2012-10-23 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / config / i386 / i386.h
blobf923a973b645dc54acd2cee816e1ab8d072d9891
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 Under Section 7 of GPL version 3, you are granted additional
19 permissions described in the GCC Runtime Library Exception, version
20 3.1, as published by the Free Software Foundation.
22 You should have received a copy of the GNU General Public License and
23 a copy of the GCC Runtime Library Exception along with this program;
24 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
25 <http://www.gnu.org/licenses/>. */
27 /* The purpose of this file is to define the characteristics of the i386,
28 independent of assembler syntax or operating system.
30 Three other files build on this one to describe a specific assembler syntax:
31 bsd386.h, att386.h, and sun386.h.
33 The actual tm.h file for a particular system should include
34 this file, and then the file for the appropriate assembler syntax.
36 Many macros that specify assembler syntax are omitted entirely from
37 this file because they really belong in the files for particular
38 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
39 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
40 that start with ASM_ or end in ASM_OP. */
42 /* Redefines for option macros. */
44 #define TARGET_64BIT TARGET_ISA_64BIT
45 #define TARGET_MMX TARGET_ISA_MMX
46 #define TARGET_3DNOW TARGET_ISA_3DNOW
47 #define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
48 #define TARGET_SSE TARGET_ISA_SSE
49 #define TARGET_SSE2 TARGET_ISA_SSE2
50 #define TARGET_SSE3 TARGET_ISA_SSE3
51 #define TARGET_SSSE3 TARGET_ISA_SSSE3
52 #define TARGET_SSE4_1 TARGET_ISA_SSE4_1
53 #define TARGET_SSE4_2 TARGET_ISA_SSE4_2
54 #define TARGET_AVX TARGET_ISA_AVX
55 #define TARGET_AVX2 TARGET_ISA_AVX2
56 #define TARGET_FMA TARGET_ISA_FMA
57 #define TARGET_SSE4A TARGET_ISA_SSE4A
58 #define TARGET_FMA4 TARGET_ISA_FMA4
59 #define TARGET_XOP TARGET_ISA_XOP
60 #define TARGET_LWP TARGET_ISA_LWP
61 #define TARGET_ROUND TARGET_ISA_ROUND
62 #define TARGET_ABM TARGET_ISA_ABM
63 #define TARGET_BMI TARGET_ISA_BMI
64 #define TARGET_BMI2 TARGET_ISA_BMI2
65 #define TARGET_LZCNT TARGET_ISA_LZCNT
66 #define TARGET_TBM TARGET_ISA_TBM
67 #define TARGET_POPCNT TARGET_ISA_POPCNT
68 #define TARGET_SAHF TARGET_ISA_SAHF
69 #define TARGET_MOVBE TARGET_ISA_MOVBE
70 #define TARGET_CRC32 TARGET_ISA_CRC32
71 #define TARGET_AES TARGET_ISA_AES
72 #define TARGET_PCLMUL TARGET_ISA_PCLMUL
73 #define TARGET_CMPXCHG16B TARGET_ISA_CX16
74 #define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
75 #define TARGET_RDRND TARGET_ISA_RDRND
76 #define TARGET_F16C TARGET_ISA_F16C
77 #define TARGET_RTM TARGET_ISA_RTM
78 #define TARGET_HLE TARGET_ISA_HLE
79 #define TARGET_RDSEED TARGET_ISA_RDSEED
80 #define TARGET_PRFCHW TARGET_ISA_PRFCHW
81 #define TARGET_ADX TARGET_ISA_ADX
83 #define TARGET_LP64 TARGET_ABI_64
84 #define TARGET_X32 TARGET_ABI_X32
86 /* SSE4.1 defines round instructions */
87 #define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
88 #define TARGET_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
90 #include "config/vxworks-dummy.h"
92 #include "config/i386/i386-opts.h"
94 #define MAX_STRINGOP_ALGS 4
96 /* Specify what algorithm to use for stringops on known size.
97 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
98 known at compile time or estimated via feedback, the SIZE array
99 is walked in order until MAX is greater then the estimate (or -1
100 means infinity). Corresponding ALG is used then.
101 For example initializer:
102 {{256, loop}, {-1, rep_prefix_4_byte}}
103 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
104 be used otherwise. */
105 struct stringop_algs
107 const enum stringop_alg unknown_size;
108 const struct stringop_strategy {
109 const int max;
110 const enum stringop_alg alg;
111 } size [MAX_STRINGOP_ALGS];
114 /* Define the specific costs for a given cpu */
116 struct processor_costs {
117 const int add; /* cost of an add instruction */
118 const int lea; /* cost of a lea instruction */
119 const int shift_var; /* variable shift costs */
120 const int shift_const; /* constant shift costs */
121 const int mult_init[5]; /* cost of starting a multiply
122 in QImode, HImode, SImode, DImode, TImode*/
123 const int mult_bit; /* cost of multiply per each bit set */
124 const int divide[5]; /* cost of a divide/mod
125 in QImode, HImode, SImode, DImode, TImode*/
126 int movsx; /* The cost of movsx operation. */
127 int movzx; /* The cost of movzx operation. */
128 const int large_insn; /* insns larger than this cost more */
129 const int move_ratio; /* The threshold of number of scalar
130 memory-to-memory move insns. */
131 const int movzbl_load; /* cost of loading using movzbl */
132 const int int_load[3]; /* cost of loading integer registers
133 in QImode, HImode and SImode relative
134 to reg-reg move (2). */
135 const int int_store[3]; /* cost of storing integer register
136 in QImode, HImode and SImode */
137 const int fp_move; /* cost of reg,reg fld/fst */
138 const int fp_load[3]; /* cost of loading FP register
139 in SFmode, DFmode and XFmode */
140 const int fp_store[3]; /* cost of storing FP register
141 in SFmode, DFmode and XFmode */
142 const int mmx_move; /* cost of moving MMX register. */
143 const int mmx_load[2]; /* cost of loading MMX register
144 in SImode and DImode */
145 const int mmx_store[2]; /* cost of storing MMX register
146 in SImode and DImode */
147 const int sse_move; /* cost of moving SSE register. */
148 const int sse_load[3]; /* cost of loading SSE register
149 in SImode, DImode and TImode*/
150 const int sse_store[3]; /* cost of storing SSE register
151 in SImode, DImode and TImode*/
152 const int mmxsse_to_integer; /* cost of moving mmxsse register to
153 integer and vice versa. */
154 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
155 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
156 const int prefetch_block; /* bytes moved to cache for prefetch. */
157 const int simultaneous_prefetches; /* number of parallel prefetch
158 operations. */
159 const int branch_cost; /* Default value for BRANCH_COST. */
160 const int fadd; /* cost of FADD and FSUB instructions. */
161 const int fmul; /* cost of FMUL instruction. */
162 const int fdiv; /* cost of FDIV instruction. */
163 const int fabs; /* cost of FABS instruction. */
164 const int fchs; /* cost of FCHS instruction. */
165 const int fsqrt; /* cost of FSQRT instruction. */
166 /* Specify what algorithm
167 to use for stringops on unknown size. */
168 struct stringop_algs memcpy[2], memset[2];
169 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
170 load and store. */
171 const int scalar_load_cost; /* Cost of scalar load. */
172 const int scalar_store_cost; /* Cost of scalar store. */
173 const int vec_stmt_cost; /* Cost of any vector operation, excluding
174 load, store, vector-to-scalar and
175 scalar-to-vector operation. */
176 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
177 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
178 const int vec_align_load_cost; /* Cost of aligned vector load. */
179 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
180 const int vec_store_cost; /* Cost of vector store. */
181 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
182 cost model. */
183 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
184 vectorizer cost model. */
187 extern const struct processor_costs *ix86_cost;
188 extern const struct processor_costs ix86_size_cost;
190 #define ix86_cur_cost() \
191 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
193 /* Macros used in the machine description to test the flags. */
195 /* configure can arrange to make this 2, to force a 486. */
197 #ifndef TARGET_CPU_DEFAULT
198 #define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
199 #endif
201 #ifndef TARGET_FPMATH_DEFAULT
202 #define TARGET_FPMATH_DEFAULT \
203 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
204 #endif
206 #define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
208 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
209 compile-time constant. */
210 #ifdef IN_LIBGCC2
211 #undef TARGET_64BIT
212 #ifdef __x86_64__
213 #define TARGET_64BIT 1
214 #else
215 #define TARGET_64BIT 0
216 #endif
217 #else
218 #ifndef TARGET_BI_ARCH
219 #undef TARGET_64BIT
220 #if TARGET_64BIT_DEFAULT
221 #define TARGET_64BIT 1
222 #else
223 #define TARGET_64BIT 0
224 #endif
225 #endif
226 #endif
228 #define HAS_LONG_COND_BRANCH 1
229 #define HAS_LONG_UNCOND_BRANCH 1
231 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
232 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
233 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
234 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
235 #define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
236 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
237 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
238 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
239 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
240 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
241 #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
242 #define TARGET_CORE2_32 (ix86_tune == PROCESSOR_CORE2_32)
243 #define TARGET_CORE2_64 (ix86_tune == PROCESSOR_CORE2_64)
244 #define TARGET_CORE2 (TARGET_CORE2_32 || TARGET_CORE2_64)
245 #define TARGET_COREI7_32 (ix86_tune == PROCESSOR_COREI7_32)
246 #define TARGET_COREI7_64 (ix86_tune == PROCESSOR_COREI7_64)
247 #define TARGET_COREI7 (TARGET_COREI7_32 || TARGET_COREI7_64)
248 #define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
249 #define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
250 #define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
251 #define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
252 #define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
253 #define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
254 #define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
255 #define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
256 #define TARGET_ATOM (ix86_tune == PROCESSOR_ATOM)
258 /* Feature tests against the various tunings. */
259 enum ix86_tune_indices {
260 X86_TUNE_USE_LEAVE,
261 X86_TUNE_PUSH_MEMORY,
262 X86_TUNE_ZERO_EXTEND_WITH_AND,
263 X86_TUNE_UNROLL_STRLEN,
264 X86_TUNE_BRANCH_PREDICTION_HINTS,
265 X86_TUNE_DOUBLE_WITH_ADD,
266 X86_TUNE_USE_SAHF,
267 X86_TUNE_MOVX,
268 X86_TUNE_PARTIAL_REG_STALL,
269 X86_TUNE_PARTIAL_FLAG_REG_STALL,
270 X86_TUNE_LCP_STALL,
271 X86_TUNE_USE_HIMODE_FIOP,
272 X86_TUNE_USE_SIMODE_FIOP,
273 X86_TUNE_USE_MOV0,
274 X86_TUNE_USE_CLTD,
275 X86_TUNE_USE_XCHGB,
276 X86_TUNE_SPLIT_LONG_MOVES,
277 X86_TUNE_READ_MODIFY_WRITE,
278 X86_TUNE_READ_MODIFY,
279 X86_TUNE_PROMOTE_QIMODE,
280 X86_TUNE_FAST_PREFIX,
281 X86_TUNE_SINGLE_STRINGOP,
282 X86_TUNE_QIMODE_MATH,
283 X86_TUNE_HIMODE_MATH,
284 X86_TUNE_PROMOTE_QI_REGS,
285 X86_TUNE_PROMOTE_HI_REGS,
286 X86_TUNE_SINGLE_POP,
287 X86_TUNE_DOUBLE_POP,
288 X86_TUNE_SINGLE_PUSH,
289 X86_TUNE_DOUBLE_PUSH,
290 X86_TUNE_INTEGER_DFMODE_MOVES,
291 X86_TUNE_PARTIAL_REG_DEPENDENCY,
292 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
293 X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL,
294 X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL,
295 X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL,
296 X86_TUNE_SSE_SPLIT_REGS,
297 X86_TUNE_SSE_TYPELESS_STORES,
298 X86_TUNE_SSE_LOAD0_BY_PXOR,
299 X86_TUNE_MEMORY_MISMATCH_STALL,
300 X86_TUNE_PROLOGUE_USING_MOVE,
301 X86_TUNE_EPILOGUE_USING_MOVE,
302 X86_TUNE_SHIFT1,
303 X86_TUNE_USE_FFREEP,
304 X86_TUNE_INTER_UNIT_MOVES,
305 X86_TUNE_INTER_UNIT_CONVERSIONS,
306 X86_TUNE_FOUR_JUMP_LIMIT,
307 X86_TUNE_SCHEDULE,
308 X86_TUNE_USE_BT,
309 X86_TUNE_USE_INCDEC,
310 X86_TUNE_PAD_RETURNS,
311 X86_TUNE_PAD_SHORT_FUNCTION,
312 X86_TUNE_EXT_80387_CONSTANTS,
313 X86_TUNE_SHORTEN_X87_SSE,
314 X86_TUNE_AVOID_VECTOR_DECODE,
315 X86_TUNE_PROMOTE_HIMODE_IMUL,
316 X86_TUNE_SLOW_IMUL_IMM32_MEM,
317 X86_TUNE_SLOW_IMUL_IMM8,
318 X86_TUNE_MOVE_M1_VIA_OR,
319 X86_TUNE_NOT_UNPAIRABLE,
320 X86_TUNE_NOT_VECTORMODE,
321 X86_TUNE_USE_VECTOR_FP_CONVERTS,
322 X86_TUNE_USE_VECTOR_CONVERTS,
323 X86_TUNE_FUSE_CMP_AND_BRANCH,
324 X86_TUNE_OPT_AGU,
325 X86_TUNE_VECTORIZE_DOUBLE,
326 X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL,
327 X86_TUNE_AVX128_OPTIMAL,
328 X86_TUNE_REASSOC_INT_TO_PARALLEL,
329 X86_TUNE_REASSOC_FP_TO_PARALLEL,
330 X86_TUNE_GENERAL_REGS_SSE_SPILL,
332 X86_TUNE_LAST
335 extern unsigned char ix86_tune_features[X86_TUNE_LAST];
337 #define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
338 #define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
339 #define TARGET_ZERO_EXTEND_WITH_AND \
340 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
341 #define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
342 #define TARGET_BRANCH_PREDICTION_HINTS \
343 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
344 #define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
345 #define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
346 #define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
347 #define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
348 #define TARGET_PARTIAL_FLAG_REG_STALL \
349 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
350 #define TARGET_LCP_STALL \
351 ix86_tune_features[X86_TUNE_LCP_STALL]
352 #define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
353 #define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
354 #define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
355 #define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
356 #define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
357 #define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
358 #define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
359 #define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
360 #define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
361 #define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
362 #define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
363 #define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
364 #define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
365 #define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
366 #define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
367 #define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
368 #define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
369 #define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
370 #define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
371 #define TARGET_INTEGER_DFMODE_MOVES \
372 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
373 #define TARGET_PARTIAL_REG_DEPENDENCY \
374 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
375 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
376 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
377 #define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
378 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
379 #define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
380 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
381 #define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
382 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
383 #define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
384 #define TARGET_SSE_TYPELESS_STORES \
385 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
386 #define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
387 #define TARGET_MEMORY_MISMATCH_STALL \
388 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
389 #define TARGET_PROLOGUE_USING_MOVE \
390 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
391 #define TARGET_EPILOGUE_USING_MOVE \
392 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
393 #define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
394 #define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
395 #define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
396 #define TARGET_INTER_UNIT_CONVERSIONS\
397 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
398 #define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
399 #define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
400 #define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
401 #define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
402 #define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
403 #define TARGET_PAD_SHORT_FUNCTION \
404 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
405 #define TARGET_EXT_80387_CONSTANTS \
406 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
407 #define TARGET_SHORTEN_X87_SSE ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE]
408 #define TARGET_AVOID_VECTOR_DECODE \
409 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
410 #define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
411 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
412 #define TARGET_SLOW_IMUL_IMM32_MEM \
413 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
414 #define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
415 #define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
416 #define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
417 #define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
418 #define TARGET_USE_VECTOR_FP_CONVERTS \
419 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
420 #define TARGET_USE_VECTOR_CONVERTS \
421 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
422 #define TARGET_FUSE_CMP_AND_BRANCH \
423 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
424 #define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
425 #define TARGET_VECTORIZE_DOUBLE \
426 ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
427 #define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
428 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
429 #define TARGET_AVX128_OPTIMAL \
430 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
431 #define TARGET_REASSOC_INT_TO_PARALLEL \
432 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
433 #define TARGET_REASSOC_FP_TO_PARALLEL \
434 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
435 #define TARGET_GENERAL_REGS_SSE_SPILL \
436 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
438 /* Feature tests against the various architecture variations. */
439 enum ix86_arch_indices {
440 X86_ARCH_CMOV,
441 X86_ARCH_CMPXCHG,
442 X86_ARCH_CMPXCHG8B,
443 X86_ARCH_XADD,
444 X86_ARCH_BSWAP,
446 X86_ARCH_LAST
449 extern unsigned char ix86_arch_features[X86_ARCH_LAST];
451 #define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
452 #define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
453 #define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
454 #define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
455 #define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
457 /* For sane SSE instruction set generation we need fcomi instruction.
458 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
459 expands to a sequence that includes conditional move. */
460 #define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
462 #define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
464 extern unsigned char x86_prefetch_sse;
465 #define TARGET_PREFETCH_SSE x86_prefetch_sse
467 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
469 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
470 #define TARGET_MIX_SSE_I387 \
471 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
473 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
474 #define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
475 #define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
476 #define TARGET_SUN_TLS 0
478 #ifndef TARGET_64BIT_DEFAULT
479 #define TARGET_64BIT_DEFAULT 0
480 #endif
481 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
482 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
483 #endif
485 /* Fence to use after loop using storent. */
487 extern tree x86_mfence;
488 #define FENCE_FOLLOWING_MOVNT x86_mfence
490 /* Once GDB has been enhanced to deal with functions without frame
491 pointers, we can change this to allow for elimination of
492 the frame pointer in leaf functions. */
493 #define TARGET_DEFAULT 0
495 /* Extra bits to force. */
496 #define TARGET_SUBTARGET_DEFAULT 0
497 #define TARGET_SUBTARGET_ISA_DEFAULT 0
499 /* Extra bits to force on w/ 32-bit mode. */
500 #define TARGET_SUBTARGET32_DEFAULT 0
501 #define TARGET_SUBTARGET32_ISA_DEFAULT 0
503 /* Extra bits to force on w/ 64-bit mode. */
504 #define TARGET_SUBTARGET64_DEFAULT 0
505 #define TARGET_SUBTARGET64_ISA_DEFAULT 0
507 /* Replace MACH-O, ifdefs by in-line tests, where possible.
508 (a) Macros defined in config/i386/darwin.h */
509 #define TARGET_MACHO 0
510 #define TARGET_MACHO_BRANCH_ISLANDS 0
511 #define MACHOPIC_ATT_STUB 0
512 /* (b) Macros defined in config/darwin.h */
513 #define MACHO_DYNAMIC_NO_PIC_P 0
514 #define MACHOPIC_INDIRECT 0
515 #define MACHOPIC_PURE 0
517 /* For the Windows 64-bit ABI. */
518 #define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
520 /* For the Windows 32-bit ABI. */
521 #define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
523 /* This is re-defined by cygming.h. */
524 #define TARGET_SEH 0
526 /* The default abi used by target. */
527 #define DEFAULT_ABI SYSV_ABI
529 /* Subtargets may reset this to 1 in order to enable 96-bit long double
530 with the rounding mode forced to 53 bits. */
531 #define TARGET_96_ROUND_53_LONG_DOUBLE 0
533 /* -march=native handling only makes sense with compiler running on
534 an x86 or x86_64 chip. If changing this condition, also change
535 the condition in driver-i386.c. */
536 #if defined(__i386__) || defined(__x86_64__)
537 /* In driver-i386.c. */
538 extern const char *host_detect_local_cpu (int argc, const char **argv);
539 #define EXTRA_SPEC_FUNCTIONS \
540 { "local_cpu_detect", host_detect_local_cpu },
541 #define HAVE_LOCAL_CPU_DETECT
542 #endif
544 #if TARGET_64BIT_DEFAULT
545 #define OPT_ARCH64 "!m32"
546 #define OPT_ARCH32 "m32"
547 #else
548 #define OPT_ARCH64 "m64|mx32"
549 #define OPT_ARCH32 "m64|mx32:;"
550 #endif
552 /* Support for configure-time defaults of some command line options.
553 The order here is important so that -march doesn't squash the
554 tune or cpu values. */
555 #define OPTION_DEFAULT_SPECS \
556 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
557 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
558 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
559 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
560 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
561 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
562 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
563 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
564 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
566 /* Specs for the compiler proper */
568 #ifndef CC1_CPU_SPEC
569 #define CC1_CPU_SPEC_1 ""
571 #ifndef HAVE_LOCAL_CPU_DETECT
572 #define CC1_CPU_SPEC CC1_CPU_SPEC_1
573 #else
574 #define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
575 "%{march=native:%>march=native %:local_cpu_detect(arch) \
576 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
577 %{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
578 #endif
579 #endif
581 /* Target CPU builtins. */
582 #define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
584 /* Target Pragmas. */
585 #define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
587 enum target_cpu_default
589 TARGET_CPU_DEFAULT_generic = 0,
591 TARGET_CPU_DEFAULT_i386,
592 TARGET_CPU_DEFAULT_i486,
593 TARGET_CPU_DEFAULT_pentium,
594 TARGET_CPU_DEFAULT_pentium_mmx,
595 TARGET_CPU_DEFAULT_pentiumpro,
596 TARGET_CPU_DEFAULT_pentium2,
597 TARGET_CPU_DEFAULT_pentium3,
598 TARGET_CPU_DEFAULT_pentium4,
599 TARGET_CPU_DEFAULT_pentium_m,
600 TARGET_CPU_DEFAULT_prescott,
601 TARGET_CPU_DEFAULT_nocona,
602 TARGET_CPU_DEFAULT_core2,
603 TARGET_CPU_DEFAULT_corei7,
604 TARGET_CPU_DEFAULT_atom,
606 TARGET_CPU_DEFAULT_geode,
607 TARGET_CPU_DEFAULT_k6,
608 TARGET_CPU_DEFAULT_k6_2,
609 TARGET_CPU_DEFAULT_k6_3,
610 TARGET_CPU_DEFAULT_athlon,
611 TARGET_CPU_DEFAULT_athlon_sse,
612 TARGET_CPU_DEFAULT_k8,
613 TARGET_CPU_DEFAULT_amdfam10,
614 TARGET_CPU_DEFAULT_bdver1,
615 TARGET_CPU_DEFAULT_bdver2,
616 TARGET_CPU_DEFAULT_btver1,
617 TARGET_CPU_DEFAULT_btver2,
619 TARGET_CPU_DEFAULT_max
622 #ifndef CC1_SPEC
623 #define CC1_SPEC "%(cc1_cpu) "
624 #endif
626 /* This macro defines names of additional specifications to put in the
627 specs that can be used in various specifications like CC1_SPEC. Its
628 definition is an initializer with a subgrouping for each command option.
630 Each subgrouping contains a string constant, that defines the
631 specification name, and a string constant that used by the GCC driver
632 program.
634 Do not define this macro if it does not need to do anything. */
636 #ifndef SUBTARGET_EXTRA_SPECS
637 #define SUBTARGET_EXTRA_SPECS
638 #endif
640 #define EXTRA_SPECS \
641 { "cc1_cpu", CC1_CPU_SPEC }, \
642 SUBTARGET_EXTRA_SPECS
645 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
646 FPU, assume that the fpcw is set to extended precision; when using
647 only SSE, rounding is correct; when using both SSE and the FPU,
648 the rounding precision is indeterminate, since either may be chosen
649 apparently at random. */
650 #define TARGET_FLT_EVAL_METHOD \
651 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
653 /* Whether to allow x87 floating-point arithmetic on MODE (one of
654 SFmode, DFmode and XFmode) in the current excess precision
655 configuration. */
656 #define X87_ENABLE_ARITH(MODE) \
657 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
659 /* Likewise, whether to allow direct conversions from integer mode
660 IMODE (HImode, SImode or DImode) to MODE. */
661 #define X87_ENABLE_FLOAT(MODE, IMODE) \
662 (flag_excess_precision == EXCESS_PRECISION_FAST \
663 || (MODE) == XFmode \
664 || ((MODE) == DFmode && (IMODE) == SImode) \
665 || (IMODE) == HImode)
667 /* target machine storage layout */
669 #define SHORT_TYPE_SIZE 16
670 #define INT_TYPE_SIZE 32
671 #define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
672 #define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
673 #define LONG_LONG_TYPE_SIZE 64
674 #define FLOAT_TYPE_SIZE 32
675 #define DOUBLE_TYPE_SIZE 64
676 #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_64 ? 64 : 80)
678 /* Define this to set long double type size to use in libgcc2.c, which can
679 not depend on target_flags. */
680 #ifdef __LONG_DOUBLE_64__
681 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
682 #else
683 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 80
684 #endif
686 #define WIDEST_HARDWARE_FP_SIZE 80
688 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
689 #define MAX_BITS_PER_WORD 64
690 #else
691 #define MAX_BITS_PER_WORD 32
692 #endif
694 /* Define this if most significant byte of a word is the lowest numbered. */
695 /* That is true on the 80386. */
697 #define BITS_BIG_ENDIAN 0
699 /* Define this if most significant byte of a word is the lowest numbered. */
700 /* That is not true on the 80386. */
701 #define BYTES_BIG_ENDIAN 0
703 /* Define this if most significant word of a multiword number is the lowest
704 numbered. */
705 /* Not true for 80386 */
706 #define WORDS_BIG_ENDIAN 0
708 /* Width of a word, in units (bytes). */
709 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
711 #ifndef IN_LIBGCC2
712 #define MIN_UNITS_PER_WORD 4
713 #endif
715 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
716 #define PARM_BOUNDARY BITS_PER_WORD
718 /* Boundary (in *bits*) on which stack pointer should be aligned. */
719 #define STACK_BOUNDARY \
720 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
722 /* Stack boundary of the main function guaranteed by OS. */
723 #define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
725 /* Minimum stack boundary. */
726 #define MIN_STACK_BOUNDARY (TARGET_64BIT ? (TARGET_SSE ? 128 : 64) : 32)
728 /* Boundary (in *bits*) on which the stack pointer prefers to be
729 aligned; the compiler cannot rely on having this alignment. */
730 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
732 /* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
733 both 32bit and 64bit, to support codes that need 128 bit stack
734 alignment for SSE instructions, but can't realign the stack. */
735 #define PREFERRED_STACK_BOUNDARY_DEFAULT 128
737 /* 1 if -mstackrealign should be turned on by default. It will
738 generate an alternate prologue and epilogue that realigns the
739 runtime stack if nessary. This supports mixing codes that keep a
740 4-byte aligned stack, as specified by i386 psABI, with codes that
741 need a 16-byte aligned stack, as required by SSE instructions. */
742 #define STACK_REALIGN_DEFAULT 0
744 /* Boundary (in *bits*) on which the incoming stack is aligned. */
745 #define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
747 /* According to Windows x64 software convention, the maximum stack allocatable
748 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
749 instructions allowed to adjust the stack pointer in the epilog, forcing the
750 use of frame pointer for frames larger than 2 GB. This theorical limit
751 is reduced by 256, an over-estimated upper bound for the stack use by the
752 prologue.
753 We define only one threshold for both the prolog and the epilog. When the
754 frame size is larger than this threshold, we allocate the area to save SSE
755 regs, then save them, and then allocate the remaining. There is no SEH
756 unwind info for this later allocation. */
757 #define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
759 /* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
760 mandatory for the 64-bit ABI, and may or may not be true for other
761 operating systems. */
762 #define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
764 /* Minimum allocation boundary for the code of a function. */
765 #define FUNCTION_BOUNDARY 8
767 /* C++ stores the virtual bit in the lowest bit of function pointers. */
768 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
770 /* Minimum size in bits of the largest boundary to which any
771 and all fundamental data types supported by the hardware
772 might need to be aligned. No data type wants to be aligned
773 rounder than this.
775 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
776 and Pentium Pro XFmode values at 128 bit boundaries. */
778 #define BIGGEST_ALIGNMENT (TARGET_AVX ? 256 : 128)
780 /* Maximum stack alignment. */
781 #define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
783 /* Alignment value for attribute ((aligned)). It is a constant since
784 it is the part of the ABI. We shouldn't change it with -mavx. */
785 #define ATTRIBUTE_ALIGNED_VALUE 128
787 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
788 #define ALIGN_MODE_128(MODE) \
789 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
791 /* The published ABIs say that doubles should be aligned on word
792 boundaries, so lower the alignment for structure fields unless
793 -malign-double is set. */
795 /* ??? Blah -- this macro is used directly by libobjc. Since it
796 supports no vector modes, cut out the complexity and fall back
797 on BIGGEST_FIELD_ALIGNMENT. */
798 #ifdef IN_TARGET_LIBS
799 #ifdef __x86_64__
800 #define BIGGEST_FIELD_ALIGNMENT 128
801 #else
802 #define BIGGEST_FIELD_ALIGNMENT 32
803 #endif
804 #else
805 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
806 x86_field_alignment (FIELD, COMPUTED)
807 #endif
809 /* If defined, a C expression to compute the alignment given to a
810 constant that is being placed in memory. EXP is the constant
811 and ALIGN is the alignment that the object would ordinarily have.
812 The value of this macro is used instead of that alignment to align
813 the object.
815 If this macro is not defined, then ALIGN is used.
817 The typical use of this macro is to increase alignment for string
818 constants to be word aligned so that `strcpy' calls that copy
819 constants can be done inline. */
821 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
823 /* If defined, a C expression to compute the alignment for a static
824 variable. TYPE is the data type, and ALIGN is the alignment that
825 the object would ordinarily have. The value of this macro is used
826 instead of that alignment to align the object.
828 If this macro is not defined, then ALIGN is used.
830 One use of this macro is to increase alignment of medium-size
831 data to make it all fit in fewer cache lines. Another is to
832 cause character arrays to be word-aligned so that `strcpy' calls
833 that copy constants to character arrays can be done inline. */
835 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
837 /* If defined, a C expression to compute the alignment for a local
838 variable. TYPE is the data type, and ALIGN is the alignment that
839 the object would ordinarily have. The value of this macro is used
840 instead of that alignment to align the object.
842 If this macro is not defined, then ALIGN is used.
844 One use of this macro is to increase alignment of medium-size
845 data to make it all fit in fewer cache lines. */
847 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
848 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
850 /* If defined, a C expression to compute the alignment for stack slot.
851 TYPE is the data type, MODE is the widest mode available, and ALIGN
852 is the alignment that the slot would ordinarily have. The value of
853 this macro is used instead of that alignment to align the slot.
855 If this macro is not defined, then ALIGN is used when TYPE is NULL,
856 Otherwise, LOCAL_ALIGNMENT will be used.
858 One use of this macro is to set alignment of stack slot to the
859 maximum alignment of all possible modes which the slot may have. */
861 #define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
862 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
864 /* If defined, a C expression to compute the alignment for a local
865 variable DECL.
867 If this macro is not defined, then
868 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
870 One use of this macro is to increase alignment of medium-size
871 data to make it all fit in fewer cache lines. */
873 #define LOCAL_DECL_ALIGNMENT(DECL) \
874 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
876 /* If defined, a C expression to compute the minimum required alignment
877 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
878 MODE, assuming normal alignment ALIGN.
880 If this macro is not defined, then (ALIGN) will be used. */
882 #define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
883 ix86_minimum_alignment (EXP, MODE, ALIGN)
886 /* Set this nonzero if move instructions will actually fail to work
887 when given unaligned data. */
888 #define STRICT_ALIGNMENT 0
890 /* If bit field type is int, don't let it cross an int,
891 and give entire struct the alignment of an int. */
892 /* Required on the 386 since it doesn't have bit-field insns. */
893 #define PCC_BITFIELD_TYPE_MATTERS 1
895 /* Standard register usage. */
897 /* This processor has special stack-like registers. See reg-stack.c
898 for details. */
900 #define STACK_REGS
902 #define IS_STACK_MODE(MODE) \
903 (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \
904 || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \
905 || (MODE) == XFmode)
907 /* Number of actual hardware registers.
908 The hardware registers are assigned numbers for the compiler
909 from 0 to just below FIRST_PSEUDO_REGISTER.
910 All registers that the compiler knows about must be given numbers,
911 even those that are not normally considered general registers.
913 In the 80386 we give the 8 general purpose registers the numbers 0-7.
914 We number the floating point registers 8-15.
915 Note that registers 0-7 can be accessed as a short or int,
916 while only 0-3 may be used with byte `mov' instructions.
918 Reg 16 does not correspond to any hardware register, but instead
919 appears in the RTL as an argument pointer prior to reload, and is
920 eliminated during reloading in favor of either the stack or frame
921 pointer. */
923 #define FIRST_PSEUDO_REGISTER 53
925 /* Number of hardware registers that go into the DWARF-2 unwind info.
926 If not defined, equals FIRST_PSEUDO_REGISTER. */
928 #define DWARF_FRAME_REGISTERS 17
930 /* 1 for registers that have pervasive standard uses
931 and are not available for the register allocator.
932 On the 80386, the stack pointer is such, as is the arg pointer.
934 REX registers are disabled for 32bit targets in
935 TARGET_CONDITIONAL_REGISTER_USAGE. */
937 #define FIXED_REGISTERS \
938 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
939 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
940 /*arg,flags,fpsr,fpcr,frame*/ \
941 1, 1, 1, 1, 1, \
942 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
943 0, 0, 0, 0, 0, 0, 0, 0, \
944 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
945 0, 0, 0, 0, 0, 0, 0, 0, \
946 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
947 0, 0, 0, 0, 0, 0, 0, 0, \
948 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
949 0, 0, 0, 0, 0, 0, 0, 0 }
951 /* 1 for registers not available across function calls.
952 These must include the FIXED_REGISTERS and also any
953 registers that can be used without being saved.
954 The latter must include the registers where values are returned
955 and the register where structure-value addresses are passed.
956 Aside from that, you can include as many other registers as you like.
958 Value is set to 1 if the register is call used unconditionally.
959 Bit one is set if the register is call used on TARGET_32BIT ABI.
960 Bit two is set if the register is call used on TARGET_64BIT ABI.
961 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
963 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
965 #define CALL_USED_REGISTERS \
966 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
967 { 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
968 /*arg,flags,fpsr,fpcr,frame*/ \
969 1, 1, 1, 1, 1, \
970 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
971 1, 1, 1, 1, 1, 1, 6, 6, \
972 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
973 1, 1, 1, 1, 1, 1, 1, 1, \
974 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
975 1, 1, 1, 1, 2, 2, 2, 2, \
976 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
977 6, 6, 6, 6, 6, 6, 6, 6 }
979 /* Order in which to allocate registers. Each register must be
980 listed once, even those in FIXED_REGISTERS. List frame pointer
981 late and fixed registers last. Note that, in general, we prefer
982 registers listed in CALL_USED_REGISTERS, keeping the others
983 available for storage of persistent values.
985 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
986 so this is just empty initializer for array. */
988 #define REG_ALLOC_ORDER \
989 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
990 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
991 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
992 48, 49, 50, 51, 52 }
994 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
995 to be rearranged based on a particular function. When using sse math,
996 we want to allocate SSE before x87 registers and vice versa. */
998 #define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
1001 #define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1003 /* Return number of consecutive hard regs needed starting at reg REGNO
1004 to hold something of mode MODE.
1005 This is ordinarily the length in words of a value of mode MODE
1006 but can be less for certain modes in special long registers.
1008 Actually there are no two word move instructions for consecutive
1009 registers. And only registers 0-3 may have mov byte instructions
1010 applied to them. */
1012 #define HARD_REGNO_NREGS(REGNO, MODE) \
1013 (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1014 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1015 : ((MODE) == XFmode \
1016 ? (TARGET_64BIT ? 2 : 3) \
1017 : (MODE) == XCmode \
1018 ? (TARGET_64BIT ? 4 : 6) \
1019 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1021 #define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1022 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
1023 ? (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1024 ? 0 \
1025 : ((MODE) == XFmode || (MODE) == XCmode)) \
1026 : 0)
1028 #define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1030 #define VALID_AVX256_REG_MODE(MODE) \
1031 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1032 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1033 || (MODE) == V4DFmode)
1035 #define VALID_SSE2_REG_MODE(MODE) \
1036 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1037 || (MODE) == V2DImode || (MODE) == DFmode)
1039 #define VALID_SSE_REG_MODE(MODE) \
1040 ((MODE) == V1TImode || (MODE) == TImode \
1041 || (MODE) == V4SFmode || (MODE) == V4SImode \
1042 || (MODE) == SFmode || (MODE) == TFmode)
1044 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1045 ((MODE) == V2SFmode || (MODE) == SFmode)
1047 #define VALID_MMX_REG_MODE(MODE) \
1048 ((MODE == V1DImode) || (MODE) == DImode \
1049 || (MODE) == V2SImode || (MODE) == SImode \
1050 || (MODE) == V4HImode || (MODE) == V8QImode)
1052 #define VALID_DFP_MODE_P(MODE) \
1053 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
1055 #define VALID_FP_MODE_P(MODE) \
1056 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1057 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
1059 #define VALID_INT_MODE_P(MODE) \
1060 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1061 || (MODE) == DImode \
1062 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1063 || (MODE) == CDImode \
1064 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1065 || (MODE) == TFmode || (MODE) == TCmode)))
1067 /* Return true for modes passed in SSE registers. */
1068 #define SSE_REG_MODE_P(MODE) \
1069 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1070 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1071 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1072 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1073 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
1074 || (MODE) == V2TImode)
1076 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1078 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1079 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1081 /* Value is 1 if it is a good idea to tie two pseudo registers
1082 when one has mode MODE1 and one has mode MODE2.
1083 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1084 for any hard reg, then this must be 0 for correct output. */
1086 #define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
1088 /* It is possible to write patterns to move flags; but until someone
1089 does it, */
1090 #define AVOID_CCMODE_COPIES
1092 /* Specify the modes required to caller save a given hard regno.
1093 We do this on i386 to prevent flags from being saved at all.
1095 Kill any attempts to combine saving of modes. */
1097 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1098 (CC_REGNO_P (REGNO) ? VOIDmode \
1099 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1100 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
1101 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1102 : (MODE) == QImode && !(TARGET_64BIT || QI_REGNO_P (REGNO)) ? SImode \
1103 : (MODE))
1105 /* The only ABI that saves SSE registers across calls is Win64 (thus no
1106 need to check the current ABI here), and with AVX enabled Win64 only
1107 guarantees that the low 16 bytes are saved. */
1108 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1109 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1111 /* Specify the registers used for certain standard purposes.
1112 The values of these macros are register numbers. */
1114 /* on the 386 the pc register is %eip, and is not usable as a general
1115 register. The ordinary mov instructions won't work */
1116 /* #define PC_REGNUM */
1118 /* Register to use for pushing function arguments. */
1119 #define STACK_POINTER_REGNUM 7
1121 /* Base register for access to local variables of the function. */
1122 #define HARD_FRAME_POINTER_REGNUM 6
1124 /* Base register for access to local variables of the function. */
1125 #define FRAME_POINTER_REGNUM 20
1127 /* First floating point reg */
1128 #define FIRST_FLOAT_REG 8
1130 /* First & last stack-like regs */
1131 #define FIRST_STACK_REG FIRST_FLOAT_REG
1132 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1134 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1135 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1137 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
1138 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1140 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1141 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1143 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1144 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1146 /* Override this in other tm.h files to cope with various OS lossage
1147 requiring a frame pointer. */
1148 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1149 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1150 #endif
1152 /* Make sure we can access arbitrary call frames. */
1153 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1155 /* Base register for access to arguments of the function. */
1156 #define ARG_POINTER_REGNUM 16
1158 /* Register to hold the addressing base for position independent
1159 code access to data items. We don't use PIC pointer for 64bit
1160 mode. Define the regnum to dummy value to prevent gcc from
1161 pessimizing code dealing with EBX.
1163 To avoid clobbering a call-saved register unnecessarily, we renumber
1164 the pic register when possible. The change is visible after the
1165 prologue has been emitted. */
1167 #define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
1169 #define PIC_OFFSET_TABLE_REGNUM \
1170 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1171 || !flag_pic ? INVALID_REGNUM \
1172 : reload_completed ? REGNO (pic_offset_table_rtx) \
1173 : REAL_PIC_OFFSET_TABLE_REGNUM)
1175 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1177 /* This is overridden by <cygwin.h>. */
1178 #define MS_AGGREGATE_RETURN 0
1180 #define KEEP_AGGREGATE_RETURN_POINTER 0
1182 /* Define the classes of registers for register constraints in the
1183 machine description. Also define ranges of constants.
1185 One of the classes must always be named ALL_REGS and include all hard regs.
1186 If there is more than one class, another class must be named NO_REGS
1187 and contain no registers.
1189 The name GENERAL_REGS must be the name of a class (or an alias for
1190 another name such as ALL_REGS). This is the class of registers
1191 that is allowed by "g" or "r" in a register constraint.
1192 Also, registers outside this class are allocated only when
1193 instructions express preferences for them.
1195 The classes must be numbered in nondecreasing order; that is,
1196 a larger-numbered class must never be contained completely
1197 in a smaller-numbered class.
1199 For any two classes, it is very desirable that there be another
1200 class that represents their union.
1202 It might seem that class BREG is unnecessary, since no useful 386
1203 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1204 and the "b" register constraint is useful in asms for syscalls.
1206 The flags, fpsr and fpcr registers are in no class. */
1208 enum reg_class
1210 NO_REGS,
1211 AREG, DREG, CREG, BREG, SIREG, DIREG,
1212 AD_REGS, /* %eax/%edx for DImode */
1213 Q_REGS, /* %eax %ebx %ecx %edx */
1214 NON_Q_REGS, /* %esi %edi %ebp %esp */
1215 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1216 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1217 CLOBBERED_REGS, /* call-clobbered integer registers */
1218 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1219 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
1220 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1221 FLOAT_REGS,
1222 SSE_FIRST_REG,
1223 SSE_REGS,
1224 MMX_REGS,
1225 FP_TOP_SSE_REGS,
1226 FP_SECOND_SSE_REGS,
1227 FLOAT_SSE_REGS,
1228 FLOAT_INT_REGS,
1229 INT_SSE_REGS,
1230 FLOAT_INT_SSE_REGS,
1231 ALL_REGS, LIM_REG_CLASSES
1234 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1236 #define INTEGER_CLASS_P(CLASS) \
1237 reg_class_subset_p ((CLASS), GENERAL_REGS)
1238 #define FLOAT_CLASS_P(CLASS) \
1239 reg_class_subset_p ((CLASS), FLOAT_REGS)
1240 #define SSE_CLASS_P(CLASS) \
1241 reg_class_subset_p ((CLASS), SSE_REGS)
1242 #define MMX_CLASS_P(CLASS) \
1243 ((CLASS) == MMX_REGS)
1244 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1245 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1246 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1247 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1248 #define MAYBE_SSE_CLASS_P(CLASS) \
1249 reg_classes_intersect_p (SSE_REGS, (CLASS))
1250 #define MAYBE_MMX_CLASS_P(CLASS) \
1251 reg_classes_intersect_p (MMX_REGS, (CLASS))
1253 #define Q_CLASS_P(CLASS) \
1254 reg_class_subset_p ((CLASS), Q_REGS)
1256 /* Give names of register classes as strings for dump file. */
1258 #define REG_CLASS_NAMES \
1259 { "NO_REGS", \
1260 "AREG", "DREG", "CREG", "BREG", \
1261 "SIREG", "DIREG", \
1262 "AD_REGS", \
1263 "Q_REGS", "NON_Q_REGS", \
1264 "INDEX_REGS", \
1265 "LEGACY_REGS", \
1266 "CLOBBERED_REGS", \
1267 "GENERAL_REGS", \
1268 "FP_TOP_REG", "FP_SECOND_REG", \
1269 "FLOAT_REGS", \
1270 "SSE_FIRST_REG", \
1271 "SSE_REGS", \
1272 "MMX_REGS", \
1273 "FP_TOP_SSE_REGS", \
1274 "FP_SECOND_SSE_REGS", \
1275 "FLOAT_SSE_REGS", \
1276 "FLOAT_INT_REGS", \
1277 "INT_SSE_REGS", \
1278 "FLOAT_INT_SSE_REGS", \
1279 "ALL_REGS" }
1281 /* Define which registers fit in which classes. This is an initializer
1282 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1284 Note that CLOBBERED_REGS are calculated by
1285 TARGET_CONDITIONAL_REGISTER_USAGE. */
1287 #define REG_CLASS_CONTENTS \
1288 { { 0x00, 0x0 }, \
1289 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1290 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1291 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1292 { 0x03, 0x0 }, /* AD_REGS */ \
1293 { 0x0f, 0x0 }, /* Q_REGS */ \
1294 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1295 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1296 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1297 { 0x00, 0x0 }, /* CLOBBERED_REGS */ \
1298 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1299 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1300 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1301 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
1302 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1303 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1304 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1305 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1306 { 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1307 { 0x11ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1308 { 0x1ff100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1309 { 0x1ff1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1310 { 0xffffffff,0x1fffff } \
1313 /* The same information, inverted:
1314 Return the class number of the smallest class containing
1315 reg number REGNO. This could be a conditional expression
1316 or could index an array. */
1318 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1320 /* When this hook returns true for MODE, the compiler allows
1321 registers explicitly used in the rtl to be used as spill registers
1322 but prevents the compiler from extending the lifetime of these
1323 registers. */
1324 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
1326 #define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
1327 #define QI_REGNO_P(N) IN_RANGE ((N), AX_REG, BX_REG)
1329 #define GENERAL_REG_P(X) \
1330 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1331 #define GENERAL_REGNO_P(N) \
1332 (IN_RANGE ((N), AX_REG, SP_REG) || REX_INT_REGNO_P (N))
1334 #define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1335 #define ANY_QI_REGNO_P(N) \
1336 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
1338 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1339 #define REX_INT_REGNO_P(N) \
1340 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
1342 #define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1343 #define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1345 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1346 #define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
1348 #define X87_FLOAT_MODE_P(MODE) \
1349 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
1351 #define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
1352 #define SSE_REGNO_P(N) \
1353 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1354 || REX_SSE_REGNO_P (N))
1356 #define REX_SSE_REGNO_P(N) \
1357 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
1359 #define SSE_REGNO(N) \
1360 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1362 #define SSE_FLOAT_MODE_P(MODE) \
1363 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1365 #define FMA4_VEC_FLOAT_MODE_P(MODE) \
1366 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1367 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1369 #define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
1370 #define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
1372 #define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_STACK_REG)
1374 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1375 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1377 /* The class value for index registers, and the one for base regs. */
1379 #define INDEX_REG_CLASS INDEX_REGS
1380 #define BASE_REG_CLASS GENERAL_REGS
1382 /* Place additional restrictions on the register class to use when it
1383 is necessary to be able to hold a value of mode MODE in a reload
1384 register for which class CLASS would ordinarily be used.
1386 We avoid classes containing registers from multiple units due to
1387 the limitation in ix86_secondary_memory_needed. We limit these
1388 classes to their "natural mode" single unit register class, depending
1389 on the unit availability.
1391 Please note that reg_class_subset_p is not commutative, so these
1392 conditions mean "... if (CLASS) includes ALL registers from the
1393 register set." */
1395 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1396 (((MODE) == QImode && !TARGET_64BIT \
1397 && reg_class_subset_p (Q_REGS, (CLASS))) ? Q_REGS \
1398 : (((MODE) == SImode || (MODE) == DImode) \
1399 && reg_class_subset_p (GENERAL_REGS, (CLASS))) ? GENERAL_REGS \
1400 : (SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH \
1401 && reg_class_subset_p (SSE_REGS, (CLASS))) ? SSE_REGS \
1402 : (X87_FLOAT_MODE_P (MODE) \
1403 && reg_class_subset_p (FLOAT_REGS, (CLASS))) ? FLOAT_REGS \
1404 : (CLASS))
1406 /* If we are copying between general and FP registers, we need a memory
1407 location. The same is true for SSE and MMX registers. */
1408 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1409 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1411 /* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1412 There is no need to emit full 64 bit move on 64 bit targets
1413 for integral modes that can be moved using 32 bit move. */
1414 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1415 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1416 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1417 : MODE)
1419 /* Return a class of registers that cannot change FROM mode to TO mode. */
1421 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1422 ix86_cannot_change_mode_class (FROM, TO, CLASS)
1424 /* Stack layout; function entry, exit and calling. */
1426 /* Define this if pushing a word on the stack
1427 makes the stack pointer a smaller address. */
1428 #define STACK_GROWS_DOWNWARD
1430 /* Define this to nonzero if the nominal address of the stack frame
1431 is at the high-address end of the local variables;
1432 that is, each additional local variable allocated
1433 goes at a more negative offset in the frame. */
1434 #define FRAME_GROWS_DOWNWARD 1
1436 /* Offset within stack frame to start allocating local variables at.
1437 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1438 first local allocated. Otherwise, it is the offset to the BEGINNING
1439 of the first local allocated. */
1440 #define STARTING_FRAME_OFFSET 0
1442 /* If we generate an insn to push BYTES bytes, this says how many the stack
1443 pointer really advances by. On 386, we have pushw instruction that
1444 decrements by exactly 2 no matter what the position was, there is no pushb.
1446 But as CIE data alignment factor on this arch is -4 for 32bit targets
1447 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1448 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
1450 #define PUSH_ROUNDING(BYTES) \
1451 (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
1453 /* If defined, the maximum amount of space required for outgoing arguments
1454 will be computed and placed into the variable `crtl->outgoing_args_size'.
1455 No space will be pushed onto the stack for each call; instead, the
1456 function prologue should increase the stack frame size by this amount.
1458 64-bit MS ABI seem to require 16 byte alignment everywhere except for
1459 function prologue and apilogue. This is not possible without
1460 ACCUMULATE_OUTGOING_ARGS. */
1462 #define ACCUMULATE_OUTGOING_ARGS \
1463 (TARGET_ACCUMULATE_OUTGOING_ARGS || TARGET_64BIT_MS_ABI)
1465 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1466 instructions to pass outgoing arguments. */
1468 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1470 /* We want the stack and args grow in opposite directions, even if
1471 PUSH_ARGS is 0. */
1472 #define PUSH_ARGS_REVERSED 1
1474 /* Offset of first parameter from the argument pointer register value. */
1475 #define FIRST_PARM_OFFSET(FNDECL) 0
1477 /* Define this macro if functions should assume that stack space has been
1478 allocated for arguments even when their values are passed in registers.
1480 The value of this macro is the size, in bytes, of the area reserved for
1481 arguments passed in registers for the function represented by FNDECL.
1483 This space can be allocated by the caller, or be a part of the
1484 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1485 which. */
1486 #define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1488 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1489 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
1491 /* Define how to find the value returned by a library function
1492 assuming the value has mode MODE. */
1494 #define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
1496 /* Define the size of the result block used for communication between
1497 untyped_call and untyped_return. The block contains a DImode value
1498 followed by the block used by fnsave and frstor. */
1500 #define APPLY_RESULT_SIZE (8+108)
1502 /* 1 if N is a possible register number for function argument passing. */
1503 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1505 /* Define a data type for recording info about an argument list
1506 during the scan of that argument list. This data type should
1507 hold all necessary information about the function itself
1508 and about the args processed so far, enough to enable macros
1509 such as FUNCTION_ARG to determine where the next arg should go. */
1511 typedef struct ix86_args {
1512 int words; /* # words passed so far */
1513 int nregs; /* # registers available for passing */
1514 int regno; /* next available register number */
1515 int fastcall; /* fastcall or thiscall calling convention
1516 is used */
1517 int sse_words; /* # sse words passed so far */
1518 int sse_nregs; /* # sse registers available for passing */
1519 int warn_avx; /* True when we want to warn about AVX ABI. */
1520 int warn_sse; /* True when we want to warn about SSE ABI. */
1521 int warn_mmx; /* True when we want to warn about MMX ABI. */
1522 int sse_regno; /* next available sse register number */
1523 int mmx_words; /* # mmx words passed so far */
1524 int mmx_nregs; /* # mmx registers available for passing */
1525 int mmx_regno; /* next available mmx register number */
1526 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1527 int caller; /* true if it is caller. */
1528 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1529 SFmode/DFmode arguments should be passed
1530 in SSE registers. Otherwise 0. */
1531 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
1532 MS_ABI for ms abi. */
1533 } CUMULATIVE_ARGS;
1535 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1536 for a call to a function whose data type is FNTYPE.
1537 For a library call, FNTYPE is 0. */
1539 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1540 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1541 (N_NAMED_ARGS) != -1)
1543 /* Output assembler code to FILE to increment profiler label # LABELNO
1544 for profiling a function entry. */
1546 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1548 #define MCOUNT_NAME "_mcount"
1550 #define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1552 #define PROFILE_COUNT_REGISTER "edx"
1554 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1555 the stack pointer does not matter. The value is tested only in
1556 functions that have frame pointers.
1557 No definition is equivalent to always zero. */
1558 /* Note on the 386 it might be more efficient not to define this since
1559 we have to restore it ourselves from the frame pointer, in order to
1560 use pop */
1562 #define EXIT_IGNORE_STACK 1
1564 /* Output assembler code for a block containing the constant parts
1565 of a trampoline, leaving space for the variable parts. */
1567 /* On the 386, the trampoline contains two instructions:
1568 mov #STATIC,ecx
1569 jmp FUNCTION
1570 The trampoline is generated entirely at runtime. The operand of JMP
1571 is the address of FUNCTION relative to the instruction following the
1572 JMP (which is 5 bytes long). */
1574 /* Length in units of the trampoline for entering a nested function. */
1576 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
1578 /* Definitions for register eliminations.
1580 This is an array of structures. Each structure initializes one pair
1581 of eliminable registers. The "from" register number is given first,
1582 followed by "to". Eliminations of the same "from" register are listed
1583 in order of preference.
1585 There are two registers that can always be eliminated on the i386.
1586 The frame pointer and the arg pointer can be replaced by either the
1587 hard frame pointer or to the stack pointer, depending upon the
1588 circumstances. The hard frame pointer is not used before reload and
1589 so it is not eligible for elimination. */
1591 #define ELIMINABLE_REGS \
1592 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1593 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1594 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1595 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1597 /* Define the offset between two registers, one to be eliminated, and the other
1598 its replacement, at the start of a routine. */
1600 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1601 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1603 /* Addressing modes, and classification of registers for them. */
1605 /* Macros to check register numbers against specific register classes. */
1607 /* These assume that REGNO is a hard or pseudo reg number.
1608 They give nonzero only if REGNO is a hard reg of the suitable class
1609 or a pseudo reg currently allocated to a suitable hard reg.
1610 Since they use reg_renumber, they are safe only once reg_renumber
1611 has been allocated, which happens in local-alloc.c. */
1613 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1614 ((REGNO) < STACK_POINTER_REGNUM \
1615 || REX_INT_REGNO_P (REGNO) \
1616 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1617 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1619 #define REGNO_OK_FOR_BASE_P(REGNO) \
1620 (GENERAL_REGNO_P (REGNO) \
1621 || (REGNO) == ARG_POINTER_REGNUM \
1622 || (REGNO) == FRAME_POINTER_REGNUM \
1623 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1625 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1626 and check its validity for a certain class.
1627 We have two alternate definitions for each of them.
1628 The usual definition accepts all pseudo regs; the other rejects
1629 them unless they have been allocated suitable hard regs.
1630 The symbol REG_OK_STRICT causes the latter definition to be used.
1632 Most source files want to accept pseudo regs in the hope that
1633 they will get allocated to the class that the insn wants them to be in.
1634 Source files for reload pass need to be strict.
1635 After reload, it makes no difference, since pseudo regs have
1636 been eliminated by then. */
1639 /* Non strict versions, pseudos are ok. */
1640 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1641 (REGNO (X) < STACK_POINTER_REGNUM \
1642 || REX_INT_REGNO_P (REGNO (X)) \
1643 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1645 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1646 (GENERAL_REGNO_P (REGNO (X)) \
1647 || REGNO (X) == ARG_POINTER_REGNUM \
1648 || REGNO (X) == FRAME_POINTER_REGNUM \
1649 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1651 /* Strict versions, hard registers only */
1652 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1653 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1655 #ifndef REG_OK_STRICT
1656 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1657 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1659 #else
1660 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1661 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1662 #endif
1664 /* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
1665 that is a valid memory address for an instruction.
1666 The MODE argument is the machine mode for the MEM expression
1667 that wants to use this address.
1669 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
1670 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1672 See legitimize_pic_address in i386.c for details as to what
1673 constitutes a legitimate address when -fpic is used. */
1675 #define MAX_REGS_PER_ADDRESS 2
1677 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1679 /* Try a machine-dependent way of reloading an illegitimate address
1680 operand. If we find one, push the reload and jump to WIN. This
1681 macro is used in only one place: `find_reloads_address' in reload.c. */
1683 #define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, INDL, WIN) \
1684 do { \
1685 if (ix86_legitimize_reload_address ((X), (MODE), (OPNUM), \
1686 (int)(TYPE), (INDL))) \
1687 goto WIN; \
1688 } while (0)
1690 /* If defined, a C expression to determine the base term of address X.
1691 This macro is used in only one place: `find_base_term' in alias.c.
1693 It is always safe for this macro to not be defined. It exists so
1694 that alias analysis can understand machine-dependent addresses.
1696 The typical use of this macro is to handle addresses containing
1697 a label_ref or symbol_ref within an UNSPEC. */
1699 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1701 /* Nonzero if the constant value X is a legitimate general operand
1702 when generating PIC code. It is given that flag_pic is on and
1703 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1705 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1707 #define SYMBOLIC_CONST(X) \
1708 (GET_CODE (X) == SYMBOL_REF \
1709 || GET_CODE (X) == LABEL_REF \
1710 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1712 /* Max number of args passed in registers. If this is more than 3, we will
1713 have problems with ebx (register #4), since it is a caller save register and
1714 is also used as the pic register in ELF. So for now, don't allow more than
1715 3 registers to be passed in registers. */
1717 /* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1718 #define X86_64_REGPARM_MAX 6
1719 #define X86_64_MS_REGPARM_MAX 4
1721 #define X86_32_REGPARM_MAX 3
1723 #define REGPARM_MAX \
1724 (TARGET_64BIT \
1725 ? (TARGET_64BIT_MS_ABI \
1726 ? X86_64_MS_REGPARM_MAX \
1727 : X86_64_REGPARM_MAX) \
1728 : X86_32_REGPARM_MAX)
1730 #define X86_64_SSE_REGPARM_MAX 8
1731 #define X86_64_MS_SSE_REGPARM_MAX 4
1733 #define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
1735 #define SSE_REGPARM_MAX \
1736 (TARGET_64BIT \
1737 ? (TARGET_64BIT_MS_ABI \
1738 ? X86_64_MS_SSE_REGPARM_MAX \
1739 : X86_64_SSE_REGPARM_MAX) \
1740 : X86_32_SSE_REGPARM_MAX)
1742 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1744 /* Specify the machine mode that this machine uses
1745 for the index in the tablejump instruction. */
1746 #define CASE_VECTOR_MODE \
1747 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
1749 /* Define this as 1 if `char' should by default be signed; else as 0. */
1750 #define DEFAULT_SIGNED_CHAR 1
1752 /* Max number of bytes we can move from memory to memory
1753 in one reasonably fast instruction. */
1754 #define MOVE_MAX 16
1756 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
1757 move efficiently, as opposed to MOVE_MAX which is the maximum
1758 number of bytes we can move with a single instruction. */
1759 #define MOVE_MAX_PIECES UNITS_PER_WORD
1761 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1762 move-instruction pairs, we will do a movmem or libcall instead.
1763 Increasing the value will always make code faster, but eventually
1764 incurs high cost in increased code size.
1766 If you don't define this, a reasonable default is used. */
1768 #define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
1770 /* If a clear memory operation would take CLEAR_RATIO or more simple
1771 move-instruction sequences, we will do a clrmem or libcall instead. */
1773 #define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
1775 /* Define if shifts truncate the shift count which implies one can
1776 omit a sign-extension or zero-extension of a shift count.
1778 On i386, shifts do truncate the count. But bit test instructions
1779 take the modulo of the bit offset operand. */
1781 /* #define SHIFT_COUNT_TRUNCATED */
1783 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1784 is done just by pretending it is already truncated. */
1785 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1787 /* A macro to update M and UNSIGNEDP when an object whose type is
1788 TYPE and which has the specified mode and signedness is to be
1789 stored in a register. This macro is only called when TYPE is a
1790 scalar type.
1792 On i386 it is sometimes useful to promote HImode and QImode
1793 quantities to SImode. The choice depends on target type. */
1795 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1796 do { \
1797 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1798 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
1799 (MODE) = SImode; \
1800 } while (0)
1802 /* Specify the machine mode that pointers have.
1803 After generation of rtl, the compiler makes no further distinction
1804 between pointers and any other objects of this machine mode. */
1805 #define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
1807 /* A C expression whose value is zero if pointers that need to be extended
1808 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1809 greater then zero if they are zero-extended and less then zero if the
1810 ptr_extend instruction should be used. */
1812 #define POINTERS_EXTEND_UNSIGNED 1
1814 /* A function address in a call instruction
1815 is a byte address (for indexing purposes)
1816 so give the MEM rtx a byte's mode. */
1817 #define FUNCTION_MODE QImode
1820 /* A C expression for the cost of a branch instruction. A value of 1
1821 is the default; other values are interpreted relative to that. */
1823 #define BRANCH_COST(speed_p, predictable_p) \
1824 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
1826 /* An integer expression for the size in bits of the largest integer machine
1827 mode that should actually be used. We allow pairs of registers. */
1828 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1830 /* Define this macro as a C expression which is nonzero if accessing
1831 less than a word of memory (i.e. a `char' or a `short') is no
1832 faster than accessing a word of memory, i.e., if such access
1833 require more than one instruction or if there is no difference in
1834 cost between byte and (aligned) word loads.
1836 When this macro is not defined, the compiler will access a field by
1837 finding the smallest containing object; when it is defined, a
1838 fullword load will be used if alignment permits. Unless bytes
1839 accesses are faster than word accesses, using word accesses is
1840 preferable since it may eliminate subsequent memory access if
1841 subsequent accesses occur to other fields in the same word of the
1842 structure, but to different bytes. */
1844 #define SLOW_BYTE_ACCESS 0
1846 /* Nonzero if access to memory by shorts is slow and undesirable. */
1847 #define SLOW_SHORT_ACCESS 0
1849 /* Define this macro to be the value 1 if unaligned accesses have a
1850 cost many times greater than aligned accesses, for example if they
1851 are emulated in a trap handler.
1853 When this macro is nonzero, the compiler will act as if
1854 `STRICT_ALIGNMENT' were nonzero when generating code for block
1855 moves. This can cause significantly more instructions to be
1856 produced. Therefore, do not set this macro nonzero if unaligned
1857 accesses only add a cycle or two to the time for a memory access.
1859 If the value of this macro is always zero, it need not be defined. */
1861 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
1863 /* Define this macro if it is as good or better to call a constant
1864 function address than to call an address kept in a register.
1866 Desirable on the 386 because a CALL with a constant address is
1867 faster than one with a register address. */
1869 #define NO_FUNCTION_CSE
1871 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1872 return the mode to be used for the comparison.
1874 For floating-point equality comparisons, CCFPEQmode should be used.
1875 VOIDmode should be used in all other cases.
1877 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
1878 possible, to allow for more combinations. */
1880 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
1882 /* Return nonzero if MODE implies a floating point inequality can be
1883 reversed. */
1885 #define REVERSIBLE_CC_MODE(MODE) 1
1887 /* A C expression whose value is reversed condition code of the CODE for
1888 comparison done in CC_MODE mode. */
1889 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
1892 /* Control the assembler format that we output, to the extent
1893 this does not vary between assemblers. */
1895 /* How to refer to registers in assembler output.
1896 This sequence is indexed by compiler's hard-register-number (see above). */
1898 /* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
1899 For non floating point regs, the following are the HImode names.
1901 For float regs, the stack top is sometimes referred to as "%st(0)"
1902 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
1903 "y" code. */
1905 #define HI_REGISTER_NAMES \
1906 {"ax","dx","cx","bx","si","di","bp","sp", \
1907 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
1908 "argp", "flags", "fpsr", "fpcr", "frame", \
1909 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
1910 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
1911 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1912 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
1914 #define REGISTER_NAMES HI_REGISTER_NAMES
1916 /* Table of additional register names to use in user input. */
1918 #define ADDITIONAL_REGISTER_NAMES \
1919 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
1920 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
1921 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
1922 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
1923 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
1924 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
1926 /* Note we are omitting these since currently I don't know how
1927 to get gcc to use these, since they want the same but different
1928 number as al, and ax.
1931 #define QI_REGISTER_NAMES \
1932 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
1934 /* These parallel the array above, and can be used to access bits 8:15
1935 of regs 0 through 3. */
1937 #define QI_HIGH_REGISTER_NAMES \
1938 {"ah", "dh", "ch", "bh", }
1940 /* How to renumber registers for dbx and gdb. */
1942 #define DBX_REGISTER_NUMBER(N) \
1943 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
1945 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1946 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1947 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
1949 /* Before the prologue, RA is at 0(%esp). */
1950 #define INCOMING_RETURN_ADDR_RTX \
1951 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
1953 /* After the prologue, RA is at -4(AP) in the current frame. */
1954 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1955 ((COUNT) == 0 \
1956 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
1957 -UNITS_PER_WORD)) \
1958 : gen_rtx_MEM (Pmode, plus_constant (Pmode, FRAME, UNITS_PER_WORD)))
1960 /* PC is dbx register 8; let's use that column for RA. */
1961 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
1963 /* Before the prologue, the top of the frame is at 4(%esp). */
1964 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
1966 /* Describe how we implement __builtin_eh_return. */
1967 #define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
1968 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1971 /* Select a format to encode pointers in exception handling data. CODE
1972 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1973 true if the symbol may be affected by dynamic relocations.
1975 ??? All x86 object file formats are capable of representing this.
1976 After all, the relocation needed is the same as for the call insn.
1977 Whether or not a particular assembler allows us to enter such, I
1978 guess we'll have to see. */
1979 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
1980 asm_preferred_eh_data_format ((CODE), (GLOBAL))
1982 /* This is how to output an insn to push a register on the stack.
1983 It need not be very fast code. */
1985 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
1986 do { \
1987 if (TARGET_64BIT) \
1988 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
1989 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
1990 else \
1991 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
1992 } while (0)
1994 /* This is how to output an insn to pop a register from the stack.
1995 It need not be very fast code. */
1997 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
1998 do { \
1999 if (TARGET_64BIT) \
2000 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2001 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2002 else \
2003 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2004 } while (0)
2006 /* This is how to output an element of a case-vector that is absolute. */
2008 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2009 ix86_output_addr_vec_elt ((FILE), (VALUE))
2011 /* This is how to output an element of a case-vector that is relative. */
2013 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2014 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2016 /* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
2018 #define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2020 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
2021 (PTR) += TARGET_AVX ? 1 : 2; \
2024 /* A C statement or statements which output an assembler instruction
2025 opcode to the stdio stream STREAM. The macro-operand PTR is a
2026 variable of type `char *' which points to the opcode name in
2027 its "internal" form--the form that is written in the machine
2028 description. */
2030 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2031 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2033 /* A C statement to output to the stdio stream FILE an assembler
2034 command to pad the location counter to a multiple of 1<<LOG
2035 bytes if it is within MAX_SKIP bytes. */
2037 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2038 #undef ASM_OUTPUT_MAX_SKIP_PAD
2039 #define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2040 if ((LOG) != 0) \
2042 if ((MAX_SKIP) == 0) \
2043 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2044 else \
2045 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2047 #endif
2049 /* Write the extra assembler code needed to declare a function
2050 properly. */
2052 #undef ASM_OUTPUT_FUNCTION_LABEL
2053 #define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2054 ix86_asm_output_function_label (FILE, NAME, DECL)
2056 /* Under some conditions we need jump tables in the text section,
2057 because the assembler cannot handle label differences between
2058 sections. This is the case for x86_64 on Mach-O for example. */
2060 #define JUMP_TABLES_IN_TEXT_SECTION \
2061 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2062 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
2064 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2065 and switch back. For x86 we do this only to save a few bytes that
2066 would otherwise be unused in the text section. */
2067 #define CRT_MKSTR2(VAL) #VAL
2068 #define CRT_MKSTR(x) CRT_MKSTR2(x)
2070 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2071 asm (SECTION_OP "\n\t" \
2072 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
2073 TEXT_SECTION_ASM_OP);
2075 /* Which processor to tune code generation for. */
2077 enum processor_type
2079 PROCESSOR_I386 = 0, /* 80386 */
2080 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2081 PROCESSOR_PENTIUM,
2082 PROCESSOR_PENTIUMPRO,
2083 PROCESSOR_GEODE,
2084 PROCESSOR_K6,
2085 PROCESSOR_ATHLON,
2086 PROCESSOR_PENTIUM4,
2087 PROCESSOR_K8,
2088 PROCESSOR_NOCONA,
2089 PROCESSOR_CORE2_32,
2090 PROCESSOR_CORE2_64,
2091 PROCESSOR_COREI7_32,
2092 PROCESSOR_COREI7_64,
2093 PROCESSOR_GENERIC32,
2094 PROCESSOR_GENERIC64,
2095 PROCESSOR_AMDFAM10,
2096 PROCESSOR_BDVER1,
2097 PROCESSOR_BDVER2,
2098 PROCESSOR_BTVER1,
2099 PROCESSOR_BTVER2,
2100 PROCESSOR_ATOM,
2101 PROCESSOR_max
2104 extern enum processor_type ix86_tune;
2105 extern enum processor_type ix86_arch;
2107 /* Size of the RED_ZONE area. */
2108 #define RED_ZONE_SIZE 128
2109 /* Reserved area of the red zone for temporaries. */
2110 #define RED_ZONE_RESERVE 8
2112 extern unsigned int ix86_preferred_stack_boundary;
2113 extern unsigned int ix86_incoming_stack_boundary;
2115 /* Smallest class containing REGNO. */
2116 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2118 enum ix86_fpcmp_strategy {
2119 IX86_FPCMP_SAHF,
2120 IX86_FPCMP_COMI,
2121 IX86_FPCMP_ARITH
2124 /* To properly truncate FP values into integers, we need to set i387 control
2125 word. We can't emit proper mode switching code before reload, as spills
2126 generated by reload may truncate values incorrectly, but we still can avoid
2127 redundant computation of new control word by the mode switching pass.
2128 The fldcw instructions are still emitted redundantly, but this is probably
2129 not going to be noticeable problem, as most CPUs do have fast path for
2130 the sequence.
2132 The machinery is to emit simple truncation instructions and split them
2133 before reload to instructions having USEs of two memory locations that
2134 are filled by this code to old and new control word.
2136 Post-reload pass may be later used to eliminate the redundant fildcw if
2137 needed. */
2139 enum ix86_entity
2141 I387_TRUNC = 0,
2142 I387_FLOOR,
2143 I387_CEIL,
2144 I387_MASK_PM,
2145 MAX_386_ENTITIES
2148 enum ix86_stack_slot
2150 SLOT_VIRTUAL = 0,
2151 SLOT_TEMP,
2152 SLOT_CW_STORED,
2153 SLOT_CW_TRUNC,
2154 SLOT_CW_FLOOR,
2155 SLOT_CW_CEIL,
2156 SLOT_CW_MASK_PM,
2157 MAX_386_STACK_LOCALS
2160 /* Define this macro if the port needs extra instructions inserted
2161 for mode switching in an optimizing compilation. */
2163 #define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2164 ix86_optimize_mode_switching[(ENTITY)]
2166 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2167 initializer for an array of integers. Each initializer element N
2168 refers to an entity that needs mode switching, and specifies the
2169 number of different modes that might need to be set for this
2170 entity. The position of the initializer in the initializer -
2171 starting counting at zero - determines the integer that is used to
2172 refer to the mode-switched entity in question. */
2174 #define NUM_MODES_FOR_MODE_SWITCHING \
2175 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2177 /* ENTITY is an integer specifying a mode-switched entity. If
2178 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2179 return an integer value not larger than the corresponding element
2180 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
2181 must be switched into prior to the execution of INSN. */
2183 #define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
2185 /* This macro specifies the order in which modes for ENTITY are
2186 processed. 0 is the highest priority. */
2188 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
2190 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2191 is the set of hard registers live at the point where the insn(s)
2192 are to be inserted. */
2194 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
2195 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
2196 ? emit_i387_cw_initialization (MODE), 0 \
2197 : 0)
2200 /* Avoid renaming of stack registers, as doing so in combination with
2201 scheduling just increases amount of live registers at time and in
2202 the turn amount of fxch instructions needed.
2204 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
2206 #define HARD_REGNO_RENAME_OK(SRC, TARGET) !STACK_REGNO_P (SRC)
2209 #define FASTCALL_PREFIX '@'
2211 /* Machine specific frame tracking during prologue/epilogue generation. */
2213 #ifndef USED_FOR_TARGET
2214 struct GTY(()) machine_frame_state
2216 /* This pair tracks the currently active CFA as reg+offset. When reg
2217 is drap_reg, we don't bother trying to record here the real CFA when
2218 it might really be a DW_CFA_def_cfa_expression. */
2219 rtx cfa_reg;
2220 HOST_WIDE_INT cfa_offset;
2222 /* The current offset (canonically from the CFA) of ESP and EBP.
2223 When stack frame re-alignment is active, these may not be relative
2224 to the CFA. However, in all cases they are relative to the offsets
2225 of the saved registers stored in ix86_frame. */
2226 HOST_WIDE_INT sp_offset;
2227 HOST_WIDE_INT fp_offset;
2229 /* The size of the red-zone that may be assumed for the purposes of
2230 eliding register restore notes in the epilogue. This may be zero
2231 if no red-zone is in effect, or may be reduced from the real
2232 red-zone value by a maximum runtime stack re-alignment value. */
2233 int red_zone_offset;
2235 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2236 value within the frame. If false then the offset above should be
2237 ignored. Note that DRAP, if valid, *always* points to the CFA and
2238 thus has an offset of zero. */
2239 BOOL_BITFIELD sp_valid : 1;
2240 BOOL_BITFIELD fp_valid : 1;
2241 BOOL_BITFIELD drap_valid : 1;
2243 /* Indicate whether the local stack frame has been re-aligned. When
2244 set, the SP/FP offsets above are relative to the aligned frame
2245 and not the CFA. */
2246 BOOL_BITFIELD realigned : 1;
2249 /* Private to winnt.c. */
2250 struct seh_frame_state;
2252 struct GTY(()) machine_function {
2253 struct stack_local_entry *stack_locals;
2254 const char *some_ld_name;
2255 int varargs_gpr_size;
2256 int varargs_fpr_size;
2257 int optimize_mode_switching[MAX_386_ENTITIES];
2259 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2260 has been computed for. */
2261 int use_fast_prologue_epilogue_nregs;
2263 /* For -fsplit-stack support: A stack local which holds a pointer to
2264 the stack arguments for a function with a variable number of
2265 arguments. This is set at the start of the function and is used
2266 to initialize the overflow_arg_area field of the va_list
2267 structure. */
2268 rtx split_stack_varargs_pointer;
2270 /* This value is used for amd64 targets and specifies the current abi
2271 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
2272 ENUM_BITFIELD(calling_abi) call_abi : 8;
2274 /* Nonzero if the function accesses a previous frame. */
2275 BOOL_BITFIELD accesses_prev_frame : 1;
2277 /* Nonzero if the function requires a CLD in the prologue. */
2278 BOOL_BITFIELD needs_cld : 1;
2280 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2281 expander to determine the style used. */
2282 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2284 /* If true, the current function needs the default PIC register, not
2285 an alternate register (on x86) and must not use the red zone (on
2286 x86_64), even if it's a leaf function. We don't want the
2287 function to be regarded as non-leaf because TLS calls need not
2288 affect register allocation. This flag is set when a TLS call
2289 instruction is expanded within a function, and never reset, even
2290 if all such instructions are optimized away. Use the
2291 ix86_current_function_calls_tls_descriptor macro for a better
2292 approximation. */
2293 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2295 /* If true, the current function has a STATIC_CHAIN is placed on the
2296 stack below the return address. */
2297 BOOL_BITFIELD static_chain_on_stack : 1;
2299 /* Nonzero if caller passes 256bit AVX modes. */
2300 BOOL_BITFIELD caller_pass_avx256_p : 1;
2302 /* Nonzero if caller returns 256bit AVX modes. */
2303 BOOL_BITFIELD caller_return_avx256_p : 1;
2305 /* Nonzero if the current callee passes 256bit AVX modes. */
2306 BOOL_BITFIELD callee_pass_avx256_p : 1;
2308 /* Nonzero if the current callee returns 256bit AVX modes. */
2309 BOOL_BITFIELD callee_return_avx256_p : 1;
2311 /* Nonzero if rescan vzerouppers in the current function is needed. */
2312 BOOL_BITFIELD rescan_vzeroupper_p : 1;
2314 /* During prologue/epilogue generation, the current frame state.
2315 Otherwise, the frame state at the end of the prologue. */
2316 struct machine_frame_state fs;
2318 /* During SEH output, this is non-null. */
2319 struct seh_frame_state * GTY((skip(""))) seh;
2321 #endif
2323 #define ix86_stack_locals (cfun->machine->stack_locals)
2324 #define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2325 #define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
2326 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2327 #define ix86_current_function_needs_cld (cfun->machine->needs_cld)
2328 #define ix86_tls_descriptor_calls_expanded_in_cfun \
2329 (cfun->machine->tls_descriptor_call_expanded_p)
2330 /* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2331 calls are optimized away, we try to detect cases in which it was
2332 optimized away. Since such instructions (use (reg REG_SP)), we can
2333 verify whether there's any such instruction live by testing that
2334 REG_SP is live. */
2335 #define ix86_current_function_calls_tls_descriptor \
2336 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
2337 #define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2339 /* Control behavior of x86_file_start. */
2340 #define X86_FILE_START_VERSION_DIRECTIVE false
2341 #define X86_FILE_START_FLTUSED false
2343 /* Flag to mark data that is in the large address area. */
2344 #define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2345 #define SYMBOL_REF_FAR_ADDR_P(X) \
2346 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2348 /* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2349 have defined always, to avoid ifdefing. */
2350 #define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2351 #define SYMBOL_REF_DLLIMPORT_P(X) \
2352 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2354 #define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2355 #define SYMBOL_REF_DLLEXPORT_P(X) \
2356 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2358 extern void debug_ready_dispatch (void);
2359 extern void debug_dispatch_window (int);
2361 /* The value at zero is only defined for the BMI instructions
2362 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2363 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2364 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI)
2365 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2366 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT)
2369 /* Flags returned by ix86_get_callcvt (). */
2370 #define IX86_CALLCVT_CDECL 0x1
2371 #define IX86_CALLCVT_STDCALL 0x2
2372 #define IX86_CALLCVT_FASTCALL 0x4
2373 #define IX86_CALLCVT_THISCALL 0x8
2374 #define IX86_CALLCVT_REGPARM 0x10
2375 #define IX86_CALLCVT_SSEREGPARM 0x20
2377 #define IX86_BASE_CALLCVT(FLAGS) \
2378 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2379 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2381 #define RECIP_MASK_NONE 0x00
2382 #define RECIP_MASK_DIV 0x01
2383 #define RECIP_MASK_SQRT 0x02
2384 #define RECIP_MASK_VEC_DIV 0x04
2385 #define RECIP_MASK_VEC_SQRT 0x08
2386 #define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2387 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2388 #define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2390 #define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2391 #define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2392 #define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2393 #define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2395 #define IX86_HLE_ACQUIRE (1 << 16)
2396 #define IX86_HLE_RELEASE (1 << 17)
2399 Local variables:
2400 version-control: t
2401 End: