2017-05-11 François Dumont <fdumont@gcc.gnu.org>
[official-gcc.git] / libsanitizer / sanitizer_common / sanitizer_win.cc
blob785883ce7675ed8b66cfabc58d24ddf8c2120a9d
1 //===-- sanitizer_win.cc --------------------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is shared between AddressSanitizer and ThreadSanitizer
9 // run-time libraries and implements windows-specific functions from
10 // sanitizer_libc.h.
11 //===----------------------------------------------------------------------===//
13 #include "sanitizer_platform.h"
14 #if SANITIZER_WINDOWS
16 #define WIN32_LEAN_AND_MEAN
17 #define NOGDI
18 #include <windows.h>
19 #include <dbghelp.h>
20 #include <io.h>
21 #include <psapi.h>
22 #include <stdlib.h>
24 #include "sanitizer_common.h"
25 #include "sanitizer_libc.h"
26 #include "sanitizer_mutex.h"
27 #include "sanitizer_placement_new.h"
28 #include "sanitizer_procmaps.h"
29 #include "sanitizer_stacktrace.h"
30 #include "sanitizer_symbolizer.h"
32 namespace __sanitizer {
34 #include "sanitizer_syscall_generic.inc"
36 // --------------------- sanitizer_common.h
37 uptr GetPageSize() {
38 SYSTEM_INFO si;
39 GetSystemInfo(&si);
40 return si.dwPageSize;
43 uptr GetMmapGranularity() {
44 SYSTEM_INFO si;
45 GetSystemInfo(&si);
46 return si.dwAllocationGranularity;
49 uptr GetMaxVirtualAddress() {
50 SYSTEM_INFO si;
51 GetSystemInfo(&si);
52 return (uptr)si.lpMaximumApplicationAddress;
55 bool FileExists(const char *filename) {
56 return ::GetFileAttributesA(filename) != INVALID_FILE_ATTRIBUTES;
59 uptr internal_getpid() {
60 return GetProcessId(GetCurrentProcess());
63 // In contrast to POSIX, on Windows GetCurrentThreadId()
64 // returns a system-unique identifier.
65 uptr GetTid() {
66 return GetCurrentThreadId();
69 uptr GetThreadSelf() {
70 return GetTid();
73 #if !SANITIZER_GO
74 void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
75 uptr *stack_bottom) {
76 CHECK(stack_top);
77 CHECK(stack_bottom);
78 MEMORY_BASIC_INFORMATION mbi;
79 CHECK_NE(VirtualQuery(&mbi /* on stack */, &mbi, sizeof(mbi)), 0);
80 // FIXME: is it possible for the stack to not be a single allocation?
81 // Are these values what ASan expects to get (reserved, not committed;
82 // including stack guard page) ?
83 *stack_top = (uptr)mbi.BaseAddress + mbi.RegionSize;
84 *stack_bottom = (uptr)mbi.AllocationBase;
86 #endif // #if !SANITIZER_GO
88 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
89 void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
90 if (rv == 0)
91 ReportMmapFailureAndDie(size, mem_type, "allocate",
92 GetLastError(), raw_report);
93 return rv;
96 void UnmapOrDie(void *addr, uptr size) {
97 if (!size || !addr)
98 return;
100 MEMORY_BASIC_INFORMATION mbi;
101 CHECK(VirtualQuery(addr, &mbi, sizeof(mbi)));
103 // MEM_RELEASE can only be used to unmap whole regions previously mapped with
104 // VirtualAlloc. So we first try MEM_RELEASE since it is better, and if that
105 // fails try MEM_DECOMMIT.
106 if (VirtualFree(addr, 0, MEM_RELEASE) == 0) {
107 if (VirtualFree(addr, size, MEM_DECOMMIT) == 0) {
108 Report("ERROR: %s failed to "
109 "deallocate 0x%zx (%zd) bytes at address %p (error code: %d)\n",
110 SanitizerToolName, size, size, addr, GetLastError());
111 CHECK("unable to unmap" && 0);
116 // We want to map a chunk of address space aligned to 'alignment'.
117 void *MmapAlignedOrDie(uptr size, uptr alignment, const char *mem_type) {
118 CHECK(IsPowerOfTwo(size));
119 CHECK(IsPowerOfTwo(alignment));
121 // Windows will align our allocations to at least 64K.
122 alignment = Max(alignment, GetMmapGranularity());
124 uptr mapped_addr =
125 (uptr)VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
126 if (!mapped_addr)
127 ReportMmapFailureAndDie(size, mem_type, "allocate aligned", GetLastError());
129 // If we got it right on the first try, return. Otherwise, unmap it and go to
130 // the slow path.
131 if (IsAligned(mapped_addr, alignment))
132 return (void*)mapped_addr;
133 if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
134 ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
136 // If we didn't get an aligned address, overallocate, find an aligned address,
137 // unmap, and try to allocate at that aligned address.
138 int retries = 0;
139 const int kMaxRetries = 10;
140 for (; retries < kMaxRetries &&
141 (mapped_addr == 0 || !IsAligned(mapped_addr, alignment));
142 retries++) {
143 // Overallocate size + alignment bytes.
144 mapped_addr =
145 (uptr)VirtualAlloc(0, size + alignment, MEM_RESERVE, PAGE_NOACCESS);
146 if (!mapped_addr)
147 ReportMmapFailureAndDie(size, mem_type, "allocate aligned",
148 GetLastError());
150 // Find the aligned address.
151 uptr aligned_addr = RoundUpTo(mapped_addr, alignment);
153 // Free the overallocation.
154 if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
155 ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
157 // Attempt to allocate exactly the number of bytes we need at the aligned
158 // address. This may fail for a number of reasons, in which case we continue
159 // the loop.
160 mapped_addr = (uptr)VirtualAlloc((void *)aligned_addr, size,
161 MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
164 // Fail if we can't make this work quickly.
165 if (retries == kMaxRetries && mapped_addr == 0)
166 ReportMmapFailureAndDie(size, mem_type, "allocate aligned", GetLastError());
168 return (void *)mapped_addr;
171 void *MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name) {
172 // FIXME: is this really "NoReserve"? On Win32 this does not matter much,
173 // but on Win64 it does.
174 (void)name; // unsupported
175 #if !SANITIZER_GO && SANITIZER_WINDOWS64
176 // On asan/Windows64, use MEM_COMMIT would result in error
177 // 1455:ERROR_COMMITMENT_LIMIT.
178 // Asan uses exception handler to commit page on demand.
179 void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE, PAGE_READWRITE);
180 #else
181 void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE | MEM_COMMIT,
182 PAGE_READWRITE);
183 #endif
184 if (p == 0)
185 Report("ERROR: %s failed to "
186 "allocate %p (%zd) bytes at %p (error code: %d)\n",
187 SanitizerToolName, size, size, fixed_addr, GetLastError());
188 return p;
191 // Memory space mapped by 'MmapFixedOrDie' must have been reserved by
192 // 'MmapFixedNoAccess'.
193 void *MmapFixedOrDie(uptr fixed_addr, uptr size) {
194 void *p = VirtualAlloc((LPVOID)fixed_addr, size,
195 MEM_COMMIT, PAGE_READWRITE);
196 if (p == 0) {
197 char mem_type[30];
198 internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
199 fixed_addr);
200 ReportMmapFailureAndDie(size, mem_type, "allocate", GetLastError());
202 return p;
205 void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
206 // FIXME: make this really NoReserve?
207 return MmapOrDie(size, mem_type);
210 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
211 (void)name; // unsupported
212 void *res = VirtualAlloc((LPVOID)fixed_addr, size,
213 MEM_RESERVE, PAGE_NOACCESS);
214 if (res == 0)
215 Report("WARNING: %s failed to "
216 "mprotect %p (%zd) bytes at %p (error code: %d)\n",
217 SanitizerToolName, size, size, fixed_addr, GetLastError());
218 return res;
221 void *MmapNoAccess(uptr size) {
222 void *res = VirtualAlloc(nullptr, size, MEM_RESERVE, PAGE_NOACCESS);
223 if (res == 0)
224 Report("WARNING: %s failed to "
225 "mprotect %p (%zd) bytes (error code: %d)\n",
226 SanitizerToolName, size, size, GetLastError());
227 return res;
230 bool MprotectNoAccess(uptr addr, uptr size) {
231 DWORD old_protection;
232 return VirtualProtect((LPVOID)addr, size, PAGE_NOACCESS, &old_protection);
236 void ReleaseMemoryToOS(uptr addr, uptr size) {
237 // This is almost useless on 32-bits.
238 // FIXME: add madvise-analog when we move to 64-bits.
241 void NoHugePagesInRegion(uptr addr, uptr size) {
242 // FIXME: probably similar to ReleaseMemoryToOS.
245 void DontDumpShadowMemory(uptr addr, uptr length) {
246 // This is almost useless on 32-bits.
247 // FIXME: add madvise-analog when we move to 64-bits.
250 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding) {
251 uptr address = 0;
252 while (true) {
253 MEMORY_BASIC_INFORMATION info;
254 if (!::VirtualQuery((void*)address, &info, sizeof(info)))
255 return 0;
257 if (info.State == MEM_FREE) {
258 uptr shadow_address = RoundUpTo((uptr)info.BaseAddress + left_padding,
259 alignment);
260 if (shadow_address + size < (uptr)info.BaseAddress + info.RegionSize)
261 return shadow_address;
264 // Move to the next region.
265 address = (uptr)info.BaseAddress + info.RegionSize;
267 return 0;
270 bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) {
271 MEMORY_BASIC_INFORMATION mbi;
272 CHECK(VirtualQuery((void *)range_start, &mbi, sizeof(mbi)));
273 return mbi.Protect == PAGE_NOACCESS &&
274 (uptr)mbi.BaseAddress + mbi.RegionSize >= range_end;
277 void *MapFileToMemory(const char *file_name, uptr *buff_size) {
278 UNIMPLEMENTED();
281 void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) {
282 UNIMPLEMENTED();
285 static const int kMaxEnvNameLength = 128;
286 static const DWORD kMaxEnvValueLength = 32767;
288 namespace {
290 struct EnvVariable {
291 char name[kMaxEnvNameLength];
292 char value[kMaxEnvValueLength];
295 } // namespace
297 static const int kEnvVariables = 5;
298 static EnvVariable env_vars[kEnvVariables];
299 static int num_env_vars;
301 const char *GetEnv(const char *name) {
302 // Note: this implementation caches the values of the environment variables
303 // and limits their quantity.
304 for (int i = 0; i < num_env_vars; i++) {
305 if (0 == internal_strcmp(name, env_vars[i].name))
306 return env_vars[i].value;
308 CHECK_LT(num_env_vars, kEnvVariables);
309 DWORD rv = GetEnvironmentVariableA(name, env_vars[num_env_vars].value,
310 kMaxEnvValueLength);
311 if (rv > 0 && rv < kMaxEnvValueLength) {
312 CHECK_LT(internal_strlen(name), kMaxEnvNameLength);
313 internal_strncpy(env_vars[num_env_vars].name, name, kMaxEnvNameLength);
314 num_env_vars++;
315 return env_vars[num_env_vars - 1].value;
317 return 0;
320 const char *GetPwd() {
321 UNIMPLEMENTED();
324 u32 GetUid() {
325 UNIMPLEMENTED();
328 namespace {
329 struct ModuleInfo {
330 const char *filepath;
331 uptr base_address;
332 uptr end_address;
335 #if !SANITIZER_GO
336 int CompareModulesBase(const void *pl, const void *pr) {
337 const ModuleInfo *l = (ModuleInfo *)pl, *r = (ModuleInfo *)pr;
338 if (l->base_address < r->base_address)
339 return -1;
340 return l->base_address > r->base_address;
342 #endif
343 } // namespace
345 #if !SANITIZER_GO
346 void DumpProcessMap() {
347 Report("Dumping process modules:\n");
348 ListOfModules modules;
349 modules.init();
350 uptr num_modules = modules.size();
352 InternalScopedBuffer<ModuleInfo> module_infos(num_modules);
353 for (size_t i = 0; i < num_modules; ++i) {
354 module_infos[i].filepath = modules[i].full_name();
355 module_infos[i].base_address = modules[i].ranges().front()->beg;
356 module_infos[i].end_address = modules[i].ranges().back()->end;
358 qsort(module_infos.data(), num_modules, sizeof(ModuleInfo),
359 CompareModulesBase);
361 for (size_t i = 0; i < num_modules; ++i) {
362 const ModuleInfo &mi = module_infos[i];
363 if (mi.end_address != 0) {
364 Printf("\t%p-%p %s\n", mi.base_address, mi.end_address,
365 mi.filepath[0] ? mi.filepath : "[no name]");
366 } else if (mi.filepath[0]) {
367 Printf("\t??\?-??? %s\n", mi.filepath);
368 } else {
369 Printf("\t???\n");
373 #endif
375 void DisableCoreDumperIfNecessary() {
376 // Do nothing.
379 void ReExec() {
380 UNIMPLEMENTED();
383 void PrepareForSandboxing(__sanitizer_sandbox_arguments *args) {
384 #if !SANITIZER_GO
385 CovPrepareForSandboxing(args);
386 #endif
389 bool StackSizeIsUnlimited() {
390 UNIMPLEMENTED();
393 void SetStackSizeLimitInBytes(uptr limit) {
394 UNIMPLEMENTED();
397 bool AddressSpaceIsUnlimited() {
398 UNIMPLEMENTED();
401 void SetAddressSpaceUnlimited() {
402 UNIMPLEMENTED();
405 bool IsPathSeparator(const char c) {
406 return c == '\\' || c == '/';
409 bool IsAbsolutePath(const char *path) {
410 UNIMPLEMENTED();
413 void SleepForSeconds(int seconds) {
414 Sleep(seconds * 1000);
417 void SleepForMillis(int millis) {
418 Sleep(millis);
421 u64 NanoTime() {
422 return 0;
425 void Abort() {
426 if (::IsDebuggerPresent())
427 __debugbreak();
428 internal__exit(3);
431 #if !SANITIZER_GO
432 // Read the file to extract the ImageBase field from the PE header. If ASLR is
433 // disabled and this virtual address is available, the loader will typically
434 // load the image at this address. Therefore, we call it the preferred base. Any
435 // addresses in the DWARF typically assume that the object has been loaded at
436 // this address.
437 static uptr GetPreferredBase(const char *modname) {
438 fd_t fd = OpenFile(modname, RdOnly, nullptr);
439 if (fd == kInvalidFd)
440 return 0;
441 FileCloser closer(fd);
443 // Read just the DOS header.
444 IMAGE_DOS_HEADER dos_header;
445 uptr bytes_read;
446 if (!ReadFromFile(fd, &dos_header, sizeof(dos_header), &bytes_read) ||
447 bytes_read != sizeof(dos_header))
448 return 0;
450 // The file should start with the right signature.
451 if (dos_header.e_magic != IMAGE_DOS_SIGNATURE)
452 return 0;
454 // The layout at e_lfanew is:
455 // "PE\0\0"
456 // IMAGE_FILE_HEADER
457 // IMAGE_OPTIONAL_HEADER
458 // Seek to e_lfanew and read all that data.
459 char buf[4 + sizeof(IMAGE_FILE_HEADER) + sizeof(IMAGE_OPTIONAL_HEADER)];
460 if (::SetFilePointer(fd, dos_header.e_lfanew, nullptr, FILE_BEGIN) ==
461 INVALID_SET_FILE_POINTER)
462 return 0;
463 if (!ReadFromFile(fd, &buf[0], sizeof(buf), &bytes_read) ||
464 bytes_read != sizeof(buf))
465 return 0;
467 // Check for "PE\0\0" before the PE header.
468 char *pe_sig = &buf[0];
469 if (internal_memcmp(pe_sig, "PE\0\0", 4) != 0)
470 return 0;
472 // Skip over IMAGE_FILE_HEADER. We could do more validation here if we wanted.
473 IMAGE_OPTIONAL_HEADER *pe_header =
474 (IMAGE_OPTIONAL_HEADER *)(pe_sig + 4 + sizeof(IMAGE_FILE_HEADER));
476 // Check for more magic in the PE header.
477 if (pe_header->Magic != IMAGE_NT_OPTIONAL_HDR_MAGIC)
478 return 0;
480 // Finally, return the ImageBase.
481 return (uptr)pe_header->ImageBase;
484 void ListOfModules::init() {
485 clear();
486 HANDLE cur_process = GetCurrentProcess();
488 // Query the list of modules. Start by assuming there are no more than 256
489 // modules and retry if that's not sufficient.
490 HMODULE *hmodules = 0;
491 uptr modules_buffer_size = sizeof(HMODULE) * 256;
492 DWORD bytes_required;
493 while (!hmodules) {
494 hmodules = (HMODULE *)MmapOrDie(modules_buffer_size, __FUNCTION__);
495 CHECK(EnumProcessModules(cur_process, hmodules, modules_buffer_size,
496 &bytes_required));
497 if (bytes_required > modules_buffer_size) {
498 // Either there turned out to be more than 256 hmodules, or new hmodules
499 // could have loaded since the last try. Retry.
500 UnmapOrDie(hmodules, modules_buffer_size);
501 hmodules = 0;
502 modules_buffer_size = bytes_required;
506 // |num_modules| is the number of modules actually present,
507 size_t num_modules = bytes_required / sizeof(HMODULE);
508 for (size_t i = 0; i < num_modules; ++i) {
509 HMODULE handle = hmodules[i];
510 MODULEINFO mi;
511 if (!GetModuleInformation(cur_process, handle, &mi, sizeof(mi)))
512 continue;
514 // Get the UTF-16 path and convert to UTF-8.
515 wchar_t modname_utf16[kMaxPathLength];
516 int modname_utf16_len =
517 GetModuleFileNameW(handle, modname_utf16, kMaxPathLength);
518 if (modname_utf16_len == 0)
519 modname_utf16[0] = '\0';
520 char module_name[kMaxPathLength];
521 int module_name_len =
522 ::WideCharToMultiByte(CP_UTF8, 0, modname_utf16, modname_utf16_len + 1,
523 &module_name[0], kMaxPathLength, NULL, NULL);
524 module_name[module_name_len] = '\0';
526 uptr base_address = (uptr)mi.lpBaseOfDll;
527 uptr end_address = (uptr)mi.lpBaseOfDll + mi.SizeOfImage;
529 // Adjust the base address of the module so that we get a VA instead of an
530 // RVA when computing the module offset. This helps llvm-symbolizer find the
531 // right DWARF CU. In the common case that the image is loaded at it's
532 // preferred address, we will now print normal virtual addresses.
533 uptr preferred_base = GetPreferredBase(&module_name[0]);
534 uptr adjusted_base = base_address - preferred_base;
536 LoadedModule cur_module;
537 cur_module.set(module_name, adjusted_base);
538 // We add the whole module as one single address range.
539 cur_module.addAddressRange(base_address, end_address, /*executable*/ true);
540 modules_.push_back(cur_module);
542 UnmapOrDie(hmodules, modules_buffer_size);
545 // We can't use atexit() directly at __asan_init time as the CRT is not fully
546 // initialized at this point. Place the functions into a vector and use
547 // atexit() as soon as it is ready for use (i.e. after .CRT$XIC initializers).
548 InternalMmapVectorNoCtor<void (*)(void)> atexit_functions;
550 int Atexit(void (*function)(void)) {
551 atexit_functions.push_back(function);
552 return 0;
555 static int RunAtexit() {
556 int ret = 0;
557 for (uptr i = 0; i < atexit_functions.size(); ++i) {
558 ret |= atexit(atexit_functions[i]);
560 return ret;
563 #pragma section(".CRT$XID", long, read) // NOLINT
564 __declspec(allocate(".CRT$XID")) int (*__run_atexit)() = RunAtexit;
565 #endif
567 // ------------------ sanitizer_libc.h
568 fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *last_error) {
569 // FIXME: Use the wide variants to handle Unicode filenames.
570 fd_t res;
571 if (mode == RdOnly) {
572 res = CreateFileA(filename, GENERIC_READ,
573 FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
574 nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr);
575 } else if (mode == WrOnly) {
576 res = CreateFileA(filename, GENERIC_WRITE, 0, nullptr, CREATE_ALWAYS,
577 FILE_ATTRIBUTE_NORMAL, nullptr);
578 } else {
579 UNIMPLEMENTED();
581 CHECK(res != kStdoutFd || kStdoutFd == kInvalidFd);
582 CHECK(res != kStderrFd || kStderrFd == kInvalidFd);
583 if (res == kInvalidFd && last_error)
584 *last_error = GetLastError();
585 return res;
588 void CloseFile(fd_t fd) {
589 CloseHandle(fd);
592 bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read,
593 error_t *error_p) {
594 CHECK(fd != kInvalidFd);
596 // bytes_read can't be passed directly to ReadFile:
597 // uptr is unsigned long long on 64-bit Windows.
598 unsigned long num_read_long;
600 bool success = ::ReadFile(fd, buff, buff_size, &num_read_long, nullptr);
601 if (!success && error_p)
602 *error_p = GetLastError();
603 if (bytes_read)
604 *bytes_read = num_read_long;
605 return success;
608 bool SupportsColoredOutput(fd_t fd) {
609 // FIXME: support colored output.
610 return false;
613 bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written,
614 error_t *error_p) {
615 CHECK(fd != kInvalidFd);
617 // Handle null optional parameters.
618 error_t dummy_error;
619 error_p = error_p ? error_p : &dummy_error;
620 uptr dummy_bytes_written;
621 bytes_written = bytes_written ? bytes_written : &dummy_bytes_written;
623 // Initialize output parameters in case we fail.
624 *error_p = 0;
625 *bytes_written = 0;
627 // Map the conventional Unix fds 1 and 2 to Windows handles. They might be
628 // closed, in which case this will fail.
629 if (fd == kStdoutFd || fd == kStderrFd) {
630 fd = GetStdHandle(fd == kStdoutFd ? STD_OUTPUT_HANDLE : STD_ERROR_HANDLE);
631 if (fd == 0) {
632 *error_p = ERROR_INVALID_HANDLE;
633 return false;
637 DWORD bytes_written_32;
638 if (!WriteFile(fd, buff, buff_size, &bytes_written_32, 0)) {
639 *error_p = GetLastError();
640 return false;
641 } else {
642 *bytes_written = bytes_written_32;
643 return true;
647 bool RenameFile(const char *oldpath, const char *newpath, error_t *error_p) {
648 UNIMPLEMENTED();
651 uptr internal_sched_yield() {
652 Sleep(0);
653 return 0;
656 void internal__exit(int exitcode) {
657 ExitProcess(exitcode);
660 uptr internal_ftruncate(fd_t fd, uptr size) {
661 UNIMPLEMENTED();
664 uptr GetRSS() {
665 return 0;
668 void *internal_start_thread(void (*func)(void *arg), void *arg) { return 0; }
669 void internal_join_thread(void *th) { }
671 // ---------------------- BlockingMutex ---------------- {{{1
672 const uptr LOCK_UNINITIALIZED = 0;
673 const uptr LOCK_READY = (uptr)-1;
675 BlockingMutex::BlockingMutex(LinkerInitialized li) {
676 // FIXME: see comments in BlockingMutex::Lock() for the details.
677 CHECK(li == LINKER_INITIALIZED || owner_ == LOCK_UNINITIALIZED);
679 CHECK(sizeof(CRITICAL_SECTION) <= sizeof(opaque_storage_));
680 InitializeCriticalSection((LPCRITICAL_SECTION)opaque_storage_);
681 owner_ = LOCK_READY;
684 BlockingMutex::BlockingMutex() {
685 CHECK(sizeof(CRITICAL_SECTION) <= sizeof(opaque_storage_));
686 InitializeCriticalSection((LPCRITICAL_SECTION)opaque_storage_);
687 owner_ = LOCK_READY;
690 void BlockingMutex::Lock() {
691 if (owner_ == LOCK_UNINITIALIZED) {
692 // FIXME: hm, global BlockingMutex objects are not initialized?!?
693 // This might be a side effect of the clang+cl+link Frankenbuild...
694 new(this) BlockingMutex((LinkerInitialized)(LINKER_INITIALIZED + 1));
696 // FIXME: If it turns out the linker doesn't invoke our
697 // constructors, we should probably manually Lock/Unlock all the global
698 // locks while we're starting in one thread to avoid double-init races.
700 EnterCriticalSection((LPCRITICAL_SECTION)opaque_storage_);
701 CHECK_EQ(owner_, LOCK_READY);
702 owner_ = GetThreadSelf();
705 void BlockingMutex::Unlock() {
706 CHECK_EQ(owner_, GetThreadSelf());
707 owner_ = LOCK_READY;
708 LeaveCriticalSection((LPCRITICAL_SECTION)opaque_storage_);
711 void BlockingMutex::CheckLocked() {
712 CHECK_EQ(owner_, GetThreadSelf());
715 uptr GetTlsSize() {
716 return 0;
719 void InitTlsSize() {
722 void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
723 uptr *tls_addr, uptr *tls_size) {
724 #if SANITIZER_GO
725 *stk_addr = 0;
726 *stk_size = 0;
727 *tls_addr = 0;
728 *tls_size = 0;
729 #else
730 uptr stack_top, stack_bottom;
731 GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom);
732 *stk_addr = stack_bottom;
733 *stk_size = stack_top - stack_bottom;
734 *tls_addr = 0;
735 *tls_size = 0;
736 #endif
739 #if !SANITIZER_GO
740 void BufferedStackTrace::SlowUnwindStack(uptr pc, u32 max_depth) {
741 CHECK_GE(max_depth, 2);
742 // FIXME: CaptureStackBackTrace might be too slow for us.
743 // FIXME: Compare with StackWalk64.
744 // FIXME: Look at LLVMUnhandledExceptionFilter in Signals.inc
745 size = CaptureStackBackTrace(1, Min(max_depth, kStackTraceMax),
746 (void**)trace, 0);
747 if (size == 0)
748 return;
750 // Skip the RTL frames by searching for the PC in the stacktrace.
751 uptr pc_location = LocatePcInTrace(pc);
752 PopStackFrames(pc_location);
755 void BufferedStackTrace::SlowUnwindStackWithContext(uptr pc, void *context,
756 u32 max_depth) {
757 CONTEXT ctx = *(CONTEXT *)context;
758 STACKFRAME64 stack_frame;
759 memset(&stack_frame, 0, sizeof(stack_frame));
761 InitializeDbgHelpIfNeeded();
763 size = 0;
764 #if defined(_WIN64)
765 int machine_type = IMAGE_FILE_MACHINE_AMD64;
766 stack_frame.AddrPC.Offset = ctx.Rip;
767 stack_frame.AddrFrame.Offset = ctx.Rbp;
768 stack_frame.AddrStack.Offset = ctx.Rsp;
769 #else
770 int machine_type = IMAGE_FILE_MACHINE_I386;
771 stack_frame.AddrPC.Offset = ctx.Eip;
772 stack_frame.AddrFrame.Offset = ctx.Ebp;
773 stack_frame.AddrStack.Offset = ctx.Esp;
774 #endif
775 stack_frame.AddrPC.Mode = AddrModeFlat;
776 stack_frame.AddrFrame.Mode = AddrModeFlat;
777 stack_frame.AddrStack.Mode = AddrModeFlat;
778 while (StackWalk64(machine_type, GetCurrentProcess(), GetCurrentThread(),
779 &stack_frame, &ctx, NULL, &SymFunctionTableAccess64,
780 &SymGetModuleBase64, NULL) &&
781 size < Min(max_depth, kStackTraceMax)) {
782 trace_buffer[size++] = (uptr)stack_frame.AddrPC.Offset;
785 #endif // #if !SANITIZER_GO
787 void ReportFile::Write(const char *buffer, uptr length) {
788 SpinMutexLock l(mu);
789 ReopenIfNecessary();
790 if (!WriteToFile(fd, buffer, length)) {
791 // stderr may be closed, but we may be able to print to the debugger
792 // instead. This is the case when launching a program from Visual Studio,
793 // and the following routine should write to its console.
794 OutputDebugStringA(buffer);
798 void SetAlternateSignalStack() {
799 // FIXME: Decide what to do on Windows.
802 void UnsetAlternateSignalStack() {
803 // FIXME: Decide what to do on Windows.
806 void InstallDeadlySignalHandlers(SignalHandlerType handler) {
807 (void)handler;
808 // FIXME: Decide what to do on Windows.
811 bool IsHandledDeadlySignal(int signum) {
812 // FIXME: Decide what to do on Windows.
813 return false;
816 bool IsAccessibleMemoryRange(uptr beg, uptr size) {
817 SYSTEM_INFO si;
818 GetNativeSystemInfo(&si);
819 uptr page_size = si.dwPageSize;
820 uptr page_mask = ~(page_size - 1);
822 for (uptr page = beg & page_mask, end = (beg + size - 1) & page_mask;
823 page <= end;) {
824 MEMORY_BASIC_INFORMATION info;
825 if (VirtualQuery((LPCVOID)page, &info, sizeof(info)) != sizeof(info))
826 return false;
828 if (info.Protect == 0 || info.Protect == PAGE_NOACCESS ||
829 info.Protect == PAGE_EXECUTE)
830 return false;
832 if (info.RegionSize == 0)
833 return false;
835 page += info.RegionSize;
838 return true;
841 SignalContext SignalContext::Create(void *siginfo, void *context) {
842 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
843 CONTEXT *context_record = (CONTEXT *)context;
845 uptr pc = (uptr)exception_record->ExceptionAddress;
846 #ifdef _WIN64
847 uptr bp = (uptr)context_record->Rbp;
848 uptr sp = (uptr)context_record->Rsp;
849 #else
850 uptr bp = (uptr)context_record->Ebp;
851 uptr sp = (uptr)context_record->Esp;
852 #endif
853 uptr access_addr = exception_record->ExceptionInformation[1];
855 // The contents of this array are documented at
856 // https://msdn.microsoft.com/en-us/library/windows/desktop/aa363082(v=vs.85).aspx
857 // The first element indicates read as 0, write as 1, or execute as 8. The
858 // second element is the faulting address.
859 WriteFlag write_flag = SignalContext::UNKNOWN;
860 switch (exception_record->ExceptionInformation[0]) {
861 case 0: write_flag = SignalContext::READ; break;
862 case 1: write_flag = SignalContext::WRITE; break;
863 case 8: write_flag = SignalContext::UNKNOWN; break;
865 bool is_memory_access = write_flag != SignalContext::UNKNOWN;
866 return SignalContext(context, access_addr, pc, sp, bp, is_memory_access,
867 write_flag);
870 uptr ReadBinaryName(/*out*/char *buf, uptr buf_len) {
871 // FIXME: Actually implement this function.
872 CHECK_GT(buf_len, 0);
873 buf[0] = 0;
874 return 0;
877 uptr ReadLongProcessName(/*out*/char *buf, uptr buf_len) {
878 return ReadBinaryName(buf, buf_len);
881 void CheckVMASize() {
882 // Do nothing.
885 void MaybeReexec() {
886 // No need to re-exec on Windows.
889 char **GetArgv() {
890 // FIXME: Actually implement this function.
891 return 0;
894 pid_t StartSubprocess(const char *program, const char *const argv[],
895 fd_t stdin_fd, fd_t stdout_fd, fd_t stderr_fd) {
896 // FIXME: implement on this platform
897 // Should be implemented based on
898 // SymbolizerProcess::StarAtSymbolizerSubprocess
899 // from lib/sanitizer_common/sanitizer_symbolizer_win.cc.
900 return -1;
903 bool IsProcessRunning(pid_t pid) {
904 // FIXME: implement on this platform.
905 return false;
908 int WaitForProcess(pid_t pid) { return -1; }
910 // FIXME implement on this platform.
911 void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) { }
914 } // namespace __sanitizer
916 #if !SANITIZER_GO
917 // Workaround to implement weak hooks on Windows. COFF doesn't directly support
918 // weak symbols, but it does support /alternatename, which is similar. If the
919 // user does not override the hook, we will use this default definition instead
920 // of null.
921 extern "C" void __sanitizer_print_memory_profile(int top_percent) {}
923 #ifdef _WIN64
924 #pragma comment(linker, "/alternatename:__sanitizer_print_memory_profile=__sanitizer_default_print_memory_profile") // NOLINT
925 #else
926 #pragma comment(linker, "/alternatename:___sanitizer_print_memory_profile=___sanitizer_default_print_memory_profile") // NOLINT
927 #endif
928 #endif
930 #endif // _WIN32