stl_bvector.h (swap(_Bit_reference,_Bit_reference)): Move/rename...
[official-gcc.git] / gcc / haifa-sched.c
blob63a31352a5b7e8f319368df8f3277a3e2b1aca88
1 /* Instruction scheduling pass.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
5 and currently maintained by, Jim Wilson (wilson@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 02111-1307, USA. */
24 /* Instruction scheduling pass. This file, along with sched-deps.c,
25 contains the generic parts. The actual entry point is found for
26 the normal instruction scheduling pass is found in sched-rgn.c.
28 We compute insn priorities based on data dependencies. Flow
29 analysis only creates a fraction of the data-dependencies we must
30 observe: namely, only those dependencies which the combiner can be
31 expected to use. For this pass, we must therefore create the
32 remaining dependencies we need to observe: register dependencies,
33 memory dependencies, dependencies to keep function calls in order,
34 and the dependence between a conditional branch and the setting of
35 condition codes are all dealt with here.
37 The scheduler first traverses the data flow graph, starting with
38 the last instruction, and proceeding to the first, assigning values
39 to insn_priority as it goes. This sorts the instructions
40 topologically by data dependence.
42 Once priorities have been established, we order the insns using
43 list scheduling. This works as follows: starting with a list of
44 all the ready insns, and sorted according to priority number, we
45 schedule the insn from the end of the list by placing its
46 predecessors in the list according to their priority order. We
47 consider this insn scheduled by setting the pointer to the "end" of
48 the list to point to the previous insn. When an insn has no
49 predecessors, we either queue it until sufficient time has elapsed
50 or add it to the ready list. As the instructions are scheduled or
51 when stalls are introduced, the queue advances and dumps insns into
52 the ready list. When all insns down to the lowest priority have
53 been scheduled, the critical path of the basic block has been made
54 as short as possible. The remaining insns are then scheduled in
55 remaining slots.
57 Function unit conflicts are resolved during forward list scheduling
58 by tracking the time when each insn is committed to the schedule
59 and from that, the time the function units it uses must be free.
60 As insns on the ready list are considered for scheduling, those
61 that would result in a blockage of the already committed insns are
62 queued until no blockage will result.
64 The following list shows the order in which we want to break ties
65 among insns in the ready list:
67 1. choose insn with the longest path to end of bb, ties
68 broken by
69 2. choose insn with least contribution to register pressure,
70 ties broken by
71 3. prefer in-block upon interblock motion, ties broken by
72 4. prefer useful upon speculative motion, ties broken by
73 5. choose insn with largest control flow probability, ties
74 broken by
75 6. choose insn with the least dependences upon the previously
76 scheduled insn, or finally
77 7 choose the insn which has the most insns dependent on it.
78 8. choose insn with lowest UID.
80 Memory references complicate matters. Only if we can be certain
81 that memory references are not part of the data dependency graph
82 (via true, anti, or output dependence), can we move operations past
83 memory references. To first approximation, reads can be done
84 independently, while writes introduce dependencies. Better
85 approximations will yield fewer dependencies.
87 Before reload, an extended analysis of interblock data dependences
88 is required for interblock scheduling. This is performed in
89 compute_block_backward_dependences ().
91 Dependencies set up by memory references are treated in exactly the
92 same way as other dependencies, by using LOG_LINKS backward
93 dependences. LOG_LINKS are translated into INSN_DEPEND forward
94 dependences for the purpose of forward list scheduling.
96 Having optimized the critical path, we may have also unduly
97 extended the lifetimes of some registers. If an operation requires
98 that constants be loaded into registers, it is certainly desirable
99 to load those constants as early as necessary, but no earlier.
100 I.e., it will not do to load up a bunch of registers at the
101 beginning of a basic block only to use them at the end, if they
102 could be loaded later, since this may result in excessive register
103 utilization.
105 Note that since branches are never in basic blocks, but only end
106 basic blocks, this pass will not move branches. But that is ok,
107 since we can use GNU's delayed branch scheduling pass to take care
108 of this case.
110 Also note that no further optimizations based on algebraic
111 identities are performed, so this pass would be a good one to
112 perform instruction splitting, such as breaking up a multiply
113 instruction into shifts and adds where that is profitable.
115 Given the memory aliasing analysis that this pass should perform,
116 it should be possible to remove redundant stores to memory, and to
117 load values from registers instead of hitting memory.
119 Before reload, speculative insns are moved only if a 'proof' exists
120 that no exception will be caused by this, and if no live registers
121 exist that inhibit the motion (live registers constraints are not
122 represented by data dependence edges).
124 This pass must update information that subsequent passes expect to
125 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
126 reg_n_calls_crossed, and reg_live_length. Also, BLOCK_HEAD,
127 BLOCK_END.
129 The information in the line number notes is carefully retained by
130 this pass. Notes that refer to the starting and ending of
131 exception regions are also carefully retained by this pass. All
132 other NOTE insns are grouped in their same relative order at the
133 beginning of basic blocks and regions that have been scheduled. */
135 #include "config.h"
136 #include "system.h"
137 #include "toplev.h"
138 #include "rtl.h"
139 #include "tm_p.h"
140 #include "hard-reg-set.h"
141 #include "basic-block.h"
142 #include "regs.h"
143 #include "function.h"
144 #include "flags.h"
145 #include "insn-config.h"
146 #include "insn-attr.h"
147 #include "except.h"
148 #include "toplev.h"
149 #include "recog.h"
150 #include "sched-int.h"
151 #include "target.h"
153 #ifdef INSN_SCHEDULING
155 /* issue_rate is the number of insns that can be scheduled in the same
156 machine cycle. It can be defined in the config/mach/mach.h file,
157 otherwise we set it to 1. */
159 static int issue_rate;
161 /* If the following variable value is non zero, the scheduler inserts
162 bubbles (nop insns). The value of variable affects on scheduler
163 behavior only if automaton pipeline interface with multipass
164 scheduling is used and hook dfa_bubble is defined. */
165 int insert_schedule_bubbles_p = 0;
167 /* sched-verbose controls the amount of debugging output the
168 scheduler prints. It is controlled by -fsched-verbose=N:
169 N>0 and no -DSR : the output is directed to stderr.
170 N>=10 will direct the printouts to stderr (regardless of -dSR).
171 N=1: same as -dSR.
172 N=2: bb's probabilities, detailed ready list info, unit/insn info.
173 N=3: rtl at abort point, control-flow, regions info.
174 N=5: dependences info. */
176 static int sched_verbose_param = 0;
177 int sched_verbose = 0;
179 /* Debugging file. All printouts are sent to dump, which is always set,
180 either to stderr, or to the dump listing file (-dRS). */
181 FILE *sched_dump = 0;
183 /* Highest uid before scheduling. */
184 static int old_max_uid;
186 /* fix_sched_param() is called from toplev.c upon detection
187 of the -fsched-verbose=N option. */
189 void
190 fix_sched_param (param, val)
191 const char *param, *val;
193 if (!strcmp (param, "verbose"))
194 sched_verbose_param = atoi (val);
195 else
196 warning ("fix_sched_param: unknown param: %s", param);
199 struct haifa_insn_data *h_i_d;
201 #define DONE_PRIORITY -1
202 #define MAX_PRIORITY 0x7fffffff
203 #define TAIL_PRIORITY 0x7ffffffe
204 #define LAUNCH_PRIORITY 0x7f000001
205 #define DONE_PRIORITY_P(INSN) (INSN_PRIORITY (INSN) < 0)
206 #define LOW_PRIORITY_P(INSN) ((INSN_PRIORITY (INSN) & 0x7f000000) == 0)
208 #define LINE_NOTE(INSN) (h_i_d[INSN_UID (INSN)].line_note)
209 #define INSN_TICK(INSN) (h_i_d[INSN_UID (INSN)].tick)
211 /* Vector indexed by basic block number giving the starting line-number
212 for each basic block. */
213 static rtx *line_note_head;
215 /* List of important notes we must keep around. This is a pointer to the
216 last element in the list. */
217 static rtx note_list;
219 /* Queues, etc. */
221 /* An instruction is ready to be scheduled when all insns preceding it
222 have already been scheduled. It is important to ensure that all
223 insns which use its result will not be executed until its result
224 has been computed. An insn is maintained in one of four structures:
226 (P) the "Pending" set of insns which cannot be scheduled until
227 their dependencies have been satisfied.
228 (Q) the "Queued" set of insns that can be scheduled when sufficient
229 time has passed.
230 (R) the "Ready" list of unscheduled, uncommitted insns.
231 (S) the "Scheduled" list of insns.
233 Initially, all insns are either "Pending" or "Ready" depending on
234 whether their dependencies are satisfied.
236 Insns move from the "Ready" list to the "Scheduled" list as they
237 are committed to the schedule. As this occurs, the insns in the
238 "Pending" list have their dependencies satisfied and move to either
239 the "Ready" list or the "Queued" set depending on whether
240 sufficient time has passed to make them ready. As time passes,
241 insns move from the "Queued" set to the "Ready" list. Insns may
242 move from the "Ready" list to the "Queued" set if they are blocked
243 due to a function unit conflict.
245 The "Pending" list (P) are the insns in the INSN_DEPEND of the unscheduled
246 insns, i.e., those that are ready, queued, and pending.
247 The "Queued" set (Q) is implemented by the variable `insn_queue'.
248 The "Ready" list (R) is implemented by the variables `ready' and
249 `n_ready'.
250 The "Scheduled" list (S) is the new insn chain built by this pass.
252 The transition (R->S) is implemented in the scheduling loop in
253 `schedule_block' when the best insn to schedule is chosen.
254 The transition (R->Q) is implemented in `queue_insn' when an
255 insn is found to have a function unit conflict with the already
256 committed insns.
257 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
258 insns move from the ready list to the scheduled list.
259 The transition (Q->R) is implemented in 'queue_to_insn' as time
260 passes or stalls are introduced. */
262 /* Implement a circular buffer to delay instructions until sufficient
263 time has passed. For the old pipeline description interface,
264 INSN_QUEUE_SIZE is a power of two larger than MAX_BLOCKAGE and
265 MAX_READY_COST computed by genattr.c. For the new pipeline
266 description interface, MAX_INSN_QUEUE_INDEX is a power of two minus
267 one which is larger than maximal time of instruction execution
268 computed by genattr.c on the base maximal time of functional unit
269 reservations and geting a result. This is the longest time an
270 insn may be queued. */
272 #define MAX_INSN_QUEUE_INDEX max_insn_queue_index_macro_value
274 static rtx *insn_queue;
275 static int q_ptr = 0;
276 static int q_size = 0;
277 #define NEXT_Q(X) (((X)+1) & MAX_INSN_QUEUE_INDEX)
278 #define NEXT_Q_AFTER(X, C) (((X)+C) & MAX_INSN_QUEUE_INDEX)
280 /* The following variable defines value for macro
281 MAX_INSN_QUEUE_INDEX. */
282 static int max_insn_queue_index_macro_value;
284 /* The following variable value refers for all current and future
285 reservations of the processor units. */
286 state_t curr_state;
288 /* The following variable value is size of memory representing all
289 current and future reservations of the processor units. It is used
290 only by DFA based scheduler. */
291 static size_t dfa_state_size;
293 /* The following array is used to find the best insn from ready when
294 the automaton pipeline interface is used. */
295 static char *ready_try;
297 /* Describe the ready list of the scheduler.
298 VEC holds space enough for all insns in the current region. VECLEN
299 says how many exactly.
300 FIRST is the index of the element with the highest priority; i.e. the
301 last one in the ready list, since elements are ordered by ascending
302 priority.
303 N_READY determines how many insns are on the ready list. */
305 struct ready_list
307 rtx *vec;
308 int veclen;
309 int first;
310 int n_ready;
313 /* Forward declarations. */
315 /* The scheduler using only DFA description should never use the
316 following five functions: */
317 static unsigned int blockage_range PARAMS ((int, rtx));
318 static void clear_units PARAMS ((void));
319 static void schedule_unit PARAMS ((int, rtx, int));
320 static int actual_hazard PARAMS ((int, rtx, int, int));
321 static int potential_hazard PARAMS ((int, rtx, int));
323 static int priority PARAMS ((rtx));
324 static int rank_for_schedule PARAMS ((const PTR, const PTR));
325 static void swap_sort PARAMS ((rtx *, int));
326 static void queue_insn PARAMS ((rtx, int));
327 static void schedule_insn PARAMS ((rtx, struct ready_list *, int));
328 static void find_insn_reg_weight PARAMS ((int));
329 static void adjust_priority PARAMS ((rtx));
330 static void advance_one_cycle PARAMS ((void));
332 /* Notes handling mechanism:
333 =========================
334 Generally, NOTES are saved before scheduling and restored after scheduling.
335 The scheduler distinguishes between three types of notes:
337 (1) LINE_NUMBER notes, generated and used for debugging. Here,
338 before scheduling a region, a pointer to the LINE_NUMBER note is
339 added to the insn following it (in save_line_notes()), and the note
340 is removed (in rm_line_notes() and unlink_line_notes()). After
341 scheduling the region, this pointer is used for regeneration of
342 the LINE_NUMBER note (in restore_line_notes()).
344 (2) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
345 Before scheduling a region, a pointer to the note is added to the insn
346 that follows or precedes it. (This happens as part of the data dependence
347 computation). After scheduling an insn, the pointer contained in it is
348 used for regenerating the corresponding note (in reemit_notes).
350 (3) All other notes (e.g. INSN_DELETED): Before scheduling a block,
351 these notes are put in a list (in rm_other_notes() and
352 unlink_other_notes ()). After scheduling the block, these notes are
353 inserted at the beginning of the block (in schedule_block()). */
355 static rtx unlink_other_notes PARAMS ((rtx, rtx));
356 static rtx unlink_line_notes PARAMS ((rtx, rtx));
357 static rtx reemit_notes PARAMS ((rtx, rtx));
359 static rtx *ready_lastpos PARAMS ((struct ready_list *));
360 static void ready_sort PARAMS ((struct ready_list *));
361 static rtx ready_remove_first PARAMS ((struct ready_list *));
363 static void queue_to_ready PARAMS ((struct ready_list *));
365 static void debug_ready_list PARAMS ((struct ready_list *));
367 static rtx move_insn1 PARAMS ((rtx, rtx));
368 static rtx move_insn PARAMS ((rtx, rtx));
370 /* The following functions are used to implement multi-pass scheduling
371 on the first cycle. It is used only for DFA based scheduler. */
372 static rtx ready_element PARAMS ((struct ready_list *, int));
373 static rtx ready_remove PARAMS ((struct ready_list *, int));
374 static int max_issue PARAMS ((struct ready_list *, state_t, int *));
376 static rtx choose_ready PARAMS ((struct ready_list *));
378 #endif /* INSN_SCHEDULING */
380 /* Point to state used for the current scheduling pass. */
381 struct sched_info *current_sched_info;
383 #ifndef INSN_SCHEDULING
384 void
385 schedule_insns (dump_file)
386 FILE *dump_file ATTRIBUTE_UNUSED;
389 #else
391 /* Pointer to the last instruction scheduled. Used by rank_for_schedule,
392 so that insns independent of the last scheduled insn will be preferred
393 over dependent instructions. */
395 static rtx last_scheduled_insn;
397 /* Compute the function units used by INSN. This caches the value
398 returned by function_units_used. A function unit is encoded as the
399 unit number if the value is non-negative and the compliment of a
400 mask if the value is negative. A function unit index is the
401 non-negative encoding. The scheduler using only DFA description
402 should never use the following function. */
404 HAIFA_INLINE int
405 insn_unit (insn)
406 rtx insn;
408 int unit = INSN_UNIT (insn);
410 if (unit == 0)
412 recog_memoized (insn);
414 /* A USE insn, or something else we don't need to understand.
415 We can't pass these directly to function_units_used because it will
416 trigger a fatal error for unrecognizable insns. */
417 if (INSN_CODE (insn) < 0)
418 unit = -1;
419 else
421 unit = function_units_used (insn);
422 /* Increment non-negative values so we can cache zero. */
423 if (unit >= 0)
424 unit++;
426 /* We only cache 16 bits of the result, so if the value is out of
427 range, don't cache it. */
428 if (FUNCTION_UNITS_SIZE < HOST_BITS_PER_SHORT
429 || unit >= 0
430 || (unit & ~((1 << (HOST_BITS_PER_SHORT - 1)) - 1)) == 0)
431 INSN_UNIT (insn) = unit;
433 return (unit > 0 ? unit - 1 : unit);
436 /* Compute the blockage range for executing INSN on UNIT. This caches
437 the value returned by the blockage_range_function for the unit.
438 These values are encoded in an int where the upper half gives the
439 minimum value and the lower half gives the maximum value. The
440 scheduler using only DFA description should never use the following
441 function. */
443 HAIFA_INLINE static unsigned int
444 blockage_range (unit, insn)
445 int unit;
446 rtx insn;
448 unsigned int blockage = INSN_BLOCKAGE (insn);
449 unsigned int range;
451 if ((int) UNIT_BLOCKED (blockage) != unit + 1)
453 range = function_units[unit].blockage_range_function (insn);
454 /* We only cache the blockage range for one unit and then only if
455 the values fit. */
456 if (HOST_BITS_PER_INT >= UNIT_BITS + 2 * BLOCKAGE_BITS)
457 INSN_BLOCKAGE (insn) = ENCODE_BLOCKAGE (unit + 1, range);
459 else
460 range = BLOCKAGE_RANGE (blockage);
462 return range;
465 /* A vector indexed by function unit instance giving the last insn to
466 use the unit. The value of the function unit instance index for
467 unit U instance I is (U + I * FUNCTION_UNITS_SIZE). The scheduler
468 using only DFA description should never use the following variable. */
469 #if FUNCTION_UNITS_SIZE
470 static rtx unit_last_insn[FUNCTION_UNITS_SIZE * MAX_MULTIPLICITY];
471 #else
472 static rtx unit_last_insn[1];
473 #endif
475 /* A vector indexed by function unit instance giving the minimum time
476 when the unit will unblock based on the maximum blockage cost. The
477 scheduler using only DFA description should never use the following
478 variable. */
479 #if FUNCTION_UNITS_SIZE
480 static int unit_tick[FUNCTION_UNITS_SIZE * MAX_MULTIPLICITY];
481 #else
482 static int unit_tick[1];
483 #endif
485 /* A vector indexed by function unit number giving the number of insns
486 that remain to use the unit. The scheduler using only DFA
487 description should never use the following variable. */
488 #if FUNCTION_UNITS_SIZE
489 static int unit_n_insns[FUNCTION_UNITS_SIZE];
490 #else
491 static int unit_n_insns[1];
492 #endif
494 /* Access the unit_last_insn array. Used by the visualization code.
495 The scheduler using only DFA description should never use the
496 following function. */
499 get_unit_last_insn (instance)
500 int instance;
502 return unit_last_insn[instance];
505 /* Reset the function unit state to the null state. */
507 static void
508 clear_units ()
510 memset ((char *) unit_last_insn, 0, sizeof (unit_last_insn));
511 memset ((char *) unit_tick, 0, sizeof (unit_tick));
512 memset ((char *) unit_n_insns, 0, sizeof (unit_n_insns));
515 /* Return the issue-delay of an insn. The scheduler using only DFA
516 description should never use the following function. */
518 HAIFA_INLINE int
519 insn_issue_delay (insn)
520 rtx insn;
522 int i, delay = 0;
523 int unit = insn_unit (insn);
525 /* Efficiency note: in fact, we are working 'hard' to compute a
526 value that was available in md file, and is not available in
527 function_units[] structure. It would be nice to have this
528 value there, too. */
529 if (unit >= 0)
531 if (function_units[unit].blockage_range_function &&
532 function_units[unit].blockage_function)
533 delay = function_units[unit].blockage_function (insn, insn);
535 else
536 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
537 if ((unit & 1) != 0 && function_units[i].blockage_range_function
538 && function_units[i].blockage_function)
539 delay = MAX (delay, function_units[i].blockage_function (insn, insn));
541 return delay;
544 /* Return the actual hazard cost of executing INSN on the unit UNIT,
545 instance INSTANCE at time CLOCK if the previous actual hazard cost
546 was COST. The scheduler using only DFA description should never
547 use the following function. */
549 HAIFA_INLINE int
550 actual_hazard_this_instance (unit, instance, insn, clock, cost)
551 int unit, instance, clock, cost;
552 rtx insn;
554 int tick = unit_tick[instance]; /* Issue time of the last issued insn. */
556 if (tick - clock > cost)
558 /* The scheduler is operating forward, so unit's last insn is the
559 executing insn and INSN is the candidate insn. We want a
560 more exact measure of the blockage if we execute INSN at CLOCK
561 given when we committed the execution of the unit's last insn.
563 The blockage value is given by either the unit's max blockage
564 constant, blockage range function, or blockage function. Use
565 the most exact form for the given unit. */
567 if (function_units[unit].blockage_range_function)
569 if (function_units[unit].blockage_function)
570 tick += (function_units[unit].blockage_function
571 (unit_last_insn[instance], insn)
572 - function_units[unit].max_blockage);
573 else
574 tick += ((int) MAX_BLOCKAGE_COST (blockage_range (unit, insn))
575 - function_units[unit].max_blockage);
577 if (tick - clock > cost)
578 cost = tick - clock;
580 return cost;
583 /* Record INSN as having begun execution on the units encoded by UNIT
584 at time CLOCK. The scheduler using only DFA description should
585 never use the following function. */
587 HAIFA_INLINE static void
588 schedule_unit (unit, insn, clock)
589 int unit, clock;
590 rtx insn;
592 int i;
594 if (unit >= 0)
596 int instance = unit;
597 #if MAX_MULTIPLICITY > 1
598 /* Find the first free instance of the function unit and use that
599 one. We assume that one is free. */
600 for (i = function_units[unit].multiplicity - 1; i > 0; i--)
602 if (!actual_hazard_this_instance (unit, instance, insn, clock, 0))
603 break;
604 instance += FUNCTION_UNITS_SIZE;
606 #endif
607 unit_last_insn[instance] = insn;
608 unit_tick[instance] = (clock + function_units[unit].max_blockage);
610 else
611 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
612 if ((unit & 1) != 0)
613 schedule_unit (i, insn, clock);
616 /* Return the actual hazard cost of executing INSN on the units
617 encoded by UNIT at time CLOCK if the previous actual hazard cost
618 was COST. The scheduler using only DFA description should never
619 use the following function. */
621 HAIFA_INLINE static int
622 actual_hazard (unit, insn, clock, cost)
623 int unit, clock, cost;
624 rtx insn;
626 int i;
628 if (unit >= 0)
630 /* Find the instance of the function unit with the minimum hazard. */
631 int instance = unit;
632 int best_cost = actual_hazard_this_instance (unit, instance, insn,
633 clock, cost);
634 #if MAX_MULTIPLICITY > 1
635 int this_cost;
637 if (best_cost > cost)
639 for (i = function_units[unit].multiplicity - 1; i > 0; i--)
641 instance += FUNCTION_UNITS_SIZE;
642 this_cost = actual_hazard_this_instance (unit, instance, insn,
643 clock, cost);
644 if (this_cost < best_cost)
646 best_cost = this_cost;
647 if (this_cost <= cost)
648 break;
652 #endif
653 cost = MAX (cost, best_cost);
655 else
656 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
657 if ((unit & 1) != 0)
658 cost = actual_hazard (i, insn, clock, cost);
660 return cost;
663 /* Return the potential hazard cost of executing an instruction on the
664 units encoded by UNIT if the previous potential hazard cost was
665 COST. An insn with a large blockage time is chosen in preference
666 to one with a smaller time; an insn that uses a unit that is more
667 likely to be used is chosen in preference to one with a unit that
668 is less used. We are trying to minimize a subsequent actual
669 hazard. The scheduler using only DFA description should never use
670 the following function. */
672 HAIFA_INLINE static int
673 potential_hazard (unit, insn, cost)
674 int unit, cost;
675 rtx insn;
677 int i, ncost;
678 unsigned int minb, maxb;
680 if (unit >= 0)
682 minb = maxb = function_units[unit].max_blockage;
683 if (maxb > 1)
685 if (function_units[unit].blockage_range_function)
687 maxb = minb = blockage_range (unit, insn);
688 maxb = MAX_BLOCKAGE_COST (maxb);
689 minb = MIN_BLOCKAGE_COST (minb);
692 if (maxb > 1)
694 /* Make the number of instructions left dominate. Make the
695 minimum delay dominate the maximum delay. If all these
696 are the same, use the unit number to add an arbitrary
697 ordering. Other terms can be added. */
698 ncost = minb * 0x40 + maxb;
699 ncost *= (unit_n_insns[unit] - 1) * 0x1000 + unit;
700 if (ncost > cost)
701 cost = ncost;
705 else
706 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
707 if ((unit & 1) != 0)
708 cost = potential_hazard (i, insn, cost);
710 return cost;
713 /* Compute cost of executing INSN given the dependence LINK on the insn USED.
714 This is the number of cycles between instruction issue and
715 instruction results. */
717 HAIFA_INLINE int
718 insn_cost (insn, link, used)
719 rtx insn, link, used;
721 int cost = INSN_COST (insn);
723 if (cost < 0)
725 /* A USE insn, or something else we don't need to
726 understand. We can't pass these directly to
727 result_ready_cost or insn_default_latency because it will
728 trigger a fatal error for unrecognizable insns. */
729 if (recog_memoized (insn) < 0)
731 INSN_COST (insn) = 0;
732 return 0;
734 else
736 if (targetm.sched.use_dfa_pipeline_interface
737 && (*targetm.sched.use_dfa_pipeline_interface) ())
738 cost = insn_default_latency (insn);
739 else
740 cost = result_ready_cost (insn);
742 if (cost < 0)
743 cost = 0;
745 INSN_COST (insn) = cost;
749 /* In this case estimate cost without caring how insn is used. */
750 if (link == 0 || used == 0)
751 return cost;
753 /* A USE insn should never require the value used to be computed.
754 This allows the computation of a function's result and parameter
755 values to overlap the return and call. */
756 if (recog_memoized (used) < 0)
757 cost = 0;
758 else
760 if (targetm.sched.use_dfa_pipeline_interface
761 && (*targetm.sched.use_dfa_pipeline_interface) ())
763 if (INSN_CODE (insn) >= 0)
765 if (REG_NOTE_KIND (link) == REG_DEP_ANTI)
766 cost = 0;
767 else if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
769 cost = (insn_default_latency (insn)
770 - insn_default_latency (used));
771 if (cost <= 0)
772 cost = 1;
774 else if (bypass_p (insn))
775 cost = insn_latency (insn, used);
779 if (targetm.sched.adjust_cost)
780 cost = (*targetm.sched.adjust_cost) (used, link, insn, cost);
782 if (cost < 0)
783 cost = 0;
786 return cost;
789 /* Compute the priority number for INSN. */
791 static int
792 priority (insn)
793 rtx insn;
795 rtx link;
797 if (! INSN_P (insn))
798 return 0;
800 if (! INSN_PRIORITY_KNOWN (insn))
802 int this_priority = 0;
804 if (INSN_DEPEND (insn) == 0)
805 this_priority = insn_cost (insn, 0, 0);
806 else
808 for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
810 rtx next;
811 int next_priority;
813 if (RTX_INTEGRATED_P (link))
814 continue;
816 next = XEXP (link, 0);
818 /* Critical path is meaningful in block boundaries only. */
819 if (! (*current_sched_info->contributes_to_priority) (next, insn))
820 continue;
822 next_priority = insn_cost (insn, link, next) + priority (next);
823 if (next_priority > this_priority)
824 this_priority = next_priority;
827 INSN_PRIORITY (insn) = this_priority;
828 INSN_PRIORITY_KNOWN (insn) = 1;
831 return INSN_PRIORITY (insn);
834 /* Macros and functions for keeping the priority queue sorted, and
835 dealing with queueing and dequeueing of instructions. */
837 #define SCHED_SORT(READY, N_READY) \
838 do { if ((N_READY) == 2) \
839 swap_sort (READY, N_READY); \
840 else if ((N_READY) > 2) \
841 qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); } \
842 while (0)
844 /* Returns a positive value if x is preferred; returns a negative value if
845 y is preferred. Should never return 0, since that will make the sort
846 unstable. */
848 static int
849 rank_for_schedule (x, y)
850 const PTR x;
851 const PTR y;
853 rtx tmp = *(const rtx *) y;
854 rtx tmp2 = *(const rtx *) x;
855 rtx link;
856 int tmp_class, tmp2_class, depend_count1, depend_count2;
857 int val, priority_val, weight_val, info_val;
859 /* Prefer insn with higher priority. */
860 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
861 if (priority_val)
862 return priority_val;
864 /* Prefer an insn with smaller contribution to registers-pressure. */
865 if (!reload_completed &&
866 (weight_val = INSN_REG_WEIGHT (tmp) - INSN_REG_WEIGHT (tmp2)))
867 return (weight_val);
869 info_val = (*current_sched_info->rank) (tmp, tmp2);
870 if (info_val)
871 return info_val;
873 /* Compare insns based on their relation to the last-scheduled-insn. */
874 if (last_scheduled_insn)
876 /* Classify the instructions into three classes:
877 1) Data dependent on last schedule insn.
878 2) Anti/Output dependent on last scheduled insn.
879 3) Independent of last scheduled insn, or has latency of one.
880 Choose the insn from the highest numbered class if different. */
881 link = find_insn_list (tmp, INSN_DEPEND (last_scheduled_insn));
882 if (link == 0 || insn_cost (last_scheduled_insn, link, tmp) == 1)
883 tmp_class = 3;
884 else if (REG_NOTE_KIND (link) == 0) /* Data dependence. */
885 tmp_class = 1;
886 else
887 tmp_class = 2;
889 link = find_insn_list (tmp2, INSN_DEPEND (last_scheduled_insn));
890 if (link == 0 || insn_cost (last_scheduled_insn, link, tmp2) == 1)
891 tmp2_class = 3;
892 else if (REG_NOTE_KIND (link) == 0) /* Data dependence. */
893 tmp2_class = 1;
894 else
895 tmp2_class = 2;
897 if ((val = tmp2_class - tmp_class))
898 return val;
901 /* Prefer the insn which has more later insns that depend on it.
902 This gives the scheduler more freedom when scheduling later
903 instructions at the expense of added register pressure. */
904 depend_count1 = 0;
905 for (link = INSN_DEPEND (tmp); link; link = XEXP (link, 1))
906 depend_count1++;
908 depend_count2 = 0;
909 for (link = INSN_DEPEND (tmp2); link; link = XEXP (link, 1))
910 depend_count2++;
912 val = depend_count2 - depend_count1;
913 if (val)
914 return val;
916 /* If insns are equally good, sort by INSN_LUID (original insn order),
917 so that we make the sort stable. This minimizes instruction movement,
918 thus minimizing sched's effect on debugging and cross-jumping. */
919 return INSN_LUID (tmp) - INSN_LUID (tmp2);
922 /* Resort the array A in which only element at index N may be out of order. */
924 HAIFA_INLINE static void
925 swap_sort (a, n)
926 rtx *a;
927 int n;
929 rtx insn = a[n - 1];
930 int i = n - 2;
932 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
934 a[i + 1] = a[i];
935 i -= 1;
937 a[i + 1] = insn;
940 /* Add INSN to the insn queue so that it can be executed at least
941 N_CYCLES after the currently executing insn. Preserve insns
942 chain for debugging purposes. */
944 HAIFA_INLINE static void
945 queue_insn (insn, n_cycles)
946 rtx insn;
947 int n_cycles;
949 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
950 rtx link = alloc_INSN_LIST (insn, insn_queue[next_q]);
951 insn_queue[next_q] = link;
952 q_size += 1;
954 if (sched_verbose >= 2)
956 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
957 (*current_sched_info->print_insn) (insn, 0));
959 fprintf (sched_dump, "queued for %d cycles.\n", n_cycles);
963 /* Return a pointer to the bottom of the ready list, i.e. the insn
964 with the lowest priority. */
966 HAIFA_INLINE static rtx *
967 ready_lastpos (ready)
968 struct ready_list *ready;
970 if (ready->n_ready == 0)
971 abort ();
972 return ready->vec + ready->first - ready->n_ready + 1;
975 /* Add an element INSN to the ready list so that it ends up with the lowest
976 priority. */
978 HAIFA_INLINE void
979 ready_add (ready, insn)
980 struct ready_list *ready;
981 rtx insn;
983 if (ready->first == ready->n_ready)
985 memmove (ready->vec + ready->veclen - ready->n_ready,
986 ready_lastpos (ready),
987 ready->n_ready * sizeof (rtx));
988 ready->first = ready->veclen - 1;
990 ready->vec[ready->first - ready->n_ready] = insn;
991 ready->n_ready++;
994 /* Remove the element with the highest priority from the ready list and
995 return it. */
997 HAIFA_INLINE static rtx
998 ready_remove_first (ready)
999 struct ready_list *ready;
1001 rtx t;
1002 if (ready->n_ready == 0)
1003 abort ();
1004 t = ready->vec[ready->first--];
1005 ready->n_ready--;
1006 /* If the queue becomes empty, reset it. */
1007 if (ready->n_ready == 0)
1008 ready->first = ready->veclen - 1;
1009 return t;
1012 /* The following code implements multi-pass scheduling for the first
1013 cycle. In other words, we will try to choose ready insn which
1014 permits to start maximum number of insns on the same cycle. */
1016 /* Return a pointer to the element INDEX from the ready. INDEX for
1017 insn with the highest priority is 0, and the lowest priority has
1018 N_READY - 1. */
1020 HAIFA_INLINE static rtx
1021 ready_element (ready, index)
1022 struct ready_list *ready;
1023 int index;
1025 if (ready->n_ready == 0 || index >= ready->n_ready)
1026 abort ();
1027 return ready->vec[ready->first - index];
1030 /* Remove the element INDEX from the ready list and return it. INDEX
1031 for insn with the highest priority is 0, and the lowest priority
1032 has N_READY - 1. */
1034 HAIFA_INLINE static rtx
1035 ready_remove (ready, index)
1036 struct ready_list *ready;
1037 int index;
1039 rtx t;
1040 int i;
1042 if (index == 0)
1043 return ready_remove_first (ready);
1044 if (ready->n_ready == 0 || index >= ready->n_ready)
1045 abort ();
1046 t = ready->vec[ready->first - index];
1047 ready->n_ready--;
1048 for (i = index; i < ready->n_ready; i++)
1049 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
1050 return t;
1054 /* Sort the ready list READY by ascending priority, using the SCHED_SORT
1055 macro. */
1057 HAIFA_INLINE static void
1058 ready_sort (ready)
1059 struct ready_list *ready;
1061 rtx *first = ready_lastpos (ready);
1062 SCHED_SORT (first, ready->n_ready);
1065 /* PREV is an insn that is ready to execute. Adjust its priority if that
1066 will help shorten or lengthen register lifetimes as appropriate. Also
1067 provide a hook for the target to tweek itself. */
1069 HAIFA_INLINE static void
1070 adjust_priority (prev)
1071 rtx prev;
1073 /* ??? There used to be code here to try and estimate how an insn
1074 affected register lifetimes, but it did it by looking at REG_DEAD
1075 notes, which we removed in schedule_region. Nor did it try to
1076 take into account register pressure or anything useful like that.
1078 Revisit when we have a machine model to work with and not before. */
1080 if (targetm.sched.adjust_priority)
1081 INSN_PRIORITY (prev) =
1082 (*targetm.sched.adjust_priority) (prev, INSN_PRIORITY (prev));
1085 /* Advance time on one cycle. */
1086 HAIFA_INLINE static void
1087 advance_one_cycle ()
1089 if (targetm.sched.use_dfa_pipeline_interface
1090 && (*targetm.sched.use_dfa_pipeline_interface) ())
1092 if (targetm.sched.dfa_pre_cycle_insn)
1093 state_transition (curr_state,
1094 (*targetm.sched.dfa_pre_cycle_insn) ());
1096 state_transition (curr_state, NULL);
1098 if (targetm.sched.dfa_post_cycle_insn)
1099 state_transition (curr_state,
1100 (*targetm.sched.dfa_post_cycle_insn) ());
1104 /* Clock at which the previous instruction was issued. */
1105 static int last_clock_var;
1107 /* INSN is the "currently executing insn". Launch each insn which was
1108 waiting on INSN. READY is the ready list which contains the insns
1109 that are ready to fire. CLOCK is the current cycle.
1112 static void
1113 schedule_insn (insn, ready, clock)
1114 rtx insn;
1115 struct ready_list *ready;
1116 int clock;
1118 rtx link;
1119 int unit = 0;
1121 if (!targetm.sched.use_dfa_pipeline_interface
1122 || !(*targetm.sched.use_dfa_pipeline_interface) ())
1123 unit = insn_unit (insn);
1125 if (targetm.sched.use_dfa_pipeline_interface
1126 && (*targetm.sched.use_dfa_pipeline_interface) ()
1127 && sched_verbose >= 1)
1129 char buf[2048];
1131 print_insn (buf, insn, 0);
1132 buf[40]=0;
1133 fprintf (sched_dump, ";;\t%3i--> %-40s:", clock, buf);
1135 if (recog_memoized (insn) < 0)
1136 fprintf (sched_dump, "nothing");
1137 else
1138 print_reservation (sched_dump, insn);
1139 fputc ('\n', sched_dump);
1141 else if (sched_verbose >= 2)
1143 fprintf (sched_dump, ";;\t\t--> scheduling insn <<<%d>>> on unit ",
1144 INSN_UID (insn));
1145 insn_print_units (insn);
1146 fputc ('\n', sched_dump);
1149 if (!targetm.sched.use_dfa_pipeline_interface
1150 || !(*targetm.sched.use_dfa_pipeline_interface) ())
1152 if (sched_verbose && unit == -1)
1153 visualize_no_unit (insn);
1156 if (MAX_BLOCKAGE > 1 || issue_rate > 1 || sched_verbose)
1157 schedule_unit (unit, insn, clock);
1159 if (INSN_DEPEND (insn) == 0)
1160 return;
1163 for (link = INSN_DEPEND (insn); link != 0; link = XEXP (link, 1))
1165 rtx next = XEXP (link, 0);
1166 int cost = insn_cost (insn, link, next);
1168 INSN_TICK (next) = MAX (INSN_TICK (next), clock + cost);
1170 if ((INSN_DEP_COUNT (next) -= 1) == 0)
1172 int effective_cost = INSN_TICK (next) - clock;
1174 if (! (*current_sched_info->new_ready) (next))
1175 continue;
1177 if (sched_verbose >= 2)
1179 fprintf (sched_dump, ";;\t\tdependences resolved: insn %s ",
1180 (*current_sched_info->print_insn) (next, 0));
1182 if (effective_cost < 1)
1183 fprintf (sched_dump, "into ready\n");
1184 else
1185 fprintf (sched_dump, "into queue with cost=%d\n", effective_cost);
1188 /* Adjust the priority of NEXT and either put it on the ready
1189 list or queue it. */
1190 adjust_priority (next);
1191 if (effective_cost < 1)
1192 ready_add (ready, next);
1193 else
1194 queue_insn (next, effective_cost);
1198 /* Annotate the instruction with issue information -- TImode
1199 indicates that the instruction is expected not to be able
1200 to issue on the same cycle as the previous insn. A machine
1201 may use this information to decide how the instruction should
1202 be aligned. */
1203 if (reload_completed && issue_rate > 1
1204 && GET_CODE (PATTERN (insn)) != USE
1205 && GET_CODE (PATTERN (insn)) != CLOBBER)
1207 PUT_MODE (insn, clock > last_clock_var ? TImode : VOIDmode);
1208 last_clock_var = clock;
1212 /* Functions for handling of notes. */
1214 /* Delete notes beginning with INSN and put them in the chain
1215 of notes ended by NOTE_LIST.
1216 Returns the insn following the notes. */
1218 static rtx
1219 unlink_other_notes (insn, tail)
1220 rtx insn, tail;
1222 rtx prev = PREV_INSN (insn);
1224 while (insn != tail && GET_CODE (insn) == NOTE)
1226 rtx next = NEXT_INSN (insn);
1227 /* Delete the note from its current position. */
1228 if (prev)
1229 NEXT_INSN (prev) = next;
1230 if (next)
1231 PREV_INSN (next) = prev;
1233 /* See sched_analyze to see how these are handled. */
1234 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG
1235 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_END
1236 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_RANGE_BEG
1237 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_RANGE_END
1238 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
1239 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_END)
1241 /* Insert the note at the end of the notes list. */
1242 PREV_INSN (insn) = note_list;
1243 if (note_list)
1244 NEXT_INSN (note_list) = insn;
1245 note_list = insn;
1248 insn = next;
1250 return insn;
1253 /* Delete line notes beginning with INSN. Record line-number notes so
1254 they can be reused. Returns the insn following the notes. */
1256 static rtx
1257 unlink_line_notes (insn, tail)
1258 rtx insn, tail;
1260 rtx prev = PREV_INSN (insn);
1262 while (insn != tail && GET_CODE (insn) == NOTE)
1264 rtx next = NEXT_INSN (insn);
1266 if (write_symbols != NO_DEBUG && NOTE_LINE_NUMBER (insn) > 0)
1268 /* Delete the note from its current position. */
1269 if (prev)
1270 NEXT_INSN (prev) = next;
1271 if (next)
1272 PREV_INSN (next) = prev;
1274 /* Record line-number notes so they can be reused. */
1275 LINE_NOTE (insn) = insn;
1277 else
1278 prev = insn;
1280 insn = next;
1282 return insn;
1285 /* Return the head and tail pointers of BB. */
1287 void
1288 get_block_head_tail (b, headp, tailp)
1289 int b;
1290 rtx *headp;
1291 rtx *tailp;
1293 /* HEAD and TAIL delimit the basic block being scheduled. */
1294 rtx head = BLOCK_HEAD (b);
1295 rtx tail = BLOCK_END (b);
1297 /* Don't include any notes or labels at the beginning of the
1298 basic block, or notes at the ends of basic blocks. */
1299 while (head != tail)
1301 if (GET_CODE (head) == NOTE)
1302 head = NEXT_INSN (head);
1303 else if (GET_CODE (tail) == NOTE)
1304 tail = PREV_INSN (tail);
1305 else if (GET_CODE (head) == CODE_LABEL)
1306 head = NEXT_INSN (head);
1307 else
1308 break;
1311 *headp = head;
1312 *tailp = tail;
1315 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
1318 no_real_insns_p (head, tail)
1319 rtx head, tail;
1321 while (head != NEXT_INSN (tail))
1323 if (GET_CODE (head) != NOTE && GET_CODE (head) != CODE_LABEL)
1324 return 0;
1325 head = NEXT_INSN (head);
1327 return 1;
1330 /* Delete line notes from one block. Save them so they can be later restored
1331 (in restore_line_notes). HEAD and TAIL are the boundaries of the
1332 block in which notes should be processed. */
1334 void
1335 rm_line_notes (head, tail)
1336 rtx head, tail;
1338 rtx next_tail;
1339 rtx insn;
1341 next_tail = NEXT_INSN (tail);
1342 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1344 rtx prev;
1346 /* Farm out notes, and maybe save them in NOTE_LIST.
1347 This is needed to keep the debugger from
1348 getting completely deranged. */
1349 if (GET_CODE (insn) == NOTE)
1351 prev = insn;
1352 insn = unlink_line_notes (insn, next_tail);
1354 if (prev == tail)
1355 abort ();
1356 if (prev == head)
1357 abort ();
1358 if (insn == next_tail)
1359 abort ();
1364 /* Save line number notes for each insn in block B. HEAD and TAIL are
1365 the boundaries of the block in which notes should be processed. */
1367 void
1368 save_line_notes (b, head, tail)
1369 int b;
1370 rtx head, tail;
1372 rtx next_tail;
1374 /* We must use the true line number for the first insn in the block
1375 that was computed and saved at the start of this pass. We can't
1376 use the current line number, because scheduling of the previous
1377 block may have changed the current line number. */
1379 rtx line = line_note_head[b];
1380 rtx insn;
1382 next_tail = NEXT_INSN (tail);
1384 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1385 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1386 line = insn;
1387 else
1388 LINE_NOTE (insn) = line;
1391 /* After a block was scheduled, insert line notes into the insns list.
1392 HEAD and TAIL are the boundaries of the block in which notes should
1393 be processed. */
1395 void
1396 restore_line_notes (head, tail)
1397 rtx head, tail;
1399 rtx line, note, prev, new;
1400 int added_notes = 0;
1401 rtx next_tail, insn;
1403 head = head;
1404 next_tail = NEXT_INSN (tail);
1406 /* Determine the current line-number. We want to know the current
1407 line number of the first insn of the block here, in case it is
1408 different from the true line number that was saved earlier. If
1409 different, then we need a line number note before the first insn
1410 of this block. If it happens to be the same, then we don't want to
1411 emit another line number note here. */
1412 for (line = head; line; line = PREV_INSN (line))
1413 if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
1414 break;
1416 /* Walk the insns keeping track of the current line-number and inserting
1417 the line-number notes as needed. */
1418 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1419 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1420 line = insn;
1421 /* This used to emit line number notes before every non-deleted note.
1422 However, this confuses a debugger, because line notes not separated
1423 by real instructions all end up at the same address. I can find no
1424 use for line number notes before other notes, so none are emitted. */
1425 else if (GET_CODE (insn) != NOTE
1426 && INSN_UID (insn) < old_max_uid
1427 && (note = LINE_NOTE (insn)) != 0
1428 && note != line
1429 && (line == 0
1430 || NOTE_LINE_NUMBER (note) != NOTE_LINE_NUMBER (line)
1431 || NOTE_SOURCE_FILE (note) != NOTE_SOURCE_FILE (line)))
1433 line = note;
1434 prev = PREV_INSN (insn);
1435 if (LINE_NOTE (note))
1437 /* Re-use the original line-number note. */
1438 LINE_NOTE (note) = 0;
1439 PREV_INSN (note) = prev;
1440 NEXT_INSN (prev) = note;
1441 PREV_INSN (insn) = note;
1442 NEXT_INSN (note) = insn;
1444 else
1446 added_notes++;
1447 new = emit_note_after (NOTE_LINE_NUMBER (note), prev);
1448 NOTE_SOURCE_FILE (new) = NOTE_SOURCE_FILE (note);
1449 RTX_INTEGRATED_P (new) = RTX_INTEGRATED_P (note);
1452 if (sched_verbose && added_notes)
1453 fprintf (sched_dump, ";; added %d line-number notes\n", added_notes);
1456 /* After scheduling the function, delete redundant line notes from the
1457 insns list. */
1459 void
1460 rm_redundant_line_notes ()
1462 rtx line = 0;
1463 rtx insn = get_insns ();
1464 int active_insn = 0;
1465 int notes = 0;
1467 /* Walk the insns deleting redundant line-number notes. Many of these
1468 are already present. The remainder tend to occur at basic
1469 block boundaries. */
1470 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
1471 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1473 /* If there are no active insns following, INSN is redundant. */
1474 if (active_insn == 0)
1476 notes++;
1477 NOTE_SOURCE_FILE (insn) = 0;
1478 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1480 /* If the line number is unchanged, LINE is redundant. */
1481 else if (line
1482 && NOTE_LINE_NUMBER (line) == NOTE_LINE_NUMBER (insn)
1483 && NOTE_SOURCE_FILE (line) == NOTE_SOURCE_FILE (insn))
1485 notes++;
1486 NOTE_SOURCE_FILE (line) = 0;
1487 NOTE_LINE_NUMBER (line) = NOTE_INSN_DELETED;
1488 line = insn;
1490 else
1491 line = insn;
1492 active_insn = 0;
1494 else if (!((GET_CODE (insn) == NOTE
1495 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
1496 || (GET_CODE (insn) == INSN
1497 && (GET_CODE (PATTERN (insn)) == USE
1498 || GET_CODE (PATTERN (insn)) == CLOBBER))))
1499 active_insn++;
1501 if (sched_verbose && notes)
1502 fprintf (sched_dump, ";; deleted %d line-number notes\n", notes);
1505 /* Delete notes between HEAD and TAIL and put them in the chain
1506 of notes ended by NOTE_LIST. */
1508 void
1509 rm_other_notes (head, tail)
1510 rtx head;
1511 rtx tail;
1513 rtx next_tail;
1514 rtx insn;
1516 note_list = 0;
1517 if (head == tail && (! INSN_P (head)))
1518 return;
1520 next_tail = NEXT_INSN (tail);
1521 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1523 rtx prev;
1525 /* Farm out notes, and maybe save them in NOTE_LIST.
1526 This is needed to keep the debugger from
1527 getting completely deranged. */
1528 if (GET_CODE (insn) == NOTE)
1530 prev = insn;
1532 insn = unlink_other_notes (insn, next_tail);
1534 if (prev == tail)
1535 abort ();
1536 if (prev == head)
1537 abort ();
1538 if (insn == next_tail)
1539 abort ();
1544 /* Functions for computation of registers live/usage info. */
1546 /* Calculate INSN_REG_WEIGHT for all insns of a block. */
1548 static void
1549 find_insn_reg_weight (b)
1550 int b;
1552 rtx insn, next_tail, head, tail;
1554 get_block_head_tail (b, &head, &tail);
1555 next_tail = NEXT_INSN (tail);
1557 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1559 int reg_weight = 0;
1560 rtx x;
1562 /* Handle register life information. */
1563 if (! INSN_P (insn))
1564 continue;
1566 /* Increment weight for each register born here. */
1567 x = PATTERN (insn);
1568 if ((GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1569 && register_operand (SET_DEST (x), VOIDmode))
1570 reg_weight++;
1571 else if (GET_CODE (x) == PARALLEL)
1573 int j;
1574 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
1576 x = XVECEXP (PATTERN (insn), 0, j);
1577 if ((GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1578 && register_operand (SET_DEST (x), VOIDmode))
1579 reg_weight++;
1583 /* Decrement weight for each register that dies here. */
1584 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
1586 if (REG_NOTE_KIND (x) == REG_DEAD
1587 || REG_NOTE_KIND (x) == REG_UNUSED)
1588 reg_weight--;
1591 INSN_REG_WEIGHT (insn) = reg_weight;
1595 /* Scheduling clock, modified in schedule_block() and queue_to_ready (). */
1596 static int clock_var;
1598 /* Move insns that became ready to fire from queue to ready list. */
1600 static void
1601 queue_to_ready (ready)
1602 struct ready_list *ready;
1604 rtx insn;
1605 rtx link;
1607 q_ptr = NEXT_Q (q_ptr);
1609 /* Add all pending insns that can be scheduled without stalls to the
1610 ready list. */
1611 for (link = insn_queue[q_ptr]; link; link = XEXP (link, 1))
1613 insn = XEXP (link, 0);
1614 q_size -= 1;
1616 if (sched_verbose >= 2)
1617 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
1618 (*current_sched_info->print_insn) (insn, 0));
1620 ready_add (ready, insn);
1621 if (sched_verbose >= 2)
1622 fprintf (sched_dump, "moving to ready without stalls\n");
1624 insn_queue[q_ptr] = 0;
1626 /* If there are no ready insns, stall until one is ready and add all
1627 of the pending insns at that point to the ready list. */
1628 if (ready->n_ready == 0)
1630 int stalls;
1632 for (stalls = 1; stalls <= MAX_INSN_QUEUE_INDEX; stalls++)
1634 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
1636 for (; link; link = XEXP (link, 1))
1638 insn = XEXP (link, 0);
1639 q_size -= 1;
1641 if (sched_verbose >= 2)
1642 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
1643 (*current_sched_info->print_insn) (insn, 0));
1645 ready_add (ready, insn);
1646 if (sched_verbose >= 2)
1647 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
1649 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = 0;
1651 advance_one_cycle ();
1653 break;
1656 advance_one_cycle ();
1659 if ((!targetm.sched.use_dfa_pipeline_interface
1660 || !(*targetm.sched.use_dfa_pipeline_interface) ())
1661 && sched_verbose && stalls)
1662 visualize_stall_cycles (stalls);
1664 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
1665 clock_var += stalls;
1669 /* Print the ready list for debugging purposes. Callable from debugger. */
1671 static void
1672 debug_ready_list (ready)
1673 struct ready_list *ready;
1675 rtx *p;
1676 int i;
1678 if (ready->n_ready == 0)
1680 fprintf (sched_dump, "\n");
1681 return;
1684 p = ready_lastpos (ready);
1685 for (i = 0; i < ready->n_ready; i++)
1686 fprintf (sched_dump, " %s", (*current_sched_info->print_insn) (p[i], 0));
1687 fprintf (sched_dump, "\n");
1690 /* move_insn1: Remove INSN from insn chain, and link it after LAST insn. */
1692 static rtx
1693 move_insn1 (insn, last)
1694 rtx insn, last;
1696 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
1697 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
1699 NEXT_INSN (insn) = NEXT_INSN (last);
1700 PREV_INSN (NEXT_INSN (last)) = insn;
1702 NEXT_INSN (last) = insn;
1703 PREV_INSN (insn) = last;
1705 return insn;
1708 /* Search INSN for REG_SAVE_NOTE note pairs for
1709 NOTE_INSN_{LOOP,EHREGION}_{BEG,END}; and convert them back into
1710 NOTEs. The REG_SAVE_NOTE note following first one is contains the
1711 saved value for NOTE_BLOCK_NUMBER which is useful for
1712 NOTE_INSN_EH_REGION_{BEG,END} NOTEs. LAST is the last instruction
1713 output by the instruction scheduler. Return the new value of LAST. */
1715 static rtx
1716 reemit_notes (insn, last)
1717 rtx insn;
1718 rtx last;
1720 rtx note, retval;
1722 retval = last;
1723 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1725 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
1727 enum insn_note note_type = INTVAL (XEXP (note, 0));
1729 if (note_type == NOTE_INSN_RANGE_BEG
1730 || note_type == NOTE_INSN_RANGE_END)
1732 last = emit_note_before (note_type, last);
1733 remove_note (insn, note);
1734 note = XEXP (note, 1);
1735 NOTE_RANGE_INFO (last) = XEXP (note, 0);
1737 else
1739 last = emit_note_before (note_type, last);
1740 remove_note (insn, note);
1741 note = XEXP (note, 1);
1742 if (note_type == NOTE_INSN_EH_REGION_BEG
1743 || note_type == NOTE_INSN_EH_REGION_END)
1744 NOTE_EH_HANDLER (last) = INTVAL (XEXP (note, 0));
1746 remove_note (insn, note);
1749 return retval;
1752 /* Move INSN, and all insns which should be issued before it,
1753 due to SCHED_GROUP_P flag. Reemit notes if needed.
1755 Return the last insn emitted by the scheduler, which is the
1756 return value from the first call to reemit_notes. */
1758 static rtx
1759 move_insn (insn, last)
1760 rtx insn, last;
1762 rtx retval = NULL;
1764 /* If INSN has SCHED_GROUP_P set, then issue it and any other
1765 insns with SCHED_GROUP_P set first. */
1766 while (SCHED_GROUP_P (insn))
1768 rtx prev = PREV_INSN (insn);
1770 /* Move a SCHED_GROUP_P insn. */
1771 move_insn1 (insn, last);
1772 /* If this is the first call to reemit_notes, then record
1773 its return value. */
1774 if (retval == NULL_RTX)
1775 retval = reemit_notes (insn, insn);
1776 else
1777 reemit_notes (insn, insn);
1778 /* Consume SCHED_GROUP_P flag. */
1779 SCHED_GROUP_P (insn) = 0;
1780 insn = prev;
1783 /* Now move the first non SCHED_GROUP_P insn. */
1784 move_insn1 (insn, last);
1786 /* If this is the first call to reemit_notes, then record
1787 its return value. */
1788 if (retval == NULL_RTX)
1789 retval = reemit_notes (insn, insn);
1790 else
1791 reemit_notes (insn, insn);
1793 return retval;
1796 /* The following function returns maximal (or close to maximal) number
1797 of insns which can be issued on the same cycle and one of which
1798 insns is insns with the best rank (the last insn in READY). To
1799 make this function tries different samples of ready insns. READY
1800 is current queue `ready'. Global array READY_TRY reflects what
1801 insns are already issued in this try. STATE is current processor
1802 state. If the function returns nonzero, INDEX will contain index
1803 of the best insn in READY. The following function is used only for
1804 first cycle multipass scheduling. */
1806 static int
1807 max_issue (ready, state, index)
1808 struct ready_list *ready;
1809 state_t state;
1810 int *index;
1812 int i, best, n, temp_index, delay;
1813 state_t temp_state;
1814 rtx insn;
1815 int max_lookahead = (*targetm.sched.first_cycle_multipass_dfa_lookahead) ();
1817 if (state_dead_lock_p (state))
1818 return 0;
1820 temp_state = alloca (dfa_state_size);
1821 best = 0;
1823 for (i = 0; i < ready->n_ready; i++)
1824 if (!ready_try [i])
1826 insn = ready_element (ready, i);
1828 if (INSN_CODE (insn) < 0)
1829 continue;
1831 memcpy (temp_state, state, dfa_state_size);
1833 delay = state_transition (temp_state, insn);
1835 if (delay == 0)
1837 if (!targetm.sched.dfa_bubble)
1838 continue;
1839 else
1841 int j;
1842 rtx bubble;
1844 for (j = 0;
1845 (bubble = (*targetm.sched.dfa_bubble) (j)) != NULL_RTX;
1846 j++)
1847 if (state_transition (temp_state, bubble) < 0
1848 && state_transition (temp_state, insn) < 0)
1849 break;
1851 if (bubble == NULL_RTX)
1852 continue;
1855 else if (delay > 0)
1856 continue;
1858 --max_lookahead;
1860 if (max_lookahead < 0)
1861 break;
1863 ready_try [i] = 1;
1865 n = max_issue (ready, temp_state, &temp_index);
1866 if (n > 0 || ready_try[0])
1867 n += 1;
1869 if (best < n)
1871 best = n;
1872 *index = i;
1874 ready_try [i] = 0;
1877 return best;
1880 /* The following function chooses insn from READY and modifies
1881 *N_READY and READY. The following function is used only for first
1882 cycle multipass scheduling. */
1884 static rtx
1885 choose_ready (ready)
1886 struct ready_list *ready;
1888 if (!targetm.sched.first_cycle_multipass_dfa_lookahead
1889 || (*targetm.sched.first_cycle_multipass_dfa_lookahead) () <= 0)
1890 return ready_remove_first (ready);
1891 else
1893 /* Try to choose the better insn. */
1894 int index;
1896 if (max_issue (ready, curr_state, &index) == 0)
1897 return ready_remove_first (ready);
1898 else
1899 return ready_remove (ready, index);
1903 /* Called from backends from targetm.sched.reorder to emit stuff into
1904 the instruction stream. */
1907 sched_emit_insn (pat)
1908 rtx pat;
1910 rtx insn = emit_insn_after (pat, last_scheduled_insn);
1911 last_scheduled_insn = insn;
1912 return insn;
1915 /* Use forward list scheduling to rearrange insns of block B in region RGN,
1916 possibly bringing insns from subsequent blocks in the same region. */
1918 void
1919 schedule_block (b, rgn_n_insns)
1920 int b;
1921 int rgn_n_insns;
1923 struct ready_list ready;
1924 int first_cycle_insn_p;
1925 int can_issue_more;
1926 state_t temp_state = NULL; /* It is used for multipass scheduling. */
1928 /* Head/tail info for this block. */
1929 rtx prev_head = current_sched_info->prev_head;
1930 rtx next_tail = current_sched_info->next_tail;
1931 rtx head = NEXT_INSN (prev_head);
1932 rtx tail = PREV_INSN (next_tail);
1934 /* We used to have code to avoid getting parameters moved from hard
1935 argument registers into pseudos.
1937 However, it was removed when it proved to be of marginal benefit
1938 and caused problems because schedule_block and compute_forward_dependences
1939 had different notions of what the "head" insn was. */
1941 if (head == tail && (! INSN_P (head)))
1942 abort ();
1944 /* Debug info. */
1945 if (sched_verbose)
1947 fprintf (sched_dump, ";; ======================================================\n");
1948 fprintf (sched_dump,
1949 ";; -- basic block %d from %d to %d -- %s reload\n",
1950 b, INSN_UID (head), INSN_UID (tail),
1951 (reload_completed ? "after" : "before"));
1952 fprintf (sched_dump, ";; ======================================================\n");
1953 fprintf (sched_dump, "\n");
1955 visualize_alloc ();
1956 init_block_visualization ();
1959 if (targetm.sched.use_dfa_pipeline_interface
1960 && (*targetm.sched.use_dfa_pipeline_interface) ())
1961 state_reset (curr_state);
1962 else
1963 clear_units ();
1965 /* Allocate the ready list. */
1966 ready.veclen = rgn_n_insns + 1 + issue_rate;
1967 ready.first = ready.veclen - 1;
1968 ready.vec = (rtx *) xmalloc (ready.veclen * sizeof (rtx));
1969 ready.n_ready = 0;
1971 if (targetm.sched.use_dfa_pipeline_interface
1972 && (*targetm.sched.use_dfa_pipeline_interface) ())
1974 /* It is used for first cycle multipass scheduling. */
1975 temp_state = alloca (dfa_state_size);
1976 ready_try = (char *) xmalloc ((rgn_n_insns + 1) * sizeof (char));
1977 memset (ready_try, 0, (rgn_n_insns + 1) * sizeof (char));
1980 (*current_sched_info->init_ready_list) (&ready);
1982 if (targetm.sched.md_init)
1983 (*targetm.sched.md_init) (sched_dump, sched_verbose, ready.veclen);
1985 /* We start inserting insns after PREV_HEAD. */
1986 last_scheduled_insn = prev_head;
1988 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
1989 queue. */
1990 q_ptr = 0;
1991 q_size = 0;
1993 if (!targetm.sched.use_dfa_pipeline_interface
1994 || !(*targetm.sched.use_dfa_pipeline_interface) ())
1995 max_insn_queue_index_macro_value = INSN_QUEUE_SIZE - 1;
1996 else
1997 max_insn_queue_index_macro_value = max_insn_queue_index;
1999 insn_queue = (rtx *) alloca ((MAX_INSN_QUEUE_INDEX + 1) * sizeof (rtx));
2000 memset ((char *) insn_queue, 0, (MAX_INSN_QUEUE_INDEX + 1) * sizeof (rtx));
2001 last_clock_var = -1;
2003 /* Start just before the beginning of time. */
2004 clock_var = -1;
2006 /* Loop until all the insns in BB are scheduled. */
2007 while ((*current_sched_info->schedule_more_p) ())
2009 clock_var++;
2011 advance_one_cycle ();
2013 /* Add to the ready list all pending insns that can be issued now.
2014 If there are no ready insns, increment clock until one
2015 is ready and add all pending insns at that point to the ready
2016 list. */
2017 queue_to_ready (&ready);
2019 if (ready.n_ready == 0)
2020 abort ();
2022 if (sched_verbose >= 2)
2024 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready: ");
2025 debug_ready_list (&ready);
2028 /* Sort the ready list based on priority. */
2029 ready_sort (&ready);
2031 /* Allow the target to reorder the list, typically for
2032 better instruction bundling. */
2033 if (targetm.sched.reorder)
2034 can_issue_more =
2035 (*targetm.sched.reorder) (sched_dump, sched_verbose,
2036 ready_lastpos (&ready),
2037 &ready.n_ready, clock_var);
2038 else
2039 can_issue_more = issue_rate;
2041 first_cycle_insn_p = 1;
2042 for (;;)
2044 rtx insn;
2045 int cost;
2047 if (sched_verbose >= 2)
2049 fprintf (sched_dump, ";;\tReady list (t =%3d): ",
2050 clock_var);
2051 debug_ready_list (&ready);
2054 if (!targetm.sched.use_dfa_pipeline_interface
2055 || !(*targetm.sched.use_dfa_pipeline_interface) ())
2057 if (ready.n_ready == 0 || !can_issue_more
2058 || !(*current_sched_info->schedule_more_p) ())
2059 break;
2060 insn = choose_ready (&ready);
2061 cost = actual_hazard (insn_unit (insn), insn, clock_var, 0);
2063 else
2065 if (ready.n_ready == 0 || !can_issue_more
2066 || state_dead_lock_p (curr_state)
2067 || !(*current_sched_info->schedule_more_p) ())
2068 break;
2070 /* Select and remove the insn from the ready list. */
2071 insn = choose_ready (&ready);
2073 memcpy (temp_state, curr_state, dfa_state_size);
2074 if (recog_memoized (insn) < 0)
2076 if (!first_cycle_insn_p
2077 && (GET_CODE (PATTERN (insn)) == ASM_INPUT
2078 || asm_noperands (PATTERN (insn)) >= 0))
2079 /* This is asm insn which is tryed to be issued on the
2080 cycle not first. Issue it on the next cycle. */
2081 cost = 1;
2082 else
2083 /* A USE insn, or something else we don't need to
2084 understand. We can't pass these directly to
2085 state_transition because it will trigger a
2086 fatal error for unrecognizable insns. */
2087 cost = 0;
2089 else
2091 cost = state_transition (temp_state, insn);
2093 if (targetm.sched.first_cycle_multipass_dfa_lookahead
2094 && targetm.sched.dfa_bubble)
2096 if (cost == 0)
2098 int j;
2099 rtx bubble;
2101 for (j = 0;
2102 (bubble = (*targetm.sched.dfa_bubble) (j))
2103 != NULL_RTX;
2104 j++)
2106 memcpy (temp_state, curr_state, dfa_state_size);
2108 if (state_transition (temp_state, bubble) < 0
2109 && state_transition (temp_state, insn) < 0)
2110 break;
2113 if (bubble != NULL_RTX)
2115 if (insert_schedule_bubbles_p)
2117 rtx copy;
2119 copy = copy_rtx (PATTERN (bubble));
2120 emit_insn_after (copy, last_scheduled_insn);
2121 last_scheduled_insn
2122 = NEXT_INSN (last_scheduled_insn);
2123 INSN_CODE (last_scheduled_insn)
2124 = INSN_CODE (bubble);
2126 /* Annotate the same for the first insns
2127 scheduling by using mode. */
2128 PUT_MODE (last_scheduled_insn,
2129 (clock_var > last_clock_var
2130 ? clock_var - last_clock_var
2131 : VOIDmode));
2132 last_clock_var = clock_var;
2134 if (sched_verbose >= 2)
2136 fprintf (sched_dump,
2137 ";;\t\t--> scheduling bubble insn <<<%d>>>:reservation ",
2138 INSN_UID (last_scheduled_insn));
2140 if (recog_memoized (last_scheduled_insn)
2141 < 0)
2142 fprintf (sched_dump, "nothing");
2143 else
2144 print_reservation
2145 (sched_dump, last_scheduled_insn);
2147 fprintf (sched_dump, "\n");
2150 cost = -1;
2155 if (cost < 0)
2156 cost = 0;
2157 else if (cost == 0)
2158 cost = 1;
2163 if (cost >= 1)
2165 queue_insn (insn, cost);
2166 continue;
2169 if (! (*current_sched_info->can_schedule_ready_p) (insn))
2170 goto next;
2172 last_scheduled_insn = move_insn (insn, last_scheduled_insn);
2174 if (targetm.sched.use_dfa_pipeline_interface
2175 && (*targetm.sched.use_dfa_pipeline_interface) ())
2176 memcpy (curr_state, temp_state, dfa_state_size);
2178 if (targetm.sched.variable_issue)
2179 can_issue_more =
2180 (*targetm.sched.variable_issue) (sched_dump, sched_verbose,
2181 insn, can_issue_more);
2182 else
2183 can_issue_more--;
2185 schedule_insn (insn, &ready, clock_var);
2187 next:
2188 first_cycle_insn_p = 0;
2190 if (targetm.sched.reorder2)
2192 /* Sort the ready list based on priority. */
2193 if (ready.n_ready > 0)
2194 ready_sort (&ready);
2195 can_issue_more =
2196 (*targetm.sched.reorder2) (sched_dump,sched_verbose,
2197 ready.n_ready
2198 ? ready_lastpos (&ready) : NULL,
2199 &ready.n_ready, clock_var);
2203 if ((!targetm.sched.use_dfa_pipeline_interface
2204 || !(*targetm.sched.use_dfa_pipeline_interface) ())
2205 && sched_verbose)
2206 /* Debug info. */
2207 visualize_scheduled_insns (clock_var);
2210 if (targetm.sched.md_finish)
2211 (*targetm.sched.md_finish) (sched_dump, sched_verbose);
2213 /* Debug info. */
2214 if (sched_verbose)
2216 fprintf (sched_dump, ";;\tReady list (final): ");
2217 debug_ready_list (&ready);
2218 if (!targetm.sched.use_dfa_pipeline_interface
2219 || !(*targetm.sched.use_dfa_pipeline_interface) ())
2220 print_block_visualization ("");
2223 /* Sanity check -- queue must be empty now. Meaningless if region has
2224 multiple bbs. */
2225 if (current_sched_info->queue_must_finish_empty && q_size != 0)
2226 abort ();
2228 /* Update head/tail boundaries. */
2229 head = NEXT_INSN (prev_head);
2230 tail = last_scheduled_insn;
2232 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
2233 previously found among the insns. Insert them at the beginning
2234 of the insns. */
2235 if (note_list != 0)
2237 rtx note_head = note_list;
2239 while (PREV_INSN (note_head))
2241 note_head = PREV_INSN (note_head);
2244 PREV_INSN (note_head) = PREV_INSN (head);
2245 NEXT_INSN (PREV_INSN (head)) = note_head;
2246 PREV_INSN (head) = note_list;
2247 NEXT_INSN (note_list) = head;
2248 head = note_head;
2251 /* Debugging. */
2252 if (sched_verbose)
2254 fprintf (sched_dump, ";; total time = %d\n;; new head = %d\n",
2255 clock_var, INSN_UID (head));
2256 fprintf (sched_dump, ";; new tail = %d\n\n",
2257 INSN_UID (tail));
2258 visualize_free ();
2261 current_sched_info->head = head;
2262 current_sched_info->tail = tail;
2264 free (ready.vec);
2266 if (targetm.sched.use_dfa_pipeline_interface
2267 && (*targetm.sched.use_dfa_pipeline_interface) ())
2268 free (ready_try);
2271 /* Set_priorities: compute priority of each insn in the block. */
2274 set_priorities (head, tail)
2275 rtx head, tail;
2277 rtx insn;
2278 int n_insn;
2280 rtx prev_head;
2282 prev_head = PREV_INSN (head);
2284 if (head == tail && (! INSN_P (head)))
2285 return 0;
2287 n_insn = 0;
2288 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
2290 if (GET_CODE (insn) == NOTE)
2291 continue;
2293 if (!(SCHED_GROUP_P (insn)))
2294 n_insn++;
2295 (void) priority (insn);
2298 return n_insn;
2301 /* Initialize some global state for the scheduler. DUMP_FILE is to be used
2302 for debugging output. */
2304 void
2305 sched_init (dump_file)
2306 FILE *dump_file;
2308 int luid;
2309 basic_block b;
2310 rtx insn;
2311 int i;
2313 /* Disable speculative loads in their presence if cc0 defined. */
2314 #ifdef HAVE_cc0
2315 flag_schedule_speculative_load = 0;
2316 #endif
2318 /* Set dump and sched_verbose for the desired debugging output. If no
2319 dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
2320 For -fsched-verbose=N, N>=10, print everything to stderr. */
2321 sched_verbose = sched_verbose_param;
2322 if (sched_verbose_param == 0 && dump_file)
2323 sched_verbose = 1;
2324 sched_dump = ((sched_verbose_param >= 10 || !dump_file)
2325 ? stderr : dump_file);
2327 /* Initialize issue_rate. */
2328 if (targetm.sched.issue_rate)
2329 issue_rate = (*targetm.sched.issue_rate) ();
2330 else
2331 issue_rate = 1;
2333 /* We use LUID 0 for the fake insn (UID 0) which holds dependencies for
2334 pseudos which do not cross calls. */
2335 old_max_uid = get_max_uid () + 1;
2337 h_i_d = (struct haifa_insn_data *) xcalloc (old_max_uid, sizeof (*h_i_d));
2339 for (i = 0; i < old_max_uid; i++)
2340 h_i_d [i].cost = -1;
2342 if (targetm.sched.use_dfa_pipeline_interface
2343 && (*targetm.sched.use_dfa_pipeline_interface) ())
2345 if (targetm.sched.init_dfa_pre_cycle_insn)
2346 (*targetm.sched.init_dfa_pre_cycle_insn) ();
2348 if (targetm.sched.init_dfa_post_cycle_insn)
2349 (*targetm.sched.init_dfa_post_cycle_insn) ();
2351 if (targetm.sched.first_cycle_multipass_dfa_lookahead
2352 && targetm.sched.init_dfa_bubbles)
2353 (*targetm.sched.init_dfa_bubbles) ();
2355 dfa_start ();
2356 dfa_state_size = state_size ();
2357 curr_state = xmalloc (dfa_state_size);
2360 h_i_d[0].luid = 0;
2361 luid = 1;
2362 FOR_EACH_BB (b)
2363 for (insn = b->head;; insn = NEXT_INSN (insn))
2365 INSN_LUID (insn) = luid;
2367 /* Increment the next luid, unless this is a note. We don't
2368 really need separate IDs for notes and we don't want to
2369 schedule differently depending on whether or not there are
2370 line-number notes, i.e., depending on whether or not we're
2371 generating debugging information. */
2372 if (GET_CODE (insn) != NOTE)
2373 ++luid;
2375 if (insn == b->end)
2376 break;
2379 init_dependency_caches (luid);
2381 compute_bb_for_insn (old_max_uid);
2383 init_alias_analysis ();
2385 if (write_symbols != NO_DEBUG)
2387 rtx line;
2389 line_note_head = (rtx *) xcalloc (last_basic_block, sizeof (rtx));
2391 /* Save-line-note-head:
2392 Determine the line-number at the start of each basic block.
2393 This must be computed and saved now, because after a basic block's
2394 predecessor has been scheduled, it is impossible to accurately
2395 determine the correct line number for the first insn of the block. */
2397 FOR_EACH_BB (b)
2399 for (line = b->head; line; line = PREV_INSN (line))
2400 if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
2402 line_note_head[b->index] = line;
2403 break;
2405 /* Do a forward search as well, since we won't get to see the first
2406 notes in a basic block. */
2407 for (line = b->head; line; line = NEXT_INSN (line))
2409 if (INSN_P (line))
2410 break;
2411 if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
2412 line_note_head[b->index] = line;
2417 if ((!targetm.sched.use_dfa_pipeline_interface
2418 || !(*targetm.sched.use_dfa_pipeline_interface) ())
2419 && sched_verbose)
2420 /* Find units used in this function, for visualization. */
2421 init_target_units ();
2423 /* ??? Add a NOTE after the last insn of the last basic block. It is not
2424 known why this is done. */
2426 insn = EXIT_BLOCK_PTR->prev_bb->end;
2427 if (NEXT_INSN (insn) == 0
2428 || (GET_CODE (insn) != NOTE
2429 && GET_CODE (insn) != CODE_LABEL
2430 /* Don't emit a NOTE if it would end up before a BARRIER. */
2431 && GET_CODE (NEXT_INSN (insn)) != BARRIER))
2433 emit_note_after (NOTE_INSN_DELETED, EXIT_BLOCK_PTR->prev_bb->end);
2434 /* Make insn to appear outside BB. */
2435 EXIT_BLOCK_PTR->prev_bb->end = PREV_INSN (EXIT_BLOCK_PTR->prev_bb->end);
2438 /* Compute INSN_REG_WEIGHT for all blocks. We must do this before
2439 removing death notes. */
2440 FOR_EACH_BB_REVERSE (b)
2441 find_insn_reg_weight (b->index);
2444 /* Free global data used during insn scheduling. */
2446 void
2447 sched_finish ()
2449 free (h_i_d);
2451 if (targetm.sched.use_dfa_pipeline_interface
2452 && (*targetm.sched.use_dfa_pipeline_interface) ())
2454 free (curr_state);
2455 dfa_finish ();
2457 free_dependency_caches ();
2458 end_alias_analysis ();
2459 if (write_symbols != NO_DEBUG)
2460 free (line_note_head);
2462 #endif /* INSN_SCHEDULING */