re PR bootstrap/46810 (sparc64-linux bootstrap fails with "C++ preprocessor "/lib...
[official-gcc.git] / gcc / sel-sched-ir.c
blob26968828d19f27dc1a00c6fe16464abe396de0e8
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "diagnostic-core.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "insn-attr.h"
33 #include "except.h"
34 #include "recog.h"
35 #include "params.h"
36 #include "target.h"
37 #include "timevar.h"
38 #include "tree-pass.h"
39 #include "sched-int.h"
40 #include "ggc.h"
41 #include "tree.h"
42 #include "vec.h"
43 #include "langhooks.h"
44 #include "rtlhooks-def.h"
45 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
47 #ifdef INSN_SCHEDULING
48 #include "sel-sched-ir.h"
49 /* We don't have to use it except for sel_print_insn. */
50 #include "sel-sched-dump.h"
52 /* A vector holding bb info for whole scheduling pass. */
53 VEC(sel_global_bb_info_def, heap) *sel_global_bb_info = NULL;
55 /* A vector holding bb info. */
56 VEC(sel_region_bb_info_def, heap) *sel_region_bb_info = NULL;
58 /* A pool for allocating all lists. */
59 alloc_pool sched_lists_pool;
61 /* This contains information about successors for compute_av_set. */
62 struct succs_info current_succs;
64 /* Data structure to describe interaction with the generic scheduler utils. */
65 static struct common_sched_info_def sel_common_sched_info;
67 /* The loop nest being pipelined. */
68 struct loop *current_loop_nest;
70 /* LOOP_NESTS is a vector containing the corresponding loop nest for
71 each region. */
72 static VEC(loop_p, heap) *loop_nests = NULL;
74 /* Saves blocks already in loop regions, indexed by bb->index. */
75 static sbitmap bbs_in_loop_rgns = NULL;
77 /* CFG hooks that are saved before changing create_basic_block hook. */
78 static struct cfg_hooks orig_cfg_hooks;
81 /* Array containing reverse topological index of function basic blocks,
82 indexed by BB->INDEX. */
83 static int *rev_top_order_index = NULL;
85 /* Length of the above array. */
86 static int rev_top_order_index_len = -1;
88 /* A regset pool structure. */
89 static struct
91 /* The stack to which regsets are returned. */
92 regset *v;
94 /* Its pointer. */
95 int n;
97 /* Its size. */
98 int s;
100 /* In VV we save all generated regsets so that, when destructing the
101 pool, we can compare it with V and check that every regset was returned
102 back to pool. */
103 regset *vv;
105 /* The pointer of VV stack. */
106 int nn;
108 /* Its size. */
109 int ss;
111 /* The difference between allocated and returned regsets. */
112 int diff;
113 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
115 /* This represents the nop pool. */
116 static struct
118 /* The vector which holds previously emitted nops. */
119 insn_t *v;
121 /* Its pointer. */
122 int n;
124 /* Its size. */
125 int s;
126 } nop_pool = { NULL, 0, 0 };
128 /* The pool for basic block notes. */
129 static rtx_vec_t bb_note_pool;
131 /* A NOP pattern used to emit placeholder insns. */
132 rtx nop_pattern = NULL_RTX;
133 /* A special instruction that resides in EXIT_BLOCK.
134 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
135 rtx exit_insn = NULL_RTX;
137 /* TRUE if while scheduling current region, which is loop, its preheader
138 was removed. */
139 bool preheader_removed = false;
142 /* Forward static declarations. */
143 static void fence_clear (fence_t);
145 static void deps_init_id (idata_t, insn_t, bool);
146 static void init_id_from_df (idata_t, insn_t, bool);
147 static expr_t set_insn_init (expr_t, vinsn_t, int);
149 static void cfg_preds (basic_block, insn_t **, int *);
150 static void prepare_insn_expr (insn_t, int);
151 static void free_history_vect (VEC (expr_history_def, heap) **);
153 static void move_bb_info (basic_block, basic_block);
154 static void remove_empty_bb (basic_block, bool);
155 static void sel_merge_blocks (basic_block, basic_block);
156 static void sel_remove_loop_preheader (void);
157 static bool bb_has_removable_jump_to_p (basic_block, basic_block);
159 static bool insn_is_the_only_one_in_bb_p (insn_t);
160 static void create_initial_data_sets (basic_block);
162 static void free_av_set (basic_block);
163 static void invalidate_av_set (basic_block);
164 static void extend_insn_data (void);
165 static void sel_init_new_insn (insn_t, int);
166 static void finish_insns (void);
168 /* Various list functions. */
170 /* Copy an instruction list L. */
171 ilist_t
172 ilist_copy (ilist_t l)
174 ilist_t head = NULL, *tailp = &head;
176 while (l)
178 ilist_add (tailp, ILIST_INSN (l));
179 tailp = &ILIST_NEXT (*tailp);
180 l = ILIST_NEXT (l);
183 return head;
186 /* Invert an instruction list L. */
187 ilist_t
188 ilist_invert (ilist_t l)
190 ilist_t res = NULL;
192 while (l)
194 ilist_add (&res, ILIST_INSN (l));
195 l = ILIST_NEXT (l);
198 return res;
201 /* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
202 void
203 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
205 bnd_t bnd;
207 _list_add (lp);
208 bnd = BLIST_BND (*lp);
210 BND_TO (bnd) = to;
211 BND_PTR (bnd) = ptr;
212 BND_AV (bnd) = NULL;
213 BND_AV1 (bnd) = NULL;
214 BND_DC (bnd) = dc;
217 /* Remove the list note pointed to by LP. */
218 void
219 blist_remove (blist_t *lp)
221 bnd_t b = BLIST_BND (*lp);
223 av_set_clear (&BND_AV (b));
224 av_set_clear (&BND_AV1 (b));
225 ilist_clear (&BND_PTR (b));
227 _list_remove (lp);
230 /* Init a fence tail L. */
231 void
232 flist_tail_init (flist_tail_t l)
234 FLIST_TAIL_HEAD (l) = NULL;
235 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
238 /* Try to find fence corresponding to INSN in L. */
239 fence_t
240 flist_lookup (flist_t l, insn_t insn)
242 while (l)
244 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
245 return FLIST_FENCE (l);
247 l = FLIST_NEXT (l);
250 return NULL;
253 /* Init the fields of F before running fill_insns. */
254 static void
255 init_fence_for_scheduling (fence_t f)
257 FENCE_BNDS (f) = NULL;
258 FENCE_PROCESSED_P (f) = false;
259 FENCE_SCHEDULED_P (f) = false;
262 /* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
263 static void
264 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
265 insn_t last_scheduled_insn, VEC(rtx,gc) *executing_insns,
266 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
267 int cycle, int cycle_issued_insns, int issue_more,
268 bool starts_cycle_p, bool after_stall_p)
270 fence_t f;
272 _list_add (lp);
273 f = FLIST_FENCE (*lp);
275 FENCE_INSN (f) = insn;
277 gcc_assert (state != NULL);
278 FENCE_STATE (f) = state;
280 FENCE_CYCLE (f) = cycle;
281 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
282 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
283 FENCE_AFTER_STALL_P (f) = after_stall_p;
285 gcc_assert (dc != NULL);
286 FENCE_DC (f) = dc;
288 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
289 FENCE_TC (f) = tc;
291 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
292 FENCE_ISSUE_MORE (f) = issue_more;
293 FENCE_EXECUTING_INSNS (f) = executing_insns;
294 FENCE_READY_TICKS (f) = ready_ticks;
295 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
296 FENCE_SCHED_NEXT (f) = sched_next;
298 init_fence_for_scheduling (f);
301 /* Remove the head node of the list pointed to by LP. */
302 static void
303 flist_remove (flist_t *lp)
305 if (FENCE_INSN (FLIST_FENCE (*lp)))
306 fence_clear (FLIST_FENCE (*lp));
307 _list_remove (lp);
310 /* Clear the fence list pointed to by LP. */
311 void
312 flist_clear (flist_t *lp)
314 while (*lp)
315 flist_remove (lp);
318 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
319 void
320 def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
322 def_t d;
324 _list_add (dl);
325 d = DEF_LIST_DEF (*dl);
327 d->orig_insn = original_insn;
328 d->crosses_call = crosses_call;
332 /* Functions to work with target contexts. */
334 /* Bulk target context. It is convenient for debugging purposes to ensure
335 that there are no uninitialized (null) target contexts. */
336 static tc_t bulk_tc = (tc_t) 1;
338 /* Target hooks wrappers. In the future we can provide some default
339 implementations for them. */
341 /* Allocate a store for the target context. */
342 static tc_t
343 alloc_target_context (void)
345 return (targetm.sched.alloc_sched_context
346 ? targetm.sched.alloc_sched_context () : bulk_tc);
349 /* Init target context TC.
350 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
351 Overwise, copy current backend context to TC. */
352 static void
353 init_target_context (tc_t tc, bool clean_p)
355 if (targetm.sched.init_sched_context)
356 targetm.sched.init_sched_context (tc, clean_p);
359 /* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
360 int init_target_context (). */
361 tc_t
362 create_target_context (bool clean_p)
364 tc_t tc = alloc_target_context ();
366 init_target_context (tc, clean_p);
367 return tc;
370 /* Copy TC to the current backend context. */
371 void
372 set_target_context (tc_t tc)
374 if (targetm.sched.set_sched_context)
375 targetm.sched.set_sched_context (tc);
378 /* TC is about to be destroyed. Free any internal data. */
379 static void
380 clear_target_context (tc_t tc)
382 if (targetm.sched.clear_sched_context)
383 targetm.sched.clear_sched_context (tc);
386 /* Clear and free it. */
387 static void
388 delete_target_context (tc_t tc)
390 clear_target_context (tc);
392 if (targetm.sched.free_sched_context)
393 targetm.sched.free_sched_context (tc);
396 /* Make a copy of FROM in TO.
397 NB: May be this should be a hook. */
398 static void
399 copy_target_context (tc_t to, tc_t from)
401 tc_t tmp = create_target_context (false);
403 set_target_context (from);
404 init_target_context (to, false);
406 set_target_context (tmp);
407 delete_target_context (tmp);
410 /* Create a copy of TC. */
411 static tc_t
412 create_copy_of_target_context (tc_t tc)
414 tc_t copy = alloc_target_context ();
416 copy_target_context (copy, tc);
418 return copy;
421 /* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
422 is the same as in init_target_context (). */
423 void
424 reset_target_context (tc_t tc, bool clean_p)
426 clear_target_context (tc);
427 init_target_context (tc, clean_p);
430 /* Functions to work with dependence contexts.
431 Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
432 context. It accumulates information about processed insns to decide if
433 current insn is dependent on the processed ones. */
435 /* Make a copy of FROM in TO. */
436 static void
437 copy_deps_context (deps_t to, deps_t from)
439 init_deps (to, false);
440 deps_join (to, from);
443 /* Allocate store for dep context. */
444 static deps_t
445 alloc_deps_context (void)
447 return XNEW (struct deps_desc);
450 /* Allocate and initialize dep context. */
451 static deps_t
452 create_deps_context (void)
454 deps_t dc = alloc_deps_context ();
456 init_deps (dc, false);
457 return dc;
460 /* Create a copy of FROM. */
461 static deps_t
462 create_copy_of_deps_context (deps_t from)
464 deps_t to = alloc_deps_context ();
466 copy_deps_context (to, from);
467 return to;
470 /* Clean up internal data of DC. */
471 static void
472 clear_deps_context (deps_t dc)
474 free_deps (dc);
477 /* Clear and free DC. */
478 static void
479 delete_deps_context (deps_t dc)
481 clear_deps_context (dc);
482 free (dc);
485 /* Clear and init DC. */
486 static void
487 reset_deps_context (deps_t dc)
489 clear_deps_context (dc);
490 init_deps (dc, false);
493 /* This structure describes the dependence analysis hooks for advancing
494 dependence context. */
495 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
497 NULL,
499 NULL, /* start_insn */
500 NULL, /* finish_insn */
501 NULL, /* start_lhs */
502 NULL, /* finish_lhs */
503 NULL, /* start_rhs */
504 NULL, /* finish_rhs */
505 haifa_note_reg_set,
506 haifa_note_reg_clobber,
507 haifa_note_reg_use,
508 NULL, /* note_mem_dep */
509 NULL, /* note_dep */
511 0, 0, 0
514 /* Process INSN and add its impact on DC. */
515 void
516 advance_deps_context (deps_t dc, insn_t insn)
518 sched_deps_info = &advance_deps_context_sched_deps_info;
519 deps_analyze_insn (dc, insn);
523 /* Functions to work with DFA states. */
525 /* Allocate store for a DFA state. */
526 static state_t
527 state_alloc (void)
529 return xmalloc (dfa_state_size);
532 /* Allocate and initialize DFA state. */
533 static state_t
534 state_create (void)
536 state_t state = state_alloc ();
538 state_reset (state);
539 advance_state (state);
540 return state;
543 /* Free DFA state. */
544 static void
545 state_free (state_t state)
547 free (state);
550 /* Make a copy of FROM in TO. */
551 static void
552 state_copy (state_t to, state_t from)
554 memcpy (to, from, dfa_state_size);
557 /* Create a copy of FROM. */
558 static state_t
559 state_create_copy (state_t from)
561 state_t to = state_alloc ();
563 state_copy (to, from);
564 return to;
568 /* Functions to work with fences. */
570 /* Clear the fence. */
571 static void
572 fence_clear (fence_t f)
574 state_t s = FENCE_STATE (f);
575 deps_t dc = FENCE_DC (f);
576 void *tc = FENCE_TC (f);
578 ilist_clear (&FENCE_BNDS (f));
580 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
581 || (s == NULL && dc == NULL && tc == NULL));
583 if (s != NULL)
584 free (s);
586 if (dc != NULL)
587 delete_deps_context (dc);
589 if (tc != NULL)
590 delete_target_context (tc);
591 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
592 free (FENCE_READY_TICKS (f));
593 FENCE_READY_TICKS (f) = NULL;
596 /* Init a list of fences with successors of OLD_FENCE. */
597 void
598 init_fences (insn_t old_fence)
600 insn_t succ;
601 succ_iterator si;
602 bool first = true;
603 int ready_ticks_size = get_max_uid () + 1;
605 FOR_EACH_SUCC_1 (succ, si, old_fence,
606 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
609 if (first)
610 first = false;
611 else
612 gcc_assert (flag_sel_sched_pipelining_outer_loops);
614 flist_add (&fences, succ,
615 state_create (),
616 create_deps_context () /* dc */,
617 create_target_context (true) /* tc */,
618 NULL_RTX /* last_scheduled_insn */,
619 NULL, /* executing_insns */
620 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
621 ready_ticks_size,
622 NULL_RTX /* sched_next */,
623 1 /* cycle */, 0 /* cycle_issued_insns */,
624 issue_rate, /* issue_more */
625 1 /* starts_cycle_p */, 0 /* after_stall_p */);
629 /* Merges two fences (filling fields of fence F with resulting values) by
630 following rules: 1) state, target context and last scheduled insn are
631 propagated from fallthrough edge if it is available;
632 2) deps context and cycle is propagated from more probable edge;
633 3) all other fields are set to corresponding constant values.
635 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
636 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
637 and AFTER_STALL_P are the corresponding fields of the second fence. */
638 static void
639 merge_fences (fence_t f, insn_t insn,
640 state_t state, deps_t dc, void *tc,
641 rtx last_scheduled_insn, VEC(rtx, gc) *executing_insns,
642 int *ready_ticks, int ready_ticks_size,
643 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
645 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
647 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
648 && !sched_next && !FENCE_SCHED_NEXT (f));
650 /* Check if we can decide which path fences came.
651 If we can't (or don't want to) - reset all. */
652 if (last_scheduled_insn == NULL
653 || last_scheduled_insn_old == NULL
654 /* This is a case when INSN is reachable on several paths from
655 one insn (this can happen when pipelining of outer loops is on and
656 there are two edges: one going around of inner loop and the other -
657 right through it; in such case just reset everything). */
658 || last_scheduled_insn == last_scheduled_insn_old)
660 state_reset (FENCE_STATE (f));
661 state_free (state);
663 reset_deps_context (FENCE_DC (f));
664 delete_deps_context (dc);
666 reset_target_context (FENCE_TC (f), true);
667 delete_target_context (tc);
669 if (cycle > FENCE_CYCLE (f))
670 FENCE_CYCLE (f) = cycle;
672 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
673 FENCE_ISSUE_MORE (f) = issue_rate;
674 VEC_free (rtx, gc, executing_insns);
675 free (ready_ticks);
676 if (FENCE_EXECUTING_INSNS (f))
677 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
678 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
679 if (FENCE_READY_TICKS (f))
680 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
682 else
684 edge edge_old = NULL, edge_new = NULL;
685 edge candidate;
686 succ_iterator si;
687 insn_t succ;
689 /* Find fallthrough edge. */
690 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
691 candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
693 if (!candidate
694 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
695 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
697 /* No fallthrough edge leading to basic block of INSN. */
698 state_reset (FENCE_STATE (f));
699 state_free (state);
701 reset_target_context (FENCE_TC (f), true);
702 delete_target_context (tc);
704 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
705 FENCE_ISSUE_MORE (f) = issue_rate;
707 else
708 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
710 /* Would be weird if same insn is successor of several fallthrough
711 edges. */
712 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
713 != BLOCK_FOR_INSN (last_scheduled_insn_old));
715 state_free (FENCE_STATE (f));
716 FENCE_STATE (f) = state;
718 delete_target_context (FENCE_TC (f));
719 FENCE_TC (f) = tc;
721 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
722 FENCE_ISSUE_MORE (f) = issue_more;
724 else
726 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
727 state_free (state);
728 delete_target_context (tc);
730 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
731 != BLOCK_FOR_INSN (last_scheduled_insn));
734 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
735 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
736 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
738 if (succ == insn)
740 /* No same successor allowed from several edges. */
741 gcc_assert (!edge_old);
742 edge_old = si.e1;
745 /* Find edge of second predecessor (last_scheduled_insn->insn). */
746 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
747 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
749 if (succ == insn)
751 /* No same successor allowed from several edges. */
752 gcc_assert (!edge_new);
753 edge_new = si.e1;
757 /* Check if we can choose most probable predecessor. */
758 if (edge_old == NULL || edge_new == NULL)
760 reset_deps_context (FENCE_DC (f));
761 delete_deps_context (dc);
762 VEC_free (rtx, gc, executing_insns);
763 free (ready_ticks);
765 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
766 if (FENCE_EXECUTING_INSNS (f))
767 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
768 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
769 if (FENCE_READY_TICKS (f))
770 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
772 else
773 if (edge_new->probability > edge_old->probability)
775 delete_deps_context (FENCE_DC (f));
776 FENCE_DC (f) = dc;
777 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
778 FENCE_EXECUTING_INSNS (f) = executing_insns;
779 free (FENCE_READY_TICKS (f));
780 FENCE_READY_TICKS (f) = ready_ticks;
781 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
782 FENCE_CYCLE (f) = cycle;
784 else
786 /* Leave DC and CYCLE untouched. */
787 delete_deps_context (dc);
788 VEC_free (rtx, gc, executing_insns);
789 free (ready_ticks);
793 /* Fill remaining invariant fields. */
794 if (after_stall_p)
795 FENCE_AFTER_STALL_P (f) = 1;
797 FENCE_ISSUED_INSNS (f) = 0;
798 FENCE_STARTS_CYCLE_P (f) = 1;
799 FENCE_SCHED_NEXT (f) = NULL;
802 /* Add a new fence to NEW_FENCES list, initializing it from all
803 other parameters. */
804 static void
805 add_to_fences (flist_tail_t new_fences, insn_t insn,
806 state_t state, deps_t dc, void *tc, rtx last_scheduled_insn,
807 VEC(rtx, gc) *executing_insns, int *ready_ticks,
808 int ready_ticks_size, rtx sched_next, int cycle,
809 int cycle_issued_insns, int issue_rate,
810 bool starts_cycle_p, bool after_stall_p)
812 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
814 if (! f)
816 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
817 last_scheduled_insn, executing_insns, ready_ticks,
818 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
819 issue_rate, starts_cycle_p, after_stall_p);
821 FLIST_TAIL_TAILP (new_fences)
822 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
824 else
826 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
827 executing_insns, ready_ticks, ready_ticks_size,
828 sched_next, cycle, issue_rate, after_stall_p);
832 /* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
833 void
834 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
836 fence_t f, old;
837 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
839 old = FLIST_FENCE (old_fences);
840 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
841 FENCE_INSN (FLIST_FENCE (old_fences)));
842 if (f)
844 merge_fences (f, old->insn, old->state, old->dc, old->tc,
845 old->last_scheduled_insn, old->executing_insns,
846 old->ready_ticks, old->ready_ticks_size,
847 old->sched_next, old->cycle, old->issue_more,
848 old->after_stall_p);
850 else
852 _list_add (tailp);
853 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
854 *FLIST_FENCE (*tailp) = *old;
855 init_fence_for_scheduling (FLIST_FENCE (*tailp));
857 FENCE_INSN (old) = NULL;
860 /* Add a new fence to NEW_FENCES list and initialize most of its data
861 as a clean one. */
862 void
863 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
865 int ready_ticks_size = get_max_uid () + 1;
867 add_to_fences (new_fences,
868 succ, state_create (), create_deps_context (),
869 create_target_context (true),
870 NULL_RTX, NULL,
871 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
872 NULL_RTX, FENCE_CYCLE (fence) + 1,
873 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
876 /* Add a new fence to NEW_FENCES list and initialize all of its data
877 from FENCE and SUCC. */
878 void
879 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
881 int * new_ready_ticks
882 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
884 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
885 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
886 add_to_fences (new_fences,
887 succ, state_create_copy (FENCE_STATE (fence)),
888 create_copy_of_deps_context (FENCE_DC (fence)),
889 create_copy_of_target_context (FENCE_TC (fence)),
890 FENCE_LAST_SCHEDULED_INSN (fence),
891 VEC_copy (rtx, gc, FENCE_EXECUTING_INSNS (fence)),
892 new_ready_ticks,
893 FENCE_READY_TICKS_SIZE (fence),
894 FENCE_SCHED_NEXT (fence),
895 FENCE_CYCLE (fence),
896 FENCE_ISSUED_INSNS (fence),
897 FENCE_ISSUE_MORE (fence),
898 FENCE_STARTS_CYCLE_P (fence),
899 FENCE_AFTER_STALL_P (fence));
903 /* Functions to work with regset and nop pools. */
905 /* Returns the new regset from pool. It might have some of the bits set
906 from the previous usage. */
907 regset
908 get_regset_from_pool (void)
910 regset rs;
912 if (regset_pool.n != 0)
913 rs = regset_pool.v[--regset_pool.n];
914 else
915 /* We need to create the regset. */
917 rs = ALLOC_REG_SET (&reg_obstack);
919 if (regset_pool.nn == regset_pool.ss)
920 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
921 (regset_pool.ss = 2 * regset_pool.ss + 1));
922 regset_pool.vv[regset_pool.nn++] = rs;
925 regset_pool.diff++;
927 return rs;
930 /* Same as above, but returns the empty regset. */
931 regset
932 get_clear_regset_from_pool (void)
934 regset rs = get_regset_from_pool ();
936 CLEAR_REG_SET (rs);
937 return rs;
940 /* Return regset RS to the pool for future use. */
941 void
942 return_regset_to_pool (regset rs)
944 gcc_assert (rs);
945 regset_pool.diff--;
947 if (regset_pool.n == regset_pool.s)
948 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
949 (regset_pool.s = 2 * regset_pool.s + 1));
950 regset_pool.v[regset_pool.n++] = rs;
953 #ifdef ENABLE_CHECKING
954 /* This is used as a qsort callback for sorting regset pool stacks.
955 X and XX are addresses of two regsets. They are never equal. */
956 static int
957 cmp_v_in_regset_pool (const void *x, const void *xx)
959 return *((const regset *) x) - *((const regset *) xx);
961 #endif
963 /* Free the regset pool possibly checking for memory leaks. */
964 void
965 free_regset_pool (void)
967 #ifdef ENABLE_CHECKING
969 regset *v = regset_pool.v;
970 int i = 0;
971 int n = regset_pool.n;
973 regset *vv = regset_pool.vv;
974 int ii = 0;
975 int nn = regset_pool.nn;
977 int diff = 0;
979 gcc_assert (n <= nn);
981 /* Sort both vectors so it will be possible to compare them. */
982 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
983 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
985 while (ii < nn)
987 if (v[i] == vv[ii])
988 i++;
989 else
990 /* VV[II] was lost. */
991 diff++;
993 ii++;
996 gcc_assert (diff == regset_pool.diff);
998 #endif
1000 /* If not true - we have a memory leak. */
1001 gcc_assert (regset_pool.diff == 0);
1003 while (regset_pool.n)
1005 --regset_pool.n;
1006 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1009 free (regset_pool.v);
1010 regset_pool.v = NULL;
1011 regset_pool.s = 0;
1013 free (regset_pool.vv);
1014 regset_pool.vv = NULL;
1015 regset_pool.nn = 0;
1016 regset_pool.ss = 0;
1018 regset_pool.diff = 0;
1022 /* Functions to work with nop pools. NOP insns are used as temporary
1023 placeholders of the insns being scheduled to allow correct update of
1024 the data sets. When update is finished, NOPs are deleted. */
1026 /* A vinsn that is used to represent a nop. This vinsn is shared among all
1027 nops sel-sched generates. */
1028 static vinsn_t nop_vinsn = NULL;
1030 /* Emit a nop before INSN, taking it from pool. */
1031 insn_t
1032 get_nop_from_pool (insn_t insn)
1034 insn_t nop;
1035 bool old_p = nop_pool.n != 0;
1036 int flags;
1038 if (old_p)
1039 nop = nop_pool.v[--nop_pool.n];
1040 else
1041 nop = nop_pattern;
1043 nop = emit_insn_before (nop, insn);
1045 if (old_p)
1046 flags = INSN_INIT_TODO_SSID;
1047 else
1048 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1050 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1051 sel_init_new_insn (nop, flags);
1053 return nop;
1056 /* Remove NOP from the instruction stream and return it to the pool. */
1057 void
1058 return_nop_to_pool (insn_t nop, bool full_tidying)
1060 gcc_assert (INSN_IN_STREAM_P (nop));
1061 sel_remove_insn (nop, false, full_tidying);
1063 if (nop_pool.n == nop_pool.s)
1064 nop_pool.v = XRESIZEVEC (rtx, nop_pool.v,
1065 (nop_pool.s = 2 * nop_pool.s + 1));
1066 nop_pool.v[nop_pool.n++] = nop;
1069 /* Free the nop pool. */
1070 void
1071 free_nop_pool (void)
1073 nop_pool.n = 0;
1074 nop_pool.s = 0;
1075 free (nop_pool.v);
1076 nop_pool.v = NULL;
1080 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1081 The callback is given two rtxes XX and YY and writes the new rtxes
1082 to NX and NY in case some needs to be skipped. */
1083 static int
1084 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1086 const_rtx x = *xx;
1087 const_rtx y = *yy;
1089 if (GET_CODE (x) == UNSPEC
1090 && (targetm.sched.skip_rtx_p == NULL
1091 || targetm.sched.skip_rtx_p (x)))
1093 *nx = XVECEXP (x, 0, 0);
1094 *ny = CONST_CAST_RTX (y);
1095 return 1;
1098 if (GET_CODE (y) == UNSPEC
1099 && (targetm.sched.skip_rtx_p == NULL
1100 || targetm.sched.skip_rtx_p (y)))
1102 *nx = CONST_CAST_RTX (x);
1103 *ny = XVECEXP (y, 0, 0);
1104 return 1;
1107 return 0;
1110 /* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
1111 to support ia64 speculation. When changes are needed, new rtx X and new mode
1112 NMODE are written, and the callback returns true. */
1113 static int
1114 hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1115 rtx *nx, enum machine_mode* nmode)
1117 if (GET_CODE (x) == UNSPEC
1118 && targetm.sched.skip_rtx_p
1119 && targetm.sched.skip_rtx_p (x))
1121 *nx = XVECEXP (x, 0 ,0);
1122 *nmode = VOIDmode;
1123 return 1;
1126 return 0;
1129 /* Returns LHS and RHS are ok to be scheduled separately. */
1130 static bool
1131 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1133 if (lhs == NULL || rhs == NULL)
1134 return false;
1136 /* Do not schedule CONST, CONST_INT and CONST_DOUBLE etc as rhs: no point
1137 to use reg, if const can be used. Moreover, scheduling const as rhs may
1138 lead to mode mismatch cause consts don't have modes but they could be
1139 merged from branches where the same const used in different modes. */
1140 if (CONSTANT_P (rhs))
1141 return false;
1143 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1144 if (COMPARISON_P (rhs))
1145 return false;
1147 /* Do not allow single REG to be an rhs. */
1148 if (REG_P (rhs))
1149 return false;
1151 /* See comment at find_used_regs_1 (*1) for explanation of this
1152 restriction. */
1153 /* FIXME: remove this later. */
1154 if (MEM_P (lhs))
1155 return false;
1157 /* This will filter all tricky things like ZERO_EXTRACT etc.
1158 For now we don't handle it. */
1159 if (!REG_P (lhs) && !MEM_P (lhs))
1160 return false;
1162 return true;
1165 /* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1166 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
1167 used e.g. for insns from recovery blocks. */
1168 static void
1169 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1171 hash_rtx_callback_function hrcf;
1172 int insn_class;
1174 VINSN_INSN_RTX (vi) = insn;
1175 VINSN_COUNT (vi) = 0;
1176 vi->cost = -1;
1178 if (INSN_NOP_P (insn))
1179 return;
1181 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1182 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1183 else
1184 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1186 /* Hash vinsn depending on whether it is separable or not. */
1187 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1188 if (VINSN_SEPARABLE_P (vi))
1190 rtx rhs = VINSN_RHS (vi);
1192 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1193 NULL, NULL, false, hrcf);
1194 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1195 VOIDmode, NULL, NULL,
1196 false, hrcf);
1198 else
1200 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1201 NULL, NULL, false, hrcf);
1202 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1205 insn_class = haifa_classify_insn (insn);
1206 if (insn_class >= 2
1207 && (!targetm.sched.get_insn_spec_ds
1208 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1209 == 0)))
1210 VINSN_MAY_TRAP_P (vi) = true;
1211 else
1212 VINSN_MAY_TRAP_P (vi) = false;
1215 /* Indicate that VI has become the part of an rtx object. */
1216 void
1217 vinsn_attach (vinsn_t vi)
1219 /* Assert that VI is not pending for deletion. */
1220 gcc_assert (VINSN_INSN_RTX (vi));
1222 VINSN_COUNT (vi)++;
1225 /* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
1226 VINSN_TYPE (VI). */
1227 static vinsn_t
1228 vinsn_create (insn_t insn, bool force_unique_p)
1230 vinsn_t vi = XCNEW (struct vinsn_def);
1232 vinsn_init (vi, insn, force_unique_p);
1233 return vi;
1236 /* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1237 the copy. */
1238 vinsn_t
1239 vinsn_copy (vinsn_t vi, bool reattach_p)
1241 rtx copy;
1242 bool unique = VINSN_UNIQUE_P (vi);
1243 vinsn_t new_vi;
1245 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1246 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1247 if (reattach_p)
1249 vinsn_detach (vi);
1250 vinsn_attach (new_vi);
1253 return new_vi;
1256 /* Delete the VI vinsn and free its data. */
1257 static void
1258 vinsn_delete (vinsn_t vi)
1260 gcc_assert (VINSN_COUNT (vi) == 0);
1262 if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1264 return_regset_to_pool (VINSN_REG_SETS (vi));
1265 return_regset_to_pool (VINSN_REG_USES (vi));
1266 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1269 free (vi);
1272 /* Indicate that VI is no longer a part of some rtx object.
1273 Remove VI if it is no longer needed. */
1274 void
1275 vinsn_detach (vinsn_t vi)
1277 gcc_assert (VINSN_COUNT (vi) > 0);
1279 if (--VINSN_COUNT (vi) == 0)
1280 vinsn_delete (vi);
1283 /* Returns TRUE if VI is a branch. */
1284 bool
1285 vinsn_cond_branch_p (vinsn_t vi)
1287 insn_t insn;
1289 if (!VINSN_UNIQUE_P (vi))
1290 return false;
1292 insn = VINSN_INSN_RTX (vi);
1293 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1294 return false;
1296 return control_flow_insn_p (insn);
1299 /* Return latency of INSN. */
1300 static int
1301 sel_insn_rtx_cost (rtx insn)
1303 int cost;
1305 /* A USE insn, or something else we don't need to
1306 understand. We can't pass these directly to
1307 result_ready_cost or insn_default_latency because it will
1308 trigger a fatal error for unrecognizable insns. */
1309 if (recog_memoized (insn) < 0)
1310 cost = 0;
1311 else
1313 cost = insn_default_latency (insn);
1315 if (cost < 0)
1316 cost = 0;
1319 return cost;
1322 /* Return the cost of the VI.
1323 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1325 sel_vinsn_cost (vinsn_t vi)
1327 int cost = vi->cost;
1329 if (cost < 0)
1331 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1332 vi->cost = cost;
1335 return cost;
1339 /* Functions for insn emitting. */
1341 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1342 EXPR and SEQNO. */
1343 insn_t
1344 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1346 insn_t new_insn;
1348 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1350 new_insn = emit_insn_after (pattern, after);
1351 set_insn_init (expr, NULL, seqno);
1352 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1354 return new_insn;
1357 /* Force newly generated vinsns to be unique. */
1358 static bool init_insn_force_unique_p = false;
1360 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1361 initialize its data from EXPR and SEQNO. */
1362 insn_t
1363 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1364 insn_t after)
1366 insn_t insn;
1368 gcc_assert (!init_insn_force_unique_p);
1370 init_insn_force_unique_p = true;
1371 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1372 CANT_MOVE (insn) = 1;
1373 init_insn_force_unique_p = false;
1375 return insn;
1378 /* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
1379 take it as a new vinsn instead of EXPR's vinsn.
1380 We simplify insns later, after scheduling region in
1381 simplify_changed_insns. */
1382 insn_t
1383 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1384 insn_t after)
1386 expr_t emit_expr;
1387 insn_t insn;
1388 int flags;
1390 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1391 seqno);
1392 insn = EXPR_INSN_RTX (emit_expr);
1393 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1395 flags = INSN_INIT_TODO_SSID;
1396 if (INSN_LUID (insn) == 0)
1397 flags |= INSN_INIT_TODO_LUID;
1398 sel_init_new_insn (insn, flags);
1400 return insn;
1403 /* Move insn from EXPR after AFTER. */
1404 insn_t
1405 sel_move_insn (expr_t expr, int seqno, insn_t after)
1407 insn_t insn = EXPR_INSN_RTX (expr);
1408 basic_block bb = BLOCK_FOR_INSN (after);
1409 insn_t next = NEXT_INSN (after);
1411 /* Assert that in move_op we disconnected this insn properly. */
1412 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1413 PREV_INSN (insn) = after;
1414 NEXT_INSN (insn) = next;
1416 NEXT_INSN (after) = insn;
1417 PREV_INSN (next) = insn;
1419 /* Update links from insn to bb and vice versa. */
1420 df_insn_change_bb (insn, bb);
1421 if (BB_END (bb) == after)
1422 BB_END (bb) = insn;
1424 prepare_insn_expr (insn, seqno);
1425 return insn;
1429 /* Functions to work with right-hand sides. */
1431 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1432 VECT and return true when found. Use NEW_VINSN for comparison only when
1433 COMPARE_VINSNS is true. Write to INDP the index on which
1434 the search has stopped, such that inserting the new element at INDP will
1435 retain VECT's sort order. */
1436 static bool
1437 find_in_history_vect_1 (VEC(expr_history_def, heap) *vect,
1438 unsigned uid, vinsn_t new_vinsn,
1439 bool compare_vinsns, int *indp)
1441 expr_history_def *arr;
1442 int i, j, len = VEC_length (expr_history_def, vect);
1444 if (len == 0)
1446 *indp = 0;
1447 return false;
1450 arr = VEC_address (expr_history_def, vect);
1451 i = 0, j = len - 1;
1453 while (i <= j)
1455 unsigned auid = arr[i].uid;
1456 vinsn_t avinsn = arr[i].new_expr_vinsn;
1458 if (auid == uid
1459 /* When undoing transformation on a bookkeeping copy, the new vinsn
1460 may not be exactly equal to the one that is saved in the vector.
1461 This is because the insn whose copy we're checking was possibly
1462 substituted itself. */
1463 && (! compare_vinsns
1464 || vinsn_equal_p (avinsn, new_vinsn)))
1466 *indp = i;
1467 return true;
1469 else if (auid > uid)
1470 break;
1471 i++;
1474 *indp = i;
1475 return false;
1478 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1479 the position found or -1, if no such value is in vector.
1480 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1482 find_in_history_vect (VEC(expr_history_def, heap) *vect, rtx insn,
1483 vinsn_t new_vinsn, bool originators_p)
1485 int ind;
1487 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1488 false, &ind))
1489 return ind;
1491 if (INSN_ORIGINATORS (insn) && originators_p)
1493 unsigned uid;
1494 bitmap_iterator bi;
1496 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1497 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1498 return ind;
1501 return -1;
1504 /* Insert new element in a sorted history vector pointed to by PVECT,
1505 if it is not there already. The element is searched using
1506 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1507 the history of a transformation. */
1508 void
1509 insert_in_history_vect (VEC (expr_history_def, heap) **pvect,
1510 unsigned uid, enum local_trans_type type,
1511 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1512 ds_t spec_ds)
1514 VEC(expr_history_def, heap) *vect = *pvect;
1515 expr_history_def temp;
1516 bool res;
1517 int ind;
1519 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1521 if (res)
1523 expr_history_def *phist = VEC_index (expr_history_def, vect, ind);
1525 /* It is possible that speculation types of expressions that were
1526 propagated through different paths will be different here. In this
1527 case, merge the status to get the correct check later. */
1528 if (phist->spec_ds != spec_ds)
1529 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1530 return;
1533 temp.uid = uid;
1534 temp.old_expr_vinsn = old_expr_vinsn;
1535 temp.new_expr_vinsn = new_expr_vinsn;
1536 temp.spec_ds = spec_ds;
1537 temp.type = type;
1539 vinsn_attach (old_expr_vinsn);
1540 vinsn_attach (new_expr_vinsn);
1541 VEC_safe_insert (expr_history_def, heap, vect, ind, &temp);
1542 *pvect = vect;
1545 /* Free history vector PVECT. */
1546 static void
1547 free_history_vect (VEC (expr_history_def, heap) **pvect)
1549 unsigned i;
1550 expr_history_def *phist;
1552 if (! *pvect)
1553 return;
1555 for (i = 0;
1556 VEC_iterate (expr_history_def, *pvect, i, phist);
1557 i++)
1559 vinsn_detach (phist->old_expr_vinsn);
1560 vinsn_detach (phist->new_expr_vinsn);
1563 VEC_free (expr_history_def, heap, *pvect);
1564 *pvect = NULL;
1568 /* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1569 bool
1570 vinsn_equal_p (vinsn_t x, vinsn_t y)
1572 rtx_equal_p_callback_function repcf;
1574 if (x == y)
1575 return true;
1577 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1578 return false;
1580 if (VINSN_HASH (x) != VINSN_HASH (y))
1581 return false;
1583 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1584 if (VINSN_SEPARABLE_P (x))
1586 /* Compare RHSes of VINSNs. */
1587 gcc_assert (VINSN_RHS (x));
1588 gcc_assert (VINSN_RHS (y));
1590 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1593 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1597 /* Functions for working with expressions. */
1599 /* Initialize EXPR. */
1600 static void
1601 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1602 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1603 ds_t spec_to_check_ds, int orig_sched_cycle,
1604 VEC(expr_history_def, heap) *history, signed char target_available,
1605 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1606 bool cant_move)
1608 vinsn_attach (vi);
1610 EXPR_VINSN (expr) = vi;
1611 EXPR_SPEC (expr) = spec;
1612 EXPR_USEFULNESS (expr) = use;
1613 EXPR_PRIORITY (expr) = priority;
1614 EXPR_PRIORITY_ADJ (expr) = 0;
1615 EXPR_SCHED_TIMES (expr) = sched_times;
1616 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1617 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1618 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1619 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1621 if (history)
1622 EXPR_HISTORY_OF_CHANGES (expr) = history;
1623 else
1624 EXPR_HISTORY_OF_CHANGES (expr) = NULL;
1626 EXPR_TARGET_AVAILABLE (expr) = target_available;
1627 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1628 EXPR_WAS_RENAMED (expr) = was_renamed;
1629 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1630 EXPR_CANT_MOVE (expr) = cant_move;
1633 /* Make a copy of the expr FROM into the expr TO. */
1634 void
1635 copy_expr (expr_t to, expr_t from)
1637 VEC(expr_history_def, heap) *temp = NULL;
1639 if (EXPR_HISTORY_OF_CHANGES (from))
1641 unsigned i;
1642 expr_history_def *phist;
1644 temp = VEC_copy (expr_history_def, heap, EXPR_HISTORY_OF_CHANGES (from));
1645 for (i = 0;
1646 VEC_iterate (expr_history_def, temp, i, phist);
1647 i++)
1649 vinsn_attach (phist->old_expr_vinsn);
1650 vinsn_attach (phist->new_expr_vinsn);
1654 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1655 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1656 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1657 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1658 EXPR_ORIG_SCHED_CYCLE (from), temp,
1659 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1660 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1661 EXPR_CANT_MOVE (from));
1664 /* Same, but the final expr will not ever be in av sets, so don't copy
1665 "uninteresting" data such as bitmap cache. */
1666 void
1667 copy_expr_onside (expr_t to, expr_t from)
1669 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1670 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1671 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0, NULL,
1672 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1673 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1674 EXPR_CANT_MOVE (from));
1677 /* Prepare the expr of INSN for scheduling. Used when moving insn and when
1678 initializing new insns. */
1679 static void
1680 prepare_insn_expr (insn_t insn, int seqno)
1682 expr_t expr = INSN_EXPR (insn);
1683 ds_t ds;
1685 INSN_SEQNO (insn) = seqno;
1686 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1687 EXPR_SPEC (expr) = 0;
1688 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1689 EXPR_WAS_SUBSTITUTED (expr) = 0;
1690 EXPR_WAS_RENAMED (expr) = 0;
1691 EXPR_TARGET_AVAILABLE (expr) = 1;
1692 INSN_LIVE_VALID_P (insn) = false;
1694 /* ??? If this expression is speculative, make its dependence
1695 as weak as possible. We can filter this expression later
1696 in process_spec_exprs, because we do not distinguish
1697 between the status we got during compute_av_set and the
1698 existing status. To be fixed. */
1699 ds = EXPR_SPEC_DONE_DS (expr);
1700 if (ds)
1701 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1703 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1706 /* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
1707 is non-null when expressions are merged from different successors at
1708 a split point. */
1709 static void
1710 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1712 if (EXPR_TARGET_AVAILABLE (to) < 0
1713 || EXPR_TARGET_AVAILABLE (from) < 0)
1714 EXPR_TARGET_AVAILABLE (to) = -1;
1715 else
1717 /* We try to detect the case when one of the expressions
1718 can only be reached through another one. In this case,
1719 we can do better. */
1720 if (split_point == NULL)
1722 int toind, fromind;
1724 toind = EXPR_ORIG_BB_INDEX (to);
1725 fromind = EXPR_ORIG_BB_INDEX (from);
1727 if (toind && toind == fromind)
1728 /* Do nothing -- everything is done in
1729 merge_with_other_exprs. */
1731 else
1732 EXPR_TARGET_AVAILABLE (to) = -1;
1734 else
1735 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1739 /* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
1740 is non-null when expressions are merged from different successors at
1741 a split point. */
1742 static void
1743 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1745 ds_t old_to_ds, old_from_ds;
1747 old_to_ds = EXPR_SPEC_DONE_DS (to);
1748 old_from_ds = EXPR_SPEC_DONE_DS (from);
1750 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1751 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1752 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1754 /* When merging e.g. control & data speculative exprs, or a control
1755 speculative with a control&data speculative one, we really have
1756 to change vinsn too. Also, when speculative status is changed,
1757 we also need to record this as a transformation in expr's history. */
1758 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1760 old_to_ds = ds_get_speculation_types (old_to_ds);
1761 old_from_ds = ds_get_speculation_types (old_from_ds);
1763 if (old_to_ds != old_from_ds)
1765 ds_t record_ds;
1767 /* When both expressions are speculative, we need to change
1768 the vinsn first. */
1769 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1771 int res;
1773 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1774 gcc_assert (res >= 0);
1777 if (split_point != NULL)
1779 /* Record the change with proper status. */
1780 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1781 record_ds &= ~(old_to_ds & SPECULATIVE);
1782 record_ds &= ~(old_from_ds & SPECULATIVE);
1784 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1785 INSN_UID (split_point), TRANS_SPECULATION,
1786 EXPR_VINSN (from), EXPR_VINSN (to),
1787 record_ds);
1794 /* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1795 this is done along different paths. */
1796 void
1797 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1799 int i;
1800 expr_history_def *phist;
1802 /* For now, we just set the spec of resulting expr to be minimum of the specs
1803 of merged exprs. */
1804 if (EXPR_SPEC (to) > EXPR_SPEC (from))
1805 EXPR_SPEC (to) = EXPR_SPEC (from);
1807 if (split_point)
1808 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1809 else
1810 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1811 EXPR_USEFULNESS (from));
1813 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1814 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1816 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1817 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1819 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1820 EXPR_ORIG_BB_INDEX (to) = 0;
1822 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1823 EXPR_ORIG_SCHED_CYCLE (from));
1825 /* We keep this vector sorted. */
1826 for (i = 0;
1827 VEC_iterate (expr_history_def, EXPR_HISTORY_OF_CHANGES (from),
1828 i, phist);
1829 i++)
1830 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1831 phist->uid, phist->type,
1832 phist->old_expr_vinsn, phist->new_expr_vinsn,
1833 phist->spec_ds);
1835 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1836 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1837 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1839 update_target_availability (to, from, split_point);
1840 update_speculative_bits (to, from, split_point);
1843 /* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
1844 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
1845 are merged from different successors at a split point. */
1846 void
1847 merge_expr (expr_t to, expr_t from, insn_t split_point)
1849 vinsn_t to_vi = EXPR_VINSN (to);
1850 vinsn_t from_vi = EXPR_VINSN (from);
1852 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1854 /* Make sure that speculative pattern is propagated into exprs that
1855 have non-speculative one. This will provide us with consistent
1856 speculative bits and speculative patterns inside expr. */
1857 if (EXPR_SPEC_DONE_DS (to) == 0
1858 && EXPR_SPEC_DONE_DS (from) != 0)
1859 change_vinsn_in_expr (to, EXPR_VINSN (from));
1861 merge_expr_data (to, from, split_point);
1862 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1865 /* Clear the information of this EXPR. */
1866 void
1867 clear_expr (expr_t expr)
1870 vinsn_detach (EXPR_VINSN (expr));
1871 EXPR_VINSN (expr) = NULL;
1873 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1876 /* For a given LV_SET, mark EXPR having unavailable target register. */
1877 static void
1878 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1880 if (EXPR_SEPARABLE_P (expr))
1882 if (REG_P (EXPR_LHS (expr))
1883 && bitmap_bit_p (lv_set, REGNO (EXPR_LHS (expr))))
1885 /* If it's an insn like r1 = use (r1, ...), and it exists in
1886 different forms in each of the av_sets being merged, we can't say
1887 whether original destination register is available or not.
1888 However, this still works if destination register is not used
1889 in the original expression: if the branch at which LV_SET we're
1890 looking here is not actually 'other branch' in sense that same
1891 expression is available through it (but it can't be determined
1892 at computation stage because of transformations on one of the
1893 branches), it still won't affect the availability.
1894 Liveness of a register somewhere on a code motion path means
1895 it's either read somewhere on a codemotion path, live on
1896 'other' branch, live at the point immediately following
1897 the original operation, or is read by the original operation.
1898 The latter case is filtered out in the condition below.
1899 It still doesn't cover the case when register is defined and used
1900 somewhere within the code motion path, and in this case we could
1901 miss a unifying code motion along both branches using a renamed
1902 register, but it won't affect a code correctness since upon
1903 an actual code motion a bookkeeping code would be generated. */
1904 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1905 REGNO (EXPR_LHS (expr))))
1906 EXPR_TARGET_AVAILABLE (expr) = -1;
1907 else
1908 EXPR_TARGET_AVAILABLE (expr) = false;
1911 else
1913 unsigned regno;
1914 reg_set_iterator rsi;
1916 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1917 0, regno, rsi)
1918 if (bitmap_bit_p (lv_set, regno))
1920 EXPR_TARGET_AVAILABLE (expr) = false;
1921 break;
1924 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1925 0, regno, rsi)
1926 if (bitmap_bit_p (lv_set, regno))
1928 EXPR_TARGET_AVAILABLE (expr) = false;
1929 break;
1934 /* Try to make EXPR speculative. Return 1 when EXPR's pattern
1935 or dependence status have changed, 2 when also the target register
1936 became unavailable, 0 if nothing had to be changed. */
1938 speculate_expr (expr_t expr, ds_t ds)
1940 int res;
1941 rtx orig_insn_rtx;
1942 rtx spec_pat;
1943 ds_t target_ds, current_ds;
1945 /* Obtain the status we need to put on EXPR. */
1946 target_ds = (ds & SPECULATIVE);
1947 current_ds = EXPR_SPEC_DONE_DS (expr);
1948 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1950 orig_insn_rtx = EXPR_INSN_RTX (expr);
1952 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1954 switch (res)
1956 case 0:
1957 EXPR_SPEC_DONE_DS (expr) = ds;
1958 return current_ds != ds ? 1 : 0;
1960 case 1:
1962 rtx spec_insn_rtx = create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1963 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1965 change_vinsn_in_expr (expr, spec_vinsn);
1966 EXPR_SPEC_DONE_DS (expr) = ds;
1967 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1969 /* Do not allow clobbering the address register of speculative
1970 insns. */
1971 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1972 expr_dest_regno (expr)))
1974 EXPR_TARGET_AVAILABLE (expr) = false;
1975 return 2;
1978 return 1;
1981 case -1:
1982 return -1;
1984 default:
1985 gcc_unreachable ();
1986 return -1;
1990 /* Return a destination register, if any, of EXPR. */
1992 expr_dest_reg (expr_t expr)
1994 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
1996 if (dest != NULL_RTX && REG_P (dest))
1997 return dest;
1999 return NULL_RTX;
2002 /* Returns the REGNO of the R's destination. */
2003 unsigned
2004 expr_dest_regno (expr_t expr)
2006 rtx dest = expr_dest_reg (expr);
2008 gcc_assert (dest != NULL_RTX);
2009 return REGNO (dest);
2012 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2013 AV_SET having unavailable target register. */
2014 void
2015 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2017 expr_t expr;
2018 av_set_iterator avi;
2020 FOR_EACH_EXPR (expr, avi, join_set)
2021 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2022 set_unavailable_target_for_expr (expr, lv_set);
2026 /* Av set functions. */
2028 /* Add a new element to av set SETP.
2029 Return the element added. */
2030 static av_set_t
2031 av_set_add_element (av_set_t *setp)
2033 /* Insert at the beginning of the list. */
2034 _list_add (setp);
2035 return *setp;
2038 /* Add EXPR to SETP. */
2039 void
2040 av_set_add (av_set_t *setp, expr_t expr)
2042 av_set_t elem;
2044 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2045 elem = av_set_add_element (setp);
2046 copy_expr (_AV_SET_EXPR (elem), expr);
2049 /* Same, but do not copy EXPR. */
2050 static void
2051 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2053 av_set_t elem;
2055 elem = av_set_add_element (setp);
2056 *_AV_SET_EXPR (elem) = *expr;
2059 /* Remove expr pointed to by IP from the av_set. */
2060 void
2061 av_set_iter_remove (av_set_iterator *ip)
2063 clear_expr (_AV_SET_EXPR (*ip->lp));
2064 _list_iter_remove (ip);
2067 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2068 sense of vinsn_equal_p function. Return NULL if no such expr is
2069 in SET was found. */
2070 expr_t
2071 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2073 expr_t expr;
2074 av_set_iterator i;
2076 FOR_EACH_EXPR (expr, i, set)
2077 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2078 return expr;
2079 return NULL;
2082 /* Same, but also remove the EXPR found. */
2083 static expr_t
2084 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2086 expr_t expr;
2087 av_set_iterator i;
2089 FOR_EACH_EXPR_1 (expr, i, setp)
2090 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2092 _list_iter_remove_nofree (&i);
2093 return expr;
2095 return NULL;
2098 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2099 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2100 Returns NULL if no such expr is in SET was found. */
2101 static expr_t
2102 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2104 expr_t cur_expr;
2105 av_set_iterator i;
2107 FOR_EACH_EXPR (cur_expr, i, set)
2109 if (cur_expr == expr)
2110 continue;
2111 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2112 return cur_expr;
2115 return NULL;
2118 /* If other expression is already in AVP, remove one of them. */
2119 expr_t
2120 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2122 expr_t expr2;
2124 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2125 if (expr2 != NULL)
2127 /* Reset target availability on merge, since taking it only from one
2128 of the exprs would be controversial for different code. */
2129 EXPR_TARGET_AVAILABLE (expr2) = -1;
2130 EXPR_USEFULNESS (expr2) = 0;
2132 merge_expr (expr2, expr, NULL);
2134 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2135 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2137 av_set_iter_remove (ip);
2138 return expr2;
2141 return expr;
2144 /* Return true if there is an expr that correlates to VI in SET. */
2145 bool
2146 av_set_is_in_p (av_set_t set, vinsn_t vi)
2148 return av_set_lookup (set, vi) != NULL;
2151 /* Return a copy of SET. */
2152 av_set_t
2153 av_set_copy (av_set_t set)
2155 expr_t expr;
2156 av_set_iterator i;
2157 av_set_t res = NULL;
2159 FOR_EACH_EXPR (expr, i, set)
2160 av_set_add (&res, expr);
2162 return res;
2165 /* Join two av sets that do not have common elements by attaching second set
2166 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2167 _AV_SET_NEXT of first set's last element). */
2168 static void
2169 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2171 gcc_assert (*to_tailp == NULL);
2172 *to_tailp = *fromp;
2173 *fromp = NULL;
2176 /* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2177 pointed to by FROMP afterwards. */
2178 void
2179 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2181 expr_t expr1;
2182 av_set_iterator i;
2184 /* Delete from TOP all exprs, that present in FROMP. */
2185 FOR_EACH_EXPR_1 (expr1, i, top)
2187 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2189 if (expr2)
2191 merge_expr (expr2, expr1, insn);
2192 av_set_iter_remove (&i);
2196 join_distinct_sets (i.lp, fromp);
2199 /* Same as above, but also update availability of target register in
2200 TOP judging by TO_LV_SET and FROM_LV_SET. */
2201 void
2202 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2203 regset from_lv_set, insn_t insn)
2205 expr_t expr1;
2206 av_set_iterator i;
2207 av_set_t *to_tailp, in_both_set = NULL;
2209 /* Delete from TOP all expres, that present in FROMP. */
2210 FOR_EACH_EXPR_1 (expr1, i, top)
2212 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2214 if (expr2)
2216 /* It may be that the expressions have different destination
2217 registers, in which case we need to check liveness here. */
2218 if (EXPR_SEPARABLE_P (expr1))
2220 int regno1 = (REG_P (EXPR_LHS (expr1))
2221 ? (int) expr_dest_regno (expr1) : -1);
2222 int regno2 = (REG_P (EXPR_LHS (expr2))
2223 ? (int) expr_dest_regno (expr2) : -1);
2225 /* ??? We don't have a way to check restrictions for
2226 *other* register on the current path, we did it only
2227 for the current target register. Give up. */
2228 if (regno1 != regno2)
2229 EXPR_TARGET_AVAILABLE (expr2) = -1;
2231 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2232 EXPR_TARGET_AVAILABLE (expr2) = -1;
2234 merge_expr (expr2, expr1, insn);
2235 av_set_add_nocopy (&in_both_set, expr2);
2236 av_set_iter_remove (&i);
2238 else
2239 /* EXPR1 is present in TOP, but not in FROMP. Check it on
2240 FROM_LV_SET. */
2241 set_unavailable_target_for_expr (expr1, from_lv_set);
2243 to_tailp = i.lp;
2245 /* These expressions are not present in TOP. Check liveness
2246 restrictions on TO_LV_SET. */
2247 FOR_EACH_EXPR (expr1, i, *fromp)
2248 set_unavailable_target_for_expr (expr1, to_lv_set);
2250 join_distinct_sets (i.lp, &in_both_set);
2251 join_distinct_sets (to_tailp, fromp);
2254 /* Clear av_set pointed to by SETP. */
2255 void
2256 av_set_clear (av_set_t *setp)
2258 expr_t expr;
2259 av_set_iterator i;
2261 FOR_EACH_EXPR_1 (expr, i, setp)
2262 av_set_iter_remove (&i);
2264 gcc_assert (*setp == NULL);
2267 /* Leave only one non-speculative element in the SETP. */
2268 void
2269 av_set_leave_one_nonspec (av_set_t *setp)
2271 expr_t expr;
2272 av_set_iterator i;
2273 bool has_one_nonspec = false;
2275 /* Keep all speculative exprs, and leave one non-speculative
2276 (the first one). */
2277 FOR_EACH_EXPR_1 (expr, i, setp)
2279 if (!EXPR_SPEC_DONE_DS (expr))
2281 if (has_one_nonspec)
2282 av_set_iter_remove (&i);
2283 else
2284 has_one_nonspec = true;
2289 /* Return the N'th element of the SET. */
2290 expr_t
2291 av_set_element (av_set_t set, int n)
2293 expr_t expr;
2294 av_set_iterator i;
2296 FOR_EACH_EXPR (expr, i, set)
2297 if (n-- == 0)
2298 return expr;
2300 gcc_unreachable ();
2301 return NULL;
2304 /* Deletes all expressions from AVP that are conditional branches (IFs). */
2305 void
2306 av_set_substract_cond_branches (av_set_t *avp)
2308 av_set_iterator i;
2309 expr_t expr;
2311 FOR_EACH_EXPR_1 (expr, i, avp)
2312 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2313 av_set_iter_remove (&i);
2316 /* Multiplies usefulness attribute of each member of av-set *AVP by
2317 value PROB / ALL_PROB. */
2318 void
2319 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2321 av_set_iterator i;
2322 expr_t expr;
2324 FOR_EACH_EXPR (expr, i, av)
2325 EXPR_USEFULNESS (expr) = (all_prob
2326 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2327 : 0);
2330 /* Leave in AVP only those expressions, which are present in AV,
2331 and return it. */
2332 void
2333 av_set_intersect (av_set_t *avp, av_set_t av)
2335 av_set_iterator i;
2336 expr_t expr;
2338 FOR_EACH_EXPR_1 (expr, i, avp)
2339 if (av_set_lookup (av, EXPR_VINSN (expr)) == NULL)
2340 av_set_iter_remove (&i);
2345 /* Dependence hooks to initialize insn data. */
2347 /* This is used in hooks callable from dependence analysis when initializing
2348 instruction's data. */
2349 static struct
2351 /* Where the dependence was found (lhs/rhs). */
2352 deps_where_t where;
2354 /* The actual data object to initialize. */
2355 idata_t id;
2357 /* True when the insn should not be made clonable. */
2358 bool force_unique_p;
2360 /* True when insn should be treated as of type USE, i.e. never renamed. */
2361 bool force_use_p;
2362 } deps_init_id_data;
2365 /* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
2366 clonable. */
2367 static void
2368 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2370 int type;
2372 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2373 That clonable insns which can be separated into lhs and rhs have type SET.
2374 Other clonable insns have type USE. */
2375 type = GET_CODE (insn);
2377 /* Only regular insns could be cloned. */
2378 if (type == INSN && !force_unique_p)
2379 type = SET;
2380 else if (type == JUMP_INSN && simplejump_p (insn))
2381 type = PC;
2382 else if (type == DEBUG_INSN)
2383 type = !force_unique_p ? USE : INSN;
2385 IDATA_TYPE (id) = type;
2386 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2387 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2388 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2391 /* Start initializing insn data. */
2392 static void
2393 deps_init_id_start_insn (insn_t insn)
2395 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2397 setup_id_for_insn (deps_init_id_data.id, insn,
2398 deps_init_id_data.force_unique_p);
2399 deps_init_id_data.where = DEPS_IN_INSN;
2402 /* Start initializing lhs data. */
2403 static void
2404 deps_init_id_start_lhs (rtx lhs)
2406 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2407 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2409 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2411 IDATA_LHS (deps_init_id_data.id) = lhs;
2412 deps_init_id_data.where = DEPS_IN_LHS;
2416 /* Finish initializing lhs data. */
2417 static void
2418 deps_init_id_finish_lhs (void)
2420 deps_init_id_data.where = DEPS_IN_INSN;
2423 /* Note a set of REGNO. */
2424 static void
2425 deps_init_id_note_reg_set (int regno)
2427 haifa_note_reg_set (regno);
2429 if (deps_init_id_data.where == DEPS_IN_RHS)
2430 deps_init_id_data.force_use_p = true;
2432 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2433 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2435 #ifdef STACK_REGS
2436 /* Make instructions that set stack registers to be ineligible for
2437 renaming to avoid issues with find_used_regs. */
2438 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2439 deps_init_id_data.force_use_p = true;
2440 #endif
2443 /* Note a clobber of REGNO. */
2444 static void
2445 deps_init_id_note_reg_clobber (int regno)
2447 haifa_note_reg_clobber (regno);
2449 if (deps_init_id_data.where == DEPS_IN_RHS)
2450 deps_init_id_data.force_use_p = true;
2452 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2453 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2456 /* Note a use of REGNO. */
2457 static void
2458 deps_init_id_note_reg_use (int regno)
2460 haifa_note_reg_use (regno);
2462 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2463 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2466 /* Start initializing rhs data. */
2467 static void
2468 deps_init_id_start_rhs (rtx rhs)
2470 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2472 /* And there was no sel_deps_reset_to_insn (). */
2473 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2475 IDATA_RHS (deps_init_id_data.id) = rhs;
2476 deps_init_id_data.where = DEPS_IN_RHS;
2480 /* Finish initializing rhs data. */
2481 static void
2482 deps_init_id_finish_rhs (void)
2484 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2485 || deps_init_id_data.where == DEPS_IN_INSN);
2486 deps_init_id_data.where = DEPS_IN_INSN;
2489 /* Finish initializing insn data. */
2490 static void
2491 deps_init_id_finish_insn (void)
2493 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2495 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2497 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2498 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2500 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2501 || deps_init_id_data.force_use_p)
2503 /* This should be a USE, as we don't want to schedule its RHS
2504 separately. However, we still want to have them recorded
2505 for the purposes of substitution. That's why we don't
2506 simply call downgrade_to_use () here. */
2507 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2508 gcc_assert (!lhs == !rhs);
2510 IDATA_TYPE (deps_init_id_data.id) = USE;
2514 deps_init_id_data.where = DEPS_IN_NOWHERE;
2517 /* This is dependence info used for initializing insn's data. */
2518 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2520 /* This initializes most of the static part of the above structure. */
2521 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2523 NULL,
2525 deps_init_id_start_insn,
2526 deps_init_id_finish_insn,
2527 deps_init_id_start_lhs,
2528 deps_init_id_finish_lhs,
2529 deps_init_id_start_rhs,
2530 deps_init_id_finish_rhs,
2531 deps_init_id_note_reg_set,
2532 deps_init_id_note_reg_clobber,
2533 deps_init_id_note_reg_use,
2534 NULL, /* note_mem_dep */
2535 NULL, /* note_dep */
2537 0, /* use_cselib */
2538 0, /* use_deps_list */
2539 0 /* generate_spec_deps */
2542 /* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2543 we don't actually need information about lhs and rhs. */
2544 static void
2545 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2547 rtx pat = PATTERN (insn);
2549 if (NONJUMP_INSN_P (insn)
2550 && GET_CODE (pat) == SET
2551 && !force_unique_p)
2553 IDATA_RHS (id) = SET_SRC (pat);
2554 IDATA_LHS (id) = SET_DEST (pat);
2556 else
2557 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2560 /* Possibly downgrade INSN to USE. */
2561 static void
2562 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2564 bool must_be_use = false;
2565 unsigned uid = INSN_UID (insn);
2566 df_ref *rec;
2567 rtx lhs = IDATA_LHS (id);
2568 rtx rhs = IDATA_RHS (id);
2570 /* We downgrade only SETs. */
2571 if (IDATA_TYPE (id) != SET)
2572 return;
2574 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2576 IDATA_TYPE (id) = USE;
2577 return;
2580 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2582 df_ref def = *rec;
2584 if (DF_REF_INSN (def)
2585 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2586 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2588 must_be_use = true;
2589 break;
2592 #ifdef STACK_REGS
2593 /* Make instructions that set stack registers to be ineligible for
2594 renaming to avoid issues with find_used_regs. */
2595 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2597 must_be_use = true;
2598 break;
2600 #endif
2603 if (must_be_use)
2604 IDATA_TYPE (id) = USE;
2607 /* Setup register sets describing INSN in ID. */
2608 static void
2609 setup_id_reg_sets (idata_t id, insn_t insn)
2611 unsigned uid = INSN_UID (insn);
2612 df_ref *rec;
2613 regset tmp = get_clear_regset_from_pool ();
2615 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2617 df_ref def = *rec;
2618 unsigned int regno = DF_REF_REGNO (def);
2620 /* Post modifies are treated like clobbers by sched-deps.c. */
2621 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2622 | DF_REF_PRE_POST_MODIFY)))
2623 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2624 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2626 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2628 #ifdef STACK_REGS
2629 /* For stack registers, treat writes to them as writes
2630 to the first one to be consistent with sched-deps.c. */
2631 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2632 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2633 #endif
2635 /* Mark special refs that generate read/write def pair. */
2636 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2637 || regno == STACK_POINTER_REGNUM)
2638 bitmap_set_bit (tmp, regno);
2641 for (rec = DF_INSN_UID_USES (uid); *rec; rec++)
2643 df_ref use = *rec;
2644 unsigned int regno = DF_REF_REGNO (use);
2646 /* When these refs are met for the first time, skip them, as
2647 these uses are just counterparts of some defs. */
2648 if (bitmap_bit_p (tmp, regno))
2649 bitmap_clear_bit (tmp, regno);
2650 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2652 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2654 #ifdef STACK_REGS
2655 /* For stack registers, treat reads from them as reads from
2656 the first one to be consistent with sched-deps.c. */
2657 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2658 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2659 #endif
2663 return_regset_to_pool (tmp);
2666 /* Initialize instruction data for INSN in ID using DF's data. */
2667 static void
2668 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2670 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2672 setup_id_for_insn (id, insn, force_unique_p);
2673 setup_id_lhs_rhs (id, insn, force_unique_p);
2675 if (INSN_NOP_P (insn))
2676 return;
2678 maybe_downgrade_id_to_use (id, insn);
2679 setup_id_reg_sets (id, insn);
2682 /* Initialize instruction data for INSN in ID. */
2683 static void
2684 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2686 struct deps_desc _dc, *dc = &_dc;
2688 deps_init_id_data.where = DEPS_IN_NOWHERE;
2689 deps_init_id_data.id = id;
2690 deps_init_id_data.force_unique_p = force_unique_p;
2691 deps_init_id_data.force_use_p = false;
2693 init_deps (dc, false);
2695 memcpy (&deps_init_id_sched_deps_info,
2696 &const_deps_init_id_sched_deps_info,
2697 sizeof (deps_init_id_sched_deps_info));
2699 if (spec_info != NULL)
2700 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2702 sched_deps_info = &deps_init_id_sched_deps_info;
2704 deps_analyze_insn (dc, insn);
2706 free_deps (dc);
2708 deps_init_id_data.id = NULL;
2713 /* Implement hooks for collecting fundamental insn properties like if insn is
2714 an ASM or is within a SCHED_GROUP. */
2716 /* True when a "one-time init" data for INSN was already inited. */
2717 static bool
2718 first_time_insn_init (insn_t insn)
2720 return INSN_LIVE (insn) == NULL;
2723 /* Hash an entry in a transformed_insns hashtable. */
2724 static hashval_t
2725 hash_transformed_insns (const void *p)
2727 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2730 /* Compare the entries in a transformed_insns hashtable. */
2731 static int
2732 eq_transformed_insns (const void *p, const void *q)
2734 rtx i1 = VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2735 rtx i2 = VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2737 if (INSN_UID (i1) == INSN_UID (i2))
2738 return 1;
2739 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2742 /* Free an entry in a transformed_insns hashtable. */
2743 static void
2744 free_transformed_insns (void *p)
2746 struct transformed_insns *pti = (struct transformed_insns *) p;
2748 vinsn_detach (pti->vinsn_old);
2749 vinsn_detach (pti->vinsn_new);
2750 free (pti);
2753 /* Init the s_i_d data for INSN which should be inited just once, when
2754 we first see the insn. */
2755 static void
2756 init_first_time_insn_data (insn_t insn)
2758 /* This should not be set if this is the first time we init data for
2759 insn. */
2760 gcc_assert (first_time_insn_init (insn));
2762 /* These are needed for nops too. */
2763 INSN_LIVE (insn) = get_regset_from_pool ();
2764 INSN_LIVE_VALID_P (insn) = false;
2766 if (!INSN_NOP_P (insn))
2768 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2769 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2770 INSN_TRANSFORMED_INSNS (insn)
2771 = htab_create (16, hash_transformed_insns,
2772 eq_transformed_insns, free_transformed_insns);
2773 init_deps (&INSN_DEPS_CONTEXT (insn), true);
2777 /* Free almost all above data for INSN that is scheduled already.
2778 Used for extra-large basic blocks. */
2779 void
2780 free_data_for_scheduled_insn (insn_t insn)
2782 gcc_assert (! first_time_insn_init (insn));
2784 if (! INSN_ANALYZED_DEPS (insn))
2785 return;
2787 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2788 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2789 htab_delete (INSN_TRANSFORMED_INSNS (insn));
2791 /* This is allocated only for bookkeeping insns. */
2792 if (INSN_ORIGINATORS (insn))
2793 BITMAP_FREE (INSN_ORIGINATORS (insn));
2794 free_deps (&INSN_DEPS_CONTEXT (insn));
2796 INSN_ANALYZED_DEPS (insn) = NULL;
2798 /* Clear the readonly flag so we would ICE when trying to recalculate
2799 the deps context (as we believe that it should not happen). */
2800 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2803 /* Free the same data as above for INSN. */
2804 static void
2805 free_first_time_insn_data (insn_t insn)
2807 gcc_assert (! first_time_insn_init (insn));
2809 free_data_for_scheduled_insn (insn);
2810 return_regset_to_pool (INSN_LIVE (insn));
2811 INSN_LIVE (insn) = NULL;
2812 INSN_LIVE_VALID_P (insn) = false;
2815 /* Initialize region-scope data structures for basic blocks. */
2816 static void
2817 init_global_and_expr_for_bb (basic_block bb)
2819 if (sel_bb_empty_p (bb))
2820 return;
2822 invalidate_av_set (bb);
2825 /* Data for global dependency analysis (to initialize CANT_MOVE and
2826 SCHED_GROUP_P). */
2827 static struct
2829 /* Previous insn. */
2830 insn_t prev_insn;
2831 } init_global_data;
2833 /* Determine if INSN is in the sched_group, is an asm or should not be
2834 cloned. After that initialize its expr. */
2835 static void
2836 init_global_and_expr_for_insn (insn_t insn)
2838 if (LABEL_P (insn))
2839 return;
2841 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2843 init_global_data.prev_insn = NULL_RTX;
2844 return;
2847 gcc_assert (INSN_P (insn));
2849 if (SCHED_GROUP_P (insn))
2850 /* Setup a sched_group. */
2852 insn_t prev_insn = init_global_data.prev_insn;
2854 if (prev_insn)
2855 INSN_SCHED_NEXT (prev_insn) = insn;
2857 init_global_data.prev_insn = insn;
2859 else
2860 init_global_data.prev_insn = NULL_RTX;
2862 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2863 || asm_noperands (PATTERN (insn)) >= 0)
2864 /* Mark INSN as an asm. */
2865 INSN_ASM_P (insn) = true;
2868 bool force_unique_p;
2869 ds_t spec_done_ds;
2871 /* Certain instructions cannot be cloned, and frame related insns and
2872 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2873 their block. */
2874 if (prologue_epilogue_contains (insn))
2876 if (RTX_FRAME_RELATED_P (insn))
2877 CANT_MOVE (insn) = 1;
2878 else
2880 rtx note;
2881 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2882 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2883 && ((enum insn_note) INTVAL (XEXP (note, 0))
2884 == NOTE_INSN_EPILOGUE_BEG))
2886 CANT_MOVE (insn) = 1;
2887 break;
2890 force_unique_p = true;
2892 else
2893 if (CANT_MOVE (insn)
2894 || INSN_ASM_P (insn)
2895 || SCHED_GROUP_P (insn)
2896 /* Exception handling insns are always unique. */
2897 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
2898 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
2899 || control_flow_insn_p (insn))
2900 force_unique_p = true;
2901 else
2902 force_unique_p = false;
2904 if (targetm.sched.get_insn_spec_ds)
2906 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
2907 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
2909 else
2910 spec_done_ds = 0;
2912 /* Initialize INSN's expr. */
2913 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
2914 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
2915 spec_done_ds, 0, 0, NULL, true, false, false, false,
2916 CANT_MOVE (insn));
2919 init_first_time_insn_data (insn);
2922 /* Scan the region and initialize instruction data for basic blocks BBS. */
2923 void
2924 sel_init_global_and_expr (bb_vec_t bbs)
2926 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
2927 const struct sched_scan_info_def ssi =
2929 NULL, /* extend_bb */
2930 init_global_and_expr_for_bb, /* init_bb */
2931 extend_insn_data, /* extend_insn */
2932 init_global_and_expr_for_insn /* init_insn */
2935 sched_scan (&ssi, bbs, NULL, NULL, NULL);
2938 /* Finalize region-scope data structures for basic blocks. */
2939 static void
2940 finish_global_and_expr_for_bb (basic_block bb)
2942 av_set_clear (&BB_AV_SET (bb));
2943 BB_AV_LEVEL (bb) = 0;
2946 /* Finalize INSN's data. */
2947 static void
2948 finish_global_and_expr_insn (insn_t insn)
2950 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
2951 return;
2953 gcc_assert (INSN_P (insn));
2955 if (INSN_LUID (insn) > 0)
2957 free_first_time_insn_data (insn);
2958 INSN_WS_LEVEL (insn) = 0;
2959 CANT_MOVE (insn) = 0;
2961 /* We can no longer assert this, as vinsns of this insn could be
2962 easily live in other insn's caches. This should be changed to
2963 a counter-like approach among all vinsns. */
2964 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
2965 clear_expr (INSN_EXPR (insn));
2969 /* Finalize per instruction data for the whole region. */
2970 void
2971 sel_finish_global_and_expr (void)
2974 bb_vec_t bbs;
2975 int i;
2977 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
2979 for (i = 0; i < current_nr_blocks; i++)
2980 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
2982 /* Clear AV_SETs and INSN_EXPRs. */
2984 const struct sched_scan_info_def ssi =
2986 NULL, /* extend_bb */
2987 finish_global_and_expr_for_bb, /* init_bb */
2988 NULL, /* extend_insn */
2989 finish_global_and_expr_insn /* init_insn */
2992 sched_scan (&ssi, bbs, NULL, NULL, NULL);
2995 VEC_free (basic_block, heap, bbs);
2998 finish_insns ();
3002 /* In the below hooks, we merely calculate whether or not a dependence
3003 exists, and in what part of insn. However, we will need more data
3004 when we'll start caching dependence requests. */
3006 /* Container to hold information for dependency analysis. */
3007 static struct
3009 deps_t dc;
3011 /* A variable to track which part of rtx we are scanning in
3012 sched-deps.c: sched_analyze_insn (). */
3013 deps_where_t where;
3015 /* Current producer. */
3016 insn_t pro;
3018 /* Current consumer. */
3019 vinsn_t con;
3021 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3022 X is from { INSN, LHS, RHS }. */
3023 ds_t has_dep_p[DEPS_IN_NOWHERE];
3024 } has_dependence_data;
3026 /* Start analyzing dependencies of INSN. */
3027 static void
3028 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3030 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3032 has_dependence_data.where = DEPS_IN_INSN;
3035 /* Finish analyzing dependencies of an insn. */
3036 static void
3037 has_dependence_finish_insn (void)
3039 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3041 has_dependence_data.where = DEPS_IN_NOWHERE;
3044 /* Start analyzing dependencies of LHS. */
3045 static void
3046 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3048 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3050 if (VINSN_LHS (has_dependence_data.con) != NULL)
3051 has_dependence_data.where = DEPS_IN_LHS;
3054 /* Finish analyzing dependencies of an lhs. */
3055 static void
3056 has_dependence_finish_lhs (void)
3058 has_dependence_data.where = DEPS_IN_INSN;
3061 /* Start analyzing dependencies of RHS. */
3062 static void
3063 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3065 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3067 if (VINSN_RHS (has_dependence_data.con) != NULL)
3068 has_dependence_data.where = DEPS_IN_RHS;
3071 /* Start analyzing dependencies of an rhs. */
3072 static void
3073 has_dependence_finish_rhs (void)
3075 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3076 || has_dependence_data.where == DEPS_IN_INSN);
3078 has_dependence_data.where = DEPS_IN_INSN;
3081 /* Note a set of REGNO. */
3082 static void
3083 has_dependence_note_reg_set (int regno)
3085 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3087 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3088 VINSN_INSN_RTX
3089 (has_dependence_data.con)))
3091 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3093 if (reg_last->sets != NULL
3094 || reg_last->clobbers != NULL)
3095 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3097 if (reg_last->uses)
3098 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3102 /* Note a clobber of REGNO. */
3103 static void
3104 has_dependence_note_reg_clobber (int regno)
3106 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3108 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3109 VINSN_INSN_RTX
3110 (has_dependence_data.con)))
3112 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3114 if (reg_last->sets)
3115 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3117 if (reg_last->uses)
3118 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3122 /* Note a use of REGNO. */
3123 static void
3124 has_dependence_note_reg_use (int regno)
3126 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3128 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3129 VINSN_INSN_RTX
3130 (has_dependence_data.con)))
3132 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3134 if (reg_last->sets)
3135 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3137 if (reg_last->clobbers)
3138 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3140 /* Handle BE_IN_SPEC. */
3141 if (reg_last->uses)
3143 ds_t pro_spec_checked_ds;
3145 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3146 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3148 if (pro_spec_checked_ds != 0)
3149 /* Merge BE_IN_SPEC bits into *DSP. */
3150 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3151 NULL_RTX, NULL_RTX);
3156 /* Note a memory dependence. */
3157 static void
3158 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3159 rtx pending_mem ATTRIBUTE_UNUSED,
3160 insn_t pending_insn ATTRIBUTE_UNUSED,
3161 ds_t ds ATTRIBUTE_UNUSED)
3163 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3164 VINSN_INSN_RTX (has_dependence_data.con)))
3166 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3168 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3172 /* Note a dependence. */
3173 static void
3174 has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3175 ds_t ds ATTRIBUTE_UNUSED)
3177 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3178 VINSN_INSN_RTX (has_dependence_data.con)))
3180 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3182 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3186 /* Mark the insn as having a hard dependence that prevents speculation. */
3187 void
3188 sel_mark_hard_insn (rtx insn)
3190 int i;
3192 /* Only work when we're in has_dependence_p mode.
3193 ??? This is a hack, this should actually be a hook. */
3194 if (!has_dependence_data.dc || !has_dependence_data.pro)
3195 return;
3197 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3198 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3200 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3201 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3204 /* This structure holds the hooks for the dependency analysis used when
3205 actually processing dependencies in the scheduler. */
3206 static struct sched_deps_info_def has_dependence_sched_deps_info;
3208 /* This initializes most of the fields of the above structure. */
3209 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3211 NULL,
3213 has_dependence_start_insn,
3214 has_dependence_finish_insn,
3215 has_dependence_start_lhs,
3216 has_dependence_finish_lhs,
3217 has_dependence_start_rhs,
3218 has_dependence_finish_rhs,
3219 has_dependence_note_reg_set,
3220 has_dependence_note_reg_clobber,
3221 has_dependence_note_reg_use,
3222 has_dependence_note_mem_dep,
3223 has_dependence_note_dep,
3225 0, /* use_cselib */
3226 0, /* use_deps_list */
3227 0 /* generate_spec_deps */
3230 /* Initialize has_dependence_sched_deps_info with extra spec field. */
3231 static void
3232 setup_has_dependence_sched_deps_info (void)
3234 memcpy (&has_dependence_sched_deps_info,
3235 &const_has_dependence_sched_deps_info,
3236 sizeof (has_dependence_sched_deps_info));
3238 if (spec_info != NULL)
3239 has_dependence_sched_deps_info.generate_spec_deps = 1;
3241 sched_deps_info = &has_dependence_sched_deps_info;
3244 /* Remove all dependences found and recorded in has_dependence_data array. */
3245 void
3246 sel_clear_has_dependence (void)
3248 int i;
3250 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3251 has_dependence_data.has_dep_p[i] = 0;
3254 /* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3255 to the dependence information array in HAS_DEP_PP. */
3256 ds_t
3257 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3259 int i;
3260 ds_t ds;
3261 struct deps_desc *dc;
3263 if (INSN_SIMPLEJUMP_P (pred))
3264 /* Unconditional jump is just a transfer of control flow.
3265 Ignore it. */
3266 return false;
3268 dc = &INSN_DEPS_CONTEXT (pred);
3270 /* We init this field lazily. */
3271 if (dc->reg_last == NULL)
3272 init_deps_reg_last (dc);
3274 if (!dc->readonly)
3276 has_dependence_data.pro = NULL;
3277 /* Initialize empty dep context with information about PRED. */
3278 advance_deps_context (dc, pred);
3279 dc->readonly = 1;
3282 has_dependence_data.where = DEPS_IN_NOWHERE;
3283 has_dependence_data.pro = pred;
3284 has_dependence_data.con = EXPR_VINSN (expr);
3285 has_dependence_data.dc = dc;
3287 sel_clear_has_dependence ();
3289 /* Now catch all dependencies that would be generated between PRED and
3290 INSN. */
3291 setup_has_dependence_sched_deps_info ();
3292 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3293 has_dependence_data.dc = NULL;
3295 /* When a barrier was found, set DEPS_IN_INSN bits. */
3296 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3297 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3298 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3299 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3301 /* Do not allow stores to memory to move through checks. Currently
3302 we don't move this to sched-deps.c as the check doesn't have
3303 obvious places to which this dependence can be attached.
3304 FIMXE: this should go to a hook. */
3305 if (EXPR_LHS (expr)
3306 && MEM_P (EXPR_LHS (expr))
3307 && sel_insn_is_speculation_check (pred))
3308 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3310 *has_dep_pp = has_dependence_data.has_dep_p;
3311 ds = 0;
3312 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3313 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3314 NULL_RTX, NULL_RTX);
3316 return ds;
3320 /* Dependence hooks implementation that checks dependence latency constraints
3321 on the insns being scheduled. The entry point for these routines is
3322 tick_check_p predicate. */
3324 static struct
3326 /* An expr we are currently checking. */
3327 expr_t expr;
3329 /* A minimal cycle for its scheduling. */
3330 int cycle;
3332 /* Whether we have seen a true dependence while checking. */
3333 bool seen_true_dep_p;
3334 } tick_check_data;
3336 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3337 on PRO with status DS and weight DW. */
3338 static void
3339 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3341 expr_t con_expr = tick_check_data.expr;
3342 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3344 if (con_insn != pro_insn)
3346 enum reg_note dt;
3347 int tick;
3349 if (/* PROducer was removed from above due to pipelining. */
3350 !INSN_IN_STREAM_P (pro_insn)
3351 /* Or PROducer was originally on the next iteration regarding the
3352 CONsumer. */
3353 || (INSN_SCHED_TIMES (pro_insn)
3354 - EXPR_SCHED_TIMES (con_expr)) > 1)
3355 /* Don't count this dependence. */
3356 return;
3358 dt = ds_to_dt (ds);
3359 if (dt == REG_DEP_TRUE)
3360 tick_check_data.seen_true_dep_p = true;
3362 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3365 dep_def _dep, *dep = &_dep;
3367 init_dep (dep, pro_insn, con_insn, dt);
3369 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3372 /* When there are several kinds of dependencies between pro and con,
3373 only REG_DEP_TRUE should be taken into account. */
3374 if (tick > tick_check_data.cycle
3375 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3376 tick_check_data.cycle = tick;
3380 /* An implementation of note_dep hook. */
3381 static void
3382 tick_check_note_dep (insn_t pro, ds_t ds)
3384 tick_check_dep_with_dw (pro, ds, 0);
3387 /* An implementation of note_mem_dep hook. */
3388 static void
3389 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3391 dw_t dw;
3393 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3394 ? estimate_dep_weak (mem1, mem2)
3395 : 0);
3397 tick_check_dep_with_dw (pro, ds, dw);
3400 /* This structure contains hooks for dependence analysis used when determining
3401 whether an insn is ready for scheduling. */
3402 static struct sched_deps_info_def tick_check_sched_deps_info =
3404 NULL,
3406 NULL,
3407 NULL,
3408 NULL,
3409 NULL,
3410 NULL,
3411 NULL,
3412 haifa_note_reg_set,
3413 haifa_note_reg_clobber,
3414 haifa_note_reg_use,
3415 tick_check_note_mem_dep,
3416 tick_check_note_dep,
3418 0, 0, 0
3421 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3422 scheduled. Return 0 if all data from producers in DC is ready. */
3424 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3426 int cycles_left;
3427 /* Initialize variables. */
3428 tick_check_data.expr = expr;
3429 tick_check_data.cycle = 0;
3430 tick_check_data.seen_true_dep_p = false;
3431 sched_deps_info = &tick_check_sched_deps_info;
3433 gcc_assert (!dc->readonly);
3434 dc->readonly = 1;
3435 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3436 dc->readonly = 0;
3438 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3440 return cycles_left >= 0 ? cycles_left : 0;
3444 /* Functions to work with insns. */
3446 /* Returns true if LHS of INSN is the same as DEST of an insn
3447 being moved. */
3448 bool
3449 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3451 rtx lhs = INSN_LHS (insn);
3453 if (lhs == NULL || dest == NULL)
3454 return false;
3456 return rtx_equal_p (lhs, dest);
3459 /* Return s_i_d entry of INSN. Callable from debugger. */
3460 sel_insn_data_def
3461 insn_sid (insn_t insn)
3463 return *SID (insn);
3466 /* True when INSN is a speculative check. We can tell this by looking
3467 at the data structures of the selective scheduler, not by examining
3468 the pattern. */
3469 bool
3470 sel_insn_is_speculation_check (rtx insn)
3472 return s_i_d && !! INSN_SPEC_CHECKED_DS (insn);
3475 /* Extracts machine mode MODE and destination location DST_LOC
3476 for given INSN. */
3477 void
3478 get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode)
3480 rtx pat = PATTERN (insn);
3482 gcc_assert (dst_loc);
3483 gcc_assert (GET_CODE (pat) == SET);
3485 *dst_loc = SET_DEST (pat);
3487 gcc_assert (*dst_loc);
3488 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3490 if (mode)
3491 *mode = GET_MODE (*dst_loc);
3494 /* Returns true when moving through JUMP will result in bookkeeping
3495 creation. */
3496 bool
3497 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3499 insn_t succ;
3500 succ_iterator si;
3502 FOR_EACH_SUCC (succ, si, jump)
3503 if (sel_num_cfg_preds_gt_1 (succ))
3504 return true;
3506 return false;
3509 /* Return 'true' if INSN is the only one in its basic block. */
3510 static bool
3511 insn_is_the_only_one_in_bb_p (insn_t insn)
3513 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3516 #ifdef ENABLE_CHECKING
3517 /* Check that the region we're scheduling still has at most one
3518 backedge. */
3519 static void
3520 verify_backedges (void)
3522 if (pipelining_p)
3524 int i, n = 0;
3525 edge e;
3526 edge_iterator ei;
3528 for (i = 0; i < current_nr_blocks; i++)
3529 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (BB_TO_BLOCK (i))->succs)
3530 if (in_current_region_p (e->dest)
3531 && BLOCK_TO_BB (e->dest->index) < i)
3532 n++;
3534 gcc_assert (n <= 1);
3537 #endif
3540 /* Functions to work with control flow. */
3542 /* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3543 are sorted in topological order (it might have been invalidated by
3544 redirecting an edge). */
3545 static void
3546 sel_recompute_toporder (void)
3548 int i, n, rgn;
3549 int *postorder, n_blocks;
3551 postorder = XALLOCAVEC (int, n_basic_blocks);
3552 n_blocks = post_order_compute (postorder, false, false);
3554 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3555 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3556 if (CONTAINING_RGN (postorder[i]) == rgn)
3558 BLOCK_TO_BB (postorder[i]) = n;
3559 BB_TO_BLOCK (n) = postorder[i];
3560 n++;
3563 /* Assert that we updated info for all blocks. We may miss some blocks if
3564 this function is called when redirecting an edge made a block
3565 unreachable, but that block is not deleted yet. */
3566 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3569 /* Tidy the possibly empty block BB. */
3570 static bool
3571 maybe_tidy_empty_bb (basic_block bb)
3573 basic_block succ_bb, pred_bb;
3574 edge e;
3575 edge_iterator ei;
3576 bool rescan_p;
3578 /* Keep empty bb only if this block immediately precedes EXIT and
3579 has incoming non-fallthrough edge, or it has no predecessors or
3580 successors. Otherwise remove it. */
3581 if (!sel_bb_empty_p (bb)
3582 || (single_succ_p (bb)
3583 && single_succ (bb) == EXIT_BLOCK_PTR
3584 && (!single_pred_p (bb)
3585 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3586 || EDGE_COUNT (bb->preds) == 0
3587 || EDGE_COUNT (bb->succs) == 0)
3588 return false;
3590 /* Do not attempt to redirect complex edges. */
3591 FOR_EACH_EDGE (e, ei, bb->preds)
3592 if (e->flags & EDGE_COMPLEX)
3593 return false;
3595 free_data_sets (bb);
3597 /* Do not delete BB if it has more than one successor.
3598 That can occur when we moving a jump. */
3599 if (!single_succ_p (bb))
3601 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3602 sel_merge_blocks (bb->prev_bb, bb);
3603 return true;
3606 succ_bb = single_succ (bb);
3607 rescan_p = true;
3608 pred_bb = NULL;
3610 /* Redirect all non-fallthru edges to the next bb. */
3611 while (rescan_p)
3613 rescan_p = false;
3615 FOR_EACH_EDGE (e, ei, bb->preds)
3617 pred_bb = e->src;
3619 if (!(e->flags & EDGE_FALLTHRU))
3621 /* We can not invalidate computed topological order by moving
3622 the edge destination block (E->SUCC) along a fallthru edge. */
3623 sel_redirect_edge_and_branch (e, succ_bb);
3624 rescan_p = true;
3625 break;
3627 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3628 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3629 still have to adjust it. */
3630 else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3632 /* If possible, try to remove the unneeded conditional jump. */
3633 if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3634 && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3636 if (!sel_remove_insn (BB_END (pred_bb), false, false))
3637 tidy_fallthru_edge (e);
3639 else
3640 sel_redirect_edge_and_branch (e, succ_bb);
3641 rescan_p = true;
3642 break;
3647 if (can_merge_blocks_p (bb->prev_bb, bb))
3648 sel_merge_blocks (bb->prev_bb, bb);
3649 else
3651 /* This is a block without fallthru predecessor. Just delete it. */
3652 gcc_assert (pred_bb != NULL);
3654 if (in_current_region_p (pred_bb))
3655 move_bb_info (pred_bb, bb);
3656 remove_empty_bb (bb, true);
3659 return true;
3662 /* Tidy the control flow after we have removed original insn from
3663 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3664 is true, also try to optimize control flow on non-empty blocks. */
3665 bool
3666 tidy_control_flow (basic_block xbb, bool full_tidying)
3668 bool changed = true;
3669 insn_t first, last;
3671 /* First check whether XBB is empty. */
3672 changed = maybe_tidy_empty_bb (xbb);
3673 if (changed || !full_tidying)
3674 return changed;
3676 /* Check if there is a unnecessary jump after insn left. */
3677 if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
3678 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3679 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3681 if (sel_remove_insn (BB_END (xbb), false, false))
3682 return true;
3683 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3686 first = sel_bb_head (xbb);
3687 last = sel_bb_end (xbb);
3688 if (MAY_HAVE_DEBUG_INSNS)
3690 if (first != last && DEBUG_INSN_P (first))
3692 first = NEXT_INSN (first);
3693 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3695 if (first != last && DEBUG_INSN_P (last))
3697 last = PREV_INSN (last);
3698 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3700 /* Check if there is an unnecessary jump in previous basic block leading
3701 to next basic block left after removing INSN from stream.
3702 If it is so, remove that jump and redirect edge to current
3703 basic block (where there was INSN before deletion). This way
3704 when NOP will be deleted several instructions later with its
3705 basic block we will not get a jump to next instruction, which
3706 can be harmful. */
3707 if (first == last
3708 && !sel_bb_empty_p (xbb)
3709 && INSN_NOP_P (last)
3710 /* Flow goes fallthru from current block to the next. */
3711 && EDGE_COUNT (xbb->succs) == 1
3712 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3713 /* When successor is an EXIT block, it may not be the next block. */
3714 && single_succ (xbb) != EXIT_BLOCK_PTR
3715 /* And unconditional jump in previous basic block leads to
3716 next basic block of XBB and this jump can be safely removed. */
3717 && in_current_region_p (xbb->prev_bb)
3718 && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
3719 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3720 /* Also this jump is not at the scheduling boundary. */
3721 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3723 bool recompute_toporder_p;
3724 /* Clear data structures of jump - jump itself will be removed
3725 by sel_redirect_edge_and_branch. */
3726 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3727 recompute_toporder_p
3728 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3730 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3732 /* It can turn out that after removing unused jump, basic block
3733 that contained that jump, becomes empty too. In such case
3734 remove it too. */
3735 if (sel_bb_empty_p (xbb->prev_bb))
3736 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3737 if (recompute_toporder_p)
3738 sel_recompute_toporder ();
3741 #ifdef ENABLE_CHECKING
3742 verify_backedges ();
3743 #endif
3745 return changed;
3748 /* Purge meaningless empty blocks in the middle of a region. */
3749 void
3750 purge_empty_blocks (void)
3752 /* Do not attempt to delete preheader. */
3753 int i = sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0))) ? 1 : 0;
3755 while (i < current_nr_blocks)
3757 basic_block b = BASIC_BLOCK (BB_TO_BLOCK (i));
3759 if (maybe_tidy_empty_bb (b))
3760 continue;
3762 i++;
3766 /* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3767 do not delete insn's data, because it will be later re-emitted.
3768 Return true if we have removed some blocks afterwards. */
3769 bool
3770 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3772 basic_block bb = BLOCK_FOR_INSN (insn);
3774 gcc_assert (INSN_IN_STREAM_P (insn));
3776 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3778 expr_t expr;
3779 av_set_iterator i;
3781 /* When we remove a debug insn that is head of a BB, it remains
3782 in the AV_SET of the block, but it shouldn't. */
3783 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3784 if (EXPR_INSN_RTX (expr) == insn)
3786 av_set_iter_remove (&i);
3787 break;
3791 if (only_disconnect)
3793 insn_t prev = PREV_INSN (insn);
3794 insn_t next = NEXT_INSN (insn);
3795 basic_block bb = BLOCK_FOR_INSN (insn);
3797 NEXT_INSN (prev) = next;
3798 PREV_INSN (next) = prev;
3800 if (BB_HEAD (bb) == insn)
3802 gcc_assert (BLOCK_FOR_INSN (prev) == bb);
3803 BB_HEAD (bb) = prev;
3805 if (BB_END (bb) == insn)
3806 BB_END (bb) = prev;
3808 else
3810 remove_insn (insn);
3811 clear_expr (INSN_EXPR (insn));
3814 /* It is necessary to null this fields before calling add_insn (). */
3815 PREV_INSN (insn) = NULL_RTX;
3816 NEXT_INSN (insn) = NULL_RTX;
3818 return tidy_control_flow (bb, full_tidying);
3821 /* Estimate number of the insns in BB. */
3822 static int
3823 sel_estimate_number_of_insns (basic_block bb)
3825 int res = 0;
3826 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3828 for (; insn != next_tail; insn = NEXT_INSN (insn))
3829 if (NONDEBUG_INSN_P (insn))
3830 res++;
3832 return res;
3835 /* We don't need separate luids for notes or labels. */
3836 static int
3837 sel_luid_for_non_insn (rtx x)
3839 gcc_assert (NOTE_P (x) || LABEL_P (x));
3841 return -1;
3844 /* Return seqno of the only predecessor of INSN. */
3845 static int
3846 get_seqno_of_a_pred (insn_t insn)
3848 int seqno;
3850 gcc_assert (INSN_SIMPLEJUMP_P (insn));
3852 if (!sel_bb_head_p (insn))
3853 seqno = INSN_SEQNO (PREV_INSN (insn));
3854 else
3856 basic_block bb = BLOCK_FOR_INSN (insn);
3858 if (single_pred_p (bb)
3859 && !in_current_region_p (single_pred (bb)))
3861 /* We can have preds outside a region when splitting edges
3862 for pipelining of an outer loop. Use succ instead.
3863 There should be only one of them. */
3864 insn_t succ = NULL;
3865 succ_iterator si;
3866 bool first = true;
3868 gcc_assert (flag_sel_sched_pipelining_outer_loops
3869 && current_loop_nest);
3870 FOR_EACH_SUCC_1 (succ, si, insn,
3871 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
3873 gcc_assert (first);
3874 first = false;
3877 gcc_assert (succ != NULL);
3878 seqno = INSN_SEQNO (succ);
3880 else
3882 insn_t *preds;
3883 int n;
3885 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
3886 gcc_assert (n == 1);
3888 seqno = INSN_SEQNO (preds[0]);
3890 free (preds);
3894 return seqno;
3897 /* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
3898 with positive seqno exist. */
3900 get_seqno_by_preds (rtx insn)
3902 basic_block bb = BLOCK_FOR_INSN (insn);
3903 rtx tmp = insn, head = BB_HEAD (bb);
3904 insn_t *preds;
3905 int n, i, seqno;
3907 while (tmp != head)
3908 if (INSN_P (tmp))
3909 return INSN_SEQNO (tmp);
3910 else
3911 tmp = PREV_INSN (tmp);
3913 cfg_preds (bb, &preds, &n);
3914 for (i = 0, seqno = -1; i < n; i++)
3915 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
3917 return seqno;
3922 /* Extend pass-scope data structures for basic blocks. */
3923 void
3924 sel_extend_global_bb_info (void)
3926 VEC_safe_grow_cleared (sel_global_bb_info_def, heap, sel_global_bb_info,
3927 last_basic_block);
3930 /* Extend region-scope data structures for basic blocks. */
3931 static void
3932 extend_region_bb_info (void)
3934 VEC_safe_grow_cleared (sel_region_bb_info_def, heap, sel_region_bb_info,
3935 last_basic_block);
3938 /* Extend all data structures to fit for all basic blocks. */
3939 static void
3940 extend_bb_info (void)
3942 sel_extend_global_bb_info ();
3943 extend_region_bb_info ();
3946 /* Finalize pass-scope data structures for basic blocks. */
3947 void
3948 sel_finish_global_bb_info (void)
3950 VEC_free (sel_global_bb_info_def, heap, sel_global_bb_info);
3953 /* Finalize region-scope data structures for basic blocks. */
3954 static void
3955 finish_region_bb_info (void)
3957 VEC_free (sel_region_bb_info_def, heap, sel_region_bb_info);
3961 /* Data for each insn in current region. */
3962 VEC (sel_insn_data_def, heap) *s_i_d = NULL;
3964 /* A vector for the insns we've emitted. */
3965 static insn_vec_t new_insns = NULL;
3967 /* Extend data structures for insns from current region. */
3968 static void
3969 extend_insn_data (void)
3971 int reserve;
3973 sched_extend_target ();
3974 sched_deps_init (false);
3976 /* Extend data structures for insns from current region. */
3977 reserve = (sched_max_luid + 1
3978 - VEC_length (sel_insn_data_def, s_i_d));
3979 if (reserve > 0
3980 && ! VEC_space (sel_insn_data_def, s_i_d, reserve))
3982 int size;
3984 if (sched_max_luid / 2 > 1024)
3985 size = sched_max_luid + 1024;
3986 else
3987 size = 3 * sched_max_luid / 2;
3990 VEC_safe_grow_cleared (sel_insn_data_def, heap, s_i_d, size);
3994 /* Finalize data structures for insns from current region. */
3995 static void
3996 finish_insns (void)
3998 unsigned i;
4000 /* Clear here all dependence contexts that may have left from insns that were
4001 removed during the scheduling. */
4002 for (i = 0; i < VEC_length (sel_insn_data_def, s_i_d); i++)
4004 sel_insn_data_def *sid_entry = VEC_index (sel_insn_data_def, s_i_d, i);
4006 if (sid_entry->live)
4007 return_regset_to_pool (sid_entry->live);
4008 if (sid_entry->analyzed_deps)
4010 BITMAP_FREE (sid_entry->analyzed_deps);
4011 BITMAP_FREE (sid_entry->found_deps);
4012 htab_delete (sid_entry->transformed_insns);
4013 free_deps (&sid_entry->deps_context);
4015 if (EXPR_VINSN (&sid_entry->expr))
4017 clear_expr (&sid_entry->expr);
4019 /* Also, clear CANT_MOVE bit here, because we really don't want it
4020 to be passed to the next region. */
4021 CANT_MOVE_BY_LUID (i) = 0;
4025 VEC_free (sel_insn_data_def, heap, s_i_d);
4028 /* A proxy to pass initialization data to init_insn (). */
4029 static sel_insn_data_def _insn_init_ssid;
4030 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4032 /* If true create a new vinsn. Otherwise use the one from EXPR. */
4033 static bool insn_init_create_new_vinsn_p;
4035 /* Set all necessary data for initialization of the new insn[s]. */
4036 static expr_t
4037 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4039 expr_t x = &insn_init_ssid->expr;
4041 copy_expr_onside (x, expr);
4042 if (vi != NULL)
4044 insn_init_create_new_vinsn_p = false;
4045 change_vinsn_in_expr (x, vi);
4047 else
4048 insn_init_create_new_vinsn_p = true;
4050 insn_init_ssid->seqno = seqno;
4051 return x;
4054 /* Init data for INSN. */
4055 static void
4056 init_insn_data (insn_t insn)
4058 expr_t expr;
4059 sel_insn_data_t ssid = insn_init_ssid;
4061 /* The fields mentioned below are special and hence are not being
4062 propagated to the new insns. */
4063 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4064 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4065 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4067 expr = INSN_EXPR (insn);
4068 copy_expr (expr, &ssid->expr);
4069 prepare_insn_expr (insn, ssid->seqno);
4071 if (insn_init_create_new_vinsn_p)
4072 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
4074 if (first_time_insn_init (insn))
4075 init_first_time_insn_data (insn);
4078 /* This is used to initialize spurious jumps generated by
4079 sel_redirect_edge (). */
4080 static void
4081 init_simplejump_data (insn_t insn)
4083 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
4084 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0, NULL, true, false, false,
4085 false, true);
4086 INSN_SEQNO (insn) = get_seqno_of_a_pred (insn);
4087 init_first_time_insn_data (insn);
4090 /* Perform deferred initialization of insns. This is used to process
4091 a new jump that may be created by redirect_edge. */
4092 void
4093 sel_init_new_insn (insn_t insn, int flags)
4095 /* We create data structures for bb when the first insn is emitted in it. */
4096 if (INSN_P (insn)
4097 && INSN_IN_STREAM_P (insn)
4098 && insn_is_the_only_one_in_bb_p (insn))
4100 extend_bb_info ();
4101 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4104 if (flags & INSN_INIT_TODO_LUID)
4105 sched_init_luids (NULL, NULL, NULL, insn);
4107 if (flags & INSN_INIT_TODO_SSID)
4109 extend_insn_data ();
4110 init_insn_data (insn);
4111 clear_expr (&insn_init_ssid->expr);
4114 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4116 extend_insn_data ();
4117 init_simplejump_data (insn);
4120 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4121 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4125 /* Functions to init/finish work with lv sets. */
4127 /* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4128 static void
4129 init_lv_set (basic_block bb)
4131 gcc_assert (!BB_LV_SET_VALID_P (bb));
4133 BB_LV_SET (bb) = get_regset_from_pool ();
4134 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4135 BB_LV_SET_VALID_P (bb) = true;
4138 /* Copy liveness information to BB from FROM_BB. */
4139 static void
4140 copy_lv_set_from (basic_block bb, basic_block from_bb)
4142 gcc_assert (!BB_LV_SET_VALID_P (bb));
4144 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4145 BB_LV_SET_VALID_P (bb) = true;
4148 /* Initialize lv set of all bb headers. */
4149 void
4150 init_lv_sets (void)
4152 basic_block bb;
4154 /* Initialize of LV sets. */
4155 FOR_EACH_BB (bb)
4156 init_lv_set (bb);
4158 /* Don't forget EXIT_BLOCK. */
4159 init_lv_set (EXIT_BLOCK_PTR);
4162 /* Release lv set of HEAD. */
4163 static void
4164 free_lv_set (basic_block bb)
4166 gcc_assert (BB_LV_SET (bb) != NULL);
4168 return_regset_to_pool (BB_LV_SET (bb));
4169 BB_LV_SET (bb) = NULL;
4170 BB_LV_SET_VALID_P (bb) = false;
4173 /* Finalize lv sets of all bb headers. */
4174 void
4175 free_lv_sets (void)
4177 basic_block bb;
4179 /* Don't forget EXIT_BLOCK. */
4180 free_lv_set (EXIT_BLOCK_PTR);
4182 /* Free LV sets. */
4183 FOR_EACH_BB (bb)
4184 if (BB_LV_SET (bb))
4185 free_lv_set (bb);
4188 /* Initialize an invalid AV_SET for BB.
4189 This set will be updated next time compute_av () process BB. */
4190 static void
4191 invalidate_av_set (basic_block bb)
4193 gcc_assert (BB_AV_LEVEL (bb) <= 0
4194 && BB_AV_SET (bb) == NULL);
4196 BB_AV_LEVEL (bb) = -1;
4199 /* Create initial data sets for BB (they will be invalid). */
4200 static void
4201 create_initial_data_sets (basic_block bb)
4203 if (BB_LV_SET (bb))
4204 BB_LV_SET_VALID_P (bb) = false;
4205 else
4206 BB_LV_SET (bb) = get_regset_from_pool ();
4207 invalidate_av_set (bb);
4210 /* Free av set of BB. */
4211 static void
4212 free_av_set (basic_block bb)
4214 av_set_clear (&BB_AV_SET (bb));
4215 BB_AV_LEVEL (bb) = 0;
4218 /* Free data sets of BB. */
4219 void
4220 free_data_sets (basic_block bb)
4222 free_lv_set (bb);
4223 free_av_set (bb);
4226 /* Exchange lv sets of TO and FROM. */
4227 static void
4228 exchange_lv_sets (basic_block to, basic_block from)
4231 regset to_lv_set = BB_LV_SET (to);
4233 BB_LV_SET (to) = BB_LV_SET (from);
4234 BB_LV_SET (from) = to_lv_set;
4238 bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4240 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4241 BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4246 /* Exchange av sets of TO and FROM. */
4247 static void
4248 exchange_av_sets (basic_block to, basic_block from)
4251 av_set_t to_av_set = BB_AV_SET (to);
4253 BB_AV_SET (to) = BB_AV_SET (from);
4254 BB_AV_SET (from) = to_av_set;
4258 int to_av_level = BB_AV_LEVEL (to);
4260 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4261 BB_AV_LEVEL (from) = to_av_level;
4265 /* Exchange data sets of TO and FROM. */
4266 void
4267 exchange_data_sets (basic_block to, basic_block from)
4269 exchange_lv_sets (to, from);
4270 exchange_av_sets (to, from);
4273 /* Copy data sets of FROM to TO. */
4274 void
4275 copy_data_sets (basic_block to, basic_block from)
4277 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4278 gcc_assert (BB_AV_SET (to) == NULL);
4280 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4281 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4283 if (BB_AV_SET_VALID_P (from))
4285 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4287 if (BB_LV_SET_VALID_P (from))
4289 gcc_assert (BB_LV_SET (to) != NULL);
4290 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4294 /* Return an av set for INSN, if any. */
4295 av_set_t
4296 get_av_set (insn_t insn)
4298 av_set_t av_set;
4300 gcc_assert (AV_SET_VALID_P (insn));
4302 if (sel_bb_head_p (insn))
4303 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4304 else
4305 av_set = NULL;
4307 return av_set;
4310 /* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4312 get_av_level (insn_t insn)
4314 int av_level;
4316 gcc_assert (INSN_P (insn));
4318 if (sel_bb_head_p (insn))
4319 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4320 else
4321 av_level = INSN_WS_LEVEL (insn);
4323 return av_level;
4328 /* Variables to work with control-flow graph. */
4330 /* The basic block that already has been processed by the sched_data_update (),
4331 but hasn't been in sel_add_bb () yet. */
4332 static VEC (basic_block, heap) *last_added_blocks = NULL;
4334 /* A pool for allocating successor infos. */
4335 static struct
4337 /* A stack for saving succs_info structures. */
4338 struct succs_info *stack;
4340 /* Its size. */
4341 int size;
4343 /* Top of the stack. */
4344 int top;
4346 /* Maximal value of the top. */
4347 int max_top;
4348 } succs_info_pool;
4350 /* Functions to work with control-flow graph. */
4352 /* Return basic block note of BB. */
4353 insn_t
4354 sel_bb_head (basic_block bb)
4356 insn_t head;
4358 if (bb == EXIT_BLOCK_PTR)
4360 gcc_assert (exit_insn != NULL_RTX);
4361 head = exit_insn;
4363 else
4365 insn_t note;
4367 note = bb_note (bb);
4368 head = next_nonnote_insn (note);
4370 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
4371 head = NULL_RTX;
4374 return head;
4377 /* Return true if INSN is a basic block header. */
4378 bool
4379 sel_bb_head_p (insn_t insn)
4381 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4384 /* Return last insn of BB. */
4385 insn_t
4386 sel_bb_end (basic_block bb)
4388 if (sel_bb_empty_p (bb))
4389 return NULL_RTX;
4391 gcc_assert (bb != EXIT_BLOCK_PTR);
4393 return BB_END (bb);
4396 /* Return true if INSN is the last insn in its basic block. */
4397 bool
4398 sel_bb_end_p (insn_t insn)
4400 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4403 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4404 bool
4405 sel_bb_empty_p (basic_block bb)
4407 return sel_bb_head (bb) == NULL;
4410 /* True when BB belongs to the current scheduling region. */
4411 bool
4412 in_current_region_p (basic_block bb)
4414 if (bb->index < NUM_FIXED_BLOCKS)
4415 return false;
4417 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4420 /* Return the block which is a fallthru bb of a conditional jump JUMP. */
4421 basic_block
4422 fallthru_bb_of_jump (rtx jump)
4424 if (!JUMP_P (jump))
4425 return NULL;
4427 if (any_uncondjump_p (jump))
4428 return single_succ (BLOCK_FOR_INSN (jump));
4430 if (!any_condjump_p (jump))
4431 return NULL;
4433 /* A basic block that ends with a conditional jump may still have one successor
4434 (and be followed by a barrier), we are not interested. */
4435 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4436 return NULL;
4438 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4441 /* Remove all notes from BB. */
4442 static void
4443 init_bb (basic_block bb)
4445 remove_notes (bb_note (bb), BB_END (bb));
4446 BB_NOTE_LIST (bb) = note_list;
4449 void
4450 sel_init_bbs (bb_vec_t bbs, basic_block bb)
4452 const struct sched_scan_info_def ssi =
4454 extend_bb_info, /* extend_bb */
4455 init_bb, /* init_bb */
4456 NULL, /* extend_insn */
4457 NULL /* init_insn */
4460 sched_scan (&ssi, bbs, bb, new_insns, NULL);
4463 /* Restore notes for the whole region. */
4464 static void
4465 sel_restore_notes (void)
4467 int bb;
4468 insn_t insn;
4470 for (bb = 0; bb < current_nr_blocks; bb++)
4472 basic_block first, last;
4474 first = EBB_FIRST_BB (bb);
4475 last = EBB_LAST_BB (bb)->next_bb;
4479 note_list = BB_NOTE_LIST (first);
4480 restore_other_notes (NULL, first);
4481 BB_NOTE_LIST (first) = NULL_RTX;
4483 FOR_BB_INSNS (first, insn)
4484 if (NONDEBUG_INSN_P (insn))
4485 reemit_notes (insn);
4487 first = first->next_bb;
4489 while (first != last);
4493 /* Free per-bb data structures. */
4494 void
4495 sel_finish_bbs (void)
4497 sel_restore_notes ();
4499 /* Remove current loop preheader from this loop. */
4500 if (current_loop_nest)
4501 sel_remove_loop_preheader ();
4503 finish_region_bb_info ();
4506 /* Return true if INSN has a single successor of type FLAGS. */
4507 bool
4508 sel_insn_has_single_succ_p (insn_t insn, int flags)
4510 insn_t succ;
4511 succ_iterator si;
4512 bool first_p = true;
4514 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4516 if (first_p)
4517 first_p = false;
4518 else
4519 return false;
4522 return true;
4525 /* Allocate successor's info. */
4526 static struct succs_info *
4527 alloc_succs_info (void)
4529 if (succs_info_pool.top == succs_info_pool.max_top)
4531 int i;
4533 if (++succs_info_pool.max_top >= succs_info_pool.size)
4534 gcc_unreachable ();
4536 i = ++succs_info_pool.top;
4537 succs_info_pool.stack[i].succs_ok = VEC_alloc (rtx, heap, 10);
4538 succs_info_pool.stack[i].succs_other = VEC_alloc (rtx, heap, 10);
4539 succs_info_pool.stack[i].probs_ok = VEC_alloc (int, heap, 10);
4541 else
4542 succs_info_pool.top++;
4544 return &succs_info_pool.stack[succs_info_pool.top];
4547 /* Free successor's info. */
4548 void
4549 free_succs_info (struct succs_info * sinfo)
4551 gcc_assert (succs_info_pool.top >= 0
4552 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4553 succs_info_pool.top--;
4555 /* Clear stale info. */
4556 VEC_block_remove (rtx, sinfo->succs_ok,
4557 0, VEC_length (rtx, sinfo->succs_ok));
4558 VEC_block_remove (rtx, sinfo->succs_other,
4559 0, VEC_length (rtx, sinfo->succs_other));
4560 VEC_block_remove (int, sinfo->probs_ok,
4561 0, VEC_length (int, sinfo->probs_ok));
4562 sinfo->all_prob = 0;
4563 sinfo->succs_ok_n = 0;
4564 sinfo->all_succs_n = 0;
4567 /* Compute successor info for INSN. FLAGS are the flags passed
4568 to the FOR_EACH_SUCC_1 iterator. */
4569 struct succs_info *
4570 compute_succs_info (insn_t insn, short flags)
4572 succ_iterator si;
4573 insn_t succ;
4574 struct succs_info *sinfo = alloc_succs_info ();
4576 /* Traverse *all* successors and decide what to do with each. */
4577 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4579 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4580 perform code motion through inner loops. */
4581 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4583 if (current_flags & flags)
4585 VEC_safe_push (rtx, heap, sinfo->succs_ok, succ);
4586 VEC_safe_push (int, heap, sinfo->probs_ok,
4587 /* FIXME: Improve calculation when skipping
4588 inner loop to exits. */
4589 (si.bb_end
4590 ? si.e1->probability
4591 : REG_BR_PROB_BASE));
4592 sinfo->succs_ok_n++;
4594 else
4595 VEC_safe_push (rtx, heap, sinfo->succs_other, succ);
4597 /* Compute all_prob. */
4598 if (!si.bb_end)
4599 sinfo->all_prob = REG_BR_PROB_BASE;
4600 else
4601 sinfo->all_prob += si.e1->probability;
4603 sinfo->all_succs_n++;
4606 return sinfo;
4609 /* Return the predecessors of BB in PREDS and their number in N.
4610 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4611 static void
4612 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4614 edge e;
4615 edge_iterator ei;
4617 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4619 FOR_EACH_EDGE (e, ei, bb->preds)
4621 basic_block pred_bb = e->src;
4622 insn_t bb_end = BB_END (pred_bb);
4624 if (!in_current_region_p (pred_bb))
4626 gcc_assert (flag_sel_sched_pipelining_outer_loops
4627 && current_loop_nest);
4628 continue;
4631 if (sel_bb_empty_p (pred_bb))
4632 cfg_preds_1 (pred_bb, preds, n, size);
4633 else
4635 if (*n == *size)
4636 *preds = XRESIZEVEC (insn_t, *preds,
4637 (*size = 2 * *size + 1));
4638 (*preds)[(*n)++] = bb_end;
4642 gcc_assert (*n != 0
4643 || (flag_sel_sched_pipelining_outer_loops
4644 && current_loop_nest));
4647 /* Find all predecessors of BB and record them in PREDS and their number
4648 in N. Empty blocks are skipped, and only normal (forward in-region)
4649 edges are processed. */
4650 static void
4651 cfg_preds (basic_block bb, insn_t **preds, int *n)
4653 int size = 0;
4655 *preds = NULL;
4656 *n = 0;
4657 cfg_preds_1 (bb, preds, n, &size);
4660 /* Returns true if we are moving INSN through join point. */
4661 bool
4662 sel_num_cfg_preds_gt_1 (insn_t insn)
4664 basic_block bb;
4666 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4667 return false;
4669 bb = BLOCK_FOR_INSN (insn);
4671 while (1)
4673 if (EDGE_COUNT (bb->preds) > 1)
4674 return true;
4676 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4677 bb = EDGE_PRED (bb, 0)->src;
4679 if (!sel_bb_empty_p (bb))
4680 break;
4683 return false;
4686 /* Returns true when BB should be the end of an ebb. Adapted from the
4687 code in sched-ebb.c. */
4688 bool
4689 bb_ends_ebb_p (basic_block bb)
4691 basic_block next_bb = bb_next_bb (bb);
4692 edge e;
4694 if (next_bb == EXIT_BLOCK_PTR
4695 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4696 || (LABEL_P (BB_HEAD (next_bb))
4697 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4698 Work around that. */
4699 && !single_pred_p (next_bb)))
4700 return true;
4702 if (!in_current_region_p (next_bb))
4703 return true;
4705 e = find_fallthru_edge (bb->succs);
4706 if (e)
4708 gcc_assert (e->dest == next_bb);
4710 return false;
4713 return true;
4716 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4717 successor of INSN. */
4718 bool
4719 in_same_ebb_p (insn_t insn, insn_t succ)
4721 basic_block ptr = BLOCK_FOR_INSN (insn);
4723 for(;;)
4725 if (ptr == BLOCK_FOR_INSN (succ))
4726 return true;
4728 if (bb_ends_ebb_p (ptr))
4729 return false;
4731 ptr = bb_next_bb (ptr);
4734 gcc_unreachable ();
4735 return false;
4738 /* Recomputes the reverse topological order for the function and
4739 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4740 modified appropriately. */
4741 static void
4742 recompute_rev_top_order (void)
4744 int *postorder;
4745 int n_blocks, i;
4747 if (!rev_top_order_index || rev_top_order_index_len < last_basic_block)
4749 rev_top_order_index_len = last_basic_block;
4750 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4751 rev_top_order_index_len);
4754 postorder = XNEWVEC (int, n_basic_blocks);
4756 n_blocks = post_order_compute (postorder, true, false);
4757 gcc_assert (n_basic_blocks == n_blocks);
4759 /* Build reverse function: for each basic block with BB->INDEX == K
4760 rev_top_order_index[K] is it's reverse topological sort number. */
4761 for (i = 0; i < n_blocks; i++)
4763 gcc_assert (postorder[i] < rev_top_order_index_len);
4764 rev_top_order_index[postorder[i]] = i;
4767 free (postorder);
4770 /* Clear all flags from insns in BB that could spoil its rescheduling. */
4771 void
4772 clear_outdated_rtx_info (basic_block bb)
4774 rtx insn;
4776 FOR_BB_INSNS (bb, insn)
4777 if (INSN_P (insn))
4779 SCHED_GROUP_P (insn) = 0;
4780 INSN_AFTER_STALL_P (insn) = 0;
4781 INSN_SCHED_TIMES (insn) = 0;
4782 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4784 /* We cannot use the changed caches, as previously we could ignore
4785 the LHS dependence due to enabled renaming and transform
4786 the expression, and currently we'll be unable to do this. */
4787 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4791 /* Add BB_NOTE to the pool of available basic block notes. */
4792 static void
4793 return_bb_to_pool (basic_block bb)
4795 rtx note = bb_note (bb);
4797 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4798 && bb->aux == NULL);
4800 /* It turns out that current cfg infrastructure does not support
4801 reuse of basic blocks. Don't bother for now. */
4802 /*VEC_safe_push (rtx, heap, bb_note_pool, note);*/
4805 /* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4806 static rtx
4807 get_bb_note_from_pool (void)
4809 if (VEC_empty (rtx, bb_note_pool))
4810 return NULL_RTX;
4811 else
4813 rtx note = VEC_pop (rtx, bb_note_pool);
4815 PREV_INSN (note) = NULL_RTX;
4816 NEXT_INSN (note) = NULL_RTX;
4818 return note;
4822 /* Free bb_note_pool. */
4823 void
4824 free_bb_note_pool (void)
4826 VEC_free (rtx, heap, bb_note_pool);
4829 /* Setup scheduler pool and successor structure. */
4830 void
4831 alloc_sched_pools (void)
4833 int succs_size;
4835 succs_size = MAX_WS + 1;
4836 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
4837 succs_info_pool.size = succs_size;
4838 succs_info_pool.top = -1;
4839 succs_info_pool.max_top = -1;
4841 sched_lists_pool = create_alloc_pool ("sel-sched-lists",
4842 sizeof (struct _list_node), 500);
4845 /* Free the pools. */
4846 void
4847 free_sched_pools (void)
4849 int i;
4851 free_alloc_pool (sched_lists_pool);
4852 gcc_assert (succs_info_pool.top == -1);
4853 for (i = 0; i < succs_info_pool.max_top; i++)
4855 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_ok);
4856 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_other);
4857 VEC_free (int, heap, succs_info_pool.stack[i].probs_ok);
4859 free (succs_info_pool.stack);
4863 /* Returns a position in RGN where BB can be inserted retaining
4864 topological order. */
4865 static int
4866 find_place_to_insert_bb (basic_block bb, int rgn)
4868 bool has_preds_outside_rgn = false;
4869 edge e;
4870 edge_iterator ei;
4872 /* Find whether we have preds outside the region. */
4873 FOR_EACH_EDGE (e, ei, bb->preds)
4874 if (!in_current_region_p (e->src))
4876 has_preds_outside_rgn = true;
4877 break;
4880 /* Recompute the top order -- needed when we have > 1 pred
4881 and in case we don't have preds outside. */
4882 if (flag_sel_sched_pipelining_outer_loops
4883 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
4885 int i, bbi = bb->index, cur_bbi;
4887 recompute_rev_top_order ();
4888 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
4890 cur_bbi = BB_TO_BLOCK (i);
4891 if (rev_top_order_index[bbi]
4892 < rev_top_order_index[cur_bbi])
4893 break;
4896 /* We skipped the right block, so we increase i. We accomodate
4897 it for increasing by step later, so we decrease i. */
4898 return (i + 1) - 1;
4900 else if (has_preds_outside_rgn)
4902 /* This is the case when we generate an extra empty block
4903 to serve as region head during pipelining. */
4904 e = EDGE_SUCC (bb, 0);
4905 gcc_assert (EDGE_COUNT (bb->succs) == 1
4906 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
4907 && (BLOCK_TO_BB (e->dest->index) == 0));
4908 return -1;
4911 /* We don't have preds outside the region. We should have
4912 the only pred, because the multiple preds case comes from
4913 the pipelining of outer loops, and that is handled above.
4914 Just take the bbi of this single pred. */
4915 if (EDGE_COUNT (bb->succs) > 0)
4917 int pred_bbi;
4919 gcc_assert (EDGE_COUNT (bb->preds) == 1);
4921 pred_bbi = EDGE_PRED (bb, 0)->src->index;
4922 return BLOCK_TO_BB (pred_bbi);
4924 else
4925 /* BB has no successors. It is safe to put it in the end. */
4926 return current_nr_blocks - 1;
4929 /* Deletes an empty basic block freeing its data. */
4930 static void
4931 delete_and_free_basic_block (basic_block bb)
4933 gcc_assert (sel_bb_empty_p (bb));
4935 if (BB_LV_SET (bb))
4936 free_lv_set (bb);
4938 bitmap_clear_bit (blocks_to_reschedule, bb->index);
4940 /* Can't assert av_set properties because we use sel_aremove_bb
4941 when removing loop preheader from the region. At the point of
4942 removing the preheader we already have deallocated sel_region_bb_info. */
4943 gcc_assert (BB_LV_SET (bb) == NULL
4944 && !BB_LV_SET_VALID_P (bb)
4945 && BB_AV_LEVEL (bb) == 0
4946 && BB_AV_SET (bb) == NULL);
4948 delete_basic_block (bb);
4951 /* Add BB to the current region and update the region data. */
4952 static void
4953 add_block_to_current_region (basic_block bb)
4955 int i, pos, bbi = -2, rgn;
4957 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
4958 bbi = find_place_to_insert_bb (bb, rgn);
4959 bbi += 1;
4960 pos = RGN_BLOCKS (rgn) + bbi;
4962 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
4963 && ebb_head[bbi] == pos);
4965 /* Make a place for the new block. */
4966 extend_regions ();
4968 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
4969 BLOCK_TO_BB (rgn_bb_table[i])++;
4971 memmove (rgn_bb_table + pos + 1,
4972 rgn_bb_table + pos,
4973 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
4975 /* Initialize data for BB. */
4976 rgn_bb_table[pos] = bb->index;
4977 BLOCK_TO_BB (bb->index) = bbi;
4978 CONTAINING_RGN (bb->index) = rgn;
4980 RGN_NR_BLOCKS (rgn)++;
4982 for (i = rgn + 1; i <= nr_regions; i++)
4983 RGN_BLOCKS (i)++;
4986 /* Remove BB from the current region and update the region data. */
4987 static void
4988 remove_bb_from_region (basic_block bb)
4990 int i, pos, bbi = -2, rgn;
4992 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
4993 bbi = BLOCK_TO_BB (bb->index);
4994 pos = RGN_BLOCKS (rgn) + bbi;
4996 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
4997 && ebb_head[bbi] == pos);
4999 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5000 BLOCK_TO_BB (rgn_bb_table[i])--;
5002 memmove (rgn_bb_table + pos,
5003 rgn_bb_table + pos + 1,
5004 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5006 RGN_NR_BLOCKS (rgn)--;
5007 for (i = rgn + 1; i <= nr_regions; i++)
5008 RGN_BLOCKS (i)--;
5011 /* Add BB to the current region and update all data. If BB is NULL, add all
5012 blocks from last_added_blocks vector. */
5013 static void
5014 sel_add_bb (basic_block bb)
5016 /* Extend luids so that new notes will receive zero luids. */
5017 sched_init_luids (NULL, NULL, NULL, NULL);
5018 sched_init_bbs ();
5019 sel_init_bbs (last_added_blocks, NULL);
5021 /* When bb is passed explicitly, the vector should contain
5022 the only element that equals to bb; otherwise, the vector
5023 should not be NULL. */
5024 gcc_assert (last_added_blocks != NULL);
5026 if (bb != NULL)
5028 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5029 && VEC_index (basic_block,
5030 last_added_blocks, 0) == bb);
5031 add_block_to_current_region (bb);
5033 /* We associate creating/deleting data sets with the first insn
5034 appearing / disappearing in the bb. */
5035 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5036 create_initial_data_sets (bb);
5038 VEC_free (basic_block, heap, last_added_blocks);
5040 else
5041 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5043 int i;
5044 basic_block temp_bb = NULL;
5046 for (i = 0;
5047 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5049 add_block_to_current_region (bb);
5050 temp_bb = bb;
5053 /* We need to fetch at least one bb so we know the region
5054 to update. */
5055 gcc_assert (temp_bb != NULL);
5056 bb = temp_bb;
5058 VEC_free (basic_block, heap, last_added_blocks);
5061 rgn_setup_region (CONTAINING_RGN (bb->index));
5064 /* Remove BB from the current region and update all data.
5065 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5066 static void
5067 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5069 unsigned idx = bb->index;
5071 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
5073 remove_bb_from_region (bb);
5074 return_bb_to_pool (bb);
5075 bitmap_clear_bit (blocks_to_reschedule, idx);
5077 if (remove_from_cfg_p)
5078 delete_and_free_basic_block (bb);
5080 rgn_setup_region (CONTAINING_RGN (idx));
5083 /* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5084 static void
5085 move_bb_info (basic_block merge_bb, basic_block empty_bb)
5087 gcc_assert (in_current_region_p (merge_bb));
5089 concat_note_lists (BB_NOTE_LIST (empty_bb),
5090 &BB_NOTE_LIST (merge_bb));
5091 BB_NOTE_LIST (empty_bb) = NULL_RTX;
5095 /* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5096 region, but keep it in CFG. */
5097 static void
5098 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5100 /* The block should contain just a note or a label.
5101 We try to check whether it is unused below. */
5102 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5103 || LABEL_P (BB_HEAD (empty_bb)));
5105 /* If basic block has predecessors or successors, redirect them. */
5106 if (remove_from_cfg_p
5107 && (EDGE_COUNT (empty_bb->preds) > 0
5108 || EDGE_COUNT (empty_bb->succs) > 0))
5110 basic_block pred;
5111 basic_block succ;
5113 /* We need to init PRED and SUCC before redirecting edges. */
5114 if (EDGE_COUNT (empty_bb->preds) > 0)
5116 edge e;
5118 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5120 e = EDGE_PRED (empty_bb, 0);
5121 gcc_assert (e->src == empty_bb->prev_bb
5122 && (e->flags & EDGE_FALLTHRU));
5124 pred = empty_bb->prev_bb;
5126 else
5127 pred = NULL;
5129 if (EDGE_COUNT (empty_bb->succs) > 0)
5131 /* We do not check fallthruness here as above, because
5132 after removing a jump the edge may actually be not fallthru. */
5133 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5134 succ = EDGE_SUCC (empty_bb, 0)->dest;
5136 else
5137 succ = NULL;
5139 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5141 edge e = EDGE_PRED (empty_bb, 0);
5143 if (e->flags & EDGE_FALLTHRU)
5144 redirect_edge_succ_nodup (e, succ);
5145 else
5146 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5149 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5151 edge e = EDGE_SUCC (empty_bb, 0);
5153 if (find_edge (pred, e->dest) == NULL)
5154 redirect_edge_pred (e, pred);
5158 /* Finish removing. */
5159 sel_remove_bb (empty_bb, remove_from_cfg_p);
5162 /* An implementation of create_basic_block hook, which additionally updates
5163 per-bb data structures. */
5164 static basic_block
5165 sel_create_basic_block (void *headp, void *endp, basic_block after)
5167 basic_block new_bb;
5168 insn_t new_bb_note;
5170 gcc_assert (flag_sel_sched_pipelining_outer_loops
5171 || last_added_blocks == NULL);
5173 new_bb_note = get_bb_note_from_pool ();
5175 if (new_bb_note == NULL_RTX)
5176 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5177 else
5179 new_bb = create_basic_block_structure ((rtx) headp, (rtx) endp,
5180 new_bb_note, after);
5181 new_bb->aux = NULL;
5184 VEC_safe_push (basic_block, heap, last_added_blocks, new_bb);
5186 return new_bb;
5189 /* Implement sched_init_only_bb (). */
5190 static void
5191 sel_init_only_bb (basic_block bb, basic_block after)
5193 gcc_assert (after == NULL);
5195 extend_regions ();
5196 rgn_make_new_region_out_of_new_block (bb);
5199 /* Update the latch when we've splitted or merged it from FROM block to TO.
5200 This should be checked for all outer loops, too. */
5201 static void
5202 change_loops_latches (basic_block from, basic_block to)
5204 gcc_assert (from != to);
5206 if (current_loop_nest)
5208 struct loop *loop;
5210 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5211 if (considered_for_pipelining_p (loop) && loop->latch == from)
5213 gcc_assert (loop == current_loop_nest);
5214 loop->latch = to;
5215 gcc_assert (loop_latch_edge (loop));
5220 /* Splits BB on two basic blocks, adding it to the region and extending
5221 per-bb data structures. Returns the newly created bb. */
5222 static basic_block
5223 sel_split_block (basic_block bb, rtx after)
5225 basic_block new_bb;
5226 insn_t insn;
5228 new_bb = sched_split_block_1 (bb, after);
5229 sel_add_bb (new_bb);
5231 /* This should be called after sel_add_bb, because this uses
5232 CONTAINING_RGN for the new block, which is not yet initialized.
5233 FIXME: this function may be a no-op now. */
5234 change_loops_latches (bb, new_bb);
5236 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5237 FOR_BB_INSNS (new_bb, insn)
5238 if (INSN_P (insn))
5239 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5241 if (sel_bb_empty_p (bb))
5243 gcc_assert (!sel_bb_empty_p (new_bb));
5245 /* NEW_BB has data sets that need to be updated and BB holds
5246 data sets that should be removed. Exchange these data sets
5247 so that we won't lose BB's valid data sets. */
5248 exchange_data_sets (new_bb, bb);
5249 free_data_sets (bb);
5252 if (!sel_bb_empty_p (new_bb)
5253 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5254 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5256 return new_bb;
5259 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5260 Otherwise returns NULL. */
5261 static rtx
5262 check_for_new_jump (basic_block bb, int prev_max_uid)
5264 rtx end;
5266 end = sel_bb_end (bb);
5267 if (end && INSN_UID (end) >= prev_max_uid)
5268 return end;
5269 return NULL;
5272 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5273 New means having UID at least equal to PREV_MAX_UID. */
5274 static rtx
5275 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5277 rtx jump;
5279 /* Return immediately if no new insns were emitted. */
5280 if (get_max_uid () == prev_max_uid)
5281 return NULL;
5283 /* Now check both blocks for new jumps. It will ever be only one. */
5284 if ((jump = check_for_new_jump (from, prev_max_uid)))
5285 return jump;
5287 if (jump_bb != NULL
5288 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5289 return jump;
5290 return NULL;
5293 /* Splits E and adds the newly created basic block to the current region.
5294 Returns this basic block. */
5295 basic_block
5296 sel_split_edge (edge e)
5298 basic_block new_bb, src, other_bb = NULL;
5299 int prev_max_uid;
5300 rtx jump;
5302 src = e->src;
5303 prev_max_uid = get_max_uid ();
5304 new_bb = split_edge (e);
5306 if (flag_sel_sched_pipelining_outer_loops
5307 && current_loop_nest)
5309 int i;
5310 basic_block bb;
5312 /* Some of the basic blocks might not have been added to the loop.
5313 Add them here, until this is fixed in force_fallthru. */
5314 for (i = 0;
5315 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5316 if (!bb->loop_father)
5318 add_bb_to_loop (bb, e->dest->loop_father);
5320 gcc_assert (!other_bb && (new_bb->index != bb->index));
5321 other_bb = bb;
5325 /* Add all last_added_blocks to the region. */
5326 sel_add_bb (NULL);
5328 jump = find_new_jump (src, new_bb, prev_max_uid);
5329 if (jump)
5330 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5332 /* Put the correct lv set on this block. */
5333 if (other_bb && !sel_bb_empty_p (other_bb))
5334 compute_live (sel_bb_head (other_bb));
5336 return new_bb;
5339 /* Implement sched_create_empty_bb (). */
5340 static basic_block
5341 sel_create_empty_bb (basic_block after)
5343 basic_block new_bb;
5345 new_bb = sched_create_empty_bb_1 (after);
5347 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5348 later. */
5349 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5350 && VEC_index (basic_block, last_added_blocks, 0) == new_bb);
5352 VEC_free (basic_block, heap, last_added_blocks);
5353 return new_bb;
5356 /* Implement sched_create_recovery_block. ORIG_INSN is where block
5357 will be splitted to insert a check. */
5358 basic_block
5359 sel_create_recovery_block (insn_t orig_insn)
5361 basic_block first_bb, second_bb, recovery_block;
5362 basic_block before_recovery = NULL;
5363 rtx jump;
5365 first_bb = BLOCK_FOR_INSN (orig_insn);
5366 if (sel_bb_end_p (orig_insn))
5368 /* Avoid introducing an empty block while splitting. */
5369 gcc_assert (single_succ_p (first_bb));
5370 second_bb = single_succ (first_bb);
5372 else
5373 second_bb = sched_split_block (first_bb, orig_insn);
5375 recovery_block = sched_create_recovery_block (&before_recovery);
5376 if (before_recovery)
5377 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR);
5379 gcc_assert (sel_bb_empty_p (recovery_block));
5380 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5381 if (current_loops != NULL)
5382 add_bb_to_loop (recovery_block, first_bb->loop_father);
5384 sel_add_bb (recovery_block);
5386 jump = BB_END (recovery_block);
5387 gcc_assert (sel_bb_head (recovery_block) == jump);
5388 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5390 return recovery_block;
5393 /* Merge basic block B into basic block A. */
5394 static void
5395 sel_merge_blocks (basic_block a, basic_block b)
5397 gcc_assert (sel_bb_empty_p (b)
5398 && EDGE_COUNT (b->preds) == 1
5399 && EDGE_PRED (b, 0)->src == b->prev_bb);
5401 move_bb_info (b->prev_bb, b);
5402 remove_empty_bb (b, false);
5403 merge_blocks (a, b);
5404 change_loops_latches (b, a);
5407 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5408 data structures for possibly created bb and insns. Returns the newly
5409 added bb or NULL, when a bb was not needed. */
5410 void
5411 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5413 basic_block jump_bb, src;
5414 int prev_max_uid;
5415 rtx jump;
5417 gcc_assert (!sel_bb_empty_p (e->src));
5419 src = e->src;
5420 prev_max_uid = get_max_uid ();
5421 jump_bb = redirect_edge_and_branch_force (e, to);
5423 if (jump_bb != NULL)
5424 sel_add_bb (jump_bb);
5426 /* This function could not be used to spoil the loop structure by now,
5427 thus we don't care to update anything. But check it to be sure. */
5428 if (current_loop_nest
5429 && pipelining_p)
5430 gcc_assert (loop_latch_edge (current_loop_nest));
5432 jump = find_new_jump (src, jump_bb, prev_max_uid);
5433 if (jump)
5434 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5437 /* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5438 redirected edge are in reverse topological order. */
5439 bool
5440 sel_redirect_edge_and_branch (edge e, basic_block to)
5442 bool latch_edge_p;
5443 basic_block src;
5444 int prev_max_uid;
5445 rtx jump;
5446 edge redirected;
5447 bool recompute_toporder_p = false;
5449 latch_edge_p = (pipelining_p
5450 && current_loop_nest
5451 && e == loop_latch_edge (current_loop_nest));
5453 src = e->src;
5454 prev_max_uid = get_max_uid ();
5456 redirected = redirect_edge_and_branch (e, to);
5458 gcc_assert (redirected && last_added_blocks == NULL);
5460 /* When we've redirected a latch edge, update the header. */
5461 if (latch_edge_p)
5463 current_loop_nest->header = to;
5464 gcc_assert (loop_latch_edge (current_loop_nest));
5467 /* In rare situations, the topological relation between the blocks connected
5468 by the redirected edge can change (see PR42245 for an example). Update
5469 block_to_bb/bb_to_block. */
5470 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5471 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5472 recompute_toporder_p = true;
5474 jump = find_new_jump (src, NULL, prev_max_uid);
5475 if (jump)
5476 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5478 return recompute_toporder_p;
5481 /* This variable holds the cfg hooks used by the selective scheduler. */
5482 static struct cfg_hooks sel_cfg_hooks;
5484 /* Register sel-sched cfg hooks. */
5485 void
5486 sel_register_cfg_hooks (void)
5488 sched_split_block = sel_split_block;
5490 orig_cfg_hooks = get_cfg_hooks ();
5491 sel_cfg_hooks = orig_cfg_hooks;
5493 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5495 set_cfg_hooks (sel_cfg_hooks);
5497 sched_init_only_bb = sel_init_only_bb;
5498 sched_split_block = sel_split_block;
5499 sched_create_empty_bb = sel_create_empty_bb;
5502 /* Unregister sel-sched cfg hooks. */
5503 void
5504 sel_unregister_cfg_hooks (void)
5506 sched_create_empty_bb = NULL;
5507 sched_split_block = NULL;
5508 sched_init_only_bb = NULL;
5510 set_cfg_hooks (orig_cfg_hooks);
5514 /* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5515 LABEL is where this jump should be directed. */
5517 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5519 rtx insn_rtx;
5521 gcc_assert (!INSN_P (pattern));
5523 start_sequence ();
5525 if (label == NULL_RTX)
5526 insn_rtx = emit_insn (pattern);
5527 else if (DEBUG_INSN_P (label))
5528 insn_rtx = emit_debug_insn (pattern);
5529 else
5531 insn_rtx = emit_jump_insn (pattern);
5532 JUMP_LABEL (insn_rtx) = label;
5533 ++LABEL_NUSES (label);
5536 end_sequence ();
5538 sched_init_luids (NULL, NULL, NULL, NULL);
5539 sched_extend_target ();
5540 sched_deps_init (false);
5542 /* Initialize INSN_CODE now. */
5543 recog_memoized (insn_rtx);
5544 return insn_rtx;
5547 /* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5548 must not be clonable. */
5549 vinsn_t
5550 create_vinsn_from_insn_rtx (rtx insn_rtx, bool force_unique_p)
5552 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5554 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5555 return vinsn_create (insn_rtx, force_unique_p);
5558 /* Create a copy of INSN_RTX. */
5560 create_copy_of_insn_rtx (rtx insn_rtx)
5562 rtx res;
5564 if (DEBUG_INSN_P (insn_rtx))
5565 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5566 insn_rtx);
5568 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5570 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5571 NULL_RTX);
5572 return res;
5575 /* Change vinsn field of EXPR to hold NEW_VINSN. */
5576 void
5577 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5579 vinsn_detach (EXPR_VINSN (expr));
5581 EXPR_VINSN (expr) = new_vinsn;
5582 vinsn_attach (new_vinsn);
5585 /* Helpers for global init. */
5586 /* This structure is used to be able to call existing bundling mechanism
5587 and calculate insn priorities. */
5588 static struct haifa_sched_info sched_sel_haifa_sched_info =
5590 NULL, /* init_ready_list */
5591 NULL, /* can_schedule_ready_p */
5592 NULL, /* schedule_more_p */
5593 NULL, /* new_ready */
5594 NULL, /* rgn_rank */
5595 sel_print_insn, /* rgn_print_insn */
5596 contributes_to_priority,
5597 NULL, /* insn_finishes_block_p */
5599 NULL, NULL,
5600 NULL, NULL,
5601 0, 0,
5603 NULL, /* add_remove_insn */
5604 NULL, /* begin_schedule_ready */
5605 NULL, /* advance_target_bb */
5606 SEL_SCHED | NEW_BBS
5609 /* Setup special insns used in the scheduler. */
5610 void
5611 setup_nop_and_exit_insns (void)
5613 gcc_assert (nop_pattern == NULL_RTX
5614 && exit_insn == NULL_RTX);
5616 nop_pattern = constm1_rtx;
5618 start_sequence ();
5619 emit_insn (nop_pattern);
5620 exit_insn = get_insns ();
5621 end_sequence ();
5622 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR);
5625 /* Free special insns used in the scheduler. */
5626 void
5627 free_nop_and_exit_insns (void)
5629 exit_insn = NULL_RTX;
5630 nop_pattern = NULL_RTX;
5633 /* Setup a special vinsn used in new insns initialization. */
5634 void
5635 setup_nop_vinsn (void)
5637 nop_vinsn = vinsn_create (exit_insn, false);
5638 vinsn_attach (nop_vinsn);
5641 /* Free a special vinsn used in new insns initialization. */
5642 void
5643 free_nop_vinsn (void)
5645 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5646 vinsn_detach (nop_vinsn);
5647 nop_vinsn = NULL;
5650 /* Call a set_sched_flags hook. */
5651 void
5652 sel_set_sched_flags (void)
5654 /* ??? This means that set_sched_flags were called, and we decided to
5655 support speculation. However, set_sched_flags also modifies flags
5656 on current_sched_info, doing this only at global init. And we
5657 sometimes change c_s_i later. So put the correct flags again. */
5658 if (spec_info && targetm.sched.set_sched_flags)
5659 targetm.sched.set_sched_flags (spec_info);
5662 /* Setup pointers to global sched info structures. */
5663 void
5664 sel_setup_sched_infos (void)
5666 rgn_setup_common_sched_info ();
5668 memcpy (&sel_common_sched_info, common_sched_info,
5669 sizeof (sel_common_sched_info));
5671 sel_common_sched_info.fix_recovery_cfg = NULL;
5672 sel_common_sched_info.add_block = NULL;
5673 sel_common_sched_info.estimate_number_of_insns
5674 = sel_estimate_number_of_insns;
5675 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5676 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5678 common_sched_info = &sel_common_sched_info;
5680 current_sched_info = &sched_sel_haifa_sched_info;
5681 current_sched_info->sched_max_insns_priority =
5682 get_rgn_sched_max_insns_priority ();
5684 sel_set_sched_flags ();
5688 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5689 *BB_ORD_INDEX after that is increased. */
5690 static void
5691 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5693 RGN_NR_BLOCKS (rgn) += 1;
5694 RGN_DONT_CALC_DEPS (rgn) = 0;
5695 RGN_HAS_REAL_EBB (rgn) = 0;
5696 CONTAINING_RGN (bb->index) = rgn;
5697 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5698 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5699 (*bb_ord_index)++;
5701 /* FIXME: it is true only when not scheduling ebbs. */
5702 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5705 /* Functions to support pipelining of outer loops. */
5707 /* Creates a new empty region and returns it's number. */
5708 static int
5709 sel_create_new_region (void)
5711 int new_rgn_number = nr_regions;
5713 RGN_NR_BLOCKS (new_rgn_number) = 0;
5715 /* FIXME: This will work only when EBBs are not created. */
5716 if (new_rgn_number != 0)
5717 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5718 RGN_NR_BLOCKS (new_rgn_number - 1);
5719 else
5720 RGN_BLOCKS (new_rgn_number) = 0;
5722 /* Set the blocks of the next region so the other functions may
5723 calculate the number of blocks in the region. */
5724 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5725 RGN_NR_BLOCKS (new_rgn_number);
5727 nr_regions++;
5729 return new_rgn_number;
5732 /* If X has a smaller topological sort number than Y, returns -1;
5733 if greater, returns 1. */
5734 static int
5735 bb_top_order_comparator (const void *x, const void *y)
5737 basic_block bb1 = *(const basic_block *) x;
5738 basic_block bb2 = *(const basic_block *) y;
5740 gcc_assert (bb1 == bb2
5741 || rev_top_order_index[bb1->index]
5742 != rev_top_order_index[bb2->index]);
5744 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5745 bbs with greater number should go earlier. */
5746 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5747 return -1;
5748 else
5749 return 1;
5752 /* Create a region for LOOP and return its number. If we don't want
5753 to pipeline LOOP, return -1. */
5754 static int
5755 make_region_from_loop (struct loop *loop)
5757 unsigned int i;
5758 int new_rgn_number = -1;
5759 struct loop *inner;
5761 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5762 int bb_ord_index = 0;
5763 basic_block *loop_blocks;
5764 basic_block preheader_block;
5766 if (loop->num_nodes
5767 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5768 return -1;
5770 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
5771 for (inner = loop->inner; inner; inner = inner->inner)
5772 if (flow_bb_inside_loop_p (inner, loop->latch))
5773 return -1;
5775 loop->ninsns = num_loop_insns (loop);
5776 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
5777 return -1;
5779 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
5781 for (i = 0; i < loop->num_nodes; i++)
5782 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
5784 free (loop_blocks);
5785 return -1;
5788 preheader_block = loop_preheader_edge (loop)->src;
5789 gcc_assert (preheader_block);
5790 gcc_assert (loop_blocks[0] == loop->header);
5792 new_rgn_number = sel_create_new_region ();
5794 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
5795 SET_BIT (bbs_in_loop_rgns, preheader_block->index);
5797 for (i = 0; i < loop->num_nodes; i++)
5799 /* Add only those blocks that haven't been scheduled in the inner loop.
5800 The exception is the basic blocks with bookkeeping code - they should
5801 be added to the region (and they actually don't belong to the loop
5802 body, but to the region containing that loop body). */
5804 gcc_assert (new_rgn_number >= 0);
5806 if (! TEST_BIT (bbs_in_loop_rgns, loop_blocks[i]->index))
5808 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
5809 new_rgn_number);
5810 SET_BIT (bbs_in_loop_rgns, loop_blocks[i]->index);
5814 free (loop_blocks);
5815 MARK_LOOP_FOR_PIPELINING (loop);
5817 return new_rgn_number;
5820 /* Create a new region from preheader blocks LOOP_BLOCKS. */
5821 void
5822 make_region_from_loop_preheader (VEC(basic_block, heap) **loop_blocks)
5824 unsigned int i;
5825 int new_rgn_number = -1;
5826 basic_block bb;
5828 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5829 int bb_ord_index = 0;
5831 new_rgn_number = sel_create_new_region ();
5833 FOR_EACH_VEC_ELT (basic_block, *loop_blocks, i, bb)
5835 gcc_assert (new_rgn_number >= 0);
5837 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
5840 VEC_free (basic_block, heap, *loop_blocks);
5841 gcc_assert (*loop_blocks == NULL);
5845 /* Create region(s) from loop nest LOOP, such that inner loops will be
5846 pipelined before outer loops. Returns true when a region for LOOP
5847 is created. */
5848 static bool
5849 make_regions_from_loop_nest (struct loop *loop)
5851 struct loop *cur_loop;
5852 int rgn_number;
5854 /* Traverse all inner nodes of the loop. */
5855 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
5856 if (! TEST_BIT (bbs_in_loop_rgns, cur_loop->header->index))
5857 return false;
5859 /* At this moment all regular inner loops should have been pipelined.
5860 Try to create a region from this loop. */
5861 rgn_number = make_region_from_loop (loop);
5863 if (rgn_number < 0)
5864 return false;
5866 VEC_safe_push (loop_p, heap, loop_nests, loop);
5867 return true;
5870 /* Initalize data structures needed. */
5871 void
5872 sel_init_pipelining (void)
5874 /* Collect loop information to be used in outer loops pipelining. */
5875 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
5876 | LOOPS_HAVE_FALLTHRU_PREHEADERS
5877 | LOOPS_HAVE_RECORDED_EXITS
5878 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
5879 current_loop_nest = NULL;
5881 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block);
5882 sbitmap_zero (bbs_in_loop_rgns);
5884 recompute_rev_top_order ();
5887 /* Returns a struct loop for region RGN. */
5888 loop_p
5889 get_loop_nest_for_rgn (unsigned int rgn)
5891 /* Regions created with extend_rgns don't have corresponding loop nests,
5892 because they don't represent loops. */
5893 if (rgn < VEC_length (loop_p, loop_nests))
5894 return VEC_index (loop_p, loop_nests, rgn);
5895 else
5896 return NULL;
5899 /* True when LOOP was included into pipelining regions. */
5900 bool
5901 considered_for_pipelining_p (struct loop *loop)
5903 if (loop_depth (loop) == 0)
5904 return false;
5906 /* Now, the loop could be too large or irreducible. Check whether its
5907 region is in LOOP_NESTS.
5908 We determine the region number of LOOP as the region number of its
5909 latch. We can't use header here, because this header could be
5910 just removed preheader and it will give us the wrong region number.
5911 Latch can't be used because it could be in the inner loop too. */
5912 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
5914 int rgn = CONTAINING_RGN (loop->latch->index);
5916 gcc_assert ((unsigned) rgn < VEC_length (loop_p, loop_nests));
5917 return true;
5920 return false;
5923 /* Makes regions from the rest of the blocks, after loops are chosen
5924 for pipelining. */
5925 static void
5926 make_regions_from_the_rest (void)
5928 int cur_rgn_blocks;
5929 int *loop_hdr;
5930 int i;
5932 basic_block bb;
5933 edge e;
5934 edge_iterator ei;
5935 int *degree;
5937 /* Index in rgn_bb_table where to start allocating new regions. */
5938 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
5940 /* Make regions from all the rest basic blocks - those that don't belong to
5941 any loop or belong to irreducible loops. Prepare the data structures
5942 for extend_rgns. */
5944 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
5945 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
5946 loop. */
5947 loop_hdr = XNEWVEC (int, last_basic_block);
5948 degree = XCNEWVEC (int, last_basic_block);
5951 /* For each basic block that belongs to some loop assign the number
5952 of innermost loop it belongs to. */
5953 for (i = 0; i < last_basic_block; i++)
5954 loop_hdr[i] = -1;
5956 FOR_EACH_BB (bb)
5958 if (bb->loop_father && !bb->loop_father->num == 0
5959 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
5960 loop_hdr[bb->index] = bb->loop_father->num;
5963 /* For each basic block degree is calculated as the number of incoming
5964 edges, that are going out of bbs that are not yet scheduled.
5965 The basic blocks that are scheduled have degree value of zero. */
5966 FOR_EACH_BB (bb)
5968 degree[bb->index] = 0;
5970 if (!TEST_BIT (bbs_in_loop_rgns, bb->index))
5972 FOR_EACH_EDGE (e, ei, bb->preds)
5973 if (!TEST_BIT (bbs_in_loop_rgns, e->src->index))
5974 degree[bb->index]++;
5976 else
5977 degree[bb->index] = -1;
5980 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
5982 /* Any block that did not end up in a region is placed into a region
5983 by itself. */
5984 FOR_EACH_BB (bb)
5985 if (degree[bb->index] >= 0)
5987 rgn_bb_table[cur_rgn_blocks] = bb->index;
5988 RGN_NR_BLOCKS (nr_regions) = 1;
5989 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
5990 RGN_DONT_CALC_DEPS (nr_regions) = 0;
5991 RGN_HAS_REAL_EBB (nr_regions) = 0;
5992 CONTAINING_RGN (bb->index) = nr_regions++;
5993 BLOCK_TO_BB (bb->index) = 0;
5996 free (degree);
5997 free (loop_hdr);
6000 /* Free data structures used in pipelining of loops. */
6001 void sel_finish_pipelining (void)
6003 loop_iterator li;
6004 struct loop *loop;
6006 /* Release aux fields so we don't free them later by mistake. */
6007 FOR_EACH_LOOP (li, loop, 0)
6008 loop->aux = NULL;
6010 loop_optimizer_finalize ();
6012 VEC_free (loop_p, heap, loop_nests);
6014 free (rev_top_order_index);
6015 rev_top_order_index = NULL;
6018 /* This function replaces the find_rgns when
6019 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
6020 void
6021 sel_find_rgns (void)
6023 sel_init_pipelining ();
6024 extend_regions ();
6026 if (current_loops)
6028 loop_p loop;
6029 loop_iterator li;
6031 FOR_EACH_LOOP (li, loop, (flag_sel_sched_pipelining_outer_loops
6032 ? LI_FROM_INNERMOST
6033 : LI_ONLY_INNERMOST))
6034 make_regions_from_loop_nest (loop);
6037 /* Make regions from all the rest basic blocks and schedule them.
6038 These blocks include blocks that don't belong to any loop or belong
6039 to irreducible loops. */
6040 make_regions_from_the_rest ();
6042 /* We don't need bbs_in_loop_rgns anymore. */
6043 sbitmap_free (bbs_in_loop_rgns);
6044 bbs_in_loop_rgns = NULL;
6047 /* Adds the preheader blocks from previous loop to current region taking
6048 it from LOOP_PREHEADER_BLOCKS (current_loop_nest).
6049 This function is only used with -fsel-sched-pipelining-outer-loops. */
6050 void
6051 sel_add_loop_preheaders (void)
6053 int i;
6054 basic_block bb;
6055 VEC(basic_block, heap) *preheader_blocks
6056 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6058 for (i = 0;
6059 VEC_iterate (basic_block, preheader_blocks, i, bb);
6060 i++)
6062 VEC_safe_push (basic_block, heap, last_added_blocks, bb);
6063 sel_add_bb (bb);
6066 VEC_free (basic_block, heap, preheader_blocks);
6069 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6070 Please note that the function should also work when pipelining_p is
6071 false, because it is used when deciding whether we should or should
6072 not reschedule pipelined code. */
6073 bool
6074 sel_is_loop_preheader_p (basic_block bb)
6076 if (current_loop_nest)
6078 struct loop *outer;
6080 if (preheader_removed)
6081 return false;
6083 /* Preheader is the first block in the region. */
6084 if (BLOCK_TO_BB (bb->index) == 0)
6085 return true;
6087 /* We used to find a preheader with the topological information.
6088 Check that the above code is equivalent to what we did before. */
6090 if (in_current_region_p (current_loop_nest->header))
6091 gcc_assert (!(BLOCK_TO_BB (bb->index)
6092 < BLOCK_TO_BB (current_loop_nest->header->index)));
6094 /* Support the situation when the latch block of outer loop
6095 could be from here. */
6096 for (outer = loop_outer (current_loop_nest);
6097 outer;
6098 outer = loop_outer (outer))
6099 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6100 gcc_unreachable ();
6103 return false;
6106 /* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6107 can be removed, making the corresponding edge fallthrough (assuming that
6108 all basic blocks between JUMP_BB and DEST_BB are empty). */
6109 static bool
6110 bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
6112 if (!onlyjump_p (BB_END (jump_bb)))
6113 return false;
6115 /* Several outgoing edges, abnormal edge or destination of jump is
6116 not DEST_BB. */
6117 if (EDGE_COUNT (jump_bb->succs) != 1
6118 || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
6119 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6120 return false;
6122 /* If not anything of the upper. */
6123 return true;
6126 /* Removes the loop preheader from the current region and saves it in
6127 PREHEADER_BLOCKS of the father loop, so they will be added later to
6128 region that represents an outer loop. */
6129 static void
6130 sel_remove_loop_preheader (void)
6132 int i, old_len;
6133 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6134 basic_block bb;
6135 bool all_empty_p = true;
6136 VEC(basic_block, heap) *preheader_blocks
6137 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6139 gcc_assert (current_loop_nest);
6140 old_len = VEC_length (basic_block, preheader_blocks);
6142 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6143 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6145 bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6147 /* If the basic block belongs to region, but doesn't belong to
6148 corresponding loop, then it should be a preheader. */
6149 if (sel_is_loop_preheader_p (bb))
6151 VEC_safe_push (basic_block, heap, preheader_blocks, bb);
6152 if (BB_END (bb) != bb_note (bb))
6153 all_empty_p = false;
6157 /* Remove these blocks only after iterating over the whole region. */
6158 for (i = VEC_length (basic_block, preheader_blocks) - 1;
6159 i >= old_len;
6160 i--)
6162 bb = VEC_index (basic_block, preheader_blocks, i);
6163 sel_remove_bb (bb, false);
6166 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6168 if (!all_empty_p)
6169 /* Immediately create new region from preheader. */
6170 make_region_from_loop_preheader (&preheader_blocks);
6171 else
6173 /* If all preheader blocks are empty - dont create new empty region.
6174 Instead, remove them completely. */
6175 FOR_EACH_VEC_ELT (basic_block, preheader_blocks, i, bb)
6177 edge e;
6178 edge_iterator ei;
6179 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6181 /* Redirect all incoming edges to next basic block. */
6182 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6184 if (! (e->flags & EDGE_FALLTHRU))
6185 redirect_edge_and_branch (e, bb->next_bb);
6186 else
6187 redirect_edge_succ (e, bb->next_bb);
6189 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6190 delete_and_free_basic_block (bb);
6192 /* Check if after deleting preheader there is a nonconditional
6193 jump in PREV_BB that leads to the next basic block NEXT_BB.
6194 If it is so - delete this jump and clear data sets of its
6195 basic block if it becomes empty. */
6196 if (next_bb->prev_bb == prev_bb
6197 && prev_bb != ENTRY_BLOCK_PTR
6198 && bb_has_removable_jump_to_p (prev_bb, next_bb))
6200 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6201 if (BB_END (prev_bb) == bb_note (prev_bb))
6202 free_data_sets (prev_bb);
6206 VEC_free (basic_block, heap, preheader_blocks);
6208 else
6209 /* Store preheader within the father's loop structure. */
6210 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6211 preheader_blocks);
6213 #endif