2017-05-11 François Dumont <fdumont@gcc.gnu.org>
[official-gcc.git] / gcc / shrink-wrap.c
blob35eb85ba63c0b892e8c6b5defadf5ce2febbbb0d
1 /* Shrink-wrapping related optimizations.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles shrink-wrapping related optimizations. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "cfghooks.h"
30 #include "df.h"
31 #include "memmodel.h"
32 #include "tm_p.h"
33 #include "regs.h"
34 #include "insn-config.h"
35 #include "emit-rtl.h"
36 #include "output.h"
37 #include "tree-pass.h"
38 #include "cfgrtl.h"
39 #include "cfgbuild.h"
40 #include "params.h"
41 #include "bb-reorder.h"
42 #include "shrink-wrap.h"
43 #include "regcprop.h"
44 #include "rtl-iter.h"
45 #include "valtrack.h"
48 /* Return true if INSN requires the stack frame to be set up.
49 PROLOGUE_USED contains the hard registers used in the function
50 prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
51 prologue to set up for the function. */
52 bool
53 requires_stack_frame_p (rtx_insn *insn, HARD_REG_SET prologue_used,
54 HARD_REG_SET set_up_by_prologue)
56 df_ref def, use;
57 HARD_REG_SET hardregs;
58 unsigned regno;
60 if (CALL_P (insn))
61 return !SIBLING_CALL_P (insn);
63 /* We need a frame to get the unique CFA expected by the unwinder. */
64 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
65 return true;
67 CLEAR_HARD_REG_SET (hardregs);
68 FOR_EACH_INSN_DEF (def, insn)
70 rtx dreg = DF_REF_REG (def);
72 if (!REG_P (dreg))
73 continue;
75 add_to_hard_reg_set (&hardregs, GET_MODE (dreg), REGNO (dreg));
77 if (hard_reg_set_intersect_p (hardregs, prologue_used))
78 return true;
79 AND_COMPL_HARD_REG_SET (hardregs, call_used_reg_set);
80 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
81 if (TEST_HARD_REG_BIT (hardregs, regno)
82 && df_regs_ever_live_p (regno))
83 return true;
85 FOR_EACH_INSN_USE (use, insn)
87 rtx reg = DF_REF_REG (use);
89 if (!REG_P (reg))
90 continue;
92 add_to_hard_reg_set (&hardregs, GET_MODE (reg),
93 REGNO (reg));
95 if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
96 return true;
98 return false;
101 /* See whether there has a single live edge from BB, which dest uses
102 [REGNO, END_REGNO). Return the live edge if its dest bb has
103 one or two predecessors. Otherwise return NULL. */
105 static edge
106 live_edge_for_reg (basic_block bb, int regno, int end_regno)
108 edge e, live_edge;
109 edge_iterator ei;
110 bitmap live;
111 int i;
113 live_edge = NULL;
114 FOR_EACH_EDGE (e, ei, bb->succs)
116 live = df_get_live_in (e->dest);
117 for (i = regno; i < end_regno; i++)
118 if (REGNO_REG_SET_P (live, i))
120 if (live_edge && live_edge != e)
121 return NULL;
122 live_edge = e;
126 /* We can sometimes encounter dead code. Don't try to move it
127 into the exit block. */
128 if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
129 return NULL;
131 /* Reject targets of abnormal edges. This is needed for correctness
132 on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
133 exception edges even though it is generally treated as call-saved
134 for the majority of the compilation. Moving across abnormal edges
135 isn't going to be interesting for shrink-wrap usage anyway. */
136 if (live_edge->flags & EDGE_ABNORMAL)
137 return NULL;
139 /* When live_edge->dest->preds == 2, we can create a new block on
140 the edge to make it meet the requirement. */
141 if (EDGE_COUNT (live_edge->dest->preds) > 2)
142 return NULL;
144 return live_edge;
147 /* Try to move INSN from BB to a successor. Return true on success.
148 USES and DEFS are the set of registers that are used and defined
149 after INSN in BB. SPLIT_P indicates whether a live edge from BB
150 is splitted or not. */
152 static bool
153 move_insn_for_shrink_wrap (basic_block bb, rtx_insn *insn,
154 const HARD_REG_SET uses,
155 const HARD_REG_SET defs,
156 bool *split_p,
157 struct dead_debug_local *debug)
159 rtx set, src, dest;
160 bitmap live_out, live_in, bb_uses, bb_defs;
161 unsigned int i, dregno, end_dregno;
162 unsigned int sregno = FIRST_PSEUDO_REGISTER;
163 unsigned int end_sregno = FIRST_PSEUDO_REGISTER;
164 basic_block next_block;
165 edge live_edge;
166 rtx_insn *dinsn;
167 df_ref def;
169 /* Look for a simple register assignment. We don't use single_set here
170 because we can't deal with any CLOBBERs, USEs, or REG_UNUSED secondary
171 destinations. */
172 if (!INSN_P (insn))
173 return false;
174 set = PATTERN (insn);
175 if (GET_CODE (set) != SET)
176 return false;
177 src = SET_SRC (set);
178 dest = SET_DEST (set);
180 /* For the destination, we want only a register. Also disallow STACK
181 or FRAME related adjustments. They are likely part of the prologue,
182 so keep them in the entry block. */
183 if (!REG_P (dest)
184 || dest == stack_pointer_rtx
185 || dest == frame_pointer_rtx
186 || dest == hard_frame_pointer_rtx)
187 return false;
189 /* For the source, we want one of:
190 (1) A (non-overlapping) register
191 (2) A constant,
192 (3) An expression involving no more than one register.
194 That last point comes from the code following, which was originally
195 written to handle only register move operations, and still only handles
196 a single source register when checking for overlaps. Happily, the
197 same checks can be applied to expressions like (plus reg const). */
199 if (CONSTANT_P (src))
201 else if (!REG_P (src))
203 rtx src_inner = NULL_RTX;
205 if (can_throw_internal (insn))
206 return false;
208 subrtx_var_iterator::array_type array;
209 FOR_EACH_SUBRTX_VAR (iter, array, src, ALL)
211 rtx x = *iter;
212 switch (GET_RTX_CLASS (GET_CODE (x)))
214 case RTX_CONST_OBJ:
215 case RTX_COMPARE:
216 case RTX_COMM_COMPARE:
217 case RTX_BIN_ARITH:
218 case RTX_COMM_ARITH:
219 case RTX_UNARY:
220 case RTX_TERNARY:
221 /* Constant or expression. Continue. */
222 break;
224 case RTX_OBJ:
225 case RTX_EXTRA:
226 switch (GET_CODE (x))
228 case UNSPEC:
229 case SUBREG:
230 case STRICT_LOW_PART:
231 case PC:
232 case LO_SUM:
233 /* Ok. Continue. */
234 break;
236 case REG:
237 /* Fail if we see a second inner register. */
238 if (src_inner != NULL)
239 return false;
240 src_inner = x;
241 break;
243 default:
244 return false;
246 break;
248 default:
249 return false;
253 if (src_inner != NULL)
254 src = src_inner;
257 /* Make sure that the source register isn't defined later in BB. */
258 if (REG_P (src))
260 sregno = REGNO (src);
261 end_sregno = END_REGNO (src);
262 if (overlaps_hard_reg_set_p (defs, GET_MODE (src), sregno))
263 return false;
266 /* Make sure that the destination register isn't referenced later in BB. */
267 dregno = REGNO (dest);
268 end_dregno = END_REGNO (dest);
269 if (overlaps_hard_reg_set_p (uses, GET_MODE (dest), dregno)
270 || overlaps_hard_reg_set_p (defs, GET_MODE (dest), dregno))
271 return false;
273 /* See whether there is a successor block to which we could move INSN. */
274 live_edge = live_edge_for_reg (bb, dregno, end_dregno);
275 if (!live_edge)
276 return false;
278 next_block = live_edge->dest;
279 /* Create a new basic block on the edge. */
280 if (EDGE_COUNT (next_block->preds) == 2)
282 /* split_edge for a block with only one successor is meaningless. */
283 if (EDGE_COUNT (bb->succs) == 1)
284 return false;
286 /* If DF_LIVE doesn't exist, i.e. at -O1, just give up. */
287 if (!df_live)
288 return false;
290 basic_block old_dest = live_edge->dest;
291 next_block = split_edge (live_edge);
293 /* We create a new basic block. Call df_grow_bb_info to make sure
294 all data structures are allocated. */
295 df_grow_bb_info (df_live);
297 bitmap_and (df_get_live_in (next_block), df_get_live_out (bb),
298 df_get_live_in (old_dest));
299 df_set_bb_dirty (next_block);
301 /* We should not split more than once for a function. */
302 if (*split_p)
303 return false;
305 *split_p = true;
308 /* At this point we are committed to moving INSN, but let's try to
309 move it as far as we can. */
312 if (MAY_HAVE_DEBUG_INSNS)
314 FOR_BB_INSNS_REVERSE (bb, dinsn)
315 if (DEBUG_INSN_P (dinsn))
317 df_ref use;
318 FOR_EACH_INSN_USE (use, dinsn)
319 if (refers_to_regno_p (dregno, end_dregno,
320 DF_REF_REG (use), (rtx *) NULL))
321 dead_debug_add (debug, use, DF_REF_REGNO (use));
323 else if (dinsn == insn)
324 break;
326 live_out = df_get_live_out (bb);
327 live_in = df_get_live_in (next_block);
328 bb = next_block;
330 /* Check whether BB uses DEST or clobbers DEST. We need to add
331 INSN to BB if so. Either way, DEST is no longer live on entry,
332 except for any part that overlaps SRC (next loop). */
333 bb_uses = &DF_LR_BB_INFO (bb)->use;
334 bb_defs = &DF_LR_BB_INFO (bb)->def;
335 if (df_live)
337 for (i = dregno; i < end_dregno; i++)
339 if (*split_p
340 || REGNO_REG_SET_P (bb_uses, i)
341 || REGNO_REG_SET_P (bb_defs, i)
342 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
343 next_block = NULL;
344 CLEAR_REGNO_REG_SET (live_out, i);
345 CLEAR_REGNO_REG_SET (live_in, i);
348 /* Check whether BB clobbers SRC. We need to add INSN to BB if so.
349 Either way, SRC is now live on entry. */
350 for (i = sregno; i < end_sregno; i++)
352 if (*split_p
353 || REGNO_REG_SET_P (bb_defs, i)
354 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
355 next_block = NULL;
356 SET_REGNO_REG_SET (live_out, i);
357 SET_REGNO_REG_SET (live_in, i);
360 else
362 /* DF_LR_BB_INFO (bb)->def does not comprise the DF_REF_PARTIAL and
363 DF_REF_CONDITIONAL defs. So if DF_LIVE doesn't exist, i.e.
364 at -O1, just give up searching NEXT_BLOCK. */
365 next_block = NULL;
366 for (i = dregno; i < end_dregno; i++)
368 CLEAR_REGNO_REG_SET (live_out, i);
369 CLEAR_REGNO_REG_SET (live_in, i);
372 for (i = sregno; i < end_sregno; i++)
374 SET_REGNO_REG_SET (live_out, i);
375 SET_REGNO_REG_SET (live_in, i);
379 /* If we don't need to add the move to BB, look for a single
380 successor block. */
381 if (next_block)
383 live_edge = live_edge_for_reg (next_block, dregno, end_dregno);
384 if (!live_edge || EDGE_COUNT (live_edge->dest->preds) > 1)
385 break;
386 next_block = live_edge->dest;
389 while (next_block);
391 /* For the new created basic block, there is no dataflow info at all.
392 So skip the following dataflow update and check. */
393 if (!(*split_p))
395 /* BB now defines DEST. It only uses the parts of DEST that overlap SRC
396 (next loop). */
397 for (i = dregno; i < end_dregno; i++)
399 CLEAR_REGNO_REG_SET (bb_uses, i);
400 SET_REGNO_REG_SET (bb_defs, i);
403 /* BB now uses SRC. */
404 for (i = sregno; i < end_sregno; i++)
405 SET_REGNO_REG_SET (bb_uses, i);
408 /* Insert debug temps for dead REGs used in subsequent debug insns. */
409 if (debug->used && !bitmap_empty_p (debug->used))
410 FOR_EACH_INSN_DEF (def, insn)
411 dead_debug_insert_temp (debug, DF_REF_REGNO (def), insn,
412 DEBUG_TEMP_BEFORE_WITH_VALUE);
414 emit_insn_after (PATTERN (insn), bb_note (bb));
415 delete_insn (insn);
416 return true;
419 /* Look for register copies in the first block of the function, and move
420 them down into successor blocks if the register is used only on one
421 path. This exposes more opportunities for shrink-wrapping. These
422 kinds of sets often occur when incoming argument registers are moved
423 to call-saved registers because their values are live across one or
424 more calls during the function. */
426 static void
427 prepare_shrink_wrap (basic_block entry_block)
429 rtx_insn *insn, *curr;
430 rtx x;
431 HARD_REG_SET uses, defs;
432 df_ref def, use;
433 bool split_p = false;
434 unsigned int i;
435 struct dead_debug_local debug;
437 if (JUMP_P (BB_END (entry_block)))
439 /* To have more shrink-wrapping opportunities, prepare_shrink_wrap tries
440 to sink the copies from parameter to callee saved register out of
441 entry block. copyprop_hardreg_forward_bb_without_debug_insn is called
442 to release some dependences. */
443 copyprop_hardreg_forward_bb_without_debug_insn (entry_block);
446 dead_debug_local_init (&debug, NULL, NULL);
447 CLEAR_HARD_REG_SET (uses);
448 CLEAR_HARD_REG_SET (defs);
450 FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
451 if (NONDEBUG_INSN_P (insn)
452 && !move_insn_for_shrink_wrap (entry_block, insn, uses, defs,
453 &split_p, &debug))
455 /* Add all defined registers to DEFs. */
456 FOR_EACH_INSN_DEF (def, insn)
458 x = DF_REF_REG (def);
459 if (REG_P (x) && HARD_REGISTER_P (x))
460 for (i = REGNO (x); i < END_REGNO (x); i++)
461 SET_HARD_REG_BIT (defs, i);
464 /* Add all used registers to USESs. */
465 FOR_EACH_INSN_USE (use, insn)
467 x = DF_REF_REG (use);
468 if (REG_P (x) && HARD_REGISTER_P (x))
469 for (i = REGNO (x); i < END_REGNO (x); i++)
470 SET_HARD_REG_BIT (uses, i);
474 dead_debug_local_finish (&debug, NULL);
477 /* Return whether basic block PRO can get the prologue. It can not if it
478 has incoming complex edges that need a prologue inserted (we make a new
479 block for the prologue, so those edges would need to be redirected, which
480 does not work). It also can not if there exist registers live on entry
481 to PRO that are clobbered by the prologue. */
483 static bool
484 can_get_prologue (basic_block pro, HARD_REG_SET prologue_clobbered)
486 edge e;
487 edge_iterator ei;
488 FOR_EACH_EDGE (e, ei, pro->preds)
489 if (e->flags & (EDGE_COMPLEX | EDGE_CROSSING)
490 && !dominated_by_p (CDI_DOMINATORS, e->src, pro))
491 return false;
493 HARD_REG_SET live;
494 REG_SET_TO_HARD_REG_SET (live, df_get_live_in (pro));
495 if (hard_reg_set_intersect_p (live, prologue_clobbered))
496 return false;
498 return true;
501 /* Return whether we can duplicate basic block BB for shrink wrapping. We
502 cannot if the block cannot be duplicated at all, or if any of its incoming
503 edges are complex and come from a block that does not require a prologue
504 (we cannot redirect such edges), or if the block is too big to copy.
505 PRO is the basic block before which we would put the prologue, MAX_SIZE is
506 the maximum size block we allow to be copied. */
508 static bool
509 can_dup_for_shrink_wrapping (basic_block bb, basic_block pro, unsigned max_size)
511 if (!can_duplicate_block_p (bb))
512 return false;
514 edge e;
515 edge_iterator ei;
516 FOR_EACH_EDGE (e, ei, bb->preds)
517 if (e->flags & (EDGE_COMPLEX | EDGE_CROSSING)
518 && !dominated_by_p (CDI_DOMINATORS, e->src, pro))
519 return false;
521 unsigned size = 0;
523 rtx_insn *insn;
524 FOR_BB_INSNS (bb, insn)
525 if (NONDEBUG_INSN_P (insn))
527 size += get_attr_min_length (insn);
528 if (size > max_size)
529 return false;
532 return true;
535 /* Do whatever needs to be done for exits that run without prologue.
536 Sibcalls need nothing done. Normal exits get a simple_return inserted. */
538 static void
539 handle_simple_exit (edge e)
542 if (e->flags & EDGE_SIBCALL)
544 /* Tell function.c to take no further action on this edge. */
545 e->flags |= EDGE_IGNORE;
547 e->flags &= ~EDGE_FALLTHRU;
548 emit_barrier_after_bb (e->src);
549 return;
552 /* If the basic block the edge comes from has multiple successors,
553 split the edge. */
554 if (EDGE_COUNT (e->src->succs) > 1)
556 basic_block old_bb = e->src;
557 rtx_insn *end = BB_END (old_bb);
558 rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
559 basic_block new_bb = create_basic_block (note, note, old_bb);
560 BB_COPY_PARTITION (new_bb, old_bb);
561 BB_END (old_bb) = end;
563 redirect_edge_succ (e, new_bb);
564 e->flags |= EDGE_FALLTHRU;
566 e = make_edge (new_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
569 e->flags &= ~EDGE_FALLTHRU;
570 rtx_jump_insn *ret = emit_jump_insn_after (targetm.gen_simple_return (),
571 BB_END (e->src));
572 JUMP_LABEL (ret) = simple_return_rtx;
573 emit_barrier_after_bb (e->src);
575 if (dump_file)
576 fprintf (dump_file, "Made simple_return with UID %d in bb %d\n",
577 INSN_UID (ret), e->src->index);
580 /* Try to perform a kind of shrink-wrapping, making sure the
581 prologue/epilogue is emitted only around those parts of the
582 function that require it.
584 There will be exactly one prologue, and it will be executed either
585 zero or one time, on any path. Depending on where the prologue is
586 placed, some of the basic blocks can be reached via both paths with
587 and without a prologue. Such blocks will be duplicated here, and the
588 edges changed to match.
590 Paths that go to the exit without going through the prologue will use
591 a simple_return instead of the epilogue. We maximize the number of
592 those, making sure to only duplicate blocks that can be duplicated.
593 If the prologue can then still be placed in multiple locations, we
594 place it as early as possible.
596 An example, where we duplicate blocks with control flow (legend:
597 _B_egin, _R_eturn and _S_imple_return; edges without arrowhead should
598 be taken to point down or to the right, to simplify the diagram; here,
599 block 3 needs a prologue, the rest does not):
605 |\ |\
606 | 3 becomes | 3
607 |/ | \
608 4 7 4
609 |\ |\ |\
610 | 5 | 8 | 5
611 |/ |/ |/
612 6 9 6
613 | | |
614 R S R
617 (bb 4 is duplicated to 7, and so on; the prologue is inserted on the
618 edge 2->3).
620 Another example, where part of a loop is duplicated (again, bb 3 is
621 the only block that needs a prologue):
624 B 3<-- B ->3<--
625 | | | | | | |
626 | v | becomes | | v |
627 2---4--- 2---5-- 4---
628 | | |
629 R S R
632 (bb 4 is duplicated to 5; the prologue is inserted on the edge 5->3).
634 ENTRY_EDGE is the edge where the prologue will be placed, possibly
635 changed by this function. PROLOGUE_SEQ is the prologue we will insert. */
637 void
638 try_shrink_wrapping (edge *entry_edge, rtx_insn *prologue_seq)
640 /* If we cannot shrink-wrap, are told not to shrink-wrap, or it makes
641 no sense to shrink-wrap: then do not shrink-wrap! */
643 if (!SHRINK_WRAPPING_ENABLED)
644 return;
646 if (crtl->profile && !targetm.profile_before_prologue ())
647 return;
649 if (crtl->calls_eh_return)
650 return;
652 bool empty_prologue = true;
653 for (rtx_insn *insn = prologue_seq; insn; insn = NEXT_INSN (insn))
654 if (!(NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END))
656 empty_prologue = false;
657 break;
659 if (empty_prologue)
660 return;
662 /* Move some code down to expose more shrink-wrapping opportunities. */
664 basic_block entry = (*entry_edge)->dest;
665 prepare_shrink_wrap (entry);
667 if (dump_file)
668 fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");
670 /* Compute the registers set and used in the prologue. */
672 HARD_REG_SET prologue_clobbered, prologue_used;
673 CLEAR_HARD_REG_SET (prologue_clobbered);
674 CLEAR_HARD_REG_SET (prologue_used);
675 for (rtx_insn *insn = prologue_seq; insn; insn = NEXT_INSN (insn))
676 if (NONDEBUG_INSN_P (insn))
678 HARD_REG_SET this_used;
679 CLEAR_HARD_REG_SET (this_used);
680 note_uses (&PATTERN (insn), record_hard_reg_uses, &this_used);
681 AND_COMPL_HARD_REG_SET (this_used, prologue_clobbered);
682 IOR_HARD_REG_SET (prologue_used, this_used);
683 note_stores (PATTERN (insn), record_hard_reg_sets, &prologue_clobbered);
685 CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
686 if (frame_pointer_needed)
687 CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);
689 /* Find out what registers are set up by the prologue; any use of these
690 cannot happen before the prologue. */
692 struct hard_reg_set_container set_up_by_prologue;
693 CLEAR_HARD_REG_SET (set_up_by_prologue.set);
694 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, STACK_POINTER_REGNUM);
695 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
696 if (frame_pointer_needed)
697 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
698 HARD_FRAME_POINTER_REGNUM);
699 if (pic_offset_table_rtx
700 && (unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
701 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
702 PIC_OFFSET_TABLE_REGNUM);
703 if (crtl->drap_reg)
704 add_to_hard_reg_set (&set_up_by_prologue.set,
705 GET_MODE (crtl->drap_reg),
706 REGNO (crtl->drap_reg));
707 if (targetm.set_up_by_prologue)
708 targetm.set_up_by_prologue (&set_up_by_prologue);
710 /* We will insert the prologue before the basic block PRO. PRO should
711 dominate all basic blocks that need the prologue to be executed
712 before them. First, make PRO the "tightest wrap" possible. */
714 calculate_dominance_info (CDI_DOMINATORS);
716 basic_block pro = 0;
718 basic_block bb;
719 edge e;
720 edge_iterator ei;
721 FOR_EACH_BB_FN (bb, cfun)
723 rtx_insn *insn;
724 FOR_BB_INSNS (bb, insn)
725 if (NONDEBUG_INSN_P (insn)
726 && requires_stack_frame_p (insn, prologue_used,
727 set_up_by_prologue.set))
729 if (dump_file)
730 fprintf (dump_file, "Block %d needs the prologue.\n", bb->index);
731 pro = nearest_common_dominator (CDI_DOMINATORS, pro, bb);
732 break;
736 /* If nothing needs a prologue, just put it at the start. This really
737 shouldn't happen, but we cannot fix it here. */
739 if (pro == 0)
741 if (dump_file)
742 fprintf(dump_file, "Nothing needs a prologue, but it isn't empty; "
743 "putting it at the start.\n");
744 pro = entry;
747 if (dump_file)
748 fprintf (dump_file, "After wrapping required blocks, PRO is now %d\n",
749 pro->index);
751 /* Now see if we can put the prologue at the start of PRO. Putting it
752 there might require duplicating a block that cannot be duplicated,
753 or in some cases we cannot insert the prologue there at all. If PRO
754 wont't do, try again with the immediate dominator of PRO, and so on.
756 The blocks that need duplicating are those reachable from PRO but
757 not dominated by it. We keep in BB_WITH a bitmap of the blocks
758 reachable from PRO that we already found, and in VEC a stack of
759 those we still need to consider (to find successors). */
761 bitmap bb_with = BITMAP_ALLOC (NULL);
762 bitmap_set_bit (bb_with, pro->index);
764 vec<basic_block> vec;
765 vec.create (n_basic_blocks_for_fn (cfun));
766 vec.quick_push (pro);
768 unsigned max_grow_size = get_uncond_jump_length ();
769 max_grow_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
771 while (!vec.is_empty () && pro != entry)
773 while (pro != entry && !can_get_prologue (pro, prologue_clobbered))
775 pro = get_immediate_dominator (CDI_DOMINATORS, pro);
777 if (bitmap_set_bit (bb_with, pro->index))
778 vec.quick_push (pro);
781 basic_block bb = vec.pop ();
782 if (!can_dup_for_shrink_wrapping (bb, pro, max_grow_size))
783 while (!dominated_by_p (CDI_DOMINATORS, bb, pro))
785 gcc_assert (pro != entry);
787 pro = get_immediate_dominator (CDI_DOMINATORS, pro);
789 if (bitmap_set_bit (bb_with, pro->index))
790 vec.quick_push (pro);
793 FOR_EACH_EDGE (e, ei, bb->succs)
794 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
795 && bitmap_set_bit (bb_with, e->dest->index))
796 vec.quick_push (e->dest);
799 if (dump_file)
800 fprintf (dump_file, "Avoiding non-duplicatable blocks, PRO is now %d\n",
801 pro->index);
803 /* If we can move PRO back without having to duplicate more blocks, do so.
804 We do this because putting the prologue earlier is better for scheduling.
806 We can move back to a block PRE if every path from PRE will eventually
807 need a prologue, that is, PRO is a post-dominator of PRE. PRE needs
808 to dominate every block reachable from itself. We keep in BB_TMP a
809 bitmap of the blocks reachable from PRE that we already found, and in
810 VEC a stack of those we still need to consider.
812 Any block reachable from PRE is also reachable from all predecessors
813 of PRE, so if we find we need to move PRE back further we can leave
814 everything not considered so far on the stack. Any block dominated
815 by PRE is also dominated by all other dominators of PRE, so anything
816 found good for some PRE does not need to be reconsidered later.
818 We don't need to update BB_WITH because none of the new blocks found
819 can jump to a block that does not need the prologue. */
821 if (pro != entry)
823 calculate_dominance_info (CDI_POST_DOMINATORS);
825 bitmap bb_tmp = BITMAP_ALLOC (NULL);
826 bitmap_copy (bb_tmp, bb_with);
827 basic_block last_ok = pro;
828 vec.truncate (0);
830 while (pro != entry)
832 basic_block pre = get_immediate_dominator (CDI_DOMINATORS, pro);
833 if (!dominated_by_p (CDI_POST_DOMINATORS, pre, pro))
834 break;
836 if (bitmap_set_bit (bb_tmp, pre->index))
837 vec.quick_push (pre);
839 bool ok = true;
840 while (!vec.is_empty ())
842 if (!dominated_by_p (CDI_DOMINATORS, vec.last (), pre))
844 ok = false;
845 break;
848 basic_block bb = vec.pop ();
849 FOR_EACH_EDGE (e, ei, bb->succs)
850 if (bitmap_set_bit (bb_tmp, e->dest->index))
851 vec.quick_push (e->dest);
854 if (ok && can_get_prologue (pre, prologue_clobbered))
855 last_ok = pre;
857 pro = pre;
860 pro = last_ok;
862 BITMAP_FREE (bb_tmp);
863 free_dominance_info (CDI_POST_DOMINATORS);
866 vec.release ();
868 if (dump_file)
869 fprintf (dump_file, "Bumping back to anticipatable blocks, PRO is now %d\n",
870 pro->index);
872 if (pro == entry)
874 BITMAP_FREE (bb_with);
875 free_dominance_info (CDI_DOMINATORS);
876 return;
879 /* Compute what fraction of the frequency and count of the blocks that run
880 both with and without prologue are for running with prologue. This gives
881 the correct answer for reducible flow graphs; for irreducible flow graphs
882 our profile is messed up beyond repair anyway. */
884 gcov_type num = 0;
885 gcov_type den = 0;
887 FOR_EACH_EDGE (e, ei, pro->preds)
888 if (!dominated_by_p (CDI_DOMINATORS, e->src, pro))
890 num += EDGE_FREQUENCY (e);
891 den += e->src->frequency;
894 if (den == 0)
895 den = 1;
897 /* All is okay, so do it. */
899 crtl->shrink_wrapped = true;
900 if (dump_file)
901 fprintf (dump_file, "Performing shrink-wrapping.\n");
903 /* Copy the blocks that can run both with and without prologue. The
904 originals run with prologue, the copies without. Store a pointer to
905 the copy in the ->aux field of the original. */
907 FOR_EACH_BB_FN (bb, cfun)
908 if (bitmap_bit_p (bb_with, bb->index)
909 && !dominated_by_p (CDI_DOMINATORS, bb, pro))
911 basic_block dup = duplicate_block (bb, 0, 0);
913 bb->aux = dup;
915 if (JUMP_P (BB_END (dup)) && !any_condjump_p (BB_END (dup)))
916 emit_barrier_after_bb (dup);
918 if (EDGE_COUNT (dup->succs) == 0)
919 emit_barrier_after_bb (dup);
921 if (dump_file)
922 fprintf (dump_file, "Duplicated %d to %d\n", bb->index, dup->index);
924 bb->frequency = RDIV (num * bb->frequency, den);
925 dup->frequency -= bb->frequency;
926 bb->count = RDIV (num * bb->count, den);
927 dup->count -= bb->count;
930 /* Now change the edges to point to the copies, where appropriate. */
932 FOR_EACH_BB_FN (bb, cfun)
933 if (!dominated_by_p (CDI_DOMINATORS, bb, pro))
935 basic_block src = bb;
936 if (bitmap_bit_p (bb_with, bb->index))
937 src = (basic_block) bb->aux;
939 FOR_EACH_EDGE (e, ei, src->succs)
941 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
942 continue;
944 if (bitmap_bit_p (bb_with, e->dest->index)
945 && !dominated_by_p (CDI_DOMINATORS, e->dest, pro))
947 if (dump_file)
948 fprintf (dump_file, "Redirecting edge %d->%d to %d\n",
949 e->src->index, e->dest->index,
950 ((basic_block) e->dest->aux)->index);
951 redirect_edge_and_branch_force (e, (basic_block) e->dest->aux);
953 else if (e->flags & EDGE_FALLTHRU
954 && bitmap_bit_p (bb_with, bb->index))
955 force_nonfallthru (e);
959 /* Also redirect the function entry edge if necessary. */
961 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
962 if (bitmap_bit_p (bb_with, e->dest->index)
963 && !dominated_by_p (CDI_DOMINATORS, e->dest, pro))
965 basic_block split_bb = split_edge (e);
966 e = single_succ_edge (split_bb);
967 redirect_edge_and_branch_force (e, (basic_block) e->dest->aux);
970 /* Make a simple_return for those exits that run without prologue. */
972 FOR_EACH_BB_REVERSE_FN (bb, cfun)
973 if (!bitmap_bit_p (bb_with, bb->index))
974 FOR_EACH_EDGE (e, ei, bb->succs)
975 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
976 handle_simple_exit (e);
978 /* Finally, we want a single edge to put the prologue on. Make a new
979 block before the PRO block; the edge beteen them is the edge we want.
980 Then redirect those edges into PRO that come from blocks without the
981 prologue, to point to the new block instead. The new prologue block
982 is put at the end of the insn chain. */
984 basic_block new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
985 BB_COPY_PARTITION (new_bb, pro);
986 if (dump_file)
987 fprintf (dump_file, "Made prologue block %d\n", new_bb->index);
989 for (ei = ei_start (pro->preds); (e = ei_safe_edge (ei)); )
991 if (bitmap_bit_p (bb_with, e->src->index)
992 || dominated_by_p (CDI_DOMINATORS, e->src, pro))
994 ei_next (&ei);
995 continue;
998 new_bb->count += RDIV (e->src->count * e->probability, REG_BR_PROB_BASE);
999 new_bb->frequency += EDGE_FREQUENCY (e);
1001 redirect_edge_and_branch_force (e, new_bb);
1002 if (dump_file)
1003 fprintf (dump_file, "Redirected edge from %d\n", e->src->index);
1006 *entry_edge = make_single_succ_edge (new_bb, pro, EDGE_FALLTHRU);
1007 force_nonfallthru (*entry_edge);
1009 BITMAP_FREE (bb_with);
1010 free_dominance_info (CDI_DOMINATORS);
1013 /* Separate shrink-wrapping
1015 Instead of putting all of the prologue and epilogue in one spot, we
1016 can put parts of it in places where those components are executed less
1017 frequently. The following code does this, for prologue and epilogue
1018 components that can be put in more than one location, and where those
1019 components can be executed more than once (the epilogue component will
1020 always be executed before the prologue component is executed a second
1021 time).
1023 What exactly is a component is target-dependent. The more usual
1024 components are simple saves/restores to/from the frame of callee-saved
1025 registers. This code treats components abstractly (as an sbitmap),
1026 letting the target handle all details.
1028 Prologue components are placed in such a way that for every component
1029 the prologue is executed as infrequently as possible. We do this by
1030 walking the dominator tree, comparing the cost of placing a prologue
1031 component before a block to the sum of costs determined for all subtrees
1032 of that block.
1034 From this placement, we then determine for each component all blocks
1035 where at least one of this block's dominators (including itself) will
1036 get a prologue inserted. That then is how the components are placed.
1037 We could place the epilogue components a bit smarter (we can save a
1038 bit of code size sometimes); this is a possible future improvement.
1040 Prologues and epilogues are preferably placed into a block, either at
1041 the beginning or end of it, if it is needed for all predecessor resp.
1042 successor edges; or placed on the edge otherwise.
1044 If the placement of any prologue/epilogue leads to a situation we cannot
1045 handle (for example, an abnormal edge would need to be split, or some
1046 targets want to use some specific registers that may not be available
1047 where we want to put them), separate shrink-wrapping for the components
1048 in that prologue/epilogue is aborted. */
1051 /* Print the sbitmap COMPONENTS to the DUMP_FILE if not empty, with the
1052 label LABEL. */
1053 static void
1054 dump_components (const char *label, sbitmap components)
1056 if (bitmap_empty_p (components))
1057 return;
1059 fprintf (dump_file, " [%s", label);
1061 for (unsigned int j = 0; j < components->n_bits; j++)
1062 if (bitmap_bit_p (components, j))
1063 fprintf (dump_file, " %u", j);
1065 fprintf (dump_file, "]");
1068 /* The data we collect for each bb. */
1069 struct sw {
1070 /* What components does this BB need? */
1071 sbitmap needs_components;
1073 /* What components does this BB have? This is the main decision this
1074 pass makes. */
1075 sbitmap has_components;
1077 /* The components for which we placed code at the start of the BB (instead
1078 of on all incoming edges). */
1079 sbitmap head_components;
1081 /* The components for which we placed code at the end of the BB (instead
1082 of on all outgoing edges). */
1083 sbitmap tail_components;
1085 /* The frequency of executing the prologue for this BB, if a prologue is
1086 placed on this BB. This is a pessimistic estimate (no prologue is
1087 needed for edges from blocks that have the component under consideration
1088 active already). */
1089 gcov_type own_cost;
1091 /* The frequency of executing the prologue for this BB and all BBs
1092 dominated by it. */
1093 gcov_type total_cost;
1096 /* A helper function for accessing the pass-specific info. */
1097 static inline struct sw *
1098 SW (basic_block bb)
1100 gcc_assert (bb->aux);
1101 return (struct sw *) bb->aux;
1104 /* Create the pass-specific data structures for separately shrink-wrapping
1105 with components COMPONENTS. */
1106 static void
1107 init_separate_shrink_wrap (sbitmap components)
1109 basic_block bb;
1110 FOR_ALL_BB_FN (bb, cfun)
1112 bb->aux = xcalloc (1, sizeof (struct sw));
1114 SW (bb)->needs_components = targetm.shrink_wrap.components_for_bb (bb);
1116 /* Mark all basic blocks without successor as needing all components.
1117 This avoids problems in at least cfgcleanup, sel-sched, and
1118 regrename (largely to do with all paths to such a block still
1119 needing the same dwarf CFI info). */
1120 if (EDGE_COUNT (bb->succs) == 0)
1121 bitmap_copy (SW (bb)->needs_components, components);
1123 if (dump_file)
1125 fprintf (dump_file, "bb %d components:", bb->index);
1126 dump_components ("has", SW (bb)->needs_components);
1127 fprintf (dump_file, "\n");
1130 SW (bb)->has_components = sbitmap_alloc (SBITMAP_SIZE (components));
1131 SW (bb)->head_components = sbitmap_alloc (SBITMAP_SIZE (components));
1132 SW (bb)->tail_components = sbitmap_alloc (SBITMAP_SIZE (components));
1133 bitmap_clear (SW (bb)->has_components);
1137 /* Destroy the pass-specific data. */
1138 static void
1139 fini_separate_shrink_wrap (void)
1141 basic_block bb;
1142 FOR_ALL_BB_FN (bb, cfun)
1143 if (bb->aux)
1145 sbitmap_free (SW (bb)->needs_components);
1146 sbitmap_free (SW (bb)->has_components);
1147 sbitmap_free (SW (bb)->head_components);
1148 sbitmap_free (SW (bb)->tail_components);
1149 free (bb->aux);
1150 bb->aux = 0;
1154 /* Place the prologue for component WHICH, in the basic blocks dominated
1155 by HEAD. Do a DFS over the dominator tree, and set bit WHICH in the
1156 HAS_COMPONENTS of a block if either the block has that bit set in
1157 NEEDS_COMPONENTS, or it is cheaper to place the prologue here than in all
1158 dominator subtrees separately. */
1159 static void
1160 place_prologue_for_one_component (unsigned int which, basic_block head)
1162 /* The block we are currently dealing with. */
1163 basic_block bb = head;
1164 /* Is this the first time we visit this block, i.e. have we just gone
1165 down the tree. */
1166 bool first_visit = true;
1168 /* Walk the dominator tree, visit one block per iteration of this loop.
1169 Each basic block is visited twice: once before visiting any children
1170 of the block, and once after visiting all of them (leaf nodes are
1171 visited only once). As an optimization, we do not visit subtrees
1172 that can no longer influence the prologue placement. */
1173 for (;;)
1175 /* First visit of a block: set the (children) cost accumulator to zero;
1176 if the block does not have the component itself, walk down. */
1177 if (first_visit)
1179 /* Initialize the cost. The cost is the block execution frequency
1180 that does not come from backedges. Calculating this by simply
1181 adding the cost of all edges that aren't backedges does not
1182 work: this does not always add up to the block frequency at
1183 all, and even if it does, rounding error makes for bad
1184 decisions. */
1185 SW (bb)->own_cost = bb->frequency;
1187 edge e;
1188 edge_iterator ei;
1189 FOR_EACH_EDGE (e, ei, bb->preds)
1190 if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
1192 if (SW (bb)->own_cost > EDGE_FREQUENCY (e))
1193 SW (bb)->own_cost -= EDGE_FREQUENCY (e);
1194 else
1195 SW (bb)->own_cost = 0;
1198 SW (bb)->total_cost = 0;
1200 if (!bitmap_bit_p (SW (bb)->needs_components, which)
1201 && first_dom_son (CDI_DOMINATORS, bb))
1203 bb = first_dom_son (CDI_DOMINATORS, bb);
1204 continue;
1208 /* If this block does need the component itself, or it is cheaper to
1209 put the prologue here than in all the descendants that need it,
1210 mark it so. If this block's immediate post-dominator is dominated
1211 by this block, and that needs the prologue, we can put it on this
1212 block as well (earlier is better). */
1213 if (bitmap_bit_p (SW (bb)->needs_components, which)
1214 || SW (bb)->total_cost > SW (bb)->own_cost)
1216 SW (bb)->total_cost = SW (bb)->own_cost;
1217 bitmap_set_bit (SW (bb)->has_components, which);
1219 else
1221 basic_block kid = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
1222 if (dominated_by_p (CDI_DOMINATORS, kid, bb)
1223 && bitmap_bit_p (SW (kid)->has_components, which))
1225 SW (bb)->total_cost = SW (bb)->own_cost;
1226 bitmap_set_bit (SW (bb)->has_components, which);
1230 /* We are back where we started, so we are done now. */
1231 if (bb == head)
1232 return;
1234 /* We now know the cost of the subtree rooted at the current block.
1235 Accumulate this cost in the parent. */
1236 basic_block parent = get_immediate_dominator (CDI_DOMINATORS, bb);
1237 SW (parent)->total_cost += SW (bb)->total_cost;
1239 /* Don't walk the tree down unless necessary. */
1240 if (next_dom_son (CDI_DOMINATORS, bb)
1241 && SW (parent)->total_cost <= SW (parent)->own_cost)
1243 bb = next_dom_son (CDI_DOMINATORS, bb);
1244 first_visit = true;
1246 else
1248 bb = parent;
1249 first_visit = false;
1254 /* Set HAS_COMPONENTS in every block to the maximum it can be set to without
1255 setting it on any path from entry to exit where it was not already set
1256 somewhere (or, for blocks that have no path to the exit, consider only
1257 paths from the entry to the block itself). */
1258 static void
1259 spread_components (sbitmap components)
1261 basic_block entry_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1262 basic_block exit_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
1264 /* A stack of all blocks left to consider, and a bitmap of all blocks
1265 on that stack. */
1266 vec<basic_block> todo;
1267 todo.create (n_basic_blocks_for_fn (cfun));
1268 bitmap seen = BITMAP_ALLOC (NULL);
1270 sbitmap old = sbitmap_alloc (SBITMAP_SIZE (components));
1272 /* Find for every block the components that are *not* needed on some path
1273 from the entry to that block. Do this with a flood fill from the entry
1274 block. Every block can be visited at most as often as the number of
1275 components (plus one), and usually much less often. */
1277 if (dump_file)
1278 fprintf (dump_file, "Spreading down...\n");
1280 basic_block bb;
1281 FOR_ALL_BB_FN (bb, cfun)
1282 bitmap_clear (SW (bb)->head_components);
1284 bitmap_copy (SW (entry_block)->head_components, components);
1286 edge e;
1287 edge_iterator ei;
1289 todo.quick_push (single_succ (entry_block));
1290 bitmap_set_bit (seen, single_succ (entry_block)->index);
1291 while (!todo.is_empty ())
1293 bb = todo.pop ();
1295 bitmap_copy (old, SW (bb)->head_components);
1297 FOR_EACH_EDGE (e, ei, bb->preds)
1298 bitmap_ior (SW (bb)->head_components, SW (bb)->head_components,
1299 SW (e->src)->head_components);
1301 bitmap_and_compl (SW (bb)->head_components, SW (bb)->head_components,
1302 SW (bb)->has_components);
1304 if (!bitmap_equal_p (old, SW (bb)->head_components))
1305 FOR_EACH_EDGE (e, ei, bb->succs)
1306 if (bitmap_set_bit (seen, e->dest->index))
1307 todo.quick_push (e->dest);
1309 bitmap_clear_bit (seen, bb->index);
1312 /* Find for every block the components that are *not* needed on some reverse
1313 path from the exit to that block. */
1315 if (dump_file)
1316 fprintf (dump_file, "Spreading up...\n");
1318 /* First, mark all blocks not reachable from the exit block as not needing
1319 any component on any path to the exit. Mark everything, and then clear
1320 again by a flood fill. */
1322 FOR_ALL_BB_FN (bb, cfun)
1323 bitmap_copy (SW (bb)->tail_components, components);
1325 FOR_EACH_EDGE (e, ei, exit_block->preds)
1327 todo.quick_push (e->src);
1328 bitmap_set_bit (seen, e->src->index);
1331 while (!todo.is_empty ())
1333 bb = todo.pop ();
1335 if (!bitmap_empty_p (SW (bb)->tail_components))
1336 FOR_EACH_EDGE (e, ei, bb->preds)
1337 if (bitmap_set_bit (seen, e->src->index))
1338 todo.quick_push (e->src);
1340 bitmap_clear (SW (bb)->tail_components);
1342 bitmap_clear_bit (seen, bb->index);
1345 /* And then, flood fill backwards to find for every block the components
1346 not needed on some path to the exit. */
1348 bitmap_copy (SW (exit_block)->tail_components, components);
1350 FOR_EACH_EDGE (e, ei, exit_block->preds)
1352 todo.quick_push (e->src);
1353 bitmap_set_bit (seen, e->src->index);
1356 while (!todo.is_empty ())
1358 bb = todo.pop ();
1360 bitmap_copy (old, SW (bb)->tail_components);
1362 FOR_EACH_EDGE (e, ei, bb->succs)
1363 bitmap_ior (SW (bb)->tail_components, SW (bb)->tail_components,
1364 SW (e->dest)->tail_components);
1366 bitmap_and_compl (SW (bb)->tail_components, SW (bb)->tail_components,
1367 SW (bb)->has_components);
1369 if (!bitmap_equal_p (old, SW (bb)->tail_components))
1370 FOR_EACH_EDGE (e, ei, bb->preds)
1371 if (bitmap_set_bit (seen, e->src->index))
1372 todo.quick_push (e->src);
1374 bitmap_clear_bit (seen, bb->index);
1377 /* Finally, mark everything not not needed both forwards and backwards. */
1379 FOR_EACH_BB_FN (bb, cfun)
1381 bitmap_and (SW (bb)->head_components, SW (bb)->head_components,
1382 SW (bb)->tail_components);
1383 bitmap_and_compl (SW (bb)->has_components, components,
1384 SW (bb)->head_components);
1387 FOR_ALL_BB_FN (bb, cfun)
1389 if (dump_file)
1391 fprintf (dump_file, "bb %d components:", bb->index);
1392 dump_components ("has", SW (bb)->has_components);
1393 fprintf (dump_file, "\n");
1397 sbitmap_free (old);
1398 BITMAP_FREE (seen);
1401 /* If we cannot handle placing some component's prologues or epilogues where
1402 we decided we should place them, unmark that component in COMPONENTS so
1403 that it is not wrapped separately. */
1404 static void
1405 disqualify_problematic_components (sbitmap components)
1407 sbitmap pro = sbitmap_alloc (SBITMAP_SIZE (components));
1408 sbitmap epi = sbitmap_alloc (SBITMAP_SIZE (components));
1410 basic_block bb;
1411 FOR_EACH_BB_FN (bb, cfun)
1413 edge e;
1414 edge_iterator ei;
1415 FOR_EACH_EDGE (e, ei, bb->succs)
1417 /* Find which components we want pro/epilogues for here. */
1418 bitmap_and_compl (epi, SW (e->src)->has_components,
1419 SW (e->dest)->has_components);
1420 bitmap_and_compl (pro, SW (e->dest)->has_components,
1421 SW (e->src)->has_components);
1423 /* Ask the target what it thinks about things. */
1424 if (!bitmap_empty_p (epi))
1425 targetm.shrink_wrap.disqualify_components (components, e, epi,
1426 false);
1427 if (!bitmap_empty_p (pro))
1428 targetm.shrink_wrap.disqualify_components (components, e, pro,
1429 true);
1431 /* If this edge doesn't need splitting, we're fine. */
1432 if (single_pred_p (e->dest)
1433 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1434 continue;
1436 /* If the edge can be split, that is fine too. */
1437 if ((e->flags & EDGE_ABNORMAL) == 0)
1438 continue;
1440 /* We also can handle sibcalls. */
1441 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1443 gcc_assert (e->flags & EDGE_SIBCALL);
1444 continue;
1447 /* Remove from consideration those components we would need
1448 pro/epilogues for on edges where we cannot insert them. */
1449 bitmap_and_compl (components, components, epi);
1450 bitmap_and_compl (components, components, pro);
1452 if (dump_file && !bitmap_subset_p (epi, components))
1454 fprintf (dump_file, " BAD epi %d->%d", e->src->index,
1455 e->dest->index);
1456 if (e->flags & EDGE_EH)
1457 fprintf (dump_file, " for EH");
1458 dump_components ("epi", epi);
1459 fprintf (dump_file, "\n");
1462 if (dump_file && !bitmap_subset_p (pro, components))
1464 fprintf (dump_file, " BAD pro %d->%d", e->src->index,
1465 e->dest->index);
1466 if (e->flags & EDGE_EH)
1467 fprintf (dump_file, " for EH");
1468 dump_components ("pro", pro);
1469 fprintf (dump_file, "\n");
1474 sbitmap_free (pro);
1475 sbitmap_free (epi);
1478 /* Place code for prologues and epilogues for COMPONENTS where we can put
1479 that code at the start of basic blocks. */
1480 static void
1481 emit_common_heads_for_components (sbitmap components)
1483 sbitmap pro = sbitmap_alloc (SBITMAP_SIZE (components));
1484 sbitmap epi = sbitmap_alloc (SBITMAP_SIZE (components));
1485 sbitmap tmp = sbitmap_alloc (SBITMAP_SIZE (components));
1487 basic_block bb;
1488 FOR_ALL_BB_FN (bb, cfun)
1489 bitmap_clear (SW (bb)->head_components);
1491 FOR_EACH_BB_FN (bb, cfun)
1493 /* Find which prologue resp. epilogue components are needed for all
1494 predecessor edges to this block. */
1496 /* First, select all possible components. */
1497 bitmap_copy (epi, components);
1498 bitmap_copy (pro, components);
1500 edge e;
1501 edge_iterator ei;
1502 FOR_EACH_EDGE (e, ei, bb->preds)
1504 if (e->flags & EDGE_ABNORMAL)
1506 bitmap_clear (epi);
1507 bitmap_clear (pro);
1508 break;
1511 /* Deselect those epilogue components that should not be inserted
1512 for this edge. */
1513 bitmap_and_compl (tmp, SW (e->src)->has_components,
1514 SW (e->dest)->has_components);
1515 bitmap_and (epi, epi, tmp);
1517 /* Similar, for the prologue. */
1518 bitmap_and_compl (tmp, SW (e->dest)->has_components,
1519 SW (e->src)->has_components);
1520 bitmap_and (pro, pro, tmp);
1523 if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
1524 fprintf (dump_file, " bb %d", bb->index);
1526 if (dump_file && !bitmap_empty_p (epi))
1527 dump_components ("epi", epi);
1528 if (dump_file && !bitmap_empty_p (pro))
1529 dump_components ("pro", pro);
1531 if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
1532 fprintf (dump_file, "\n");
1534 /* Place code after the BB note. */
1535 if (!bitmap_empty_p (pro))
1537 start_sequence ();
1538 targetm.shrink_wrap.emit_prologue_components (pro);
1539 rtx_insn *seq = get_insns ();
1540 end_sequence ();
1541 record_prologue_seq (seq);
1543 emit_insn_after (seq, bb_note (bb));
1545 bitmap_ior (SW (bb)->head_components, SW (bb)->head_components, pro);
1548 if (!bitmap_empty_p (epi))
1550 start_sequence ();
1551 targetm.shrink_wrap.emit_epilogue_components (epi);
1552 rtx_insn *seq = get_insns ();
1553 end_sequence ();
1554 record_epilogue_seq (seq);
1556 emit_insn_after (seq, bb_note (bb));
1558 bitmap_ior (SW (bb)->head_components, SW (bb)->head_components, epi);
1562 sbitmap_free (pro);
1563 sbitmap_free (epi);
1564 sbitmap_free (tmp);
1567 /* Place code for prologues and epilogues for COMPONENTS where we can put
1568 that code at the end of basic blocks. */
1569 static void
1570 emit_common_tails_for_components (sbitmap components)
1572 sbitmap pro = sbitmap_alloc (SBITMAP_SIZE (components));
1573 sbitmap epi = sbitmap_alloc (SBITMAP_SIZE (components));
1574 sbitmap tmp = sbitmap_alloc (SBITMAP_SIZE (components));
1576 basic_block bb;
1577 FOR_ALL_BB_FN (bb, cfun)
1578 bitmap_clear (SW (bb)->tail_components);
1580 FOR_EACH_BB_FN (bb, cfun)
1582 /* Find which prologue resp. epilogue components are needed for all
1583 successor edges from this block. */
1584 if (EDGE_COUNT (bb->succs) == 0)
1585 continue;
1587 /* First, select all possible components. */
1588 bitmap_copy (epi, components);
1589 bitmap_copy (pro, components);
1591 edge e;
1592 edge_iterator ei;
1593 FOR_EACH_EDGE (e, ei, bb->succs)
1595 if (e->flags & EDGE_ABNORMAL)
1597 bitmap_clear (epi);
1598 bitmap_clear (pro);
1599 break;
1602 /* Deselect those epilogue components that should not be inserted
1603 for this edge, and also those that are already put at the head
1604 of the successor block. */
1605 bitmap_and_compl (tmp, SW (e->src)->has_components,
1606 SW (e->dest)->has_components);
1607 bitmap_and_compl (tmp, tmp, SW (e->dest)->head_components);
1608 bitmap_and (epi, epi, tmp);
1610 /* Similarly, for the prologue. */
1611 bitmap_and_compl (tmp, SW (e->dest)->has_components,
1612 SW (e->src)->has_components);
1613 bitmap_and_compl (tmp, tmp, SW (e->dest)->head_components);
1614 bitmap_and (pro, pro, tmp);
1617 /* If the last insn of this block is a control flow insn we cannot
1618 put anything after it. We can put our code before it instead,
1619 but only if that jump insn is a simple jump. */
1620 rtx_insn *last_insn = BB_END (bb);
1621 if (control_flow_insn_p (last_insn) && !simplejump_p (last_insn))
1623 bitmap_clear (epi);
1624 bitmap_clear (pro);
1627 if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
1628 fprintf (dump_file, " bb %d", bb->index);
1630 if (dump_file && !bitmap_empty_p (epi))
1631 dump_components ("epi", epi);
1632 if (dump_file && !bitmap_empty_p (pro))
1633 dump_components ("pro", pro);
1635 if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
1636 fprintf (dump_file, "\n");
1638 /* Put the code at the end of the BB, but before any final jump. */
1639 if (!bitmap_empty_p (epi))
1641 start_sequence ();
1642 targetm.shrink_wrap.emit_epilogue_components (epi);
1643 rtx_insn *seq = get_insns ();
1644 end_sequence ();
1645 record_epilogue_seq (seq);
1647 if (control_flow_insn_p (last_insn))
1648 emit_insn_before (seq, last_insn);
1649 else
1650 emit_insn_after (seq, last_insn);
1652 bitmap_ior (SW (bb)->tail_components, SW (bb)->tail_components, epi);
1655 if (!bitmap_empty_p (pro))
1657 start_sequence ();
1658 targetm.shrink_wrap.emit_prologue_components (pro);
1659 rtx_insn *seq = get_insns ();
1660 end_sequence ();
1661 record_prologue_seq (seq);
1663 if (control_flow_insn_p (last_insn))
1664 emit_insn_before (seq, last_insn);
1665 else
1666 emit_insn_after (seq, last_insn);
1668 bitmap_ior (SW (bb)->tail_components, SW (bb)->tail_components, pro);
1672 sbitmap_free (pro);
1673 sbitmap_free (epi);
1674 sbitmap_free (tmp);
1677 /* Place prologues and epilogues for COMPONENTS on edges, if we haven't already
1678 placed them inside blocks directly. */
1679 static void
1680 insert_prologue_epilogue_for_components (sbitmap components)
1682 sbitmap pro = sbitmap_alloc (SBITMAP_SIZE (components));
1683 sbitmap epi = sbitmap_alloc (SBITMAP_SIZE (components));
1685 basic_block bb;
1686 FOR_EACH_BB_FN (bb, cfun)
1688 if (!bb->aux)
1689 continue;
1691 edge e;
1692 edge_iterator ei;
1693 FOR_EACH_EDGE (e, ei, bb->succs)
1695 /* Find which pro/epilogue components are needed on this edge. */
1696 bitmap_and_compl (epi, SW (e->src)->has_components,
1697 SW (e->dest)->has_components);
1698 bitmap_and_compl (pro, SW (e->dest)->has_components,
1699 SW (e->src)->has_components);
1700 bitmap_and (epi, epi, components);
1701 bitmap_and (pro, pro, components);
1703 /* Deselect those we already have put at the head or tail of the
1704 edge's dest resp. src. */
1705 bitmap_and_compl (epi, epi, SW (e->dest)->head_components);
1706 bitmap_and_compl (pro, pro, SW (e->dest)->head_components);
1707 bitmap_and_compl (epi, epi, SW (e->src)->tail_components);
1708 bitmap_and_compl (pro, pro, SW (e->src)->tail_components);
1710 if (!bitmap_empty_p (epi) || !bitmap_empty_p (pro))
1712 if (dump_file)
1714 fprintf (dump_file, " %d->%d", e->src->index,
1715 e->dest->index);
1716 dump_components ("epi", epi);
1717 dump_components ("pro", pro);
1718 if (e->flags & EDGE_SIBCALL)
1719 fprintf (dump_file, " (SIBCALL)");
1720 else if (e->flags & EDGE_ABNORMAL)
1721 fprintf (dump_file, " (ABNORMAL)");
1722 fprintf (dump_file, "\n");
1725 /* Put the epilogue components in place. */
1726 start_sequence ();
1727 targetm.shrink_wrap.emit_epilogue_components (epi);
1728 rtx_insn *seq = get_insns ();
1729 end_sequence ();
1730 record_epilogue_seq (seq);
1732 if (e->flags & EDGE_SIBCALL)
1734 gcc_assert (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun));
1736 rtx_insn *insn = BB_END (e->src);
1737 gcc_assert (CALL_P (insn) && SIBLING_CALL_P (insn));
1738 emit_insn_before (seq, insn);
1740 else if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1742 gcc_assert (e->flags & EDGE_FALLTHRU);
1743 basic_block new_bb = split_edge (e);
1744 emit_insn_after (seq, BB_END (new_bb));
1746 else
1747 insert_insn_on_edge (seq, e);
1749 /* Put the prologue components in place. */
1750 start_sequence ();
1751 targetm.shrink_wrap.emit_prologue_components (pro);
1752 seq = get_insns ();
1753 end_sequence ();
1754 record_prologue_seq (seq);
1756 insert_insn_on_edge (seq, e);
1761 sbitmap_free (pro);
1762 sbitmap_free (epi);
1764 commit_edge_insertions ();
1767 /* The main entry point to this subpass. FIRST_BB is where the prologue
1768 would be normally put. */
1769 void
1770 try_shrink_wrapping_separate (basic_block first_bb)
1772 if (HAVE_cc0)
1773 return;
1775 if (!(SHRINK_WRAPPING_ENABLED
1776 && flag_shrink_wrap_separate
1777 && optimize_function_for_speed_p (cfun)
1778 && targetm.shrink_wrap.get_separate_components))
1779 return;
1781 /* We don't handle "strange" functions. */
1782 if (cfun->calls_alloca
1783 || cfun->calls_setjmp
1784 || cfun->can_throw_non_call_exceptions
1785 || crtl->calls_eh_return
1786 || crtl->has_nonlocal_goto
1787 || crtl->saves_all_registers)
1788 return;
1790 /* Ask the target what components there are. If it returns NULL, don't
1791 do anything. */
1792 sbitmap components = targetm.shrink_wrap.get_separate_components ();
1793 if (!components)
1794 return;
1796 /* We need LIVE info, not defining anything in the entry block and not
1797 using anything in the exit block. A block then needs a component if
1798 the register for that component is in the IN or GEN or KILL set for
1799 that block. */
1800 df_scan->local_flags |= DF_SCAN_EMPTY_ENTRY_EXIT;
1801 df_update_entry_exit_and_calls ();
1802 df_live_add_problem ();
1803 df_live_set_all_dirty ();
1804 df_analyze ();
1806 calculate_dominance_info (CDI_DOMINATORS);
1807 calculate_dominance_info (CDI_POST_DOMINATORS);
1809 init_separate_shrink_wrap (components);
1811 sbitmap_iterator sbi;
1812 unsigned int j;
1813 EXECUTE_IF_SET_IN_BITMAP (components, 0, j, sbi)
1814 place_prologue_for_one_component (j, first_bb);
1816 spread_components (components);
1818 disqualify_problematic_components (components);
1820 /* Don't separately shrink-wrap anything where the "main" prologue will
1821 go; the target code can often optimize things if it is presented with
1822 all components together (say, if it generates store-multiple insns). */
1823 bitmap_and_compl (components, components, SW (first_bb)->has_components);
1825 if (bitmap_empty_p (components))
1827 if (dump_file)
1828 fprintf (dump_file, "Not wrapping anything separately.\n");
1830 else
1832 if (dump_file)
1834 fprintf (dump_file, "The components we wrap separately are");
1835 dump_components ("sep", components);
1836 fprintf (dump_file, "\n");
1838 fprintf (dump_file, "... Inserting common heads...\n");
1841 emit_common_heads_for_components (components);
1843 if (dump_file)
1844 fprintf (dump_file, "... Inserting common tails...\n");
1846 emit_common_tails_for_components (components);
1848 if (dump_file)
1849 fprintf (dump_file, "... Inserting the more difficult ones...\n");
1851 insert_prologue_epilogue_for_components (components);
1853 if (dump_file)
1854 fprintf (dump_file, "... Done.\n");
1856 targetm.shrink_wrap.set_handled_components (components);
1858 crtl->shrink_wrapped_separate = true;
1861 fini_separate_shrink_wrap ();
1863 sbitmap_free (components);
1864 free_dominance_info (CDI_DOMINATORS);
1865 free_dominance_info (CDI_POST_DOMINATORS);
1867 /* All done. */
1868 df_scan->local_flags &= ~DF_SCAN_EMPTY_ENTRY_EXIT;
1869 df_update_entry_exit_and_calls ();
1870 df_live_set_all_dirty ();
1871 df_analyze ();