1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
49 #include "coretypes.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
59 #include "conditions.h"
61 #include "hard-reg-set.h"
65 #include "rtl-error.h"
66 #include "toplev.h" /* exact_log2, floor_log2 */
69 #include "basic-block.h"
71 #include "targhooks.h"
74 #include "cfglayout.h"
75 #include "tree-pass.h"
76 #include "tree-flow.h"
86 #ifdef XCOFF_DEBUGGING_INFO
87 #include "xcoffout.h" /* Needed for external data
88 declarations for e.g. AIX 4.x. */
91 #include "dwarf2out.h"
93 #ifdef DBX_DEBUGGING_INFO
97 #ifdef SDB_DEBUGGING_INFO
101 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
102 So define a null default for it to save conditionalization later. */
103 #ifndef CC_STATUS_INIT
104 #define CC_STATUS_INIT
107 /* How to start an assembler comment. */
108 #ifndef ASM_COMMENT_START
109 #define ASM_COMMENT_START ";#"
112 /* Is the given character a logical line separator for the assembler? */
113 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
114 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
117 #ifndef JUMP_TABLES_IN_TEXT_SECTION
118 #define JUMP_TABLES_IN_TEXT_SECTION 0
121 /* Bitflags used by final_scan_insn. */
124 #define SEEN_EMITTED 4
126 /* Last insn processed by final_scan_insn. */
127 static rtx debug_insn
;
128 rtx current_output_insn
;
130 /* Line number of last NOTE. */
131 static int last_linenum
;
133 /* Last discriminator written to assembly. */
134 static int last_discriminator
;
136 /* Discriminator of current block. */
137 static int discriminator
;
139 /* Highest line number in current block. */
140 static int high_block_linenum
;
142 /* Likewise for function. */
143 static int high_function_linenum
;
145 /* Filename of last NOTE. */
146 static const char *last_filename
;
148 /* Override filename and line number. */
149 static const char *override_filename
;
150 static int override_linenum
;
152 /* Whether to force emission of a line note before the next insn. */
153 static bool force_source_line
= false;
155 extern const int length_unit_log
; /* This is defined in insn-attrtab.c. */
157 /* Nonzero while outputting an `asm' with operands.
158 This means that inconsistencies are the user's fault, so don't die.
159 The precise value is the insn being output, to pass to error_for_asm. */
160 rtx this_is_asm_operands
;
162 /* Number of operands of this insn, for an `asm' with operands. */
163 static unsigned int insn_noperands
;
165 /* Compare optimization flag. */
167 static rtx last_ignored_compare
= 0;
169 /* Assign a unique number to each insn that is output.
170 This can be used to generate unique local labels. */
172 static int insn_counter
= 0;
175 /* This variable contains machine-dependent flags (defined in tm.h)
176 set and examined by output routines
177 that describe how to interpret the condition codes properly. */
181 /* During output of an insn, this contains a copy of cc_status
182 from before the insn. */
184 CC_STATUS cc_prev_status
;
187 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
189 static int block_depth
;
191 /* Nonzero if have enabled APP processing of our assembler output. */
195 /* If we are outputting an insn sequence, this contains the sequence rtx.
200 #ifdef ASSEMBLER_DIALECT
202 /* Number of the assembler dialect to use, starting at 0. */
203 static int dialect_number
;
206 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
207 rtx current_insn_predicate
;
209 /* True if printing into -fdump-final-insns= dump. */
210 bool final_insns_dump_p
;
212 #ifdef HAVE_ATTR_length
213 static int asm_insn_count (rtx
);
215 static void profile_function (FILE *);
216 static void profile_after_prologue (FILE *);
217 static bool notice_source_line (rtx
, bool *);
218 static rtx
walk_alter_subreg (rtx
*, bool *);
219 static void output_asm_name (void);
220 static void output_alternate_entry_point (FILE *, rtx
);
221 static tree
get_mem_expr_from_op (rtx
, int *);
222 static void output_asm_operand_names (rtx
*, int *, int);
223 #ifdef LEAF_REGISTERS
224 static void leaf_renumber_regs (rtx
);
227 static int alter_cond (rtx
);
229 #ifndef ADDR_VEC_ALIGN
230 static int final_addr_vec_align (rtx
);
232 #ifdef HAVE_ATTR_length
233 static int align_fuzz (rtx
, rtx
, int, unsigned);
236 /* Initialize data in final at the beginning of a compilation. */
239 init_final (const char *filename ATTRIBUTE_UNUSED
)
244 #ifdef ASSEMBLER_DIALECT
245 dialect_number
= ASSEMBLER_DIALECT
;
249 /* Default target function prologue and epilogue assembler output.
251 If not overridden for epilogue code, then the function body itself
252 contains return instructions wherever needed. */
254 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED
,
255 HOST_WIDE_INT size ATTRIBUTE_UNUSED
)
259 /* Default target hook that outputs nothing to a stream. */
261 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED
)
265 /* Enable APP processing of subsequent output.
266 Used before the output from an `asm' statement. */
273 fputs (ASM_APP_ON
, asm_out_file
);
278 /* Disable APP processing of subsequent output.
279 Called from varasm.c before most kinds of output. */
286 fputs (ASM_APP_OFF
, asm_out_file
);
291 /* Return the number of slots filled in the current
292 delayed branch sequence (we don't count the insn needing the
293 delay slot). Zero if not in a delayed branch sequence. */
297 dbr_sequence_length (void)
299 if (final_sequence
!= 0)
300 return XVECLEN (final_sequence
, 0) - 1;
306 /* The next two pages contain routines used to compute the length of an insn
307 and to shorten branches. */
309 /* Arrays for insn lengths, and addresses. The latter is referenced by
310 `insn_current_length'. */
312 static int *insn_lengths
;
314 VEC(int,heap
) *insn_addresses_
;
316 /* Max uid for which the above arrays are valid. */
317 static int insn_lengths_max_uid
;
319 /* Address of insn being processed. Used by `insn_current_length'. */
320 int insn_current_address
;
322 /* Address of insn being processed in previous iteration. */
323 int insn_last_address
;
325 /* known invariant alignment of insn being processed. */
326 int insn_current_align
;
328 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
329 gives the next following alignment insn that increases the known
330 alignment, or NULL_RTX if there is no such insn.
331 For any alignment obtained this way, we can again index uid_align with
332 its uid to obtain the next following align that in turn increases the
333 alignment, till we reach NULL_RTX; the sequence obtained this way
334 for each insn we'll call the alignment chain of this insn in the following
337 struct label_alignment
343 static rtx
*uid_align
;
344 static int *uid_shuid
;
345 static struct label_alignment
*label_align
;
347 /* Indicate that branch shortening hasn't yet been done. */
350 init_insn_lengths (void)
361 insn_lengths_max_uid
= 0;
363 #ifdef HAVE_ATTR_length
364 INSN_ADDRESSES_FREE ();
373 /* Obtain the current length of an insn. If branch shortening has been done,
374 get its actual length. Otherwise, use FALLBACK_FN to calculate the
377 get_attr_length_1 (rtx insn ATTRIBUTE_UNUSED
,
378 int (*fallback_fn
) (rtx
) ATTRIBUTE_UNUSED
)
380 #ifdef HAVE_ATTR_length
385 if (insn_lengths_max_uid
> INSN_UID (insn
))
386 return insn_lengths
[INSN_UID (insn
)];
388 switch (GET_CODE (insn
))
397 length
= fallback_fn (insn
);
401 body
= PATTERN (insn
);
402 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
404 /* Alignment is machine-dependent and should be handled by
408 length
= fallback_fn (insn
);
412 body
= PATTERN (insn
);
413 if (GET_CODE (body
) == USE
|| GET_CODE (body
) == CLOBBER
)
416 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
417 length
= asm_insn_count (body
) * fallback_fn (insn
);
418 else if (GET_CODE (body
) == SEQUENCE
)
419 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
420 length
+= get_attr_length_1 (XVECEXP (body
, 0, i
), fallback_fn
);
422 length
= fallback_fn (insn
);
429 #ifdef ADJUST_INSN_LENGTH
430 ADJUST_INSN_LENGTH (insn
, length
);
433 #else /* not HAVE_ATTR_length */
435 #define insn_default_length 0
436 #define insn_min_length 0
437 #endif /* not HAVE_ATTR_length */
440 /* Obtain the current length of an insn. If branch shortening has been done,
441 get its actual length. Otherwise, get its maximum length. */
443 get_attr_length (rtx insn
)
445 return get_attr_length_1 (insn
, insn_default_length
);
448 /* Obtain the current length of an insn. If branch shortening has been done,
449 get its actual length. Otherwise, get its minimum length. */
451 get_attr_min_length (rtx insn
)
453 return get_attr_length_1 (insn
, insn_min_length
);
456 /* Code to handle alignment inside shorten_branches. */
458 /* Here is an explanation how the algorithm in align_fuzz can give
461 Call a sequence of instructions beginning with alignment point X
462 and continuing until the next alignment point `block X'. When `X'
463 is used in an expression, it means the alignment value of the
466 Call the distance between the start of the first insn of block X, and
467 the end of the last insn of block X `IX', for the `inner size of X'.
468 This is clearly the sum of the instruction lengths.
470 Likewise with the next alignment-delimited block following X, which we
473 Call the distance between the start of the first insn of block X, and
474 the start of the first insn of block Y `OX', for the `outer size of X'.
476 The estimated padding is then OX - IX.
478 OX can be safely estimated as
483 OX = round_up(IX, X) + Y - X
485 Clearly est(IX) >= real(IX), because that only depends on the
486 instruction lengths, and those being overestimated is a given.
488 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
489 we needn't worry about that when thinking about OX.
491 When X >= Y, the alignment provided by Y adds no uncertainty factor
492 for branch ranges starting before X, so we can just round what we have.
493 But when X < Y, we don't know anything about the, so to speak,
494 `middle bits', so we have to assume the worst when aligning up from an
495 address mod X to one mod Y, which is Y - X. */
498 #define LABEL_ALIGN(LABEL) align_labels_log
502 #define LOOP_ALIGN(LABEL) align_loops_log
505 #ifndef LABEL_ALIGN_AFTER_BARRIER
506 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
510 #define JUMP_ALIGN(LABEL) align_jumps_log
514 default_label_align_after_barrier_max_skip (rtx insn ATTRIBUTE_UNUSED
)
520 default_loop_align_max_skip (rtx insn ATTRIBUTE_UNUSED
)
522 return align_loops_max_skip
;
526 default_label_align_max_skip (rtx insn ATTRIBUTE_UNUSED
)
528 return align_labels_max_skip
;
532 default_jump_align_max_skip (rtx insn ATTRIBUTE_UNUSED
)
534 return align_jumps_max_skip
;
537 #ifndef ADDR_VEC_ALIGN
539 final_addr_vec_align (rtx addr_vec
)
541 int align
= GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec
)));
543 if (align
> BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
)
544 align
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
545 return exact_log2 (align
);
549 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
552 #ifndef INSN_LENGTH_ALIGNMENT
553 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
556 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
558 static int min_labelno
, max_labelno
;
560 #define LABEL_TO_ALIGNMENT(LABEL) \
561 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
563 #define LABEL_TO_MAX_SKIP(LABEL) \
564 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
566 /* For the benefit of port specific code do this also as a function. */
569 label_to_alignment (rtx label
)
571 if (CODE_LABEL_NUMBER (label
) <= max_labelno
)
572 return LABEL_TO_ALIGNMENT (label
);
577 label_to_max_skip (rtx label
)
579 if (CODE_LABEL_NUMBER (label
) <= max_labelno
)
580 return LABEL_TO_MAX_SKIP (label
);
584 #ifdef HAVE_ATTR_length
585 /* The differences in addresses
586 between a branch and its target might grow or shrink depending on
587 the alignment the start insn of the range (the branch for a forward
588 branch or the label for a backward branch) starts out on; if these
589 differences are used naively, they can even oscillate infinitely.
590 We therefore want to compute a 'worst case' address difference that
591 is independent of the alignment the start insn of the range end
592 up on, and that is at least as large as the actual difference.
593 The function align_fuzz calculates the amount we have to add to the
594 naively computed difference, by traversing the part of the alignment
595 chain of the start insn of the range that is in front of the end insn
596 of the range, and considering for each alignment the maximum amount
597 that it might contribute to a size increase.
599 For casesi tables, we also want to know worst case minimum amounts of
600 address difference, in case a machine description wants to introduce
601 some common offset that is added to all offsets in a table.
602 For this purpose, align_fuzz with a growth argument of 0 computes the
603 appropriate adjustment. */
605 /* Compute the maximum delta by which the difference of the addresses of
606 START and END might grow / shrink due to a different address for start
607 which changes the size of alignment insns between START and END.
608 KNOWN_ALIGN_LOG is the alignment known for START.
609 GROWTH should be ~0 if the objective is to compute potential code size
610 increase, and 0 if the objective is to compute potential shrink.
611 The return value is undefined for any other value of GROWTH. */
614 align_fuzz (rtx start
, rtx end
, int known_align_log
, unsigned int growth
)
616 int uid
= INSN_UID (start
);
618 int known_align
= 1 << known_align_log
;
619 int end_shuid
= INSN_SHUID (end
);
622 for (align_label
= uid_align
[uid
]; align_label
; align_label
= uid_align
[uid
])
624 int align_addr
, new_align
;
626 uid
= INSN_UID (align_label
);
627 align_addr
= INSN_ADDRESSES (uid
) - insn_lengths
[uid
];
628 if (uid_shuid
[uid
] > end_shuid
)
630 known_align_log
= LABEL_TO_ALIGNMENT (align_label
);
631 new_align
= 1 << known_align_log
;
632 if (new_align
< known_align
)
634 fuzz
+= (-align_addr
^ growth
) & (new_align
- known_align
);
635 known_align
= new_align
;
640 /* Compute a worst-case reference address of a branch so that it
641 can be safely used in the presence of aligned labels. Since the
642 size of the branch itself is unknown, the size of the branch is
643 not included in the range. I.e. for a forward branch, the reference
644 address is the end address of the branch as known from the previous
645 branch shortening pass, minus a value to account for possible size
646 increase due to alignment. For a backward branch, it is the start
647 address of the branch as known from the current pass, plus a value
648 to account for possible size increase due to alignment.
649 NB.: Therefore, the maximum offset allowed for backward branches needs
650 to exclude the branch size. */
653 insn_current_reference_address (rtx branch
)
658 if (! INSN_ADDRESSES_SET_P ())
661 seq
= NEXT_INSN (PREV_INSN (branch
));
662 seq_uid
= INSN_UID (seq
);
663 if (!JUMP_P (branch
))
664 /* This can happen for example on the PA; the objective is to know the
665 offset to address something in front of the start of the function.
666 Thus, we can treat it like a backward branch.
667 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
668 any alignment we'd encounter, so we skip the call to align_fuzz. */
669 return insn_current_address
;
670 dest
= JUMP_LABEL (branch
);
672 /* BRANCH has no proper alignment chain set, so use SEQ.
673 BRANCH also has no INSN_SHUID. */
674 if (INSN_SHUID (seq
) < INSN_SHUID (dest
))
676 /* Forward branch. */
677 return (insn_last_address
+ insn_lengths
[seq_uid
]
678 - align_fuzz (seq
, dest
, length_unit_log
, ~0));
682 /* Backward branch. */
683 return (insn_current_address
684 + align_fuzz (dest
, seq
, length_unit_log
, ~0));
687 #endif /* HAVE_ATTR_length */
689 /* Compute branch alignments based on frequency information in the
693 compute_alignments (void)
695 int log
, max_skip
, max_log
;
698 int freq_threshold
= 0;
706 max_labelno
= max_label_num ();
707 min_labelno
= get_first_label_num ();
708 label_align
= XCNEWVEC (struct label_alignment
, max_labelno
- min_labelno
+ 1);
710 /* If not optimizing or optimizing for size, don't assign any alignments. */
711 if (! optimize
|| optimize_function_for_size_p (cfun
))
716 dump_flow_info (dump_file
, TDF_DETAILS
);
717 flow_loops_dump (dump_file
, NULL
, 1);
719 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
721 if (bb
->frequency
> freq_max
)
722 freq_max
= bb
->frequency
;
723 freq_threshold
= freq_max
/ PARAM_VALUE (PARAM_ALIGN_THRESHOLD
);
726 fprintf(dump_file
, "freq_max: %i\n",freq_max
);
729 rtx label
= BB_HEAD (bb
);
730 int fallthru_frequency
= 0, branch_frequency
= 0, has_fallthru
= 0;
735 || optimize_bb_for_size_p (bb
))
738 fprintf(dump_file
, "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
739 bb
->index
, bb
->frequency
, bb
->loop_father
->num
, bb
->loop_depth
);
742 max_log
= LABEL_ALIGN (label
);
743 max_skip
= targetm
.asm_out
.label_align_max_skip (label
);
745 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
747 if (e
->flags
& EDGE_FALLTHRU
)
748 has_fallthru
= 1, fallthru_frequency
+= EDGE_FREQUENCY (e
);
750 branch_frequency
+= EDGE_FREQUENCY (e
);
754 fprintf(dump_file
, "BB %4i freq %4i loop %2i loop_depth %2i fall %4i branch %4i",
755 bb
->index
, bb
->frequency
, bb
->loop_father
->num
,
757 fallthru_frequency
, branch_frequency
);
758 if (!bb
->loop_father
->inner
&& bb
->loop_father
->num
)
759 fprintf (dump_file
, " inner_loop");
760 if (bb
->loop_father
->header
== bb
)
761 fprintf (dump_file
, " loop_header");
762 fprintf (dump_file
, "\n");
765 /* There are two purposes to align block with no fallthru incoming edge:
766 1) to avoid fetch stalls when branch destination is near cache boundary
767 2) to improve cache efficiency in case the previous block is not executed
768 (so it does not need to be in the cache).
770 We to catch first case, we align frequently executed blocks.
771 To catch the second, we align blocks that are executed more frequently
772 than the predecessor and the predecessor is likely to not be executed
773 when function is called. */
776 && (branch_frequency
> freq_threshold
777 || (bb
->frequency
> bb
->prev_bb
->frequency
* 10
778 && (bb
->prev_bb
->frequency
779 <= ENTRY_BLOCK_PTR
->frequency
/ 2))))
781 log
= JUMP_ALIGN (label
);
783 fprintf(dump_file
, " jump alignment added.\n");
787 max_skip
= targetm
.asm_out
.jump_align_max_skip (label
);
790 /* In case block is frequent and reached mostly by non-fallthru edge,
791 align it. It is most likely a first block of loop. */
793 && optimize_bb_for_speed_p (bb
)
794 && branch_frequency
+ fallthru_frequency
> freq_threshold
796 > fallthru_frequency
* PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS
)))
798 log
= LOOP_ALIGN (label
);
800 fprintf(dump_file
, " internal loop alignment added.\n");
804 max_skip
= targetm
.asm_out
.loop_align_max_skip (label
);
807 LABEL_TO_ALIGNMENT (label
) = max_log
;
808 LABEL_TO_MAX_SKIP (label
) = max_skip
;
811 loop_optimizer_finalize ();
812 free_dominance_info (CDI_DOMINATORS
);
816 struct rtl_opt_pass pass_compute_alignments
=
820 "alignments", /* name */
822 compute_alignments
, /* execute */
825 0, /* static_pass_number */
827 0, /* properties_required */
828 0, /* properties_provided */
829 0, /* properties_destroyed */
830 0, /* todo_flags_start */
831 TODO_dump_func
| TODO_verify_rtl_sharing
832 | TODO_ggc_collect
/* todo_flags_finish */
837 /* Make a pass over all insns and compute their actual lengths by shortening
838 any branches of variable length if possible. */
840 /* shorten_branches might be called multiple times: for example, the SH
841 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
842 In order to do this, it needs proper length information, which it obtains
843 by calling shorten_branches. This cannot be collapsed with
844 shorten_branches itself into a single pass unless we also want to integrate
845 reorg.c, since the branch splitting exposes new instructions with delay
849 shorten_branches (rtx first ATTRIBUTE_UNUSED
)
856 #ifdef HAVE_ATTR_length
857 #define MAX_CODE_ALIGN 16
859 int something_changed
= 1;
860 char *varying_length
;
863 rtx align_tab
[MAX_CODE_ALIGN
];
867 /* Compute maximum UID and allocate label_align / uid_shuid. */
868 max_uid
= get_max_uid ();
870 /* Free uid_shuid before reallocating it. */
873 uid_shuid
= XNEWVEC (int, max_uid
);
875 if (max_labelno
!= max_label_num ())
877 int old
= max_labelno
;
881 max_labelno
= max_label_num ();
883 n_labels
= max_labelno
- min_labelno
+ 1;
884 n_old_labels
= old
- min_labelno
+ 1;
886 label_align
= XRESIZEVEC (struct label_alignment
, label_align
, n_labels
);
888 /* Range of labels grows monotonically in the function. Failing here
889 means that the initialization of array got lost. */
890 gcc_assert (n_old_labels
<= n_labels
);
892 memset (label_align
+ n_old_labels
, 0,
893 (n_labels
- n_old_labels
) * sizeof (struct label_alignment
));
896 /* Initialize label_align and set up uid_shuid to be strictly
897 monotonically rising with insn order. */
898 /* We use max_log here to keep track of the maximum alignment we want to
899 impose on the next CODE_LABEL (or the current one if we are processing
900 the CODE_LABEL itself). */
905 for (insn
= get_insns (), i
= 1; insn
; insn
= NEXT_INSN (insn
))
909 INSN_SHUID (insn
) = i
++;
916 bool next_is_jumptable
;
918 /* Merge in alignments computed by compute_alignments. */
919 log
= LABEL_TO_ALIGNMENT (insn
);
923 max_skip
= LABEL_TO_MAX_SKIP (insn
);
926 next
= next_nonnote_insn (insn
);
927 next_is_jumptable
= next
&& JUMP_TABLE_DATA_P (next
);
928 if (!next_is_jumptable
)
930 log
= LABEL_ALIGN (insn
);
934 max_skip
= targetm
.asm_out
.label_align_max_skip (insn
);
937 /* ADDR_VECs only take room if read-only data goes into the text
939 if ((JUMP_TABLES_IN_TEXT_SECTION
940 || readonly_data_section
== text_section
)
941 && next_is_jumptable
)
943 log
= ADDR_VEC_ALIGN (next
);
947 max_skip
= targetm
.asm_out
.label_align_max_skip (insn
);
950 LABEL_TO_ALIGNMENT (insn
) = max_log
;
951 LABEL_TO_MAX_SKIP (insn
) = max_skip
;
955 else if (BARRIER_P (insn
))
959 for (label
= insn
; label
&& ! INSN_P (label
);
960 label
= NEXT_INSN (label
))
963 log
= LABEL_ALIGN_AFTER_BARRIER (insn
);
967 max_skip
= targetm
.asm_out
.label_align_after_barrier_max_skip (label
);
973 #ifdef HAVE_ATTR_length
975 /* Allocate the rest of the arrays. */
976 insn_lengths
= XNEWVEC (int, max_uid
);
977 insn_lengths_max_uid
= max_uid
;
978 /* Syntax errors can lead to labels being outside of the main insn stream.
979 Initialize insn_addresses, so that we get reproducible results. */
980 INSN_ADDRESSES_ALLOC (max_uid
);
982 varying_length
= XCNEWVEC (char, max_uid
);
984 /* Initialize uid_align. We scan instructions
985 from end to start, and keep in align_tab[n] the last seen insn
986 that does an alignment of at least n+1, i.e. the successor
987 in the alignment chain for an insn that does / has a known
989 uid_align
= XCNEWVEC (rtx
, max_uid
);
991 for (i
= MAX_CODE_ALIGN
; --i
>= 0;)
992 align_tab
[i
] = NULL_RTX
;
993 seq
= get_last_insn ();
994 for (; seq
; seq
= PREV_INSN (seq
))
996 int uid
= INSN_UID (seq
);
998 log
= (LABEL_P (seq
) ? LABEL_TO_ALIGNMENT (seq
) : 0);
999 uid_align
[uid
] = align_tab
[0];
1002 /* Found an alignment label. */
1003 uid_align
[uid
] = align_tab
[log
];
1004 for (i
= log
- 1; i
>= 0; i
--)
1008 #ifdef CASE_VECTOR_SHORTEN_MODE
1011 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1014 int min_shuid
= INSN_SHUID (get_insns ()) - 1;
1015 int max_shuid
= INSN_SHUID (get_last_insn ()) + 1;
1018 for (insn
= first
; insn
!= 0; insn
= NEXT_INSN (insn
))
1020 rtx min_lab
= NULL_RTX
, max_lab
= NULL_RTX
, pat
;
1021 int len
, i
, min
, max
, insn_shuid
;
1023 addr_diff_vec_flags flags
;
1026 || GET_CODE (PATTERN (insn
)) != ADDR_DIFF_VEC
)
1028 pat
= PATTERN (insn
);
1029 len
= XVECLEN (pat
, 1);
1030 gcc_assert (len
> 0);
1031 min_align
= MAX_CODE_ALIGN
;
1032 for (min
= max_shuid
, max
= min_shuid
, i
= len
- 1; i
>= 0; i
--)
1034 rtx lab
= XEXP (XVECEXP (pat
, 1, i
), 0);
1035 int shuid
= INSN_SHUID (lab
);
1046 if (min_align
> LABEL_TO_ALIGNMENT (lab
))
1047 min_align
= LABEL_TO_ALIGNMENT (lab
);
1049 XEXP (pat
, 2) = gen_rtx_LABEL_REF (Pmode
, min_lab
);
1050 XEXP (pat
, 3) = gen_rtx_LABEL_REF (Pmode
, max_lab
);
1051 insn_shuid
= INSN_SHUID (insn
);
1052 rel
= INSN_SHUID (XEXP (XEXP (pat
, 0), 0));
1053 memset (&flags
, 0, sizeof (flags
));
1054 flags
.min_align
= min_align
;
1055 flags
.base_after_vec
= rel
> insn_shuid
;
1056 flags
.min_after_vec
= min
> insn_shuid
;
1057 flags
.max_after_vec
= max
> insn_shuid
;
1058 flags
.min_after_base
= min
> rel
;
1059 flags
.max_after_base
= max
> rel
;
1060 ADDR_DIFF_VEC_FLAGS (pat
) = flags
;
1063 #endif /* CASE_VECTOR_SHORTEN_MODE */
1065 /* Compute initial lengths, addresses, and varying flags for each insn. */
1066 for (insn_current_address
= 0, insn
= first
;
1068 insn_current_address
+= insn_lengths
[uid
], insn
= NEXT_INSN (insn
))
1070 uid
= INSN_UID (insn
);
1072 insn_lengths
[uid
] = 0;
1076 int log
= LABEL_TO_ALIGNMENT (insn
);
1079 int align
= 1 << log
;
1080 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1081 insn_lengths
[uid
] = new_address
- insn_current_address
;
1085 INSN_ADDRESSES (uid
) = insn_current_address
+ insn_lengths
[uid
];
1087 if (NOTE_P (insn
) || BARRIER_P (insn
)
1088 || LABEL_P (insn
) || DEBUG_INSN_P(insn
))
1090 if (INSN_DELETED_P (insn
))
1093 body
= PATTERN (insn
);
1094 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
1096 /* This only takes room if read-only data goes into the text
1098 if (JUMP_TABLES_IN_TEXT_SECTION
1099 || readonly_data_section
== text_section
)
1100 insn_lengths
[uid
] = (XVECLEN (body
,
1101 GET_CODE (body
) == ADDR_DIFF_VEC
)
1102 * GET_MODE_SIZE (GET_MODE (body
)));
1103 /* Alignment is handled by ADDR_VEC_ALIGN. */
1105 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
1106 insn_lengths
[uid
] = asm_insn_count (body
) * insn_default_length (insn
);
1107 else if (GET_CODE (body
) == SEQUENCE
)
1110 int const_delay_slots
;
1112 const_delay_slots
= const_num_delay_slots (XVECEXP (body
, 0, 0));
1114 const_delay_slots
= 0;
1116 /* Inside a delay slot sequence, we do not do any branch shortening
1117 if the shortening could change the number of delay slots
1119 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1121 rtx inner_insn
= XVECEXP (body
, 0, i
);
1122 int inner_uid
= INSN_UID (inner_insn
);
1125 if (GET_CODE (body
) == ASM_INPUT
1126 || asm_noperands (PATTERN (XVECEXP (body
, 0, i
))) >= 0)
1127 inner_length
= (asm_insn_count (PATTERN (inner_insn
))
1128 * insn_default_length (inner_insn
));
1130 inner_length
= insn_default_length (inner_insn
);
1132 insn_lengths
[inner_uid
] = inner_length
;
1133 if (const_delay_slots
)
1135 if ((varying_length
[inner_uid
]
1136 = insn_variable_length_p (inner_insn
)) != 0)
1137 varying_length
[uid
] = 1;
1138 INSN_ADDRESSES (inner_uid
) = (insn_current_address
1139 + insn_lengths
[uid
]);
1142 varying_length
[inner_uid
] = 0;
1143 insn_lengths
[uid
] += inner_length
;
1146 else if (GET_CODE (body
) != USE
&& GET_CODE (body
) != CLOBBER
)
1148 insn_lengths
[uid
] = insn_default_length (insn
);
1149 varying_length
[uid
] = insn_variable_length_p (insn
);
1152 /* If needed, do any adjustment. */
1153 #ifdef ADJUST_INSN_LENGTH
1154 ADJUST_INSN_LENGTH (insn
, insn_lengths
[uid
]);
1155 if (insn_lengths
[uid
] < 0)
1156 fatal_insn ("negative insn length", insn
);
1160 /* Now loop over all the insns finding varying length insns. For each,
1161 get the current insn length. If it has changed, reflect the change.
1162 When nothing changes for a full pass, we are done. */
1164 while (something_changed
)
1166 something_changed
= 0;
1167 insn_current_align
= MAX_CODE_ALIGN
- 1;
1168 for (insn_current_address
= 0, insn
= first
;
1170 insn
= NEXT_INSN (insn
))
1173 #ifdef ADJUST_INSN_LENGTH
1178 uid
= INSN_UID (insn
);
1182 int log
= LABEL_TO_ALIGNMENT (insn
);
1183 if (log
> insn_current_align
)
1185 int align
= 1 << log
;
1186 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1187 insn_lengths
[uid
] = new_address
- insn_current_address
;
1188 insn_current_align
= log
;
1189 insn_current_address
= new_address
;
1192 insn_lengths
[uid
] = 0;
1193 INSN_ADDRESSES (uid
) = insn_current_address
;
1197 length_align
= INSN_LENGTH_ALIGNMENT (insn
);
1198 if (length_align
< insn_current_align
)
1199 insn_current_align
= length_align
;
1201 insn_last_address
= INSN_ADDRESSES (uid
);
1202 INSN_ADDRESSES (uid
) = insn_current_address
;
1204 #ifdef CASE_VECTOR_SHORTEN_MODE
1205 if (optimize
&& JUMP_P (insn
)
1206 && GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
1208 rtx body
= PATTERN (insn
);
1209 int old_length
= insn_lengths
[uid
];
1210 rtx rel_lab
= XEXP (XEXP (body
, 0), 0);
1211 rtx min_lab
= XEXP (XEXP (body
, 2), 0);
1212 rtx max_lab
= XEXP (XEXP (body
, 3), 0);
1213 int rel_addr
= INSN_ADDRESSES (INSN_UID (rel_lab
));
1214 int min_addr
= INSN_ADDRESSES (INSN_UID (min_lab
));
1215 int max_addr
= INSN_ADDRESSES (INSN_UID (max_lab
));
1218 addr_diff_vec_flags flags
;
1220 /* Avoid automatic aggregate initialization. */
1221 flags
= ADDR_DIFF_VEC_FLAGS (body
);
1223 /* Try to find a known alignment for rel_lab. */
1224 for (prev
= rel_lab
;
1226 && ! insn_lengths
[INSN_UID (prev
)]
1227 && ! (varying_length
[INSN_UID (prev
)] & 1);
1228 prev
= PREV_INSN (prev
))
1229 if (varying_length
[INSN_UID (prev
)] & 2)
1231 rel_align
= LABEL_TO_ALIGNMENT (prev
);
1235 /* See the comment on addr_diff_vec_flags in rtl.h for the
1236 meaning of the flags values. base: REL_LAB vec: INSN */
1237 /* Anything after INSN has still addresses from the last
1238 pass; adjust these so that they reflect our current
1239 estimate for this pass. */
1240 if (flags
.base_after_vec
)
1241 rel_addr
+= insn_current_address
- insn_last_address
;
1242 if (flags
.min_after_vec
)
1243 min_addr
+= insn_current_address
- insn_last_address
;
1244 if (flags
.max_after_vec
)
1245 max_addr
+= insn_current_address
- insn_last_address
;
1246 /* We want to know the worst case, i.e. lowest possible value
1247 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1248 its offset is positive, and we have to be wary of code shrink;
1249 otherwise, it is negative, and we have to be vary of code
1251 if (flags
.min_after_base
)
1253 /* If INSN is between REL_LAB and MIN_LAB, the size
1254 changes we are about to make can change the alignment
1255 within the observed offset, therefore we have to break
1256 it up into two parts that are independent. */
1257 if (! flags
.base_after_vec
&& flags
.min_after_vec
)
1259 min_addr
-= align_fuzz (rel_lab
, insn
, rel_align
, 0);
1260 min_addr
-= align_fuzz (insn
, min_lab
, 0, 0);
1263 min_addr
-= align_fuzz (rel_lab
, min_lab
, rel_align
, 0);
1267 if (flags
.base_after_vec
&& ! flags
.min_after_vec
)
1269 min_addr
-= align_fuzz (min_lab
, insn
, 0, ~0);
1270 min_addr
-= align_fuzz (insn
, rel_lab
, 0, ~0);
1273 min_addr
-= align_fuzz (min_lab
, rel_lab
, 0, ~0);
1275 /* Likewise, determine the highest lowest possible value
1276 for the offset of MAX_LAB. */
1277 if (flags
.max_after_base
)
1279 if (! flags
.base_after_vec
&& flags
.max_after_vec
)
1281 max_addr
+= align_fuzz (rel_lab
, insn
, rel_align
, ~0);
1282 max_addr
+= align_fuzz (insn
, max_lab
, 0, ~0);
1285 max_addr
+= align_fuzz (rel_lab
, max_lab
, rel_align
, ~0);
1289 if (flags
.base_after_vec
&& ! flags
.max_after_vec
)
1291 max_addr
+= align_fuzz (max_lab
, insn
, 0, 0);
1292 max_addr
+= align_fuzz (insn
, rel_lab
, 0, 0);
1295 max_addr
+= align_fuzz (max_lab
, rel_lab
, 0, 0);
1297 PUT_MODE (body
, CASE_VECTOR_SHORTEN_MODE (min_addr
- rel_addr
,
1298 max_addr
- rel_addr
,
1300 if (JUMP_TABLES_IN_TEXT_SECTION
1301 || readonly_data_section
== text_section
)
1304 = (XVECLEN (body
, 1) * GET_MODE_SIZE (GET_MODE (body
)));
1305 insn_current_address
+= insn_lengths
[uid
];
1306 if (insn_lengths
[uid
] != old_length
)
1307 something_changed
= 1;
1312 #endif /* CASE_VECTOR_SHORTEN_MODE */
1314 if (! (varying_length
[uid
]))
1316 if (NONJUMP_INSN_P (insn
)
1317 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1321 body
= PATTERN (insn
);
1322 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1324 rtx inner_insn
= XVECEXP (body
, 0, i
);
1325 int inner_uid
= INSN_UID (inner_insn
);
1327 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1329 insn_current_address
+= insn_lengths
[inner_uid
];
1333 insn_current_address
+= insn_lengths
[uid
];
1338 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1342 body
= PATTERN (insn
);
1344 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1346 rtx inner_insn
= XVECEXP (body
, 0, i
);
1347 int inner_uid
= INSN_UID (inner_insn
);
1350 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1352 /* insn_current_length returns 0 for insns with a
1353 non-varying length. */
1354 if (! varying_length
[inner_uid
])
1355 inner_length
= insn_lengths
[inner_uid
];
1357 inner_length
= insn_current_length (inner_insn
);
1359 if (inner_length
!= insn_lengths
[inner_uid
])
1361 insn_lengths
[inner_uid
] = inner_length
;
1362 something_changed
= 1;
1364 insn_current_address
+= insn_lengths
[inner_uid
];
1365 new_length
+= inner_length
;
1370 new_length
= insn_current_length (insn
);
1371 insn_current_address
+= new_length
;
1374 #ifdef ADJUST_INSN_LENGTH
1375 /* If needed, do any adjustment. */
1376 tmp_length
= new_length
;
1377 ADJUST_INSN_LENGTH (insn
, new_length
);
1378 insn_current_address
+= (new_length
- tmp_length
);
1381 if (new_length
!= insn_lengths
[uid
])
1383 insn_lengths
[uid
] = new_length
;
1384 something_changed
= 1;
1387 /* For a non-optimizing compile, do only a single pass. */
1392 free (varying_length
);
1394 #endif /* HAVE_ATTR_length */
1397 #ifdef HAVE_ATTR_length
1398 /* Given the body of an INSN known to be generated by an ASM statement, return
1399 the number of machine instructions likely to be generated for this insn.
1400 This is used to compute its length. */
1403 asm_insn_count (rtx body
)
1407 if (GET_CODE (body
) == ASM_INPUT
)
1408 templ
= XSTR (body
, 0);
1410 templ
= decode_asm_operands (body
, NULL
, NULL
, NULL
, NULL
, NULL
);
1412 return asm_str_count (templ
);
1416 /* Return the number of machine instructions likely to be generated for the
1417 inline-asm template. */
1419 asm_str_count (const char *templ
)
1426 for (; *templ
; templ
++)
1427 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ
, templ
)
1434 /* ??? This is probably the wrong place for these. */
1435 /* Structure recording the mapping from source file and directory
1436 names at compile time to those to be embedded in debug
1438 typedef struct debug_prefix_map
1440 const char *old_prefix
;
1441 const char *new_prefix
;
1444 struct debug_prefix_map
*next
;
1447 /* Linked list of such structures. */
1448 debug_prefix_map
*debug_prefix_maps
;
1451 /* Record a debug file prefix mapping. ARG is the argument to
1452 -fdebug-prefix-map and must be of the form OLD=NEW. */
1455 add_debug_prefix_map (const char *arg
)
1457 debug_prefix_map
*map
;
1460 p
= strchr (arg
, '=');
1463 error ("invalid argument %qs to -fdebug-prefix-map", arg
);
1466 map
= XNEW (debug_prefix_map
);
1467 map
->old_prefix
= xstrndup (arg
, p
- arg
);
1468 map
->old_len
= p
- arg
;
1470 map
->new_prefix
= xstrdup (p
);
1471 map
->new_len
= strlen (p
);
1472 map
->next
= debug_prefix_maps
;
1473 debug_prefix_maps
= map
;
1476 /* Perform user-specified mapping of debug filename prefixes. Return
1477 the new name corresponding to FILENAME. */
1480 remap_debug_filename (const char *filename
)
1482 debug_prefix_map
*map
;
1487 for (map
= debug_prefix_maps
; map
; map
= map
->next
)
1488 if (strncmp (filename
, map
->old_prefix
, map
->old_len
) == 0)
1492 name
= filename
+ map
->old_len
;
1493 name_len
= strlen (name
) + 1;
1494 s
= (char *) alloca (name_len
+ map
->new_len
);
1495 memcpy (s
, map
->new_prefix
, map
->new_len
);
1496 memcpy (s
+ map
->new_len
, name
, name_len
);
1497 return ggc_strdup (s
);
1500 /* Return true if DWARF2 debug info can be emitted for DECL. */
1503 dwarf2_debug_info_emitted_p (tree decl
)
1505 if (write_symbols
!= DWARF2_DEBUG
&& write_symbols
!= VMS_AND_DWARF2_DEBUG
)
1508 if (DECL_IGNORED_P (decl
))
1514 /* Output assembler code for the start of a function,
1515 and initialize some of the variables in this file
1516 for the new function. The label for the function and associated
1517 assembler pseudo-ops have already been output in `assemble_start_function'.
1519 FIRST is the first insn of the rtl for the function being compiled.
1520 FILE is the file to write assembler code to.
1521 OPTIMIZE_P is nonzero if we should eliminate redundant
1522 test and compare insns. */
1525 final_start_function (rtx first ATTRIBUTE_UNUSED
, FILE *file
,
1526 int optimize_p ATTRIBUTE_UNUSED
)
1530 this_is_asm_operands
= 0;
1532 last_filename
= locator_file (prologue_locator
);
1533 last_linenum
= locator_line (prologue_locator
);
1534 last_discriminator
= discriminator
= 0;
1536 high_block_linenum
= high_function_linenum
= last_linenum
;
1538 if (!DECL_IGNORED_P (current_function_decl
))
1539 debug_hooks
->begin_prologue (last_linenum
, last_filename
);
1541 if (!dwarf2_debug_info_emitted_p (current_function_decl
))
1542 dwarf2out_begin_prologue (0, NULL
);
1544 #ifdef LEAF_REG_REMAP
1545 if (current_function_uses_only_leaf_regs
)
1546 leaf_renumber_regs (first
);
1549 /* The Sun386i and perhaps other machines don't work right
1550 if the profiling code comes after the prologue. */
1551 if (targetm
.profile_before_prologue () && crtl
->profile
)
1552 profile_function (file
);
1554 #if defined (HAVE_prologue)
1555 if (dwarf2out_do_frame ())
1556 dwarf2out_frame_debug (NULL_RTX
, false);
1559 /* If debugging, assign block numbers to all of the blocks in this
1563 reemit_insn_block_notes ();
1564 number_blocks (current_function_decl
);
1565 /* We never actually put out begin/end notes for the top-level
1566 block in the function. But, conceptually, that block is
1568 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl
)) = 1;
1571 if (warn_frame_larger_than
1572 && get_frame_size () > frame_larger_than_size
)
1574 /* Issue a warning */
1575 warning (OPT_Wframe_larger_than_
,
1576 "the frame size of %wd bytes is larger than %wd bytes",
1577 get_frame_size (), frame_larger_than_size
);
1580 /* First output the function prologue: code to set up the stack frame. */
1581 targetm
.asm_out
.function_prologue (file
, get_frame_size ());
1583 /* If the machine represents the prologue as RTL, the profiling code must
1584 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1585 #ifdef HAVE_prologue
1586 if (! HAVE_prologue
)
1588 profile_after_prologue (file
);
1592 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED
)
1594 if (!targetm
.profile_before_prologue () && crtl
->profile
)
1595 profile_function (file
);
1599 profile_function (FILE *file ATTRIBUTE_UNUSED
)
1601 #ifndef NO_PROFILE_COUNTERS
1602 # define NO_PROFILE_COUNTERS 0
1604 #ifdef ASM_OUTPUT_REG_PUSH
1605 rtx sval
= NULL
, chain
= NULL
;
1607 if (cfun
->returns_struct
)
1608 sval
= targetm
.calls
.struct_value_rtx (TREE_TYPE (current_function_decl
),
1610 if (cfun
->static_chain_decl
)
1611 chain
= targetm
.calls
.static_chain (current_function_decl
, true);
1612 #endif /* ASM_OUTPUT_REG_PUSH */
1614 if (! NO_PROFILE_COUNTERS
)
1616 int align
= MIN (BIGGEST_ALIGNMENT
, LONG_TYPE_SIZE
);
1617 switch_to_section (data_section
);
1618 ASM_OUTPUT_ALIGN (file
, floor_log2 (align
/ BITS_PER_UNIT
));
1619 targetm
.asm_out
.internal_label (file
, "LP", current_function_funcdef_no
);
1620 assemble_integer (const0_rtx
, LONG_TYPE_SIZE
/ BITS_PER_UNIT
, align
, 1);
1623 switch_to_section (current_function_section ());
1625 #ifdef ASM_OUTPUT_REG_PUSH
1626 if (sval
&& REG_P (sval
))
1627 ASM_OUTPUT_REG_PUSH (file
, REGNO (sval
));
1628 if (chain
&& REG_P (chain
))
1629 ASM_OUTPUT_REG_PUSH (file
, REGNO (chain
));
1632 FUNCTION_PROFILER (file
, current_function_funcdef_no
);
1634 #ifdef ASM_OUTPUT_REG_PUSH
1635 if (chain
&& REG_P (chain
))
1636 ASM_OUTPUT_REG_POP (file
, REGNO (chain
));
1637 if (sval
&& REG_P (sval
))
1638 ASM_OUTPUT_REG_POP (file
, REGNO (sval
));
1642 /* Output assembler code for the end of a function.
1643 For clarity, args are same as those of `final_start_function'
1644 even though not all of them are needed. */
1647 final_end_function (void)
1651 if (!DECL_IGNORED_P (current_function_decl
))
1652 debug_hooks
->end_function (high_function_linenum
);
1654 /* Finally, output the function epilogue:
1655 code to restore the stack frame and return to the caller. */
1656 targetm
.asm_out
.function_epilogue (asm_out_file
, get_frame_size ());
1658 /* And debug output. */
1659 if (!DECL_IGNORED_P (current_function_decl
))
1660 debug_hooks
->end_epilogue (last_linenum
, last_filename
);
1662 if (!dwarf2_debug_info_emitted_p (current_function_decl
)
1663 && dwarf2out_do_frame ())
1664 dwarf2out_end_epilogue (last_linenum
, last_filename
);
1667 /* Output assembler code for some insns: all or part of a function.
1668 For description of args, see `final_start_function', above. */
1671 final (rtx first
, FILE *file
, int optimize_p
)
1677 last_ignored_compare
= 0;
1679 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1681 if (INSN_UID (insn
) > max_uid
) /* Find largest UID. */
1682 max_uid
= INSN_UID (insn
);
1684 /* If CC tracking across branches is enabled, record the insn which
1685 jumps to each branch only reached from one place. */
1686 if (optimize_p
&& JUMP_P (insn
))
1688 rtx lab
= JUMP_LABEL (insn
);
1689 if (lab
&& LABEL_NUSES (lab
) == 1)
1691 LABEL_REFS (lab
) = insn
;
1701 /* Output the insns. */
1702 for (insn
= first
; insn
;)
1704 #ifdef HAVE_ATTR_length
1705 if ((unsigned) INSN_UID (insn
) >= INSN_ADDRESSES_SIZE ())
1707 /* This can be triggered by bugs elsewhere in the compiler if
1708 new insns are created after init_insn_lengths is called. */
1709 gcc_assert (NOTE_P (insn
));
1710 insn_current_address
= -1;
1713 insn_current_address
= INSN_ADDRESSES (INSN_UID (insn
));
1714 #endif /* HAVE_ATTR_length */
1716 insn
= final_scan_insn (insn
, file
, optimize_p
, 0, &seen
);
1721 get_insn_template (int code
, rtx insn
)
1723 switch (insn_data
[code
].output_format
)
1725 case INSN_OUTPUT_FORMAT_SINGLE
:
1726 return insn_data
[code
].output
.single
;
1727 case INSN_OUTPUT_FORMAT_MULTI
:
1728 return insn_data
[code
].output
.multi
[which_alternative
];
1729 case INSN_OUTPUT_FORMAT_FUNCTION
:
1731 return (*insn_data
[code
].output
.function
) (recog_data
.operand
, insn
);
1738 /* Emit the appropriate declaration for an alternate-entry-point
1739 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1740 LABEL_KIND != LABEL_NORMAL.
1742 The case fall-through in this function is intentional. */
1744 output_alternate_entry_point (FILE *file
, rtx insn
)
1746 const char *name
= LABEL_NAME (insn
);
1748 switch (LABEL_KIND (insn
))
1750 case LABEL_WEAK_ENTRY
:
1751 #ifdef ASM_WEAKEN_LABEL
1752 ASM_WEAKEN_LABEL (file
, name
);
1754 case LABEL_GLOBAL_ENTRY
:
1755 targetm
.asm_out
.globalize_label (file
, name
);
1756 case LABEL_STATIC_ENTRY
:
1757 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1758 ASM_OUTPUT_TYPE_DIRECTIVE (file
, name
, "function");
1760 ASM_OUTPUT_LABEL (file
, name
);
1769 /* Given a CALL_INSN, find and return the nested CALL. */
1771 call_from_call_insn (rtx insn
)
1774 gcc_assert (CALL_P (insn
));
1777 while (GET_CODE (x
) != CALL
)
1779 switch (GET_CODE (x
))
1784 x
= COND_EXEC_CODE (x
);
1787 x
= XVECEXP (x
, 0, 0);
1797 /* The final scan for one insn, INSN.
1798 Args are same as in `final', except that INSN
1799 is the insn being scanned.
1800 Value returned is the next insn to be scanned.
1802 NOPEEPHOLES is the flag to disallow peephole processing (currently
1803 used for within delayed branch sequence output).
1805 SEEN is used to track the end of the prologue, for emitting
1806 debug information. We force the emission of a line note after
1807 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1808 at the beginning of the second basic block, whichever comes
1812 final_scan_insn (rtx insn
, FILE *file
, int optimize_p ATTRIBUTE_UNUSED
,
1813 int nopeepholes ATTRIBUTE_UNUSED
, int *seen
)
1822 /* Ignore deleted insns. These can occur when we split insns (due to a
1823 template of "#") while not optimizing. */
1824 if (INSN_DELETED_P (insn
))
1825 return NEXT_INSN (insn
);
1827 switch (GET_CODE (insn
))
1830 switch (NOTE_KIND (insn
))
1832 case NOTE_INSN_DELETED
:
1835 case NOTE_INSN_SWITCH_TEXT_SECTIONS
:
1836 in_cold_section_p
= !in_cold_section_p
;
1838 if (dwarf2out_do_frame ())
1839 dwarf2out_switch_text_section ();
1840 else if (!DECL_IGNORED_P (current_function_decl
))
1841 debug_hooks
->switch_text_section ();
1843 switch_to_section (current_function_section ());
1846 case NOTE_INSN_BASIC_BLOCK
:
1847 if (targetm
.asm_out
.unwind_emit
)
1848 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
1851 fprintf (asm_out_file
, "\t%s basic block %d\n",
1852 ASM_COMMENT_START
, NOTE_BASIC_BLOCK (insn
)->index
);
1854 if ((*seen
& (SEEN_EMITTED
| SEEN_BB
)) == SEEN_BB
)
1856 *seen
|= SEEN_EMITTED
;
1857 force_source_line
= true;
1862 discriminator
= NOTE_BASIC_BLOCK (insn
)->discriminator
;
1866 case NOTE_INSN_EH_REGION_BEG
:
1867 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHB",
1868 NOTE_EH_HANDLER (insn
));
1871 case NOTE_INSN_EH_REGION_END
:
1872 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHE",
1873 NOTE_EH_HANDLER (insn
));
1876 case NOTE_INSN_PROLOGUE_END
:
1877 targetm
.asm_out
.function_end_prologue (file
);
1878 profile_after_prologue (file
);
1880 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
1882 *seen
|= SEEN_EMITTED
;
1883 force_source_line
= true;
1890 case NOTE_INSN_EPILOGUE_BEG
:
1891 #if defined (HAVE_epilogue)
1892 if (dwarf2out_do_frame ())
1893 dwarf2out_cfi_begin_epilogue (insn
);
1895 (*debug_hooks
->begin_epilogue
) (last_linenum
, last_filename
);
1896 targetm
.asm_out
.function_begin_epilogue (file
);
1899 case NOTE_INSN_CFA_RESTORE_STATE
:
1900 dwarf2out_frame_debug_restore_state ();
1903 case NOTE_INSN_FUNCTION_BEG
:
1905 if (!DECL_IGNORED_P (current_function_decl
))
1906 debug_hooks
->end_prologue (last_linenum
, last_filename
);
1908 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
1910 *seen
|= SEEN_EMITTED
;
1911 force_source_line
= true;
1918 case NOTE_INSN_BLOCK_BEG
:
1919 if (debug_info_level
== DINFO_LEVEL_NORMAL
1920 || debug_info_level
== DINFO_LEVEL_VERBOSE
1921 || write_symbols
== DWARF2_DEBUG
1922 || write_symbols
== VMS_AND_DWARF2_DEBUG
1923 || write_symbols
== VMS_DEBUG
)
1925 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
1929 high_block_linenum
= last_linenum
;
1931 /* Output debugging info about the symbol-block beginning. */
1932 if (!DECL_IGNORED_P (current_function_decl
))
1933 debug_hooks
->begin_block (last_linenum
, n
);
1935 /* Mark this block as output. */
1936 TREE_ASM_WRITTEN (NOTE_BLOCK (insn
)) = 1;
1938 if (write_symbols
== DBX_DEBUG
1939 || write_symbols
== SDB_DEBUG
)
1941 location_t
*locus_ptr
1942 = block_nonartificial_location (NOTE_BLOCK (insn
));
1944 if (locus_ptr
!= NULL
)
1946 override_filename
= LOCATION_FILE (*locus_ptr
);
1947 override_linenum
= LOCATION_LINE (*locus_ptr
);
1952 case NOTE_INSN_BLOCK_END
:
1953 if (debug_info_level
== DINFO_LEVEL_NORMAL
1954 || debug_info_level
== DINFO_LEVEL_VERBOSE
1955 || write_symbols
== DWARF2_DEBUG
1956 || write_symbols
== VMS_AND_DWARF2_DEBUG
1957 || write_symbols
== VMS_DEBUG
)
1959 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
1963 /* End of a symbol-block. */
1965 gcc_assert (block_depth
>= 0);
1967 if (!DECL_IGNORED_P (current_function_decl
))
1968 debug_hooks
->end_block (high_block_linenum
, n
);
1970 if (write_symbols
== DBX_DEBUG
1971 || write_symbols
== SDB_DEBUG
)
1973 tree outer_block
= BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn
));
1974 location_t
*locus_ptr
1975 = block_nonartificial_location (outer_block
);
1977 if (locus_ptr
!= NULL
)
1979 override_filename
= LOCATION_FILE (*locus_ptr
);
1980 override_linenum
= LOCATION_LINE (*locus_ptr
);
1984 override_filename
= NULL
;
1985 override_linenum
= 0;
1990 case NOTE_INSN_DELETED_LABEL
:
1991 /* Emit the label. We may have deleted the CODE_LABEL because
1992 the label could be proved to be unreachable, though still
1993 referenced (in the form of having its address taken. */
1994 ASM_OUTPUT_DEBUG_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
));
1997 case NOTE_INSN_VAR_LOCATION
:
1998 if (!DECL_IGNORED_P (current_function_decl
))
1999 debug_hooks
->var_location (insn
);
2009 if (dwarf2out_do_frame ())
2010 dwarf2out_frame_debug (insn
, false);
2014 /* The target port might emit labels in the output function for
2015 some insn, e.g. sh.c output_branchy_insn. */
2016 if (CODE_LABEL_NUMBER (insn
) <= max_labelno
)
2018 int align
= LABEL_TO_ALIGNMENT (insn
);
2019 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2020 int max_skip
= LABEL_TO_MAX_SKIP (insn
);
2023 if (align
&& NEXT_INSN (insn
))
2025 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2026 ASM_OUTPUT_MAX_SKIP_ALIGN (file
, align
, max_skip
);
2028 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2029 ASM_OUTPUT_ALIGN_WITH_NOP (file
, align
);
2031 ASM_OUTPUT_ALIGN (file
, align
);
2038 if (!DECL_IGNORED_P (current_function_decl
) && LABEL_NAME (insn
))
2039 debug_hooks
->label (insn
);
2043 next
= next_nonnote_insn (insn
);
2044 /* If this label is followed by a jump-table, make sure we put
2045 the label in the read-only section. Also possibly write the
2046 label and jump table together. */
2047 if (next
!= 0 && JUMP_TABLE_DATA_P (next
))
2049 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2050 /* In this case, the case vector is being moved by the
2051 target, so don't output the label at all. Leave that
2052 to the back end macros. */
2054 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2058 switch_to_section (targetm
.asm_out
.function_rodata_section
2059 (current_function_decl
));
2061 #ifdef ADDR_VEC_ALIGN
2062 log_align
= ADDR_VEC_ALIGN (next
);
2064 log_align
= exact_log2 (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
);
2066 ASM_OUTPUT_ALIGN (file
, log_align
);
2069 switch_to_section (current_function_section ());
2071 #ifdef ASM_OUTPUT_CASE_LABEL
2072 ASM_OUTPUT_CASE_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
),
2075 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
2080 if (LABEL_ALT_ENTRY_P (insn
))
2081 output_alternate_entry_point (file
, insn
);
2083 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
2088 rtx body
= PATTERN (insn
);
2089 int insn_code_number
;
2093 /* Reset this early so it is correct for ASM statements. */
2094 current_insn_predicate
= NULL_RTX
;
2096 /* An INSN, JUMP_INSN or CALL_INSN.
2097 First check for special kinds that recog doesn't recognize. */
2099 if (GET_CODE (body
) == USE
/* These are just declarations. */
2100 || GET_CODE (body
) == CLOBBER
)
2105 /* If there is a REG_CC_SETTER note on this insn, it means that
2106 the setting of the condition code was done in the delay slot
2107 of the insn that branched here. So recover the cc status
2108 from the insn that set it. */
2110 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
2113 NOTICE_UPDATE_CC (PATTERN (XEXP (note
, 0)), XEXP (note
, 0));
2114 cc_prev_status
= cc_status
;
2119 /* Detect insns that are really jump-tables
2120 and output them as such. */
2122 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
2124 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2128 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2129 switch_to_section (targetm
.asm_out
.function_rodata_section
2130 (current_function_decl
));
2132 switch_to_section (current_function_section ());
2136 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2137 if (GET_CODE (body
) == ADDR_VEC
)
2139 #ifdef ASM_OUTPUT_ADDR_VEC
2140 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn
), body
);
2147 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2148 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn
), body
);
2154 vlen
= XVECLEN (body
, GET_CODE (body
) == ADDR_DIFF_VEC
);
2155 for (idx
= 0; idx
< vlen
; idx
++)
2157 if (GET_CODE (body
) == ADDR_VEC
)
2159 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2160 ASM_OUTPUT_ADDR_VEC_ELT
2161 (file
, CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 0, idx
), 0)));
2168 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2169 ASM_OUTPUT_ADDR_DIFF_ELT
2172 CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 1, idx
), 0)),
2173 CODE_LABEL_NUMBER (XEXP (XEXP (body
, 0), 0)));
2179 #ifdef ASM_OUTPUT_CASE_END
2180 ASM_OUTPUT_CASE_END (file
,
2181 CODE_LABEL_NUMBER (PREV_INSN (insn
)),
2186 switch_to_section (current_function_section ());
2190 /* Output this line note if it is the first or the last line
2192 if (!DECL_IGNORED_P (current_function_decl
)
2193 && notice_source_line (insn
, &is_stmt
))
2194 (*debug_hooks
->source_line
) (last_linenum
, last_filename
,
2195 last_discriminator
, is_stmt
);
2197 if (GET_CODE (body
) == ASM_INPUT
)
2199 const char *string
= XSTR (body
, 0);
2201 /* There's no telling what that did to the condition codes. */
2206 expanded_location loc
;
2209 loc
= expand_location (ASM_INPUT_SOURCE_LOCATION (body
));
2210 if (*loc
.file
&& loc
.line
)
2211 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2212 ASM_COMMENT_START
, loc
.line
, loc
.file
);
2213 fprintf (asm_out_file
, "\t%s\n", string
);
2214 #if HAVE_AS_LINE_ZERO
2215 if (*loc
.file
&& loc
.line
)
2216 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2222 /* Detect `asm' construct with operands. */
2223 if (asm_noperands (body
) >= 0)
2225 unsigned int noperands
= asm_noperands (body
);
2226 rtx
*ops
= XALLOCAVEC (rtx
, noperands
);
2229 expanded_location expanded
;
2231 /* There's no telling what that did to the condition codes. */
2234 /* Get out the operand values. */
2235 string
= decode_asm_operands (body
, ops
, NULL
, NULL
, NULL
, &loc
);
2236 /* Inhibit dying on what would otherwise be compiler bugs. */
2237 insn_noperands
= noperands
;
2238 this_is_asm_operands
= insn
;
2239 expanded
= expand_location (loc
);
2241 #ifdef FINAL_PRESCAN_INSN
2242 FINAL_PRESCAN_INSN (insn
, ops
, insn_noperands
);
2245 /* Output the insn using them. */
2249 if (expanded
.file
&& expanded
.line
)
2250 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2251 ASM_COMMENT_START
, expanded
.line
, expanded
.file
);
2252 output_asm_insn (string
, ops
);
2253 #if HAVE_AS_LINE_ZERO
2254 if (expanded
.file
&& expanded
.line
)
2255 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2259 if (targetm
.asm_out
.final_postscan_insn
)
2260 targetm
.asm_out
.final_postscan_insn (file
, insn
, ops
,
2263 this_is_asm_operands
= 0;
2269 if (GET_CODE (body
) == SEQUENCE
)
2271 /* A delayed-branch sequence */
2274 final_sequence
= body
;
2276 /* Record the delay slots' frame information before the branch.
2277 This is needed for delayed calls: see execute_cfa_program(). */
2278 if (dwarf2out_do_frame ())
2279 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
2280 dwarf2out_frame_debug (XVECEXP (body
, 0, i
), false);
2282 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2283 force the restoration of a comparison that was previously
2284 thought unnecessary. If that happens, cancel this sequence
2285 and cause that insn to be restored. */
2287 next
= final_scan_insn (XVECEXP (body
, 0, 0), file
, 0, 1, seen
);
2288 if (next
!= XVECEXP (body
, 0, 1))
2294 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
2296 rtx insn
= XVECEXP (body
, 0, i
);
2297 rtx next
= NEXT_INSN (insn
);
2298 /* We loop in case any instruction in a delay slot gets
2301 insn
= final_scan_insn (insn
, file
, 0, 1, seen
);
2302 while (insn
!= next
);
2304 #ifdef DBR_OUTPUT_SEQEND
2305 DBR_OUTPUT_SEQEND (file
);
2309 /* If the insn requiring the delay slot was a CALL_INSN, the
2310 insns in the delay slot are actually executed before the
2311 called function. Hence we don't preserve any CC-setting
2312 actions in these insns and the CC must be marked as being
2313 clobbered by the function. */
2314 if (CALL_P (XVECEXP (body
, 0, 0)))
2321 /* We have a real machine instruction as rtl. */
2323 body
= PATTERN (insn
);
2326 set
= single_set (insn
);
2328 /* Check for redundant test and compare instructions
2329 (when the condition codes are already set up as desired).
2330 This is done only when optimizing; if not optimizing,
2331 it should be possible for the user to alter a variable
2332 with the debugger in between statements
2333 and the next statement should reexamine the variable
2334 to compute the condition codes. */
2339 && GET_CODE (SET_DEST (set
)) == CC0
2340 && insn
!= last_ignored_compare
)
2343 if (GET_CODE (SET_SRC (set
)) == SUBREG
)
2344 SET_SRC (set
) = alter_subreg (&SET_SRC (set
));
2346 src1
= SET_SRC (set
);
2348 if (GET_CODE (SET_SRC (set
)) == COMPARE
)
2350 if (GET_CODE (XEXP (SET_SRC (set
), 0)) == SUBREG
)
2351 XEXP (SET_SRC (set
), 0)
2352 = alter_subreg (&XEXP (SET_SRC (set
), 0));
2353 if (GET_CODE (XEXP (SET_SRC (set
), 1)) == SUBREG
)
2354 XEXP (SET_SRC (set
), 1)
2355 = alter_subreg (&XEXP (SET_SRC (set
), 1));
2356 if (XEXP (SET_SRC (set
), 1)
2357 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set
), 0))))
2358 src2
= XEXP (SET_SRC (set
), 0);
2360 if ((cc_status
.value1
!= 0
2361 && rtx_equal_p (src1
, cc_status
.value1
))
2362 || (cc_status
.value2
!= 0
2363 && rtx_equal_p (src1
, cc_status
.value2
))
2364 || (src2
!= 0 && cc_status
.value1
!= 0
2365 && rtx_equal_p (src2
, cc_status
.value1
))
2366 || (src2
!= 0 && cc_status
.value2
!= 0
2367 && rtx_equal_p (src2
, cc_status
.value2
)))
2369 /* Don't delete insn if it has an addressing side-effect. */
2370 if (! FIND_REG_INC_NOTE (insn
, NULL_RTX
)
2371 /* or if anything in it is volatile. */
2372 && ! volatile_refs_p (PATTERN (insn
)))
2374 /* We don't really delete the insn; just ignore it. */
2375 last_ignored_compare
= insn
;
2382 /* If this is a conditional branch, maybe modify it
2383 if the cc's are in a nonstandard state
2384 so that it accomplishes the same thing that it would
2385 do straightforwardly if the cc's were set up normally. */
2387 if (cc_status
.flags
!= 0
2389 && GET_CODE (body
) == SET
2390 && SET_DEST (body
) == pc_rtx
2391 && GET_CODE (SET_SRC (body
)) == IF_THEN_ELSE
2392 && COMPARISON_P (XEXP (SET_SRC (body
), 0))
2393 && XEXP (XEXP (SET_SRC (body
), 0), 0) == cc0_rtx
)
2395 /* This function may alter the contents of its argument
2396 and clear some of the cc_status.flags bits.
2397 It may also return 1 meaning condition now always true
2398 or -1 meaning condition now always false
2399 or 2 meaning condition nontrivial but altered. */
2400 int result
= alter_cond (XEXP (SET_SRC (body
), 0));
2401 /* If condition now has fixed value, replace the IF_THEN_ELSE
2402 with its then-operand or its else-operand. */
2404 SET_SRC (body
) = XEXP (SET_SRC (body
), 1);
2406 SET_SRC (body
) = XEXP (SET_SRC (body
), 2);
2408 /* The jump is now either unconditional or a no-op.
2409 If it has become a no-op, don't try to output it.
2410 (It would not be recognized.) */
2411 if (SET_SRC (body
) == pc_rtx
)
2416 else if (GET_CODE (SET_SRC (body
)) == RETURN
)
2417 /* Replace (set (pc) (return)) with (return). */
2418 PATTERN (insn
) = body
= SET_SRC (body
);
2420 /* Rerecognize the instruction if it has changed. */
2422 INSN_CODE (insn
) = -1;
2425 /* If this is a conditional trap, maybe modify it if the cc's
2426 are in a nonstandard state so that it accomplishes the same
2427 thing that it would do straightforwardly if the cc's were
2429 if (cc_status
.flags
!= 0
2430 && NONJUMP_INSN_P (insn
)
2431 && GET_CODE (body
) == TRAP_IF
2432 && COMPARISON_P (TRAP_CONDITION (body
))
2433 && XEXP (TRAP_CONDITION (body
), 0) == cc0_rtx
)
2435 /* This function may alter the contents of its argument
2436 and clear some of the cc_status.flags bits.
2437 It may also return 1 meaning condition now always true
2438 or -1 meaning condition now always false
2439 or 2 meaning condition nontrivial but altered. */
2440 int result
= alter_cond (TRAP_CONDITION (body
));
2442 /* If TRAP_CONDITION has become always false, delete the
2450 /* If TRAP_CONDITION has become always true, replace
2451 TRAP_CONDITION with const_true_rtx. */
2453 TRAP_CONDITION (body
) = const_true_rtx
;
2455 /* Rerecognize the instruction if it has changed. */
2457 INSN_CODE (insn
) = -1;
2460 /* Make same adjustments to instructions that examine the
2461 condition codes without jumping and instructions that
2462 handle conditional moves (if this machine has either one). */
2464 if (cc_status
.flags
!= 0
2467 rtx cond_rtx
, then_rtx
, else_rtx
;
2470 && GET_CODE (SET_SRC (set
)) == IF_THEN_ELSE
)
2472 cond_rtx
= XEXP (SET_SRC (set
), 0);
2473 then_rtx
= XEXP (SET_SRC (set
), 1);
2474 else_rtx
= XEXP (SET_SRC (set
), 2);
2478 cond_rtx
= SET_SRC (set
);
2479 then_rtx
= const_true_rtx
;
2480 else_rtx
= const0_rtx
;
2483 switch (GET_CODE (cond_rtx
))
2497 if (XEXP (cond_rtx
, 0) != cc0_rtx
)
2499 result
= alter_cond (cond_rtx
);
2501 validate_change (insn
, &SET_SRC (set
), then_rtx
, 0);
2502 else if (result
== -1)
2503 validate_change (insn
, &SET_SRC (set
), else_rtx
, 0);
2504 else if (result
== 2)
2505 INSN_CODE (insn
) = -1;
2506 if (SET_DEST (set
) == SET_SRC (set
))
2518 #ifdef HAVE_peephole
2519 /* Do machine-specific peephole optimizations if desired. */
2521 if (optimize_p
&& !flag_no_peephole
&& !nopeepholes
)
2523 rtx next
= peephole (insn
);
2524 /* When peepholing, if there were notes within the peephole,
2525 emit them before the peephole. */
2526 if (next
!= 0 && next
!= NEXT_INSN (insn
))
2528 rtx note
, prev
= PREV_INSN (insn
);
2530 for (note
= NEXT_INSN (insn
); note
!= next
;
2531 note
= NEXT_INSN (note
))
2532 final_scan_insn (note
, file
, optimize_p
, nopeepholes
, seen
);
2534 /* Put the notes in the proper position for a later
2535 rescan. For example, the SH target can do this
2536 when generating a far jump in a delayed branch
2538 note
= NEXT_INSN (insn
);
2539 PREV_INSN (note
) = prev
;
2540 NEXT_INSN (prev
) = note
;
2541 NEXT_INSN (PREV_INSN (next
)) = insn
;
2542 PREV_INSN (insn
) = PREV_INSN (next
);
2543 NEXT_INSN (insn
) = next
;
2544 PREV_INSN (next
) = insn
;
2547 /* PEEPHOLE might have changed this. */
2548 body
= PATTERN (insn
);
2552 /* Try to recognize the instruction.
2553 If successful, verify that the operands satisfy the
2554 constraints for the instruction. Crash if they don't,
2555 since `reload' should have changed them so that they do. */
2557 insn_code_number
= recog_memoized (insn
);
2558 cleanup_subreg_operands (insn
);
2560 /* Dump the insn in the assembly for debugging. */
2561 if (flag_dump_rtl_in_asm
)
2563 print_rtx_head
= ASM_COMMENT_START
;
2564 print_rtl_single (asm_out_file
, insn
);
2565 print_rtx_head
= "";
2568 if (! constrain_operands_cached (1))
2569 fatal_insn_not_found (insn
);
2571 /* Some target machines need to prescan each insn before
2574 #ifdef FINAL_PRESCAN_INSN
2575 FINAL_PRESCAN_INSN (insn
, recog_data
.operand
, recog_data
.n_operands
);
2578 if (targetm
.have_conditional_execution ()
2579 && GET_CODE (PATTERN (insn
)) == COND_EXEC
)
2580 current_insn_predicate
= COND_EXEC_TEST (PATTERN (insn
));
2583 cc_prev_status
= cc_status
;
2585 /* Update `cc_status' for this instruction.
2586 The instruction's output routine may change it further.
2587 If the output routine for a jump insn needs to depend
2588 on the cc status, it should look at cc_prev_status. */
2590 NOTICE_UPDATE_CC (body
, insn
);
2593 current_output_insn
= debug_insn
= insn
;
2595 if (CALL_P (insn
) && dwarf2out_do_frame ())
2596 dwarf2out_frame_debug (insn
, false);
2598 /* Find the proper template for this insn. */
2599 templ
= get_insn_template (insn_code_number
, insn
);
2601 /* If the C code returns 0, it means that it is a jump insn
2602 which follows a deleted test insn, and that test insn
2603 needs to be reinserted. */
2608 gcc_assert (prev_nonnote_insn (insn
) == last_ignored_compare
);
2610 /* We have already processed the notes between the setter and
2611 the user. Make sure we don't process them again, this is
2612 particularly important if one of the notes is a block
2613 scope note or an EH note. */
2615 prev
!= last_ignored_compare
;
2616 prev
= PREV_INSN (prev
))
2619 delete_insn (prev
); /* Use delete_note. */
2625 /* If the template is the string "#", it means that this insn must
2627 if (templ
[0] == '#' && templ
[1] == '\0')
2629 rtx new_rtx
= try_split (body
, insn
, 0);
2631 /* If we didn't split the insn, go away. */
2632 if (new_rtx
== insn
&& PATTERN (new_rtx
) == body
)
2633 fatal_insn ("could not split insn", insn
);
2635 #ifdef HAVE_ATTR_length
2636 /* This instruction should have been split in shorten_branches,
2637 to ensure that we would have valid length info for the
2645 /* ??? This will put the directives in the wrong place if
2646 get_insn_template outputs assembly directly. However calling it
2647 before get_insn_template breaks if the insns is split. */
2648 if (targetm
.asm_out
.unwind_emit_before_insn
2649 && targetm
.asm_out
.unwind_emit
)
2650 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2654 rtx x
= call_from_call_insn (insn
);
2656 if (x
&& MEM_P (x
) && GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
)
2660 t
= SYMBOL_REF_DECL (x
);
2662 assemble_external (t
);
2666 /* Output assembler code from the template. */
2667 output_asm_insn (templ
, recog_data
.operand
);
2669 /* Record point-of-call information for ICF debugging. */
2670 if (flag_enable_icf_debug
&& CALL_P (insn
))
2672 rtx x
= call_from_call_insn (insn
);
2676 if (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
)
2680 t
= SYMBOL_REF_DECL (x
);
2682 (*debug_hooks
->direct_call
) (t
);
2685 (*debug_hooks
->virtual_call
) (INSN_UID (insn
));
2689 /* Some target machines need to postscan each insn after
2691 if (targetm
.asm_out
.final_postscan_insn
)
2692 targetm
.asm_out
.final_postscan_insn (file
, insn
, recog_data
.operand
,
2693 recog_data
.n_operands
);
2695 /* If necessary, report the effect that the instruction has on
2696 the unwind info. We've already done this for delay slots
2697 and call instructions. */
2698 if (final_sequence
== 0
2699 #if !defined (HAVE_prologue)
2700 && !ACCUMULATE_OUTGOING_ARGS
2702 && dwarf2out_do_frame ())
2703 dwarf2out_frame_debug (insn
, true);
2705 if (!targetm
.asm_out
.unwind_emit_before_insn
2706 && targetm
.asm_out
.unwind_emit
)
2707 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2709 current_output_insn
= debug_insn
= 0;
2712 return NEXT_INSN (insn
);
2715 /* Return whether a source line note needs to be emitted before INSN.
2716 Sets IS_STMT to TRUE if the line should be marked as a possible
2717 breakpoint location. */
2720 notice_source_line (rtx insn
, bool *is_stmt
)
2722 const char *filename
;
2725 if (override_filename
)
2727 filename
= override_filename
;
2728 linenum
= override_linenum
;
2732 filename
= insn_file (insn
);
2733 linenum
= insn_line (insn
);
2736 if (filename
== NULL
)
2739 if (force_source_line
2740 || filename
!= last_filename
2741 || last_linenum
!= linenum
)
2743 force_source_line
= false;
2744 last_filename
= filename
;
2745 last_linenum
= linenum
;
2746 last_discriminator
= discriminator
;
2748 high_block_linenum
= MAX (last_linenum
, high_block_linenum
);
2749 high_function_linenum
= MAX (last_linenum
, high_function_linenum
);
2753 if (SUPPORTS_DISCRIMINATOR
&& last_discriminator
!= discriminator
)
2755 /* If the discriminator changed, but the line number did not,
2756 output the line table entry with is_stmt false so the
2757 debugger does not treat this as a breakpoint location. */
2758 last_discriminator
= discriminator
;
2766 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2767 directly to the desired hard register. */
2770 cleanup_subreg_operands (rtx insn
)
2773 bool changed
= false;
2774 extract_insn_cached (insn
);
2775 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2777 /* The following test cannot use recog_data.operand when testing
2778 for a SUBREG: the underlying object might have been changed
2779 already if we are inside a match_operator expression that
2780 matches the else clause. Instead we test the underlying
2781 expression directly. */
2782 if (GET_CODE (*recog_data
.operand_loc
[i
]) == SUBREG
)
2784 recog_data
.operand
[i
] = alter_subreg (recog_data
.operand_loc
[i
]);
2787 else if (GET_CODE (recog_data
.operand
[i
]) == PLUS
2788 || GET_CODE (recog_data
.operand
[i
]) == MULT
2789 || MEM_P (recog_data
.operand
[i
]))
2790 recog_data
.operand
[i
] = walk_alter_subreg (recog_data
.operand_loc
[i
], &changed
);
2793 for (i
= 0; i
< recog_data
.n_dups
; i
++)
2795 if (GET_CODE (*recog_data
.dup_loc
[i
]) == SUBREG
)
2797 *recog_data
.dup_loc
[i
] = alter_subreg (recog_data
.dup_loc
[i
]);
2800 else if (GET_CODE (*recog_data
.dup_loc
[i
]) == PLUS
2801 || GET_CODE (*recog_data
.dup_loc
[i
]) == MULT
2802 || MEM_P (*recog_data
.dup_loc
[i
]))
2803 *recog_data
.dup_loc
[i
] = walk_alter_subreg (recog_data
.dup_loc
[i
], &changed
);
2806 df_insn_rescan (insn
);
2809 /* If X is a SUBREG, replace it with a REG or a MEM,
2810 based on the thing it is a subreg of. */
2813 alter_subreg (rtx
*xp
)
2816 rtx y
= SUBREG_REG (x
);
2818 /* simplify_subreg does not remove subreg from volatile references.
2819 We are required to. */
2822 int offset
= SUBREG_BYTE (x
);
2824 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
2825 contains 0 instead of the proper offset. See simplify_subreg. */
2827 && GET_MODE_SIZE (GET_MODE (y
)) < GET_MODE_SIZE (GET_MODE (x
)))
2829 int difference
= GET_MODE_SIZE (GET_MODE (y
))
2830 - GET_MODE_SIZE (GET_MODE (x
));
2831 if (WORDS_BIG_ENDIAN
)
2832 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
2833 if (BYTES_BIG_ENDIAN
)
2834 offset
+= difference
% UNITS_PER_WORD
;
2837 *xp
= adjust_address (y
, GET_MODE (x
), offset
);
2841 rtx new_rtx
= simplify_subreg (GET_MODE (x
), y
, GET_MODE (y
),
2848 /* Simplify_subreg can't handle some REG cases, but we have to. */
2850 HOST_WIDE_INT offset
;
2852 regno
= subreg_regno (x
);
2853 if (subreg_lowpart_p (x
))
2854 offset
= byte_lowpart_offset (GET_MODE (x
), GET_MODE (y
));
2856 offset
= SUBREG_BYTE (x
);
2857 *xp
= gen_rtx_REG_offset (y
, GET_MODE (x
), regno
, offset
);
2864 /* Do alter_subreg on all the SUBREGs contained in X. */
2867 walk_alter_subreg (rtx
*xp
, bool *changed
)
2870 switch (GET_CODE (x
))
2875 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
2876 XEXP (x
, 1) = walk_alter_subreg (&XEXP (x
, 1), changed
);
2881 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
2886 return alter_subreg (xp
);
2897 /* Given BODY, the body of a jump instruction, alter the jump condition
2898 as required by the bits that are set in cc_status.flags.
2899 Not all of the bits there can be handled at this level in all cases.
2901 The value is normally 0.
2902 1 means that the condition has become always true.
2903 -1 means that the condition has become always false.
2904 2 means that COND has been altered. */
2907 alter_cond (rtx cond
)
2911 if (cc_status
.flags
& CC_REVERSED
)
2914 PUT_CODE (cond
, swap_condition (GET_CODE (cond
)));
2917 if (cc_status
.flags
& CC_INVERTED
)
2920 PUT_CODE (cond
, reverse_condition (GET_CODE (cond
)));
2923 if (cc_status
.flags
& CC_NOT_POSITIVE
)
2924 switch (GET_CODE (cond
))
2929 /* Jump becomes unconditional. */
2935 /* Jump becomes no-op. */
2939 PUT_CODE (cond
, EQ
);
2944 PUT_CODE (cond
, NE
);
2952 if (cc_status
.flags
& CC_NOT_NEGATIVE
)
2953 switch (GET_CODE (cond
))
2957 /* Jump becomes unconditional. */
2962 /* Jump becomes no-op. */
2967 PUT_CODE (cond
, EQ
);
2973 PUT_CODE (cond
, NE
);
2981 if (cc_status
.flags
& CC_NO_OVERFLOW
)
2982 switch (GET_CODE (cond
))
2985 /* Jump becomes unconditional. */
2989 PUT_CODE (cond
, EQ
);
2994 PUT_CODE (cond
, NE
);
2999 /* Jump becomes no-op. */
3006 if (cc_status
.flags
& (CC_Z_IN_NOT_N
| CC_Z_IN_N
))
3007 switch (GET_CODE (cond
))
3013 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? GE
: LT
);
3018 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? LT
: GE
);
3023 if (cc_status
.flags
& CC_NOT_SIGNED
)
3024 /* The flags are valid if signed condition operators are converted
3026 switch (GET_CODE (cond
))
3029 PUT_CODE (cond
, LEU
);
3034 PUT_CODE (cond
, LTU
);
3039 PUT_CODE (cond
, GTU
);
3044 PUT_CODE (cond
, GEU
);
3056 /* Report inconsistency between the assembler template and the operands.
3057 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3060 output_operand_lossage (const char *cmsgid
, ...)
3064 const char *pfx_str
;
3067 va_start (ap
, cmsgid
);
3069 pfx_str
= this_is_asm_operands
? _("invalid 'asm': ") : "output_operand: ";
3070 asprintf (&fmt_string
, "%s%s", pfx_str
, _(cmsgid
));
3071 vasprintf (&new_message
, fmt_string
, ap
);
3073 if (this_is_asm_operands
)
3074 error_for_asm (this_is_asm_operands
, "%s", new_message
);
3076 internal_error ("%s", new_message
);
3083 /* Output of assembler code from a template, and its subroutines. */
3085 /* Annotate the assembly with a comment describing the pattern and
3086 alternative used. */
3089 output_asm_name (void)
3093 int num
= INSN_CODE (debug_insn
);
3094 fprintf (asm_out_file
, "\t%s %d\t%s",
3095 ASM_COMMENT_START
, INSN_UID (debug_insn
),
3096 insn_data
[num
].name
);
3097 if (insn_data
[num
].n_alternatives
> 1)
3098 fprintf (asm_out_file
, "/%d", which_alternative
+ 1);
3099 #ifdef HAVE_ATTR_length
3100 fprintf (asm_out_file
, "\t[length = %d]",
3101 get_attr_length (debug_insn
));
3103 /* Clear this so only the first assembler insn
3104 of any rtl insn will get the special comment for -dp. */
3109 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3110 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3111 corresponds to the address of the object and 0 if to the object. */
3114 get_mem_expr_from_op (rtx op
, int *paddressp
)
3122 return REG_EXPR (op
);
3123 else if (!MEM_P (op
))
3126 if (MEM_EXPR (op
) != 0)
3127 return MEM_EXPR (op
);
3129 /* Otherwise we have an address, so indicate it and look at the address. */
3133 /* First check if we have a decl for the address, then look at the right side
3134 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3135 But don't allow the address to itself be indirect. */
3136 if ((expr
= get_mem_expr_from_op (op
, &inner_addressp
)) && ! inner_addressp
)
3138 else if (GET_CODE (op
) == PLUS
3139 && (expr
= get_mem_expr_from_op (XEXP (op
, 1), &inner_addressp
)))
3143 || GET_RTX_CLASS (GET_CODE (op
)) == RTX_BIN_ARITH
)
3146 expr
= get_mem_expr_from_op (op
, &inner_addressp
);
3147 return inner_addressp
? 0 : expr
;
3150 /* Output operand names for assembler instructions. OPERANDS is the
3151 operand vector, OPORDER is the order to write the operands, and NOPS
3152 is the number of operands to write. */
3155 output_asm_operand_names (rtx
*operands
, int *oporder
, int nops
)
3160 for (i
= 0; i
< nops
; i
++)
3163 rtx op
= operands
[oporder
[i
]];
3164 tree expr
= get_mem_expr_from_op (op
, &addressp
);
3166 fprintf (asm_out_file
, "%c%s",
3167 wrote
? ',' : '\t', wrote
? "" : ASM_COMMENT_START
);
3171 fprintf (asm_out_file
, "%s",
3172 addressp
? "*" : "");
3173 print_mem_expr (asm_out_file
, expr
);
3176 else if (REG_P (op
) && ORIGINAL_REGNO (op
)
3177 && ORIGINAL_REGNO (op
) != REGNO (op
))
3178 fprintf (asm_out_file
, " tmp%i", ORIGINAL_REGNO (op
));
3182 /* Output text from TEMPLATE to the assembler output file,
3183 obeying %-directions to substitute operands taken from
3184 the vector OPERANDS.
3186 %N (for N a digit) means print operand N in usual manner.
3187 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3188 and print the label name with no punctuation.
3189 %cN means require operand N to be a constant
3190 and print the constant expression with no punctuation.
3191 %aN means expect operand N to be a memory address
3192 (not a memory reference!) and print a reference
3194 %nN means expect operand N to be a constant
3195 and print a constant expression for minus the value
3196 of the operand, with no other punctuation. */
3199 output_asm_insn (const char *templ
, rtx
*operands
)
3203 #ifdef ASSEMBLER_DIALECT
3206 int oporder
[MAX_RECOG_OPERANDS
];
3207 char opoutput
[MAX_RECOG_OPERANDS
];
3210 /* An insn may return a null string template
3211 in a case where no assembler code is needed. */
3215 memset (opoutput
, 0, sizeof opoutput
);
3217 putc ('\t', asm_out_file
);
3219 #ifdef ASM_OUTPUT_OPCODE
3220 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3227 if (flag_verbose_asm
)
3228 output_asm_operand_names (operands
, oporder
, ops
);
3229 if (flag_print_asm_name
)
3233 memset (opoutput
, 0, sizeof opoutput
);
3235 putc (c
, asm_out_file
);
3236 #ifdef ASM_OUTPUT_OPCODE
3237 while ((c
= *p
) == '\t')
3239 putc (c
, asm_out_file
);
3242 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3246 #ifdef ASSEMBLER_DIALECT
3252 output_operand_lossage ("nested assembly dialect alternatives");
3256 /* If we want the first dialect, do nothing. Otherwise, skip
3257 DIALECT_NUMBER of strings ending with '|'. */
3258 for (i
= 0; i
< dialect_number
; i
++)
3260 while (*p
&& *p
!= '}' && *p
++ != '|')
3269 output_operand_lossage ("unterminated assembly dialect alternative");
3276 /* Skip to close brace. */
3281 output_operand_lossage ("unterminated assembly dialect alternative");
3285 while (*p
++ != '}');
3289 putc (c
, asm_out_file
);
3294 putc (c
, asm_out_file
);
3300 /* %% outputs a single %. */
3304 putc (c
, asm_out_file
);
3306 /* %= outputs a number which is unique to each insn in the entire
3307 compilation. This is useful for making local labels that are
3308 referred to more than once in a given insn. */
3312 fprintf (asm_out_file
, "%d", insn_counter
);
3314 /* % followed by a letter and some digits
3315 outputs an operand in a special way depending on the letter.
3316 Letters `acln' are implemented directly.
3317 Other letters are passed to `output_operand' so that
3318 the TARGET_PRINT_OPERAND hook can define them. */
3319 else if (ISALPHA (*p
))
3322 unsigned long opnum
;
3325 opnum
= strtoul (p
, &endptr
, 10);
3328 output_operand_lossage ("operand number missing "
3330 else if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3331 output_operand_lossage ("operand number out of range");
3332 else if (letter
== 'l')
3333 output_asm_label (operands
[opnum
]);
3334 else if (letter
== 'a')
3335 output_address (operands
[opnum
]);
3336 else if (letter
== 'c')
3338 if (CONSTANT_ADDRESS_P (operands
[opnum
]))
3339 output_addr_const (asm_out_file
, operands
[opnum
]);
3341 output_operand (operands
[opnum
], 'c');
3343 else if (letter
== 'n')
3345 if (CONST_INT_P (operands
[opnum
]))
3346 fprintf (asm_out_file
, HOST_WIDE_INT_PRINT_DEC
,
3347 - INTVAL (operands
[opnum
]));
3350 putc ('-', asm_out_file
);
3351 output_addr_const (asm_out_file
, operands
[opnum
]);
3355 output_operand (operands
[opnum
], letter
);
3357 if (!opoutput
[opnum
])
3358 oporder
[ops
++] = opnum
;
3359 opoutput
[opnum
] = 1;
3364 /* % followed by a digit outputs an operand the default way. */
3365 else if (ISDIGIT (*p
))
3367 unsigned long opnum
;
3370 opnum
= strtoul (p
, &endptr
, 10);
3371 if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3372 output_operand_lossage ("operand number out of range");
3374 output_operand (operands
[opnum
], 0);
3376 if (!opoutput
[opnum
])
3377 oporder
[ops
++] = opnum
;
3378 opoutput
[opnum
] = 1;
3383 /* % followed by punctuation: output something for that
3384 punctuation character alone, with no operand. The
3385 TARGET_PRINT_OPERAND hook decides what is actually done. */
3386 else if (targetm
.asm_out
.print_operand_punct_valid_p ((unsigned char) *p
))
3387 output_operand (NULL_RTX
, *p
++);
3389 output_operand_lossage ("invalid %%-code");
3393 putc (c
, asm_out_file
);
3396 /* Write out the variable names for operands, if we know them. */
3397 if (flag_verbose_asm
)
3398 output_asm_operand_names (operands
, oporder
, ops
);
3399 if (flag_print_asm_name
)
3402 putc ('\n', asm_out_file
);
3405 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3408 output_asm_label (rtx x
)
3412 if (GET_CODE (x
) == LABEL_REF
)
3416 && NOTE_KIND (x
) == NOTE_INSN_DELETED_LABEL
))
3417 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3419 output_operand_lossage ("'%%l' operand isn't a label");
3421 assemble_name (asm_out_file
, buf
);
3424 /* Helper rtx-iteration-function for mark_symbol_refs_as_used and
3425 output_operand. Marks SYMBOL_REFs as referenced through use of
3426 assemble_external. */
3429 mark_symbol_ref_as_used (rtx
*xp
, void *dummy ATTRIBUTE_UNUSED
)
3433 /* If we have a used symbol, we may have to emit assembly
3434 annotations corresponding to whether the symbol is external, weak
3435 or has non-default visibility. */
3436 if (GET_CODE (x
) == SYMBOL_REF
)
3440 t
= SYMBOL_REF_DECL (x
);
3442 assemble_external (t
);
3450 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3453 mark_symbol_refs_as_used (rtx x
)
3455 for_each_rtx (&x
, mark_symbol_ref_as_used
, NULL
);
3458 /* Print operand X using machine-dependent assembler syntax.
3459 CODE is a non-digit that preceded the operand-number in the % spec,
3460 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3461 between the % and the digits.
3462 When CODE is a non-letter, X is 0.
3464 The meanings of the letters are machine-dependent and controlled
3465 by TARGET_PRINT_OPERAND. */
3468 output_operand (rtx x
, int code ATTRIBUTE_UNUSED
)
3470 if (x
&& GET_CODE (x
) == SUBREG
)
3471 x
= alter_subreg (&x
);
3473 /* X must not be a pseudo reg. */
3474 gcc_assert (!x
|| !REG_P (x
) || REGNO (x
) < FIRST_PSEUDO_REGISTER
);
3476 targetm
.asm_out
.print_operand (asm_out_file
, x
, code
);
3481 for_each_rtx (&x
, mark_symbol_ref_as_used
, NULL
);
3484 /* Print a memory reference operand for address X using
3485 machine-dependent assembler syntax. */
3488 output_address (rtx x
)
3490 bool changed
= false;
3491 walk_alter_subreg (&x
, &changed
);
3492 targetm
.asm_out
.print_operand_address (asm_out_file
, x
);
3495 /* Print an integer constant expression in assembler syntax.
3496 Addition and subtraction are the only arithmetic
3497 that may appear in these expressions. */
3500 output_addr_const (FILE *file
, rtx x
)
3505 switch (GET_CODE (x
))
3512 if (SYMBOL_REF_DECL (x
))
3513 assemble_external (SYMBOL_REF_DECL (x
));
3514 #ifdef ASM_OUTPUT_SYMBOL_REF
3515 ASM_OUTPUT_SYMBOL_REF (file
, x
);
3517 assemble_name (file
, XSTR (x
, 0));
3525 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3526 #ifdef ASM_OUTPUT_LABEL_REF
3527 ASM_OUTPUT_LABEL_REF (file
, buf
);
3529 assemble_name (file
, buf
);
3534 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (x
));
3538 /* This used to output parentheses around the expression,
3539 but that does not work on the 386 (either ATT or BSD assembler). */
3540 output_addr_const (file
, XEXP (x
, 0));
3544 if (GET_MODE (x
) == VOIDmode
)
3546 /* We can use %d if the number is one word and positive. */
3547 if (CONST_DOUBLE_HIGH (x
))
3548 fprintf (file
, HOST_WIDE_INT_PRINT_DOUBLE_HEX
,
3549 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_HIGH (x
),
3550 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (x
));
3551 else if (CONST_DOUBLE_LOW (x
) < 0)
3552 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
,
3553 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (x
));
3555 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_DOUBLE_LOW (x
));
3558 /* We can't handle floating point constants;
3559 PRINT_OPERAND must handle them. */
3560 output_operand_lossage ("floating constant misused");
3564 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
,
3565 (unsigned HOST_WIDE_INT
) CONST_FIXED_VALUE_LOW (x
));
3569 /* Some assemblers need integer constants to appear last (eg masm). */
3570 if (CONST_INT_P (XEXP (x
, 0)))
3572 output_addr_const (file
, XEXP (x
, 1));
3573 if (INTVAL (XEXP (x
, 0)) >= 0)
3574 fprintf (file
, "+");
3575 output_addr_const (file
, XEXP (x
, 0));
3579 output_addr_const (file
, XEXP (x
, 0));
3580 if (!CONST_INT_P (XEXP (x
, 1))
3581 || INTVAL (XEXP (x
, 1)) >= 0)
3582 fprintf (file
, "+");
3583 output_addr_const (file
, XEXP (x
, 1));
3588 /* Avoid outputting things like x-x or x+5-x,
3589 since some assemblers can't handle that. */
3590 x
= simplify_subtraction (x
);
3591 if (GET_CODE (x
) != MINUS
)
3594 output_addr_const (file
, XEXP (x
, 0));
3595 fprintf (file
, "-");
3596 if ((CONST_INT_P (XEXP (x
, 1)) && INTVAL (XEXP (x
, 1)) >= 0)
3597 || GET_CODE (XEXP (x
, 1)) == PC
3598 || GET_CODE (XEXP (x
, 1)) == SYMBOL_REF
)
3599 output_addr_const (file
, XEXP (x
, 1));
3602 fputs (targetm
.asm_out
.open_paren
, file
);
3603 output_addr_const (file
, XEXP (x
, 1));
3604 fputs (targetm
.asm_out
.close_paren
, file
);
3612 output_addr_const (file
, XEXP (x
, 0));
3616 if (targetm
.asm_out
.output_addr_const_extra (file
, x
))
3619 output_operand_lossage ("invalid expression as operand");
3623 /* Output a quoted string. */
3626 output_quoted_string (FILE *asm_file
, const char *string
)
3628 #ifdef OUTPUT_QUOTED_STRING
3629 OUTPUT_QUOTED_STRING (asm_file
, string
);
3633 putc ('\"', asm_file
);
3634 while ((c
= *string
++) != 0)
3638 if (c
== '\"' || c
== '\\')
3639 putc ('\\', asm_file
);
3643 fprintf (asm_file
, "\\%03o", (unsigned char) c
);
3645 putc ('\"', asm_file
);
3649 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3650 %R prints the value of REGISTER_PREFIX.
3651 %L prints the value of LOCAL_LABEL_PREFIX.
3652 %U prints the value of USER_LABEL_PREFIX.
3653 %I prints the value of IMMEDIATE_PREFIX.
3654 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3655 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3657 We handle alternate assembler dialects here, just like output_asm_insn. */
3660 asm_fprintf (FILE *file
, const char *p
, ...)
3666 va_start (argptr
, p
);
3673 #ifdef ASSEMBLER_DIALECT
3678 /* If we want the first dialect, do nothing. Otherwise, skip
3679 DIALECT_NUMBER of strings ending with '|'. */
3680 for (i
= 0; i
< dialect_number
; i
++)
3682 while (*p
&& *p
++ != '|')
3692 /* Skip to close brace. */
3693 while (*p
&& *p
++ != '}')
3704 while (strchr ("-+ #0", c
))
3709 while (ISDIGIT (c
) || c
== '.')
3720 case 'd': case 'i': case 'u':
3721 case 'x': case 'X': case 'o':
3725 fprintf (file
, buf
, va_arg (argptr
, int));
3729 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3730 'o' cases, but we do not check for those cases. It
3731 means that the value is a HOST_WIDE_INT, which may be
3732 either `long' or `long long'. */
3733 memcpy (q
, HOST_WIDE_INT_PRINT
, strlen (HOST_WIDE_INT_PRINT
));
3734 q
+= strlen (HOST_WIDE_INT_PRINT
);
3737 fprintf (file
, buf
, va_arg (argptr
, HOST_WIDE_INT
));
3742 #ifdef HAVE_LONG_LONG
3748 fprintf (file
, buf
, va_arg (argptr
, long long));
3755 fprintf (file
, buf
, va_arg (argptr
, long));
3763 fprintf (file
, buf
, va_arg (argptr
, char *));
3767 #ifdef ASM_OUTPUT_OPCODE
3768 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3773 #ifdef REGISTER_PREFIX
3774 fprintf (file
, "%s", REGISTER_PREFIX
);
3779 #ifdef IMMEDIATE_PREFIX
3780 fprintf (file
, "%s", IMMEDIATE_PREFIX
);
3785 #ifdef LOCAL_LABEL_PREFIX
3786 fprintf (file
, "%s", LOCAL_LABEL_PREFIX
);
3791 fputs (user_label_prefix
, file
);
3794 #ifdef ASM_FPRINTF_EXTENSIONS
3795 /* Uppercase letters are reserved for general use by asm_fprintf
3796 and so are not available to target specific code. In order to
3797 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3798 they are defined here. As they get turned into real extensions
3799 to asm_fprintf they should be removed from this list. */
3800 case 'A': case 'B': case 'C': case 'D': case 'E':
3801 case 'F': case 'G': case 'H': case 'J': case 'K':
3802 case 'M': case 'N': case 'P': case 'Q': case 'S':
3803 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3806 ASM_FPRINTF_EXTENSIONS (file
, argptr
, p
)
3819 /* Split up a CONST_DOUBLE or integer constant rtx
3820 into two rtx's for single words,
3821 storing in *FIRST the word that comes first in memory in the target
3822 and in *SECOND the other. */
3825 split_double (rtx value
, rtx
*first
, rtx
*second
)
3827 if (CONST_INT_P (value
))
3829 if (HOST_BITS_PER_WIDE_INT
>= (2 * BITS_PER_WORD
))
3831 /* In this case the CONST_INT holds both target words.
3832 Extract the bits from it into two word-sized pieces.
3833 Sign extend each half to HOST_WIDE_INT. */
3834 unsigned HOST_WIDE_INT low
, high
;
3835 unsigned HOST_WIDE_INT mask
, sign_bit
, sign_extend
;
3836 unsigned bits_per_word
= BITS_PER_WORD
;
3838 /* Set sign_bit to the most significant bit of a word. */
3840 sign_bit
<<= bits_per_word
- 1;
3842 /* Set mask so that all bits of the word are set. We could
3843 have used 1 << BITS_PER_WORD instead of basing the
3844 calculation on sign_bit. However, on machines where
3845 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3846 compiler warning, even though the code would never be
3848 mask
= sign_bit
<< 1;
3851 /* Set sign_extend as any remaining bits. */
3852 sign_extend
= ~mask
;
3854 /* Pick the lower word and sign-extend it. */
3855 low
= INTVAL (value
);
3860 /* Pick the higher word, shifted to the least significant
3861 bits, and sign-extend it. */
3862 high
= INTVAL (value
);
3863 high
>>= bits_per_word
- 1;
3866 if (high
& sign_bit
)
3867 high
|= sign_extend
;
3869 /* Store the words in the target machine order. */
3870 if (WORDS_BIG_ENDIAN
)
3872 *first
= GEN_INT (high
);
3873 *second
= GEN_INT (low
);
3877 *first
= GEN_INT (low
);
3878 *second
= GEN_INT (high
);
3883 /* The rule for using CONST_INT for a wider mode
3884 is that we regard the value as signed.
3885 So sign-extend it. */
3886 rtx high
= (INTVAL (value
) < 0 ? constm1_rtx
: const0_rtx
);
3887 if (WORDS_BIG_ENDIAN
)
3899 else if (GET_CODE (value
) != CONST_DOUBLE
)
3901 if (WORDS_BIG_ENDIAN
)
3903 *first
= const0_rtx
;
3909 *second
= const0_rtx
;
3912 else if (GET_MODE (value
) == VOIDmode
3913 /* This is the old way we did CONST_DOUBLE integers. */
3914 || GET_MODE_CLASS (GET_MODE (value
)) == MODE_INT
)
3916 /* In an integer, the words are defined as most and least significant.
3917 So order them by the target's convention. */
3918 if (WORDS_BIG_ENDIAN
)
3920 *first
= GEN_INT (CONST_DOUBLE_HIGH (value
));
3921 *second
= GEN_INT (CONST_DOUBLE_LOW (value
));
3925 *first
= GEN_INT (CONST_DOUBLE_LOW (value
));
3926 *second
= GEN_INT (CONST_DOUBLE_HIGH (value
));
3933 REAL_VALUE_FROM_CONST_DOUBLE (r
, value
);
3935 /* Note, this converts the REAL_VALUE_TYPE to the target's
3936 format, splits up the floating point double and outputs
3937 exactly 32 bits of it into each of l[0] and l[1] --
3938 not necessarily BITS_PER_WORD bits. */
3939 REAL_VALUE_TO_TARGET_DOUBLE (r
, l
);
3941 /* If 32 bits is an entire word for the target, but not for the host,
3942 then sign-extend on the host so that the number will look the same
3943 way on the host that it would on the target. See for instance
3944 simplify_unary_operation. The #if is needed to avoid compiler
3947 #if HOST_BITS_PER_LONG > 32
3948 if (BITS_PER_WORD
< HOST_BITS_PER_LONG
&& BITS_PER_WORD
== 32)
3950 if (l
[0] & ((long) 1 << 31))
3951 l
[0] |= ((long) (-1) << 32);
3952 if (l
[1] & ((long) 1 << 31))
3953 l
[1] |= ((long) (-1) << 32);
3957 *first
= GEN_INT (l
[0]);
3958 *second
= GEN_INT (l
[1]);
3962 /* Return nonzero if this function has no function calls. */
3965 leaf_function_p (void)
3970 if (crtl
->profile
|| profile_arc_flag
)
3973 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
3976 && ! SIBLING_CALL_P (insn
))
3978 if (NONJUMP_INSN_P (insn
)
3979 && GET_CODE (PATTERN (insn
)) == SEQUENCE
3980 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))
3981 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
3984 for (link
= crtl
->epilogue_delay_list
;
3986 link
= XEXP (link
, 1))
3988 insn
= XEXP (link
, 0);
3991 && ! SIBLING_CALL_P (insn
))
3993 if (NONJUMP_INSN_P (insn
)
3994 && GET_CODE (PATTERN (insn
)) == SEQUENCE
3995 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))
3996 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
4003 /* Return 1 if branch is a forward branch.
4004 Uses insn_shuid array, so it works only in the final pass. May be used by
4005 output templates to customary add branch prediction hints.
4008 final_forward_branch_p (rtx insn
)
4010 int insn_id
, label_id
;
4012 gcc_assert (uid_shuid
);
4013 insn_id
= INSN_SHUID (insn
);
4014 label_id
= INSN_SHUID (JUMP_LABEL (insn
));
4015 /* We've hit some insns that does not have id information available. */
4016 gcc_assert (insn_id
&& label_id
);
4017 return insn_id
< label_id
;
4020 /* On some machines, a function with no call insns
4021 can run faster if it doesn't create its own register window.
4022 When output, the leaf function should use only the "output"
4023 registers. Ordinarily, the function would be compiled to use
4024 the "input" registers to find its arguments; it is a candidate
4025 for leaf treatment if it uses only the "input" registers.
4026 Leaf function treatment means renumbering so the function
4027 uses the "output" registers instead. */
4029 #ifdef LEAF_REGISTERS
4031 /* Return 1 if this function uses only the registers that can be
4032 safely renumbered. */
4035 only_leaf_regs_used (void)
4038 const char *const permitted_reg_in_leaf_functions
= LEAF_REGISTERS
;
4040 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4041 if ((df_regs_ever_live_p (i
) || global_regs
[i
])
4042 && ! permitted_reg_in_leaf_functions
[i
])
4045 if (crtl
->uses_pic_offset_table
4046 && pic_offset_table_rtx
!= 0
4047 && REG_P (pic_offset_table_rtx
)
4048 && ! permitted_reg_in_leaf_functions
[REGNO (pic_offset_table_rtx
)])
4054 /* Scan all instructions and renumber all registers into those
4055 available in leaf functions. */
4058 leaf_renumber_regs (rtx first
)
4062 /* Renumber only the actual patterns.
4063 The reg-notes can contain frame pointer refs,
4064 and renumbering them could crash, and should not be needed. */
4065 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
4067 leaf_renumber_regs_insn (PATTERN (insn
));
4068 for (insn
= crtl
->epilogue_delay_list
;
4070 insn
= XEXP (insn
, 1))
4071 if (INSN_P (XEXP (insn
, 0)))
4072 leaf_renumber_regs_insn (PATTERN (XEXP (insn
, 0)));
4075 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4076 available in leaf functions. */
4079 leaf_renumber_regs_insn (rtx in_rtx
)
4082 const char *format_ptr
;
4087 /* Renumber all input-registers into output-registers.
4088 renumbered_regs would be 1 for an output-register;
4095 /* Don't renumber the same reg twice. */
4099 newreg
= REGNO (in_rtx
);
4100 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4101 to reach here as part of a REG_NOTE. */
4102 if (newreg
>= FIRST_PSEUDO_REGISTER
)
4107 newreg
= LEAF_REG_REMAP (newreg
);
4108 gcc_assert (newreg
>= 0);
4109 df_set_regs_ever_live (REGNO (in_rtx
), false);
4110 df_set_regs_ever_live (newreg
, true);
4111 SET_REGNO (in_rtx
, newreg
);
4115 if (INSN_P (in_rtx
))
4117 /* Inside a SEQUENCE, we find insns.
4118 Renumber just the patterns of these insns,
4119 just as we do for the top-level insns. */
4120 leaf_renumber_regs_insn (PATTERN (in_rtx
));
4124 format_ptr
= GET_RTX_FORMAT (GET_CODE (in_rtx
));
4126 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (in_rtx
)); i
++)
4127 switch (*format_ptr
++)
4130 leaf_renumber_regs_insn (XEXP (in_rtx
, i
));
4134 if (NULL
!= XVEC (in_rtx
, i
))
4136 for (j
= 0; j
< XVECLEN (in_rtx
, i
); j
++)
4137 leaf_renumber_regs_insn (XVECEXP (in_rtx
, i
, j
));
4157 /* When -gused is used, emit debug info for only used symbols. But in
4158 addition to the standard intercepted debug_hooks there are some direct
4159 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
4160 Those routines may also be called from a higher level intercepted routine. So
4161 to prevent recording data for an inner call to one of these for an intercept,
4162 we maintain an intercept nesting counter (debug_nesting). We only save the
4163 intercepted arguments if the nesting is 1. */
4164 int debug_nesting
= 0;
4166 static tree
*symbol_queue
;
4167 int symbol_queue_index
= 0;
4168 static int symbol_queue_size
= 0;
4170 /* Generate the symbols for any queued up type symbols we encountered
4171 while generating the type info for some originally used symbol.
4172 This might generate additional entries in the queue. Only when
4173 the nesting depth goes to 0 is this routine called. */
4176 debug_flush_symbol_queue (void)
4180 /* Make sure that additionally queued items are not flushed
4185 for (i
= 0; i
< symbol_queue_index
; ++i
)
4187 /* If we pushed queued symbols then such symbols must be
4188 output no matter what anyone else says. Specifically,
4189 we need to make sure dbxout_symbol() thinks the symbol was
4190 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
4191 which may be set for outside reasons. */
4192 int saved_tree_used
= TREE_USED (symbol_queue
[i
]);
4193 int saved_suppress_debug
= TYPE_DECL_SUPPRESS_DEBUG (symbol_queue
[i
]);
4194 TREE_USED (symbol_queue
[i
]) = 1;
4195 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue
[i
]) = 0;
4197 #ifdef DBX_DEBUGGING_INFO
4198 dbxout_symbol (symbol_queue
[i
], 0);
4201 TREE_USED (symbol_queue
[i
]) = saved_tree_used
;
4202 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue
[i
]) = saved_suppress_debug
;
4205 symbol_queue_index
= 0;
4209 /* Queue a type symbol needed as part of the definition of a decl
4210 symbol. These symbols are generated when debug_flush_symbol_queue()
4214 debug_queue_symbol (tree decl
)
4216 if (symbol_queue_index
>= symbol_queue_size
)
4218 symbol_queue_size
+= 10;
4219 symbol_queue
= XRESIZEVEC (tree
, symbol_queue
, symbol_queue_size
);
4222 symbol_queue
[symbol_queue_index
++] = decl
;
4225 /* Free symbol queue. */
4227 debug_free_queue (void)
4231 free (symbol_queue
);
4232 symbol_queue
= NULL
;
4233 symbol_queue_size
= 0;
4237 /* Turn the RTL into assembly. */
4239 rest_of_handle_final (void)
4244 /* Get the function's name, as described by its RTL. This may be
4245 different from the DECL_NAME name used in the source file. */
4247 x
= DECL_RTL (current_function_decl
);
4248 gcc_assert (MEM_P (x
));
4250 gcc_assert (GET_CODE (x
) == SYMBOL_REF
);
4251 fnname
= XSTR (x
, 0);
4253 assemble_start_function (current_function_decl
, fnname
);
4254 final_start_function (get_insns (), asm_out_file
, optimize
);
4255 final (get_insns (), asm_out_file
, optimize
);
4256 final_end_function ();
4258 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4259 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4260 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4261 output_function_exception_table (fnname
);
4263 assemble_end_function (current_function_decl
, fnname
);
4265 user_defined_section_attribute
= false;
4267 /* Free up reg info memory. */
4271 fflush (asm_out_file
);
4273 /* Write DBX symbols if requested. */
4275 /* Note that for those inline functions where we don't initially
4276 know for certain that we will be generating an out-of-line copy,
4277 the first invocation of this routine (rest_of_compilation) will
4278 skip over this code by doing a `goto exit_rest_of_compilation;'.
4279 Later on, wrapup_global_declarations will (indirectly) call
4280 rest_of_compilation again for those inline functions that need
4281 to have out-of-line copies generated. During that call, we
4282 *will* be routed past here. */
4284 timevar_push (TV_SYMOUT
);
4285 if (!DECL_IGNORED_P (current_function_decl
))
4286 debug_hooks
->function_decl (current_function_decl
);
4287 timevar_pop (TV_SYMOUT
);
4289 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4290 DECL_INITIAL (current_function_decl
) = error_mark_node
;
4292 if (DECL_STATIC_CONSTRUCTOR (current_function_decl
)
4293 && targetm
.have_ctors_dtors
)
4294 targetm
.asm_out
.constructor (XEXP (DECL_RTL (current_function_decl
), 0),
4295 decl_init_priority_lookup
4296 (current_function_decl
));
4297 if (DECL_STATIC_DESTRUCTOR (current_function_decl
)
4298 && targetm
.have_ctors_dtors
)
4299 targetm
.asm_out
.destructor (XEXP (DECL_RTL (current_function_decl
), 0),
4300 decl_fini_priority_lookup
4301 (current_function_decl
));
4305 struct rtl_opt_pass pass_final
=
4311 rest_of_handle_final
, /* execute */
4314 0, /* static_pass_number */
4315 TV_FINAL
, /* tv_id */
4316 0, /* properties_required */
4317 0, /* properties_provided */
4318 0, /* properties_destroyed */
4319 0, /* todo_flags_start */
4320 TODO_ggc_collect
/* todo_flags_finish */
4326 rest_of_handle_shorten_branches (void)
4328 /* Shorten branches. */
4329 shorten_branches (get_insns ());
4333 struct rtl_opt_pass pass_shorten_branches
=
4337 "shorten", /* name */
4339 rest_of_handle_shorten_branches
, /* execute */
4342 0, /* static_pass_number */
4343 TV_FINAL
, /* tv_id */
4344 0, /* properties_required */
4345 0, /* properties_provided */
4346 0, /* properties_destroyed */
4347 0, /* todo_flags_start */
4348 TODO_dump_func
/* todo_flags_finish */
4354 rest_of_clean_state (void)
4357 FILE *final_output
= NULL
;
4358 int save_unnumbered
= flag_dump_unnumbered
;
4359 int save_noaddr
= flag_dump_noaddr
;
4361 if (flag_dump_final_insns
)
4363 final_output
= fopen (flag_dump_final_insns
, "a");
4366 error ("could not open final insn dump file %qs: %m",
4367 flag_dump_final_insns
);
4368 flag_dump_final_insns
= NULL
;
4373 struct cgraph_node
*node
= cgraph_node (current_function_decl
);
4375 aname
= (IDENTIFIER_POINTER
4376 (DECL_ASSEMBLER_NAME (current_function_decl
)));
4377 fprintf (final_output
, "\n;; Function (%s) %s\n\n", aname
,
4378 node
->frequency
== NODE_FREQUENCY_HOT
4380 : node
->frequency
== NODE_FREQUENCY_UNLIKELY_EXECUTED
4381 ? " (unlikely executed)"
4382 : node
->frequency
== NODE_FREQUENCY_EXECUTED_ONCE
4383 ? " (executed once)"
4386 flag_dump_noaddr
= flag_dump_unnumbered
= 1;
4387 if (flag_compare_debug_opt
|| flag_compare_debug
)
4388 dump_flags
|= TDF_NOUID
;
4389 final_insns_dump_p
= true;
4391 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4393 INSN_UID (insn
) = CODE_LABEL_NUMBER (insn
);
4395 INSN_UID (insn
) = 0;
4399 /* It is very important to decompose the RTL instruction chain here:
4400 debug information keeps pointing into CODE_LABEL insns inside the function
4401 body. If these remain pointing to the other insns, we end up preserving
4402 whole RTL chain and attached detailed debug info in memory. */
4403 for (insn
= get_insns (); insn
; insn
= next
)
4405 next
= NEXT_INSN (insn
);
4406 NEXT_INSN (insn
) = NULL
;
4407 PREV_INSN (insn
) = NULL
;
4410 && (!NOTE_P (insn
) ||
4411 (NOTE_KIND (insn
) != NOTE_INSN_VAR_LOCATION
4412 && NOTE_KIND (insn
) != NOTE_INSN_BLOCK_BEG
4413 && NOTE_KIND (insn
) != NOTE_INSN_BLOCK_END
4414 && NOTE_KIND (insn
) != NOTE_INSN_CFA_RESTORE_STATE
)))
4415 print_rtl_single (final_output
, insn
);
4421 flag_dump_noaddr
= save_noaddr
;
4422 flag_dump_unnumbered
= save_unnumbered
;
4423 final_insns_dump_p
= false;
4425 if (fclose (final_output
))
4427 error ("could not close final insn dump file %qs: %m",
4428 flag_dump_final_insns
);
4429 flag_dump_final_insns
= NULL
;
4433 /* In case the function was not output,
4434 don't leave any temporary anonymous types
4435 queued up for sdb output. */
4436 #ifdef SDB_DEBUGGING_INFO
4437 if (write_symbols
== SDB_DEBUG
)
4438 sdbout_types (NULL_TREE
);
4441 flag_rerun_cse_after_global_opts
= 0;
4442 reload_completed
= 0;
4443 epilogue_completed
= 0;
4445 regstack_completed
= 0;
4448 /* Clear out the insn_length contents now that they are no
4450 init_insn_lengths ();
4452 /* Show no temporary slots allocated. */
4455 free_bb_for_insn ();
4459 /* We can reduce stack alignment on call site only when we are sure that
4460 the function body just produced will be actually used in the final
4462 if (decl_binds_to_current_def_p (current_function_decl
))
4464 unsigned int pref
= crtl
->preferred_stack_boundary
;
4465 if (crtl
->stack_alignment_needed
> crtl
->preferred_stack_boundary
)
4466 pref
= crtl
->stack_alignment_needed
;
4467 cgraph_rtl_info (current_function_decl
)->preferred_incoming_stack_boundary
4471 /* Make sure volatile mem refs aren't considered valid operands for
4472 arithmetic insns. We must call this here if this is a nested inline
4473 function, since the above code leaves us in the init_recog state,
4474 and the function context push/pop code does not save/restore volatile_ok.
4476 ??? Maybe it isn't necessary for expand_start_function to call this
4477 anymore if we do it here? */
4479 init_recog_no_volatile ();
4481 /* We're done with this function. Free up memory if we can. */
4482 free_after_parsing (cfun
);
4483 free_after_compilation (cfun
);
4487 struct rtl_opt_pass pass_clean_state
=
4491 "*clean_state", /* name */
4493 rest_of_clean_state
, /* execute */
4496 0, /* static_pass_number */
4497 TV_FINAL
, /* tv_id */
4498 0, /* properties_required */
4499 0, /* properties_provided */
4500 PROP_rtl
, /* properties_destroyed */
4501 0, /* todo_flags_start */
4502 0 /* todo_flags_finish */