1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987-2017 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
35 #include "diagnostic-core.h"
36 #include "fold-const.h"
37 #include "stor-layout.h"
41 #include "langhooks.h"
43 struct target_expmed default_target_expmed
;
45 struct target_expmed
*this_target_expmed
= &default_target_expmed
;
48 static void store_fixed_bit_field (rtx
, unsigned HOST_WIDE_INT
,
49 unsigned HOST_WIDE_INT
,
50 unsigned HOST_WIDE_INT
,
51 unsigned HOST_WIDE_INT
,
53 static void store_fixed_bit_field_1 (rtx
, unsigned HOST_WIDE_INT
,
54 unsigned HOST_WIDE_INT
,
56 static void store_split_bit_field (rtx
, unsigned HOST_WIDE_INT
,
57 unsigned HOST_WIDE_INT
,
58 unsigned HOST_WIDE_INT
,
59 unsigned HOST_WIDE_INT
,
61 static rtx
extract_fixed_bit_field (machine_mode
, rtx
,
62 unsigned HOST_WIDE_INT
,
63 unsigned HOST_WIDE_INT
, rtx
, int, bool);
64 static rtx
extract_fixed_bit_field_1 (machine_mode
, rtx
,
65 unsigned HOST_WIDE_INT
,
66 unsigned HOST_WIDE_INT
, rtx
, int, bool);
67 static rtx
lshift_value (machine_mode
, unsigned HOST_WIDE_INT
, int);
68 static rtx
extract_split_bit_field (rtx
, unsigned HOST_WIDE_INT
,
69 unsigned HOST_WIDE_INT
, int, bool);
70 static void do_cmp_and_jump (rtx
, rtx
, enum rtx_code
, machine_mode
, rtx_code_label
*);
71 static rtx
expand_smod_pow2 (machine_mode
, rtx
, HOST_WIDE_INT
);
72 static rtx
expand_sdiv_pow2 (machine_mode
, rtx
, HOST_WIDE_INT
);
74 /* Return a constant integer mask value of mode MODE with BITSIZE ones
75 followed by BITPOS zeros, or the complement of that if COMPLEMENT.
76 The mask is truncated if necessary to the width of mode MODE. The
77 mask is zero-extended if BITSIZE+BITPOS is too small for MODE. */
80 mask_rtx (machine_mode mode
, int bitpos
, int bitsize
, bool complement
)
82 return immed_wide_int_const
83 (wi::shifted_mask (bitpos
, bitsize
, complement
,
84 GET_MODE_PRECISION (mode
)), mode
);
87 /* Test whether a value is zero of a power of two. */
88 #define EXACT_POWER_OF_2_OR_ZERO_P(x) \
89 (((x) & ((x) - HOST_WIDE_INT_1U)) == 0)
91 struct init_expmed_rtl
112 rtx pow2
[MAX_BITS_PER_WORD
];
113 rtx cint
[MAX_BITS_PER_WORD
];
117 init_expmed_one_conv (struct init_expmed_rtl
*all
, machine_mode to_mode
,
118 machine_mode from_mode
, bool speed
)
120 int to_size
, from_size
;
123 to_size
= GET_MODE_PRECISION (to_mode
);
124 from_size
= GET_MODE_PRECISION (from_mode
);
126 /* Most partial integers have a precision less than the "full"
127 integer it requires for storage. In case one doesn't, for
128 comparison purposes here, reduce the bit size by one in that
130 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
131 && pow2p_hwi (to_size
))
133 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
134 && pow2p_hwi (from_size
))
137 /* Assume cost of zero-extend and sign-extend is the same. */
138 which
= (to_size
< from_size
? all
->trunc
: all
->zext
);
140 PUT_MODE (all
->reg
, from_mode
);
141 set_convert_cost (to_mode
, from_mode
, speed
,
142 set_src_cost (which
, to_mode
, speed
));
146 init_expmed_one_mode (struct init_expmed_rtl
*all
,
147 machine_mode mode
, int speed
)
149 int m
, n
, mode_bitsize
;
150 machine_mode mode_from
;
152 mode_bitsize
= GET_MODE_UNIT_BITSIZE (mode
);
154 PUT_MODE (all
->reg
, mode
);
155 PUT_MODE (all
->plus
, mode
);
156 PUT_MODE (all
->neg
, mode
);
157 PUT_MODE (all
->mult
, mode
);
158 PUT_MODE (all
->sdiv
, mode
);
159 PUT_MODE (all
->udiv
, mode
);
160 PUT_MODE (all
->sdiv_32
, mode
);
161 PUT_MODE (all
->smod_32
, mode
);
162 PUT_MODE (all
->wide_trunc
, mode
);
163 PUT_MODE (all
->shift
, mode
);
164 PUT_MODE (all
->shift_mult
, mode
);
165 PUT_MODE (all
->shift_add
, mode
);
166 PUT_MODE (all
->shift_sub0
, mode
);
167 PUT_MODE (all
->shift_sub1
, mode
);
168 PUT_MODE (all
->zext
, mode
);
169 PUT_MODE (all
->trunc
, mode
);
171 set_add_cost (speed
, mode
, set_src_cost (all
->plus
, mode
, speed
));
172 set_neg_cost (speed
, mode
, set_src_cost (all
->neg
, mode
, speed
));
173 set_mul_cost (speed
, mode
, set_src_cost (all
->mult
, mode
, speed
));
174 set_sdiv_cost (speed
, mode
, set_src_cost (all
->sdiv
, mode
, speed
));
175 set_udiv_cost (speed
, mode
, set_src_cost (all
->udiv
, mode
, speed
));
177 set_sdiv_pow2_cheap (speed
, mode
, (set_src_cost (all
->sdiv_32
, mode
, speed
)
178 <= 2 * add_cost (speed
, mode
)));
179 set_smod_pow2_cheap (speed
, mode
, (set_src_cost (all
->smod_32
, mode
, speed
)
180 <= 4 * add_cost (speed
, mode
)));
182 set_shift_cost (speed
, mode
, 0, 0);
184 int cost
= add_cost (speed
, mode
);
185 set_shiftadd_cost (speed
, mode
, 0, cost
);
186 set_shiftsub0_cost (speed
, mode
, 0, cost
);
187 set_shiftsub1_cost (speed
, mode
, 0, cost
);
190 n
= MIN (MAX_BITS_PER_WORD
, mode_bitsize
);
191 for (m
= 1; m
< n
; m
++)
193 XEXP (all
->shift
, 1) = all
->cint
[m
];
194 XEXP (all
->shift_mult
, 1) = all
->pow2
[m
];
196 set_shift_cost (speed
, mode
, m
, set_src_cost (all
->shift
, mode
, speed
));
197 set_shiftadd_cost (speed
, mode
, m
, set_src_cost (all
->shift_add
, mode
,
199 set_shiftsub0_cost (speed
, mode
, m
, set_src_cost (all
->shift_sub0
, mode
,
201 set_shiftsub1_cost (speed
, mode
, m
, set_src_cost (all
->shift_sub1
, mode
,
205 if (SCALAR_INT_MODE_P (mode
))
207 for (mode_from
= MIN_MODE_INT
; mode_from
<= MAX_MODE_INT
;
208 mode_from
= (machine_mode
)(mode_from
+ 1))
209 init_expmed_one_conv (all
, mode
, mode_from
, speed
);
211 if (GET_MODE_CLASS (mode
) == MODE_INT
)
213 machine_mode wider_mode
= GET_MODE_WIDER_MODE (mode
);
214 if (wider_mode
!= VOIDmode
)
216 PUT_MODE (all
->zext
, wider_mode
);
217 PUT_MODE (all
->wide_mult
, wider_mode
);
218 PUT_MODE (all
->wide_lshr
, wider_mode
);
219 XEXP (all
->wide_lshr
, 1) = GEN_INT (mode_bitsize
);
221 set_mul_widen_cost (speed
, wider_mode
,
222 set_src_cost (all
->wide_mult
, wider_mode
, speed
));
223 set_mul_highpart_cost (speed
, mode
,
224 set_src_cost (all
->wide_trunc
, mode
, speed
));
232 struct init_expmed_rtl all
;
233 machine_mode mode
= QImode
;
236 memset (&all
, 0, sizeof all
);
237 for (m
= 1; m
< MAX_BITS_PER_WORD
; m
++)
239 all
.pow2
[m
] = GEN_INT (HOST_WIDE_INT_1
<< m
);
240 all
.cint
[m
] = GEN_INT (m
);
243 /* Avoid using hard regs in ways which may be unsupported. */
244 all
.reg
= gen_raw_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1);
245 all
.plus
= gen_rtx_PLUS (mode
, all
.reg
, all
.reg
);
246 all
.neg
= gen_rtx_NEG (mode
, all
.reg
);
247 all
.mult
= gen_rtx_MULT (mode
, all
.reg
, all
.reg
);
248 all
.sdiv
= gen_rtx_DIV (mode
, all
.reg
, all
.reg
);
249 all
.udiv
= gen_rtx_UDIV (mode
, all
.reg
, all
.reg
);
250 all
.sdiv_32
= gen_rtx_DIV (mode
, all
.reg
, all
.pow2
[5]);
251 all
.smod_32
= gen_rtx_MOD (mode
, all
.reg
, all
.pow2
[5]);
252 all
.zext
= gen_rtx_ZERO_EXTEND (mode
, all
.reg
);
253 all
.wide_mult
= gen_rtx_MULT (mode
, all
.zext
, all
.zext
);
254 all
.wide_lshr
= gen_rtx_LSHIFTRT (mode
, all
.wide_mult
, all
.reg
);
255 all
.wide_trunc
= gen_rtx_TRUNCATE (mode
, all
.wide_lshr
);
256 all
.shift
= gen_rtx_ASHIFT (mode
, all
.reg
, all
.reg
);
257 all
.shift_mult
= gen_rtx_MULT (mode
, all
.reg
, all
.reg
);
258 all
.shift_add
= gen_rtx_PLUS (mode
, all
.shift_mult
, all
.reg
);
259 all
.shift_sub0
= gen_rtx_MINUS (mode
, all
.shift_mult
, all
.reg
);
260 all
.shift_sub1
= gen_rtx_MINUS (mode
, all
.reg
, all
.shift_mult
);
261 all
.trunc
= gen_rtx_TRUNCATE (mode
, all
.reg
);
263 for (speed
= 0; speed
< 2; speed
++)
265 crtl
->maybe_hot_insn_p
= speed
;
266 set_zero_cost (speed
, set_src_cost (const0_rtx
, mode
, speed
));
268 for (mode
= MIN_MODE_INT
; mode
<= MAX_MODE_INT
;
269 mode
= (machine_mode
)(mode
+ 1))
270 init_expmed_one_mode (&all
, mode
, speed
);
272 if (MIN_MODE_PARTIAL_INT
!= VOIDmode
)
273 for (mode
= MIN_MODE_PARTIAL_INT
; mode
<= MAX_MODE_PARTIAL_INT
;
274 mode
= (machine_mode
)(mode
+ 1))
275 init_expmed_one_mode (&all
, mode
, speed
);
277 if (MIN_MODE_VECTOR_INT
!= VOIDmode
)
278 for (mode
= MIN_MODE_VECTOR_INT
; mode
<= MAX_MODE_VECTOR_INT
;
279 mode
= (machine_mode
)(mode
+ 1))
280 init_expmed_one_mode (&all
, mode
, speed
);
283 if (alg_hash_used_p ())
285 struct alg_hash_entry
*p
= alg_hash_entry_ptr (0);
286 memset (p
, 0, sizeof (*p
) * NUM_ALG_HASH_ENTRIES
);
289 set_alg_hash_used_p (true);
290 default_rtl_profile ();
292 ggc_free (all
.trunc
);
293 ggc_free (all
.shift_sub1
);
294 ggc_free (all
.shift_sub0
);
295 ggc_free (all
.shift_add
);
296 ggc_free (all
.shift_mult
);
297 ggc_free (all
.shift
);
298 ggc_free (all
.wide_trunc
);
299 ggc_free (all
.wide_lshr
);
300 ggc_free (all
.wide_mult
);
302 ggc_free (all
.smod_32
);
303 ggc_free (all
.sdiv_32
);
312 /* Return an rtx representing minus the value of X.
313 MODE is the intended mode of the result,
314 useful if X is a CONST_INT. */
317 negate_rtx (machine_mode mode
, rtx x
)
319 rtx result
= simplify_unary_operation (NEG
, mode
, x
, mode
);
322 result
= expand_unop (mode
, neg_optab
, x
, NULL_RTX
, 0);
327 /* Whether reverse storage order is supported on the target. */
328 static int reverse_storage_order_supported
= -1;
330 /* Check whether reverse storage order is supported on the target. */
333 check_reverse_storage_order_support (void)
335 if (BYTES_BIG_ENDIAN
!= WORDS_BIG_ENDIAN
)
337 reverse_storage_order_supported
= 0;
338 sorry ("reverse scalar storage order");
341 reverse_storage_order_supported
= 1;
344 /* Whether reverse FP storage order is supported on the target. */
345 static int reverse_float_storage_order_supported
= -1;
347 /* Check whether reverse FP storage order is supported on the target. */
350 check_reverse_float_storage_order_support (void)
352 if (FLOAT_WORDS_BIG_ENDIAN
!= WORDS_BIG_ENDIAN
)
354 reverse_float_storage_order_supported
= 0;
355 sorry ("reverse floating-point scalar storage order");
358 reverse_float_storage_order_supported
= 1;
361 /* Return an rtx representing value of X with reverse storage order.
362 MODE is the intended mode of the result,
363 useful if X is a CONST_INT. */
366 flip_storage_order (enum machine_mode mode
, rtx x
)
368 enum machine_mode int_mode
;
374 if (COMPLEX_MODE_P (mode
))
376 rtx real
= read_complex_part (x
, false);
377 rtx imag
= read_complex_part (x
, true);
379 real
= flip_storage_order (GET_MODE_INNER (mode
), real
);
380 imag
= flip_storage_order (GET_MODE_INNER (mode
), imag
);
382 return gen_rtx_CONCAT (mode
, real
, imag
);
385 if (__builtin_expect (reverse_storage_order_supported
< 0, 0))
386 check_reverse_storage_order_support ();
388 if (SCALAR_INT_MODE_P (mode
))
392 if (FLOAT_MODE_P (mode
)
393 && __builtin_expect (reverse_float_storage_order_supported
< 0, 0))
394 check_reverse_float_storage_order_support ();
396 int_mode
= mode_for_size (GET_MODE_PRECISION (mode
), MODE_INT
, 0);
397 if (int_mode
== BLKmode
)
399 sorry ("reverse storage order for %smode", GET_MODE_NAME (mode
));
402 x
= gen_lowpart (int_mode
, x
);
405 result
= simplify_unary_operation (BSWAP
, int_mode
, x
, int_mode
);
407 result
= expand_unop (int_mode
, bswap_optab
, x
, NULL_RTX
, 1);
409 if (int_mode
!= mode
)
410 result
= gen_lowpart (mode
, result
);
415 /* Adjust bitfield memory MEM so that it points to the first unit of mode
416 MODE that contains a bitfield of size BITSIZE at bit position BITNUM.
417 If MODE is BLKmode, return a reference to every byte in the bitfield.
418 Set *NEW_BITNUM to the bit position of the field within the new memory. */
421 narrow_bit_field_mem (rtx mem
, machine_mode mode
,
422 unsigned HOST_WIDE_INT bitsize
,
423 unsigned HOST_WIDE_INT bitnum
,
424 unsigned HOST_WIDE_INT
*new_bitnum
)
428 *new_bitnum
= bitnum
% BITS_PER_UNIT
;
429 HOST_WIDE_INT offset
= bitnum
/ BITS_PER_UNIT
;
430 HOST_WIDE_INT size
= ((*new_bitnum
+ bitsize
+ BITS_PER_UNIT
- 1)
432 return adjust_bitfield_address_size (mem
, mode
, offset
, size
);
436 unsigned int unit
= GET_MODE_BITSIZE (mode
);
437 *new_bitnum
= bitnum
% unit
;
438 HOST_WIDE_INT offset
= (bitnum
- *new_bitnum
) / BITS_PER_UNIT
;
439 return adjust_bitfield_address (mem
, mode
, offset
);
443 /* The caller wants to perform insertion or extraction PATTERN on a
444 bitfield of size BITSIZE at BITNUM bits into memory operand OP0.
445 BITREGION_START and BITREGION_END are as for store_bit_field
446 and FIELDMODE is the natural mode of the field.
448 Search for a mode that is compatible with the memory access
449 restrictions and (where applicable) with a register insertion or
450 extraction. Return the new memory on success, storing the adjusted
451 bit position in *NEW_BITNUM. Return null otherwise. */
454 adjust_bit_field_mem_for_reg (enum extraction_pattern pattern
,
455 rtx op0
, HOST_WIDE_INT bitsize
,
456 HOST_WIDE_INT bitnum
,
457 unsigned HOST_WIDE_INT bitregion_start
,
458 unsigned HOST_WIDE_INT bitregion_end
,
459 machine_mode fieldmode
,
460 unsigned HOST_WIDE_INT
*new_bitnum
)
462 bit_field_mode_iterator
iter (bitsize
, bitnum
, bitregion_start
,
463 bitregion_end
, MEM_ALIGN (op0
),
464 MEM_VOLATILE_P (op0
));
465 machine_mode best_mode
;
466 if (iter
.next_mode (&best_mode
))
468 /* We can use a memory in BEST_MODE. See whether this is true for
469 any wider modes. All other things being equal, we prefer to
470 use the widest mode possible because it tends to expose more
471 CSE opportunities. */
472 if (!iter
.prefer_smaller_modes ())
474 /* Limit the search to the mode required by the corresponding
475 register insertion or extraction instruction, if any. */
476 machine_mode limit_mode
= word_mode
;
477 extraction_insn insn
;
478 if (get_best_reg_extraction_insn (&insn
, pattern
,
479 GET_MODE_BITSIZE (best_mode
),
481 limit_mode
= insn
.field_mode
;
483 machine_mode wider_mode
;
484 while (iter
.next_mode (&wider_mode
)
485 && GET_MODE_SIZE (wider_mode
) <= GET_MODE_SIZE (limit_mode
))
486 best_mode
= wider_mode
;
488 return narrow_bit_field_mem (op0
, best_mode
, bitsize
, bitnum
,
494 /* Return true if a bitfield of size BITSIZE at bit number BITNUM within
495 a structure of mode STRUCT_MODE represents a lowpart subreg. The subreg
496 offset is then BITNUM / BITS_PER_UNIT. */
499 lowpart_bit_field_p (unsigned HOST_WIDE_INT bitnum
,
500 unsigned HOST_WIDE_INT bitsize
,
501 machine_mode struct_mode
)
503 if (BYTES_BIG_ENDIAN
)
504 return (bitnum
% BITS_PER_UNIT
== 0
505 && (bitnum
+ bitsize
== GET_MODE_BITSIZE (struct_mode
)
506 || (bitnum
+ bitsize
) % BITS_PER_WORD
== 0));
508 return bitnum
% BITS_PER_WORD
== 0;
511 /* Return true if -fstrict-volatile-bitfields applies to an access of OP0
512 containing BITSIZE bits starting at BITNUM, with field mode FIELDMODE.
513 Return false if the access would touch memory outside the range
514 BITREGION_START to BITREGION_END for conformance to the C++ memory
518 strict_volatile_bitfield_p (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
519 unsigned HOST_WIDE_INT bitnum
,
520 machine_mode fieldmode
,
521 unsigned HOST_WIDE_INT bitregion_start
,
522 unsigned HOST_WIDE_INT bitregion_end
)
524 unsigned HOST_WIDE_INT modesize
= GET_MODE_BITSIZE (fieldmode
);
526 /* -fstrict-volatile-bitfields must be enabled and we must have a
529 || !MEM_VOLATILE_P (op0
)
530 || flag_strict_volatile_bitfields
<= 0)
533 /* Non-integral modes likely only happen with packed structures.
535 if (!SCALAR_INT_MODE_P (fieldmode
))
538 /* The bit size must not be larger than the field mode, and
539 the field mode must not be larger than a word. */
540 if (bitsize
> modesize
|| modesize
> BITS_PER_WORD
)
543 /* Check for cases of unaligned fields that must be split. */
544 if (bitnum
% modesize
+ bitsize
> modesize
)
547 /* The memory must be sufficiently aligned for a MODESIZE access.
548 This condition guarantees, that the memory access will not
549 touch anything after the end of the structure. */
550 if (MEM_ALIGN (op0
) < modesize
)
553 /* Check for cases where the C++ memory model applies. */
554 if (bitregion_end
!= 0
555 && (bitnum
- bitnum
% modesize
< bitregion_start
556 || bitnum
- bitnum
% modesize
+ modesize
- 1 > bitregion_end
))
562 /* Return true if OP is a memory and if a bitfield of size BITSIZE at
563 bit number BITNUM can be treated as a simple value of mode MODE. */
566 simple_mem_bitfield_p (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
567 unsigned HOST_WIDE_INT bitnum
, machine_mode mode
)
570 && bitnum
% BITS_PER_UNIT
== 0
571 && bitsize
== GET_MODE_BITSIZE (mode
)
572 && (!SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (op0
))
573 || (bitnum
% GET_MODE_ALIGNMENT (mode
) == 0
574 && MEM_ALIGN (op0
) >= GET_MODE_ALIGNMENT (mode
))));
577 /* Try to use instruction INSV to store VALUE into a field of OP0.
578 BITSIZE and BITNUM are as for store_bit_field. */
581 store_bit_field_using_insv (const extraction_insn
*insv
, rtx op0
,
582 unsigned HOST_WIDE_INT bitsize
,
583 unsigned HOST_WIDE_INT bitnum
,
586 struct expand_operand ops
[4];
589 rtx_insn
*last
= get_last_insn ();
590 bool copy_back
= false;
592 machine_mode op_mode
= insv
->field_mode
;
593 unsigned int unit
= GET_MODE_BITSIZE (op_mode
);
594 if (bitsize
== 0 || bitsize
> unit
)
598 /* Get a reference to the first byte of the field. */
599 xop0
= narrow_bit_field_mem (xop0
, insv
->struct_mode
, bitsize
, bitnum
,
603 /* Convert from counting within OP0 to counting in OP_MODE. */
604 if (BYTES_BIG_ENDIAN
)
605 bitnum
+= unit
- GET_MODE_BITSIZE (GET_MODE (op0
));
607 /* If xop0 is a register, we need it in OP_MODE
608 to make it acceptable to the format of insv. */
609 if (GET_CODE (xop0
) == SUBREG
)
610 /* We can't just change the mode, because this might clobber op0,
611 and we will need the original value of op0 if insv fails. */
612 xop0
= gen_rtx_SUBREG (op_mode
, SUBREG_REG (xop0
), SUBREG_BYTE (xop0
));
613 if (REG_P (xop0
) && GET_MODE (xop0
) != op_mode
)
614 xop0
= gen_lowpart_SUBREG (op_mode
, xop0
);
617 /* If the destination is a paradoxical subreg such that we need a
618 truncate to the inner mode, perform the insertion on a temporary and
619 truncate the result to the original destination. Note that we can't
620 just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
621 X) 0)) is (reg:N X). */
622 if (GET_CODE (xop0
) == SUBREG
623 && REG_P (SUBREG_REG (xop0
))
624 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (SUBREG_REG (xop0
)),
627 rtx tem
= gen_reg_rtx (op_mode
);
628 emit_move_insn (tem
, xop0
);
633 /* There are similar overflow check at the start of store_bit_field_1,
634 but that only check the situation where the field lies completely
635 outside the register, while there do have situation where the field
636 lies partialy in the register, we need to adjust bitsize for this
637 partial overflow situation. Without this fix, pr48335-2.c on big-endian
638 will broken on those arch support bit insert instruction, like arm, aarch64
640 if (bitsize
+ bitnum
> unit
&& bitnum
< unit
)
642 warning (OPT_Wextra
, "write of %wu-bit data outside the bound of "
643 "destination object, data truncated into %wu-bit",
644 bitsize
, unit
- bitnum
);
645 bitsize
= unit
- bitnum
;
648 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
649 "backwards" from the size of the unit we are inserting into.
650 Otherwise, we count bits from the most significant on a
651 BYTES/BITS_BIG_ENDIAN machine. */
653 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
654 bitnum
= unit
- bitsize
- bitnum
;
656 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
658 if (GET_MODE (value
) != op_mode
)
660 if (GET_MODE_BITSIZE (GET_MODE (value
)) >= bitsize
)
663 /* Optimization: Don't bother really extending VALUE
664 if it has all the bits we will actually use. However,
665 if we must narrow it, be sure we do it correctly. */
667 if (GET_MODE_SIZE (GET_MODE (value
)) < GET_MODE_SIZE (op_mode
))
669 tmp
= simplify_subreg (op_mode
, value1
, GET_MODE (value
), 0);
671 tmp
= simplify_gen_subreg (op_mode
,
672 force_reg (GET_MODE (value
),
674 GET_MODE (value
), 0);
678 tmp
= gen_lowpart_if_possible (op_mode
, value1
);
680 tmp
= gen_lowpart (op_mode
, force_reg (GET_MODE (value
),
685 else if (CONST_INT_P (value
))
686 value1
= gen_int_mode (INTVAL (value
), op_mode
);
688 /* Parse phase is supposed to make VALUE's data type
689 match that of the component reference, which is a type
690 at least as wide as the field; so VALUE should have
691 a mode that corresponds to that type. */
692 gcc_assert (CONSTANT_P (value
));
695 create_fixed_operand (&ops
[0], xop0
);
696 create_integer_operand (&ops
[1], bitsize
);
697 create_integer_operand (&ops
[2], bitnum
);
698 create_input_operand (&ops
[3], value1
, op_mode
);
699 if (maybe_expand_insn (insv
->icode
, 4, ops
))
702 convert_move (op0
, xop0
, true);
705 delete_insns_since (last
);
709 /* A subroutine of store_bit_field, with the same arguments. Return true
710 if the operation could be implemented.
712 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
713 no other way of implementing the operation. If FALLBACK_P is false,
714 return false instead. */
717 store_bit_field_1 (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
718 unsigned HOST_WIDE_INT bitnum
,
719 unsigned HOST_WIDE_INT bitregion_start
,
720 unsigned HOST_WIDE_INT bitregion_end
,
721 machine_mode fieldmode
,
722 rtx value
, bool reverse
, bool fallback_p
)
727 while (GET_CODE (op0
) == SUBREG
)
729 /* The following line once was done only if WORDS_BIG_ENDIAN,
730 but I think that is a mistake. WORDS_BIG_ENDIAN is
731 meaningful at a much higher level; when structures are copied
732 between memory and regs, the higher-numbered regs
733 always get higher addresses. */
734 int inner_mode_size
= GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0
)));
735 int outer_mode_size
= GET_MODE_SIZE (GET_MODE (op0
));
738 /* Paradoxical subregs need special handling on big-endian machines. */
739 if (SUBREG_BYTE (op0
) == 0 && inner_mode_size
< outer_mode_size
)
741 int difference
= inner_mode_size
- outer_mode_size
;
743 if (WORDS_BIG_ENDIAN
)
744 byte_offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
745 if (BYTES_BIG_ENDIAN
)
746 byte_offset
+= difference
% UNITS_PER_WORD
;
749 byte_offset
= SUBREG_BYTE (op0
);
751 bitnum
+= byte_offset
* BITS_PER_UNIT
;
752 op0
= SUBREG_REG (op0
);
755 /* No action is needed if the target is a register and if the field
756 lies completely outside that register. This can occur if the source
757 code contains an out-of-bounds access to a small array. */
758 if (REG_P (op0
) && bitnum
>= GET_MODE_BITSIZE (GET_MODE (op0
)))
761 /* Use vec_set patterns for inserting parts of vectors whenever
763 if (VECTOR_MODE_P (GET_MODE (op0
))
765 && optab_handler (vec_set_optab
, GET_MODE (op0
)) != CODE_FOR_nothing
766 && fieldmode
== GET_MODE_INNER (GET_MODE (op0
))
767 && bitsize
== GET_MODE_UNIT_BITSIZE (GET_MODE (op0
))
768 && !(bitnum
% GET_MODE_UNIT_BITSIZE (GET_MODE (op0
))))
770 struct expand_operand ops
[3];
771 machine_mode outermode
= GET_MODE (op0
);
772 machine_mode innermode
= GET_MODE_INNER (outermode
);
773 enum insn_code icode
= optab_handler (vec_set_optab
, outermode
);
774 int pos
= bitnum
/ GET_MODE_BITSIZE (innermode
);
776 create_fixed_operand (&ops
[0], op0
);
777 create_input_operand (&ops
[1], value
, innermode
);
778 create_integer_operand (&ops
[2], pos
);
779 if (maybe_expand_insn (icode
, 3, ops
))
783 /* If the target is a register, overwriting the entire object, or storing
784 a full-word or multi-word field can be done with just a SUBREG. */
786 && bitsize
== GET_MODE_BITSIZE (fieldmode
)
787 && ((bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)) && bitnum
== 0)
788 || (bitsize
% BITS_PER_WORD
== 0 && bitnum
% BITS_PER_WORD
== 0)))
790 /* Use the subreg machinery either to narrow OP0 to the required
791 words or to cope with mode punning between equal-sized modes.
792 In the latter case, use subreg on the rhs side, not lhs. */
795 if (bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)))
797 sub
= simplify_gen_subreg (GET_MODE (op0
), value
, fieldmode
, 0);
801 sub
= flip_storage_order (GET_MODE (op0
), sub
);
802 emit_move_insn (op0
, sub
);
808 sub
= simplify_gen_subreg (fieldmode
, op0
, GET_MODE (op0
),
809 bitnum
/ BITS_PER_UNIT
);
813 value
= flip_storage_order (fieldmode
, value
);
814 emit_move_insn (sub
, value
);
820 /* If the target is memory, storing any naturally aligned field can be
821 done with a simple store. For targets that support fast unaligned
822 memory, any naturally sized, unit aligned field can be done directly. */
823 if (simple_mem_bitfield_p (op0
, bitsize
, bitnum
, fieldmode
))
825 op0
= adjust_bitfield_address (op0
, fieldmode
, bitnum
/ BITS_PER_UNIT
);
827 value
= flip_storage_order (fieldmode
, value
);
828 emit_move_insn (op0
, value
);
832 /* Make sure we are playing with integral modes. Pun with subregs
833 if we aren't. This must come after the entire register case above,
834 since that case is valid for any mode. The following cases are only
835 valid for integral modes. */
837 machine_mode imode
= int_mode_for_mode (GET_MODE (op0
));
838 if (imode
!= GET_MODE (op0
))
841 op0
= adjust_bitfield_address_size (op0
, imode
, 0, MEM_SIZE (op0
));
844 gcc_assert (imode
!= BLKmode
);
845 op0
= gen_lowpart (imode
, op0
);
850 /* Storing an lsb-aligned field in a register
851 can be done with a movstrict instruction. */
855 && lowpart_bit_field_p (bitnum
, bitsize
, GET_MODE (op0
))
856 && bitsize
== GET_MODE_BITSIZE (fieldmode
)
857 && optab_handler (movstrict_optab
, fieldmode
) != CODE_FOR_nothing
)
859 struct expand_operand ops
[2];
860 enum insn_code icode
= optab_handler (movstrict_optab
, fieldmode
);
862 unsigned HOST_WIDE_INT subreg_off
;
864 if (GET_CODE (arg0
) == SUBREG
)
866 /* Else we've got some float mode source being extracted into
867 a different float mode destination -- this combination of
868 subregs results in Severe Tire Damage. */
869 gcc_assert (GET_MODE (SUBREG_REG (arg0
)) == fieldmode
870 || GET_MODE_CLASS (fieldmode
) == MODE_INT
871 || GET_MODE_CLASS (fieldmode
) == MODE_PARTIAL_INT
);
872 arg0
= SUBREG_REG (arg0
);
875 subreg_off
= bitnum
/ BITS_PER_UNIT
;
876 if (validate_subreg (fieldmode
, GET_MODE (arg0
), arg0
, subreg_off
))
878 arg0
= gen_rtx_SUBREG (fieldmode
, arg0
, subreg_off
);
880 create_fixed_operand (&ops
[0], arg0
);
881 /* Shrink the source operand to FIELDMODE. */
882 create_convert_operand_to (&ops
[1], value
, fieldmode
, false);
883 if (maybe_expand_insn (icode
, 2, ops
))
888 /* Handle fields bigger than a word. */
890 if (bitsize
> BITS_PER_WORD
)
892 /* Here we transfer the words of the field
893 in the order least significant first.
894 This is because the most significant word is the one which may
896 However, only do that if the value is not BLKmode. */
898 const bool backwards
= WORDS_BIG_ENDIAN
&& fieldmode
!= BLKmode
;
899 unsigned int nwords
= (bitsize
+ (BITS_PER_WORD
- 1)) / BITS_PER_WORD
;
903 /* This is the mode we must force value to, so that there will be enough
904 subwords to extract. Note that fieldmode will often (always?) be
905 VOIDmode, because that is what store_field uses to indicate that this
906 is a bit field, but passing VOIDmode to operand_subword_force
908 fieldmode
= GET_MODE (value
);
909 if (fieldmode
== VOIDmode
)
910 fieldmode
= smallest_mode_for_size (nwords
* BITS_PER_WORD
, MODE_INT
);
912 last
= get_last_insn ();
913 for (i
= 0; i
< nwords
; i
++)
915 /* If I is 0, use the low-order word in both field and target;
916 if I is 1, use the next to lowest word; and so on. */
917 unsigned int wordnum
= (backwards
918 ? GET_MODE_SIZE (fieldmode
) / UNITS_PER_WORD
921 unsigned int bit_offset
= (backwards
^ reverse
922 ? MAX ((int) bitsize
- ((int) i
+ 1)
925 : (int) i
* BITS_PER_WORD
);
926 rtx value_word
= operand_subword_force (value
, wordnum
, fieldmode
);
927 unsigned HOST_WIDE_INT new_bitsize
=
928 MIN (BITS_PER_WORD
, bitsize
- i
* BITS_PER_WORD
);
930 /* If the remaining chunk doesn't have full wordsize we have
931 to make sure that for big-endian machines the higher order
933 if (new_bitsize
< BITS_PER_WORD
&& BYTES_BIG_ENDIAN
&& !backwards
)
934 value_word
= simplify_expand_binop (word_mode
, lshr_optab
,
936 GEN_INT (BITS_PER_WORD
941 if (!store_bit_field_1 (op0
, new_bitsize
,
943 bitregion_start
, bitregion_end
,
945 value_word
, reverse
, fallback_p
))
947 delete_insns_since (last
);
954 /* If VALUE has a floating-point or complex mode, access it as an
955 integer of the corresponding size. This can occur on a machine
956 with 64 bit registers that uses SFmode for float. It can also
957 occur for unaligned float or complex fields. */
959 if (GET_MODE (value
) != VOIDmode
960 && GET_MODE_CLASS (GET_MODE (value
)) != MODE_INT
961 && GET_MODE_CLASS (GET_MODE (value
)) != MODE_PARTIAL_INT
)
963 value
= gen_reg_rtx (int_mode_for_mode (GET_MODE (value
)));
964 emit_move_insn (gen_lowpart (GET_MODE (orig_value
), value
), orig_value
);
967 /* If OP0 is a multi-word register, narrow it to the affected word.
968 If the region spans two words, defer to store_split_bit_field.
969 Don't do this if op0 is a single hard register wider than word
970 such as a float or vector register. */
972 && GET_MODE_SIZE (GET_MODE (op0
)) > UNITS_PER_WORD
974 || !HARD_REGISTER_P (op0
)
975 || HARD_REGNO_NREGS (REGNO (op0
), GET_MODE (op0
)) != 1))
977 if (bitnum
% BITS_PER_WORD
+ bitsize
> BITS_PER_WORD
)
982 store_split_bit_field (op0
, bitsize
, bitnum
, bitregion_start
,
983 bitregion_end
, value
, reverse
);
986 op0
= simplify_gen_subreg (word_mode
, op0
, GET_MODE (op0
),
987 bitnum
/ BITS_PER_WORD
* UNITS_PER_WORD
);
989 bitnum
%= BITS_PER_WORD
;
992 /* From here on we can assume that the field to be stored in fits
993 within a word. If the destination is a register, it too fits
996 extraction_insn insv
;
999 && get_best_reg_extraction_insn (&insv
, EP_insv
,
1000 GET_MODE_BITSIZE (GET_MODE (op0
)),
1002 && store_bit_field_using_insv (&insv
, op0
, bitsize
, bitnum
, value
))
1005 /* If OP0 is a memory, try copying it to a register and seeing if a
1006 cheap register alternative is available. */
1007 if (MEM_P (op0
) && !reverse
)
1009 if (get_best_mem_extraction_insn (&insv
, EP_insv
, bitsize
, bitnum
,
1011 && store_bit_field_using_insv (&insv
, op0
, bitsize
, bitnum
, value
))
1014 rtx_insn
*last
= get_last_insn ();
1016 /* Try loading part of OP0 into a register, inserting the bitfield
1017 into that, and then copying the result back to OP0. */
1018 unsigned HOST_WIDE_INT bitpos
;
1019 rtx xop0
= adjust_bit_field_mem_for_reg (EP_insv
, op0
, bitsize
, bitnum
,
1020 bitregion_start
, bitregion_end
,
1021 fieldmode
, &bitpos
);
1024 rtx tempreg
= copy_to_reg (xop0
);
1025 if (store_bit_field_1 (tempreg
, bitsize
, bitpos
,
1026 bitregion_start
, bitregion_end
,
1027 fieldmode
, orig_value
, reverse
, false))
1029 emit_move_insn (xop0
, tempreg
);
1032 delete_insns_since (last
);
1039 store_fixed_bit_field (op0
, bitsize
, bitnum
, bitregion_start
,
1040 bitregion_end
, value
, reverse
);
1044 /* Generate code to store value from rtx VALUE
1045 into a bit-field within structure STR_RTX
1046 containing BITSIZE bits starting at bit BITNUM.
1048 BITREGION_START is bitpos of the first bitfield in this region.
1049 BITREGION_END is the bitpos of the ending bitfield in this region.
1050 These two fields are 0, if the C++ memory model does not apply,
1051 or we are not interested in keeping track of bitfield regions.
1053 FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
1055 If REVERSE is true, the store is to be done in reverse order. */
1058 store_bit_field (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
1059 unsigned HOST_WIDE_INT bitnum
,
1060 unsigned HOST_WIDE_INT bitregion_start
,
1061 unsigned HOST_WIDE_INT bitregion_end
,
1062 machine_mode fieldmode
,
1063 rtx value
, bool reverse
)
1065 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
1066 if (strict_volatile_bitfield_p (str_rtx
, bitsize
, bitnum
, fieldmode
,
1067 bitregion_start
, bitregion_end
))
1069 /* Storing of a full word can be done with a simple store.
1070 We know here that the field can be accessed with one single
1071 instruction. For targets that support unaligned memory,
1072 an unaligned access may be necessary. */
1073 if (bitsize
== GET_MODE_BITSIZE (fieldmode
))
1075 str_rtx
= adjust_bitfield_address (str_rtx
, fieldmode
,
1076 bitnum
/ BITS_PER_UNIT
);
1078 value
= flip_storage_order (fieldmode
, value
);
1079 gcc_assert (bitnum
% BITS_PER_UNIT
== 0);
1080 emit_move_insn (str_rtx
, value
);
1086 str_rtx
= narrow_bit_field_mem (str_rtx
, fieldmode
, bitsize
, bitnum
,
1088 gcc_assert (bitnum
+ bitsize
<= GET_MODE_BITSIZE (fieldmode
));
1089 temp
= copy_to_reg (str_rtx
);
1090 if (!store_bit_field_1 (temp
, bitsize
, bitnum
, 0, 0,
1091 fieldmode
, value
, reverse
, true))
1094 emit_move_insn (str_rtx
, temp
);
1100 /* Under the C++0x memory model, we must not touch bits outside the
1101 bit region. Adjust the address to start at the beginning of the
1103 if (MEM_P (str_rtx
) && bitregion_start
> 0)
1105 machine_mode bestmode
;
1106 HOST_WIDE_INT offset
, size
;
1108 gcc_assert ((bitregion_start
% BITS_PER_UNIT
) == 0);
1110 offset
= bitregion_start
/ BITS_PER_UNIT
;
1111 bitnum
-= bitregion_start
;
1112 size
= (bitnum
+ bitsize
+ BITS_PER_UNIT
- 1) / BITS_PER_UNIT
;
1113 bitregion_end
-= bitregion_start
;
1114 bitregion_start
= 0;
1115 bestmode
= get_best_mode (bitsize
, bitnum
,
1116 bitregion_start
, bitregion_end
,
1117 MEM_ALIGN (str_rtx
), VOIDmode
,
1118 MEM_VOLATILE_P (str_rtx
));
1119 str_rtx
= adjust_bitfield_address_size (str_rtx
, bestmode
, offset
, size
);
1122 if (!store_bit_field_1 (str_rtx
, bitsize
, bitnum
,
1123 bitregion_start
, bitregion_end
,
1124 fieldmode
, value
, reverse
, true))
1128 /* Use shifts and boolean operations to store VALUE into a bit field of
1129 width BITSIZE in OP0, starting at bit BITNUM.
1131 If REVERSE is true, the store is to be done in reverse order. */
1134 store_fixed_bit_field (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
1135 unsigned HOST_WIDE_INT bitnum
,
1136 unsigned HOST_WIDE_INT bitregion_start
,
1137 unsigned HOST_WIDE_INT bitregion_end
,
1138 rtx value
, bool reverse
)
1140 /* There is a case not handled here:
1141 a structure with a known alignment of just a halfword
1142 and a field split across two aligned halfwords within the structure.
1143 Or likewise a structure with a known alignment of just a byte
1144 and a field split across two bytes.
1145 Such cases are not supposed to be able to occur. */
1149 machine_mode mode
= GET_MODE (op0
);
1150 if (GET_MODE_BITSIZE (mode
) == 0
1151 || GET_MODE_BITSIZE (mode
) > GET_MODE_BITSIZE (word_mode
))
1153 mode
= get_best_mode (bitsize
, bitnum
, bitregion_start
, bitregion_end
,
1154 MEM_ALIGN (op0
), mode
, MEM_VOLATILE_P (op0
));
1156 if (mode
== VOIDmode
)
1158 /* The only way this should occur is if the field spans word
1160 store_split_bit_field (op0
, bitsize
, bitnum
, bitregion_start
,
1161 bitregion_end
, value
, reverse
);
1165 op0
= narrow_bit_field_mem (op0
, mode
, bitsize
, bitnum
, &bitnum
);
1168 store_fixed_bit_field_1 (op0
, bitsize
, bitnum
, value
, reverse
);
1171 /* Helper function for store_fixed_bit_field, stores
1172 the bit field always using the MODE of OP0. */
1175 store_fixed_bit_field_1 (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
1176 unsigned HOST_WIDE_INT bitnum
,
1177 rtx value
, bool reverse
)
1184 mode
= GET_MODE (op0
);
1185 gcc_assert (SCALAR_INT_MODE_P (mode
));
1187 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1188 for invalid input, such as f5 from gcc.dg/pr48335-2.c. */
1190 if (reverse
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
1191 /* BITNUM is the distance between our msb
1192 and that of the containing datum.
1193 Convert it to the distance from the lsb. */
1194 bitnum
= GET_MODE_BITSIZE (mode
) - bitsize
- bitnum
;
1196 /* Now BITNUM is always the distance between our lsb
1199 /* Shift VALUE left by BITNUM bits. If VALUE is not constant,
1200 we must first convert its mode to MODE. */
1202 if (CONST_INT_P (value
))
1204 unsigned HOST_WIDE_INT v
= UINTVAL (value
);
1206 if (bitsize
< HOST_BITS_PER_WIDE_INT
)
1207 v
&= (HOST_WIDE_INT_1U
<< bitsize
) - 1;
1211 else if ((bitsize
< HOST_BITS_PER_WIDE_INT
1212 && v
== (HOST_WIDE_INT_1U
<< bitsize
) - 1)
1213 || (bitsize
== HOST_BITS_PER_WIDE_INT
1214 && v
== HOST_WIDE_INT_M1U
))
1217 value
= lshift_value (mode
, v
, bitnum
);
1221 int must_and
= (GET_MODE_BITSIZE (GET_MODE (value
)) != bitsize
1222 && bitnum
+ bitsize
!= GET_MODE_BITSIZE (mode
));
1224 if (GET_MODE (value
) != mode
)
1225 value
= convert_to_mode (mode
, value
, 1);
1228 value
= expand_binop (mode
, and_optab
, value
,
1229 mask_rtx (mode
, 0, bitsize
, 0),
1230 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1232 value
= expand_shift (LSHIFT_EXPR
, mode
, value
,
1233 bitnum
, NULL_RTX
, 1);
1237 value
= flip_storage_order (mode
, value
);
1239 /* Now clear the chosen bits in OP0,
1240 except that if VALUE is -1 we need not bother. */
1241 /* We keep the intermediates in registers to allow CSE to combine
1242 consecutive bitfield assignments. */
1244 temp
= force_reg (mode
, op0
);
1248 rtx mask
= mask_rtx (mode
, bitnum
, bitsize
, 1);
1250 mask
= flip_storage_order (mode
, mask
);
1251 temp
= expand_binop (mode
, and_optab
, temp
, mask
,
1252 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1253 temp
= force_reg (mode
, temp
);
1256 /* Now logical-or VALUE into OP0, unless it is zero. */
1260 temp
= expand_binop (mode
, ior_optab
, temp
, value
,
1261 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1262 temp
= force_reg (mode
, temp
);
1267 op0
= copy_rtx (op0
);
1268 emit_move_insn (op0
, temp
);
1272 /* Store a bit field that is split across multiple accessible memory objects.
1274 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
1275 BITSIZE is the field width; BITPOS the position of its first bit
1277 VALUE is the value to store.
1279 If REVERSE is true, the store is to be done in reverse order.
1281 This does not yet handle fields wider than BITS_PER_WORD. */
1284 store_split_bit_field (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
1285 unsigned HOST_WIDE_INT bitpos
,
1286 unsigned HOST_WIDE_INT bitregion_start
,
1287 unsigned HOST_WIDE_INT bitregion_end
,
1288 rtx value
, bool reverse
)
1290 unsigned int unit
, total_bits
, bitsdone
= 0;
1292 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1294 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
1295 unit
= BITS_PER_WORD
;
1297 unit
= MIN (MEM_ALIGN (op0
), BITS_PER_WORD
);
1299 /* If OP0 is a memory with a mode, then UNIT must not be larger than
1300 OP0's mode as well. Otherwise, store_fixed_bit_field will call us
1301 again, and we will mutually recurse forever. */
1302 if (MEM_P (op0
) && GET_MODE_BITSIZE (GET_MODE (op0
)) > 0)
1303 unit
= MIN (unit
, GET_MODE_BITSIZE (GET_MODE (op0
)));
1305 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1306 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1307 that VALUE might be a floating-point constant. */
1308 if (CONSTANT_P (value
) && !CONST_INT_P (value
))
1310 rtx word
= gen_lowpart_common (word_mode
, value
);
1312 if (word
&& (value
!= word
))
1315 value
= gen_lowpart_common (word_mode
,
1316 force_reg (GET_MODE (value
) != VOIDmode
1318 : word_mode
, value
));
1321 total_bits
= GET_MODE_BITSIZE (GET_MODE (value
));
1323 while (bitsdone
< bitsize
)
1325 unsigned HOST_WIDE_INT thissize
;
1326 unsigned HOST_WIDE_INT thispos
;
1327 unsigned HOST_WIDE_INT offset
;
1330 offset
= (bitpos
+ bitsdone
) / unit
;
1331 thispos
= (bitpos
+ bitsdone
) % unit
;
1333 /* When region of bytes we can touch is restricted, decrease
1334 UNIT close to the end of the region as needed. If op0 is a REG
1335 or SUBREG of REG, don't do this, as there can't be data races
1336 on a register and we can expand shorter code in some cases. */
1338 && unit
> BITS_PER_UNIT
1339 && bitpos
+ bitsdone
- thispos
+ unit
> bitregion_end
+ 1
1341 && (GET_CODE (op0
) != SUBREG
|| !REG_P (SUBREG_REG (op0
))))
1347 /* THISSIZE must not overrun a word boundary. Otherwise,
1348 store_fixed_bit_field will call us again, and we will mutually
1350 thissize
= MIN (bitsize
- bitsdone
, BITS_PER_WORD
);
1351 thissize
= MIN (thissize
, unit
- thispos
);
1353 if (reverse
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
1355 /* Fetch successively less significant portions. */
1356 if (CONST_INT_P (value
))
1357 part
= GEN_INT (((unsigned HOST_WIDE_INT
) (INTVAL (value
))
1358 >> (bitsize
- bitsdone
- thissize
))
1359 & ((HOST_WIDE_INT_1
<< thissize
) - 1));
1360 /* Likewise, but the source is little-endian. */
1362 part
= extract_fixed_bit_field (word_mode
, value
, thissize
,
1363 bitsize
- bitsdone
- thissize
,
1364 NULL_RTX
, 1, false);
1367 int total_bits
= GET_MODE_BITSIZE (GET_MODE (value
));
1368 /* The args are chosen so that the last part includes the
1369 lsb. Give extract_bit_field the value it needs (with
1370 endianness compensation) to fetch the piece we want. */
1371 part
= extract_fixed_bit_field (word_mode
, value
, thissize
,
1372 total_bits
- bitsize
+ bitsdone
,
1373 NULL_RTX
, 1, false);
1378 /* Fetch successively more significant portions. */
1379 if (CONST_INT_P (value
))
1380 part
= GEN_INT (((unsigned HOST_WIDE_INT
) (INTVAL (value
))
1382 & ((HOST_WIDE_INT_1
<< thissize
) - 1));
1383 /* Likewise, but the source is big-endian. */
1385 part
= extract_fixed_bit_field (word_mode
, value
, thissize
,
1386 total_bits
- bitsdone
- thissize
,
1387 NULL_RTX
, 1, false);
1389 part
= extract_fixed_bit_field (word_mode
, value
, thissize
,
1390 bitsdone
, NULL_RTX
, 1, false);
1393 /* If OP0 is a register, then handle OFFSET here. */
1394 if (SUBREG_P (op0
) || REG_P (op0
))
1396 machine_mode op0_mode
= GET_MODE (op0
);
1397 if (op0_mode
!= BLKmode
&& GET_MODE_SIZE (op0_mode
) < UNITS_PER_WORD
)
1398 word
= offset
? const0_rtx
: op0
;
1400 word
= operand_subword_force (op0
, offset
* unit
/ BITS_PER_WORD
,
1402 offset
&= BITS_PER_WORD
/ unit
- 1;
1407 /* OFFSET is in UNITs, and UNIT is in bits. If WORD is const0_rtx,
1408 it is just an out-of-bounds access. Ignore it. */
1409 if (word
!= const0_rtx
)
1410 store_fixed_bit_field (word
, thissize
, offset
* unit
+ thispos
,
1411 bitregion_start
, bitregion_end
, part
,
1413 bitsdone
+= thissize
;
1417 /* A subroutine of extract_bit_field_1 that converts return value X
1418 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1419 to extract_bit_field. */
1422 convert_extracted_bit_field (rtx x
, machine_mode mode
,
1423 machine_mode tmode
, bool unsignedp
)
1425 if (GET_MODE (x
) == tmode
|| GET_MODE (x
) == mode
)
1428 /* If the x mode is not a scalar integral, first convert to the
1429 integer mode of that size and then access it as a floating-point
1430 value via a SUBREG. */
1431 if (!SCALAR_INT_MODE_P (tmode
))
1435 smode
= mode_for_size (GET_MODE_BITSIZE (tmode
), MODE_INT
, 0);
1436 x
= convert_to_mode (smode
, x
, unsignedp
);
1437 x
= force_reg (smode
, x
);
1438 return gen_lowpart (tmode
, x
);
1441 return convert_to_mode (tmode
, x
, unsignedp
);
1444 /* Try to use an ext(z)v pattern to extract a field from OP0.
1445 Return the extracted value on success, otherwise return null.
1446 EXT_MODE is the mode of the extraction and the other arguments
1447 are as for extract_bit_field. */
1450 extract_bit_field_using_extv (const extraction_insn
*extv
, rtx op0
,
1451 unsigned HOST_WIDE_INT bitsize
,
1452 unsigned HOST_WIDE_INT bitnum
,
1453 int unsignedp
, rtx target
,
1454 machine_mode mode
, machine_mode tmode
)
1456 struct expand_operand ops
[4];
1457 rtx spec_target
= target
;
1458 rtx spec_target_subreg
= 0;
1459 machine_mode ext_mode
= extv
->field_mode
;
1460 unsigned unit
= GET_MODE_BITSIZE (ext_mode
);
1462 if (bitsize
== 0 || unit
< bitsize
)
1466 /* Get a reference to the first byte of the field. */
1467 op0
= narrow_bit_field_mem (op0
, extv
->struct_mode
, bitsize
, bitnum
,
1471 /* Convert from counting within OP0 to counting in EXT_MODE. */
1472 if (BYTES_BIG_ENDIAN
)
1473 bitnum
+= unit
- GET_MODE_BITSIZE (GET_MODE (op0
));
1475 /* If op0 is a register, we need it in EXT_MODE to make it
1476 acceptable to the format of ext(z)v. */
1477 if (GET_CODE (op0
) == SUBREG
&& GET_MODE (op0
) != ext_mode
)
1479 if (REG_P (op0
) && GET_MODE (op0
) != ext_mode
)
1480 op0
= gen_lowpart_SUBREG (ext_mode
, op0
);
1483 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
1484 "backwards" from the size of the unit we are extracting from.
1485 Otherwise, we count bits from the most significant on a
1486 BYTES/BITS_BIG_ENDIAN machine. */
1488 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
1489 bitnum
= unit
- bitsize
- bitnum
;
1492 target
= spec_target
= gen_reg_rtx (tmode
);
1494 if (GET_MODE (target
) != ext_mode
)
1496 /* Don't use LHS paradoxical subreg if explicit truncation is needed
1497 between the mode of the extraction (word_mode) and the target
1498 mode. Instead, create a temporary and use convert_move to set
1501 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (target
), ext_mode
))
1503 target
= gen_lowpart (ext_mode
, target
);
1504 if (GET_MODE_PRECISION (ext_mode
)
1505 > GET_MODE_PRECISION (GET_MODE (spec_target
)))
1506 spec_target_subreg
= target
;
1509 target
= gen_reg_rtx (ext_mode
);
1512 create_output_operand (&ops
[0], target
, ext_mode
);
1513 create_fixed_operand (&ops
[1], op0
);
1514 create_integer_operand (&ops
[2], bitsize
);
1515 create_integer_operand (&ops
[3], bitnum
);
1516 if (maybe_expand_insn (extv
->icode
, 4, ops
))
1518 target
= ops
[0].value
;
1519 if (target
== spec_target
)
1521 if (target
== spec_target_subreg
)
1523 return convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
1528 /* A subroutine of extract_bit_field, with the same arguments.
1529 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1530 if we can find no other means of implementing the operation.
1531 if FALLBACK_P is false, return NULL instead. */
1534 extract_bit_field_1 (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
1535 unsigned HOST_WIDE_INT bitnum
, int unsignedp
, rtx target
,
1536 machine_mode mode
, machine_mode tmode
,
1537 bool reverse
, bool fallback_p
)
1540 machine_mode int_mode
;
1543 if (tmode
== VOIDmode
)
1546 while (GET_CODE (op0
) == SUBREG
)
1548 bitnum
+= SUBREG_BYTE (op0
) * BITS_PER_UNIT
;
1549 op0
= SUBREG_REG (op0
);
1552 /* If we have an out-of-bounds access to a register, just return an
1553 uninitialized register of the required mode. This can occur if the
1554 source code contains an out-of-bounds access to a small array. */
1555 if (REG_P (op0
) && bitnum
>= GET_MODE_BITSIZE (GET_MODE (op0
)))
1556 return gen_reg_rtx (tmode
);
1559 && mode
== GET_MODE (op0
)
1561 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)))
1564 op0
= flip_storage_order (mode
, op0
);
1565 /* We're trying to extract a full register from itself. */
1569 /* See if we can get a better vector mode before extracting. */
1570 if (VECTOR_MODE_P (GET_MODE (op0
))
1572 && GET_MODE_INNER (GET_MODE (op0
)) != tmode
)
1574 machine_mode new_mode
;
1576 if (GET_MODE_CLASS (tmode
) == MODE_FLOAT
)
1577 new_mode
= MIN_MODE_VECTOR_FLOAT
;
1578 else if (GET_MODE_CLASS (tmode
) == MODE_FRACT
)
1579 new_mode
= MIN_MODE_VECTOR_FRACT
;
1580 else if (GET_MODE_CLASS (tmode
) == MODE_UFRACT
)
1581 new_mode
= MIN_MODE_VECTOR_UFRACT
;
1582 else if (GET_MODE_CLASS (tmode
) == MODE_ACCUM
)
1583 new_mode
= MIN_MODE_VECTOR_ACCUM
;
1584 else if (GET_MODE_CLASS (tmode
) == MODE_UACCUM
)
1585 new_mode
= MIN_MODE_VECTOR_UACCUM
;
1587 new_mode
= MIN_MODE_VECTOR_INT
;
1589 for (; new_mode
!= VOIDmode
; new_mode
= GET_MODE_WIDER_MODE (new_mode
))
1590 if (GET_MODE_SIZE (new_mode
) == GET_MODE_SIZE (GET_MODE (op0
))
1591 && GET_MODE_UNIT_SIZE (new_mode
) == GET_MODE_SIZE (tmode
)
1592 && targetm
.vector_mode_supported_p (new_mode
))
1594 if (new_mode
!= VOIDmode
)
1595 op0
= gen_lowpart (new_mode
, op0
);
1598 /* Use vec_extract patterns for extracting parts of vectors whenever
1600 if (VECTOR_MODE_P (GET_MODE (op0
))
1602 && optab_handler (vec_extract_optab
, GET_MODE (op0
)) != CODE_FOR_nothing
1603 && ((bitnum
+ bitsize
- 1) / GET_MODE_UNIT_BITSIZE (GET_MODE (op0
))
1604 == bitnum
/ GET_MODE_UNIT_BITSIZE (GET_MODE (op0
))))
1606 struct expand_operand ops
[3];
1607 machine_mode outermode
= GET_MODE (op0
);
1608 machine_mode innermode
= GET_MODE_INNER (outermode
);
1609 enum insn_code icode
= optab_handler (vec_extract_optab
, outermode
);
1610 unsigned HOST_WIDE_INT pos
= bitnum
/ GET_MODE_BITSIZE (innermode
);
1612 create_output_operand (&ops
[0], target
, innermode
);
1613 create_input_operand (&ops
[1], op0
, outermode
);
1614 create_integer_operand (&ops
[2], pos
);
1615 if (maybe_expand_insn (icode
, 3, ops
))
1617 target
= ops
[0].value
;
1618 if (GET_MODE (target
) != mode
)
1619 return gen_lowpart (tmode
, target
);
1624 /* Make sure we are playing with integral modes. Pun with subregs
1627 machine_mode imode
= int_mode_for_mode (GET_MODE (op0
));
1628 if (imode
!= GET_MODE (op0
))
1631 op0
= adjust_bitfield_address_size (op0
, imode
, 0, MEM_SIZE (op0
));
1632 else if (imode
!= BLKmode
)
1634 op0
= gen_lowpart (imode
, op0
);
1636 /* If we got a SUBREG, force it into a register since we
1637 aren't going to be able to do another SUBREG on it. */
1638 if (GET_CODE (op0
) == SUBREG
)
1639 op0
= force_reg (imode
, op0
);
1643 HOST_WIDE_INT size
= GET_MODE_SIZE (GET_MODE (op0
));
1644 rtx mem
= assign_stack_temp (GET_MODE (op0
), size
);
1645 emit_move_insn (mem
, op0
);
1646 op0
= adjust_bitfield_address_size (mem
, BLKmode
, 0, size
);
1651 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1652 If that's wrong, the solution is to test for it and set TARGET to 0
1655 /* Get the mode of the field to use for atomic access or subreg
1658 if (SCALAR_INT_MODE_P (tmode
))
1660 machine_mode try_mode
= mode_for_size (bitsize
,
1661 GET_MODE_CLASS (tmode
), 0);
1662 if (try_mode
!= BLKmode
)
1665 gcc_assert (mode1
!= BLKmode
);
1667 /* Extraction of a full MODE1 value can be done with a subreg as long
1668 as the least significant bit of the value is the least significant
1669 bit of either OP0 or a word of OP0. */
1672 && lowpart_bit_field_p (bitnum
, bitsize
, GET_MODE (op0
))
1673 && bitsize
== GET_MODE_BITSIZE (mode1
)
1674 && TRULY_NOOP_TRUNCATION_MODES_P (mode1
, GET_MODE (op0
)))
1676 rtx sub
= simplify_gen_subreg (mode1
, op0
, GET_MODE (op0
),
1677 bitnum
/ BITS_PER_UNIT
);
1679 return convert_extracted_bit_field (sub
, mode
, tmode
, unsignedp
);
1682 /* Extraction of a full MODE1 value can be done with a load as long as
1683 the field is on a byte boundary and is sufficiently aligned. */
1684 if (simple_mem_bitfield_p (op0
, bitsize
, bitnum
, mode1
))
1686 op0
= adjust_bitfield_address (op0
, mode1
, bitnum
/ BITS_PER_UNIT
);
1688 op0
= flip_storage_order (mode1
, op0
);
1689 return convert_extracted_bit_field (op0
, mode
, tmode
, unsignedp
);
1692 /* Handle fields bigger than a word. */
1694 if (bitsize
> BITS_PER_WORD
)
1696 /* Here we transfer the words of the field
1697 in the order least significant first.
1698 This is because the most significant word is the one which may
1699 be less than full. */
1701 const bool backwards
= WORDS_BIG_ENDIAN
;
1702 unsigned int nwords
= (bitsize
+ (BITS_PER_WORD
- 1)) / BITS_PER_WORD
;
1706 if (target
== 0 || !REG_P (target
) || !valid_multiword_target_p (target
))
1707 target
= gen_reg_rtx (mode
);
1709 /* In case we're about to clobber a base register or something
1710 (see gcc.c-torture/execute/20040625-1.c). */
1711 if (reg_mentioned_p (target
, str_rtx
))
1712 target
= gen_reg_rtx (mode
);
1714 /* Indicate for flow that the entire target reg is being set. */
1715 emit_clobber (target
);
1717 last
= get_last_insn ();
1718 for (i
= 0; i
< nwords
; i
++)
1720 /* If I is 0, use the low-order word in both field and target;
1721 if I is 1, use the next to lowest word; and so on. */
1722 /* Word number in TARGET to use. */
1723 unsigned int wordnum
1725 ? GET_MODE_SIZE (GET_MODE (target
)) / UNITS_PER_WORD
- i
- 1
1727 /* Offset from start of field in OP0. */
1728 unsigned int bit_offset
= (backwards
^ reverse
1729 ? MAX ((int) bitsize
- ((int) i
+ 1)
1732 : (int) i
* BITS_PER_WORD
);
1733 rtx target_part
= operand_subword (target
, wordnum
, 1, VOIDmode
);
1735 = extract_bit_field_1 (op0
, MIN (BITS_PER_WORD
,
1736 bitsize
- i
* BITS_PER_WORD
),
1737 bitnum
+ bit_offset
, 1, target_part
,
1738 mode
, word_mode
, reverse
, fallback_p
);
1740 gcc_assert (target_part
);
1743 delete_insns_since (last
);
1747 if (result_part
!= target_part
)
1748 emit_move_insn (target_part
, result_part
);
1753 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1754 need to be zero'd out. */
1755 if (GET_MODE_SIZE (GET_MODE (target
)) > nwords
* UNITS_PER_WORD
)
1757 unsigned int i
, total_words
;
1759 total_words
= GET_MODE_SIZE (GET_MODE (target
)) / UNITS_PER_WORD
;
1760 for (i
= nwords
; i
< total_words
; i
++)
1762 (operand_subword (target
,
1763 backwards
? total_words
- i
- 1 : i
,
1770 /* Signed bit field: sign-extend with two arithmetic shifts. */
1771 target
= expand_shift (LSHIFT_EXPR
, mode
, target
,
1772 GET_MODE_BITSIZE (mode
) - bitsize
, NULL_RTX
, 0);
1773 return expand_shift (RSHIFT_EXPR
, mode
, target
,
1774 GET_MODE_BITSIZE (mode
) - bitsize
, NULL_RTX
, 0);
1777 /* If OP0 is a multi-word register, narrow it to the affected word.
1778 If the region spans two words, defer to extract_split_bit_field. */
1779 if (!MEM_P (op0
) && GET_MODE_SIZE (GET_MODE (op0
)) > UNITS_PER_WORD
)
1781 if (bitnum
% BITS_PER_WORD
+ bitsize
> BITS_PER_WORD
)
1785 target
= extract_split_bit_field (op0
, bitsize
, bitnum
, unsignedp
,
1787 return convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
1789 op0
= simplify_gen_subreg (word_mode
, op0
, GET_MODE (op0
),
1790 bitnum
/ BITS_PER_WORD
* UNITS_PER_WORD
);
1791 bitnum
%= BITS_PER_WORD
;
1794 /* From here on we know the desired field is smaller than a word.
1795 If OP0 is a register, it too fits within a word. */
1796 enum extraction_pattern pattern
= unsignedp
? EP_extzv
: EP_extv
;
1797 extraction_insn extv
;
1800 /* ??? We could limit the structure size to the part of OP0 that
1801 contains the field, with appropriate checks for endianness
1802 and TRULY_NOOP_TRUNCATION. */
1803 && get_best_reg_extraction_insn (&extv
, pattern
,
1804 GET_MODE_BITSIZE (GET_MODE (op0
)),
1807 rtx result
= extract_bit_field_using_extv (&extv
, op0
, bitsize
, bitnum
,
1808 unsignedp
, target
, mode
,
1814 /* If OP0 is a memory, try copying it to a register and seeing if a
1815 cheap register alternative is available. */
1816 if (MEM_P (op0
) & !reverse
)
1818 if (get_best_mem_extraction_insn (&extv
, pattern
, bitsize
, bitnum
,
1821 rtx result
= extract_bit_field_using_extv (&extv
, op0
, bitsize
,
1829 rtx_insn
*last
= get_last_insn ();
1831 /* Try loading part of OP0 into a register and extracting the
1832 bitfield from that. */
1833 unsigned HOST_WIDE_INT bitpos
;
1834 rtx xop0
= adjust_bit_field_mem_for_reg (pattern
, op0
, bitsize
, bitnum
,
1835 0, 0, tmode
, &bitpos
);
1838 xop0
= copy_to_reg (xop0
);
1839 rtx result
= extract_bit_field_1 (xop0
, bitsize
, bitpos
,
1841 mode
, tmode
, reverse
, false);
1844 delete_insns_since (last
);
1851 /* Find a correspondingly-sized integer field, so we can apply
1852 shifts and masks to it. */
1853 int_mode
= int_mode_for_mode (tmode
);
1854 if (int_mode
== BLKmode
)
1855 int_mode
= int_mode_for_mode (mode
);
1856 /* Should probably push op0 out to memory and then do a load. */
1857 gcc_assert (int_mode
!= BLKmode
);
1859 target
= extract_fixed_bit_field (int_mode
, op0
, bitsize
, bitnum
, target
,
1860 unsignedp
, reverse
);
1862 /* Complex values must be reversed piecewise, so we need to undo the global
1863 reversal, convert to the complex mode and reverse again. */
1864 if (reverse
&& COMPLEX_MODE_P (tmode
))
1866 target
= flip_storage_order (int_mode
, target
);
1867 target
= convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
1868 target
= flip_storage_order (tmode
, target
);
1871 target
= convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
1876 /* Generate code to extract a byte-field from STR_RTX
1877 containing BITSIZE bits, starting at BITNUM,
1878 and put it in TARGET if possible (if TARGET is nonzero).
1879 Regardless of TARGET, we return the rtx for where the value is placed.
1881 STR_RTX is the structure containing the byte (a REG or MEM).
1882 UNSIGNEDP is nonzero if this is an unsigned bit field.
1883 MODE is the natural mode of the field value once extracted.
1884 TMODE is the mode the caller would like the value to have;
1885 but the value may be returned with type MODE instead.
1887 If REVERSE is true, the extraction is to be done in reverse order.
1889 If a TARGET is specified and we can store in it at no extra cost,
1890 we do so, and return TARGET.
1891 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1892 if they are equally easy. */
1895 extract_bit_field (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
1896 unsigned HOST_WIDE_INT bitnum
, int unsignedp
, rtx target
,
1897 machine_mode mode
, machine_mode tmode
, bool reverse
)
1901 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
1902 if (GET_MODE_BITSIZE (GET_MODE (str_rtx
)) > 0)
1903 mode1
= GET_MODE (str_rtx
);
1904 else if (target
&& GET_MODE_BITSIZE (GET_MODE (target
)) > 0)
1905 mode1
= GET_MODE (target
);
1909 if (strict_volatile_bitfield_p (str_rtx
, bitsize
, bitnum
, mode1
, 0, 0))
1911 /* Extraction of a full MODE1 value can be done with a simple load.
1912 We know here that the field can be accessed with one single
1913 instruction. For targets that support unaligned memory,
1914 an unaligned access may be necessary. */
1915 if (bitsize
== GET_MODE_BITSIZE (mode1
))
1917 rtx result
= adjust_bitfield_address (str_rtx
, mode1
,
1918 bitnum
/ BITS_PER_UNIT
);
1920 result
= flip_storage_order (mode1
, result
);
1921 gcc_assert (bitnum
% BITS_PER_UNIT
== 0);
1922 return convert_extracted_bit_field (result
, mode
, tmode
, unsignedp
);
1925 str_rtx
= narrow_bit_field_mem (str_rtx
, mode1
, bitsize
, bitnum
,
1927 gcc_assert (bitnum
+ bitsize
<= GET_MODE_BITSIZE (mode1
));
1928 str_rtx
= copy_to_reg (str_rtx
);
1931 return extract_bit_field_1 (str_rtx
, bitsize
, bitnum
, unsignedp
,
1932 target
, mode
, tmode
, reverse
, true);
1935 /* Use shifts and boolean operations to extract a field of BITSIZE bits
1936 from bit BITNUM of OP0.
1938 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1939 If REVERSE is true, the extraction is to be done in reverse order.
1941 If TARGET is nonzero, attempts to store the value there
1942 and return TARGET, but this is not guaranteed.
1943 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1946 extract_fixed_bit_field (machine_mode tmode
, rtx op0
,
1947 unsigned HOST_WIDE_INT bitsize
,
1948 unsigned HOST_WIDE_INT bitnum
, rtx target
,
1949 int unsignedp
, bool reverse
)
1954 = get_best_mode (bitsize
, bitnum
, 0, 0, MEM_ALIGN (op0
), word_mode
,
1955 MEM_VOLATILE_P (op0
));
1957 if (mode
== VOIDmode
)
1958 /* The only way this should occur is if the field spans word
1960 return extract_split_bit_field (op0
, bitsize
, bitnum
, unsignedp
,
1963 op0
= narrow_bit_field_mem (op0
, mode
, bitsize
, bitnum
, &bitnum
);
1966 return extract_fixed_bit_field_1 (tmode
, op0
, bitsize
, bitnum
,
1967 target
, unsignedp
, reverse
);
1970 /* Helper function for extract_fixed_bit_field, extracts
1971 the bit field always using the MODE of OP0. */
1974 extract_fixed_bit_field_1 (machine_mode tmode
, rtx op0
,
1975 unsigned HOST_WIDE_INT bitsize
,
1976 unsigned HOST_WIDE_INT bitnum
, rtx target
,
1977 int unsignedp
, bool reverse
)
1979 machine_mode mode
= GET_MODE (op0
);
1980 gcc_assert (SCALAR_INT_MODE_P (mode
));
1982 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1983 for invalid input, such as extract equivalent of f5 from
1984 gcc.dg/pr48335-2.c. */
1986 if (reverse
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
1987 /* BITNUM is the distance between our msb and that of OP0.
1988 Convert it to the distance from the lsb. */
1989 bitnum
= GET_MODE_BITSIZE (mode
) - bitsize
- bitnum
;
1991 /* Now BITNUM is always the distance between the field's lsb and that of OP0.
1992 We have reduced the big-endian case to the little-endian case. */
1994 op0
= flip_storage_order (mode
, op0
);
2000 /* If the field does not already start at the lsb,
2001 shift it so it does. */
2002 /* Maybe propagate the target for the shift. */
2003 rtx subtarget
= (target
!= 0 && REG_P (target
) ? target
: 0);
2006 op0
= expand_shift (RSHIFT_EXPR
, mode
, op0
, bitnum
, subtarget
, 1);
2008 /* Convert the value to the desired mode. */
2010 op0
= convert_to_mode (tmode
, op0
, 1);
2012 /* Unless the msb of the field used to be the msb when we shifted,
2013 mask out the upper bits. */
2015 if (GET_MODE_BITSIZE (mode
) != bitnum
+ bitsize
)
2016 return expand_binop (GET_MODE (op0
), and_optab
, op0
,
2017 mask_rtx (GET_MODE (op0
), 0, bitsize
, 0),
2018 target
, 1, OPTAB_LIB_WIDEN
);
2022 /* To extract a signed bit-field, first shift its msb to the msb of the word,
2023 then arithmetic-shift its lsb to the lsb of the word. */
2024 op0
= force_reg (mode
, op0
);
2026 /* Find the narrowest integer mode that contains the field. */
2028 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
2029 mode
= GET_MODE_WIDER_MODE (mode
))
2030 if (GET_MODE_BITSIZE (mode
) >= bitsize
+ bitnum
)
2032 op0
= convert_to_mode (mode
, op0
, 0);
2039 if (GET_MODE_BITSIZE (mode
) != (bitsize
+ bitnum
))
2041 int amount
= GET_MODE_BITSIZE (mode
) - (bitsize
+ bitnum
);
2042 /* Maybe propagate the target for the shift. */
2043 rtx subtarget
= (target
!= 0 && REG_P (target
) ? target
: 0);
2044 op0
= expand_shift (LSHIFT_EXPR
, mode
, op0
, amount
, subtarget
, 1);
2047 return expand_shift (RSHIFT_EXPR
, mode
, op0
,
2048 GET_MODE_BITSIZE (mode
) - bitsize
, target
, 0);
2051 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
2055 lshift_value (machine_mode mode
, unsigned HOST_WIDE_INT value
,
2058 return immed_wide_int_const (wi::lshift (value
, bitpos
), mode
);
2061 /* Extract a bit field that is split across two words
2062 and return an RTX for the result.
2064 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
2065 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
2066 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend.
2068 If REVERSE is true, the extraction is to be done in reverse order. */
2071 extract_split_bit_field (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
2072 unsigned HOST_WIDE_INT bitpos
, int unsignedp
,
2076 unsigned int bitsdone
= 0;
2077 rtx result
= NULL_RTX
;
2080 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
2082 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
2083 unit
= BITS_PER_WORD
;
2085 unit
= MIN (MEM_ALIGN (op0
), BITS_PER_WORD
);
2087 while (bitsdone
< bitsize
)
2089 unsigned HOST_WIDE_INT thissize
;
2091 unsigned HOST_WIDE_INT thispos
;
2092 unsigned HOST_WIDE_INT offset
;
2094 offset
= (bitpos
+ bitsdone
) / unit
;
2095 thispos
= (bitpos
+ bitsdone
) % unit
;
2097 /* THISSIZE must not overrun a word boundary. Otherwise,
2098 extract_fixed_bit_field will call us again, and we will mutually
2100 thissize
= MIN (bitsize
- bitsdone
, BITS_PER_WORD
);
2101 thissize
= MIN (thissize
, unit
- thispos
);
2103 /* If OP0 is a register, then handle OFFSET here. */
2104 if (SUBREG_P (op0
) || REG_P (op0
))
2106 word
= operand_subword_force (op0
, offset
, GET_MODE (op0
));
2112 /* Extract the parts in bit-counting order,
2113 whose meaning is determined by BYTES_PER_UNIT.
2114 OFFSET is in UNITs, and UNIT is in bits. */
2115 part
= extract_fixed_bit_field (word_mode
, word
, thissize
,
2116 offset
* unit
+ thispos
, 0, 1, reverse
);
2117 bitsdone
+= thissize
;
2119 /* Shift this part into place for the result. */
2120 if (reverse
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
2122 if (bitsize
!= bitsdone
)
2123 part
= expand_shift (LSHIFT_EXPR
, word_mode
, part
,
2124 bitsize
- bitsdone
, 0, 1);
2128 if (bitsdone
!= thissize
)
2129 part
= expand_shift (LSHIFT_EXPR
, word_mode
, part
,
2130 bitsdone
- thissize
, 0, 1);
2136 /* Combine the parts with bitwise or. This works
2137 because we extracted each part as an unsigned bit field. */
2138 result
= expand_binop (word_mode
, ior_optab
, part
, result
, NULL_RTX
, 1,
2144 /* Unsigned bit field: we are done. */
2147 /* Signed bit field: sign-extend with two arithmetic shifts. */
2148 result
= expand_shift (LSHIFT_EXPR
, word_mode
, result
,
2149 BITS_PER_WORD
- bitsize
, NULL_RTX
, 0);
2150 return expand_shift (RSHIFT_EXPR
, word_mode
, result
,
2151 BITS_PER_WORD
- bitsize
, NULL_RTX
, 0);
2154 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
2155 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
2156 MODE, fill the upper bits with zeros. Fail if the layout of either
2157 mode is unknown (as for CC modes) or if the extraction would involve
2158 unprofitable mode punning. Return the value on success, otherwise
2161 This is different from gen_lowpart* in these respects:
2163 - the returned value must always be considered an rvalue
2165 - when MODE is wider than SRC_MODE, the extraction involves
2168 - when MODE is smaller than SRC_MODE, the extraction involves
2169 a truncation (and is thus subject to TRULY_NOOP_TRUNCATION).
2171 In other words, this routine performs a computation, whereas the
2172 gen_lowpart* routines are conceptually lvalue or rvalue subreg
2176 extract_low_bits (machine_mode mode
, machine_mode src_mode
, rtx src
)
2178 machine_mode int_mode
, src_int_mode
;
2180 if (mode
== src_mode
)
2183 if (CONSTANT_P (src
))
2185 /* simplify_gen_subreg can't be used here, as if simplify_subreg
2186 fails, it will happily create (subreg (symbol_ref)) or similar
2188 unsigned int byte
= subreg_lowpart_offset (mode
, src_mode
);
2189 rtx ret
= simplify_subreg (mode
, src
, src_mode
, byte
);
2193 if (GET_MODE (src
) == VOIDmode
2194 || !validate_subreg (mode
, src_mode
, src
, byte
))
2197 src
= force_reg (GET_MODE (src
), src
);
2198 return gen_rtx_SUBREG (mode
, src
, byte
);
2201 if (GET_MODE_CLASS (mode
) == MODE_CC
|| GET_MODE_CLASS (src_mode
) == MODE_CC
)
2204 if (GET_MODE_BITSIZE (mode
) == GET_MODE_BITSIZE (src_mode
)
2205 && MODES_TIEABLE_P (mode
, src_mode
))
2207 rtx x
= gen_lowpart_common (mode
, src
);
2212 src_int_mode
= int_mode_for_mode (src_mode
);
2213 int_mode
= int_mode_for_mode (mode
);
2214 if (src_int_mode
== BLKmode
|| int_mode
== BLKmode
)
2217 if (!MODES_TIEABLE_P (src_int_mode
, src_mode
))
2219 if (!MODES_TIEABLE_P (int_mode
, mode
))
2222 src
= gen_lowpart (src_int_mode
, src
);
2223 src
= convert_modes (int_mode
, src_int_mode
, src
, true);
2224 src
= gen_lowpart (mode
, src
);
2228 /* Add INC into TARGET. */
2231 expand_inc (rtx target
, rtx inc
)
2233 rtx value
= expand_binop (GET_MODE (target
), add_optab
,
2235 target
, 0, OPTAB_LIB_WIDEN
);
2236 if (value
!= target
)
2237 emit_move_insn (target
, value
);
2240 /* Subtract DEC from TARGET. */
2243 expand_dec (rtx target
, rtx dec
)
2245 rtx value
= expand_binop (GET_MODE (target
), sub_optab
,
2247 target
, 0, OPTAB_LIB_WIDEN
);
2248 if (value
!= target
)
2249 emit_move_insn (target
, value
);
2252 /* Output a shift instruction for expression code CODE,
2253 with SHIFTED being the rtx for the value to shift,
2254 and AMOUNT the rtx for the amount to shift by.
2255 Store the result in the rtx TARGET, if that is convenient.
2256 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2257 Return the rtx for where the value is.
2258 If that cannot be done, abort the compilation unless MAY_FAIL is true,
2259 in which case 0 is returned. */
2262 expand_shift_1 (enum tree_code code
, machine_mode mode
, rtx shifted
,
2263 rtx amount
, rtx target
, int unsignedp
, bool may_fail
= false)
2266 int left
= (code
== LSHIFT_EXPR
|| code
== LROTATE_EXPR
);
2267 int rotate
= (code
== LROTATE_EXPR
|| code
== RROTATE_EXPR
);
2268 optab lshift_optab
= ashl_optab
;
2269 optab rshift_arith_optab
= ashr_optab
;
2270 optab rshift_uns_optab
= lshr_optab
;
2271 optab lrotate_optab
= rotl_optab
;
2272 optab rrotate_optab
= rotr_optab
;
2273 machine_mode op1_mode
;
2274 machine_mode scalar_mode
= mode
;
2276 bool speed
= optimize_insn_for_speed_p ();
2278 if (VECTOR_MODE_P (mode
))
2279 scalar_mode
= GET_MODE_INNER (mode
);
2281 op1_mode
= GET_MODE (op1
);
2283 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2284 shift amount is a vector, use the vector/vector shift patterns. */
2285 if (VECTOR_MODE_P (mode
) && VECTOR_MODE_P (op1_mode
))
2287 lshift_optab
= vashl_optab
;
2288 rshift_arith_optab
= vashr_optab
;
2289 rshift_uns_optab
= vlshr_optab
;
2290 lrotate_optab
= vrotl_optab
;
2291 rrotate_optab
= vrotr_optab
;
2294 /* Previously detected shift-counts computed by NEGATE_EXPR
2295 and shifted in the other direction; but that does not work
2298 if (SHIFT_COUNT_TRUNCATED
)
2300 if (CONST_INT_P (op1
)
2301 && ((unsigned HOST_WIDE_INT
) INTVAL (op1
) >=
2302 (unsigned HOST_WIDE_INT
) GET_MODE_BITSIZE (scalar_mode
)))
2303 op1
= GEN_INT ((unsigned HOST_WIDE_INT
) INTVAL (op1
)
2304 % GET_MODE_BITSIZE (scalar_mode
));
2305 else if (GET_CODE (op1
) == SUBREG
2306 && subreg_lowpart_p (op1
)
2307 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op1
)))
2308 && SCALAR_INT_MODE_P (GET_MODE (op1
)))
2309 op1
= SUBREG_REG (op1
);
2312 /* Canonicalize rotates by constant amount. If op1 is bitsize / 2,
2313 prefer left rotation, if op1 is from bitsize / 2 + 1 to
2314 bitsize - 1, use other direction of rotate with 1 .. bitsize / 2 - 1
2317 && CONST_INT_P (op1
)
2318 && IN_RANGE (INTVAL (op1
), GET_MODE_BITSIZE (scalar_mode
) / 2 + left
,
2319 GET_MODE_BITSIZE (scalar_mode
) - 1))
2321 op1
= GEN_INT (GET_MODE_BITSIZE (scalar_mode
) - INTVAL (op1
));
2323 code
= left
? LROTATE_EXPR
: RROTATE_EXPR
;
2326 /* Rotation of 16bit values by 8 bits is effectively equivalent to a bswaphi.
2327 Note that this is not the case for bigger values. For instance a rotation
2328 of 0x01020304 by 16 bits gives 0x03040102 which is different from
2329 0x04030201 (bswapsi). */
2331 && CONST_INT_P (op1
)
2332 && INTVAL (op1
) == BITS_PER_UNIT
2333 && GET_MODE_SIZE (scalar_mode
) == 2
2334 && optab_handler (bswap_optab
, HImode
) != CODE_FOR_nothing
)
2335 return expand_unop (HImode
, bswap_optab
, shifted
, NULL_RTX
,
2338 if (op1
== const0_rtx
)
2341 /* Check whether its cheaper to implement a left shift by a constant
2342 bit count by a sequence of additions. */
2343 if (code
== LSHIFT_EXPR
2344 && CONST_INT_P (op1
)
2346 && INTVAL (op1
) < GET_MODE_PRECISION (scalar_mode
)
2347 && INTVAL (op1
) < MAX_BITS_PER_WORD
2348 && (shift_cost (speed
, mode
, INTVAL (op1
))
2349 > INTVAL (op1
) * add_cost (speed
, mode
))
2350 && shift_cost (speed
, mode
, INTVAL (op1
)) != MAX_COST
)
2353 for (i
= 0; i
< INTVAL (op1
); i
++)
2355 temp
= force_reg (mode
, shifted
);
2356 shifted
= expand_binop (mode
, add_optab
, temp
, temp
, NULL_RTX
,
2357 unsignedp
, OPTAB_LIB_WIDEN
);
2362 for (attempt
= 0; temp
== 0 && attempt
< 3; attempt
++)
2364 enum optab_methods methods
;
2367 methods
= OPTAB_DIRECT
;
2368 else if (attempt
== 1)
2369 methods
= OPTAB_WIDEN
;
2371 methods
= OPTAB_LIB_WIDEN
;
2375 /* Widening does not work for rotation. */
2376 if (methods
== OPTAB_WIDEN
)
2378 else if (methods
== OPTAB_LIB_WIDEN
)
2380 /* If we have been unable to open-code this by a rotation,
2381 do it as the IOR of two shifts. I.e., to rotate A
2383 (A << N) | ((unsigned) A >> ((-N) & (C - 1)))
2384 where C is the bitsize of A.
2386 It is theoretically possible that the target machine might
2387 not be able to perform either shift and hence we would
2388 be making two libcalls rather than just the one for the
2389 shift (similarly if IOR could not be done). We will allow
2390 this extremely unlikely lossage to avoid complicating the
2393 rtx subtarget
= target
== shifted
? 0 : target
;
2394 rtx new_amount
, other_amount
;
2398 if (op1
== const0_rtx
)
2400 else if (CONST_INT_P (op1
))
2401 other_amount
= GEN_INT (GET_MODE_BITSIZE (scalar_mode
)
2406 = simplify_gen_unary (NEG
, GET_MODE (op1
),
2407 op1
, GET_MODE (op1
));
2408 HOST_WIDE_INT mask
= GET_MODE_PRECISION (scalar_mode
) - 1;
2410 = simplify_gen_binary (AND
, GET_MODE (op1
), other_amount
,
2411 gen_int_mode (mask
, GET_MODE (op1
)));
2414 shifted
= force_reg (mode
, shifted
);
2416 temp
= expand_shift_1 (left
? LSHIFT_EXPR
: RSHIFT_EXPR
,
2417 mode
, shifted
, new_amount
, 0, 1);
2418 temp1
= expand_shift_1 (left
? RSHIFT_EXPR
: LSHIFT_EXPR
,
2419 mode
, shifted
, other_amount
,
2421 return expand_binop (mode
, ior_optab
, temp
, temp1
, target
,
2422 unsignedp
, methods
);
2425 temp
= expand_binop (mode
,
2426 left
? lrotate_optab
: rrotate_optab
,
2427 shifted
, op1
, target
, unsignedp
, methods
);
2430 temp
= expand_binop (mode
,
2431 left
? lshift_optab
: rshift_uns_optab
,
2432 shifted
, op1
, target
, unsignedp
, methods
);
2434 /* Do arithmetic shifts.
2435 Also, if we are going to widen the operand, we can just as well
2436 use an arithmetic right-shift instead of a logical one. */
2437 if (temp
== 0 && ! rotate
2438 && (! unsignedp
|| (! left
&& methods
== OPTAB_WIDEN
)))
2440 enum optab_methods methods1
= methods
;
2442 /* If trying to widen a log shift to an arithmetic shift,
2443 don't accept an arithmetic shift of the same size. */
2445 methods1
= OPTAB_MUST_WIDEN
;
2447 /* Arithmetic shift */
2449 temp
= expand_binop (mode
,
2450 left
? lshift_optab
: rshift_arith_optab
,
2451 shifted
, op1
, target
, unsignedp
, methods1
);
2454 /* We used to try extzv here for logical right shifts, but that was
2455 only useful for one machine, the VAX, and caused poor code
2456 generation there for lshrdi3, so the code was deleted and a
2457 define_expand for lshrsi3 was added to vax.md. */
2460 gcc_assert (temp
!= NULL_RTX
|| may_fail
);
2464 /* Output a shift instruction for expression code CODE,
2465 with SHIFTED being the rtx for the value to shift,
2466 and AMOUNT the amount to shift by.
2467 Store the result in the rtx TARGET, if that is convenient.
2468 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2469 Return the rtx for where the value is. */
2472 expand_shift (enum tree_code code
, machine_mode mode
, rtx shifted
,
2473 int amount
, rtx target
, int unsignedp
)
2475 return expand_shift_1 (code
, mode
,
2476 shifted
, GEN_INT (amount
), target
, unsignedp
);
2479 /* Likewise, but return 0 if that cannot be done. */
2482 maybe_expand_shift (enum tree_code code
, machine_mode mode
, rtx shifted
,
2483 int amount
, rtx target
, int unsignedp
)
2485 return expand_shift_1 (code
, mode
,
2486 shifted
, GEN_INT (amount
), target
, unsignedp
, true);
2489 /* Output a shift instruction for expression code CODE,
2490 with SHIFTED being the rtx for the value to shift,
2491 and AMOUNT the tree for the amount to shift by.
2492 Store the result in the rtx TARGET, if that is convenient.
2493 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2494 Return the rtx for where the value is. */
2497 expand_variable_shift (enum tree_code code
, machine_mode mode
, rtx shifted
,
2498 tree amount
, rtx target
, int unsignedp
)
2500 return expand_shift_1 (code
, mode
,
2501 shifted
, expand_normal (amount
), target
, unsignedp
);
2505 static void synth_mult (struct algorithm
*, unsigned HOST_WIDE_INT
,
2506 const struct mult_cost
*, machine_mode mode
);
2507 static rtx
expand_mult_const (machine_mode
, rtx
, HOST_WIDE_INT
, rtx
,
2508 const struct algorithm
*, enum mult_variant
);
2509 static unsigned HOST_WIDE_INT
invert_mod2n (unsigned HOST_WIDE_INT
, int);
2510 static rtx
extract_high_half (machine_mode
, rtx
);
2511 static rtx
expmed_mult_highpart (machine_mode
, rtx
, rtx
, rtx
, int, int);
2512 static rtx
expmed_mult_highpart_optab (machine_mode
, rtx
, rtx
, rtx
,
2514 /* Compute and return the best algorithm for multiplying by T.
2515 The algorithm must cost less than cost_limit
2516 If retval.cost >= COST_LIMIT, no algorithm was found and all
2517 other field of the returned struct are undefined.
2518 MODE is the machine mode of the multiplication. */
2521 synth_mult (struct algorithm
*alg_out
, unsigned HOST_WIDE_INT t
,
2522 const struct mult_cost
*cost_limit
, machine_mode mode
)
2525 struct algorithm
*alg_in
, *best_alg
;
2526 struct mult_cost best_cost
;
2527 struct mult_cost new_limit
;
2528 int op_cost
, op_latency
;
2529 unsigned HOST_WIDE_INT orig_t
= t
;
2530 unsigned HOST_WIDE_INT q
;
2531 int maxm
, hash_index
;
2532 bool cache_hit
= false;
2533 enum alg_code cache_alg
= alg_zero
;
2534 bool speed
= optimize_insn_for_speed_p ();
2536 struct alg_hash_entry
*entry_ptr
;
2538 /* Indicate that no algorithm is yet found. If no algorithm
2539 is found, this value will be returned and indicate failure. */
2540 alg_out
->cost
.cost
= cost_limit
->cost
+ 1;
2541 alg_out
->cost
.latency
= cost_limit
->latency
+ 1;
2543 if (cost_limit
->cost
< 0
2544 || (cost_limit
->cost
== 0 && cost_limit
->latency
<= 0))
2547 /* Be prepared for vector modes. */
2548 imode
= GET_MODE_INNER (mode
);
2550 maxm
= MIN (BITS_PER_WORD
, GET_MODE_BITSIZE (imode
));
2552 /* Restrict the bits of "t" to the multiplication's mode. */
2553 t
&= GET_MODE_MASK (imode
);
2555 /* t == 1 can be done in zero cost. */
2559 alg_out
->cost
.cost
= 0;
2560 alg_out
->cost
.latency
= 0;
2561 alg_out
->op
[0] = alg_m
;
2565 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2569 if (MULT_COST_LESS (cost_limit
, zero_cost (speed
)))
2574 alg_out
->cost
.cost
= zero_cost (speed
);
2575 alg_out
->cost
.latency
= zero_cost (speed
);
2576 alg_out
->op
[0] = alg_zero
;
2581 /* We'll be needing a couple extra algorithm structures now. */
2583 alg_in
= XALLOCA (struct algorithm
);
2584 best_alg
= XALLOCA (struct algorithm
);
2585 best_cost
= *cost_limit
;
2587 /* Compute the hash index. */
2588 hash_index
= (t
^ (unsigned int) mode
^ (speed
* 256)) % NUM_ALG_HASH_ENTRIES
;
2590 /* See if we already know what to do for T. */
2591 entry_ptr
= alg_hash_entry_ptr (hash_index
);
2592 if (entry_ptr
->t
== t
2593 && entry_ptr
->mode
== mode
2594 && entry_ptr
->speed
== speed
2595 && entry_ptr
->alg
!= alg_unknown
)
2597 cache_alg
= entry_ptr
->alg
;
2599 if (cache_alg
== alg_impossible
)
2601 /* The cache tells us that it's impossible to synthesize
2602 multiplication by T within entry_ptr->cost. */
2603 if (!CHEAPER_MULT_COST (&entry_ptr
->cost
, cost_limit
))
2604 /* COST_LIMIT is at least as restrictive as the one
2605 recorded in the hash table, in which case we have no
2606 hope of synthesizing a multiplication. Just
2610 /* If we get here, COST_LIMIT is less restrictive than the
2611 one recorded in the hash table, so we may be able to
2612 synthesize a multiplication. Proceed as if we didn't
2613 have the cache entry. */
2617 if (CHEAPER_MULT_COST (cost_limit
, &entry_ptr
->cost
))
2618 /* The cached algorithm shows that this multiplication
2619 requires more cost than COST_LIMIT. Just return. This
2620 way, we don't clobber this cache entry with
2621 alg_impossible but retain useful information. */
2633 goto do_alg_addsub_t_m2
;
2635 case alg_add_factor
:
2636 case alg_sub_factor
:
2637 goto do_alg_addsub_factor
;
2640 goto do_alg_add_t2_m
;
2643 goto do_alg_sub_t2_m
;
2651 /* If we have a group of zero bits at the low-order part of T, try
2652 multiplying by the remaining bits and then doing a shift. */
2657 m
= ctz_or_zero (t
); /* m = number of low zero bits */
2661 /* The function expand_shift will choose between a shift and
2662 a sequence of additions, so the observed cost is given as
2663 MIN (m * add_cost(speed, mode), shift_cost(speed, mode, m)). */
2664 op_cost
= m
* add_cost (speed
, mode
);
2665 if (shift_cost (speed
, mode
, m
) < op_cost
)
2666 op_cost
= shift_cost (speed
, mode
, m
);
2667 new_limit
.cost
= best_cost
.cost
- op_cost
;
2668 new_limit
.latency
= best_cost
.latency
- op_cost
;
2669 synth_mult (alg_in
, q
, &new_limit
, mode
);
2671 alg_in
->cost
.cost
+= op_cost
;
2672 alg_in
->cost
.latency
+= op_cost
;
2673 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2675 best_cost
= alg_in
->cost
;
2676 std::swap (alg_in
, best_alg
);
2677 best_alg
->log
[best_alg
->ops
] = m
;
2678 best_alg
->op
[best_alg
->ops
] = alg_shift
;
2681 /* See if treating ORIG_T as a signed number yields a better
2682 sequence. Try this sequence only for a negative ORIG_T
2683 as it would be useless for a non-negative ORIG_T. */
2684 if ((HOST_WIDE_INT
) orig_t
< 0)
2686 /* Shift ORIG_T as follows because a right shift of a
2687 negative-valued signed type is implementation
2689 q
= ~(~orig_t
>> m
);
2690 /* The function expand_shift will choose between a shift
2691 and a sequence of additions, so the observed cost is
2692 given as MIN (m * add_cost(speed, mode),
2693 shift_cost(speed, mode, m)). */
2694 op_cost
= m
* add_cost (speed
, mode
);
2695 if (shift_cost (speed
, mode
, m
) < op_cost
)
2696 op_cost
= shift_cost (speed
, mode
, m
);
2697 new_limit
.cost
= best_cost
.cost
- op_cost
;
2698 new_limit
.latency
= best_cost
.latency
- op_cost
;
2699 synth_mult (alg_in
, q
, &new_limit
, mode
);
2701 alg_in
->cost
.cost
+= op_cost
;
2702 alg_in
->cost
.latency
+= op_cost
;
2703 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2705 best_cost
= alg_in
->cost
;
2706 std::swap (alg_in
, best_alg
);
2707 best_alg
->log
[best_alg
->ops
] = m
;
2708 best_alg
->op
[best_alg
->ops
] = alg_shift
;
2716 /* If we have an odd number, add or subtract one. */
2719 unsigned HOST_WIDE_INT w
;
2722 for (w
= 1; (w
& t
) != 0; w
<<= 1)
2724 /* If T was -1, then W will be zero after the loop. This is another
2725 case where T ends with ...111. Handling this with (T + 1) and
2726 subtract 1 produces slightly better code and results in algorithm
2727 selection much faster than treating it like the ...0111 case
2731 /* Reject the case where t is 3.
2732 Thus we prefer addition in that case. */
2735 /* T ends with ...111. Multiply by (T + 1) and subtract T. */
2737 op_cost
= add_cost (speed
, mode
);
2738 new_limit
.cost
= best_cost
.cost
- op_cost
;
2739 new_limit
.latency
= best_cost
.latency
- op_cost
;
2740 synth_mult (alg_in
, t
+ 1, &new_limit
, mode
);
2742 alg_in
->cost
.cost
+= op_cost
;
2743 alg_in
->cost
.latency
+= op_cost
;
2744 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2746 best_cost
= alg_in
->cost
;
2747 std::swap (alg_in
, best_alg
);
2748 best_alg
->log
[best_alg
->ops
] = 0;
2749 best_alg
->op
[best_alg
->ops
] = alg_sub_t_m2
;
2754 /* T ends with ...01 or ...011. Multiply by (T - 1) and add T. */
2756 op_cost
= add_cost (speed
, mode
);
2757 new_limit
.cost
= best_cost
.cost
- op_cost
;
2758 new_limit
.latency
= best_cost
.latency
- op_cost
;
2759 synth_mult (alg_in
, t
- 1, &new_limit
, mode
);
2761 alg_in
->cost
.cost
+= op_cost
;
2762 alg_in
->cost
.latency
+= op_cost
;
2763 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2765 best_cost
= alg_in
->cost
;
2766 std::swap (alg_in
, best_alg
);
2767 best_alg
->log
[best_alg
->ops
] = 0;
2768 best_alg
->op
[best_alg
->ops
] = alg_add_t_m2
;
2772 /* We may be able to calculate a * -7, a * -15, a * -31, etc
2773 quickly with a - a * n for some appropriate constant n. */
2774 m
= exact_log2 (-orig_t
+ 1);
2775 if (m
>= 0 && m
< maxm
)
2777 op_cost
= add_cost (speed
, mode
) + shift_cost (speed
, mode
, m
);
2778 /* If the target has a cheap shift-and-subtract insn use
2779 that in preference to a shift insn followed by a sub insn.
2780 Assume that the shift-and-sub is "atomic" with a latency
2781 equal to it's cost, otherwise assume that on superscalar
2782 hardware the shift may be executed concurrently with the
2783 earlier steps in the algorithm. */
2784 if (shiftsub1_cost (speed
, mode
, m
) <= op_cost
)
2786 op_cost
= shiftsub1_cost (speed
, mode
, m
);
2787 op_latency
= op_cost
;
2790 op_latency
= add_cost (speed
, mode
);
2792 new_limit
.cost
= best_cost
.cost
- op_cost
;
2793 new_limit
.latency
= best_cost
.latency
- op_latency
;
2794 synth_mult (alg_in
, (unsigned HOST_WIDE_INT
) (-orig_t
+ 1) >> m
,
2797 alg_in
->cost
.cost
+= op_cost
;
2798 alg_in
->cost
.latency
+= op_latency
;
2799 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2801 best_cost
= alg_in
->cost
;
2802 std::swap (alg_in
, best_alg
);
2803 best_alg
->log
[best_alg
->ops
] = m
;
2804 best_alg
->op
[best_alg
->ops
] = alg_sub_t_m2
;
2812 /* Look for factors of t of the form
2813 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2814 If we find such a factor, we can multiply by t using an algorithm that
2815 multiplies by q, shift the result by m and add/subtract it to itself.
2817 We search for large factors first and loop down, even if large factors
2818 are less probable than small; if we find a large factor we will find a
2819 good sequence quickly, and therefore be able to prune (by decreasing
2820 COST_LIMIT) the search. */
2822 do_alg_addsub_factor
:
2823 for (m
= floor_log2 (t
- 1); m
>= 2; m
--)
2825 unsigned HOST_WIDE_INT d
;
2827 d
= (HOST_WIDE_INT_1U
<< m
) + 1;
2828 if (t
% d
== 0 && t
> d
&& m
< maxm
2829 && (!cache_hit
|| cache_alg
== alg_add_factor
))
2831 op_cost
= add_cost (speed
, mode
) + shift_cost (speed
, mode
, m
);
2832 if (shiftadd_cost (speed
, mode
, m
) <= op_cost
)
2833 op_cost
= shiftadd_cost (speed
, mode
, m
);
2835 op_latency
= op_cost
;
2838 new_limit
.cost
= best_cost
.cost
- op_cost
;
2839 new_limit
.latency
= best_cost
.latency
- op_latency
;
2840 synth_mult (alg_in
, t
/ d
, &new_limit
, mode
);
2842 alg_in
->cost
.cost
+= op_cost
;
2843 alg_in
->cost
.latency
+= op_latency
;
2844 if (alg_in
->cost
.latency
< op_cost
)
2845 alg_in
->cost
.latency
= op_cost
;
2846 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2848 best_cost
= alg_in
->cost
;
2849 std::swap (alg_in
, best_alg
);
2850 best_alg
->log
[best_alg
->ops
] = m
;
2851 best_alg
->op
[best_alg
->ops
] = alg_add_factor
;
2853 /* Other factors will have been taken care of in the recursion. */
2857 d
= (HOST_WIDE_INT_1U
<< m
) - 1;
2858 if (t
% d
== 0 && t
> d
&& m
< maxm
2859 && (!cache_hit
|| cache_alg
== alg_sub_factor
))
2861 op_cost
= add_cost (speed
, mode
) + shift_cost (speed
, mode
, m
);
2862 if (shiftsub0_cost (speed
, mode
, m
) <= op_cost
)
2863 op_cost
= shiftsub0_cost (speed
, mode
, m
);
2865 op_latency
= op_cost
;
2867 new_limit
.cost
= best_cost
.cost
- op_cost
;
2868 new_limit
.latency
= best_cost
.latency
- op_latency
;
2869 synth_mult (alg_in
, t
/ d
, &new_limit
, mode
);
2871 alg_in
->cost
.cost
+= op_cost
;
2872 alg_in
->cost
.latency
+= op_latency
;
2873 if (alg_in
->cost
.latency
< op_cost
)
2874 alg_in
->cost
.latency
= op_cost
;
2875 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2877 best_cost
= alg_in
->cost
;
2878 std::swap (alg_in
, best_alg
);
2879 best_alg
->log
[best_alg
->ops
] = m
;
2880 best_alg
->op
[best_alg
->ops
] = alg_sub_factor
;
2888 /* Try shift-and-add (load effective address) instructions,
2889 i.e. do a*3, a*5, a*9. */
2897 op_cost
= shiftadd_cost (speed
, mode
, m
);
2898 new_limit
.cost
= best_cost
.cost
- op_cost
;
2899 new_limit
.latency
= best_cost
.latency
- op_cost
;
2900 synth_mult (alg_in
, (t
- 1) >> m
, &new_limit
, mode
);
2902 alg_in
->cost
.cost
+= op_cost
;
2903 alg_in
->cost
.latency
+= op_cost
;
2904 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2906 best_cost
= alg_in
->cost
;
2907 std::swap (alg_in
, best_alg
);
2908 best_alg
->log
[best_alg
->ops
] = m
;
2909 best_alg
->op
[best_alg
->ops
] = alg_add_t2_m
;
2920 op_cost
= shiftsub0_cost (speed
, mode
, m
);
2921 new_limit
.cost
= best_cost
.cost
- op_cost
;
2922 new_limit
.latency
= best_cost
.latency
- op_cost
;
2923 synth_mult (alg_in
, (t
+ 1) >> m
, &new_limit
, mode
);
2925 alg_in
->cost
.cost
+= op_cost
;
2926 alg_in
->cost
.latency
+= op_cost
;
2927 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2929 best_cost
= alg_in
->cost
;
2930 std::swap (alg_in
, best_alg
);
2931 best_alg
->log
[best_alg
->ops
] = m
;
2932 best_alg
->op
[best_alg
->ops
] = alg_sub_t2_m
;
2940 /* If best_cost has not decreased, we have not found any algorithm. */
2941 if (!CHEAPER_MULT_COST (&best_cost
, cost_limit
))
2943 /* We failed to find an algorithm. Record alg_impossible for
2944 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2945 we are asked to find an algorithm for T within the same or
2946 lower COST_LIMIT, we can immediately return to the
2949 entry_ptr
->mode
= mode
;
2950 entry_ptr
->speed
= speed
;
2951 entry_ptr
->alg
= alg_impossible
;
2952 entry_ptr
->cost
= *cost_limit
;
2956 /* Cache the result. */
2960 entry_ptr
->mode
= mode
;
2961 entry_ptr
->speed
= speed
;
2962 entry_ptr
->alg
= best_alg
->op
[best_alg
->ops
];
2963 entry_ptr
->cost
.cost
= best_cost
.cost
;
2964 entry_ptr
->cost
.latency
= best_cost
.latency
;
2967 /* If we are getting a too long sequence for `struct algorithm'
2968 to record, make this search fail. */
2969 if (best_alg
->ops
== MAX_BITS_PER_WORD
)
2972 /* Copy the algorithm from temporary space to the space at alg_out.
2973 We avoid using structure assignment because the majority of
2974 best_alg is normally undefined, and this is a critical function. */
2975 alg_out
->ops
= best_alg
->ops
+ 1;
2976 alg_out
->cost
= best_cost
;
2977 memcpy (alg_out
->op
, best_alg
->op
,
2978 alg_out
->ops
* sizeof *alg_out
->op
);
2979 memcpy (alg_out
->log
, best_alg
->log
,
2980 alg_out
->ops
* sizeof *alg_out
->log
);
2983 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2984 Try three variations:
2986 - a shift/add sequence based on VAL itself
2987 - a shift/add sequence based on -VAL, followed by a negation
2988 - a shift/add sequence based on VAL - 1, followed by an addition.
2990 Return true if the cheapest of these cost less than MULT_COST,
2991 describing the algorithm in *ALG and final fixup in *VARIANT. */
2994 choose_mult_variant (machine_mode mode
, HOST_WIDE_INT val
,
2995 struct algorithm
*alg
, enum mult_variant
*variant
,
2998 struct algorithm alg2
;
2999 struct mult_cost limit
;
3001 bool speed
= optimize_insn_for_speed_p ();
3003 /* Fail quickly for impossible bounds. */
3007 /* Ensure that mult_cost provides a reasonable upper bound.
3008 Any constant multiplication can be performed with less
3009 than 2 * bits additions. */
3010 op_cost
= 2 * GET_MODE_UNIT_BITSIZE (mode
) * add_cost (speed
, mode
);
3011 if (mult_cost
> op_cost
)
3012 mult_cost
= op_cost
;
3014 *variant
= basic_variant
;
3015 limit
.cost
= mult_cost
;
3016 limit
.latency
= mult_cost
;
3017 synth_mult (alg
, val
, &limit
, mode
);
3019 /* This works only if the inverted value actually fits in an
3021 if (HOST_BITS_PER_INT
>= GET_MODE_UNIT_BITSIZE (mode
))
3023 op_cost
= neg_cost (speed
, mode
);
3024 if (MULT_COST_LESS (&alg
->cost
, mult_cost
))
3026 limit
.cost
= alg
->cost
.cost
- op_cost
;
3027 limit
.latency
= alg
->cost
.latency
- op_cost
;
3031 limit
.cost
= mult_cost
- op_cost
;
3032 limit
.latency
= mult_cost
- op_cost
;
3035 synth_mult (&alg2
, -val
, &limit
, mode
);
3036 alg2
.cost
.cost
+= op_cost
;
3037 alg2
.cost
.latency
+= op_cost
;
3038 if (CHEAPER_MULT_COST (&alg2
.cost
, &alg
->cost
))
3039 *alg
= alg2
, *variant
= negate_variant
;
3042 /* This proves very useful for division-by-constant. */
3043 op_cost
= add_cost (speed
, mode
);
3044 if (MULT_COST_LESS (&alg
->cost
, mult_cost
))
3046 limit
.cost
= alg
->cost
.cost
- op_cost
;
3047 limit
.latency
= alg
->cost
.latency
- op_cost
;
3051 limit
.cost
= mult_cost
- op_cost
;
3052 limit
.latency
= mult_cost
- op_cost
;
3055 synth_mult (&alg2
, val
- 1, &limit
, mode
);
3056 alg2
.cost
.cost
+= op_cost
;
3057 alg2
.cost
.latency
+= op_cost
;
3058 if (CHEAPER_MULT_COST (&alg2
.cost
, &alg
->cost
))
3059 *alg
= alg2
, *variant
= add_variant
;
3061 return MULT_COST_LESS (&alg
->cost
, mult_cost
);
3064 /* A subroutine of expand_mult, used for constant multiplications.
3065 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
3066 convenient. Use the shift/add sequence described by ALG and apply
3067 the final fixup specified by VARIANT. */
3070 expand_mult_const (machine_mode mode
, rtx op0
, HOST_WIDE_INT val
,
3071 rtx target
, const struct algorithm
*alg
,
3072 enum mult_variant variant
)
3074 unsigned HOST_WIDE_INT val_so_far
;
3080 /* Avoid referencing memory over and over and invalid sharing
3082 op0
= force_reg (mode
, op0
);
3084 /* ACCUM starts out either as OP0 or as a zero, depending on
3085 the first operation. */
3087 if (alg
->op
[0] == alg_zero
)
3089 accum
= copy_to_mode_reg (mode
, CONST0_RTX (mode
));
3092 else if (alg
->op
[0] == alg_m
)
3094 accum
= copy_to_mode_reg (mode
, op0
);
3100 for (opno
= 1; opno
< alg
->ops
; opno
++)
3102 int log
= alg
->log
[opno
];
3103 rtx shift_subtarget
= optimize
? 0 : accum
;
3105 = (opno
== alg
->ops
- 1 && target
!= 0 && variant
!= add_variant
3108 rtx accum_target
= optimize
? 0 : accum
;
3111 switch (alg
->op
[opno
])
3114 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
, log
, NULL_RTX
, 0);
3115 /* REG_EQUAL note will be attached to the following insn. */
3116 emit_move_insn (accum
, tem
);
3121 tem
= expand_shift (LSHIFT_EXPR
, mode
, op0
, log
, NULL_RTX
, 0);
3122 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, tem
),
3123 add_target
? add_target
: accum_target
);
3124 val_so_far
+= HOST_WIDE_INT_1U
<< log
;
3128 tem
= expand_shift (LSHIFT_EXPR
, mode
, op0
, log
, NULL_RTX
, 0);
3129 accum
= force_operand (gen_rtx_MINUS (mode
, accum
, tem
),
3130 add_target
? add_target
: accum_target
);
3131 val_so_far
-= HOST_WIDE_INT_1U
<< log
;
3135 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
3136 log
, shift_subtarget
, 0);
3137 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, op0
),
3138 add_target
? add_target
: accum_target
);
3139 val_so_far
= (val_so_far
<< log
) + 1;
3143 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
3144 log
, shift_subtarget
, 0);
3145 accum
= force_operand (gen_rtx_MINUS (mode
, accum
, op0
),
3146 add_target
? add_target
: accum_target
);
3147 val_so_far
= (val_so_far
<< log
) - 1;
3150 case alg_add_factor
:
3151 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
, log
, NULL_RTX
, 0);
3152 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, tem
),
3153 add_target
? add_target
: accum_target
);
3154 val_so_far
+= val_so_far
<< log
;
3157 case alg_sub_factor
:
3158 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
, log
, NULL_RTX
, 0);
3159 accum
= force_operand (gen_rtx_MINUS (mode
, tem
, accum
),
3161 ? add_target
: (optimize
? 0 : tem
)));
3162 val_so_far
= (val_so_far
<< log
) - val_so_far
;
3169 if (SCALAR_INT_MODE_P (mode
))
3171 /* Write a REG_EQUAL note on the last insn so that we can cse
3172 multiplication sequences. Note that if ACCUM is a SUBREG,
3173 we've set the inner register and must properly indicate that. */
3174 tem
= op0
, nmode
= mode
;
3175 accum_inner
= accum
;
3176 if (GET_CODE (accum
) == SUBREG
)
3178 accum_inner
= SUBREG_REG (accum
);
3179 nmode
= GET_MODE (accum_inner
);
3180 tem
= gen_lowpart (nmode
, op0
);
3183 insn
= get_last_insn ();
3184 set_dst_reg_note (insn
, REG_EQUAL
,
3185 gen_rtx_MULT (nmode
, tem
,
3186 gen_int_mode (val_so_far
, nmode
)),
3191 if (variant
== negate_variant
)
3193 val_so_far
= -val_so_far
;
3194 accum
= expand_unop (mode
, neg_optab
, accum
, target
, 0);
3196 else if (variant
== add_variant
)
3198 val_so_far
= val_so_far
+ 1;
3199 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, op0
), target
);
3202 /* Compare only the bits of val and val_so_far that are significant
3203 in the result mode, to avoid sign-/zero-extension confusion. */
3204 nmode
= GET_MODE_INNER (mode
);
3205 val
&= GET_MODE_MASK (nmode
);
3206 val_so_far
&= GET_MODE_MASK (nmode
);
3207 gcc_assert (val
== (HOST_WIDE_INT
) val_so_far
);
3212 /* Perform a multiplication and return an rtx for the result.
3213 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3214 TARGET is a suggestion for where to store the result (an rtx).
3216 We check specially for a constant integer as OP1.
3217 If you want this check for OP0 as well, then before calling
3218 you should swap the two operands if OP0 would be constant. */
3221 expand_mult (machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
3224 enum mult_variant variant
;
3225 struct algorithm algorithm
;
3228 bool speed
= optimize_insn_for_speed_p ();
3229 bool do_trapv
= flag_trapv
&& SCALAR_INT_MODE_P (mode
) && !unsignedp
;
3231 if (CONSTANT_P (op0
))
3232 std::swap (op0
, op1
);
3234 /* For vectors, there are several simplifications that can be made if
3235 all elements of the vector constant are identical. */
3236 scalar_op1
= unwrap_const_vec_duplicate (op1
);
3238 if (INTEGRAL_MODE_P (mode
))
3241 HOST_WIDE_INT coeff
;
3245 if (op1
== CONST0_RTX (mode
))
3247 if (op1
== CONST1_RTX (mode
))
3249 if (op1
== CONSTM1_RTX (mode
))
3250 return expand_unop (mode
, do_trapv
? negv_optab
: neg_optab
,
3256 /* If mode is integer vector mode, check if the backend supports
3257 vector lshift (by scalar or vector) at all. If not, we can't use
3258 synthetized multiply. */
3259 if (GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
3260 && optab_handler (vashl_optab
, mode
) == CODE_FOR_nothing
3261 && optab_handler (ashl_optab
, mode
) == CODE_FOR_nothing
)
3264 /* These are the operations that are potentially turned into
3265 a sequence of shifts and additions. */
3266 mode_bitsize
= GET_MODE_UNIT_BITSIZE (mode
);
3268 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3269 less than or equal in size to `unsigned int' this doesn't matter.
3270 If the mode is larger than `unsigned int', then synth_mult works
3271 only if the constant value exactly fits in an `unsigned int' without
3272 any truncation. This means that multiplying by negative values does
3273 not work; results are off by 2^32 on a 32 bit machine. */
3274 if (CONST_INT_P (scalar_op1
))
3276 coeff
= INTVAL (scalar_op1
);
3279 #if TARGET_SUPPORTS_WIDE_INT
3280 else if (CONST_WIDE_INT_P (scalar_op1
))
3282 else if (CONST_DOUBLE_AS_INT_P (scalar_op1
))
3285 int shift
= wi::exact_log2 (rtx_mode_t (scalar_op1
, mode
));
3286 /* Perfect power of 2 (other than 1, which is handled above). */
3288 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3289 shift
, target
, unsignedp
);
3296 /* We used to test optimize here, on the grounds that it's better to
3297 produce a smaller program when -O is not used. But this causes
3298 such a terrible slowdown sometimes that it seems better to always
3301 /* Special case powers of two. */
3302 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff
)
3303 && !(is_neg
&& mode_bitsize
> HOST_BITS_PER_WIDE_INT
))
3304 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3305 floor_log2 (coeff
), target
, unsignedp
);
3307 fake_reg
= gen_raw_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1);
3309 /* Attempt to handle multiplication of DImode values by negative
3310 coefficients, by performing the multiplication by a positive
3311 multiplier and then inverting the result. */
3312 if (is_neg
&& mode_bitsize
> HOST_BITS_PER_WIDE_INT
)
3314 /* Its safe to use -coeff even for INT_MIN, as the
3315 result is interpreted as an unsigned coefficient.
3316 Exclude cost of op0 from max_cost to match the cost
3317 calculation of the synth_mult. */
3318 coeff
= -(unsigned HOST_WIDE_INT
) coeff
;
3319 max_cost
= (set_src_cost (gen_rtx_MULT (mode
, fake_reg
, op1
),
3321 - neg_cost (speed
, mode
));
3325 /* Special case powers of two. */
3326 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff
))
3328 rtx temp
= expand_shift (LSHIFT_EXPR
, mode
, op0
,
3329 floor_log2 (coeff
), target
, unsignedp
);
3330 return expand_unop (mode
, neg_optab
, temp
, target
, 0);
3333 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
,
3336 rtx temp
= expand_mult_const (mode
, op0
, coeff
, NULL_RTX
,
3337 &algorithm
, variant
);
3338 return expand_unop (mode
, neg_optab
, temp
, target
, 0);
3343 /* Exclude cost of op0 from max_cost to match the cost
3344 calculation of the synth_mult. */
3345 max_cost
= set_src_cost (gen_rtx_MULT (mode
, fake_reg
, op1
), mode
, speed
);
3346 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
, max_cost
))
3347 return expand_mult_const (mode
, op0
, coeff
, target
,
3348 &algorithm
, variant
);
3352 /* Expand x*2.0 as x+x. */
3353 if (CONST_DOUBLE_AS_FLOAT_P (scalar_op1
)
3354 && real_equal (CONST_DOUBLE_REAL_VALUE (scalar_op1
), &dconst2
))
3356 op0
= force_reg (GET_MODE (op0
), op0
);
3357 return expand_binop (mode
, add_optab
, op0
, op0
,
3358 target
, unsignedp
, OPTAB_LIB_WIDEN
);
3361 /* This used to use umul_optab if unsigned, but for non-widening multiply
3362 there is no difference between signed and unsigned. */
3363 op0
= expand_binop (mode
, do_trapv
? smulv_optab
: smul_optab
,
3364 op0
, op1
, target
, unsignedp
, OPTAB_LIB_WIDEN
);
3369 /* Return a cost estimate for multiplying a register by the given
3370 COEFFicient in the given MODE and SPEED. */
3373 mult_by_coeff_cost (HOST_WIDE_INT coeff
, machine_mode mode
, bool speed
)
3376 struct algorithm algorithm
;
3377 enum mult_variant variant
;
3379 rtx fake_reg
= gen_raw_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1);
3380 max_cost
= set_src_cost (gen_rtx_MULT (mode
, fake_reg
, fake_reg
),
3382 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
, max_cost
))
3383 return algorithm
.cost
.cost
;
3388 /* Perform a widening multiplication and return an rtx for the result.
3389 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3390 TARGET is a suggestion for where to store the result (an rtx).
3391 THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
3392 or smul_widen_optab.
3394 We check specially for a constant integer as OP1, comparing the
3395 cost of a widening multiply against the cost of a sequence of shifts
3399 expand_widening_mult (machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
3400 int unsignedp
, optab this_optab
)
3402 bool speed
= optimize_insn_for_speed_p ();
3405 if (CONST_INT_P (op1
)
3406 && GET_MODE (op0
) != VOIDmode
3407 && (cop1
= convert_modes (mode
, GET_MODE (op0
), op1
,
3408 this_optab
== umul_widen_optab
))
3409 && CONST_INT_P (cop1
)
3410 && (INTVAL (cop1
) >= 0
3411 || HWI_COMPUTABLE_MODE_P (mode
)))
3413 HOST_WIDE_INT coeff
= INTVAL (cop1
);
3415 enum mult_variant variant
;
3416 struct algorithm algorithm
;
3419 return CONST0_RTX (mode
);
3421 /* Special case powers of two. */
3422 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff
))
3424 op0
= convert_to_mode (mode
, op0
, this_optab
== umul_widen_optab
);
3425 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3426 floor_log2 (coeff
), target
, unsignedp
);
3429 /* Exclude cost of op0 from max_cost to match the cost
3430 calculation of the synth_mult. */
3431 max_cost
= mul_widen_cost (speed
, mode
);
3432 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
,
3435 op0
= convert_to_mode (mode
, op0
, this_optab
== umul_widen_optab
);
3436 return expand_mult_const (mode
, op0
, coeff
, target
,
3437 &algorithm
, variant
);
3440 return expand_binop (mode
, this_optab
, op0
, op1
, target
,
3441 unsignedp
, OPTAB_LIB_WIDEN
);
3444 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3445 replace division by D, and put the least significant N bits of the result
3446 in *MULTIPLIER_PTR and return the most significant bit.
3448 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3449 needed precision is in PRECISION (should be <= N).
3451 PRECISION should be as small as possible so this function can choose
3452 multiplier more freely.
3454 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3455 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3457 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3458 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3460 unsigned HOST_WIDE_INT
3461 choose_multiplier (unsigned HOST_WIDE_INT d
, int n
, int precision
,
3462 unsigned HOST_WIDE_INT
*multiplier_ptr
,
3463 int *post_shift_ptr
, int *lgup_ptr
)
3465 int lgup
, post_shift
;
3468 /* lgup = ceil(log2(divisor)); */
3469 lgup
= ceil_log2 (d
);
3471 gcc_assert (lgup
<= n
);
3474 pow2
= n
+ lgup
- precision
;
3476 /* mlow = 2^(N + lgup)/d */
3477 wide_int val
= wi::set_bit_in_zero (pow
, HOST_BITS_PER_DOUBLE_INT
);
3478 wide_int mlow
= wi::udiv_trunc (val
, d
);
3480 /* mhigh = (2^(N + lgup) + 2^(N + lgup - precision))/d */
3481 val
|= wi::set_bit_in_zero (pow2
, HOST_BITS_PER_DOUBLE_INT
);
3482 wide_int mhigh
= wi::udiv_trunc (val
, d
);
3484 /* If precision == N, then mlow, mhigh exceed 2^N
3485 (but they do not exceed 2^(N+1)). */
3487 /* Reduce to lowest terms. */
3488 for (post_shift
= lgup
; post_shift
> 0; post_shift
--)
3490 unsigned HOST_WIDE_INT ml_lo
= wi::extract_uhwi (mlow
, 1,
3491 HOST_BITS_PER_WIDE_INT
);
3492 unsigned HOST_WIDE_INT mh_lo
= wi::extract_uhwi (mhigh
, 1,
3493 HOST_BITS_PER_WIDE_INT
);
3497 mlow
= wi::uhwi (ml_lo
, HOST_BITS_PER_DOUBLE_INT
);
3498 mhigh
= wi::uhwi (mh_lo
, HOST_BITS_PER_DOUBLE_INT
);
3501 *post_shift_ptr
= post_shift
;
3503 if (n
< HOST_BITS_PER_WIDE_INT
)
3505 unsigned HOST_WIDE_INT mask
= (HOST_WIDE_INT_1U
<< n
) - 1;
3506 *multiplier_ptr
= mhigh
.to_uhwi () & mask
;
3507 return mhigh
.to_uhwi () >= mask
;
3511 *multiplier_ptr
= mhigh
.to_uhwi ();
3512 return wi::extract_uhwi (mhigh
, HOST_BITS_PER_WIDE_INT
, 1);
3516 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3517 congruent to 1 (mod 2**N). */
3519 static unsigned HOST_WIDE_INT
3520 invert_mod2n (unsigned HOST_WIDE_INT x
, int n
)
3522 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3524 /* The algorithm notes that the choice y = x satisfies
3525 x*y == 1 mod 2^3, since x is assumed odd.
3526 Each iteration doubles the number of bits of significance in y. */
3528 unsigned HOST_WIDE_INT mask
;
3529 unsigned HOST_WIDE_INT y
= x
;
3532 mask
= (n
== HOST_BITS_PER_WIDE_INT
3534 : (HOST_WIDE_INT_1U
<< n
) - 1);
3538 y
= y
* (2 - x
*y
) & mask
; /* Modulo 2^N */
3544 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3545 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3546 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3547 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3550 The result is put in TARGET if that is convenient.
3552 MODE is the mode of operation. */
3555 expand_mult_highpart_adjust (machine_mode mode
, rtx adj_operand
, rtx op0
,
3556 rtx op1
, rtx target
, int unsignedp
)
3559 enum rtx_code adj_code
= unsignedp
? PLUS
: MINUS
;
3561 tem
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
3562 GET_MODE_BITSIZE (mode
) - 1, NULL_RTX
, 0);
3563 tem
= expand_and (mode
, tem
, op1
, NULL_RTX
);
3565 = force_operand (gen_rtx_fmt_ee (adj_code
, mode
, adj_operand
, tem
),
3568 tem
= expand_shift (RSHIFT_EXPR
, mode
, op1
,
3569 GET_MODE_BITSIZE (mode
) - 1, NULL_RTX
, 0);
3570 tem
= expand_and (mode
, tem
, op0
, NULL_RTX
);
3571 target
= force_operand (gen_rtx_fmt_ee (adj_code
, mode
, adj_operand
, tem
),
3577 /* Subroutine of expmed_mult_highpart. Return the MODE high part of OP. */
3580 extract_high_half (machine_mode mode
, rtx op
)
3582 machine_mode wider_mode
;
3584 if (mode
== word_mode
)
3585 return gen_highpart (mode
, op
);
3587 gcc_assert (!SCALAR_FLOAT_MODE_P (mode
));
3589 wider_mode
= GET_MODE_WIDER_MODE (mode
);
3590 op
= expand_shift (RSHIFT_EXPR
, wider_mode
, op
,
3591 GET_MODE_BITSIZE (mode
), 0, 1);
3592 return convert_modes (mode
, wider_mode
, op
, 0);
3595 /* Like expmed_mult_highpart, but only consider using a multiplication
3596 optab. OP1 is an rtx for the constant operand. */
3599 expmed_mult_highpart_optab (machine_mode mode
, rtx op0
, rtx op1
,
3600 rtx target
, int unsignedp
, int max_cost
)
3602 rtx narrow_op1
= gen_int_mode (INTVAL (op1
), mode
);
3603 machine_mode wider_mode
;
3607 bool speed
= optimize_insn_for_speed_p ();
3609 gcc_assert (!SCALAR_FLOAT_MODE_P (mode
));
3611 wider_mode
= GET_MODE_WIDER_MODE (mode
);
3612 size
= GET_MODE_BITSIZE (mode
);
3614 /* Firstly, try using a multiplication insn that only generates the needed
3615 high part of the product, and in the sign flavor of unsignedp. */
3616 if (mul_highpart_cost (speed
, mode
) < max_cost
)
3618 moptab
= unsignedp
? umul_highpart_optab
: smul_highpart_optab
;
3619 tem
= expand_binop (mode
, moptab
, op0
, narrow_op1
, target
,
3620 unsignedp
, OPTAB_DIRECT
);
3625 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3626 Need to adjust the result after the multiplication. */
3627 if (size
- 1 < BITS_PER_WORD
3628 && (mul_highpart_cost (speed
, mode
)
3629 + 2 * shift_cost (speed
, mode
, size
-1)
3630 + 4 * add_cost (speed
, mode
) < max_cost
))
3632 moptab
= unsignedp
? smul_highpart_optab
: umul_highpart_optab
;
3633 tem
= expand_binop (mode
, moptab
, op0
, narrow_op1
, target
,
3634 unsignedp
, OPTAB_DIRECT
);
3636 /* We used the wrong signedness. Adjust the result. */
3637 return expand_mult_highpart_adjust (mode
, tem
, op0
, narrow_op1
,
3641 /* Try widening multiplication. */
3642 moptab
= unsignedp
? umul_widen_optab
: smul_widen_optab
;
3643 if (widening_optab_handler (moptab
, wider_mode
, mode
) != CODE_FOR_nothing
3644 && mul_widen_cost (speed
, wider_mode
) < max_cost
)
3646 tem
= expand_binop (wider_mode
, moptab
, op0
, narrow_op1
, 0,
3647 unsignedp
, OPTAB_WIDEN
);
3649 return extract_high_half (mode
, tem
);
3652 /* Try widening the mode and perform a non-widening multiplication. */
3653 if (optab_handler (smul_optab
, wider_mode
) != CODE_FOR_nothing
3654 && size
- 1 < BITS_PER_WORD
3655 && (mul_cost (speed
, wider_mode
) + shift_cost (speed
, mode
, size
-1)
3661 /* We need to widen the operands, for example to ensure the
3662 constant multiplier is correctly sign or zero extended.
3663 Use a sequence to clean-up any instructions emitted by
3664 the conversions if things don't work out. */
3666 wop0
= convert_modes (wider_mode
, mode
, op0
, unsignedp
);
3667 wop1
= convert_modes (wider_mode
, mode
, op1
, unsignedp
);
3668 tem
= expand_binop (wider_mode
, smul_optab
, wop0
, wop1
, 0,
3669 unsignedp
, OPTAB_WIDEN
);
3670 insns
= get_insns ();
3676 return extract_high_half (mode
, tem
);
3680 /* Try widening multiplication of opposite signedness, and adjust. */
3681 moptab
= unsignedp
? smul_widen_optab
: umul_widen_optab
;
3682 if (widening_optab_handler (moptab
, wider_mode
, mode
) != CODE_FOR_nothing
3683 && size
- 1 < BITS_PER_WORD
3684 && (mul_widen_cost (speed
, wider_mode
)
3685 + 2 * shift_cost (speed
, mode
, size
-1)
3686 + 4 * add_cost (speed
, mode
) < max_cost
))
3688 tem
= expand_binop (wider_mode
, moptab
, op0
, narrow_op1
,
3689 NULL_RTX
, ! unsignedp
, OPTAB_WIDEN
);
3692 tem
= extract_high_half (mode
, tem
);
3693 /* We used the wrong signedness. Adjust the result. */
3694 return expand_mult_highpart_adjust (mode
, tem
, op0
, narrow_op1
,
3702 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3703 putting the high half of the result in TARGET if that is convenient,
3704 and return where the result is. If the operation can not be performed,
3707 MODE is the mode of operation and result.
3709 UNSIGNEDP nonzero means unsigned multiply.
3711 MAX_COST is the total allowed cost for the expanded RTL. */
3714 expmed_mult_highpart (machine_mode mode
, rtx op0
, rtx op1
,
3715 rtx target
, int unsignedp
, int max_cost
)
3717 machine_mode wider_mode
= GET_MODE_WIDER_MODE (mode
);
3718 unsigned HOST_WIDE_INT cnst1
;
3720 bool sign_adjust
= false;
3721 enum mult_variant variant
;
3722 struct algorithm alg
;
3724 bool speed
= optimize_insn_for_speed_p ();
3726 gcc_assert (!SCALAR_FLOAT_MODE_P (mode
));
3727 /* We can't support modes wider than HOST_BITS_PER_INT. */
3728 gcc_assert (HWI_COMPUTABLE_MODE_P (mode
));
3730 cnst1
= INTVAL (op1
) & GET_MODE_MASK (mode
);
3732 /* We can't optimize modes wider than BITS_PER_WORD.
3733 ??? We might be able to perform double-word arithmetic if
3734 mode == word_mode, however all the cost calculations in
3735 synth_mult etc. assume single-word operations. */
3736 if (GET_MODE_BITSIZE (wider_mode
) > BITS_PER_WORD
)
3737 return expmed_mult_highpart_optab (mode
, op0
, op1
, target
,
3738 unsignedp
, max_cost
);
3740 extra_cost
= shift_cost (speed
, mode
, GET_MODE_BITSIZE (mode
) - 1);
3742 /* Check whether we try to multiply by a negative constant. */
3743 if (!unsignedp
&& ((cnst1
>> (GET_MODE_BITSIZE (mode
) - 1)) & 1))
3746 extra_cost
+= add_cost (speed
, mode
);
3749 /* See whether shift/add multiplication is cheap enough. */
3750 if (choose_mult_variant (wider_mode
, cnst1
, &alg
, &variant
,
3751 max_cost
- extra_cost
))
3753 /* See whether the specialized multiplication optabs are
3754 cheaper than the shift/add version. */
3755 tem
= expmed_mult_highpart_optab (mode
, op0
, op1
, target
, unsignedp
,
3756 alg
.cost
.cost
+ extra_cost
);
3760 tem
= convert_to_mode (wider_mode
, op0
, unsignedp
);
3761 tem
= expand_mult_const (wider_mode
, tem
, cnst1
, 0, &alg
, variant
);
3762 tem
= extract_high_half (mode
, tem
);
3764 /* Adjust result for signedness. */
3766 tem
= force_operand (gen_rtx_MINUS (mode
, tem
, op0
), tem
);
3770 return expmed_mult_highpart_optab (mode
, op0
, op1
, target
,
3771 unsignedp
, max_cost
);
3775 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3778 expand_smod_pow2 (machine_mode mode
, rtx op0
, HOST_WIDE_INT d
)
3780 rtx result
, temp
, shift
;
3781 rtx_code_label
*label
;
3783 int prec
= GET_MODE_PRECISION (mode
);
3785 logd
= floor_log2 (d
);
3786 result
= gen_reg_rtx (mode
);
3788 /* Avoid conditional branches when they're expensive. */
3789 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
3790 && optimize_insn_for_speed_p ())
3792 rtx signmask
= emit_store_flag (result
, LT
, op0
, const0_rtx
,
3796 HOST_WIDE_INT masklow
= (HOST_WIDE_INT_1
<< logd
) - 1;
3797 signmask
= force_reg (mode
, signmask
);
3798 shift
= GEN_INT (GET_MODE_BITSIZE (mode
) - logd
);
3800 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3801 which instruction sequence to use. If logical right shifts
3802 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3803 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3805 temp
= gen_rtx_LSHIFTRT (mode
, result
, shift
);
3806 if (optab_handler (lshr_optab
, mode
) == CODE_FOR_nothing
3807 || (set_src_cost (temp
, mode
, optimize_insn_for_speed_p ())
3808 > COSTS_N_INSNS (2)))
3810 temp
= expand_binop (mode
, xor_optab
, op0
, signmask
,
3811 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3812 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3813 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3814 temp
= expand_binop (mode
, and_optab
, temp
,
3815 gen_int_mode (masklow
, mode
),
3816 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3817 temp
= expand_binop (mode
, xor_optab
, temp
, signmask
,
3818 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3819 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3820 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3824 signmask
= expand_binop (mode
, lshr_optab
, signmask
, shift
,
3825 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3826 signmask
= force_reg (mode
, signmask
);
3828 temp
= expand_binop (mode
, add_optab
, op0
, signmask
,
3829 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3830 temp
= expand_binop (mode
, and_optab
, temp
,
3831 gen_int_mode (masklow
, mode
),
3832 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3833 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3834 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3840 /* Mask contains the mode's signbit and the significant bits of the
3841 modulus. By including the signbit in the operation, many targets
3842 can avoid an explicit compare operation in the following comparison
3844 wide_int mask
= wi::mask (logd
, false, prec
);
3845 mask
= wi::set_bit (mask
, prec
- 1);
3847 temp
= expand_binop (mode
, and_optab
, op0
,
3848 immed_wide_int_const (mask
, mode
),
3849 result
, 1, OPTAB_LIB_WIDEN
);
3851 emit_move_insn (result
, temp
);
3853 label
= gen_label_rtx ();
3854 do_cmp_and_jump (result
, const0_rtx
, GE
, mode
, label
);
3856 temp
= expand_binop (mode
, sub_optab
, result
, const1_rtx
, result
,
3857 0, OPTAB_LIB_WIDEN
);
3859 mask
= wi::mask (logd
, true, prec
);
3860 temp
= expand_binop (mode
, ior_optab
, temp
,
3861 immed_wide_int_const (mask
, mode
),
3862 result
, 1, OPTAB_LIB_WIDEN
);
3863 temp
= expand_binop (mode
, add_optab
, temp
, const1_rtx
, result
,
3864 0, OPTAB_LIB_WIDEN
);
3866 emit_move_insn (result
, temp
);
3871 /* Expand signed division of OP0 by a power of two D in mode MODE.
3872 This routine is only called for positive values of D. */
3875 expand_sdiv_pow2 (machine_mode mode
, rtx op0
, HOST_WIDE_INT d
)
3878 rtx_code_label
*label
;
3881 logd
= floor_log2 (d
);
3884 && BRANCH_COST (optimize_insn_for_speed_p (),
3887 temp
= gen_reg_rtx (mode
);
3888 temp
= emit_store_flag (temp
, LT
, op0
, const0_rtx
, mode
, 0, 1);
3889 temp
= expand_binop (mode
, add_optab
, temp
, op0
, NULL_RTX
,
3890 0, OPTAB_LIB_WIDEN
);
3891 return expand_shift (RSHIFT_EXPR
, mode
, temp
, logd
, NULL_RTX
, 0);
3894 if (HAVE_conditional_move
3895 && BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2)
3900 temp2
= copy_to_mode_reg (mode
, op0
);
3901 temp
= expand_binop (mode
, add_optab
, temp2
, gen_int_mode (d
- 1, mode
),
3902 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
3903 temp
= force_reg (mode
, temp
);
3905 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3906 temp2
= emit_conditional_move (temp2
, LT
, temp2
, const0_rtx
,
3907 mode
, temp
, temp2
, mode
, 0);
3910 rtx_insn
*seq
= get_insns ();
3913 return expand_shift (RSHIFT_EXPR
, mode
, temp2
, logd
, NULL_RTX
, 0);
3918 if (BRANCH_COST (optimize_insn_for_speed_p (),
3921 int ushift
= GET_MODE_BITSIZE (mode
) - logd
;
3923 temp
= gen_reg_rtx (mode
);
3924 temp
= emit_store_flag (temp
, LT
, op0
, const0_rtx
, mode
, 0, -1);
3925 if (GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
3926 || shift_cost (optimize_insn_for_speed_p (), mode
, ushift
)
3927 > COSTS_N_INSNS (1))
3928 temp
= expand_binop (mode
, and_optab
, temp
, gen_int_mode (d
- 1, mode
),
3929 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
3931 temp
= expand_shift (RSHIFT_EXPR
, mode
, temp
,
3932 ushift
, NULL_RTX
, 1);
3933 temp
= expand_binop (mode
, add_optab
, temp
, op0
, NULL_RTX
,
3934 0, OPTAB_LIB_WIDEN
);
3935 return expand_shift (RSHIFT_EXPR
, mode
, temp
, logd
, NULL_RTX
, 0);
3938 label
= gen_label_rtx ();
3939 temp
= copy_to_mode_reg (mode
, op0
);
3940 do_cmp_and_jump (temp
, const0_rtx
, GE
, mode
, label
);
3941 expand_inc (temp
, gen_int_mode (d
- 1, mode
));
3943 return expand_shift (RSHIFT_EXPR
, mode
, temp
, logd
, NULL_RTX
, 0);
3946 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3947 if that is convenient, and returning where the result is.
3948 You may request either the quotient or the remainder as the result;
3949 specify REM_FLAG nonzero to get the remainder.
3951 CODE is the expression code for which kind of division this is;
3952 it controls how rounding is done. MODE is the machine mode to use.
3953 UNSIGNEDP nonzero means do unsigned division. */
3955 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3956 and then correct it by or'ing in missing high bits
3957 if result of ANDI is nonzero.
3958 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3959 This could optimize to a bfexts instruction.
3960 But C doesn't use these operations, so their optimizations are
3962 /* ??? For modulo, we don't actually need the highpart of the first product,
3963 the low part will do nicely. And for small divisors, the second multiply
3964 can also be a low-part only multiply or even be completely left out.
3965 E.g. to calculate the remainder of a division by 3 with a 32 bit
3966 multiply, multiply with 0x55555556 and extract the upper two bits;
3967 the result is exact for inputs up to 0x1fffffff.
3968 The input range can be reduced by using cross-sum rules.
3969 For odd divisors >= 3, the following table gives right shift counts
3970 so that if a number is shifted by an integer multiple of the given
3971 amount, the remainder stays the same:
3972 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3973 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3974 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3975 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3976 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3978 Cross-sum rules for even numbers can be derived by leaving as many bits
3979 to the right alone as the divisor has zeros to the right.
3980 E.g. if x is an unsigned 32 bit number:
3981 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3985 expand_divmod (int rem_flag
, enum tree_code code
, machine_mode mode
,
3986 rtx op0
, rtx op1
, rtx target
, int unsignedp
)
3988 machine_mode compute_mode
;
3990 rtx quotient
= 0, remainder
= 0;
3994 optab optab1
, optab2
;
3995 int op1_is_constant
, op1_is_pow2
= 0;
3996 int max_cost
, extra_cost
;
3997 static HOST_WIDE_INT last_div_const
= 0;
3998 bool speed
= optimize_insn_for_speed_p ();
4000 op1_is_constant
= CONST_INT_P (op1
);
4001 if (op1_is_constant
)
4003 wide_int ext_op1
= rtx_mode_t (op1
, mode
);
4004 op1_is_pow2
= (wi::popcount (ext_op1
) == 1
4006 && wi::popcount (wi::neg (ext_op1
)) == 1));
4010 This is the structure of expand_divmod:
4012 First comes code to fix up the operands so we can perform the operations
4013 correctly and efficiently.
4015 Second comes a switch statement with code specific for each rounding mode.
4016 For some special operands this code emits all RTL for the desired
4017 operation, for other cases, it generates only a quotient and stores it in
4018 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
4019 to indicate that it has not done anything.
4021 Last comes code that finishes the operation. If QUOTIENT is set and
4022 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
4023 QUOTIENT is not set, it is computed using trunc rounding.
4025 We try to generate special code for division and remainder when OP1 is a
4026 constant. If |OP1| = 2**n we can use shifts and some other fast
4027 operations. For other values of OP1, we compute a carefully selected
4028 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
4031 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
4032 half of the product. Different strategies for generating the product are
4033 implemented in expmed_mult_highpart.
4035 If what we actually want is the remainder, we generate that by another
4036 by-constant multiplication and a subtraction. */
4038 /* We shouldn't be called with OP1 == const1_rtx, but some of the
4039 code below will malfunction if we are, so check here and handle
4040 the special case if so. */
4041 if (op1
== const1_rtx
)
4042 return rem_flag
? const0_rtx
: op0
;
4044 /* When dividing by -1, we could get an overflow.
4045 negv_optab can handle overflows. */
4046 if (! unsignedp
&& op1
== constm1_rtx
)
4050 return expand_unop (mode
, flag_trapv
&& GET_MODE_CLASS (mode
) == MODE_INT
4051 ? negv_optab
: neg_optab
, op0
, target
, 0);
4055 /* Don't use the function value register as a target
4056 since we have to read it as well as write it,
4057 and function-inlining gets confused by this. */
4058 && ((REG_P (target
) && REG_FUNCTION_VALUE_P (target
))
4059 /* Don't clobber an operand while doing a multi-step calculation. */
4060 || ((rem_flag
|| op1_is_constant
)
4061 && (reg_mentioned_p (target
, op0
)
4062 || (MEM_P (op0
) && MEM_P (target
))))
4063 || reg_mentioned_p (target
, op1
)
4064 || (MEM_P (op1
) && MEM_P (target
))))
4067 /* Get the mode in which to perform this computation. Normally it will
4068 be MODE, but sometimes we can't do the desired operation in MODE.
4069 If so, pick a wider mode in which we can do the operation. Convert
4070 to that mode at the start to avoid repeated conversions.
4072 First see what operations we need. These depend on the expression
4073 we are evaluating. (We assume that divxx3 insns exist under the
4074 same conditions that modxx3 insns and that these insns don't normally
4075 fail. If these assumptions are not correct, we may generate less
4076 efficient code in some cases.)
4078 Then see if we find a mode in which we can open-code that operation
4079 (either a division, modulus, or shift). Finally, check for the smallest
4080 mode for which we can do the operation with a library call. */
4082 /* We might want to refine this now that we have division-by-constant
4083 optimization. Since expmed_mult_highpart tries so many variants, it is
4084 not straightforward to generalize this. Maybe we should make an array
4085 of possible modes in init_expmed? Save this for GCC 2.7. */
4087 optab1
= (op1_is_pow2
4088 ? (unsignedp
? lshr_optab
: ashr_optab
)
4089 : (unsignedp
? udiv_optab
: sdiv_optab
));
4090 optab2
= (op1_is_pow2
? optab1
4091 : (unsignedp
? udivmod_optab
: sdivmod_optab
));
4093 for (compute_mode
= mode
; compute_mode
!= VOIDmode
;
4094 compute_mode
= GET_MODE_WIDER_MODE (compute_mode
))
4095 if (optab_handler (optab1
, compute_mode
) != CODE_FOR_nothing
4096 || optab_handler (optab2
, compute_mode
) != CODE_FOR_nothing
)
4099 if (compute_mode
== VOIDmode
)
4100 for (compute_mode
= mode
; compute_mode
!= VOIDmode
;
4101 compute_mode
= GET_MODE_WIDER_MODE (compute_mode
))
4102 if (optab_libfunc (optab1
, compute_mode
)
4103 || optab_libfunc (optab2
, compute_mode
))
4106 /* If we still couldn't find a mode, use MODE, but expand_binop will
4108 if (compute_mode
== VOIDmode
)
4109 compute_mode
= mode
;
4111 if (target
&& GET_MODE (target
) == compute_mode
)
4114 tquotient
= gen_reg_rtx (compute_mode
);
4116 size
= GET_MODE_BITSIZE (compute_mode
);
4118 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
4119 (mode), and thereby get better code when OP1 is a constant. Do that
4120 later. It will require going over all usages of SIZE below. */
4121 size
= GET_MODE_BITSIZE (mode
);
4124 /* Only deduct something for a REM if the last divide done was
4125 for a different constant. Then set the constant of the last
4127 max_cost
= (unsignedp
4128 ? udiv_cost (speed
, compute_mode
)
4129 : sdiv_cost (speed
, compute_mode
));
4130 if (rem_flag
&& ! (last_div_const
!= 0 && op1_is_constant
4131 && INTVAL (op1
) == last_div_const
))
4132 max_cost
-= (mul_cost (speed
, compute_mode
)
4133 + add_cost (speed
, compute_mode
));
4135 last_div_const
= ! rem_flag
&& op1_is_constant
? INTVAL (op1
) : 0;
4137 /* Now convert to the best mode to use. */
4138 if (compute_mode
!= mode
)
4140 op0
= convert_modes (compute_mode
, mode
, op0
, unsignedp
);
4141 op1
= convert_modes (compute_mode
, mode
, op1
, unsignedp
);
4143 /* convert_modes may have placed op1 into a register, so we
4144 must recompute the following. */
4145 op1_is_constant
= CONST_INT_P (op1
);
4146 if (op1_is_constant
)
4148 wide_int ext_op1
= rtx_mode_t (op1
, compute_mode
);
4149 op1_is_pow2
= (wi::popcount (ext_op1
) == 1
4151 && wi::popcount (wi::neg (ext_op1
)) == 1));
4157 /* If one of the operands is a volatile MEM, copy it into a register. */
4159 if (MEM_P (op0
) && MEM_VOLATILE_P (op0
))
4160 op0
= force_reg (compute_mode
, op0
);
4161 if (MEM_P (op1
) && MEM_VOLATILE_P (op1
))
4162 op1
= force_reg (compute_mode
, op1
);
4164 /* If we need the remainder or if OP1 is constant, we need to
4165 put OP0 in a register in case it has any queued subexpressions. */
4166 if (rem_flag
|| op1_is_constant
)
4167 op0
= force_reg (compute_mode
, op0
);
4169 last
= get_last_insn ();
4171 /* Promote floor rounding to trunc rounding for unsigned operations. */
4174 if (code
== FLOOR_DIV_EXPR
)
4175 code
= TRUNC_DIV_EXPR
;
4176 if (code
== FLOOR_MOD_EXPR
)
4177 code
= TRUNC_MOD_EXPR
;
4178 if (code
== EXACT_DIV_EXPR
&& op1_is_pow2
)
4179 code
= TRUNC_DIV_EXPR
;
4182 if (op1
!= const0_rtx
)
4185 case TRUNC_MOD_EXPR
:
4186 case TRUNC_DIV_EXPR
:
4187 if (op1_is_constant
)
4191 unsigned HOST_WIDE_INT mh
, ml
;
4192 int pre_shift
, post_shift
;
4194 wide_int wd
= rtx_mode_t (op1
, compute_mode
);
4195 unsigned HOST_WIDE_INT d
= wd
.to_uhwi ();
4197 if (wi::popcount (wd
) == 1)
4199 pre_shift
= floor_log2 (d
);
4202 unsigned HOST_WIDE_INT mask
4203 = (HOST_WIDE_INT_1U
<< pre_shift
) - 1;
4205 = expand_binop (compute_mode
, and_optab
, op0
,
4206 gen_int_mode (mask
, compute_mode
),
4210 return gen_lowpart (mode
, remainder
);
4212 quotient
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4213 pre_shift
, tquotient
, 1);
4215 else if (size
<= HOST_BITS_PER_WIDE_INT
)
4217 if (d
>= (HOST_WIDE_INT_1U
<< (size
- 1)))
4219 /* Most significant bit of divisor is set; emit an scc
4221 quotient
= emit_store_flag_force (tquotient
, GEU
, op0
, op1
,
4222 compute_mode
, 1, 1);
4226 /* Find a suitable multiplier and right shift count
4227 instead of multiplying with D. */
4229 mh
= choose_multiplier (d
, size
, size
,
4230 &ml
, &post_shift
, &dummy
);
4232 /* If the suggested multiplier is more than SIZE bits,
4233 we can do better for even divisors, using an
4234 initial right shift. */
4235 if (mh
!= 0 && (d
& 1) == 0)
4237 pre_shift
= ctz_or_zero (d
);
4238 mh
= choose_multiplier (d
>> pre_shift
, size
,
4240 &ml
, &post_shift
, &dummy
);
4250 if (post_shift
- 1 >= BITS_PER_WORD
)
4254 = (shift_cost (speed
, compute_mode
, post_shift
- 1)
4255 + shift_cost (speed
, compute_mode
, 1)
4256 + 2 * add_cost (speed
, compute_mode
));
4257 t1
= expmed_mult_highpart
4259 gen_int_mode (ml
, compute_mode
),
4260 NULL_RTX
, 1, max_cost
- extra_cost
);
4263 t2
= force_operand (gen_rtx_MINUS (compute_mode
,
4266 t3
= expand_shift (RSHIFT_EXPR
, compute_mode
,
4267 t2
, 1, NULL_RTX
, 1);
4268 t4
= force_operand (gen_rtx_PLUS (compute_mode
,
4271 quotient
= expand_shift
4272 (RSHIFT_EXPR
, compute_mode
, t4
,
4273 post_shift
- 1, tquotient
, 1);
4279 if (pre_shift
>= BITS_PER_WORD
4280 || post_shift
>= BITS_PER_WORD
)
4284 (RSHIFT_EXPR
, compute_mode
, op0
,
4285 pre_shift
, NULL_RTX
, 1);
4287 = (shift_cost (speed
, compute_mode
, pre_shift
)
4288 + shift_cost (speed
, compute_mode
, post_shift
));
4289 t2
= expmed_mult_highpart
4291 gen_int_mode (ml
, compute_mode
),
4292 NULL_RTX
, 1, max_cost
- extra_cost
);
4295 quotient
= expand_shift
4296 (RSHIFT_EXPR
, compute_mode
, t2
,
4297 post_shift
, tquotient
, 1);
4301 else /* Too wide mode to use tricky code */
4304 insn
= get_last_insn ();
4306 set_dst_reg_note (insn
, REG_EQUAL
,
4307 gen_rtx_UDIV (compute_mode
, op0
, op1
),
4310 else /* TRUNC_DIV, signed */
4312 unsigned HOST_WIDE_INT ml
;
4313 int lgup
, post_shift
;
4315 HOST_WIDE_INT d
= INTVAL (op1
);
4316 unsigned HOST_WIDE_INT abs_d
;
4318 /* Since d might be INT_MIN, we have to cast to
4319 unsigned HOST_WIDE_INT before negating to avoid
4320 undefined signed overflow. */
4322 ? (unsigned HOST_WIDE_INT
) d
4323 : - (unsigned HOST_WIDE_INT
) d
);
4325 /* n rem d = n rem -d */
4326 if (rem_flag
&& d
< 0)
4329 op1
= gen_int_mode (abs_d
, compute_mode
);
4335 quotient
= expand_unop (compute_mode
, neg_optab
, op0
,
4337 else if (size
<= HOST_BITS_PER_WIDE_INT
4338 && abs_d
== HOST_WIDE_INT_1U
<< (size
- 1))
4340 /* This case is not handled correctly below. */
4341 quotient
= emit_store_flag (tquotient
, EQ
, op0
, op1
,
4342 compute_mode
, 1, 1);
4346 else if (EXACT_POWER_OF_2_OR_ZERO_P (d
)
4347 && (size
<= HOST_BITS_PER_WIDE_INT
|| d
>= 0)
4349 ? smod_pow2_cheap (speed
, compute_mode
)
4350 : sdiv_pow2_cheap (speed
, compute_mode
))
4351 /* We assume that cheap metric is true if the
4352 optab has an expander for this mode. */
4353 && ((optab_handler ((rem_flag
? smod_optab
4356 != CODE_FOR_nothing
)
4357 || (optab_handler (sdivmod_optab
,
4359 != CODE_FOR_nothing
)))
4361 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d
)
4362 && (size
<= HOST_BITS_PER_WIDE_INT
4363 || abs_d
!= (unsigned HOST_WIDE_INT
) d
))
4367 remainder
= expand_smod_pow2 (compute_mode
, op0
, d
);
4369 return gen_lowpart (mode
, remainder
);
4372 if (sdiv_pow2_cheap (speed
, compute_mode
)
4373 && ((optab_handler (sdiv_optab
, compute_mode
)
4374 != CODE_FOR_nothing
)
4375 || (optab_handler (sdivmod_optab
, compute_mode
)
4376 != CODE_FOR_nothing
)))
4377 quotient
= expand_divmod (0, TRUNC_DIV_EXPR
,
4379 gen_int_mode (abs_d
,
4383 quotient
= expand_sdiv_pow2 (compute_mode
, op0
, abs_d
);
4385 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4386 negate the quotient. */
4389 insn
= get_last_insn ();
4391 && abs_d
< (HOST_WIDE_INT_1U
4392 << (HOST_BITS_PER_WIDE_INT
- 1)))
4393 set_dst_reg_note (insn
, REG_EQUAL
,
4394 gen_rtx_DIV (compute_mode
, op0
,
4400 quotient
= expand_unop (compute_mode
, neg_optab
,
4401 quotient
, quotient
, 0);
4404 else if (size
<= HOST_BITS_PER_WIDE_INT
)
4406 choose_multiplier (abs_d
, size
, size
- 1,
4407 &ml
, &post_shift
, &lgup
);
4408 if (ml
< HOST_WIDE_INT_1U
<< (size
- 1))
4412 if (post_shift
>= BITS_PER_WORD
4413 || size
- 1 >= BITS_PER_WORD
)
4416 extra_cost
= (shift_cost (speed
, compute_mode
, post_shift
)
4417 + shift_cost (speed
, compute_mode
, size
- 1)
4418 + add_cost (speed
, compute_mode
));
4419 t1
= expmed_mult_highpart
4420 (compute_mode
, op0
, gen_int_mode (ml
, compute_mode
),
4421 NULL_RTX
, 0, max_cost
- extra_cost
);
4425 (RSHIFT_EXPR
, compute_mode
, t1
,
4426 post_shift
, NULL_RTX
, 0);
4428 (RSHIFT_EXPR
, compute_mode
, op0
,
4429 size
- 1, NULL_RTX
, 0);
4432 = force_operand (gen_rtx_MINUS (compute_mode
,
4437 = force_operand (gen_rtx_MINUS (compute_mode
,
4445 if (post_shift
>= BITS_PER_WORD
4446 || size
- 1 >= BITS_PER_WORD
)
4449 ml
|= HOST_WIDE_INT_M1U
<< (size
- 1);
4450 mlr
= gen_int_mode (ml
, compute_mode
);
4451 extra_cost
= (shift_cost (speed
, compute_mode
, post_shift
)
4452 + shift_cost (speed
, compute_mode
, size
- 1)
4453 + 2 * add_cost (speed
, compute_mode
));
4454 t1
= expmed_mult_highpart (compute_mode
, op0
, mlr
,
4456 max_cost
- extra_cost
);
4459 t2
= force_operand (gen_rtx_PLUS (compute_mode
,
4463 (RSHIFT_EXPR
, compute_mode
, t2
,
4464 post_shift
, NULL_RTX
, 0);
4466 (RSHIFT_EXPR
, compute_mode
, op0
,
4467 size
- 1, NULL_RTX
, 0);
4470 = force_operand (gen_rtx_MINUS (compute_mode
,
4475 = force_operand (gen_rtx_MINUS (compute_mode
,
4480 else /* Too wide mode to use tricky code */
4483 insn
= get_last_insn ();
4485 set_dst_reg_note (insn
, REG_EQUAL
,
4486 gen_rtx_DIV (compute_mode
, op0
, op1
),
4492 delete_insns_since (last
);
4495 case FLOOR_DIV_EXPR
:
4496 case FLOOR_MOD_EXPR
:
4497 /* We will come here only for signed operations. */
4498 if (op1_is_constant
&& size
<= HOST_BITS_PER_WIDE_INT
)
4500 unsigned HOST_WIDE_INT mh
, ml
;
4501 int pre_shift
, lgup
, post_shift
;
4502 HOST_WIDE_INT d
= INTVAL (op1
);
4506 /* We could just as easily deal with negative constants here,
4507 but it does not seem worth the trouble for GCC 2.6. */
4508 if (EXACT_POWER_OF_2_OR_ZERO_P (d
))
4510 pre_shift
= floor_log2 (d
);
4513 unsigned HOST_WIDE_INT mask
4514 = (HOST_WIDE_INT_1U
<< pre_shift
) - 1;
4515 remainder
= expand_binop
4516 (compute_mode
, and_optab
, op0
,
4517 gen_int_mode (mask
, compute_mode
),
4518 remainder
, 0, OPTAB_LIB_WIDEN
);
4520 return gen_lowpart (mode
, remainder
);
4522 quotient
= expand_shift
4523 (RSHIFT_EXPR
, compute_mode
, op0
,
4524 pre_shift
, tquotient
, 0);
4530 mh
= choose_multiplier (d
, size
, size
- 1,
4531 &ml
, &post_shift
, &lgup
);
4534 if (post_shift
< BITS_PER_WORD
4535 && size
- 1 < BITS_PER_WORD
)
4538 (RSHIFT_EXPR
, compute_mode
, op0
,
4539 size
- 1, NULL_RTX
, 0);
4540 t2
= expand_binop (compute_mode
, xor_optab
, op0
, t1
,
4541 NULL_RTX
, 0, OPTAB_WIDEN
);
4542 extra_cost
= (shift_cost (speed
, compute_mode
, post_shift
)
4543 + shift_cost (speed
, compute_mode
, size
- 1)
4544 + 2 * add_cost (speed
, compute_mode
));
4545 t3
= expmed_mult_highpart
4546 (compute_mode
, t2
, gen_int_mode (ml
, compute_mode
),
4547 NULL_RTX
, 1, max_cost
- extra_cost
);
4551 (RSHIFT_EXPR
, compute_mode
, t3
,
4552 post_shift
, NULL_RTX
, 1);
4553 quotient
= expand_binop (compute_mode
, xor_optab
,
4554 t4
, t1
, tquotient
, 0,
4562 rtx nsign
, t1
, t2
, t3
, t4
;
4563 t1
= force_operand (gen_rtx_PLUS (compute_mode
,
4564 op0
, constm1_rtx
), NULL_RTX
);
4565 t2
= expand_binop (compute_mode
, ior_optab
, op0
, t1
, NULL_RTX
,
4567 nsign
= expand_shift (RSHIFT_EXPR
, compute_mode
, t2
,
4568 size
- 1, NULL_RTX
, 0);
4569 t3
= force_operand (gen_rtx_MINUS (compute_mode
, t1
, nsign
),
4571 t4
= expand_divmod (0, TRUNC_DIV_EXPR
, compute_mode
, t3
, op1
,
4576 t5
= expand_unop (compute_mode
, one_cmpl_optab
, nsign
,
4578 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
4587 delete_insns_since (last
);
4589 /* Try using an instruction that produces both the quotient and
4590 remainder, using truncation. We can easily compensate the quotient
4591 or remainder to get floor rounding, once we have the remainder.
4592 Notice that we compute also the final remainder value here,
4593 and return the result right away. */
4594 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4595 target
= gen_reg_rtx (compute_mode
);
4600 = REG_P (target
) ? target
: gen_reg_rtx (compute_mode
);
4601 quotient
= gen_reg_rtx (compute_mode
);
4606 = REG_P (target
) ? target
: gen_reg_rtx (compute_mode
);
4607 remainder
= gen_reg_rtx (compute_mode
);
4610 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
,
4611 quotient
, remainder
, 0))
4613 /* This could be computed with a branch-less sequence.
4614 Save that for later. */
4616 rtx_code_label
*label
= gen_label_rtx ();
4617 do_cmp_and_jump (remainder
, const0_rtx
, EQ
, compute_mode
, label
);
4618 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4619 NULL_RTX
, 0, OPTAB_WIDEN
);
4620 do_cmp_and_jump (tem
, const0_rtx
, GE
, compute_mode
, label
);
4621 expand_dec (quotient
, const1_rtx
);
4622 expand_inc (remainder
, op1
);
4624 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4627 /* No luck with division elimination or divmod. Have to do it
4628 by conditionally adjusting op0 *and* the result. */
4630 rtx_code_label
*label1
, *label2
, *label3
, *label4
, *label5
;
4634 quotient
= gen_reg_rtx (compute_mode
);
4635 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4636 label1
= gen_label_rtx ();
4637 label2
= gen_label_rtx ();
4638 label3
= gen_label_rtx ();
4639 label4
= gen_label_rtx ();
4640 label5
= gen_label_rtx ();
4641 do_cmp_and_jump (op1
, const0_rtx
, LT
, compute_mode
, label2
);
4642 do_cmp_and_jump (adjusted_op0
, const0_rtx
, LT
, compute_mode
, label1
);
4643 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4644 quotient
, 0, OPTAB_LIB_WIDEN
);
4645 if (tem
!= quotient
)
4646 emit_move_insn (quotient
, tem
);
4647 emit_jump_insn (targetm
.gen_jump (label5
));
4649 emit_label (label1
);
4650 expand_inc (adjusted_op0
, const1_rtx
);
4651 emit_jump_insn (targetm
.gen_jump (label4
));
4653 emit_label (label2
);
4654 do_cmp_and_jump (adjusted_op0
, const0_rtx
, GT
, compute_mode
, label3
);
4655 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4656 quotient
, 0, OPTAB_LIB_WIDEN
);
4657 if (tem
!= quotient
)
4658 emit_move_insn (quotient
, tem
);
4659 emit_jump_insn (targetm
.gen_jump (label5
));
4661 emit_label (label3
);
4662 expand_dec (adjusted_op0
, const1_rtx
);
4663 emit_label (label4
);
4664 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4665 quotient
, 0, OPTAB_LIB_WIDEN
);
4666 if (tem
!= quotient
)
4667 emit_move_insn (quotient
, tem
);
4668 expand_dec (quotient
, const1_rtx
);
4669 emit_label (label5
);
4678 && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
))
4679 && (size
<= HOST_BITS_PER_WIDE_INT
4680 || INTVAL (op1
) >= 0))
4683 unsigned HOST_WIDE_INT d
= INTVAL (op1
);
4684 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4685 floor_log2 (d
), tquotient
, 1);
4686 t2
= expand_binop (compute_mode
, and_optab
, op0
,
4687 gen_int_mode (d
- 1, compute_mode
),
4688 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4689 t3
= gen_reg_rtx (compute_mode
);
4690 t3
= emit_store_flag (t3
, NE
, t2
, const0_rtx
,
4691 compute_mode
, 1, 1);
4694 rtx_code_label
*lab
;
4695 lab
= gen_label_rtx ();
4696 do_cmp_and_jump (t2
, const0_rtx
, EQ
, compute_mode
, lab
);
4697 expand_inc (t1
, const1_rtx
);
4702 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
4708 /* Try using an instruction that produces both the quotient and
4709 remainder, using truncation. We can easily compensate the
4710 quotient or remainder to get ceiling rounding, once we have the
4711 remainder. Notice that we compute also the final remainder
4712 value here, and return the result right away. */
4713 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4714 target
= gen_reg_rtx (compute_mode
);
4718 remainder
= (REG_P (target
)
4719 ? target
: gen_reg_rtx (compute_mode
));
4720 quotient
= gen_reg_rtx (compute_mode
);
4724 quotient
= (REG_P (target
)
4725 ? target
: gen_reg_rtx (compute_mode
));
4726 remainder
= gen_reg_rtx (compute_mode
);
4729 if (expand_twoval_binop (udivmod_optab
, op0
, op1
, quotient
,
4732 /* This could be computed with a branch-less sequence.
4733 Save that for later. */
4734 rtx_code_label
*label
= gen_label_rtx ();
4735 do_cmp_and_jump (remainder
, const0_rtx
, EQ
,
4736 compute_mode
, label
);
4737 expand_inc (quotient
, const1_rtx
);
4738 expand_dec (remainder
, op1
);
4740 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4743 /* No luck with division elimination or divmod. Have to do it
4744 by conditionally adjusting op0 *and* the result. */
4746 rtx_code_label
*label1
, *label2
;
4747 rtx adjusted_op0
, tem
;
4749 quotient
= gen_reg_rtx (compute_mode
);
4750 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4751 label1
= gen_label_rtx ();
4752 label2
= gen_label_rtx ();
4753 do_cmp_and_jump (adjusted_op0
, const0_rtx
, NE
,
4754 compute_mode
, label1
);
4755 emit_move_insn (quotient
, const0_rtx
);
4756 emit_jump_insn (targetm
.gen_jump (label2
));
4758 emit_label (label1
);
4759 expand_dec (adjusted_op0
, const1_rtx
);
4760 tem
= expand_binop (compute_mode
, udiv_optab
, adjusted_op0
, op1
,
4761 quotient
, 1, OPTAB_LIB_WIDEN
);
4762 if (tem
!= quotient
)
4763 emit_move_insn (quotient
, tem
);
4764 expand_inc (quotient
, const1_rtx
);
4765 emit_label (label2
);
4770 if (op1_is_constant
&& EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
))
4771 && INTVAL (op1
) >= 0)
4773 /* This is extremely similar to the code for the unsigned case
4774 above. For 2.7 we should merge these variants, but for
4775 2.6.1 I don't want to touch the code for unsigned since that
4776 get used in C. The signed case will only be used by other
4780 unsigned HOST_WIDE_INT d
= INTVAL (op1
);
4781 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4782 floor_log2 (d
), tquotient
, 0);
4783 t2
= expand_binop (compute_mode
, and_optab
, op0
,
4784 gen_int_mode (d
- 1, compute_mode
),
4785 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4786 t3
= gen_reg_rtx (compute_mode
);
4787 t3
= emit_store_flag (t3
, NE
, t2
, const0_rtx
,
4788 compute_mode
, 1, 1);
4791 rtx_code_label
*lab
;
4792 lab
= gen_label_rtx ();
4793 do_cmp_and_jump (t2
, const0_rtx
, EQ
, compute_mode
, lab
);
4794 expand_inc (t1
, const1_rtx
);
4799 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
4805 /* Try using an instruction that produces both the quotient and
4806 remainder, using truncation. We can easily compensate the
4807 quotient or remainder to get ceiling rounding, once we have the
4808 remainder. Notice that we compute also the final remainder
4809 value here, and return the result right away. */
4810 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4811 target
= gen_reg_rtx (compute_mode
);
4814 remainder
= (REG_P (target
)
4815 ? target
: gen_reg_rtx (compute_mode
));
4816 quotient
= gen_reg_rtx (compute_mode
);
4820 quotient
= (REG_P (target
)
4821 ? target
: gen_reg_rtx (compute_mode
));
4822 remainder
= gen_reg_rtx (compute_mode
);
4825 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
, quotient
,
4828 /* This could be computed with a branch-less sequence.
4829 Save that for later. */
4831 rtx_code_label
*label
= gen_label_rtx ();
4832 do_cmp_and_jump (remainder
, const0_rtx
, EQ
,
4833 compute_mode
, label
);
4834 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4835 NULL_RTX
, 0, OPTAB_WIDEN
);
4836 do_cmp_and_jump (tem
, const0_rtx
, LT
, compute_mode
, label
);
4837 expand_inc (quotient
, const1_rtx
);
4838 expand_dec (remainder
, op1
);
4840 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4843 /* No luck with division elimination or divmod. Have to do it
4844 by conditionally adjusting op0 *and* the result. */
4846 rtx_code_label
*label1
, *label2
, *label3
, *label4
, *label5
;
4850 quotient
= gen_reg_rtx (compute_mode
);
4851 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4852 label1
= gen_label_rtx ();
4853 label2
= gen_label_rtx ();
4854 label3
= gen_label_rtx ();
4855 label4
= gen_label_rtx ();
4856 label5
= gen_label_rtx ();
4857 do_cmp_and_jump (op1
, const0_rtx
, LT
, compute_mode
, label2
);
4858 do_cmp_and_jump (adjusted_op0
, const0_rtx
, GT
,
4859 compute_mode
, label1
);
4860 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4861 quotient
, 0, OPTAB_LIB_WIDEN
);
4862 if (tem
!= quotient
)
4863 emit_move_insn (quotient
, tem
);
4864 emit_jump_insn (targetm
.gen_jump (label5
));
4866 emit_label (label1
);
4867 expand_dec (adjusted_op0
, const1_rtx
);
4868 emit_jump_insn (targetm
.gen_jump (label4
));
4870 emit_label (label2
);
4871 do_cmp_and_jump (adjusted_op0
, const0_rtx
, LT
,
4872 compute_mode
, label3
);
4873 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4874 quotient
, 0, OPTAB_LIB_WIDEN
);
4875 if (tem
!= quotient
)
4876 emit_move_insn (quotient
, tem
);
4877 emit_jump_insn (targetm
.gen_jump (label5
));
4879 emit_label (label3
);
4880 expand_inc (adjusted_op0
, const1_rtx
);
4881 emit_label (label4
);
4882 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4883 quotient
, 0, OPTAB_LIB_WIDEN
);
4884 if (tem
!= quotient
)
4885 emit_move_insn (quotient
, tem
);
4886 expand_inc (quotient
, const1_rtx
);
4887 emit_label (label5
);
4892 case EXACT_DIV_EXPR
:
4893 if (op1_is_constant
&& size
<= HOST_BITS_PER_WIDE_INT
)
4895 HOST_WIDE_INT d
= INTVAL (op1
);
4896 unsigned HOST_WIDE_INT ml
;
4900 pre_shift
= ctz_or_zero (d
);
4901 ml
= invert_mod2n (d
>> pre_shift
, size
);
4902 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4903 pre_shift
, NULL_RTX
, unsignedp
);
4904 quotient
= expand_mult (compute_mode
, t1
,
4905 gen_int_mode (ml
, compute_mode
),
4908 insn
= get_last_insn ();
4909 set_dst_reg_note (insn
, REG_EQUAL
,
4910 gen_rtx_fmt_ee (unsignedp
? UDIV
: DIV
,
4911 compute_mode
, op0
, op1
),
4916 case ROUND_DIV_EXPR
:
4917 case ROUND_MOD_EXPR
:
4921 rtx_code_label
*label
;
4922 label
= gen_label_rtx ();
4923 quotient
= gen_reg_rtx (compute_mode
);
4924 remainder
= gen_reg_rtx (compute_mode
);
4925 if (expand_twoval_binop (udivmod_optab
, op0
, op1
, quotient
, remainder
, 1) == 0)
4928 quotient
= expand_binop (compute_mode
, udiv_optab
, op0
, op1
,
4929 quotient
, 1, OPTAB_LIB_WIDEN
);
4930 tem
= expand_mult (compute_mode
, quotient
, op1
, NULL_RTX
, 1);
4931 remainder
= expand_binop (compute_mode
, sub_optab
, op0
, tem
,
4932 remainder
, 1, OPTAB_LIB_WIDEN
);
4934 tem
= plus_constant (compute_mode
, op1
, -1);
4935 tem
= expand_shift (RSHIFT_EXPR
, compute_mode
, tem
, 1, NULL_RTX
, 1);
4936 do_cmp_and_jump (remainder
, tem
, LEU
, compute_mode
, label
);
4937 expand_inc (quotient
, const1_rtx
);
4938 expand_dec (remainder
, op1
);
4943 rtx abs_rem
, abs_op1
, tem
, mask
;
4944 rtx_code_label
*label
;
4945 label
= gen_label_rtx ();
4946 quotient
= gen_reg_rtx (compute_mode
);
4947 remainder
= gen_reg_rtx (compute_mode
);
4948 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
, quotient
, remainder
, 0) == 0)
4951 quotient
= expand_binop (compute_mode
, sdiv_optab
, op0
, op1
,
4952 quotient
, 0, OPTAB_LIB_WIDEN
);
4953 tem
= expand_mult (compute_mode
, quotient
, op1
, NULL_RTX
, 0);
4954 remainder
= expand_binop (compute_mode
, sub_optab
, op0
, tem
,
4955 remainder
, 0, OPTAB_LIB_WIDEN
);
4957 abs_rem
= expand_abs (compute_mode
, remainder
, NULL_RTX
, 1, 0);
4958 abs_op1
= expand_abs (compute_mode
, op1
, NULL_RTX
, 1, 0);
4959 tem
= expand_shift (LSHIFT_EXPR
, compute_mode
, abs_rem
,
4961 do_cmp_and_jump (tem
, abs_op1
, LTU
, compute_mode
, label
);
4962 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4963 NULL_RTX
, 0, OPTAB_WIDEN
);
4964 mask
= expand_shift (RSHIFT_EXPR
, compute_mode
, tem
,
4965 size
- 1, NULL_RTX
, 0);
4966 tem
= expand_binop (compute_mode
, xor_optab
, mask
, const1_rtx
,
4967 NULL_RTX
, 0, OPTAB_WIDEN
);
4968 tem
= expand_binop (compute_mode
, sub_optab
, tem
, mask
,
4969 NULL_RTX
, 0, OPTAB_WIDEN
);
4970 expand_inc (quotient
, tem
);
4971 tem
= expand_binop (compute_mode
, xor_optab
, mask
, op1
,
4972 NULL_RTX
, 0, OPTAB_WIDEN
);
4973 tem
= expand_binop (compute_mode
, sub_optab
, tem
, mask
,
4974 NULL_RTX
, 0, OPTAB_WIDEN
);
4975 expand_dec (remainder
, tem
);
4978 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4986 if (target
&& GET_MODE (target
) != compute_mode
)
4991 /* Try to produce the remainder without producing the quotient.
4992 If we seem to have a divmod pattern that does not require widening,
4993 don't try widening here. We should really have a WIDEN argument
4994 to expand_twoval_binop, since what we'd really like to do here is
4995 1) try a mod insn in compute_mode
4996 2) try a divmod insn in compute_mode
4997 3) try a div insn in compute_mode and multiply-subtract to get
4999 4) try the same things with widening allowed. */
5001 = sign_expand_binop (compute_mode
, umod_optab
, smod_optab
,
5004 ((optab_handler (optab2
, compute_mode
)
5005 != CODE_FOR_nothing
)
5006 ? OPTAB_DIRECT
: OPTAB_WIDEN
));
5009 /* No luck there. Can we do remainder and divide at once
5010 without a library call? */
5011 remainder
= gen_reg_rtx (compute_mode
);
5012 if (! expand_twoval_binop ((unsignedp
5016 NULL_RTX
, remainder
, unsignedp
))
5021 return gen_lowpart (mode
, remainder
);
5024 /* Produce the quotient. Try a quotient insn, but not a library call.
5025 If we have a divmod in this mode, use it in preference to widening
5026 the div (for this test we assume it will not fail). Note that optab2
5027 is set to the one of the two optabs that the call below will use. */
5029 = sign_expand_binop (compute_mode
, udiv_optab
, sdiv_optab
,
5030 op0
, op1
, rem_flag
? NULL_RTX
: target
,
5032 ((optab_handler (optab2
, compute_mode
)
5033 != CODE_FOR_nothing
)
5034 ? OPTAB_DIRECT
: OPTAB_WIDEN
));
5038 /* No luck there. Try a quotient-and-remainder insn,
5039 keeping the quotient alone. */
5040 quotient
= gen_reg_rtx (compute_mode
);
5041 if (! expand_twoval_binop (unsignedp
? udivmod_optab
: sdivmod_optab
,
5043 quotient
, NULL_RTX
, unsignedp
))
5047 /* Still no luck. If we are not computing the remainder,
5048 use a library call for the quotient. */
5049 quotient
= sign_expand_binop (compute_mode
,
5050 udiv_optab
, sdiv_optab
,
5052 unsignedp
, OPTAB_LIB_WIDEN
);
5059 if (target
&& GET_MODE (target
) != compute_mode
)
5064 /* No divide instruction either. Use library for remainder. */
5065 remainder
= sign_expand_binop (compute_mode
, umod_optab
, smod_optab
,
5067 unsignedp
, OPTAB_LIB_WIDEN
);
5068 /* No remainder function. Try a quotient-and-remainder
5069 function, keeping the remainder. */
5072 remainder
= gen_reg_rtx (compute_mode
);
5073 if (!expand_twoval_binop_libfunc
5074 (unsignedp
? udivmod_optab
: sdivmod_optab
,
5076 NULL_RTX
, remainder
,
5077 unsignedp
? UMOD
: MOD
))
5078 remainder
= NULL_RTX
;
5083 /* We divided. Now finish doing X - Y * (X / Y). */
5084 remainder
= expand_mult (compute_mode
, quotient
, op1
,
5085 NULL_RTX
, unsignedp
);
5086 remainder
= expand_binop (compute_mode
, sub_optab
, op0
,
5087 remainder
, target
, unsignedp
,
5092 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
5095 /* Return a tree node with data type TYPE, describing the value of X.
5096 Usually this is an VAR_DECL, if there is no obvious better choice.
5097 X may be an expression, however we only support those expressions
5098 generated by loop.c. */
5101 make_tree (tree type
, rtx x
)
5105 switch (GET_CODE (x
))
5108 case CONST_WIDE_INT
:
5109 t
= wide_int_to_tree (type
, rtx_mode_t (x
, TYPE_MODE (type
)));
5113 STATIC_ASSERT (HOST_BITS_PER_WIDE_INT
* 2 <= MAX_BITSIZE_MODE_ANY_INT
);
5114 if (TARGET_SUPPORTS_WIDE_INT
== 0 && GET_MODE (x
) == VOIDmode
)
5115 t
= wide_int_to_tree (type
,
5116 wide_int::from_array (&CONST_DOUBLE_LOW (x
), 2,
5117 HOST_BITS_PER_WIDE_INT
* 2));
5119 t
= build_real (type
, *CONST_DOUBLE_REAL_VALUE (x
));
5125 int units
= CONST_VECTOR_NUNITS (x
);
5126 tree itype
= TREE_TYPE (type
);
5130 /* Build a tree with vector elements. */
5131 elts
= XALLOCAVEC (tree
, units
);
5132 for (i
= units
- 1; i
>= 0; --i
)
5134 rtx elt
= CONST_VECTOR_ELT (x
, i
);
5135 elts
[i
] = make_tree (itype
, elt
);
5138 return build_vector (type
, elts
);
5142 return fold_build2 (PLUS_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5143 make_tree (type
, XEXP (x
, 1)));
5146 return fold_build2 (MINUS_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5147 make_tree (type
, XEXP (x
, 1)));
5150 return fold_build1 (NEGATE_EXPR
, type
, make_tree (type
, XEXP (x
, 0)));
5153 return fold_build2 (MULT_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5154 make_tree (type
, XEXP (x
, 1)));
5157 return fold_build2 (LSHIFT_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5158 make_tree (type
, XEXP (x
, 1)));
5161 t
= unsigned_type_for (type
);
5162 return fold_convert (type
, build2 (RSHIFT_EXPR
, t
,
5163 make_tree (t
, XEXP (x
, 0)),
5164 make_tree (type
, XEXP (x
, 1))));
5167 t
= signed_type_for (type
);
5168 return fold_convert (type
, build2 (RSHIFT_EXPR
, t
,
5169 make_tree (t
, XEXP (x
, 0)),
5170 make_tree (type
, XEXP (x
, 1))));
5173 if (TREE_CODE (type
) != REAL_TYPE
)
5174 t
= signed_type_for (type
);
5178 return fold_convert (type
, build2 (TRUNC_DIV_EXPR
, t
,
5179 make_tree (t
, XEXP (x
, 0)),
5180 make_tree (t
, XEXP (x
, 1))));
5182 t
= unsigned_type_for (type
);
5183 return fold_convert (type
, build2 (TRUNC_DIV_EXPR
, t
,
5184 make_tree (t
, XEXP (x
, 0)),
5185 make_tree (t
, XEXP (x
, 1))));
5189 t
= lang_hooks
.types
.type_for_mode (GET_MODE (XEXP (x
, 0)),
5190 GET_CODE (x
) == ZERO_EXTEND
);
5191 return fold_convert (type
, make_tree (t
, XEXP (x
, 0)));
5194 return make_tree (type
, XEXP (x
, 0));
5197 t
= SYMBOL_REF_DECL (x
);
5199 return fold_convert (type
, build_fold_addr_expr (t
));
5203 t
= build_decl (RTL_LOCATION (x
), VAR_DECL
, NULL_TREE
, type
);
5205 /* If TYPE is a POINTER_TYPE, we might need to convert X from
5206 address mode to pointer mode. */
5207 if (POINTER_TYPE_P (type
))
5208 x
= convert_memory_address_addr_space
5209 (TYPE_MODE (type
), x
, TYPE_ADDR_SPACE (TREE_TYPE (type
)));
5211 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5212 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5213 t
->decl_with_rtl
.rtl
= x
;
5219 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5220 and returning TARGET.
5222 If TARGET is 0, a pseudo-register or constant is returned. */
5225 expand_and (machine_mode mode
, rtx op0
, rtx op1
, rtx target
)
5229 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
5230 tem
= simplify_binary_operation (AND
, mode
, op0
, op1
);
5232 tem
= expand_binop (mode
, and_optab
, op0
, op1
, target
, 0, OPTAB_LIB_WIDEN
);
5236 else if (tem
!= target
)
5237 emit_move_insn (target
, tem
);
5241 /* Helper function for emit_store_flag. */
5243 emit_cstore (rtx target
, enum insn_code icode
, enum rtx_code code
,
5244 machine_mode mode
, machine_mode compare_mode
,
5245 int unsignedp
, rtx x
, rtx y
, int normalizep
,
5246 machine_mode target_mode
)
5248 struct expand_operand ops
[4];
5249 rtx op0
, comparison
, subtarget
;
5251 machine_mode result_mode
= targetm
.cstore_mode (icode
);
5253 last
= get_last_insn ();
5254 x
= prepare_operand (icode
, x
, 2, mode
, compare_mode
, unsignedp
);
5255 y
= prepare_operand (icode
, y
, 3, mode
, compare_mode
, unsignedp
);
5258 delete_insns_since (last
);
5262 if (target_mode
== VOIDmode
)
5263 target_mode
= result_mode
;
5265 target
= gen_reg_rtx (target_mode
);
5267 comparison
= gen_rtx_fmt_ee (code
, result_mode
, x
, y
);
5269 create_output_operand (&ops
[0], optimize
? NULL_RTX
: target
, result_mode
);
5270 create_fixed_operand (&ops
[1], comparison
);
5271 create_fixed_operand (&ops
[2], x
);
5272 create_fixed_operand (&ops
[3], y
);
5273 if (!maybe_expand_insn (icode
, 4, ops
))
5275 delete_insns_since (last
);
5278 subtarget
= ops
[0].value
;
5280 /* If we are converting to a wider mode, first convert to
5281 TARGET_MODE, then normalize. This produces better combining
5282 opportunities on machines that have a SIGN_EXTRACT when we are
5283 testing a single bit. This mostly benefits the 68k.
5285 If STORE_FLAG_VALUE does not have the sign bit set when
5286 interpreted in MODE, we can do this conversion as unsigned, which
5287 is usually more efficient. */
5288 if (GET_MODE_SIZE (target_mode
) > GET_MODE_SIZE (result_mode
))
5290 convert_move (target
, subtarget
,
5291 val_signbit_known_clear_p (result_mode
,
5294 result_mode
= target_mode
;
5299 /* If we want to keep subexpressions around, don't reuse our last
5304 /* Now normalize to the proper value in MODE. Sometimes we don't
5305 have to do anything. */
5306 if (normalizep
== 0 || normalizep
== STORE_FLAG_VALUE
)
5308 /* STORE_FLAG_VALUE might be the most negative number, so write
5309 the comparison this way to avoid a compiler-time warning. */
5310 else if (- normalizep
== STORE_FLAG_VALUE
)
5311 op0
= expand_unop (result_mode
, neg_optab
, op0
, subtarget
, 0);
5313 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5314 it hard to use a value of just the sign bit due to ANSI integer
5315 constant typing rules. */
5316 else if (val_signbit_known_set_p (result_mode
, STORE_FLAG_VALUE
))
5317 op0
= expand_shift (RSHIFT_EXPR
, result_mode
, op0
,
5318 GET_MODE_BITSIZE (result_mode
) - 1, subtarget
,
5322 gcc_assert (STORE_FLAG_VALUE
& 1);
5324 op0
= expand_and (result_mode
, op0
, const1_rtx
, subtarget
);
5325 if (normalizep
== -1)
5326 op0
= expand_unop (result_mode
, neg_optab
, op0
, op0
, 0);
5329 /* If we were converting to a smaller mode, do the conversion now. */
5330 if (target_mode
!= result_mode
)
5332 convert_move (target
, op0
, 0);
5340 /* A subroutine of emit_store_flag only including "tricks" that do not
5341 need a recursive call. These are kept separate to avoid infinite
5345 emit_store_flag_1 (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5346 machine_mode mode
, int unsignedp
, int normalizep
,
5347 machine_mode target_mode
)
5350 enum insn_code icode
;
5351 machine_mode compare_mode
;
5352 enum mode_class mclass
;
5353 enum rtx_code scode
;
5356 code
= unsigned_condition (code
);
5357 scode
= swap_condition (code
);
5359 /* If one operand is constant, make it the second one. Only do this
5360 if the other operand is not constant as well. */
5362 if (swap_commutative_operands_p (op0
, op1
))
5364 std::swap (op0
, op1
);
5365 code
= swap_condition (code
);
5368 if (mode
== VOIDmode
)
5369 mode
= GET_MODE (op0
);
5371 /* For some comparisons with 1 and -1, we can convert this to
5372 comparisons with zero. This will often produce more opportunities for
5373 store-flag insns. */
5378 if (op1
== const1_rtx
)
5379 op1
= const0_rtx
, code
= LE
;
5382 if (op1
== constm1_rtx
)
5383 op1
= const0_rtx
, code
= LT
;
5386 if (op1
== const1_rtx
)
5387 op1
= const0_rtx
, code
= GT
;
5390 if (op1
== constm1_rtx
)
5391 op1
= const0_rtx
, code
= GE
;
5394 if (op1
== const1_rtx
)
5395 op1
= const0_rtx
, code
= NE
;
5398 if (op1
== const1_rtx
)
5399 op1
= const0_rtx
, code
= EQ
;
5405 /* If we are comparing a double-word integer with zero or -1, we can
5406 convert the comparison into one involving a single word. */
5407 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
* 2
5408 && GET_MODE_CLASS (mode
) == MODE_INT
5409 && (!MEM_P (op0
) || ! MEM_VOLATILE_P (op0
)))
5412 if ((code
== EQ
|| code
== NE
)
5413 && (op1
== const0_rtx
|| op1
== constm1_rtx
))
5417 /* Do a logical OR or AND of the two words and compare the
5419 op00
= simplify_gen_subreg (word_mode
, op0
, mode
, 0);
5420 op01
= simplify_gen_subreg (word_mode
, op0
, mode
, UNITS_PER_WORD
);
5421 tem
= expand_binop (word_mode
,
5422 op1
== const0_rtx
? ior_optab
: and_optab
,
5423 op00
, op01
, NULL_RTX
, unsignedp
,
5427 tem
= emit_store_flag (NULL_RTX
, code
, tem
, op1
, word_mode
,
5428 unsignedp
, normalizep
);
5430 else if ((code
== LT
|| code
== GE
) && op1
== const0_rtx
)
5434 /* If testing the sign bit, can just test on high word. */
5435 op0h
= simplify_gen_subreg (word_mode
, op0
, mode
,
5436 subreg_highpart_offset (word_mode
,
5438 tem
= emit_store_flag (NULL_RTX
, code
, op0h
, op1
, word_mode
,
5439 unsignedp
, normalizep
);
5446 if (target_mode
== VOIDmode
|| GET_MODE (tem
) == target_mode
)
5449 target
= gen_reg_rtx (target_mode
);
5451 convert_move (target
, tem
,
5452 !val_signbit_known_set_p (word_mode
,
5453 (normalizep
? normalizep
5454 : STORE_FLAG_VALUE
)));
5459 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5460 complement of A (for GE) and shifting the sign bit to the low bit. */
5461 if (op1
== const0_rtx
&& (code
== LT
|| code
== GE
)
5462 && GET_MODE_CLASS (mode
) == MODE_INT
5463 && (normalizep
|| STORE_FLAG_VALUE
== 1
5464 || val_signbit_p (mode
, STORE_FLAG_VALUE
)))
5471 /* If the result is to be wider than OP0, it is best to convert it
5472 first. If it is to be narrower, it is *incorrect* to convert it
5474 else if (GET_MODE_SIZE (target_mode
) > GET_MODE_SIZE (mode
))
5476 op0
= convert_modes (target_mode
, mode
, op0
, 0);
5480 if (target_mode
!= mode
)
5484 op0
= expand_unop (mode
, one_cmpl_optab
, op0
,
5485 ((STORE_FLAG_VALUE
== 1 || normalizep
)
5486 ? 0 : subtarget
), 0);
5488 if (STORE_FLAG_VALUE
== 1 || normalizep
)
5489 /* If we are supposed to produce a 0/1 value, we want to do
5490 a logical shift from the sign bit to the low-order bit; for
5491 a -1/0 value, we do an arithmetic shift. */
5492 op0
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
5493 GET_MODE_BITSIZE (mode
) - 1,
5494 subtarget
, normalizep
!= -1);
5496 if (mode
!= target_mode
)
5497 op0
= convert_modes (target_mode
, mode
, op0
, 0);
5502 mclass
= GET_MODE_CLASS (mode
);
5503 for (compare_mode
= mode
; compare_mode
!= VOIDmode
;
5504 compare_mode
= GET_MODE_WIDER_MODE (compare_mode
))
5506 machine_mode optab_mode
= mclass
== MODE_CC
? CCmode
: compare_mode
;
5507 icode
= optab_handler (cstore_optab
, optab_mode
);
5508 if (icode
!= CODE_FOR_nothing
)
5510 do_pending_stack_adjust ();
5511 rtx tem
= emit_cstore (target
, icode
, code
, mode
, compare_mode
,
5512 unsignedp
, op0
, op1
, normalizep
, target_mode
);
5516 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5518 tem
= emit_cstore (target
, icode
, scode
, mode
, compare_mode
,
5519 unsignedp
, op1
, op0
, normalizep
, target_mode
);
5530 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5531 and storing in TARGET. Normally return TARGET.
5532 Return 0 if that cannot be done.
5534 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5535 it is VOIDmode, they cannot both be CONST_INT.
5537 UNSIGNEDP is for the case where we have to widen the operands
5538 to perform the operation. It says to use zero-extension.
5540 NORMALIZEP is 1 if we should convert the result to be either zero
5541 or one. Normalize is -1 if we should convert the result to be
5542 either zero or -1. If NORMALIZEP is zero, the result will be left
5543 "raw" out of the scc insn. */
5546 emit_store_flag (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5547 machine_mode mode
, int unsignedp
, int normalizep
)
5549 machine_mode target_mode
= target
? GET_MODE (target
) : VOIDmode
;
5550 enum rtx_code rcode
;
5555 /* If we compare constants, we shouldn't use a store-flag operation,
5556 but a constant load. We can get there via the vanilla route that
5557 usually generates a compare-branch sequence, but will in this case
5558 fold the comparison to a constant, and thus elide the branch. */
5559 if (CONSTANT_P (op0
) && CONSTANT_P (op1
))
5562 tem
= emit_store_flag_1 (target
, code
, op0
, op1
, mode
, unsignedp
, normalizep
,
5567 /* If we reached here, we can't do this with a scc insn, however there
5568 are some comparisons that can be done in other ways. Don't do any
5569 of these cases if branches are very cheap. */
5570 if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
5573 /* See what we need to return. We can only return a 1, -1, or the
5576 if (normalizep
== 0)
5578 if (STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
5579 normalizep
= STORE_FLAG_VALUE
;
5581 else if (val_signbit_p (mode
, STORE_FLAG_VALUE
))
5587 last
= get_last_insn ();
5589 /* If optimizing, use different pseudo registers for each insn, instead
5590 of reusing the same pseudo. This leads to better CSE, but slows
5591 down the compiler, since there are more pseudos */
5592 subtarget
= (!optimize
5593 && (target_mode
== mode
)) ? target
: NULL_RTX
;
5594 trueval
= GEN_INT (normalizep
? normalizep
: STORE_FLAG_VALUE
);
5596 /* For floating-point comparisons, try the reverse comparison or try
5597 changing the "orderedness" of the comparison. */
5598 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5600 enum rtx_code first_code
;
5603 rcode
= reverse_condition_maybe_unordered (code
);
5604 if (can_compare_p (rcode
, mode
, ccp_store_flag
)
5605 && (code
== ORDERED
|| code
== UNORDERED
5606 || (! HONOR_NANS (mode
) && (code
== LTGT
|| code
== UNEQ
))
5607 || (! HONOR_SNANS (mode
) && (code
== EQ
|| code
== NE
))))
5609 int want_add
= ((STORE_FLAG_VALUE
== 1 && normalizep
== -1)
5610 || (STORE_FLAG_VALUE
== -1 && normalizep
== 1));
5612 /* For the reverse comparison, use either an addition or a XOR. */
5614 && rtx_cost (GEN_INT (normalizep
), mode
, PLUS
, 1,
5615 optimize_insn_for_speed_p ()) == 0)
5617 tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
5618 STORE_FLAG_VALUE
, target_mode
);
5620 return expand_binop (target_mode
, add_optab
, tem
,
5621 gen_int_mode (normalizep
, target_mode
),
5622 target
, 0, OPTAB_WIDEN
);
5625 && rtx_cost (trueval
, mode
, XOR
, 1,
5626 optimize_insn_for_speed_p ()) == 0)
5628 tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
5629 normalizep
, target_mode
);
5631 return expand_binop (target_mode
, xor_optab
, tem
, trueval
,
5632 target
, INTVAL (trueval
) >= 0, OPTAB_WIDEN
);
5636 delete_insns_since (last
);
5638 /* Cannot split ORDERED and UNORDERED, only try the above trick. */
5639 if (code
== ORDERED
|| code
== UNORDERED
)
5642 and_them
= split_comparison (code
, mode
, &first_code
, &code
);
5644 /* If there are no NaNs, the first comparison should always fall through.
5645 Effectively change the comparison to the other one. */
5646 if (!HONOR_NANS (mode
))
5648 gcc_assert (first_code
== (and_them
? ORDERED
: UNORDERED
));
5649 return emit_store_flag_1 (target
, code
, op0
, op1
, mode
, 0, normalizep
,
5653 if (!HAVE_conditional_move
)
5656 /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
5657 conditional move. */
5658 tem
= emit_store_flag_1 (subtarget
, first_code
, op0
, op1
, mode
, 0,
5659 normalizep
, target_mode
);
5664 tem
= emit_conditional_move (target
, code
, op0
, op1
, mode
,
5665 tem
, const0_rtx
, GET_MODE (tem
), 0);
5667 tem
= emit_conditional_move (target
, code
, op0
, op1
, mode
,
5668 trueval
, tem
, GET_MODE (tem
), 0);
5671 delete_insns_since (last
);
5675 /* The remaining tricks only apply to integer comparisons. */
5677 if (GET_MODE_CLASS (mode
) != MODE_INT
)
5680 /* If this is an equality comparison of integers, we can try to exclusive-or
5681 (or subtract) the two operands and use a recursive call to try the
5682 comparison with zero. Don't do any of these cases if branches are
5685 if ((code
== EQ
|| code
== NE
) && op1
!= const0_rtx
)
5687 tem
= expand_binop (mode
, xor_optab
, op0
, op1
, subtarget
, 1,
5691 tem
= expand_binop (mode
, sub_optab
, op0
, op1
, subtarget
, 1,
5694 tem
= emit_store_flag (target
, code
, tem
, const0_rtx
,
5695 mode
, unsignedp
, normalizep
);
5699 delete_insns_since (last
);
5702 /* For integer comparisons, try the reverse comparison. However, for
5703 small X and if we'd have anyway to extend, implementing "X != 0"
5704 as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
5705 rcode
= reverse_condition (code
);
5706 if (can_compare_p (rcode
, mode
, ccp_store_flag
)
5707 && ! (optab_handler (cstore_optab
, mode
) == CODE_FOR_nothing
5709 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
5710 && op1
== const0_rtx
))
5712 int want_add
= ((STORE_FLAG_VALUE
== 1 && normalizep
== -1)
5713 || (STORE_FLAG_VALUE
== -1 && normalizep
== 1));
5715 /* Again, for the reverse comparison, use either an addition or a XOR. */
5717 && rtx_cost (GEN_INT (normalizep
), mode
, PLUS
, 1,
5718 optimize_insn_for_speed_p ()) == 0)
5720 tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
5721 STORE_FLAG_VALUE
, target_mode
);
5723 tem
= expand_binop (target_mode
, add_optab
, tem
,
5724 gen_int_mode (normalizep
, target_mode
),
5725 target
, 0, OPTAB_WIDEN
);
5728 && rtx_cost (trueval
, mode
, XOR
, 1,
5729 optimize_insn_for_speed_p ()) == 0)
5731 tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
5732 normalizep
, target_mode
);
5734 tem
= expand_binop (target_mode
, xor_optab
, tem
, trueval
, target
,
5735 INTVAL (trueval
) >= 0, OPTAB_WIDEN
);
5740 delete_insns_since (last
);
5743 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5744 the constant zero. Reject all other comparisons at this point. Only
5745 do LE and GT if branches are expensive since they are expensive on
5746 2-operand machines. */
5748 if (op1
!= const0_rtx
5749 || (code
!= EQ
&& code
!= NE
5750 && (BRANCH_COST (optimize_insn_for_speed_p (),
5751 false) <= 1 || (code
!= LE
&& code
!= GT
))))
5754 /* Try to put the result of the comparison in the sign bit. Assume we can't
5755 do the necessary operation below. */
5759 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5760 the sign bit set. */
5764 /* This is destructive, so SUBTARGET can't be OP0. */
5765 if (rtx_equal_p (subtarget
, op0
))
5768 tem
= expand_binop (mode
, sub_optab
, op0
, const1_rtx
, subtarget
, 0,
5771 tem
= expand_binop (mode
, ior_optab
, op0
, tem
, subtarget
, 0,
5775 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5776 number of bits in the mode of OP0, minus one. */
5780 if (rtx_equal_p (subtarget
, op0
))
5783 tem
= maybe_expand_shift (RSHIFT_EXPR
, mode
, op0
,
5784 GET_MODE_BITSIZE (mode
) - 1,
5787 tem
= expand_binop (mode
, sub_optab
, tem
, op0
, subtarget
, 0,
5791 if (code
== EQ
|| code
== NE
)
5793 /* For EQ or NE, one way to do the comparison is to apply an operation
5794 that converts the operand into a positive number if it is nonzero
5795 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5796 for NE we negate. This puts the result in the sign bit. Then we
5797 normalize with a shift, if needed.
5799 Two operations that can do the above actions are ABS and FFS, so try
5800 them. If that doesn't work, and MODE is smaller than a full word,
5801 we can use zero-extension to the wider mode (an unsigned conversion)
5802 as the operation. */
5804 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5805 that is compensated by the subsequent overflow when subtracting
5808 if (optab_handler (abs_optab
, mode
) != CODE_FOR_nothing
)
5809 tem
= expand_unop (mode
, abs_optab
, op0
, subtarget
, 1);
5810 else if (optab_handler (ffs_optab
, mode
) != CODE_FOR_nothing
)
5811 tem
= expand_unop (mode
, ffs_optab
, op0
, subtarget
, 1);
5812 else if (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
5814 tem
= convert_modes (word_mode
, mode
, op0
, 1);
5821 tem
= expand_binop (mode
, sub_optab
, tem
, const1_rtx
, subtarget
,
5824 tem
= expand_unop (mode
, neg_optab
, tem
, subtarget
, 0);
5827 /* If we couldn't do it that way, for NE we can "or" the two's complement
5828 of the value with itself. For EQ, we take the one's complement of
5829 that "or", which is an extra insn, so we only handle EQ if branches
5834 || BRANCH_COST (optimize_insn_for_speed_p (),
5837 if (rtx_equal_p (subtarget
, op0
))
5840 tem
= expand_unop (mode
, neg_optab
, op0
, subtarget
, 0);
5841 tem
= expand_binop (mode
, ior_optab
, tem
, op0
, subtarget
, 0,
5844 if (tem
&& code
== EQ
)
5845 tem
= expand_unop (mode
, one_cmpl_optab
, tem
, subtarget
, 0);
5849 if (tem
&& normalizep
)
5850 tem
= maybe_expand_shift (RSHIFT_EXPR
, mode
, tem
,
5851 GET_MODE_BITSIZE (mode
) - 1,
5852 subtarget
, normalizep
== 1);
5858 else if (GET_MODE (tem
) != target_mode
)
5860 convert_move (target
, tem
, 0);
5863 else if (!subtarget
)
5865 emit_move_insn (target
, tem
);
5870 delete_insns_since (last
);
5875 /* Like emit_store_flag, but always succeeds. */
5878 emit_store_flag_force (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5879 machine_mode mode
, int unsignedp
, int normalizep
)
5882 rtx_code_label
*label
;
5883 rtx trueval
, falseval
;
5885 /* First see if emit_store_flag can do the job. */
5886 tem
= emit_store_flag (target
, code
, op0
, op1
, mode
, unsignedp
, normalizep
);
5891 target
= gen_reg_rtx (word_mode
);
5893 /* If this failed, we have to do this with set/compare/jump/set code.
5894 For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
5895 trueval
= normalizep
? GEN_INT (normalizep
) : const1_rtx
;
5897 && GET_MODE_CLASS (mode
) == MODE_INT
5900 && op1
== const0_rtx
)
5902 label
= gen_label_rtx ();
5903 do_compare_rtx_and_jump (target
, const0_rtx
, EQ
, unsignedp
, mode
,
5904 NULL_RTX
, NULL
, label
, -1);
5905 emit_move_insn (target
, trueval
);
5911 || reg_mentioned_p (target
, op0
) || reg_mentioned_p (target
, op1
))
5912 target
= gen_reg_rtx (GET_MODE (target
));
5914 /* Jump in the right direction if the target cannot implement CODE
5915 but can jump on its reverse condition. */
5916 falseval
= const0_rtx
;
5917 if (! can_compare_p (code
, mode
, ccp_jump
)
5918 && (! FLOAT_MODE_P (mode
)
5919 || code
== ORDERED
|| code
== UNORDERED
5920 || (! HONOR_NANS (mode
) && (code
== LTGT
|| code
== UNEQ
))
5921 || (! HONOR_SNANS (mode
) && (code
== EQ
|| code
== NE
))))
5923 enum rtx_code rcode
;
5924 if (FLOAT_MODE_P (mode
))
5925 rcode
= reverse_condition_maybe_unordered (code
);
5927 rcode
= reverse_condition (code
);
5929 /* Canonicalize to UNORDERED for the libcall. */
5930 if (can_compare_p (rcode
, mode
, ccp_jump
)
5931 || (code
== ORDERED
&& ! can_compare_p (ORDERED
, mode
, ccp_jump
)))
5934 trueval
= const0_rtx
;
5939 emit_move_insn (target
, trueval
);
5940 label
= gen_label_rtx ();
5941 do_compare_rtx_and_jump (op0
, op1
, code
, unsignedp
, mode
, NULL_RTX
, NULL
,
5944 emit_move_insn (target
, falseval
);
5950 /* Perform possibly multi-word comparison and conditional jump to LABEL
5951 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
5952 now a thin wrapper around do_compare_rtx_and_jump. */
5955 do_cmp_and_jump (rtx arg1
, rtx arg2
, enum rtx_code op
, machine_mode mode
,
5956 rtx_code_label
*label
)
5958 int unsignedp
= (op
== LTU
|| op
== LEU
|| op
== GTU
|| op
== GEU
);
5959 do_compare_rtx_and_jump (arg1
, arg2
, op
, unsignedp
, mode
, NULL_RTX
,