, declared between a spec and a body, which may
8578 -- appear distinct in an instance but matched in the generic, and
8579 -- the subtype may be used either in the spec or the body of the
8580 -- subprogram being checked.
8582 -------------------------
8583 -- Same_Generic_Actual --
8584 -------------------------
8586 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
8588 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean;
8589 -- Predicate to check whether S1 is a subtype of S2 in the source
8590 -- of the instance.
8592 -------------------------
8593 -- Is_Declared_Subtype --
8594 -------------------------
8596 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean is
8597 begin
8598 return Comes_From_Source (Parent (S1))
8599 and then Nkind (Parent (S1)) = N_Subtype_Declaration
8600 and then Is_Entity_Name (Subtype_Indication (Parent (S1)))
8601 and then Entity (Subtype_Indication (Parent (S1))) = S2;
8602 end Is_Declared_Subtype;
8604 -- Start of processing for Same_Generic_Actual
8606 begin
8607 return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
8608 or else Is_Declared_Subtype (T1, T2)
8609 or else Is_Declared_Subtype (T2, T1);
8610 end Same_Generic_Actual;
8612 -- Start of processing for Different_Generic_Profile
8614 begin
8615 if not In_Instance then
8616 return False;
8618 elsif Ekind (E) = E_Function
8619 and then not Same_Generic_Actual (Etype (E), Etype (Designator))
8620 then
8621 return True;
8622 end if;
8624 F1 := First_Formal (Designator);
8625 F2 := First_Formal (E);
8626 while Present (F1) loop
8627 if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
8628 return True;
8629 end if;
8631 Next_Formal (F1);
8632 Next_Formal (F2);
8633 end loop;
8635 return False;
8636 end Different_Generic_Profile;
8638 -- Start of processing for Find_Corresponding_Spec
8640 begin
8641 E := Current_Entity (Designator);
8642 while Present (E) loop
8644 -- We are looking for a matching spec. It must have the same scope,
8645 -- and the same name, and either be type conformant, or be the case
8646 -- of a library procedure spec and its body (which belong to one
8647 -- another regardless of whether they are type conformant or not).
8649 if Scope (E) = Current_Scope then
8650 if Current_Scope = Standard_Standard
8651 or else (Ekind (E) = Ekind (Designator)
8652 and then Type_Conformant (E, Designator))
8653 then
8654 -- Within an instantiation, we know that spec and body are
8655 -- subtype conformant, because they were subtype conformant in
8656 -- the generic. We choose the subtype-conformant entity here as
8657 -- well, to resolve spurious ambiguities in the instance that
8658 -- were not present in the generic (i.e. when two different
8659 -- types are given the same actual). If we are looking for a
8660 -- spec to match a body, full conformance is expected.
8662 if In_Instance then
8664 -- Inherit the convention and "ghostness" of the matching
8665 -- spec to ensure proper full and subtype conformance.
8667 Set_Convention (Designator, Convention (E));
8669 -- Skip past subprogram bodies and subprogram renamings that
8670 -- may appear to have a matching spec, but that aren't fully
8671 -- conformant with it. That can occur in cases where an
8672 -- actual type causes unrelated homographs in the instance.
8674 if Nkind_In (N, N_Subprogram_Body,
8675 N_Subprogram_Renaming_Declaration)
8676 and then Present (Homonym (E))
8677 and then not Fully_Conformant (Designator, E)
8678 then
8679 goto Next_Entity;
8681 elsif not Subtype_Conformant (Designator, E) then
8682 goto Next_Entity;
8684 elsif Different_Generic_Profile (E) then
8685 goto Next_Entity;
8686 end if;
8687 end if;
8689 -- Ada 2012 (AI05-0165): For internally generated bodies of
8690 -- null procedures locate the internally generated spec. We
8691 -- enforce mode conformance since a tagged type may inherit
8692 -- from interfaces several null primitives which differ only
8693 -- in the mode of the formals.
8695 if not (Comes_From_Source (E))
8696 and then Is_Null_Procedure (E)
8697 and then not Mode_Conformant (Designator, E)
8698 then
8699 null;
8701 -- For null procedures coming from source that are completions,
8702 -- analysis of the generated body will establish the link.
8704 elsif Comes_From_Source (E)
8705 and then Nkind (Spec) = N_Procedure_Specification
8706 and then Null_Present (Spec)
8707 then
8708 return E;
8710 -- Expression functions can be completions, but cannot be
8711 -- completed by an explicit body.
8713 elsif Comes_From_Source (E)
8714 and then Comes_From_Source (N)
8715 and then Nkind (N) = N_Subprogram_Body
8716 and then Nkind (Original_Node (Unit_Declaration_Node (E))) =
8717 N_Expression_Function
8718 then
8719 Error_Msg_Sloc := Sloc (E);
8720 Error_Msg_N ("body conflicts with expression function#", N);
8721 return Empty;
8723 elsif not Has_Completion (E) then
8724 if Nkind (N) /= N_Subprogram_Body_Stub then
8725 Set_Corresponding_Spec (N, E);
8726 end if;
8728 Set_Has_Completion (E);
8729 return E;
8731 elsif Nkind (Parent (N)) = N_Subunit then
8733 -- If this is the proper body of a subunit, the completion
8734 -- flag is set when analyzing the stub.
8736 return E;
8738 -- If E is an internal function with a controlling result that
8739 -- was created for an operation inherited by a null extension,
8740 -- it may be overridden by a body without a previous spec (one
8741 -- more reason why these should be shunned). In that case we
8742 -- remove the generated body if present, because the current
8743 -- one is the explicit overriding.
8745 elsif Ekind (E) = E_Function
8746 and then Ada_Version >= Ada_2005
8747 and then not Comes_From_Source (E)
8748 and then Has_Controlling_Result (E)
8749 and then Is_Null_Extension (Etype (E))
8750 and then Comes_From_Source (Spec)
8751 then
8752 Set_Has_Completion (E, False);
8754 if Expander_Active
8755 and then Nkind (Parent (E)) = N_Function_Specification
8756 then
8757 Remove
8758 (Unit_Declaration_Node
8759 (Corresponding_Body (Unit_Declaration_Node (E))));
8761 return E;
8763 -- If expansion is disabled, or if the wrapper function has
8764 -- not been generated yet, this a late body overriding an
8765 -- inherited operation, or it is an overriding by some other
8766 -- declaration before the controlling result is frozen. In
8767 -- either case this is a declaration of a new entity.
8769 else
8770 return Empty;
8771 end if;
8773 -- If the body already exists, then this is an error unless
8774 -- the previous declaration is the implicit declaration of a
8775 -- derived subprogram. It is also legal for an instance to
8776 -- contain type conformant overloadable declarations (but the
8777 -- generic declaration may not), per 8.3(26/2).
8779 elsif No (Alias (E))
8780 and then not Is_Intrinsic_Subprogram (E)
8781 and then not In_Instance
8782 and then Post_Error
8783 then
8784 Error_Msg_Sloc := Sloc (E);
8786 if Is_Imported (E) then
8787 Error_Msg_NE
8788 ("body not allowed for imported subprogram & declared#",
8789 N, E);
8790 else
8791 Error_Msg_NE ("duplicate body for & declared#", N, E);
8792 end if;
8793 end if;
8795 -- Child units cannot be overloaded, so a conformance mismatch
8796 -- between body and a previous spec is an error.
8798 elsif Is_Child_Unit (E)
8799 and then
8800 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
8801 and then
8802 Nkind (Parent (Unit_Declaration_Node (Designator))) =
8803 N_Compilation_Unit
8804 and then Post_Error
8805 then
8806 Error_Msg_N
8807 ("body of child unit does not match previous declaration", N);
8808 end if;
8809 end if;
8811 <<Next_Entity>>
8812 E := Homonym (E);
8813 end loop;
8815 -- On exit, we know that no previous declaration of subprogram exists
8817 return Empty;
8818 end Find_Corresponding_Spec;
8820 ----------------------
8821 -- Fully_Conformant --
8822 ----------------------
8824 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
8825 Result : Boolean;
8826 begin
8827 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
8828 return Result;
8829 end Fully_Conformant;
8831 ----------------------------------
8832 -- Fully_Conformant_Expressions --
8833 ----------------------------------
8835 function Fully_Conformant_Expressions
8836 (Given_E1 : Node_Id;
8837 Given_E2 : Node_Id) return Boolean
8839 E1 : constant Node_Id := Original_Node (Given_E1);
8840 E2 : constant Node_Id := Original_Node (Given_E2);
8841 -- We always test conformance on original nodes, since it is possible
8842 -- for analysis and/or expansion to make things look as though they
8843 -- conform when they do not, e.g. by converting 1+2 into 3.
8845 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
8846 renames Fully_Conformant_Expressions;
8848 function FCL (L1, L2 : List_Id) return Boolean;
8849 -- Compare elements of two lists for conformance. Elements have to be
8850 -- conformant, and actuals inserted as default parameters do not match
8851 -- explicit actuals with the same value.
8853 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
8854 -- Compare an operator node with a function call
8856 ---------
8857 -- FCL --
8858 ---------
8860 function FCL (L1, L2 : List_Id) return Boolean is
8861 N1, N2 : Node_Id;
8863 begin
8864 if L1 = No_List then
8865 N1 := Empty;
8866 else
8867 N1 := First (L1);
8868 end if;
8870 if L2 = No_List then
8871 N2 := Empty;
8872 else
8873 N2 := First (L2);
8874 end if;
8876 -- Compare two lists, skipping rewrite insertions (we want to compare
8877 -- the original trees, not the expanded versions).
8879 loop
8880 if Is_Rewrite_Insertion (N1) then
8881 Next (N1);
8882 elsif Is_Rewrite_Insertion (N2) then
8883 Next (N2);
8884 elsif No (N1) then
8885 return No (N2);
8886 elsif No (N2) then
8887 return False;
8888 elsif not FCE (N1, N2) then
8889 return False;
8890 else
8891 Next (N1);
8892 Next (N2);
8893 end if;
8894 end loop;
8895 end FCL;
8897 ---------
8898 -- FCO --
8899 ---------
8901 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
8902 Actuals : constant List_Id := Parameter_Associations (Call_Node);
8903 Act : Node_Id;
8905 begin
8906 if No (Actuals)
8907 or else Entity (Op_Node) /= Entity (Name (Call_Node))
8908 then
8909 return False;
8911 else
8912 Act := First (Actuals);
8914 if Nkind (Op_Node) in N_Binary_Op then
8915 if not FCE (Left_Opnd (Op_Node), Act) then
8916 return False;
8917 end if;
8919 Next (Act);
8920 end if;
8922 return Present (Act)
8923 and then FCE (Right_Opnd (Op_Node), Act)
8924 and then No (Next (Act));
8925 end if;
8926 end FCO;
8928 -- Start of processing for Fully_Conformant_Expressions
8930 begin
8931 -- Nonconformant if paren count does not match. Note: if some idiot
8932 -- complains that we don't do this right for more than 3 levels of
8933 -- parentheses, they will be treated with the respect they deserve.
8935 if Paren_Count (E1) /= Paren_Count (E2) then
8936 return False;
8938 -- If same entities are referenced, then they are conformant even if
8939 -- they have different forms (RM 8.3.1(19-20)).
8941 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
8942 if Present (Entity (E1)) then
8943 return Entity (E1) = Entity (E2)
8945 -- One may be a discriminant that has been replaced by the
8946 -- corresponding discriminal.
8948 or else
8949 (Chars (Entity (E1)) = Chars (Entity (E2))
8950 and then Ekind (Entity (E1)) = E_Discriminant
8951 and then Ekind (Entity (E2)) = E_In_Parameter)
8953 -- The discriminant of a protected type is transformed into
8954 -- a local constant and then into a parameter of a protected
8955 -- operation.
8957 or else
8958 (Ekind (Entity (E1)) = E_Constant
8959 and then Ekind (Entity (E2)) = E_In_Parameter
8960 and then Present (Discriminal_Link (Entity (E1)))
8961 and then Discriminal_Link (Entity (E1)) =
8962 Discriminal_Link (Entity (E2)))
8964 -- AI12-050: The loop variables of quantified expressions
8965 -- match if they have the same identifier, even though they
8966 -- are different entities.
8968 or else
8969 (Chars (Entity (E1)) = Chars (Entity (E2))
8970 and then Ekind (Entity (E1)) = E_Loop_Parameter
8971 and then Ekind (Entity (E2)) = E_Loop_Parameter);
8973 elsif Nkind (E1) = N_Expanded_Name
8974 and then Nkind (E2) = N_Expanded_Name
8975 and then Nkind (Selector_Name (E1)) = N_Character_Literal
8976 and then Nkind (Selector_Name (E2)) = N_Character_Literal
8977 then
8978 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
8980 else
8981 -- Identifiers in component associations don't always have
8982 -- entities, but their names must conform.
8984 return Nkind (E1) = N_Identifier
8985 and then Nkind (E2) = N_Identifier
8986 and then Chars (E1) = Chars (E2);
8987 end if;
8989 elsif Nkind (E1) = N_Character_Literal
8990 and then Nkind (E2) = N_Expanded_Name
8991 then
8992 return Nkind (Selector_Name (E2)) = N_Character_Literal
8993 and then Chars (E1) = Chars (Selector_Name (E2));
8995 elsif Nkind (E2) = N_Character_Literal
8996 and then Nkind (E1) = N_Expanded_Name
8997 then
8998 return Nkind (Selector_Name (E1)) = N_Character_Literal
8999 and then Chars (E2) = Chars (Selector_Name (E1));
9001 elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
9002 return FCO (E1, E2);
9004 elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
9005 return FCO (E2, E1);
9007 -- Otherwise we must have the same syntactic entity
9009 elsif Nkind (E1) /= Nkind (E2) then
9010 return False;
9012 -- At this point, we specialize by node type
9014 else
9015 case Nkind (E1) is
9016 when N_Aggregate =>
9017 return
9018 FCL (Expressions (E1), Expressions (E2))
9019 and then
9020 FCL (Component_Associations (E1),
9021 Component_Associations (E2));
9023 when N_Allocator =>
9024 if Nkind (Expression (E1)) = N_Qualified_Expression
9025 or else
9026 Nkind (Expression (E2)) = N_Qualified_Expression
9027 then
9028 return FCE (Expression (E1), Expression (E2));
9030 -- Check that the subtype marks and any constraints
9031 -- are conformant
9033 else
9034 declare
9035 Indic1 : constant Node_Id := Expression (E1);
9036 Indic2 : constant Node_Id := Expression (E2);
9037 Elt1 : Node_Id;
9038 Elt2 : Node_Id;
9040 begin
9041 if Nkind (Indic1) /= N_Subtype_Indication then
9042 return
9043 Nkind (Indic2) /= N_Subtype_Indication
9044 and then Entity (Indic1) = Entity (Indic2);
9046 elsif Nkind (Indic2) /= N_Subtype_Indication then
9047 return
9048 Nkind (Indic1) /= N_Subtype_Indication
9049 and then Entity (Indic1) = Entity (Indic2);
9051 else
9052 if Entity (Subtype_Mark (Indic1)) /=
9053 Entity (Subtype_Mark (Indic2))
9054 then
9055 return False;
9056 end if;
9058 Elt1 := First (Constraints (Constraint (Indic1)));
9059 Elt2 := First (Constraints (Constraint (Indic2)));
9060 while Present (Elt1) and then Present (Elt2) loop
9061 if not FCE (Elt1, Elt2) then
9062 return False;
9063 end if;
9065 Next (Elt1);
9066 Next (Elt2);
9067 end loop;
9069 return True;
9070 end if;
9071 end;
9072 end if;
9074 when N_Attribute_Reference =>
9075 return
9076 Attribute_Name (E1) = Attribute_Name (E2)
9077 and then FCL (Expressions (E1), Expressions (E2));
9079 when N_Binary_Op =>
9080 return
9081 Entity (E1) = Entity (E2)
9082 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
9083 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
9085 when N_Membership_Test
9086 | N_Short_Circuit
9088 return
9089 FCE (Left_Opnd (E1), Left_Opnd (E2))
9090 and then
9091 FCE (Right_Opnd (E1), Right_Opnd (E2));
9093 when N_Case_Expression =>
9094 declare
9095 Alt1 : Node_Id;
9096 Alt2 : Node_Id;
9098 begin
9099 if not FCE (Expression (E1), Expression (E2)) then
9100 return False;
9102 else
9103 Alt1 := First (Alternatives (E1));
9104 Alt2 := First (Alternatives (E2));
9105 loop
9106 if Present (Alt1) /= Present (Alt2) then
9107 return False;
9108 elsif No (Alt1) then
9109 return True;
9110 end if;
9112 if not FCE (Expression (Alt1), Expression (Alt2))
9113 or else not FCL (Discrete_Choices (Alt1),
9114 Discrete_Choices (Alt2))
9115 then
9116 return False;
9117 end if;
9119 Next (Alt1);
9120 Next (Alt2);
9121 end loop;
9122 end if;
9123 end;
9125 when N_Character_Literal =>
9126 return
9127 Char_Literal_Value (E1) = Char_Literal_Value (E2);
9129 when N_Component_Association =>
9130 return
9131 FCL (Choices (E1), Choices (E2))
9132 and then
9133 FCE (Expression (E1), Expression (E2));
9135 when N_Explicit_Dereference =>
9136 return
9137 FCE (Prefix (E1), Prefix (E2));
9139 when N_Extension_Aggregate =>
9140 return
9141 FCL (Expressions (E1), Expressions (E2))
9142 and then Null_Record_Present (E1) =
9143 Null_Record_Present (E2)
9144 and then FCL (Component_Associations (E1),
9145 Component_Associations (E2));
9147 when N_Function_Call =>
9148 return
9149 FCE (Name (E1), Name (E2))
9150 and then
9151 FCL (Parameter_Associations (E1),
9152 Parameter_Associations (E2));
9154 when N_If_Expression =>
9155 return
9156 FCL (Expressions (E1), Expressions (E2));
9158 when N_Indexed_Component =>
9159 return
9160 FCE (Prefix (E1), Prefix (E2))
9161 and then
9162 FCL (Expressions (E1), Expressions (E2));
9164 when N_Integer_Literal =>
9165 return (Intval (E1) = Intval (E2));
9167 when N_Null =>
9168 return True;
9170 when N_Operator_Symbol =>
9171 return
9172 Chars (E1) = Chars (E2);
9174 when N_Others_Choice =>
9175 return True;
9177 when N_Parameter_Association =>
9178 return
9179 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
9180 and then FCE (Explicit_Actual_Parameter (E1),
9181 Explicit_Actual_Parameter (E2));
9183 when N_Qualified_Expression
9184 | N_Type_Conversion
9185 | N_Unchecked_Type_Conversion
9187 return
9188 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
9189 and then
9190 FCE (Expression (E1), Expression (E2));
9192 when N_Quantified_Expression =>
9193 if not FCE (Condition (E1), Condition (E2)) then
9194 return False;
9195 end if;
9197 if Present (Loop_Parameter_Specification (E1))
9198 and then Present (Loop_Parameter_Specification (E2))
9199 then
9200 declare
9201 L1 : constant Node_Id :=
9202 Loop_Parameter_Specification (E1);
9203 L2 : constant Node_Id :=
9204 Loop_Parameter_Specification (E2);
9206 begin
9207 return
9208 Reverse_Present (L1) = Reverse_Present (L2)
9209 and then
9210 FCE (Defining_Identifier (L1),
9211 Defining_Identifier (L2))
9212 and then
9213 FCE (Discrete_Subtype_Definition (L1),
9214 Discrete_Subtype_Definition (L2));
9215 end;
9217 elsif Present (Iterator_Specification (E1))
9218 and then Present (Iterator_Specification (E2))
9219 then
9220 declare
9221 I1 : constant Node_Id := Iterator_Specification (E1);
9222 I2 : constant Node_Id := Iterator_Specification (E2);
9224 begin
9225 return
9226 FCE (Defining_Identifier (I1),
9227 Defining_Identifier (I2))
9228 and then
9229 Of_Present (I1) = Of_Present (I2)
9230 and then
9231 Reverse_Present (I1) = Reverse_Present (I2)
9232 and then FCE (Name (I1), Name (I2))
9233 and then FCE (Subtype_Indication (I1),
9234 Subtype_Indication (I2));
9235 end;
9237 -- The quantified expressions used different specifications to
9238 -- walk their respective ranges.
9240 else
9241 return False;
9242 end if;
9244 when N_Range =>
9245 return
9246 FCE (Low_Bound (E1), Low_Bound (E2))
9247 and then
9248 FCE (High_Bound (E1), High_Bound (E2));
9250 when N_Real_Literal =>
9251 return (Realval (E1) = Realval (E2));
9253 when N_Selected_Component =>
9254 return
9255 FCE (Prefix (E1), Prefix (E2))
9256 and then
9257 FCE (Selector_Name (E1), Selector_Name (E2));
9259 when N_Slice =>
9260 return
9261 FCE (Prefix (E1), Prefix (E2))
9262 and then
9263 FCE (Discrete_Range (E1), Discrete_Range (E2));
9265 when N_String_Literal =>
9266 declare
9267 S1 : constant String_Id := Strval (E1);
9268 S2 : constant String_Id := Strval (E2);
9269 L1 : constant Nat := String_Length (S1);
9270 L2 : constant Nat := String_Length (S2);
9272 begin
9273 if L1 /= L2 then
9274 return False;
9276 else
9277 for J in 1 .. L1 loop
9278 if Get_String_Char (S1, J) /=
9279 Get_String_Char (S2, J)
9280 then
9281 return False;
9282 end if;
9283 end loop;
9285 return True;
9286 end if;
9287 end;
9289 when N_Unary_Op =>
9290 return
9291 Entity (E1) = Entity (E2)
9292 and then
9293 FCE (Right_Opnd (E1), Right_Opnd (E2));
9295 -- All other node types cannot appear in this context. Strictly
9296 -- we should raise a fatal internal error. Instead we just ignore
9297 -- the nodes. This means that if anyone makes a mistake in the
9298 -- expander and mucks an expression tree irretrievably, the result
9299 -- will be a failure to detect a (probably very obscure) case
9300 -- of non-conformance, which is better than bombing on some
9301 -- case where two expressions do in fact conform.
9303 when others =>
9304 return True;
9305 end case;
9306 end if;
9307 end Fully_Conformant_Expressions;
9309 ----------------------------------------
9310 -- Fully_Conformant_Discrete_Subtypes --
9311 ----------------------------------------
9313 function Fully_Conformant_Discrete_Subtypes
9314 (Given_S1 : Node_Id;
9315 Given_S2 : Node_Id) return Boolean
9317 S1 : constant Node_Id := Original_Node (Given_S1);
9318 S2 : constant Node_Id := Original_Node (Given_S2);
9320 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
9321 -- Special-case for a bound given by a discriminant, which in the body
9322 -- is replaced with the discriminal of the enclosing type.
9324 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
9325 -- Check both bounds
9327 -----------------------
9328 -- Conforming_Bounds --
9329 -----------------------
9331 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
9332 begin
9333 if Is_Entity_Name (B1)
9334 and then Is_Entity_Name (B2)
9335 and then Ekind (Entity (B1)) = E_Discriminant
9336 then
9337 return Chars (B1) = Chars (B2);
9339 else
9340 return Fully_Conformant_Expressions (B1, B2);
9341 end if;
9342 end Conforming_Bounds;
9344 -----------------------
9345 -- Conforming_Ranges --
9346 -----------------------
9348 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
9349 begin
9350 return
9351 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
9352 and then
9353 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
9354 end Conforming_Ranges;
9356 -- Start of processing for Fully_Conformant_Discrete_Subtypes
9358 begin
9359 if Nkind (S1) /= Nkind (S2) then
9360 return False;
9362 elsif Is_Entity_Name (S1) then
9363 return Entity (S1) = Entity (S2);
9365 elsif Nkind (S1) = N_Range then
9366 return Conforming_Ranges (S1, S2);
9368 elsif Nkind (S1) = N_Subtype_Indication then
9369 return
9370 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
9371 and then
9372 Conforming_Ranges
9373 (Range_Expression (Constraint (S1)),
9374 Range_Expression (Constraint (S2)));
9375 else
9376 return True;
9377 end if;
9378 end Fully_Conformant_Discrete_Subtypes;
9380 --------------------
9381 -- Install_Entity --
9382 --------------------
9384 procedure Install_Entity (E : Entity_Id) is
9385 Prev : constant Entity_Id := Current_Entity (E);
9386 begin
9387 Set_Is_Immediately_Visible (E);
9388 Set_Current_Entity (E);
9389 Set_Homonym (E, Prev);
9390 end Install_Entity;
9392 ---------------------
9393 -- Install_Formals --
9394 ---------------------
9396 procedure Install_Formals (Id : Entity_Id) is
9397 F : Entity_Id;
9398 begin
9399 F := First_Formal (Id);
9400 while Present (F) loop
9401 Install_Entity (F);
9402 Next_Formal (F);
9403 end loop;
9404 end Install_Formals;
9406 -----------------------------
9407 -- Is_Interface_Conformant --
9408 -----------------------------
9410 function Is_Interface_Conformant
9411 (Tagged_Type : Entity_Id;
9412 Iface_Prim : Entity_Id;
9413 Prim : Entity_Id) return Boolean
9415 -- The operation may in fact be an inherited (implicit) operation
9416 -- rather than the original interface primitive, so retrieve the
9417 -- ultimate ancestor.
9419 Iface : constant Entity_Id :=
9420 Find_Dispatching_Type (Ultimate_Alias (Iface_Prim));
9421 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
9423 function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
9424 -- Return the controlling formal of Prim
9426 ------------------------
9427 -- Controlling_Formal --
9428 ------------------------
9430 function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
9431 E : Entity_Id;
9433 begin
9434 E := First_Entity (Prim);
9435 while Present (E) loop
9436 if Is_Formal (E) and then Is_Controlling_Formal (E) then
9437 return E;
9438 end if;
9440 Next_Entity (E);
9441 end loop;
9443 return Empty;
9444 end Controlling_Formal;
9446 -- Local variables
9448 Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
9449 Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
9451 -- Start of processing for Is_Interface_Conformant
9453 begin
9454 pragma Assert (Is_Subprogram (Iface_Prim)
9455 and then Is_Subprogram (Prim)
9456 and then Is_Dispatching_Operation (Iface_Prim)
9457 and then Is_Dispatching_Operation (Prim));
9459 pragma Assert (Is_Interface (Iface)
9460 or else (Present (Alias (Iface_Prim))
9461 and then
9462 Is_Interface
9463 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
9465 if Prim = Iface_Prim
9466 or else not Is_Subprogram (Prim)
9467 or else Ekind (Prim) /= Ekind (Iface_Prim)
9468 or else not Is_Dispatching_Operation (Prim)
9469 or else Scope (Prim) /= Scope (Tagged_Type)
9470 or else No (Typ)
9471 or else Base_Type (Typ) /= Base_Type (Tagged_Type)
9472 or else not Primitive_Names_Match (Iface_Prim, Prim)
9473 then
9474 return False;
9476 -- The mode of the controlling formals must match
9478 elsif Present (Iface_Ctrl_F)
9479 and then Present (Prim_Ctrl_F)
9480 and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
9481 then
9482 return False;
9484 -- Case of a procedure, or a function whose result type matches the
9485 -- result type of the interface primitive, or a function that has no
9486 -- controlling result (I or access I).
9488 elsif Ekind (Iface_Prim) = E_Procedure
9489 or else Etype (Prim) = Etype (Iface_Prim)
9490 or else not Has_Controlling_Result (Prim)
9491 then
9492 return Type_Conformant
9493 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
9495 -- Case of a function returning an interface, or an access to one. Check
9496 -- that the return types correspond.
9498 elsif Implements_Interface (Typ, Iface) then
9499 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
9501 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
9502 then
9503 return False;
9504 else
9505 return
9506 Type_Conformant (Prim, Ultimate_Alias (Iface_Prim),
9507 Skip_Controlling_Formals => True);
9508 end if;
9510 else
9511 return False;
9512 end if;
9513 end Is_Interface_Conformant;
9515 ---------------------------------
9516 -- Is_Non_Overriding_Operation --
9517 ---------------------------------
9519 function Is_Non_Overriding_Operation
9520 (Prev_E : Entity_Id;
9521 New_E : Entity_Id) return Boolean
9523 Formal : Entity_Id;
9524 F_Typ : Entity_Id;
9525 G_Typ : Entity_Id := Empty;
9527 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
9528 -- If F_Type is a derived type associated with a generic actual subtype,
9529 -- then return its Generic_Parent_Type attribute, else return Empty.
9531 function Types_Correspond
9532 (P_Type : Entity_Id;
9533 N_Type : Entity_Id) return Boolean;
9534 -- Returns true if and only if the types (or designated types in the
9535 -- case of anonymous access types) are the same or N_Type is derived
9536 -- directly or indirectly from P_Type.
9538 -----------------------------
9539 -- Get_Generic_Parent_Type --
9540 -----------------------------
9542 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
9543 G_Typ : Entity_Id;
9544 Defn : Node_Id;
9545 Indic : Node_Id;
9547 begin
9548 if Is_Derived_Type (F_Typ)
9549 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
9550 then
9551 -- The tree must be traversed to determine the parent subtype in
9552 -- the generic unit, which unfortunately isn't always available
9553 -- via semantic attributes. ??? (Note: The use of Original_Node
9554 -- is needed for cases where a full derived type has been
9555 -- rewritten.)
9557 -- If the parent type is a scalar type, the derivation creates
9558 -- an anonymous base type for it, and the source type is its
9559 -- first subtype.
9561 if Is_Scalar_Type (F_Typ)
9562 and then not Comes_From_Source (F_Typ)
9563 then
9564 Defn :=
9565 Type_Definition
9566 (Original_Node (Parent (First_Subtype (F_Typ))));
9567 else
9568 Defn := Type_Definition (Original_Node (Parent (F_Typ)));
9569 end if;
9570 if Nkind (Defn) = N_Derived_Type_Definition then
9571 Indic := Subtype_Indication (Defn);
9573 if Nkind (Indic) = N_Subtype_Indication then
9574 G_Typ := Entity (Subtype_Mark (Indic));
9575 else
9576 G_Typ := Entity (Indic);
9577 end if;
9579 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
9580 and then Present (Generic_Parent_Type (Parent (G_Typ)))
9581 then
9582 return Generic_Parent_Type (Parent (G_Typ));
9583 end if;
9584 end if;
9585 end if;
9587 return Empty;
9588 end Get_Generic_Parent_Type;
9590 ----------------------
9591 -- Types_Correspond --
9592 ----------------------
9594 function Types_Correspond
9595 (P_Type : Entity_Id;
9596 N_Type : Entity_Id) return Boolean
9598 Prev_Type : Entity_Id := Base_Type (P_Type);
9599 New_Type : Entity_Id := Base_Type (N_Type);
9601 begin
9602 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
9603 Prev_Type := Designated_Type (Prev_Type);
9604 end if;
9606 if Ekind (New_Type) = E_Anonymous_Access_Type then
9607 New_Type := Designated_Type (New_Type);
9608 end if;
9610 if Prev_Type = New_Type then
9611 return True;
9613 elsif not Is_Class_Wide_Type (New_Type) then
9614 while Etype (New_Type) /= New_Type loop
9615 New_Type := Etype (New_Type);
9617 if New_Type = Prev_Type then
9618 return True;
9619 end if;
9620 end loop;
9621 end if;
9622 return False;
9623 end Types_Correspond;
9625 -- Start of processing for Is_Non_Overriding_Operation
9627 begin
9628 -- In the case where both operations are implicit derived subprograms
9629 -- then neither overrides the other. This can only occur in certain
9630 -- obscure cases (e.g., derivation from homographs created in a generic
9631 -- instantiation).
9633 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
9634 return True;
9636 elsif Ekind (Current_Scope) = E_Package
9637 and then Is_Generic_Instance (Current_Scope)
9638 and then In_Private_Part (Current_Scope)
9639 and then Comes_From_Source (New_E)
9640 then
9641 -- We examine the formals and result type of the inherited operation,
9642 -- to determine whether their type is derived from (the instance of)
9643 -- a generic type. The first such formal or result type is the one
9644 -- tested.
9646 Formal := First_Formal (Prev_E);
9647 F_Typ := Empty;
9648 while Present (Formal) loop
9649 F_Typ := Base_Type (Etype (Formal));
9651 if Ekind (F_Typ) = E_Anonymous_Access_Type then
9652 F_Typ := Designated_Type (F_Typ);
9653 end if;
9655 G_Typ := Get_Generic_Parent_Type (F_Typ);
9656 exit when Present (G_Typ);
9658 Next_Formal (Formal);
9659 end loop;
9661 -- If the function dispatches on result check the result type
9663 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
9664 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
9665 end if;
9667 if No (G_Typ) then
9668 return False;
9669 end if;
9671 -- If the generic type is a private type, then the original operation
9672 -- was not overriding in the generic, because there was no primitive
9673 -- operation to override.
9675 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
9676 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
9677 N_Formal_Private_Type_Definition
9678 then
9679 return True;
9681 -- The generic parent type is the ancestor of a formal derived
9682 -- type declaration. We need to check whether it has a primitive
9683 -- operation that should be overridden by New_E in the generic.
9685 else
9686 declare
9687 P_Formal : Entity_Id;
9688 N_Formal : Entity_Id;
9689 P_Typ : Entity_Id;
9690 N_Typ : Entity_Id;
9691 P_Prim : Entity_Id;
9692 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
9694 begin
9695 while Present (Prim_Elt) loop
9696 P_Prim := Node (Prim_Elt);
9698 if Chars (P_Prim) = Chars (New_E)
9699 and then Ekind (P_Prim) = Ekind (New_E)
9700 then
9701 P_Formal := First_Formal (P_Prim);
9702 N_Formal := First_Formal (New_E);
9703 while Present (P_Formal) and then Present (N_Formal) loop
9704 P_Typ := Etype (P_Formal);
9705 N_Typ := Etype (N_Formal);
9707 if not Types_Correspond (P_Typ, N_Typ) then
9708 exit;
9709 end if;
9711 Next_Entity (P_Formal);
9712 Next_Entity (N_Formal);
9713 end loop;
9715 -- Found a matching primitive operation belonging to the
9716 -- formal ancestor type, so the new subprogram is
9717 -- overriding.
9719 if No (P_Formal)
9720 and then No (N_Formal)
9721 and then (Ekind (New_E) /= E_Function
9722 or else
9723 Types_Correspond
9724 (Etype (P_Prim), Etype (New_E)))
9725 then
9726 return False;
9727 end if;
9728 end if;
9730 Next_Elmt (Prim_Elt);
9731 end loop;
9733 -- If no match found, then the new subprogram does not override
9734 -- in the generic (nor in the instance).
9736 -- If the type in question is not abstract, and the subprogram
9737 -- is, this will be an error if the new operation is in the
9738 -- private part of the instance. Emit a warning now, which will
9739 -- make the subsequent error message easier to understand.
9741 if Present (F_Typ) and then not Is_Abstract_Type (F_Typ)
9742 and then Is_Abstract_Subprogram (Prev_E)
9743 and then In_Private_Part (Current_Scope)
9744 then
9745 Error_Msg_Node_2 := F_Typ;
9746 Error_Msg_NE
9747 ("private operation& in generic unit does not override "
9748 & "any primitive operation of& (RM 12.3 (18))??",
9749 New_E, New_E);
9750 end if;
9752 return True;
9753 end;
9754 end if;
9755 else
9756 return False;
9757 end if;
9758 end Is_Non_Overriding_Operation;
9760 -------------------------------------
9761 -- List_Inherited_Pre_Post_Aspects --
9762 -------------------------------------
9764 procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
9765 begin
9766 if Opt.List_Inherited_Aspects
9767 and then Is_Subprogram_Or_Generic_Subprogram (E)
9768 then
9769 declare
9770 Subps : constant Subprogram_List := Inherited_Subprograms (E);
9771 Items : Node_Id;
9772 Prag : Node_Id;
9774 begin
9775 for Index in Subps'Range loop
9776 Items := Contract (Subps (Index));
9778 if Present (Items) then
9779 Prag := Pre_Post_Conditions (Items);
9780 while Present (Prag) loop
9781 Error_Msg_Sloc := Sloc (Prag);
9783 if Class_Present (Prag)
9784 and then not Split_PPC (Prag)
9785 then
9786 if Pragma_Name (Prag) = Name_Precondition then
9787 Error_Msg_N
9788 ("info: & inherits `Pre''Class` aspect from "
9789 & "#?L?", E);
9790 else
9791 Error_Msg_N
9792 ("info: & inherits `Post''Class` aspect from "
9793 & "#?L?", E);
9794 end if;
9795 end if;
9797 Prag := Next_Pragma (Prag);
9798 end loop;
9799 end if;
9800 end loop;
9801 end;
9802 end if;
9803 end List_Inherited_Pre_Post_Aspects;
9805 ------------------------------
9806 -- Make_Inequality_Operator --
9807 ------------------------------
9809 -- S is the defining identifier of an equality operator. We build a
9810 -- subprogram declaration with the right signature. This operation is
9811 -- intrinsic, because it is always expanded as the negation of the
9812 -- call to the equality function.
9814 procedure Make_Inequality_Operator (S : Entity_Id) is
9815 Loc : constant Source_Ptr := Sloc (S);
9816 Decl : Node_Id;
9817 Formals : List_Id;
9818 Op_Name : Entity_Id;
9820 FF : constant Entity_Id := First_Formal (S);
9821 NF : constant Entity_Id := Next_Formal (FF);
9823 begin
9824 -- Check that equality was properly defined, ignore call if not
9826 if No (NF) then
9827 return;
9828 end if;
9830 declare
9831 A : constant Entity_Id :=
9832 Make_Defining_Identifier (Sloc (FF),
9833 Chars => Chars (FF));
9835 B : constant Entity_Id :=
9836 Make_Defining_Identifier (Sloc (NF),
9837 Chars => Chars (NF));
9839 begin
9840 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
9842 Formals := New_List (
9843 Make_Parameter_Specification (Loc,
9844 Defining_Identifier => A,
9845 Parameter_Type =>
9846 New_Occurrence_Of (Etype (First_Formal (S)),
9847 Sloc (Etype (First_Formal (S))))),
9849 Make_Parameter_Specification (Loc,
9850 Defining_Identifier => B,
9851 Parameter_Type =>
9852 New_Occurrence_Of (Etype (Next_Formal (First_Formal (S))),
9853 Sloc (Etype (Next_Formal (First_Formal (S)))))));
9855 Decl :=
9856 Make_Subprogram_Declaration (Loc,
9857 Specification =>
9858 Make_Function_Specification (Loc,
9859 Defining_Unit_Name => Op_Name,
9860 Parameter_Specifications => Formals,
9861 Result_Definition =>
9862 New_Occurrence_Of (Standard_Boolean, Loc)));
9864 -- Insert inequality right after equality if it is explicit or after
9865 -- the derived type when implicit. These entities are created only
9866 -- for visibility purposes, and eventually replaced in the course
9867 -- of expansion, so they do not need to be attached to the tree and
9868 -- seen by the back-end. Keeping them internal also avoids spurious
9869 -- freezing problems. The declaration is inserted in the tree for
9870 -- analysis, and removed afterwards. If the equality operator comes
9871 -- from an explicit declaration, attach the inequality immediately
9872 -- after. Else the equality is inherited from a derived type
9873 -- declaration, so insert inequality after that declaration.
9875 if No (Alias (S)) then
9876 Insert_After (Unit_Declaration_Node (S), Decl);
9877 elsif Is_List_Member (Parent (S)) then
9878 Insert_After (Parent (S), Decl);
9879 else
9880 Insert_After (Parent (Etype (First_Formal (S))), Decl);
9881 end if;
9883 Mark_Rewrite_Insertion (Decl);
9884 Set_Is_Intrinsic_Subprogram (Op_Name);
9885 Analyze (Decl);
9886 Remove (Decl);
9887 Set_Has_Completion (Op_Name);
9888 Set_Corresponding_Equality (Op_Name, S);
9889 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
9890 end;
9891 end Make_Inequality_Operator;
9893 ----------------------
9894 -- May_Need_Actuals --
9895 ----------------------
9897 procedure May_Need_Actuals (Fun : Entity_Id) is
9898 F : Entity_Id;
9899 B : Boolean;
9901 begin
9902 F := First_Formal (Fun);
9903 B := True;
9904 while Present (F) loop
9905 if No (Default_Value (F)) then
9906 B := False;
9907 exit;
9908 end if;
9910 Next_Formal (F);
9911 end loop;
9913 Set_Needs_No_Actuals (Fun, B);
9914 end May_Need_Actuals;
9916 ---------------------
9917 -- Mode_Conformant --
9918 ---------------------
9920 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
9921 Result : Boolean;
9922 begin
9923 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
9924 return Result;
9925 end Mode_Conformant;
9927 ---------------------------
9928 -- New_Overloaded_Entity --
9929 ---------------------------
9931 procedure New_Overloaded_Entity
9932 (S : Entity_Id;
9933 Derived_Type : Entity_Id := Empty)
9935 Overridden_Subp : Entity_Id := Empty;
9936 -- Set if the current scope has an operation that is type-conformant
9937 -- with S, and becomes hidden by S.
9939 Is_Primitive_Subp : Boolean;
9940 -- Set to True if the new subprogram is primitive
9942 E : Entity_Id;
9943 -- Entity that S overrides
9945 Prev_Vis : Entity_Id := Empty;
9946 -- Predecessor of E in Homonym chain
9948 procedure Check_For_Primitive_Subprogram
9949 (Is_Primitive : out Boolean;
9950 Is_Overriding : Boolean := False);
9951 -- If the subprogram being analyzed is a primitive operation of the type
9952 -- of a formal or result, set the Has_Primitive_Operations flag on the
9953 -- type, and set Is_Primitive to True (otherwise set to False). Set the
9954 -- corresponding flag on the entity itself for later use.
9956 function Has_Matching_Entry_Or_Subprogram (E : Entity_Id) return Boolean;
9957 -- True if a) E is a subprogram whose first formal is a concurrent type
9958 -- defined in the scope of E that has some entry or subprogram whose
9959 -- profile matches E, or b) E is an internally built dispatching
9960 -- subprogram of a protected type and there is a matching subprogram
9961 -- defined in the enclosing scope of the protected type, or c) E is
9962 -- an entry of a synchronized type and a matching procedure has been
9963 -- previously defined in the enclosing scope of the synchronized type.
9965 function Is_Private_Declaration (E : Entity_Id) return Boolean;
9966 -- Check that E is declared in the private part of the current package,
9967 -- or in the package body, where it may hide a previous declaration.
9968 -- We can't use In_Private_Part by itself because this flag is also
9969 -- set when freezing entities, so we must examine the place of the
9970 -- declaration in the tree, and recognize wrapper packages as well.
9972 function Is_Overriding_Alias
9973 (Old_E : Entity_Id;
9974 New_E : Entity_Id) return Boolean;
9975 -- Check whether new subprogram and old subprogram are both inherited
9976 -- from subprograms that have distinct dispatch table entries. This can
9977 -- occur with derivations from instances with accidental homonyms. The
9978 -- function is conservative given that the converse is only true within
9979 -- instances that contain accidental overloadings.
9981 procedure Report_Conflict (S : Entity_Id; E : Entity_Id);
9982 -- Report conflict between entities S and E
9984 ------------------------------------
9985 -- Check_For_Primitive_Subprogram --
9986 ------------------------------------
9988 procedure Check_For_Primitive_Subprogram
9989 (Is_Primitive : out Boolean;
9990 Is_Overriding : Boolean := False)
9992 Formal : Entity_Id;
9993 F_Typ : Entity_Id;
9994 B_Typ : Entity_Id;
9996 function Visible_Part_Type (T : Entity_Id) return Boolean;
9997 -- Returns true if T is declared in the visible part of the current
9998 -- package scope; otherwise returns false. Assumes that T is declared
9999 -- in a package.
10001 procedure Check_Private_Overriding (T : Entity_Id);
10002 -- Checks that if a primitive abstract subprogram of a visible
10003 -- abstract type is declared in a private part, then it must override
10004 -- an abstract subprogram declared in the visible part. Also checks
10005 -- that if a primitive function with a controlling result is declared
10006 -- in a private part, then it must override a function declared in
10007 -- the visible part.
10009 ------------------------------
10010 -- Check_Private_Overriding --
10011 ------------------------------
10013 procedure Check_Private_Overriding (T : Entity_Id) is
10014 function Overrides_Private_Part_Op return Boolean;
10015 -- This detects the special case where the overriding subprogram
10016 -- is overriding a subprogram that was declared in the same
10017 -- private part. That case is illegal by 3.9.3(10).
10019 function Overrides_Visible_Function
10020 (Partial_View : Entity_Id) return Boolean;
10021 -- True if S overrides a function in the visible part. The
10022 -- overridden function could be explicitly or implicitly declared.
10024 -------------------------------
10025 -- Overrides_Private_Part_Op --
10026 -------------------------------
10028 function Overrides_Private_Part_Op return Boolean is
10029 Over_Decl : constant Node_Id :=
10030 Unit_Declaration_Node (Overridden_Operation (S));
10031 Subp_Decl : constant Node_Id := Unit_Declaration_Node (S);
10033 begin
10034 pragma Assert (Is_Overriding);
10035 pragma Assert
10036 (Nkind (Over_Decl) = N_Abstract_Subprogram_Declaration);
10037 pragma Assert
10038 (Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration);
10040 return In_Same_List (Over_Decl, Subp_Decl);
10041 end Overrides_Private_Part_Op;
10043 --------------------------------
10044 -- Overrides_Visible_Function --
10045 --------------------------------
10047 function Overrides_Visible_Function
10048 (Partial_View : Entity_Id) return Boolean
10050 begin
10051 if not Is_Overriding or else not Has_Homonym (S) then
10052 return False;
10053 end if;
10055 if not Present (Partial_View) then
10056 return True;
10057 end if;
10059 -- Search through all the homonyms H of S in the current
10060 -- package spec, and return True if we find one that matches.
10061 -- Note that Parent (H) will be the declaration of the
10062 -- partial view of T for a match.
10064 declare
10065 H : Entity_Id := S;
10066 begin
10067 loop
10068 H := Homonym (H);
10069 exit when not Present (H) or else Scope (H) /= Scope (S);
10071 if Nkind_In
10072 (Parent (H),
10073 N_Private_Extension_Declaration,
10074 N_Private_Type_Declaration)
10075 and then Defining_Identifier (Parent (H)) = Partial_View
10076 then
10077 return True;
10078 end if;
10079 end loop;
10080 end;
10082 return False;
10083 end Overrides_Visible_Function;
10085 -- Start of processing for Check_Private_Overriding
10087 begin
10088 if Is_Package_Or_Generic_Package (Current_Scope)
10089 and then In_Private_Part (Current_Scope)
10090 and then Visible_Part_Type (T)
10091 and then not In_Instance
10092 then
10093 if Is_Abstract_Type (T)
10094 and then Is_Abstract_Subprogram (S)
10095 and then (not Is_Overriding
10096 or else not Is_Abstract_Subprogram (E)
10097 or else Overrides_Private_Part_Op)
10098 then
10099 Error_Msg_N
10100 ("abstract subprograms must be visible (RM 3.9.3(10))!",
10103 elsif Ekind (S) = E_Function then
10104 declare
10105 Partial_View : constant Entity_Id :=
10106 Incomplete_Or_Partial_View (T);
10108 begin
10109 if not Overrides_Visible_Function (Partial_View) then
10111 -- Here, S is "function ... return T;" declared in
10112 -- the private part, not overriding some visible
10113 -- operation. That's illegal in the tagged case
10114 -- (but not if the private type is untagged).
10116 if ((Present (Partial_View)
10117 and then Is_Tagged_Type (Partial_View))
10118 or else (not Present (Partial_View)
10119 and then Is_Tagged_Type (T)))
10120 and then T = Base_Type (Etype (S))
10121 then
10122 Error_Msg_N
10123 ("private function with tagged result must"
10124 & " override visible-part function", S);
10125 Error_Msg_N
10126 ("\move subprogram to the visible part"
10127 & " (RM 3.9.3(10))", S);
10129 -- AI05-0073: extend this test to the case of a
10130 -- function with a controlling access result.
10132 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
10133 and then Is_Tagged_Type (Designated_Type (Etype (S)))
10134 and then
10135 not Is_Class_Wide_Type
10136 (Designated_Type (Etype (S)))
10137 and then Ada_Version >= Ada_2012
10138 then
10139 Error_Msg_N
10140 ("private function with controlling access "
10141 & "result must override visible-part function",
10143 Error_Msg_N
10144 ("\move subprogram to the visible part"
10145 & " (RM 3.9.3(10))", S);
10146 end if;
10147 end if;
10148 end;
10149 end if;
10150 end if;
10151 end Check_Private_Overriding;
10153 -----------------------
10154 -- Visible_Part_Type --
10155 -----------------------
10157 function Visible_Part_Type (T : Entity_Id) return Boolean is
10158 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
10160 begin
10161 -- If the entity is a private type, then it must be declared in a
10162 -- visible part.
10164 if Ekind (T) in Private_Kind then
10165 return True;
10167 elsif Is_Type (T) and then Has_Private_Declaration (T) then
10168 return True;
10170 elsif Is_List_Member (Declaration_Node (T))
10171 and then List_Containing (Declaration_Node (T)) =
10172 Visible_Declarations (Specification (P))
10173 then
10174 return True;
10176 else
10177 return False;
10178 end if;
10179 end Visible_Part_Type;
10181 -- Start of processing for Check_For_Primitive_Subprogram
10183 begin
10184 Is_Primitive := False;
10186 if not Comes_From_Source (S) then
10187 null;
10189 -- If subprogram is at library level, it is not primitive operation
10191 elsif Current_Scope = Standard_Standard then
10192 null;
10194 elsif (Is_Package_Or_Generic_Package (Current_Scope)
10195 and then not In_Package_Body (Current_Scope))
10196 or else Is_Overriding
10197 then
10198 -- For function, check return type
10200 if Ekind (S) = E_Function then
10201 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
10202 F_Typ := Designated_Type (Etype (S));
10203 else
10204 F_Typ := Etype (S);
10205 end if;
10207 B_Typ := Base_Type (F_Typ);
10209 if Scope (B_Typ) = Current_Scope
10210 and then not Is_Class_Wide_Type (B_Typ)
10211 and then not Is_Generic_Type (B_Typ)
10212 then
10213 Is_Primitive := True;
10214 Set_Has_Primitive_Operations (B_Typ);
10215 Set_Is_Primitive (S);
10216 Check_Private_Overriding (B_Typ);
10218 -- The Ghost policy in effect at the point of declaration
10219 -- or a tagged type and a primitive operation must match
10220 -- (SPARK RM 6.9(16)).
10222 Check_Ghost_Primitive (S, B_Typ);
10223 end if;
10224 end if;
10226 -- For all subprograms, check formals
10228 Formal := First_Formal (S);
10229 while Present (Formal) loop
10230 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
10231 F_Typ := Designated_Type (Etype (Formal));
10232 else
10233 F_Typ := Etype (Formal);
10234 end if;
10236 B_Typ := Base_Type (F_Typ);
10238 if Ekind (B_Typ) = E_Access_Subtype then
10239 B_Typ := Base_Type (B_Typ);
10240 end if;
10242 if Scope (B_Typ) = Current_Scope
10243 and then not Is_Class_Wide_Type (B_Typ)
10244 and then not Is_Generic_Type (B_Typ)
10245 then
10246 Is_Primitive := True;
10247 Set_Is_Primitive (S);
10248 Set_Has_Primitive_Operations (B_Typ);
10249 Check_Private_Overriding (B_Typ);
10251 -- The Ghost policy in effect at the point of declaration
10252 -- of a tagged type and a primitive operation must match
10253 -- (SPARK RM 6.9(16)).
10255 Check_Ghost_Primitive (S, B_Typ);
10256 end if;
10258 Next_Formal (Formal);
10259 end loop;
10261 -- Special case: An equality function can be redefined for a type
10262 -- occurring in a declarative part, and won't otherwise be treated as
10263 -- a primitive because it doesn't occur in a package spec and doesn't
10264 -- override an inherited subprogram. It's important that we mark it
10265 -- primitive so it can be returned by Collect_Primitive_Operations
10266 -- and be used in composing the equality operation of later types
10267 -- that have a component of the type.
10269 elsif Chars (S) = Name_Op_Eq
10270 and then Etype (S) = Standard_Boolean
10271 then
10272 B_Typ := Base_Type (Etype (First_Formal (S)));
10274 if Scope (B_Typ) = Current_Scope
10275 and then
10276 Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
10277 and then not Is_Limited_Type (B_Typ)
10278 then
10279 Is_Primitive := True;
10280 Set_Is_Primitive (S);
10281 Set_Has_Primitive_Operations (B_Typ);
10282 Check_Private_Overriding (B_Typ);
10284 -- The Ghost policy in effect at the point of declaration of a
10285 -- tagged type and a primitive operation must match
10286 -- (SPARK RM 6.9(16)).
10288 Check_Ghost_Primitive (S, B_Typ);
10289 end if;
10290 end if;
10291 end Check_For_Primitive_Subprogram;
10293 --------------------------------------
10294 -- Has_Matching_Entry_Or_Subprogram --
10295 --------------------------------------
10297 function Has_Matching_Entry_Or_Subprogram
10298 (E : Entity_Id) return Boolean
10300 function Check_Conforming_Parameters
10301 (E1_Param : Node_Id;
10302 E2_Param : Node_Id) return Boolean;
10303 -- Starting from the given parameters, check that all the parameters
10304 -- of two entries or subprograms are subtype conformant. Used to skip
10305 -- the check on the controlling argument.
10307 function Matching_Entry_Or_Subprogram
10308 (Conc_Typ : Entity_Id;
10309 Subp : Entity_Id) return Entity_Id;
10310 -- Return the first entry or subprogram of the given concurrent type
10311 -- whose name matches the name of Subp and has a profile conformant
10312 -- with Subp; return Empty if not found.
10314 function Matching_Dispatching_Subprogram
10315 (Conc_Typ : Entity_Id;
10316 Ent : Entity_Id) return Entity_Id;
10317 -- Return the first dispatching primitive of Conc_Type defined in the
10318 -- enclosing scope of Conc_Type (i.e. before the full definition of
10319 -- this concurrent type) whose name matches the entry Ent and has a
10320 -- profile conformant with the profile of the corresponding (not yet
10321 -- built) dispatching primitive of Ent; return Empty if not found.
10323 function Matching_Original_Protected_Subprogram
10324 (Prot_Typ : Entity_Id;
10325 Subp : Entity_Id) return Entity_Id;
10326 -- Return the first subprogram defined in the enclosing scope of
10327 -- Prot_Typ (before the full definition of this protected type)
10328 -- whose name matches the original name of Subp and has a profile
10329 -- conformant with the profile of Subp; return Empty if not found.
10331 ---------------------------------
10332 -- Check_Confirming_Parameters --
10333 ---------------------------------
10335 function Check_Conforming_Parameters
10336 (E1_Param : Node_Id;
10337 E2_Param : Node_Id) return Boolean
10339 Param_E1 : Node_Id := E1_Param;
10340 Param_E2 : Node_Id := E2_Param;
10342 begin
10343 while Present (Param_E1) and then Present (Param_E2) loop
10344 if Ekind (Defining_Identifier (Param_E1)) /=
10345 Ekind (Defining_Identifier (Param_E2))
10346 or else not
10347 Conforming_Types
10348 (Find_Parameter_Type (Param_E1),
10349 Find_Parameter_Type (Param_E2),
10350 Subtype_Conformant)
10351 then
10352 return False;
10353 end if;
10355 Next (Param_E1);
10356 Next (Param_E2);
10357 end loop;
10359 -- The candidate is not valid if one of the two lists contains
10360 -- more parameters than the other
10362 return No (Param_E1) and then No (Param_E2);
10363 end Check_Conforming_Parameters;
10365 ----------------------------------
10366 -- Matching_Entry_Or_Subprogram --
10367 ----------------------------------
10369 function Matching_Entry_Or_Subprogram
10370 (Conc_Typ : Entity_Id;
10371 Subp : Entity_Id) return Entity_Id
10373 E : Entity_Id;
10375 begin
10376 E := First_Entity (Conc_Typ);
10377 while Present (E) loop
10378 if Chars (Subp) = Chars (E)
10379 and then (Ekind (E) = E_Entry or else Is_Subprogram (E))
10380 and then
10381 Check_Conforming_Parameters
10382 (First (Parameter_Specifications (Parent (E))),
10383 Next (First (Parameter_Specifications (Parent (Subp)))))
10384 then
10385 return E;
10386 end if;
10388 Next_Entity (E);
10389 end loop;
10391 return Empty;
10392 end Matching_Entry_Or_Subprogram;
10394 -------------------------------------
10395 -- Matching_Dispatching_Subprogram --
10396 -------------------------------------
10398 function Matching_Dispatching_Subprogram
10399 (Conc_Typ : Entity_Id;
10400 Ent : Entity_Id) return Entity_Id
10402 E : Entity_Id;
10404 begin
10405 -- Search for entities in the enclosing scope of this synchonized
10406 -- type.
10408 pragma Assert (Is_Concurrent_Type (Conc_Typ));
10409 Push_Scope (Scope (Conc_Typ));
10410 E := Current_Entity_In_Scope (Ent);
10411 Pop_Scope;
10413 while Present (E) loop
10414 if Scope (E) = Scope (Conc_Typ)
10415 and then Comes_From_Source (E)
10416 and then Ekind (E) = E_Procedure
10417 and then Present (First_Entity (E))
10418 and then Is_Controlling_Formal (First_Entity (E))
10419 and then Etype (First_Entity (E)) = Conc_Typ
10420 and then
10421 Check_Conforming_Parameters
10422 (First (Parameter_Specifications (Parent (Ent))),
10423 Next (First (Parameter_Specifications (Parent (E)))))
10424 then
10425 return E;
10426 end if;
10428 E := Homonym (E);
10429 end loop;
10431 return Empty;
10432 end Matching_Dispatching_Subprogram;
10434 --------------------------------------------
10435 -- Matching_Original_Protected_Subprogram --
10436 --------------------------------------------
10438 function Matching_Original_Protected_Subprogram
10439 (Prot_Typ : Entity_Id;
10440 Subp : Entity_Id) return Entity_Id
10442 ICF : constant Boolean :=
10443 Is_Controlling_Formal (First_Entity (Subp));
10444 E : Entity_Id;
10446 begin
10447 -- Temporarily decorate the first parameter of Subp as controlling
10448 -- formal, required to invoke Subtype_Conformant.
10450 Set_Is_Controlling_Formal (First_Entity (Subp));
10452 E :=
10453 Current_Entity_In_Scope (Original_Protected_Subprogram (Subp));
10455 while Present (E) loop
10456 if Scope (E) = Scope (Prot_Typ)
10457 and then Comes_From_Source (E)
10458 and then Ekind (Subp) = Ekind (E)
10459 and then Present (First_Entity (E))
10460 and then Is_Controlling_Formal (First_Entity (E))
10461 and then Etype (First_Entity (E)) = Prot_Typ
10462 and then Subtype_Conformant (Subp, E,
10463 Skip_Controlling_Formals => True)
10464 then
10465 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10466 return E;
10467 end if;
10469 E := Homonym (E);
10470 end loop;
10472 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10474 return Empty;
10475 end Matching_Original_Protected_Subprogram;
10477 -- Start of processing for Has_Matching_Entry_Or_Subprogram
10479 begin
10480 -- Case 1: E is a subprogram whose first formal is a concurrent type
10481 -- defined in the scope of E that has an entry or subprogram whose
10482 -- profile matches E.
10484 if Comes_From_Source (E)
10485 and then Is_Subprogram (E)
10486 and then Present (First_Entity (E))
10487 and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
10488 then
10489 if Scope (E) =
10490 Scope (Corresponding_Concurrent_Type
10491 (Etype (First_Entity (E))))
10492 and then
10493 Present
10494 (Matching_Entry_Or_Subprogram
10495 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10496 Subp => E))
10497 then
10498 Report_Conflict (E,
10499 Matching_Entry_Or_Subprogram
10500 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10501 Subp => E));
10502 return True;
10503 end if;
10505 -- Case 2: E is an internally built dispatching subprogram of a
10506 -- protected type and there is a subprogram defined in the enclosing
10507 -- scope of the protected type that has the original name of E and
10508 -- its profile is conformant with the profile of E. We check the
10509 -- name of the original protected subprogram associated with E since
10510 -- the expander builds dispatching primitives of protected functions
10511 -- and procedures with other names (see Exp_Ch9.Build_Selected_Name).
10513 elsif not Comes_From_Source (E)
10514 and then Is_Subprogram (E)
10515 and then Present (First_Entity (E))
10516 and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
10517 and then Present (Original_Protected_Subprogram (E))
10518 and then
10519 Present
10520 (Matching_Original_Protected_Subprogram
10521 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10522 Subp => E))
10523 then
10524 Report_Conflict (E,
10525 Matching_Original_Protected_Subprogram
10526 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10527 Subp => E));
10528 return True;
10530 -- Case 3: E is an entry of a synchronized type and a matching
10531 -- procedure has been previously defined in the enclosing scope
10532 -- of the synchronized type.
10534 elsif Comes_From_Source (E)
10535 and then Ekind (E) = E_Entry
10536 and then
10537 Present (Matching_Dispatching_Subprogram (Current_Scope, E))
10538 then
10539 Report_Conflict (E,
10540 Matching_Dispatching_Subprogram (Current_Scope, E));
10541 return True;
10542 end if;
10544 return False;
10545 end Has_Matching_Entry_Or_Subprogram;
10547 ----------------------------
10548 -- Is_Private_Declaration --
10549 ----------------------------
10551 function Is_Private_Declaration (E : Entity_Id) return Boolean is
10552 Decl : constant Node_Id := Unit_Declaration_Node (E);
10553 Priv_Decls : List_Id;
10555 begin
10556 if Is_Package_Or_Generic_Package (Current_Scope)
10557 and then In_Private_Part (Current_Scope)
10558 then
10559 Priv_Decls :=
10560 Private_Declarations (Package_Specification (Current_Scope));
10562 return In_Package_Body (Current_Scope)
10563 or else
10564 (Is_List_Member (Decl)
10565 and then List_Containing (Decl) = Priv_Decls)
10566 or else (Nkind (Parent (Decl)) = N_Package_Specification
10567 and then not
10568 Is_Compilation_Unit
10569 (Defining_Entity (Parent (Decl)))
10570 and then List_Containing (Parent (Parent (Decl))) =
10571 Priv_Decls);
10572 else
10573 return False;
10574 end if;
10575 end Is_Private_Declaration;
10577 --------------------------
10578 -- Is_Overriding_Alias --
10579 --------------------------
10581 function Is_Overriding_Alias
10582 (Old_E : Entity_Id;
10583 New_E : Entity_Id) return Boolean
10585 AO : constant Entity_Id := Alias (Old_E);
10586 AN : constant Entity_Id := Alias (New_E);
10588 begin
10589 return Scope (AO) /= Scope (AN)
10590 or else No (DTC_Entity (AO))
10591 or else No (DTC_Entity (AN))
10592 or else DT_Position (AO) = DT_Position (AN);
10593 end Is_Overriding_Alias;
10595 ---------------------
10596 -- Report_Conflict --
10597 ---------------------
10599 procedure Report_Conflict (S : Entity_Id; E : Entity_Id) is
10600 begin
10601 Error_Msg_Sloc := Sloc (E);
10603 -- Generate message, with useful additional warning if in generic
10605 if Is_Generic_Unit (E) then
10606 Error_Msg_N ("previous generic unit cannot be overloaded", S);
10607 Error_Msg_N ("\& conflicts with declaration#", S);
10608 else
10609 Error_Msg_N ("& conflicts with declaration#", S);
10610 end if;
10611 end Report_Conflict;
10613 -- Start of processing for New_Overloaded_Entity
10615 begin
10616 -- We need to look for an entity that S may override. This must be a
10617 -- homonym in the current scope, so we look for the first homonym of
10618 -- S in the current scope as the starting point for the search.
10620 E := Current_Entity_In_Scope (S);
10622 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
10623 -- They are directly added to the list of primitive operations of
10624 -- Derived_Type, unless this is a rederivation in the private part
10625 -- of an operation that was already derived in the visible part of
10626 -- the current package.
10628 if Ada_Version >= Ada_2005
10629 and then Present (Derived_Type)
10630 and then Present (Alias (S))
10631 and then Is_Dispatching_Operation (Alias (S))
10632 and then Present (Find_Dispatching_Type (Alias (S)))
10633 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
10634 then
10635 -- For private types, when the full-view is processed we propagate to
10636 -- the full view the non-overridden entities whose attribute "alias"
10637 -- references an interface primitive. These entities were added by
10638 -- Derive_Subprograms to ensure that interface primitives are
10639 -- covered.
10641 -- Inside_Freeze_Actions is non zero when S corresponds with an
10642 -- internal entity that links an interface primitive with its
10643 -- covering primitive through attribute Interface_Alias (see
10644 -- Add_Internal_Interface_Entities).
10646 if Inside_Freezing_Actions = 0
10647 and then Is_Package_Or_Generic_Package (Current_Scope)
10648 and then In_Private_Part (Current_Scope)
10649 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
10650 and then Nkind (Parent (S)) = N_Full_Type_Declaration
10651 and then Full_View (Defining_Identifier (Parent (E)))
10652 = Defining_Identifier (Parent (S))
10653 and then Alias (E) = Alias (S)
10654 then
10655 Check_Operation_From_Private_View (S, E);
10656 Set_Is_Dispatching_Operation (S);
10658 -- Common case
10660 else
10661 Enter_Overloaded_Entity (S);
10662 Check_Dispatching_Operation (S, Empty);
10663 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10664 end if;
10666 return;
10667 end if;
10669 -- For synchronized types check conflicts of this entity with previously
10670 -- defined entities.
10672 if Ada_Version >= Ada_2005
10673 and then Has_Matching_Entry_Or_Subprogram (S)
10674 then
10675 return;
10676 end if;
10678 -- If there is no homonym then this is definitely not overriding
10680 if No (E) then
10681 Enter_Overloaded_Entity (S);
10682 Check_Dispatching_Operation (S, Empty);
10683 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10685 -- If subprogram has an explicit declaration, check whether it has an
10686 -- overriding indicator.
10688 if Comes_From_Source (S) then
10689 Check_Synchronized_Overriding (S, Overridden_Subp);
10691 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
10692 -- it may have overridden some hidden inherited primitive. Update
10693 -- Overridden_Subp to avoid spurious errors when checking the
10694 -- overriding indicator.
10696 if Ada_Version >= Ada_2012
10697 and then No (Overridden_Subp)
10698 and then Is_Dispatching_Operation (S)
10699 and then Present (Overridden_Operation (S))
10700 then
10701 Overridden_Subp := Overridden_Operation (S);
10702 end if;
10704 Check_Overriding_Indicator
10705 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
10707 -- The Ghost policy in effect at the point of declaration of a
10708 -- parent subprogram and an overriding subprogram must match
10709 -- (SPARK RM 6.9(17)).
10711 Check_Ghost_Overriding (S, Overridden_Subp);
10712 end if;
10714 -- If there is a homonym that is not overloadable, then we have an
10715 -- error, except for the special cases checked explicitly below.
10717 elsif not Is_Overloadable (E) then
10719 -- Check for spurious conflict produced by a subprogram that has the
10720 -- same name as that of the enclosing generic package. The conflict
10721 -- occurs within an instance, between the subprogram and the renaming
10722 -- declaration for the package. After the subprogram, the package
10723 -- renaming declaration becomes hidden.
10725 if Ekind (E) = E_Package
10726 and then Present (Renamed_Object (E))
10727 and then Renamed_Object (E) = Current_Scope
10728 and then Nkind (Parent (Renamed_Object (E))) =
10729 N_Package_Specification
10730 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
10731 then
10732 Set_Is_Hidden (E);
10733 Set_Is_Immediately_Visible (E, False);
10734 Enter_Overloaded_Entity (S);
10735 Set_Homonym (S, Homonym (E));
10736 Check_Dispatching_Operation (S, Empty);
10737 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
10739 -- If the subprogram is implicit it is hidden by the previous
10740 -- declaration. However if it is dispatching, it must appear in the
10741 -- dispatch table anyway, because it can be dispatched to even if it
10742 -- cannot be called directly.
10744 elsif Present (Alias (S)) and then not Comes_From_Source (S) then
10745 Set_Scope (S, Current_Scope);
10747 if Is_Dispatching_Operation (Alias (S)) then
10748 Check_Dispatching_Operation (S, Empty);
10749 end if;
10751 return;
10753 else
10754 Report_Conflict (S, E);
10755 return;
10756 end if;
10758 -- E exists and is overloadable
10760 else
10761 Check_Synchronized_Overriding (S, Overridden_Subp);
10763 -- Loop through E and its homonyms to determine if any of them is
10764 -- the candidate for overriding by S.
10766 while Present (E) loop
10768 -- Definitely not interesting if not in the current scope
10770 if Scope (E) /= Current_Scope then
10771 null;
10773 -- A function can overload the name of an abstract state. The
10774 -- state can be viewed as a function with a profile that cannot
10775 -- be matched by anything.
10777 elsif Ekind (S) = E_Function
10778 and then Ekind (E) = E_Abstract_State
10779 then
10780 Enter_Overloaded_Entity (S);
10781 return;
10783 -- Ada 2012 (AI05-0165): For internally generated bodies of null
10784 -- procedures locate the internally generated spec. We enforce
10785 -- mode conformance since a tagged type may inherit from
10786 -- interfaces several null primitives which differ only in
10787 -- the mode of the formals.
10789 elsif not Comes_From_Source (S)
10790 and then Is_Null_Procedure (S)
10791 and then not Mode_Conformant (E, S)
10792 then
10793 null;
10795 -- Check if we have type conformance
10797 elsif Type_Conformant (E, S) then
10799 -- If the old and new entities have the same profile and one
10800 -- is not the body of the other, then this is an error, unless
10801 -- one of them is implicitly declared.
10803 -- There are some cases when both can be implicit, for example
10804 -- when both a literal and a function that overrides it are
10805 -- inherited in a derivation, or when an inherited operation
10806 -- of a tagged full type overrides the inherited operation of
10807 -- a private extension. Ada 83 had a special rule for the
10808 -- literal case. In Ada 95, the later implicit operation hides
10809 -- the former, and the literal is always the former. In the
10810 -- odd case where both are derived operations declared at the
10811 -- same point, both operations should be declared, and in that
10812 -- case we bypass the following test and proceed to the next
10813 -- part. This can only occur for certain obscure cases in
10814 -- instances, when an operation on a type derived from a formal
10815 -- private type does not override a homograph inherited from
10816 -- the actual. In subsequent derivations of such a type, the
10817 -- DT positions of these operations remain distinct, if they
10818 -- have been set.
10820 if Present (Alias (S))
10821 and then (No (Alias (E))
10822 or else Comes_From_Source (E)
10823 or else Is_Abstract_Subprogram (S)
10824 or else
10825 (Is_Dispatching_Operation (E)
10826 and then Is_Overriding_Alias (E, S)))
10827 and then Ekind (E) /= E_Enumeration_Literal
10828 then
10829 -- When an derived operation is overloaded it may be due to
10830 -- the fact that the full view of a private extension
10831 -- re-inherits. It has to be dealt with.
10833 if Is_Package_Or_Generic_Package (Current_Scope)
10834 and then In_Private_Part (Current_Scope)
10835 then
10836 Check_Operation_From_Private_View (S, E);
10837 end if;
10839 -- In any case the implicit operation remains hidden by the
10840 -- existing declaration, which is overriding. Indicate that
10841 -- E overrides the operation from which S is inherited.
10843 if Present (Alias (S)) then
10844 Set_Overridden_Operation (E, Alias (S));
10845 Inherit_Subprogram_Contract (E, Alias (S));
10847 else
10848 Set_Overridden_Operation (E, S);
10849 Inherit_Subprogram_Contract (E, S);
10850 end if;
10852 if Comes_From_Source (E) then
10853 Check_Overriding_Indicator (E, S, Is_Primitive => False);
10855 -- The Ghost policy in effect at the point of declaration
10856 -- of a parent subprogram and an overriding subprogram
10857 -- must match (SPARK RM 6.9(17)).
10859 Check_Ghost_Overriding (E, S);
10860 end if;
10862 return;
10864 -- Within an instance, the renaming declarations for actual
10865 -- subprograms may become ambiguous, but they do not hide each
10866 -- other.
10868 elsif Ekind (E) /= E_Entry
10869 and then not Comes_From_Source (E)
10870 and then not Is_Generic_Instance (E)
10871 and then (Present (Alias (E))
10872 or else Is_Intrinsic_Subprogram (E))
10873 and then (not In_Instance
10874 or else No (Parent (E))
10875 or else Nkind (Unit_Declaration_Node (E)) /=
10876 N_Subprogram_Renaming_Declaration)
10877 then
10878 -- A subprogram child unit is not allowed to override an
10879 -- inherited subprogram (10.1.1(20)).
10881 if Is_Child_Unit (S) then
10882 Error_Msg_N
10883 ("child unit overrides inherited subprogram in parent",
10885 return;
10886 end if;
10888 if Is_Non_Overriding_Operation (E, S) then
10889 Enter_Overloaded_Entity (S);
10891 if No (Derived_Type)
10892 or else Is_Tagged_Type (Derived_Type)
10893 then
10894 Check_Dispatching_Operation (S, Empty);
10895 end if;
10897 return;
10898 end if;
10900 -- E is a derived operation or an internal operator which
10901 -- is being overridden. Remove E from further visibility.
10902 -- Furthermore, if E is a dispatching operation, it must be
10903 -- replaced in the list of primitive operations of its type
10904 -- (see Override_Dispatching_Operation).
10906 Overridden_Subp := E;
10908 declare
10909 Prev : Entity_Id;
10911 begin
10912 Prev := First_Entity (Current_Scope);
10913 while Present (Prev) and then Next_Entity (Prev) /= E loop
10914 Next_Entity (Prev);
10915 end loop;
10917 -- It is possible for E to be in the current scope and
10918 -- yet not in the entity chain. This can only occur in a
10919 -- generic context where E is an implicit concatenation
10920 -- in the formal part, because in a generic body the
10921 -- entity chain starts with the formals.
10923 -- In GNATprove mode, a wrapper for an operation with
10924 -- axiomatization may be a homonym of another declaration
10925 -- for an actual subprogram (needs refinement ???).
10927 if No (Prev) then
10928 if In_Instance
10929 and then GNATprove_Mode
10930 and then
10931 Nkind (Original_Node (Unit_Declaration_Node (S))) =
10932 N_Subprogram_Renaming_Declaration
10933 then
10934 return;
10935 else
10936 pragma Assert (Chars (E) = Name_Op_Concat);
10937 null;
10938 end if;
10939 end if;
10941 -- E must be removed both from the entity_list of the
10942 -- current scope, and from the visibility chain.
10944 if Debug_Flag_E then
10945 Write_Str ("Override implicit operation ");
10946 Write_Int (Int (E));
10947 Write_Eol;
10948 end if;
10950 -- If E is a predefined concatenation, it stands for four
10951 -- different operations. As a result, a single explicit
10952 -- declaration does not hide it. In a possible ambiguous
10953 -- situation, Disambiguate chooses the user-defined op,
10954 -- so it is correct to retain the previous internal one.
10956 if Chars (E) /= Name_Op_Concat
10957 or else Ekind (E) /= E_Operator
10958 then
10959 -- For nondispatching derived operations that are
10960 -- overridden by a subprogram declared in the private
10961 -- part of a package, we retain the derived subprogram
10962 -- but mark it as not immediately visible. If the
10963 -- derived operation was declared in the visible part
10964 -- then this ensures that it will still be visible
10965 -- outside the package with the proper signature
10966 -- (calls from outside must also be directed to this
10967 -- version rather than the overriding one, unlike the
10968 -- dispatching case). Calls from inside the package
10969 -- will still resolve to the overriding subprogram
10970 -- since the derived one is marked as not visible
10971 -- within the package.
10973 -- If the private operation is dispatching, we achieve
10974 -- the overriding by keeping the implicit operation
10975 -- but setting its alias to be the overriding one. In
10976 -- this fashion the proper body is executed in all
10977 -- cases, but the original signature is used outside
10978 -- of the package.
10980 -- If the overriding is not in the private part, we
10981 -- remove the implicit operation altogether.
10983 if Is_Private_Declaration (S) then
10984 if not Is_Dispatching_Operation (E) then
10985 Set_Is_Immediately_Visible (E, False);
10986 else
10987 -- Work done in Override_Dispatching_Operation,
10988 -- so nothing else needs to be done here.
10990 null;
10991 end if;
10993 else
10994 -- Find predecessor of E in Homonym chain
10996 if E = Current_Entity (E) then
10997 Prev_Vis := Empty;
10998 else
10999 Prev_Vis := Current_Entity (E);
11000 while Homonym (Prev_Vis) /= E loop
11001 Prev_Vis := Homonym (Prev_Vis);
11002 end loop;
11003 end if;
11005 if Prev_Vis /= Empty then
11007 -- Skip E in the visibility chain
11009 Set_Homonym (Prev_Vis, Homonym (E));
11011 else
11012 Set_Name_Entity_Id (Chars (E), Homonym (E));
11013 end if;
11015 Set_Next_Entity (Prev, Next_Entity (E));
11017 if No (Next_Entity (Prev)) then
11018 Set_Last_Entity (Current_Scope, Prev);
11019 end if;
11020 end if;
11021 end if;
11023 Enter_Overloaded_Entity (S);
11025 -- For entities generated by Derive_Subprograms the
11026 -- overridden operation is the inherited primitive
11027 -- (which is available through the attribute alias).
11029 if not (Comes_From_Source (E))
11030 and then Is_Dispatching_Operation (E)
11031 and then Find_Dispatching_Type (E) =
11032 Find_Dispatching_Type (S)
11033 and then Present (Alias (E))
11034 and then Comes_From_Source (Alias (E))
11035 then
11036 Set_Overridden_Operation (S, Alias (E));
11037 Inherit_Subprogram_Contract (S, Alias (E));
11039 -- Normal case of setting entity as overridden
11041 -- Note: Static_Initialization and Overridden_Operation
11042 -- attributes use the same field in subprogram entities.
11043 -- Static_Initialization is only defined for internal
11044 -- initialization procedures, where Overridden_Operation
11045 -- is irrelevant. Therefore the setting of this attribute
11046 -- must check whether the target is an init_proc.
11048 elsif not Is_Init_Proc (S) then
11049 Set_Overridden_Operation (S, E);
11050 Inherit_Subprogram_Contract (S, E);
11051 end if;
11053 Check_Overriding_Indicator (S, E, Is_Primitive => True);
11055 -- The Ghost policy in effect at the point of declaration
11056 -- of a parent subprogram and an overriding subprogram
11057 -- must match (SPARK RM 6.9(17)).
11059 Check_Ghost_Overriding (S, E);
11061 -- If S is a user-defined subprogram or a null procedure
11062 -- expanded to override an inherited null procedure, or a
11063 -- predefined dispatching primitive then indicate that E
11064 -- overrides the operation from which S is inherited.
11066 if Comes_From_Source (S)
11067 or else
11068 (Present (Parent (S))
11069 and then
11070 Nkind (Parent (S)) = N_Procedure_Specification
11071 and then
11072 Null_Present (Parent (S)))
11073 or else
11074 (Present (Alias (E))
11075 and then
11076 Is_Predefined_Dispatching_Operation (Alias (E)))
11077 then
11078 if Present (Alias (E)) then
11079 Set_Overridden_Operation (S, Alias (E));
11080 Inherit_Subprogram_Contract (S, Alias (E));
11081 end if;
11082 end if;
11084 if Is_Dispatching_Operation (E) then
11086 -- An overriding dispatching subprogram inherits the
11087 -- convention of the overridden subprogram (AI-117).
11089 Set_Convention (S, Convention (E));
11090 Check_Dispatching_Operation (S, E);
11092 else
11093 Check_Dispatching_Operation (S, Empty);
11094 end if;
11096 Check_For_Primitive_Subprogram
11097 (Is_Primitive_Subp, Is_Overriding => True);
11098 goto Check_Inequality;
11099 end;
11101 -- Apparent redeclarations in instances can occur when two
11102 -- formal types get the same actual type. The subprograms in
11103 -- in the instance are legal, even if not callable from the
11104 -- outside. Calls from within are disambiguated elsewhere.
11105 -- For dispatching operations in the visible part, the usual
11106 -- rules apply, and operations with the same profile are not
11107 -- legal (B830001).
11109 elsif (In_Instance_Visible_Part
11110 and then not Is_Dispatching_Operation (E))
11111 or else In_Instance_Not_Visible
11112 then
11113 null;
11115 -- Here we have a real error (identical profile)
11117 else
11118 Error_Msg_Sloc := Sloc (E);
11120 -- Avoid cascaded errors if the entity appears in
11121 -- subsequent calls.
11123 Set_Scope (S, Current_Scope);
11125 -- Generate error, with extra useful warning for the case
11126 -- of a generic instance with no completion.
11128 if Is_Generic_Instance (S)
11129 and then not Has_Completion (E)
11130 then
11131 Error_Msg_N
11132 ("instantiation cannot provide body for&", S);
11133 Error_Msg_N ("\& conflicts with declaration#", S);
11134 else
11135 Error_Msg_N ("& conflicts with declaration#", S);
11136 end if;
11138 return;
11139 end if;
11141 else
11142 -- If one subprogram has an access parameter and the other
11143 -- a parameter of an access type, calls to either might be
11144 -- ambiguous. Verify that parameters match except for the
11145 -- access parameter.
11147 if May_Hide_Profile then
11148 declare
11149 F1 : Entity_Id;
11150 F2 : Entity_Id;
11152 begin
11153 F1 := First_Formal (S);
11154 F2 := First_Formal (E);
11155 while Present (F1) and then Present (F2) loop
11156 if Is_Access_Type (Etype (F1)) then
11157 if not Is_Access_Type (Etype (F2))
11158 or else not Conforming_Types
11159 (Designated_Type (Etype (F1)),
11160 Designated_Type (Etype (F2)),
11161 Type_Conformant)
11162 then
11163 May_Hide_Profile := False;
11164 end if;
11166 elsif
11167 not Conforming_Types
11168 (Etype (F1), Etype (F2), Type_Conformant)
11169 then
11170 May_Hide_Profile := False;
11171 end if;
11173 Next_Formal (F1);
11174 Next_Formal (F2);
11175 end loop;
11177 if May_Hide_Profile
11178 and then No (F1)
11179 and then No (F2)
11180 then
11181 Error_Msg_NE ("calls to& may be ambiguous??", S, S);
11182 end if;
11183 end;
11184 end if;
11185 end if;
11187 E := Homonym (E);
11188 end loop;
11190 -- On exit, we know that S is a new entity
11192 Enter_Overloaded_Entity (S);
11193 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
11194 Check_Overriding_Indicator
11195 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
11197 -- The Ghost policy in effect at the point of declaration of a parent
11198 -- subprogram and an overriding subprogram must match
11199 -- (SPARK RM 6.9(17)).
11201 Check_Ghost_Overriding (S, Overridden_Subp);
11203 -- Overloading is not allowed in SPARK, except for operators
11205 if Nkind (S) /= N_Defining_Operator_Symbol then
11206 Error_Msg_Sloc := Sloc (Homonym (S));
11207 Check_SPARK_05_Restriction
11208 ("overloading not allowed with entity#", S);
11209 end if;
11211 -- If S is a derived operation for an untagged type then by
11212 -- definition it's not a dispatching operation (even if the parent
11213 -- operation was dispatching), so Check_Dispatching_Operation is not
11214 -- called in that case.
11216 if No (Derived_Type)
11217 or else Is_Tagged_Type (Derived_Type)
11218 then
11219 Check_Dispatching_Operation (S, Empty);
11220 end if;
11221 end if;
11223 -- If this is a user-defined equality operator that is not a derived
11224 -- subprogram, create the corresponding inequality. If the operation is
11225 -- dispatching, the expansion is done elsewhere, and we do not create
11226 -- an explicit inequality operation.
11228 <<Check_Inequality>>
11229 if Chars (S) = Name_Op_Eq
11230 and then Etype (S) = Standard_Boolean
11231 and then Present (Parent (S))
11232 and then not Is_Dispatching_Operation (S)
11233 then
11234 Make_Inequality_Operator (S);
11235 Check_Untagged_Equality (S);
11236 end if;
11237 end New_Overloaded_Entity;
11239 ---------------------
11240 -- Process_Formals --
11241 ---------------------
11243 procedure Process_Formals
11244 (T : List_Id;
11245 Related_Nod : Node_Id)
11247 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean;
11248 -- Determine whether an access type designates a type coming from a
11249 -- limited view.
11251 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
11252 -- Check whether the default has a class-wide type. After analysis the
11253 -- default has the type of the formal, so we must also check explicitly
11254 -- for an access attribute.
11256 ----------------------------------
11257 -- Designates_From_Limited_With --
11258 ----------------------------------
11260 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean is
11261 Desig : Entity_Id := Typ;
11263 begin
11264 if Is_Access_Type (Desig) then
11265 Desig := Directly_Designated_Type (Desig);
11266 end if;
11268 if Is_Class_Wide_Type (Desig) then
11269 Desig := Root_Type (Desig);
11270 end if;
11272 return
11273 Ekind (Desig) = E_Incomplete_Type
11274 and then From_Limited_With (Desig);
11275 end Designates_From_Limited_With;
11277 ---------------------------
11278 -- Is_Class_Wide_Default --
11279 ---------------------------
11281 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
11282 begin
11283 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
11284 or else (Nkind (D) = N_Attribute_Reference
11285 and then Attribute_Name (D) = Name_Access
11286 and then Is_Class_Wide_Type (Etype (Prefix (D))));
11287 end Is_Class_Wide_Default;
11289 -- Local variables
11291 Context : constant Node_Id := Parent (Parent (T));
11292 Default : Node_Id;
11293 Formal : Entity_Id;
11294 Formal_Type : Entity_Id;
11295 Param_Spec : Node_Id;
11296 Ptype : Entity_Id;
11298 Num_Out_Params : Nat := 0;
11299 First_Out_Param : Entity_Id := Empty;
11300 -- Used for setting Is_Only_Out_Parameter
11302 -- Start of processing for Process_Formals
11304 begin
11305 -- In order to prevent premature use of the formals in the same formal
11306 -- part, the Ekind is left undefined until all default expressions are
11307 -- analyzed. The Ekind is established in a separate loop at the end.
11309 Param_Spec := First (T);
11310 while Present (Param_Spec) loop
11311 Formal := Defining_Identifier (Param_Spec);
11312 Set_Never_Set_In_Source (Formal, True);
11313 Enter_Name (Formal);
11315 -- Case of ordinary parameters
11317 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
11318 Find_Type (Parameter_Type (Param_Spec));
11319 Ptype := Parameter_Type (Param_Spec);
11321 if Ptype = Error then
11322 goto Continue;
11323 end if;
11325 Formal_Type := Entity (Ptype);
11327 if Is_Incomplete_Type (Formal_Type)
11328 or else
11329 (Is_Class_Wide_Type (Formal_Type)
11330 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
11331 then
11332 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
11333 -- primitive operations, as long as their completion is
11334 -- in the same declarative part. If in the private part
11335 -- this means that the type cannot be a Taft-amendment type.
11336 -- Check is done on package exit. For access to subprograms,
11337 -- the use is legal for Taft-amendment types.
11339 -- Ada 2012: tagged incomplete types are allowed as generic
11340 -- formal types. They do not introduce dependencies and the
11341 -- corresponding generic subprogram does not have a delayed
11342 -- freeze, because it does not need a freeze node. However,
11343 -- it is still the case that untagged incomplete types cannot
11344 -- be Taft-amendment types and must be completed in private
11345 -- part, so the subprogram must appear in the list of private
11346 -- dependents of the type.
11348 if Is_Tagged_Type (Formal_Type)
11349 or else (Ada_Version >= Ada_2012
11350 and then not From_Limited_With (Formal_Type)
11351 and then not Is_Generic_Type (Formal_Type))
11352 then
11353 if Ekind (Scope (Current_Scope)) = E_Package
11354 and then not Is_Generic_Type (Formal_Type)
11355 and then not Is_Class_Wide_Type (Formal_Type)
11356 then
11357 if not Nkind_In
11358 (Parent (T), N_Access_Function_Definition,
11359 N_Access_Procedure_Definition)
11360 then
11361 Append_Elmt (Current_Scope,
11362 Private_Dependents (Base_Type (Formal_Type)));
11364 -- Freezing is delayed to ensure that Register_Prim
11365 -- will get called for this operation, which is needed
11366 -- in cases where static dispatch tables aren't built.
11367 -- (Note that the same is done for controlling access
11368 -- parameter cases in function Access_Definition.)
11370 if not Is_Thunk (Current_Scope) then
11371 Set_Has_Delayed_Freeze (Current_Scope);
11372 end if;
11373 end if;
11374 end if;
11376 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
11377 N_Access_Procedure_Definition)
11378 then
11379 -- AI05-0151: Tagged incomplete types are allowed in all
11380 -- formal parts. Untagged incomplete types are not allowed
11381 -- in bodies. Limited views of either kind are not allowed
11382 -- if there is no place at which the non-limited view can
11383 -- become available.
11385 -- Incomplete formal untagged types are not allowed in
11386 -- subprogram bodies (but are legal in their declarations).
11387 -- This excludes bodies created for null procedures, which
11388 -- are basic declarations.
11390 if Is_Generic_Type (Formal_Type)
11391 and then not Is_Tagged_Type (Formal_Type)
11392 and then Nkind (Parent (Related_Nod)) = N_Subprogram_Body
11393 then
11394 Error_Msg_N
11395 ("invalid use of formal incomplete type", Param_Spec);
11397 elsif Ada_Version >= Ada_2012 then
11398 if Is_Tagged_Type (Formal_Type)
11399 and then (not From_Limited_With (Formal_Type)
11400 or else not In_Package_Body)
11401 then
11402 null;
11404 elsif Nkind_In (Context, N_Accept_Statement,
11405 N_Accept_Alternative,
11406 N_Entry_Body)
11407 or else (Nkind (Context) = N_Subprogram_Body
11408 and then Comes_From_Source (Context))
11409 then
11410 Error_Msg_NE
11411 ("invalid use of untagged incomplete type &",
11412 Ptype, Formal_Type);
11413 end if;
11415 else
11416 Error_Msg_NE
11417 ("invalid use of incomplete type&",
11418 Param_Spec, Formal_Type);
11420 -- Further checks on the legality of incomplete types
11421 -- in formal parts are delayed until the freeze point
11422 -- of the enclosing subprogram or access to subprogram.
11423 end if;
11424 end if;
11426 elsif Ekind (Formal_Type) = E_Void then
11427 Error_Msg_NE
11428 ("premature use of&",
11429 Parameter_Type (Param_Spec), Formal_Type);
11430 end if;
11432 -- Ada 2012 (AI-142): Handle aliased parameters
11434 if Ada_Version >= Ada_2012
11435 and then Aliased_Present (Param_Spec)
11436 then
11437 Set_Is_Aliased (Formal);
11438 end if;
11440 -- Ada 2005 (AI-231): Create and decorate an internal subtype
11441 -- declaration corresponding to the null-excluding type of the
11442 -- formal in the enclosing scope. Finally, replace the parameter
11443 -- type of the formal with the internal subtype.
11445 if Ada_Version >= Ada_2005
11446 and then Null_Exclusion_Present (Param_Spec)
11447 then
11448 if not Is_Access_Type (Formal_Type) then
11449 Error_Msg_N
11450 ("`NOT NULL` allowed only for an access type", Param_Spec);
11452 else
11453 if Can_Never_Be_Null (Formal_Type)
11454 and then Comes_From_Source (Related_Nod)
11455 then
11456 Error_Msg_NE
11457 ("`NOT NULL` not allowed (& already excludes null)",
11458 Param_Spec, Formal_Type);
11459 end if;
11461 Formal_Type :=
11462 Create_Null_Excluding_Itype
11463 (T => Formal_Type,
11464 Related_Nod => Related_Nod,
11465 Scope_Id => Scope (Current_Scope));
11467 -- If the designated type of the itype is an itype that is
11468 -- not frozen yet, we set the Has_Delayed_Freeze attribute
11469 -- on the access subtype, to prevent order-of-elaboration
11470 -- issues in the backend.
11472 -- Example:
11473 -- type T is access procedure;
11474 -- procedure Op (O : not null T);
11476 if Is_Itype (Directly_Designated_Type (Formal_Type))
11477 and then
11478 not Is_Frozen (Directly_Designated_Type (Formal_Type))
11479 then
11480 Set_Has_Delayed_Freeze (Formal_Type);
11481 end if;
11482 end if;
11483 end if;
11485 -- An access formal type
11487 else
11488 Formal_Type :=
11489 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
11491 -- No need to continue if we already notified errors
11493 if not Present (Formal_Type) then
11494 return;
11495 end if;
11497 -- Ada 2005 (AI-254)
11499 declare
11500 AD : constant Node_Id :=
11501 Access_To_Subprogram_Definition
11502 (Parameter_Type (Param_Spec));
11503 begin
11504 if Present (AD) and then Protected_Present (AD) then
11505 Formal_Type :=
11506 Replace_Anonymous_Access_To_Protected_Subprogram
11507 (Param_Spec);
11508 end if;
11509 end;
11510 end if;
11512 Set_Etype (Formal, Formal_Type);
11514 -- Deal with default expression if present
11516 Default := Expression (Param_Spec);
11518 if Present (Default) then
11519 Check_SPARK_05_Restriction
11520 ("default expression is not allowed", Default);
11522 if Out_Present (Param_Spec) then
11523 Error_Msg_N
11524 ("default initialization only allowed for IN parameters",
11525 Param_Spec);
11526 end if;
11528 -- Do the special preanalysis of the expression (see section on
11529 -- "Handling of Default Expressions" in the spec of package Sem).
11531 Preanalyze_Spec_Expression (Default, Formal_Type);
11533 -- An access to constant cannot be the default for
11534 -- an access parameter that is an access to variable.
11536 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11537 and then not Is_Access_Constant (Formal_Type)
11538 and then Is_Access_Type (Etype (Default))
11539 and then Is_Access_Constant (Etype (Default))
11540 then
11541 Error_Msg_N
11542 ("formal that is access to variable cannot be initialized "
11543 & "with an access-to-constant expression", Default);
11544 end if;
11546 -- Check that the designated type of an access parameter's default
11547 -- is not a class-wide type unless the parameter's designated type
11548 -- is also class-wide.
11550 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11551 and then not Designates_From_Limited_With (Formal_Type)
11552 and then Is_Class_Wide_Default (Default)
11553 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
11554 then
11555 Error_Msg_N
11556 ("access to class-wide expression not allowed here", Default);
11557 end if;
11559 -- Check incorrect use of dynamically tagged expressions
11561 if Is_Tagged_Type (Formal_Type) then
11562 Check_Dynamically_Tagged_Expression
11563 (Expr => Default,
11564 Typ => Formal_Type,
11565 Related_Nod => Default);
11566 end if;
11567 end if;
11569 -- Ada 2005 (AI-231): Static checks
11571 if Ada_Version >= Ada_2005
11572 and then Is_Access_Type (Etype (Formal))
11573 and then Can_Never_Be_Null (Etype (Formal))
11574 then
11575 Null_Exclusion_Static_Checks (Param_Spec);
11576 end if;
11578 -- The following checks are relevant only when SPARK_Mode is on as
11579 -- these are not standard Ada legality rules.
11581 if SPARK_Mode = On then
11582 if Ekind_In (Scope (Formal), E_Function, E_Generic_Function) then
11584 -- A function cannot have a parameter of mode IN OUT or OUT
11585 -- (SPARK RM 6.1).
11587 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
11588 Error_Msg_N
11589 ("function cannot have parameter of mode `OUT` or "
11590 & "`IN OUT`", Formal);
11591 end if;
11593 -- A procedure cannot have an effectively volatile formal
11594 -- parameter of mode IN because it behaves as a constant
11595 -- (SPARK RM 7.1.3(6)). -- ??? maybe 7.1.3(4)
11597 elsif Ekind (Scope (Formal)) = E_Procedure
11598 and then Ekind (Formal) = E_In_Parameter
11599 and then Is_Effectively_Volatile (Formal)
11600 then
11601 Error_Msg_N
11602 ("formal parameter of mode `IN` cannot be volatile", Formal);
11603 end if;
11604 end if;
11606 <<Continue>>
11607 Next (Param_Spec);
11608 end loop;
11610 -- If this is the formal part of a function specification, analyze the
11611 -- subtype mark in the context where the formals are visible but not
11612 -- yet usable, and may hide outer homographs.
11614 if Nkind (Related_Nod) = N_Function_Specification then
11615 Analyze_Return_Type (Related_Nod);
11616 end if;
11618 -- Now set the kind (mode) of each formal
11620 Param_Spec := First (T);
11621 while Present (Param_Spec) loop
11622 Formal := Defining_Identifier (Param_Spec);
11623 Set_Formal_Mode (Formal);
11625 if Ekind (Formal) = E_In_Parameter then
11626 Set_Default_Value (Formal, Expression (Param_Spec));
11628 if Present (Expression (Param_Spec)) then
11629 Default := Expression (Param_Spec);
11631 if Is_Scalar_Type (Etype (Default)) then
11632 if Nkind (Parameter_Type (Param_Spec)) /=
11633 N_Access_Definition
11634 then
11635 Formal_Type := Entity (Parameter_Type (Param_Spec));
11636 else
11637 Formal_Type :=
11638 Access_Definition
11639 (Related_Nod, Parameter_Type (Param_Spec));
11640 end if;
11642 Apply_Scalar_Range_Check (Default, Formal_Type);
11643 end if;
11644 end if;
11646 elsif Ekind (Formal) = E_Out_Parameter then
11647 Num_Out_Params := Num_Out_Params + 1;
11649 if Num_Out_Params = 1 then
11650 First_Out_Param := Formal;
11651 end if;
11653 elsif Ekind (Formal) = E_In_Out_Parameter then
11654 Num_Out_Params := Num_Out_Params + 1;
11655 end if;
11657 -- Skip remaining processing if formal type was in error
11659 if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
11660 goto Next_Parameter;
11661 end if;
11663 -- Force call by reference if aliased
11665 declare
11666 Conv : constant Convention_Id := Convention (Etype (Formal));
11667 begin
11668 if Is_Aliased (Formal) then
11669 Set_Mechanism (Formal, By_Reference);
11671 -- Warn if user asked this to be passed by copy
11673 if Conv = Convention_Ada_Pass_By_Copy then
11674 Error_Msg_N
11675 ("cannot pass aliased parameter & by copy??", Formal);
11676 end if;
11678 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
11680 elsif Conv = Convention_Ada_Pass_By_Copy then
11681 Set_Mechanism (Formal, By_Copy);
11683 elsif Conv = Convention_Ada_Pass_By_Reference then
11684 Set_Mechanism (Formal, By_Reference);
11685 end if;
11686 end;
11688 <<Next_Parameter>>
11689 Next (Param_Spec);
11690 end loop;
11692 if Present (First_Out_Param) and then Num_Out_Params = 1 then
11693 Set_Is_Only_Out_Parameter (First_Out_Param);
11694 end if;
11695 end Process_Formals;
11697 ----------------------------
11698 -- Reference_Body_Formals --
11699 ----------------------------
11701 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
11702 Fs : Entity_Id;
11703 Fb : Entity_Id;
11705 begin
11706 if Error_Posted (Spec) then
11707 return;
11708 end if;
11710 -- Iterate over both lists. They may be of different lengths if the two
11711 -- specs are not conformant.
11713 Fs := First_Formal (Spec);
11714 Fb := First_Formal (Bod);
11715 while Present (Fs) and then Present (Fb) loop
11716 Generate_Reference (Fs, Fb, 'b');
11718 if Style_Check then
11719 Style.Check_Identifier (Fb, Fs);
11720 end if;
11722 Set_Spec_Entity (Fb, Fs);
11723 Set_Referenced (Fs, False);
11724 Next_Formal (Fs);
11725 Next_Formal (Fb);
11726 end loop;
11727 end Reference_Body_Formals;
11729 -------------------------
11730 -- Set_Actual_Subtypes --
11731 -------------------------
11733 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
11734 Decl : Node_Id;
11735 Formal : Entity_Id;
11736 T : Entity_Id;
11737 First_Stmt : Node_Id := Empty;
11738 AS_Needed : Boolean;
11740 begin
11741 -- If this is an empty initialization procedure, no need to create
11742 -- actual subtypes (small optimization).
11744 if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
11745 return;
11747 -- Within a predicate function we do not want to generate local
11748 -- subtypes that may generate nested predicate functions.
11750 elsif Is_Subprogram (Subp) and then Is_Predicate_Function (Subp) then
11751 return;
11752 end if;
11754 -- The subtype declarations may freeze the formals. The body generated
11755 -- for an expression function is not a freeze point, so do not emit
11756 -- these declarations (small loss of efficiency in rare cases).
11758 if Nkind (N) = N_Subprogram_Body
11759 and then Was_Expression_Function (N)
11760 then
11761 return;
11762 end if;
11764 Formal := First_Formal (Subp);
11765 while Present (Formal) loop
11766 T := Etype (Formal);
11768 -- We never need an actual subtype for a constrained formal
11770 if Is_Constrained (T) then
11771 AS_Needed := False;
11773 -- If we have unknown discriminants, then we do not need an actual
11774 -- subtype, or more accurately we cannot figure it out. Note that
11775 -- all class-wide types have unknown discriminants.
11777 elsif Has_Unknown_Discriminants (T) then
11778 AS_Needed := False;
11780 -- At this stage we have an unconstrained type that may need an
11781 -- actual subtype. For sure the actual subtype is needed if we have
11782 -- an unconstrained array type. However, in an instance, the type
11783 -- may appear as a subtype of the full view, while the actual is
11784 -- in fact private (in which case no actual subtype is needed) so
11785 -- check the kind of the base type.
11787 elsif Is_Array_Type (Base_Type (T)) then
11788 AS_Needed := True;
11790 -- The only other case needing an actual subtype is an unconstrained
11791 -- record type which is an IN parameter (we cannot generate actual
11792 -- subtypes for the OUT or IN OUT case, since an assignment can
11793 -- change the discriminant values. However we exclude the case of
11794 -- initialization procedures, since discriminants are handled very
11795 -- specially in this context, see the section entitled "Handling of
11796 -- Discriminants" in Einfo.
11798 -- We also exclude the case of Discrim_SO_Functions (functions used
11799 -- in front-end layout mode for size/offset values), since in such
11800 -- functions only discriminants are referenced, and not only are such
11801 -- subtypes not needed, but they cannot always be generated, because
11802 -- of order of elaboration issues.
11804 elsif Is_Record_Type (T)
11805 and then Ekind (Formal) = E_In_Parameter
11806 and then Chars (Formal) /= Name_uInit
11807 and then not Is_Unchecked_Union (T)
11808 and then not Is_Discrim_SO_Function (Subp)
11809 then
11810 AS_Needed := True;
11812 -- All other cases do not need an actual subtype
11814 else
11815 AS_Needed := False;
11816 end if;
11818 -- Generate actual subtypes for unconstrained arrays and
11819 -- unconstrained discriminated records.
11821 if AS_Needed then
11822 if Nkind (N) = N_Accept_Statement then
11824 -- If expansion is active, the formal is replaced by a local
11825 -- variable that renames the corresponding entry of the
11826 -- parameter block, and it is this local variable that may
11827 -- require an actual subtype.
11829 if Expander_Active then
11830 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
11831 else
11832 Decl := Build_Actual_Subtype (T, Formal);
11833 end if;
11835 if Present (Handled_Statement_Sequence (N)) then
11836 First_Stmt :=
11837 First (Statements (Handled_Statement_Sequence (N)));
11838 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
11839 Mark_Rewrite_Insertion (Decl);
11840 else
11841 -- If the accept statement has no body, there will be no
11842 -- reference to the actuals, so no need to compute actual
11843 -- subtypes.
11845 return;
11846 end if;
11848 else
11849 Decl := Build_Actual_Subtype (T, Formal);
11850 Prepend (Decl, Declarations (N));
11851 Mark_Rewrite_Insertion (Decl);
11852 end if;
11854 -- The declaration uses the bounds of an existing object, and
11855 -- therefore needs no constraint checks.
11857 Analyze (Decl, Suppress => All_Checks);
11858 Set_Is_Actual_Subtype (Defining_Identifier (Decl));
11860 -- We need to freeze manually the generated type when it is
11861 -- inserted anywhere else than in a declarative part.
11863 if Present (First_Stmt) then
11864 Insert_List_Before_And_Analyze (First_Stmt,
11865 Freeze_Entity (Defining_Identifier (Decl), N));
11867 -- Ditto if the type has a dynamic predicate, because the
11868 -- generated function will mention the actual subtype. The
11869 -- predicate may come from an explicit aspect of be inherited.
11871 elsif Has_Predicates (T) then
11872 Insert_List_Before_And_Analyze (Decl,
11873 Freeze_Entity (Defining_Identifier (Decl), N));
11874 end if;
11876 if Nkind (N) = N_Accept_Statement
11877 and then Expander_Active
11878 then
11879 Set_Actual_Subtype (Renamed_Object (Formal),
11880 Defining_Identifier (Decl));
11881 else
11882 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
11883 end if;
11884 end if;
11886 Next_Formal (Formal);
11887 end loop;
11888 end Set_Actual_Subtypes;
11890 ---------------------
11891 -- Set_Formal_Mode --
11892 ---------------------
11894 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
11895 Spec : constant Node_Id := Parent (Formal_Id);
11896 Id : constant Entity_Id := Scope (Formal_Id);
11898 begin
11899 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
11900 -- since we ensure that corresponding actuals are always valid at the
11901 -- point of the call.
11903 if Out_Present (Spec) then
11904 if Ekind_In (Id, E_Entry, E_Entry_Family)
11905 or else Is_Subprogram_Or_Generic_Subprogram (Id)
11906 then
11907 Set_Has_Out_Or_In_Out_Parameter (Id, True);
11908 end if;
11910 if Ekind_In (Id, E_Function, E_Generic_Function) then
11912 -- [IN] OUT parameters allowed for functions in Ada 2012
11914 if Ada_Version >= Ada_2012 then
11916 -- Even in Ada 2012 operators can only have IN parameters
11918 if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
11919 Error_Msg_N ("operators can only have IN parameters", Spec);
11920 end if;
11922 if In_Present (Spec) then
11923 Set_Ekind (Formal_Id, E_In_Out_Parameter);
11924 else
11925 Set_Ekind (Formal_Id, E_Out_Parameter);
11926 end if;
11928 -- But not in earlier versions of Ada
11930 else
11931 Error_Msg_N ("functions can only have IN parameters", Spec);
11932 Set_Ekind (Formal_Id, E_In_Parameter);
11933 end if;
11935 elsif In_Present (Spec) then
11936 Set_Ekind (Formal_Id, E_In_Out_Parameter);
11938 else
11939 Set_Ekind (Formal_Id, E_Out_Parameter);
11940 Set_Never_Set_In_Source (Formal_Id, True);
11941 Set_Is_True_Constant (Formal_Id, False);
11942 Set_Current_Value (Formal_Id, Empty);
11943 end if;
11945 else
11946 Set_Ekind (Formal_Id, E_In_Parameter);
11947 end if;
11949 -- Set Is_Known_Non_Null for access parameters since the language
11950 -- guarantees that access parameters are always non-null. We also set
11951 -- Can_Never_Be_Null, since there is no way to change the value.
11953 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
11955 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
11956 -- null; In Ada 2005, only if then null_exclusion is explicit.
11958 if Ada_Version < Ada_2005
11959 or else Can_Never_Be_Null (Etype (Formal_Id))
11960 then
11961 Set_Is_Known_Non_Null (Formal_Id);
11962 Set_Can_Never_Be_Null (Formal_Id);
11963 end if;
11965 -- Ada 2005 (AI-231): Null-exclusion access subtype
11967 elsif Is_Access_Type (Etype (Formal_Id))
11968 and then Can_Never_Be_Null (Etype (Formal_Id))
11969 then
11970 Set_Is_Known_Non_Null (Formal_Id);
11972 -- We can also set Can_Never_Be_Null (thus preventing some junk
11973 -- access checks) for the case of an IN parameter, which cannot
11974 -- be changed, or for an IN OUT parameter, which can be changed but
11975 -- not to a null value. But for an OUT parameter, the initial value
11976 -- passed in can be null, so we can't set this flag in that case.
11978 if Ekind (Formal_Id) /= E_Out_Parameter then
11979 Set_Can_Never_Be_Null (Formal_Id);
11980 end if;
11981 end if;
11983 Set_Mechanism (Formal_Id, Default_Mechanism);
11984 Set_Formal_Validity (Formal_Id);
11985 end Set_Formal_Mode;
11987 -------------------------
11988 -- Set_Formal_Validity --
11989 -------------------------
11991 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
11992 begin
11993 -- If no validity checking, then we cannot assume anything about the
11994 -- validity of parameters, since we do not know there is any checking
11995 -- of the validity on the call side.
11997 if not Validity_Checks_On then
11998 return;
12000 -- If validity checking for parameters is enabled, this means we are
12001 -- not supposed to make any assumptions about argument values.
12003 elsif Validity_Check_Parameters then
12004 return;
12006 -- If we are checking in parameters, we will assume that the caller is
12007 -- also checking parameters, so we can assume the parameter is valid.
12009 elsif Ekind (Formal_Id) = E_In_Parameter
12010 and then Validity_Check_In_Params
12011 then
12012 Set_Is_Known_Valid (Formal_Id, True);
12014 -- Similar treatment for IN OUT parameters
12016 elsif Ekind (Formal_Id) = E_In_Out_Parameter
12017 and then Validity_Check_In_Out_Params
12018 then
12019 Set_Is_Known_Valid (Formal_Id, True);
12020 end if;
12021 end Set_Formal_Validity;
12023 ------------------------
12024 -- Subtype_Conformant --
12025 ------------------------
12027 function Subtype_Conformant
12028 (New_Id : Entity_Id;
12029 Old_Id : Entity_Id;
12030 Skip_Controlling_Formals : Boolean := False) return Boolean
12032 Result : Boolean;
12033 begin
12034 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
12035 Skip_Controlling_Formals => Skip_Controlling_Formals);
12036 return Result;
12037 end Subtype_Conformant;
12039 ---------------------
12040 -- Type_Conformant --
12041 ---------------------
12043 function Type_Conformant
12044 (New_Id : Entity_Id;
12045 Old_Id : Entity_Id;
12046 Skip_Controlling_Formals : Boolean := False) return Boolean
12048 Result : Boolean;
12049 begin
12050 May_Hide_Profile := False;
12051 Check_Conformance
12052 (New_Id, Old_Id, Type_Conformant, False, Result,
12053 Skip_Controlling_Formals => Skip_Controlling_Formals);
12054 return Result;
12055 end Type_Conformant;
12057 -------------------------------
12058 -- Valid_Operator_Definition --
12059 -------------------------------
12061 procedure Valid_Operator_Definition (Designator : Entity_Id) is
12062 N : Integer := 0;
12063 F : Entity_Id;
12064 Id : constant Name_Id := Chars (Designator);
12065 N_OK : Boolean;
12067 begin
12068 F := First_Formal (Designator);
12069 while Present (F) loop
12070 N := N + 1;
12072 if Present (Default_Value (F)) then
12073 Error_Msg_N
12074 ("default values not allowed for operator parameters",
12075 Parent (F));
12077 -- For function instantiations that are operators, we must check
12078 -- separately that the corresponding generic only has in-parameters.
12079 -- For subprogram declarations this is done in Set_Formal_Mode. Such
12080 -- an error could not arise in earlier versions of the language.
12082 elsif Ekind (F) /= E_In_Parameter then
12083 Error_Msg_N ("operators can only have IN parameters", F);
12084 end if;
12086 Next_Formal (F);
12087 end loop;
12089 -- Verify that user-defined operators have proper number of arguments
12090 -- First case of operators which can only be unary
12092 if Nam_In (Id, Name_Op_Not, Name_Op_Abs) then
12093 N_OK := (N = 1);
12095 -- Case of operators which can be unary or binary
12097 elsif Nam_In (Id, Name_Op_Add, Name_Op_Subtract) then
12098 N_OK := (N in 1 .. 2);
12100 -- All other operators can only be binary
12102 else
12103 N_OK := (N = 2);
12104 end if;
12106 if not N_OK then
12107 Error_Msg_N
12108 ("incorrect number of arguments for operator", Designator);
12109 end if;
12111 if Id = Name_Op_Ne
12112 and then Base_Type (Etype (Designator)) = Standard_Boolean
12113 and then not Is_Intrinsic_Subprogram (Designator)
12114 then
12115 Error_Msg_N
12116 ("explicit definition of inequality not allowed", Designator);
12117 end if;
12118 end Valid_Operator_Definition;
12120 end Sem_Ch6;