2012-10-23 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / predict.c
blob49173998c87efe9a1da722d1238af66132651067
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* References:
23 [1] "Branch Prediction for Free"
24 Ball and Larus; PLDI '93.
25 [2] "Static Branch Frequency and Program Profile Analysis"
26 Wu and Larus; MICRO-27.
27 [3] "Corpus-based Static Branch Prediction"
28 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
31 #include "config.h"
32 #include "system.h"
33 #include "coretypes.h"
34 #include "tm.h"
35 #include "tree.h"
36 #include "rtl.h"
37 #include "tm_p.h"
38 #include "hard-reg-set.h"
39 #include "basic-block.h"
40 #include "insn-config.h"
41 #include "regs.h"
42 #include "flags.h"
43 #include "function.h"
44 #include "except.h"
45 #include "diagnostic-core.h"
46 #include "recog.h"
47 #include "expr.h"
48 #include "predict.h"
49 #include "coverage.h"
50 #include "sreal.h"
51 #include "params.h"
52 #include "target.h"
53 #include "cfgloop.h"
54 #include "tree-flow.h"
55 #include "ggc.h"
56 #include "tree-pass.h"
57 #include "tree-scalar-evolution.h"
58 #include "cfgloop.h"
59 #include "pointer-set.h"
61 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
62 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
63 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
64 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
66 /* Random guesstimation given names.
67 PROV_VERY_UNLIKELY should be small enough so basic block predicted
68 by it gets bellow HOT_BB_FREQUENCY_FRANCTION. */
69 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 2000 - 1)
70 #define PROB_EVEN (REG_BR_PROB_BASE / 2)
71 #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
72 #define PROB_ALWAYS (REG_BR_PROB_BASE)
74 static void combine_predictions_for_insn (rtx, basic_block);
75 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
76 static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
77 static void predict_paths_leading_to_edge (edge, enum br_predictor, enum prediction);
78 static bool can_predict_insn_p (const_rtx);
80 /* Information we hold about each branch predictor.
81 Filled using information from predict.def. */
83 struct predictor_info
85 const char *const name; /* Name used in the debugging dumps. */
86 const int hitrate; /* Expected hitrate used by
87 predict_insn_def call. */
88 const int flags;
91 /* Use given predictor without Dempster-Shaffer theory if it matches
92 using first_match heuristics. */
93 #define PRED_FLAG_FIRST_MATCH 1
95 /* Recompute hitrate in percent to our representation. */
97 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
99 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
100 static const struct predictor_info predictor_info[]= {
101 #include "predict.def"
103 /* Upper bound on predictors. */
104 {NULL, 0, 0}
106 #undef DEF_PREDICTOR
108 /* Return TRUE if frequency FREQ is considered to be hot. */
110 static inline bool
111 maybe_hot_frequency_p (struct function *fun, int freq)
113 struct cgraph_node *node = cgraph_get_node (fun->decl);
114 if (!profile_info || !flag_branch_probabilities)
116 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
117 return false;
118 if (node->frequency == NODE_FREQUENCY_HOT)
119 return true;
121 if (profile_status_for_function (fun) == PROFILE_ABSENT)
122 return true;
123 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
124 && freq < (ENTRY_BLOCK_PTR_FOR_FUNCTION (fun)->frequency * 2 / 3))
125 return false;
126 if (freq < (ENTRY_BLOCK_PTR_FOR_FUNCTION (fun)->frequency
127 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
128 return false;
129 return true;
132 /* Return TRUE if frequency FREQ is considered to be hot. */
134 static inline bool
135 maybe_hot_count_p (struct function *fun, gcov_type count)
137 if (profile_status_for_function (fun) != PROFILE_READ)
138 return true;
139 /* Code executed at most once is not hot. */
140 if (profile_info->runs >= count)
141 return false;
142 return (count
143 > profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION));
146 /* Return true in case BB can be CPU intensive and should be optimized
147 for maximal performance. */
149 bool
150 maybe_hot_bb_p (struct function *fun, const_basic_block bb)
152 gcc_checking_assert (fun);
153 if (profile_status_for_function (fun) == PROFILE_READ)
154 return maybe_hot_count_p (fun, bb->count);
155 return maybe_hot_frequency_p (fun, bb->frequency);
158 /* Return true if the call can be hot. */
160 bool
161 cgraph_maybe_hot_edge_p (struct cgraph_edge *edge)
163 if (profile_info && flag_branch_probabilities
164 && (edge->count
165 <= profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
166 return false;
167 if (edge->caller->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED
168 || (edge->callee
169 && edge->callee->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED))
170 return false;
171 if (edge->caller->frequency > NODE_FREQUENCY_UNLIKELY_EXECUTED
172 && (edge->callee
173 && edge->callee->frequency <= NODE_FREQUENCY_EXECUTED_ONCE))
174 return false;
175 if (optimize_size)
176 return false;
177 if (edge->caller->frequency == NODE_FREQUENCY_HOT)
178 return true;
179 if (edge->caller->frequency == NODE_FREQUENCY_EXECUTED_ONCE
180 && edge->frequency < CGRAPH_FREQ_BASE * 3 / 2)
181 return false;
182 if (flag_guess_branch_prob
183 && edge->frequency <= (CGRAPH_FREQ_BASE
184 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
185 return false;
186 return true;
189 /* Return true in case BB can be CPU intensive and should be optimized
190 for maximal performance. */
192 bool
193 maybe_hot_edge_p (edge e)
195 if (profile_status == PROFILE_READ)
196 return maybe_hot_count_p (cfun, e->count);
197 return maybe_hot_frequency_p (cfun, EDGE_FREQUENCY (e));
201 /* Return true in case BB is probably never executed. */
203 bool
204 probably_never_executed_bb_p (struct function *fun, const_basic_block bb)
206 gcc_checking_assert (fun);
207 if (profile_info && flag_branch_probabilities)
208 return ((bb->count + profile_info->runs / 2) / profile_info->runs) == 0;
209 if ((!profile_info || !flag_branch_probabilities)
210 && (cgraph_get_node (fun->decl)->frequency
211 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
212 return true;
213 return false;
216 /* Return true if NODE should be optimized for size. */
218 bool
219 cgraph_optimize_for_size_p (struct cgraph_node *node)
221 if (optimize_size)
222 return true;
223 if (node && (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED))
224 return true;
225 else
226 return false;
229 /* Return true when current function should always be optimized for size. */
231 bool
232 optimize_function_for_size_p (struct function *fun)
234 if (optimize_size)
235 return true;
236 if (!fun || !fun->decl)
237 return false;
238 return cgraph_optimize_for_size_p (cgraph_get_node (fun->decl));
241 /* Return true when current function should always be optimized for speed. */
243 bool
244 optimize_function_for_speed_p (struct function *fun)
246 return !optimize_function_for_size_p (fun);
249 /* Return TRUE when BB should be optimized for size. */
251 bool
252 optimize_bb_for_size_p (const_basic_block bb)
254 return optimize_function_for_size_p (cfun) || !maybe_hot_bb_p (cfun, bb);
257 /* Return TRUE when BB should be optimized for speed. */
259 bool
260 optimize_bb_for_speed_p (const_basic_block bb)
262 return !optimize_bb_for_size_p (bb);
265 /* Return TRUE when BB should be optimized for size. */
267 bool
268 optimize_edge_for_size_p (edge e)
270 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
273 /* Return TRUE when BB should be optimized for speed. */
275 bool
276 optimize_edge_for_speed_p (edge e)
278 return !optimize_edge_for_size_p (e);
281 /* Return TRUE when BB should be optimized for size. */
283 bool
284 optimize_insn_for_size_p (void)
286 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
289 /* Return TRUE when BB should be optimized for speed. */
291 bool
292 optimize_insn_for_speed_p (void)
294 return !optimize_insn_for_size_p ();
297 /* Return TRUE when LOOP should be optimized for size. */
299 bool
300 optimize_loop_for_size_p (struct loop *loop)
302 return optimize_bb_for_size_p (loop->header);
305 /* Return TRUE when LOOP should be optimized for speed. */
307 bool
308 optimize_loop_for_speed_p (struct loop *loop)
310 return optimize_bb_for_speed_p (loop->header);
313 /* Return TRUE when LOOP nest should be optimized for speed. */
315 bool
316 optimize_loop_nest_for_speed_p (struct loop *loop)
318 struct loop *l = loop;
319 if (optimize_loop_for_speed_p (loop))
320 return true;
321 l = loop->inner;
322 while (l && l != loop)
324 if (optimize_loop_for_speed_p (l))
325 return true;
326 if (l->inner)
327 l = l->inner;
328 else if (l->next)
329 l = l->next;
330 else
332 while (l != loop && !l->next)
333 l = loop_outer (l);
334 if (l != loop)
335 l = l->next;
338 return false;
341 /* Return TRUE when LOOP nest should be optimized for size. */
343 bool
344 optimize_loop_nest_for_size_p (struct loop *loop)
346 return !optimize_loop_nest_for_speed_p (loop);
349 /* Return true when edge E is likely to be well predictable by branch
350 predictor. */
352 bool
353 predictable_edge_p (edge e)
355 if (profile_status == PROFILE_ABSENT)
356 return false;
357 if ((e->probability
358 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
359 || (REG_BR_PROB_BASE - e->probability
360 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
361 return true;
362 return false;
366 /* Set RTL expansion for BB profile. */
368 void
369 rtl_profile_for_bb (basic_block bb)
371 crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb);
374 /* Set RTL expansion for edge profile. */
376 void
377 rtl_profile_for_edge (edge e)
379 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
382 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
383 void
384 default_rtl_profile (void)
386 crtl->maybe_hot_insn_p = true;
389 /* Return true if the one of outgoing edges is already predicted by
390 PREDICTOR. */
392 bool
393 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
395 rtx note;
396 if (!INSN_P (BB_END (bb)))
397 return false;
398 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
399 if (REG_NOTE_KIND (note) == REG_BR_PRED
400 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
401 return true;
402 return false;
405 /* This map contains for a basic block the list of predictions for the
406 outgoing edges. */
408 static struct pointer_map_t *bb_predictions;
410 /* Structure representing predictions in tree level. */
412 struct edge_prediction {
413 struct edge_prediction *ep_next;
414 edge ep_edge;
415 enum br_predictor ep_predictor;
416 int ep_probability;
419 /* Return true if the one of outgoing edges is already predicted by
420 PREDICTOR. */
422 bool
423 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
425 struct edge_prediction *i;
426 void **preds = pointer_map_contains (bb_predictions, bb);
428 if (!preds)
429 return false;
431 for (i = (struct edge_prediction *) *preds; i; i = i->ep_next)
432 if (i->ep_predictor == predictor)
433 return true;
434 return false;
437 /* Return true when the probability of edge is reliable.
439 The profile guessing code is good at predicting branch outcome (ie.
440 taken/not taken), that is predicted right slightly over 75% of time.
441 It is however notoriously poor on predicting the probability itself.
442 In general the profile appear a lot flatter (with probabilities closer
443 to 50%) than the reality so it is bad idea to use it to drive optimization
444 such as those disabling dynamic branch prediction for well predictable
445 branches.
447 There are two exceptions - edges leading to noreturn edges and edges
448 predicted by number of iterations heuristics are predicted well. This macro
449 should be able to distinguish those, but at the moment it simply check for
450 noreturn heuristic that is only one giving probability over 99% or bellow
451 1%. In future we might want to propagate reliability information across the
452 CFG if we find this information useful on multiple places. */
453 static bool
454 probability_reliable_p (int prob)
456 return (profile_status == PROFILE_READ
457 || (profile_status == PROFILE_GUESSED
458 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
461 /* Same predicate as above, working on edges. */
462 bool
463 edge_probability_reliable_p (const_edge e)
465 return probability_reliable_p (e->probability);
468 /* Same predicate as edge_probability_reliable_p, working on notes. */
469 bool
470 br_prob_note_reliable_p (const_rtx note)
472 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
473 return probability_reliable_p (INTVAL (XEXP (note, 0)));
476 static void
477 predict_insn (rtx insn, enum br_predictor predictor, int probability)
479 gcc_assert (any_condjump_p (insn));
480 if (!flag_guess_branch_prob)
481 return;
483 add_reg_note (insn, REG_BR_PRED,
484 gen_rtx_CONCAT (VOIDmode,
485 GEN_INT ((int) predictor),
486 GEN_INT ((int) probability)));
489 /* Predict insn by given predictor. */
491 void
492 predict_insn_def (rtx insn, enum br_predictor predictor,
493 enum prediction taken)
495 int probability = predictor_info[(int) predictor].hitrate;
497 if (taken != TAKEN)
498 probability = REG_BR_PROB_BASE - probability;
500 predict_insn (insn, predictor, probability);
503 /* Predict edge E with given probability if possible. */
505 void
506 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
508 rtx last_insn;
509 last_insn = BB_END (e->src);
511 /* We can store the branch prediction information only about
512 conditional jumps. */
513 if (!any_condjump_p (last_insn))
514 return;
516 /* We always store probability of branching. */
517 if (e->flags & EDGE_FALLTHRU)
518 probability = REG_BR_PROB_BASE - probability;
520 predict_insn (last_insn, predictor, probability);
523 /* Predict edge E with the given PROBABILITY. */
524 void
525 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
527 gcc_assert (profile_status != PROFILE_GUESSED);
528 if ((e->src != ENTRY_BLOCK_PTR && EDGE_COUNT (e->src->succs) > 1)
529 && flag_guess_branch_prob && optimize)
531 struct edge_prediction *i = XNEW (struct edge_prediction);
532 void **preds = pointer_map_insert (bb_predictions, e->src);
534 i->ep_next = (struct edge_prediction *) *preds;
535 *preds = i;
536 i->ep_probability = probability;
537 i->ep_predictor = predictor;
538 i->ep_edge = e;
542 /* Remove all predictions on given basic block that are attached
543 to edge E. */
544 void
545 remove_predictions_associated_with_edge (edge e)
547 void **preds;
549 if (!bb_predictions)
550 return;
552 preds = pointer_map_contains (bb_predictions, e->src);
554 if (preds)
556 struct edge_prediction **prediction = (struct edge_prediction **) preds;
557 struct edge_prediction *next;
559 while (*prediction)
561 if ((*prediction)->ep_edge == e)
563 next = (*prediction)->ep_next;
564 free (*prediction);
565 *prediction = next;
567 else
568 prediction = &((*prediction)->ep_next);
573 /* Clears the list of predictions stored for BB. */
575 static void
576 clear_bb_predictions (basic_block bb)
578 void **preds = pointer_map_contains (bb_predictions, bb);
579 struct edge_prediction *pred, *next;
581 if (!preds)
582 return;
584 for (pred = (struct edge_prediction *) *preds; pred; pred = next)
586 next = pred->ep_next;
587 free (pred);
589 *preds = NULL;
592 /* Return true when we can store prediction on insn INSN.
593 At the moment we represent predictions only on conditional
594 jumps, not at computed jump or other complicated cases. */
595 static bool
596 can_predict_insn_p (const_rtx insn)
598 return (JUMP_P (insn)
599 && any_condjump_p (insn)
600 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
603 /* Predict edge E by given predictor if possible. */
605 void
606 predict_edge_def (edge e, enum br_predictor predictor,
607 enum prediction taken)
609 int probability = predictor_info[(int) predictor].hitrate;
611 if (taken != TAKEN)
612 probability = REG_BR_PROB_BASE - probability;
614 predict_edge (e, predictor, probability);
617 /* Invert all branch predictions or probability notes in the INSN. This needs
618 to be done each time we invert the condition used by the jump. */
620 void
621 invert_br_probabilities (rtx insn)
623 rtx note;
625 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
626 if (REG_NOTE_KIND (note) == REG_BR_PROB)
627 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
628 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
629 XEXP (XEXP (note, 0), 1)
630 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
633 /* Dump information about the branch prediction to the output file. */
635 static void
636 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
637 basic_block bb, int used)
639 edge e;
640 edge_iterator ei;
642 if (!file)
643 return;
645 FOR_EACH_EDGE (e, ei, bb->succs)
646 if (! (e->flags & EDGE_FALLTHRU))
647 break;
649 fprintf (file, " %s heuristics%s: %.1f%%",
650 predictor_info[predictor].name,
651 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
653 if (bb->count)
655 fprintf (file, " exec ");
656 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
657 if (e)
659 fprintf (file, " hit ");
660 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
661 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
665 fprintf (file, "\n");
668 /* We can not predict the probabilities of outgoing edges of bb. Set them
669 evenly and hope for the best. */
670 static void
671 set_even_probabilities (basic_block bb)
673 int nedges = 0;
674 edge e;
675 edge_iterator ei;
677 FOR_EACH_EDGE (e, ei, bb->succs)
678 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
679 nedges ++;
680 FOR_EACH_EDGE (e, ei, bb->succs)
681 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
682 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
683 else
684 e->probability = 0;
687 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
688 note if not already present. Remove now useless REG_BR_PRED notes. */
690 static void
691 combine_predictions_for_insn (rtx insn, basic_block bb)
693 rtx prob_note;
694 rtx *pnote;
695 rtx note;
696 int best_probability = PROB_EVEN;
697 enum br_predictor best_predictor = END_PREDICTORS;
698 int combined_probability = REG_BR_PROB_BASE / 2;
699 int d;
700 bool first_match = false;
701 bool found = false;
703 if (!can_predict_insn_p (insn))
705 set_even_probabilities (bb);
706 return;
709 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
710 pnote = &REG_NOTES (insn);
711 if (dump_file)
712 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
713 bb->index);
715 /* We implement "first match" heuristics and use probability guessed
716 by predictor with smallest index. */
717 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
718 if (REG_NOTE_KIND (note) == REG_BR_PRED)
720 enum br_predictor predictor = ((enum br_predictor)
721 INTVAL (XEXP (XEXP (note, 0), 0)));
722 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
724 found = true;
725 if (best_predictor > predictor)
726 best_probability = probability, best_predictor = predictor;
728 d = (combined_probability * probability
729 + (REG_BR_PROB_BASE - combined_probability)
730 * (REG_BR_PROB_BASE - probability));
732 /* Use FP math to avoid overflows of 32bit integers. */
733 if (d == 0)
734 /* If one probability is 0% and one 100%, avoid division by zero. */
735 combined_probability = REG_BR_PROB_BASE / 2;
736 else
737 combined_probability = (((double) combined_probability) * probability
738 * REG_BR_PROB_BASE / d + 0.5);
741 /* Decide which heuristic to use. In case we didn't match anything,
742 use no_prediction heuristic, in case we did match, use either
743 first match or Dempster-Shaffer theory depending on the flags. */
745 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
746 first_match = true;
748 if (!found)
749 dump_prediction (dump_file, PRED_NO_PREDICTION,
750 combined_probability, bb, true);
751 else
753 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
754 bb, !first_match);
755 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
756 bb, first_match);
759 if (first_match)
760 combined_probability = best_probability;
761 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
763 while (*pnote)
765 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
767 enum br_predictor predictor = ((enum br_predictor)
768 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
769 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
771 dump_prediction (dump_file, predictor, probability, bb,
772 !first_match || best_predictor == predictor);
773 *pnote = XEXP (*pnote, 1);
775 else
776 pnote = &XEXP (*pnote, 1);
779 if (!prob_note)
781 add_reg_note (insn, REG_BR_PROB, GEN_INT (combined_probability));
783 /* Save the prediction into CFG in case we are seeing non-degenerated
784 conditional jump. */
785 if (!single_succ_p (bb))
787 BRANCH_EDGE (bb)->probability = combined_probability;
788 FALLTHRU_EDGE (bb)->probability
789 = REG_BR_PROB_BASE - combined_probability;
792 else if (!single_succ_p (bb))
794 int prob = INTVAL (XEXP (prob_note, 0));
796 BRANCH_EDGE (bb)->probability = prob;
797 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
799 else
800 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
803 /* Combine predictions into single probability and store them into CFG.
804 Remove now useless prediction entries. */
806 static void
807 combine_predictions_for_bb (basic_block bb)
809 int best_probability = PROB_EVEN;
810 enum br_predictor best_predictor = END_PREDICTORS;
811 int combined_probability = REG_BR_PROB_BASE / 2;
812 int d;
813 bool first_match = false;
814 bool found = false;
815 struct edge_prediction *pred;
816 int nedges = 0;
817 edge e, first = NULL, second = NULL;
818 edge_iterator ei;
819 void **preds;
821 FOR_EACH_EDGE (e, ei, bb->succs)
822 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
824 nedges ++;
825 if (first && !second)
826 second = e;
827 if (!first)
828 first = e;
831 /* When there is no successor or only one choice, prediction is easy.
833 We are lazy for now and predict only basic blocks with two outgoing
834 edges. It is possible to predict generic case too, but we have to
835 ignore first match heuristics and do more involved combining. Implement
836 this later. */
837 if (nedges != 2)
839 if (!bb->count)
840 set_even_probabilities (bb);
841 clear_bb_predictions (bb);
842 if (dump_file)
843 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
844 nedges, bb->index);
845 return;
848 if (dump_file)
849 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
851 preds = pointer_map_contains (bb_predictions, bb);
852 if (preds)
854 /* We implement "first match" heuristics and use probability guessed
855 by predictor with smallest index. */
856 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
858 enum br_predictor predictor = pred->ep_predictor;
859 int probability = pred->ep_probability;
861 if (pred->ep_edge != first)
862 probability = REG_BR_PROB_BASE - probability;
864 found = true;
865 /* First match heuristics would be widly confused if we predicted
866 both directions. */
867 if (best_predictor > predictor)
869 struct edge_prediction *pred2;
870 int prob = probability;
872 for (pred2 = (struct edge_prediction *) *preds; pred2; pred2 = pred2->ep_next)
873 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
875 int probability2 = pred->ep_probability;
877 if (pred2->ep_edge != first)
878 probability2 = REG_BR_PROB_BASE - probability2;
880 if ((probability < REG_BR_PROB_BASE / 2) !=
881 (probability2 < REG_BR_PROB_BASE / 2))
882 break;
884 /* If the same predictor later gave better result, go for it! */
885 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
886 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
887 prob = probability2;
889 if (!pred2)
890 best_probability = prob, best_predictor = predictor;
893 d = (combined_probability * probability
894 + (REG_BR_PROB_BASE - combined_probability)
895 * (REG_BR_PROB_BASE - probability));
897 /* Use FP math to avoid overflows of 32bit integers. */
898 if (d == 0)
899 /* If one probability is 0% and one 100%, avoid division by zero. */
900 combined_probability = REG_BR_PROB_BASE / 2;
901 else
902 combined_probability = (((double) combined_probability)
903 * probability
904 * REG_BR_PROB_BASE / d + 0.5);
908 /* Decide which heuristic to use. In case we didn't match anything,
909 use no_prediction heuristic, in case we did match, use either
910 first match or Dempster-Shaffer theory depending on the flags. */
912 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
913 first_match = true;
915 if (!found)
916 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
917 else
919 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
920 !first_match);
921 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
922 first_match);
925 if (first_match)
926 combined_probability = best_probability;
927 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
929 if (preds)
931 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
933 enum br_predictor predictor = pred->ep_predictor;
934 int probability = pred->ep_probability;
936 if (pred->ep_edge != EDGE_SUCC (bb, 0))
937 probability = REG_BR_PROB_BASE - probability;
938 dump_prediction (dump_file, predictor, probability, bb,
939 !first_match || best_predictor == predictor);
942 clear_bb_predictions (bb);
944 if (!bb->count)
946 first->probability = combined_probability;
947 second->probability = REG_BR_PROB_BASE - combined_probability;
951 /* Check if T1 and T2 satisfy the IV_COMPARE condition.
952 Return the SSA_NAME if the condition satisfies, NULL otherwise.
954 T1 and T2 should be one of the following cases:
955 1. T1 is SSA_NAME, T2 is NULL
956 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
957 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
959 static tree
960 strips_small_constant (tree t1, tree t2)
962 tree ret = NULL;
963 int value = 0;
965 if (!t1)
966 return NULL;
967 else if (TREE_CODE (t1) == SSA_NAME)
968 ret = t1;
969 else if (host_integerp (t1, 0))
970 value = tree_low_cst (t1, 0);
971 else
972 return NULL;
974 if (!t2)
975 return ret;
976 else if (host_integerp (t2, 0))
977 value = tree_low_cst (t2, 0);
978 else if (TREE_CODE (t2) == SSA_NAME)
980 if (ret)
981 return NULL;
982 else
983 ret = t2;
986 if (value <= 4 && value >= -4)
987 return ret;
988 else
989 return NULL;
992 /* Return the SSA_NAME in T or T's operands.
993 Return NULL if SSA_NAME cannot be found. */
995 static tree
996 get_base_value (tree t)
998 if (TREE_CODE (t) == SSA_NAME)
999 return t;
1001 if (!BINARY_CLASS_P (t))
1002 return NULL;
1004 switch (TREE_OPERAND_LENGTH (t))
1006 case 1:
1007 return strips_small_constant (TREE_OPERAND (t, 0), NULL);
1008 case 2:
1009 return strips_small_constant (TREE_OPERAND (t, 0),
1010 TREE_OPERAND (t, 1));
1011 default:
1012 return NULL;
1016 /* Check the compare STMT in LOOP. If it compares an induction
1017 variable to a loop invariant, return true, and save
1018 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1019 Otherwise return false and set LOOP_INVAIANT to NULL. */
1021 static bool
1022 is_comparison_with_loop_invariant_p (gimple stmt, struct loop *loop,
1023 tree *loop_invariant,
1024 enum tree_code *compare_code,
1025 int *loop_step,
1026 tree *loop_iv_base)
1028 tree op0, op1, bound, base;
1029 affine_iv iv0, iv1;
1030 enum tree_code code;
1031 int step;
1033 code = gimple_cond_code (stmt);
1034 *loop_invariant = NULL;
1036 switch (code)
1038 case GT_EXPR:
1039 case GE_EXPR:
1040 case NE_EXPR:
1041 case LT_EXPR:
1042 case LE_EXPR:
1043 case EQ_EXPR:
1044 break;
1046 default:
1047 return false;
1050 op0 = gimple_cond_lhs (stmt);
1051 op1 = gimple_cond_rhs (stmt);
1053 if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST)
1054 || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
1055 return false;
1056 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
1057 return false;
1058 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
1059 return false;
1060 if (TREE_CODE (iv0.step) != INTEGER_CST
1061 || TREE_CODE (iv1.step) != INTEGER_CST)
1062 return false;
1063 if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
1064 || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
1065 return false;
1067 if (integer_zerop (iv0.step))
1069 if (code != NE_EXPR && code != EQ_EXPR)
1070 code = invert_tree_comparison (code, false);
1071 bound = iv0.base;
1072 base = iv1.base;
1073 if (host_integerp (iv1.step, 0))
1074 step = tree_low_cst (iv1.step, 0);
1075 else
1076 return false;
1078 else
1080 bound = iv1.base;
1081 base = iv0.base;
1082 if (host_integerp (iv0.step, 0))
1083 step = tree_low_cst (iv0.step, 0);
1084 else
1085 return false;
1088 if (TREE_CODE (bound) != INTEGER_CST)
1089 bound = get_base_value (bound);
1090 if (!bound)
1091 return false;
1092 if (TREE_CODE (base) != INTEGER_CST)
1093 base = get_base_value (base);
1094 if (!base)
1095 return false;
1097 *loop_invariant = bound;
1098 *compare_code = code;
1099 *loop_step = step;
1100 *loop_iv_base = base;
1101 return true;
1104 /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1106 static bool
1107 expr_coherent_p (tree t1, tree t2)
1109 gimple stmt;
1110 tree ssa_name_1 = NULL;
1111 tree ssa_name_2 = NULL;
1113 gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
1114 gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);
1116 if (t1 == t2)
1117 return true;
1119 if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
1120 return true;
1121 if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
1122 return false;
1124 /* Check to see if t1 is expressed/defined with t2. */
1125 stmt = SSA_NAME_DEF_STMT (t1);
1126 gcc_assert (stmt != NULL);
1127 if (is_gimple_assign (stmt))
1129 ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1130 if (ssa_name_1 && ssa_name_1 == t2)
1131 return true;
1134 /* Check to see if t2 is expressed/defined with t1. */
1135 stmt = SSA_NAME_DEF_STMT (t2);
1136 gcc_assert (stmt != NULL);
1137 if (is_gimple_assign (stmt))
1139 ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1140 if (ssa_name_2 && ssa_name_2 == t1)
1141 return true;
1144 /* Compare if t1 and t2's def_stmts are identical. */
1145 if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
1146 return true;
1147 else
1148 return false;
1151 /* Predict branch probability of BB when BB contains a branch that compares
1152 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1153 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1155 E.g.
1156 for (int i = 0; i < bound; i++) {
1157 if (i < bound - 2)
1158 computation_1();
1159 else
1160 computation_2();
1163 In this loop, we will predict the branch inside the loop to be taken. */
1165 static void
1166 predict_iv_comparison (struct loop *loop, basic_block bb,
1167 tree loop_bound_var,
1168 tree loop_iv_base_var,
1169 enum tree_code loop_bound_code,
1170 int loop_bound_step)
1172 gimple stmt;
1173 tree compare_var, compare_base;
1174 enum tree_code compare_code;
1175 int compare_step;
1176 edge then_edge;
1177 edge_iterator ei;
1179 if (predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1180 || predicted_by_p (bb, PRED_LOOP_ITERATIONS)
1181 || predicted_by_p (bb, PRED_LOOP_EXIT))
1182 return;
1184 stmt = last_stmt (bb);
1185 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1186 return;
1187 if (!is_comparison_with_loop_invariant_p (stmt, loop, &compare_var,
1188 &compare_code,
1189 &compare_step,
1190 &compare_base))
1191 return;
1193 /* Find the taken edge. */
1194 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1195 if (then_edge->flags & EDGE_TRUE_VALUE)
1196 break;
1198 /* When comparing an IV to a loop invariant, NE is more likely to be
1199 taken while EQ is more likely to be not-taken. */
1200 if (compare_code == NE_EXPR)
1202 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1203 return;
1205 else if (compare_code == EQ_EXPR)
1207 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1208 return;
1211 if (!expr_coherent_p (loop_iv_base_var, compare_base))
1212 return;
1214 /* If loop bound, base and compare bound are all constants, we can
1215 calculate the probability directly. */
1216 if (host_integerp (loop_bound_var, 0)
1217 && host_integerp (compare_var, 0)
1218 && host_integerp (compare_base, 0))
1220 int probability;
1221 HOST_WIDE_INT compare_count;
1222 HOST_WIDE_INT loop_bound = tree_low_cst (loop_bound_var, 0);
1223 HOST_WIDE_INT compare_bound = tree_low_cst (compare_var, 0);
1224 HOST_WIDE_INT base = tree_low_cst (compare_base, 0);
1225 HOST_WIDE_INT loop_count = (loop_bound - base) / compare_step;
1227 if ((compare_step > 0)
1228 ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
1229 compare_count = (loop_bound - compare_bound) / compare_step;
1230 else
1231 compare_count = (compare_bound - base) / compare_step;
1233 if (compare_code == LE_EXPR || compare_code == GE_EXPR)
1234 compare_count ++;
1235 if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
1236 loop_count ++;
1237 if (compare_count < 0)
1238 compare_count = 0;
1239 if (loop_count < 0)
1240 loop_count = 0;
1242 if (loop_count == 0)
1243 probability = 0;
1244 else if (compare_count > loop_count)
1245 probability = REG_BR_PROB_BASE;
1246 else
1247 probability = (double) REG_BR_PROB_BASE * compare_count / loop_count;
1248 predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability);
1249 return;
1252 if (expr_coherent_p (loop_bound_var, compare_var))
1254 if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
1255 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1256 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1257 else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
1258 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1259 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1260 else if (loop_bound_code == NE_EXPR)
1262 /* If the loop backedge condition is "(i != bound)", we do
1263 the comparison based on the step of IV:
1264 * step < 0 : backedge condition is like (i > bound)
1265 * step > 0 : backedge condition is like (i < bound) */
1266 gcc_assert (loop_bound_step != 0);
1267 if (loop_bound_step > 0
1268 && (compare_code == LT_EXPR
1269 || compare_code == LE_EXPR))
1270 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1271 else if (loop_bound_step < 0
1272 && (compare_code == GT_EXPR
1273 || compare_code == GE_EXPR))
1274 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1275 else
1276 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1278 else
1279 /* The branch is predicted not-taken if loop_bound_code is
1280 opposite with compare_code. */
1281 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1283 else if (expr_coherent_p (loop_iv_base_var, compare_var))
1285 /* For cases like:
1286 for (i = s; i < h; i++)
1287 if (i > s + 2) ....
1288 The branch should be predicted taken. */
1289 if (loop_bound_step > 0
1290 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1291 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1292 else if (loop_bound_step < 0
1293 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1294 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1295 else
1296 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1300 /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1301 exits are resulted from short-circuit conditions that will generate an
1302 if_tmp. E.g.:
1304 if (foo() || global > 10)
1305 break;
1307 This will be translated into:
1309 BB3:
1310 loop header...
1311 BB4:
1312 if foo() goto BB6 else goto BB5
1313 BB5:
1314 if global > 10 goto BB6 else goto BB7
1315 BB6:
1316 goto BB7
1317 BB7:
1318 iftmp = (PHI 0(BB5), 1(BB6))
1319 if iftmp == 1 goto BB8 else goto BB3
1320 BB8:
1321 outside of the loop...
1323 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1324 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1325 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1326 exits to predict them using PRED_LOOP_EXIT. */
1328 static void
1329 predict_extra_loop_exits (edge exit_edge)
1331 unsigned i;
1332 bool check_value_one;
1333 gimple phi_stmt;
1334 tree cmp_rhs, cmp_lhs;
1335 gimple cmp_stmt = last_stmt (exit_edge->src);
1337 if (!cmp_stmt || gimple_code (cmp_stmt) != GIMPLE_COND)
1338 return;
1339 cmp_rhs = gimple_cond_rhs (cmp_stmt);
1340 cmp_lhs = gimple_cond_lhs (cmp_stmt);
1341 if (!TREE_CONSTANT (cmp_rhs)
1342 || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
1343 return;
1344 if (TREE_CODE (cmp_lhs) != SSA_NAME)
1345 return;
1347 /* If check_value_one is true, only the phi_args with value '1' will lead
1348 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1349 loop exit. */
1350 check_value_one = (((integer_onep (cmp_rhs))
1351 ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
1352 ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0));
1354 phi_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
1355 if (!phi_stmt || gimple_code (phi_stmt) != GIMPLE_PHI)
1356 return;
1358 for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
1360 edge e1;
1361 edge_iterator ei;
1362 tree val = gimple_phi_arg_def (phi_stmt, i);
1363 edge e = gimple_phi_arg_edge (phi_stmt, i);
1365 if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val)))
1366 continue;
1367 if ((check_value_one ^ integer_onep (val)) == 1)
1368 continue;
1369 if (EDGE_COUNT (e->src->succs) != 1)
1371 predict_paths_leading_to_edge (e, PRED_LOOP_EXIT, NOT_TAKEN);
1372 continue;
1375 FOR_EACH_EDGE (e1, ei, e->src->preds)
1376 predict_paths_leading_to_edge (e1, PRED_LOOP_EXIT, NOT_TAKEN);
1380 /* Predict edge probabilities by exploiting loop structure. */
1382 static void
1383 predict_loops (void)
1385 loop_iterator li;
1386 struct loop *loop;
1388 /* Try to predict out blocks in a loop that are not part of a
1389 natural loop. */
1390 FOR_EACH_LOOP (li, loop, 0)
1392 basic_block bb, *bbs;
1393 unsigned j, n_exits;
1394 VEC (edge, heap) *exits;
1395 struct tree_niter_desc niter_desc;
1396 edge ex;
1397 struct nb_iter_bound *nb_iter;
1398 enum tree_code loop_bound_code = ERROR_MARK;
1399 int loop_bound_step = 0;
1400 tree loop_bound_var = NULL;
1401 tree loop_iv_base = NULL;
1402 gimple stmt = NULL;
1404 exits = get_loop_exit_edges (loop);
1405 n_exits = VEC_length (edge, exits);
1407 FOR_EACH_VEC_ELT (edge, exits, j, ex)
1409 tree niter = NULL;
1410 HOST_WIDE_INT nitercst;
1411 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
1412 int probability;
1413 enum br_predictor predictor;
1415 predict_extra_loop_exits (ex);
1417 if (number_of_iterations_exit (loop, ex, &niter_desc, false))
1418 niter = niter_desc.niter;
1419 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
1420 niter = loop_niter_by_eval (loop, ex);
1422 if (TREE_CODE (niter) == INTEGER_CST)
1424 if (host_integerp (niter, 1)
1425 && compare_tree_int (niter, max-1) == -1)
1426 nitercst = tree_low_cst (niter, 1) + 1;
1427 else
1428 nitercst = max;
1429 predictor = PRED_LOOP_ITERATIONS;
1431 /* If we have just one exit and we can derive some information about
1432 the number of iterations of the loop from the statements inside
1433 the loop, use it to predict this exit. */
1434 else if (n_exits == 1)
1436 nitercst = estimated_stmt_executions_int (loop);
1437 if (nitercst < 0)
1438 continue;
1439 if (nitercst > max)
1440 nitercst = max;
1442 predictor = PRED_LOOP_ITERATIONS_GUESSED;
1444 else
1445 continue;
1447 probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
1448 predict_edge (ex, predictor, probability);
1450 VEC_free (edge, heap, exits);
1452 /* Find information about loop bound variables. */
1453 for (nb_iter = loop->bounds; nb_iter;
1454 nb_iter = nb_iter->next)
1455 if (nb_iter->stmt
1456 && gimple_code (nb_iter->stmt) == GIMPLE_COND)
1458 stmt = nb_iter->stmt;
1459 break;
1461 if (!stmt && last_stmt (loop->header)
1462 && gimple_code (last_stmt (loop->header)) == GIMPLE_COND)
1463 stmt = last_stmt (loop->header);
1464 if (stmt)
1465 is_comparison_with_loop_invariant_p (stmt, loop,
1466 &loop_bound_var,
1467 &loop_bound_code,
1468 &loop_bound_step,
1469 &loop_iv_base);
1471 bbs = get_loop_body (loop);
1473 for (j = 0; j < loop->num_nodes; j++)
1475 int header_found = 0;
1476 edge e;
1477 edge_iterator ei;
1479 bb = bbs[j];
1481 /* Bypass loop heuristics on continue statement. These
1482 statements construct loops via "non-loop" constructs
1483 in the source language and are better to be handled
1484 separately. */
1485 if (predicted_by_p (bb, PRED_CONTINUE))
1486 continue;
1488 /* Loop branch heuristics - predict an edge back to a
1489 loop's head as taken. */
1490 if (bb == loop->latch)
1492 e = find_edge (loop->latch, loop->header);
1493 if (e)
1495 header_found = 1;
1496 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
1500 /* Loop exit heuristics - predict an edge exiting the loop if the
1501 conditional has no loop header successors as not taken. */
1502 if (!header_found
1503 /* If we already used more reliable loop exit predictors, do not
1504 bother with PRED_LOOP_EXIT. */
1505 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1506 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
1508 /* For loop with many exits we don't want to predict all exits
1509 with the pretty large probability, because if all exits are
1510 considered in row, the loop would be predicted to iterate
1511 almost never. The code to divide probability by number of
1512 exits is very rough. It should compute the number of exits
1513 taken in each patch through function (not the overall number
1514 of exits that might be a lot higher for loops with wide switch
1515 statements in them) and compute n-th square root.
1517 We limit the minimal probability by 2% to avoid
1518 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1519 as this was causing regression in perl benchmark containing such
1520 a wide loop. */
1522 int probability = ((REG_BR_PROB_BASE
1523 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
1524 / n_exits);
1525 if (probability < HITRATE (2))
1526 probability = HITRATE (2);
1527 FOR_EACH_EDGE (e, ei, bb->succs)
1528 if (e->dest->index < NUM_FIXED_BLOCKS
1529 || !flow_bb_inside_loop_p (loop, e->dest))
1530 predict_edge (e, PRED_LOOP_EXIT, probability);
1532 if (loop_bound_var)
1533 predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base,
1534 loop_bound_code,
1535 loop_bound_step);
1538 /* Free basic blocks from get_loop_body. */
1539 free (bbs);
1543 /* Attempt to predict probabilities of BB outgoing edges using local
1544 properties. */
1545 static void
1546 bb_estimate_probability_locally (basic_block bb)
1548 rtx last_insn = BB_END (bb);
1549 rtx cond;
1551 if (! can_predict_insn_p (last_insn))
1552 return;
1553 cond = get_condition (last_insn, NULL, false, false);
1554 if (! cond)
1555 return;
1557 /* Try "pointer heuristic."
1558 A comparison ptr == 0 is predicted as false.
1559 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1560 if (COMPARISON_P (cond)
1561 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
1562 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
1564 if (GET_CODE (cond) == EQ)
1565 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
1566 else if (GET_CODE (cond) == NE)
1567 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
1569 else
1571 /* Try "opcode heuristic."
1572 EQ tests are usually false and NE tests are usually true. Also,
1573 most quantities are positive, so we can make the appropriate guesses
1574 about signed comparisons against zero. */
1575 switch (GET_CODE (cond))
1577 case CONST_INT:
1578 /* Unconditional branch. */
1579 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
1580 cond == const0_rtx ? NOT_TAKEN : TAKEN);
1581 break;
1583 case EQ:
1584 case UNEQ:
1585 /* Floating point comparisons appears to behave in a very
1586 unpredictable way because of special role of = tests in
1587 FP code. */
1588 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1590 /* Comparisons with 0 are often used for booleans and there is
1591 nothing useful to predict about them. */
1592 else if (XEXP (cond, 1) == const0_rtx
1593 || XEXP (cond, 0) == const0_rtx)
1595 else
1596 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
1597 break;
1599 case NE:
1600 case LTGT:
1601 /* Floating point comparisons appears to behave in a very
1602 unpredictable way because of special role of = tests in
1603 FP code. */
1604 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1606 /* Comparisons with 0 are often used for booleans and there is
1607 nothing useful to predict about them. */
1608 else if (XEXP (cond, 1) == const0_rtx
1609 || XEXP (cond, 0) == const0_rtx)
1611 else
1612 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
1613 break;
1615 case ORDERED:
1616 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
1617 break;
1619 case UNORDERED:
1620 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
1621 break;
1623 case LE:
1624 case LT:
1625 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1626 || XEXP (cond, 1) == constm1_rtx)
1627 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
1628 break;
1630 case GE:
1631 case GT:
1632 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1633 || XEXP (cond, 1) == constm1_rtx)
1634 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
1635 break;
1637 default:
1638 break;
1642 /* Set edge->probability for each successor edge of BB. */
1643 void
1644 guess_outgoing_edge_probabilities (basic_block bb)
1646 bb_estimate_probability_locally (bb);
1647 combine_predictions_for_insn (BB_END (bb), bb);
1650 static tree expr_expected_value (tree, bitmap);
1652 /* Helper function for expr_expected_value. */
1654 static tree
1655 expr_expected_value_1 (tree type, tree op0, enum tree_code code,
1656 tree op1, bitmap visited)
1658 gimple def;
1660 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1662 if (TREE_CONSTANT (op0))
1663 return op0;
1665 if (code != SSA_NAME)
1666 return NULL_TREE;
1668 def = SSA_NAME_DEF_STMT (op0);
1670 /* If we were already here, break the infinite cycle. */
1671 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
1672 return NULL;
1674 if (gimple_code (def) == GIMPLE_PHI)
1676 /* All the arguments of the PHI node must have the same constant
1677 length. */
1678 int i, n = gimple_phi_num_args (def);
1679 tree val = NULL, new_val;
1681 for (i = 0; i < n; i++)
1683 tree arg = PHI_ARG_DEF (def, i);
1685 /* If this PHI has itself as an argument, we cannot
1686 determine the string length of this argument. However,
1687 if we can find an expected constant value for the other
1688 PHI args then we can still be sure that this is
1689 likely a constant. So be optimistic and just
1690 continue with the next argument. */
1691 if (arg == PHI_RESULT (def))
1692 continue;
1694 new_val = expr_expected_value (arg, visited);
1695 if (!new_val)
1696 return NULL;
1697 if (!val)
1698 val = new_val;
1699 else if (!operand_equal_p (val, new_val, false))
1700 return NULL;
1702 return val;
1704 if (is_gimple_assign (def))
1706 if (gimple_assign_lhs (def) != op0)
1707 return NULL;
1709 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
1710 gimple_assign_rhs1 (def),
1711 gimple_assign_rhs_code (def),
1712 gimple_assign_rhs2 (def),
1713 visited);
1716 if (is_gimple_call (def))
1718 tree decl = gimple_call_fndecl (def);
1719 if (!decl)
1720 return NULL;
1721 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
1722 switch (DECL_FUNCTION_CODE (decl))
1724 case BUILT_IN_EXPECT:
1726 tree val;
1727 if (gimple_call_num_args (def) != 2)
1728 return NULL;
1729 val = gimple_call_arg (def, 0);
1730 if (TREE_CONSTANT (val))
1731 return val;
1732 return gimple_call_arg (def, 1);
1735 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
1736 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
1737 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
1738 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
1739 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
1740 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
1741 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
1742 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
1743 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
1744 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
1745 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
1746 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
1747 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
1748 /* Assume that any given atomic operation has low contention,
1749 and thus the compare-and-swap operation succeeds. */
1750 return boolean_true_node;
1754 return NULL;
1757 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
1759 tree res;
1760 op0 = expr_expected_value (op0, visited);
1761 if (!op0)
1762 return NULL;
1763 op1 = expr_expected_value (op1, visited);
1764 if (!op1)
1765 return NULL;
1766 res = fold_build2 (code, type, op0, op1);
1767 if (TREE_CONSTANT (res))
1768 return res;
1769 return NULL;
1771 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
1773 tree res;
1774 op0 = expr_expected_value (op0, visited);
1775 if (!op0)
1776 return NULL;
1777 res = fold_build1 (code, type, op0);
1778 if (TREE_CONSTANT (res))
1779 return res;
1780 return NULL;
1782 return NULL;
1785 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1786 The function is used by builtin_expect branch predictor so the evidence
1787 must come from this construct and additional possible constant folding.
1789 We may want to implement more involved value guess (such as value range
1790 propagation based prediction), but such tricks shall go to new
1791 implementation. */
1793 static tree
1794 expr_expected_value (tree expr, bitmap visited)
1796 enum tree_code code;
1797 tree op0, op1;
1799 if (TREE_CONSTANT (expr))
1800 return expr;
1802 extract_ops_from_tree (expr, &code, &op0, &op1);
1803 return expr_expected_value_1 (TREE_TYPE (expr),
1804 op0, code, op1, visited);
1808 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
1809 we no longer need. */
1810 static unsigned int
1811 strip_predict_hints (void)
1813 basic_block bb;
1814 gimple ass_stmt;
1815 tree var;
1817 FOR_EACH_BB (bb)
1819 gimple_stmt_iterator bi;
1820 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
1822 gimple stmt = gsi_stmt (bi);
1824 if (gimple_code (stmt) == GIMPLE_PREDICT)
1826 gsi_remove (&bi, true);
1827 continue;
1829 else if (gimple_code (stmt) == GIMPLE_CALL)
1831 tree fndecl = gimple_call_fndecl (stmt);
1833 if (fndecl
1834 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
1835 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
1836 && gimple_call_num_args (stmt) == 2)
1838 var = gimple_call_lhs (stmt);
1839 if (var)
1841 ass_stmt
1842 = gimple_build_assign (var, gimple_call_arg (stmt, 0));
1843 gsi_replace (&bi, ass_stmt, true);
1845 else
1847 gsi_remove (&bi, true);
1848 continue;
1852 gsi_next (&bi);
1855 return 0;
1858 /* Predict using opcode of the last statement in basic block. */
1859 static void
1860 tree_predict_by_opcode (basic_block bb)
1862 gimple stmt = last_stmt (bb);
1863 edge then_edge;
1864 tree op0, op1;
1865 tree type;
1866 tree val;
1867 enum tree_code cmp;
1868 bitmap visited;
1869 edge_iterator ei;
1871 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1872 return;
1873 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1874 if (then_edge->flags & EDGE_TRUE_VALUE)
1875 break;
1876 op0 = gimple_cond_lhs (stmt);
1877 op1 = gimple_cond_rhs (stmt);
1878 cmp = gimple_cond_code (stmt);
1879 type = TREE_TYPE (op0);
1880 visited = BITMAP_ALLOC (NULL);
1881 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited);
1882 BITMAP_FREE (visited);
1883 if (val)
1885 if (integer_zerop (val))
1886 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, NOT_TAKEN);
1887 else
1888 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, TAKEN);
1889 return;
1891 /* Try "pointer heuristic."
1892 A comparison ptr == 0 is predicted as false.
1893 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1894 if (POINTER_TYPE_P (type))
1896 if (cmp == EQ_EXPR)
1897 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
1898 else if (cmp == NE_EXPR)
1899 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1901 else
1903 /* Try "opcode heuristic."
1904 EQ tests are usually false and NE tests are usually true. Also,
1905 most quantities are positive, so we can make the appropriate guesses
1906 about signed comparisons against zero. */
1907 switch (cmp)
1909 case EQ_EXPR:
1910 case UNEQ_EXPR:
1911 /* Floating point comparisons appears to behave in a very
1912 unpredictable way because of special role of = tests in
1913 FP code. */
1914 if (FLOAT_TYPE_P (type))
1916 /* Comparisons with 0 are often used for booleans and there is
1917 nothing useful to predict about them. */
1918 else if (integer_zerop (op0) || integer_zerop (op1))
1920 else
1921 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
1922 break;
1924 case NE_EXPR:
1925 case LTGT_EXPR:
1926 /* Floating point comparisons appears to behave in a very
1927 unpredictable way because of special role of = tests in
1928 FP code. */
1929 if (FLOAT_TYPE_P (type))
1931 /* Comparisons with 0 are often used for booleans and there is
1932 nothing useful to predict about them. */
1933 else if (integer_zerop (op0)
1934 || integer_zerop (op1))
1936 else
1937 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
1938 break;
1940 case ORDERED_EXPR:
1941 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
1942 break;
1944 case UNORDERED_EXPR:
1945 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
1946 break;
1948 case LE_EXPR:
1949 case LT_EXPR:
1950 if (integer_zerop (op1)
1951 || integer_onep (op1)
1952 || integer_all_onesp (op1)
1953 || real_zerop (op1)
1954 || real_onep (op1)
1955 || real_minus_onep (op1))
1956 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
1957 break;
1959 case GE_EXPR:
1960 case GT_EXPR:
1961 if (integer_zerop (op1)
1962 || integer_onep (op1)
1963 || integer_all_onesp (op1)
1964 || real_zerop (op1)
1965 || real_onep (op1)
1966 || real_minus_onep (op1))
1967 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
1968 break;
1970 default:
1971 break;
1975 /* Try to guess whether the value of return means error code. */
1977 static enum br_predictor
1978 return_prediction (tree val, enum prediction *prediction)
1980 /* VOID. */
1981 if (!val)
1982 return PRED_NO_PREDICTION;
1983 /* Different heuristics for pointers and scalars. */
1984 if (POINTER_TYPE_P (TREE_TYPE (val)))
1986 /* NULL is usually not returned. */
1987 if (integer_zerop (val))
1989 *prediction = NOT_TAKEN;
1990 return PRED_NULL_RETURN;
1993 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
1995 /* Negative return values are often used to indicate
1996 errors. */
1997 if (TREE_CODE (val) == INTEGER_CST
1998 && tree_int_cst_sgn (val) < 0)
2000 *prediction = NOT_TAKEN;
2001 return PRED_NEGATIVE_RETURN;
2003 /* Constant return values seems to be commonly taken.
2004 Zero/one often represent booleans so exclude them from the
2005 heuristics. */
2006 if (TREE_CONSTANT (val)
2007 && (!integer_zerop (val) && !integer_onep (val)))
2009 *prediction = TAKEN;
2010 return PRED_CONST_RETURN;
2013 return PRED_NO_PREDICTION;
2016 /* Find the basic block with return expression and look up for possible
2017 return value trying to apply RETURN_PREDICTION heuristics. */
2018 static void
2019 apply_return_prediction (void)
2021 gimple return_stmt = NULL;
2022 tree return_val;
2023 edge e;
2024 gimple phi;
2025 int phi_num_args, i;
2026 enum br_predictor pred;
2027 enum prediction direction;
2028 edge_iterator ei;
2030 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
2032 return_stmt = last_stmt (e->src);
2033 if (return_stmt
2034 && gimple_code (return_stmt) == GIMPLE_RETURN)
2035 break;
2037 if (!e)
2038 return;
2039 return_val = gimple_return_retval (return_stmt);
2040 if (!return_val)
2041 return;
2042 if (TREE_CODE (return_val) != SSA_NAME
2043 || !SSA_NAME_DEF_STMT (return_val)
2044 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
2045 return;
2046 phi = SSA_NAME_DEF_STMT (return_val);
2047 phi_num_args = gimple_phi_num_args (phi);
2048 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
2050 /* Avoid the degenerate case where all return values form the function
2051 belongs to same category (ie they are all positive constants)
2052 so we can hardly say something about them. */
2053 for (i = 1; i < phi_num_args; i++)
2054 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
2055 break;
2056 if (i != phi_num_args)
2057 for (i = 0; i < phi_num_args; i++)
2059 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
2060 if (pred != PRED_NO_PREDICTION)
2061 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
2062 direction);
2066 /* Look for basic block that contains unlikely to happen events
2067 (such as noreturn calls) and mark all paths leading to execution
2068 of this basic blocks as unlikely. */
2070 static void
2071 tree_bb_level_predictions (void)
2073 basic_block bb;
2074 bool has_return_edges = false;
2075 edge e;
2076 edge_iterator ei;
2078 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
2079 if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
2081 has_return_edges = true;
2082 break;
2085 apply_return_prediction ();
2087 FOR_EACH_BB (bb)
2089 gimple_stmt_iterator gsi;
2091 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2093 gimple stmt = gsi_stmt (gsi);
2094 tree decl;
2096 if (is_gimple_call (stmt))
2098 if ((gimple_call_flags (stmt) & ECF_NORETURN)
2099 && has_return_edges)
2100 predict_paths_leading_to (bb, PRED_NORETURN,
2101 NOT_TAKEN);
2102 decl = gimple_call_fndecl (stmt);
2103 if (decl
2104 && lookup_attribute ("cold",
2105 DECL_ATTRIBUTES (decl)))
2106 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
2107 NOT_TAKEN);
2109 else if (gimple_code (stmt) == GIMPLE_PREDICT)
2111 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
2112 gimple_predict_outcome (stmt));
2113 /* Keep GIMPLE_PREDICT around so early inlining will propagate
2114 hints to callers. */
2120 #ifdef ENABLE_CHECKING
2122 /* Callback for pointer_map_traverse, asserts that the pointer map is
2123 empty. */
2125 static bool
2126 assert_is_empty (const void *key ATTRIBUTE_UNUSED, void **value,
2127 void *data ATTRIBUTE_UNUSED)
2129 gcc_assert (!*value);
2130 return false;
2132 #endif
2134 /* Predict branch probabilities and estimate profile for basic block BB. */
2136 static void
2137 tree_estimate_probability_bb (basic_block bb)
2139 edge e;
2140 edge_iterator ei;
2141 gimple last;
2143 FOR_EACH_EDGE (e, ei, bb->succs)
2145 /* Predict edges to user labels with attributes. */
2146 if (e->dest != EXIT_BLOCK_PTR)
2148 gimple_stmt_iterator gi;
2149 for (gi = gsi_start_bb (e->dest); !gsi_end_p (gi); gsi_next (&gi))
2151 gimple stmt = gsi_stmt (gi);
2152 tree decl;
2154 if (gimple_code (stmt) != GIMPLE_LABEL)
2155 break;
2156 decl = gimple_label_label (stmt);
2157 if (DECL_ARTIFICIAL (decl))
2158 continue;
2160 /* Finally, we have a user-defined label. */
2161 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl)))
2162 predict_edge_def (e, PRED_COLD_LABEL, NOT_TAKEN);
2163 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (decl)))
2164 predict_edge_def (e, PRED_HOT_LABEL, TAKEN);
2168 /* Predict early returns to be probable, as we've already taken
2169 care for error returns and other cases are often used for
2170 fast paths through function.
2172 Since we've already removed the return statements, we are
2173 looking for CFG like:
2175 if (conditional)
2178 goto return_block
2180 some other blocks
2181 return_block:
2182 return_stmt. */
2183 if (e->dest != bb->next_bb
2184 && e->dest != EXIT_BLOCK_PTR
2185 && single_succ_p (e->dest)
2186 && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR
2187 && (last = last_stmt (e->dest)) != NULL
2188 && gimple_code (last) == GIMPLE_RETURN)
2190 edge e1;
2191 edge_iterator ei1;
2193 if (single_succ_p (bb))
2195 FOR_EACH_EDGE (e1, ei1, bb->preds)
2196 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
2197 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
2198 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
2199 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2201 else
2202 if (!predicted_by_p (e->src, PRED_NULL_RETURN)
2203 && !predicted_by_p (e->src, PRED_CONST_RETURN)
2204 && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
2205 predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2208 /* Look for block we are guarding (ie we dominate it,
2209 but it doesn't postdominate us). */
2210 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
2211 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
2212 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
2214 gimple_stmt_iterator bi;
2216 /* The call heuristic claims that a guarded function call
2217 is improbable. This is because such calls are often used
2218 to signal exceptional situations such as printing error
2219 messages. */
2220 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
2221 gsi_next (&bi))
2223 gimple stmt = gsi_stmt (bi);
2224 if (is_gimple_call (stmt)
2225 /* Constant and pure calls are hardly used to signalize
2226 something exceptional. */
2227 && gimple_has_side_effects (stmt))
2229 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
2230 break;
2235 tree_predict_by_opcode (bb);
2238 /* Predict branch probabilities and estimate profile of the tree CFG.
2239 This function can be called from the loop optimizers to recompute
2240 the profile information. */
2242 void
2243 tree_estimate_probability (void)
2245 basic_block bb;
2247 add_noreturn_fake_exit_edges ();
2248 connect_infinite_loops_to_exit ();
2249 /* We use loop_niter_by_eval, which requires that the loops have
2250 preheaders. */
2251 create_preheaders (CP_SIMPLE_PREHEADERS);
2252 calculate_dominance_info (CDI_POST_DOMINATORS);
2254 bb_predictions = pointer_map_create ();
2255 tree_bb_level_predictions ();
2256 record_loop_exits ();
2258 if (number_of_loops () > 1)
2259 predict_loops ();
2261 FOR_EACH_BB (bb)
2262 tree_estimate_probability_bb (bb);
2264 FOR_EACH_BB (bb)
2265 combine_predictions_for_bb (bb);
2267 #ifdef ENABLE_CHECKING
2268 pointer_map_traverse (bb_predictions, assert_is_empty, NULL);
2269 #endif
2270 pointer_map_destroy (bb_predictions);
2271 bb_predictions = NULL;
2273 estimate_bb_frequencies ();
2274 free_dominance_info (CDI_POST_DOMINATORS);
2275 remove_fake_exit_edges ();
2278 /* Predict branch probabilities and estimate profile of the tree CFG.
2279 This is the driver function for PASS_PROFILE. */
2281 static unsigned int
2282 tree_estimate_probability_driver (void)
2284 unsigned nb_loops;
2286 loop_optimizer_init (LOOPS_NORMAL);
2287 if (dump_file && (dump_flags & TDF_DETAILS))
2288 flow_loops_dump (dump_file, NULL, 0);
2290 mark_irreducible_loops ();
2292 nb_loops = number_of_loops ();
2293 if (nb_loops > 1)
2294 scev_initialize ();
2296 tree_estimate_probability ();
2298 if (nb_loops > 1)
2299 scev_finalize ();
2301 loop_optimizer_finalize ();
2302 if (dump_file && (dump_flags & TDF_DETAILS))
2303 gimple_dump_cfg (dump_file, dump_flags);
2304 if (profile_status == PROFILE_ABSENT)
2305 profile_status = PROFILE_GUESSED;
2306 return 0;
2309 /* Predict edges to successors of CUR whose sources are not postdominated by
2310 BB by PRED and recurse to all postdominators. */
2312 static void
2313 predict_paths_for_bb (basic_block cur, basic_block bb,
2314 enum br_predictor pred,
2315 enum prediction taken,
2316 bitmap visited)
2318 edge e;
2319 edge_iterator ei;
2320 basic_block son;
2322 /* We are looking for all edges forming edge cut induced by
2323 set of all blocks postdominated by BB. */
2324 FOR_EACH_EDGE (e, ei, cur->preds)
2325 if (e->src->index >= NUM_FIXED_BLOCKS
2326 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
2328 edge e2;
2329 edge_iterator ei2;
2330 bool found = false;
2332 /* Ignore fake edges and eh, we predict them as not taken anyway. */
2333 if (e->flags & (EDGE_EH | EDGE_FAKE))
2334 continue;
2335 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
2337 /* See if there is an edge from e->src that is not abnormal
2338 and does not lead to BB. */
2339 FOR_EACH_EDGE (e2, ei2, e->src->succs)
2340 if (e2 != e
2341 && !(e2->flags & (EDGE_EH | EDGE_FAKE))
2342 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb))
2344 found = true;
2345 break;
2348 /* If there is non-abnormal path leaving e->src, predict edge
2349 using predictor. Otherwise we need to look for paths
2350 leading to e->src.
2352 The second may lead to infinite loop in the case we are predicitng
2353 regions that are only reachable by abnormal edges. We simply
2354 prevent visiting given BB twice. */
2355 if (found)
2356 predict_edge_def (e, pred, taken);
2357 else if (bitmap_set_bit (visited, e->src->index))
2358 predict_paths_for_bb (e->src, e->src, pred, taken, visited);
2360 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
2361 son;
2362 son = next_dom_son (CDI_POST_DOMINATORS, son))
2363 predict_paths_for_bb (son, bb, pred, taken, visited);
2366 /* Sets branch probabilities according to PREDiction and
2367 FLAGS. */
2369 static void
2370 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
2371 enum prediction taken)
2373 bitmap visited = BITMAP_ALLOC (NULL);
2374 predict_paths_for_bb (bb, bb, pred, taken, visited);
2375 BITMAP_FREE (visited);
2378 /* Like predict_paths_leading_to but take edge instead of basic block. */
2380 static void
2381 predict_paths_leading_to_edge (edge e, enum br_predictor pred,
2382 enum prediction taken)
2384 bool has_nonloop_edge = false;
2385 edge_iterator ei;
2386 edge e2;
2388 basic_block bb = e->src;
2389 FOR_EACH_EDGE (e2, ei, bb->succs)
2390 if (e2->dest != e->src && e2->dest != e->dest
2391 && !(e->flags & (EDGE_EH | EDGE_FAKE))
2392 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
2394 has_nonloop_edge = true;
2395 break;
2397 if (!has_nonloop_edge)
2399 bitmap visited = BITMAP_ALLOC (NULL);
2400 predict_paths_for_bb (bb, bb, pred, taken, visited);
2401 BITMAP_FREE (visited);
2403 else
2404 predict_edge_def (e, pred, taken);
2407 /* This is used to carry information about basic blocks. It is
2408 attached to the AUX field of the standard CFG block. */
2410 typedef struct block_info_def
2412 /* Estimated frequency of execution of basic_block. */
2413 sreal frequency;
2415 /* To keep queue of basic blocks to process. */
2416 basic_block next;
2418 /* Number of predecessors we need to visit first. */
2419 int npredecessors;
2420 } *block_info;
2422 /* Similar information for edges. */
2423 typedef struct edge_info_def
2425 /* In case edge is a loopback edge, the probability edge will be reached
2426 in case header is. Estimated number of iterations of the loop can be
2427 then computed as 1 / (1 - back_edge_prob). */
2428 sreal back_edge_prob;
2429 /* True if the edge is a loopback edge in the natural loop. */
2430 unsigned int back_edge:1;
2431 } *edge_info;
2433 #define BLOCK_INFO(B) ((block_info) (B)->aux)
2434 #define EDGE_INFO(E) ((edge_info) (E)->aux)
2436 /* Helper function for estimate_bb_frequencies.
2437 Propagate the frequencies in blocks marked in
2438 TOVISIT, starting in HEAD. */
2440 static void
2441 propagate_freq (basic_block head, bitmap tovisit)
2443 basic_block bb;
2444 basic_block last;
2445 unsigned i;
2446 edge e;
2447 basic_block nextbb;
2448 bitmap_iterator bi;
2450 /* For each basic block we need to visit count number of his predecessors
2451 we need to visit first. */
2452 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
2454 edge_iterator ei;
2455 int count = 0;
2457 bb = BASIC_BLOCK (i);
2459 FOR_EACH_EDGE (e, ei, bb->preds)
2461 bool visit = bitmap_bit_p (tovisit, e->src->index);
2463 if (visit && !(e->flags & EDGE_DFS_BACK))
2464 count++;
2465 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
2466 fprintf (dump_file,
2467 "Irreducible region hit, ignoring edge to %i->%i\n",
2468 e->src->index, bb->index);
2470 BLOCK_INFO (bb)->npredecessors = count;
2471 /* When function never returns, we will never process exit block. */
2472 if (!count && bb == EXIT_BLOCK_PTR)
2473 bb->count = bb->frequency = 0;
2476 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
2477 last = head;
2478 for (bb = head; bb; bb = nextbb)
2480 edge_iterator ei;
2481 sreal cyclic_probability, frequency;
2483 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
2484 memcpy (&frequency, &real_zero, sizeof (real_zero));
2486 nextbb = BLOCK_INFO (bb)->next;
2487 BLOCK_INFO (bb)->next = NULL;
2489 /* Compute frequency of basic block. */
2490 if (bb != head)
2492 #ifdef ENABLE_CHECKING
2493 FOR_EACH_EDGE (e, ei, bb->preds)
2494 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
2495 || (e->flags & EDGE_DFS_BACK));
2496 #endif
2498 FOR_EACH_EDGE (e, ei, bb->preds)
2499 if (EDGE_INFO (e)->back_edge)
2501 sreal_add (&cyclic_probability, &cyclic_probability,
2502 &EDGE_INFO (e)->back_edge_prob);
2504 else if (!(e->flags & EDGE_DFS_BACK))
2506 sreal tmp;
2508 /* frequency += (e->probability
2509 * BLOCK_INFO (e->src)->frequency /
2510 REG_BR_PROB_BASE); */
2512 sreal_init (&tmp, e->probability, 0);
2513 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
2514 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
2515 sreal_add (&frequency, &frequency, &tmp);
2518 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
2520 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
2521 sizeof (frequency));
2523 else
2525 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
2527 memcpy (&cyclic_probability, &real_almost_one,
2528 sizeof (real_almost_one));
2531 /* BLOCK_INFO (bb)->frequency = frequency
2532 / (1 - cyclic_probability) */
2534 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
2535 sreal_div (&BLOCK_INFO (bb)->frequency,
2536 &frequency, &cyclic_probability);
2540 bitmap_clear_bit (tovisit, bb->index);
2542 e = find_edge (bb, head);
2543 if (e)
2545 sreal tmp;
2547 /* EDGE_INFO (e)->back_edge_prob
2548 = ((e->probability * BLOCK_INFO (bb)->frequency)
2549 / REG_BR_PROB_BASE); */
2551 sreal_init (&tmp, e->probability, 0);
2552 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
2553 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2554 &tmp, &real_inv_br_prob_base);
2557 /* Propagate to successor blocks. */
2558 FOR_EACH_EDGE (e, ei, bb->succs)
2559 if (!(e->flags & EDGE_DFS_BACK)
2560 && BLOCK_INFO (e->dest)->npredecessors)
2562 BLOCK_INFO (e->dest)->npredecessors--;
2563 if (!BLOCK_INFO (e->dest)->npredecessors)
2565 if (!nextbb)
2566 nextbb = e->dest;
2567 else
2568 BLOCK_INFO (last)->next = e->dest;
2570 last = e->dest;
2576 /* Estimate probabilities of loopback edges in loops at same nest level. */
2578 static void
2579 estimate_loops_at_level (struct loop *first_loop)
2581 struct loop *loop;
2583 for (loop = first_loop; loop; loop = loop->next)
2585 edge e;
2586 basic_block *bbs;
2587 unsigned i;
2588 bitmap tovisit = BITMAP_ALLOC (NULL);
2590 estimate_loops_at_level (loop->inner);
2592 /* Find current loop back edge and mark it. */
2593 e = loop_latch_edge (loop);
2594 EDGE_INFO (e)->back_edge = 1;
2596 bbs = get_loop_body (loop);
2597 for (i = 0; i < loop->num_nodes; i++)
2598 bitmap_set_bit (tovisit, bbs[i]->index);
2599 free (bbs);
2600 propagate_freq (loop->header, tovisit);
2601 BITMAP_FREE (tovisit);
2605 /* Propagates frequencies through structure of loops. */
2607 static void
2608 estimate_loops (void)
2610 bitmap tovisit = BITMAP_ALLOC (NULL);
2611 basic_block bb;
2613 /* Start by estimating the frequencies in the loops. */
2614 if (number_of_loops () > 1)
2615 estimate_loops_at_level (current_loops->tree_root->inner);
2617 /* Now propagate the frequencies through all the blocks. */
2618 FOR_ALL_BB (bb)
2620 bitmap_set_bit (tovisit, bb->index);
2622 propagate_freq (ENTRY_BLOCK_PTR, tovisit);
2623 BITMAP_FREE (tovisit);
2626 /* Convert counts measured by profile driven feedback to frequencies.
2627 Return nonzero iff there was any nonzero execution count. */
2630 counts_to_freqs (void)
2632 gcov_type count_max, true_count_max = 0;
2633 basic_block bb;
2635 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2636 true_count_max = MAX (bb->count, true_count_max);
2638 count_max = MAX (true_count_max, 1);
2639 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2640 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
2642 return true_count_max;
2645 /* Return true if function is likely to be expensive, so there is no point to
2646 optimize performance of prologue, epilogue or do inlining at the expense
2647 of code size growth. THRESHOLD is the limit of number of instructions
2648 function can execute at average to be still considered not expensive. */
2650 bool
2651 expensive_function_p (int threshold)
2653 unsigned int sum = 0;
2654 basic_block bb;
2655 unsigned int limit;
2657 /* We can not compute accurately for large thresholds due to scaled
2658 frequencies. */
2659 gcc_assert (threshold <= BB_FREQ_MAX);
2661 /* Frequencies are out of range. This either means that function contains
2662 internal loop executing more than BB_FREQ_MAX times or profile feedback
2663 is available and function has not been executed at all. */
2664 if (ENTRY_BLOCK_PTR->frequency == 0)
2665 return true;
2667 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
2668 limit = ENTRY_BLOCK_PTR->frequency * threshold;
2669 FOR_EACH_BB (bb)
2671 rtx insn;
2673 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
2674 insn = NEXT_INSN (insn))
2675 if (active_insn_p (insn))
2677 sum += bb->frequency;
2678 if (sum > limit)
2679 return true;
2683 return false;
2686 /* Estimate basic blocks frequency by given branch probabilities. */
2688 void
2689 estimate_bb_frequencies (void)
2691 basic_block bb;
2692 sreal freq_max;
2694 if (profile_status != PROFILE_READ || !counts_to_freqs ())
2696 static int real_values_initialized = 0;
2698 if (!real_values_initialized)
2700 real_values_initialized = 1;
2701 sreal_init (&real_zero, 0, 0);
2702 sreal_init (&real_one, 1, 0);
2703 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
2704 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
2705 sreal_init (&real_one_half, 1, -1);
2706 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
2707 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
2710 mark_dfs_back_edges ();
2712 single_succ_edge (ENTRY_BLOCK_PTR)->probability = REG_BR_PROB_BASE;
2714 /* Set up block info for each basic block. */
2715 alloc_aux_for_blocks (sizeof (struct block_info_def));
2716 alloc_aux_for_edges (sizeof (struct edge_info_def));
2717 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2719 edge e;
2720 edge_iterator ei;
2722 FOR_EACH_EDGE (e, ei, bb->succs)
2724 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
2725 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2726 &EDGE_INFO (e)->back_edge_prob,
2727 &real_inv_br_prob_base);
2731 /* First compute probabilities locally for each loop from innermost
2732 to outermost to examine probabilities for back edges. */
2733 estimate_loops ();
2735 memcpy (&freq_max, &real_zero, sizeof (real_zero));
2736 FOR_EACH_BB (bb)
2737 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
2738 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
2740 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
2741 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2743 sreal tmp;
2745 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
2746 sreal_add (&tmp, &tmp, &real_one_half);
2747 bb->frequency = sreal_to_int (&tmp);
2750 free_aux_for_blocks ();
2751 free_aux_for_edges ();
2753 compute_function_frequency ();
2756 /* Decide whether function is hot, cold or unlikely executed. */
2757 void
2758 compute_function_frequency (void)
2760 basic_block bb;
2761 struct cgraph_node *node = cgraph_get_node (current_function_decl);
2762 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2763 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
2764 node->only_called_at_startup = true;
2765 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
2766 node->only_called_at_exit = true;
2768 if (!profile_info || !flag_branch_probabilities)
2770 int flags = flags_from_decl_or_type (current_function_decl);
2771 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
2772 != NULL)
2773 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2774 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
2775 != NULL)
2776 node->frequency = NODE_FREQUENCY_HOT;
2777 else if (flags & ECF_NORETURN)
2778 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2779 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
2780 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2781 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2782 || DECL_STATIC_DESTRUCTOR (current_function_decl))
2783 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2784 return;
2786 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2787 FOR_EACH_BB (bb)
2789 if (maybe_hot_bb_p (cfun, bb))
2791 node->frequency = NODE_FREQUENCY_HOT;
2792 return;
2794 if (!probably_never_executed_bb_p (cfun, bb))
2795 node->frequency = NODE_FREQUENCY_NORMAL;
2799 static bool
2800 gate_estimate_probability (void)
2802 return flag_guess_branch_prob;
2805 /* Build PREDICT_EXPR. */
2806 tree
2807 build_predict_expr (enum br_predictor predictor, enum prediction taken)
2809 tree t = build1 (PREDICT_EXPR, void_type_node,
2810 build_int_cst (integer_type_node, predictor));
2811 SET_PREDICT_EXPR_OUTCOME (t, taken);
2812 return t;
2815 const char *
2816 predictor_name (enum br_predictor predictor)
2818 return predictor_info[predictor].name;
2821 struct gimple_opt_pass pass_profile =
2824 GIMPLE_PASS,
2825 "profile_estimate", /* name */
2826 gate_estimate_probability, /* gate */
2827 tree_estimate_probability_driver, /* execute */
2828 NULL, /* sub */
2829 NULL, /* next */
2830 0, /* static_pass_number */
2831 TV_BRANCH_PROB, /* tv_id */
2832 PROP_cfg, /* properties_required */
2833 0, /* properties_provided */
2834 0, /* properties_destroyed */
2835 0, /* todo_flags_start */
2836 TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
2840 struct gimple_opt_pass pass_strip_predict_hints =
2843 GIMPLE_PASS,
2844 "*strip_predict_hints", /* name */
2845 NULL, /* gate */
2846 strip_predict_hints, /* execute */
2847 NULL, /* sub */
2848 NULL, /* next */
2849 0, /* static_pass_number */
2850 TV_BRANCH_PROB, /* tv_id */
2851 PROP_cfg, /* properties_required */
2852 0, /* properties_provided */
2853 0, /* properties_destroyed */
2854 0, /* todo_flags_start */
2855 TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
2859 /* Rebuild function frequencies. Passes are in general expected to
2860 maintain profile by hand, however in some cases this is not possible:
2861 for example when inlining several functions with loops freuqencies might run
2862 out of scale and thus needs to be recomputed. */
2864 void
2865 rebuild_frequencies (void)
2867 timevar_push (TV_REBUILD_FREQUENCIES);
2868 if (profile_status == PROFILE_GUESSED)
2870 loop_optimizer_init (0);
2871 add_noreturn_fake_exit_edges ();
2872 mark_irreducible_loops ();
2873 connect_infinite_loops_to_exit ();
2874 estimate_bb_frequencies ();
2875 remove_fake_exit_edges ();
2876 loop_optimizer_finalize ();
2878 else if (profile_status == PROFILE_READ)
2879 counts_to_freqs ();
2880 else
2881 gcc_unreachable ();
2882 timevar_pop (TV_REBUILD_FREQUENCIES);