1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c.
32 The low-level allocation routines oballoc and permalloc
33 are used also for allocating many other kinds of objects
34 by all passes of the compiler. */
49 #include "langhooks.h"
51 #define obstack_chunk_alloc xmalloc
52 #define obstack_chunk_free free
53 /* obstack.[ch] explicitly declined to prototype this. */
54 extern int _obstack_allocated_p
PARAMS ((struct obstack
*h
, PTR obj
));
56 /* Objects allocated on this obstack last forever. */
58 struct obstack permanent_obstack
;
60 /* Statistics-gathering stuff. */
80 int tree_node_counts
[(int) all_kinds
];
81 int tree_node_sizes
[(int) all_kinds
];
83 static const char * const tree_node_kind_names
[] = {
100 /* Unique id for next decl created. */
101 static int next_decl_uid
;
102 /* Unique id for next type created. */
103 static int next_type_uid
= 1;
105 /* Since we cannot rehash a type after it is in the table, we have to
106 keep the hash code. */
114 /* Initial size of the hash table (rounded to next prime). */
115 #define TYPE_HASH_INITIAL_SIZE 1000
117 /* Now here is the hash table. When recording a type, it is added to
118 the slot whose index is the hash code. Note that the hash table is
119 used for several kinds of types (function types, array types and
120 array index range types, for now). While all these live in the
121 same table, they are completely independent, and the hash code is
122 computed differently for each of these. */
124 htab_t type_hash_table
;
126 static void set_type_quals
PARAMS ((tree
, int));
127 static void append_random_chars
PARAMS ((char *));
128 static int type_hash_eq
PARAMS ((const void *, const void *));
129 static unsigned int type_hash_hash
PARAMS ((const void *));
130 static void print_type_hash_statistics
PARAMS((void));
131 static void finish_vector_type
PARAMS((tree
));
132 static tree make_vector
PARAMS ((enum machine_mode
, tree
, int));
133 static int type_hash_marked_p
PARAMS ((const void *));
134 static void type_hash_mark
PARAMS ((const void *));
135 static int mark_tree_hashtable_entry
PARAMS((void **, void *));
137 tree global_trees
[TI_MAX
];
138 tree integer_types
[itk_none
];
140 /* Init the principal obstacks. */
145 gcc_obstack_init (&permanent_obstack
);
147 /* Initialize the hash table of types. */
148 type_hash_table
= htab_create (TYPE_HASH_INITIAL_SIZE
, type_hash_hash
,
150 ggc_add_deletable_htab (type_hash_table
, type_hash_marked_p
,
152 ggc_add_tree_root (global_trees
, TI_MAX
);
153 ggc_add_tree_root (integer_types
, itk_none
);
157 /* Allocate SIZE bytes in the permanent obstack
158 and return a pointer to them. */
164 return (char *) obstack_alloc (&permanent_obstack
, size
);
167 /* Allocate NELEM items of SIZE bytes in the permanent obstack
168 and return a pointer to them. The storage is cleared before
169 returning the value. */
172 perm_calloc (nelem
, size
)
176 char *rval
= (char *) obstack_alloc (&permanent_obstack
, nelem
* size
);
177 memset (rval
, 0, nelem
* size
);
181 /* The name of the object as the assembler will see it (but before any
182 translations made by ASM_OUTPUT_LABELREF). Often this is the same
183 as DECL_NAME. It is an IDENTIFIER_NODE. */
185 decl_assembler_name (decl
)
188 if (!DECL_ASSEMBLER_NAME_SET_P (decl
))
189 (*lang_hooks
.set_decl_assembler_name
) (decl
);
190 return DECL_CHECK (decl
)->decl
.assembler_name
;
193 /* Compute the number of bytes occupied by 'node'. This routine only
194 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
199 enum tree_code code
= TREE_CODE (node
);
201 switch (TREE_CODE_CLASS (code
))
203 case 'd': /* A decl node */
204 return sizeof (struct tree_decl
);
206 case 't': /* a type node */
207 return sizeof (struct tree_type
);
209 case 'b': /* a lexical block node */
210 return sizeof (struct tree_block
);
212 case 'r': /* a reference */
213 case 'e': /* an expression */
214 case 's': /* an expression with side effects */
215 case '<': /* a comparison expression */
216 case '1': /* a unary arithmetic expression */
217 case '2': /* a binary arithmetic expression */
218 return (sizeof (struct tree_exp
)
219 + (TREE_CODE_LENGTH (code
) - 1) * sizeof (char *));
221 case 'c': /* a constant */
222 /* We can't use TREE_CODE_LENGTH for INTEGER_CST, since the number of
223 words is machine-dependent due to varying length of HOST_WIDE_INT,
224 which might be wider than a pointer (e.g., long long). Similarly
225 for REAL_CST, since the number of words is machine-dependent due
226 to varying size and alignment of `double'. */
227 if (code
== INTEGER_CST
)
228 return sizeof (struct tree_int_cst
);
229 else if (code
== REAL_CST
)
230 return sizeof (struct tree_real_cst
);
232 return (sizeof (struct tree_common
)
233 + TREE_CODE_LENGTH (code
) * sizeof (char *));
235 case 'x': /* something random, like an identifier. */
238 length
= (sizeof (struct tree_common
)
239 + TREE_CODE_LENGTH (code
) * sizeof (char *));
240 if (code
== TREE_VEC
)
241 length
+= (TREE_VEC_LENGTH (node
) - 1) * sizeof (char *);
250 /* Return a newly allocated node of code CODE.
251 For decl and type nodes, some other fields are initialized.
252 The rest of the node is initialized to zero.
254 Achoo! I got a code in the node. */
261 int type
= TREE_CODE_CLASS (code
);
263 #ifdef GATHER_STATISTICS
266 struct tree_common ttmp
;
268 /* We can't allocate a TREE_VEC without knowing how many elements
270 if (code
== TREE_VEC
)
273 TREE_SET_CODE ((tree
)&ttmp
, code
);
274 length
= tree_size ((tree
)&ttmp
);
276 #ifdef GATHER_STATISTICS
279 case 'd': /* A decl node */
283 case 't': /* a type node */
287 case 'b': /* a lexical block */
291 case 's': /* an expression with side effects */
295 case 'r': /* a reference */
299 case 'e': /* an expression */
300 case '<': /* a comparison expression */
301 case '1': /* a unary arithmetic expression */
302 case '2': /* a binary arithmetic expression */
306 case 'c': /* a constant */
310 case 'x': /* something random, like an identifier. */
311 if (code
== IDENTIFIER_NODE
)
313 else if (code
== TREE_VEC
)
323 tree_node_counts
[(int) kind
]++;
324 tree_node_sizes
[(int) kind
] += length
;
327 t
= ggc_alloc_tree (length
);
329 memset ((PTR
) t
, 0, length
);
331 TREE_SET_CODE (t
, code
);
336 TREE_SIDE_EFFECTS (t
) = 1;
337 TREE_TYPE (t
) = void_type_node
;
341 if (code
!= FUNCTION_DECL
)
343 DECL_USER_ALIGN (t
) = 0;
344 DECL_IN_SYSTEM_HEADER (t
) = in_system_header
;
345 DECL_SOURCE_LINE (t
) = lineno
;
346 DECL_SOURCE_FILE (t
) =
347 (input_filename
) ? input_filename
: "<built-in>";
348 DECL_UID (t
) = next_decl_uid
++;
350 /* We have not yet computed the alias set for this declaration. */
351 DECL_POINTER_ALIAS_SET (t
) = -1;
355 TYPE_UID (t
) = next_type_uid
++;
356 TYPE_ALIGN (t
) = char_type_node
? TYPE_ALIGN (char_type_node
) : 0;
357 TYPE_USER_ALIGN (t
) = 0;
358 TYPE_MAIN_VARIANT (t
) = t
;
360 /* Default to no attributes for type, but let target change that. */
361 TYPE_ATTRIBUTES (t
) = NULL_TREE
;
362 (*targetm
.set_default_type_attributes
) (t
);
364 /* We have not yet computed the alias set for this type. */
365 TYPE_ALIAS_SET (t
) = -1;
369 TREE_CONSTANT (t
) = 1;
379 case PREDECREMENT_EXPR
:
380 case PREINCREMENT_EXPR
:
381 case POSTDECREMENT_EXPR
:
382 case POSTINCREMENT_EXPR
:
383 /* All of these have side-effects, no matter what their
385 TREE_SIDE_EFFECTS (t
) = 1;
397 /* Return a new node with the same contents as NODE except that its
398 TREE_CHAIN is zero and it has a fresh uid. */
405 enum tree_code code
= TREE_CODE (node
);
408 length
= tree_size (node
);
409 t
= ggc_alloc_tree (length
);
410 memcpy (t
, node
, length
);
413 TREE_ASM_WRITTEN (t
) = 0;
415 if (TREE_CODE_CLASS (code
) == 'd')
416 DECL_UID (t
) = next_decl_uid
++;
417 else if (TREE_CODE_CLASS (code
) == 't')
419 TYPE_UID (t
) = next_type_uid
++;
420 /* The following is so that the debug code for
421 the copy is different from the original type.
422 The two statements usually duplicate each other
423 (because they clear fields of the same union),
424 but the optimizer should catch that. */
425 TYPE_SYMTAB_POINTER (t
) = 0;
426 TYPE_SYMTAB_ADDRESS (t
) = 0;
432 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
433 For example, this can copy a list made of TREE_LIST nodes. */
445 head
= prev
= copy_node (list
);
446 next
= TREE_CHAIN (list
);
449 TREE_CHAIN (prev
) = copy_node (next
);
450 prev
= TREE_CHAIN (prev
);
451 next
= TREE_CHAIN (next
);
457 /* Return a newly constructed INTEGER_CST node whose constant value
458 is specified by the two ints LOW and HI.
459 The TREE_TYPE is set to `int'.
461 This function should be used via the `build_int_2' macro. */
464 build_int_2_wide (low
, hi
)
465 unsigned HOST_WIDE_INT low
;
468 tree t
= make_node (INTEGER_CST
);
470 TREE_INT_CST_LOW (t
) = low
;
471 TREE_INT_CST_HIGH (t
) = hi
;
472 TREE_TYPE (t
) = integer_type_node
;
476 /* Return a new VECTOR_CST node whose type is TYPE and whose values
477 are in a list pointed by VALS. */
480 build_vector (type
, vals
)
483 tree v
= make_node (VECTOR_CST
);
484 int over1
= 0, over2
= 0;
487 TREE_VECTOR_CST_ELTS (v
) = vals
;
488 TREE_TYPE (v
) = type
;
490 /* Iterate through elements and check for overflow. */
491 for (link
= vals
; link
; link
= TREE_CHAIN (link
))
493 tree value
= TREE_VALUE (link
);
495 over1
|= TREE_OVERFLOW (value
);
496 over2
|= TREE_CONSTANT_OVERFLOW (value
);
499 TREE_OVERFLOW (v
) = over1
;
500 TREE_CONSTANT_OVERFLOW (v
) = over2
;
505 /* Return a new REAL_CST node whose type is TYPE and value is D. */
516 /* Check for valid float value for this type on this target machine;
517 if not, can print error message and store a valid value in D. */
518 #ifdef CHECK_FLOAT_VALUE
519 CHECK_FLOAT_VALUE (TYPE_MODE (type
), d
, overflow
);
522 v
= make_node (REAL_CST
);
523 dp
= ggc_alloc (sizeof (REAL_VALUE_TYPE
));
524 memcpy (dp
, &d
, sizeof (REAL_VALUE_TYPE
));
526 TREE_TYPE (v
) = type
;
527 TREE_REAL_CST_PTR (v
) = dp
;
528 TREE_OVERFLOW (v
) = TREE_CONSTANT_OVERFLOW (v
) = overflow
;
532 /* Return a new REAL_CST node whose type is TYPE
533 and whose value is the integer value of the INTEGER_CST node I. */
536 real_value_from_int_cst (type
, i
)
537 tree type ATTRIBUTE_UNUSED
, i
;
541 /* Clear all bits of the real value type so that we can later do
542 bitwise comparisons to see if two values are the same. */
543 memset ((char *) &d
, 0, sizeof d
);
545 if (! TREE_UNSIGNED (TREE_TYPE (i
)))
546 REAL_VALUE_FROM_INT (d
, TREE_INT_CST_LOW (i
), TREE_INT_CST_HIGH (i
),
549 REAL_VALUE_FROM_UNSIGNED_INT (d
, TREE_INT_CST_LOW (i
),
550 TREE_INT_CST_HIGH (i
), TYPE_MODE (type
));
554 /* Given a tree representing an integer constant I, return a tree
555 representing the same value as a floating-point constant of type TYPE. */
558 build_real_from_int_cst (type
, i
)
563 int overflow
= TREE_OVERFLOW (i
);
565 v
= build_real (type
, real_value_from_int_cst (type
, i
));
567 TREE_OVERFLOW (v
) |= overflow
;
568 TREE_CONSTANT_OVERFLOW (v
) |= overflow
;
572 /* Return a newly constructed STRING_CST node whose value is
573 the LEN characters at STR.
574 The TREE_TYPE is not initialized. */
577 build_string (len
, str
)
581 tree s
= make_node (STRING_CST
);
583 TREE_STRING_LENGTH (s
) = len
;
584 TREE_STRING_POINTER (s
) = ggc_alloc_string (str
, len
);
589 /* Return a newly constructed COMPLEX_CST node whose value is
590 specified by the real and imaginary parts REAL and IMAG.
591 Both REAL and IMAG should be constant nodes. TYPE, if specified,
592 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
595 build_complex (type
, real
, imag
)
599 tree t
= make_node (COMPLEX_CST
);
601 TREE_REALPART (t
) = real
;
602 TREE_IMAGPART (t
) = imag
;
603 TREE_TYPE (t
) = type
? type
: build_complex_type (TREE_TYPE (real
));
604 TREE_OVERFLOW (t
) = TREE_OVERFLOW (real
) | TREE_OVERFLOW (imag
);
605 TREE_CONSTANT_OVERFLOW (t
)
606 = TREE_CONSTANT_OVERFLOW (real
) | TREE_CONSTANT_OVERFLOW (imag
);
610 /* Build a newly constructed TREE_VEC node of length LEN. */
617 int length
= (len
- 1) * sizeof (tree
) + sizeof (struct tree_vec
);
619 #ifdef GATHER_STATISTICS
620 tree_node_counts
[(int) vec_kind
]++;
621 tree_node_sizes
[(int) vec_kind
] += length
;
624 t
= ggc_alloc_tree (length
);
626 memset ((PTR
) t
, 0, length
);
627 TREE_SET_CODE (t
, TREE_VEC
);
628 TREE_VEC_LENGTH (t
) = len
;
633 /* Return 1 if EXPR is the integer constant zero or a complex constant
642 return ((TREE_CODE (expr
) == INTEGER_CST
643 && ! TREE_CONSTANT_OVERFLOW (expr
)
644 && TREE_INT_CST_LOW (expr
) == 0
645 && TREE_INT_CST_HIGH (expr
) == 0)
646 || (TREE_CODE (expr
) == COMPLEX_CST
647 && integer_zerop (TREE_REALPART (expr
))
648 && integer_zerop (TREE_IMAGPART (expr
))));
651 /* Return 1 if EXPR is the integer constant one or the corresponding
660 return ((TREE_CODE (expr
) == INTEGER_CST
661 && ! TREE_CONSTANT_OVERFLOW (expr
)
662 && TREE_INT_CST_LOW (expr
) == 1
663 && TREE_INT_CST_HIGH (expr
) == 0)
664 || (TREE_CODE (expr
) == COMPLEX_CST
665 && integer_onep (TREE_REALPART (expr
))
666 && integer_zerop (TREE_IMAGPART (expr
))));
669 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
670 it contains. Likewise for the corresponding complex constant. */
673 integer_all_onesp (expr
)
681 if (TREE_CODE (expr
) == COMPLEX_CST
682 && integer_all_onesp (TREE_REALPART (expr
))
683 && integer_zerop (TREE_IMAGPART (expr
)))
686 else if (TREE_CODE (expr
) != INTEGER_CST
687 || TREE_CONSTANT_OVERFLOW (expr
))
690 uns
= TREE_UNSIGNED (TREE_TYPE (expr
));
692 return (TREE_INT_CST_LOW (expr
) == ~(unsigned HOST_WIDE_INT
) 0
693 && TREE_INT_CST_HIGH (expr
) == -1);
695 /* Note that using TYPE_PRECISION here is wrong. We care about the
696 actual bits, not the (arbitrary) range of the type. */
697 prec
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr
)));
698 if (prec
>= HOST_BITS_PER_WIDE_INT
)
700 HOST_WIDE_INT high_value
;
703 shift_amount
= prec
- HOST_BITS_PER_WIDE_INT
;
705 if (shift_amount
> HOST_BITS_PER_WIDE_INT
)
706 /* Can not handle precisions greater than twice the host int size. */
708 else if (shift_amount
== HOST_BITS_PER_WIDE_INT
)
709 /* Shifting by the host word size is undefined according to the ANSI
710 standard, so we must handle this as a special case. */
713 high_value
= ((HOST_WIDE_INT
) 1 << shift_amount
) - 1;
715 return (TREE_INT_CST_LOW (expr
) == ~(unsigned HOST_WIDE_INT
) 0
716 && TREE_INT_CST_HIGH (expr
) == high_value
);
719 return TREE_INT_CST_LOW (expr
) == ((unsigned HOST_WIDE_INT
) 1 << prec
) - 1;
722 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
730 HOST_WIDE_INT high
, low
;
734 if (TREE_CODE (expr
) == COMPLEX_CST
735 && integer_pow2p (TREE_REALPART (expr
))
736 && integer_zerop (TREE_IMAGPART (expr
)))
739 if (TREE_CODE (expr
) != INTEGER_CST
|| TREE_CONSTANT_OVERFLOW (expr
))
742 prec
= (POINTER_TYPE_P (TREE_TYPE (expr
))
743 ? POINTER_SIZE
: TYPE_PRECISION (TREE_TYPE (expr
)));
744 high
= TREE_INT_CST_HIGH (expr
);
745 low
= TREE_INT_CST_LOW (expr
);
747 /* First clear all bits that are beyond the type's precision in case
748 we've been sign extended. */
750 if (prec
== 2 * HOST_BITS_PER_WIDE_INT
)
752 else if (prec
> HOST_BITS_PER_WIDE_INT
)
753 high
&= ~((HOST_WIDE_INT
) (-1) << (prec
- HOST_BITS_PER_WIDE_INT
));
757 if (prec
< HOST_BITS_PER_WIDE_INT
)
758 low
&= ~((HOST_WIDE_INT
) (-1) << prec
);
761 if (high
== 0 && low
== 0)
764 return ((high
== 0 && (low
& (low
- 1)) == 0)
765 || (low
== 0 && (high
& (high
- 1)) == 0));
768 /* Return the power of two represented by a tree node known to be a
776 HOST_WIDE_INT high
, low
;
780 if (TREE_CODE (expr
) == COMPLEX_CST
)
781 return tree_log2 (TREE_REALPART (expr
));
783 prec
= (POINTER_TYPE_P (TREE_TYPE (expr
))
784 ? POINTER_SIZE
: TYPE_PRECISION (TREE_TYPE (expr
)));
786 high
= TREE_INT_CST_HIGH (expr
);
787 low
= TREE_INT_CST_LOW (expr
);
789 /* First clear all bits that are beyond the type's precision in case
790 we've been sign extended. */
792 if (prec
== 2 * HOST_BITS_PER_WIDE_INT
)
794 else if (prec
> HOST_BITS_PER_WIDE_INT
)
795 high
&= ~((HOST_WIDE_INT
) (-1) << (prec
- HOST_BITS_PER_WIDE_INT
));
799 if (prec
< HOST_BITS_PER_WIDE_INT
)
800 low
&= ~((HOST_WIDE_INT
) (-1) << prec
);
803 return (high
!= 0 ? HOST_BITS_PER_WIDE_INT
+ exact_log2 (high
)
807 /* Similar, but return the largest integer Y such that 2 ** Y is less
808 than or equal to EXPR. */
811 tree_floor_log2 (expr
)
815 HOST_WIDE_INT high
, low
;
819 if (TREE_CODE (expr
) == COMPLEX_CST
)
820 return tree_log2 (TREE_REALPART (expr
));
822 prec
= (POINTER_TYPE_P (TREE_TYPE (expr
))
823 ? POINTER_SIZE
: TYPE_PRECISION (TREE_TYPE (expr
)));
825 high
= TREE_INT_CST_HIGH (expr
);
826 low
= TREE_INT_CST_LOW (expr
);
828 /* First clear all bits that are beyond the type's precision in case
829 we've been sign extended. Ignore if type's precision hasn't been set
830 since what we are doing is setting it. */
832 if (prec
== 2 * HOST_BITS_PER_WIDE_INT
|| prec
== 0)
834 else if (prec
> HOST_BITS_PER_WIDE_INT
)
835 high
&= ~((HOST_WIDE_INT
) (-1) << (prec
- HOST_BITS_PER_WIDE_INT
));
839 if (prec
< HOST_BITS_PER_WIDE_INT
)
840 low
&= ~((HOST_WIDE_INT
) (-1) << prec
);
843 return (high
!= 0 ? HOST_BITS_PER_WIDE_INT
+ floor_log2 (high
)
847 /* Return 1 if EXPR is the real constant zero. */
855 return ((TREE_CODE (expr
) == REAL_CST
856 && ! TREE_CONSTANT_OVERFLOW (expr
)
857 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr
), dconst0
))
858 || (TREE_CODE (expr
) == COMPLEX_CST
859 && real_zerop (TREE_REALPART (expr
))
860 && real_zerop (TREE_IMAGPART (expr
))));
863 /* Return 1 if EXPR is the real constant one in real or complex form. */
871 return ((TREE_CODE (expr
) == REAL_CST
872 && ! TREE_CONSTANT_OVERFLOW (expr
)
873 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr
), dconst1
))
874 || (TREE_CODE (expr
) == COMPLEX_CST
875 && real_onep (TREE_REALPART (expr
))
876 && real_zerop (TREE_IMAGPART (expr
))));
879 /* Return 1 if EXPR is the real constant two. */
887 return ((TREE_CODE (expr
) == REAL_CST
888 && ! TREE_CONSTANT_OVERFLOW (expr
)
889 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr
), dconst2
))
890 || (TREE_CODE (expr
) == COMPLEX_CST
891 && real_twop (TREE_REALPART (expr
))
892 && real_zerop (TREE_IMAGPART (expr
))));
895 /* Return 1 if EXPR is the real constant minus one. */
898 real_minus_onep (expr
)
903 return ((TREE_CODE (expr
) == REAL_CST
904 && ! TREE_CONSTANT_OVERFLOW (expr
)
905 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr
), dconstm1
))
906 || (TREE_CODE (expr
) == COMPLEX_CST
907 && real_minus_onep (TREE_REALPART (expr
))
908 && real_zerop (TREE_IMAGPART (expr
))));
911 /* Nonzero if EXP is a constant or a cast of a constant. */
914 really_constant_p (exp
)
917 /* This is not quite the same as STRIP_NOPS. It does more. */
918 while (TREE_CODE (exp
) == NOP_EXPR
919 || TREE_CODE (exp
) == CONVERT_EXPR
920 || TREE_CODE (exp
) == NON_LVALUE_EXPR
)
921 exp
= TREE_OPERAND (exp
, 0);
922 return TREE_CONSTANT (exp
);
925 /* Return first list element whose TREE_VALUE is ELEM.
926 Return 0 if ELEM is not in LIST. */
929 value_member (elem
, list
)
934 if (elem
== TREE_VALUE (list
))
936 list
= TREE_CHAIN (list
);
941 /* Return first list element whose TREE_PURPOSE is ELEM.
942 Return 0 if ELEM is not in LIST. */
945 purpose_member (elem
, list
)
950 if (elem
== TREE_PURPOSE (list
))
952 list
= TREE_CHAIN (list
);
957 /* Return first list element whose BINFO_TYPE is ELEM.
958 Return 0 if ELEM is not in LIST. */
961 binfo_member (elem
, list
)
966 if (elem
== BINFO_TYPE (list
))
968 list
= TREE_CHAIN (list
);
973 /* Return nonzero if ELEM is part of the chain CHAIN. */
976 chain_member (elem
, chain
)
983 chain
= TREE_CHAIN (chain
);
989 /* Return nonzero if ELEM is equal to TREE_VALUE (CHAIN) for any piece of
990 chain CHAIN. This and the next function are currently unused, but
991 are retained for completeness. */
994 chain_member_value (elem
, chain
)
999 if (elem
== TREE_VALUE (chain
))
1001 chain
= TREE_CHAIN (chain
);
1007 /* Return nonzero if ELEM is equal to TREE_PURPOSE (CHAIN)
1008 for any piece of chain CHAIN. */
1011 chain_member_purpose (elem
, chain
)
1016 if (elem
== TREE_PURPOSE (chain
))
1018 chain
= TREE_CHAIN (chain
);
1024 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1025 We expect a null pointer to mark the end of the chain.
1026 This is the Lisp primitive `length'. */
1035 for (tail
= t
; tail
; tail
= TREE_CHAIN (tail
))
1041 /* Returns the number of FIELD_DECLs in TYPE. */
1044 fields_length (type
)
1047 tree t
= TYPE_FIELDS (type
);
1050 for (; t
; t
= TREE_CHAIN (t
))
1051 if (TREE_CODE (t
) == FIELD_DECL
)
1057 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1058 by modifying the last node in chain 1 to point to chain 2.
1059 This is the Lisp primitive `nconc'. */
1069 #ifdef ENABLE_TREE_CHECKING
1073 for (t1
= op1
; TREE_CHAIN (t1
); t1
= TREE_CHAIN (t1
))
1075 TREE_CHAIN (t1
) = op2
;
1076 #ifdef ENABLE_TREE_CHECKING
1077 for (t2
= op2
; t2
; t2
= TREE_CHAIN (t2
))
1079 abort (); /* Circularity created. */
1087 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1095 while ((next
= TREE_CHAIN (chain
)))
1100 /* Reverse the order of elements in the chain T,
1101 and return the new head of the chain (old last element). */
1107 tree prev
= 0, decl
, next
;
1108 for (decl
= t
; decl
; decl
= next
)
1110 next
= TREE_CHAIN (decl
);
1111 TREE_CHAIN (decl
) = prev
;
1117 /* Given a chain CHAIN of tree nodes,
1118 construct and return a list of those nodes. */
1124 tree result
= NULL_TREE
;
1125 tree in_tail
= chain
;
1126 tree out_tail
= NULL_TREE
;
1130 tree next
= tree_cons (NULL_TREE
, in_tail
, NULL_TREE
);
1132 TREE_CHAIN (out_tail
) = next
;
1136 in_tail
= TREE_CHAIN (in_tail
);
1142 /* Return a newly created TREE_LIST node whose
1143 purpose and value fields are PARM and VALUE. */
1146 build_tree_list (parm
, value
)
1149 tree t
= make_node (TREE_LIST
);
1150 TREE_PURPOSE (t
) = parm
;
1151 TREE_VALUE (t
) = value
;
1155 /* Return a newly created TREE_LIST node whose
1156 purpose and value fields are PARM and VALUE
1157 and whose TREE_CHAIN is CHAIN. */
1160 tree_cons (purpose
, value
, chain
)
1161 tree purpose
, value
, chain
;
1165 node
= ggc_alloc_tree (sizeof (struct tree_list
));
1167 memset (node
, 0, sizeof (struct tree_common
));
1169 #ifdef GATHER_STATISTICS
1170 tree_node_counts
[(int) x_kind
]++;
1171 tree_node_sizes
[(int) x_kind
] += sizeof (struct tree_list
);
1174 TREE_SET_CODE (node
, TREE_LIST
);
1175 TREE_CHAIN (node
) = chain
;
1176 TREE_PURPOSE (node
) = purpose
;
1177 TREE_VALUE (node
) = value
;
1182 /* Return the size nominally occupied by an object of type TYPE
1183 when it resides in memory. The value is measured in units of bytes,
1184 and its data type is that normally used for type sizes
1185 (which is the first type created by make_signed_type or
1186 make_unsigned_type). */
1189 size_in_bytes (type
)
1194 if (type
== error_mark_node
)
1195 return integer_zero_node
;
1197 type
= TYPE_MAIN_VARIANT (type
);
1198 t
= TYPE_SIZE_UNIT (type
);
1202 (*lang_hooks
.types
.incomplete_type_error
) (NULL_TREE
, type
);
1203 return size_zero_node
;
1206 if (TREE_CODE (t
) == INTEGER_CST
)
1207 force_fit_type (t
, 0);
1212 /* Return the size of TYPE (in bytes) as a wide integer
1213 or return -1 if the size can vary or is larger than an integer. */
1216 int_size_in_bytes (type
)
1221 if (type
== error_mark_node
)
1224 type
= TYPE_MAIN_VARIANT (type
);
1225 t
= TYPE_SIZE_UNIT (type
);
1227 || TREE_CODE (t
) != INTEGER_CST
1228 || TREE_OVERFLOW (t
)
1229 || TREE_INT_CST_HIGH (t
) != 0
1230 /* If the result would appear negative, it's too big to represent. */
1231 || (HOST_WIDE_INT
) TREE_INT_CST_LOW (t
) < 0)
1234 return TREE_INT_CST_LOW (t
);
1237 /* Return the bit position of FIELD, in bits from the start of the record.
1238 This is a tree of type bitsizetype. */
1241 bit_position (field
)
1245 return bit_from_pos (DECL_FIELD_OFFSET (field
),
1246 DECL_FIELD_BIT_OFFSET (field
));
1249 /* Likewise, but return as an integer. Abort if it cannot be represented
1250 in that way (since it could be a signed value, we don't have the option
1251 of returning -1 like int_size_in_byte can. */
1254 int_bit_position (field
)
1257 return tree_low_cst (bit_position (field
), 0);
1260 /* Return the byte position of FIELD, in bytes from the start of the record.
1261 This is a tree of type sizetype. */
1264 byte_position (field
)
1267 return byte_from_pos (DECL_FIELD_OFFSET (field
),
1268 DECL_FIELD_BIT_OFFSET (field
));
1271 /* Likewise, but return as an integer. Abort if it cannot be represented
1272 in that way (since it could be a signed value, we don't have the option
1273 of returning -1 like int_size_in_byte can. */
1276 int_byte_position (field
)
1279 return tree_low_cst (byte_position (field
), 0);
1282 /* Return the strictest alignment, in bits, that T is known to have. */
1288 unsigned int align0
, align1
;
1290 switch (TREE_CODE (t
))
1292 case NOP_EXPR
: case CONVERT_EXPR
: case NON_LVALUE_EXPR
:
1293 /* If we have conversions, we know that the alignment of the
1294 object must meet each of the alignments of the types. */
1295 align0
= expr_align (TREE_OPERAND (t
, 0));
1296 align1
= TYPE_ALIGN (TREE_TYPE (t
));
1297 return MAX (align0
, align1
);
1299 case SAVE_EXPR
: case COMPOUND_EXPR
: case MODIFY_EXPR
:
1300 case INIT_EXPR
: case TARGET_EXPR
: case WITH_CLEANUP_EXPR
:
1301 case WITH_RECORD_EXPR
: case CLEANUP_POINT_EXPR
: case UNSAVE_EXPR
:
1302 /* These don't change the alignment of an object. */
1303 return expr_align (TREE_OPERAND (t
, 0));
1306 /* The best we can do is say that the alignment is the least aligned
1308 align0
= expr_align (TREE_OPERAND (t
, 1));
1309 align1
= expr_align (TREE_OPERAND (t
, 2));
1310 return MIN (align0
, align1
);
1312 case LABEL_DECL
: case CONST_DECL
:
1313 case VAR_DECL
: case PARM_DECL
: case RESULT_DECL
:
1314 if (DECL_ALIGN (t
) != 0)
1315 return DECL_ALIGN (t
);
1319 return FUNCTION_BOUNDARY
;
1325 /* Otherwise take the alignment from that of the type. */
1326 return TYPE_ALIGN (TREE_TYPE (t
));
1329 /* Return, as a tree node, the number of elements for TYPE (which is an
1330 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1333 array_type_nelts (type
)
1336 tree index_type
, min
, max
;
1338 /* If they did it with unspecified bounds, then we should have already
1339 given an error about it before we got here. */
1340 if (! TYPE_DOMAIN (type
))
1341 return error_mark_node
;
1343 index_type
= TYPE_DOMAIN (type
);
1344 min
= TYPE_MIN_VALUE (index_type
);
1345 max
= TYPE_MAX_VALUE (index_type
);
1347 return (integer_zerop (min
)
1349 : fold (build (MINUS_EXPR
, TREE_TYPE (max
), max
, min
)));
1352 /* Return nonzero if arg is static -- a reference to an object in
1353 static storage. This is not the same as the C meaning of `static'. */
1359 switch (TREE_CODE (arg
))
1362 /* Nested functions aren't static, since taking their address
1363 involves a trampoline. */
1364 return ((decl_function_context (arg
) == 0 || DECL_NO_STATIC_CHAIN (arg
))
1365 && ! DECL_NON_ADDR_CONST_P (arg
));
1368 return ((TREE_STATIC (arg
) || DECL_EXTERNAL (arg
))
1369 && ! DECL_THREAD_LOCAL (arg
)
1370 && ! DECL_NON_ADDR_CONST_P (arg
));
1373 return TREE_STATIC (arg
);
1379 /* If we are referencing a bitfield, we can't evaluate an
1380 ADDR_EXPR at compile time and so it isn't a constant. */
1382 return (! DECL_BIT_FIELD (TREE_OPERAND (arg
, 1))
1383 && staticp (TREE_OPERAND (arg
, 0)));
1389 /* This case is technically correct, but results in setting
1390 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1393 return TREE_CONSTANT (TREE_OPERAND (arg
, 0));
1397 case ARRAY_RANGE_REF
:
1398 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg
))) == INTEGER_CST
1399 && TREE_CODE (TREE_OPERAND (arg
, 1)) == INTEGER_CST
)
1400 return staticp (TREE_OPERAND (arg
, 0));
1403 if ((unsigned int) TREE_CODE (arg
)
1404 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE
)
1405 return (*lang_hooks
.staticp
) (arg
);
1411 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1412 Do this to any expression which may be used in more than one place,
1413 but must be evaluated only once.
1415 Normally, expand_expr would reevaluate the expression each time.
1416 Calling save_expr produces something that is evaluated and recorded
1417 the first time expand_expr is called on it. Subsequent calls to
1418 expand_expr just reuse the recorded value.
1420 The call to expand_expr that generates code that actually computes
1421 the value is the first call *at compile time*. Subsequent calls
1422 *at compile time* generate code to use the saved value.
1423 This produces correct result provided that *at run time* control
1424 always flows through the insns made by the first expand_expr
1425 before reaching the other places where the save_expr was evaluated.
1426 You, the caller of save_expr, must make sure this is so.
1428 Constants, and certain read-only nodes, are returned with no
1429 SAVE_EXPR because that is safe. Expressions containing placeholders
1430 are not touched; see tree.def for an explanation of what these
1437 tree t
= fold (expr
);
1440 /* We don't care about whether this can be used as an lvalue in this
1442 while (TREE_CODE (t
) == NON_LVALUE_EXPR
)
1443 t
= TREE_OPERAND (t
, 0);
1445 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1446 a constant, it will be more efficient to not make another SAVE_EXPR since
1447 it will allow better simplification and GCSE will be able to merge the
1448 computations if they actualy occur. */
1450 (TREE_CODE_CLASS (TREE_CODE (inner
)) == '1'
1451 || (TREE_CODE_CLASS (TREE_CODE (inner
)) == '2'
1452 && TREE_CONSTANT (TREE_OPERAND (inner
, 1))));
1453 inner
= TREE_OPERAND (inner
, 0))
1456 /* If the tree evaluates to a constant, then we don't want to hide that
1457 fact (i.e. this allows further folding, and direct checks for constants).
1458 However, a read-only object that has side effects cannot be bypassed.
1459 Since it is no problem to reevaluate literals, we just return the
1461 if (TREE_CONSTANT (inner
)
1462 || (TREE_READONLY (inner
) && ! TREE_SIDE_EFFECTS (inner
))
1463 || TREE_CODE (inner
) == SAVE_EXPR
|| TREE_CODE (inner
) == ERROR_MARK
)
1466 /* If T contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1467 it means that the size or offset of some field of an object depends on
1468 the value within another field.
1470 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1471 and some variable since it would then need to be both evaluated once and
1472 evaluated more than once. Front-ends must assure this case cannot
1473 happen by surrounding any such subexpressions in their own SAVE_EXPR
1474 and forcing evaluation at the proper time. */
1475 if (contains_placeholder_p (t
))
1478 t
= build (SAVE_EXPR
, TREE_TYPE (expr
), t
, current_function_decl
, NULL_TREE
);
1480 /* This expression might be placed ahead of a jump to ensure that the
1481 value was computed on both sides of the jump. So make sure it isn't
1482 eliminated as dead. */
1483 TREE_SIDE_EFFECTS (t
) = 1;
1484 TREE_READONLY (t
) = 1;
1488 /* Arrange for an expression to be expanded multiple independent
1489 times. This is useful for cleanup actions, as the backend can
1490 expand them multiple times in different places. */
1498 /* If this is already protected, no sense in protecting it again. */
1499 if (TREE_CODE (expr
) == UNSAVE_EXPR
)
1502 t
= build1 (UNSAVE_EXPR
, TREE_TYPE (expr
), expr
);
1503 TREE_SIDE_EFFECTS (t
) = TREE_SIDE_EFFECTS (expr
);
1507 /* Returns the index of the first non-tree operand for CODE, or the number
1508 of operands if all are trees. */
1512 enum tree_code code
;
1518 case GOTO_SUBROUTINE_EXPR
:
1521 case WITH_CLEANUP_EXPR
:
1523 case METHOD_CALL_EXPR
:
1526 return TREE_CODE_LENGTH (code
);
1530 /* Perform any modifications to EXPR required when it is unsaved. Does
1531 not recurse into EXPR's subtrees. */
1534 unsave_expr_1 (expr
)
1537 switch (TREE_CODE (expr
))
1540 if (! SAVE_EXPR_PERSISTENT_P (expr
))
1541 SAVE_EXPR_RTL (expr
) = 0;
1545 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1546 It's OK for this to happen if it was part of a subtree that
1547 isn't immediately expanded, such as operand 2 of another
1549 if (TREE_OPERAND (expr
, 1))
1552 TREE_OPERAND (expr
, 1) = TREE_OPERAND (expr
, 3);
1553 TREE_OPERAND (expr
, 3) = NULL_TREE
;
1557 /* I don't yet know how to emit a sequence multiple times. */
1558 if (RTL_EXPR_SEQUENCE (expr
) != 0)
1567 /* Default lang hook for "unsave_expr_now". */
1570 lhd_unsave_expr_now (expr
)
1573 enum tree_code code
;
1575 /* There's nothing to do for NULL_TREE. */
1579 unsave_expr_1 (expr
);
1581 code
= TREE_CODE (expr
);
1582 switch (TREE_CODE_CLASS (code
))
1584 case 'c': /* a constant */
1585 case 't': /* a type node */
1586 case 'd': /* A decl node */
1587 case 'b': /* A block node */
1590 case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
1591 if (code
== TREE_LIST
)
1593 lhd_unsave_expr_now (TREE_VALUE (expr
));
1594 lhd_unsave_expr_now (TREE_CHAIN (expr
));
1598 case 'e': /* an expression */
1599 case 'r': /* a reference */
1600 case 's': /* an expression with side effects */
1601 case '<': /* a comparison expression */
1602 case '2': /* a binary arithmetic expression */
1603 case '1': /* a unary arithmetic expression */
1607 for (i
= first_rtl_op (code
) - 1; i
>= 0; i
--)
1608 lhd_unsave_expr_now (TREE_OPERAND (expr
, i
));
1619 /* Return 0 if it is safe to evaluate EXPR multiple times,
1620 return 1 if it is safe if EXPR is unsaved afterward, or
1621 return 2 if it is completely unsafe.
1623 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1624 an expression tree, so that it safe to unsave them and the surrounding
1625 context will be correct.
1627 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1628 occasionally across the whole of a function. It is therefore only
1629 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1630 below the UNSAVE_EXPR.
1632 RTL_EXPRs consume their rtl during evaluation. It is therefore
1633 never possible to unsave them. */
1636 unsafe_for_reeval (expr
)
1640 enum tree_code code
;
1645 if (expr
== NULL_TREE
)
1648 code
= TREE_CODE (expr
);
1649 first_rtl
= first_rtl_op (code
);
1658 for (exp
= expr
; exp
!= 0; exp
= TREE_CHAIN (exp
))
1660 tmp
= unsafe_for_reeval (TREE_VALUE (exp
));
1661 unsafeness
= MAX (tmp
, unsafeness
);
1667 tmp
= unsafe_for_reeval (TREE_OPERAND (expr
, 1));
1668 return MAX (tmp
, 1);
1675 tmp
= (*lang_hooks
.unsafe_for_reeval
) (expr
);
1681 switch (TREE_CODE_CLASS (code
))
1683 case 'c': /* a constant */
1684 case 't': /* a type node */
1685 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1686 case 'd': /* A decl node */
1687 case 'b': /* A block node */
1690 case 'e': /* an expression */
1691 case 'r': /* a reference */
1692 case 's': /* an expression with side effects */
1693 case '<': /* a comparison expression */
1694 case '2': /* a binary arithmetic expression */
1695 case '1': /* a unary arithmetic expression */
1696 for (i
= first_rtl
- 1; i
>= 0; i
--)
1698 tmp
= unsafe_for_reeval (TREE_OPERAND (expr
, i
));
1699 unsafeness
= MAX (tmp
, unsafeness
);
1709 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1710 or offset that depends on a field within a record. */
1713 contains_placeholder_p (exp
)
1716 enum tree_code code
;
1722 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
1723 in it since it is supplying a value for it. */
1724 code
= TREE_CODE (exp
);
1725 if (code
== WITH_RECORD_EXPR
)
1727 else if (code
== PLACEHOLDER_EXPR
)
1730 switch (TREE_CODE_CLASS (code
))
1733 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1734 position computations since they will be converted into a
1735 WITH_RECORD_EXPR involving the reference, which will assume
1736 here will be valid. */
1737 return contains_placeholder_p (TREE_OPERAND (exp
, 0));
1740 if (code
== TREE_LIST
)
1741 return (contains_placeholder_p (TREE_VALUE (exp
))
1742 || (TREE_CHAIN (exp
) != 0
1743 && contains_placeholder_p (TREE_CHAIN (exp
))));
1752 /* Ignoring the first operand isn't quite right, but works best. */
1753 return contains_placeholder_p (TREE_OPERAND (exp
, 1));
1760 return (contains_placeholder_p (TREE_OPERAND (exp
, 0))
1761 || contains_placeholder_p (TREE_OPERAND (exp
, 1))
1762 || contains_placeholder_p (TREE_OPERAND (exp
, 2)));
1765 /* If we already know this doesn't have a placeholder, don't
1767 if (SAVE_EXPR_NOPLACEHOLDER (exp
) || SAVE_EXPR_RTL (exp
) != 0)
1770 SAVE_EXPR_NOPLACEHOLDER (exp
) = 1;
1771 result
= contains_placeholder_p (TREE_OPERAND (exp
, 0));
1773 SAVE_EXPR_NOPLACEHOLDER (exp
) = 0;
1778 return (TREE_OPERAND (exp
, 1) != 0
1779 && contains_placeholder_p (TREE_OPERAND (exp
, 1)));
1785 switch (TREE_CODE_LENGTH (code
))
1788 return contains_placeholder_p (TREE_OPERAND (exp
, 0));
1790 return (contains_placeholder_p (TREE_OPERAND (exp
, 0))
1791 || contains_placeholder_p (TREE_OPERAND (exp
, 1)));
1802 /* Return 1 if EXP contains any expressions that produce cleanups for an
1803 outer scope to deal with. Used by fold. */
1811 if (! TREE_SIDE_EFFECTS (exp
))
1814 switch (TREE_CODE (exp
))
1817 case GOTO_SUBROUTINE_EXPR
:
1818 case WITH_CLEANUP_EXPR
:
1821 case CLEANUP_POINT_EXPR
:
1825 for (exp
= TREE_OPERAND (exp
, 1); exp
; exp
= TREE_CHAIN (exp
))
1827 cmp
= has_cleanups (TREE_VALUE (exp
));
1837 /* This general rule works for most tree codes. All exceptions should be
1838 handled above. If this is a language-specific tree code, we can't
1839 trust what might be in the operand, so say we don't know
1841 if ((int) TREE_CODE (exp
) >= (int) LAST_AND_UNUSED_TREE_CODE
)
1844 nops
= first_rtl_op (TREE_CODE (exp
));
1845 for (i
= 0; i
< nops
; i
++)
1846 if (TREE_OPERAND (exp
, i
) != 0)
1848 int type
= TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp
, i
)));
1849 if (type
== 'e' || type
== '<' || type
== '1' || type
== '2'
1850 || type
== 'r' || type
== 's')
1852 cmp
= has_cleanups (TREE_OPERAND (exp
, i
));
1861 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1862 return a tree with all occurrences of references to F in a
1863 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1864 contains only arithmetic expressions or a CALL_EXPR with a
1865 PLACEHOLDER_EXPR occurring only in its arglist. */
1868 substitute_in_expr (exp
, f
, r
)
1873 enum tree_code code
= TREE_CODE (exp
);
1878 switch (TREE_CODE_CLASS (code
))
1885 if (code
== PLACEHOLDER_EXPR
)
1887 else if (code
== TREE_LIST
)
1889 op0
= (TREE_CHAIN (exp
) == 0
1890 ? 0 : substitute_in_expr (TREE_CHAIN (exp
), f
, r
));
1891 op1
= substitute_in_expr (TREE_VALUE (exp
), f
, r
);
1892 if (op0
== TREE_CHAIN (exp
) && op1
== TREE_VALUE (exp
))
1895 return tree_cons (TREE_PURPOSE (exp
), op1
, op0
);
1904 switch (TREE_CODE_LENGTH (code
))
1907 op0
= substitute_in_expr (TREE_OPERAND (exp
, 0), f
, r
);
1908 if (op0
== TREE_OPERAND (exp
, 0))
1911 if (code
== NON_LVALUE_EXPR
)
1914 new = fold (build1 (code
, TREE_TYPE (exp
), op0
));
1918 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
1919 could, but we don't support it. */
1920 if (code
== RTL_EXPR
)
1922 else if (code
== CONSTRUCTOR
)
1925 op0
= substitute_in_expr (TREE_OPERAND (exp
, 0), f
, r
);
1926 op1
= substitute_in_expr (TREE_OPERAND (exp
, 1), f
, r
);
1927 if (op0
== TREE_OPERAND (exp
, 0) && op1
== TREE_OPERAND (exp
, 1))
1930 new = fold (build (code
, TREE_TYPE (exp
), op0
, op1
));
1934 /* It cannot be that anything inside a SAVE_EXPR contains a
1935 PLACEHOLDER_EXPR. */
1936 if (code
== SAVE_EXPR
)
1939 else if (code
== CALL_EXPR
)
1941 op1
= substitute_in_expr (TREE_OPERAND (exp
, 1), f
, r
);
1942 if (op1
== TREE_OPERAND (exp
, 1))
1945 return build (code
, TREE_TYPE (exp
),
1946 TREE_OPERAND (exp
, 0), op1
, NULL_TREE
);
1949 else if (code
!= COND_EXPR
)
1952 op0
= substitute_in_expr (TREE_OPERAND (exp
, 0), f
, r
);
1953 op1
= substitute_in_expr (TREE_OPERAND (exp
, 1), f
, r
);
1954 op2
= substitute_in_expr (TREE_OPERAND (exp
, 2), f
, r
);
1955 if (op0
== TREE_OPERAND (exp
, 0) && op1
== TREE_OPERAND (exp
, 1)
1956 && op2
== TREE_OPERAND (exp
, 2))
1959 new = fold (build (code
, TREE_TYPE (exp
), op0
, op1
, op2
));
1972 /* If this expression is getting a value from a PLACEHOLDER_EXPR
1973 and it is the right field, replace it with R. */
1974 for (inner
= TREE_OPERAND (exp
, 0);
1975 TREE_CODE_CLASS (TREE_CODE (inner
)) == 'r';
1976 inner
= TREE_OPERAND (inner
, 0))
1978 if (TREE_CODE (inner
) == PLACEHOLDER_EXPR
1979 && TREE_OPERAND (exp
, 1) == f
)
1982 /* If this expression hasn't been completed let, leave it
1984 if (TREE_CODE (inner
) == PLACEHOLDER_EXPR
1985 && TREE_TYPE (inner
) == 0)
1988 op0
= substitute_in_expr (TREE_OPERAND (exp
, 0), f
, r
);
1989 if (op0
== TREE_OPERAND (exp
, 0))
1992 new = fold (build (code
, TREE_TYPE (exp
), op0
,
1993 TREE_OPERAND (exp
, 1)));
1997 op0
= substitute_in_expr (TREE_OPERAND (exp
, 0), f
, r
);
1998 op1
= substitute_in_expr (TREE_OPERAND (exp
, 1), f
, r
);
1999 op2
= substitute_in_expr (TREE_OPERAND (exp
, 2), f
, r
);
2000 if (op0
== TREE_OPERAND (exp
, 0) && op1
== TREE_OPERAND (exp
, 1)
2001 && op2
== TREE_OPERAND (exp
, 2))
2004 new = fold (build (code
, TREE_TYPE (exp
), op0
, op1
, op2
));
2009 op0
= substitute_in_expr (TREE_OPERAND (exp
, 0), f
, r
);
2010 if (op0
== TREE_OPERAND (exp
, 0))
2013 new = fold (build1 (code
, TREE_TYPE (exp
), op0
));
2025 TREE_READONLY (new) = TREE_READONLY (exp
);
2029 /* Stabilize a reference so that we can use it any number of times
2030 without causing its operands to be evaluated more than once.
2031 Returns the stabilized reference. This works by means of save_expr,
2032 so see the caveats in the comments about save_expr.
2034 Also allows conversion expressions whose operands are references.
2035 Any other kind of expression is returned unchanged. */
2038 stabilize_reference (ref
)
2042 enum tree_code code
= TREE_CODE (ref
);
2049 /* No action is needed in this case. */
2055 case FIX_TRUNC_EXPR
:
2056 case FIX_FLOOR_EXPR
:
2057 case FIX_ROUND_EXPR
:
2059 result
= build_nt (code
, stabilize_reference (TREE_OPERAND (ref
, 0)));
2063 result
= build_nt (INDIRECT_REF
,
2064 stabilize_reference_1 (TREE_OPERAND (ref
, 0)));
2068 result
= build_nt (COMPONENT_REF
,
2069 stabilize_reference (TREE_OPERAND (ref
, 0)),
2070 TREE_OPERAND (ref
, 1));
2074 result
= build_nt (BIT_FIELD_REF
,
2075 stabilize_reference (TREE_OPERAND (ref
, 0)),
2076 stabilize_reference_1 (TREE_OPERAND (ref
, 1)),
2077 stabilize_reference_1 (TREE_OPERAND (ref
, 2)));
2081 result
= build_nt (ARRAY_REF
,
2082 stabilize_reference (TREE_OPERAND (ref
, 0)),
2083 stabilize_reference_1 (TREE_OPERAND (ref
, 1)));
2086 case ARRAY_RANGE_REF
:
2087 result
= build_nt (ARRAY_RANGE_REF
,
2088 stabilize_reference (TREE_OPERAND (ref
, 0)),
2089 stabilize_reference_1 (TREE_OPERAND (ref
, 1)));
2093 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2094 it wouldn't be ignored. This matters when dealing with
2096 return stabilize_reference_1 (ref
);
2099 result
= build1 (INDIRECT_REF
, TREE_TYPE (ref
),
2100 save_expr (build1 (ADDR_EXPR
,
2101 build_pointer_type (TREE_TYPE (ref
)),
2105 /* If arg isn't a kind of lvalue we recognize, make no change.
2106 Caller should recognize the error for an invalid lvalue. */
2111 return error_mark_node
;
2114 TREE_TYPE (result
) = TREE_TYPE (ref
);
2115 TREE_READONLY (result
) = TREE_READONLY (ref
);
2116 TREE_SIDE_EFFECTS (result
) = TREE_SIDE_EFFECTS (ref
);
2117 TREE_THIS_VOLATILE (result
) = TREE_THIS_VOLATILE (ref
);
2122 /* Subroutine of stabilize_reference; this is called for subtrees of
2123 references. Any expression with side-effects must be put in a SAVE_EXPR
2124 to ensure that it is only evaluated once.
2126 We don't put SAVE_EXPR nodes around everything, because assigning very
2127 simple expressions to temporaries causes us to miss good opportunities
2128 for optimizations. Among other things, the opportunity to fold in the
2129 addition of a constant into an addressing mode often gets lost, e.g.
2130 "y[i+1] += x;". In general, we take the approach that we should not make
2131 an assignment unless we are forced into it - i.e., that any non-side effect
2132 operator should be allowed, and that cse should take care of coalescing
2133 multiple utterances of the same expression should that prove fruitful. */
2136 stabilize_reference_1 (e
)
2140 enum tree_code code
= TREE_CODE (e
);
2142 /* We cannot ignore const expressions because it might be a reference
2143 to a const array but whose index contains side-effects. But we can
2144 ignore things that are actual constant or that already have been
2145 handled by this function. */
2147 if (TREE_CONSTANT (e
) || code
== SAVE_EXPR
)
2150 switch (TREE_CODE_CLASS (code
))
2160 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2161 so that it will only be evaluated once. */
2162 /* The reference (r) and comparison (<) classes could be handled as
2163 below, but it is generally faster to only evaluate them once. */
2164 if (TREE_SIDE_EFFECTS (e
))
2165 return save_expr (e
);
2169 /* Constants need no processing. In fact, we should never reach
2174 /* Division is slow and tends to be compiled with jumps,
2175 especially the division by powers of 2 that is often
2176 found inside of an array reference. So do it just once. */
2177 if (code
== TRUNC_DIV_EXPR
|| code
== TRUNC_MOD_EXPR
2178 || code
== FLOOR_DIV_EXPR
|| code
== FLOOR_MOD_EXPR
2179 || code
== CEIL_DIV_EXPR
|| code
== CEIL_MOD_EXPR
2180 || code
== ROUND_DIV_EXPR
|| code
== ROUND_MOD_EXPR
)
2181 return save_expr (e
);
2182 /* Recursively stabilize each operand. */
2183 result
= build_nt (code
, stabilize_reference_1 (TREE_OPERAND (e
, 0)),
2184 stabilize_reference_1 (TREE_OPERAND (e
, 1)));
2188 /* Recursively stabilize each operand. */
2189 result
= build_nt (code
, stabilize_reference_1 (TREE_OPERAND (e
, 0)));
2196 TREE_TYPE (result
) = TREE_TYPE (e
);
2197 TREE_READONLY (result
) = TREE_READONLY (e
);
2198 TREE_SIDE_EFFECTS (result
) = TREE_SIDE_EFFECTS (e
);
2199 TREE_THIS_VOLATILE (result
) = TREE_THIS_VOLATILE (e
);
2204 /* Low-level constructors for expressions. */
2206 /* Build an expression of code CODE, data type TYPE,
2207 and operands as specified by the arguments ARG1 and following arguments.
2208 Expressions and reference nodes can be created this way.
2209 Constants, decls, types and misc nodes cannot be. */
2212 build
VPARAMS ((enum tree_code code
, tree tt
, ...))
2221 VA_FIXEDARG (p
, enum tree_code
, code
);
2222 VA_FIXEDARG (p
, tree
, tt
);
2224 t
= make_node (code
);
2225 length
= TREE_CODE_LENGTH (code
);
2228 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2229 result based on those same flags for the arguments. But if the
2230 arguments aren't really even `tree' expressions, we shouldn't be trying
2232 fro
= first_rtl_op (code
);
2234 /* Expressions without side effects may be constant if their
2235 arguments are as well. */
2236 constant
= (TREE_CODE_CLASS (code
) == '<'
2237 || TREE_CODE_CLASS (code
) == '1'
2238 || TREE_CODE_CLASS (code
) == '2'
2239 || TREE_CODE_CLASS (code
) == 'c');
2243 /* This is equivalent to the loop below, but faster. */
2244 tree arg0
= va_arg (p
, tree
);
2245 tree arg1
= va_arg (p
, tree
);
2247 TREE_OPERAND (t
, 0) = arg0
;
2248 TREE_OPERAND (t
, 1) = arg1
;
2249 TREE_READONLY (t
) = 1;
2250 if (arg0
&& fro
> 0)
2252 if (TREE_SIDE_EFFECTS (arg0
))
2253 TREE_SIDE_EFFECTS (t
) = 1;
2254 if (!TREE_READONLY (arg0
))
2255 TREE_READONLY (t
) = 0;
2256 if (!TREE_CONSTANT (arg0
))
2260 if (arg1
&& fro
> 1)
2262 if (TREE_SIDE_EFFECTS (arg1
))
2263 TREE_SIDE_EFFECTS (t
) = 1;
2264 if (!TREE_READONLY (arg1
))
2265 TREE_READONLY (t
) = 0;
2266 if (!TREE_CONSTANT (arg1
))
2270 else if (length
== 1)
2272 tree arg0
= va_arg (p
, tree
);
2274 /* The only one-operand cases we handle here are those with side-effects.
2275 Others are handled with build1. So don't bother checked if the
2276 arg has side-effects since we'll already have set it.
2278 ??? This really should use build1 too. */
2279 if (TREE_CODE_CLASS (code
) != 's')
2281 TREE_OPERAND (t
, 0) = arg0
;
2285 for (i
= 0; i
< length
; i
++)
2287 tree operand
= va_arg (p
, tree
);
2289 TREE_OPERAND (t
, i
) = operand
;
2290 if (operand
&& fro
> i
)
2292 if (TREE_SIDE_EFFECTS (operand
))
2293 TREE_SIDE_EFFECTS (t
) = 1;
2294 if (!TREE_CONSTANT (operand
))
2301 TREE_CONSTANT (t
) = constant
;
2305 /* Same as above, but only builds for unary operators.
2306 Saves lions share of calls to `build'; cuts down use
2307 of varargs, which is expensive for RISC machines. */
2310 build1 (code
, type
, node
)
2311 enum tree_code code
;
2316 #ifdef GATHER_STATISTICS
2317 tree_node_kind kind
;
2321 #ifdef GATHER_STATISTICS
2322 if (TREE_CODE_CLASS (code
) == 'r')
2328 #ifdef ENABLE_CHECKING
2329 if (TREE_CODE_CLASS (code
) == '2'
2330 || TREE_CODE_CLASS (code
) == '<'
2331 || TREE_CODE_LENGTH (code
) != 1)
2333 #endif /* ENABLE_CHECKING */
2335 length
= sizeof (struct tree_exp
);
2337 t
= ggc_alloc_tree (length
);
2339 memset ((PTR
) t
, 0, sizeof (struct tree_common
));
2341 #ifdef GATHER_STATISTICS
2342 tree_node_counts
[(int) kind
]++;
2343 tree_node_sizes
[(int) kind
] += length
;
2346 TREE_SET_CODE (t
, code
);
2348 TREE_TYPE (t
) = type
;
2349 TREE_COMPLEXITY (t
) = 0;
2350 TREE_OPERAND (t
, 0) = node
;
2351 if (node
&& first_rtl_op (code
) != 0)
2353 TREE_SIDE_EFFECTS (t
) = TREE_SIDE_EFFECTS (node
);
2354 TREE_READONLY (t
) = TREE_READONLY (node
);
2363 case PREDECREMENT_EXPR
:
2364 case PREINCREMENT_EXPR
:
2365 case POSTDECREMENT_EXPR
:
2366 case POSTINCREMENT_EXPR
:
2367 /* All of these have side-effects, no matter what their
2369 TREE_SIDE_EFFECTS (t
) = 1;
2370 TREE_READONLY (t
) = 0;
2374 /* Whether a dereference is readonly has nothing to do with whether
2375 its operand is readonly. */
2376 TREE_READONLY (t
) = 0;
2380 if (TREE_CODE_CLASS (code
) == '1' && node
&& TREE_CONSTANT (node
))
2381 TREE_CONSTANT (t
) = 1;
2388 /* Similar except don't specify the TREE_TYPE
2389 and leave the TREE_SIDE_EFFECTS as 0.
2390 It is permissible for arguments to be null,
2391 or even garbage if their values do not matter. */
2394 build_nt
VPARAMS ((enum tree_code code
, ...))
2401 VA_FIXEDARG (p
, enum tree_code
, code
);
2403 t
= make_node (code
);
2404 length
= TREE_CODE_LENGTH (code
);
2406 for (i
= 0; i
< length
; i
++)
2407 TREE_OPERAND (t
, i
) = va_arg (p
, tree
);
2413 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2414 We do NOT enter this node in any sort of symbol table.
2416 layout_decl is used to set up the decl's storage layout.
2417 Other slots are initialized to 0 or null pointers. */
2420 build_decl (code
, name
, type
)
2421 enum tree_code code
;
2426 t
= make_node (code
);
2428 /* if (type == error_mark_node)
2429 type = integer_type_node; */
2430 /* That is not done, deliberately, so that having error_mark_node
2431 as the type can suppress useless errors in the use of this variable. */
2433 DECL_NAME (t
) = name
;
2434 TREE_TYPE (t
) = type
;
2436 if (code
== VAR_DECL
|| code
== PARM_DECL
|| code
== RESULT_DECL
)
2438 else if (code
== FUNCTION_DECL
)
2439 DECL_MODE (t
) = FUNCTION_MODE
;
2444 /* BLOCK nodes are used to represent the structure of binding contours
2445 and declarations, once those contours have been exited and their contents
2446 compiled. This information is used for outputting debugging info. */
2449 build_block (vars
, tags
, subblocks
, supercontext
, chain
)
2450 tree vars
, tags ATTRIBUTE_UNUSED
, subblocks
, supercontext
, chain
;
2452 tree block
= make_node (BLOCK
);
2454 BLOCK_VARS (block
) = vars
;
2455 BLOCK_SUBBLOCKS (block
) = subblocks
;
2456 BLOCK_SUPERCONTEXT (block
) = supercontext
;
2457 BLOCK_CHAIN (block
) = chain
;
2461 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
2462 location where an expression or an identifier were encountered. It
2463 is necessary for languages where the frontend parser will handle
2464 recursively more than one file (Java is one of them). */
2467 build_expr_wfl (node
, file
, line
, col
)
2472 static const char *last_file
= 0;
2473 static tree last_filenode
= NULL_TREE
;
2474 tree wfl
= make_node (EXPR_WITH_FILE_LOCATION
);
2476 EXPR_WFL_NODE (wfl
) = node
;
2477 EXPR_WFL_SET_LINECOL (wfl
, line
, col
);
2478 if (file
!= last_file
)
2481 last_filenode
= file
? get_identifier (file
) : NULL_TREE
;
2484 EXPR_WFL_FILENAME_NODE (wfl
) = last_filenode
;
2487 TREE_SIDE_EFFECTS (wfl
) = TREE_SIDE_EFFECTS (node
);
2488 TREE_TYPE (wfl
) = TREE_TYPE (node
);
2494 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2498 build_decl_attribute_variant (ddecl
, attribute
)
2499 tree ddecl
, attribute
;
2501 DECL_ATTRIBUTES (ddecl
) = attribute
;
2505 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2508 Record such modified types already made so we don't make duplicates. */
2511 build_type_attribute_variant (ttype
, attribute
)
2512 tree ttype
, attribute
;
2514 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype
), attribute
))
2516 unsigned int hashcode
;
2519 ntype
= copy_node (ttype
);
2521 TYPE_POINTER_TO (ntype
) = 0;
2522 TYPE_REFERENCE_TO (ntype
) = 0;
2523 TYPE_ATTRIBUTES (ntype
) = attribute
;
2525 /* Create a new main variant of TYPE. */
2526 TYPE_MAIN_VARIANT (ntype
) = ntype
;
2527 TYPE_NEXT_VARIANT (ntype
) = 0;
2528 set_type_quals (ntype
, TYPE_UNQUALIFIED
);
2530 hashcode
= (TYPE_HASH (TREE_CODE (ntype
))
2531 + TYPE_HASH (TREE_TYPE (ntype
))
2532 + attribute_hash_list (attribute
));
2534 switch (TREE_CODE (ntype
))
2537 hashcode
+= TYPE_HASH (TYPE_ARG_TYPES (ntype
));
2540 hashcode
+= TYPE_HASH (TYPE_DOMAIN (ntype
));
2543 hashcode
+= TYPE_HASH (TYPE_MAX_VALUE (ntype
));
2546 hashcode
+= TYPE_HASH (TYPE_PRECISION (ntype
));
2552 ntype
= type_hash_canon (hashcode
, ntype
);
2553 ttype
= build_qualified_type (ntype
, TYPE_QUALS (ttype
));
2559 /* Default value of targetm.comp_type_attributes that always returns 1. */
2562 default_comp_type_attributes (type1
, type2
)
2563 tree type1 ATTRIBUTE_UNUSED
;
2564 tree type2 ATTRIBUTE_UNUSED
;
2569 /* Default version of targetm.set_default_type_attributes that always does
2573 default_set_default_type_attributes (type
)
2574 tree type ATTRIBUTE_UNUSED
;
2578 /* Default version of targetm.insert_attributes that always does nothing. */
2580 default_insert_attributes (decl
, attr_ptr
)
2581 tree decl ATTRIBUTE_UNUSED
;
2582 tree
*attr_ptr ATTRIBUTE_UNUSED
;
2586 /* Default value of targetm.function_attribute_inlinable_p that always
2589 default_function_attribute_inlinable_p (fndecl
)
2590 tree fndecl ATTRIBUTE_UNUSED
;
2592 /* By default, functions with machine attributes cannot be inlined. */
2596 /* Default value of targetm.ms_bitfield_layout_p that always returns
2599 default_ms_bitfield_layout_p (record
)
2600 tree record ATTRIBUTE_UNUSED
;
2602 /* By default, GCC does not use the MS VC++ bitfield layout rules. */
2606 /* Return non-zero if IDENT is a valid name for attribute ATTR,
2609 We try both `text' and `__text__', ATTR may be either one. */
2610 /* ??? It might be a reasonable simplification to require ATTR to be only
2611 `text'. One might then also require attribute lists to be stored in
2612 their canonicalized form. */
2615 is_attribute_p (attr
, ident
)
2619 int ident_len
, attr_len
;
2622 if (TREE_CODE (ident
) != IDENTIFIER_NODE
)
2625 if (strcmp (attr
, IDENTIFIER_POINTER (ident
)) == 0)
2628 p
= IDENTIFIER_POINTER (ident
);
2629 ident_len
= strlen (p
);
2630 attr_len
= strlen (attr
);
2632 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2636 || attr
[attr_len
- 2] != '_'
2637 || attr
[attr_len
- 1] != '_')
2639 if (ident_len
== attr_len
- 4
2640 && strncmp (attr
+ 2, p
, attr_len
- 4) == 0)
2645 if (ident_len
== attr_len
+ 4
2646 && p
[0] == '_' && p
[1] == '_'
2647 && p
[ident_len
- 2] == '_' && p
[ident_len
- 1] == '_'
2648 && strncmp (attr
, p
+ 2, attr_len
) == 0)
2655 /* Given an attribute name and a list of attributes, return a pointer to the
2656 attribute's list element if the attribute is part of the list, or NULL_TREE
2657 if not found. If the attribute appears more than once, this only
2658 returns the first occurrence; the TREE_CHAIN of the return value should
2659 be passed back in if further occurrences are wanted. */
2662 lookup_attribute (attr_name
, list
)
2663 const char *attr_name
;
2668 for (l
= list
; l
; l
= TREE_CHAIN (l
))
2670 if (TREE_CODE (TREE_PURPOSE (l
)) != IDENTIFIER_NODE
)
2672 if (is_attribute_p (attr_name
, TREE_PURPOSE (l
)))
2679 /* Return an attribute list that is the union of a1 and a2. */
2682 merge_attributes (a1
, a2
)
2687 /* Either one unset? Take the set one. */
2689 if ((attributes
= a1
) == 0)
2692 /* One that completely contains the other? Take it. */
2694 else if (a2
!= 0 && ! attribute_list_contained (a1
, a2
))
2696 if (attribute_list_contained (a2
, a1
))
2700 /* Pick the longest list, and hang on the other list. */
2702 if (list_length (a1
) < list_length (a2
))
2703 attributes
= a2
, a2
= a1
;
2705 for (; a2
!= 0; a2
= TREE_CHAIN (a2
))
2708 for (a
= lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2
)),
2711 a
= lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2
)),
2714 if (simple_cst_equal (TREE_VALUE (a
), TREE_VALUE (a2
)) == 1)
2719 a1
= copy_node (a2
);
2720 TREE_CHAIN (a1
) = attributes
;
2729 /* Given types T1 and T2, merge their attributes and return
2733 merge_type_attributes (t1
, t2
)
2736 return merge_attributes (TYPE_ATTRIBUTES (t1
),
2737 TYPE_ATTRIBUTES (t2
));
2740 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
2744 merge_decl_attributes (olddecl
, newdecl
)
2745 tree olddecl
, newdecl
;
2747 return merge_attributes (DECL_ATTRIBUTES (olddecl
),
2748 DECL_ATTRIBUTES (newdecl
));
2751 #ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
2753 /* Specialization of merge_decl_attributes for various Windows targets.
2755 This handles the following situation:
2757 __declspec (dllimport) int foo;
2760 The second instance of `foo' nullifies the dllimport. */
2763 merge_dllimport_decl_attributes (old
, new)
2768 int delete_dllimport_p
;
2770 old
= DECL_ATTRIBUTES (old
);
2771 new = DECL_ATTRIBUTES (new);
2773 /* What we need to do here is remove from `old' dllimport if it doesn't
2774 appear in `new'. dllimport behaves like extern: if a declaration is
2775 marked dllimport and a definition appears later, then the object
2776 is not dllimport'd. */
2777 if (lookup_attribute ("dllimport", old
) != NULL_TREE
2778 && lookup_attribute ("dllimport", new) == NULL_TREE
)
2779 delete_dllimport_p
= 1;
2781 delete_dllimport_p
= 0;
2783 a
= merge_attributes (old
, new);
2785 if (delete_dllimport_p
)
2789 /* Scan the list for dllimport and delete it. */
2790 for (prev
= NULL_TREE
, t
= a
; t
; prev
= t
, t
= TREE_CHAIN (t
))
2792 if (is_attribute_p ("dllimport", TREE_PURPOSE (t
)))
2794 if (prev
== NULL_TREE
)
2797 TREE_CHAIN (prev
) = TREE_CHAIN (t
);
2806 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
2808 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
2809 of the various TYPE_QUAL values. */
2812 set_type_quals (type
, type_quals
)
2816 TYPE_READONLY (type
) = (type_quals
& TYPE_QUAL_CONST
) != 0;
2817 TYPE_VOLATILE (type
) = (type_quals
& TYPE_QUAL_VOLATILE
) != 0;
2818 TYPE_RESTRICT (type
) = (type_quals
& TYPE_QUAL_RESTRICT
) != 0;
2821 /* Return a version of the TYPE, qualified as indicated by the
2822 TYPE_QUALS, if one exists. If no qualified version exists yet,
2823 return NULL_TREE. */
2826 get_qualified_type (type
, type_quals
)
2832 /* Search the chain of variants to see if there is already one there just
2833 like the one we need to have. If so, use that existing one. We must
2834 preserve the TYPE_NAME, since there is code that depends on this. */
2835 for (t
= TYPE_MAIN_VARIANT (type
); t
; t
= TYPE_NEXT_VARIANT (t
))
2836 if (TYPE_QUALS (t
) == type_quals
&& TYPE_NAME (t
) == TYPE_NAME (type
))
2842 /* Like get_qualified_type, but creates the type if it does not
2843 exist. This function never returns NULL_TREE. */
2846 build_qualified_type (type
, type_quals
)
2852 /* See if we already have the appropriate qualified variant. */
2853 t
= get_qualified_type (type
, type_quals
);
2855 /* If not, build it. */
2858 t
= build_type_copy (type
);
2859 set_type_quals (t
, type_quals
);
2865 /* Create a new variant of TYPE, equivalent but distinct.
2866 This is so the caller can modify it. */
2869 build_type_copy (type
)
2872 tree t
, m
= TYPE_MAIN_VARIANT (type
);
2874 t
= copy_node (type
);
2876 TYPE_POINTER_TO (t
) = 0;
2877 TYPE_REFERENCE_TO (t
) = 0;
2879 /* Add this type to the chain of variants of TYPE. */
2880 TYPE_NEXT_VARIANT (t
) = TYPE_NEXT_VARIANT (m
);
2881 TYPE_NEXT_VARIANT (m
) = t
;
2886 /* Hashing of types so that we don't make duplicates.
2887 The entry point is `type_hash_canon'. */
2889 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
2890 with types in the TREE_VALUE slots), by adding the hash codes
2891 of the individual types. */
2894 type_hash_list (list
)
2897 unsigned int hashcode
;
2900 for (hashcode
= 0, tail
= list
; tail
; tail
= TREE_CHAIN (tail
))
2901 hashcode
+= TYPE_HASH (TREE_VALUE (tail
));
2906 /* These are the Hashtable callback functions. */
2908 /* Returns true if the types are equal. */
2911 type_hash_eq (va
, vb
)
2915 const struct type_hash
*a
= va
, *b
= vb
;
2916 if (a
->hash
== b
->hash
2917 && TREE_CODE (a
->type
) == TREE_CODE (b
->type
)
2918 && TREE_TYPE (a
->type
) == TREE_TYPE (b
->type
)
2919 && attribute_list_equal (TYPE_ATTRIBUTES (a
->type
),
2920 TYPE_ATTRIBUTES (b
->type
))
2921 && TYPE_ALIGN (a
->type
) == TYPE_ALIGN (b
->type
)
2922 && (TYPE_MAX_VALUE (a
->type
) == TYPE_MAX_VALUE (b
->type
)
2923 || tree_int_cst_equal (TYPE_MAX_VALUE (a
->type
),
2924 TYPE_MAX_VALUE (b
->type
)))
2925 && (TYPE_MIN_VALUE (a
->type
) == TYPE_MIN_VALUE (b
->type
)
2926 || tree_int_cst_equal (TYPE_MIN_VALUE (a
->type
),
2927 TYPE_MIN_VALUE (b
->type
)))
2928 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
2929 && (TYPE_DOMAIN (a
->type
) == TYPE_DOMAIN (b
->type
)
2930 || (TYPE_DOMAIN (a
->type
)
2931 && TREE_CODE (TYPE_DOMAIN (a
->type
)) == TREE_LIST
2932 && TYPE_DOMAIN (b
->type
)
2933 && TREE_CODE (TYPE_DOMAIN (b
->type
)) == TREE_LIST
2934 && type_list_equal (TYPE_DOMAIN (a
->type
),
2935 TYPE_DOMAIN (b
->type
)))))
2940 /* Return the cached hash value. */
2943 type_hash_hash (item
)
2946 return ((const struct type_hash
*) item
)->hash
;
2949 /* Look in the type hash table for a type isomorphic to TYPE.
2950 If one is found, return it. Otherwise return 0. */
2953 type_hash_lookup (hashcode
, type
)
2954 unsigned int hashcode
;
2957 struct type_hash
*h
, in
;
2959 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
2960 must call that routine before comparing TYPE_ALIGNs. */
2966 h
= htab_find_with_hash (type_hash_table
, &in
, hashcode
);
2972 /* Add an entry to the type-hash-table
2973 for a type TYPE whose hash code is HASHCODE. */
2976 type_hash_add (hashcode
, type
)
2977 unsigned int hashcode
;
2980 struct type_hash
*h
;
2983 h
= (struct type_hash
*) ggc_alloc (sizeof (struct type_hash
));
2986 loc
= htab_find_slot_with_hash (type_hash_table
, h
, hashcode
, INSERT
);
2987 *(struct type_hash
**) loc
= h
;
2990 /* Given TYPE, and HASHCODE its hash code, return the canonical
2991 object for an identical type if one already exists.
2992 Otherwise, return TYPE, and record it as the canonical object
2993 if it is a permanent object.
2995 To use this function, first create a type of the sort you want.
2996 Then compute its hash code from the fields of the type that
2997 make it different from other similar types.
2998 Then call this function and use the value.
2999 This function frees the type you pass in if it is a duplicate. */
3001 /* Set to 1 to debug without canonicalization. Never set by program. */
3002 int debug_no_type_hash
= 0;
3005 type_hash_canon (hashcode
, type
)
3006 unsigned int hashcode
;
3011 if (debug_no_type_hash
)
3014 /* See if the type is in the hash table already. If so, return it.
3015 Otherwise, add the type. */
3016 t1
= type_hash_lookup (hashcode
, type
);
3019 #ifdef GATHER_STATISTICS
3020 tree_node_counts
[(int) t_kind
]--;
3021 tree_node_sizes
[(int) t_kind
] -= sizeof (struct tree_type
);
3027 type_hash_add (hashcode
, type
);
3032 /* See if the data pointed to by the type hash table is marked. We consider
3033 it marked if the type is marked or if a debug type number or symbol
3034 table entry has been made for the type. This reduces the amount of
3035 debugging output and eliminates that dependency of the debug output on
3036 the number of garbage collections. */
3039 type_hash_marked_p (p
)
3042 tree type
= ((struct type_hash
*) p
)->type
;
3044 return ggc_marked_p (type
) || TYPE_SYMTAB_POINTER (type
);
3047 /* Mark the entry in the type hash table the type it points to is marked.
3048 Also mark the type in case we are considering this entry "marked" by
3049 virtue of TYPE_SYMTAB_POINTER being set. */
3056 ggc_mark_tree (((struct type_hash
*) p
)->type
);
3059 /* Mark the hashtable slot pointed to by ENTRY (which is really a
3060 `tree**') for GC. */
3063 mark_tree_hashtable_entry (entry
, data
)
3065 void *data ATTRIBUTE_UNUSED
;
3067 ggc_mark_tree ((tree
) *entry
);
3071 /* Mark ARG (which is really a htab_t whose slots are trees) for
3075 mark_tree_hashtable (arg
)
3078 htab_t t
= *(htab_t
*) arg
;
3079 htab_traverse (t
, mark_tree_hashtable_entry
, 0);
3083 print_type_hash_statistics ()
3085 fprintf (stderr
, "Type hash: size %ld, %ld elements, %f collisions\n",
3086 (long) htab_size (type_hash_table
),
3087 (long) htab_elements (type_hash_table
),
3088 htab_collisions (type_hash_table
));
3091 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3092 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3093 by adding the hash codes of the individual attributes. */
3096 attribute_hash_list (list
)
3099 unsigned int hashcode
;
3102 for (hashcode
= 0, tail
= list
; tail
; tail
= TREE_CHAIN (tail
))
3103 /* ??? Do we want to add in TREE_VALUE too? */
3104 hashcode
+= TYPE_HASH (TREE_PURPOSE (tail
));
3108 /* Given two lists of attributes, return true if list l2 is
3109 equivalent to l1. */
3112 attribute_list_equal (l1
, l2
)
3115 return attribute_list_contained (l1
, l2
)
3116 && attribute_list_contained (l2
, l1
);
3119 /* Given two lists of attributes, return true if list L2 is
3120 completely contained within L1. */
3121 /* ??? This would be faster if attribute names were stored in a canonicalized
3122 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3123 must be used to show these elements are equivalent (which they are). */
3124 /* ??? It's not clear that attributes with arguments will always be handled
3128 attribute_list_contained (l1
, l2
)
3133 /* First check the obvious, maybe the lists are identical. */
3137 /* Maybe the lists are similar. */
3138 for (t1
= l1
, t2
= l2
;
3140 && TREE_PURPOSE (t1
) == TREE_PURPOSE (t2
)
3141 && TREE_VALUE (t1
) == TREE_VALUE (t2
);
3142 t1
= TREE_CHAIN (t1
), t2
= TREE_CHAIN (t2
));
3144 /* Maybe the lists are equal. */
3145 if (t1
== 0 && t2
== 0)
3148 for (; t2
!= 0; t2
= TREE_CHAIN (t2
))
3151 for (attr
= lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2
)), l1
);
3153 attr
= lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2
)),
3156 if (simple_cst_equal (TREE_VALUE (t2
), TREE_VALUE (attr
)) == 1)
3163 if (simple_cst_equal (TREE_VALUE (t2
), TREE_VALUE (attr
)) != 1)
3170 /* Given two lists of types
3171 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3172 return 1 if the lists contain the same types in the same order.
3173 Also, the TREE_PURPOSEs must match. */
3176 type_list_equal (l1
, l2
)
3181 for (t1
= l1
, t2
= l2
; t1
&& t2
; t1
= TREE_CHAIN (t1
), t2
= TREE_CHAIN (t2
))
3182 if (TREE_VALUE (t1
) != TREE_VALUE (t2
)
3183 || (TREE_PURPOSE (t1
) != TREE_PURPOSE (t2
)
3184 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1
), TREE_PURPOSE (t2
))
3185 && (TREE_TYPE (TREE_PURPOSE (t1
))
3186 == TREE_TYPE (TREE_PURPOSE (t2
))))))
3192 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3193 given by TYPE. If the argument list accepts variable arguments,
3194 then this function counts only the ordinary arguments. */
3197 type_num_arguments (type
)
3203 for (t
= TYPE_ARG_TYPES (type
); t
; t
= TREE_CHAIN (t
))
3204 /* If the function does not take a variable number of arguments,
3205 the last element in the list will have type `void'. */
3206 if (VOID_TYPE_P (TREE_VALUE (t
)))
3214 /* Nonzero if integer constants T1 and T2
3215 represent the same constant value. */
3218 tree_int_cst_equal (t1
, t2
)
3224 if (t1
== 0 || t2
== 0)
3227 if (TREE_CODE (t1
) == INTEGER_CST
3228 && TREE_CODE (t2
) == INTEGER_CST
3229 && TREE_INT_CST_LOW (t1
) == TREE_INT_CST_LOW (t2
)
3230 && TREE_INT_CST_HIGH (t1
) == TREE_INT_CST_HIGH (t2
))
3236 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3237 The precise way of comparison depends on their data type. */
3240 tree_int_cst_lt (t1
, t2
)
3246 if (TREE_UNSIGNED (TREE_TYPE (t1
)) != TREE_UNSIGNED (TREE_TYPE (t2
)))
3248 int t1_sgn
= tree_int_cst_sgn (t1
);
3249 int t2_sgn
= tree_int_cst_sgn (t2
);
3251 if (t1_sgn
< t2_sgn
)
3253 else if (t1_sgn
> t2_sgn
)
3255 /* Otherwise, both are non-negative, so we compare them as
3256 unsigned just in case one of them would overflow a signed
3259 else if (! TREE_UNSIGNED (TREE_TYPE (t1
)))
3260 return INT_CST_LT (t1
, t2
);
3262 return INT_CST_LT_UNSIGNED (t1
, t2
);
3265 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3268 tree_int_cst_compare (t1
, t2
)
3272 if (tree_int_cst_lt (t1
, t2
))
3274 else if (tree_int_cst_lt (t2
, t1
))
3280 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3281 the host. If POS is zero, the value can be represented in a single
3282 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3283 be represented in a single unsigned HOST_WIDE_INT. */
3286 host_integerp (t
, pos
)
3290 return (TREE_CODE (t
) == INTEGER_CST
3291 && ! TREE_OVERFLOW (t
)
3292 && ((TREE_INT_CST_HIGH (t
) == 0
3293 && (HOST_WIDE_INT
) TREE_INT_CST_LOW (t
) >= 0)
3294 || (! pos
&& TREE_INT_CST_HIGH (t
) == -1
3295 && (HOST_WIDE_INT
) TREE_INT_CST_LOW (t
) < 0
3296 && ! TREE_UNSIGNED (TREE_TYPE (t
)))
3297 || (pos
&& TREE_INT_CST_HIGH (t
) == 0)));
3300 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3301 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3302 be positive. Abort if we cannot satisfy the above conditions. */
3305 tree_low_cst (t
, pos
)
3309 if (host_integerp (t
, pos
))
3310 return TREE_INT_CST_LOW (t
);
3315 /* Return the most significant bit of the integer constant T. */
3318 tree_int_cst_msb (t
)
3323 unsigned HOST_WIDE_INT l
;
3325 /* Note that using TYPE_PRECISION here is wrong. We care about the
3326 actual bits, not the (arbitrary) range of the type. */
3327 prec
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t
))) - 1;
3328 rshift_double (TREE_INT_CST_LOW (t
), TREE_INT_CST_HIGH (t
), prec
,
3329 2 * HOST_BITS_PER_WIDE_INT
, &l
, &h
, 0);
3330 return (l
& 1) == 1;
3333 /* Return an indication of the sign of the integer constant T.
3334 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3335 Note that -1 will never be returned it T's type is unsigned. */
3338 tree_int_cst_sgn (t
)
3341 if (TREE_INT_CST_LOW (t
) == 0 && TREE_INT_CST_HIGH (t
) == 0)
3343 else if (TREE_UNSIGNED (TREE_TYPE (t
)))
3345 else if (TREE_INT_CST_HIGH (t
) < 0)
3351 /* Compare two constructor-element-type constants. Return 1 if the lists
3352 are known to be equal; otherwise return 0. */
3355 simple_cst_list_equal (l1
, l2
)
3358 while (l1
!= NULL_TREE
&& l2
!= NULL_TREE
)
3360 if (simple_cst_equal (TREE_VALUE (l1
), TREE_VALUE (l2
)) != 1)
3363 l1
= TREE_CHAIN (l1
);
3364 l2
= TREE_CHAIN (l2
);
3370 /* Return truthvalue of whether T1 is the same tree structure as T2.
3371 Return 1 if they are the same.
3372 Return 0 if they are understandably different.
3373 Return -1 if either contains tree structure not understood by
3377 simple_cst_equal (t1
, t2
)
3380 enum tree_code code1
, code2
;
3386 if (t1
== 0 || t2
== 0)
3389 code1
= TREE_CODE (t1
);
3390 code2
= TREE_CODE (t2
);
3392 if (code1
== NOP_EXPR
|| code1
== CONVERT_EXPR
|| code1
== NON_LVALUE_EXPR
)
3394 if (code2
== NOP_EXPR
|| code2
== CONVERT_EXPR
3395 || code2
== NON_LVALUE_EXPR
)
3396 return simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
3398 return simple_cst_equal (TREE_OPERAND (t1
, 0), t2
);
3401 else if (code2
== NOP_EXPR
|| code2
== CONVERT_EXPR
3402 || code2
== NON_LVALUE_EXPR
)
3403 return simple_cst_equal (t1
, TREE_OPERAND (t2
, 0));
3411 return (TREE_INT_CST_LOW (t1
) == TREE_INT_CST_LOW (t2
)
3412 && TREE_INT_CST_HIGH (t1
) == TREE_INT_CST_HIGH (t2
));
3415 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1
), TREE_REAL_CST (t2
));
3418 return (TREE_STRING_LENGTH (t1
) == TREE_STRING_LENGTH (t2
)
3419 && ! memcmp (TREE_STRING_POINTER (t1
), TREE_STRING_POINTER (t2
),
3420 TREE_STRING_LENGTH (t1
)));
3423 if (CONSTRUCTOR_ELTS (t1
) == CONSTRUCTOR_ELTS (t2
))
3429 return simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
3432 cmp
= simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
3436 simple_cst_list_equal (TREE_OPERAND (t1
, 1), TREE_OPERAND (t2
, 1));
3439 /* Special case: if either target is an unallocated VAR_DECL,
3440 it means that it's going to be unified with whatever the
3441 TARGET_EXPR is really supposed to initialize, so treat it
3442 as being equivalent to anything. */
3443 if ((TREE_CODE (TREE_OPERAND (t1
, 0)) == VAR_DECL
3444 && DECL_NAME (TREE_OPERAND (t1
, 0)) == NULL_TREE
3445 && !DECL_RTL_SET_P (TREE_OPERAND (t1
, 0)))
3446 || (TREE_CODE (TREE_OPERAND (t2
, 0)) == VAR_DECL
3447 && DECL_NAME (TREE_OPERAND (t2
, 0)) == NULL_TREE
3448 && !DECL_RTL_SET_P (TREE_OPERAND (t2
, 0))))
3451 cmp
= simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
3456 return simple_cst_equal (TREE_OPERAND (t1
, 1), TREE_OPERAND (t2
, 1));
3458 case WITH_CLEANUP_EXPR
:
3459 cmp
= simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
3463 return simple_cst_equal (TREE_OPERAND (t1
, 1), TREE_OPERAND (t1
, 1));
3466 if (TREE_OPERAND (t1
, 1) == TREE_OPERAND (t2
, 1))
3467 return simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
3481 /* This general rule works for most tree codes. All exceptions should be
3482 handled above. If this is a language-specific tree code, we can't
3483 trust what might be in the operand, so say we don't know
3485 if ((int) code1
>= (int) LAST_AND_UNUSED_TREE_CODE
)
3488 switch (TREE_CODE_CLASS (code1
))
3497 for (i
= 0; i
< TREE_CODE_LENGTH (code1
); i
++)
3499 cmp
= simple_cst_equal (TREE_OPERAND (t1
, i
), TREE_OPERAND (t2
, i
));
3511 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3512 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3513 than U, respectively. */
3516 compare_tree_int (t
, u
)
3518 unsigned HOST_WIDE_INT u
;
3520 if (tree_int_cst_sgn (t
) < 0)
3522 else if (TREE_INT_CST_HIGH (t
) != 0)
3524 else if (TREE_INT_CST_LOW (t
) == u
)
3526 else if (TREE_INT_CST_LOW (t
) < u
)
3532 /* Constructors for pointer, array and function types.
3533 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3534 constructed by language-dependent code, not here.) */
3536 /* Construct, lay out and return the type of pointers to TO_TYPE.
3537 If such a type has already been constructed, reuse it. */
3540 build_pointer_type (to_type
)
3543 tree t
= TYPE_POINTER_TO (to_type
);
3545 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3550 /* We need a new one. */
3551 t
= make_node (POINTER_TYPE
);
3553 TREE_TYPE (t
) = to_type
;
3555 /* Record this type as the pointer to TO_TYPE. */
3556 TYPE_POINTER_TO (to_type
) = t
;
3558 /* Lay out the type. This function has many callers that are concerned
3559 with expression-construction, and this simplifies them all.
3560 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3566 /* Build the node for the type of references-to-TO_TYPE. */
3569 build_reference_type (to_type
)
3572 tree t
= TYPE_REFERENCE_TO (to_type
);
3574 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3579 /* We need a new one. */
3580 t
= make_node (REFERENCE_TYPE
);
3582 TREE_TYPE (t
) = to_type
;
3584 /* Record this type as the pointer to TO_TYPE. */
3585 TYPE_REFERENCE_TO (to_type
) = t
;
3592 /* Build a type that is compatible with t but has no cv quals anywhere
3595 const char *const *const * -> char ***. */
3598 build_type_no_quals (t
)
3601 switch (TREE_CODE (t
))
3604 return build_pointer_type (build_type_no_quals (TREE_TYPE (t
)));
3605 case REFERENCE_TYPE
:
3606 return build_reference_type (build_type_no_quals (TREE_TYPE (t
)));
3608 return TYPE_MAIN_VARIANT (t
);
3612 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3613 MAXVAL should be the maximum value in the domain
3614 (one less than the length of the array).
3616 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3617 We don't enforce this limit, that is up to caller (e.g. language front end).
3618 The limit exists because the result is a signed type and we don't handle
3619 sizes that use more than one HOST_WIDE_INT. */
3622 build_index_type (maxval
)
3625 tree itype
= make_node (INTEGER_TYPE
);
3627 TREE_TYPE (itype
) = sizetype
;
3628 TYPE_PRECISION (itype
) = TYPE_PRECISION (sizetype
);
3629 TYPE_MIN_VALUE (itype
) = size_zero_node
;
3630 TYPE_MAX_VALUE (itype
) = convert (sizetype
, maxval
);
3631 TYPE_MODE (itype
) = TYPE_MODE (sizetype
);
3632 TYPE_SIZE (itype
) = TYPE_SIZE (sizetype
);
3633 TYPE_SIZE_UNIT (itype
) = TYPE_SIZE_UNIT (sizetype
);
3634 TYPE_ALIGN (itype
) = TYPE_ALIGN (sizetype
);
3635 TYPE_USER_ALIGN (itype
) = TYPE_USER_ALIGN (sizetype
);
3637 if (host_integerp (maxval
, 1))
3638 return type_hash_canon (tree_low_cst (maxval
, 1), itype
);
3643 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
3644 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
3645 low bound LOWVAL and high bound HIGHVAL.
3646 if TYPE==NULL_TREE, sizetype is used. */
3649 build_range_type (type
, lowval
, highval
)
3650 tree type
, lowval
, highval
;
3652 tree itype
= make_node (INTEGER_TYPE
);
3654 TREE_TYPE (itype
) = type
;
3655 if (type
== NULL_TREE
)
3658 TYPE_MIN_VALUE (itype
) = convert (type
, lowval
);
3659 TYPE_MAX_VALUE (itype
) = highval
? convert (type
, highval
) : NULL
;
3661 TYPE_PRECISION (itype
) = TYPE_PRECISION (type
);
3662 TYPE_MODE (itype
) = TYPE_MODE (type
);
3663 TYPE_SIZE (itype
) = TYPE_SIZE (type
);
3664 TYPE_SIZE_UNIT (itype
) = TYPE_SIZE_UNIT (type
);
3665 TYPE_ALIGN (itype
) = TYPE_ALIGN (type
);
3666 TYPE_USER_ALIGN (itype
) = TYPE_USER_ALIGN (type
);
3668 if (host_integerp (lowval
, 0) && highval
!= 0 && host_integerp (highval
, 0))
3669 return type_hash_canon (tree_low_cst (highval
, 0)
3670 - tree_low_cst (lowval
, 0),
3676 /* Just like build_index_type, but takes lowval and highval instead
3677 of just highval (maxval). */
3680 build_index_2_type (lowval
, highval
)
3681 tree lowval
, highval
;
3683 return build_range_type (sizetype
, lowval
, highval
);
3686 /* Return nonzero iff ITYPE1 and ITYPE2 are equal (in the LISP sense).
3687 Needed because when index types are not hashed, equal index types
3688 built at different times appear distinct, even though structurally,
3692 index_type_equal (itype1
, itype2
)
3693 tree itype1
, itype2
;
3695 if (TREE_CODE (itype1
) != TREE_CODE (itype2
))
3698 if (TREE_CODE (itype1
) == INTEGER_TYPE
)
3700 if (TYPE_PRECISION (itype1
) != TYPE_PRECISION (itype2
)
3701 || TYPE_MODE (itype1
) != TYPE_MODE (itype2
)
3702 || simple_cst_equal (TYPE_SIZE (itype1
), TYPE_SIZE (itype2
)) != 1
3703 || TYPE_ALIGN (itype1
) != TYPE_ALIGN (itype2
))
3706 if (1 == simple_cst_equal (TYPE_MIN_VALUE (itype1
),
3707 TYPE_MIN_VALUE (itype2
))
3708 && 1 == simple_cst_equal (TYPE_MAX_VALUE (itype1
),
3709 TYPE_MAX_VALUE (itype2
)))
3716 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
3717 and number of elements specified by the range of values of INDEX_TYPE.
3718 If such a type has already been constructed, reuse it. */
3721 build_array_type (elt_type
, index_type
)
3722 tree elt_type
, index_type
;
3725 unsigned int hashcode
;
3727 if (TREE_CODE (elt_type
) == FUNCTION_TYPE
)
3729 error ("arrays of functions are not meaningful");
3730 elt_type
= integer_type_node
;
3733 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
3734 build_pointer_type (elt_type
);
3736 /* Allocate the array after the pointer type,
3737 in case we free it in type_hash_canon. */
3738 t
= make_node (ARRAY_TYPE
);
3739 TREE_TYPE (t
) = elt_type
;
3740 TYPE_DOMAIN (t
) = index_type
;
3742 if (index_type
== 0)
3747 hashcode
= TYPE_HASH (elt_type
) + TYPE_HASH (index_type
);
3748 t
= type_hash_canon (hashcode
, t
);
3750 if (!COMPLETE_TYPE_P (t
))
3755 /* Return the TYPE of the elements comprising
3756 the innermost dimension of ARRAY. */
3759 get_inner_array_type (array
)
3762 tree type
= TREE_TYPE (array
);
3764 while (TREE_CODE (type
) == ARRAY_TYPE
)
3765 type
= TREE_TYPE (type
);
3770 /* Construct, lay out and return
3771 the type of functions returning type VALUE_TYPE
3772 given arguments of types ARG_TYPES.
3773 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
3774 are data type nodes for the arguments of the function.
3775 If such a type has already been constructed, reuse it. */
3778 build_function_type (value_type
, arg_types
)
3779 tree value_type
, arg_types
;
3782 unsigned int hashcode
;
3784 if (TREE_CODE (value_type
) == FUNCTION_TYPE
)
3786 error ("function return type cannot be function");
3787 value_type
= integer_type_node
;
3790 /* Make a node of the sort we want. */
3791 t
= make_node (FUNCTION_TYPE
);
3792 TREE_TYPE (t
) = value_type
;
3793 TYPE_ARG_TYPES (t
) = arg_types
;
3795 /* If we already have such a type, use the old one and free this one. */
3796 hashcode
= TYPE_HASH (value_type
) + type_hash_list (arg_types
);
3797 t
= type_hash_canon (hashcode
, t
);
3799 if (!COMPLETE_TYPE_P (t
))
3804 /* Construct, lay out and return the type of methods belonging to class
3805 BASETYPE and whose arguments and values are described by TYPE.
3806 If that type exists already, reuse it.
3807 TYPE must be a FUNCTION_TYPE node. */
3810 build_method_type (basetype
, type
)
3811 tree basetype
, type
;
3814 unsigned int hashcode
;
3816 /* Make a node of the sort we want. */
3817 t
= make_node (METHOD_TYPE
);
3819 if (TREE_CODE (type
) != FUNCTION_TYPE
)
3822 TYPE_METHOD_BASETYPE (t
) = TYPE_MAIN_VARIANT (basetype
);
3823 TREE_TYPE (t
) = TREE_TYPE (type
);
3825 /* The actual arglist for this function includes a "hidden" argument
3826 which is "this". Put it into the list of argument types. */
3829 = tree_cons (NULL_TREE
,
3830 build_pointer_type (basetype
), TYPE_ARG_TYPES (type
));
3832 /* If we already have such a type, use the old one and free this one. */
3833 hashcode
= TYPE_HASH (basetype
) + TYPE_HASH (type
);
3834 t
= type_hash_canon (hashcode
, t
);
3836 if (!COMPLETE_TYPE_P (t
))
3842 /* Construct, lay out and return the type of offsets to a value
3843 of type TYPE, within an object of type BASETYPE.
3844 If a suitable offset type exists already, reuse it. */
3847 build_offset_type (basetype
, type
)
3848 tree basetype
, type
;
3851 unsigned int hashcode
;
3853 /* Make a node of the sort we want. */
3854 t
= make_node (OFFSET_TYPE
);
3856 TYPE_OFFSET_BASETYPE (t
) = TYPE_MAIN_VARIANT (basetype
);
3857 TREE_TYPE (t
) = type
;
3859 /* If we already have such a type, use the old one and free this one. */
3860 hashcode
= TYPE_HASH (basetype
) + TYPE_HASH (type
);
3861 t
= type_hash_canon (hashcode
, t
);
3863 if (!COMPLETE_TYPE_P (t
))
3869 /* Create a complex type whose components are COMPONENT_TYPE. */
3872 build_complex_type (component_type
)
3873 tree component_type
;
3876 unsigned int hashcode
;
3878 /* Make a node of the sort we want. */
3879 t
= make_node (COMPLEX_TYPE
);
3881 TREE_TYPE (t
) = TYPE_MAIN_VARIANT (component_type
);
3882 set_type_quals (t
, TYPE_QUALS (component_type
));
3884 /* If we already have such a type, use the old one and free this one. */
3885 hashcode
= TYPE_HASH (component_type
);
3886 t
= type_hash_canon (hashcode
, t
);
3888 if (!COMPLETE_TYPE_P (t
))
3891 /* If we are writing Dwarf2 output we need to create a name,
3892 since complex is a fundamental type. */
3893 if ((write_symbols
== DWARF2_DEBUG
|| write_symbols
== VMS_AND_DWARF2_DEBUG
)
3897 if (component_type
== char_type_node
)
3898 name
= "complex char";
3899 else if (component_type
== signed_char_type_node
)
3900 name
= "complex signed char";
3901 else if (component_type
== unsigned_char_type_node
)
3902 name
= "complex unsigned char";
3903 else if (component_type
== short_integer_type_node
)
3904 name
= "complex short int";
3905 else if (component_type
== short_unsigned_type_node
)
3906 name
= "complex short unsigned int";
3907 else if (component_type
== integer_type_node
)
3908 name
= "complex int";
3909 else if (component_type
== unsigned_type_node
)
3910 name
= "complex unsigned int";
3911 else if (component_type
== long_integer_type_node
)
3912 name
= "complex long int";
3913 else if (component_type
== long_unsigned_type_node
)
3914 name
= "complex long unsigned int";
3915 else if (component_type
== long_long_integer_type_node
)
3916 name
= "complex long long int";
3917 else if (component_type
== long_long_unsigned_type_node
)
3918 name
= "complex long long unsigned int";
3923 TYPE_NAME (t
) = get_identifier (name
);
3929 /* Return OP, stripped of any conversions to wider types as much as is safe.
3930 Converting the value back to OP's type makes a value equivalent to OP.
3932 If FOR_TYPE is nonzero, we return a value which, if converted to
3933 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
3935 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
3936 narrowest type that can hold the value, even if they don't exactly fit.
3937 Otherwise, bit-field references are changed to a narrower type
3938 only if they can be fetched directly from memory in that type.
3940 OP must have integer, real or enumeral type. Pointers are not allowed!
3942 There are some cases where the obvious value we could return
3943 would regenerate to OP if converted to OP's type,
3944 but would not extend like OP to wider types.
3945 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
3946 For example, if OP is (unsigned short)(signed char)-1,
3947 we avoid returning (signed char)-1 if FOR_TYPE is int,
3948 even though extending that to an unsigned short would regenerate OP,
3949 since the result of extending (signed char)-1 to (int)
3950 is different from (int) OP. */
3953 get_unwidened (op
, for_type
)
3957 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
3958 tree type
= TREE_TYPE (op
);
3960 = TYPE_PRECISION (for_type
!= 0 ? for_type
: type
);
3962 = (for_type
!= 0 && for_type
!= type
3963 && final_prec
> TYPE_PRECISION (type
)
3964 && TREE_UNSIGNED (type
));
3967 while (TREE_CODE (op
) == NOP_EXPR
)
3970 = TYPE_PRECISION (TREE_TYPE (op
))
3971 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op
, 0)));
3973 /* Truncations are many-one so cannot be removed.
3974 Unless we are later going to truncate down even farther. */
3976 && final_prec
> TYPE_PRECISION (TREE_TYPE (op
)))
3979 /* See what's inside this conversion. If we decide to strip it,
3981 op
= TREE_OPERAND (op
, 0);
3983 /* If we have not stripped any zero-extensions (uns is 0),
3984 we can strip any kind of extension.
3985 If we have previously stripped a zero-extension,
3986 only zero-extensions can safely be stripped.
3987 Any extension can be stripped if the bits it would produce
3988 are all going to be discarded later by truncating to FOR_TYPE. */
3992 if (! uns
|| final_prec
<= TYPE_PRECISION (TREE_TYPE (op
)))
3994 /* TREE_UNSIGNED says whether this is a zero-extension.
3995 Let's avoid computing it if it does not affect WIN
3996 and if UNS will not be needed again. */
3997 if ((uns
|| TREE_CODE (op
) == NOP_EXPR
)
3998 && TREE_UNSIGNED (TREE_TYPE (op
)))
4006 if (TREE_CODE (op
) == COMPONENT_REF
4007 /* Since type_for_size always gives an integer type. */
4008 && TREE_CODE (type
) != REAL_TYPE
4009 /* Don't crash if field not laid out yet. */
4010 && DECL_SIZE (TREE_OPERAND (op
, 1)) != 0
4011 && host_integerp (DECL_SIZE (TREE_OPERAND (op
, 1)), 1))
4013 unsigned int innerprec
4014 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op
, 1)), 1);
4015 int unsignedp
= TREE_UNSIGNED (TREE_OPERAND (op
, 1));
4016 type
= (*lang_hooks
.types
.type_for_size
) (innerprec
, unsignedp
);
4018 /* We can get this structure field in the narrowest type it fits in.
4019 If FOR_TYPE is 0, do this only for a field that matches the
4020 narrower type exactly and is aligned for it
4021 The resulting extension to its nominal type (a fullword type)
4022 must fit the same conditions as for other extensions. */
4024 if (innerprec
< TYPE_PRECISION (TREE_TYPE (op
))
4025 && (for_type
|| ! DECL_BIT_FIELD (TREE_OPERAND (op
, 1)))
4026 && (! uns
|| final_prec
<= innerprec
|| unsignedp
)
4029 win
= build (COMPONENT_REF
, type
, TREE_OPERAND (op
, 0),
4030 TREE_OPERAND (op
, 1));
4031 TREE_SIDE_EFFECTS (win
) = TREE_SIDE_EFFECTS (op
);
4032 TREE_THIS_VOLATILE (win
) = TREE_THIS_VOLATILE (op
);
4039 /* Return OP or a simpler expression for a narrower value
4040 which can be sign-extended or zero-extended to give back OP.
4041 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4042 or 0 if the value should be sign-extended. */
4045 get_narrower (op
, unsignedp_ptr
)
4053 while (TREE_CODE (op
) == NOP_EXPR
)
4056 = (TYPE_PRECISION (TREE_TYPE (op
))
4057 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op
, 0))));
4059 /* Truncations are many-one so cannot be removed. */
4063 /* See what's inside this conversion. If we decide to strip it,
4065 op
= TREE_OPERAND (op
, 0);
4069 /* An extension: the outermost one can be stripped,
4070 but remember whether it is zero or sign extension. */
4072 uns
= TREE_UNSIGNED (TREE_TYPE (op
));
4073 /* Otherwise, if a sign extension has been stripped,
4074 only sign extensions can now be stripped;
4075 if a zero extension has been stripped, only zero-extensions. */
4076 else if (uns
!= TREE_UNSIGNED (TREE_TYPE (op
)))
4080 else /* bitschange == 0 */
4082 /* A change in nominal type can always be stripped, but we must
4083 preserve the unsignedness. */
4085 uns
= TREE_UNSIGNED (TREE_TYPE (op
));
4092 if (TREE_CODE (op
) == COMPONENT_REF
4093 /* Since type_for_size always gives an integer type. */
4094 && TREE_CODE (TREE_TYPE (op
)) != REAL_TYPE
4095 /* Ensure field is laid out already. */
4096 && DECL_SIZE (TREE_OPERAND (op
, 1)) != 0)
4098 unsigned HOST_WIDE_INT innerprec
4099 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op
, 1)), 1);
4100 tree type
= (*lang_hooks
.types
.type_for_size
) (innerprec
,
4101 TREE_UNSIGNED (op
));
4103 /* We can get this structure field in a narrower type that fits it,
4104 but the resulting extension to its nominal type (a fullword type)
4105 must satisfy the same conditions as for other extensions.
4107 Do this only for fields that are aligned (not bit-fields),
4108 because when bit-field insns will be used there is no
4109 advantage in doing this. */
4111 if (innerprec
< TYPE_PRECISION (TREE_TYPE (op
))
4112 && ! DECL_BIT_FIELD (TREE_OPERAND (op
, 1))
4113 && (first
|| uns
== TREE_UNSIGNED (TREE_OPERAND (op
, 1)))
4117 uns
= TREE_UNSIGNED (TREE_OPERAND (op
, 1));
4118 win
= build (COMPONENT_REF
, type
, TREE_OPERAND (op
, 0),
4119 TREE_OPERAND (op
, 1));
4120 TREE_SIDE_EFFECTS (win
) = TREE_SIDE_EFFECTS (op
);
4121 TREE_THIS_VOLATILE (win
) = TREE_THIS_VOLATILE (op
);
4124 *unsignedp_ptr
= uns
;
4128 /* Nonzero if integer constant C has a value that is permissible
4129 for type TYPE (an INTEGER_TYPE). */
4132 int_fits_type_p (c
, type
)
4135 /* If the bounds of the type are integers, we can check ourselves.
4136 If not, but this type is a subtype, try checking against that.
4137 Otherwise, use force_fit_type, which checks against the precision. */
4138 if (TYPE_MAX_VALUE (type
) != NULL_TREE
4139 && TYPE_MIN_VALUE (type
) != NULL_TREE
4140 && TREE_CODE (TYPE_MAX_VALUE (type
)) == INTEGER_CST
4141 && TREE_CODE (TYPE_MIN_VALUE (type
)) == INTEGER_CST
)
4143 if (TREE_UNSIGNED (type
))
4144 return (! INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type
), c
)
4145 && ! INT_CST_LT_UNSIGNED (c
, TYPE_MIN_VALUE (type
))
4146 /* Negative ints never fit unsigned types. */
4147 && ! (TREE_INT_CST_HIGH (c
) < 0
4148 && ! TREE_UNSIGNED (TREE_TYPE (c
))));
4150 return (! INT_CST_LT (TYPE_MAX_VALUE (type
), c
)
4151 && ! INT_CST_LT (c
, TYPE_MIN_VALUE (type
))
4152 /* Unsigned ints with top bit set never fit signed types. */
4153 && ! (TREE_INT_CST_HIGH (c
) < 0
4154 && TREE_UNSIGNED (TREE_TYPE (c
))));
4156 else if (TREE_CODE (type
) == INTEGER_TYPE
&& TREE_TYPE (type
) != 0)
4157 return int_fits_type_p (c
, TREE_TYPE (type
));
4161 TREE_TYPE (c
) = type
;
4162 return !force_fit_type (c
, 0);
4166 /* Given a DECL or TYPE, return the scope in which it was declared, or
4167 NULL_TREE if there is no containing scope. */
4170 get_containing_scope (t
)
4173 return (TYPE_P (t
) ? TYPE_CONTEXT (t
) : DECL_CONTEXT (t
));
4176 /* Return the innermost context enclosing DECL that is
4177 a FUNCTION_DECL, or zero if none. */
4180 decl_function_context (decl
)
4185 if (TREE_CODE (decl
) == ERROR_MARK
)
4188 if (TREE_CODE (decl
) == SAVE_EXPR
)
4189 context
= SAVE_EXPR_CONTEXT (decl
);
4191 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4192 where we look up the function at runtime. Such functions always take
4193 a first argument of type 'pointer to real context'.
4195 C++ should really be fixed to use DECL_CONTEXT for the real context,
4196 and use something else for the "virtual context". */
4197 else if (TREE_CODE (decl
) == FUNCTION_DECL
&& DECL_VINDEX (decl
))
4200 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl
)))));
4202 context
= DECL_CONTEXT (decl
);
4204 while (context
&& TREE_CODE (context
) != FUNCTION_DECL
)
4206 if (TREE_CODE (context
) == BLOCK
)
4207 context
= BLOCK_SUPERCONTEXT (context
);
4209 context
= get_containing_scope (context
);
4215 /* Return the innermost context enclosing DECL that is
4216 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4217 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4220 decl_type_context (decl
)
4223 tree context
= DECL_CONTEXT (decl
);
4227 if (TREE_CODE (context
) == NAMESPACE_DECL
)
4230 if (TREE_CODE (context
) == RECORD_TYPE
4231 || TREE_CODE (context
) == UNION_TYPE
4232 || TREE_CODE (context
) == QUAL_UNION_TYPE
)
4235 if (TREE_CODE (context
) == TYPE_DECL
4236 || TREE_CODE (context
) == FUNCTION_DECL
)
4237 context
= DECL_CONTEXT (context
);
4239 else if (TREE_CODE (context
) == BLOCK
)
4240 context
= BLOCK_SUPERCONTEXT (context
);
4243 /* Unhandled CONTEXT!? */
4249 /* CALL is a CALL_EXPR. Return the declaration for the function
4250 called, or NULL_TREE if the called function cannot be
4254 get_callee_fndecl (call
)
4259 /* It's invalid to call this function with anything but a
4261 if (TREE_CODE (call
) != CALL_EXPR
)
4264 /* The first operand to the CALL is the address of the function
4266 addr
= TREE_OPERAND (call
, 0);
4270 /* If this is a readonly function pointer, extract its initial value. */
4271 if (DECL_P (addr
) && TREE_CODE (addr
) != FUNCTION_DECL
4272 && TREE_READONLY (addr
) && ! TREE_THIS_VOLATILE (addr
)
4273 && DECL_INITIAL (addr
))
4274 addr
= DECL_INITIAL (addr
);
4276 /* If the address is just `&f' for some function `f', then we know
4277 that `f' is being called. */
4278 if (TREE_CODE (addr
) == ADDR_EXPR
4279 && TREE_CODE (TREE_OPERAND (addr
, 0)) == FUNCTION_DECL
)
4280 return TREE_OPERAND (addr
, 0);
4282 /* We couldn't figure out what was being called. */
4286 /* Print debugging information about the obstack O, named STR. */
4289 print_obstack_statistics (str
, o
)
4293 struct _obstack_chunk
*chunk
= o
->chunk
;
4297 n_alloc
+= o
->next_free
- chunk
->contents
;
4298 chunk
= chunk
->prev
;
4302 n_alloc
+= chunk
->limit
- &chunk
->contents
[0];
4303 chunk
= chunk
->prev
;
4305 fprintf (stderr
, "obstack %s: %u bytes, %d chunks\n",
4306 str
, n_alloc
, n_chunks
);
4309 /* Print debugging information about tree nodes generated during the compile,
4310 and any language-specific information. */
4313 dump_tree_statistics ()
4315 #ifdef GATHER_STATISTICS
4317 int total_nodes
, total_bytes
;
4320 fprintf (stderr
, "\n??? tree nodes created\n\n");
4321 #ifdef GATHER_STATISTICS
4322 fprintf (stderr
, "Kind Nodes Bytes\n");
4323 fprintf (stderr
, "-------------------------------------\n");
4324 total_nodes
= total_bytes
= 0;
4325 for (i
= 0; i
< (int) all_kinds
; i
++)
4327 fprintf (stderr
, "%-20s %6d %9d\n", tree_node_kind_names
[i
],
4328 tree_node_counts
[i
], tree_node_sizes
[i
]);
4329 total_nodes
+= tree_node_counts
[i
];
4330 total_bytes
+= tree_node_sizes
[i
];
4332 fprintf (stderr
, "-------------------------------------\n");
4333 fprintf (stderr
, "%-20s %6d %9d\n", "Total", total_nodes
, total_bytes
);
4334 fprintf (stderr
, "-------------------------------------\n");
4336 fprintf (stderr
, "(No per-node statistics)\n");
4338 print_obstack_statistics ("permanent_obstack", &permanent_obstack
);
4339 print_type_hash_statistics ();
4340 (*lang_hooks
.print_statistics
) ();
4343 #define FILE_FUNCTION_PREFIX_LEN 9
4345 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4347 /* Appends 6 random characters to TEMPLATE to (hopefully) avoid name
4348 clashes in cases where we can't reliably choose a unique name.
4350 Derived from mkstemp.c in libiberty. */
4353 append_random_chars (template)
4356 static const char letters
[]
4357 = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
4358 static unsigned HOST_WIDE_INT value
;
4359 unsigned HOST_WIDE_INT v
;
4365 /* VALUE should be unique for each file and must not change between
4366 compiles since this can cause bootstrap comparison errors. */
4368 if (stat (main_input_filename
, &st
) < 0)
4370 /* This can happen when preprocessed text is shipped between
4371 machines, e.g. with bug reports. Assume that uniqueness
4372 isn't actually an issue. */
4377 /* In VMS, ino is an array, so we have to use both values. We
4378 conditionalize that. */
4380 #define INO_TO_INT(INO) ((int) (INO)[1] << 16 ^ (int) (INO)[2])
4382 #define INO_TO_INT(INO) INO
4384 value
= st
.st_dev
^ INO_TO_INT (st
.st_ino
) ^ st
.st_mtime
;
4388 template += strlen (template);
4392 /* Fill in the random bits. */
4393 template[0] = letters
[v
% 62];
4395 template[1] = letters
[v
% 62];
4397 template[2] = letters
[v
% 62];
4399 template[3] = letters
[v
% 62];
4401 template[4] = letters
[v
% 62];
4403 template[5] = letters
[v
% 62];
4408 /* P is a string that will be used in a symbol. Mask out any characters
4409 that are not valid in that context. */
4412 clean_symbol_name (p
)
4417 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4420 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4427 /* Generate a name for a function unique to this translation unit.
4428 TYPE is some string to identify the purpose of this function to the
4429 linker or collect2. */
4432 get_file_function_name_long (type
)
4439 if (first_global_object_name
)
4440 p
= first_global_object_name
;
4443 /* We don't have anything that we know to be unique to this translation
4444 unit, so use what we do have and throw in some randomness. */
4446 const char *name
= weak_global_object_name
;
4447 const char *file
= main_input_filename
;
4452 file
= input_filename
;
4454 q
= (char *) alloca (7 + strlen (name
) + strlen (file
));
4456 sprintf (q
, "%s%s", name
, file
);
4457 append_random_chars (q
);
4461 buf
= (char *) alloca (sizeof (FILE_FUNCTION_FORMAT
) + strlen (p
)
4464 /* Set up the name of the file-level functions we may need.
4465 Use a global object (which is already required to be unique over
4466 the program) rather than the file name (which imposes extra
4468 sprintf (buf
, FILE_FUNCTION_FORMAT
, type
, p
);
4470 /* Don't need to pull weird characters out of global names. */
4471 if (p
!= first_global_object_name
)
4472 clean_symbol_name (buf
+ 11);
4474 return get_identifier (buf
);
4477 /* If KIND=='I', return a suitable global initializer (constructor) name.
4478 If KIND=='D', return a suitable global clean-up (destructor) name. */
4481 get_file_function_name (kind
)
4489 return get_file_function_name_long (p
);
4492 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4493 The result is placed in BUFFER (which has length BIT_SIZE),
4494 with one bit in each char ('\000' or '\001').
4496 If the constructor is constant, NULL_TREE is returned.
4497 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4500 get_set_constructor_bits (init
, buffer
, bit_size
)
4507 HOST_WIDE_INT domain_min
4508 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init
))), 0);
4509 tree non_const_bits
= NULL_TREE
;
4511 for (i
= 0; i
< bit_size
; i
++)
4514 for (vals
= TREE_OPERAND (init
, 1);
4515 vals
!= NULL_TREE
; vals
= TREE_CHAIN (vals
))
4517 if (!host_integerp (TREE_VALUE (vals
), 0)
4518 || (TREE_PURPOSE (vals
) != NULL_TREE
4519 && !host_integerp (TREE_PURPOSE (vals
), 0)))
4521 = tree_cons (TREE_PURPOSE (vals
), TREE_VALUE (vals
), non_const_bits
);
4522 else if (TREE_PURPOSE (vals
) != NULL_TREE
)
4524 /* Set a range of bits to ones. */
4525 HOST_WIDE_INT lo_index
4526 = tree_low_cst (TREE_PURPOSE (vals
), 0) - domain_min
;
4527 HOST_WIDE_INT hi_index
4528 = tree_low_cst (TREE_VALUE (vals
), 0) - domain_min
;
4530 if (lo_index
< 0 || lo_index
>= bit_size
4531 || hi_index
< 0 || hi_index
>= bit_size
)
4533 for (; lo_index
<= hi_index
; lo_index
++)
4534 buffer
[lo_index
] = 1;
4538 /* Set a single bit to one. */
4540 = tree_low_cst (TREE_VALUE (vals
), 0) - domain_min
;
4541 if (index
< 0 || index
>= bit_size
)
4543 error ("invalid initializer for bit string");
4549 return non_const_bits
;
4552 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4553 The result is placed in BUFFER (which is an array of bytes).
4554 If the constructor is constant, NULL_TREE is returned.
4555 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4558 get_set_constructor_bytes (init
, buffer
, wd_size
)
4560 unsigned char *buffer
;
4564 int set_word_size
= BITS_PER_UNIT
;
4565 int bit_size
= wd_size
* set_word_size
;
4567 unsigned char *bytep
= buffer
;
4568 char *bit_buffer
= (char *) alloca (bit_size
);
4569 tree non_const_bits
= get_set_constructor_bits (init
, bit_buffer
, bit_size
);
4571 for (i
= 0; i
< wd_size
; i
++)
4574 for (i
= 0; i
< bit_size
; i
++)
4578 if (BYTES_BIG_ENDIAN
)
4579 *bytep
|= (1 << (set_word_size
- 1 - bit_pos
));
4581 *bytep
|= 1 << bit_pos
;
4584 if (bit_pos
>= set_word_size
)
4585 bit_pos
= 0, bytep
++;
4587 return non_const_bits
;
4590 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4591 /* Complain that the tree code of NODE does not match the expected CODE.
4592 FILE, LINE, and FUNCTION are of the caller. */
4595 tree_check_failed (node
, code
, file
, line
, function
)
4597 enum tree_code code
;
4600 const char *function
;
4602 internal_error ("tree check: expected %s, have %s in %s, at %s:%d",
4603 tree_code_name
[code
], tree_code_name
[TREE_CODE (node
)],
4604 function
, trim_filename (file
), line
);
4607 /* Similar to above, except that we check for a class of tree
4608 code, given in CL. */
4611 tree_class_check_failed (node
, cl
, file
, line
, function
)
4616 const char *function
;
4619 ("tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
4620 cl
, TREE_CODE_CLASS (TREE_CODE (node
)),
4621 tree_code_name
[TREE_CODE (node
)], function
, trim_filename (file
), line
);
4624 #endif /* ENABLE_TREE_CHECKING */
4626 /* For a new vector type node T, build the information necessary for
4627 debuggint output. */
4630 finish_vector_type (t
)
4636 tree index
= build_int_2 (TYPE_VECTOR_SUBPARTS (t
) - 1, 0);
4637 tree array
= build_array_type (TREE_TYPE (t
),
4638 build_index_type (index
));
4639 tree rt
= make_node (RECORD_TYPE
);
4641 TYPE_FIELDS (rt
) = build_decl (FIELD_DECL
, get_identifier ("f"), array
);
4642 DECL_CONTEXT (TYPE_FIELDS (rt
)) = rt
;
4644 TYPE_DEBUG_REPRESENTATION_TYPE (t
) = rt
;
4645 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
4646 the representation type, and we want to find that die when looking up
4647 the vector type. This is most easily achieved by making the TYPE_UID
4649 TYPE_UID (rt
) = TYPE_UID (t
);
4653 /* Create nodes for all integer types (and error_mark_node) using the sizes
4654 of C datatypes. The caller should call set_sizetype soon after calling
4655 this function to select one of the types as sizetype. */
4658 build_common_tree_nodes (signed_char
)
4661 error_mark_node
= make_node (ERROR_MARK
);
4662 TREE_TYPE (error_mark_node
) = error_mark_node
;
4664 initialize_sizetypes ();
4666 /* Define both `signed char' and `unsigned char'. */
4667 signed_char_type_node
= make_signed_type (CHAR_TYPE_SIZE
);
4668 unsigned_char_type_node
= make_unsigned_type (CHAR_TYPE_SIZE
);
4670 /* Define `char', which is like either `signed char' or `unsigned char'
4671 but not the same as either. */
4674 ? make_signed_type (CHAR_TYPE_SIZE
)
4675 : make_unsigned_type (CHAR_TYPE_SIZE
));
4677 short_integer_type_node
= make_signed_type (SHORT_TYPE_SIZE
);
4678 short_unsigned_type_node
= make_unsigned_type (SHORT_TYPE_SIZE
);
4679 integer_type_node
= make_signed_type (INT_TYPE_SIZE
);
4680 unsigned_type_node
= make_unsigned_type (INT_TYPE_SIZE
);
4681 long_integer_type_node
= make_signed_type (LONG_TYPE_SIZE
);
4682 long_unsigned_type_node
= make_unsigned_type (LONG_TYPE_SIZE
);
4683 long_long_integer_type_node
= make_signed_type (LONG_LONG_TYPE_SIZE
);
4684 long_long_unsigned_type_node
= make_unsigned_type (LONG_LONG_TYPE_SIZE
);
4686 intQI_type_node
= make_signed_type (GET_MODE_BITSIZE (QImode
));
4687 intHI_type_node
= make_signed_type (GET_MODE_BITSIZE (HImode
));
4688 intSI_type_node
= make_signed_type (GET_MODE_BITSIZE (SImode
));
4689 intDI_type_node
= make_signed_type (GET_MODE_BITSIZE (DImode
));
4690 intTI_type_node
= make_signed_type (GET_MODE_BITSIZE (TImode
));
4692 unsigned_intQI_type_node
= make_unsigned_type (GET_MODE_BITSIZE (QImode
));
4693 unsigned_intHI_type_node
= make_unsigned_type (GET_MODE_BITSIZE (HImode
));
4694 unsigned_intSI_type_node
= make_unsigned_type (GET_MODE_BITSIZE (SImode
));
4695 unsigned_intDI_type_node
= make_unsigned_type (GET_MODE_BITSIZE (DImode
));
4696 unsigned_intTI_type_node
= make_unsigned_type (GET_MODE_BITSIZE (TImode
));
4699 /* Call this function after calling build_common_tree_nodes and set_sizetype.
4700 It will create several other common tree nodes. */
4703 build_common_tree_nodes_2 (short_double
)
4706 /* Define these next since types below may used them. */
4707 integer_zero_node
= build_int_2 (0, 0);
4708 integer_one_node
= build_int_2 (1, 0);
4709 integer_minus_one_node
= build_int_2 (-1, -1);
4711 size_zero_node
= size_int (0);
4712 size_one_node
= size_int (1);
4713 bitsize_zero_node
= bitsize_int (0);
4714 bitsize_one_node
= bitsize_int (1);
4715 bitsize_unit_node
= bitsize_int (BITS_PER_UNIT
);
4717 void_type_node
= make_node (VOID_TYPE
);
4718 layout_type (void_type_node
);
4720 /* We are not going to have real types in C with less than byte alignment,
4721 so we might as well not have any types that claim to have it. */
4722 TYPE_ALIGN (void_type_node
) = BITS_PER_UNIT
;
4723 TYPE_USER_ALIGN (void_type_node
) = 0;
4725 null_pointer_node
= build_int_2 (0, 0);
4726 TREE_TYPE (null_pointer_node
) = build_pointer_type (void_type_node
);
4727 layout_type (TREE_TYPE (null_pointer_node
));
4729 ptr_type_node
= build_pointer_type (void_type_node
);
4731 = build_pointer_type (build_type_variant (void_type_node
, 1, 0));
4733 float_type_node
= make_node (REAL_TYPE
);
4734 TYPE_PRECISION (float_type_node
) = FLOAT_TYPE_SIZE
;
4735 layout_type (float_type_node
);
4737 double_type_node
= make_node (REAL_TYPE
);
4739 TYPE_PRECISION (double_type_node
) = FLOAT_TYPE_SIZE
;
4741 TYPE_PRECISION (double_type_node
) = DOUBLE_TYPE_SIZE
;
4742 layout_type (double_type_node
);
4744 long_double_type_node
= make_node (REAL_TYPE
);
4745 TYPE_PRECISION (long_double_type_node
) = LONG_DOUBLE_TYPE_SIZE
;
4746 layout_type (long_double_type_node
);
4748 complex_integer_type_node
= make_node (COMPLEX_TYPE
);
4749 TREE_TYPE (complex_integer_type_node
) = integer_type_node
;
4750 layout_type (complex_integer_type_node
);
4752 complex_float_type_node
= make_node (COMPLEX_TYPE
);
4753 TREE_TYPE (complex_float_type_node
) = float_type_node
;
4754 layout_type (complex_float_type_node
);
4756 complex_double_type_node
= make_node (COMPLEX_TYPE
);
4757 TREE_TYPE (complex_double_type_node
) = double_type_node
;
4758 layout_type (complex_double_type_node
);
4760 complex_long_double_type_node
= make_node (COMPLEX_TYPE
);
4761 TREE_TYPE (complex_long_double_type_node
) = long_double_type_node
;
4762 layout_type (complex_long_double_type_node
);
4766 BUILD_VA_LIST_TYPE (t
);
4768 /* Many back-ends define record types without seting TYPE_NAME.
4769 If we copied the record type here, we'd keep the original
4770 record type without a name. This breaks name mangling. So,
4771 don't copy record types and let c_common_nodes_and_builtins()
4772 declare the type to be __builtin_va_list. */
4773 if (TREE_CODE (t
) != RECORD_TYPE
)
4774 t
= build_type_copy (t
);
4776 va_list_type_node
= t
;
4779 unsigned_V4SI_type_node
4780 = make_vector (V4SImode
, unsigned_intSI_type_node
, 1);
4781 unsigned_V2SI_type_node
4782 = make_vector (V2SImode
, unsigned_intSI_type_node
, 1);
4783 unsigned_V2DI_type_node
4784 = make_vector (V2DImode
, unsigned_intDI_type_node
, 1);
4785 unsigned_V4HI_type_node
4786 = make_vector (V4HImode
, unsigned_intHI_type_node
, 1);
4787 unsigned_V8QI_type_node
4788 = make_vector (V8QImode
, unsigned_intQI_type_node
, 1);
4789 unsigned_V8HI_type_node
4790 = make_vector (V8HImode
, unsigned_intHI_type_node
, 1);
4791 unsigned_V16QI_type_node
4792 = make_vector (V16QImode
, unsigned_intQI_type_node
, 1);
4794 V16SF_type_node
= make_vector (V16SFmode
, float_type_node
, 0);
4795 V4SF_type_node
= make_vector (V4SFmode
, float_type_node
, 0);
4796 V4SI_type_node
= make_vector (V4SImode
, intSI_type_node
, 0);
4797 V2SI_type_node
= make_vector (V2SImode
, intSI_type_node
, 0);
4798 V2DI_type_node
= make_vector (V2DImode
, intDI_type_node
, 0);
4799 V4HI_type_node
= make_vector (V4HImode
, intHI_type_node
, 0);
4800 V8QI_type_node
= make_vector (V8QImode
, intQI_type_node
, 0);
4801 V8HI_type_node
= make_vector (V8HImode
, intHI_type_node
, 0);
4802 V2SF_type_node
= make_vector (V2SFmode
, float_type_node
, 0);
4803 V2DF_type_node
= make_vector (V2DFmode
, double_type_node
, 0);
4804 V16QI_type_node
= make_vector (V16QImode
, intQI_type_node
, 0);
4807 /* Returns a vector tree node given a vector mode, the inner type, and
4811 make_vector (mode
, innertype
, unsignedp
)
4812 enum machine_mode mode
;
4818 t
= make_node (VECTOR_TYPE
);
4819 TREE_TYPE (t
) = innertype
;
4820 TYPE_MODE (t
) = mode
;
4821 TREE_UNSIGNED (TREE_TYPE (t
)) = unsignedp
;
4822 finish_vector_type (t
);
4827 /* Given an initializer INIT, return TRUE if INIT is zero or some
4828 aggregate of zeros. Otherwise return FALSE. */
4831 initializer_zerop (init
)
4836 switch (TREE_CODE (init
))
4839 return integer_zerop (init
);
4841 return real_zerop (init
)
4842 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init
));
4844 return integer_zerop (init
)
4845 || (real_zerop (init
)
4846 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init
)))
4847 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init
))));
4850 if (AGGREGATE_TYPE_P (TREE_TYPE (init
)))
4852 tree aggr_init
= TREE_OPERAND (init
, 1);
4856 if (! initializer_zerop (TREE_VALUE (aggr_init
)))
4858 aggr_init
= TREE_CHAIN (aggr_init
);