2012-10-23 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / postreload.c
blob38be0ab45a5d9438acb8808a0e22ce16a197349f
1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010, 2011 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "regs.h"
38 #include "basic-block.h"
39 #include "reload.h"
40 #include "recog.h"
41 #include "cselib.h"
42 #include "diagnostic-core.h"
43 #include "except.h"
44 #include "tree.h"
45 #include "target.h"
46 #include "tree-pass.h"
47 #include "df.h"
48 #include "dbgcnt.h"
50 static int reload_cse_noop_set_p (rtx);
51 static void reload_cse_simplify (rtx, rtx);
52 static void reload_cse_regs_1 (rtx);
53 static int reload_cse_simplify_set (rtx, rtx);
54 static int reload_cse_simplify_operands (rtx, rtx);
56 static void reload_combine (void);
57 static void reload_combine_note_use (rtx *, rtx, int, rtx);
58 static void reload_combine_note_store (rtx, const_rtx, void *);
60 static bool reload_cse_move2add (rtx);
61 static void move2add_note_store (rtx, const_rtx, void *);
63 /* Call cse / combine like post-reload optimization phases.
64 FIRST is the first instruction. */
66 static void
67 reload_cse_regs (rtx first ATTRIBUTE_UNUSED)
69 bool moves_converted;
70 reload_cse_regs_1 (first);
71 reload_combine ();
72 moves_converted = reload_cse_move2add (first);
73 if (flag_expensive_optimizations)
75 if (moves_converted)
76 reload_combine ();
77 reload_cse_regs_1 (first);
81 /* See whether a single set SET is a noop. */
82 static int
83 reload_cse_noop_set_p (rtx set)
85 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
86 return 0;
88 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
91 /* Try to simplify INSN. */
92 static void
93 reload_cse_simplify (rtx insn, rtx testreg)
95 rtx body = PATTERN (insn);
97 if (GET_CODE (body) == SET)
99 int count = 0;
101 /* Simplify even if we may think it is a no-op.
102 We may think a memory load of a value smaller than WORD_SIZE
103 is redundant because we haven't taken into account possible
104 implicit extension. reload_cse_simplify_set() will bring
105 this out, so it's safer to simplify before we delete. */
106 count += reload_cse_simplify_set (body, insn);
108 if (!count && reload_cse_noop_set_p (body))
110 rtx value = SET_DEST (body);
111 if (REG_P (value)
112 && ! REG_FUNCTION_VALUE_P (value))
113 value = 0;
114 if (check_for_inc_dec (insn))
115 delete_insn_and_edges (insn);
116 return;
119 if (count > 0)
120 apply_change_group ();
121 else
122 reload_cse_simplify_operands (insn, testreg);
124 else if (GET_CODE (body) == PARALLEL)
126 int i;
127 int count = 0;
128 rtx value = NULL_RTX;
130 /* Registers mentioned in the clobber list for an asm cannot be reused
131 within the body of the asm. Invalidate those registers now so that
132 we don't try to substitute values for them. */
133 if (asm_noperands (body) >= 0)
135 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
137 rtx part = XVECEXP (body, 0, i);
138 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
139 cselib_invalidate_rtx (XEXP (part, 0));
143 /* If every action in a PARALLEL is a noop, we can delete
144 the entire PARALLEL. */
145 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
147 rtx part = XVECEXP (body, 0, i);
148 if (GET_CODE (part) == SET)
150 if (! reload_cse_noop_set_p (part))
151 break;
152 if (REG_P (SET_DEST (part))
153 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
155 if (value)
156 break;
157 value = SET_DEST (part);
160 else if (GET_CODE (part) != CLOBBER)
161 break;
164 if (i < 0)
166 if (check_for_inc_dec (insn))
167 delete_insn_and_edges (insn);
168 /* We're done with this insn. */
169 return;
172 /* It's not a no-op, but we can try to simplify it. */
173 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
174 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
175 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
177 if (count > 0)
178 apply_change_group ();
179 else
180 reload_cse_simplify_operands (insn, testreg);
184 /* Do a very simple CSE pass over the hard registers.
186 This function detects no-op moves where we happened to assign two
187 different pseudo-registers to the same hard register, and then
188 copied one to the other. Reload will generate a useless
189 instruction copying a register to itself.
191 This function also detects cases where we load a value from memory
192 into two different registers, and (if memory is more expensive than
193 registers) changes it to simply copy the first register into the
194 second register.
196 Another optimization is performed that scans the operands of each
197 instruction to see whether the value is already available in a
198 hard register. It then replaces the operand with the hard register
199 if possible, much like an optional reload would. */
201 static void
202 reload_cse_regs_1 (rtx first)
204 rtx insn;
205 rtx testreg = gen_rtx_REG (VOIDmode, -1);
207 cselib_init (CSELIB_RECORD_MEMORY);
208 init_alias_analysis ();
210 for (insn = first; insn; insn = NEXT_INSN (insn))
212 if (INSN_P (insn))
213 reload_cse_simplify (insn, testreg);
215 cselib_process_insn (insn);
218 /* Clean up. */
219 end_alias_analysis ();
220 cselib_finish ();
223 /* Try to simplify a single SET instruction. SET is the set pattern.
224 INSN is the instruction it came from.
225 This function only handles one case: if we set a register to a value
226 which is not a register, we try to find that value in some other register
227 and change the set into a register copy. */
229 static int
230 reload_cse_simplify_set (rtx set, rtx insn)
232 int did_change = 0;
233 int dreg;
234 rtx src;
235 reg_class_t dclass;
236 int old_cost;
237 cselib_val *val;
238 struct elt_loc_list *l;
239 #ifdef LOAD_EXTEND_OP
240 enum rtx_code extend_op = UNKNOWN;
241 #endif
242 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
244 dreg = true_regnum (SET_DEST (set));
245 if (dreg < 0)
246 return 0;
248 src = SET_SRC (set);
249 if (side_effects_p (src) || true_regnum (src) >= 0)
250 return 0;
252 dclass = REGNO_REG_CLASS (dreg);
254 #ifdef LOAD_EXTEND_OP
255 /* When replacing a memory with a register, we need to honor assumptions
256 that combine made wrt the contents of sign bits. We'll do this by
257 generating an extend instruction instead of a reg->reg copy. Thus
258 the destination must be a register that we can widen. */
259 if (MEM_P (src)
260 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
261 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != UNKNOWN
262 && !REG_P (SET_DEST (set)))
263 return 0;
264 #endif
266 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
267 if (! val)
268 return 0;
270 /* If memory loads are cheaper than register copies, don't change them. */
271 if (MEM_P (src))
272 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
273 else if (REG_P (src))
274 old_cost = register_move_cost (GET_MODE (src),
275 REGNO_REG_CLASS (REGNO (src)), dclass);
276 else
277 old_cost = set_src_cost (src, speed);
279 for (l = val->locs; l; l = l->next)
281 rtx this_rtx = l->loc;
282 int this_cost;
284 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
286 #ifdef LOAD_EXTEND_OP
287 if (extend_op != UNKNOWN)
289 HOST_WIDE_INT this_val;
291 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
292 constants, such as SYMBOL_REF, cannot be extended. */
293 if (!CONST_INT_P (this_rtx))
294 continue;
296 this_val = INTVAL (this_rtx);
297 switch (extend_op)
299 case ZERO_EXTEND:
300 this_val &= GET_MODE_MASK (GET_MODE (src));
301 break;
302 case SIGN_EXTEND:
303 /* ??? In theory we're already extended. */
304 if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
305 break;
306 default:
307 gcc_unreachable ();
309 this_rtx = GEN_INT (this_val);
311 #endif
312 this_cost = set_src_cost (this_rtx, speed);
314 else if (REG_P (this_rtx))
316 #ifdef LOAD_EXTEND_OP
317 if (extend_op != UNKNOWN)
319 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
320 this_cost = set_src_cost (this_rtx, speed);
322 else
323 #endif
324 this_cost = register_move_cost (GET_MODE (this_rtx),
325 REGNO_REG_CLASS (REGNO (this_rtx)),
326 dclass);
328 else
329 continue;
331 /* If equal costs, prefer registers over anything else. That
332 tends to lead to smaller instructions on some machines. */
333 if (this_cost < old_cost
334 || (this_cost == old_cost
335 && REG_P (this_rtx)
336 && !REG_P (SET_SRC (set))))
338 #ifdef LOAD_EXTEND_OP
339 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
340 && extend_op != UNKNOWN
341 #ifdef CANNOT_CHANGE_MODE_CLASS
342 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
343 word_mode,
344 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
345 #endif
348 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
349 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
350 validate_change (insn, &SET_DEST (set), wide_dest, 1);
352 #endif
354 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
355 old_cost = this_cost, did_change = 1;
359 return did_change;
362 /* Try to replace operands in INSN with equivalent values that are already
363 in registers. This can be viewed as optional reloading.
365 For each non-register operand in the insn, see if any hard regs are
366 known to be equivalent to that operand. Record the alternatives which
367 can accept these hard registers. Among all alternatives, select the
368 ones which are better or equal to the one currently matching, where
369 "better" is in terms of '?' and '!' constraints. Among the remaining
370 alternatives, select the one which replaces most operands with
371 hard registers. */
373 static int
374 reload_cse_simplify_operands (rtx insn, rtx testreg)
376 int i, j;
378 /* For each operand, all registers that are equivalent to it. */
379 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
381 const char *constraints[MAX_RECOG_OPERANDS];
383 /* Vector recording how bad an alternative is. */
384 int *alternative_reject;
385 /* Vector recording how many registers can be introduced by choosing
386 this alternative. */
387 int *alternative_nregs;
388 /* Array of vectors recording, for each operand and each alternative,
389 which hard register to substitute, or -1 if the operand should be
390 left as it is. */
391 int *op_alt_regno[MAX_RECOG_OPERANDS];
392 /* Array of alternatives, sorted in order of decreasing desirability. */
393 int *alternative_order;
395 extract_insn (insn);
397 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
398 return 0;
400 /* Figure out which alternative currently matches. */
401 if (! constrain_operands (1))
402 fatal_insn_not_found (insn);
404 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
405 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
406 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
407 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
408 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
410 /* For each operand, find out which regs are equivalent. */
411 for (i = 0; i < recog_data.n_operands; i++)
413 cselib_val *v;
414 struct elt_loc_list *l;
415 rtx op;
417 CLEAR_HARD_REG_SET (equiv_regs[i]);
419 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
420 right, so avoid the problem here. Likewise if we have a constant
421 and the insn pattern doesn't tell us the mode we need. */
422 if (LABEL_P (recog_data.operand[i])
423 || (CONSTANT_P (recog_data.operand[i])
424 && recog_data.operand_mode[i] == VOIDmode))
425 continue;
427 op = recog_data.operand[i];
428 #ifdef LOAD_EXTEND_OP
429 if (MEM_P (op)
430 && GET_MODE_BITSIZE (GET_MODE (op)) < BITS_PER_WORD
431 && LOAD_EXTEND_OP (GET_MODE (op)) != UNKNOWN)
433 rtx set = single_set (insn);
435 /* We might have multiple sets, some of which do implicit
436 extension. Punt on this for now. */
437 if (! set)
438 continue;
439 /* If the destination is also a MEM or a STRICT_LOW_PART, no
440 extension applies.
441 Also, if there is an explicit extension, we don't have to
442 worry about an implicit one. */
443 else if (MEM_P (SET_DEST (set))
444 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
445 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
446 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
447 ; /* Continue ordinary processing. */
448 #ifdef CANNOT_CHANGE_MODE_CLASS
449 /* If the register cannot change mode to word_mode, it follows that
450 it cannot have been used in word_mode. */
451 else if (REG_P (SET_DEST (set))
452 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
453 word_mode,
454 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
455 ; /* Continue ordinary processing. */
456 #endif
457 /* If this is a straight load, make the extension explicit. */
458 else if (REG_P (SET_DEST (set))
459 && recog_data.n_operands == 2
460 && SET_SRC (set) == op
461 && SET_DEST (set) == recog_data.operand[1-i])
463 validate_change (insn, recog_data.operand_loc[i],
464 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (op)),
465 word_mode, op),
467 validate_change (insn, recog_data.operand_loc[1-i],
468 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
470 if (! apply_change_group ())
471 return 0;
472 return reload_cse_simplify_operands (insn, testreg);
474 else
475 /* ??? There might be arithmetic operations with memory that are
476 safe to optimize, but is it worth the trouble? */
477 continue;
479 #endif /* LOAD_EXTEND_OP */
480 if (side_effects_p (op))
481 continue;
482 v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
483 if (! v)
484 continue;
486 for (l = v->locs; l; l = l->next)
487 if (REG_P (l->loc))
488 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
491 for (i = 0; i < recog_data.n_operands; i++)
493 enum machine_mode mode;
494 int regno;
495 const char *p;
497 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
498 for (j = 0; j < recog_data.n_alternatives; j++)
499 op_alt_regno[i][j] = -1;
501 p = constraints[i] = recog_data.constraints[i];
502 mode = recog_data.operand_mode[i];
504 /* Add the reject values for each alternative given by the constraints
505 for this operand. */
506 j = 0;
507 while (*p != '\0')
509 char c = *p++;
510 if (c == ',')
511 j++;
512 else if (c == '?')
513 alternative_reject[j] += 3;
514 else if (c == '!')
515 alternative_reject[j] += 300;
518 /* We won't change operands which are already registers. We
519 also don't want to modify output operands. */
520 regno = true_regnum (recog_data.operand[i]);
521 if (regno >= 0
522 || constraints[i][0] == '='
523 || constraints[i][0] == '+')
524 continue;
526 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
528 enum reg_class rclass = NO_REGS;
530 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
531 continue;
533 SET_REGNO_RAW (testreg, regno);
534 PUT_MODE (testreg, mode);
536 /* We found a register equal to this operand. Now look for all
537 alternatives that can accept this register and have not been
538 assigned a register they can use yet. */
539 j = 0;
540 p = constraints[i];
541 for (;;)
543 char c = *p;
545 switch (c)
547 case '=': case '+': case '?':
548 case '#': case '&': case '!':
549 case '*': case '%':
550 case '0': case '1': case '2': case '3': case '4':
551 case '5': case '6': case '7': case '8': case '9':
552 case '<': case '>': case 'V': case 'o':
553 case 'E': case 'F': case 'G': case 'H':
554 case 's': case 'i': case 'n':
555 case 'I': case 'J': case 'K': case 'L':
556 case 'M': case 'N': case 'O': case 'P':
557 case 'p': case 'X': case TARGET_MEM_CONSTRAINT:
558 /* These don't say anything we care about. */
559 break;
561 case 'g': case 'r':
562 rclass = reg_class_subunion[(int) rclass][(int) GENERAL_REGS];
563 break;
565 default:
566 rclass
567 = (reg_class_subunion
568 [(int) rclass]
569 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
570 break;
572 case ',': case '\0':
573 /* See if REGNO fits this alternative, and set it up as the
574 replacement register if we don't have one for this
575 alternative yet and the operand being replaced is not
576 a cheap CONST_INT. */
577 if (op_alt_regno[i][j] == -1
578 && recog_data.alternative_enabled_p[j]
579 && reg_fits_class_p (testreg, rclass, 0, mode)
580 && (!CONST_INT_P (recog_data.operand[i])
581 || (set_src_cost (recog_data.operand[i],
582 optimize_bb_for_speed_p
583 (BLOCK_FOR_INSN (insn)))
584 > set_src_cost (testreg,
585 optimize_bb_for_speed_p
586 (BLOCK_FOR_INSN (insn))))))
588 alternative_nregs[j]++;
589 op_alt_regno[i][j] = regno;
591 j++;
592 rclass = NO_REGS;
593 break;
595 p += CONSTRAINT_LEN (c, p);
597 if (c == '\0')
598 break;
603 /* Record all alternatives which are better or equal to the currently
604 matching one in the alternative_order array. */
605 for (i = j = 0; i < recog_data.n_alternatives; i++)
606 if (alternative_reject[i] <= alternative_reject[which_alternative])
607 alternative_order[j++] = i;
608 recog_data.n_alternatives = j;
610 /* Sort it. Given a small number of alternatives, a dumb algorithm
611 won't hurt too much. */
612 for (i = 0; i < recog_data.n_alternatives - 1; i++)
614 int best = i;
615 int best_reject = alternative_reject[alternative_order[i]];
616 int best_nregs = alternative_nregs[alternative_order[i]];
617 int tmp;
619 for (j = i + 1; j < recog_data.n_alternatives; j++)
621 int this_reject = alternative_reject[alternative_order[j]];
622 int this_nregs = alternative_nregs[alternative_order[j]];
624 if (this_reject < best_reject
625 || (this_reject == best_reject && this_nregs > best_nregs))
627 best = j;
628 best_reject = this_reject;
629 best_nregs = this_nregs;
633 tmp = alternative_order[best];
634 alternative_order[best] = alternative_order[i];
635 alternative_order[i] = tmp;
638 /* Substitute the operands as determined by op_alt_regno for the best
639 alternative. */
640 j = alternative_order[0];
642 for (i = 0; i < recog_data.n_operands; i++)
644 enum machine_mode mode = recog_data.operand_mode[i];
645 if (op_alt_regno[i][j] == -1)
646 continue;
648 validate_change (insn, recog_data.operand_loc[i],
649 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
652 for (i = recog_data.n_dups - 1; i >= 0; i--)
654 int op = recog_data.dup_num[i];
655 enum machine_mode mode = recog_data.operand_mode[op];
657 if (op_alt_regno[op][j] == -1)
658 continue;
660 validate_change (insn, recog_data.dup_loc[i],
661 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
664 return apply_change_group ();
667 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
668 addressing now.
669 This code might also be useful when reload gave up on reg+reg addressing
670 because of clashes between the return register and INDEX_REG_CLASS. */
672 /* The maximum number of uses of a register we can keep track of to
673 replace them with reg+reg addressing. */
674 #define RELOAD_COMBINE_MAX_USES 16
676 /* Describes a recorded use of a register. */
677 struct reg_use
679 /* The insn where a register has been used. */
680 rtx insn;
681 /* Points to the memory reference enclosing the use, if any, NULL_RTX
682 otherwise. */
683 rtx containing_mem;
684 /* Location of the register within INSN. */
685 rtx *usep;
686 /* The reverse uid of the insn. */
687 int ruid;
690 /* If the register is used in some unknown fashion, USE_INDEX is negative.
691 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
692 indicates where it is first set or clobbered.
693 Otherwise, USE_INDEX is the index of the last encountered use of the
694 register (which is first among these we have seen since we scan backwards).
695 USE_RUID indicates the first encountered, i.e. last, of these uses.
696 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
697 with a constant offset; OFFSET contains this constant in that case.
698 STORE_RUID is always meaningful if we only want to use a value in a
699 register in a different place: it denotes the next insn in the insn
700 stream (i.e. the last encountered) that sets or clobbers the register.
701 REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
702 static struct
704 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
705 rtx offset;
706 int use_index;
707 int store_ruid;
708 int real_store_ruid;
709 int use_ruid;
710 bool all_offsets_match;
711 } reg_state[FIRST_PSEUDO_REGISTER];
713 /* Reverse linear uid. This is increased in reload_combine while scanning
714 the instructions from last to first. It is used to set last_label_ruid
715 and the store_ruid / use_ruid fields in reg_state. */
716 static int reload_combine_ruid;
718 /* The RUID of the last label we encountered in reload_combine. */
719 static int last_label_ruid;
721 /* The RUID of the last jump we encountered in reload_combine. */
722 static int last_jump_ruid;
724 /* The register numbers of the first and last index register. A value of
725 -1 in LAST_INDEX_REG indicates that we've previously computed these
726 values and found no suitable index registers. */
727 static int first_index_reg = -1;
728 static int last_index_reg;
730 #define LABEL_LIVE(LABEL) \
731 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
733 /* Subroutine of reload_combine_split_ruids, called to fix up a single
734 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
736 static inline void
737 reload_combine_split_one_ruid (int *pruid, int split_ruid)
739 if (*pruid > split_ruid)
740 (*pruid)++;
743 /* Called when we insert a new insn in a position we've already passed in
744 the scan. Examine all our state, increasing all ruids that are higher
745 than SPLIT_RUID by one in order to make room for a new insn. */
747 static void
748 reload_combine_split_ruids (int split_ruid)
750 unsigned i;
752 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
753 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
754 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
756 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
758 int j, idx = reg_state[i].use_index;
759 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
760 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
761 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
762 split_ruid);
763 if (idx < 0)
764 continue;
765 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
767 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
768 split_ruid);
773 /* Called when we are about to rescan a previously encountered insn with
774 reload_combine_note_use after modifying some part of it. This clears all
775 information about uses in that particular insn. */
777 static void
778 reload_combine_purge_insn_uses (rtx insn)
780 unsigned i;
782 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
784 int j, k, idx = reg_state[i].use_index;
785 if (idx < 0)
786 continue;
787 j = k = RELOAD_COMBINE_MAX_USES;
788 while (j-- > idx)
790 if (reg_state[i].reg_use[j].insn != insn)
792 k--;
793 if (k != j)
794 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
797 reg_state[i].use_index = k;
801 /* Called when we need to forget about all uses of REGNO after an insn
802 which is identified by RUID. */
804 static void
805 reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
807 int j, k, idx = reg_state[regno].use_index;
808 if (idx < 0)
809 return;
810 j = k = RELOAD_COMBINE_MAX_USES;
811 while (j-- > idx)
813 if (reg_state[regno].reg_use[j].ruid >= ruid)
815 k--;
816 if (k != j)
817 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
820 reg_state[regno].use_index = k;
823 /* Find the use of REGNO with the ruid that is highest among those
824 lower than RUID_LIMIT, and return it if it is the only use of this
825 reg in the insn. Return NULL otherwise. */
827 static struct reg_use *
828 reload_combine_closest_single_use (unsigned regno, int ruid_limit)
830 int i, best_ruid = 0;
831 int use_idx = reg_state[regno].use_index;
832 struct reg_use *retval;
834 if (use_idx < 0)
835 return NULL;
836 retval = NULL;
837 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
839 struct reg_use *use = reg_state[regno].reg_use + i;
840 int this_ruid = use->ruid;
841 if (this_ruid >= ruid_limit)
842 continue;
843 if (this_ruid > best_ruid)
845 best_ruid = this_ruid;
846 retval = use;
848 else if (this_ruid == best_ruid)
849 retval = NULL;
851 if (last_label_ruid >= best_ruid)
852 return NULL;
853 return retval;
856 /* After we've moved an add insn, fix up any debug insns that occur
857 between the old location of the add and the new location. REG is
858 the destination register of the add insn; REPLACEMENT is the
859 SET_SRC of the add. FROM and TO specify the range in which we
860 should make this change on debug insns. */
862 static void
863 fixup_debug_insns (rtx reg, rtx replacement, rtx from, rtx to)
865 rtx insn;
866 for (insn = from; insn != to; insn = NEXT_INSN (insn))
868 rtx t;
870 if (!DEBUG_INSN_P (insn))
871 continue;
873 t = INSN_VAR_LOCATION_LOC (insn);
874 t = simplify_replace_rtx (t, reg, replacement);
875 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
879 /* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
880 with SRC in the insn described by USE, taking costs into account. Return
881 true if we made the replacement. */
883 static bool
884 try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
886 rtx use_insn = use->insn;
887 rtx mem = use->containing_mem;
888 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
890 if (mem != NULL_RTX)
892 addr_space_t as = MEM_ADDR_SPACE (mem);
893 rtx oldaddr = XEXP (mem, 0);
894 rtx newaddr = NULL_RTX;
895 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
896 int new_cost;
898 newaddr = simplify_replace_rtx (oldaddr, reg, src);
899 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
901 XEXP (mem, 0) = newaddr;
902 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
903 XEXP (mem, 0) = oldaddr;
904 if (new_cost <= old_cost
905 && validate_change (use_insn,
906 &XEXP (mem, 0), newaddr, 0))
907 return true;
910 else
912 rtx new_set = single_set (use_insn);
913 if (new_set
914 && REG_P (SET_DEST (new_set))
915 && GET_CODE (SET_SRC (new_set)) == PLUS
916 && REG_P (XEXP (SET_SRC (new_set), 0))
917 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
919 rtx new_src;
920 int old_cost = set_src_cost (SET_SRC (new_set), speed);
922 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
923 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
925 if (set_src_cost (new_src, speed) <= old_cost
926 && validate_change (use_insn, &SET_SRC (new_set),
927 new_src, 0))
928 return true;
931 return false;
934 /* Called by reload_combine when scanning INSN. This function tries to detect
935 patterns where a constant is added to a register, and the result is used
936 in an address.
937 Return true if no further processing is needed on INSN; false if it wasn't
938 recognized and should be handled normally. */
940 static bool
941 reload_combine_recognize_const_pattern (rtx insn)
943 int from_ruid = reload_combine_ruid;
944 rtx set, pat, reg, src, addreg;
945 unsigned int regno;
946 struct reg_use *use;
947 bool must_move_add;
948 rtx add_moved_after_insn = NULL_RTX;
949 int add_moved_after_ruid = 0;
950 int clobbered_regno = -1;
952 set = single_set (insn);
953 if (set == NULL_RTX)
954 return false;
956 reg = SET_DEST (set);
957 src = SET_SRC (set);
958 if (!REG_P (reg)
959 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1
960 || GET_MODE (reg) != Pmode
961 || reg == stack_pointer_rtx)
962 return false;
964 regno = REGNO (reg);
966 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
967 uses of REG1 inside an address, or inside another add insn. If
968 possible and profitable, merge the addition into subsequent
969 uses. */
970 if (GET_CODE (src) != PLUS
971 || !REG_P (XEXP (src, 0))
972 || !CONSTANT_P (XEXP (src, 1)))
973 return false;
975 addreg = XEXP (src, 0);
976 must_move_add = rtx_equal_p (reg, addreg);
978 pat = PATTERN (insn);
979 if (must_move_add && set != pat)
981 /* We have to be careful when moving the add; apart from the
982 single_set there may also be clobbers. Recognize one special
983 case, that of one clobber alongside the set (likely a clobber
984 of the CC register). */
985 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
986 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
987 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
988 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
989 return false;
990 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
995 use = reload_combine_closest_single_use (regno, from_ruid);
997 if (use)
998 /* Start the search for the next use from here. */
999 from_ruid = use->ruid;
1001 if (use && GET_MODE (*use->usep) == Pmode)
1003 bool delete_add = false;
1004 rtx use_insn = use->insn;
1005 int use_ruid = use->ruid;
1007 /* Avoid moving the add insn past a jump. */
1008 if (must_move_add && use_ruid <= last_jump_ruid)
1009 break;
1011 /* If the add clobbers another hard reg in parallel, don't move
1012 it past a real set of this hard reg. */
1013 if (must_move_add && clobbered_regno >= 0
1014 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
1015 break;
1017 #ifdef HAVE_cc0
1018 /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
1019 if (must_move_add && sets_cc0_p (PATTERN (use_insn)))
1020 break;
1021 #endif
1023 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
1024 /* Avoid moving a use of ADDREG past a point where it is stored. */
1025 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
1026 break;
1028 /* We also must not move the addition past an insn that sets
1029 the same register, unless we can combine two add insns. */
1030 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
1032 if (use->containing_mem == NULL_RTX)
1033 delete_add = true;
1034 else
1035 break;
1038 if (try_replace_in_use (use, reg, src))
1040 reload_combine_purge_insn_uses (use_insn);
1041 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1042 use_ruid, NULL_RTX);
1044 if (delete_add)
1046 fixup_debug_insns (reg, src, insn, use_insn);
1047 delete_insn (insn);
1048 return true;
1050 if (must_move_add)
1052 add_moved_after_insn = use_insn;
1053 add_moved_after_ruid = use_ruid;
1055 continue;
1058 /* If we get here, we couldn't handle this use. */
1059 if (must_move_add)
1060 break;
1062 while (use);
1064 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1065 /* Process the add normally. */
1066 return false;
1068 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1070 reorder_insns (insn, insn, add_moved_after_insn);
1071 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1072 reload_combine_split_ruids (add_moved_after_ruid - 1);
1073 reload_combine_note_use (&PATTERN (insn), insn,
1074 add_moved_after_ruid, NULL_RTX);
1075 reg_state[regno].store_ruid = add_moved_after_ruid;
1077 return true;
1080 /* Called by reload_combine when scanning INSN. Try to detect a pattern we
1081 can handle and improve. Return true if no further processing is needed on
1082 INSN; false if it wasn't recognized and should be handled normally. */
1084 static bool
1085 reload_combine_recognize_pattern (rtx insn)
1087 rtx set, reg, src;
1088 unsigned int regno;
1090 set = single_set (insn);
1091 if (set == NULL_RTX)
1092 return false;
1094 reg = SET_DEST (set);
1095 src = SET_SRC (set);
1096 if (!REG_P (reg)
1097 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1)
1098 return false;
1100 regno = REGNO (reg);
1102 /* Look for (set (REGX) (CONST_INT))
1103 (set (REGX) (PLUS (REGX) (REGY)))
1105 ... (MEM (REGX)) ...
1106 and convert it to
1107 (set (REGZ) (CONST_INT))
1109 ... (MEM (PLUS (REGZ) (REGY)))... .
1111 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1112 and that we know all uses of REGX before it dies.
1113 Also, explicitly check that REGX != REGY; our life information
1114 does not yet show whether REGY changes in this insn. */
1116 if (GET_CODE (src) == PLUS
1117 && reg_state[regno].all_offsets_match
1118 && last_index_reg != -1
1119 && REG_P (XEXP (src, 1))
1120 && rtx_equal_p (XEXP (src, 0), reg)
1121 && !rtx_equal_p (XEXP (src, 1), reg)
1122 && reg_state[regno].use_index >= 0
1123 && reg_state[regno].use_index < RELOAD_COMBINE_MAX_USES
1124 && last_label_ruid < reg_state[regno].use_ruid)
1126 rtx base = XEXP (src, 1);
1127 rtx prev = prev_nonnote_nondebug_insn (insn);
1128 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1129 rtx index_reg = NULL_RTX;
1130 rtx reg_sum = NULL_RTX;
1131 int i;
1133 /* Now we need to set INDEX_REG to an index register (denoted as
1134 REGZ in the illustration above) and REG_SUM to the expression
1135 register+register that we want to use to substitute uses of REG
1136 (typically in MEMs) with. First check REG and BASE for being
1137 index registers; we can use them even if they are not dead. */
1138 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1139 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1140 REGNO (base)))
1142 index_reg = reg;
1143 reg_sum = src;
1145 else
1147 /* Otherwise, look for a free index register. Since we have
1148 checked above that neither REG nor BASE are index registers,
1149 if we find anything at all, it will be different from these
1150 two registers. */
1151 for (i = first_index_reg; i <= last_index_reg; i++)
1153 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1154 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1155 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
1156 && (call_used_regs[i] || df_regs_ever_live_p (i))
1157 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1158 && !fixed_regs[i] && !global_regs[i]
1159 && hard_regno_nregs[i][GET_MODE (reg)] == 1
1160 && targetm.hard_regno_scratch_ok (i))
1162 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1163 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1164 break;
1169 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1170 (REGY), i.e. BASE, is not clobbered before the last use we'll
1171 create. */
1172 if (reg_sum
1173 && prev_set
1174 && CONST_INT_P (SET_SRC (prev_set))
1175 && rtx_equal_p (SET_DEST (prev_set), reg)
1176 && (reg_state[REGNO (base)].store_ruid
1177 <= reg_state[regno].use_ruid))
1179 /* Change destination register and, if necessary, the constant
1180 value in PREV, the constant loading instruction. */
1181 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1182 if (reg_state[regno].offset != const0_rtx)
1183 validate_change (prev,
1184 &SET_SRC (prev_set),
1185 GEN_INT (INTVAL (SET_SRC (prev_set))
1186 + INTVAL (reg_state[regno].offset)),
1189 /* Now for every use of REG that we have recorded, replace REG
1190 with REG_SUM. */
1191 for (i = reg_state[regno].use_index;
1192 i < RELOAD_COMBINE_MAX_USES; i++)
1193 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1194 reg_state[regno].reg_use[i].usep,
1195 /* Each change must have its own
1196 replacement. */
1197 reg_sum, 1);
1199 if (apply_change_group ())
1201 struct reg_use *lowest_ruid = NULL;
1203 /* For every new use of REG_SUM, we have to record the use
1204 of BASE therein, i.e. operand 1. */
1205 for (i = reg_state[regno].use_index;
1206 i < RELOAD_COMBINE_MAX_USES; i++)
1208 struct reg_use *use = reg_state[regno].reg_use + i;
1209 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1210 use->ruid, use->containing_mem);
1211 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1212 lowest_ruid = use;
1215 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
1217 /* Delete the reg-reg addition. */
1218 delete_insn (insn);
1220 if (reg_state[regno].offset != const0_rtx)
1221 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1222 are now invalid. */
1223 remove_reg_equal_equiv_notes (prev);
1225 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
1226 return true;
1230 return false;
1233 static void
1234 reload_combine (void)
1236 rtx insn, prev;
1237 basic_block bb;
1238 unsigned int r;
1239 int min_labelno, n_labels;
1240 HARD_REG_SET ever_live_at_start, *label_live;
1242 /* To avoid wasting too much time later searching for an index register,
1243 determine the minimum and maximum index register numbers. */
1244 if (INDEX_REG_CLASS == NO_REGS)
1245 last_index_reg = -1;
1246 else if (first_index_reg == -1 && last_index_reg == 0)
1248 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1249 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1251 if (first_index_reg == -1)
1252 first_index_reg = r;
1254 last_index_reg = r;
1257 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1258 to -1 so we'll know to quit early the next time we get here. */
1259 if (first_index_reg == -1)
1261 last_index_reg = -1;
1262 return;
1266 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1267 information is a bit fuzzy immediately after reload, but it's
1268 still good enough to determine which registers are live at a jump
1269 destination. */
1270 min_labelno = get_first_label_num ();
1271 n_labels = max_label_num () - min_labelno;
1272 label_live = XNEWVEC (HARD_REG_SET, n_labels);
1273 CLEAR_HARD_REG_SET (ever_live_at_start);
1275 FOR_EACH_BB_REVERSE (bb)
1277 insn = BB_HEAD (bb);
1278 if (LABEL_P (insn))
1280 HARD_REG_SET live;
1281 bitmap live_in = df_get_live_in (bb);
1283 REG_SET_TO_HARD_REG_SET (live, live_in);
1284 compute_use_by_pseudos (&live, live_in);
1285 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
1286 IOR_HARD_REG_SET (ever_live_at_start, live);
1290 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
1291 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
1292 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1294 reg_state[r].store_ruid = 0;
1295 reg_state[r].real_store_ruid = 0;
1296 if (fixed_regs[r])
1297 reg_state[r].use_index = -1;
1298 else
1299 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1302 for (insn = get_last_insn (); insn; insn = prev)
1304 bool control_flow_insn;
1305 rtx note;
1307 prev = PREV_INSN (insn);
1309 /* We cannot do our optimization across labels. Invalidating all the use
1310 information we have would be costly, so we just note where the label
1311 is and then later disable any optimization that would cross it. */
1312 if (LABEL_P (insn))
1313 last_label_ruid = reload_combine_ruid;
1314 else if (BARRIER_P (insn))
1316 /* Crossing a barrier resets all the use information. */
1317 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1318 if (! fixed_regs[r])
1319 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1321 else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1322 /* Optimizations across insns being marked as volatile must be
1323 prevented. All the usage information is invalidated
1324 here. */
1325 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1326 if (! fixed_regs[r]
1327 && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1328 reg_state[r].use_index = -1;
1330 if (! NONDEBUG_INSN_P (insn))
1331 continue;
1333 reload_combine_ruid++;
1335 control_flow_insn = control_flow_insn_p (insn);
1336 if (control_flow_insn)
1337 last_jump_ruid = reload_combine_ruid;
1339 if (reload_combine_recognize_const_pattern (insn)
1340 || reload_combine_recognize_pattern (insn))
1341 continue;
1343 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
1345 if (CALL_P (insn))
1347 rtx link;
1349 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1350 if (call_used_regs[r])
1352 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1353 reg_state[r].store_ruid = reload_combine_ruid;
1356 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1357 link = XEXP (link, 1))
1359 rtx setuse = XEXP (link, 0);
1360 rtx usage_rtx = XEXP (setuse, 0);
1361 if ((GET_CODE (setuse) == USE || GET_CODE (setuse) == CLOBBER)
1362 && REG_P (usage_rtx))
1364 unsigned int i;
1365 unsigned int start_reg = REGNO (usage_rtx);
1366 unsigned int num_regs
1367 = hard_regno_nregs[start_reg][GET_MODE (usage_rtx)];
1368 unsigned int end_reg = start_reg + num_regs - 1;
1369 for (i = start_reg; i <= end_reg; i++)
1370 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1372 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1373 reg_state[i].store_ruid = reload_combine_ruid;
1375 else
1376 reg_state[i].use_index = -1;
1381 if (control_flow_insn && GET_CODE (PATTERN (insn)) != RETURN)
1383 /* Non-spill registers might be used at the call destination in
1384 some unknown fashion, so we have to mark the unknown use. */
1385 HARD_REG_SET *live;
1387 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1388 && JUMP_LABEL (insn))
1389 live = &LABEL_LIVE (JUMP_LABEL (insn));
1390 else
1391 live = &ever_live_at_start;
1393 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1394 if (TEST_HARD_REG_BIT (*live, r))
1395 reg_state[r].use_index = -1;
1398 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1399 NULL_RTX);
1401 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1403 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
1405 int regno = REGNO (XEXP (note, 0));
1406 reg_state[regno].store_ruid = reload_combine_ruid;
1407 reg_state[regno].real_store_ruid = reload_combine_ruid;
1408 reg_state[regno].use_index = -1;
1413 free (label_live);
1416 /* Check if DST is a register or a subreg of a register; if it is,
1417 update store_ruid, real_store_ruid and use_index in the reg_state
1418 structure accordingly. Called via note_stores from reload_combine. */
1420 static void
1421 reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
1423 int regno = 0;
1424 int i;
1425 enum machine_mode mode = GET_MODE (dst);
1427 if (GET_CODE (dst) == SUBREG)
1429 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1430 GET_MODE (SUBREG_REG (dst)),
1431 SUBREG_BYTE (dst),
1432 GET_MODE (dst));
1433 dst = SUBREG_REG (dst);
1436 /* Some targets do argument pushes without adding REG_INC notes. */
1438 if (MEM_P (dst))
1440 dst = XEXP (dst, 0);
1441 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1442 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1443 || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
1445 regno = REGNO (XEXP (dst, 0));
1446 mode = GET_MODE (XEXP (dst, 0));
1447 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1449 /* We could probably do better, but for now mark the register
1450 as used in an unknown fashion and set/clobbered at this
1451 insn. */
1452 reg_state[i].use_index = -1;
1453 reg_state[i].store_ruid = reload_combine_ruid;
1454 reg_state[i].real_store_ruid = reload_combine_ruid;
1457 else
1458 return;
1461 if (!REG_P (dst))
1462 return;
1463 regno += REGNO (dst);
1465 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1466 careful with registers / register parts that are not full words.
1467 Similarly for ZERO_EXTRACT. */
1468 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1469 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1471 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1473 reg_state[i].use_index = -1;
1474 reg_state[i].store_ruid = reload_combine_ruid;
1475 reg_state[i].real_store_ruid = reload_combine_ruid;
1478 else
1480 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1482 reg_state[i].store_ruid = reload_combine_ruid;
1483 if (GET_CODE (set) == SET)
1484 reg_state[i].real_store_ruid = reload_combine_ruid;
1485 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1490 /* XP points to a piece of rtl that has to be checked for any uses of
1491 registers.
1492 *XP is the pattern of INSN, or a part of it.
1493 Called from reload_combine, and recursively by itself. */
1494 static void
1495 reload_combine_note_use (rtx *xp, rtx insn, int ruid, rtx containing_mem)
1497 rtx x = *xp;
1498 enum rtx_code code = x->code;
1499 const char *fmt;
1500 int i, j;
1501 rtx offset = const0_rtx; /* For the REG case below. */
1503 switch (code)
1505 case SET:
1506 if (REG_P (SET_DEST (x)))
1508 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
1509 return;
1511 break;
1513 case USE:
1514 /* If this is the USE of a return value, we can't change it. */
1515 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1517 /* Mark the return register as used in an unknown fashion. */
1518 rtx reg = XEXP (x, 0);
1519 int regno = REGNO (reg);
1520 int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1522 while (--nregs >= 0)
1523 reg_state[regno + nregs].use_index = -1;
1524 return;
1526 break;
1528 case CLOBBER:
1529 if (REG_P (SET_DEST (x)))
1531 /* No spurious CLOBBERs of pseudo registers may remain. */
1532 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1533 return;
1535 break;
1537 case PLUS:
1538 /* We are interested in (plus (reg) (const_int)) . */
1539 if (!REG_P (XEXP (x, 0))
1540 || !CONST_INT_P (XEXP (x, 1)))
1541 break;
1542 offset = XEXP (x, 1);
1543 x = XEXP (x, 0);
1544 /* Fall through. */
1545 case REG:
1547 int regno = REGNO (x);
1548 int use_index;
1549 int nregs;
1551 /* No spurious USEs of pseudo registers may remain. */
1552 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1554 nregs = hard_regno_nregs[regno][GET_MODE (x)];
1556 /* We can't substitute into multi-hard-reg uses. */
1557 if (nregs > 1)
1559 while (--nregs >= 0)
1560 reg_state[regno + nregs].use_index = -1;
1561 return;
1564 /* We may be called to update uses in previously seen insns.
1565 Don't add uses beyond the last store we saw. */
1566 if (ruid < reg_state[regno].store_ruid)
1567 return;
1569 /* If this register is already used in some unknown fashion, we
1570 can't do anything.
1571 If we decrement the index from zero to -1, we can't store more
1572 uses, so this register becomes used in an unknown fashion. */
1573 use_index = --reg_state[regno].use_index;
1574 if (use_index < 0)
1575 return;
1577 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
1579 /* This is the first use of this register we have seen since we
1580 marked it as dead. */
1581 reg_state[regno].offset = offset;
1582 reg_state[regno].all_offsets_match = true;
1583 reg_state[regno].use_ruid = ruid;
1585 else
1587 if (reg_state[regno].use_ruid > ruid)
1588 reg_state[regno].use_ruid = ruid;
1590 if (! rtx_equal_p (offset, reg_state[regno].offset))
1591 reg_state[regno].all_offsets_match = false;
1594 reg_state[regno].reg_use[use_index].insn = insn;
1595 reg_state[regno].reg_use[use_index].ruid = ruid;
1596 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
1597 reg_state[regno].reg_use[use_index].usep = xp;
1598 return;
1601 case MEM:
1602 containing_mem = x;
1603 break;
1605 default:
1606 break;
1609 /* Recursively process the components of X. */
1610 fmt = GET_RTX_FORMAT (code);
1611 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1613 if (fmt[i] == 'e')
1614 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
1615 else if (fmt[i] == 'E')
1617 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1618 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1619 containing_mem);
1624 /* See if we can reduce the cost of a constant by replacing a move
1625 with an add. We track situations in which a register is set to a
1626 constant or to a register plus a constant. */
1627 /* We cannot do our optimization across labels. Invalidating all the
1628 information about register contents we have would be costly, so we
1629 use move2add_last_label_luid to note where the label is and then
1630 later disable any optimization that would cross it.
1631 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1632 are only valid if reg_set_luid[n] is greater than
1633 move2add_last_label_luid. */
1634 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1636 /* If reg_base_reg[n] is negative, register n has been set to
1637 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
1638 If reg_base_reg[n] is non-negative, register n has been set to the
1639 sum of reg_offset[n] and the value of register reg_base_reg[n]
1640 before reg_set_luid[n], calculated in mode reg_mode[n] . */
1641 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1642 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1643 static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
1644 static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1646 /* move2add_luid is linearly increased while scanning the instructions
1647 from first to last. It is used to set reg_set_luid in
1648 reload_cse_move2add and move2add_note_store. */
1649 static int move2add_luid;
1651 /* move2add_last_label_luid is set whenever a label is found. Labels
1652 invalidate all previously collected reg_offset data. */
1653 static int move2add_last_label_luid;
1655 /* ??? We don't know how zero / sign extension is handled, hence we
1656 can't go from a narrower to a wider mode. */
1657 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1658 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1659 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1660 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
1662 /* This function is called with INSN that sets REG to (SYM + OFF),
1663 while REG is known to already have value (SYM + offset).
1664 This function tries to change INSN into an add instruction
1665 (set (REG) (plus (REG) (OFF - offset))) using the known value.
1666 It also updates the information about REG's known value.
1667 Return true if we made a change. */
1669 static bool
1670 move2add_use_add2_insn (rtx reg, rtx sym, rtx off, rtx insn)
1672 rtx pat = PATTERN (insn);
1673 rtx src = SET_SRC (pat);
1674 int regno = REGNO (reg);
1675 rtx new_src = gen_int_mode (INTVAL (off) - reg_offset[regno],
1676 GET_MODE (reg));
1677 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1678 bool changed = false;
1680 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1681 use (set (reg) (reg)) instead.
1682 We don't delete this insn, nor do we convert it into a
1683 note, to avoid losing register notes or the return
1684 value flag. jump2 already knows how to get rid of
1685 no-op moves. */
1686 if (new_src == const0_rtx)
1688 /* If the constants are different, this is a
1689 truncation, that, if turned into (set (reg)
1690 (reg)), would be discarded. Maybe we should
1691 try a truncMN pattern? */
1692 if (INTVAL (off) == reg_offset [regno])
1693 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
1695 else
1697 struct full_rtx_costs oldcst, newcst;
1698 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1700 get_full_set_rtx_cost (pat, &oldcst);
1701 SET_SRC (pat) = tem;
1702 get_full_set_rtx_cost (pat, &newcst);
1703 SET_SRC (pat) = src;
1705 if (costs_lt_p (&newcst, &oldcst, speed)
1706 && have_add2_insn (reg, new_src))
1707 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1708 else if (sym == NULL_RTX && GET_MODE (reg) != BImode)
1710 enum machine_mode narrow_mode;
1711 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1712 narrow_mode != VOIDmode
1713 && narrow_mode != GET_MODE (reg);
1714 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
1716 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1717 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1718 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1720 rtx narrow_reg = gen_rtx_REG (narrow_mode,
1721 REGNO (reg));
1722 rtx narrow_src = gen_int_mode (INTVAL (off),
1723 narrow_mode);
1724 rtx new_set
1725 = gen_rtx_SET (VOIDmode,
1726 gen_rtx_STRICT_LOW_PART (VOIDmode,
1727 narrow_reg),
1728 narrow_src);
1729 changed = validate_change (insn, &PATTERN (insn),
1730 new_set, 0);
1731 if (changed)
1732 break;
1737 reg_set_luid[regno] = move2add_luid;
1738 reg_base_reg[regno] = -1;
1739 reg_mode[regno] = GET_MODE (reg);
1740 reg_symbol_ref[regno] = sym;
1741 reg_offset[regno] = INTVAL (off);
1742 return changed;
1746 /* This function is called with INSN that sets REG to (SYM + OFF),
1747 but REG doesn't have known value (SYM + offset). This function
1748 tries to find another register which is known to already have
1749 value (SYM + offset) and change INSN into an add instruction
1750 (set (REG) (plus (the found register) (OFF - offset))) if such
1751 a register is found. It also updates the information about
1752 REG's known value.
1753 Return true iff we made a change. */
1755 static bool
1756 move2add_use_add3_insn (rtx reg, rtx sym, rtx off, rtx insn)
1758 rtx pat = PATTERN (insn);
1759 rtx src = SET_SRC (pat);
1760 int regno = REGNO (reg);
1761 int min_regno = 0;
1762 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1763 int i;
1764 bool changed = false;
1765 struct full_rtx_costs oldcst, newcst, mincst;
1766 rtx plus_expr;
1768 init_costs_to_max (&mincst);
1769 get_full_set_rtx_cost (pat, &oldcst);
1771 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1772 SET_SRC (pat) = plus_expr;
1774 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1775 if (reg_set_luid[i] > move2add_last_label_luid
1776 && reg_mode[i] == GET_MODE (reg)
1777 && reg_base_reg[i] < 0
1778 && reg_symbol_ref[i] != NULL_RTX
1779 && rtx_equal_p (sym, reg_symbol_ref[i]))
1781 rtx new_src = gen_int_mode (INTVAL (off) - reg_offset[i],
1782 GET_MODE (reg));
1783 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1784 use (set (reg) (reg)) instead.
1785 We don't delete this insn, nor do we convert it into a
1786 note, to avoid losing register notes or the return
1787 value flag. jump2 already knows how to get rid of
1788 no-op moves. */
1789 if (new_src == const0_rtx)
1791 init_costs_to_zero (&mincst);
1792 min_regno = i;
1793 break;
1795 else
1797 XEXP (plus_expr, 1) = new_src;
1798 get_full_set_rtx_cost (pat, &newcst);
1800 if (costs_lt_p (&newcst, &mincst, speed))
1802 mincst = newcst;
1803 min_regno = i;
1807 SET_SRC (pat) = src;
1809 if (costs_lt_p (&mincst, &oldcst, speed))
1811 rtx tem;
1813 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1814 if (i != min_regno)
1816 rtx new_src = gen_int_mode (INTVAL (off) - reg_offset[min_regno],
1817 GET_MODE (reg));
1818 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1820 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1821 changed = true;
1823 reg_set_luid[regno] = move2add_luid;
1824 reg_base_reg[regno] = -1;
1825 reg_mode[regno] = GET_MODE (reg);
1826 reg_symbol_ref[regno] = sym;
1827 reg_offset[regno] = INTVAL (off);
1828 return changed;
1831 /* Convert move insns with constant inputs to additions if they are cheaper.
1832 Return true if any changes were made. */
1833 static bool
1834 reload_cse_move2add (rtx first)
1836 int i;
1837 rtx insn;
1838 bool changed = false;
1840 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1842 reg_set_luid[i] = 0;
1843 reg_offset[i] = 0;
1844 reg_base_reg[i] = 0;
1845 reg_symbol_ref[i] = NULL_RTX;
1846 reg_mode[i] = VOIDmode;
1849 move2add_last_label_luid = 0;
1850 move2add_luid = 2;
1851 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1853 rtx pat, note;
1855 if (LABEL_P (insn))
1857 move2add_last_label_luid = move2add_luid;
1858 /* We're going to increment move2add_luid twice after a
1859 label, so that we can use move2add_last_label_luid + 1 as
1860 the luid for constants. */
1861 move2add_luid++;
1862 continue;
1864 if (! INSN_P (insn))
1865 continue;
1866 pat = PATTERN (insn);
1867 /* For simplicity, we only perform this optimization on
1868 straightforward SETs. */
1869 if (GET_CODE (pat) == SET
1870 && REG_P (SET_DEST (pat)))
1872 rtx reg = SET_DEST (pat);
1873 int regno = REGNO (reg);
1874 rtx src = SET_SRC (pat);
1876 /* Check if we have valid information on the contents of this
1877 register in the mode of REG. */
1878 if (reg_set_luid[regno] > move2add_last_label_luid
1879 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno])
1880 && dbg_cnt (cse2_move2add))
1882 /* Try to transform (set (REGX) (CONST_INT A))
1884 (set (REGX) (CONST_INT B))
1886 (set (REGX) (CONST_INT A))
1888 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1890 (set (REGX) (CONST_INT A))
1892 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1895 if (CONST_INT_P (src)
1896 && reg_base_reg[regno] < 0
1897 && reg_symbol_ref[regno] == NULL_RTX)
1899 changed |= move2add_use_add2_insn (reg, NULL_RTX, src, insn);
1900 continue;
1903 /* Try to transform (set (REGX) (REGY))
1904 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1906 (set (REGX) (REGY))
1907 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1909 (set (REGX) (REGY))
1910 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1912 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1913 else if (REG_P (src)
1914 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1915 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1916 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg),
1917 reg_mode[REGNO (src)]))
1919 rtx next = next_nonnote_nondebug_insn (insn);
1920 rtx set = NULL_RTX;
1921 if (next)
1922 set = single_set (next);
1923 if (set
1924 && SET_DEST (set) == reg
1925 && GET_CODE (SET_SRC (set)) == PLUS
1926 && XEXP (SET_SRC (set), 0) == reg
1927 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
1929 rtx src3 = XEXP (SET_SRC (set), 1);
1930 HOST_WIDE_INT added_offset = INTVAL (src3);
1931 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
1932 HOST_WIDE_INT regno_offset = reg_offset[regno];
1933 rtx new_src =
1934 gen_int_mode (added_offset
1935 + base_offset
1936 - regno_offset,
1937 GET_MODE (reg));
1938 bool success = false;
1939 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1941 if (new_src == const0_rtx)
1942 /* See above why we create (set (reg) (reg)) here. */
1943 success
1944 = validate_change (next, &SET_SRC (set), reg, 0);
1945 else
1947 rtx old_src = SET_SRC (set);
1948 struct full_rtx_costs oldcst, newcst;
1949 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1951 get_full_set_rtx_cost (set, &oldcst);
1952 SET_SRC (set) = tem;
1953 get_full_set_src_cost (tem, &newcst);
1954 SET_SRC (set) = old_src;
1955 costs_add_n_insns (&oldcst, 1);
1957 if (costs_lt_p (&newcst, &oldcst, speed)
1958 && have_add2_insn (reg, new_src))
1960 rtx newpat = gen_rtx_SET (VOIDmode, reg, tem);
1961 success
1962 = validate_change (next, &PATTERN (next),
1963 newpat, 0);
1966 if (success)
1967 delete_insn (insn);
1968 changed |= success;
1969 insn = next;
1970 reg_mode[regno] = GET_MODE (reg);
1971 reg_offset[regno] =
1972 trunc_int_for_mode (added_offset + base_offset,
1973 GET_MODE (reg));
1974 continue;
1979 /* Try to transform
1980 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
1982 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
1984 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
1986 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
1987 if ((GET_CODE (src) == SYMBOL_REF
1988 || (GET_CODE (src) == CONST
1989 && GET_CODE (XEXP (src, 0)) == PLUS
1990 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
1991 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
1992 && dbg_cnt (cse2_move2add))
1994 rtx sym, off;
1996 if (GET_CODE (src) == SYMBOL_REF)
1998 sym = src;
1999 off = const0_rtx;
2001 else
2003 sym = XEXP (XEXP (src, 0), 0);
2004 off = XEXP (XEXP (src, 0), 1);
2007 /* If the reg already contains the value which is sum of
2008 sym and some constant value, we can use an add2 insn. */
2009 if (reg_set_luid[regno] > move2add_last_label_luid
2010 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno])
2011 && reg_base_reg[regno] < 0
2012 && reg_symbol_ref[regno] != NULL_RTX
2013 && rtx_equal_p (sym, reg_symbol_ref[regno]))
2014 changed |= move2add_use_add2_insn (reg, sym, off, insn);
2016 /* Otherwise, we have to find a register whose value is sum
2017 of sym and some constant value. */
2018 else
2019 changed |= move2add_use_add3_insn (reg, sym, off, insn);
2021 continue;
2025 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2027 if (REG_NOTE_KIND (note) == REG_INC
2028 && REG_P (XEXP (note, 0)))
2030 /* Reset the information about this register. */
2031 int regno = REGNO (XEXP (note, 0));
2032 if (regno < FIRST_PSEUDO_REGISTER)
2033 reg_set_luid[regno] = 0;
2036 note_stores (PATTERN (insn), move2add_note_store, insn);
2038 /* If INSN is a conditional branch, we try to extract an
2039 implicit set out of it. */
2040 if (any_condjump_p (insn))
2042 rtx cnd = fis_get_condition (insn);
2044 if (cnd != NULL_RTX
2045 && GET_CODE (cnd) == NE
2046 && REG_P (XEXP (cnd, 0))
2047 && !reg_set_p (XEXP (cnd, 0), insn)
2048 /* The following two checks, which are also in
2049 move2add_note_store, are intended to reduce the
2050 number of calls to gen_rtx_SET to avoid memory
2051 allocation if possible. */
2052 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
2053 && hard_regno_nregs[REGNO (XEXP (cnd, 0))][GET_MODE (XEXP (cnd, 0))] == 1
2054 && CONST_INT_P (XEXP (cnd, 1)))
2056 rtx implicit_set =
2057 gen_rtx_SET (VOIDmode, XEXP (cnd, 0), XEXP (cnd, 1));
2058 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
2062 /* If this is a CALL_INSN, all call used registers are stored with
2063 unknown values. */
2064 if (CALL_P (insn))
2066 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2068 if (call_used_regs[i])
2069 /* Reset the information about this register. */
2070 reg_set_luid[i] = 0;
2074 return changed;
2077 /* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2078 contains SET.
2079 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2080 Called from reload_cse_move2add via note_stores. */
2082 static void
2083 move2add_note_store (rtx dst, const_rtx set, void *data)
2085 rtx insn = (rtx) data;
2086 unsigned int regno = 0;
2087 unsigned int nregs = 0;
2088 unsigned int i;
2089 enum machine_mode mode = GET_MODE (dst);
2091 if (GET_CODE (dst) == SUBREG)
2093 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
2094 GET_MODE (SUBREG_REG (dst)),
2095 SUBREG_BYTE (dst),
2096 GET_MODE (dst));
2097 nregs = subreg_nregs (dst);
2098 dst = SUBREG_REG (dst);
2101 /* Some targets do argument pushes without adding REG_INC notes. */
2103 if (MEM_P (dst))
2105 dst = XEXP (dst, 0);
2106 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
2107 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
2108 reg_set_luid[REGNO (XEXP (dst, 0))] = 0;
2109 return;
2111 if (!REG_P (dst))
2112 return;
2114 regno += REGNO (dst);
2115 if (!nregs)
2116 nregs = hard_regno_nregs[regno][mode];
2118 if (SCALAR_INT_MODE_P (GET_MODE (dst))
2119 && nregs == 1 && GET_CODE (set) == SET)
2121 rtx note, sym = NULL_RTX;
2122 HOST_WIDE_INT off;
2124 note = find_reg_equal_equiv_note (insn);
2125 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2127 sym = XEXP (note, 0);
2128 off = 0;
2130 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2131 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2132 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2133 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2135 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
2136 off = INTVAL (XEXP (XEXP (XEXP (note, 0), 0), 1));
2139 if (sym != NULL_RTX)
2141 reg_base_reg[regno] = -1;
2142 reg_symbol_ref[regno] = sym;
2143 reg_offset[regno] = off;
2144 reg_mode[regno] = mode;
2145 reg_set_luid[regno] = move2add_luid;
2146 return;
2150 if (SCALAR_INT_MODE_P (GET_MODE (dst))
2151 && nregs == 1 && GET_CODE (set) == SET
2152 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2153 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2155 rtx src = SET_SRC (set);
2156 rtx base_reg;
2157 HOST_WIDE_INT offset;
2158 int base_regno;
2159 /* This may be different from mode, if SET_DEST (set) is a
2160 SUBREG. */
2161 enum machine_mode dst_mode = GET_MODE (dst);
2163 switch (GET_CODE (src))
2165 case PLUS:
2166 if (REG_P (XEXP (src, 0)))
2168 base_reg = XEXP (src, 0);
2170 if (CONST_INT_P (XEXP (src, 1)))
2171 offset = INTVAL (XEXP (src, 1));
2172 else if (REG_P (XEXP (src, 1))
2173 && (reg_set_luid[REGNO (XEXP (src, 1))]
2174 > move2add_last_label_luid)
2175 && (MODES_OK_FOR_MOVE2ADD
2176 (dst_mode, reg_mode[REGNO (XEXP (src, 1))])))
2178 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2179 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
2180 offset = reg_offset[REGNO (XEXP (src, 1))];
2181 /* Maybe the first register is known to be a
2182 constant. */
2183 else if (reg_set_luid[REGNO (base_reg)]
2184 > move2add_last_label_luid
2185 && (MODES_OK_FOR_MOVE2ADD
2186 (dst_mode, reg_mode[REGNO (base_reg)]))
2187 && reg_base_reg[REGNO (base_reg)] < 0
2188 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
2190 offset = reg_offset[REGNO (base_reg)];
2191 base_reg = XEXP (src, 1);
2193 else
2194 goto invalidate;
2196 else
2197 goto invalidate;
2199 break;
2202 goto invalidate;
2204 case REG:
2205 base_reg = src;
2206 offset = 0;
2207 break;
2209 case CONST_INT:
2210 /* Start tracking the register as a constant. */
2211 reg_base_reg[regno] = -1;
2212 reg_symbol_ref[regno] = NULL_RTX;
2213 reg_offset[regno] = INTVAL (SET_SRC (set));
2214 /* We assign the same luid to all registers set to constants. */
2215 reg_set_luid[regno] = move2add_last_label_luid + 1;
2216 reg_mode[regno] = mode;
2217 return;
2219 default:
2220 invalidate:
2221 /* Invalidate the contents of the register. */
2222 reg_set_luid[regno] = 0;
2223 return;
2226 base_regno = REGNO (base_reg);
2227 /* If information about the base register is not valid, set it
2228 up as a new base register, pretending its value is known
2229 starting from the current insn. */
2230 if (reg_set_luid[base_regno] <= move2add_last_label_luid)
2232 reg_base_reg[base_regno] = base_regno;
2233 reg_symbol_ref[base_regno] = NULL_RTX;
2234 reg_offset[base_regno] = 0;
2235 reg_set_luid[base_regno] = move2add_luid;
2236 reg_mode[base_regno] = mode;
2238 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode,
2239 reg_mode[base_regno]))
2240 goto invalidate;
2242 reg_mode[regno] = mode;
2244 /* Copy base information from our base register. */
2245 reg_set_luid[regno] = reg_set_luid[base_regno];
2246 reg_base_reg[regno] = reg_base_reg[base_regno];
2247 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
2249 /* Compute the sum of the offsets or constants. */
2250 reg_offset[regno] = trunc_int_for_mode (offset
2251 + reg_offset[base_regno],
2252 dst_mode);
2254 else
2256 unsigned int endregno = regno + nregs;
2258 for (i = regno; i < endregno; i++)
2259 /* Reset the information about this register. */
2260 reg_set_luid[i] = 0;
2264 static bool
2265 gate_handle_postreload (void)
2267 return (optimize > 0 && reload_completed);
2271 static unsigned int
2272 rest_of_handle_postreload (void)
2274 if (!dbg_cnt (postreload_cse))
2275 return 0;
2277 /* Do a very simple CSE pass over just the hard registers. */
2278 reload_cse_regs (get_insns ());
2279 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2280 Remove any EH edges associated with them. */
2281 if (cfun->can_throw_non_call_exceptions)
2282 purge_all_dead_edges ();
2284 return 0;
2287 struct rtl_opt_pass pass_postreload_cse =
2290 RTL_PASS,
2291 "postreload", /* name */
2292 gate_handle_postreload, /* gate */
2293 rest_of_handle_postreload, /* execute */
2294 NULL, /* sub */
2295 NULL, /* next */
2296 0, /* static_pass_number */
2297 TV_RELOAD_CSE_REGS, /* tv_id */
2298 0, /* properties_required */
2299 0, /* properties_provided */
2300 0, /* properties_destroyed */
2301 0, /* todo_flags_start */
2302 TODO_df_finish | TODO_verify_rtl_sharing |
2303 0 /* todo_flags_finish */