2012-10-23 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / ggc-zone.c
blob2cf7167518292aea777a041cb2bcff91d6b337d0
1 /* "Bag-of-pages" zone garbage collector for the GNU compiler.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008,
3 2010 Free Software Foundation, Inc.
5 Contributed by Richard Henderson (rth@redhat.com) and Daniel Berlin
6 (dberlin@dberlin.org). Rewritten by Daniel Jacobowitz
7 <dan@codesourcery.com>.
9 This file is part of GCC.
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "tree.h"
30 #include "rtl.h"
31 #include "tm_p.h"
32 #include "diagnostic-core.h"
33 #include "flags.h"
34 #include "ggc.h"
35 #include "ggc-internal.h"
36 #include "timevar.h"
37 #include "params.h"
38 #include "bitmap.h"
39 #include "plugin.h"
41 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
42 file open. Prefer either to valloc. */
43 #ifdef HAVE_MMAP_ANON
44 # undef HAVE_MMAP_DEV_ZERO
45 # define USING_MMAP
46 #endif
48 #ifdef HAVE_MMAP_DEV_ZERO
49 # define USING_MMAP
50 #endif
52 #ifndef USING_MMAP
53 #error Zone collector requires mmap
54 #endif
56 #if (GCC_VERSION < 3001)
57 #define prefetch(X) ((void) X)
58 #define prefetchw(X) ((void) X)
59 #else
60 #define prefetch(X) __builtin_prefetch (X)
61 #define prefetchw(X) __builtin_prefetch (X, 1, 3)
62 #endif
64 /* FUTURE NOTES:
66 If we track inter-zone pointers, we can mark single zones at a
67 time.
69 If we have a zone where we guarantee no inter-zone pointers, we
70 could mark that zone separately.
72 The garbage zone should not be marked, and we should return 1 in
73 ggc_set_mark for any object in the garbage zone, which cuts off
74 marking quickly. */
76 /* Strategy:
78 This garbage-collecting allocator segregates objects into zones.
79 It also segregates objects into "large" and "small" bins. Large
80 objects are greater than page size.
82 Pages for small objects are broken up into chunks. The page has
83 a bitmap which marks the start position of each chunk (whether
84 allocated or free). Free chunks are on one of the zone's free
85 lists and contain a pointer to the next free chunk. Chunks in
86 most of the free lists have a fixed size determined by the
87 free list. Chunks in the "other" sized free list have their size
88 stored right after their chain pointer.
90 Empty pages (of all sizes) are kept on a single page cache list,
91 and are considered first when new pages are required; they are
92 deallocated at the start of the next collection if they haven't
93 been recycled by then. The free page list is currently per-zone. */
95 /* Define GGC_DEBUG_LEVEL to print debugging information.
96 0: No debugging output.
97 1: GC statistics only.
98 2: Page-entry allocations/deallocations as well.
99 3: Object allocations as well.
100 4: Object marks as well. */
101 #define GGC_DEBUG_LEVEL (0)
103 #ifndef HOST_BITS_PER_PTR
104 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
105 #endif
107 /* This structure manages small free chunks. The SIZE field is only
108 initialized if the chunk is in the "other" sized free list. Large
109 chunks are allocated one at a time to their own page, and so don't
110 come in here. */
112 struct alloc_chunk {
113 struct alloc_chunk *next_free;
114 unsigned int size;
117 /* The size of the fixed-size portion of a small page descriptor. */
118 #define PAGE_OVERHEAD (offsetof (struct small_page_entry, alloc_bits))
120 /* The collector's idea of the page size. This must be a power of two
121 no larger than the system page size, because pages must be aligned
122 to this amount and are tracked at this granularity in the page
123 table. We choose a size at compile time for efficiency.
125 We could make a better guess at compile time if PAGE_SIZE is a
126 constant in system headers, and PAGE_SHIFT is defined... */
127 #define GGC_PAGE_SIZE 4096
128 #define GGC_PAGE_MASK (GGC_PAGE_SIZE - 1)
129 #define GGC_PAGE_SHIFT 12
131 #if 0
132 /* Alternative definitions which use the runtime page size. */
133 #define GGC_PAGE_SIZE G.pagesize
134 #define GGC_PAGE_MASK G.page_mask
135 #define GGC_PAGE_SHIFT G.lg_pagesize
136 #endif
138 /* The size of a small page managed by the garbage collector. This
139 must currently be GGC_PAGE_SIZE, but with a few changes could
140 be any multiple of it to reduce certain kinds of overhead. */
141 #define SMALL_PAGE_SIZE GGC_PAGE_SIZE
143 /* Free bin information. These numbers may be in need of re-tuning.
144 In general, decreasing the number of free bins would seem to
145 increase the time it takes to allocate... */
147 /* FIXME: We can't use anything but MAX_ALIGNMENT for the bin size
148 today. */
150 #define NUM_FREE_BINS 64
151 #define FREE_BIN_DELTA MAX_ALIGNMENT
152 #define SIZE_BIN_DOWN(SIZE) ((SIZE) / FREE_BIN_DELTA)
154 /* Allocation and marking parameters. */
156 /* The smallest allocatable unit to keep track of. */
157 #define BYTES_PER_ALLOC_BIT MAX_ALIGNMENT
159 /* The smallest markable unit. If we require each allocated object
160 to contain at least two allocatable units, we can use half as many
161 bits for the mark bitmap. But this adds considerable complexity
162 to sweeping. */
163 #define BYTES_PER_MARK_BIT BYTES_PER_ALLOC_BIT
165 #define BYTES_PER_MARK_WORD (8 * BYTES_PER_MARK_BIT * sizeof (mark_type))
167 /* We use this structure to determine the alignment required for
168 allocations.
170 There are several things wrong with this estimation of alignment.
172 The maximum alignment for a structure is often less than the
173 maximum alignment for a basic data type; for instance, on some
174 targets long long must be aligned to sizeof (int) in a structure
175 and sizeof (long long) in a variable. i386-linux is one example;
176 Darwin is another (sometimes, depending on the compiler in use).
178 Also, long double is not included. Nothing in GCC uses long
179 double, so we assume that this is OK. On powerpc-darwin, adding
180 long double would bring the maximum alignment up to 16 bytes,
181 and until we need long double (or to vectorize compiler operations)
182 that's painfully wasteful. This will need to change, some day. */
184 struct max_alignment {
185 char c;
186 union {
187 HOST_WIDEST_INT i;
188 double d;
189 } u;
192 /* The biggest alignment required. */
194 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
196 /* Compute the smallest multiple of F that is >= X. */
198 #define ROUND_UP(x, f) (CEIL (x, f) * (f))
200 /* Types to use for the allocation and mark bitmaps. It might be
201 a good idea to add ffsl to libiberty and use unsigned long
202 instead; that could speed us up where long is wider than int. */
204 typedef unsigned int alloc_type;
205 typedef unsigned int mark_type;
206 #define alloc_ffs(x) ffs(x)
208 /* A page_entry records the status of an allocation page. This is the
209 common data between all three kinds of pages - small, large, and
210 PCH. */
211 typedef struct page_entry
213 /* The address at which the memory is allocated. */
214 char *page;
216 /* The zone that this page entry belongs to. */
217 struct alloc_zone *zone;
219 /* How many collections we've survived. */
220 size_t survived;
222 /* Does this page contain small objects, or one large object? */
223 bool large_p;
225 /* Is this page part of the loaded PCH? */
226 bool pch_p;
227 } page_entry;
229 /* Additional data needed for small pages. */
230 struct small_page_entry
232 struct page_entry common;
234 /* The next small page entry, or NULL if this is the last. */
235 struct small_page_entry *next;
237 /* If currently marking this zone, a pointer to the mark bits
238 for this page. If we aren't currently marking this zone,
239 this pointer may be stale (pointing to freed memory). */
240 mark_type *mark_bits;
242 /* The allocation bitmap. This array extends far enough to have
243 one bit for every BYTES_PER_ALLOC_BIT bytes in the page. */
244 alloc_type alloc_bits[1];
247 /* Additional data needed for large pages. */
248 struct large_page_entry
250 struct page_entry common;
252 /* The next large page entry, or NULL if this is the last. */
253 struct large_page_entry *next;
255 /* The number of bytes allocated, not including the page entry. */
256 size_t bytes;
258 /* The previous page in the list, so that we can unlink this one. */
259 struct large_page_entry *prev;
261 /* During marking, is this object marked? */
262 bool mark_p;
265 /* A two-level tree is used to look up the page-entry for a given
266 pointer. Two chunks of the pointer's bits are extracted to index
267 the first and second levels of the tree, as follows:
269 HOST_PAGE_SIZE_BITS
270 32 | |
271 msb +----------------+----+------+------+ lsb
272 | | |
273 PAGE_L1_BITS |
275 PAGE_L2_BITS
277 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
278 pages are aligned on system page boundaries. The next most
279 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
280 index values in the lookup table, respectively.
282 For 32-bit architectures and the settings below, there are no
283 leftover bits. For architectures with wider pointers, the lookup
284 tree points to a list of pages, which must be scanned to find the
285 correct one. */
287 #define PAGE_L1_BITS (8)
288 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - GGC_PAGE_SHIFT)
289 #define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
290 #define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
292 #define LOOKUP_L1(p) \
293 (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
295 #define LOOKUP_L2(p) \
296 (((size_t) (p) >> GGC_PAGE_SHIFT) & ((1 << PAGE_L2_BITS) - 1))
298 #if HOST_BITS_PER_PTR <= 32
300 /* On 32-bit hosts, we use a two level page table, as pictured above. */
301 typedef page_entry **page_table[PAGE_L1_SIZE];
303 #else
305 /* On 64-bit hosts, we use the same two level page tables plus a linked
306 list that disambiguates the top 32-bits. There will almost always be
307 exactly one entry in the list. */
308 typedef struct page_table_chain
310 struct page_table_chain *next;
311 size_t high_bits;
312 page_entry **table[PAGE_L1_SIZE];
313 } *page_table;
315 #endif
317 /* The global variables. */
318 static struct globals
320 /* The linked list of zones. */
321 struct alloc_zone *zones;
323 /* Lookup table for associating allocation pages with object addresses. */
324 page_table lookup;
326 /* The system's page size, and related constants. */
327 size_t pagesize;
328 size_t lg_pagesize;
329 size_t page_mask;
331 /* The size to allocate for a small page entry. This includes
332 the size of the structure and the size of the allocation
333 bitmap. */
334 size_t small_page_overhead;
336 #if defined (HAVE_MMAP_DEV_ZERO)
337 /* A file descriptor open to /dev/zero for reading. */
338 int dev_zero_fd;
339 #endif
341 /* Allocate pages in chunks of this size, to throttle calls to memory
342 allocation routines. The first page is used, the rest go onto the
343 free list. */
344 size_t quire_size;
346 /* The file descriptor for debugging output. */
347 FILE *debug_file;
348 } G;
350 /* A zone allocation structure. There is one of these for every
351 distinct allocation zone. */
352 struct alloc_zone
354 /* The most recent free chunk is saved here, instead of in the linked
355 free list, to decrease list manipulation. It is most likely that we
356 will want this one. */
357 char *cached_free;
358 size_t cached_free_size;
360 /* Linked lists of free storage. Slots 1 ... NUM_FREE_BINS have chunks of size
361 FREE_BIN_DELTA. All other chunks are in slot 0. */
362 struct alloc_chunk *free_chunks[NUM_FREE_BINS + 1];
364 /* The highest bin index which might be non-empty. It may turn out
365 to be empty, in which case we have to search downwards. */
366 size_t high_free_bin;
368 /* Bytes currently allocated in this zone. */
369 size_t allocated;
371 /* Linked list of the small pages in this zone. */
372 struct small_page_entry *pages;
374 /* Doubly linked list of large pages in this zone. */
375 struct large_page_entry *large_pages;
377 /* If we are currently marking this zone, a pointer to the mark bits. */
378 mark_type *mark_bits;
380 /* Name of the zone. */
381 const char *name;
383 /* The number of small pages currently allocated in this zone. */
384 size_t n_small_pages;
386 /* Bytes allocated at the end of the last collection. */
387 size_t allocated_last_gc;
389 /* Total amount of memory mapped. */
390 size_t bytes_mapped;
392 /* A cache of free system pages. */
393 struct small_page_entry *free_pages;
395 /* Next zone in the linked list of zones. */
396 struct alloc_zone *next_zone;
398 /* True if this zone was collected during this collection. */
399 bool was_collected;
401 /* True if this zone should be destroyed after the next collection. */
402 bool dead;
404 struct
406 /* Total GC-allocated memory. */
407 unsigned long long total_allocated;
408 /* Total overhead for GC-allocated memory. */
409 unsigned long long total_overhead;
411 /* Total allocations and overhead for sizes less than 32, 64 and 128.
412 These sizes are interesting because they are typical cache line
413 sizes. */
415 unsigned long long total_allocated_under32;
416 unsigned long long total_overhead_under32;
418 unsigned long long total_allocated_under64;
419 unsigned long long total_overhead_under64;
421 unsigned long long total_allocated_under128;
422 unsigned long long total_overhead_under128;
423 } stats;
424 } main_zone;
426 /* Some default zones. */
427 struct alloc_zone rtl_zone;
428 struct alloc_zone tree_zone;
429 struct alloc_zone tree_id_zone;
431 /* The PCH zone does not need a normal zone structure, and it does
432 not live on the linked list of zones. */
433 struct pch_zone
435 /* The start of the PCH zone. NULL if there is none. */
436 char *page;
438 /* The end of the PCH zone. NULL if there is none. */
439 char *end;
441 /* The size of the PCH zone. 0 if there is none. */
442 size_t bytes;
444 /* The allocation bitmap for the PCH zone. */
445 alloc_type *alloc_bits;
447 /* If we are currently marking, the mark bitmap for the PCH zone.
448 When it is first read in, we could avoid marking the PCH,
449 because it will not contain any pointers to GC memory outside
450 of the PCH; however, the PCH is currently mapped as writable,
451 so we must mark it in case new pointers are added. */
452 mark_type *mark_bits;
453 } pch_zone;
455 #ifdef USING_MMAP
456 static char *alloc_anon (char *, size_t, struct alloc_zone *);
457 #endif
458 static struct small_page_entry * alloc_small_page (struct alloc_zone *);
459 static struct large_page_entry * alloc_large_page (size_t, struct alloc_zone *);
460 static void free_chunk (char *, size_t, struct alloc_zone *);
461 static void free_small_page (struct small_page_entry *);
462 static void free_large_page (struct large_page_entry *);
463 static void release_pages (struct alloc_zone *);
464 static void sweep_pages (struct alloc_zone *);
465 static bool ggc_collect_1 (struct alloc_zone *, bool);
466 static void new_ggc_zone_1 (struct alloc_zone *, const char *);
468 /* Traverse the page table and find the entry for a page.
469 Die (probably) if the object wasn't allocated via GC. */
471 static inline page_entry *
472 lookup_page_table_entry (const void *p)
474 page_entry ***base;
475 size_t L1, L2;
477 #if HOST_BITS_PER_PTR <= 32
478 base = &G.lookup[0];
479 #else
480 page_table table = G.lookup;
481 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
482 while (table->high_bits != high_bits)
483 table = table->next;
484 base = &table->table[0];
485 #endif
487 /* Extract the level 1 and 2 indices. */
488 L1 = LOOKUP_L1 (p);
489 L2 = LOOKUP_L2 (p);
491 return base[L1][L2];
494 /* Traverse the page table and find the entry for a page.
495 Return NULL if the object wasn't allocated via the GC. */
497 static inline page_entry *
498 lookup_page_table_if_allocated (const void *p)
500 page_entry ***base;
501 size_t L1, L2;
503 #if HOST_BITS_PER_PTR <= 32
504 base = &G.lookup[0];
505 #else
506 page_table table = G.lookup;
507 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
508 while (1)
510 if (table == NULL)
511 return NULL;
512 if (table->high_bits == high_bits)
513 break;
514 table = table->next;
516 base = &table->table[0];
517 #endif
519 /* Extract the level 1 and 2 indices. */
520 L1 = LOOKUP_L1 (p);
521 if (! base[L1])
522 return NULL;
524 L2 = LOOKUP_L2 (p);
525 if (L2 >= PAGE_L2_SIZE)
526 return NULL;
527 /* We might have a page entry which does not correspond exactly to a
528 system page. */
529 if (base[L1][L2] && (const char *) p < base[L1][L2]->page)
530 return NULL;
532 return base[L1][L2];
535 /* Set the page table entry for the page that starts at P. If ENTRY
536 is NULL, clear the entry. */
538 static void
539 set_page_table_entry (void *p, page_entry *entry)
541 page_entry ***base;
542 size_t L1, L2;
544 #if HOST_BITS_PER_PTR <= 32
545 base = &G.lookup[0];
546 #else
547 page_table table;
548 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
549 for (table = G.lookup; table; table = table->next)
550 if (table->high_bits == high_bits)
551 goto found;
553 /* Not found -- allocate a new table. */
554 table = XCNEW (struct page_table_chain);
555 table->next = G.lookup;
556 table->high_bits = high_bits;
557 G.lookup = table;
558 found:
559 base = &table->table[0];
560 #endif
562 /* Extract the level 1 and 2 indices. */
563 L1 = LOOKUP_L1 (p);
564 L2 = LOOKUP_L2 (p);
566 if (base[L1] == NULL)
567 base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
569 base[L1][L2] = entry;
572 /* Find the page table entry associated with OBJECT. */
574 static inline struct page_entry *
575 zone_get_object_page (const void *object)
577 return lookup_page_table_entry (object);
580 /* Find which element of the alloc_bits array OBJECT should be
581 recorded in. */
582 static inline unsigned int
583 zone_get_object_alloc_word (const void *object)
585 return (((size_t) object & (GGC_PAGE_SIZE - 1))
586 / (8 * sizeof (alloc_type) * BYTES_PER_ALLOC_BIT));
589 /* Find which bit of the appropriate word in the alloc_bits array
590 OBJECT should be recorded in. */
591 static inline unsigned int
592 zone_get_object_alloc_bit (const void *object)
594 return (((size_t) object / BYTES_PER_ALLOC_BIT)
595 % (8 * sizeof (alloc_type)));
598 /* Find which element of the mark_bits array OBJECT should be recorded
599 in. */
600 static inline unsigned int
601 zone_get_object_mark_word (const void *object)
603 return (((size_t) object & (GGC_PAGE_SIZE - 1))
604 / (8 * sizeof (mark_type) * BYTES_PER_MARK_BIT));
607 /* Find which bit of the appropriate word in the mark_bits array
608 OBJECT should be recorded in. */
609 static inline unsigned int
610 zone_get_object_mark_bit (const void *object)
612 return (((size_t) object / BYTES_PER_MARK_BIT)
613 % (8 * sizeof (mark_type)));
616 /* Set the allocation bit corresponding to OBJECT in its page's
617 bitmap. Used to split this object from the preceding one. */
618 static inline void
619 zone_set_object_alloc_bit (const void *object)
621 struct small_page_entry *page
622 = (struct small_page_entry *) zone_get_object_page (object);
623 unsigned int start_word = zone_get_object_alloc_word (object);
624 unsigned int start_bit = zone_get_object_alloc_bit (object);
626 page->alloc_bits[start_word] |= 1L << start_bit;
629 /* Clear the allocation bit corresponding to OBJECT in PAGE's
630 bitmap. Used to coalesce this object with the preceding
631 one. */
632 static inline void
633 zone_clear_object_alloc_bit (struct small_page_entry *page,
634 const void *object)
636 unsigned int start_word = zone_get_object_alloc_word (object);
637 unsigned int start_bit = zone_get_object_alloc_bit (object);
639 /* Would xor be quicker? */
640 page->alloc_bits[start_word] &= ~(1L << start_bit);
643 /* Find the size of the object which starts at START_WORD and
644 START_BIT in ALLOC_BITS, which is at most MAX_SIZE bytes.
645 Helper function for ggc_get_size and zone_find_object_size. */
647 static inline size_t
648 zone_object_size_1 (alloc_type *alloc_bits,
649 size_t start_word, size_t start_bit,
650 size_t max_size)
652 size_t size;
653 alloc_type alloc_word;
654 int indx;
656 /* Load the first word. */
657 alloc_word = alloc_bits[start_word++];
659 /* If that was the last bit in this word, we'll want to continue
660 with the next word. Otherwise, handle the rest of this word. */
661 if (start_bit)
663 indx = alloc_ffs (alloc_word >> start_bit);
664 if (indx)
665 /* indx is 1-based. We started at the bit after the object's
666 start, but we also ended at the bit after the object's end.
667 It cancels out. */
668 return indx * BYTES_PER_ALLOC_BIT;
670 /* The extra 1 accounts for the starting unit, before start_bit. */
671 size = (sizeof (alloc_type) * 8 - start_bit + 1) * BYTES_PER_ALLOC_BIT;
673 if (size >= max_size)
674 return max_size;
676 alloc_word = alloc_bits[start_word++];
678 else
679 size = BYTES_PER_ALLOC_BIT;
681 while (alloc_word == 0)
683 size += sizeof (alloc_type) * 8 * BYTES_PER_ALLOC_BIT;
684 if (size >= max_size)
685 return max_size;
686 alloc_word = alloc_bits[start_word++];
689 indx = alloc_ffs (alloc_word);
690 return size + (indx - 1) * BYTES_PER_ALLOC_BIT;
693 /* Find the size of OBJECT on small page PAGE. */
695 static inline size_t
696 zone_find_object_size (struct small_page_entry *page,
697 const void *object)
699 const char *object_midptr = (const char *) object + BYTES_PER_ALLOC_BIT;
700 unsigned int start_word = zone_get_object_alloc_word (object_midptr);
701 unsigned int start_bit = zone_get_object_alloc_bit (object_midptr);
702 size_t max_size = (page->common.page + SMALL_PAGE_SIZE
703 - (const char *) object);
705 return zone_object_size_1 (page->alloc_bits, start_word, start_bit,
706 max_size);
709 /* highest_bit assumes that alloc_type is 32 bits. */
710 extern char check_alloc_type_size[(sizeof (alloc_type) == 4) ? 1 : -1];
712 /* Find the highest set bit in VALUE. Returns the bit number of that
713 bit, using the same values as ffs. */
714 static inline alloc_type
715 highest_bit (alloc_type value)
717 /* This also assumes that alloc_type is unsigned. */
718 value |= value >> 1;
719 value |= value >> 2;
720 value |= value >> 4;
721 value |= value >> 8;
722 value |= value >> 16;
723 value = value ^ (value >> 1);
724 return alloc_ffs (value);
727 /* Find the offset from the start of an object to P, which may point
728 into the interior of the object. */
730 static unsigned long
731 zone_find_object_offset (alloc_type *alloc_bits, size_t start_word,
732 size_t start_bit)
734 unsigned int offset_in_bits;
735 alloc_type alloc_word = alloc_bits[start_word];
737 /* Mask off any bits after the initial bit, but make sure to include
738 the initial bit in the result. Note that START_BIT is
739 0-based. */
740 if (start_bit < 8 * sizeof (alloc_type) - 1)
741 alloc_word &= (1 << (start_bit + 1)) - 1;
742 offset_in_bits = start_bit;
744 /* Search for the start of the object. */
745 while (alloc_word == 0 && start_word > 0)
747 alloc_word = alloc_bits[--start_word];
748 offset_in_bits += 8 * sizeof (alloc_type);
750 /* We must always find a set bit. */
751 gcc_assert (alloc_word != 0);
752 /* Note that the result of highest_bit is 1-based. */
753 offset_in_bits -= highest_bit (alloc_word) - 1;
755 return BYTES_PER_ALLOC_BIT * offset_in_bits;
758 /* Allocate the mark bits for every zone, and set the pointers on each
759 page. */
760 static void
761 zone_allocate_marks (void)
763 struct alloc_zone *zone;
765 for (zone = G.zones; zone; zone = zone->next_zone)
767 struct small_page_entry *page;
768 mark_type *cur_marks;
769 size_t mark_words, mark_words_per_page;
770 #ifdef ENABLE_CHECKING
771 size_t n = 0;
772 #endif
774 mark_words_per_page
775 = (GGC_PAGE_SIZE + BYTES_PER_MARK_WORD - 1) / BYTES_PER_MARK_WORD;
776 mark_words = zone->n_small_pages * mark_words_per_page;
777 zone->mark_bits = (mark_type *) xcalloc (sizeof (mark_type),
778 mark_words);
779 cur_marks = zone->mark_bits;
780 for (page = zone->pages; page; page = page->next)
782 page->mark_bits = cur_marks;
783 cur_marks += mark_words_per_page;
784 #ifdef ENABLE_CHECKING
785 n++;
786 #endif
788 gcc_checking_assert (n == zone->n_small_pages);
791 /* We don't collect the PCH zone, but we do have to mark it
792 (for now). */
793 if (pch_zone.bytes)
794 pch_zone.mark_bits
795 = (mark_type *) xcalloc (sizeof (mark_type),
796 CEIL (pch_zone.bytes, BYTES_PER_MARK_WORD));
799 /* After marking and sweeping, release the memory used for mark bits. */
800 static void
801 zone_free_marks (void)
803 struct alloc_zone *zone;
805 for (zone = G.zones; zone; zone = zone->next_zone)
806 if (zone->mark_bits)
808 free (zone->mark_bits);
809 zone->mark_bits = NULL;
812 if (pch_zone.bytes)
814 free (pch_zone.mark_bits);
815 pch_zone.mark_bits = NULL;
819 #ifdef USING_MMAP
820 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
821 (if non-null). The ifdef structure here is intended to cause a
822 compile error unless exactly one of the HAVE_* is defined. */
824 static inline char *
825 alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size, struct alloc_zone *zone)
827 #ifdef HAVE_MMAP_ANON
828 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
829 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
830 #endif
831 #ifdef HAVE_MMAP_DEV_ZERO
832 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
833 MAP_PRIVATE, G.dev_zero_fd, 0);
834 #endif
836 if (page == (char *) MAP_FAILED)
838 perror ("virtual memory exhausted");
839 exit (FATAL_EXIT_CODE);
842 /* Remember that we allocated this memory. */
843 zone->bytes_mapped += size;
845 /* Pretend we don't have access to the allocated pages. We'll enable
846 access to smaller pieces of the area in ggc_internal_alloc. Discard the
847 handle to avoid handle leak. */
848 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size));
850 return page;
852 #endif
854 /* Allocate a new page for allocating small objects in ZONE, and
855 return an entry for it. */
857 static struct small_page_entry *
858 alloc_small_page (struct alloc_zone *zone)
860 struct small_page_entry *entry;
862 /* Check the list of free pages for one we can use. */
863 entry = zone->free_pages;
864 if (entry != NULL)
866 /* Recycle the allocated memory from this page ... */
867 zone->free_pages = entry->next;
869 else
871 /* We want just one page. Allocate a bunch of them and put the
872 extras on the freelist. (Can only do this optimization with
873 mmap for backing store.) */
874 struct small_page_entry *e, *f = zone->free_pages;
875 int i;
876 char *page;
878 page = alloc_anon (NULL, GGC_PAGE_SIZE * G.quire_size, zone);
880 /* This loop counts down so that the chain will be in ascending
881 memory order. */
882 for (i = G.quire_size - 1; i >= 1; i--)
884 e = XCNEWVAR (struct small_page_entry, G.small_page_overhead);
885 e->common.page = page + (i << GGC_PAGE_SHIFT);
886 e->common.zone = zone;
887 e->next = f;
888 f = e;
889 set_page_table_entry (e->common.page, &e->common);
892 zone->free_pages = f;
894 entry = XCNEWVAR (struct small_page_entry, G.small_page_overhead);
895 entry->common.page = page;
896 entry->common.zone = zone;
897 set_page_table_entry (page, &entry->common);
900 zone->n_small_pages++;
902 if (GGC_DEBUG_LEVEL >= 2)
903 fprintf (G.debug_file,
904 "Allocating %s page at %p, data %p-%p\n",
905 entry->common.zone->name, (PTR) entry, entry->common.page,
906 entry->common.page + SMALL_PAGE_SIZE - 1);
908 return entry;
911 /* Allocate a large page of size SIZE in ZONE. */
913 static struct large_page_entry *
914 alloc_large_page (size_t size, struct alloc_zone *zone)
916 struct large_page_entry *entry;
917 char *page;
918 size_t needed_size;
920 needed_size = size + sizeof (struct large_page_entry);
921 page = XNEWVAR (char, needed_size);
923 entry = (struct large_page_entry *) page;
925 entry->next = NULL;
926 entry->common.page = page + sizeof (struct large_page_entry);
927 entry->common.large_p = true;
928 entry->common.pch_p = false;
929 entry->common.zone = zone;
930 entry->common.survived = 0;
931 entry->mark_p = false;
932 entry->bytes = size;
933 entry->prev = NULL;
935 set_page_table_entry (entry->common.page, &entry->common);
937 if (GGC_DEBUG_LEVEL >= 2)
938 fprintf (G.debug_file,
939 "Allocating %s large page at %p, data %p-%p\n",
940 entry->common.zone->name, (PTR) entry, entry->common.page,
941 entry->common.page + SMALL_PAGE_SIZE - 1);
943 return entry;
947 /* For a page that is no longer needed, put it on the free page list. */
949 static inline void
950 free_small_page (struct small_page_entry *entry)
952 if (GGC_DEBUG_LEVEL >= 2)
953 fprintf (G.debug_file,
954 "Deallocating %s page at %p, data %p-%p\n",
955 entry->common.zone->name, (PTR) entry,
956 entry->common.page, entry->common.page + SMALL_PAGE_SIZE - 1);
958 gcc_assert (!entry->common.large_p);
960 /* Mark the page as inaccessible. Discard the handle to
961 avoid handle leak. */
962 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->common.page,
963 SMALL_PAGE_SIZE));
965 entry->next = entry->common.zone->free_pages;
966 entry->common.zone->free_pages = entry;
967 entry->common.zone->n_small_pages--;
970 /* Release a large page that is no longer needed. */
972 static inline void
973 free_large_page (struct large_page_entry *entry)
975 if (GGC_DEBUG_LEVEL >= 2)
976 fprintf (G.debug_file,
977 "Deallocating %s page at %p, data %p-%p\n",
978 entry->common.zone->name, (PTR) entry,
979 entry->common.page, entry->common.page + SMALL_PAGE_SIZE - 1);
981 gcc_assert (entry->common.large_p);
983 set_page_table_entry (entry->common.page, NULL);
984 free (entry);
987 /* Release the free page cache to the system. */
989 static void
990 release_pages (struct alloc_zone *zone)
992 #ifdef USING_MMAP
993 struct small_page_entry *p, *next;
994 char *start;
995 size_t len;
997 /* Gather up adjacent pages so they are unmapped together. */
998 p = zone->free_pages;
1000 while (p)
1002 start = p->common.page;
1003 next = p->next;
1004 len = SMALL_PAGE_SIZE;
1005 set_page_table_entry (p->common.page, NULL);
1006 p = next;
1008 while (p && p->common.page == start + len)
1010 next = p->next;
1011 len += SMALL_PAGE_SIZE;
1012 set_page_table_entry (p->common.page, NULL);
1013 p = next;
1016 munmap (start, len);
1017 zone->bytes_mapped -= len;
1020 zone->free_pages = NULL;
1021 #endif
1024 /* Place the block at PTR of size SIZE on the free list for ZONE. */
1026 static inline void
1027 free_chunk (char *ptr, size_t size, struct alloc_zone *zone)
1029 struct alloc_chunk *chunk = (struct alloc_chunk *) ptr;
1030 size_t bin = 0;
1032 bin = SIZE_BIN_DOWN (size);
1033 gcc_assert (bin != 0);
1034 if (bin > NUM_FREE_BINS)
1036 bin = 0;
1037 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (chunk,
1038 sizeof (struct
1039 alloc_chunk)));
1040 chunk->size = size;
1041 chunk->next_free = zone->free_chunks[bin];
1042 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (ptr
1043 + sizeof (struct
1044 alloc_chunk),
1045 size
1046 - sizeof (struct
1047 alloc_chunk)));
1049 else
1051 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (chunk,
1052 sizeof (struct
1053 alloc_chunk *)));
1054 chunk->next_free = zone->free_chunks[bin];
1055 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (ptr
1056 + sizeof (struct
1057 alloc_chunk *),
1058 size
1059 - sizeof (struct
1060 alloc_chunk *)));
1063 zone->free_chunks[bin] = chunk;
1064 if (bin > zone->high_free_bin)
1065 zone->high_free_bin = bin;
1066 if (GGC_DEBUG_LEVEL >= 3)
1067 fprintf (G.debug_file, "Deallocating object, chunk=%p\n", (void *)chunk);
1070 /* For a given size of memory requested for allocation, return the
1071 actual size that is going to be allocated. */
1073 size_t
1074 ggc_round_alloc_size (size_t requested_size)
1076 size_t size;
1078 /* Make sure that zero-sized allocations get a unique and freeable
1079 pointer. */
1080 if (requested_size == 0)
1081 size = MAX_ALIGNMENT;
1082 else
1083 size = (requested_size + MAX_ALIGNMENT - 1) & -MAX_ALIGNMENT;
1085 return size;
1088 /* Allocate a chunk of memory of at least ORIG_SIZE bytes, in ZONE. */
1090 void *
1091 ggc_internal_alloc_zone_stat (size_t orig_size, struct alloc_zone *zone
1092 MEM_STAT_DECL)
1094 size_t bin;
1095 size_t csize;
1096 struct small_page_entry *entry;
1097 struct alloc_chunk *chunk, **pp;
1098 void *result;
1099 size_t size = ggc_round_alloc_size (orig_size);
1101 /* Try to allocate the object from several different sources. Each
1102 of these cases is responsible for setting RESULT and SIZE to
1103 describe the allocated block, before jumping to FOUND. If a
1104 chunk is split, the allocate bit for the new chunk should also be
1105 set.
1107 Large objects are handled specially. However, they'll just fail
1108 the next couple of conditions, so we can wait to check for them
1109 below. The large object case is relatively rare (< 1%), so this
1110 is a win. */
1112 /* First try to split the last chunk we allocated. For best
1113 fragmentation behavior it would be better to look for a
1114 free bin of the appropriate size for a small object. However,
1115 we're unlikely (1% - 7%) to find one, and this gives better
1116 locality behavior anyway. This case handles the lion's share
1117 of all calls to this function. */
1118 if (size <= zone->cached_free_size)
1120 result = zone->cached_free;
1122 zone->cached_free_size -= size;
1123 if (zone->cached_free_size)
1125 zone->cached_free += size;
1126 zone_set_object_alloc_bit (zone->cached_free);
1129 goto found;
1132 /* Next, try to find a free bin of the exactly correct size. */
1134 /* We want to round SIZE up, rather than down, but we know it's
1135 already aligned to at least FREE_BIN_DELTA, so we can just
1136 shift. */
1137 bin = SIZE_BIN_DOWN (size);
1139 if (bin <= NUM_FREE_BINS
1140 && (chunk = zone->free_chunks[bin]) != NULL)
1142 /* We have a chunk of the right size. Pull it off the free list
1143 and use it. */
1145 zone->free_chunks[bin] = chunk->next_free;
1147 /* NOTE: SIZE is only guaranteed to be right if MAX_ALIGNMENT
1148 == FREE_BIN_DELTA. */
1149 result = chunk;
1151 /* The allocation bits are already set correctly. HIGH_FREE_BIN
1152 may now be wrong, if this was the last chunk in the high bin.
1153 Rather than fixing it up now, wait until we need to search
1154 the free bins. */
1156 goto found;
1159 /* Next, if there wasn't a chunk of the ideal size, look for a chunk
1160 to split. We can find one in the too-big bin, or in the largest
1161 sized bin with a chunk in it. Try the largest normal-sized bin
1162 first. */
1164 if (zone->high_free_bin > bin)
1166 /* Find the highest numbered free bin. It will be at or below
1167 the watermark. */
1168 while (zone->high_free_bin > bin
1169 && zone->free_chunks[zone->high_free_bin] == NULL)
1170 zone->high_free_bin--;
1172 if (zone->high_free_bin > bin)
1174 size_t tbin = zone->high_free_bin;
1175 chunk = zone->free_chunks[tbin];
1177 /* Remove the chunk from its previous bin. */
1178 zone->free_chunks[tbin] = chunk->next_free;
1180 result = (char *) chunk;
1182 /* Save the rest of the chunk for future allocation. */
1183 if (zone->cached_free_size)
1184 free_chunk (zone->cached_free, zone->cached_free_size, zone);
1186 chunk = (struct alloc_chunk *) ((char *) result + size);
1187 zone->cached_free = (char *) chunk;
1188 zone->cached_free_size = (tbin - bin) * FREE_BIN_DELTA;
1190 /* Mark the new free chunk as an object, so that we can
1191 find the size of the newly allocated object. */
1192 zone_set_object_alloc_bit (chunk);
1194 /* HIGH_FREE_BIN may now be wrong, if this was the last
1195 chunk in the high bin. Rather than fixing it up now,
1196 wait until we need to search the free bins. */
1198 goto found;
1202 /* Failing that, look through the "other" bucket for a chunk
1203 that is large enough. */
1204 pp = &(zone->free_chunks[0]);
1205 chunk = *pp;
1206 while (chunk && chunk->size < size)
1208 pp = &chunk->next_free;
1209 chunk = *pp;
1212 if (chunk)
1214 /* Remove the chunk from its previous bin. */
1215 *pp = chunk->next_free;
1217 result = (char *) chunk;
1219 /* Save the rest of the chunk for future allocation, if there's any
1220 left over. */
1221 csize = chunk->size;
1222 if (csize > size)
1224 if (zone->cached_free_size)
1225 free_chunk (zone->cached_free, zone->cached_free_size, zone);
1227 chunk = (struct alloc_chunk *) ((char *) result + size);
1228 zone->cached_free = (char *) chunk;
1229 zone->cached_free_size = csize - size;
1231 /* Mark the new free chunk as an object. */
1232 zone_set_object_alloc_bit (chunk);
1235 goto found;
1238 /* Handle large allocations. We could choose any threshold between
1239 GGC_PAGE_SIZE - sizeof (struct large_page_entry) and
1240 GGC_PAGE_SIZE. It can't be smaller, because then it wouldn't
1241 be guaranteed to have a unique entry in the lookup table. Large
1242 allocations will always fall through to here. */
1243 if (size > GGC_PAGE_SIZE)
1245 struct large_page_entry *entry = alloc_large_page (size, zone);
1247 entry->common.survived = 0;
1249 entry->next = zone->large_pages;
1250 if (zone->large_pages)
1251 zone->large_pages->prev = entry;
1252 zone->large_pages = entry;
1254 result = entry->common.page;
1256 goto found;
1259 /* Failing everything above, allocate a new small page. */
1261 entry = alloc_small_page (zone);
1262 entry->next = zone->pages;
1263 zone->pages = entry;
1265 /* Mark the first chunk in the new page. */
1266 entry->alloc_bits[0] = 1;
1268 result = entry->common.page;
1269 if (size < SMALL_PAGE_SIZE)
1271 if (zone->cached_free_size)
1272 free_chunk (zone->cached_free, zone->cached_free_size, zone);
1274 zone->cached_free = (char *) result + size;
1275 zone->cached_free_size = SMALL_PAGE_SIZE - size;
1277 /* Mark the new free chunk as an object. */
1278 zone_set_object_alloc_bit (zone->cached_free);
1281 found:
1283 /* We could save TYPE in the chunk, but we don't use that for
1284 anything yet. If we wanted to, we could do it by adding it
1285 either before the beginning of the chunk or after its end,
1286 and adjusting the size and pointer appropriately. */
1288 /* We'll probably write to this after we return. */
1289 prefetchw (result);
1291 #ifdef ENABLE_GC_CHECKING
1292 /* `Poison' the entire allocated object. */
1293 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size));
1294 memset (result, 0xaf, size);
1295 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (result + orig_size,
1296 size - orig_size));
1297 #endif
1299 /* Tell Valgrind that the memory is there, but its content isn't
1300 defined. The bytes at the end of the object are still marked
1301 unaccessible. */
1302 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, orig_size));
1304 /* Keep track of how many bytes are being allocated. This
1305 information is used in deciding when to collect. */
1306 zone->allocated += size;
1308 timevar_ggc_mem_total += size;
1310 if (GATHER_STATISTICS)
1311 ggc_record_overhead (orig_size, size - orig_size, result FINAL_PASS_MEM_STAT);
1314 size_t object_size = size;
1315 size_t overhead = object_size - orig_size;
1317 zone->stats.total_overhead += overhead;
1318 zone->stats.total_allocated += object_size;
1320 if (orig_size <= 32)
1322 zone->stats.total_overhead_under32 += overhead;
1323 zone->stats.total_allocated_under32 += object_size;
1325 if (orig_size <= 64)
1327 zone->stats.total_overhead_under64 += overhead;
1328 zone->stats.total_allocated_under64 += object_size;
1330 if (orig_size <= 128)
1332 zone->stats.total_overhead_under128 += overhead;
1333 zone->stats.total_allocated_under128 += object_size;
1336 #endif
1338 if (GGC_DEBUG_LEVEL >= 3)
1339 fprintf (G.debug_file, "Allocating object, size=%lu at %p\n",
1340 (unsigned long) size, result);
1342 return result;
1345 #define ggc_internal_alloc_zone_pass_stat(s,z) \
1346 ggc_internal_alloc_zone_stat (s,z PASS_MEM_STAT)
1348 void *
1349 ggc_internal_cleared_alloc_zone_stat (size_t orig_size,
1350 struct alloc_zone *zone MEM_STAT_DECL)
1352 void * result = ggc_internal_alloc_zone_pass_stat (orig_size, zone);
1353 memset (result, 0, orig_size);
1354 return result;
1358 /* Allocate a SIZE of chunk memory of GTE type, into an appropriate zone
1359 for that type. */
1361 void *
1362 ggc_alloc_typed_stat (enum gt_types_enum gte, size_t size
1363 MEM_STAT_DECL)
1365 switch (gte)
1367 case gt_ggc_e_14lang_tree_node:
1368 return ggc_internal_alloc_zone_pass_stat (size, &tree_zone);
1370 case gt_ggc_e_7rtx_def:
1371 return ggc_internal_alloc_zone_pass_stat (size, &rtl_zone);
1373 case gt_ggc_e_9rtvec_def:
1374 return ggc_internal_alloc_zone_pass_stat (size, &rtl_zone);
1376 default:
1377 return ggc_internal_alloc_zone_pass_stat (size, &main_zone);
1381 /* Normal GC allocation simply allocates into the main zone. */
1383 void *
1384 ggc_internal_alloc_stat (size_t size MEM_STAT_DECL)
1386 return ggc_internal_alloc_zone_pass_stat (size, &main_zone);
1389 /* Poison the chunk. */
1390 #ifdef ENABLE_GC_CHECKING
1391 #define poison_region(PTR, SIZE) \
1392 do { \
1393 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED ((PTR), (SIZE))); \
1394 memset ((PTR), 0xa5, (SIZE)); \
1395 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((PTR), (SIZE))); \
1396 } while (0)
1397 #else
1398 #define poison_region(PTR, SIZE)
1399 #endif
1401 /* Free the object at P. */
1403 void
1404 ggc_free (void *p)
1406 struct page_entry *page;
1408 if (GATHER_STATISTICS)
1409 ggc_free_overhead (p);
1411 poison_region (p, ggc_get_size (p));
1413 page = zone_get_object_page (p);
1415 if (page->large_p)
1417 struct large_page_entry *large_page
1418 = (struct large_page_entry *) page;
1420 /* Remove the page from the linked list. */
1421 if (large_page->prev)
1422 large_page->prev->next = large_page->next;
1423 else
1425 gcc_assert (large_page->common.zone->large_pages == large_page);
1426 large_page->common.zone->large_pages = large_page->next;
1428 if (large_page->next)
1429 large_page->next->prev = large_page->prev;
1431 large_page->common.zone->allocated -= large_page->bytes;
1433 /* Release the memory associated with this object. */
1434 free_large_page (large_page);
1436 else if (page->pch_p)
1437 /* Don't do anything. We won't allocate a new object from the
1438 PCH zone so there's no point in releasing anything. */
1440 else
1442 size_t size = ggc_get_size (p);
1444 page->zone->allocated -= size;
1446 /* Add the chunk to the free list. We don't bother with coalescing,
1447 since we are likely to want a chunk of this size again. */
1448 free_chunk ((char *)p, size, page->zone);
1452 /* Mark function for strings. */
1454 void
1455 gt_ggc_m_S (const void *p)
1457 page_entry *entry;
1458 unsigned long offset;
1460 if (!p)
1461 return;
1463 /* Look up the page on which the object is alloced. . */
1464 entry = lookup_page_table_if_allocated (p);
1465 if (! entry)
1466 return;
1468 if (entry->pch_p)
1470 size_t alloc_word, alloc_bit, t;
1471 t = ((const char *) p - pch_zone.page) / BYTES_PER_ALLOC_BIT;
1472 alloc_word = t / (8 * sizeof (alloc_type));
1473 alloc_bit = t % (8 * sizeof (alloc_type));
1474 offset = zone_find_object_offset (pch_zone.alloc_bits, alloc_word,
1475 alloc_bit);
1477 else if (entry->large_p)
1479 struct large_page_entry *le = (struct large_page_entry *) entry;
1480 offset = ((const char *) p) - entry->page;
1481 gcc_assert (offset < le->bytes);
1483 else
1485 struct small_page_entry *se = (struct small_page_entry *) entry;
1486 unsigned int start_word = zone_get_object_alloc_word (p);
1487 unsigned int start_bit = zone_get_object_alloc_bit (p);
1488 offset = zone_find_object_offset (se->alloc_bits, start_word, start_bit);
1490 /* On some platforms a char* will not necessarily line up on an
1491 allocation boundary, so we have to update the offset to
1492 account for the leftover bytes. */
1493 offset += (size_t) p % BYTES_PER_ALLOC_BIT;
1496 if (offset)
1498 /* Here we've seen a char* which does not point to the beginning
1499 of an allocated object. We assume it points to the middle of
1500 a STRING_CST. */
1501 gcc_assert (offset == offsetof (struct tree_string, str));
1502 p = ((const char *) p) - offset;
1503 gt_ggc_mx_lang_tree_node (CONST_CAST(void *, p));
1504 return;
1507 /* Inefficient, but also unlikely to matter. */
1508 ggc_set_mark (p);
1512 /* User-callable entry points for marking string X. */
1514 void
1515 gt_ggc_mx (const char *& x)
1517 gt_ggc_m_S (x);
1520 void
1521 gt_ggc_mx (unsigned char *& x)
1523 gt_ggc_m_S (x);
1526 void
1527 gt_ggc_mx (unsigned char& x ATTRIBUTE_UNUSED)
1531 /* If P is not marked, mark it and return false. Otherwise return true.
1532 P must have been allocated by the GC allocator; it mustn't point to
1533 static objects, stack variables, or memory allocated with malloc. */
1536 ggc_set_mark (const void *p)
1538 struct page_entry *page;
1539 const char *ptr = (const char *) p;
1541 page = zone_get_object_page (p);
1543 if (page->pch_p)
1545 size_t mark_word, mark_bit, offset;
1546 offset = (ptr - pch_zone.page) / BYTES_PER_MARK_BIT;
1547 mark_word = offset / (8 * sizeof (mark_type));
1548 mark_bit = offset % (8 * sizeof (mark_type));
1550 if (pch_zone.mark_bits[mark_word] & (1 << mark_bit))
1551 return 1;
1552 pch_zone.mark_bits[mark_word] |= (1 << mark_bit);
1554 else if (page->large_p)
1556 struct large_page_entry *large_page
1557 = (struct large_page_entry *) page;
1559 if (large_page->mark_p)
1560 return 1;
1561 large_page->mark_p = true;
1563 else
1565 struct small_page_entry *small_page
1566 = (struct small_page_entry *) page;
1568 if (small_page->mark_bits[zone_get_object_mark_word (p)]
1569 & (1 << zone_get_object_mark_bit (p)))
1570 return 1;
1571 small_page->mark_bits[zone_get_object_mark_word (p)]
1572 |= (1 << zone_get_object_mark_bit (p));
1575 if (GGC_DEBUG_LEVEL >= 4)
1576 fprintf (G.debug_file, "Marking %p\n", p);
1578 return 0;
1581 /* Return 1 if P has been marked, zero otherwise.
1582 P must have been allocated by the GC allocator; it mustn't point to
1583 static objects, stack variables, or memory allocated with malloc. */
1586 ggc_marked_p (const void *p)
1588 struct page_entry *page;
1589 const char *ptr = (const char *) p;
1591 page = zone_get_object_page (p);
1593 if (page->pch_p)
1595 size_t mark_word, mark_bit, offset;
1596 offset = (ptr - pch_zone.page) / BYTES_PER_MARK_BIT;
1597 mark_word = offset / (8 * sizeof (mark_type));
1598 mark_bit = offset % (8 * sizeof (mark_type));
1600 return (pch_zone.mark_bits[mark_word] & (1 << mark_bit)) != 0;
1603 if (page->large_p)
1605 struct large_page_entry *large_page
1606 = (struct large_page_entry *) page;
1608 return large_page->mark_p;
1610 else
1612 struct small_page_entry *small_page
1613 = (struct small_page_entry *) page;
1615 return 0 != (small_page->mark_bits[zone_get_object_mark_word (p)]
1616 & (1 << zone_get_object_mark_bit (p)));
1620 /* Return the size of the gc-able object P. */
1622 size_t
1623 ggc_get_size (const void *p)
1625 struct page_entry *page;
1626 const char *ptr = (const char *) p;
1628 page = zone_get_object_page (p);
1630 if (page->pch_p)
1632 size_t alloc_word, alloc_bit, offset, max_size;
1633 offset = (ptr - pch_zone.page) / BYTES_PER_ALLOC_BIT + 1;
1634 alloc_word = offset / (8 * sizeof (alloc_type));
1635 alloc_bit = offset % (8 * sizeof (alloc_type));
1636 max_size = pch_zone.bytes - (ptr - pch_zone.page);
1637 return zone_object_size_1 (pch_zone.alloc_bits, alloc_word, alloc_bit,
1638 max_size);
1641 if (page->large_p)
1642 return ((struct large_page_entry *)page)->bytes;
1643 else
1644 return zone_find_object_size ((struct small_page_entry *) page, p);
1647 /* Initialize the ggc-zone-mmap allocator. */
1648 void
1649 init_ggc (void)
1651 /* The allocation size must be greater than BYTES_PER_MARK_BIT, and
1652 a multiple of both BYTES_PER_ALLOC_BIT and FREE_BIN_DELTA, for
1653 the current assumptions to hold. */
1655 gcc_assert (FREE_BIN_DELTA == MAX_ALIGNMENT);
1657 /* Set up the main zone by hand. */
1658 main_zone.name = "Main zone";
1659 G.zones = &main_zone;
1661 /* Allocate the default zones. */
1662 new_ggc_zone_1 (&rtl_zone, "RTL zone");
1663 new_ggc_zone_1 (&tree_zone, "Tree zone");
1664 new_ggc_zone_1 (&tree_id_zone, "Tree identifier zone");
1666 G.pagesize = getpagesize();
1667 G.lg_pagesize = exact_log2 (G.pagesize);
1668 G.page_mask = ~(G.pagesize - 1);
1670 /* Require the system page size to be a multiple of GGC_PAGE_SIZE. */
1671 gcc_assert ((G.pagesize & (GGC_PAGE_SIZE - 1)) == 0);
1673 /* Allocate 16 system pages at a time. */
1674 G.quire_size = 16 * G.pagesize / GGC_PAGE_SIZE;
1676 /* Calculate the size of the allocation bitmap and other overhead. */
1677 /* Right now we allocate bits for the page header and bitmap. These
1678 are wasted, but a little tricky to eliminate. */
1679 G.small_page_overhead
1680 = PAGE_OVERHEAD + (GGC_PAGE_SIZE / BYTES_PER_ALLOC_BIT / 8);
1681 /* G.small_page_overhead = ROUND_UP (G.small_page_overhead, MAX_ALIGNMENT); */
1683 #ifdef HAVE_MMAP_DEV_ZERO
1684 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1685 gcc_assert (G.dev_zero_fd != -1);
1686 #endif
1688 #if 0
1689 G.debug_file = fopen ("ggc-mmap.debug", "w");
1690 setlinebuf (G.debug_file);
1691 #else
1692 G.debug_file = stdout;
1693 #endif
1695 #ifdef USING_MMAP
1696 /* StunOS has an amazing off-by-one error for the first mmap allocation
1697 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1698 believe, is an unaligned page allocation, which would cause us to
1699 hork badly if we tried to use it. */
1701 char *p = alloc_anon (NULL, G.pagesize, &main_zone);
1702 struct small_page_entry *e;
1703 if ((size_t)p & (G.pagesize - 1))
1705 /* How losing. Discard this one and try another. If we still
1706 can't get something useful, give up. */
1708 p = alloc_anon (NULL, G.pagesize, &main_zone);
1709 gcc_assert (!((size_t)p & (G.pagesize - 1)));
1712 if (GGC_PAGE_SIZE == G.pagesize)
1714 /* We have a good page, might as well hold onto it... */
1715 e = XCNEWVAR (struct small_page_entry, G.small_page_overhead);
1716 e->common.page = p;
1717 e->common.zone = &main_zone;
1718 e->next = main_zone.free_pages;
1719 set_page_table_entry (e->common.page, &e->common);
1720 main_zone.free_pages = e;
1722 else
1724 munmap (p, G.pagesize);
1727 #endif
1730 /* Start a new GGC zone. */
1732 static void
1733 new_ggc_zone_1 (struct alloc_zone *new_zone, const char * name)
1735 new_zone->name = name;
1736 new_zone->next_zone = G.zones->next_zone;
1737 G.zones->next_zone = new_zone;
1740 /* Free all empty pages and objects within a page for a given zone */
1742 static void
1743 sweep_pages (struct alloc_zone *zone)
1745 struct large_page_entry **lpp, *lp, *lnext;
1746 struct small_page_entry **spp, *sp, *snext;
1747 char *last_free;
1748 size_t allocated = 0;
1749 bool nomarksinpage;
1751 /* First, reset the free_chunks lists, since we are going to
1752 re-free free chunks in hopes of coalescing them into large chunks. */
1753 memset (zone->free_chunks, 0, sizeof (zone->free_chunks));
1754 zone->high_free_bin = 0;
1755 zone->cached_free = NULL;
1756 zone->cached_free_size = 0;
1758 /* Large pages are all or none affairs. Either they are completely
1759 empty, or they are completely full. */
1760 lpp = &zone->large_pages;
1761 for (lp = zone->large_pages; lp != NULL; lp = lnext)
1763 gcc_assert (lp->common.large_p);
1765 lnext = lp->next;
1767 /* This page has now survived another collection. */
1768 lp->common.survived++;
1770 if (lp->mark_p)
1772 lp->mark_p = false;
1773 allocated += lp->bytes;
1774 lpp = &lp->next;
1776 else
1778 *lpp = lnext;
1779 #ifdef ENABLE_GC_CHECKING
1780 /* Poison the page. */
1781 memset (lp->common.page, 0xb5, SMALL_PAGE_SIZE);
1782 #endif
1783 if (lp->prev)
1784 lp->prev->next = lp->next;
1785 if (lp->next)
1786 lp->next->prev = lp->prev;
1787 free_large_page (lp);
1791 spp = &zone->pages;
1792 for (sp = zone->pages; sp != NULL; sp = snext)
1794 char *object, *last_object;
1795 char *end;
1796 alloc_type *alloc_word_p;
1797 mark_type *mark_word_p;
1799 gcc_assert (!sp->common.large_p);
1801 snext = sp->next;
1803 /* This page has now survived another collection. */
1804 sp->common.survived++;
1806 /* Step through all chunks, consolidate those that are free and
1807 insert them into the free lists. Note that consolidation
1808 slows down collection slightly. */
1810 last_object = object = sp->common.page;
1811 end = sp->common.page + SMALL_PAGE_SIZE;
1812 last_free = NULL;
1813 nomarksinpage = true;
1814 mark_word_p = sp->mark_bits;
1815 alloc_word_p = sp->alloc_bits;
1817 gcc_assert (BYTES_PER_ALLOC_BIT == BYTES_PER_MARK_BIT);
1819 object = sp->common.page;
1822 unsigned int i, n;
1823 alloc_type alloc_word;
1824 mark_type mark_word;
1826 alloc_word = *alloc_word_p++;
1827 mark_word = *mark_word_p++;
1829 if (mark_word)
1830 nomarksinpage = false;
1832 /* There ought to be some way to do this without looping... */
1833 i = 0;
1834 while ((n = alloc_ffs (alloc_word)) != 0)
1836 /* Extend the current state for n - 1 bits. We can't
1837 shift alloc_word by n, even though it isn't used in the
1838 loop, in case only the highest bit was set. */
1839 alloc_word >>= n - 1;
1840 mark_word >>= n - 1;
1841 object += BYTES_PER_MARK_BIT * (n - 1);
1843 if (mark_word & 1)
1845 if (last_free)
1847 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (last_free,
1848 object
1849 - last_free));
1850 poison_region (last_free, object - last_free);
1851 free_chunk (last_free, object - last_free, zone);
1852 last_free = NULL;
1854 else
1855 allocated += object - last_object;
1856 last_object = object;
1858 else
1860 if (last_free == NULL)
1862 last_free = object;
1863 allocated += object - last_object;
1865 else
1866 zone_clear_object_alloc_bit (sp, object);
1869 /* Shift to just after the alloc bit we handled. */
1870 alloc_word >>= 1;
1871 mark_word >>= 1;
1872 object += BYTES_PER_MARK_BIT;
1874 i += n;
1877 object += BYTES_PER_MARK_BIT * (8 * sizeof (alloc_type) - i);
1879 while (object < end);
1881 if (nomarksinpage)
1883 *spp = snext;
1884 #ifdef ENABLE_GC_CHECKING
1885 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (sp->common.page,
1886 SMALL_PAGE_SIZE));
1887 /* Poison the page. */
1888 memset (sp->common.page, 0xb5, SMALL_PAGE_SIZE);
1889 #endif
1890 free_small_page (sp);
1891 continue;
1893 else if (last_free)
1895 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (last_free,
1896 object - last_free));
1897 poison_region (last_free, object - last_free);
1898 free_chunk (last_free, object - last_free, zone);
1900 else
1901 allocated += object - last_object;
1903 spp = &sp->next;
1906 zone->allocated = allocated;
1909 /* mark-and-sweep routine for collecting a single zone. NEED_MARKING
1910 is true if we need to mark before sweeping, false if some other
1911 zone collection has already performed marking for us. Returns true
1912 if we collected, false otherwise. */
1914 static bool
1915 ggc_collect_1 (struct alloc_zone *zone, bool need_marking)
1917 #if 0
1918 /* */
1920 int i;
1921 for (i = 0; i < NUM_FREE_BINS + 1; i++)
1923 struct alloc_chunk *chunk;
1924 int n, tot;
1926 n = 0;
1927 tot = 0;
1928 chunk = zone->free_chunks[i];
1929 while (chunk)
1931 n++;
1932 tot += chunk->size;
1933 chunk = chunk->next_free;
1935 fprintf (stderr, "Bin %d: %d free chunks (%d bytes)\n",
1936 i, n, tot);
1939 /* */
1940 #endif
1942 if (!quiet_flag)
1943 fprintf (stderr, " {%s GC %luk -> ",
1944 zone->name, (unsigned long) zone->allocated / 1024);
1946 /* Zero the total allocated bytes. This will be recalculated in the
1947 sweep phase. */
1948 zone->allocated = 0;
1950 /* Release the pages we freed the last time we collected, but didn't
1951 reuse in the interim. */
1952 release_pages (zone);
1954 if (need_marking)
1956 zone_allocate_marks ();
1957 ggc_mark_roots ();
1958 if (GATHER_STATISTICS)
1959 ggc_prune_overhead_list ();
1962 sweep_pages (zone);
1963 zone->was_collected = true;
1964 zone->allocated_last_gc = zone->allocated;
1966 if (!quiet_flag)
1967 fprintf (stderr, "%luk}", (unsigned long) zone->allocated / 1024);
1968 return true;
1971 /* Calculate the average page survival rate in terms of number of
1972 collections. */
1974 static float
1975 calculate_average_page_survival (struct alloc_zone *zone)
1977 float count = 0.0;
1978 float survival = 0.0;
1979 struct small_page_entry *p;
1980 struct large_page_entry *lp;
1981 for (p = zone->pages; p; p = p->next)
1983 count += 1.0;
1984 survival += p->common.survived;
1986 for (lp = zone->large_pages; lp; lp = lp->next)
1988 count += 1.0;
1989 survival += lp->common.survived;
1991 return survival/count;
1994 /* Top level collection routine. */
1996 void
1997 ggc_collect (void)
1999 struct alloc_zone *zone;
2000 bool marked = false;
2002 timevar_push (TV_GC);
2004 if (!ggc_force_collect)
2006 float allocated_last_gc = 0, allocated = 0, min_expand;
2008 for (zone = G.zones; zone; zone = zone->next_zone)
2010 allocated_last_gc += zone->allocated_last_gc;
2011 allocated += zone->allocated;
2014 allocated_last_gc =
2015 MAX (allocated_last_gc,
2016 (size_t) PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
2017 min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
2019 if (allocated < allocated_last_gc + min_expand)
2021 timevar_pop (TV_GC);
2022 return;
2026 invoke_plugin_callbacks (PLUGIN_GGC_START, NULL);
2028 /* Start by possibly collecting the main zone. */
2029 main_zone.was_collected = false;
2030 marked |= ggc_collect_1 (&main_zone, true);
2032 /* In order to keep the number of collections down, we don't
2033 collect other zones unless we are collecting the main zone. This
2034 gives us roughly the same number of collections as we used to
2035 have with the old gc. The number of collection is important
2036 because our main slowdown (according to profiling) is now in
2037 marking. So if we mark twice as often as we used to, we'll be
2038 twice as slow. Hopefully we'll avoid this cost when we mark
2039 zone-at-a-time. */
2040 /* NOTE drow/2004-07-28: We now always collect the main zone, but
2041 keep this code in case the heuristics are further refined. */
2043 if (main_zone.was_collected)
2045 struct alloc_zone *zone;
2047 for (zone = main_zone.next_zone; zone; zone = zone->next_zone)
2049 zone->was_collected = false;
2050 marked |= ggc_collect_1 (zone, !marked);
2054 /* Print page survival stats, if someone wants them. */
2055 if (GATHER_STATISTICS && GGC_DEBUG_LEVEL >= 2)
2057 for (zone = G.zones; zone; zone = zone->next_zone)
2059 if (zone->was_collected)
2061 float f = calculate_average_page_survival (zone);
2062 printf ("Average page survival in zone `%s' is %f\n",
2063 zone->name, f);
2068 if (marked)
2069 zone_free_marks ();
2071 /* Free dead zones. */
2072 for (zone = G.zones; zone && zone->next_zone; zone = zone->next_zone)
2074 if (zone->next_zone->dead)
2076 struct alloc_zone *dead_zone = zone->next_zone;
2078 printf ("Zone `%s' is dead and will be freed.\n", dead_zone->name);
2080 /* The zone must be empty. */
2081 gcc_assert (!dead_zone->allocated);
2083 /* Unchain the dead zone, release all its pages and free it. */
2084 zone->next_zone = zone->next_zone->next_zone;
2085 release_pages (dead_zone);
2086 free (dead_zone);
2090 invoke_plugin_callbacks (PLUGIN_GGC_END, NULL);
2092 timevar_pop (TV_GC);
2095 /* Print allocation statistics. */
2096 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
2097 ? (x) \
2098 : ((x) < 1024*1024*10 \
2099 ? (x) / 1024 \
2100 : (x) / (1024*1024))))
2101 #define LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
2103 void
2104 ggc_print_statistics (void)
2106 struct alloc_zone *zone;
2107 struct ggc_statistics stats;
2108 size_t total_overhead = 0, total_allocated = 0, total_bytes_mapped = 0;
2109 size_t pte_overhead, i;
2111 /* Clear the statistics. */
2112 memset (&stats, 0, sizeof (stats));
2114 /* Make sure collection will really occur. */
2115 ggc_force_collect = true;
2117 /* Collect and print the statistics common across collectors. */
2118 ggc_print_common_statistics (stderr, &stats);
2120 ggc_force_collect = false;
2122 /* Release free pages so that we will not count the bytes allocated
2123 there as part of the total allocated memory. */
2124 for (zone = G.zones; zone; zone = zone->next_zone)
2125 release_pages (zone);
2127 /* Collect some information about the various sizes of
2128 allocation. */
2129 fprintf (stderr,
2130 "Memory still allocated at the end of the compilation process\n");
2132 fprintf (stderr, "%20s %10s %10s %10s\n",
2133 "Zone", "Allocated", "Used", "Overhead");
2134 for (zone = G.zones; zone; zone = zone->next_zone)
2136 struct large_page_entry *large_page;
2137 size_t overhead, allocated, in_use;
2139 /* Skip empty zones. */
2140 if (!zone->pages && !zone->large_pages)
2141 continue;
2143 allocated = in_use = 0;
2145 overhead = sizeof (struct alloc_zone);
2147 for (large_page = zone->large_pages; large_page != NULL;
2148 large_page = large_page->next)
2150 allocated += large_page->bytes;
2151 in_use += large_page->bytes;
2152 overhead += sizeof (struct large_page_entry);
2155 /* There's no easy way to walk through the small pages finding
2156 used and unused objects. Instead, add all the pages, and
2157 subtract out the free list. */
2159 allocated += GGC_PAGE_SIZE * zone->n_small_pages;
2160 in_use += GGC_PAGE_SIZE * zone->n_small_pages;
2161 overhead += G.small_page_overhead * zone->n_small_pages;
2163 for (i = 0; i <= NUM_FREE_BINS; i++)
2165 struct alloc_chunk *chunk = zone->free_chunks[i];
2166 while (chunk)
2168 in_use -= ggc_get_size (chunk);
2169 chunk = chunk->next_free;
2173 fprintf (stderr, "%20s %10lu%c %10lu%c %10lu%c\n",
2174 zone->name,
2175 SCALE (allocated), LABEL (allocated),
2176 SCALE (in_use), LABEL (in_use),
2177 SCALE (overhead), LABEL (overhead));
2179 gcc_assert (in_use == zone->allocated);
2181 total_overhead += overhead;
2182 total_allocated += zone->allocated;
2183 total_bytes_mapped += zone->bytes_mapped;
2186 /* Count the size of the page table as best we can. */
2187 #if HOST_BITS_PER_PTR <= 32
2188 pte_overhead = sizeof (G.lookup);
2189 for (i = 0; i < PAGE_L1_SIZE; i++)
2190 if (G.lookup[i])
2191 pte_overhead += PAGE_L2_SIZE * sizeof (struct page_entry *);
2192 #else
2194 page_table table = G.lookup;
2195 pte_overhead = 0;
2196 while (table)
2198 pte_overhead += sizeof (*table);
2199 for (i = 0; i < PAGE_L1_SIZE; i++)
2200 if (table->table[i])
2201 pte_overhead += PAGE_L2_SIZE * sizeof (struct page_entry *);
2202 table = table->next;
2205 #endif
2206 fprintf (stderr, "%20s %11s %11s %10lu%c\n", "Page Table",
2207 "", "", SCALE (pte_overhead), LABEL (pte_overhead));
2208 total_overhead += pte_overhead;
2210 fprintf (stderr, "%20s %10lu%c %10lu%c %10lu%c\n", "Total",
2211 SCALE (total_bytes_mapped), LABEL (total_bytes_mapped),
2212 SCALE (total_allocated), LABEL(total_allocated),
2213 SCALE (total_overhead), LABEL (total_overhead));
2215 if (GATHER_STATISTICS)
2217 unsigned long long all_overhead = 0, all_allocated = 0;
2218 unsigned long long all_overhead_under32 = 0, all_allocated_under32 = 0;
2219 unsigned long long all_overhead_under64 = 0, all_allocated_under64 = 0;
2220 unsigned long long all_overhead_under128 = 0, all_allocated_under128 = 0;
2222 fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
2224 for (zone = G.zones; zone; zone = zone->next_zone)
2226 all_overhead += zone->stats.total_overhead;
2227 all_allocated += zone->stats.total_allocated;
2229 all_allocated_under32 += zone->stats.total_allocated_under32;
2230 all_overhead_under32 += zone->stats.total_overhead_under32;
2232 all_allocated_under64 += zone->stats.total_allocated_under64;
2233 all_overhead_under64 += zone->stats.total_overhead_under64;
2235 all_allocated_under128 += zone->stats.total_allocated_under128;
2236 all_overhead_under128 += zone->stats.total_overhead_under128;
2238 fprintf (stderr, "%20s: %10lld\n",
2239 zone->name, zone->stats.total_allocated);
2242 fprintf (stderr, "\n");
2244 fprintf (stderr, "Total Overhead: %10lld\n",
2245 all_overhead);
2246 fprintf (stderr, "Total Allocated: %10lld\n",
2247 all_allocated);
2249 fprintf (stderr, "Total Overhead under 32B: %10lld\n",
2250 all_overhead_under32);
2251 fprintf (stderr, "Total Allocated under 32B: %10lld\n",
2252 all_allocated_under32);
2253 fprintf (stderr, "Total Overhead under 64B: %10lld\n",
2254 all_overhead_under64);
2255 fprintf (stderr, "Total Allocated under 64B: %10lld\n",
2256 all_allocated_under64);
2257 fprintf (stderr, "Total Overhead under 128B: %10lld\n",
2258 all_overhead_under128);
2259 fprintf (stderr, "Total Allocated under 128B: %10lld\n",
2260 all_allocated_under128);
2264 /* Precompiled header support. */
2266 /* For precompiled headers, we sort objects based on their type. We
2267 also sort various objects into their own buckets; currently this
2268 covers strings and IDENTIFIER_NODE trees. The choices of how
2269 to sort buckets have not yet been tuned. */
2271 #define NUM_PCH_BUCKETS (gt_types_enum_last + 3)
2273 #define OTHER_BUCKET (gt_types_enum_last + 0)
2274 #define IDENTIFIER_BUCKET (gt_types_enum_last + 1)
2275 #define STRING_BUCKET (gt_types_enum_last + 2)
2277 struct ggc_pch_ondisk
2279 size_t total;
2280 size_t type_totals[NUM_PCH_BUCKETS];
2283 struct ggc_pch_data
2285 struct ggc_pch_ondisk d;
2286 size_t base;
2287 size_t orig_base;
2288 size_t alloc_size;
2289 alloc_type *alloc_bits;
2290 size_t type_bases[NUM_PCH_BUCKETS];
2291 size_t start_offset;
2294 /* Initialize the PCH data structure. */
2296 struct ggc_pch_data *
2297 init_ggc_pch (void)
2299 return XCNEW (struct ggc_pch_data);
2302 /* Return which of the page-aligned buckets the object at X, with type
2303 TYPE, should be sorted into in the PCH. Strings will have
2304 IS_STRING set and TYPE will be gt_types_enum_last. Other objects
2305 of unknown type will also have TYPE equal to gt_types_enum_last. */
2307 static int
2308 pch_bucket (void *x, enum gt_types_enum type,
2309 bool is_string)
2311 /* Sort identifiers into their own bucket, to improve locality
2312 when searching the identifier hash table. */
2313 if (type == gt_ggc_e_14lang_tree_node
2314 && TREE_CODE ((tree) x) == IDENTIFIER_NODE)
2315 return IDENTIFIER_BUCKET;
2316 else if (type == gt_types_enum_last)
2318 if (is_string)
2319 return STRING_BUCKET;
2320 return OTHER_BUCKET;
2322 return type;
2325 /* Add the size of object X to the size of the PCH data. */
2327 void
2328 ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2329 size_t size, bool is_string, enum gt_types_enum type)
2331 /* NOTE: Right now we don't need to align up the size of any objects.
2332 Strings can be unaligned, and everything else is allocated to a
2333 MAX_ALIGNMENT boundary already. */
2335 d->d.type_totals[pch_bucket (x, type, is_string)] += size;
2338 /* Return the total size of the PCH data. */
2340 size_t
2341 ggc_pch_total_size (struct ggc_pch_data *d)
2343 int i;
2344 size_t alloc_size, total_size;
2346 total_size = 0;
2347 for (i = 0; i < NUM_PCH_BUCKETS; i++)
2349 d->d.type_totals[i] = ROUND_UP (d->d.type_totals[i], GGC_PAGE_SIZE);
2350 total_size += d->d.type_totals[i];
2352 d->d.total = total_size;
2354 /* Include the size of the allocation bitmap. */
2355 alloc_size = CEIL (d->d.total, BYTES_PER_ALLOC_BIT * 8);
2356 alloc_size = ROUND_UP (alloc_size, MAX_ALIGNMENT);
2357 d->alloc_size = alloc_size;
2359 return d->d.total + alloc_size;
2362 /* Set the base address for the objects in the PCH file. */
2364 void
2365 ggc_pch_this_base (struct ggc_pch_data *d, void *base_)
2367 int i;
2368 size_t base = (size_t) base_;
2370 d->base = d->orig_base = base;
2371 for (i = 0; i < NUM_PCH_BUCKETS; i++)
2373 d->type_bases[i] = base;
2374 base += d->d.type_totals[i];
2377 if (d->alloc_bits == NULL)
2378 d->alloc_bits = XCNEWVAR (alloc_type, d->alloc_size);
2381 /* Allocate a place for object X of size SIZE in the PCH file. */
2383 char *
2384 ggc_pch_alloc_object (struct ggc_pch_data *d, void *x,
2385 size_t size, bool is_string,
2386 enum gt_types_enum type)
2388 size_t alloc_word, alloc_bit;
2389 char *result;
2390 int bucket = pch_bucket (x, type, is_string);
2392 /* Record the start of the object in the allocation bitmap. We
2393 can't assert that the allocation bit is previously clear, because
2394 strings may violate the invariant that they are at least
2395 BYTES_PER_ALLOC_BIT long. This is harmless - ggc_get_size
2396 should not be called for strings. */
2397 alloc_word = ((d->type_bases[bucket] - d->orig_base)
2398 / (8 * sizeof (alloc_type) * BYTES_PER_ALLOC_BIT));
2399 alloc_bit = ((d->type_bases[bucket] - d->orig_base)
2400 / BYTES_PER_ALLOC_BIT) % (8 * sizeof (alloc_type));
2401 d->alloc_bits[alloc_word] |= 1L << alloc_bit;
2403 /* Place the object at the current pointer for this bucket. */
2404 result = (char *) d->type_bases[bucket];
2405 d->type_bases[bucket] += size;
2406 return result;
2409 /* Prepare to write out the PCH data to file F. */
2411 void
2412 ggc_pch_prepare_write (struct ggc_pch_data *d,
2413 FILE *f)
2415 /* We seek around a lot while writing. Record where the end
2416 of the padding in the PCH file is, so that we can
2417 locate each object's offset. */
2418 d->start_offset = ftell (f);
2421 /* Write out object X of SIZE to file F. */
2423 void
2424 ggc_pch_write_object (struct ggc_pch_data *d,
2425 FILE *f, void *x, void *newx,
2426 size_t size, bool is_string ATTRIBUTE_UNUSED)
2428 if (fseek (f, (size_t) newx - d->orig_base + d->start_offset, SEEK_SET) != 0)
2429 fatal_error ("can%'t seek PCH file: %m");
2431 if (fwrite (x, size, 1, f) != 1)
2432 fatal_error ("can%'t write PCH file: %m");
2435 void
2436 ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
2438 /* Write out the allocation bitmap. */
2439 if (fseek (f, d->start_offset + d->d.total, SEEK_SET) != 0)
2440 fatal_error ("can%'t seek PCH file: %m");
2442 if (fwrite (d->alloc_bits, d->alloc_size, 1, f) != 1)
2443 fatal_error ("can%'t write PCH file: %m");
2445 /* Done with the PCH, so write out our footer. */
2446 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
2447 fatal_error ("can%'t write PCH file: %m");
2449 free (d->alloc_bits);
2450 free (d);
2453 /* The PCH file from F has been mapped at ADDR. Read in any
2454 additional data from the file and set up the GC state. */
2456 void
2457 ggc_pch_read (FILE *f, void *addr)
2459 struct ggc_pch_ondisk d;
2460 size_t alloc_size;
2461 struct alloc_zone *zone;
2462 struct page_entry *pch_page;
2463 char *p;
2465 if (fread (&d, sizeof (d), 1, f) != 1)
2466 fatal_error ("can%'t read PCH file: %m");
2468 alloc_size = CEIL (d.total, BYTES_PER_ALLOC_BIT * 8);
2469 alloc_size = ROUND_UP (alloc_size, MAX_ALIGNMENT);
2471 pch_zone.bytes = d.total;
2472 pch_zone.alloc_bits = (alloc_type *) ((char *) addr + pch_zone.bytes);
2473 pch_zone.page = (char *) addr;
2474 pch_zone.end = (char *) pch_zone.alloc_bits;
2476 if (GATHER_STATISTICS)
2478 /* We've just read in a PCH file. So, every object that used to be
2479 allocated is now free. */
2480 zone_allocate_marks ();
2481 ggc_prune_overhead_list ();
2482 zone_free_marks ();
2485 for (zone = G.zones; zone; zone = zone->next_zone)
2487 struct small_page_entry *page, *next_page;
2488 struct large_page_entry *large_page, *next_large_page;
2490 zone->allocated = 0;
2492 /* Clear the zone's free chunk list. */
2493 memset (zone->free_chunks, 0, sizeof (zone->free_chunks));
2494 zone->high_free_bin = 0;
2495 zone->cached_free = NULL;
2496 zone->cached_free_size = 0;
2498 /* Move all the small pages onto the free list. */
2499 for (page = zone->pages; page != NULL; page = next_page)
2501 next_page = page->next;
2502 memset (page->alloc_bits, 0,
2503 G.small_page_overhead - PAGE_OVERHEAD);
2504 free_small_page (page);
2507 /* Discard all the large pages. */
2508 for (large_page = zone->large_pages; large_page != NULL;
2509 large_page = next_large_page)
2511 next_large_page = large_page->next;
2512 free_large_page (large_page);
2515 zone->pages = NULL;
2516 zone->large_pages = NULL;
2519 /* Allocate the dummy page entry for the PCH, and set all pages
2520 mapped into the PCH to reference it. */
2521 pch_page = XCNEW (struct page_entry);
2522 pch_page->page = pch_zone.page;
2523 pch_page->pch_p = true;
2525 for (p = pch_zone.page; p < pch_zone.end; p += GGC_PAGE_SIZE)
2526 set_page_table_entry (p, pch_page);