builtins.def: (_Float<N> and _Float<N>X BUILT_IN_CEIL): Add _Float<N> and _Float...
[official-gcc.git] / gcc / ada / eval_fat.adb
blob7cb3a3c005361f27cea1375e403c046dd736f69b
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E V A L _ F A T --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Einfo; use Einfo;
27 with Errout; use Errout;
28 with Opt; use Opt;
29 with Sem_Util; use Sem_Util;
31 package body Eval_Fat is
33 Radix : constant Int := 2;
34 -- This code is currently only correct for the radix 2 case. We use the
35 -- symbolic value Radix where possible to help in the unlikely case of
36 -- anyone ever having to adjust this code for another value, and for
37 -- documentation purposes.
39 -- Another assumption is that the range of the floating-point type is
40 -- symmetric around zero.
42 type Radix_Power_Table is array (Int range 1 .. 4) of Int;
44 Radix_Powers : constant Radix_Power_Table :=
45 (Radix ** 1, Radix ** 2, Radix ** 3, Radix ** 4);
47 -----------------------
48 -- Local Subprograms --
49 -----------------------
51 procedure Decompose
52 (RT : R;
53 X : T;
54 Fraction : out T;
55 Exponent : out UI;
56 Mode : Rounding_Mode := Round);
57 -- Decomposes a non-zero floating-point number into fraction and exponent
58 -- parts. The fraction is in the interval 1.0 / Radix .. T'Pred (1.0) and
59 -- uses Rbase = Radix. The result is rounded to a nearest machine number.
61 --------------
62 -- Adjacent --
63 --------------
65 function Adjacent (RT : R; X, Towards : T) return T is
66 begin
67 if Towards = X then
68 return X;
69 elsif Towards > X then
70 return Succ (RT, X);
71 else
72 return Pred (RT, X);
73 end if;
74 end Adjacent;
76 -------------
77 -- Ceiling --
78 -------------
80 function Ceiling (RT : R; X : T) return T is
81 XT : constant T := Truncation (RT, X);
82 begin
83 if UR_Is_Negative (X) then
84 return XT;
85 elsif X = XT then
86 return X;
87 else
88 return XT + Ureal_1;
89 end if;
90 end Ceiling;
92 -------------
93 -- Compose --
94 -------------
96 function Compose (RT : R; Fraction : T; Exponent : UI) return T is
97 Arg_Frac : T;
98 Arg_Exp : UI;
99 pragma Warnings (Off, Arg_Exp);
100 begin
101 Decompose (RT, Fraction, Arg_Frac, Arg_Exp);
102 return Scaling (RT, Arg_Frac, Exponent);
103 end Compose;
105 ---------------
106 -- Copy_Sign --
107 ---------------
109 function Copy_Sign (RT : R; Value, Sign : T) return T is
110 pragma Warnings (Off, RT);
111 Result : T;
113 begin
114 Result := abs Value;
116 if UR_Is_Negative (Sign) then
117 return -Result;
118 else
119 return Result;
120 end if;
121 end Copy_Sign;
123 ---------------
124 -- Decompose --
125 ---------------
127 procedure Decompose
128 (RT : R;
129 X : T;
130 Fraction : out T;
131 Exponent : out UI;
132 Mode : Rounding_Mode := Round)
134 Int_F : UI;
136 begin
137 Decompose_Int (RT, abs X, Int_F, Exponent, Mode);
139 Fraction := UR_From_Components
140 (Num => Int_F,
141 Den => Machine_Mantissa_Value (RT),
142 Rbase => Radix,
143 Negative => False);
145 if UR_Is_Negative (X) then
146 Fraction := -Fraction;
147 end if;
149 return;
150 end Decompose;
152 -------------------
153 -- Decompose_Int --
154 -------------------
156 -- This procedure should be modified with care, as there are many non-
157 -- obvious details that may cause problems that are hard to detect. For
158 -- zero arguments, Fraction and Exponent are set to zero. Note that sign
159 -- of zero cannot be preserved.
161 procedure Decompose_Int
162 (RT : R;
163 X : T;
164 Fraction : out UI;
165 Exponent : out UI;
166 Mode : Rounding_Mode)
168 Base : Int := Rbase (X);
169 N : UI := abs Numerator (X);
170 D : UI := Denominator (X);
172 N_Times_Radix : UI;
174 Even : Boolean;
175 -- True iff Fraction is even
177 Most_Significant_Digit : constant UI :=
178 Radix ** (Machine_Mantissa_Value (RT) - 1);
180 Uintp_Mark : Uintp.Save_Mark;
181 -- The code is divided into blocks that systematically release
182 -- intermediate values (this routine generates lots of junk).
184 begin
185 if N = Uint_0 then
186 Fraction := Uint_0;
187 Exponent := Uint_0;
188 return;
189 end if;
191 Calculate_D_And_Exponent_1 : begin
192 Uintp_Mark := Mark;
193 Exponent := Uint_0;
195 -- In cases where Base > 1, the actual denominator is Base**D. For
196 -- cases where Base is a power of Radix, use the value 1 for the
197 -- Denominator and adjust the exponent.
199 -- Note: Exponent has different sign from D, because D is a divisor
201 for Power in 1 .. Radix_Powers'Last loop
202 if Base = Radix_Powers (Power) then
203 Exponent := -D * Power;
204 Base := 0;
205 D := Uint_1;
206 exit;
207 end if;
208 end loop;
210 Release_And_Save (Uintp_Mark, D, Exponent);
211 end Calculate_D_And_Exponent_1;
213 if Base > 0 then
214 Calculate_Exponent : begin
215 Uintp_Mark := Mark;
217 -- For bases that are a multiple of the Radix, divide the base by
218 -- Radix and adjust the Exponent. This will help because D will be
219 -- much smaller and faster to process.
221 -- This occurs for decimal bases on machines with binary floating-
222 -- point for example. When calculating 1E40, with Radix = 2, N
223 -- will be 93 bits instead of 133.
225 -- N E
226 -- ------ * Radix
227 -- D
228 -- Base
230 -- N E
231 -- = -------------------------- * Radix
232 -- D D
233 -- (Base/Radix) * Radix
235 -- N E-D
236 -- = --------------- * Radix
237 -- D
238 -- (Base/Radix)
240 -- This code is commented out, because it causes numerous
241 -- failures in the regression suite. To be studied ???
243 while False and then Base > 0 and then Base mod Radix = 0 loop
244 Base := Base / Radix;
245 Exponent := Exponent + D;
246 end loop;
248 Release_And_Save (Uintp_Mark, Exponent);
249 end Calculate_Exponent;
251 -- For remaining bases we must actually compute the exponentiation
253 -- Because the exponentiation can be negative, and D must be integer,
254 -- the numerator is corrected instead.
256 Calculate_N_And_D : begin
257 Uintp_Mark := Mark;
259 if D < 0 then
260 N := N * Base ** (-D);
261 D := Uint_1;
262 else
263 D := Base ** D;
264 end if;
266 Release_And_Save (Uintp_Mark, N, D);
267 end Calculate_N_And_D;
269 Base := 0;
270 end if;
272 -- Now scale N and D so that N / D is a value in the interval [1.0 /
273 -- Radix, 1.0) and adjust Exponent accordingly, so the value N / D *
274 -- Radix ** Exponent remains unchanged.
276 -- Step 1 - Adjust N so N / D >= 1 / Radix, or N = 0
278 -- N and D are positive, so N / D >= 1 / Radix implies N * Radix >= D.
279 -- As this scaling is not possible for N is Uint_0, zero is handled
280 -- explicitly at the start of this subprogram.
282 Calculate_N_And_Exponent : begin
283 Uintp_Mark := Mark;
285 N_Times_Radix := N * Radix;
286 while not (N_Times_Radix >= D) loop
287 N := N_Times_Radix;
288 Exponent := Exponent - 1;
289 N_Times_Radix := N * Radix;
290 end loop;
292 Release_And_Save (Uintp_Mark, N, Exponent);
293 end Calculate_N_And_Exponent;
295 -- Step 2 - Adjust D so N / D < 1
297 -- Scale up D so N / D < 1, so N < D
299 Calculate_D_And_Exponent_2 : begin
300 Uintp_Mark := Mark;
302 while not (N < D) loop
304 -- As N / D >= 1, N / (D * Radix) will be at least 1 / Radix, so
305 -- the result of Step 1 stays valid
307 D := D * Radix;
308 Exponent := Exponent + 1;
309 end loop;
311 Release_And_Save (Uintp_Mark, D, Exponent);
312 end Calculate_D_And_Exponent_2;
314 -- Here the value N / D is in the range [1.0 / Radix .. 1.0)
316 -- Now find the fraction by doing a very simple-minded division until
317 -- enough digits have been computed.
319 -- This division works for all radices, but is only efficient for a
320 -- binary radix. It is just like a manual division algorithm, but
321 -- instead of moving the denominator one digit right, we move the
322 -- numerator one digit left so the numerator and denominator remain
323 -- integral.
325 Fraction := Uint_0;
326 Even := True;
328 Calculate_Fraction_And_N : begin
329 Uintp_Mark := Mark;
331 loop
332 while N >= D loop
333 N := N - D;
334 Fraction := Fraction + 1;
335 Even := not Even;
336 end loop;
338 -- Stop when the result is in [1.0 / Radix, 1.0)
340 exit when Fraction >= Most_Significant_Digit;
342 N := N * Radix;
343 Fraction := Fraction * Radix;
344 Even := True;
345 end loop;
347 Release_And_Save (Uintp_Mark, Fraction, N);
348 end Calculate_Fraction_And_N;
350 Calculate_Fraction_And_Exponent : begin
351 Uintp_Mark := Mark;
353 -- Determine correct rounding based on the remainder which is in
354 -- N and the divisor D. The rounding is performed on the absolute
355 -- value of X, so Ceiling and Floor need to check for the sign of
356 -- X explicitly.
358 case Mode is
359 when Round_Even =>
361 -- This rounding mode corresponds to the unbiased rounding
362 -- method that is used at run time. When the real value is
363 -- exactly between two machine numbers, choose the machine
364 -- number with its least significant bit equal to zero.
366 -- The recommendation advice in RM 4.9(38) is that static
367 -- expressions are rounded to machine numbers in the same
368 -- way as the target machine does.
370 if (Even and then N * 2 > D)
371 or else
372 (not Even and then N * 2 >= D)
373 then
374 Fraction := Fraction + 1;
375 end if;
377 when Round =>
379 -- Do not round to even as is done with IEEE arithmetic, but
380 -- instead round away from zero when the result is exactly
381 -- between two machine numbers. This biased rounding method
382 -- should not be used to convert static expressions to
383 -- machine numbers, see AI95-268.
385 if N * 2 >= D then
386 Fraction := Fraction + 1;
387 end if;
389 when Ceiling =>
390 if N > Uint_0 and then not UR_Is_Negative (X) then
391 Fraction := Fraction + 1;
392 end if;
394 when Floor =>
395 if N > Uint_0 and then UR_Is_Negative (X) then
396 Fraction := Fraction + 1;
397 end if;
398 end case;
400 -- The result must be normalized to [1.0/Radix, 1.0), so adjust if
401 -- the result is 1.0 because of rounding.
403 if Fraction = Most_Significant_Digit * Radix then
404 Fraction := Most_Significant_Digit;
405 Exponent := Exponent + 1;
406 end if;
408 -- Put back sign after applying the rounding
410 if UR_Is_Negative (X) then
411 Fraction := -Fraction;
412 end if;
414 Release_And_Save (Uintp_Mark, Fraction, Exponent);
415 end Calculate_Fraction_And_Exponent;
416 end Decompose_Int;
418 --------------
419 -- Exponent --
420 --------------
422 function Exponent (RT : R; X : T) return UI is
423 X_Frac : UI;
424 X_Exp : UI;
425 pragma Warnings (Off, X_Frac);
426 begin
427 Decompose_Int (RT, X, X_Frac, X_Exp, Round_Even);
428 return X_Exp;
429 end Exponent;
431 -----------
432 -- Floor --
433 -----------
435 function Floor (RT : R; X : T) return T is
436 XT : constant T := Truncation (RT, X);
438 begin
439 if UR_Is_Positive (X) then
440 return XT;
442 elsif XT = X then
443 return X;
445 else
446 return XT - Ureal_1;
447 end if;
448 end Floor;
450 --------------
451 -- Fraction --
452 --------------
454 function Fraction (RT : R; X : T) return T is
455 X_Frac : T;
456 X_Exp : UI;
457 pragma Warnings (Off, X_Exp);
458 begin
459 Decompose (RT, X, X_Frac, X_Exp);
460 return X_Frac;
461 end Fraction;
463 ------------------
464 -- Leading_Part --
465 ------------------
467 function Leading_Part (RT : R; X : T; Radix_Digits : UI) return T is
468 RD : constant UI := UI_Min (Radix_Digits, Machine_Mantissa_Value (RT));
469 L : UI;
470 Y : T;
471 begin
472 L := Exponent (RT, X) - RD;
473 Y := UR_From_Uint (UR_Trunc (Scaling (RT, X, -L)));
474 return Scaling (RT, Y, L);
475 end Leading_Part;
477 -------------
478 -- Machine --
479 -------------
481 function Machine
482 (RT : R;
483 X : T;
484 Mode : Rounding_Mode;
485 Enode : Node_Id) return T
487 X_Frac : T;
488 X_Exp : UI;
489 Emin : constant UI := Machine_Emin_Value (RT);
491 begin
492 Decompose (RT, X, X_Frac, X_Exp, Mode);
494 -- Case of denormalized number or (gradual) underflow
496 -- A denormalized number is one with the minimum exponent Emin, but that
497 -- breaks the assumption that the first digit of the mantissa is a one.
498 -- This allows the first non-zero digit to be in any of the remaining
499 -- Mant - 1 spots. The gap between subsequent denormalized numbers is
500 -- the same as for the smallest normalized numbers. However, the number
501 -- of significant digits left decreases as a result of the mantissa now
502 -- having leading seros.
504 if X_Exp < Emin then
505 declare
506 Emin_Den : constant UI := Machine_Emin_Value (RT) -
507 Machine_Mantissa_Value (RT) + Uint_1;
509 begin
510 -- Do not issue warnings about underflows in GNATprove mode,
511 -- as calling Machine as part of interval checking may lead
512 -- to spurious warnings.
514 if X_Exp < Emin_Den or not Has_Denormals (RT) then
515 if Has_Signed_Zeros (RT) and then UR_Is_Negative (X) then
516 if not GNATprove_Mode then
517 Error_Msg_N
518 ("floating-point value underflows to -0.0??", Enode);
519 end if;
521 return Ureal_M_0;
523 else
524 if not GNATprove_Mode then
525 Error_Msg_N
526 ("floating-point value underflows to 0.0??", Enode);
527 end if;
529 return Ureal_0;
530 end if;
532 elsif Has_Denormals (RT) then
534 -- Emin - Mant <= X_Exp < Emin, so result is denormal. Handle
535 -- gradual underflow by first computing the number of
536 -- significant bits still available for the mantissa and
537 -- then truncating the fraction to this number of bits.
539 -- If this value is different from the original fraction,
540 -- precision is lost due to gradual underflow.
542 -- We probably should round here and prevent double rounding as
543 -- a result of first rounding to a model number and then to a
544 -- machine number. However, this is an extremely rare case that
545 -- is not worth the extra complexity. In any case, a warning is
546 -- issued in cases where gradual underflow occurs.
548 declare
549 Denorm_Sig_Bits : constant UI := X_Exp - Emin_Den + 1;
551 X_Frac_Denorm : constant T := UR_From_Components
552 (UR_Trunc (Scaling (RT, abs X_Frac, Denorm_Sig_Bits)),
553 Denorm_Sig_Bits,
554 Radix,
555 UR_Is_Negative (X));
557 begin
558 -- Do not issue warnings about loss of precision in
559 -- GNATprove mode, as calling Machine as part of interval
560 -- checking may lead to spurious warnings.
562 if X_Frac_Denorm /= X_Frac then
563 if not GNATprove_Mode then
564 Error_Msg_N
565 ("gradual underflow causes loss of precision??",
566 Enode);
567 end if;
568 X_Frac := X_Frac_Denorm;
569 end if;
570 end;
571 end if;
572 end;
573 end if;
575 return Scaling (RT, X_Frac, X_Exp);
576 end Machine;
578 -----------
579 -- Model --
580 -----------
582 function Model (RT : R; X : T) return T is
583 X_Frac : T;
584 X_Exp : UI;
585 begin
586 Decompose (RT, X, X_Frac, X_Exp);
587 return Compose (RT, X_Frac, X_Exp);
588 end Model;
590 ----------
591 -- Pred --
592 ----------
594 function Pred (RT : R; X : T) return T is
595 begin
596 return -Succ (RT, -X);
597 end Pred;
599 ---------------
600 -- Remainder --
601 ---------------
603 function Remainder (RT : R; X, Y : T) return T is
604 A : T;
605 B : T;
606 Arg : T;
607 P : T;
608 Arg_Frac : T;
609 P_Frac : T;
610 Sign_X : T;
611 IEEE_Rem : T;
612 Arg_Exp : UI;
613 P_Exp : UI;
614 K : UI;
615 P_Even : Boolean;
617 pragma Warnings (Off, Arg_Frac);
619 begin
620 if UR_Is_Positive (X) then
621 Sign_X := Ureal_1;
622 else
623 Sign_X := -Ureal_1;
624 end if;
626 Arg := abs X;
627 P := abs Y;
629 if Arg < P then
630 P_Even := True;
631 IEEE_Rem := Arg;
632 P_Exp := Exponent (RT, P);
634 else
635 -- ??? what about zero cases?
636 Decompose (RT, Arg, Arg_Frac, Arg_Exp);
637 Decompose (RT, P, P_Frac, P_Exp);
639 P := Compose (RT, P_Frac, Arg_Exp);
640 K := Arg_Exp - P_Exp;
641 P_Even := True;
642 IEEE_Rem := Arg;
644 for Cnt in reverse 0 .. UI_To_Int (K) loop
645 if IEEE_Rem >= P then
646 P_Even := False;
647 IEEE_Rem := IEEE_Rem - P;
648 else
649 P_Even := True;
650 end if;
652 P := P * Ureal_Half;
653 end loop;
654 end if;
656 -- That completes the calculation of modulus remainder. The final step
657 -- is get the IEEE remainder. Here we compare Rem with (abs Y) / 2.
659 if P_Exp >= 0 then
660 A := IEEE_Rem;
661 B := abs Y * Ureal_Half;
663 else
664 A := IEEE_Rem * Ureal_2;
665 B := abs Y;
666 end if;
668 if A > B or else (A = B and then not P_Even) then
669 IEEE_Rem := IEEE_Rem - abs Y;
670 end if;
672 return Sign_X * IEEE_Rem;
673 end Remainder;
675 --------------
676 -- Rounding --
677 --------------
679 function Rounding (RT : R; X : T) return T is
680 Result : T;
681 Tail : T;
683 begin
684 Result := Truncation (RT, abs X);
685 Tail := abs X - Result;
687 if Tail >= Ureal_Half then
688 Result := Result + Ureal_1;
689 end if;
691 if UR_Is_Negative (X) then
692 return -Result;
693 else
694 return Result;
695 end if;
696 end Rounding;
698 -------------
699 -- Scaling --
700 -------------
702 function Scaling (RT : R; X : T; Adjustment : UI) return T is
703 pragma Warnings (Off, RT);
705 begin
706 if Rbase (X) = Radix then
707 return UR_From_Components
708 (Num => Numerator (X),
709 Den => Denominator (X) - Adjustment,
710 Rbase => Radix,
711 Negative => UR_Is_Negative (X));
713 elsif Adjustment >= 0 then
714 return X * Radix ** Adjustment;
715 else
716 return X / Radix ** (-Adjustment);
717 end if;
718 end Scaling;
720 ----------
721 -- Succ --
722 ----------
724 function Succ (RT : R; X : T) return T is
725 Emin : constant UI := Machine_Emin_Value (RT);
726 Mantissa : constant UI := Machine_Mantissa_Value (RT);
727 Exp : UI := UI_Max (Emin, Exponent (RT, X));
728 Frac : T;
729 New_Frac : T;
731 begin
732 if UR_Is_Zero (X) then
733 Exp := Emin;
734 end if;
736 -- Set exponent such that the radix point will be directly following the
737 -- mantissa after scaling.
739 if Has_Denormals (RT) or Exp /= Emin then
740 Exp := Exp - Mantissa;
741 else
742 Exp := Exp - 1;
743 end if;
745 Frac := Scaling (RT, X, -Exp);
746 New_Frac := Ceiling (RT, Frac);
748 if New_Frac = Frac then
749 if New_Frac = Scaling (RT, -Ureal_1, Mantissa - 1) then
750 New_Frac := New_Frac + Scaling (RT, Ureal_1, Uint_Minus_1);
751 else
752 New_Frac := New_Frac + Ureal_1;
753 end if;
754 end if;
756 return Scaling (RT, New_Frac, Exp);
757 end Succ;
759 ----------------
760 -- Truncation --
761 ----------------
763 function Truncation (RT : R; X : T) return T is
764 pragma Warnings (Off, RT);
765 begin
766 return UR_From_Uint (UR_Trunc (X));
767 end Truncation;
769 -----------------------
770 -- Unbiased_Rounding --
771 -----------------------
773 function Unbiased_Rounding (RT : R; X : T) return T is
774 Abs_X : constant T := abs X;
775 Result : T;
776 Tail : T;
778 begin
779 Result := Truncation (RT, Abs_X);
780 Tail := Abs_X - Result;
782 if Tail > Ureal_Half then
783 Result := Result + Ureal_1;
785 elsif Tail = Ureal_Half then
786 Result := Ureal_2 *
787 Truncation (RT, (Result / Ureal_2) + Ureal_Half);
788 end if;
790 if UR_Is_Negative (X) then
791 return -Result;
792 elsif UR_Is_Positive (X) then
793 return Result;
795 -- For zero case, make sure sign of zero is preserved
797 else
798 return X;
799 end if;
800 end Unbiased_Rounding;
802 end Eval_Fat;