re PR bootstrap/46810 (sparc64-linux bootstrap fails with "C++ preprocessor "/lib...
[official-gcc.git] / gcc / sese.h
blob10bf874a174175ec9b23399c52c7d5a23a0e754e
1 /* Single entry single exit control flow regions.
2 Copyright (C) 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Jan Sjodin <jan.sjodin@amd.com> and
5 Sebastian Pop <sebastian.pop@amd.com>.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #ifndef GCC_SESE_H
24 #define GCC_SESE_H
26 /* A Single Entry, Single Exit region is a part of the CFG delimited
27 by two edges. */
28 typedef struct sese_s
30 /* Single ENTRY and single EXIT from the SESE region. */
31 edge entry, exit;
33 /* Parameters used within the SCOP. */
34 VEC (tree, heap) *params;
36 /* Loops completely contained in the SCOP. */
37 bitmap loops;
38 VEC (loop_p, heap) *loop_nest;
40 /* Are we allowed to add more params? This is for debugging purpose. We
41 can only add new params before generating the bb domains, otherwise they
42 become invalid. */
43 bool add_params;
44 } *sese;
46 #define SESE_ENTRY(S) (S->entry)
47 #define SESE_ENTRY_BB(S) (S->entry->dest)
48 #define SESE_EXIT(S) (S->exit)
49 #define SESE_EXIT_BB(S) (S->exit->dest)
50 #define SESE_PARAMS(S) (S->params)
51 #define SESE_LOOPS(S) (S->loops)
52 #define SESE_LOOP_NEST(S) (S->loop_nest)
53 #define SESE_ADD_PARAMS(S) (S->add_params)
55 extern sese new_sese (edge, edge);
56 extern void free_sese (sese);
57 extern void sese_insert_phis_for_liveouts (sese, basic_block, edge, edge);
58 extern void build_sese_loop_nests (sese);
59 extern edge copy_bb_and_scalar_dependences (basic_block, sese, edge,
60 VEC (tree, heap) *);
61 extern struct loop *outermost_loop_in_sese (sese, basic_block);
62 extern void insert_loop_close_phis (htab_t, loop_p);
63 extern void insert_guard_phis (basic_block, edge, edge, htab_t, htab_t);
64 extern tree scalar_evolution_in_region (sese, loop_p, tree);
66 /* Check that SESE contains LOOP. */
68 static inline bool
69 sese_contains_loop (sese sese, struct loop *loop)
71 return bitmap_bit_p (SESE_LOOPS (sese), loop->num);
74 /* The number of parameters in REGION. */
76 static inline unsigned
77 sese_nb_params (sese region)
79 return VEC_length (tree, SESE_PARAMS (region));
82 /* Checks whether BB is contained in the region delimited by ENTRY and
83 EXIT blocks. */
85 static inline bool
86 bb_in_region (basic_block bb, basic_block entry, basic_block exit)
88 #ifdef ENABLE_CHECKING
90 edge e;
91 edge_iterator ei;
93 /* Check that there are no edges coming in the region: all the
94 predecessors of EXIT are dominated by ENTRY. */
95 FOR_EACH_EDGE (e, ei, exit->preds)
96 dominated_by_p (CDI_DOMINATORS, e->src, entry);
98 #endif
100 return dominated_by_p (CDI_DOMINATORS, bb, entry)
101 && !(dominated_by_p (CDI_DOMINATORS, bb, exit)
102 && !dominated_by_p (CDI_DOMINATORS, entry, exit));
105 /* Checks whether BB is contained in the region delimited by ENTRY and
106 EXIT blocks. */
108 static inline bool
109 bb_in_sese_p (basic_block bb, sese region)
111 basic_block entry = SESE_ENTRY_BB (region);
112 basic_block exit = SESE_EXIT_BB (region);
114 return bb_in_region (bb, entry, exit);
117 /* Returns true when NAME is defined in REGION. */
119 static inline bool
120 defined_in_sese_p (tree name, sese region)
122 gimple stmt = SSA_NAME_DEF_STMT (name);
123 basic_block bb = gimple_bb (stmt);
125 return bb && bb_in_sese_p (bb, region);
128 /* Returns true when LOOP is in REGION. */
130 static inline bool
131 loop_in_sese_p (struct loop *loop, sese region)
133 return (bb_in_sese_p (loop->header, region)
134 && bb_in_sese_p (loop->latch, region));
137 /* Returns the loop depth of LOOP in REGION. The loop depth
138 is the same as the normal loop depth, but limited by a region.
140 Example:
142 loop_0
143 loop_1
146 <- region start
149 loop_2
153 <- region end
156 loop_0 does not exist in the region -> invalid
157 loop_1 exists, but is not completely contained in the region -> depth 0
158 loop_2 is completely contained -> depth 1 */
160 static inline unsigned int
161 sese_loop_depth (sese region, loop_p loop)
163 unsigned int depth = 0;
165 gcc_assert ((!loop_in_sese_p (loop, region)
166 && (SESE_ENTRY_BB (region)->loop_father == loop
167 || SESE_EXIT (region)->src->loop_father == loop))
168 || loop_in_sese_p (loop, region));
170 while (loop_in_sese_p (loop, region))
172 depth++;
173 loop = loop_outer (loop);
176 return depth;
179 /* Splits BB to make a single entry single exit region. */
181 static inline sese
182 split_region_for_bb (basic_block bb)
184 edge entry, exit;
186 if (single_pred_p (bb))
187 entry = single_pred_edge (bb);
188 else
190 entry = split_block_after_labels (bb);
191 bb = single_succ (bb);
194 if (single_succ_p (bb))
195 exit = single_succ_edge (bb);
196 else
198 gimple_stmt_iterator gsi = gsi_last_bb (bb);
199 gsi_prev (&gsi);
200 exit = split_block (bb, gsi_stmt (gsi));
203 return new_sese (entry, exit);
206 /* Returns the block preceding the entry of a SESE. */
208 static inline basic_block
209 block_before_sese (sese sese)
211 return SESE_ENTRY (sese)->src;
216 /* A single entry single exit specialized for conditions. */
218 typedef struct ifsese_s {
219 sese region;
220 sese true_region;
221 sese false_region;
222 } *ifsese;
224 extern void if_region_set_false_region (ifsese, sese);
225 extern ifsese move_sese_in_condition (sese);
226 extern edge get_true_edge_from_guard_bb (basic_block);
227 extern edge get_false_edge_from_guard_bb (basic_block);
228 extern void set_ifsese_condition (ifsese, tree);
230 static inline edge
231 if_region_entry (ifsese if_region)
233 return SESE_ENTRY (if_region->region);
236 static inline edge
237 if_region_exit (ifsese if_region)
239 return SESE_EXIT (if_region->region);
242 static inline basic_block
243 if_region_get_condition_block (ifsese if_region)
245 return if_region_entry (if_region)->dest;
248 /* Structure containing the mapping between the old names and the new
249 names used after block copy in the new loop context. */
250 typedef struct rename_map_elt_s
252 tree old_name, expr;
253 } *rename_map_elt;
255 DEF_VEC_P(rename_map_elt);
256 DEF_VEC_ALLOC_P (rename_map_elt, heap);
258 extern void debug_rename_map (htab_t);
259 extern hashval_t rename_map_elt_info (const void *);
260 extern int eq_rename_map_elts (const void *, const void *);
262 /* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */
264 static inline rename_map_elt
265 new_rename_map_elt (tree old_name, tree expr)
267 rename_map_elt res;
269 res = XNEW (struct rename_map_elt_s);
270 res->old_name = old_name;
271 res->expr = expr;
273 return res;
276 /* Structure containing the mapping between the CLooG's induction
277 variable and the type of the old induction variable. */
278 typedef struct ivtype_map_elt_s
280 tree type;
281 const char *cloog_iv;
282 } *ivtype_map_elt;
284 extern void debug_ivtype_map (htab_t);
285 extern hashval_t ivtype_map_elt_info (const void *);
286 extern int eq_ivtype_map_elts (const void *, const void *);
288 /* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */
290 static inline ivtype_map_elt
291 new_ivtype_map_elt (const char *cloog_iv, tree type)
293 ivtype_map_elt res;
295 res = XNEW (struct ivtype_map_elt_s);
296 res->cloog_iv = cloog_iv;
297 res->type = type;
299 return res;
302 /* Free and compute again all the dominators information. */
304 static inline void
305 recompute_all_dominators (void)
307 mark_irreducible_loops ();
308 free_dominance_info (CDI_DOMINATORS);
309 calculate_dominance_info (CDI_DOMINATORS);
312 typedef struct gimple_bb
314 basic_block bb;
315 struct poly_bb *pbb;
317 /* Lists containing the restrictions of the conditional statements
318 dominating this bb. This bb can only be executed, if all conditions
319 are true.
321 Example:
323 for (i = 0; i <= 20; i++)
327 if (2i <= 8)
331 So for B there is an additional condition (2i <= 8).
333 List of COND_EXPR and SWITCH_EXPR. A COND_EXPR is true only if the
334 corresponding element in CONDITION_CASES is not NULL_TREE. For a
335 SWITCH_EXPR the corresponding element in CONDITION_CASES is a
336 CASE_LABEL_EXPR. */
337 VEC (gimple, heap) *conditions;
338 VEC (gimple, heap) *condition_cases;
339 VEC (data_reference_p, heap) *data_refs;
340 } *gimple_bb_p;
342 #define GBB_BB(GBB) (GBB)->bb
343 #define GBB_PBB(GBB) (GBB)->pbb
344 #define GBB_DATA_REFS(GBB) (GBB)->data_refs
345 #define GBB_CONDITIONS(GBB) (GBB)->conditions
346 #define GBB_CONDITION_CASES(GBB) (GBB)->condition_cases
348 /* Return the innermost loop that contains the basic block GBB. */
350 static inline struct loop *
351 gbb_loop (struct gimple_bb *gbb)
353 return GBB_BB (gbb)->loop_father;
356 /* Returns the gimple loop, that corresponds to the loop_iterator_INDEX.
357 If there is no corresponding gimple loop, we return NULL. */
359 static inline loop_p
360 gbb_loop_at_index (gimple_bb_p gbb, sese region, int index)
362 loop_p loop = gbb_loop (gbb);
363 int depth = sese_loop_depth (region, loop);
365 while (--depth > index)
366 loop = loop_outer (loop);
368 gcc_assert (sese_contains_loop (region, loop));
370 return loop;
373 /* The number of common loops in REGION for GBB1 and GBB2. */
375 static inline int
376 nb_common_loops (sese region, gimple_bb_p gbb1, gimple_bb_p gbb2)
378 loop_p l1 = gbb_loop (gbb1);
379 loop_p l2 = gbb_loop (gbb2);
380 loop_p common = find_common_loop (l1, l2);
382 return sese_loop_depth (region, common);
385 /* Return true when DEF can be analyzed in REGION by the scalar
386 evolution analyzer. */
388 static inline bool
389 scev_analyzable_p (tree def, sese region)
391 loop_p loop;
392 tree scev;
393 tree type = TREE_TYPE (def);
395 /* When Graphite generates code for a scev, the code generator
396 expresses the scev in function of a single induction variable.
397 This is unsafe for floating point computations, as it may replace
398 a floating point sum reduction with a multiplication. The
399 following test returns false for non integer types to avoid such
400 problems. */
401 if (!INTEGRAL_TYPE_P (type)
402 && !POINTER_TYPE_P (type))
403 return false;
405 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (def));
406 scev = scalar_evolution_in_region (region, loop, def);
408 return !chrec_contains_undetermined (scev)
409 && TREE_CODE (scev) != SSA_NAME
410 && (tree_does_not_contain_chrecs (scev)
411 || evolution_function_is_affine_p (scev));
414 #endif