1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 /* This file contains two passes of the compiler: reg_scan and reg_class.
24 It also defines some tables of information about the hardware registers
25 and a function init_reg_sets to initialize the tables. */
32 #include "hard-reg-set.h"
34 #include "basic-block.h"
37 #include "insn-config.h"
45 #ifndef REGISTER_MOVE_COST
46 #define REGISTER_MOVE_COST(m, x, y) 2
49 static void init_reg_sets_1
PARAMS ((void));
50 static void init_reg_modes
PARAMS ((void));
52 /* If we have auto-increment or auto-decrement and we can have secondary
53 reloads, we are not allowed to use classes requiring secondary
54 reloads for pseudos auto-incremented since reload can't handle it. */
57 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
58 #define FORBIDDEN_INC_DEC_CLASSES
62 /* Register tables used by many passes. */
64 /* Indexed by hard register number, contains 1 for registers
65 that are fixed use (stack pointer, pc, frame pointer, etc.).
66 These are the registers that cannot be used to allocate
67 a pseudo reg for general use. */
69 char fixed_regs
[FIRST_PSEUDO_REGISTER
];
71 /* Same info as a HARD_REG_SET. */
73 HARD_REG_SET fixed_reg_set
;
75 /* Data for initializing the above. */
77 static const char initial_fixed_regs
[] = FIXED_REGISTERS
;
79 /* Indexed by hard register number, contains 1 for registers
80 that are fixed use or are clobbered by function calls.
81 These are the registers that cannot be used to allocate
82 a pseudo reg whose life crosses calls unless we are able
83 to save/restore them across the calls. */
85 char call_used_regs
[FIRST_PSEUDO_REGISTER
];
87 /* Same info as a HARD_REG_SET. */
89 HARD_REG_SET call_used_reg_set
;
91 /* HARD_REG_SET of registers we want to avoid caller saving. */
92 HARD_REG_SET losing_caller_save_reg_set
;
94 /* Data for initializing the above. */
96 static const char initial_call_used_regs
[] = CALL_USED_REGISTERS
;
98 /* This is much like call_used_regs, except it doesn't have to
99 be a superset of FIXED_REGISTERS. This vector indicates
100 what is really call clobbered, and is used when defining
101 regs_invalidated_by_call. */
103 #ifdef CALL_REALLY_USED_REGISTERS
104 char call_really_used_regs
[] = CALL_REALLY_USED_REGISTERS
;
107 /* Indexed by hard register number, contains 1 for registers that are
108 fixed use or call used registers that cannot hold quantities across
109 calls even if we are willing to save and restore them. call fixed
110 registers are a subset of call used registers. */
112 char call_fixed_regs
[FIRST_PSEUDO_REGISTER
];
114 /* The same info as a HARD_REG_SET. */
116 HARD_REG_SET call_fixed_reg_set
;
118 /* Number of non-fixed registers. */
120 int n_non_fixed_regs
;
122 /* Indexed by hard register number, contains 1 for registers
123 that are being used for global register decls.
124 These must be exempt from ordinary flow analysis
125 and are also considered fixed. */
127 char global_regs
[FIRST_PSEUDO_REGISTER
];
129 /* Contains 1 for registers that are set or clobbered by calls. */
130 /* ??? Ideally, this would be just call_used_regs plus global_regs, but
131 for someone's bright idea to have call_used_regs strictly include
132 fixed_regs. Which leaves us guessing as to the set of fixed_regs
133 that are actually preserved. We know for sure that those associated
134 with the local stack frame are safe, but scant others. */
136 HARD_REG_SET regs_invalidated_by_call
;
138 /* Table of register numbers in the order in which to try to use them. */
139 #ifdef REG_ALLOC_ORDER
140 int reg_alloc_order
[FIRST_PSEUDO_REGISTER
] = REG_ALLOC_ORDER
;
142 /* The inverse of reg_alloc_order. */
143 int inv_reg_alloc_order
[FIRST_PSEUDO_REGISTER
];
146 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
148 HARD_REG_SET reg_class_contents
[N_REG_CLASSES
];
150 /* The same information, but as an array of unsigned ints. We copy from
151 these unsigned ints to the table above. We do this so the tm.h files
152 do not have to be aware of the wordsize for machines with <= 64 regs.
153 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
156 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
158 static const unsigned int_reg_class_contents
[N_REG_CLASSES
][N_REG_INTS
]
159 = REG_CLASS_CONTENTS
;
161 /* For each reg class, number of regs it contains. */
163 unsigned int reg_class_size
[N_REG_CLASSES
];
165 /* For each reg class, table listing all the containing classes. */
167 enum reg_class reg_class_superclasses
[N_REG_CLASSES
][N_REG_CLASSES
];
169 /* For each reg class, table listing all the classes contained in it. */
171 enum reg_class reg_class_subclasses
[N_REG_CLASSES
][N_REG_CLASSES
];
173 /* For each pair of reg classes,
174 a largest reg class contained in their union. */
176 enum reg_class reg_class_subunion
[N_REG_CLASSES
][N_REG_CLASSES
];
178 /* For each pair of reg classes,
179 the smallest reg class containing their union. */
181 enum reg_class reg_class_superunion
[N_REG_CLASSES
][N_REG_CLASSES
];
183 /* Array containing all of the register names. Unless
184 DEBUG_REGISTER_NAMES is defined, use the copy in print-rtl.c. */
186 #ifdef DEBUG_REGISTER_NAMES
187 const char * reg_names
[] = REGISTER_NAMES
;
190 /* For each hard register, the widest mode object that it can contain.
191 This will be a MODE_INT mode if the register can hold integers. Otherwise
192 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
195 enum machine_mode reg_raw_mode
[FIRST_PSEUDO_REGISTER
];
197 /* 1 if class does contain register of given mode. */
199 static char contains_reg_of_mode
[N_REG_CLASSES
] [MAX_MACHINE_MODE
];
201 /* Maximum cost of moving from a register in one class to a register in
202 another class. Based on REGISTER_MOVE_COST. */
204 static int move_cost
[MAX_MACHINE_MODE
][N_REG_CLASSES
][N_REG_CLASSES
];
206 /* Similar, but here we don't have to move if the first index is a subset
207 of the second so in that case the cost is zero. */
209 static int may_move_in_cost
[MAX_MACHINE_MODE
][N_REG_CLASSES
][N_REG_CLASSES
];
211 /* Similar, but here we don't have to move if the first index is a superset
212 of the second so in that case the cost is zero. */
214 static int may_move_out_cost
[MAX_MACHINE_MODE
][N_REG_CLASSES
][N_REG_CLASSES
];
216 #ifdef FORBIDDEN_INC_DEC_CLASSES
218 /* These are the classes that regs which are auto-incremented or decremented
221 static int forbidden_inc_dec_class
[N_REG_CLASSES
];
223 /* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
226 static char *in_inc_dec
;
228 #endif /* FORBIDDEN_INC_DEC_CLASSES */
230 #ifdef CLASS_CANNOT_CHANGE_MODE
232 /* These are the classes containing only registers that can be used in
233 a SUBREG expression that changes the mode of the register in some
234 way that is illegal. */
236 static int class_can_change_mode
[N_REG_CLASSES
];
238 /* Registers, including pseudos, which change modes in some way that
241 static regset reg_changes_mode
;
243 #endif /* CLASS_CANNOT_CHANGE_MODE */
245 #ifdef HAVE_SECONDARY_RELOADS
247 /* Sample MEM values for use by memory_move_secondary_cost. */
249 static rtx top_of_stack
[MAX_MACHINE_MODE
];
251 #endif /* HAVE_SECONDARY_RELOADS */
253 /* Linked list of reg_info structures allocated for reg_n_info array.
254 Grouping all of the allocated structures together in one lump
255 means only one call to bzero to clear them, rather than n smaller
257 struct reg_info_data
{
258 struct reg_info_data
*next
; /* next set of reg_info structures */
259 size_t min_index
; /* minimum index # */
260 size_t max_index
; /* maximum index # */
261 char used_p
; /* non-zero if this has been used previously */
262 reg_info data
[1]; /* beginning of the reg_info data */
265 static struct reg_info_data
*reg_info_head
;
267 /* No more global register variables may be declared; true once
268 regclass has been initialized. */
270 static int no_global_reg_vars
= 0;
273 /* Function called only once to initialize the above data on reg usage.
274 Once this is done, various switches may override. */
281 /* First copy the register information from the initial int form into
284 for (i
= 0; i
< N_REG_CLASSES
; i
++)
286 CLEAR_HARD_REG_SET (reg_class_contents
[i
]);
288 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
289 for (j
= 0; j
< FIRST_PSEUDO_REGISTER
; j
++)
290 if (int_reg_class_contents
[i
][j
/ 32]
291 & ((unsigned) 1 << (j
% 32)))
292 SET_HARD_REG_BIT (reg_class_contents
[i
], j
);
295 memcpy (fixed_regs
, initial_fixed_regs
, sizeof fixed_regs
);
296 memcpy (call_used_regs
, initial_call_used_regs
, sizeof call_used_regs
);
297 memset (global_regs
, 0, sizeof global_regs
);
299 /* Do any additional initialization regsets may need */
300 INIT_ONCE_REG_SET ();
302 #ifdef REG_ALLOC_ORDER
303 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
304 inv_reg_alloc_order
[reg_alloc_order
[i
]] = i
;
308 /* After switches have been processed, which perhaps alter
309 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
315 unsigned int /* enum machine_mode */ m
;
316 char allocatable_regs_of_mode
[MAX_MACHINE_MODE
];
318 /* This macro allows the fixed or call-used registers
319 and the register classes to depend on target flags. */
321 #ifdef CONDITIONAL_REGISTER_USAGE
322 CONDITIONAL_REGISTER_USAGE
;
325 /* Compute number of hard regs in each class. */
327 memset ((char *) reg_class_size
, 0, sizeof reg_class_size
);
328 for (i
= 0; i
< N_REG_CLASSES
; i
++)
329 for (j
= 0; j
< FIRST_PSEUDO_REGISTER
; j
++)
330 if (TEST_HARD_REG_BIT (reg_class_contents
[i
], j
))
333 /* Initialize the table of subunions.
334 reg_class_subunion[I][J] gets the largest-numbered reg-class
335 that is contained in the union of classes I and J. */
337 for (i
= 0; i
< N_REG_CLASSES
; i
++)
339 for (j
= 0; j
< N_REG_CLASSES
; j
++)
342 register /* Declare it register if it's a scalar. */
347 COPY_HARD_REG_SET (c
, reg_class_contents
[i
]);
348 IOR_HARD_REG_SET (c
, reg_class_contents
[j
]);
349 for (k
= 0; k
< N_REG_CLASSES
; k
++)
351 GO_IF_HARD_REG_SUBSET (reg_class_contents
[k
], c
,
356 /* keep the largest subclass */ /* SPEE 900308 */
357 GO_IF_HARD_REG_SUBSET (reg_class_contents
[k
],
358 reg_class_contents
[(int) reg_class_subunion
[i
][j
]],
360 reg_class_subunion
[i
][j
] = (enum reg_class
) k
;
367 /* Initialize the table of superunions.
368 reg_class_superunion[I][J] gets the smallest-numbered reg-class
369 containing the union of classes I and J. */
371 for (i
= 0; i
< N_REG_CLASSES
; i
++)
373 for (j
= 0; j
< N_REG_CLASSES
; j
++)
376 register /* Declare it register if it's a scalar. */
381 COPY_HARD_REG_SET (c
, reg_class_contents
[i
]);
382 IOR_HARD_REG_SET (c
, reg_class_contents
[j
]);
383 for (k
= 0; k
< N_REG_CLASSES
; k
++)
384 GO_IF_HARD_REG_SUBSET (c
, reg_class_contents
[k
], superclass
);
387 reg_class_superunion
[i
][j
] = (enum reg_class
) k
;
391 /* Initialize the tables of subclasses and superclasses of each reg class.
392 First clear the whole table, then add the elements as they are found. */
394 for (i
= 0; i
< N_REG_CLASSES
; i
++)
396 for (j
= 0; j
< N_REG_CLASSES
; j
++)
398 reg_class_superclasses
[i
][j
] = LIM_REG_CLASSES
;
399 reg_class_subclasses
[i
][j
] = LIM_REG_CLASSES
;
403 for (i
= 0; i
< N_REG_CLASSES
; i
++)
405 if (i
== (int) NO_REGS
)
408 for (j
= i
+ 1; j
< N_REG_CLASSES
; j
++)
412 GO_IF_HARD_REG_SUBSET (reg_class_contents
[i
], reg_class_contents
[j
],
416 /* Reg class I is a subclass of J.
417 Add J to the table of superclasses of I. */
418 p
= ®_class_superclasses
[i
][0];
419 while (*p
!= LIM_REG_CLASSES
) p
++;
420 *p
= (enum reg_class
) j
;
421 /* Add I to the table of superclasses of J. */
422 p
= ®_class_subclasses
[j
][0];
423 while (*p
!= LIM_REG_CLASSES
) p
++;
424 *p
= (enum reg_class
) i
;
428 /* Initialize "constant" tables. */
430 CLEAR_HARD_REG_SET (fixed_reg_set
);
431 CLEAR_HARD_REG_SET (call_used_reg_set
);
432 CLEAR_HARD_REG_SET (call_fixed_reg_set
);
433 CLEAR_HARD_REG_SET (regs_invalidated_by_call
);
435 memcpy (call_fixed_regs
, fixed_regs
, sizeof call_fixed_regs
);
437 n_non_fixed_regs
= 0;
439 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
442 SET_HARD_REG_BIT (fixed_reg_set
, i
);
446 if (call_used_regs
[i
])
447 SET_HARD_REG_BIT (call_used_reg_set
, i
);
448 if (call_fixed_regs
[i
])
449 SET_HARD_REG_BIT (call_fixed_reg_set
, i
);
450 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i
)))
451 SET_HARD_REG_BIT (losing_caller_save_reg_set
, i
);
453 /* There are a couple of fixed registers that we know are safe to
454 exclude from being clobbered by calls:
456 The frame pointer is always preserved across calls. The arg pointer
457 is if it is fixed. The stack pointer usually is, unless
458 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
459 If we are generating PIC code, the PIC offset table register is
460 preserved across calls, though the target can override that. */
462 if (i
== STACK_POINTER_REGNUM
|| i
== FRAME_POINTER_REGNUM
)
464 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
465 else if (i
== HARD_FRAME_POINTER_REGNUM
)
468 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
469 else if (i
== ARG_POINTER_REGNUM
&& fixed_regs
[i
])
472 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
473 else if (i
== PIC_OFFSET_TABLE_REGNUM
&& fixed_regs
[i
])
477 #ifdef CALL_REALLY_USED_REGISTERS
478 || call_really_used_regs
[i
]
483 SET_HARD_REG_BIT (regs_invalidated_by_call
, i
);
486 memset (contains_reg_of_mode
, 0, sizeof (contains_reg_of_mode
));
487 memset (allocatable_regs_of_mode
, 0, sizeof (allocatable_regs_of_mode
));
488 for (m
= 0; m
< (unsigned int) MAX_MACHINE_MODE
; m
++)
489 for (i
= 0; i
< N_REG_CLASSES
; i
++)
490 if (CLASS_MAX_NREGS (i
, m
) <= reg_class_size
[i
])
491 for (j
= 0; j
< FIRST_PSEUDO_REGISTER
; j
++)
492 if (!fixed_regs
[j
] && TEST_HARD_REG_BIT (reg_class_contents
[i
], j
)
493 && HARD_REGNO_MODE_OK (j
, m
))
495 contains_reg_of_mode
[i
][m
] = 1;
496 allocatable_regs_of_mode
[m
] = 1;
500 /* Initialize the move cost table. Find every subset of each class
501 and take the maximum cost of moving any subset to any other. */
503 for (m
= 0; m
< (unsigned int) MAX_MACHINE_MODE
; m
++)
504 if (allocatable_regs_of_mode
[m
])
506 for (i
= 0; i
< N_REG_CLASSES
; i
++)
507 if (contains_reg_of_mode
[i
][m
])
508 for (j
= 0; j
< N_REG_CLASSES
; j
++)
511 enum reg_class
*p1
, *p2
;
513 if (!contains_reg_of_mode
[j
][m
])
515 move_cost
[m
][i
][j
] = 65536;
516 may_move_in_cost
[m
][i
][j
] = 65536;
517 may_move_out_cost
[m
][i
][j
] = 65536;
521 cost
= REGISTER_MOVE_COST (m
, i
, j
);
523 for (p2
= ®_class_subclasses
[j
][0];
524 *p2
!= LIM_REG_CLASSES
;
526 if (*p2
!= i
&& contains_reg_of_mode
[*p2
][m
])
527 cost
= MAX (cost
, move_cost
[m
][i
][*p2
]);
529 for (p1
= ®_class_subclasses
[i
][0];
530 *p1
!= LIM_REG_CLASSES
;
532 if (*p1
!= j
&& contains_reg_of_mode
[*p1
][m
])
533 cost
= MAX (cost
, move_cost
[m
][*p1
][j
]);
535 move_cost
[m
][i
][j
] = cost
;
537 if (reg_class_subset_p (i
, j
))
538 may_move_in_cost
[m
][i
][j
] = 0;
540 may_move_in_cost
[m
][i
][j
] = cost
;
542 if (reg_class_subset_p (j
, i
))
543 may_move_out_cost
[m
][i
][j
] = 0;
545 may_move_out_cost
[m
][i
][j
] = cost
;
549 for (j
= 0; j
< N_REG_CLASSES
; j
++)
551 move_cost
[m
][i
][j
] = 65536;
552 may_move_in_cost
[m
][i
][j
] = 65536;
553 may_move_out_cost
[m
][i
][j
] = 65536;
557 #ifdef CLASS_CANNOT_CHANGE_MODE
560 COMPL_HARD_REG_SET (c
, reg_class_contents
[CLASS_CANNOT_CHANGE_MODE
]);
562 for (i
= 0; i
< N_REG_CLASSES
; i
++)
564 GO_IF_HARD_REG_SUBSET (reg_class_contents
[i
], c
, ok_class
);
565 class_can_change_mode
[i
] = 0;
568 class_can_change_mode
[i
] = 1;
571 #endif /* CLASS_CANNOT_CHANGE_MODE */
574 /* Compute the table of register modes.
575 These values are used to record death information for individual registers
576 (as opposed to a multi-register mode). */
583 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
585 reg_raw_mode
[i
] = choose_hard_reg_mode (i
, 1);
587 /* If we couldn't find a valid mode, just use the previous mode.
588 ??? One situation in which we need to do this is on the mips where
589 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
590 to use DF mode for the even registers and VOIDmode for the odd
591 (for the cpu models where the odd ones are inaccessible). */
592 if (reg_raw_mode
[i
] == VOIDmode
)
593 reg_raw_mode
[i
] = i
== 0 ? word_mode
: reg_raw_mode
[i
-1];
597 /* Finish initializing the register sets and
598 initialize the register modes. */
603 /* This finishes what was started by init_reg_sets, but couldn't be done
604 until after register usage was specified. */
609 #ifdef HAVE_SECONDARY_RELOADS
611 /* Make some fake stack-frame MEM references for use in
612 memory_move_secondary_cost. */
615 for (i
= 0; i
< MAX_MACHINE_MODE
; i
++)
616 top_of_stack
[i
] = gen_rtx_MEM (i
, stack_pointer_rtx
);
617 ggc_add_rtx_root (top_of_stack
, MAX_MACHINE_MODE
);
622 #ifdef HAVE_SECONDARY_RELOADS
624 /* Compute extra cost of moving registers to/from memory due to reloads.
625 Only needed if secondary reloads are required for memory moves. */
628 memory_move_secondary_cost (mode
, class, in
)
629 enum machine_mode mode
;
630 enum reg_class
class;
633 enum reg_class altclass
;
634 int partial_cost
= 0;
635 /* We need a memory reference to feed to SECONDARY... macros. */
636 /* mem may be unused even if the SECONDARY_ macros are defined. */
637 rtx mem ATTRIBUTE_UNUSED
= top_of_stack
[(int) mode
];
642 #ifdef SECONDARY_INPUT_RELOAD_CLASS
643 altclass
= SECONDARY_INPUT_RELOAD_CLASS (class, mode
, mem
);
650 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
651 altclass
= SECONDARY_OUTPUT_RELOAD_CLASS (class, mode
, mem
);
657 if (altclass
== NO_REGS
)
661 partial_cost
= REGISTER_MOVE_COST (mode
, altclass
, class);
663 partial_cost
= REGISTER_MOVE_COST (mode
, class, altclass
);
665 if (class == altclass
)
666 /* This isn't simply a copy-to-temporary situation. Can't guess
667 what it is, so MEMORY_MOVE_COST really ought not to be calling
670 I'm tempted to put in an abort here, but returning this will
671 probably only give poor estimates, which is what we would've
672 had before this code anyways. */
675 /* Check if the secondary reload register will also need a
677 return memory_move_secondary_cost (mode
, altclass
, in
) + partial_cost
;
681 /* Return a machine mode that is legitimate for hard reg REGNO and large
682 enough to save nregs. If we can't find one, return VOIDmode. */
685 choose_hard_reg_mode (regno
, nregs
)
686 unsigned int regno ATTRIBUTE_UNUSED
;
689 unsigned int /* enum machine_mode */ m
;
690 enum machine_mode found_mode
= VOIDmode
, mode
;
692 /* We first look for the largest integer mode that can be validly
693 held in REGNO. If none, we look for the largest floating-point mode.
694 If we still didn't find a valid mode, try CCmode. */
696 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
698 mode
= GET_MODE_WIDER_MODE (mode
))
699 if (HARD_REGNO_NREGS (regno
, mode
) == nregs
700 && HARD_REGNO_MODE_OK (regno
, mode
))
703 if (found_mode
!= VOIDmode
)
706 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
708 mode
= GET_MODE_WIDER_MODE (mode
))
709 if (HARD_REGNO_NREGS (regno
, mode
) == nregs
710 && HARD_REGNO_MODE_OK (regno
, mode
))
713 if (found_mode
!= VOIDmode
)
716 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT
);
718 mode
= GET_MODE_WIDER_MODE (mode
))
719 if (HARD_REGNO_NREGS (regno
, mode
) == nregs
720 && HARD_REGNO_MODE_OK (regno
, mode
))
723 if (found_mode
!= VOIDmode
)
726 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT
);
728 mode
= GET_MODE_WIDER_MODE (mode
))
729 if (HARD_REGNO_NREGS (regno
, mode
) == nregs
730 && HARD_REGNO_MODE_OK (regno
, mode
))
733 if (found_mode
!= VOIDmode
)
736 /* Iterate over all of the CCmodes. */
737 for (m
= (unsigned int) CCmode
; m
< (unsigned int) NUM_MACHINE_MODES
; ++m
)
739 mode
= (enum machine_mode
) m
;
740 if (HARD_REGNO_NREGS (regno
, mode
) == nregs
741 && HARD_REGNO_MODE_OK (regno
, mode
))
745 /* We can't find a mode valid for this register. */
749 /* Specify the usage characteristics of the register named NAME.
750 It should be a fixed register if FIXED and a
751 call-used register if CALL_USED. */
754 fix_register (name
, fixed
, call_used
)
756 int fixed
, call_used
;
760 /* Decode the name and update the primary form of
761 the register info. */
763 if ((i
= decode_reg_name (name
)) >= 0)
765 if ((i
== STACK_POINTER_REGNUM
766 #ifdef HARD_FRAME_POINTER_REGNUM
767 || i
== HARD_FRAME_POINTER_REGNUM
769 || i
== FRAME_POINTER_REGNUM
772 && (fixed
== 0 || call_used
== 0))
774 static const char * const what_option
[2][2] = {
775 { "call-saved", "call-used" },
776 { "no-such-option", "fixed" }};
778 error ("can't use '%s' as a %s register", name
,
779 what_option
[fixed
][call_used
]);
783 fixed_regs
[i
] = fixed
;
784 call_used_regs
[i
] = call_used
;
785 #ifdef CALL_REALLY_USED_REGISTERS
787 call_really_used_regs
[i
] = call_used
;
793 warning ("unknown register name: %s", name
);
797 /* Mark register number I as global. */
803 if (fixed_regs
[i
] == 0 && no_global_reg_vars
)
804 error ("global register variable follows a function definition");
808 warning ("register used for two global register variables");
812 if (call_used_regs
[i
] && ! fixed_regs
[i
])
813 warning ("call-clobbered register used for global register variable");
817 /* If already fixed, nothing else to do. */
821 fixed_regs
[i
] = call_used_regs
[i
] = call_fixed_regs
[i
] = 1;
824 SET_HARD_REG_BIT (fixed_reg_set
, i
);
825 SET_HARD_REG_BIT (call_used_reg_set
, i
);
826 SET_HARD_REG_BIT (call_fixed_reg_set
, i
);
829 /* Now the data and code for the `regclass' pass, which happens
830 just before local-alloc. */
832 /* The `costs' struct records the cost of using a hard register of each class
833 and of using memory for each pseudo. We use this data to set up
834 register class preferences. */
838 int cost
[N_REG_CLASSES
];
842 /* Structure used to record preferrences of given pseudo. */
845 /* (enum reg_class) prefclass is the preferred class. */
848 /* altclass is a register class that we should use for allocating
849 pseudo if no register in the preferred class is available.
850 If no register in this class is available, memory is preferred.
852 It might appear to be more general to have a bitmask of classes here,
853 but since it is recommended that there be a class corresponding to the
854 union of most major pair of classes, that generality is not required. */
858 /* Record the cost of each class for each pseudo. */
860 static struct costs
*costs
;
862 /* Initialized once, and used to initialize cost values for each insn. */
864 static struct costs init_cost
;
866 /* Record preferrences of each pseudo.
867 This is available after `regclass' is run. */
869 static struct reg_pref
*reg_pref
;
871 /* Allocated buffers for reg_pref. */
873 static struct reg_pref
*reg_pref_buffer
;
875 /* Frequency of executions of current insn. */
877 static int frequency
;
879 static rtx scan_one_insn
PARAMS ((rtx
, int));
880 static void record_operand_costs
PARAMS ((rtx
, struct costs
*, struct reg_pref
*));
881 static void dump_regclass
PARAMS ((FILE *));
882 static void record_reg_classes
PARAMS ((int, int, rtx
*, enum machine_mode
*,
884 struct costs
*, struct reg_pref
*));
885 static int copy_cost
PARAMS ((rtx
, enum machine_mode
,
886 enum reg_class
, int));
887 static void record_address_regs
PARAMS ((rtx
, enum reg_class
, int));
888 #ifdef FORBIDDEN_INC_DEC_CLASSES
889 static int auto_inc_dec_reg_p
PARAMS ((rtx
, enum machine_mode
));
891 static void reg_scan_mark_refs
PARAMS ((rtx
, rtx
, int, unsigned int));
893 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
894 This function is sometimes called before the info has been computed.
895 When that happens, just return GENERAL_REGS, which is innocuous. */
898 reg_preferred_class (regno
)
903 return (enum reg_class
) reg_pref
[regno
].prefclass
;
907 reg_alternate_class (regno
)
913 return (enum reg_class
) reg_pref
[regno
].altclass
;
916 /* Initialize some global data for this pass. */
923 init_cost
.mem_cost
= 10000;
924 for (i
= 0; i
< N_REG_CLASSES
; i
++)
925 init_cost
.cost
[i
] = 10000;
927 /* This prevents dump_flow_info from losing if called
928 before regclass is run. */
931 /* No more global register variables may be declared. */
932 no_global_reg_vars
= 1;
935 /* Dump register costs. */
940 static const char *const reg_class_names
[] = REG_CLASS_NAMES
;
942 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
944 int /* enum reg_class */ class;
947 fprintf (dump
, " Register %i costs:", i
);
948 for (class = 0; class < (int) N_REG_CLASSES
; class++)
949 if (contains_reg_of_mode
[(enum reg_class
) class][PSEUDO_REGNO_MODE (i
)]
950 #ifdef FORBIDDEN_INC_DEC_CLASSES
952 || !forbidden_inc_dec_class
[(enum reg_class
) class])
954 #ifdef CLASS_CANNOT_CHANGE_MODE
955 && (!REGNO_REG_SET_P (reg_changes_mode
, i
)
956 || class_can_change_mode
[(enum reg_class
) class])
959 fprintf (dump
, " %s:%i", reg_class_names
[class],
960 costs
[i
].cost
[(enum reg_class
) class]);
961 fprintf (dump
, " MEM:%i\n", costs
[i
].mem_cost
);
967 /* Calculate the costs of insn operands. */
970 record_operand_costs (insn
, op_costs
, reg_pref
)
972 struct costs
*op_costs
;
973 struct reg_pref
*reg_pref
;
975 const char *constraints
[MAX_RECOG_OPERANDS
];
976 enum machine_mode modes
[MAX_RECOG_OPERANDS
];
979 for (i
= 0; i
< recog_data
.n_operands
; i
++)
981 constraints
[i
] = recog_data
.constraints
[i
];
982 modes
[i
] = recog_data
.operand_mode
[i
];
985 /* If we get here, we are set up to record the costs of all the
986 operands for this insn. Start by initializing the costs.
987 Then handle any address registers. Finally record the desired
988 classes for any pseudos, doing it twice if some pair of
989 operands are commutative. */
991 for (i
= 0; i
< recog_data
.n_operands
; i
++)
993 op_costs
[i
] = init_cost
;
995 if (GET_CODE (recog_data
.operand
[i
]) == SUBREG
)
997 rtx inner
= SUBREG_REG (recog_data
.operand
[i
]);
998 #ifdef CLASS_CANNOT_CHANGE_MODE
999 if (GET_CODE (inner
) == REG
1000 && CLASS_CANNOT_CHANGE_MODE_P (modes
[i
], GET_MODE (inner
)))
1001 SET_REGNO_REG_SET (reg_changes_mode
, REGNO (inner
));
1003 recog_data
.operand
[i
] = inner
;
1006 if (GET_CODE (recog_data
.operand
[i
]) == MEM
)
1007 record_address_regs (XEXP (recog_data
.operand
[i
], 0),
1008 MODE_BASE_REG_CLASS (modes
[i
]), frequency
* 2);
1009 else if (constraints
[i
][0] == 'p')
1010 record_address_regs (recog_data
.operand
[i
],
1011 MODE_BASE_REG_CLASS (modes
[i
]), frequency
* 2);
1014 /* Check for commutative in a separate loop so everything will
1015 have been initialized. We must do this even if one operand
1016 is a constant--see addsi3 in m68k.md. */
1018 for (i
= 0; i
< (int) recog_data
.n_operands
- 1; i
++)
1019 if (constraints
[i
][0] == '%')
1021 const char *xconstraints
[MAX_RECOG_OPERANDS
];
1024 /* Handle commutative operands by swapping the constraints.
1025 We assume the modes are the same. */
1027 for (j
= 0; j
< recog_data
.n_operands
; j
++)
1028 xconstraints
[j
] = constraints
[j
];
1030 xconstraints
[i
] = constraints
[i
+1];
1031 xconstraints
[i
+1] = constraints
[i
];
1032 record_reg_classes (recog_data
.n_alternatives
, recog_data
.n_operands
,
1033 recog_data
.operand
, modes
,
1034 xconstraints
, insn
, op_costs
, reg_pref
);
1037 record_reg_classes (recog_data
.n_alternatives
, recog_data
.n_operands
,
1038 recog_data
.operand
, modes
,
1039 constraints
, insn
, op_costs
, reg_pref
);
1042 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
1043 time it would save code to put a certain register in a certain class.
1044 PASS, when nonzero, inhibits some optimizations which need only be done
1046 Return the last insn processed, so that the scan can be continued from
1050 scan_one_insn (insn
, pass
)
1054 enum rtx_code code
= GET_CODE (insn
);
1055 enum rtx_code pat_code
;
1058 struct costs op_costs
[MAX_RECOG_OPERANDS
];
1060 if (GET_RTX_CLASS (code
) != 'i')
1063 pat_code
= GET_CODE (PATTERN (insn
));
1065 || pat_code
== CLOBBER
1066 || pat_code
== ASM_INPUT
1067 || pat_code
== ADDR_VEC
1068 || pat_code
== ADDR_DIFF_VEC
)
1071 set
= single_set (insn
);
1072 extract_insn (insn
);
1074 /* If this insn loads a parameter from its stack slot, then
1075 it represents a savings, rather than a cost, if the
1076 parameter is stored in memory. Record this fact. */
1078 if (set
!= 0 && GET_CODE (SET_DEST (set
)) == REG
1079 && GET_CODE (SET_SRC (set
)) == MEM
1080 && (note
= find_reg_note (insn
, REG_EQUIV
,
1082 && GET_CODE (XEXP (note
, 0)) == MEM
)
1084 costs
[REGNO (SET_DEST (set
))].mem_cost
1085 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set
)),
1088 record_address_regs (XEXP (SET_SRC (set
), 0),
1089 MODE_BASE_REG_CLASS (VOIDmode
), frequency
* 2);
1093 /* Improve handling of two-address insns such as
1094 (set X (ashift CONST Y)) where CONST must be made to
1095 match X. Change it into two insns: (set X CONST)
1096 (set X (ashift X Y)). If we left this for reloading, it
1097 would probably get three insns because X and Y might go
1098 in the same place. This prevents X and Y from receiving
1101 We can only do this if the modes of operands 0 and 1
1102 (which might not be the same) are tieable and we only need
1103 do this during our first pass. */
1105 if (pass
== 0 && optimize
1106 && recog_data
.n_operands
>= 3
1107 && recog_data
.constraints
[1][0] == '0'
1108 && recog_data
.constraints
[1][1] == 0
1109 && CONSTANT_P (recog_data
.operand
[1])
1110 && ! rtx_equal_p (recog_data
.operand
[0], recog_data
.operand
[1])
1111 && ! rtx_equal_p (recog_data
.operand
[0], recog_data
.operand
[2])
1112 && GET_CODE (recog_data
.operand
[0]) == REG
1113 && MODES_TIEABLE_P (GET_MODE (recog_data
.operand
[0]),
1114 recog_data
.operand_mode
[1]))
1116 rtx previnsn
= prev_real_insn (insn
);
1118 = gen_lowpart (recog_data
.operand_mode
[1],
1119 recog_data
.operand
[0]);
1121 = emit_insn_before (gen_move_insn (dest
, recog_data
.operand
[1]), insn
);
1123 /* If this insn was the start of a basic block,
1124 include the new insn in that block.
1125 We need not check for code_label here;
1126 while a basic block can start with a code_label,
1127 INSN could not be at the beginning of that block. */
1128 if (previnsn
== 0 || GET_CODE (previnsn
) == JUMP_INSN
)
1132 if (insn
== b
->head
)
1136 /* This makes one more setting of new insns's dest. */
1137 REG_N_SETS (REGNO (recog_data
.operand
[0]))++;
1138 REG_N_REFS (REGNO (recog_data
.operand
[0]))++;
1139 REG_FREQ (REGNO (recog_data
.operand
[0])) += frequency
;
1141 *recog_data
.operand_loc
[1] = recog_data
.operand
[0];
1142 REG_N_REFS (REGNO (recog_data
.operand
[0]))++;
1143 REG_FREQ (REGNO (recog_data
.operand
[0])) += frequency
;
1144 for (i
= recog_data
.n_dups
- 1; i
>= 0; i
--)
1145 if (recog_data
.dup_num
[i
] == 1)
1147 *recog_data
.dup_loc
[i
] = recog_data
.operand
[0];
1148 REG_N_REFS (REGNO (recog_data
.operand
[0]))++;
1149 REG_FREQ (REGNO (recog_data
.operand
[0])) += frequency
;
1152 return PREV_INSN (newinsn
);
1155 record_operand_costs (insn
, op_costs
, reg_pref
);
1157 /* Now add the cost for each operand to the total costs for
1160 for (i
= 0; i
< recog_data
.n_operands
; i
++)
1161 if (GET_CODE (recog_data
.operand
[i
]) == REG
1162 && REGNO (recog_data
.operand
[i
]) >= FIRST_PSEUDO_REGISTER
)
1164 int regno
= REGNO (recog_data
.operand
[i
]);
1165 struct costs
*p
= &costs
[regno
], *q
= &op_costs
[i
];
1167 p
->mem_cost
+= q
->mem_cost
* frequency
;
1168 for (j
= 0; j
< N_REG_CLASSES
; j
++)
1169 p
->cost
[j
] += q
->cost
[j
] * frequency
;
1175 /* This is a pass of the compiler that scans all instructions
1176 and calculates the preferred class for each pseudo-register.
1177 This information can be accessed later by calling `reg_preferred_class'.
1178 This pass comes just before local register allocation. */
1181 regclass (f
, nregs
, dump
)
1192 costs
= (struct costs
*) xmalloc (nregs
* sizeof (struct costs
));
1194 #ifdef CLASS_CANNOT_CHANGE_MODE
1195 reg_changes_mode
= BITMAP_XMALLOC ();
1198 #ifdef FORBIDDEN_INC_DEC_CLASSES
1200 in_inc_dec
= (char *) xmalloc (nregs
);
1202 /* Initialize information about which register classes can be used for
1203 pseudos that are auto-incremented or auto-decremented. It would
1204 seem better to put this in init_reg_sets, but we need to be able
1205 to allocate rtx, which we can't do that early. */
1207 for (i
= 0; i
< N_REG_CLASSES
; i
++)
1209 rtx r
= gen_rtx_REG (VOIDmode
, 0);
1210 enum machine_mode m
;
1213 for (j
= 0; j
< FIRST_PSEUDO_REGISTER
; j
++)
1214 if (TEST_HARD_REG_BIT (reg_class_contents
[i
], j
))
1218 for (m
= VOIDmode
; (int) m
< (int) MAX_MACHINE_MODE
;
1219 m
= (enum machine_mode
) ((int) m
+ 1))
1220 if (HARD_REGNO_MODE_OK (j
, m
))
1224 /* If a register is not directly suitable for an
1225 auto-increment or decrement addressing mode and
1226 requires secondary reloads, disallow its class from
1227 being used in such addresses. */
1230 #ifdef SECONDARY_RELOAD_CLASS
1231 || (SECONDARY_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode
), m
, r
)
1234 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1235 || (SECONDARY_INPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode
), m
, r
)
1238 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1239 || (SECONDARY_OUTPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode
), m
, r
)
1244 && ! auto_inc_dec_reg_p (r
, m
))
1245 forbidden_inc_dec_class
[i
] = 1;
1249 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1251 /* Normally we scan the insns once and determine the best class to use for
1252 each register. However, if -fexpensive_optimizations are on, we do so
1253 twice, the second time using the tentative best classes to guide the
1256 for (pass
= 0; pass
<= flag_expensive_optimizations
; pass
++)
1261 fprintf (dump
, "\n\nPass %i\n\n",pass
);
1262 /* Zero out our accumulation of the cost of each class for each reg. */
1264 memset ((char *) costs
, 0, nregs
* sizeof (struct costs
));
1266 #ifdef FORBIDDEN_INC_DEC_CLASSES
1267 memset (in_inc_dec
, 0, nregs
);
1270 /* Scan the instructions and record each time it would
1271 save code to put a certain register in a certain class. */
1275 frequency
= REG_FREQ_MAX
;
1276 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
1277 insn
= scan_one_insn (insn
, pass
);
1282 /* Show that an insn inside a loop is likely to be executed three
1283 times more than insns outside a loop. This is much more
1284 aggressive than the assumptions made elsewhere and is being
1285 tried as an experiment. */
1286 frequency
= REG_FREQ_FROM_BB (bb
);
1287 for (insn
= bb
->head
; ; insn
= NEXT_INSN (insn
))
1289 insn
= scan_one_insn (insn
, pass
);
1290 if (insn
== bb
->end
)
1295 /* Now for each register look at how desirable each class is
1296 and find which class is preferred. Store that in
1297 `prefclass'. Record in `altclass' the largest register
1298 class any of whose registers is better than memory. */
1301 reg_pref
= reg_pref_buffer
;
1305 dump_regclass (dump
);
1306 fprintf (dump
,"\n");
1308 for (i
= FIRST_PSEUDO_REGISTER
; i
< nregs
; i
++)
1310 int best_cost
= (1 << (HOST_BITS_PER_INT
- 2)) - 1;
1311 enum reg_class best
= ALL_REGS
, alt
= NO_REGS
;
1312 /* This is an enum reg_class, but we call it an int
1313 to save lots of casts. */
1315 struct costs
*p
= &costs
[i
];
1317 /* In non-optimizing compilation REG_N_REFS is not initialized
1319 if (optimize
&& !REG_N_REFS (i
))
1322 for (class = (int) ALL_REGS
- 1; class > 0; class--)
1324 /* Ignore classes that are too small for this operand or
1325 invalid for an operand that was auto-incremented. */
1326 if (!contains_reg_of_mode
[class][PSEUDO_REGNO_MODE (i
)]
1327 #ifdef FORBIDDEN_INC_DEC_CLASSES
1328 || (in_inc_dec
[i
] && forbidden_inc_dec_class
[class])
1330 #ifdef CLASS_CANNOT_CHANGE_MODE
1331 || (REGNO_REG_SET_P (reg_changes_mode
, i
)
1332 && ! class_can_change_mode
[class])
1336 else if (p
->cost
[class] < best_cost
)
1338 best_cost
= p
->cost
[class];
1339 best
= (enum reg_class
) class;
1341 else if (p
->cost
[class] == best_cost
)
1342 best
= reg_class_subunion
[(int) best
][class];
1345 /* Record the alternate register class; i.e., a class for which
1346 every register in it is better than using memory. If adding a
1347 class would make a smaller class (i.e., no union of just those
1348 classes exists), skip that class. The major unions of classes
1349 should be provided as a register class. Don't do this if we
1350 will be doing it again later. */
1352 if ((pass
== 1 || dump
) || ! flag_expensive_optimizations
)
1353 for (class = 0; class < N_REG_CLASSES
; class++)
1354 if (p
->cost
[class] < p
->mem_cost
1355 && (reg_class_size
[(int) reg_class_subunion
[(int) alt
][class]]
1356 > reg_class_size
[(int) alt
])
1357 #ifdef FORBIDDEN_INC_DEC_CLASSES
1358 && ! (in_inc_dec
[i
] && forbidden_inc_dec_class
[class])
1360 #ifdef CLASS_CANNOT_CHANGE_MODE
1361 && ! (REGNO_REG_SET_P (reg_changes_mode
, i
)
1362 && ! class_can_change_mode
[class])
1365 alt
= reg_class_subunion
[(int) alt
][class];
1367 /* If we don't add any classes, nothing to try. */
1372 && (reg_pref
[i
].prefclass
!= (int) best
1373 || reg_pref
[i
].altclass
!= (int) alt
))
1375 static const char *const reg_class_names
[] = REG_CLASS_NAMES
;
1376 fprintf (dump
, " Register %i", i
);
1377 if (alt
== ALL_REGS
|| best
== ALL_REGS
)
1378 fprintf (dump
, " pref %s\n", reg_class_names
[(int) best
]);
1379 else if (alt
== NO_REGS
)
1380 fprintf (dump
, " pref %s or none\n", reg_class_names
[(int) best
]);
1382 fprintf (dump
, " pref %s, else %s\n",
1383 reg_class_names
[(int) best
],
1384 reg_class_names
[(int) alt
]);
1387 /* We cast to (int) because (char) hits bugs in some compilers. */
1388 reg_pref
[i
].prefclass
= (int) best
;
1389 reg_pref
[i
].altclass
= (int) alt
;
1393 #ifdef FORBIDDEN_INC_DEC_CLASSES
1396 #ifdef CLASS_CANNOT_CHANGE_MODE
1397 BITMAP_XFREE (reg_changes_mode
);
1402 /* Record the cost of using memory or registers of various classes for
1403 the operands in INSN.
1405 N_ALTS is the number of alternatives.
1407 N_OPS is the number of operands.
1409 OPS is an array of the operands.
1411 MODES are the modes of the operands, in case any are VOIDmode.
1413 CONSTRAINTS are the constraints to use for the operands. This array
1414 is modified by this procedure.
1416 This procedure works alternative by alternative. For each alternative
1417 we assume that we will be able to allocate all pseudos to their ideal
1418 register class and calculate the cost of using that alternative. Then
1419 we compute for each operand that is a pseudo-register, the cost of
1420 having the pseudo allocated to each register class and using it in that
1421 alternative. To this cost is added the cost of the alternative.
1423 The cost of each class for this insn is its lowest cost among all the
1427 record_reg_classes (n_alts
, n_ops
, ops
, modes
,
1428 constraints
, insn
, op_costs
, reg_pref
)
1432 enum machine_mode
*modes
;
1433 const char **constraints
;
1435 struct costs
*op_costs
;
1436 struct reg_pref
*reg_pref
;
1442 /* Process each alternative, each time minimizing an operand's cost with
1443 the cost for each operand in that alternative. */
1445 for (alt
= 0; alt
< n_alts
; alt
++)
1447 struct costs this_op_costs
[MAX_RECOG_OPERANDS
];
1450 enum reg_class classes
[MAX_RECOG_OPERANDS
];
1451 int allows_mem
[MAX_RECOG_OPERANDS
];
1454 for (i
= 0; i
< n_ops
; i
++)
1456 const char *p
= constraints
[i
];
1458 enum machine_mode mode
= modes
[i
];
1459 int allows_addr
= 0;
1463 /* Initially show we know nothing about the register class. */
1464 classes
[i
] = NO_REGS
;
1467 /* If this operand has no constraints at all, we can conclude
1468 nothing about it since anything is valid. */
1472 if (GET_CODE (op
) == REG
&& REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
1473 memset ((char *) &this_op_costs
[i
], 0, sizeof this_op_costs
[i
]);
1478 /* If this alternative is only relevant when this operand
1479 matches a previous operand, we do different things depending
1480 on whether this operand is a pseudo-reg or not. We must process
1481 any modifiers for the operand before we can make this test. */
1483 while (*p
== '%' || *p
== '=' || *p
== '+' || *p
== '&')
1486 if (p
[0] >= '0' && p
[0] <= '0' + i
&& (p
[1] == ',' || p
[1] == 0))
1488 /* Copy class and whether memory is allowed from the matching
1489 alternative. Then perform any needed cost computations
1490 and/or adjustments. */
1492 classes
[i
] = classes
[j
];
1493 allows_mem
[i
] = allows_mem
[j
];
1495 if (GET_CODE (op
) != REG
|| REGNO (op
) < FIRST_PSEUDO_REGISTER
)
1497 /* If this matches the other operand, we have no added
1499 if (rtx_equal_p (ops
[j
], op
))
1502 /* If we can put the other operand into a register, add to
1503 the cost of this alternative the cost to copy this
1504 operand to the register used for the other operand. */
1506 else if (classes
[j
] != NO_REGS
)
1507 alt_cost
+= copy_cost (op
, mode
, classes
[j
], 1), win
= 1;
1509 else if (GET_CODE (ops
[j
]) != REG
1510 || REGNO (ops
[j
]) < FIRST_PSEUDO_REGISTER
)
1512 /* This op is a pseudo but the one it matches is not. */
1514 /* If we can't put the other operand into a register, this
1515 alternative can't be used. */
1517 if (classes
[j
] == NO_REGS
)
1520 /* Otherwise, add to the cost of this alternative the cost
1521 to copy the other operand to the register used for this
1525 alt_cost
+= copy_cost (ops
[j
], mode
, classes
[j
], 1);
1529 /* The costs of this operand are not the same as the other
1530 operand since move costs are not symmetric. Moreover,
1531 if we cannot tie them, this alternative needs to do a
1532 copy, which is one instruction. */
1534 struct costs
*pp
= &this_op_costs
[i
];
1536 for (class = 0; class < N_REG_CLASSES
; class++)
1538 = ((recog_data
.operand_type
[i
] != OP_OUT
1539 ? may_move_in_cost
[mode
][class][(int) classes
[i
]]
1541 + (recog_data
.operand_type
[i
] != OP_IN
1542 ? may_move_out_cost
[mode
][(int) classes
[i
]][class]
1545 /* If the alternative actually allows memory, make things
1546 a bit cheaper since we won't need an extra insn to
1550 = ((recog_data
.operand_type
[i
] != OP_IN
1551 ? MEMORY_MOVE_COST (mode
, classes
[i
], 0)
1553 + (recog_data
.operand_type
[i
] != OP_OUT
1554 ? MEMORY_MOVE_COST (mode
, classes
[i
], 1)
1555 : 0) - allows_mem
[i
]);
1557 /* If we have assigned a class to this register in our
1558 first pass, add a cost to this alternative corresponding
1559 to what we would add if this register were not in the
1560 appropriate class. */
1564 += (may_move_in_cost
[mode
]
1565 [(unsigned char) reg_pref
[REGNO (op
)].prefclass
]
1566 [(int) classes
[i
]]);
1568 if (REGNO (ops
[i
]) != REGNO (ops
[j
])
1569 && ! find_reg_note (insn
, REG_DEAD
, op
))
1572 /* This is in place of ordinary cost computation
1573 for this operand, so skip to the end of the
1574 alternative (should be just one character). */
1575 while (*p
&& *p
++ != ',')
1583 /* Scan all the constraint letters. See if the operand matches
1584 any of the constraints. Collect the valid register classes
1585 and see if this operand accepts memory. */
1587 while (*p
&& (c
= *p
++) != ',')
1591 /* Ignore the next letter for this pass. */
1597 case '!': case '#': case '&':
1598 case '0': case '1': case '2': case '3': case '4':
1599 case '5': case '6': case '7': case '8': case '9':
1604 win
= address_operand (op
, GET_MODE (op
));
1605 /* We know this operand is an address, so we want it to be
1606 allocated to a register that can be the base of an
1607 address, ie BASE_REG_CLASS. */
1609 = reg_class_subunion
[(int) classes
[i
]]
1610 [(int) MODE_BASE_REG_CLASS (VOIDmode
)];
1613 case 'm': case 'o': case 'V':
1614 /* It doesn't seem worth distinguishing between offsettable
1615 and non-offsettable addresses here. */
1617 if (GET_CODE (op
) == MEM
)
1622 if (GET_CODE (op
) == MEM
1623 && (GET_CODE (XEXP (op
, 0)) == PRE_DEC
1624 || GET_CODE (XEXP (op
, 0)) == POST_DEC
))
1629 if (GET_CODE (op
) == MEM
1630 && (GET_CODE (XEXP (op
, 0)) == PRE_INC
1631 || GET_CODE (XEXP (op
, 0)) == POST_INC
))
1637 if (GET_CODE (op
) == CONST_DOUBLE
)
1643 if (GET_CODE (op
) == CONST_DOUBLE
1644 && CONST_DOUBLE_OK_FOR_LETTER_P (op
, c
))
1649 if (GET_CODE (op
) == CONST_INT
1650 || (GET_CODE (op
) == CONST_DOUBLE
1651 && GET_MODE (op
) == VOIDmode
))
1655 #ifdef LEGITIMATE_PIC_OPERAND_P
1656 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1663 if (GET_CODE (op
) == CONST_INT
1664 || (GET_CODE (op
) == CONST_DOUBLE
1665 && GET_MODE (op
) == VOIDmode
))
1677 if (GET_CODE (op
) == CONST_INT
1678 && CONST_OK_FOR_LETTER_P (INTVAL (op
), c
))
1687 if (GET_CODE (op
) == MEM
1689 #ifdef LEGITIMATE_PIC_OPERAND_P
1690 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1697 = reg_class_subunion
[(int) classes
[i
]][(int) GENERAL_REGS
];
1701 if (REG_CLASS_FROM_LETTER (c
) != NO_REGS
)
1703 = reg_class_subunion
[(int) classes
[i
]]
1704 [(int) REG_CLASS_FROM_LETTER (c
)];
1705 #ifdef EXTRA_CONSTRAINT
1706 else if (EXTRA_CONSTRAINT (op
, c
))
1714 /* How we account for this operand now depends on whether it is a
1715 pseudo register or not. If it is, we first check if any
1716 register classes are valid. If not, we ignore this alternative,
1717 since we want to assume that all pseudos get allocated for
1718 register preferencing. If some register class is valid, compute
1719 the costs of moving the pseudo into that class. */
1721 if (GET_CODE (op
) == REG
&& REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
1723 if (classes
[i
] == NO_REGS
)
1725 /* We must always fail if the operand is a REG, but
1726 we did not find a suitable class.
1728 Otherwise we may perform an uninitialized read
1729 from this_op_costs after the `continue' statement
1735 struct costs
*pp
= &this_op_costs
[i
];
1737 for (class = 0; class < N_REG_CLASSES
; class++)
1739 = ((recog_data
.operand_type
[i
] != OP_OUT
1740 ? may_move_in_cost
[mode
][class][(int) classes
[i
]]
1742 + (recog_data
.operand_type
[i
] != OP_IN
1743 ? may_move_out_cost
[mode
][(int) classes
[i
]][class]
1746 /* If the alternative actually allows memory, make things
1747 a bit cheaper since we won't need an extra insn to
1751 = ((recog_data
.operand_type
[i
] != OP_IN
1752 ? MEMORY_MOVE_COST (mode
, classes
[i
], 0)
1754 + (recog_data
.operand_type
[i
] != OP_OUT
1755 ? MEMORY_MOVE_COST (mode
, classes
[i
], 1)
1756 : 0) - allows_mem
[i
]);
1758 /* If we have assigned a class to this register in our
1759 first pass, add a cost to this alternative corresponding
1760 to what we would add if this register were not in the
1761 appropriate class. */
1765 += (may_move_in_cost
[mode
]
1766 [(unsigned char) reg_pref
[REGNO (op
)].prefclass
]
1767 [(int) classes
[i
]]);
1771 /* Otherwise, if this alternative wins, either because we
1772 have already determined that or if we have a hard register of
1773 the proper class, there is no cost for this alternative. */
1776 || (GET_CODE (op
) == REG
1777 && reg_fits_class_p (op
, classes
[i
], 0, GET_MODE (op
))))
1780 /* If registers are valid, the cost of this alternative includes
1781 copying the object to and/or from a register. */
1783 else if (classes
[i
] != NO_REGS
)
1785 if (recog_data
.operand_type
[i
] != OP_OUT
)
1786 alt_cost
+= copy_cost (op
, mode
, classes
[i
], 1);
1788 if (recog_data
.operand_type
[i
] != OP_IN
)
1789 alt_cost
+= copy_cost (op
, mode
, classes
[i
], 0);
1792 /* The only other way this alternative can be used is if this is a
1793 constant that could be placed into memory. */
1795 else if (CONSTANT_P (op
) && (allows_addr
|| allows_mem
[i
]))
1796 alt_cost
+= MEMORY_MOVE_COST (mode
, classes
[i
], 1);
1804 /* Finally, update the costs with the information we've calculated
1805 about this alternative. */
1807 for (i
= 0; i
< n_ops
; i
++)
1808 if (GET_CODE (ops
[i
]) == REG
1809 && REGNO (ops
[i
]) >= FIRST_PSEUDO_REGISTER
)
1811 struct costs
*pp
= &op_costs
[i
], *qq
= &this_op_costs
[i
];
1812 int scale
= 1 + (recog_data
.operand_type
[i
] == OP_INOUT
);
1814 pp
->mem_cost
= MIN (pp
->mem_cost
,
1815 (qq
->mem_cost
+ alt_cost
) * scale
);
1817 for (class = 0; class < N_REG_CLASSES
; class++)
1818 pp
->cost
[class] = MIN (pp
->cost
[class],
1819 (qq
->cost
[class] + alt_cost
) * scale
);
1823 /* If this insn is a single set copying operand 1 to operand 0
1824 and one operand is a pseudo with the other a hard reg or a pseudo
1825 that prefers a register that is in its own register class then
1826 we may want to adjust the cost of that register class to -1.
1828 Avoid the adjustment if the source does not die to avoid stressing of
1829 register allocator by preferrencing two coliding registers into single
1832 Also avoid the adjustment if a copy between registers of the class
1833 is expensive (ten times the cost of a default copy is considered
1834 arbitrarily expensive). This avoids losing when the preferred class
1835 is very expensive as the source of a copy instruction. */
1837 if ((set
= single_set (insn
)) != 0
1838 && ops
[0] == SET_DEST (set
) && ops
[1] == SET_SRC (set
)
1839 && GET_CODE (ops
[0]) == REG
&& GET_CODE (ops
[1]) == REG
1840 && find_regno_note (insn
, REG_DEAD
, REGNO (ops
[1])))
1841 for (i
= 0; i
<= 1; i
++)
1842 if (REGNO (ops
[i
]) >= FIRST_PSEUDO_REGISTER
)
1844 unsigned int regno
= REGNO (ops
[!i
]);
1845 enum machine_mode mode
= GET_MODE (ops
[!i
]);
1849 if (regno
>= FIRST_PSEUDO_REGISTER
&& reg_pref
!= 0)
1851 enum reg_class pref
= reg_pref
[regno
].prefclass
;
1853 if ((reg_class_size
[(unsigned char) pref
]
1854 == CLASS_MAX_NREGS (pref
, mode
))
1855 && REGISTER_MOVE_COST (mode
, pref
, pref
) < 10 * 2)
1856 op_costs
[i
].cost
[(unsigned char) pref
] = -1;
1858 else if (regno
< FIRST_PSEUDO_REGISTER
)
1859 for (class = 0; class < N_REG_CLASSES
; class++)
1860 if (TEST_HARD_REG_BIT (reg_class_contents
[class], regno
)
1861 && reg_class_size
[class] == CLASS_MAX_NREGS (class, mode
))
1863 if (reg_class_size
[class] == 1)
1864 op_costs
[i
].cost
[class] = -1;
1867 for (nr
= 0; nr
< HARD_REGNO_NREGS (regno
, mode
); nr
++)
1869 if (! TEST_HARD_REG_BIT (reg_class_contents
[class],
1874 if (nr
== HARD_REGNO_NREGS (regno
,mode
))
1875 op_costs
[i
].cost
[class] = -1;
1881 /* Compute the cost of loading X into (if TO_P is non-zero) or from (if
1882 TO_P is zero) a register of class CLASS in mode MODE.
1884 X must not be a pseudo. */
1887 copy_cost (x
, mode
, class, to_p
)
1889 enum machine_mode mode ATTRIBUTE_UNUSED
;
1890 enum reg_class
class;
1891 int to_p ATTRIBUTE_UNUSED
;
1893 #ifdef HAVE_SECONDARY_RELOADS
1894 enum reg_class secondary_class
= NO_REGS
;
1897 /* If X is a SCRATCH, there is actually nothing to move since we are
1898 assuming optimal allocation. */
1900 if (GET_CODE (x
) == SCRATCH
)
1903 /* Get the class we will actually use for a reload. */
1904 class = PREFERRED_RELOAD_CLASS (x
, class);
1906 #ifdef HAVE_SECONDARY_RELOADS
1907 /* If we need a secondary reload (we assume here that we are using
1908 the secondary reload as an intermediate, not a scratch register), the
1909 cost is that to load the input into the intermediate register, then
1910 to copy them. We use a special value of TO_P to avoid recursion. */
1912 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1914 secondary_class
= SECONDARY_INPUT_RELOAD_CLASS (class, mode
, x
);
1917 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1919 secondary_class
= SECONDARY_OUTPUT_RELOAD_CLASS (class, mode
, x
);
1922 if (secondary_class
!= NO_REGS
)
1923 return (move_cost
[mode
][(int) secondary_class
][(int) class]
1924 + copy_cost (x
, mode
, secondary_class
, 2));
1925 #endif /* HAVE_SECONDARY_RELOADS */
1927 /* For memory, use the memory move cost, for (hard) registers, use the
1928 cost to move between the register classes, and use 2 for everything
1929 else (constants). */
1931 if (GET_CODE (x
) == MEM
|| class == NO_REGS
)
1932 return MEMORY_MOVE_COST (mode
, class, to_p
);
1934 else if (GET_CODE (x
) == REG
)
1935 return move_cost
[mode
][(int) REGNO_REG_CLASS (REGNO (x
))][(int) class];
1938 /* If this is a constant, we may eventually want to call rtx_cost here. */
1939 return COSTS_N_INSNS (1);
1942 /* Record the pseudo registers we must reload into hard registers
1943 in a subexpression of a memory address, X.
1945 CLASS is the class that the register needs to be in and is either
1946 BASE_REG_CLASS or INDEX_REG_CLASS.
1948 SCALE is twice the amount to multiply the cost by (it is twice so we
1949 can represent half-cost adjustments). */
1952 record_address_regs (x
, class, scale
)
1954 enum reg_class
class;
1957 enum rtx_code code
= GET_CODE (x
);
1970 /* When we have an address that is a sum,
1971 we must determine whether registers are "base" or "index" regs.
1972 If there is a sum of two registers, we must choose one to be
1973 the "base". Luckily, we can use the REG_POINTER to make a good
1974 choice most of the time. We only need to do this on machines
1975 that can have two registers in an address and where the base
1976 and index register classes are different.
1978 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1979 that seems bogus since it should only be set when we are sure
1980 the register is being used as a pointer. */
1983 rtx arg0
= XEXP (x
, 0);
1984 rtx arg1
= XEXP (x
, 1);
1985 enum rtx_code code0
= GET_CODE (arg0
);
1986 enum rtx_code code1
= GET_CODE (arg1
);
1988 /* Look inside subregs. */
1989 if (code0
== SUBREG
)
1990 arg0
= SUBREG_REG (arg0
), code0
= GET_CODE (arg0
);
1991 if (code1
== SUBREG
)
1992 arg1
= SUBREG_REG (arg1
), code1
= GET_CODE (arg1
);
1994 /* If this machine only allows one register per address, it must
1995 be in the first operand. */
1997 if (MAX_REGS_PER_ADDRESS
== 1)
1998 record_address_regs (arg0
, class, scale
);
2000 /* If index and base registers are the same on this machine, just
2001 record registers in any non-constant operands. We assume here,
2002 as well as in the tests below, that all addresses are in
2005 else if (INDEX_REG_CLASS
== MODE_BASE_REG_CLASS (VOIDmode
))
2007 record_address_regs (arg0
, class, scale
);
2008 if (! CONSTANT_P (arg1
))
2009 record_address_regs (arg1
, class, scale
);
2012 /* If the second operand is a constant integer, it doesn't change
2013 what class the first operand must be. */
2015 else if (code1
== CONST_INT
|| code1
== CONST_DOUBLE
)
2016 record_address_regs (arg0
, class, scale
);
2018 /* If the second operand is a symbolic constant, the first operand
2019 must be an index register. */
2021 else if (code1
== SYMBOL_REF
|| code1
== CONST
|| code1
== LABEL_REF
)
2022 record_address_regs (arg0
, INDEX_REG_CLASS
, scale
);
2024 /* If both operands are registers but one is already a hard register
2025 of index or base class, give the other the class that the hard
2028 #ifdef REG_OK_FOR_BASE_P
2029 else if (code0
== REG
&& code1
== REG
2030 && REGNO (arg0
) < FIRST_PSEUDO_REGISTER
2031 && (REG_OK_FOR_BASE_P (arg0
) || REG_OK_FOR_INDEX_P (arg0
)))
2032 record_address_regs (arg1
,
2033 REG_OK_FOR_BASE_P (arg0
)
2034 ? INDEX_REG_CLASS
: MODE_BASE_REG_CLASS (VOIDmode
),
2036 else if (code0
== REG
&& code1
== REG
2037 && REGNO (arg1
) < FIRST_PSEUDO_REGISTER
2038 && (REG_OK_FOR_BASE_P (arg1
) || REG_OK_FOR_INDEX_P (arg1
)))
2039 record_address_regs (arg0
,
2040 REG_OK_FOR_BASE_P (arg1
)
2041 ? INDEX_REG_CLASS
: MODE_BASE_REG_CLASS (VOIDmode
),
2045 /* If one operand is known to be a pointer, it must be the base
2046 with the other operand the index. Likewise if the other operand
2049 else if ((code0
== REG
&& REG_POINTER (arg0
))
2052 record_address_regs (arg0
, MODE_BASE_REG_CLASS (VOIDmode
), scale
);
2053 record_address_regs (arg1
, INDEX_REG_CLASS
, scale
);
2055 else if ((code1
== REG
&& REG_POINTER (arg1
))
2058 record_address_regs (arg0
, INDEX_REG_CLASS
, scale
);
2059 record_address_regs (arg1
, MODE_BASE_REG_CLASS (VOIDmode
), scale
);
2062 /* Otherwise, count equal chances that each might be a base
2063 or index register. This case should be rare. */
2067 record_address_regs (arg0
, MODE_BASE_REG_CLASS (VOIDmode
),
2069 record_address_regs (arg0
, INDEX_REG_CLASS
, scale
/ 2);
2070 record_address_regs (arg1
, MODE_BASE_REG_CLASS (VOIDmode
),
2072 record_address_regs (arg1
, INDEX_REG_CLASS
, scale
/ 2);
2077 /* Double the importance of a pseudo register that is incremented
2078 or decremented, since it would take two extra insns
2079 if it ends up in the wrong place. */
2082 record_address_regs (XEXP (x
, 0), MODE_BASE_REG_CLASS (VOIDmode
),
2084 if (REG_P (XEXP (XEXP (x
, 1), 1)))
2085 record_address_regs (XEXP (XEXP (x
, 1), 1),
2086 INDEX_REG_CLASS
, 2 * scale
);
2093 /* Double the importance of a pseudo register that is incremented
2094 or decremented, since it would take two extra insns
2095 if it ends up in the wrong place. If the operand is a pseudo,
2096 show it is being used in an INC_DEC context. */
2098 #ifdef FORBIDDEN_INC_DEC_CLASSES
2099 if (GET_CODE (XEXP (x
, 0)) == REG
2100 && REGNO (XEXP (x
, 0)) >= FIRST_PSEUDO_REGISTER
)
2101 in_inc_dec
[REGNO (XEXP (x
, 0))] = 1;
2104 record_address_regs (XEXP (x
, 0), class, 2 * scale
);
2109 struct costs
*pp
= &costs
[REGNO (x
)];
2112 pp
->mem_cost
+= (MEMORY_MOVE_COST (Pmode
, class, 1) * scale
) / 2;
2114 for (i
= 0; i
< N_REG_CLASSES
; i
++)
2115 pp
->cost
[i
] += (may_move_in_cost
[Pmode
][i
][(int) class] * scale
) / 2;
2121 const char *fmt
= GET_RTX_FORMAT (code
);
2123 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2125 record_address_regs (XEXP (x
, i
), class, scale
);
2130 #ifdef FORBIDDEN_INC_DEC_CLASSES
2132 /* Return 1 if REG is valid as an auto-increment memory reference
2133 to an object of MODE. */
2136 auto_inc_dec_reg_p (reg
, mode
)
2138 enum machine_mode mode
;
2140 if (HAVE_POST_INCREMENT
2141 && memory_address_p (mode
, gen_rtx_POST_INC (Pmode
, reg
)))
2144 if (HAVE_POST_DECREMENT
2145 && memory_address_p (mode
, gen_rtx_POST_DEC (Pmode
, reg
)))
2148 if (HAVE_PRE_INCREMENT
2149 && memory_address_p (mode
, gen_rtx_PRE_INC (Pmode
, reg
)))
2152 if (HAVE_PRE_DECREMENT
2153 && memory_address_p (mode
, gen_rtx_PRE_DEC (Pmode
, reg
)))
2160 static short *renumber
;
2161 static size_t regno_allocated
;
2162 static unsigned int reg_n_max
;
2164 /* Allocate enough space to hold NUM_REGS registers for the tables used for
2165 reg_scan and flow_analysis that are indexed by the register number. If
2166 NEW_P is non zero, initialize all of the registers, otherwise only
2167 initialize the new registers allocated. The same table is kept from
2168 function to function, only reallocating it when we need more room. If
2169 RENUMBER_P is non zero, allocate the reg_renumber array also. */
2172 allocate_reg_info (num_regs
, new_p
, renumber_p
)
2178 size_t size_renumber
;
2179 size_t min
= (new_p
) ? 0 : reg_n_max
;
2180 struct reg_info_data
*reg_data
;
2182 if (num_regs
> regno_allocated
)
2184 size_t old_allocated
= regno_allocated
;
2186 regno_allocated
= num_regs
+ (num_regs
/ 20); /* add some slop space */
2187 size_renumber
= regno_allocated
* sizeof (short);
2191 VARRAY_REG_INIT (reg_n_info
, regno_allocated
, "reg_n_info");
2192 renumber
= (short *) xmalloc (size_renumber
);
2193 reg_pref_buffer
= (struct reg_pref
*) xmalloc (regno_allocated
2194 * sizeof (struct reg_pref
));
2199 VARRAY_GROW (reg_n_info
, regno_allocated
);
2201 if (new_p
) /* if we're zapping everything, no need to realloc */
2203 free ((char *) renumber
);
2204 free ((char *) reg_pref
);
2205 renumber
= (short *) xmalloc (size_renumber
);
2206 reg_pref_buffer
= (struct reg_pref
*) xmalloc (regno_allocated
2207 * sizeof (struct reg_pref
));
2212 renumber
= (short *) xrealloc ((char *) renumber
, size_renumber
);
2213 reg_pref_buffer
= (struct reg_pref
*) xrealloc ((char *) reg_pref_buffer
,
2215 * sizeof (struct reg_pref
));
2219 size_info
= (regno_allocated
- old_allocated
) * sizeof (reg_info
)
2220 + sizeof (struct reg_info_data
) - sizeof (reg_info
);
2221 reg_data
= (struct reg_info_data
*) xcalloc (size_info
, 1);
2222 reg_data
->min_index
= old_allocated
;
2223 reg_data
->max_index
= regno_allocated
- 1;
2224 reg_data
->next
= reg_info_head
;
2225 reg_info_head
= reg_data
;
2228 reg_n_max
= num_regs
;
2231 /* Loop through each of the segments allocated for the actual
2232 reg_info pages, and set up the pointers, zero the pages, etc. */
2233 for (reg_data
= reg_info_head
;
2234 reg_data
&& reg_data
->max_index
>= min
;
2235 reg_data
= reg_data
->next
)
2237 size_t min_index
= reg_data
->min_index
;
2238 size_t max_index
= reg_data
->max_index
;
2239 size_t max
= MIN (max_index
, num_regs
);
2240 size_t local_min
= min
- min_index
;
2243 if (reg_data
->min_index
> num_regs
)
2246 if (min
< min_index
)
2248 if (!reg_data
->used_p
) /* page just allocated with calloc */
2249 reg_data
->used_p
= 1; /* no need to zero */
2251 memset ((char *) ®_data
->data
[local_min
], 0,
2252 sizeof (reg_info
) * (max
- min_index
- local_min
+ 1));
2254 for (i
= min_index
+local_min
; i
<= max
; i
++)
2256 VARRAY_REG (reg_n_info
, i
) = ®_data
->data
[i
-min_index
];
2257 REG_BASIC_BLOCK (i
) = REG_BLOCK_UNKNOWN
;
2259 reg_pref_buffer
[i
].prefclass
= (char) NO_REGS
;
2260 reg_pref_buffer
[i
].altclass
= (char) NO_REGS
;
2265 /* If {pref,alt}class have already been allocated, update the pointers to
2266 the newly realloced ones. */
2268 reg_pref
= reg_pref_buffer
;
2271 reg_renumber
= renumber
;
2273 /* Tell the regset code about the new number of registers */
2274 MAX_REGNO_REG_SET (num_regs
, new_p
, renumber_p
);
2277 /* Free up the space allocated by allocate_reg_info. */
2283 struct reg_info_data
*reg_data
;
2284 struct reg_info_data
*reg_next
;
2286 VARRAY_FREE (reg_n_info
);
2287 for (reg_data
= reg_info_head
; reg_data
; reg_data
= reg_next
)
2289 reg_next
= reg_data
->next
;
2290 free ((char *) reg_data
);
2293 free (reg_pref_buffer
);
2294 reg_pref_buffer
= (struct reg_pref
*) 0;
2295 reg_info_head
= (struct reg_info_data
*) 0;
2296 renumber
= (short *) 0;
2298 regno_allocated
= 0;
2302 /* This is the `regscan' pass of the compiler, run just before cse
2303 and again just before loop.
2305 It finds the first and last use of each pseudo-register
2306 and records them in the vectors regno_first_uid, regno_last_uid
2307 and counts the number of sets in the vector reg_n_sets.
2309 REPEAT is nonzero the second time this is called. */
2311 /* Maximum number of parallel sets and clobbers in any insn in this fn.
2312 Always at least 3, since the combiner could put that many together
2313 and we want this to remain correct for all the remaining passes.
2314 This corresponds to the maximum number of times note_stores will call
2315 a function for any insn. */
2319 /* Used as a temporary to record the largest number of registers in
2320 PARALLEL in a SET_DEST. This is added to max_parallel. */
2322 static int max_set_parallel
;
2325 reg_scan (f
, nregs
, repeat
)
2328 int repeat ATTRIBUTE_UNUSED
;
2332 allocate_reg_info (nregs
, TRUE
, FALSE
);
2334 max_set_parallel
= 0;
2336 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
2337 if (GET_CODE (insn
) == INSN
2338 || GET_CODE (insn
) == CALL_INSN
2339 || GET_CODE (insn
) == JUMP_INSN
)
2341 if (GET_CODE (PATTERN (insn
)) == PARALLEL
2342 && XVECLEN (PATTERN (insn
), 0) > max_parallel
)
2343 max_parallel
= XVECLEN (PATTERN (insn
), 0);
2344 reg_scan_mark_refs (PATTERN (insn
), insn
, 0, 0);
2346 if (REG_NOTES (insn
))
2347 reg_scan_mark_refs (REG_NOTES (insn
), insn
, 1, 0);
2350 max_parallel
+= max_set_parallel
;
2353 /* Update 'regscan' information by looking at the insns
2354 from FIRST to LAST. Some new REGs have been created,
2355 and any REG with number greater than OLD_MAX_REGNO is
2356 such a REG. We only update information for those. */
2359 reg_scan_update (first
, last
, old_max_regno
)
2362 unsigned int old_max_regno
;
2366 allocate_reg_info (max_reg_num (), FALSE
, FALSE
);
2368 for (insn
= first
; insn
!= last
; insn
= NEXT_INSN (insn
))
2369 if (GET_CODE (insn
) == INSN
2370 || GET_CODE (insn
) == CALL_INSN
2371 || GET_CODE (insn
) == JUMP_INSN
)
2373 if (GET_CODE (PATTERN (insn
)) == PARALLEL
2374 && XVECLEN (PATTERN (insn
), 0) > max_parallel
)
2375 max_parallel
= XVECLEN (PATTERN (insn
), 0);
2376 reg_scan_mark_refs (PATTERN (insn
), insn
, 0, old_max_regno
);
2378 if (REG_NOTES (insn
))
2379 reg_scan_mark_refs (REG_NOTES (insn
), insn
, 1, old_max_regno
);
2383 /* X is the expression to scan. INSN is the insn it appears in.
2384 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2385 We should only record information for REGs with numbers
2386 greater than or equal to MIN_REGNO. */
2389 reg_scan_mark_refs (x
, insn
, note_flag
, min_regno
)
2393 unsigned int min_regno
;
2399 code
= GET_CODE (x
);
2416 unsigned int regno
= REGNO (x
);
2418 if (regno
>= min_regno
)
2420 REGNO_LAST_NOTE_UID (regno
) = INSN_UID (insn
);
2422 REGNO_LAST_UID (regno
) = INSN_UID (insn
);
2423 if (REGNO_FIRST_UID (regno
) == 0)
2424 REGNO_FIRST_UID (regno
) = INSN_UID (insn
);
2431 reg_scan_mark_refs (XEXP (x
, 0), insn
, note_flag
, min_regno
);
2433 reg_scan_mark_refs (XEXP (x
, 1), insn
, note_flag
, min_regno
);
2438 reg_scan_mark_refs (XEXP (x
, 1), insn
, note_flag
, min_regno
);
2442 /* Count a set of the destination if it is a register. */
2443 for (dest
= SET_DEST (x
);
2444 GET_CODE (dest
) == SUBREG
|| GET_CODE (dest
) == STRICT_LOW_PART
2445 || GET_CODE (dest
) == ZERO_EXTEND
;
2446 dest
= XEXP (dest
, 0))
2449 /* For a PARALLEL, record the number of things (less the usual one for a
2450 SET) that are set. */
2451 if (GET_CODE (dest
) == PARALLEL
)
2452 max_set_parallel
= MAX (max_set_parallel
, XVECLEN (dest
, 0) - 1);
2454 if (GET_CODE (dest
) == REG
2455 && REGNO (dest
) >= min_regno
)
2457 REG_N_SETS (REGNO (dest
))++;
2458 REG_N_REFS (REGNO (dest
))++;
2461 /* If this is setting a pseudo from another pseudo or the sum of a
2462 pseudo and a constant integer and the other pseudo is known to be
2463 a pointer, set the destination to be a pointer as well.
2465 Likewise if it is setting the destination from an address or from a
2466 value equivalent to an address or to the sum of an address and
2469 But don't do any of this if the pseudo corresponds to a user
2470 variable since it should have already been set as a pointer based
2473 if (GET_CODE (SET_DEST (x
)) == REG
2474 && REGNO (SET_DEST (x
)) >= FIRST_PSEUDO_REGISTER
2475 && REGNO (SET_DEST (x
)) >= min_regno
2476 /* If the destination pseudo is set more than once, then other
2477 sets might not be to a pointer value (consider access to a
2478 union in two threads of control in the presense of global
2479 optimizations). So only set REG_POINTER on the destination
2480 pseudo if this is the only set of that pseudo. */
2481 && REG_N_SETS (REGNO (SET_DEST (x
))) == 1
2482 && ! REG_USERVAR_P (SET_DEST (x
))
2483 && ! REG_POINTER (SET_DEST (x
))
2484 && ((GET_CODE (SET_SRC (x
)) == REG
2485 && REG_POINTER (SET_SRC (x
)))
2486 || ((GET_CODE (SET_SRC (x
)) == PLUS
2487 || GET_CODE (SET_SRC (x
)) == LO_SUM
)
2488 && GET_CODE (XEXP (SET_SRC (x
), 1)) == CONST_INT
2489 && GET_CODE (XEXP (SET_SRC (x
), 0)) == REG
2490 && REG_POINTER (XEXP (SET_SRC (x
), 0)))
2491 || GET_CODE (SET_SRC (x
)) == CONST
2492 || GET_CODE (SET_SRC (x
)) == SYMBOL_REF
2493 || GET_CODE (SET_SRC (x
)) == LABEL_REF
2494 || (GET_CODE (SET_SRC (x
)) == HIGH
2495 && (GET_CODE (XEXP (SET_SRC (x
), 0)) == CONST
2496 || GET_CODE (XEXP (SET_SRC (x
), 0)) == SYMBOL_REF
2497 || GET_CODE (XEXP (SET_SRC (x
), 0)) == LABEL_REF
))
2498 || ((GET_CODE (SET_SRC (x
)) == PLUS
2499 || GET_CODE (SET_SRC (x
)) == LO_SUM
)
2500 && (GET_CODE (XEXP (SET_SRC (x
), 1)) == CONST
2501 || GET_CODE (XEXP (SET_SRC (x
), 1)) == SYMBOL_REF
2502 || GET_CODE (XEXP (SET_SRC (x
), 1)) == LABEL_REF
))
2503 || ((note
= find_reg_note (insn
, REG_EQUAL
, 0)) != 0
2504 && (GET_CODE (XEXP (note
, 0)) == CONST
2505 || GET_CODE (XEXP (note
, 0)) == SYMBOL_REF
2506 || GET_CODE (XEXP (note
, 0)) == LABEL_REF
))))
2507 REG_POINTER (SET_DEST (x
)) = 1;
2509 /* If this is setting a register from a register or from a simple
2510 conversion of a register, propagate REG_DECL. */
2511 if (GET_CODE (dest
) == REG
)
2513 rtx src
= SET_SRC (x
);
2515 while (GET_CODE (src
) == SIGN_EXTEND
2516 || GET_CODE (src
) == ZERO_EXTEND
2517 || GET_CODE (src
) == TRUNCATE
2518 || (GET_CODE (src
) == SUBREG
&& subreg_lowpart_p (src
)))
2519 src
= XEXP (src
, 0);
2521 if (GET_CODE (src
) == REG
&& REGNO_DECL (REGNO (src
)) == 0)
2522 REGNO_DECL (REGNO (src
)) = REGNO_DECL (REGNO (dest
));
2523 else if (GET_CODE (src
) == REG
&& REGNO_DECL (REGNO (dest
)) == 0)
2524 REGNO_DECL (REGNO (dest
)) = REGNO_DECL (REGNO (src
));
2527 /* ... fall through ... */
2531 const char *fmt
= GET_RTX_FORMAT (code
);
2533 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2536 reg_scan_mark_refs (XEXP (x
, i
), insn
, note_flag
, min_regno
);
2537 else if (fmt
[i
] == 'E' && XVEC (x
, i
) != 0)
2540 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2541 reg_scan_mark_refs (XVECEXP (x
, i
, j
), insn
, note_flag
, min_regno
);
2548 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2552 reg_class_subset_p (c1
, c2
)
2556 if (c1
== c2
) return 1;
2561 GO_IF_HARD_REG_SUBSET (reg_class_contents
[(int) c1
],
2562 reg_class_contents
[(int) c2
],
2567 /* Return nonzero if there is a register that is in both C1 and C2. */
2570 reg_classes_intersect_p (c1
, c2
)
2579 if (c1
== c2
) return 1;
2581 if (c1
== ALL_REGS
|| c2
== ALL_REGS
)
2584 COPY_HARD_REG_SET (c
, reg_class_contents
[(int) c1
]);
2585 AND_HARD_REG_SET (c
, reg_class_contents
[(int) c2
]);
2587 GO_IF_HARD_REG_SUBSET (c
, reg_class_contents
[(int) NO_REGS
], lose
);
2594 /* Release any memory allocated by register sets. */
2597 regset_release_memory ()
2599 bitmap_release_memory ();