PR tree-optimization/79472
[official-gcc.git] / gcc / asan.c
blobbf564a46b283339849508e3be0bfb212819a3464
1 /* AddressSanitizer, a fast memory error detector.
2 Copyright (C) 2012-2017 Free Software Foundation, Inc.
3 Contributed by Kostya Serebryany <kcc@google.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "cfghooks.h"
31 #include "alloc-pool.h"
32 #include "tree-pass.h"
33 #include "memmodel.h"
34 #include "tm_p.h"
35 #include "ssa.h"
36 #include "stringpool.h"
37 #include "tree-ssanames.h"
38 #include "optabs.h"
39 #include "emit-rtl.h"
40 #include "cgraph.h"
41 #include "gimple-pretty-print.h"
42 #include "alias.h"
43 #include "fold-const.h"
44 #include "cfganal.h"
45 #include "gimplify.h"
46 #include "gimple-iterator.h"
47 #include "varasm.h"
48 #include "stor-layout.h"
49 #include "tree-iterator.h"
50 #include "asan.h"
51 #include "dojump.h"
52 #include "explow.h"
53 #include "expr.h"
54 #include "output.h"
55 #include "langhooks.h"
56 #include "cfgloop.h"
57 #include "gimple-builder.h"
58 #include "ubsan.h"
59 #include "params.h"
60 #include "builtins.h"
61 #include "fnmatch.h"
62 #include "tree-inline.h"
64 /* AddressSanitizer finds out-of-bounds and use-after-free bugs
65 with <2x slowdown on average.
67 The tool consists of two parts:
68 instrumentation module (this file) and a run-time library.
69 The instrumentation module adds a run-time check before every memory insn.
70 For a 8- or 16- byte load accessing address X:
71 ShadowAddr = (X >> 3) + Offset
72 ShadowValue = *(char*)ShadowAddr; // *(short*) for 16-byte access.
73 if (ShadowValue)
74 __asan_report_load8(X);
75 For a load of N bytes (N=1, 2 or 4) from address X:
76 ShadowAddr = (X >> 3) + Offset
77 ShadowValue = *(char*)ShadowAddr;
78 if (ShadowValue)
79 if ((X & 7) + N - 1 > ShadowValue)
80 __asan_report_loadN(X);
81 Stores are instrumented similarly, but using __asan_report_storeN functions.
82 A call too __asan_init_vN() is inserted to the list of module CTORs.
83 N is the version number of the AddressSanitizer API. The changes between the
84 API versions are listed in libsanitizer/asan/asan_interface_internal.h.
86 The run-time library redefines malloc (so that redzone are inserted around
87 the allocated memory) and free (so that reuse of free-ed memory is delayed),
88 provides __asan_report* and __asan_init_vN functions.
90 Read more:
91 http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
93 The current implementation supports detection of out-of-bounds and
94 use-after-free in the heap, on the stack and for global variables.
96 [Protection of stack variables]
98 To understand how detection of out-of-bounds and use-after-free works
99 for stack variables, lets look at this example on x86_64 where the
100 stack grows downward:
103 foo ()
105 char a[23] = {0};
106 int b[2] = {0};
108 a[5] = 1;
109 b[1] = 2;
111 return a[5] + b[1];
114 For this function, the stack protected by asan will be organized as
115 follows, from the top of the stack to the bottom:
117 Slot 1/ [red zone of 32 bytes called 'RIGHT RedZone']
119 Slot 2/ [8 bytes of red zone, that adds up to the space of 'a' to make
120 the next slot be 32 bytes aligned; this one is called Partial
121 Redzone; this 32 bytes alignment is an asan constraint]
123 Slot 3/ [24 bytes for variable 'a']
125 Slot 4/ [red zone of 32 bytes called 'Middle RedZone']
127 Slot 5/ [24 bytes of Partial Red Zone (similar to slot 2]
129 Slot 6/ [8 bytes for variable 'b']
131 Slot 7/ [32 bytes of Red Zone at the bottom of the stack, called
132 'LEFT RedZone']
134 The 32 bytes of LEFT red zone at the bottom of the stack can be
135 decomposed as such:
137 1/ The first 8 bytes contain a magical asan number that is always
138 0x41B58AB3.
140 2/ The following 8 bytes contains a pointer to a string (to be
141 parsed at runtime by the runtime asan library), which format is
142 the following:
144 "<function-name> <space> <num-of-variables-on-the-stack>
145 (<32-bytes-aligned-offset-in-bytes-of-variable> <space>
146 <length-of-var-in-bytes> ){n} "
148 where '(...){n}' means the content inside the parenthesis occurs 'n'
149 times, with 'n' being the number of variables on the stack.
151 3/ The following 8 bytes contain the PC of the current function which
152 will be used by the run-time library to print an error message.
154 4/ The following 8 bytes are reserved for internal use by the run-time.
156 The shadow memory for that stack layout is going to look like this:
158 - content of shadow memory 8 bytes for slot 7: 0xF1F1F1F1.
159 The F1 byte pattern is a magic number called
160 ASAN_STACK_MAGIC_LEFT and is a way for the runtime to know that
161 the memory for that shadow byte is part of a the LEFT red zone
162 intended to seat at the bottom of the variables on the stack.
164 - content of shadow memory 8 bytes for slots 6 and 5:
165 0xF4F4F400. The F4 byte pattern is a magic number
166 called ASAN_STACK_MAGIC_PARTIAL. It flags the fact that the
167 memory region for this shadow byte is a PARTIAL red zone
168 intended to pad a variable A, so that the slot following
169 {A,padding} is 32 bytes aligned.
171 Note that the fact that the least significant byte of this
172 shadow memory content is 00 means that 8 bytes of its
173 corresponding memory (which corresponds to the memory of
174 variable 'b') is addressable.
176 - content of shadow memory 8 bytes for slot 4: 0xF2F2F2F2.
177 The F2 byte pattern is a magic number called
178 ASAN_STACK_MAGIC_MIDDLE. It flags the fact that the memory
179 region for this shadow byte is a MIDDLE red zone intended to
180 seat between two 32 aligned slots of {variable,padding}.
182 - content of shadow memory 8 bytes for slot 3 and 2:
183 0xF4000000. This represents is the concatenation of
184 variable 'a' and the partial red zone following it, like what we
185 had for variable 'b'. The least significant 3 bytes being 00
186 means that the 3 bytes of variable 'a' are addressable.
188 - content of shadow memory 8 bytes for slot 1: 0xF3F3F3F3.
189 The F3 byte pattern is a magic number called
190 ASAN_STACK_MAGIC_RIGHT. It flags the fact that the memory
191 region for this shadow byte is a RIGHT red zone intended to seat
192 at the top of the variables of the stack.
194 Note that the real variable layout is done in expand_used_vars in
195 cfgexpand.c. As far as Address Sanitizer is concerned, it lays out
196 stack variables as well as the different red zones, emits some
197 prologue code to populate the shadow memory as to poison (mark as
198 non-accessible) the regions of the red zones and mark the regions of
199 stack variables as accessible, and emit some epilogue code to
200 un-poison (mark as accessible) the regions of red zones right before
201 the function exits.
203 [Protection of global variables]
205 The basic idea is to insert a red zone between two global variables
206 and install a constructor function that calls the asan runtime to do
207 the populating of the relevant shadow memory regions at load time.
209 So the global variables are laid out as to insert a red zone between
210 them. The size of the red zones is so that each variable starts on a
211 32 bytes boundary.
213 Then a constructor function is installed so that, for each global
214 variable, it calls the runtime asan library function
215 __asan_register_globals_with an instance of this type:
217 struct __asan_global
219 // Address of the beginning of the global variable.
220 const void *__beg;
222 // Initial size of the global variable.
223 uptr __size;
225 // Size of the global variable + size of the red zone. This
226 // size is 32 bytes aligned.
227 uptr __size_with_redzone;
229 // Name of the global variable.
230 const void *__name;
232 // Name of the module where the global variable is declared.
233 const void *__module_name;
235 // 1 if it has dynamic initialization, 0 otherwise.
236 uptr __has_dynamic_init;
238 // A pointer to struct that contains source location, could be NULL.
239 __asan_global_source_location *__location;
242 A destructor function that calls the runtime asan library function
243 _asan_unregister_globals is also installed. */
245 static unsigned HOST_WIDE_INT asan_shadow_offset_value;
246 static bool asan_shadow_offset_computed;
247 static vec<char *> sanitized_sections;
249 /* Set of variable declarations that are going to be guarded by
250 use-after-scope sanitizer. */
252 static hash_set<tree> *asan_handled_variables = NULL;
254 hash_set <tree> *asan_used_labels = NULL;
256 /* Sets shadow offset to value in string VAL. */
258 bool
259 set_asan_shadow_offset (const char *val)
261 char *endp;
263 errno = 0;
264 #ifdef HAVE_LONG_LONG
265 asan_shadow_offset_value = strtoull (val, &endp, 0);
266 #else
267 asan_shadow_offset_value = strtoul (val, &endp, 0);
268 #endif
269 if (!(*val != '\0' && *endp == '\0' && errno == 0))
270 return false;
272 asan_shadow_offset_computed = true;
274 return true;
277 /* Set list of user-defined sections that need to be sanitized. */
279 void
280 set_sanitized_sections (const char *sections)
282 char *pat;
283 unsigned i;
284 FOR_EACH_VEC_ELT (sanitized_sections, i, pat)
285 free (pat);
286 sanitized_sections.truncate (0);
288 for (const char *s = sections; *s; )
290 const char *end;
291 for (end = s; *end && *end != ','; ++end);
292 size_t len = end - s;
293 sanitized_sections.safe_push (xstrndup (s, len));
294 s = *end ? end + 1 : end;
298 bool
299 asan_mark_p (gimple *stmt, enum asan_mark_flags flag)
301 return (gimple_call_internal_p (stmt, IFN_ASAN_MARK)
302 && tree_to_uhwi (gimple_call_arg (stmt, 0)) == flag);
305 bool
306 asan_sanitize_stack_p (void)
308 return ((flag_sanitize & SANITIZE_ADDRESS)
309 && ASAN_STACK
310 && !asan_no_sanitize_address_p ());
313 /* Checks whether section SEC should be sanitized. */
315 static bool
316 section_sanitized_p (const char *sec)
318 char *pat;
319 unsigned i;
320 FOR_EACH_VEC_ELT (sanitized_sections, i, pat)
321 if (fnmatch (pat, sec, FNM_PERIOD) == 0)
322 return true;
323 return false;
326 /* Returns Asan shadow offset. */
328 static unsigned HOST_WIDE_INT
329 asan_shadow_offset ()
331 if (!asan_shadow_offset_computed)
333 asan_shadow_offset_computed = true;
334 asan_shadow_offset_value = targetm.asan_shadow_offset ();
336 return asan_shadow_offset_value;
339 alias_set_type asan_shadow_set = -1;
341 /* Pointer types to 1, 2 or 4 byte integers in shadow memory. A separate
342 alias set is used for all shadow memory accesses. */
343 static GTY(()) tree shadow_ptr_types[3];
345 /* Decl for __asan_option_detect_stack_use_after_return. */
346 static GTY(()) tree asan_detect_stack_use_after_return;
348 /* Hashtable support for memory references used by gimple
349 statements. */
351 /* This type represents a reference to a memory region. */
352 struct asan_mem_ref
354 /* The expression of the beginning of the memory region. */
355 tree start;
357 /* The size of the access. */
358 HOST_WIDE_INT access_size;
361 object_allocator <asan_mem_ref> asan_mem_ref_pool ("asan_mem_ref");
363 /* Initializes an instance of asan_mem_ref. */
365 static void
366 asan_mem_ref_init (asan_mem_ref *ref, tree start, HOST_WIDE_INT access_size)
368 ref->start = start;
369 ref->access_size = access_size;
372 /* Allocates memory for an instance of asan_mem_ref into the memory
373 pool returned by asan_mem_ref_get_alloc_pool and initialize it.
374 START is the address of (or the expression pointing to) the
375 beginning of memory reference. ACCESS_SIZE is the size of the
376 access to the referenced memory. */
378 static asan_mem_ref*
379 asan_mem_ref_new (tree start, HOST_WIDE_INT access_size)
381 asan_mem_ref *ref = asan_mem_ref_pool.allocate ();
383 asan_mem_ref_init (ref, start, access_size);
384 return ref;
387 /* This builds and returns a pointer to the end of the memory region
388 that starts at START and of length LEN. */
390 tree
391 asan_mem_ref_get_end (tree start, tree len)
393 if (len == NULL_TREE || integer_zerop (len))
394 return start;
396 if (!ptrofftype_p (len))
397 len = convert_to_ptrofftype (len);
399 return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (start), start, len);
402 /* Return a tree expression that represents the end of the referenced
403 memory region. Beware that this function can actually build a new
404 tree expression. */
406 tree
407 asan_mem_ref_get_end (const asan_mem_ref *ref, tree len)
409 return asan_mem_ref_get_end (ref->start, len);
412 struct asan_mem_ref_hasher : nofree_ptr_hash <asan_mem_ref>
414 static inline hashval_t hash (const asan_mem_ref *);
415 static inline bool equal (const asan_mem_ref *, const asan_mem_ref *);
418 /* Hash a memory reference. */
420 inline hashval_t
421 asan_mem_ref_hasher::hash (const asan_mem_ref *mem_ref)
423 return iterative_hash_expr (mem_ref->start, 0);
426 /* Compare two memory references. We accept the length of either
427 memory references to be NULL_TREE. */
429 inline bool
430 asan_mem_ref_hasher::equal (const asan_mem_ref *m1,
431 const asan_mem_ref *m2)
433 return operand_equal_p (m1->start, m2->start, 0);
436 static hash_table<asan_mem_ref_hasher> *asan_mem_ref_ht;
438 /* Returns a reference to the hash table containing memory references.
439 This function ensures that the hash table is created. Note that
440 this hash table is updated by the function
441 update_mem_ref_hash_table. */
443 static hash_table<asan_mem_ref_hasher> *
444 get_mem_ref_hash_table ()
446 if (!asan_mem_ref_ht)
447 asan_mem_ref_ht = new hash_table<asan_mem_ref_hasher> (10);
449 return asan_mem_ref_ht;
452 /* Clear all entries from the memory references hash table. */
454 static void
455 empty_mem_ref_hash_table ()
457 if (asan_mem_ref_ht)
458 asan_mem_ref_ht->empty ();
461 /* Free the memory references hash table. */
463 static void
464 free_mem_ref_resources ()
466 delete asan_mem_ref_ht;
467 asan_mem_ref_ht = NULL;
469 asan_mem_ref_pool.release ();
472 /* Return true iff the memory reference REF has been instrumented. */
474 static bool
475 has_mem_ref_been_instrumented (tree ref, HOST_WIDE_INT access_size)
477 asan_mem_ref r;
478 asan_mem_ref_init (&r, ref, access_size);
480 asan_mem_ref *saved_ref = get_mem_ref_hash_table ()->find (&r);
481 return saved_ref && saved_ref->access_size >= access_size;
484 /* Return true iff the memory reference REF has been instrumented. */
486 static bool
487 has_mem_ref_been_instrumented (const asan_mem_ref *ref)
489 return has_mem_ref_been_instrumented (ref->start, ref->access_size);
492 /* Return true iff access to memory region starting at REF and of
493 length LEN has been instrumented. */
495 static bool
496 has_mem_ref_been_instrumented (const asan_mem_ref *ref, tree len)
498 HOST_WIDE_INT size_in_bytes
499 = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
501 return size_in_bytes != -1
502 && has_mem_ref_been_instrumented (ref->start, size_in_bytes);
505 /* Set REF to the memory reference present in a gimple assignment
506 ASSIGNMENT. Return true upon successful completion, false
507 otherwise. */
509 static bool
510 get_mem_ref_of_assignment (const gassign *assignment,
511 asan_mem_ref *ref,
512 bool *ref_is_store)
514 gcc_assert (gimple_assign_single_p (assignment));
516 if (gimple_store_p (assignment)
517 && !gimple_clobber_p (assignment))
519 ref->start = gimple_assign_lhs (assignment);
520 *ref_is_store = true;
522 else if (gimple_assign_load_p (assignment))
524 ref->start = gimple_assign_rhs1 (assignment);
525 *ref_is_store = false;
527 else
528 return false;
530 ref->access_size = int_size_in_bytes (TREE_TYPE (ref->start));
531 return true;
534 /* Return the memory references contained in a gimple statement
535 representing a builtin call that has to do with memory access. */
537 static bool
538 get_mem_refs_of_builtin_call (const gcall *call,
539 asan_mem_ref *src0,
540 tree *src0_len,
541 bool *src0_is_store,
542 asan_mem_ref *src1,
543 tree *src1_len,
544 bool *src1_is_store,
545 asan_mem_ref *dst,
546 tree *dst_len,
547 bool *dst_is_store,
548 bool *dest_is_deref,
549 bool *intercepted_p)
551 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
553 tree callee = gimple_call_fndecl (call);
554 tree source0 = NULL_TREE, source1 = NULL_TREE,
555 dest = NULL_TREE, len = NULL_TREE;
556 bool is_store = true, got_reference_p = false;
557 HOST_WIDE_INT access_size = 1;
559 *intercepted_p = asan_intercepted_p ((DECL_FUNCTION_CODE (callee)));
561 switch (DECL_FUNCTION_CODE (callee))
563 /* (s, s, n) style memops. */
564 case BUILT_IN_BCMP:
565 case BUILT_IN_MEMCMP:
566 source0 = gimple_call_arg (call, 0);
567 source1 = gimple_call_arg (call, 1);
568 len = gimple_call_arg (call, 2);
569 break;
571 /* (src, dest, n) style memops. */
572 case BUILT_IN_BCOPY:
573 source0 = gimple_call_arg (call, 0);
574 dest = gimple_call_arg (call, 1);
575 len = gimple_call_arg (call, 2);
576 break;
578 /* (dest, src, n) style memops. */
579 case BUILT_IN_MEMCPY:
580 case BUILT_IN_MEMCPY_CHK:
581 case BUILT_IN_MEMMOVE:
582 case BUILT_IN_MEMMOVE_CHK:
583 case BUILT_IN_MEMPCPY:
584 case BUILT_IN_MEMPCPY_CHK:
585 dest = gimple_call_arg (call, 0);
586 source0 = gimple_call_arg (call, 1);
587 len = gimple_call_arg (call, 2);
588 break;
590 /* (dest, n) style memops. */
591 case BUILT_IN_BZERO:
592 dest = gimple_call_arg (call, 0);
593 len = gimple_call_arg (call, 1);
594 break;
596 /* (dest, x, n) style memops*/
597 case BUILT_IN_MEMSET:
598 case BUILT_IN_MEMSET_CHK:
599 dest = gimple_call_arg (call, 0);
600 len = gimple_call_arg (call, 2);
601 break;
603 case BUILT_IN_STRLEN:
604 source0 = gimple_call_arg (call, 0);
605 len = gimple_call_lhs (call);
606 break;
608 /* And now the __atomic* and __sync builtins.
609 These are handled differently from the classical memory memory
610 access builtins above. */
612 case BUILT_IN_ATOMIC_LOAD_1:
613 is_store = false;
614 /* FALLTHRU */
615 case BUILT_IN_SYNC_FETCH_AND_ADD_1:
616 case BUILT_IN_SYNC_FETCH_AND_SUB_1:
617 case BUILT_IN_SYNC_FETCH_AND_OR_1:
618 case BUILT_IN_SYNC_FETCH_AND_AND_1:
619 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
620 case BUILT_IN_SYNC_FETCH_AND_NAND_1:
621 case BUILT_IN_SYNC_ADD_AND_FETCH_1:
622 case BUILT_IN_SYNC_SUB_AND_FETCH_1:
623 case BUILT_IN_SYNC_OR_AND_FETCH_1:
624 case BUILT_IN_SYNC_AND_AND_FETCH_1:
625 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
626 case BUILT_IN_SYNC_NAND_AND_FETCH_1:
627 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
628 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1:
629 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_1:
630 case BUILT_IN_SYNC_LOCK_RELEASE_1:
631 case BUILT_IN_ATOMIC_EXCHANGE_1:
632 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
633 case BUILT_IN_ATOMIC_STORE_1:
634 case BUILT_IN_ATOMIC_ADD_FETCH_1:
635 case BUILT_IN_ATOMIC_SUB_FETCH_1:
636 case BUILT_IN_ATOMIC_AND_FETCH_1:
637 case BUILT_IN_ATOMIC_NAND_FETCH_1:
638 case BUILT_IN_ATOMIC_XOR_FETCH_1:
639 case BUILT_IN_ATOMIC_OR_FETCH_1:
640 case BUILT_IN_ATOMIC_FETCH_ADD_1:
641 case BUILT_IN_ATOMIC_FETCH_SUB_1:
642 case BUILT_IN_ATOMIC_FETCH_AND_1:
643 case BUILT_IN_ATOMIC_FETCH_NAND_1:
644 case BUILT_IN_ATOMIC_FETCH_XOR_1:
645 case BUILT_IN_ATOMIC_FETCH_OR_1:
646 access_size = 1;
647 goto do_atomic;
649 case BUILT_IN_ATOMIC_LOAD_2:
650 is_store = false;
651 /* FALLTHRU */
652 case BUILT_IN_SYNC_FETCH_AND_ADD_2:
653 case BUILT_IN_SYNC_FETCH_AND_SUB_2:
654 case BUILT_IN_SYNC_FETCH_AND_OR_2:
655 case BUILT_IN_SYNC_FETCH_AND_AND_2:
656 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
657 case BUILT_IN_SYNC_FETCH_AND_NAND_2:
658 case BUILT_IN_SYNC_ADD_AND_FETCH_2:
659 case BUILT_IN_SYNC_SUB_AND_FETCH_2:
660 case BUILT_IN_SYNC_OR_AND_FETCH_2:
661 case BUILT_IN_SYNC_AND_AND_FETCH_2:
662 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
663 case BUILT_IN_SYNC_NAND_AND_FETCH_2:
664 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
665 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2:
666 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_2:
667 case BUILT_IN_SYNC_LOCK_RELEASE_2:
668 case BUILT_IN_ATOMIC_EXCHANGE_2:
669 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
670 case BUILT_IN_ATOMIC_STORE_2:
671 case BUILT_IN_ATOMIC_ADD_FETCH_2:
672 case BUILT_IN_ATOMIC_SUB_FETCH_2:
673 case BUILT_IN_ATOMIC_AND_FETCH_2:
674 case BUILT_IN_ATOMIC_NAND_FETCH_2:
675 case BUILT_IN_ATOMIC_XOR_FETCH_2:
676 case BUILT_IN_ATOMIC_OR_FETCH_2:
677 case BUILT_IN_ATOMIC_FETCH_ADD_2:
678 case BUILT_IN_ATOMIC_FETCH_SUB_2:
679 case BUILT_IN_ATOMIC_FETCH_AND_2:
680 case BUILT_IN_ATOMIC_FETCH_NAND_2:
681 case BUILT_IN_ATOMIC_FETCH_XOR_2:
682 case BUILT_IN_ATOMIC_FETCH_OR_2:
683 access_size = 2;
684 goto do_atomic;
686 case BUILT_IN_ATOMIC_LOAD_4:
687 is_store = false;
688 /* FALLTHRU */
689 case BUILT_IN_SYNC_FETCH_AND_ADD_4:
690 case BUILT_IN_SYNC_FETCH_AND_SUB_4:
691 case BUILT_IN_SYNC_FETCH_AND_OR_4:
692 case BUILT_IN_SYNC_FETCH_AND_AND_4:
693 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
694 case BUILT_IN_SYNC_FETCH_AND_NAND_4:
695 case BUILT_IN_SYNC_ADD_AND_FETCH_4:
696 case BUILT_IN_SYNC_SUB_AND_FETCH_4:
697 case BUILT_IN_SYNC_OR_AND_FETCH_4:
698 case BUILT_IN_SYNC_AND_AND_FETCH_4:
699 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
700 case BUILT_IN_SYNC_NAND_AND_FETCH_4:
701 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
702 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4:
703 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_4:
704 case BUILT_IN_SYNC_LOCK_RELEASE_4:
705 case BUILT_IN_ATOMIC_EXCHANGE_4:
706 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
707 case BUILT_IN_ATOMIC_STORE_4:
708 case BUILT_IN_ATOMIC_ADD_FETCH_4:
709 case BUILT_IN_ATOMIC_SUB_FETCH_4:
710 case BUILT_IN_ATOMIC_AND_FETCH_4:
711 case BUILT_IN_ATOMIC_NAND_FETCH_4:
712 case BUILT_IN_ATOMIC_XOR_FETCH_4:
713 case BUILT_IN_ATOMIC_OR_FETCH_4:
714 case BUILT_IN_ATOMIC_FETCH_ADD_4:
715 case BUILT_IN_ATOMIC_FETCH_SUB_4:
716 case BUILT_IN_ATOMIC_FETCH_AND_4:
717 case BUILT_IN_ATOMIC_FETCH_NAND_4:
718 case BUILT_IN_ATOMIC_FETCH_XOR_4:
719 case BUILT_IN_ATOMIC_FETCH_OR_4:
720 access_size = 4;
721 goto do_atomic;
723 case BUILT_IN_ATOMIC_LOAD_8:
724 is_store = false;
725 /* FALLTHRU */
726 case BUILT_IN_SYNC_FETCH_AND_ADD_8:
727 case BUILT_IN_SYNC_FETCH_AND_SUB_8:
728 case BUILT_IN_SYNC_FETCH_AND_OR_8:
729 case BUILT_IN_SYNC_FETCH_AND_AND_8:
730 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
731 case BUILT_IN_SYNC_FETCH_AND_NAND_8:
732 case BUILT_IN_SYNC_ADD_AND_FETCH_8:
733 case BUILT_IN_SYNC_SUB_AND_FETCH_8:
734 case BUILT_IN_SYNC_OR_AND_FETCH_8:
735 case BUILT_IN_SYNC_AND_AND_FETCH_8:
736 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
737 case BUILT_IN_SYNC_NAND_AND_FETCH_8:
738 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
739 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8:
740 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_8:
741 case BUILT_IN_SYNC_LOCK_RELEASE_8:
742 case BUILT_IN_ATOMIC_EXCHANGE_8:
743 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
744 case BUILT_IN_ATOMIC_STORE_8:
745 case BUILT_IN_ATOMIC_ADD_FETCH_8:
746 case BUILT_IN_ATOMIC_SUB_FETCH_8:
747 case BUILT_IN_ATOMIC_AND_FETCH_8:
748 case BUILT_IN_ATOMIC_NAND_FETCH_8:
749 case BUILT_IN_ATOMIC_XOR_FETCH_8:
750 case BUILT_IN_ATOMIC_OR_FETCH_8:
751 case BUILT_IN_ATOMIC_FETCH_ADD_8:
752 case BUILT_IN_ATOMIC_FETCH_SUB_8:
753 case BUILT_IN_ATOMIC_FETCH_AND_8:
754 case BUILT_IN_ATOMIC_FETCH_NAND_8:
755 case BUILT_IN_ATOMIC_FETCH_XOR_8:
756 case BUILT_IN_ATOMIC_FETCH_OR_8:
757 access_size = 8;
758 goto do_atomic;
760 case BUILT_IN_ATOMIC_LOAD_16:
761 is_store = false;
762 /* FALLTHRU */
763 case BUILT_IN_SYNC_FETCH_AND_ADD_16:
764 case BUILT_IN_SYNC_FETCH_AND_SUB_16:
765 case BUILT_IN_SYNC_FETCH_AND_OR_16:
766 case BUILT_IN_SYNC_FETCH_AND_AND_16:
767 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
768 case BUILT_IN_SYNC_FETCH_AND_NAND_16:
769 case BUILT_IN_SYNC_ADD_AND_FETCH_16:
770 case BUILT_IN_SYNC_SUB_AND_FETCH_16:
771 case BUILT_IN_SYNC_OR_AND_FETCH_16:
772 case BUILT_IN_SYNC_AND_AND_FETCH_16:
773 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
774 case BUILT_IN_SYNC_NAND_AND_FETCH_16:
775 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
776 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16:
777 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_16:
778 case BUILT_IN_SYNC_LOCK_RELEASE_16:
779 case BUILT_IN_ATOMIC_EXCHANGE_16:
780 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
781 case BUILT_IN_ATOMIC_STORE_16:
782 case BUILT_IN_ATOMIC_ADD_FETCH_16:
783 case BUILT_IN_ATOMIC_SUB_FETCH_16:
784 case BUILT_IN_ATOMIC_AND_FETCH_16:
785 case BUILT_IN_ATOMIC_NAND_FETCH_16:
786 case BUILT_IN_ATOMIC_XOR_FETCH_16:
787 case BUILT_IN_ATOMIC_OR_FETCH_16:
788 case BUILT_IN_ATOMIC_FETCH_ADD_16:
789 case BUILT_IN_ATOMIC_FETCH_SUB_16:
790 case BUILT_IN_ATOMIC_FETCH_AND_16:
791 case BUILT_IN_ATOMIC_FETCH_NAND_16:
792 case BUILT_IN_ATOMIC_FETCH_XOR_16:
793 case BUILT_IN_ATOMIC_FETCH_OR_16:
794 access_size = 16;
795 /* FALLTHRU */
796 do_atomic:
798 dest = gimple_call_arg (call, 0);
799 /* DEST represents the address of a memory location.
800 instrument_derefs wants the memory location, so lets
801 dereference the address DEST before handing it to
802 instrument_derefs. */
803 tree type = build_nonstandard_integer_type (access_size
804 * BITS_PER_UNIT, 1);
805 dest = build2 (MEM_REF, type, dest,
806 build_int_cst (build_pointer_type (char_type_node), 0));
807 break;
810 default:
811 /* The other builtins memory access are not instrumented in this
812 function because they either don't have any length parameter,
813 or their length parameter is just a limit. */
814 break;
817 if (len != NULL_TREE)
819 if (source0 != NULL_TREE)
821 src0->start = source0;
822 src0->access_size = access_size;
823 *src0_len = len;
824 *src0_is_store = false;
827 if (source1 != NULL_TREE)
829 src1->start = source1;
830 src1->access_size = access_size;
831 *src1_len = len;
832 *src1_is_store = false;
835 if (dest != NULL_TREE)
837 dst->start = dest;
838 dst->access_size = access_size;
839 *dst_len = len;
840 *dst_is_store = true;
843 got_reference_p = true;
845 else if (dest)
847 dst->start = dest;
848 dst->access_size = access_size;
849 *dst_len = NULL_TREE;
850 *dst_is_store = is_store;
851 *dest_is_deref = true;
852 got_reference_p = true;
855 return got_reference_p;
858 /* Return true iff a given gimple statement has been instrumented.
859 Note that the statement is "defined" by the memory references it
860 contains. */
862 static bool
863 has_stmt_been_instrumented_p (gimple *stmt)
865 if (gimple_assign_single_p (stmt))
867 bool r_is_store;
868 asan_mem_ref r;
869 asan_mem_ref_init (&r, NULL, 1);
871 if (get_mem_ref_of_assignment (as_a <gassign *> (stmt), &r,
872 &r_is_store))
873 return has_mem_ref_been_instrumented (&r);
875 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
877 asan_mem_ref src0, src1, dest;
878 asan_mem_ref_init (&src0, NULL, 1);
879 asan_mem_ref_init (&src1, NULL, 1);
880 asan_mem_ref_init (&dest, NULL, 1);
882 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
883 bool src0_is_store = false, src1_is_store = false,
884 dest_is_store = false, dest_is_deref = false, intercepted_p = true;
885 if (get_mem_refs_of_builtin_call (as_a <gcall *> (stmt),
886 &src0, &src0_len, &src0_is_store,
887 &src1, &src1_len, &src1_is_store,
888 &dest, &dest_len, &dest_is_store,
889 &dest_is_deref, &intercepted_p))
891 if (src0.start != NULL_TREE
892 && !has_mem_ref_been_instrumented (&src0, src0_len))
893 return false;
895 if (src1.start != NULL_TREE
896 && !has_mem_ref_been_instrumented (&src1, src1_len))
897 return false;
899 if (dest.start != NULL_TREE
900 && !has_mem_ref_been_instrumented (&dest, dest_len))
901 return false;
903 return true;
906 else if (is_gimple_call (stmt) && gimple_store_p (stmt))
908 asan_mem_ref r;
909 asan_mem_ref_init (&r, NULL, 1);
911 r.start = gimple_call_lhs (stmt);
912 r.access_size = int_size_in_bytes (TREE_TYPE (r.start));
913 return has_mem_ref_been_instrumented (&r);
916 return false;
919 /* Insert a memory reference into the hash table. */
921 static void
922 update_mem_ref_hash_table (tree ref, HOST_WIDE_INT access_size)
924 hash_table<asan_mem_ref_hasher> *ht = get_mem_ref_hash_table ();
926 asan_mem_ref r;
927 asan_mem_ref_init (&r, ref, access_size);
929 asan_mem_ref **slot = ht->find_slot (&r, INSERT);
930 if (*slot == NULL || (*slot)->access_size < access_size)
931 *slot = asan_mem_ref_new (ref, access_size);
934 /* Initialize shadow_ptr_types array. */
936 static void
937 asan_init_shadow_ptr_types (void)
939 asan_shadow_set = new_alias_set ();
940 tree types[3] = { signed_char_type_node, short_integer_type_node,
941 integer_type_node };
943 for (unsigned i = 0; i < 3; i++)
945 shadow_ptr_types[i] = build_distinct_type_copy (types[i]);
946 TYPE_ALIAS_SET (shadow_ptr_types[i]) = asan_shadow_set;
947 shadow_ptr_types[i] = build_pointer_type (shadow_ptr_types[i]);
950 initialize_sanitizer_builtins ();
953 /* Create ADDR_EXPR of STRING_CST with the PP pretty printer text. */
955 static tree
956 asan_pp_string (pretty_printer *pp)
958 const char *buf = pp_formatted_text (pp);
959 size_t len = strlen (buf);
960 tree ret = build_string (len + 1, buf);
961 TREE_TYPE (ret)
962 = build_array_type (TREE_TYPE (shadow_ptr_types[0]),
963 build_index_type (size_int (len)));
964 TREE_READONLY (ret) = 1;
965 TREE_STATIC (ret) = 1;
966 return build1 (ADDR_EXPR, shadow_ptr_types[0], ret);
969 /* Return a CONST_INT representing 4 subsequent shadow memory bytes. */
971 static rtx
972 asan_shadow_cst (unsigned char shadow_bytes[4])
974 int i;
975 unsigned HOST_WIDE_INT val = 0;
976 gcc_assert (WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN);
977 for (i = 0; i < 4; i++)
978 val |= (unsigned HOST_WIDE_INT) shadow_bytes[BYTES_BIG_ENDIAN ? 3 - i : i]
979 << (BITS_PER_UNIT * i);
980 return gen_int_mode (val, SImode);
983 /* Clear shadow memory at SHADOW_MEM, LEN bytes. Can't call a library call here
984 though. */
986 static void
987 asan_clear_shadow (rtx shadow_mem, HOST_WIDE_INT len)
989 rtx_insn *insn, *insns, *jump;
990 rtx_code_label *top_label;
991 rtx end, addr, tmp;
993 start_sequence ();
994 clear_storage (shadow_mem, GEN_INT (len), BLOCK_OP_NORMAL);
995 insns = get_insns ();
996 end_sequence ();
997 for (insn = insns; insn; insn = NEXT_INSN (insn))
998 if (CALL_P (insn))
999 break;
1000 if (insn == NULL_RTX)
1002 emit_insn (insns);
1003 return;
1006 gcc_assert ((len & 3) == 0);
1007 top_label = gen_label_rtx ();
1008 addr = copy_to_mode_reg (Pmode, XEXP (shadow_mem, 0));
1009 shadow_mem = adjust_automodify_address (shadow_mem, SImode, addr, 0);
1010 end = force_reg (Pmode, plus_constant (Pmode, addr, len));
1011 emit_label (top_label);
1013 emit_move_insn (shadow_mem, const0_rtx);
1014 tmp = expand_simple_binop (Pmode, PLUS, addr, gen_int_mode (4, Pmode), addr,
1015 true, OPTAB_LIB_WIDEN);
1016 if (tmp != addr)
1017 emit_move_insn (addr, tmp);
1018 emit_cmp_and_jump_insns (addr, end, LT, NULL_RTX, Pmode, true, top_label);
1019 jump = get_last_insn ();
1020 gcc_assert (JUMP_P (jump));
1021 add_int_reg_note (jump, REG_BR_PROB, REG_BR_PROB_BASE * 80 / 100);
1024 void
1025 asan_function_start (void)
1027 section *fnsec = function_section (current_function_decl);
1028 switch_to_section (fnsec);
1029 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LASANPC",
1030 current_function_funcdef_no);
1033 /* Return number of shadow bytes that are occupied by a local variable
1034 of SIZE bytes. */
1036 static unsigned HOST_WIDE_INT
1037 shadow_mem_size (unsigned HOST_WIDE_INT size)
1039 return ROUND_UP (size, ASAN_SHADOW_GRANULARITY) / ASAN_SHADOW_GRANULARITY;
1042 /* Insert code to protect stack vars. The prologue sequence should be emitted
1043 directly, epilogue sequence returned. BASE is the register holding the
1044 stack base, against which OFFSETS array offsets are relative to, OFFSETS
1045 array contains pairs of offsets in reverse order, always the end offset
1046 of some gap that needs protection followed by starting offset,
1047 and DECLS is an array of representative decls for each var partition.
1048 LENGTH is the length of the OFFSETS array, DECLS array is LENGTH / 2 - 1
1049 elements long (OFFSETS include gap before the first variable as well
1050 as gaps after each stack variable). PBASE is, if non-NULL, some pseudo
1051 register which stack vars DECL_RTLs are based on. Either BASE should be
1052 assigned to PBASE, when not doing use after return protection, or
1053 corresponding address based on __asan_stack_malloc* return value. */
1055 rtx_insn *
1056 asan_emit_stack_protection (rtx base, rtx pbase, unsigned int alignb,
1057 HOST_WIDE_INT *offsets, tree *decls, int length)
1059 rtx shadow_base, shadow_mem, ret, mem, orig_base;
1060 rtx_code_label *lab;
1061 rtx_insn *insns;
1062 char buf[32];
1063 unsigned char shadow_bytes[4];
1064 HOST_WIDE_INT base_offset = offsets[length - 1];
1065 HOST_WIDE_INT base_align_bias = 0, offset, prev_offset;
1066 HOST_WIDE_INT asan_frame_size = offsets[0] - base_offset;
1067 HOST_WIDE_INT last_offset;
1068 int l;
1069 unsigned char cur_shadow_byte = ASAN_STACK_MAGIC_LEFT;
1070 tree str_cst, decl, id;
1071 int use_after_return_class = -1;
1073 if (shadow_ptr_types[0] == NULL_TREE)
1074 asan_init_shadow_ptr_types ();
1076 /* First of all, prepare the description string. */
1077 pretty_printer asan_pp;
1079 pp_decimal_int (&asan_pp, length / 2 - 1);
1080 pp_space (&asan_pp);
1081 for (l = length - 2; l; l -= 2)
1083 tree decl = decls[l / 2 - 1];
1084 pp_wide_integer (&asan_pp, offsets[l] - base_offset);
1085 pp_space (&asan_pp);
1086 pp_wide_integer (&asan_pp, offsets[l - 1] - offsets[l]);
1087 pp_space (&asan_pp);
1088 if (DECL_P (decl) && DECL_NAME (decl))
1090 pp_decimal_int (&asan_pp, IDENTIFIER_LENGTH (DECL_NAME (decl)));
1091 pp_space (&asan_pp);
1092 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
1094 else
1095 pp_string (&asan_pp, "9 <unknown>");
1096 pp_space (&asan_pp);
1098 str_cst = asan_pp_string (&asan_pp);
1100 /* Emit the prologue sequence. */
1101 if (asan_frame_size > 32 && asan_frame_size <= 65536 && pbase
1102 && ASAN_USE_AFTER_RETURN)
1104 use_after_return_class = floor_log2 (asan_frame_size - 1) - 5;
1105 /* __asan_stack_malloc_N guarantees alignment
1106 N < 6 ? (64 << N) : 4096 bytes. */
1107 if (alignb > (use_after_return_class < 6
1108 ? (64U << use_after_return_class) : 4096U))
1109 use_after_return_class = -1;
1110 else if (alignb > ASAN_RED_ZONE_SIZE && (asan_frame_size & (alignb - 1)))
1111 base_align_bias = ((asan_frame_size + alignb - 1)
1112 & ~(alignb - HOST_WIDE_INT_1)) - asan_frame_size;
1114 /* Align base if target is STRICT_ALIGNMENT. */
1115 if (STRICT_ALIGNMENT)
1116 base = expand_binop (Pmode, and_optab, base,
1117 gen_int_mode (-((GET_MODE_ALIGNMENT (SImode)
1118 << ASAN_SHADOW_SHIFT)
1119 / BITS_PER_UNIT), Pmode), NULL_RTX,
1120 1, OPTAB_DIRECT);
1122 if (use_after_return_class == -1 && pbase)
1123 emit_move_insn (pbase, base);
1125 base = expand_binop (Pmode, add_optab, base,
1126 gen_int_mode (base_offset - base_align_bias, Pmode),
1127 NULL_RTX, 1, OPTAB_DIRECT);
1128 orig_base = NULL_RTX;
1129 if (use_after_return_class != -1)
1131 if (asan_detect_stack_use_after_return == NULL_TREE)
1133 id = get_identifier ("__asan_option_detect_stack_use_after_return");
1134 decl = build_decl (BUILTINS_LOCATION, VAR_DECL, id,
1135 integer_type_node);
1136 SET_DECL_ASSEMBLER_NAME (decl, id);
1137 TREE_ADDRESSABLE (decl) = 1;
1138 DECL_ARTIFICIAL (decl) = 1;
1139 DECL_IGNORED_P (decl) = 1;
1140 DECL_EXTERNAL (decl) = 1;
1141 TREE_STATIC (decl) = 1;
1142 TREE_PUBLIC (decl) = 1;
1143 TREE_USED (decl) = 1;
1144 asan_detect_stack_use_after_return = decl;
1146 orig_base = gen_reg_rtx (Pmode);
1147 emit_move_insn (orig_base, base);
1148 ret = expand_normal (asan_detect_stack_use_after_return);
1149 lab = gen_label_rtx ();
1150 int very_likely = REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1);
1151 emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
1152 VOIDmode, 0, lab, very_likely);
1153 snprintf (buf, sizeof buf, "__asan_stack_malloc_%d",
1154 use_after_return_class);
1155 ret = init_one_libfunc (buf);
1156 ret = emit_library_call_value (ret, NULL_RTX, LCT_NORMAL, ptr_mode, 1,
1157 GEN_INT (asan_frame_size
1158 + base_align_bias),
1159 TYPE_MODE (pointer_sized_int_node));
1160 /* __asan_stack_malloc_[n] returns a pointer to fake stack if succeeded
1161 and NULL otherwise. Check RET value is NULL here and jump over the
1162 BASE reassignment in this case. Otherwise, reassign BASE to RET. */
1163 int very_unlikely = REG_BR_PROB_BASE / 2000 - 1;
1164 emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
1165 VOIDmode, 0, lab, very_unlikely);
1166 ret = convert_memory_address (Pmode, ret);
1167 emit_move_insn (base, ret);
1168 emit_label (lab);
1169 emit_move_insn (pbase, expand_binop (Pmode, add_optab, base,
1170 gen_int_mode (base_align_bias
1171 - base_offset, Pmode),
1172 NULL_RTX, 1, OPTAB_DIRECT));
1174 mem = gen_rtx_MEM (ptr_mode, base);
1175 mem = adjust_address (mem, VOIDmode, base_align_bias);
1176 emit_move_insn (mem, gen_int_mode (ASAN_STACK_FRAME_MAGIC, ptr_mode));
1177 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1178 emit_move_insn (mem, expand_normal (str_cst));
1179 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1180 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANPC", current_function_funcdef_no);
1181 id = get_identifier (buf);
1182 decl = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
1183 VAR_DECL, id, char_type_node);
1184 SET_DECL_ASSEMBLER_NAME (decl, id);
1185 TREE_ADDRESSABLE (decl) = 1;
1186 TREE_READONLY (decl) = 1;
1187 DECL_ARTIFICIAL (decl) = 1;
1188 DECL_IGNORED_P (decl) = 1;
1189 TREE_STATIC (decl) = 1;
1190 TREE_PUBLIC (decl) = 0;
1191 TREE_USED (decl) = 1;
1192 DECL_INITIAL (decl) = decl;
1193 TREE_ASM_WRITTEN (decl) = 1;
1194 TREE_ASM_WRITTEN (id) = 1;
1195 emit_move_insn (mem, expand_normal (build_fold_addr_expr (decl)));
1196 shadow_base = expand_binop (Pmode, lshr_optab, base,
1197 GEN_INT (ASAN_SHADOW_SHIFT),
1198 NULL_RTX, 1, OPTAB_DIRECT);
1199 shadow_base
1200 = plus_constant (Pmode, shadow_base,
1201 asan_shadow_offset ()
1202 + (base_align_bias >> ASAN_SHADOW_SHIFT));
1203 gcc_assert (asan_shadow_set != -1
1204 && (ASAN_RED_ZONE_SIZE >> ASAN_SHADOW_SHIFT) == 4);
1205 shadow_mem = gen_rtx_MEM (SImode, shadow_base);
1206 set_mem_alias_set (shadow_mem, asan_shadow_set);
1207 if (STRICT_ALIGNMENT)
1208 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1209 prev_offset = base_offset;
1210 for (l = length; l; l -= 2)
1212 if (l == 2)
1213 cur_shadow_byte = ASAN_STACK_MAGIC_RIGHT;
1214 offset = offsets[l - 1];
1215 if ((offset - base_offset) & (ASAN_RED_ZONE_SIZE - 1))
1217 int i;
1218 HOST_WIDE_INT aoff
1219 = base_offset + ((offset - base_offset)
1220 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1221 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1222 (aoff - prev_offset)
1223 >> ASAN_SHADOW_SHIFT);
1224 prev_offset = aoff;
1225 for (i = 0; i < 4; i++, aoff += ASAN_SHADOW_GRANULARITY)
1226 if (aoff < offset)
1228 if (aoff < offset - (HOST_WIDE_INT)ASAN_SHADOW_GRANULARITY + 1)
1229 shadow_bytes[i] = 0;
1230 else
1231 shadow_bytes[i] = offset - aoff;
1233 else
1234 shadow_bytes[i] = ASAN_STACK_MAGIC_MIDDLE;
1235 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1236 offset = aoff;
1238 while (offset <= offsets[l - 2] - ASAN_RED_ZONE_SIZE)
1240 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1241 (offset - prev_offset)
1242 >> ASAN_SHADOW_SHIFT);
1243 prev_offset = offset;
1244 memset (shadow_bytes, cur_shadow_byte, 4);
1245 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1246 offset += ASAN_RED_ZONE_SIZE;
1248 cur_shadow_byte = ASAN_STACK_MAGIC_MIDDLE;
1250 do_pending_stack_adjust ();
1252 /* Construct epilogue sequence. */
1253 start_sequence ();
1255 lab = NULL;
1256 if (use_after_return_class != -1)
1258 rtx_code_label *lab2 = gen_label_rtx ();
1259 char c = (char) ASAN_STACK_MAGIC_USE_AFTER_RET;
1260 int very_likely = REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1);
1261 emit_cmp_and_jump_insns (orig_base, base, EQ, NULL_RTX,
1262 VOIDmode, 0, lab2, very_likely);
1263 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1264 set_mem_alias_set (shadow_mem, asan_shadow_set);
1265 mem = gen_rtx_MEM (ptr_mode, base);
1266 mem = adjust_address (mem, VOIDmode, base_align_bias);
1267 emit_move_insn (mem, gen_int_mode (ASAN_STACK_RETIRED_MAGIC, ptr_mode));
1268 unsigned HOST_WIDE_INT sz = asan_frame_size >> ASAN_SHADOW_SHIFT;
1269 if (use_after_return_class < 5
1270 && can_store_by_pieces (sz, builtin_memset_read_str, &c,
1271 BITS_PER_UNIT, true))
1272 store_by_pieces (shadow_mem, sz, builtin_memset_read_str, &c,
1273 BITS_PER_UNIT, true, 0);
1274 else if (use_after_return_class >= 5
1275 || !set_storage_via_setmem (shadow_mem,
1276 GEN_INT (sz),
1277 gen_int_mode (c, QImode),
1278 BITS_PER_UNIT, BITS_PER_UNIT,
1279 -1, sz, sz, sz))
1281 snprintf (buf, sizeof buf, "__asan_stack_free_%d",
1282 use_after_return_class);
1283 ret = init_one_libfunc (buf);
1284 rtx addr = convert_memory_address (ptr_mode, base);
1285 rtx orig_addr = convert_memory_address (ptr_mode, orig_base);
1286 emit_library_call (ret, LCT_NORMAL, ptr_mode, 3, addr, ptr_mode,
1287 GEN_INT (asan_frame_size + base_align_bias),
1288 TYPE_MODE (pointer_sized_int_node),
1289 orig_addr, ptr_mode);
1291 lab = gen_label_rtx ();
1292 emit_jump (lab);
1293 emit_label (lab2);
1296 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1297 set_mem_alias_set (shadow_mem, asan_shadow_set);
1299 if (STRICT_ALIGNMENT)
1300 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1302 /* Unpoison shadow memory of a stack at the very end of a function.
1303 As we're poisoning stack variables at the end of their scope,
1304 shadow memory must be properly unpoisoned here. The easiest approach
1305 would be to collect all variables that should not be unpoisoned and
1306 we unpoison shadow memory of the whole stack except ranges
1307 occupied by these variables. */
1308 last_offset = base_offset;
1309 HOST_WIDE_INT current_offset = last_offset;
1310 if (length)
1312 HOST_WIDE_INT var_end_offset = 0;
1313 HOST_WIDE_INT stack_start = offsets[length - 1];
1314 gcc_assert (last_offset == stack_start);
1316 for (int l = length - 2; l > 0; l -= 2)
1318 HOST_WIDE_INT var_offset = offsets[l];
1319 current_offset = var_offset;
1320 var_end_offset = offsets[l - 1];
1321 HOST_WIDE_INT rounded_size = ROUND_UP (var_end_offset - var_offset,
1322 BITS_PER_UNIT);
1324 /* Should we unpoison the variable? */
1325 if (asan_handled_variables != NULL
1326 && asan_handled_variables->contains (decl))
1328 if (dump_file && (dump_flags & TDF_DETAILS))
1330 const char *n = (DECL_NAME (decl)
1331 ? IDENTIFIER_POINTER (DECL_NAME (decl))
1332 : "<unknown>");
1333 fprintf (dump_file, "Unpoisoning shadow stack for variable: "
1334 "%s (%" PRId64 "B)\n", n,
1335 var_end_offset - var_offset);
1338 unsigned HOST_WIDE_INT s
1339 = shadow_mem_size (current_offset - last_offset);
1340 asan_clear_shadow (shadow_mem, s);
1341 HOST_WIDE_INT shift
1342 = shadow_mem_size (current_offset - last_offset + rounded_size);
1343 shadow_mem = adjust_address (shadow_mem, VOIDmode, shift);
1344 last_offset = var_offset + rounded_size;
1345 current_offset = last_offset;
1350 /* Handle last redzone. */
1351 current_offset = offsets[0];
1352 asan_clear_shadow (shadow_mem,
1353 shadow_mem_size (current_offset - last_offset));
1356 /* Clean-up set with instrumented stack variables. */
1357 delete asan_handled_variables;
1358 asan_handled_variables = NULL;
1359 delete asan_used_labels;
1360 asan_used_labels = NULL;
1362 do_pending_stack_adjust ();
1363 if (lab)
1364 emit_label (lab);
1366 insns = get_insns ();
1367 end_sequence ();
1368 return insns;
1371 /* Return true if DECL, a global var, might be overridden and needs
1372 therefore a local alias. */
1374 static bool
1375 asan_needs_local_alias (tree decl)
1377 return DECL_WEAK (decl) || !targetm.binds_local_p (decl);
1380 /* Return true if DECL, a global var, is an artificial ODR indicator symbol
1381 therefore doesn't need protection. */
1383 static bool
1384 is_odr_indicator (tree decl)
1386 return (DECL_ARTIFICIAL (decl)
1387 && lookup_attribute ("asan odr indicator", DECL_ATTRIBUTES (decl)));
1390 /* Return true if DECL is a VAR_DECL that should be protected
1391 by Address Sanitizer, by appending a red zone with protected
1392 shadow memory after it and aligning it to at least
1393 ASAN_RED_ZONE_SIZE bytes. */
1395 bool
1396 asan_protect_global (tree decl)
1398 if (!ASAN_GLOBALS)
1399 return false;
1401 rtx rtl, symbol;
1403 if (TREE_CODE (decl) == STRING_CST)
1405 /* Instrument all STRING_CSTs except those created
1406 by asan_pp_string here. */
1407 if (shadow_ptr_types[0] != NULL_TREE
1408 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
1409 && TREE_TYPE (TREE_TYPE (decl)) == TREE_TYPE (shadow_ptr_types[0]))
1410 return false;
1411 return true;
1413 if (!VAR_P (decl)
1414 /* TLS vars aren't statically protectable. */
1415 || DECL_THREAD_LOCAL_P (decl)
1416 /* Externs will be protected elsewhere. */
1417 || DECL_EXTERNAL (decl)
1418 || !DECL_RTL_SET_P (decl)
1419 /* Comdat vars pose an ABI problem, we can't know if
1420 the var that is selected by the linker will have
1421 padding or not. */
1422 || DECL_ONE_ONLY (decl)
1423 /* Similarly for common vars. People can use -fno-common.
1424 Note: Linux kernel is built with -fno-common, so we do instrument
1425 globals there even if it is C. */
1426 || (DECL_COMMON (decl) && TREE_PUBLIC (decl))
1427 /* Don't protect if using user section, often vars placed
1428 into user section from multiple TUs are then assumed
1429 to be an array of such vars, putting padding in there
1430 breaks this assumption. */
1431 || (DECL_SECTION_NAME (decl) != NULL
1432 && !symtab_node::get (decl)->implicit_section
1433 && !section_sanitized_p (DECL_SECTION_NAME (decl)))
1434 || DECL_SIZE (decl) == 0
1435 || ASAN_RED_ZONE_SIZE * BITS_PER_UNIT > MAX_OFILE_ALIGNMENT
1436 || !valid_constant_size_p (DECL_SIZE_UNIT (decl))
1437 || DECL_ALIGN_UNIT (decl) > 2 * ASAN_RED_ZONE_SIZE
1438 || TREE_TYPE (decl) == ubsan_get_source_location_type ()
1439 || is_odr_indicator (decl))
1440 return false;
1442 rtl = DECL_RTL (decl);
1443 if (!MEM_P (rtl) || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF)
1444 return false;
1445 symbol = XEXP (rtl, 0);
1447 if (CONSTANT_POOL_ADDRESS_P (symbol)
1448 || TREE_CONSTANT_POOL_ADDRESS_P (symbol))
1449 return false;
1451 if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
1452 return false;
1454 #ifndef ASM_OUTPUT_DEF
1455 if (asan_needs_local_alias (decl))
1456 return false;
1457 #endif
1459 return true;
1462 /* Construct a function tree for __asan_report_{load,store}{1,2,4,8,16,_n}.
1463 IS_STORE is either 1 (for a store) or 0 (for a load). */
1465 static tree
1466 report_error_func (bool is_store, bool recover_p, HOST_WIDE_INT size_in_bytes,
1467 int *nargs)
1469 static enum built_in_function report[2][2][6]
1470 = { { { BUILT_IN_ASAN_REPORT_LOAD1, BUILT_IN_ASAN_REPORT_LOAD2,
1471 BUILT_IN_ASAN_REPORT_LOAD4, BUILT_IN_ASAN_REPORT_LOAD8,
1472 BUILT_IN_ASAN_REPORT_LOAD16, BUILT_IN_ASAN_REPORT_LOAD_N },
1473 { BUILT_IN_ASAN_REPORT_STORE1, BUILT_IN_ASAN_REPORT_STORE2,
1474 BUILT_IN_ASAN_REPORT_STORE4, BUILT_IN_ASAN_REPORT_STORE8,
1475 BUILT_IN_ASAN_REPORT_STORE16, BUILT_IN_ASAN_REPORT_STORE_N } },
1476 { { BUILT_IN_ASAN_REPORT_LOAD1_NOABORT,
1477 BUILT_IN_ASAN_REPORT_LOAD2_NOABORT,
1478 BUILT_IN_ASAN_REPORT_LOAD4_NOABORT,
1479 BUILT_IN_ASAN_REPORT_LOAD8_NOABORT,
1480 BUILT_IN_ASAN_REPORT_LOAD16_NOABORT,
1481 BUILT_IN_ASAN_REPORT_LOAD_N_NOABORT },
1482 { BUILT_IN_ASAN_REPORT_STORE1_NOABORT,
1483 BUILT_IN_ASAN_REPORT_STORE2_NOABORT,
1484 BUILT_IN_ASAN_REPORT_STORE4_NOABORT,
1485 BUILT_IN_ASAN_REPORT_STORE8_NOABORT,
1486 BUILT_IN_ASAN_REPORT_STORE16_NOABORT,
1487 BUILT_IN_ASAN_REPORT_STORE_N_NOABORT } } };
1488 if (size_in_bytes == -1)
1490 *nargs = 2;
1491 return builtin_decl_implicit (report[recover_p][is_store][5]);
1493 *nargs = 1;
1494 int size_log2 = exact_log2 (size_in_bytes);
1495 return builtin_decl_implicit (report[recover_p][is_store][size_log2]);
1498 /* Construct a function tree for __asan_{load,store}{1,2,4,8,16,_n}.
1499 IS_STORE is either 1 (for a store) or 0 (for a load). */
1501 static tree
1502 check_func (bool is_store, bool recover_p, HOST_WIDE_INT size_in_bytes,
1503 int *nargs)
1505 static enum built_in_function check[2][2][6]
1506 = { { { BUILT_IN_ASAN_LOAD1, BUILT_IN_ASAN_LOAD2,
1507 BUILT_IN_ASAN_LOAD4, BUILT_IN_ASAN_LOAD8,
1508 BUILT_IN_ASAN_LOAD16, BUILT_IN_ASAN_LOADN },
1509 { BUILT_IN_ASAN_STORE1, BUILT_IN_ASAN_STORE2,
1510 BUILT_IN_ASAN_STORE4, BUILT_IN_ASAN_STORE8,
1511 BUILT_IN_ASAN_STORE16, BUILT_IN_ASAN_STOREN } },
1512 { { BUILT_IN_ASAN_LOAD1_NOABORT,
1513 BUILT_IN_ASAN_LOAD2_NOABORT,
1514 BUILT_IN_ASAN_LOAD4_NOABORT,
1515 BUILT_IN_ASAN_LOAD8_NOABORT,
1516 BUILT_IN_ASAN_LOAD16_NOABORT,
1517 BUILT_IN_ASAN_LOADN_NOABORT },
1518 { BUILT_IN_ASAN_STORE1_NOABORT,
1519 BUILT_IN_ASAN_STORE2_NOABORT,
1520 BUILT_IN_ASAN_STORE4_NOABORT,
1521 BUILT_IN_ASAN_STORE8_NOABORT,
1522 BUILT_IN_ASAN_STORE16_NOABORT,
1523 BUILT_IN_ASAN_STOREN_NOABORT } } };
1524 if (size_in_bytes == -1)
1526 *nargs = 2;
1527 return builtin_decl_implicit (check[recover_p][is_store][5]);
1529 *nargs = 1;
1530 int size_log2 = exact_log2 (size_in_bytes);
1531 return builtin_decl_implicit (check[recover_p][is_store][size_log2]);
1534 /* Split the current basic block and create a condition statement
1535 insertion point right before or after the statement pointed to by
1536 ITER. Return an iterator to the point at which the caller might
1537 safely insert the condition statement.
1539 THEN_BLOCK must be set to the address of an uninitialized instance
1540 of basic_block. The function will then set *THEN_BLOCK to the
1541 'then block' of the condition statement to be inserted by the
1542 caller.
1544 If CREATE_THEN_FALLTHRU_EDGE is false, no edge will be created from
1545 *THEN_BLOCK to *FALLTHROUGH_BLOCK.
1547 Similarly, the function will set *FALLTRHOUGH_BLOCK to the 'else
1548 block' of the condition statement to be inserted by the caller.
1550 Note that *FALLTHROUGH_BLOCK is a new block that contains the
1551 statements starting from *ITER, and *THEN_BLOCK is a new empty
1552 block.
1554 *ITER is adjusted to point to always point to the first statement
1555 of the basic block * FALLTHROUGH_BLOCK. That statement is the
1556 same as what ITER was pointing to prior to calling this function,
1557 if BEFORE_P is true; otherwise, it is its following statement. */
1559 gimple_stmt_iterator
1560 create_cond_insert_point (gimple_stmt_iterator *iter,
1561 bool before_p,
1562 bool then_more_likely_p,
1563 bool create_then_fallthru_edge,
1564 basic_block *then_block,
1565 basic_block *fallthrough_block)
1567 gimple_stmt_iterator gsi = *iter;
1569 if (!gsi_end_p (gsi) && before_p)
1570 gsi_prev (&gsi);
1572 basic_block cur_bb = gsi_bb (*iter);
1574 edge e = split_block (cur_bb, gsi_stmt (gsi));
1576 /* Get a hold on the 'condition block', the 'then block' and the
1577 'else block'. */
1578 basic_block cond_bb = e->src;
1579 basic_block fallthru_bb = e->dest;
1580 basic_block then_bb = create_empty_bb (cond_bb);
1581 if (current_loops)
1583 add_bb_to_loop (then_bb, cond_bb->loop_father);
1584 loops_state_set (LOOPS_NEED_FIXUP);
1587 /* Set up the newly created 'then block'. */
1588 e = make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE);
1589 int fallthrough_probability
1590 = then_more_likely_p
1591 ? PROB_VERY_UNLIKELY
1592 : PROB_ALWAYS - PROB_VERY_UNLIKELY;
1593 e->probability = PROB_ALWAYS - fallthrough_probability;
1594 if (create_then_fallthru_edge)
1595 make_single_succ_edge (then_bb, fallthru_bb, EDGE_FALLTHRU);
1597 /* Set up the fallthrough basic block. */
1598 e = find_edge (cond_bb, fallthru_bb);
1599 e->flags = EDGE_FALSE_VALUE;
1600 e->count = cond_bb->count;
1601 e->probability = fallthrough_probability;
1603 /* Update dominance info for the newly created then_bb; note that
1604 fallthru_bb's dominance info has already been updated by
1605 split_bock. */
1606 if (dom_info_available_p (CDI_DOMINATORS))
1607 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1609 *then_block = then_bb;
1610 *fallthrough_block = fallthru_bb;
1611 *iter = gsi_start_bb (fallthru_bb);
1613 return gsi_last_bb (cond_bb);
1616 /* Insert an if condition followed by a 'then block' right before the
1617 statement pointed to by ITER. The fallthrough block -- which is the
1618 else block of the condition as well as the destination of the
1619 outcoming edge of the 'then block' -- starts with the statement
1620 pointed to by ITER.
1622 COND is the condition of the if.
1624 If THEN_MORE_LIKELY_P is true, the probability of the edge to the
1625 'then block' is higher than the probability of the edge to the
1626 fallthrough block.
1628 Upon completion of the function, *THEN_BB is set to the newly
1629 inserted 'then block' and similarly, *FALLTHROUGH_BB is set to the
1630 fallthrough block.
1632 *ITER is adjusted to still point to the same statement it was
1633 pointing to initially. */
1635 static void
1636 insert_if_then_before_iter (gcond *cond,
1637 gimple_stmt_iterator *iter,
1638 bool then_more_likely_p,
1639 basic_block *then_bb,
1640 basic_block *fallthrough_bb)
1642 gimple_stmt_iterator cond_insert_point =
1643 create_cond_insert_point (iter,
1644 /*before_p=*/true,
1645 then_more_likely_p,
1646 /*create_then_fallthru_edge=*/true,
1647 then_bb,
1648 fallthrough_bb);
1649 gsi_insert_after (&cond_insert_point, cond, GSI_NEW_STMT);
1652 /* Build (base_addr >> ASAN_SHADOW_SHIFT) + asan_shadow_offset ().
1653 If RETURN_ADDRESS is set to true, return memory location instread
1654 of a value in the shadow memory. */
1656 static tree
1657 build_shadow_mem_access (gimple_stmt_iterator *gsi, location_t location,
1658 tree base_addr, tree shadow_ptr_type,
1659 bool return_address = false)
1661 tree t, uintptr_type = TREE_TYPE (base_addr);
1662 tree shadow_type = TREE_TYPE (shadow_ptr_type);
1663 gimple *g;
1665 t = build_int_cst (uintptr_type, ASAN_SHADOW_SHIFT);
1666 g = gimple_build_assign (make_ssa_name (uintptr_type), RSHIFT_EXPR,
1667 base_addr, t);
1668 gimple_set_location (g, location);
1669 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1671 t = build_int_cst (uintptr_type, asan_shadow_offset ());
1672 g = gimple_build_assign (make_ssa_name (uintptr_type), PLUS_EXPR,
1673 gimple_assign_lhs (g), t);
1674 gimple_set_location (g, location);
1675 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1677 g = gimple_build_assign (make_ssa_name (shadow_ptr_type), NOP_EXPR,
1678 gimple_assign_lhs (g));
1679 gimple_set_location (g, location);
1680 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1682 if (!return_address)
1684 t = build2 (MEM_REF, shadow_type, gimple_assign_lhs (g),
1685 build_int_cst (shadow_ptr_type, 0));
1686 g = gimple_build_assign (make_ssa_name (shadow_type), MEM_REF, t);
1687 gimple_set_location (g, location);
1688 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1691 return gimple_assign_lhs (g);
1694 /* BASE can already be an SSA_NAME; in that case, do not create a
1695 new SSA_NAME for it. */
1697 static tree
1698 maybe_create_ssa_name (location_t loc, tree base, gimple_stmt_iterator *iter,
1699 bool before_p)
1701 if (TREE_CODE (base) == SSA_NAME)
1702 return base;
1703 gimple *g = gimple_build_assign (make_ssa_name (TREE_TYPE (base)),
1704 TREE_CODE (base), base);
1705 gimple_set_location (g, loc);
1706 if (before_p)
1707 gsi_insert_before (iter, g, GSI_SAME_STMT);
1708 else
1709 gsi_insert_after (iter, g, GSI_NEW_STMT);
1710 return gimple_assign_lhs (g);
1713 /* LEN can already have necessary size and precision;
1714 in that case, do not create a new variable. */
1716 tree
1717 maybe_cast_to_ptrmode (location_t loc, tree len, gimple_stmt_iterator *iter,
1718 bool before_p)
1720 if (ptrofftype_p (len))
1721 return len;
1722 gimple *g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
1723 NOP_EXPR, len);
1724 gimple_set_location (g, loc);
1725 if (before_p)
1726 gsi_insert_before (iter, g, GSI_SAME_STMT);
1727 else
1728 gsi_insert_after (iter, g, GSI_NEW_STMT);
1729 return gimple_assign_lhs (g);
1732 /* Instrument the memory access instruction BASE. Insert new
1733 statements before or after ITER.
1735 Note that the memory access represented by BASE can be either an
1736 SSA_NAME, or a non-SSA expression. LOCATION is the source code
1737 location. IS_STORE is TRUE for a store, FALSE for a load.
1738 BEFORE_P is TRUE for inserting the instrumentation code before
1739 ITER, FALSE for inserting it after ITER. IS_SCALAR_ACCESS is TRUE
1740 for a scalar memory access and FALSE for memory region access.
1741 NON_ZERO_P is TRUE if memory region is guaranteed to have non-zero
1742 length. ALIGN tells alignment of accessed memory object.
1744 START_INSTRUMENTED and END_INSTRUMENTED are TRUE if start/end of
1745 memory region have already been instrumented.
1747 If BEFORE_P is TRUE, *ITER is arranged to still point to the
1748 statement it was pointing to prior to calling this function,
1749 otherwise, it points to the statement logically following it. */
1751 static void
1752 build_check_stmt (location_t loc, tree base, tree len,
1753 HOST_WIDE_INT size_in_bytes, gimple_stmt_iterator *iter,
1754 bool is_non_zero_len, bool before_p, bool is_store,
1755 bool is_scalar_access, unsigned int align = 0)
1757 gimple_stmt_iterator gsi = *iter;
1758 gimple *g;
1760 gcc_assert (!(size_in_bytes > 0 && !is_non_zero_len));
1762 gsi = *iter;
1764 base = unshare_expr (base);
1765 base = maybe_create_ssa_name (loc, base, &gsi, before_p);
1767 if (len)
1769 len = unshare_expr (len);
1770 len = maybe_cast_to_ptrmode (loc, len, iter, before_p);
1772 else
1774 gcc_assert (size_in_bytes != -1);
1775 len = build_int_cst (pointer_sized_int_node, size_in_bytes);
1778 if (size_in_bytes > 1)
1780 if ((size_in_bytes & (size_in_bytes - 1)) != 0
1781 || size_in_bytes > 16)
1782 is_scalar_access = false;
1783 else if (align && align < size_in_bytes * BITS_PER_UNIT)
1785 /* On non-strict alignment targets, if
1786 16-byte access is just 8-byte aligned,
1787 this will result in misaligned shadow
1788 memory 2 byte load, but otherwise can
1789 be handled using one read. */
1790 if (size_in_bytes != 16
1791 || STRICT_ALIGNMENT
1792 || align < 8 * BITS_PER_UNIT)
1793 is_scalar_access = false;
1797 HOST_WIDE_INT flags = 0;
1798 if (is_store)
1799 flags |= ASAN_CHECK_STORE;
1800 if (is_non_zero_len)
1801 flags |= ASAN_CHECK_NON_ZERO_LEN;
1802 if (is_scalar_access)
1803 flags |= ASAN_CHECK_SCALAR_ACCESS;
1805 g = gimple_build_call_internal (IFN_ASAN_CHECK, 4,
1806 build_int_cst (integer_type_node, flags),
1807 base, len,
1808 build_int_cst (integer_type_node,
1809 align / BITS_PER_UNIT));
1810 gimple_set_location (g, loc);
1811 if (before_p)
1812 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
1813 else
1815 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1816 gsi_next (&gsi);
1817 *iter = gsi;
1821 /* If T represents a memory access, add instrumentation code before ITER.
1822 LOCATION is source code location.
1823 IS_STORE is either TRUE (for a store) or FALSE (for a load). */
1825 static void
1826 instrument_derefs (gimple_stmt_iterator *iter, tree t,
1827 location_t location, bool is_store)
1829 if (is_store && !ASAN_INSTRUMENT_WRITES)
1830 return;
1831 if (!is_store && !ASAN_INSTRUMENT_READS)
1832 return;
1834 tree type, base;
1835 HOST_WIDE_INT size_in_bytes;
1836 if (location == UNKNOWN_LOCATION)
1837 location = EXPR_LOCATION (t);
1839 type = TREE_TYPE (t);
1840 switch (TREE_CODE (t))
1842 case ARRAY_REF:
1843 case COMPONENT_REF:
1844 case INDIRECT_REF:
1845 case MEM_REF:
1846 case VAR_DECL:
1847 case BIT_FIELD_REF:
1848 break;
1849 /* FALLTHRU */
1850 default:
1851 return;
1854 size_in_bytes = int_size_in_bytes (type);
1855 if (size_in_bytes <= 0)
1856 return;
1858 HOST_WIDE_INT bitsize, bitpos;
1859 tree offset;
1860 machine_mode mode;
1861 int unsignedp, reversep, volatilep = 0;
1862 tree inner = get_inner_reference (t, &bitsize, &bitpos, &offset, &mode,
1863 &unsignedp, &reversep, &volatilep);
1865 if (TREE_CODE (t) == COMPONENT_REF
1866 && DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1)) != NULL_TREE)
1868 tree repr = DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1));
1869 instrument_derefs (iter, build3 (COMPONENT_REF, TREE_TYPE (repr),
1870 TREE_OPERAND (t, 0), repr,
1871 TREE_OPERAND (t, 2)),
1872 location, is_store);
1873 return;
1876 if (bitpos % BITS_PER_UNIT
1877 || bitsize != size_in_bytes * BITS_PER_UNIT)
1878 return;
1880 if (VAR_P (inner)
1881 && offset == NULL_TREE
1882 && bitpos >= 0
1883 && DECL_SIZE (inner)
1884 && tree_fits_shwi_p (DECL_SIZE (inner))
1885 && bitpos + bitsize <= tree_to_shwi (DECL_SIZE (inner)))
1887 if (DECL_THREAD_LOCAL_P (inner))
1888 return;
1889 if (!ASAN_GLOBALS && is_global_var (inner))
1890 return;
1891 if (!TREE_STATIC (inner))
1893 /* Automatic vars in the current function will be always
1894 accessible. */
1895 if (decl_function_context (inner) == current_function_decl
1896 && (!asan_sanitize_use_after_scope ()
1897 || !TREE_ADDRESSABLE (inner)))
1898 return;
1900 /* Always instrument external vars, they might be dynamically
1901 initialized. */
1902 else if (!DECL_EXTERNAL (inner))
1904 /* For static vars if they are known not to be dynamically
1905 initialized, they will be always accessible. */
1906 varpool_node *vnode = varpool_node::get (inner);
1907 if (vnode && !vnode->dynamically_initialized)
1908 return;
1912 base = build_fold_addr_expr (t);
1913 if (!has_mem_ref_been_instrumented (base, size_in_bytes))
1915 unsigned int align = get_object_alignment (t);
1916 build_check_stmt (location, base, NULL_TREE, size_in_bytes, iter,
1917 /*is_non_zero_len*/size_in_bytes > 0, /*before_p=*/true,
1918 is_store, /*is_scalar_access*/true, align);
1919 update_mem_ref_hash_table (base, size_in_bytes);
1920 update_mem_ref_hash_table (t, size_in_bytes);
1925 /* Insert a memory reference into the hash table if access length
1926 can be determined in compile time. */
1928 static void
1929 maybe_update_mem_ref_hash_table (tree base, tree len)
1931 if (!POINTER_TYPE_P (TREE_TYPE (base))
1932 || !INTEGRAL_TYPE_P (TREE_TYPE (len)))
1933 return;
1935 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
1937 if (size_in_bytes != -1)
1938 update_mem_ref_hash_table (base, size_in_bytes);
1941 /* Instrument an access to a contiguous memory region that starts at
1942 the address pointed to by BASE, over a length of LEN (expressed in
1943 the sizeof (*BASE) bytes). ITER points to the instruction before
1944 which the instrumentation instructions must be inserted. LOCATION
1945 is the source location that the instrumentation instructions must
1946 have. If IS_STORE is true, then the memory access is a store;
1947 otherwise, it's a load. */
1949 static void
1950 instrument_mem_region_access (tree base, tree len,
1951 gimple_stmt_iterator *iter,
1952 location_t location, bool is_store)
1954 if (!POINTER_TYPE_P (TREE_TYPE (base))
1955 || !INTEGRAL_TYPE_P (TREE_TYPE (len))
1956 || integer_zerop (len))
1957 return;
1959 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
1961 if ((size_in_bytes == -1)
1962 || !has_mem_ref_been_instrumented (base, size_in_bytes))
1964 build_check_stmt (location, base, len, size_in_bytes, iter,
1965 /*is_non_zero_len*/size_in_bytes > 0, /*before_p*/true,
1966 is_store, /*is_scalar_access*/false, /*align*/0);
1969 maybe_update_mem_ref_hash_table (base, len);
1970 *iter = gsi_for_stmt (gsi_stmt (*iter));
1973 /* Instrument the call to a built-in memory access function that is
1974 pointed to by the iterator ITER.
1976 Upon completion, return TRUE iff *ITER has been advanced to the
1977 statement following the one it was originally pointing to. */
1979 static bool
1980 instrument_builtin_call (gimple_stmt_iterator *iter)
1982 if (!ASAN_MEMINTRIN)
1983 return false;
1985 bool iter_advanced_p = false;
1986 gcall *call = as_a <gcall *> (gsi_stmt (*iter));
1988 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
1990 location_t loc = gimple_location (call);
1992 asan_mem_ref src0, src1, dest;
1993 asan_mem_ref_init (&src0, NULL, 1);
1994 asan_mem_ref_init (&src1, NULL, 1);
1995 asan_mem_ref_init (&dest, NULL, 1);
1997 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
1998 bool src0_is_store = false, src1_is_store = false, dest_is_store = false,
1999 dest_is_deref = false, intercepted_p = true;
2001 if (get_mem_refs_of_builtin_call (call,
2002 &src0, &src0_len, &src0_is_store,
2003 &src1, &src1_len, &src1_is_store,
2004 &dest, &dest_len, &dest_is_store,
2005 &dest_is_deref, &intercepted_p))
2007 if (dest_is_deref)
2009 instrument_derefs (iter, dest.start, loc, dest_is_store);
2010 gsi_next (iter);
2011 iter_advanced_p = true;
2013 else if (!intercepted_p
2014 && (src0_len || src1_len || dest_len))
2016 if (src0.start != NULL_TREE)
2017 instrument_mem_region_access (src0.start, src0_len,
2018 iter, loc, /*is_store=*/false);
2019 if (src1.start != NULL_TREE)
2020 instrument_mem_region_access (src1.start, src1_len,
2021 iter, loc, /*is_store=*/false);
2022 if (dest.start != NULL_TREE)
2023 instrument_mem_region_access (dest.start, dest_len,
2024 iter, loc, /*is_store=*/true);
2026 *iter = gsi_for_stmt (call);
2027 gsi_next (iter);
2028 iter_advanced_p = true;
2030 else
2032 if (src0.start != NULL_TREE)
2033 maybe_update_mem_ref_hash_table (src0.start, src0_len);
2034 if (src1.start != NULL_TREE)
2035 maybe_update_mem_ref_hash_table (src1.start, src1_len);
2036 if (dest.start != NULL_TREE)
2037 maybe_update_mem_ref_hash_table (dest.start, dest_len);
2040 return iter_advanced_p;
2043 /* Instrument the assignment statement ITER if it is subject to
2044 instrumentation. Return TRUE iff instrumentation actually
2045 happened. In that case, the iterator ITER is advanced to the next
2046 logical expression following the one initially pointed to by ITER,
2047 and the relevant memory reference that which access has been
2048 instrumented is added to the memory references hash table. */
2050 static bool
2051 maybe_instrument_assignment (gimple_stmt_iterator *iter)
2053 gimple *s = gsi_stmt (*iter);
2055 gcc_assert (gimple_assign_single_p (s));
2057 tree ref_expr = NULL_TREE;
2058 bool is_store, is_instrumented = false;
2060 if (gimple_store_p (s))
2062 ref_expr = gimple_assign_lhs (s);
2063 is_store = true;
2064 instrument_derefs (iter, ref_expr,
2065 gimple_location (s),
2066 is_store);
2067 is_instrumented = true;
2070 if (gimple_assign_load_p (s))
2072 ref_expr = gimple_assign_rhs1 (s);
2073 is_store = false;
2074 instrument_derefs (iter, ref_expr,
2075 gimple_location (s),
2076 is_store);
2077 is_instrumented = true;
2080 if (is_instrumented)
2081 gsi_next (iter);
2083 return is_instrumented;
2086 /* Instrument the function call pointed to by the iterator ITER, if it
2087 is subject to instrumentation. At the moment, the only function
2088 calls that are instrumented are some built-in functions that access
2089 memory. Look at instrument_builtin_call to learn more.
2091 Upon completion return TRUE iff *ITER was advanced to the statement
2092 following the one it was originally pointing to. */
2094 static bool
2095 maybe_instrument_call (gimple_stmt_iterator *iter)
2097 gimple *stmt = gsi_stmt (*iter);
2098 bool is_builtin = gimple_call_builtin_p (stmt, BUILT_IN_NORMAL);
2100 if (is_builtin && instrument_builtin_call (iter))
2101 return true;
2103 if (gimple_call_noreturn_p (stmt))
2105 if (is_builtin)
2107 tree callee = gimple_call_fndecl (stmt);
2108 switch (DECL_FUNCTION_CODE (callee))
2110 case BUILT_IN_UNREACHABLE:
2111 case BUILT_IN_TRAP:
2112 /* Don't instrument these. */
2113 return false;
2114 default:
2115 break;
2118 tree decl = builtin_decl_implicit (BUILT_IN_ASAN_HANDLE_NO_RETURN);
2119 gimple *g = gimple_build_call (decl, 0);
2120 gimple_set_location (g, gimple_location (stmt));
2121 gsi_insert_before (iter, g, GSI_SAME_STMT);
2124 bool instrumented = false;
2125 if (gimple_store_p (stmt))
2127 tree ref_expr = gimple_call_lhs (stmt);
2128 instrument_derefs (iter, ref_expr,
2129 gimple_location (stmt),
2130 /*is_store=*/true);
2132 instrumented = true;
2135 /* Walk through gimple_call arguments and check them id needed. */
2136 unsigned args_num = gimple_call_num_args (stmt);
2137 for (unsigned i = 0; i < args_num; ++i)
2139 tree arg = gimple_call_arg (stmt, i);
2140 /* If ARG is not a non-aggregate register variable, compiler in general
2141 creates temporary for it and pass it as argument to gimple call.
2142 But in some cases, e.g. when we pass by value a small structure that
2143 fits to register, compiler can avoid extra overhead by pulling out
2144 these temporaries. In this case, we should check the argument. */
2145 if (!is_gimple_reg (arg) && !is_gimple_min_invariant (arg))
2147 instrument_derefs (iter, arg,
2148 gimple_location (stmt),
2149 /*is_store=*/false);
2150 instrumented = true;
2153 if (instrumented)
2154 gsi_next (iter);
2155 return instrumented;
2158 /* Walk each instruction of all basic block and instrument those that
2159 represent memory references: loads, stores, or function calls.
2160 In a given basic block, this function avoids instrumenting memory
2161 references that have already been instrumented. */
2163 static void
2164 transform_statements (void)
2166 basic_block bb, last_bb = NULL;
2167 gimple_stmt_iterator i;
2168 int saved_last_basic_block = last_basic_block_for_fn (cfun);
2170 FOR_EACH_BB_FN (bb, cfun)
2172 basic_block prev_bb = bb;
2174 if (bb->index >= saved_last_basic_block) continue;
2176 /* Flush the mem ref hash table, if current bb doesn't have
2177 exactly one predecessor, or if that predecessor (skipping
2178 over asan created basic blocks) isn't the last processed
2179 basic block. Thus we effectively flush on extended basic
2180 block boundaries. */
2181 while (single_pred_p (prev_bb))
2183 prev_bb = single_pred (prev_bb);
2184 if (prev_bb->index < saved_last_basic_block)
2185 break;
2187 if (prev_bb != last_bb)
2188 empty_mem_ref_hash_table ();
2189 last_bb = bb;
2191 for (i = gsi_start_bb (bb); !gsi_end_p (i);)
2193 gimple *s = gsi_stmt (i);
2195 if (has_stmt_been_instrumented_p (s))
2196 gsi_next (&i);
2197 else if (gimple_assign_single_p (s)
2198 && !gimple_clobber_p (s)
2199 && maybe_instrument_assignment (&i))
2200 /* Nothing to do as maybe_instrument_assignment advanced
2201 the iterator I. */;
2202 else if (is_gimple_call (s) && maybe_instrument_call (&i))
2203 /* Nothing to do as maybe_instrument_call
2204 advanced the iterator I. */;
2205 else
2207 /* No instrumentation happened.
2209 If the current instruction is a function call that
2210 might free something, let's forget about the memory
2211 references that got instrumented. Otherwise we might
2212 miss some instrumentation opportunities. Do the same
2213 for a ASAN_MARK poisoning internal function. */
2214 if (is_gimple_call (s)
2215 && (!nonfreeing_call_p (s)
2216 || asan_mark_p (s, ASAN_MARK_POISON)))
2217 empty_mem_ref_hash_table ();
2219 gsi_next (&i);
2223 free_mem_ref_resources ();
2226 /* Build
2227 __asan_before_dynamic_init (module_name)
2229 __asan_after_dynamic_init ()
2230 call. */
2232 tree
2233 asan_dynamic_init_call (bool after_p)
2235 if (shadow_ptr_types[0] == NULL_TREE)
2236 asan_init_shadow_ptr_types ();
2238 tree fn = builtin_decl_implicit (after_p
2239 ? BUILT_IN_ASAN_AFTER_DYNAMIC_INIT
2240 : BUILT_IN_ASAN_BEFORE_DYNAMIC_INIT);
2241 tree module_name_cst = NULL_TREE;
2242 if (!after_p)
2244 pretty_printer module_name_pp;
2245 pp_string (&module_name_pp, main_input_filename);
2247 module_name_cst = asan_pp_string (&module_name_pp);
2248 module_name_cst = fold_convert (const_ptr_type_node,
2249 module_name_cst);
2252 return build_call_expr (fn, after_p ? 0 : 1, module_name_cst);
2255 /* Build
2256 struct __asan_global
2258 const void *__beg;
2259 uptr __size;
2260 uptr __size_with_redzone;
2261 const void *__name;
2262 const void *__module_name;
2263 uptr __has_dynamic_init;
2264 __asan_global_source_location *__location;
2265 char *__odr_indicator;
2266 } type. */
2268 static tree
2269 asan_global_struct (void)
2271 static const char *field_names[]
2272 = { "__beg", "__size", "__size_with_redzone",
2273 "__name", "__module_name", "__has_dynamic_init", "__location",
2274 "__odr_indicator" };
2275 tree fields[ARRAY_SIZE (field_names)], ret;
2276 unsigned i;
2278 ret = make_node (RECORD_TYPE);
2279 for (i = 0; i < ARRAY_SIZE (field_names); i++)
2281 fields[i]
2282 = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
2283 get_identifier (field_names[i]),
2284 (i == 0 || i == 3) ? const_ptr_type_node
2285 : pointer_sized_int_node);
2286 DECL_CONTEXT (fields[i]) = ret;
2287 if (i)
2288 DECL_CHAIN (fields[i - 1]) = fields[i];
2290 tree type_decl = build_decl (input_location, TYPE_DECL,
2291 get_identifier ("__asan_global"), ret);
2292 DECL_IGNORED_P (type_decl) = 1;
2293 DECL_ARTIFICIAL (type_decl) = 1;
2294 TYPE_FIELDS (ret) = fields[0];
2295 TYPE_NAME (ret) = type_decl;
2296 TYPE_STUB_DECL (ret) = type_decl;
2297 layout_type (ret);
2298 return ret;
2301 /* Create and return odr indicator symbol for DECL.
2302 TYPE is __asan_global struct type as returned by asan_global_struct. */
2304 static tree
2305 create_odr_indicator (tree decl, tree type)
2307 char *name;
2308 tree uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
2309 tree decl_name
2310 = (HAS_DECL_ASSEMBLER_NAME_P (decl) ? DECL_ASSEMBLER_NAME (decl)
2311 : DECL_NAME (decl));
2312 /* DECL_NAME theoretically might be NULL. Bail out with 0 in this case. */
2313 if (decl_name == NULL_TREE)
2314 return build_int_cst (uptr, 0);
2315 size_t len = strlen (IDENTIFIER_POINTER (decl_name)) + sizeof ("__odr_asan_");
2316 name = XALLOCAVEC (char, len);
2317 snprintf (name, len, "__odr_asan_%s", IDENTIFIER_POINTER (decl_name));
2318 #ifndef NO_DOT_IN_LABEL
2319 name[sizeof ("__odr_asan") - 1] = '.';
2320 #elif !defined(NO_DOLLAR_IN_LABEL)
2321 name[sizeof ("__odr_asan") - 1] = '$';
2322 #endif
2323 tree var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (name),
2324 char_type_node);
2325 TREE_ADDRESSABLE (var) = 1;
2326 TREE_READONLY (var) = 0;
2327 TREE_THIS_VOLATILE (var) = 1;
2328 DECL_GIMPLE_REG_P (var) = 0;
2329 DECL_ARTIFICIAL (var) = 1;
2330 DECL_IGNORED_P (var) = 1;
2331 TREE_STATIC (var) = 1;
2332 TREE_PUBLIC (var) = 1;
2333 DECL_VISIBILITY (var) = DECL_VISIBILITY (decl);
2334 DECL_VISIBILITY_SPECIFIED (var) = DECL_VISIBILITY_SPECIFIED (decl);
2336 TREE_USED (var) = 1;
2337 tree ctor = build_constructor_va (TREE_TYPE (var), 1, NULL_TREE,
2338 build_int_cst (unsigned_type_node, 0));
2339 TREE_CONSTANT (ctor) = 1;
2340 TREE_STATIC (ctor) = 1;
2341 DECL_INITIAL (var) = ctor;
2342 DECL_ATTRIBUTES (var) = tree_cons (get_identifier ("asan odr indicator"),
2343 NULL, DECL_ATTRIBUTES (var));
2344 make_decl_rtl (var);
2345 varpool_node::finalize_decl (var);
2346 return fold_convert (uptr, build_fold_addr_expr (var));
2349 /* Return true if DECL, a global var, might be overridden and needs
2350 an additional odr indicator symbol. */
2352 static bool
2353 asan_needs_odr_indicator_p (tree decl)
2355 /* Don't emit ODR indicators for kernel because:
2356 a) Kernel is written in C thus doesn't need ODR indicators.
2357 b) Some kernel code may have assumptions about symbols containing specific
2358 patterns in their names. Since ODR indicators contain original names
2359 of symbols they are emitted for, these assumptions would be broken for
2360 ODR indicator symbols. */
2361 return (!(flag_sanitize & SANITIZE_KERNEL_ADDRESS)
2362 && !DECL_ARTIFICIAL (decl)
2363 && !DECL_WEAK (decl)
2364 && TREE_PUBLIC (decl));
2367 /* Append description of a single global DECL into vector V.
2368 TYPE is __asan_global struct type as returned by asan_global_struct. */
2370 static void
2371 asan_add_global (tree decl, tree type, vec<constructor_elt, va_gc> *v)
2373 tree init, uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
2374 unsigned HOST_WIDE_INT size;
2375 tree str_cst, module_name_cst, refdecl = decl;
2376 vec<constructor_elt, va_gc> *vinner = NULL;
2378 pretty_printer asan_pp, module_name_pp;
2380 if (DECL_NAME (decl))
2381 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
2382 else
2383 pp_string (&asan_pp, "<unknown>");
2384 str_cst = asan_pp_string (&asan_pp);
2386 pp_string (&module_name_pp, main_input_filename);
2387 module_name_cst = asan_pp_string (&module_name_pp);
2389 if (asan_needs_local_alias (decl))
2391 char buf[20];
2392 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", vec_safe_length (v) + 1);
2393 refdecl = build_decl (DECL_SOURCE_LOCATION (decl),
2394 VAR_DECL, get_identifier (buf), TREE_TYPE (decl));
2395 TREE_ADDRESSABLE (refdecl) = TREE_ADDRESSABLE (decl);
2396 TREE_READONLY (refdecl) = TREE_READONLY (decl);
2397 TREE_THIS_VOLATILE (refdecl) = TREE_THIS_VOLATILE (decl);
2398 DECL_GIMPLE_REG_P (refdecl) = DECL_GIMPLE_REG_P (decl);
2399 DECL_ARTIFICIAL (refdecl) = DECL_ARTIFICIAL (decl);
2400 DECL_IGNORED_P (refdecl) = DECL_IGNORED_P (decl);
2401 TREE_STATIC (refdecl) = 1;
2402 TREE_PUBLIC (refdecl) = 0;
2403 TREE_USED (refdecl) = 1;
2404 assemble_alias (refdecl, DECL_ASSEMBLER_NAME (decl));
2407 tree odr_indicator_ptr
2408 = (asan_needs_odr_indicator_p (decl) ? create_odr_indicator (decl, type)
2409 : build_int_cst (uptr, 0));
2410 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2411 fold_convert (const_ptr_type_node,
2412 build_fold_addr_expr (refdecl)));
2413 size = tree_to_uhwi (DECL_SIZE_UNIT (decl));
2414 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2415 size += asan_red_zone_size (size);
2416 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2417 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2418 fold_convert (const_ptr_type_node, str_cst));
2419 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2420 fold_convert (const_ptr_type_node, module_name_cst));
2421 varpool_node *vnode = varpool_node::get (decl);
2422 int has_dynamic_init = 0;
2423 /* FIXME: Enable initialization order fiasco detection in LTO mode once
2424 proper fix for PR 79061 will be applied. */
2425 if (!in_lto_p)
2426 has_dynamic_init = vnode ? vnode->dynamically_initialized : 0;
2427 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2428 build_int_cst (uptr, has_dynamic_init));
2429 tree locptr = NULL_TREE;
2430 location_t loc = DECL_SOURCE_LOCATION (decl);
2431 expanded_location xloc = expand_location (loc);
2432 if (xloc.file != NULL)
2434 static int lasanloccnt = 0;
2435 char buf[25];
2436 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANLOC", ++lasanloccnt);
2437 tree var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2438 ubsan_get_source_location_type ());
2439 TREE_STATIC (var) = 1;
2440 TREE_PUBLIC (var) = 0;
2441 DECL_ARTIFICIAL (var) = 1;
2442 DECL_IGNORED_P (var) = 1;
2443 pretty_printer filename_pp;
2444 pp_string (&filename_pp, xloc.file);
2445 tree str = asan_pp_string (&filename_pp);
2446 tree ctor = build_constructor_va (TREE_TYPE (var), 3,
2447 NULL_TREE, str, NULL_TREE,
2448 build_int_cst (unsigned_type_node,
2449 xloc.line), NULL_TREE,
2450 build_int_cst (unsigned_type_node,
2451 xloc.column));
2452 TREE_CONSTANT (ctor) = 1;
2453 TREE_STATIC (ctor) = 1;
2454 DECL_INITIAL (var) = ctor;
2455 varpool_node::finalize_decl (var);
2456 locptr = fold_convert (uptr, build_fold_addr_expr (var));
2458 else
2459 locptr = build_int_cst (uptr, 0);
2460 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, locptr);
2461 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, odr_indicator_ptr);
2462 init = build_constructor (type, vinner);
2463 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init);
2466 /* Initialize sanitizer.def builtins if the FE hasn't initialized them. */
2467 void
2468 initialize_sanitizer_builtins (void)
2470 tree decl;
2472 if (builtin_decl_implicit_p (BUILT_IN_ASAN_INIT))
2473 return;
2475 tree BT_FN_VOID = build_function_type_list (void_type_node, NULL_TREE);
2476 tree BT_FN_VOID_PTR
2477 = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
2478 tree BT_FN_VOID_CONST_PTR
2479 = build_function_type_list (void_type_node, const_ptr_type_node, NULL_TREE);
2480 tree BT_FN_VOID_PTR_PTR
2481 = build_function_type_list (void_type_node, ptr_type_node,
2482 ptr_type_node, NULL_TREE);
2483 tree BT_FN_VOID_PTR_PTR_PTR
2484 = build_function_type_list (void_type_node, ptr_type_node,
2485 ptr_type_node, ptr_type_node, NULL_TREE);
2486 tree BT_FN_VOID_PTR_PTRMODE
2487 = build_function_type_list (void_type_node, ptr_type_node,
2488 pointer_sized_int_node, NULL_TREE);
2489 tree BT_FN_VOID_INT
2490 = build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
2491 tree BT_FN_SIZE_CONST_PTR_INT
2492 = build_function_type_list (size_type_node, const_ptr_type_node,
2493 integer_type_node, NULL_TREE);
2494 tree BT_FN_BOOL_VPTR_PTR_IX_INT_INT[5];
2495 tree BT_FN_IX_CONST_VPTR_INT[5];
2496 tree BT_FN_IX_VPTR_IX_INT[5];
2497 tree BT_FN_VOID_VPTR_IX_INT[5];
2498 tree vptr
2499 = build_pointer_type (build_qualified_type (void_type_node,
2500 TYPE_QUAL_VOLATILE));
2501 tree cvptr
2502 = build_pointer_type (build_qualified_type (void_type_node,
2503 TYPE_QUAL_VOLATILE
2504 |TYPE_QUAL_CONST));
2505 tree boolt
2506 = lang_hooks.types.type_for_size (BOOL_TYPE_SIZE, 1);
2507 int i;
2508 for (i = 0; i < 5; i++)
2510 tree ix = build_nonstandard_integer_type (BITS_PER_UNIT * (1 << i), 1);
2511 BT_FN_BOOL_VPTR_PTR_IX_INT_INT[i]
2512 = build_function_type_list (boolt, vptr, ptr_type_node, ix,
2513 integer_type_node, integer_type_node,
2514 NULL_TREE);
2515 BT_FN_IX_CONST_VPTR_INT[i]
2516 = build_function_type_list (ix, cvptr, integer_type_node, NULL_TREE);
2517 BT_FN_IX_VPTR_IX_INT[i]
2518 = build_function_type_list (ix, vptr, ix, integer_type_node,
2519 NULL_TREE);
2520 BT_FN_VOID_VPTR_IX_INT[i]
2521 = build_function_type_list (void_type_node, vptr, ix,
2522 integer_type_node, NULL_TREE);
2524 #define BT_FN_BOOL_VPTR_PTR_I1_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[0]
2525 #define BT_FN_I1_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[0]
2526 #define BT_FN_I1_VPTR_I1_INT BT_FN_IX_VPTR_IX_INT[0]
2527 #define BT_FN_VOID_VPTR_I1_INT BT_FN_VOID_VPTR_IX_INT[0]
2528 #define BT_FN_BOOL_VPTR_PTR_I2_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[1]
2529 #define BT_FN_I2_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[1]
2530 #define BT_FN_I2_VPTR_I2_INT BT_FN_IX_VPTR_IX_INT[1]
2531 #define BT_FN_VOID_VPTR_I2_INT BT_FN_VOID_VPTR_IX_INT[1]
2532 #define BT_FN_BOOL_VPTR_PTR_I4_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[2]
2533 #define BT_FN_I4_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[2]
2534 #define BT_FN_I4_VPTR_I4_INT BT_FN_IX_VPTR_IX_INT[2]
2535 #define BT_FN_VOID_VPTR_I4_INT BT_FN_VOID_VPTR_IX_INT[2]
2536 #define BT_FN_BOOL_VPTR_PTR_I8_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[3]
2537 #define BT_FN_I8_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[3]
2538 #define BT_FN_I8_VPTR_I8_INT BT_FN_IX_VPTR_IX_INT[3]
2539 #define BT_FN_VOID_VPTR_I8_INT BT_FN_VOID_VPTR_IX_INT[3]
2540 #define BT_FN_BOOL_VPTR_PTR_I16_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[4]
2541 #define BT_FN_I16_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[4]
2542 #define BT_FN_I16_VPTR_I16_INT BT_FN_IX_VPTR_IX_INT[4]
2543 #define BT_FN_VOID_VPTR_I16_INT BT_FN_VOID_VPTR_IX_INT[4]
2544 #undef ATTR_NOTHROW_LEAF_LIST
2545 #define ATTR_NOTHROW_LEAF_LIST ECF_NOTHROW | ECF_LEAF
2546 #undef ATTR_TMPURE_NOTHROW_LEAF_LIST
2547 #define ATTR_TMPURE_NOTHROW_LEAF_LIST ECF_TM_PURE | ATTR_NOTHROW_LEAF_LIST
2548 #undef ATTR_NORETURN_NOTHROW_LEAF_LIST
2549 #define ATTR_NORETURN_NOTHROW_LEAF_LIST ECF_NORETURN | ATTR_NOTHROW_LEAF_LIST
2550 #undef ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST
2551 #define ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST \
2552 ECF_CONST | ATTR_NORETURN_NOTHROW_LEAF_LIST
2553 #undef ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST
2554 #define ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST \
2555 ECF_TM_PURE | ATTR_NORETURN_NOTHROW_LEAF_LIST
2556 #undef ATTR_COLD_NOTHROW_LEAF_LIST
2557 #define ATTR_COLD_NOTHROW_LEAF_LIST \
2558 /* ECF_COLD missing */ ATTR_NOTHROW_LEAF_LIST
2559 #undef ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST
2560 #define ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST \
2561 /* ECF_COLD missing */ ATTR_NORETURN_NOTHROW_LEAF_LIST
2562 #undef ATTR_COLD_CONST_NORETURN_NOTHROW_LEAF_LIST
2563 #define ATTR_COLD_CONST_NORETURN_NOTHROW_LEAF_LIST \
2564 /* ECF_COLD missing */ ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST
2565 #undef ATTR_PURE_NOTHROW_LEAF_LIST
2566 #define ATTR_PURE_NOTHROW_LEAF_LIST ECF_PURE | ATTR_NOTHROW_LEAF_LIST
2567 #undef DEF_BUILTIN_STUB
2568 #define DEF_BUILTIN_STUB(ENUM, NAME)
2569 #undef DEF_SANITIZER_BUILTIN
2570 #define DEF_SANITIZER_BUILTIN(ENUM, NAME, TYPE, ATTRS) \
2571 do { \
2572 decl = add_builtin_function ("__builtin_" NAME, TYPE, ENUM, \
2573 BUILT_IN_NORMAL, NAME, NULL_TREE); \
2574 set_call_expr_flags (decl, ATTRS); \
2575 set_builtin_decl (ENUM, decl, true); \
2576 } while (0);
2578 #include "sanitizer.def"
2580 /* -fsanitize=object-size uses __builtin_object_size, but that might
2581 not be available for e.g. Fortran at this point. We use
2582 DEF_SANITIZER_BUILTIN here only as a convenience macro. */
2583 if ((flag_sanitize & SANITIZE_OBJECT_SIZE)
2584 && !builtin_decl_implicit_p (BUILT_IN_OBJECT_SIZE))
2585 DEF_SANITIZER_BUILTIN (BUILT_IN_OBJECT_SIZE, "object_size",
2586 BT_FN_SIZE_CONST_PTR_INT,
2587 ATTR_PURE_NOTHROW_LEAF_LIST)
2589 #undef DEF_SANITIZER_BUILTIN
2590 #undef DEF_BUILTIN_STUB
2593 /* Called via htab_traverse. Count number of emitted
2594 STRING_CSTs in the constant hash table. */
2597 count_string_csts (constant_descriptor_tree **slot,
2598 unsigned HOST_WIDE_INT *data)
2600 struct constant_descriptor_tree *desc = *slot;
2601 if (TREE_CODE (desc->value) == STRING_CST
2602 && TREE_ASM_WRITTEN (desc->value)
2603 && asan_protect_global (desc->value))
2604 ++*data;
2605 return 1;
2608 /* Helper structure to pass two parameters to
2609 add_string_csts. */
2611 struct asan_add_string_csts_data
2613 tree type;
2614 vec<constructor_elt, va_gc> *v;
2617 /* Called via hash_table::traverse. Call asan_add_global
2618 on emitted STRING_CSTs from the constant hash table. */
2621 add_string_csts (constant_descriptor_tree **slot,
2622 asan_add_string_csts_data *aascd)
2624 struct constant_descriptor_tree *desc = *slot;
2625 if (TREE_CODE (desc->value) == STRING_CST
2626 && TREE_ASM_WRITTEN (desc->value)
2627 && asan_protect_global (desc->value))
2629 asan_add_global (SYMBOL_REF_DECL (XEXP (desc->rtl, 0)),
2630 aascd->type, aascd->v);
2632 return 1;
2635 /* Needs to be GTY(()), because cgraph_build_static_cdtor may
2636 invoke ggc_collect. */
2637 static GTY(()) tree asan_ctor_statements;
2639 /* Module-level instrumentation.
2640 - Insert __asan_init_vN() into the list of CTORs.
2641 - TODO: insert redzones around globals.
2644 void
2645 asan_finish_file (void)
2647 varpool_node *vnode;
2648 unsigned HOST_WIDE_INT gcount = 0;
2650 if (shadow_ptr_types[0] == NULL_TREE)
2651 asan_init_shadow_ptr_types ();
2652 /* Avoid instrumenting code in the asan ctors/dtors.
2653 We don't need to insert padding after the description strings,
2654 nor after .LASAN* array. */
2655 flag_sanitize &= ~SANITIZE_ADDRESS;
2657 /* For user-space we want asan constructors to run first.
2658 Linux kernel does not support priorities other than default, and the only
2659 other user of constructors is coverage. So we run with the default
2660 priority. */
2661 int priority = flag_sanitize & SANITIZE_USER_ADDRESS
2662 ? MAX_RESERVED_INIT_PRIORITY - 1 : DEFAULT_INIT_PRIORITY;
2664 if (flag_sanitize & SANITIZE_USER_ADDRESS)
2666 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_INIT);
2667 append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
2668 fn = builtin_decl_implicit (BUILT_IN_ASAN_VERSION_MISMATCH_CHECK);
2669 append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
2671 FOR_EACH_DEFINED_VARIABLE (vnode)
2672 if (TREE_ASM_WRITTEN (vnode->decl)
2673 && asan_protect_global (vnode->decl))
2674 ++gcount;
2675 hash_table<tree_descriptor_hasher> *const_desc_htab = constant_pool_htab ();
2676 const_desc_htab->traverse<unsigned HOST_WIDE_INT *, count_string_csts>
2677 (&gcount);
2678 if (gcount)
2680 tree type = asan_global_struct (), var, ctor;
2681 tree dtor_statements = NULL_TREE;
2682 vec<constructor_elt, va_gc> *v;
2683 char buf[20];
2685 type = build_array_type_nelts (type, gcount);
2686 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", 0);
2687 var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2688 type);
2689 TREE_STATIC (var) = 1;
2690 TREE_PUBLIC (var) = 0;
2691 DECL_ARTIFICIAL (var) = 1;
2692 DECL_IGNORED_P (var) = 1;
2693 vec_alloc (v, gcount);
2694 FOR_EACH_DEFINED_VARIABLE (vnode)
2695 if (TREE_ASM_WRITTEN (vnode->decl)
2696 && asan_protect_global (vnode->decl))
2697 asan_add_global (vnode->decl, TREE_TYPE (type), v);
2698 struct asan_add_string_csts_data aascd;
2699 aascd.type = TREE_TYPE (type);
2700 aascd.v = v;
2701 const_desc_htab->traverse<asan_add_string_csts_data *, add_string_csts>
2702 (&aascd);
2703 ctor = build_constructor (type, v);
2704 TREE_CONSTANT (ctor) = 1;
2705 TREE_STATIC (ctor) = 1;
2706 DECL_INITIAL (var) = ctor;
2707 varpool_node::finalize_decl (var);
2709 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_REGISTER_GLOBALS);
2710 tree gcount_tree = build_int_cst (pointer_sized_int_node, gcount);
2711 append_to_statement_list (build_call_expr (fn, 2,
2712 build_fold_addr_expr (var),
2713 gcount_tree),
2714 &asan_ctor_statements);
2716 fn = builtin_decl_implicit (BUILT_IN_ASAN_UNREGISTER_GLOBALS);
2717 append_to_statement_list (build_call_expr (fn, 2,
2718 build_fold_addr_expr (var),
2719 gcount_tree),
2720 &dtor_statements);
2721 cgraph_build_static_cdtor ('D', dtor_statements, priority);
2723 if (asan_ctor_statements)
2724 cgraph_build_static_cdtor ('I', asan_ctor_statements, priority);
2725 flag_sanitize |= SANITIZE_ADDRESS;
2728 /* Poison or unpoison (depending on IS_CLOBBER variable) shadow memory based
2729 on SHADOW address. Newly added statements will be added to ITER with
2730 given location LOC. We mark SIZE bytes in shadow memory, where
2731 LAST_CHUNK_SIZE is greater than zero in situation where we are at the
2732 end of a variable. */
2734 static void
2735 asan_store_shadow_bytes (gimple_stmt_iterator *iter, location_t loc,
2736 tree shadow,
2737 unsigned HOST_WIDE_INT base_addr_offset,
2738 bool is_clobber, unsigned size,
2739 unsigned last_chunk_size)
2741 tree shadow_ptr_type;
2743 switch (size)
2745 case 1:
2746 shadow_ptr_type = shadow_ptr_types[0];
2747 break;
2748 case 2:
2749 shadow_ptr_type = shadow_ptr_types[1];
2750 break;
2751 case 4:
2752 shadow_ptr_type = shadow_ptr_types[2];
2753 break;
2754 default:
2755 gcc_unreachable ();
2758 unsigned char c = (char) is_clobber ? ASAN_STACK_MAGIC_USE_AFTER_SCOPE : 0;
2759 unsigned HOST_WIDE_INT val = 0;
2760 unsigned last_pos = size;
2761 if (last_chunk_size && !is_clobber)
2762 last_pos = BYTES_BIG_ENDIAN ? 0 : size - 1;
2763 for (unsigned i = 0; i < size; ++i)
2765 unsigned char shadow_c = c;
2766 if (i == last_pos)
2767 shadow_c = last_chunk_size;
2768 val |= (unsigned HOST_WIDE_INT) shadow_c << (BITS_PER_UNIT * i);
2771 /* Handle last chunk in unpoisoning. */
2772 tree magic = build_int_cst (TREE_TYPE (shadow_ptr_type), val);
2774 tree dest = build2 (MEM_REF, TREE_TYPE (shadow_ptr_type), shadow,
2775 build_int_cst (shadow_ptr_type, base_addr_offset));
2777 gimple *g = gimple_build_assign (dest, magic);
2778 gimple_set_location (g, loc);
2779 gsi_insert_after (iter, g, GSI_NEW_STMT);
2782 /* Expand the ASAN_MARK builtins. */
2784 bool
2785 asan_expand_mark_ifn (gimple_stmt_iterator *iter)
2787 gimple *g = gsi_stmt (*iter);
2788 location_t loc = gimple_location (g);
2789 HOST_WIDE_INT flag = tree_to_shwi (gimple_call_arg (g, 0));
2790 bool is_poison = ((asan_mark_flags)flag) == ASAN_MARK_POISON;
2792 tree base = gimple_call_arg (g, 1);
2793 gcc_checking_assert (TREE_CODE (base) == ADDR_EXPR);
2794 tree decl = TREE_OPERAND (base, 0);
2796 /* For a nested function, we can have: ASAN_MARK (2, &FRAME.2.fp_input, 4) */
2797 if (TREE_CODE (decl) == COMPONENT_REF
2798 && DECL_NONLOCAL_FRAME (TREE_OPERAND (decl, 0)))
2799 decl = TREE_OPERAND (decl, 0);
2801 gcc_checking_assert (TREE_CODE (decl) == VAR_DECL);
2802 if (asan_handled_variables == NULL)
2803 asan_handled_variables = new hash_set<tree> (16);
2804 asan_handled_variables->add (decl);
2805 tree len = gimple_call_arg (g, 2);
2807 gcc_assert (tree_fits_shwi_p (len));
2808 unsigned HOST_WIDE_INT size_in_bytes = tree_to_shwi (len);
2809 gcc_assert (size_in_bytes);
2811 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
2812 NOP_EXPR, base);
2813 gimple_set_location (g, loc);
2814 gsi_replace (iter, g, false);
2815 tree base_addr = gimple_assign_lhs (g);
2817 /* Generate direct emission if size_in_bytes is small. */
2818 if (size_in_bytes <= ASAN_PARAM_USE_AFTER_SCOPE_DIRECT_EMISSION_THRESHOLD)
2820 unsigned HOST_WIDE_INT shadow_size = shadow_mem_size (size_in_bytes);
2822 tree shadow = build_shadow_mem_access (iter, loc, base_addr,
2823 shadow_ptr_types[0], true);
2825 for (unsigned HOST_WIDE_INT offset = 0; offset < shadow_size;)
2827 unsigned size = 1;
2828 if (shadow_size - offset >= 4)
2829 size = 4;
2830 else if (shadow_size - offset >= 2)
2831 size = 2;
2833 unsigned HOST_WIDE_INT last_chunk_size = 0;
2834 unsigned HOST_WIDE_INT s = (offset + size) * ASAN_SHADOW_GRANULARITY;
2835 if (s > size_in_bytes)
2836 last_chunk_size = ASAN_SHADOW_GRANULARITY - (s - size_in_bytes);
2838 asan_store_shadow_bytes (iter, loc, shadow, offset, is_poison,
2839 size, last_chunk_size);
2840 offset += size;
2843 else
2845 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
2846 NOP_EXPR, len);
2847 gimple_set_location (g, loc);
2848 gsi_insert_before (iter, g, GSI_SAME_STMT);
2849 tree sz_arg = gimple_assign_lhs (g);
2851 tree fun
2852 = builtin_decl_implicit (is_poison ? BUILT_IN_ASAN_POISON_STACK_MEMORY
2853 : BUILT_IN_ASAN_UNPOISON_STACK_MEMORY);
2854 g = gimple_build_call (fun, 2, base_addr, sz_arg);
2855 gimple_set_location (g, loc);
2856 gsi_insert_after (iter, g, GSI_NEW_STMT);
2859 return false;
2862 /* Expand the ASAN_{LOAD,STORE} builtins. */
2864 bool
2865 asan_expand_check_ifn (gimple_stmt_iterator *iter, bool use_calls)
2867 gimple *g = gsi_stmt (*iter);
2868 location_t loc = gimple_location (g);
2869 bool recover_p;
2870 if (flag_sanitize & SANITIZE_USER_ADDRESS)
2871 recover_p = (flag_sanitize_recover & SANITIZE_USER_ADDRESS) != 0;
2872 else
2873 recover_p = (flag_sanitize_recover & SANITIZE_KERNEL_ADDRESS) != 0;
2875 HOST_WIDE_INT flags = tree_to_shwi (gimple_call_arg (g, 0));
2876 gcc_assert (flags < ASAN_CHECK_LAST);
2877 bool is_scalar_access = (flags & ASAN_CHECK_SCALAR_ACCESS) != 0;
2878 bool is_store = (flags & ASAN_CHECK_STORE) != 0;
2879 bool is_non_zero_len = (flags & ASAN_CHECK_NON_ZERO_LEN) != 0;
2881 tree base = gimple_call_arg (g, 1);
2882 tree len = gimple_call_arg (g, 2);
2883 HOST_WIDE_INT align = tree_to_shwi (gimple_call_arg (g, 3));
2885 HOST_WIDE_INT size_in_bytes
2886 = is_scalar_access && tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
2888 if (use_calls)
2890 /* Instrument using callbacks. */
2891 gimple *g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
2892 NOP_EXPR, base);
2893 gimple_set_location (g, loc);
2894 gsi_insert_before (iter, g, GSI_SAME_STMT);
2895 tree base_addr = gimple_assign_lhs (g);
2897 int nargs;
2898 tree fun = check_func (is_store, recover_p, size_in_bytes, &nargs);
2899 if (nargs == 1)
2900 g = gimple_build_call (fun, 1, base_addr);
2901 else
2903 gcc_assert (nargs == 2);
2904 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
2905 NOP_EXPR, len);
2906 gimple_set_location (g, loc);
2907 gsi_insert_before (iter, g, GSI_SAME_STMT);
2908 tree sz_arg = gimple_assign_lhs (g);
2909 g = gimple_build_call (fun, nargs, base_addr, sz_arg);
2911 gimple_set_location (g, loc);
2912 gsi_replace (iter, g, false);
2913 return false;
2916 HOST_WIDE_INT real_size_in_bytes = size_in_bytes == -1 ? 1 : size_in_bytes;
2918 tree shadow_ptr_type = shadow_ptr_types[real_size_in_bytes == 16 ? 1 : 0];
2919 tree shadow_type = TREE_TYPE (shadow_ptr_type);
2921 gimple_stmt_iterator gsi = *iter;
2923 if (!is_non_zero_len)
2925 /* So, the length of the memory area to asan-protect is
2926 non-constant. Let's guard the generated instrumentation code
2927 like:
2929 if (len != 0)
2931 //asan instrumentation code goes here.
2933 // falltrough instructions, starting with *ITER. */
2935 g = gimple_build_cond (NE_EXPR,
2936 len,
2937 build_int_cst (TREE_TYPE (len), 0),
2938 NULL_TREE, NULL_TREE);
2939 gimple_set_location (g, loc);
2941 basic_block then_bb, fallthrough_bb;
2942 insert_if_then_before_iter (as_a <gcond *> (g), iter,
2943 /*then_more_likely_p=*/true,
2944 &then_bb, &fallthrough_bb);
2945 /* Note that fallthrough_bb starts with the statement that was
2946 pointed to by ITER. */
2948 /* The 'then block' of the 'if (len != 0) condition is where
2949 we'll generate the asan instrumentation code now. */
2950 gsi = gsi_last_bb (then_bb);
2953 /* Get an iterator on the point where we can add the condition
2954 statement for the instrumentation. */
2955 basic_block then_bb, else_bb;
2956 gsi = create_cond_insert_point (&gsi, /*before_p*/false,
2957 /*then_more_likely_p=*/false,
2958 /*create_then_fallthru_edge*/recover_p,
2959 &then_bb,
2960 &else_bb);
2962 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
2963 NOP_EXPR, base);
2964 gimple_set_location (g, loc);
2965 gsi_insert_before (&gsi, g, GSI_NEW_STMT);
2966 tree base_addr = gimple_assign_lhs (g);
2968 tree t = NULL_TREE;
2969 if (real_size_in_bytes >= 8)
2971 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
2972 shadow_ptr_type);
2973 t = shadow;
2975 else
2977 /* Slow path for 1, 2 and 4 byte accesses. */
2978 /* Test (shadow != 0)
2979 & ((base_addr & 7) + (real_size_in_bytes - 1)) >= shadow). */
2980 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
2981 shadow_ptr_type);
2982 gimple *shadow_test = build_assign (NE_EXPR, shadow, 0);
2983 gimple_seq seq = NULL;
2984 gimple_seq_add_stmt (&seq, shadow_test);
2985 /* Aligned (>= 8 bytes) can test just
2986 (real_size_in_bytes - 1 >= shadow), as base_addr & 7 is known
2987 to be 0. */
2988 if (align < 8)
2990 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
2991 base_addr, 7));
2992 gimple_seq_add_stmt (&seq,
2993 build_type_cast (shadow_type,
2994 gimple_seq_last (seq)));
2995 if (real_size_in_bytes > 1)
2996 gimple_seq_add_stmt (&seq,
2997 build_assign (PLUS_EXPR,
2998 gimple_seq_last (seq),
2999 real_size_in_bytes - 1));
3000 t = gimple_assign_lhs (gimple_seq_last_stmt (seq));
3002 else
3003 t = build_int_cst (shadow_type, real_size_in_bytes - 1);
3004 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR, t, shadow));
3005 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
3006 gimple_seq_last (seq)));
3007 t = gimple_assign_lhs (gimple_seq_last (seq));
3008 gimple_seq_set_location (seq, loc);
3009 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
3011 /* For non-constant, misaligned or otherwise weird access sizes,
3012 check first and last byte. */
3013 if (size_in_bytes == -1)
3015 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3016 MINUS_EXPR, len,
3017 build_int_cst (pointer_sized_int_node, 1));
3018 gimple_set_location (g, loc);
3019 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3020 tree last = gimple_assign_lhs (g);
3021 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3022 PLUS_EXPR, base_addr, last);
3023 gimple_set_location (g, loc);
3024 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3025 tree base_end_addr = gimple_assign_lhs (g);
3027 tree shadow = build_shadow_mem_access (&gsi, loc, base_end_addr,
3028 shadow_ptr_type);
3029 gimple *shadow_test = build_assign (NE_EXPR, shadow, 0);
3030 gimple_seq seq = NULL;
3031 gimple_seq_add_stmt (&seq, shadow_test);
3032 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
3033 base_end_addr, 7));
3034 gimple_seq_add_stmt (&seq, build_type_cast (shadow_type,
3035 gimple_seq_last (seq)));
3036 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR,
3037 gimple_seq_last (seq),
3038 shadow));
3039 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
3040 gimple_seq_last (seq)));
3041 gimple_seq_add_stmt (&seq, build_assign (BIT_IOR_EXPR, t,
3042 gimple_seq_last (seq)));
3043 t = gimple_assign_lhs (gimple_seq_last (seq));
3044 gimple_seq_set_location (seq, loc);
3045 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
3049 g = gimple_build_cond (NE_EXPR, t, build_int_cst (TREE_TYPE (t), 0),
3050 NULL_TREE, NULL_TREE);
3051 gimple_set_location (g, loc);
3052 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3054 /* Generate call to the run-time library (e.g. __asan_report_load8). */
3055 gsi = gsi_start_bb (then_bb);
3056 int nargs;
3057 tree fun = report_error_func (is_store, recover_p, size_in_bytes, &nargs);
3058 g = gimple_build_call (fun, nargs, base_addr, len);
3059 gimple_set_location (g, loc);
3060 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3062 gsi_remove (iter, true);
3063 *iter = gsi_start_bb (else_bb);
3065 return true;
3068 /* Create ASAN shadow variable for a VAR_DECL which has been rewritten
3069 into SSA. Already seen VAR_DECLs are stored in SHADOW_VARS_MAPPING. */
3071 static tree
3072 create_asan_shadow_var (tree var_decl,
3073 hash_map<tree, tree> &shadow_vars_mapping)
3075 tree *slot = shadow_vars_mapping.get (var_decl);
3076 if (slot == NULL)
3078 tree shadow_var = copy_node (var_decl);
3080 copy_body_data id;
3081 memset (&id, 0, sizeof (copy_body_data));
3082 id.src_fn = id.dst_fn = current_function_decl;
3083 copy_decl_for_dup_finish (&id, var_decl, shadow_var);
3085 DECL_ARTIFICIAL (shadow_var) = 1;
3086 DECL_IGNORED_P (shadow_var) = 1;
3087 DECL_SEEN_IN_BIND_EXPR_P (shadow_var) = 0;
3088 gimple_add_tmp_var (shadow_var);
3090 shadow_vars_mapping.put (var_decl, shadow_var);
3091 return shadow_var;
3093 else
3094 return *slot;
3097 /* Expand ASAN_POISON ifn. */
3099 bool
3100 asan_expand_poison_ifn (gimple_stmt_iterator *iter,
3101 bool *need_commit_edge_insert,
3102 hash_map<tree, tree> &shadow_vars_mapping)
3104 gimple *g = gsi_stmt (*iter);
3105 tree poisoned_var = gimple_call_lhs (g);
3106 if (!poisoned_var || has_zero_uses (poisoned_var))
3108 gsi_remove (iter, true);
3109 return true;
3112 if (SSA_NAME_VAR (poisoned_var) == NULL_TREE)
3113 SET_SSA_NAME_VAR_OR_IDENTIFIER (poisoned_var,
3114 create_tmp_var (TREE_TYPE (poisoned_var)));
3116 tree shadow_var = create_asan_shadow_var (SSA_NAME_VAR (poisoned_var),
3117 shadow_vars_mapping);
3119 bool recover_p;
3120 if (flag_sanitize & SANITIZE_USER_ADDRESS)
3121 recover_p = (flag_sanitize_recover & SANITIZE_USER_ADDRESS) != 0;
3122 else
3123 recover_p = (flag_sanitize_recover & SANITIZE_KERNEL_ADDRESS) != 0;
3124 tree size = DECL_SIZE_UNIT (shadow_var);
3125 gimple *poison_call
3126 = gimple_build_call_internal (IFN_ASAN_MARK, 3,
3127 build_int_cst (integer_type_node,
3128 ASAN_MARK_POISON),
3129 build_fold_addr_expr (shadow_var), size);
3131 gimple *use;
3132 imm_use_iterator imm_iter;
3133 FOR_EACH_IMM_USE_STMT (use, imm_iter, poisoned_var)
3135 if (is_gimple_debug (use))
3136 continue;
3138 int nargs;
3139 bool store_p = gimple_call_internal_p (use, IFN_ASAN_POISON_USE);
3140 tree fun = report_error_func (store_p, recover_p, tree_to_uhwi (size),
3141 &nargs);
3143 gcall *call = gimple_build_call (fun, 1,
3144 build_fold_addr_expr (shadow_var));
3145 gimple_set_location (call, gimple_location (use));
3146 gimple *call_to_insert = call;
3148 /* The USE can be a gimple PHI node. If so, insert the call on
3149 all edges leading to the PHI node. */
3150 if (is_a <gphi *> (use))
3152 gphi *phi = dyn_cast<gphi *> (use);
3153 for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
3154 if (gimple_phi_arg_def (phi, i) == poisoned_var)
3156 edge e = gimple_phi_arg_edge (phi, i);
3158 if (call_to_insert == NULL)
3159 call_to_insert = gimple_copy (call);
3161 gsi_insert_seq_on_edge (e, call_to_insert);
3162 *need_commit_edge_insert = true;
3163 call_to_insert = NULL;
3166 else
3168 gimple_stmt_iterator gsi = gsi_for_stmt (use);
3169 if (store_p)
3170 gsi_replace (&gsi, call, true);
3171 else
3172 gsi_insert_before (&gsi, call, GSI_NEW_STMT);
3176 SSA_NAME_IS_DEFAULT_DEF (poisoned_var) = true;
3177 SSA_NAME_DEF_STMT (poisoned_var) = gimple_build_nop ();
3178 gsi_replace (iter, poison_call, false);
3180 return true;
3183 /* Instrument the current function. */
3185 static unsigned int
3186 asan_instrument (void)
3188 if (shadow_ptr_types[0] == NULL_TREE)
3189 asan_init_shadow_ptr_types ();
3190 transform_statements ();
3191 return 0;
3194 static bool
3195 gate_asan (void)
3197 return (flag_sanitize & SANITIZE_ADDRESS) != 0
3198 && !lookup_attribute ("no_sanitize_address",
3199 DECL_ATTRIBUTES (current_function_decl));
3202 namespace {
3204 const pass_data pass_data_asan =
3206 GIMPLE_PASS, /* type */
3207 "asan", /* name */
3208 OPTGROUP_NONE, /* optinfo_flags */
3209 TV_NONE, /* tv_id */
3210 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
3211 0, /* properties_provided */
3212 0, /* properties_destroyed */
3213 0, /* todo_flags_start */
3214 TODO_update_ssa, /* todo_flags_finish */
3217 class pass_asan : public gimple_opt_pass
3219 public:
3220 pass_asan (gcc::context *ctxt)
3221 : gimple_opt_pass (pass_data_asan, ctxt)
3224 /* opt_pass methods: */
3225 opt_pass * clone () { return new pass_asan (m_ctxt); }
3226 virtual bool gate (function *) { return gate_asan (); }
3227 virtual unsigned int execute (function *) { return asan_instrument (); }
3229 }; // class pass_asan
3231 } // anon namespace
3233 gimple_opt_pass *
3234 make_pass_asan (gcc::context *ctxt)
3236 return new pass_asan (ctxt);
3239 namespace {
3241 const pass_data pass_data_asan_O0 =
3243 GIMPLE_PASS, /* type */
3244 "asan0", /* name */
3245 OPTGROUP_NONE, /* optinfo_flags */
3246 TV_NONE, /* tv_id */
3247 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
3248 0, /* properties_provided */
3249 0, /* properties_destroyed */
3250 0, /* todo_flags_start */
3251 TODO_update_ssa, /* todo_flags_finish */
3254 class pass_asan_O0 : public gimple_opt_pass
3256 public:
3257 pass_asan_O0 (gcc::context *ctxt)
3258 : gimple_opt_pass (pass_data_asan_O0, ctxt)
3261 /* opt_pass methods: */
3262 virtual bool gate (function *) { return !optimize && gate_asan (); }
3263 virtual unsigned int execute (function *) { return asan_instrument (); }
3265 }; // class pass_asan_O0
3267 } // anon namespace
3269 gimple_opt_pass *
3270 make_pass_asan_O0 (gcc::context *ctxt)
3272 return new pass_asan_O0 (ctxt);
3275 #include "gt-asan.h"