1 /* Code sinking for trees
2 Copyright (C) 2001-2024 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dan@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
28 #include "tree-pass.h"
30 #include "gimple-pretty-print.h"
31 #include "fold-const.h"
32 #include "stor-layout.h"
34 #include "gimple-iterator.h"
38 #include "tree-ssa-live.h"
41 1. Sinking store only using scalar promotion (IE without moving the RHS):
61 Store copy propagation will take care of the store elimination above.
64 2. Sinking using Partial Dead Code Elimination. */
69 /* The number of statements sunk down the flowgraph by code sinking. */
72 /* The number of stores commoned and sunk down by store commoning. */
77 /* Given a PHI, and one of its arguments (DEF), find the edge for
78 that argument and return it. If the argument occurs twice in the PHI node,
82 find_bb_for_arg (gphi
*phi
, tree def
)
85 bool foundone
= false;
86 basic_block result
= NULL
;
87 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
88 if (PHI_ARG_DEF (phi
, i
) == def
)
93 result
= gimple_phi_arg_edge (phi
, i
)->src
;
98 /* When the first immediate use is in a statement, then return true if all
99 immediate uses in IMM are in the same statement.
100 We could also do the case where the first immediate use is in a phi node,
101 and all the other uses are in phis in the same basic block, but this
102 requires some expensive checking later (you have to make sure no def/vdef
103 in the statement occurs for multiple edges in the various phi nodes it's
104 used in, so that you only have one place you can sink it to. */
107 all_immediate_uses_same_place (def_operand_p def_p
)
109 tree var
= DEF_FROM_PTR (def_p
);
110 imm_use_iterator imm_iter
;
113 gimple
*firstuse
= NULL
;
114 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, var
)
116 if (is_gimple_debug (USE_STMT (use_p
)))
118 if (firstuse
== NULL
)
119 firstuse
= USE_STMT (use_p
);
121 if (firstuse
!= USE_STMT (use_p
))
128 /* Find the nearest common dominator of all of the immediate uses in IMM. */
131 nearest_common_dominator_of_uses (def_operand_p def_p
, bool *debug_stmts
)
133 tree var
= DEF_FROM_PTR (def_p
);
135 basic_block commondom
;
138 imm_use_iterator imm_iter
;
141 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, var
)
143 gimple
*usestmt
= USE_STMT (use_p
);
144 basic_block useblock
;
146 if (gphi
*phi
= dyn_cast
<gphi
*> (usestmt
))
148 int idx
= PHI_ARG_INDEX_FROM_USE (use_p
);
150 useblock
= gimple_phi_arg_edge (phi
, idx
)->src
;
152 else if (is_gimple_debug (usestmt
))
159 useblock
= gimple_bb (usestmt
);
162 /* Short circuit. Nothing dominates the entry block. */
163 if (useblock
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
166 bitmap_set_bit (blocks
, useblock
->index
);
168 commondom
= BASIC_BLOCK_FOR_FN (cfun
, bitmap_first_set_bit (blocks
));
169 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, j
, bi
)
170 commondom
= nearest_common_dominator (CDI_DOMINATORS
, commondom
,
171 BASIC_BLOCK_FOR_FN (cfun
, j
));
175 /* Given EARLY_BB and LATE_BB, two blocks in a path through the dominator
176 tree, return the best basic block between them (inclusive) to place
179 We want the most control dependent block in the shallowest loop nest.
181 If the resulting block is in a shallower loop nest, then use it. Else
182 only use the resulting block if it has significantly lower execution
183 frequency than EARLY_BB to avoid gratuitous statement movement. We
184 consider statements with VOPS more desirable to move.
186 This pass would obviously benefit from PDO as it utilizes block
187 frequencies. It would also benefit from recomputing frequencies
188 if profile data is not available since frequencies often get out
189 of sync with reality. */
192 select_best_block (basic_block early_bb
,
196 basic_block best_bb
= late_bb
;
197 basic_block temp_bb
= late_bb
;
200 while (temp_bb
!= early_bb
)
202 /* If we've moved into a lower loop nest, then that becomes
204 if (bb_loop_depth (temp_bb
) < bb_loop_depth (best_bb
))
207 /* Walk up the dominator tree, hopefully we'll find a shallower
209 temp_bb
= get_immediate_dominator (CDI_DOMINATORS
, temp_bb
);
212 /* Placing a statement before a setjmp-like function would be invalid
213 (it cannot be reevaluated when execution follows an abnormal edge).
214 If we selected a block with abnormal predecessors, just punt. */
215 if (bb_has_abnormal_pred (best_bb
))
218 /* If we found a shallower loop nest, then we always consider that
219 a win. This will always give us the most control dependent block
220 within that loop nest. */
221 if (bb_loop_depth (best_bb
) < bb_loop_depth (early_bb
))
224 /* Avoid turning an unconditional read into a conditional one when we
225 still might want to perform vectorization. */
226 if (best_bb
->loop_father
== early_bb
->loop_father
227 && loop_outer (best_bb
->loop_father
)
228 && !best_bb
->loop_father
->inner
229 && gimple_vuse (stmt
)
230 && flag_tree_loop_vectorize
231 && !(cfun
->curr_properties
& PROP_loop_opts_done
)
232 && dominated_by_p (CDI_DOMINATORS
, best_bb
->loop_father
->latch
, early_bb
)
233 && !dominated_by_p (CDI_DOMINATORS
, best_bb
->loop_father
->latch
, best_bb
))
236 /* Get the sinking threshold. If the statement to be moved has memory
237 operands, then increase the threshold by 7% as those are even more
238 profitable to avoid, clamping at 100%. */
239 threshold
= param_sink_frequency_threshold
;
240 if (gimple_vuse (stmt
) || gimple_vdef (stmt
))
247 /* If BEST_BB is at the same nesting level, then require it to have
248 significantly lower execution frequency to avoid gratuitous movement. */
249 if (bb_loop_depth (best_bb
) == bb_loop_depth (early_bb
)
250 /* If result of comparsion is unknown, prefer EARLY_BB.
251 Thus use !(...>=..) rather than (...<...) */
252 && !(best_bb
->count
* 100 >= early_bb
->count
* threshold
))
255 /* No better block found, so return EARLY_BB, which happens to be the
256 statement's original block. */
260 /* Given a statement (STMT) and the basic block it is currently in (FROMBB),
261 determine the location to sink the statement to, if any.
262 Returns true if there is such location; in that case, TOGSI points to the
263 statement before that STMT should be moved. */
266 statement_sink_location (gimple
*stmt
, basic_block frombb
,
267 gimple_stmt_iterator
*togsi
, bool *zero_uses_p
,
268 virtual_operand_live
&vop_live
)
271 use_operand_p one_use
= NULL_USE_OPERAND_P
;
276 imm_use_iterator imm_iter
;
278 *zero_uses_p
= false;
280 /* We only can sink assignments and const/pure calls that are guaranteed
281 to return exactly once. */
283 if (!is_gimple_assign (stmt
)
284 && (!is_gimple_call (stmt
)
285 || !((cf
= gimple_call_flags (stmt
)) & (ECF_CONST
|ECF_PURE
))
286 || (cf
& (ECF_LOOPING_CONST_OR_PURE
|ECF_RETURNS_TWICE
))))
289 /* We only can sink stmts with a single definition. */
290 def_p
= single_ssa_def_operand (stmt
, SSA_OP_ALL_DEFS
);
291 if (def_p
== NULL_DEF_OPERAND_P
)
294 /* There are a few classes of things we can't or don't move, some because we
295 don't have code to handle it, some because it's not profitable and some
296 because it's not legal.
298 We can't sink things that may be global stores, at least not without
299 calculating a lot more information, because we may cause it to no longer
300 be seen by an external routine that needs it depending on where it gets
303 We can't sink statements that end basic blocks without splitting the
304 incoming edge for the sink location to place it there.
306 We can't sink statements that have volatile operands.
308 We don't want to sink dead code, so anything with 0 immediate uses is not
311 Don't sink BLKmode assignments if current function has any local explicit
312 register variables, as BLKmode assignments may involve memcpy or memset
313 calls or, on some targets, inline expansion thereof that sometimes need
314 to use specific hard registers.
317 if (stmt_ends_bb_p (stmt
)
318 || gimple_has_side_effects (stmt
)
319 || (cfun
->has_local_explicit_reg_vars
320 && TYPE_MODE (TREE_TYPE (gimple_get_lhs (stmt
))) == BLKmode
))
323 /* Return if there are no immediate uses of this stmt. */
324 if (has_zero_uses (DEF_FROM_PTR (def_p
)))
330 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (DEF_FROM_PTR (def_p
)))
333 FOR_EACH_SSA_USE_OPERAND (use_p
, stmt
, iter
, SSA_OP_ALL_USES
)
335 tree use
= USE_FROM_PTR (use_p
);
336 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use
))
342 /* If stmt is a store the one and only use needs to be the VOP
344 if (virtual_operand_p (DEF_FROM_PTR (def_p
)))
346 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, DEF_FROM_PTR (def_p
))
348 gimple
*use_stmt
= USE_STMT (use_p
);
350 /* A killing definition is not a use. */
351 if ((gimple_has_lhs (use_stmt
)
352 && operand_equal_p (gimple_get_lhs (stmt
),
353 gimple_get_lhs (use_stmt
), 0))
354 || stmt_kills_ref_p (use_stmt
, gimple_get_lhs (stmt
)))
356 /* If use_stmt is or might be a nop assignment then USE_STMT
357 acts as a use as well as definition. */
359 && ref_maybe_used_by_stmt_p (use_stmt
,
360 gimple_get_lhs (stmt
)))
365 if (gimple_code (use_stmt
) != GIMPLE_PHI
)
377 /* If all the immediate uses are not in the same place, find the nearest
378 common dominator of all the immediate uses. For PHI nodes, we have to
379 find the nearest common dominator of all of the predecessor blocks, since
380 that is where insertion would have to take place. */
381 else if (gimple_vuse (stmt
)
382 || !all_immediate_uses_same_place (def_p
))
384 bool debug_stmts
= false;
385 basic_block commondom
= nearest_common_dominator_of_uses (def_p
,
388 if (commondom
== frombb
)
391 /* If this is a load then do not sink past any stores. */
392 if (gimple_vuse (stmt
))
394 /* Do not sink loads from hard registers. */
395 if (gimple_assign_single_p (stmt
)
396 && VAR_P (gimple_assign_rhs1 (stmt
))
397 && DECL_HARD_REGISTER (gimple_assign_rhs1 (stmt
)))
400 /* When the live virtual operand at the intended sink location is
401 not the same as the one from the load walk up the dominator tree
402 for a new candidate location. */
403 while (commondom
!= frombb
404 && vop_live
.get_live_in (commondom
) != gimple_vuse (stmt
))
405 commondom
= get_immediate_dominator (CDI_DOMINATORS
, commondom
);
406 if (commondom
== frombb
)
410 /* Our common dominator has to be dominated by frombb in order to be a
411 trivially safe place to put this statement, since it has multiple
413 if (!dominated_by_p (CDI_DOMINATORS
, commondom
, frombb
))
416 commondom
= select_best_block (frombb
, commondom
, stmt
);
418 if (commondom
== frombb
)
421 *togsi
= gsi_after_labels (commondom
);
427 FOR_EACH_IMM_USE_FAST (one_use
, imm_iter
, DEF_FROM_PTR (def_p
))
429 if (is_gimple_debug (USE_STMT (one_use
)))
433 use
= USE_STMT (one_use
);
435 if (gimple_code (use
) != GIMPLE_PHI
)
437 sinkbb
= select_best_block (frombb
, gimple_bb (use
), stmt
);
439 if (sinkbb
== frombb
)
442 if (sinkbb
== gimple_bb (use
))
443 *togsi
= gsi_for_stmt (use
);
445 *togsi
= gsi_after_labels (sinkbb
);
451 sinkbb
= find_bb_for_arg (as_a
<gphi
*> (use
), DEF_FROM_PTR (def_p
));
453 /* This can happen if there are multiple uses in a PHI. */
457 sinkbb
= select_best_block (frombb
, sinkbb
, stmt
);
458 if (!sinkbb
|| sinkbb
== frombb
)
461 /* If the latch block is empty, don't make it non-empty by sinking
462 something into it. */
463 if (sinkbb
== frombb
->loop_father
->latch
464 && empty_block_p (sinkbb
))
467 *togsi
= gsi_after_labels (sinkbb
);
472 /* Very simplistic code to sink common stores from the predecessor through
473 our virtual PHI. We do this before sinking stmts from BB as it might
474 expose sinking opportunities of the merged stores.
475 Once we have partial dead code elimination through sth like SSU-PRE this
476 should be moved there. */
479 sink_common_stores_to_bb (basic_block bb
)
484 if (EDGE_COUNT (bb
->preds
) > 1
485 && (phi
= get_virtual_phi (bb
)))
487 /* Repeat until no more common stores are found. */
490 gimple
*first_store
= NULL
;
491 auto_vec
<tree
, 5> vdefs
;
492 gimple_stmt_iterator gsi
;
494 /* Search for common stores defined by all virtual PHI args.
495 ??? Common stores not present in all predecessors could
496 be handled by inserting a forwarder to sink to. Generally
497 this involves deciding which stores to do this for if
498 multiple common stores are present for different sets of
499 predecessors. See PR11832 for an interesting case. */
500 for (unsigned i
= 0; i
< gimple_phi_num_args (phi
); ++i
)
502 tree arg
= gimple_phi_arg_def (phi
, i
);
503 gimple
*def
= SSA_NAME_DEF_STMT (arg
);
504 if (! is_gimple_assign (def
)
505 || stmt_can_throw_internal (cfun
, def
)
506 || (gimple_phi_arg_edge (phi
, i
)->flags
& EDGE_ABNORMAL
))
508 /* ??? We could handle some cascading with the def being
509 another PHI. We'd have to insert multiple PHIs for
510 the rhs then though (if they are not all equal). */
514 /* ??? Do not try to do anything fancy with aliasing, thus
515 do not sink across non-aliased loads (or even stores,
516 so different store order will make the sinking fail). */
517 bool all_uses_on_phi
= true;
518 imm_use_iterator iter
;
520 FOR_EACH_IMM_USE_FAST (use_p
, iter
, arg
)
521 if (USE_STMT (use_p
) != phi
)
523 all_uses_on_phi
= false;
526 if (! all_uses_on_phi
)
531 /* Check all stores are to the same LHS. */
534 /* ??? We could handle differing SSA uses in the LHS by inserting
536 else if (! operand_equal_p (gimple_assign_lhs (first_store
),
537 gimple_assign_lhs (def
), 0)
538 || (gimple_clobber_p (first_store
)
539 != gimple_clobber_p (def
)))
544 vdefs
.safe_push (arg
);
549 /* Check if we need a PHI node to merge the stored values. */
551 if (!gimple_clobber_p (first_store
))
552 for (unsigned i
= 1; i
< vdefs
.length (); ++i
)
554 gimple
*def
= SSA_NAME_DEF_STMT (vdefs
[i
]);
555 if (! operand_equal_p (gimple_assign_rhs1 (first_store
),
556 gimple_assign_rhs1 (def
), 0))
563 /* We cannot handle aggregate values if we need to merge them. */
564 tree type
= TREE_TYPE (gimple_assign_lhs (first_store
));
566 && ! is_gimple_reg_type (type
))
569 if (dump_enabled_p ())
571 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS
,
573 "sinking common stores %sto ",
574 allsame
? "with same value " : "");
575 dump_generic_expr (MSG_OPTIMIZED_LOCATIONS
, TDF_SLIM
,
576 gimple_assign_lhs (first_store
));
577 dump_printf (MSG_OPTIMIZED_LOCATIONS
, "\n");
580 /* Insert a PHI to merge differing stored values if necessary.
581 Note that in general inserting PHIs isn't a very good idea as
582 it makes the job of coalescing and register allocation harder.
583 Even common SSA uses on the rhs/lhs might extend their lifetime
584 across multiple edges by this code motion which makes
585 register allocation harder. */
589 from
= make_ssa_name (type
);
590 gphi
*newphi
= create_phi_node (from
, bb
);
591 for (unsigned i
= 0; i
< vdefs
.length (); ++i
)
593 gimple
*def
= SSA_NAME_DEF_STMT (vdefs
[i
]);
594 add_phi_arg (newphi
, gimple_assign_rhs1 (def
),
595 EDGE_PRED (bb
, i
), UNKNOWN_LOCATION
);
599 from
= gimple_assign_rhs1 (first_store
);
601 /* Remove all stores. */
602 for (unsigned i
= 0; i
< vdefs
.length (); ++i
)
603 TREE_VISITED (vdefs
[i
]) = 1;
604 for (unsigned i
= 0; i
< vdefs
.length (); ++i
)
605 /* If we have more than one use of a VDEF on the PHI make sure
606 we remove the defining stmt only once. */
607 if (TREE_VISITED (vdefs
[i
]))
609 TREE_VISITED (vdefs
[i
]) = 0;
610 gimple
*def
= SSA_NAME_DEF_STMT (vdefs
[i
]);
611 gsi
= gsi_for_stmt (def
);
612 unlink_stmt_vdef (def
);
613 gsi_remove (&gsi
, true);
617 /* Insert the first store at the beginning of the merge BB. */
618 gimple_set_vdef (first_store
, gimple_phi_result (phi
));
619 SSA_NAME_DEF_STMT (gimple_vdef (first_store
)) = first_store
;
620 gimple_phi_set_result (phi
, make_ssa_name (gimple_vop (cfun
)));
621 gimple_set_vuse (first_store
, gimple_phi_result (phi
));
622 gimple_assign_set_rhs1 (first_store
, from
);
623 /* ??? Should we reset first_stores location? */
624 gsi
= gsi_after_labels (bb
);
625 gsi_insert_before (&gsi
, first_store
, GSI_SAME_STMT
);
626 sink_stats
.commoned
++;
628 todo
|= TODO_cleanup_cfg
;
631 /* We could now have empty predecessors that we could remove,
632 forming a proper CFG for further sinking. Note that even
633 CFG cleanup doesn't do this fully at the moment and it
634 doesn't preserve post-dominators in the process either.
635 The mergephi pass might do it though. gcc.dg/tree-ssa/ssa-sink-13.c
636 shows this nicely if you disable tail merging or (same effect)
637 make the stored values unequal. */
643 /* Perform code sinking on BB */
646 sink_code_in_bb (basic_block bb
, virtual_operand_live
&vop_live
)
648 gimple_stmt_iterator gsi
;
654 /* Sink common stores from the predecessor through our virtual PHI. */
655 todo
|= sink_common_stores_to_bb (bb
);
657 /* If this block doesn't dominate anything, there can't be any place to sink
658 the statements to. */
659 if (first_dom_son (CDI_DOMINATORS
, bb
) == NULL
)
662 /* We can't move things across abnormal edges, so don't try. */
663 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
664 if (e
->flags
& EDGE_ABNORMAL
)
667 for (gsi
= gsi_last_bb (bb
); !gsi_end_p (gsi
);)
669 gimple
*stmt
= gsi_stmt (gsi
);
670 gimple_stmt_iterator togsi
;
673 if (!statement_sink_location (stmt
, bb
, &togsi
, &zero_uses_p
, vop_live
))
675 gimple_stmt_iterator saved
= gsi
;
676 if (!gsi_end_p (gsi
))
678 /* If we face a dead stmt remove it as it possibly blocks
681 && !gimple_vdef (stmt
)
682 && (cfun
->can_delete_dead_exceptions
683 || !stmt_could_throw_p (cfun
, stmt
)))
685 gsi_remove (&saved
, true);
694 fprintf (dump_file
, "Sinking ");
695 print_gimple_stmt (dump_file
, stmt
, 0, TDF_VOPS
);
696 fprintf (dump_file
, " from bb %d to bb %d\n",
697 bb
->index
, (gsi_bb (togsi
))->index
);
700 /* Update virtual operands of statements in the path we
702 if (gimple_vdef (stmt
))
704 imm_use_iterator iter
;
708 FOR_EACH_IMM_USE_STMT (vuse_stmt
, iter
, gimple_vdef (stmt
))
709 if (gimple_code (vuse_stmt
) != GIMPLE_PHI
)
710 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
711 SET_USE (use_p
, gimple_vuse (stmt
));
714 /* If this is the end of the basic block, we need to insert at the end
715 of the basic block. */
716 if (gsi_end_p (togsi
))
717 gsi_move_to_bb_end (&gsi
, gsi_bb (togsi
));
719 gsi_move_before (&gsi
, &togsi
);
723 /* If we've just removed the last statement of the BB, the
724 gsi_end_p() test below would fail, but gsi_prev() would have
725 succeeded, and we want it to succeed. So we keep track of
726 whether we're at the last statement and pick up the new last
730 gsi
= gsi_last_bb (bb
);
735 if (!gsi_end_p (gsi
))
743 /* Perform code sinking.
744 This moves code down the flowgraph when we know it would be
745 profitable to do so, or it wouldn't increase the number of
746 executions of the statement.
759 a_6 = PHI (a_5, a_1);
762 we'll transform this into:
773 a_6 = PHI (a_5, a_1);
776 Note that this reduces the number of computations of a = b + c to 1
777 when we take the else edge, instead of 2.
781 const pass_data pass_data_sink_code
=
783 GIMPLE_PASS
, /* type */
785 OPTGROUP_NONE
, /* optinfo_flags */
786 TV_TREE_SINK
, /* tv_id */
787 /* PROP_no_crit_edges is ensured by running split_edges_for_insertion in
788 pass_data_sink_code::execute (). */
789 ( PROP_cfg
| PROP_ssa
), /* properties_required */
790 0, /* properties_provided */
791 0, /* properties_destroyed */
792 0, /* todo_flags_start */
793 TODO_update_ssa
, /* todo_flags_finish */
796 class pass_sink_code
: public gimple_opt_pass
799 pass_sink_code (gcc::context
*ctxt
)
800 : gimple_opt_pass (pass_data_sink_code
, ctxt
), unsplit_edges (false)
803 /* opt_pass methods: */
804 bool gate (function
*) final override
{ return flag_tree_sink
!= 0; }
805 unsigned int execute (function
*) final override
;
806 opt_pass
*clone (void) final override
{ return new pass_sink_code (m_ctxt
); }
807 void set_pass_param (unsigned n
, bool param
) final override
810 unsplit_edges
= param
;
815 }; // class pass_sink_code
818 pass_sink_code::execute (function
*fun
)
820 loop_optimizer_init (LOOPS_NORMAL
);
821 split_edges_for_insertion ();
822 /* Arrange for the critical edge splitting to be undone if requested. */
823 unsigned todo
= unsplit_edges
? TODO_cleanup_cfg
: 0;
824 connect_infinite_loops_to_exit ();
825 mark_dfs_back_edges (fun
);
826 memset (&sink_stats
, 0, sizeof (sink_stats
));
827 calculate_dominance_info (CDI_DOMINATORS
);
829 virtual_operand_live vop_live
;
831 int *rpo
= XNEWVEC (int, n_basic_blocks_for_fn (cfun
));
832 int n
= inverted_rev_post_order_compute (fun
, rpo
);
833 for (int i
= 0; i
< n
; ++i
)
834 todo
|= sink_code_in_bb (BASIC_BLOCK_FOR_FN (fun
, rpo
[i
]), vop_live
);
837 statistics_counter_event (fun
, "Sunk statements", sink_stats
.sunk
);
838 statistics_counter_event (fun
, "Commoned stores", sink_stats
.commoned
);
839 remove_fake_exit_edges ();
840 loop_optimizer_finalize ();
848 make_pass_sink_code (gcc::context
*ctxt
)
850 return new pass_sink_code (ctxt
);