stl_bvector.h (swap(_Bit_reference,_Bit_reference)): Move/rename...
[official-gcc.git] / gcc / stor-layout.c
blob8bbf4fea11f44b48726b9ed4d86407c4b2586ba6
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1996, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "flags.h"
29 #include "function.h"
30 #include "expr.h"
31 #include "toplev.h"
32 #include "ggc.h"
33 #include "target.h"
34 #include "langhooks.h"
36 /* Set to one when set_sizetype has been called. */
37 static int sizetype_set;
39 /* List of types created before set_sizetype has been called. We do not
40 make this a GGC root since we want these nodes to be reclaimed. */
41 static tree early_type_list;
43 /* Data type for the expressions representing sizes of data types.
44 It is the first integer type laid out. */
45 tree sizetype_tab[(int) TYPE_KIND_LAST];
47 /* If nonzero, this is an upper limit on alignment of structure fields.
48 The value is measured in bits. */
49 unsigned int maximum_field_alignment;
51 /* If non-zero, the alignment of a bitstring or (power-)set value, in bits.
52 May be overridden by front-ends. */
53 unsigned int set_alignment = 0;
55 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be
56 allocated in Pmode, not ptr_mode. Set only by internal_reference_types
57 called only by a front end. */
58 static int reference_types_internal = 0;
60 static void finalize_record_size PARAMS ((record_layout_info));
61 static void finalize_type_size PARAMS ((tree));
62 static void place_union_field PARAMS ((record_layout_info, tree));
63 extern void debug_rli PARAMS ((record_layout_info));
65 /* SAVE_EXPRs for sizes of types and decls, waiting to be expanded. */
67 static tree pending_sizes;
69 /* Nonzero means cannot safely call expand_expr now,
70 so put variable sizes onto `pending_sizes' instead. */
72 int immediate_size_expand;
74 /* Show that REFERENCE_TYPES are internal and should be Pmode. Called only
75 by front end. */
77 void
78 internal_reference_types ()
80 reference_types_internal = 1;
83 /* Get a list of all the objects put on the pending sizes list. */
85 tree
86 get_pending_sizes ()
88 tree chain = pending_sizes;
89 tree t;
91 /* Put each SAVE_EXPR into the current function. */
92 for (t = chain; t; t = TREE_CHAIN (t))
93 SAVE_EXPR_CONTEXT (TREE_VALUE (t)) = current_function_decl;
95 pending_sizes = 0;
96 return chain;
99 /* Return non-zero if EXPR is present on the pending sizes list. */
102 is_pending_size (expr)
103 tree expr;
105 tree t;
107 for (t = pending_sizes; t; t = TREE_CHAIN (t))
108 if (TREE_VALUE (t) == expr)
109 return 1;
110 return 0;
113 /* Add EXPR to the pending sizes list. */
115 void
116 put_pending_size (expr)
117 tree expr;
119 /* Strip any simple arithmetic from EXPR to see if it has an underlying
120 SAVE_EXPR. */
121 while (TREE_CODE_CLASS (TREE_CODE (expr)) == '1'
122 || (TREE_CODE_CLASS (TREE_CODE (expr)) == '2'
123 && TREE_CONSTANT (TREE_OPERAND (expr, 1))))
124 expr = TREE_OPERAND (expr, 0);
126 if (TREE_CODE (expr) == SAVE_EXPR)
127 pending_sizes = tree_cons (NULL_TREE, expr, pending_sizes);
130 /* Put a chain of objects into the pending sizes list, which must be
131 empty. */
133 void
134 put_pending_sizes (chain)
135 tree chain;
137 if (pending_sizes)
138 abort ();
140 pending_sizes = chain;
143 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
144 to serve as the actual size-expression for a type or decl. */
146 tree
147 variable_size (size)
148 tree size;
150 /* If the language-processor is to take responsibility for variable-sized
151 items (e.g., languages which have elaboration procedures like Ada),
152 just return SIZE unchanged. Likewise for self-referential sizes and
153 constant sizes. */
154 if (TREE_CONSTANT (size)
155 || (*lang_hooks.decls.global_bindings_p) () < 0
156 || contains_placeholder_p (size))
157 return size;
159 size = save_expr (size);
161 /* If an array with a variable number of elements is declared, and
162 the elements require destruction, we will emit a cleanup for the
163 array. That cleanup is run both on normal exit from the block
164 and in the exception-handler for the block. Normally, when code
165 is used in both ordinary code and in an exception handler it is
166 `unsaved', i.e., all SAVE_EXPRs are recalculated. However, we do
167 not wish to do that here; the array-size is the same in both
168 places. */
169 if (TREE_CODE (size) == SAVE_EXPR)
170 SAVE_EXPR_PERSISTENT_P (size) = 1;
172 if ((*lang_hooks.decls.global_bindings_p) ())
174 if (TREE_CONSTANT (size))
175 error ("type size can't be explicitly evaluated");
176 else
177 error ("variable-size type declared outside of any function");
179 return size_one_node;
182 if (immediate_size_expand)
183 /* NULL_RTX is not defined; neither is the rtx type.
184 Also, we would like to pass const0_rtx here, but don't have it. */
185 expand_expr (size, expand_expr (integer_zero_node, NULL_RTX, VOIDmode, 0),
186 VOIDmode, 0);
187 else if (cfun != 0 && cfun->x_dont_save_pending_sizes_p)
188 /* The front-end doesn't want us to keep a list of the expressions
189 that determine sizes for variable size objects. */
191 else
192 put_pending_size (size);
194 return size;
197 #ifndef MAX_FIXED_MODE_SIZE
198 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
199 #endif
201 /* Return the machine mode to use for a nonscalar of SIZE bits.
202 The mode must be in class CLASS, and have exactly that many bits.
203 If LIMIT is nonzero, modes of wider than MAX_FIXED_MODE_SIZE will not
204 be used. */
206 enum machine_mode
207 mode_for_size (size, class, limit)
208 unsigned int size;
209 enum mode_class class;
210 int limit;
212 enum machine_mode mode;
214 if (limit && size > MAX_FIXED_MODE_SIZE)
215 return BLKmode;
217 /* Get the first mode which has this size, in the specified class. */
218 for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
219 mode = GET_MODE_WIDER_MODE (mode))
220 if (GET_MODE_BITSIZE (mode) == size)
221 return mode;
223 return BLKmode;
226 /* Similar, except passed a tree node. */
228 enum machine_mode
229 mode_for_size_tree (size, class, limit)
230 tree size;
231 enum mode_class class;
232 int limit;
234 if (TREE_CODE (size) != INTEGER_CST
235 /* What we really want to say here is that the size can fit in a
236 host integer, but we know there's no way we'd find a mode for
237 this many bits, so there's no point in doing the precise test. */
238 || compare_tree_int (size, 1000) > 0)
239 return BLKmode;
240 else
241 return mode_for_size (TREE_INT_CST_LOW (size), class, limit);
244 /* Similar, but never return BLKmode; return the narrowest mode that
245 contains at least the requested number of bits. */
247 enum machine_mode
248 smallest_mode_for_size (size, class)
249 unsigned int size;
250 enum mode_class class;
252 enum machine_mode mode;
254 /* Get the first mode which has at least this size, in the
255 specified class. */
256 for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
257 mode = GET_MODE_WIDER_MODE (mode))
258 if (GET_MODE_BITSIZE (mode) >= size)
259 return mode;
261 abort ();
264 /* Find an integer mode of the exact same size, or BLKmode on failure. */
266 enum machine_mode
267 int_mode_for_mode (mode)
268 enum machine_mode mode;
270 switch (GET_MODE_CLASS (mode))
272 case MODE_INT:
273 case MODE_PARTIAL_INT:
274 break;
276 case MODE_COMPLEX_INT:
277 case MODE_COMPLEX_FLOAT:
278 case MODE_FLOAT:
279 case MODE_VECTOR_INT:
280 case MODE_VECTOR_FLOAT:
281 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
282 break;
284 case MODE_RANDOM:
285 if (mode == BLKmode)
286 break;
288 /* ... fall through ... */
290 case MODE_CC:
291 default:
292 abort ();
295 return mode;
298 /* Return the value of VALUE, rounded up to a multiple of DIVISOR.
299 This can only be applied to objects of a sizetype. */
301 tree
302 round_up (value, divisor)
303 tree value;
304 int divisor;
306 tree arg = size_int_type (divisor, TREE_TYPE (value));
308 return size_binop (MULT_EXPR, size_binop (CEIL_DIV_EXPR, value, arg), arg);
311 /* Likewise, but round down. */
313 tree
314 round_down (value, divisor)
315 tree value;
316 int divisor;
318 tree arg = size_int_type (divisor, TREE_TYPE (value));
320 return size_binop (MULT_EXPR, size_binop (FLOOR_DIV_EXPR, value, arg), arg);
323 /* Set the size, mode and alignment of a ..._DECL node.
324 TYPE_DECL does need this for C++.
325 Note that LABEL_DECL and CONST_DECL nodes do not need this,
326 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
327 Don't call layout_decl for them.
329 KNOWN_ALIGN is the amount of alignment we can assume this
330 decl has with no special effort. It is relevant only for FIELD_DECLs
331 and depends on the previous fields.
332 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
333 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
334 the record will be aligned to suit. */
336 void
337 layout_decl (decl, known_align)
338 tree decl;
339 unsigned int known_align;
341 tree type = TREE_TYPE (decl);
342 enum tree_code code = TREE_CODE (decl);
344 if (code == CONST_DECL)
345 return;
346 else if (code != VAR_DECL && code != PARM_DECL && code != RESULT_DECL
347 && code != TYPE_DECL && code != FIELD_DECL)
348 abort ();
350 if (type == error_mark_node)
351 type = void_type_node;
353 /* Usually the size and mode come from the data type without change,
354 however, the front-end may set the explicit width of the field, so its
355 size may not be the same as the size of its type. This happens with
356 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
357 also happens with other fields. For example, the C++ front-end creates
358 zero-sized fields corresponding to empty base classes, and depends on
359 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
360 size in bytes from the size in bits. If we have already set the mode,
361 don't set it again since we can be called twice for FIELD_DECLs. */
363 TREE_UNSIGNED (decl) = TREE_UNSIGNED (type);
364 if (DECL_MODE (decl) == VOIDmode)
365 DECL_MODE (decl) = TYPE_MODE (type);
367 if (DECL_SIZE (decl) == 0)
369 DECL_SIZE (decl) = TYPE_SIZE (type);
370 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
372 else
373 DECL_SIZE_UNIT (decl)
374 = convert (sizetype, size_binop (CEIL_DIV_EXPR, DECL_SIZE (decl),
375 bitsize_unit_node));
377 /* Force alignment required for the data type.
378 But if the decl itself wants greater alignment, don't override that.
379 Likewise, if the decl is packed, don't override it. */
380 if (! (code == FIELD_DECL && DECL_BIT_FIELD (decl))
381 && (DECL_ALIGN (decl) == 0
382 || (! (code == FIELD_DECL && DECL_PACKED (decl))
383 && TYPE_ALIGN (type) > DECL_ALIGN (decl))))
385 DECL_ALIGN (decl) = TYPE_ALIGN (type);
386 DECL_USER_ALIGN (decl) = 0;
389 /* For fields, set the bit field type and update the alignment. */
390 if (code == FIELD_DECL)
392 DECL_BIT_FIELD_TYPE (decl) = DECL_BIT_FIELD (decl) ? type : 0;
393 if (maximum_field_alignment != 0)
394 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), maximum_field_alignment);
396 /* If the field is of variable size, we can't misalign it since we
397 have no way to make a temporary to align the result. But this
398 isn't an issue if the decl is not addressable. Likewise if it
399 is of unknown size. */
400 else if (DECL_PACKED (decl)
401 && (DECL_NONADDRESSABLE_P (decl)
402 || DECL_SIZE_UNIT (decl) == 0
403 || TREE_CODE (DECL_SIZE_UNIT (decl)) == INTEGER_CST))
405 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
406 DECL_USER_ALIGN (decl) = 0;
410 /* See if we can use an ordinary integer mode for a bit-field.
411 Conditions are: a fixed size that is correct for another mode
412 and occupying a complete byte or bytes on proper boundary. */
413 if (code == FIELD_DECL && DECL_BIT_FIELD (decl)
414 && TYPE_SIZE (type) != 0
415 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
416 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
418 enum machine_mode xmode
419 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
421 if (xmode != BLKmode && known_align >= GET_MODE_ALIGNMENT (xmode))
423 DECL_ALIGN (decl) = MAX (GET_MODE_ALIGNMENT (xmode),
424 DECL_ALIGN (decl));
425 DECL_MODE (decl) = xmode;
426 DECL_BIT_FIELD (decl) = 0;
430 /* Turn off DECL_BIT_FIELD if we won't need it set. */
431 if (code == FIELD_DECL && DECL_BIT_FIELD (decl)
432 && TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
433 && known_align >= TYPE_ALIGN (type)
434 && DECL_ALIGN (decl) >= TYPE_ALIGN (type)
435 && DECL_SIZE_UNIT (decl) != 0)
436 DECL_BIT_FIELD (decl) = 0;
438 /* Evaluate nonconstant size only once, either now or as soon as safe. */
439 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
440 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
441 if (DECL_SIZE_UNIT (decl) != 0
442 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
443 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
445 /* If requested, warn about definitions of large data objects. */
446 if (warn_larger_than
447 && (code == VAR_DECL || code == PARM_DECL)
448 && ! DECL_EXTERNAL (decl))
450 tree size = DECL_SIZE_UNIT (decl);
452 if (size != 0 && TREE_CODE (size) == INTEGER_CST
453 && compare_tree_int (size, larger_than_size) > 0)
455 unsigned int size_as_int = TREE_INT_CST_LOW (size);
457 if (compare_tree_int (size, size_as_int) == 0)
458 warning_with_decl (decl, "size of `%s' is %d bytes", size_as_int);
459 else
460 warning_with_decl (decl, "size of `%s' is larger than %d bytes",
461 larger_than_size);
466 /* Hook for a front-end function that can modify the record layout as needed
467 immediately before it is finalized. */
469 void (*lang_adjust_rli) PARAMS ((record_layout_info)) = 0;
471 void
472 set_lang_adjust_rli (f)
473 void (*f) PARAMS ((record_layout_info));
475 lang_adjust_rli = f;
478 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
479 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
480 is to be passed to all other layout functions for this record. It is the
481 responsibility of the caller to call `free' for the storage returned.
482 Note that garbage collection is not permitted until we finish laying
483 out the record. */
485 record_layout_info
486 start_record_layout (t)
487 tree t;
489 record_layout_info rli
490 = (record_layout_info) xmalloc (sizeof (struct record_layout_info_s));
492 rli->t = t;
494 /* If the type has a minimum specified alignment (via an attribute
495 declaration, for example) use it -- otherwise, start with a
496 one-byte alignment. */
497 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
498 rli->unpacked_align = rli->unpadded_align = rli->record_align;
499 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
501 #ifdef STRUCTURE_SIZE_BOUNDARY
502 /* Packed structures don't need to have minimum size. */
503 if (! TYPE_PACKED (t))
504 rli->record_align = MAX (rli->record_align, STRUCTURE_SIZE_BOUNDARY);
505 #endif
507 rli->offset = size_zero_node;
508 rli->bitpos = bitsize_zero_node;
509 rli->prev_field = 0;
510 rli->pending_statics = 0;
511 rli->packed_maybe_necessary = 0;
513 return rli;
516 /* These four routines perform computations that convert between
517 the offset/bitpos forms and byte and bit offsets. */
519 tree
520 bit_from_pos (offset, bitpos)
521 tree offset, bitpos;
523 return size_binop (PLUS_EXPR, bitpos,
524 size_binop (MULT_EXPR, convert (bitsizetype, offset),
525 bitsize_unit_node));
528 tree
529 byte_from_pos (offset, bitpos)
530 tree offset, bitpos;
532 return size_binop (PLUS_EXPR, offset,
533 convert (sizetype,
534 size_binop (TRUNC_DIV_EXPR, bitpos,
535 bitsize_unit_node)));
538 void
539 pos_from_byte (poffset, pbitpos, off_align, pos)
540 tree *poffset, *pbitpos;
541 unsigned int off_align;
542 tree pos;
544 *poffset
545 = size_binop (MULT_EXPR,
546 convert (sizetype,
547 size_binop (FLOOR_DIV_EXPR, pos,
548 bitsize_int (off_align
549 / BITS_PER_UNIT))),
550 size_int (off_align / BITS_PER_UNIT));
551 *pbitpos = size_binop (MULT_EXPR,
552 size_binop (FLOOR_MOD_EXPR, pos,
553 bitsize_int (off_align / BITS_PER_UNIT)),
554 bitsize_unit_node);
557 void
558 pos_from_bit (poffset, pbitpos, off_align, pos)
559 tree *poffset, *pbitpos;
560 unsigned int off_align;
561 tree pos;
563 *poffset = size_binop (MULT_EXPR,
564 convert (sizetype,
565 size_binop (FLOOR_DIV_EXPR, pos,
566 bitsize_int (off_align))),
567 size_int (off_align / BITS_PER_UNIT));
568 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, bitsize_int (off_align));
571 /* Given a pointer to bit and byte offsets and an offset alignment,
572 normalize the offsets so they are within the alignment. */
574 void
575 normalize_offset (poffset, pbitpos, off_align)
576 tree *poffset, *pbitpos;
577 unsigned int off_align;
579 /* If the bit position is now larger than it should be, adjust it
580 downwards. */
581 if (compare_tree_int (*pbitpos, off_align) >= 0)
583 tree extra_aligns = size_binop (FLOOR_DIV_EXPR, *pbitpos,
584 bitsize_int (off_align));
586 *poffset
587 = size_binop (PLUS_EXPR, *poffset,
588 size_binop (MULT_EXPR, convert (sizetype, extra_aligns),
589 size_int (off_align / BITS_PER_UNIT)));
591 *pbitpos
592 = size_binop (FLOOR_MOD_EXPR, *pbitpos, bitsize_int (off_align));
596 /* Print debugging information about the information in RLI. */
598 void
599 debug_rli (rli)
600 record_layout_info rli;
602 print_node_brief (stderr, "type", rli->t, 0);
603 print_node_brief (stderr, "\noffset", rli->offset, 0);
604 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
606 fprintf (stderr, "\naligns: rec = %u, unpack = %u, unpad = %u, off = %u\n",
607 rli->record_align, rli->unpacked_align, rli->unpadded_align,
608 rli->offset_align);
609 if (rli->packed_maybe_necessary)
610 fprintf (stderr, "packed may be necessary\n");
612 if (rli->pending_statics)
614 fprintf (stderr, "pending statics:\n");
615 debug_tree (rli->pending_statics);
619 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
620 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
622 void
623 normalize_rli (rli)
624 record_layout_info rli;
626 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
629 /* Returns the size in bytes allocated so far. */
631 tree
632 rli_size_unit_so_far (rli)
633 record_layout_info rli;
635 return byte_from_pos (rli->offset, rli->bitpos);
638 /* Returns the size in bits allocated so far. */
640 tree
641 rli_size_so_far (rli)
642 record_layout_info rli;
644 return bit_from_pos (rli->offset, rli->bitpos);
647 /* Called from place_field to handle unions. */
649 static void
650 place_union_field (rli, field)
651 record_layout_info rli;
652 tree field;
654 unsigned int desired_align;
656 layout_decl (field, 0);
658 DECL_FIELD_OFFSET (field) = size_zero_node;
659 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
660 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
662 desired_align = DECL_ALIGN (field);
664 #ifdef BIGGEST_FIELD_ALIGNMENT
665 /* Some targets (i.e. i386) limit union field alignment
666 to a lower boundary than alignment of variables unless
667 it was overridden by attribute aligned. */
668 if (! DECL_USER_ALIGN (field))
669 desired_align =
670 MIN (desired_align, (unsigned) BIGGEST_FIELD_ALIGNMENT);
671 #endif
673 #ifdef ADJUST_FIELD_ALIGN
674 desired_align = ADJUST_FIELD_ALIGN (field, desired_align);
675 #endif
677 TYPE_USER_ALIGN (rli->t) |= DECL_USER_ALIGN (field);
679 /* Union must be at least as aligned as any field requires. */
680 rli->record_align = MAX (rli->record_align, desired_align);
681 rli->unpadded_align = MAX (rli->unpadded_align, desired_align);
683 #ifdef PCC_BITFIELD_TYPE_MATTERS
684 /* On the m88000, a bit field of declare type `int' forces the
685 entire union to have `int' alignment. */
686 if (PCC_BITFIELD_TYPE_MATTERS && DECL_BIT_FIELD_TYPE (field))
688 rli->record_align = MAX (rli->record_align,
689 TYPE_ALIGN (TREE_TYPE (field)));
690 rli->unpadded_align = MAX (rli->unpadded_align,
691 TYPE_ALIGN (TREE_TYPE (field)));
693 #endif
695 /* We assume the union's size will be a multiple of a byte so we don't
696 bother with BITPOS. */
697 if (TREE_CODE (rli->t) == UNION_TYPE)
698 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
699 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
700 rli->offset = fold (build (COND_EXPR, sizetype,
701 DECL_QUALIFIER (field),
702 DECL_SIZE_UNIT (field), rli->offset));
705 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
706 is a FIELD_DECL to be added after those fields already present in
707 T. (FIELD is not actually added to the TYPE_FIELDS list here;
708 callers that desire that behavior must manually perform that step.) */
710 void
711 place_field (rli, field)
712 record_layout_info rli;
713 tree field;
715 /* The alignment required for FIELD. */
716 unsigned int desired_align;
717 /* The alignment FIELD would have if we just dropped it into the
718 record as it presently stands. */
719 unsigned int known_align;
720 unsigned int actual_align;
721 unsigned int user_align;
722 /* The type of this field. */
723 tree type = TREE_TYPE (field);
725 if (TREE_CODE (field) == ERROR_MARK || TREE_CODE (type) == ERROR_MARK)
726 return;
728 /* If FIELD is static, then treat it like a separate variable, not
729 really like a structure field. If it is a FUNCTION_DECL, it's a
730 method. In both cases, all we do is lay out the decl, and we do
731 it *after* the record is laid out. */
732 if (TREE_CODE (field) == VAR_DECL)
734 rli->pending_statics = tree_cons (NULL_TREE, field,
735 rli->pending_statics);
736 return;
739 /* Enumerators and enum types which are local to this class need not
740 be laid out. Likewise for initialized constant fields. */
741 else if (TREE_CODE (field) != FIELD_DECL)
742 return;
744 /* Unions are laid out very differently than records, so split
745 that code off to another function. */
746 else if (TREE_CODE (rli->t) != RECORD_TYPE)
748 place_union_field (rli, field);
749 return;
752 /* Work out the known alignment so far. Note that A & (-A) is the
753 value of the least-significant bit in A that is one. */
754 if (! integer_zerop (rli->bitpos))
755 known_align = (tree_low_cst (rli->bitpos, 1)
756 & - tree_low_cst (rli->bitpos, 1));
757 else if (integer_zerop (rli->offset))
758 known_align = BIGGEST_ALIGNMENT;
759 else if (host_integerp (rli->offset, 1))
760 known_align = (BITS_PER_UNIT
761 * (tree_low_cst (rli->offset, 1)
762 & - tree_low_cst (rli->offset, 1)));
763 else
764 known_align = rli->offset_align;
766 /* Lay out the field so we know what alignment it needs. For a
767 packed field, use the alignment as specified, disregarding what
768 the type would want. */
769 desired_align = DECL_ALIGN (field);
770 user_align = DECL_USER_ALIGN (field);
771 layout_decl (field, known_align);
772 if (! DECL_PACKED (field))
774 desired_align = DECL_ALIGN (field);
775 user_align = DECL_USER_ALIGN (field);
778 /* Some targets (i.e. i386, VMS) limit struct field alignment
779 to a lower boundary than alignment of variables unless
780 it was overridden by attribute aligned. */
781 #ifdef BIGGEST_FIELD_ALIGNMENT
782 if (! user_align)
783 desired_align
784 = MIN (desired_align, (unsigned) BIGGEST_FIELD_ALIGNMENT);
785 #endif
787 #ifdef ADJUST_FIELD_ALIGN
788 desired_align = ADJUST_FIELD_ALIGN (field, desired_align);
789 #endif
791 /* Record must have at least as much alignment as any field.
792 Otherwise, the alignment of the field within the record is
793 meaningless. */
794 if ((* targetm.ms_bitfield_layout_p) (rli->t)
795 && type != error_mark_node
796 && DECL_BIT_FIELD_TYPE (field)
797 && ! integer_zerop (TYPE_SIZE (type))
798 && integer_zerop (DECL_SIZE (field)))
800 if (rli->prev_field
801 && DECL_BIT_FIELD_TYPE (rli->prev_field)
802 && ! integer_zerop (DECL_SIZE (rli->prev_field)))
804 rli->record_align = MAX (rli->record_align, desired_align);
805 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
807 else
808 desired_align = 1;
810 else
811 #ifdef PCC_BITFIELD_TYPE_MATTERS
812 if (PCC_BITFIELD_TYPE_MATTERS && type != error_mark_node
813 && ! (* targetm.ms_bitfield_layout_p) (rli->t)
814 && DECL_BIT_FIELD_TYPE (field)
815 && ! integer_zerop (TYPE_SIZE (type)))
817 /* For these machines, a zero-length field does not
818 affect the alignment of the structure as a whole.
819 It does, however, affect the alignment of the next field
820 within the structure. */
821 if (! integer_zerop (DECL_SIZE (field)))
822 rli->record_align = MAX (rli->record_align, desired_align);
823 else if (! DECL_PACKED (field))
824 desired_align = TYPE_ALIGN (type);
826 /* A named bit field of declared type `int'
827 forces the entire structure to have `int' alignment. */
828 if (DECL_NAME (field) != 0)
830 unsigned int type_align = TYPE_ALIGN (type);
832 if (maximum_field_alignment != 0)
833 type_align = MIN (type_align, maximum_field_alignment);
834 else if (DECL_PACKED (field))
835 type_align = MIN (type_align, BITS_PER_UNIT);
837 rli->record_align = MAX (rli->record_align, type_align);
838 rli->unpadded_align = MAX (rli->unpadded_align, DECL_ALIGN (field));
839 if (warn_packed)
840 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
843 else
844 #endif
846 rli->record_align = MAX (rli->record_align, desired_align);
847 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
848 rli->unpadded_align = MAX (rli->unpadded_align, DECL_ALIGN (field));
851 if (warn_packed && DECL_PACKED (field))
853 if (known_align > TYPE_ALIGN (type))
855 if (TYPE_ALIGN (type) > desired_align)
857 if (STRICT_ALIGNMENT)
858 warning_with_decl (field, "packed attribute causes inefficient alignment for `%s'");
859 else
860 warning_with_decl (field, "packed attribute is unnecessary for `%s'");
863 else
864 rli->packed_maybe_necessary = 1;
867 /* Does this field automatically have alignment it needs by virtue
868 of the fields that precede it and the record's own alignment? */
869 if (known_align < desired_align)
871 /* No, we need to skip space before this field.
872 Bump the cumulative size to multiple of field alignment. */
874 if (warn_padded)
875 warning_with_decl (field, "padding struct to align `%s'");
877 /* If the alignment is still within offset_align, just align
878 the bit position. */
879 if (desired_align < rli->offset_align)
880 rli->bitpos = round_up (rli->bitpos, desired_align);
881 else
883 /* First adjust OFFSET by the partial bits, then align. */
884 rli->offset
885 = size_binop (PLUS_EXPR, rli->offset,
886 convert (sizetype,
887 size_binop (CEIL_DIV_EXPR, rli->bitpos,
888 bitsize_unit_node)));
889 rli->bitpos = bitsize_zero_node;
891 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
894 if (! TREE_CONSTANT (rli->offset))
895 rli->offset_align = desired_align;
899 /* Handle compatibility with PCC. Note that if the record has any
900 variable-sized fields, we need not worry about compatibility. */
901 #ifdef PCC_BITFIELD_TYPE_MATTERS
902 if (PCC_BITFIELD_TYPE_MATTERS
903 && ! (* targetm.ms_bitfield_layout_p) (rli->t)
904 && TREE_CODE (field) == FIELD_DECL
905 && type != error_mark_node
906 && DECL_BIT_FIELD (field)
907 && ! DECL_PACKED (field)
908 && maximum_field_alignment == 0
909 && ! integer_zerop (DECL_SIZE (field))
910 && host_integerp (DECL_SIZE (field), 1)
911 && host_integerp (rli->offset, 1)
912 && host_integerp (TYPE_SIZE (type), 1))
914 unsigned int type_align = TYPE_ALIGN (type);
915 tree dsize = DECL_SIZE (field);
916 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
917 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
918 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
920 /* A bit field may not span more units of alignment of its type
921 than its type itself. Advance to next boundary if necessary. */
922 if ((((offset * BITS_PER_UNIT + bit_offset + field_size +
923 type_align - 1)
924 / type_align)
925 - (offset * BITS_PER_UNIT + bit_offset) / type_align)
926 > tree_low_cst (TYPE_SIZE (type), 1) / type_align)
927 rli->bitpos = round_up (rli->bitpos, type_align);
929 #endif
931 #ifdef BITFIELD_NBYTES_LIMITED
932 if (BITFIELD_NBYTES_LIMITED
933 && ! (* targetm.ms_bitfield_layout_p) (rli->t)
934 && TREE_CODE (field) == FIELD_DECL
935 && type != error_mark_node
936 && DECL_BIT_FIELD_TYPE (field)
937 && ! DECL_PACKED (field)
938 && ! integer_zerop (DECL_SIZE (field))
939 && host_integerp (DECL_SIZE (field), 1)
940 && host_integerp (rli->offset, 1)
941 && host_integerp (TYPE_SIZE (type), 1))
943 unsigned int type_align = TYPE_ALIGN (type);
944 tree dsize = DECL_SIZE (field);
945 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
946 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
947 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
949 if (maximum_field_alignment != 0)
950 type_align = MIN (type_align, maximum_field_alignment);
951 /* ??? This test is opposite the test in the containing if
952 statement, so this code is unreachable currently. */
953 else if (DECL_PACKED (field))
954 type_align = MIN (type_align, BITS_PER_UNIT);
956 /* A bit field may not span the unit of alignment of its type.
957 Advance to next boundary if necessary. */
958 /* ??? This code should match the code above for the
959 PCC_BITFIELD_TYPE_MATTERS case. */
960 if ((offset * BITS_PER_UNIT + bit_offset) / type_align
961 != ((offset * BITS_PER_UNIT + bit_offset + field_size - 1)
962 / type_align))
963 rli->bitpos = round_up (rli->bitpos, type_align);
965 #endif
967 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details. */
968 if ((* targetm.ms_bitfield_layout_p) (rli->t)
969 && TREE_CODE (field) == FIELD_DECL
970 && type != error_mark_node
971 && ! DECL_PACKED (field)
972 && rli->prev_field
973 && DECL_SIZE (field)
974 && host_integerp (DECL_SIZE (field), 1)
975 && DECL_SIZE (rli->prev_field)
976 && host_integerp (DECL_SIZE (rli->prev_field), 1)
977 && host_integerp (rli->offset, 1)
978 && host_integerp (TYPE_SIZE (type), 1)
979 && host_integerp (TYPE_SIZE (TREE_TYPE (rli->prev_field)), 1)
980 && ((DECL_BIT_FIELD_TYPE (rli->prev_field)
981 && ! integer_zerop (DECL_SIZE (rli->prev_field)))
982 || (DECL_BIT_FIELD_TYPE (field)
983 && ! integer_zerop (DECL_SIZE (field))))
984 && (! simple_cst_equal (TYPE_SIZE (type),
985 TYPE_SIZE (TREE_TYPE (rli->prev_field)))
986 /* If the previous field was a zero-sized bit-field, either
987 it was ignored, in which case we must ensure the proper
988 alignment of this field here, or it already forced the
989 alignment of this field, in which case forcing the
990 alignment again is harmless. So, do it in both cases. */
991 || (DECL_BIT_FIELD_TYPE (rli->prev_field)
992 && integer_zerop (DECL_SIZE (rli->prev_field)))))
994 unsigned int type_align = TYPE_ALIGN (type);
996 if (rli->prev_field
997 && DECL_BIT_FIELD_TYPE (rli->prev_field)
998 /* If the previous bit-field is zero-sized, we've already
999 accounted for its alignment needs (or ignored it, if
1000 appropriate) while placing it. */
1001 && ! integer_zerop (DECL_SIZE (rli->prev_field)))
1002 type_align = MAX (type_align,
1003 TYPE_ALIGN (TREE_TYPE (rli->prev_field)));
1005 if (maximum_field_alignment != 0)
1006 type_align = MIN (type_align, maximum_field_alignment);
1008 rli->bitpos = round_up (rli->bitpos, type_align);
1011 /* Offset so far becomes the position of this field after normalizing. */
1012 normalize_rli (rli);
1013 DECL_FIELD_OFFSET (field) = rli->offset;
1014 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1015 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1017 TYPE_USER_ALIGN (rli->t) |= user_align;
1019 /* If this field ended up more aligned than we thought it would be (we
1020 approximate this by seeing if its position changed), lay out the field
1021 again; perhaps we can use an integral mode for it now. */
1022 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1023 actual_align = (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1024 & - tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1));
1025 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1026 actual_align = BIGGEST_ALIGNMENT;
1027 else if (host_integerp (DECL_FIELD_OFFSET (field), 1))
1028 actual_align = (BITS_PER_UNIT
1029 * (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1030 & - tree_low_cst (DECL_FIELD_OFFSET (field), 1)));
1031 else
1032 actual_align = DECL_OFFSET_ALIGN (field);
1034 if (known_align != actual_align)
1035 layout_decl (field, actual_align);
1037 rli->prev_field = field;
1039 /* Now add size of this field to the size of the record. If the size is
1040 not constant, treat the field as being a multiple of bytes and just
1041 adjust the offset, resetting the bit position. Otherwise, apportion the
1042 size amongst the bit position and offset. First handle the case of an
1043 unspecified size, which can happen when we have an invalid nested struct
1044 definition, such as struct j { struct j { int i; } }. The error message
1045 is printed in finish_struct. */
1046 if (DECL_SIZE (field) == 0)
1047 /* Do nothing. */;
1048 else if (TREE_CODE (DECL_SIZE_UNIT (field)) != INTEGER_CST
1049 || TREE_CONSTANT_OVERFLOW (DECL_SIZE_UNIT (field)))
1051 rli->offset
1052 = size_binop (PLUS_EXPR, rli->offset,
1053 convert (sizetype,
1054 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1055 bitsize_unit_node)));
1056 rli->offset
1057 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1058 rli->bitpos = bitsize_zero_node;
1059 rli->offset_align = MIN (rli->offset_align, DECL_ALIGN (field));
1061 else
1063 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1064 normalize_rli (rli);
1068 /* Assuming that all the fields have been laid out, this function uses
1069 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1070 inidicated by RLI. */
1072 static void
1073 finalize_record_size (rli)
1074 record_layout_info rli;
1076 tree unpadded_size, unpadded_size_unit;
1078 /* Now we want just byte and bit offsets, so set the offset alignment
1079 to be a byte and then normalize. */
1080 rli->offset_align = BITS_PER_UNIT;
1081 normalize_rli (rli);
1083 /* Determine the desired alignment. */
1084 #ifdef ROUND_TYPE_ALIGN
1085 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1086 rli->record_align);
1087 #else
1088 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1089 #endif
1091 /* Compute the size so far. Be sure to allow for extra bits in the
1092 size in bytes. We have guaranteed above that it will be no more
1093 than a single byte. */
1094 unpadded_size = rli_size_so_far (rli);
1095 unpadded_size_unit = rli_size_unit_so_far (rli);
1096 if (! integer_zerop (rli->bitpos))
1097 unpadded_size_unit
1098 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1100 /* Record the un-rounded size in the binfo node. But first we check
1101 the size of TYPE_BINFO to make sure that BINFO_SIZE is available. */
1102 if (TYPE_BINFO (rli->t) && TREE_VEC_LENGTH (TYPE_BINFO (rli->t)) > 6)
1104 TYPE_BINFO_SIZE (rli->t) = unpadded_size;
1105 TYPE_BINFO_SIZE_UNIT (rli->t) = unpadded_size_unit;
1108 /* Round the size up to be a multiple of the required alignment */
1109 #ifdef ROUND_TYPE_SIZE
1110 TYPE_SIZE (rli->t) = ROUND_TYPE_SIZE (rli->t, unpadded_size,
1111 TYPE_ALIGN (rli->t));
1112 TYPE_SIZE_UNIT (rli->t)
1113 = ROUND_TYPE_SIZE_UNIT (rli->t, unpadded_size_unit,
1114 TYPE_ALIGN (rli->t) / BITS_PER_UNIT);
1115 #else
1116 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1117 TYPE_SIZE_UNIT (rli->t) = round_up (unpadded_size_unit,
1118 TYPE_ALIGN (rli->t) / BITS_PER_UNIT);
1119 #endif
1121 if (warn_padded && TREE_CONSTANT (unpadded_size)
1122 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0)
1123 warning ("padding struct size to alignment boundary");
1125 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1126 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1127 && TREE_CONSTANT (unpadded_size))
1129 tree unpacked_size;
1131 #ifdef ROUND_TYPE_ALIGN
1132 rli->unpacked_align
1133 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1134 #else
1135 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1136 #endif
1138 #ifdef ROUND_TYPE_SIZE
1139 unpacked_size = ROUND_TYPE_SIZE (rli->t, TYPE_SIZE (rli->t),
1140 rli->unpacked_align);
1141 #else
1142 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1143 #endif
1145 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1147 TYPE_PACKED (rli->t) = 0;
1149 if (TYPE_NAME (rli->t))
1151 const char *name;
1153 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1154 name = IDENTIFIER_POINTER (TYPE_NAME (rli->t));
1155 else
1156 name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (rli->t)));
1158 if (STRICT_ALIGNMENT)
1159 warning ("packed attribute causes inefficient alignment for `%s'", name);
1160 else
1161 warning ("packed attribute is unnecessary for `%s'", name);
1163 else
1165 if (STRICT_ALIGNMENT)
1166 warning ("packed attribute causes inefficient alignment");
1167 else
1168 warning ("packed attribute is unnecessary");
1174 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1176 void
1177 compute_record_mode (type)
1178 tree type;
1180 tree field;
1181 enum machine_mode mode = VOIDmode;
1183 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1184 However, if possible, we use a mode that fits in a register
1185 instead, in order to allow for better optimization down the
1186 line. */
1187 TYPE_MODE (type) = BLKmode;
1189 if (! host_integerp (TYPE_SIZE (type), 1))
1190 return;
1192 /* A record which has any BLKmode members must itself be
1193 BLKmode; it can't go in a register. Unless the member is
1194 BLKmode only because it isn't aligned. */
1195 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1197 unsigned HOST_WIDE_INT bitpos;
1199 if (TREE_CODE (field) != FIELD_DECL)
1200 continue;
1202 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1203 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1204 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field)))
1205 || ! host_integerp (bit_position (field), 1)
1206 || DECL_SIZE (field) == 0
1207 || ! host_integerp (DECL_SIZE (field), 1))
1208 return;
1210 bitpos = int_bit_position (field);
1212 /* Must be BLKmode if any field crosses a word boundary,
1213 since extract_bit_field can't handle that in registers. */
1214 if (bitpos / BITS_PER_WORD
1215 != ((tree_low_cst (DECL_SIZE (field), 1) + bitpos - 1)
1216 / BITS_PER_WORD)
1217 /* But there is no problem if the field is entire words. */
1218 && tree_low_cst (DECL_SIZE (field), 1) % BITS_PER_WORD != 0)
1219 return;
1221 /* If this field is the whole struct, remember its mode so
1222 that, say, we can put a double in a class into a DF
1223 register instead of forcing it to live in the stack. */
1224 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1225 mode = DECL_MODE (field);
1227 #ifdef MEMBER_TYPE_FORCES_BLK
1228 /* With some targets, eg. c4x, it is sub-optimal
1229 to access an aligned BLKmode structure as a scalar. */
1231 /* On ia64-*-hpux we need to ensure that we don't change the
1232 mode of a structure containing a single field or else we
1233 will pass it incorrectly. Since a structure with a single
1234 field causes mode to get set above we can't allow the
1235 check for mode == VOIDmode in this case. Perhaps
1236 MEMBER_TYPE_FORCES_BLK should be extended to include mode
1237 as an argument and the check could be put in there for c4x. */
1239 if ((mode == VOIDmode || FUNCTION_ARG_REG_LITTLE_ENDIAN)
1240 && MEMBER_TYPE_FORCES_BLK (field))
1241 return;
1242 #endif /* MEMBER_TYPE_FORCES_BLK */
1245 /* If we only have one real field; use its mode. This only applies to
1246 RECORD_TYPE. This does not apply to unions. */
1247 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode)
1248 TYPE_MODE (type) = mode;
1249 else
1250 TYPE_MODE (type) = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1);
1252 /* If structure's known alignment is less than what the scalar
1253 mode would need, and it matters, then stick with BLKmode. */
1254 if (TYPE_MODE (type) != BLKmode
1255 && STRICT_ALIGNMENT
1256 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1257 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1259 /* If this is the only reason this type is BLKmode, then
1260 don't force containing types to be BLKmode. */
1261 TYPE_NO_FORCE_BLK (type) = 1;
1262 TYPE_MODE (type) = BLKmode;
1266 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1267 out. */
1269 static void
1270 finalize_type_size (type)
1271 tree type;
1273 /* Normally, use the alignment corresponding to the mode chosen.
1274 However, where strict alignment is not required, avoid
1275 over-aligning structures, since most compilers do not do this
1276 alignment. */
1278 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1279 && (STRICT_ALIGNMENT
1280 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1281 && TREE_CODE (type) != QUAL_UNION_TYPE
1282 && TREE_CODE (type) != ARRAY_TYPE)))
1284 TYPE_ALIGN (type) = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1285 TYPE_USER_ALIGN (type) = 0;
1288 /* Do machine-dependent extra alignment. */
1289 #ifdef ROUND_TYPE_ALIGN
1290 TYPE_ALIGN (type)
1291 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1292 #endif
1294 /* If we failed to find a simple way to calculate the unit size
1295 of the type, find it by division. */
1296 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1297 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1298 result will fit in sizetype. We will get more efficient code using
1299 sizetype, so we force a conversion. */
1300 TYPE_SIZE_UNIT (type)
1301 = convert (sizetype,
1302 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1303 bitsize_unit_node));
1305 if (TYPE_SIZE (type) != 0)
1307 #ifdef ROUND_TYPE_SIZE
1308 TYPE_SIZE (type)
1309 = ROUND_TYPE_SIZE (type, TYPE_SIZE (type), TYPE_ALIGN (type));
1310 TYPE_SIZE_UNIT (type)
1311 = ROUND_TYPE_SIZE_UNIT (type, TYPE_SIZE_UNIT (type),
1312 TYPE_ALIGN (type) / BITS_PER_UNIT);
1313 #else
1314 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1315 TYPE_SIZE_UNIT (type)
1316 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN (type) / BITS_PER_UNIT);
1317 #endif
1320 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1321 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1322 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1323 if (TYPE_SIZE_UNIT (type) != 0
1324 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1325 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1327 /* Also layout any other variants of the type. */
1328 if (TYPE_NEXT_VARIANT (type)
1329 || type != TYPE_MAIN_VARIANT (type))
1331 tree variant;
1332 /* Record layout info of this variant. */
1333 tree size = TYPE_SIZE (type);
1334 tree size_unit = TYPE_SIZE_UNIT (type);
1335 unsigned int align = TYPE_ALIGN (type);
1336 unsigned int user_align = TYPE_USER_ALIGN (type);
1337 enum machine_mode mode = TYPE_MODE (type);
1339 /* Copy it into all variants. */
1340 for (variant = TYPE_MAIN_VARIANT (type);
1341 variant != 0;
1342 variant = TYPE_NEXT_VARIANT (variant))
1344 TYPE_SIZE (variant) = size;
1345 TYPE_SIZE_UNIT (variant) = size_unit;
1346 TYPE_ALIGN (variant) = align;
1347 TYPE_USER_ALIGN (variant) = user_align;
1348 TYPE_MODE (variant) = mode;
1353 /* Do all of the work required to layout the type indicated by RLI,
1354 once the fields have been laid out. This function will call `free'
1355 for RLI. */
1357 void
1358 finish_record_layout (rli)
1359 record_layout_info rli;
1361 /* Compute the final size. */
1362 finalize_record_size (rli);
1364 /* Compute the TYPE_MODE for the record. */
1365 compute_record_mode (rli->t);
1367 /* Perform any last tweaks to the TYPE_SIZE, etc. */
1368 finalize_type_size (rli->t);
1370 /* Lay out any static members. This is done now because their type
1371 may use the record's type. */
1372 while (rli->pending_statics)
1374 layout_decl (TREE_VALUE (rli->pending_statics), 0);
1375 rli->pending_statics = TREE_CHAIN (rli->pending_statics);
1378 /* Clean up. */
1379 free (rli);
1382 /* Calculate the mode, size, and alignment for TYPE.
1383 For an array type, calculate the element separation as well.
1384 Record TYPE on the chain of permanent or temporary types
1385 so that dbxout will find out about it.
1387 TYPE_SIZE of a type is nonzero if the type has been laid out already.
1388 layout_type does nothing on such a type.
1390 If the type is incomplete, its TYPE_SIZE remains zero. */
1392 void
1393 layout_type (type)
1394 tree type;
1396 if (type == 0)
1397 abort ();
1399 /* Do nothing if type has been laid out before. */
1400 if (TYPE_SIZE (type))
1401 return;
1403 switch (TREE_CODE (type))
1405 case LANG_TYPE:
1406 /* This kind of type is the responsibility
1407 of the language-specific code. */
1408 abort ();
1410 case BOOLEAN_TYPE: /* Used for Java, Pascal, and Chill. */
1411 if (TYPE_PRECISION (type) == 0)
1412 TYPE_PRECISION (type) = 1; /* default to one byte/boolean. */
1414 /* ... fall through ... */
1416 case INTEGER_TYPE:
1417 case ENUMERAL_TYPE:
1418 case CHAR_TYPE:
1419 if (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
1420 && tree_int_cst_sgn (TYPE_MIN_VALUE (type)) >= 0)
1421 TREE_UNSIGNED (type) = 1;
1423 TYPE_MODE (type) = smallest_mode_for_size (TYPE_PRECISION (type),
1424 MODE_INT);
1425 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1426 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1427 break;
1429 case REAL_TYPE:
1430 TYPE_MODE (type) = mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0);
1431 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1432 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1433 break;
1435 case COMPLEX_TYPE:
1436 TREE_UNSIGNED (type) = TREE_UNSIGNED (TREE_TYPE (type));
1437 TYPE_MODE (type)
1438 = mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
1439 (TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE
1440 ? MODE_COMPLEX_INT : MODE_COMPLEX_FLOAT),
1442 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1443 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1444 break;
1446 case VECTOR_TYPE:
1448 tree subtype;
1450 subtype = TREE_TYPE (type);
1451 TREE_UNSIGNED (type) = TREE_UNSIGNED (subtype);
1452 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1453 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1455 break;
1457 case VOID_TYPE:
1458 /* This is an incomplete type and so doesn't have a size. */
1459 TYPE_ALIGN (type) = 1;
1460 TYPE_USER_ALIGN (type) = 0;
1461 TYPE_MODE (type) = VOIDmode;
1462 break;
1464 case OFFSET_TYPE:
1465 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
1466 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
1467 /* A pointer might be MODE_PARTIAL_INT,
1468 but ptrdiff_t must be integral. */
1469 TYPE_MODE (type) = mode_for_size (POINTER_SIZE, MODE_INT, 0);
1470 break;
1472 case FUNCTION_TYPE:
1473 case METHOD_TYPE:
1474 TYPE_MODE (type) = mode_for_size (2 * POINTER_SIZE, MODE_INT, 0);
1475 TYPE_SIZE (type) = bitsize_int (2 * POINTER_SIZE);
1476 TYPE_SIZE_UNIT (type) = size_int ((2 * POINTER_SIZE) / BITS_PER_UNIT);
1477 break;
1479 case POINTER_TYPE:
1480 case REFERENCE_TYPE:
1482 int nbits = ((TREE_CODE (type) == REFERENCE_TYPE
1483 && reference_types_internal)
1484 ? GET_MODE_BITSIZE (Pmode) : POINTER_SIZE);
1486 TYPE_MODE (type) = nbits == POINTER_SIZE ? ptr_mode : Pmode;
1487 TYPE_SIZE (type) = bitsize_int (nbits);
1488 TYPE_SIZE_UNIT (type) = size_int (nbits / BITS_PER_UNIT);
1489 TREE_UNSIGNED (type) = 1;
1490 TYPE_PRECISION (type) = nbits;
1492 break;
1494 case ARRAY_TYPE:
1496 tree index = TYPE_DOMAIN (type);
1497 tree element = TREE_TYPE (type);
1499 build_pointer_type (element);
1501 /* We need to know both bounds in order to compute the size. */
1502 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
1503 && TYPE_SIZE (element))
1505 tree ub = TYPE_MAX_VALUE (index);
1506 tree lb = TYPE_MIN_VALUE (index);
1507 tree length;
1508 tree element_size;
1510 /* The initial subtraction should happen in the original type so
1511 that (possible) negative values are handled appropriately. */
1512 length = size_binop (PLUS_EXPR, size_one_node,
1513 convert (sizetype,
1514 fold (build (MINUS_EXPR,
1515 TREE_TYPE (lb),
1516 ub, lb))));
1518 /* Special handling for arrays of bits (for Chill). */
1519 element_size = TYPE_SIZE (element);
1520 if (TYPE_PACKED (type) && INTEGRAL_TYPE_P (element)
1521 && (integer_zerop (TYPE_MAX_VALUE (element))
1522 || integer_onep (TYPE_MAX_VALUE (element)))
1523 && host_integerp (TYPE_MIN_VALUE (element), 1))
1525 HOST_WIDE_INT maxvalue
1526 = tree_low_cst (TYPE_MAX_VALUE (element), 1);
1527 HOST_WIDE_INT minvalue
1528 = tree_low_cst (TYPE_MIN_VALUE (element), 1);
1530 if (maxvalue - minvalue == 1
1531 && (maxvalue == 1 || maxvalue == 0))
1532 element_size = integer_one_node;
1535 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
1536 convert (bitsizetype, length));
1538 /* If we know the size of the element, calculate the total
1539 size directly, rather than do some division thing below.
1540 This optimization helps Fortran assumed-size arrays
1541 (where the size of the array is determined at runtime)
1542 substantially.
1543 Note that we can't do this in the case where the size of
1544 the elements is one bit since TYPE_SIZE_UNIT cannot be
1545 set correctly in that case. */
1546 if (TYPE_SIZE_UNIT (element) != 0 && ! integer_onep (element_size))
1547 TYPE_SIZE_UNIT (type)
1548 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
1551 /* Now round the alignment and size,
1552 using machine-dependent criteria if any. */
1554 #ifdef ROUND_TYPE_ALIGN
1555 TYPE_ALIGN (type)
1556 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
1557 #else
1558 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
1559 #endif
1560 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
1562 #ifdef ROUND_TYPE_SIZE
1563 if (TYPE_SIZE (type) != 0)
1565 tree tmp
1566 = ROUND_TYPE_SIZE (type, TYPE_SIZE (type), TYPE_ALIGN (type));
1568 /* If the rounding changed the size of the type, remove any
1569 pre-calculated TYPE_SIZE_UNIT. */
1570 if (simple_cst_equal (TYPE_SIZE (type), tmp) != 1)
1571 TYPE_SIZE_UNIT (type) = NULL;
1573 TYPE_SIZE (type) = tmp;
1575 #endif
1577 TYPE_MODE (type) = BLKmode;
1578 if (TYPE_SIZE (type) != 0
1579 #ifdef MEMBER_TYPE_FORCES_BLK
1580 && ! MEMBER_TYPE_FORCES_BLK (type)
1581 #endif
1582 /* BLKmode elements force BLKmode aggregate;
1583 else extract/store fields may lose. */
1584 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
1585 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
1587 /* One-element arrays get the component type's mode. */
1588 if (simple_cst_equal (TYPE_SIZE (type),
1589 TYPE_SIZE (TREE_TYPE (type))))
1590 TYPE_MODE (type) = TYPE_MODE (TREE_TYPE (type));
1591 else
1592 TYPE_MODE (type)
1593 = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1);
1595 if (TYPE_MODE (type) != BLKmode
1596 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
1597 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type))
1598 && TYPE_MODE (type) != BLKmode)
1600 TYPE_NO_FORCE_BLK (type) = 1;
1601 TYPE_MODE (type) = BLKmode;
1604 break;
1607 case RECORD_TYPE:
1608 case UNION_TYPE:
1609 case QUAL_UNION_TYPE:
1611 tree field;
1612 record_layout_info rli;
1614 /* Initialize the layout information. */
1615 rli = start_record_layout (type);
1617 /* If this is a QUAL_UNION_TYPE, we want to process the fields
1618 in the reverse order in building the COND_EXPR that denotes
1619 its size. We reverse them again later. */
1620 if (TREE_CODE (type) == QUAL_UNION_TYPE)
1621 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
1623 /* Place all the fields. */
1624 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1625 place_field (rli, field);
1627 if (TREE_CODE (type) == QUAL_UNION_TYPE)
1628 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
1630 if (lang_adjust_rli)
1631 (*lang_adjust_rli) (rli);
1633 /* Finish laying out the record. */
1634 finish_record_layout (rli);
1636 break;
1638 case SET_TYPE: /* Used by Chill and Pascal. */
1639 if (TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (type))) != INTEGER_CST
1640 || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (type))) != INTEGER_CST)
1641 abort ();
1642 else
1644 #ifndef SET_WORD_SIZE
1645 #define SET_WORD_SIZE BITS_PER_WORD
1646 #endif
1647 unsigned int alignment
1648 = set_alignment ? set_alignment : SET_WORD_SIZE;
1649 int size_in_bits
1650 = (TREE_INT_CST_LOW (TYPE_MAX_VALUE (TYPE_DOMAIN (type)))
1651 - TREE_INT_CST_LOW (TYPE_MIN_VALUE (TYPE_DOMAIN (type))) + 1);
1652 int rounded_size
1653 = ((size_in_bits + alignment - 1) / alignment) * alignment;
1655 if (rounded_size > (int) alignment)
1656 TYPE_MODE (type) = BLKmode;
1657 else
1658 TYPE_MODE (type) = mode_for_size (alignment, MODE_INT, 1);
1660 TYPE_SIZE (type) = bitsize_int (rounded_size);
1661 TYPE_SIZE_UNIT (type) = size_int (rounded_size / BITS_PER_UNIT);
1662 TYPE_ALIGN (type) = alignment;
1663 TYPE_USER_ALIGN (type) = 0;
1664 TYPE_PRECISION (type) = size_in_bits;
1666 break;
1668 case FILE_TYPE:
1669 /* The size may vary in different languages, so the language front end
1670 should fill in the size. */
1671 TYPE_ALIGN (type) = BIGGEST_ALIGNMENT;
1672 TYPE_USER_ALIGN (type) = 0;
1673 TYPE_MODE (type) = BLKmode;
1674 break;
1676 default:
1677 abort ();
1680 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
1681 records and unions, finish_record_layout already called this
1682 function. */
1683 if (TREE_CODE (type) != RECORD_TYPE
1684 && TREE_CODE (type) != UNION_TYPE
1685 && TREE_CODE (type) != QUAL_UNION_TYPE)
1686 finalize_type_size (type);
1688 /* If this type is created before sizetype has been permanently set,
1689 record it so set_sizetype can fix it up. */
1690 if (! sizetype_set)
1691 early_type_list = tree_cons (NULL_TREE, type, early_type_list);
1693 /* If an alias set has been set for this aggregate when it was incomplete,
1694 force it into alias set 0.
1695 This is too conservative, but we cannot call record_component_aliases
1696 here because some frontends still change the aggregates after
1697 layout_type. */
1698 if (AGGREGATE_TYPE_P (type) && TYPE_ALIAS_SET_KNOWN_P (type))
1699 TYPE_ALIAS_SET (type) = 0;
1702 /* Create and return a type for signed integers of PRECISION bits. */
1704 tree
1705 make_signed_type (precision)
1706 int precision;
1708 tree type = make_node (INTEGER_TYPE);
1710 TYPE_PRECISION (type) = precision;
1712 fixup_signed_type (type);
1713 return type;
1716 /* Create and return a type for unsigned integers of PRECISION bits. */
1718 tree
1719 make_unsigned_type (precision)
1720 int precision;
1722 tree type = make_node (INTEGER_TYPE);
1724 TYPE_PRECISION (type) = precision;
1726 fixup_unsigned_type (type);
1727 return type;
1730 /* Initialize sizetype and bitsizetype to a reasonable and temporary
1731 value to enable integer types to be created. */
1733 void
1734 initialize_sizetypes ()
1736 tree t = make_node (INTEGER_TYPE);
1738 /* Set this so we do something reasonable for the build_int_2 calls
1739 below. */
1740 integer_type_node = t;
1742 TYPE_MODE (t) = SImode;
1743 TYPE_ALIGN (t) = GET_MODE_ALIGNMENT (SImode);
1744 TYPE_USER_ALIGN (t) = 0;
1745 TYPE_SIZE (t) = build_int_2 (GET_MODE_BITSIZE (SImode), 0);
1746 TYPE_SIZE_UNIT (t) = build_int_2 (GET_MODE_SIZE (SImode), 0);
1747 TREE_UNSIGNED (t) = 1;
1748 TYPE_PRECISION (t) = GET_MODE_BITSIZE (SImode);
1749 TYPE_MIN_VALUE (t) = build_int_2 (0, 0);
1750 TYPE_IS_SIZETYPE (t) = 1;
1752 /* 1000 avoids problems with possible overflow and is certainly
1753 larger than any size value we'd want to be storing. */
1754 TYPE_MAX_VALUE (t) = build_int_2 (1000, 0);
1756 /* These two must be different nodes because of the caching done in
1757 size_int_wide. */
1758 sizetype = t;
1759 bitsizetype = copy_node (t);
1760 integer_type_node = 0;
1763 /* Set sizetype to TYPE, and initialize *sizetype accordingly.
1764 Also update the type of any standard type's sizes made so far. */
1766 void
1767 set_sizetype (type)
1768 tree type;
1770 int oprecision = TYPE_PRECISION (type);
1771 /* The *bitsizetype types use a precision that avoids overflows when
1772 calculating signed sizes / offsets in bits. However, when
1773 cross-compiling from a 32 bit to a 64 bit host, we are limited to 64 bit
1774 precision. */
1775 int precision = MIN (oprecision + BITS_PER_UNIT_LOG + 1,
1776 2 * HOST_BITS_PER_WIDE_INT);
1777 unsigned int i;
1778 tree t;
1780 if (sizetype_set)
1781 abort ();
1783 /* Make copies of nodes since we'll be setting TYPE_IS_SIZETYPE. */
1784 sizetype = copy_node (type);
1785 TYPE_DOMAIN (sizetype) = type;
1786 TYPE_IS_SIZETYPE (sizetype) = 1;
1787 bitsizetype = make_node (INTEGER_TYPE);
1788 TYPE_NAME (bitsizetype) = TYPE_NAME (type);
1789 TYPE_PRECISION (bitsizetype) = precision;
1790 TYPE_IS_SIZETYPE (bitsizetype) = 1;
1792 if (TREE_UNSIGNED (type))
1793 fixup_unsigned_type (bitsizetype);
1794 else
1795 fixup_signed_type (bitsizetype);
1797 layout_type (bitsizetype);
1799 if (TREE_UNSIGNED (type))
1801 usizetype = sizetype;
1802 ubitsizetype = bitsizetype;
1803 ssizetype = copy_node (make_signed_type (oprecision));
1804 sbitsizetype = copy_node (make_signed_type (precision));
1806 else
1808 ssizetype = sizetype;
1809 sbitsizetype = bitsizetype;
1810 usizetype = copy_node (make_unsigned_type (oprecision));
1811 ubitsizetype = copy_node (make_unsigned_type (precision));
1814 TYPE_NAME (bitsizetype) = get_identifier ("bit_size_type");
1816 /* Show is a sizetype, is a main type, and has no pointers to it. */
1817 for (i = 0; i < ARRAY_SIZE (sizetype_tab); i++)
1819 TYPE_IS_SIZETYPE (sizetype_tab[i]) = 1;
1820 TYPE_MAIN_VARIANT (sizetype_tab[i]) = sizetype_tab[i];
1821 TYPE_NEXT_VARIANT (sizetype_tab[i]) = 0;
1822 TYPE_POINTER_TO (sizetype_tab[i]) = 0;
1823 TYPE_REFERENCE_TO (sizetype_tab[i]) = 0;
1826 ggc_add_tree_root ((tree *) &sizetype_tab, ARRAY_SIZE (sizetype_tab));
1828 /* Go down each of the types we already made and set the proper type
1829 for the sizes in them. */
1830 for (t = early_type_list; t != 0; t = TREE_CHAIN (t))
1832 if (TREE_CODE (TREE_VALUE (t)) != INTEGER_TYPE)
1833 abort ();
1835 TREE_TYPE (TYPE_SIZE (TREE_VALUE (t))) = bitsizetype;
1836 TREE_TYPE (TYPE_SIZE_UNIT (TREE_VALUE (t))) = sizetype;
1839 early_type_list = 0;
1840 sizetype_set = 1;
1843 /* Set the extreme values of TYPE based on its precision in bits,
1844 then lay it out. Used when make_signed_type won't do
1845 because the tree code is not INTEGER_TYPE.
1846 E.g. for Pascal, when the -fsigned-char option is given. */
1848 void
1849 fixup_signed_type (type)
1850 tree type;
1852 int precision = TYPE_PRECISION (type);
1854 /* We can not represent properly constants greater then
1855 2 * HOST_BITS_PER_WIDE_INT, still we need the types
1856 as they are used by i386 vector extensions and friends. */
1857 if (precision > HOST_BITS_PER_WIDE_INT * 2)
1858 precision = HOST_BITS_PER_WIDE_INT * 2;
1860 TYPE_MIN_VALUE (type)
1861 = build_int_2 ((precision - HOST_BITS_PER_WIDE_INT > 0
1862 ? 0 : (HOST_WIDE_INT) (-1) << (precision - 1)),
1863 (((HOST_WIDE_INT) (-1)
1864 << (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
1865 ? precision - HOST_BITS_PER_WIDE_INT - 1
1866 : 0))));
1867 TYPE_MAX_VALUE (type)
1868 = build_int_2 ((precision - HOST_BITS_PER_WIDE_INT > 0
1869 ? -1 : ((HOST_WIDE_INT) 1 << (precision - 1)) - 1),
1870 (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
1871 ? (((HOST_WIDE_INT) 1
1872 << (precision - HOST_BITS_PER_WIDE_INT - 1))) - 1
1873 : 0));
1875 TREE_TYPE (TYPE_MIN_VALUE (type)) = type;
1876 TREE_TYPE (TYPE_MAX_VALUE (type)) = type;
1878 /* Lay out the type: set its alignment, size, etc. */
1879 layout_type (type);
1882 /* Set the extreme values of TYPE based on its precision in bits,
1883 then lay it out. This is used both in `make_unsigned_type'
1884 and for enumeral types. */
1886 void
1887 fixup_unsigned_type (type)
1888 tree type;
1890 int precision = TYPE_PRECISION (type);
1892 /* We can not represent properly constants greater then
1893 2 * HOST_BITS_PER_WIDE_INT, still we need the types
1894 as they are used by i386 vector extensions and friends. */
1895 if (precision > HOST_BITS_PER_WIDE_INT * 2)
1896 precision = HOST_BITS_PER_WIDE_INT * 2;
1898 TYPE_MIN_VALUE (type) = build_int_2 (0, 0);
1899 TYPE_MAX_VALUE (type)
1900 = build_int_2 (precision - HOST_BITS_PER_WIDE_INT >= 0
1901 ? -1 : ((HOST_WIDE_INT) 1 << precision) - 1,
1902 precision - HOST_BITS_PER_WIDE_INT > 0
1903 ? ((unsigned HOST_WIDE_INT) ~0
1904 >> (HOST_BITS_PER_WIDE_INT
1905 - (precision - HOST_BITS_PER_WIDE_INT)))
1906 : 0);
1907 TREE_TYPE (TYPE_MIN_VALUE (type)) = type;
1908 TREE_TYPE (TYPE_MAX_VALUE (type)) = type;
1910 /* Lay out the type: set its alignment, size, etc. */
1911 layout_type (type);
1914 /* Find the best machine mode to use when referencing a bit field of length
1915 BITSIZE bits starting at BITPOS.
1917 The underlying object is known to be aligned to a boundary of ALIGN bits.
1918 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
1919 larger than LARGEST_MODE (usually SImode).
1921 If no mode meets all these conditions, we return VOIDmode. Otherwise, if
1922 VOLATILEP is true or SLOW_BYTE_ACCESS is false, we return the smallest
1923 mode meeting these conditions.
1925 Otherwise (VOLATILEP is false and SLOW_BYTE_ACCESS is true), we return
1926 the largest mode (but a mode no wider than UNITS_PER_WORD) that meets
1927 all the conditions. */
1929 enum machine_mode
1930 get_best_mode (bitsize, bitpos, align, largest_mode, volatilep)
1931 int bitsize, bitpos;
1932 unsigned int align;
1933 enum machine_mode largest_mode;
1934 int volatilep;
1936 enum machine_mode mode;
1937 unsigned int unit = 0;
1939 /* Find the narrowest integer mode that contains the bit field. */
1940 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1941 mode = GET_MODE_WIDER_MODE (mode))
1943 unit = GET_MODE_BITSIZE (mode);
1944 if ((bitpos % unit) + bitsize <= unit)
1945 break;
1948 if (mode == VOIDmode
1949 /* It is tempting to omit the following line
1950 if STRICT_ALIGNMENT is true.
1951 But that is incorrect, since if the bitfield uses part of 3 bytes
1952 and we use a 4-byte mode, we could get a spurious segv
1953 if the extra 4th byte is past the end of memory.
1954 (Though at least one Unix compiler ignores this problem:
1955 that on the Sequent 386 machine. */
1956 || MIN (unit, BIGGEST_ALIGNMENT) > align
1957 || (largest_mode != VOIDmode && unit > GET_MODE_BITSIZE (largest_mode)))
1958 return VOIDmode;
1960 if (SLOW_BYTE_ACCESS && ! volatilep)
1962 enum machine_mode wide_mode = VOIDmode, tmode;
1964 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT); tmode != VOIDmode;
1965 tmode = GET_MODE_WIDER_MODE (tmode))
1967 unit = GET_MODE_BITSIZE (tmode);
1968 if (bitpos / unit == (bitpos + bitsize - 1) / unit
1969 && unit <= BITS_PER_WORD
1970 && unit <= MIN (align, BIGGEST_ALIGNMENT)
1971 && (largest_mode == VOIDmode
1972 || unit <= GET_MODE_BITSIZE (largest_mode)))
1973 wide_mode = tmode;
1976 if (wide_mode != VOIDmode)
1977 return wide_mode;
1980 return mode;
1983 /* This function is run once to initialize stor-layout.c. */
1985 void
1986 init_stor_layout_once ()
1988 ggc_add_tree_root (&pending_sizes, 1);