stl_bvector.h (swap(_Bit_reference,_Bit_reference)): Move/rename...
[official-gcc.git] / gcc / combine.c
blobfe247ea7dc2ae3fdcc2dde2713e9cb976eb53e58
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_regnotes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
77 #include "config.h"
78 #include "system.h"
79 #include "rtl.h"
80 #include "tm_p.h"
81 #include "flags.h"
82 #include "regs.h"
83 #include "hard-reg-set.h"
84 #include "basic-block.h"
85 #include "insn-config.h"
86 #include "function.h"
87 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
88 #include "expr.h"
89 #include "insn-attr.h"
90 #include "recog.h"
91 #include "real.h"
92 #include "toplev.h"
94 /* It is not safe to use ordinary gen_lowpart in combine.
95 Use gen_lowpart_for_combine instead. See comments there. */
96 #define gen_lowpart dont_use_gen_lowpart_you_dummy
98 /* Number of attempts to combine instructions in this function. */
100 static int combine_attempts;
102 /* Number of attempts that got as far as substitution in this function. */
104 static int combine_merges;
106 /* Number of instructions combined with added SETs in this function. */
108 static int combine_extras;
110 /* Number of instructions combined in this function. */
112 static int combine_successes;
114 /* Totals over entire compilation. */
116 static int total_attempts, total_merges, total_extras, total_successes;
119 /* Vector mapping INSN_UIDs to cuids.
120 The cuids are like uids but increase monotonically always.
121 Combine always uses cuids so that it can compare them.
122 But actually renumbering the uids, which we used to do,
123 proves to be a bad idea because it makes it hard to compare
124 the dumps produced by earlier passes with those from later passes. */
126 static int *uid_cuid;
127 static int max_uid_cuid;
129 /* Get the cuid of an insn. */
131 #define INSN_CUID(INSN) \
132 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
134 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
135 BITS_PER_WORD would invoke undefined behavior. Work around it. */
137 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
138 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
140 /* Maximum register number, which is the size of the tables below. */
142 static unsigned int combine_max_regno;
144 /* Record last point of death of (hard or pseudo) register n. */
146 static rtx *reg_last_death;
148 /* Record last point of modification of (hard or pseudo) register n. */
150 static rtx *reg_last_set;
152 /* Record the cuid of the last insn that invalidated memory
153 (anything that writes memory, and subroutine calls, but not pushes). */
155 static int mem_last_set;
157 /* Record the cuid of the last CALL_INSN
158 so we can tell whether a potential combination crosses any calls. */
160 static int last_call_cuid;
162 /* When `subst' is called, this is the insn that is being modified
163 (by combining in a previous insn). The PATTERN of this insn
164 is still the old pattern partially modified and it should not be
165 looked at, but this may be used to examine the successors of the insn
166 to judge whether a simplification is valid. */
168 static rtx subst_insn;
170 /* This is an insn that belongs before subst_insn, but is not currently
171 on the insn chain. */
173 static rtx subst_prev_insn;
175 /* This is the lowest CUID that `subst' is currently dealing with.
176 get_last_value will not return a value if the register was set at or
177 after this CUID. If not for this mechanism, we could get confused if
178 I2 or I1 in try_combine were an insn that used the old value of a register
179 to obtain a new value. In that case, we might erroneously get the
180 new value of the register when we wanted the old one. */
182 static int subst_low_cuid;
184 /* This contains any hard registers that are used in newpat; reg_dead_at_p
185 must consider all these registers to be always live. */
187 static HARD_REG_SET newpat_used_regs;
189 /* This is an insn to which a LOG_LINKS entry has been added. If this
190 insn is the earlier than I2 or I3, combine should rescan starting at
191 that location. */
193 static rtx added_links_insn;
195 /* Basic block in which we are performing combines. */
196 static basic_block this_basic_block;
198 /* A bitmap indicating which blocks had registers go dead at entry.
199 After combine, we'll need to re-do global life analysis with
200 those blocks as starting points. */
201 static sbitmap refresh_blocks;
202 static int need_refresh;
204 /* The next group of arrays allows the recording of the last value assigned
205 to (hard or pseudo) register n. We use this information to see if a
206 operation being processed is redundant given a prior operation performed
207 on the register. For example, an `and' with a constant is redundant if
208 all the zero bits are already known to be turned off.
210 We use an approach similar to that used by cse, but change it in the
211 following ways:
213 (1) We do not want to reinitialize at each label.
214 (2) It is useful, but not critical, to know the actual value assigned
215 to a register. Often just its form is helpful.
217 Therefore, we maintain the following arrays:
219 reg_last_set_value the last value assigned
220 reg_last_set_label records the value of label_tick when the
221 register was assigned
222 reg_last_set_table_tick records the value of label_tick when a
223 value using the register is assigned
224 reg_last_set_invalid set to non-zero when it is not valid
225 to use the value of this register in some
226 register's value
228 To understand the usage of these tables, it is important to understand
229 the distinction between the value in reg_last_set_value being valid
230 and the register being validly contained in some other expression in the
231 table.
233 Entry I in reg_last_set_value is valid if it is non-zero, and either
234 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
236 Register I may validly appear in any expression returned for the value
237 of another register if reg_n_sets[i] is 1. It may also appear in the
238 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
239 reg_last_set_invalid[j] is zero.
241 If an expression is found in the table containing a register which may
242 not validly appear in an expression, the register is replaced by
243 something that won't match, (clobber (const_int 0)).
245 reg_last_set_invalid[i] is set non-zero when register I is being assigned
246 to and reg_last_set_table_tick[i] == label_tick. */
248 /* Record last value assigned to (hard or pseudo) register n. */
250 static rtx *reg_last_set_value;
252 /* Record the value of label_tick when the value for register n is placed in
253 reg_last_set_value[n]. */
255 static int *reg_last_set_label;
257 /* Record the value of label_tick when an expression involving register n
258 is placed in reg_last_set_value. */
260 static int *reg_last_set_table_tick;
262 /* Set non-zero if references to register n in expressions should not be
263 used. */
265 static char *reg_last_set_invalid;
267 /* Incremented for each label. */
269 static int label_tick;
271 /* Some registers that are set more than once and used in more than one
272 basic block are nevertheless always set in similar ways. For example,
273 a QImode register may be loaded from memory in two places on a machine
274 where byte loads zero extend.
276 We record in the following array what we know about the nonzero
277 bits of a register, specifically which bits are known to be zero.
279 If an entry is zero, it means that we don't know anything special. */
281 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
283 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
284 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
286 static enum machine_mode nonzero_bits_mode;
288 /* Nonzero if we know that a register has some leading bits that are always
289 equal to the sign bit. */
291 static unsigned char *reg_sign_bit_copies;
293 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
294 It is zero while computing them and after combine has completed. This
295 former test prevents propagating values based on previously set values,
296 which can be incorrect if a variable is modified in a loop. */
298 static int nonzero_sign_valid;
300 /* These arrays are maintained in parallel with reg_last_set_value
301 and are used to store the mode in which the register was last set,
302 the bits that were known to be zero when it was last set, and the
303 number of sign bits copies it was known to have when it was last set. */
305 static enum machine_mode *reg_last_set_mode;
306 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
307 static char *reg_last_set_sign_bit_copies;
309 /* Record one modification to rtl structure
310 to be undone by storing old_contents into *where.
311 is_int is 1 if the contents are an int. */
313 struct undo
315 struct undo *next;
316 int is_int;
317 union {rtx r; unsigned int i;} old_contents;
318 union {rtx *r; unsigned int *i;} where;
321 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
322 num_undo says how many are currently recorded.
324 other_insn is nonzero if we have modified some other insn in the process
325 of working on subst_insn. It must be verified too. */
327 struct undobuf
329 struct undo *undos;
330 struct undo *frees;
331 rtx other_insn;
334 static struct undobuf undobuf;
336 /* Number of times the pseudo being substituted for
337 was found and replaced. */
339 static int n_occurrences;
341 static void do_SUBST PARAMS ((rtx *, rtx));
342 static void do_SUBST_INT PARAMS ((unsigned int *,
343 unsigned int));
344 static void init_reg_last_arrays PARAMS ((void));
345 static void setup_incoming_promotions PARAMS ((void));
346 static void set_nonzero_bits_and_sign_copies PARAMS ((rtx, rtx, void *));
347 static int cant_combine_insn_p PARAMS ((rtx));
348 static int can_combine_p PARAMS ((rtx, rtx, rtx, rtx, rtx *, rtx *));
349 static int sets_function_arg_p PARAMS ((rtx));
350 static int combinable_i3pat PARAMS ((rtx, rtx *, rtx, rtx, int, rtx *));
351 static int contains_muldiv PARAMS ((rtx));
352 static rtx try_combine PARAMS ((rtx, rtx, rtx, int *));
353 static void undo_all PARAMS ((void));
354 static void undo_commit PARAMS ((void));
355 static rtx *find_split_point PARAMS ((rtx *, rtx));
356 static rtx subst PARAMS ((rtx, rtx, rtx, int, int));
357 static rtx combine_simplify_rtx PARAMS ((rtx, enum machine_mode, int, int));
358 static rtx simplify_if_then_else PARAMS ((rtx));
359 static rtx simplify_set PARAMS ((rtx));
360 static rtx simplify_logical PARAMS ((rtx, int));
361 static rtx expand_compound_operation PARAMS ((rtx));
362 static rtx expand_field_assignment PARAMS ((rtx));
363 static rtx make_extraction PARAMS ((enum machine_mode, rtx, HOST_WIDE_INT,
364 rtx, unsigned HOST_WIDE_INT, int,
365 int, int));
366 static rtx extract_left_shift PARAMS ((rtx, int));
367 static rtx make_compound_operation PARAMS ((rtx, enum rtx_code));
368 static int get_pos_from_mask PARAMS ((unsigned HOST_WIDE_INT,
369 unsigned HOST_WIDE_INT *));
370 static rtx force_to_mode PARAMS ((rtx, enum machine_mode,
371 unsigned HOST_WIDE_INT, rtx, int));
372 static rtx if_then_else_cond PARAMS ((rtx, rtx *, rtx *));
373 static rtx known_cond PARAMS ((rtx, enum rtx_code, rtx, rtx));
374 static int rtx_equal_for_field_assignment_p PARAMS ((rtx, rtx));
375 static rtx make_field_assignment PARAMS ((rtx));
376 static rtx apply_distributive_law PARAMS ((rtx));
377 static rtx simplify_and_const_int PARAMS ((rtx, enum machine_mode, rtx,
378 unsigned HOST_WIDE_INT));
379 static unsigned HOST_WIDE_INT nonzero_bits PARAMS ((rtx, enum machine_mode));
380 static unsigned int num_sign_bit_copies PARAMS ((rtx, enum machine_mode));
381 static int merge_outer_ops PARAMS ((enum rtx_code *, HOST_WIDE_INT *,
382 enum rtx_code, HOST_WIDE_INT,
383 enum machine_mode, int *));
384 static rtx simplify_shift_const PARAMS ((rtx, enum rtx_code, enum machine_mode,
385 rtx, int));
386 static int recog_for_combine PARAMS ((rtx *, rtx, rtx *));
387 static rtx gen_lowpart_for_combine PARAMS ((enum machine_mode, rtx));
388 static rtx gen_binary PARAMS ((enum rtx_code, enum machine_mode,
389 rtx, rtx));
390 static enum rtx_code simplify_comparison PARAMS ((enum rtx_code, rtx *, rtx *));
391 static void update_table_tick PARAMS ((rtx));
392 static void record_value_for_reg PARAMS ((rtx, rtx, rtx));
393 static void check_promoted_subreg PARAMS ((rtx, rtx));
394 static void record_dead_and_set_regs_1 PARAMS ((rtx, rtx, void *));
395 static void record_dead_and_set_regs PARAMS ((rtx));
396 static int get_last_value_validate PARAMS ((rtx *, rtx, int, int));
397 static rtx get_last_value PARAMS ((rtx));
398 static int use_crosses_set_p PARAMS ((rtx, int));
399 static void reg_dead_at_p_1 PARAMS ((rtx, rtx, void *));
400 static int reg_dead_at_p PARAMS ((rtx, rtx));
401 static void move_deaths PARAMS ((rtx, rtx, int, rtx, rtx *));
402 static int reg_bitfield_target_p PARAMS ((rtx, rtx));
403 static void distribute_notes PARAMS ((rtx, rtx, rtx, rtx, rtx, rtx));
404 static void distribute_links PARAMS ((rtx));
405 static void mark_used_regs_combine PARAMS ((rtx));
406 static int insn_cuid PARAMS ((rtx));
407 static void record_promoted_value PARAMS ((rtx, rtx));
408 static rtx reversed_comparison PARAMS ((rtx, enum machine_mode, rtx, rtx));
409 static enum rtx_code combine_reversed_comparison_code PARAMS ((rtx));
411 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
412 insn. The substitution can be undone by undo_all. If INTO is already
413 set to NEWVAL, do not record this change. Because computing NEWVAL might
414 also call SUBST, we have to compute it before we put anything into
415 the undo table. */
417 static void
418 do_SUBST (into, newval)
419 rtx *into, newval;
421 struct undo *buf;
422 rtx oldval = *into;
424 if (oldval == newval)
425 return;
427 /* We'd like to catch as many invalid transformations here as
428 possible. Unfortunately, there are way too many mode changes
429 that are perfectly valid, so we'd waste too much effort for
430 little gain doing the checks here. Focus on catching invalid
431 transformations involving integer constants. */
432 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
433 && GET_CODE (newval) == CONST_INT)
435 /* Sanity check that we're replacing oldval with a CONST_INT
436 that is a valid sign-extension for the original mode. */
437 if (INTVAL (newval) != trunc_int_for_mode (INTVAL (newval),
438 GET_MODE (oldval)))
439 abort ();
441 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
442 CONST_INT is not valid, because after the replacement, the
443 original mode would be gone. Unfortunately, we can't tell
444 when do_SUBST is called to replace the operand thereof, so we
445 perform this test on oldval instead, checking whether an
446 invalid replacement took place before we got here. */
447 if ((GET_CODE (oldval) == SUBREG
448 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT)
449 || (GET_CODE (oldval) == ZERO_EXTEND
450 && GET_CODE (XEXP (oldval, 0)) == CONST_INT))
451 abort ();
454 if (undobuf.frees)
455 buf = undobuf.frees, undobuf.frees = buf->next;
456 else
457 buf = (struct undo *) xmalloc (sizeof (struct undo));
459 buf->is_int = 0;
460 buf->where.r = into;
461 buf->old_contents.r = oldval;
462 *into = newval;
464 buf->next = undobuf.undos, undobuf.undos = buf;
467 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
469 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
470 for the value of a HOST_WIDE_INT value (including CONST_INT) is
471 not safe. */
473 static void
474 do_SUBST_INT (into, newval)
475 unsigned int *into, newval;
477 struct undo *buf;
478 unsigned int oldval = *into;
480 if (oldval == newval)
481 return;
483 if (undobuf.frees)
484 buf = undobuf.frees, undobuf.frees = buf->next;
485 else
486 buf = (struct undo *) xmalloc (sizeof (struct undo));
488 buf->is_int = 1;
489 buf->where.i = into;
490 buf->old_contents.i = oldval;
491 *into = newval;
493 buf->next = undobuf.undos, undobuf.undos = buf;
496 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
498 /* Main entry point for combiner. F is the first insn of the function.
499 NREGS is the first unused pseudo-reg number.
501 Return non-zero if the combiner has turned an indirect jump
502 instruction into a direct jump. */
504 combine_instructions (f, nregs)
505 rtx f;
506 unsigned int nregs;
508 rtx insn, next;
509 #ifdef HAVE_cc0
510 rtx prev;
511 #endif
512 int i;
513 rtx links, nextlinks;
515 int new_direct_jump_p = 0;
517 combine_attempts = 0;
518 combine_merges = 0;
519 combine_extras = 0;
520 combine_successes = 0;
522 combine_max_regno = nregs;
524 reg_nonzero_bits = ((unsigned HOST_WIDE_INT *)
525 xcalloc (nregs, sizeof (unsigned HOST_WIDE_INT)));
526 reg_sign_bit_copies
527 = (unsigned char *) xcalloc (nregs, sizeof (unsigned char));
529 reg_last_death = (rtx *) xmalloc (nregs * sizeof (rtx));
530 reg_last_set = (rtx *) xmalloc (nregs * sizeof (rtx));
531 reg_last_set_value = (rtx *) xmalloc (nregs * sizeof (rtx));
532 reg_last_set_table_tick = (int *) xmalloc (nregs * sizeof (int));
533 reg_last_set_label = (int *) xmalloc (nregs * sizeof (int));
534 reg_last_set_invalid = (char *) xmalloc (nregs * sizeof (char));
535 reg_last_set_mode
536 = (enum machine_mode *) xmalloc (nregs * sizeof (enum machine_mode));
537 reg_last_set_nonzero_bits
538 = (unsigned HOST_WIDE_INT *) xmalloc (nregs * sizeof (HOST_WIDE_INT));
539 reg_last_set_sign_bit_copies
540 = (char *) xmalloc (nregs * sizeof (char));
542 init_reg_last_arrays ();
544 init_recog_no_volatile ();
546 /* Compute maximum uid value so uid_cuid can be allocated. */
548 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
549 if (INSN_UID (insn) > i)
550 i = INSN_UID (insn);
552 uid_cuid = (int *) xmalloc ((i + 1) * sizeof (int));
553 max_uid_cuid = i;
555 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
557 /* Don't use reg_nonzero_bits when computing it. This can cause problems
558 when, for example, we have j <<= 1 in a loop. */
560 nonzero_sign_valid = 0;
562 /* Compute the mapping from uids to cuids.
563 Cuids are numbers assigned to insns, like uids,
564 except that cuids increase monotonically through the code.
566 Scan all SETs and see if we can deduce anything about what
567 bits are known to be zero for some registers and how many copies
568 of the sign bit are known to exist for those registers.
570 Also set any known values so that we can use it while searching
571 for what bits are known to be set. */
573 label_tick = 1;
575 /* We need to initialize it here, because record_dead_and_set_regs may call
576 get_last_value. */
577 subst_prev_insn = NULL_RTX;
579 setup_incoming_promotions ();
581 refresh_blocks = sbitmap_alloc (last_basic_block);
582 sbitmap_zero (refresh_blocks);
583 need_refresh = 0;
585 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
587 uid_cuid[INSN_UID (insn)] = ++i;
588 subst_low_cuid = i;
589 subst_insn = insn;
591 if (INSN_P (insn))
593 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
594 NULL);
595 record_dead_and_set_regs (insn);
597 #ifdef AUTO_INC_DEC
598 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
599 if (REG_NOTE_KIND (links) == REG_INC)
600 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
601 NULL);
602 #endif
605 if (GET_CODE (insn) == CODE_LABEL)
606 label_tick++;
609 nonzero_sign_valid = 1;
611 /* Now scan all the insns in forward order. */
613 label_tick = 1;
614 last_call_cuid = 0;
615 mem_last_set = 0;
616 init_reg_last_arrays ();
617 setup_incoming_promotions ();
619 FOR_EACH_BB (this_basic_block)
621 for (insn = this_basic_block->head;
622 insn != NEXT_INSN (this_basic_block->end);
623 insn = next ? next : NEXT_INSN (insn))
625 next = 0;
627 if (GET_CODE (insn) == CODE_LABEL)
628 label_tick++;
630 else if (INSN_P (insn))
632 /* See if we know about function return values before this
633 insn based upon SUBREG flags. */
634 check_promoted_subreg (insn, PATTERN (insn));
636 /* Try this insn with each insn it links back to. */
638 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
639 if ((next = try_combine (insn, XEXP (links, 0),
640 NULL_RTX, &new_direct_jump_p)) != 0)
641 goto retry;
643 /* Try each sequence of three linked insns ending with this one. */
645 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
647 rtx link = XEXP (links, 0);
649 /* If the linked insn has been replaced by a note, then there
650 is no point in pursuing this chain any further. */
651 if (GET_CODE (link) == NOTE)
652 continue;
654 for (nextlinks = LOG_LINKS (link);
655 nextlinks;
656 nextlinks = XEXP (nextlinks, 1))
657 if ((next = try_combine (insn, link,
658 XEXP (nextlinks, 0),
659 &new_direct_jump_p)) != 0)
660 goto retry;
663 #ifdef HAVE_cc0
664 /* Try to combine a jump insn that uses CC0
665 with a preceding insn that sets CC0, and maybe with its
666 logical predecessor as well.
667 This is how we make decrement-and-branch insns.
668 We need this special code because data flow connections
669 via CC0 do not get entered in LOG_LINKS. */
671 if (GET_CODE (insn) == JUMP_INSN
672 && (prev = prev_nonnote_insn (insn)) != 0
673 && GET_CODE (prev) == INSN
674 && sets_cc0_p (PATTERN (prev)))
676 if ((next = try_combine (insn, prev,
677 NULL_RTX, &new_direct_jump_p)) != 0)
678 goto retry;
680 for (nextlinks = LOG_LINKS (prev); nextlinks;
681 nextlinks = XEXP (nextlinks, 1))
682 if ((next = try_combine (insn, prev,
683 XEXP (nextlinks, 0),
684 &new_direct_jump_p)) != 0)
685 goto retry;
688 /* Do the same for an insn that explicitly references CC0. */
689 if (GET_CODE (insn) == INSN
690 && (prev = prev_nonnote_insn (insn)) != 0
691 && GET_CODE (prev) == INSN
692 && sets_cc0_p (PATTERN (prev))
693 && GET_CODE (PATTERN (insn)) == SET
694 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
696 if ((next = try_combine (insn, prev,
697 NULL_RTX, &new_direct_jump_p)) != 0)
698 goto retry;
700 for (nextlinks = LOG_LINKS (prev); nextlinks;
701 nextlinks = XEXP (nextlinks, 1))
702 if ((next = try_combine (insn, prev,
703 XEXP (nextlinks, 0),
704 &new_direct_jump_p)) != 0)
705 goto retry;
708 /* Finally, see if any of the insns that this insn links to
709 explicitly references CC0. If so, try this insn, that insn,
710 and its predecessor if it sets CC0. */
711 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
712 if (GET_CODE (XEXP (links, 0)) == INSN
713 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
714 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
715 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
716 && GET_CODE (prev) == INSN
717 && sets_cc0_p (PATTERN (prev))
718 && (next = try_combine (insn, XEXP (links, 0),
719 prev, &new_direct_jump_p)) != 0)
720 goto retry;
721 #endif
723 /* Try combining an insn with two different insns whose results it
724 uses. */
725 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
726 for (nextlinks = XEXP (links, 1); nextlinks;
727 nextlinks = XEXP (nextlinks, 1))
728 if ((next = try_combine (insn, XEXP (links, 0),
729 XEXP (nextlinks, 0),
730 &new_direct_jump_p)) != 0)
731 goto retry;
733 if (GET_CODE (insn) != NOTE)
734 record_dead_and_set_regs (insn);
736 retry:
741 clear_bb_flags ();
743 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
744 BASIC_BLOCK (i)->flags |= BB_DIRTY);
745 new_direct_jump_p |= purge_all_dead_edges (0);
746 delete_noop_moves (f);
748 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
749 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
750 | PROP_KILL_DEAD_CODE);
752 /* Clean up. */
753 sbitmap_free (refresh_blocks);
754 free (reg_nonzero_bits);
755 free (reg_sign_bit_copies);
756 free (reg_last_death);
757 free (reg_last_set);
758 free (reg_last_set_value);
759 free (reg_last_set_table_tick);
760 free (reg_last_set_label);
761 free (reg_last_set_invalid);
762 free (reg_last_set_mode);
763 free (reg_last_set_nonzero_bits);
764 free (reg_last_set_sign_bit_copies);
765 free (uid_cuid);
768 struct undo *undo, *next;
769 for (undo = undobuf.frees; undo; undo = next)
771 next = undo->next;
772 free (undo);
774 undobuf.frees = 0;
777 total_attempts += combine_attempts;
778 total_merges += combine_merges;
779 total_extras += combine_extras;
780 total_successes += combine_successes;
782 nonzero_sign_valid = 0;
784 /* Make recognizer allow volatile MEMs again. */
785 init_recog ();
787 return new_direct_jump_p;
790 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
792 static void
793 init_reg_last_arrays ()
795 unsigned int nregs = combine_max_regno;
797 memset ((char *) reg_last_death, 0, nregs * sizeof (rtx));
798 memset ((char *) reg_last_set, 0, nregs * sizeof (rtx));
799 memset ((char *) reg_last_set_value, 0, nregs * sizeof (rtx));
800 memset ((char *) reg_last_set_table_tick, 0, nregs * sizeof (int));
801 memset ((char *) reg_last_set_label, 0, nregs * sizeof (int));
802 memset (reg_last_set_invalid, 0, nregs * sizeof (char));
803 memset ((char *) reg_last_set_mode, 0, nregs * sizeof (enum machine_mode));
804 memset ((char *) reg_last_set_nonzero_bits, 0, nregs * sizeof (HOST_WIDE_INT));
805 memset (reg_last_set_sign_bit_copies, 0, nregs * sizeof (char));
808 /* Set up any promoted values for incoming argument registers. */
810 static void
811 setup_incoming_promotions ()
813 #ifdef PROMOTE_FUNCTION_ARGS
814 unsigned int regno;
815 rtx reg;
816 enum machine_mode mode;
817 int unsignedp;
818 rtx first = get_insns ();
820 #ifndef OUTGOING_REGNO
821 #define OUTGOING_REGNO(N) N
822 #endif
823 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
824 /* Check whether this register can hold an incoming pointer
825 argument. FUNCTION_ARG_REGNO_P tests outgoing register
826 numbers, so translate if necessary due to register windows. */
827 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
828 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
830 record_value_for_reg
831 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
832 : SIGN_EXTEND),
833 GET_MODE (reg),
834 gen_rtx_CLOBBER (mode, const0_rtx)));
836 #endif
839 /* Called via note_stores. If X is a pseudo that is narrower than
840 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
842 If we are setting only a portion of X and we can't figure out what
843 portion, assume all bits will be used since we don't know what will
844 be happening.
846 Similarly, set how many bits of X are known to be copies of the sign bit
847 at all locations in the function. This is the smallest number implied
848 by any set of X. */
850 static void
851 set_nonzero_bits_and_sign_copies (x, set, data)
852 rtx x;
853 rtx set;
854 void *data ATTRIBUTE_UNUSED;
856 unsigned int num;
858 if (GET_CODE (x) == REG
859 && REGNO (x) >= FIRST_PSEUDO_REGISTER
860 /* If this register is undefined at the start of the file, we can't
861 say what its contents were. */
862 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
863 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
865 if (set == 0 || GET_CODE (set) == CLOBBER)
867 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
868 reg_sign_bit_copies[REGNO (x)] = 1;
869 return;
872 /* If this is a complex assignment, see if we can convert it into a
873 simple assignment. */
874 set = expand_field_assignment (set);
876 /* If this is a simple assignment, or we have a paradoxical SUBREG,
877 set what we know about X. */
879 if (SET_DEST (set) == x
880 || (GET_CODE (SET_DEST (set)) == SUBREG
881 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
882 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
883 && SUBREG_REG (SET_DEST (set)) == x))
885 rtx src = SET_SRC (set);
887 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
888 /* If X is narrower than a word and SRC is a non-negative
889 constant that would appear negative in the mode of X,
890 sign-extend it for use in reg_nonzero_bits because some
891 machines (maybe most) will actually do the sign-extension
892 and this is the conservative approach.
894 ??? For 2.5, try to tighten up the MD files in this regard
895 instead of this kludge. */
897 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
898 && GET_CODE (src) == CONST_INT
899 && INTVAL (src) > 0
900 && 0 != (INTVAL (src)
901 & ((HOST_WIDE_INT) 1
902 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
903 src = GEN_INT (INTVAL (src)
904 | ((HOST_WIDE_INT) (-1)
905 << GET_MODE_BITSIZE (GET_MODE (x))));
906 #endif
908 /* Don't call nonzero_bits if it cannot change anything. */
909 if (reg_nonzero_bits[REGNO (x)] != ~(unsigned HOST_WIDE_INT) 0)
910 reg_nonzero_bits[REGNO (x)]
911 |= nonzero_bits (src, nonzero_bits_mode);
912 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
913 if (reg_sign_bit_copies[REGNO (x)] == 0
914 || reg_sign_bit_copies[REGNO (x)] > num)
915 reg_sign_bit_copies[REGNO (x)] = num;
917 else
919 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
920 reg_sign_bit_copies[REGNO (x)] = 1;
925 /* See if INSN can be combined into I3. PRED and SUCC are optionally
926 insns that were previously combined into I3 or that will be combined
927 into the merger of INSN and I3.
929 Return 0 if the combination is not allowed for any reason.
931 If the combination is allowed, *PDEST will be set to the single
932 destination of INSN and *PSRC to the single source, and this function
933 will return 1. */
935 static int
936 can_combine_p (insn, i3, pred, succ, pdest, psrc)
937 rtx insn;
938 rtx i3;
939 rtx pred ATTRIBUTE_UNUSED;
940 rtx succ;
941 rtx *pdest, *psrc;
943 int i;
944 rtx set = 0, src, dest;
945 rtx p;
946 #ifdef AUTO_INC_DEC
947 rtx link;
948 #endif
949 int all_adjacent = (succ ? (next_active_insn (insn) == succ
950 && next_active_insn (succ) == i3)
951 : next_active_insn (insn) == i3);
953 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
954 or a PARALLEL consisting of such a SET and CLOBBERs.
956 If INSN has CLOBBER parallel parts, ignore them for our processing.
957 By definition, these happen during the execution of the insn. When it
958 is merged with another insn, all bets are off. If they are, in fact,
959 needed and aren't also supplied in I3, they may be added by
960 recog_for_combine. Otherwise, it won't match.
962 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
963 note.
965 Get the source and destination of INSN. If more than one, can't
966 combine. */
968 if (GET_CODE (PATTERN (insn)) == SET)
969 set = PATTERN (insn);
970 else if (GET_CODE (PATTERN (insn)) == PARALLEL
971 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
973 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
975 rtx elt = XVECEXP (PATTERN (insn), 0, i);
977 switch (GET_CODE (elt))
979 /* This is important to combine floating point insns
980 for the SH4 port. */
981 case USE:
982 /* Combining an isolated USE doesn't make sense.
983 We depend here on combinable_i3pat to reject them. */
984 /* The code below this loop only verifies that the inputs of
985 the SET in INSN do not change. We call reg_set_between_p
986 to verify that the REG in the USE does not change between
987 I3 and INSN.
988 If the USE in INSN was for a pseudo register, the matching
989 insn pattern will likely match any register; combining this
990 with any other USE would only be safe if we knew that the
991 used registers have identical values, or if there was
992 something to tell them apart, e.g. different modes. For
993 now, we forgo such complicated tests and simply disallow
994 combining of USES of pseudo registers with any other USE. */
995 if (GET_CODE (XEXP (elt, 0)) == REG
996 && GET_CODE (PATTERN (i3)) == PARALLEL)
998 rtx i3pat = PATTERN (i3);
999 int i = XVECLEN (i3pat, 0) - 1;
1000 unsigned int regno = REGNO (XEXP (elt, 0));
1004 rtx i3elt = XVECEXP (i3pat, 0, i);
1006 if (GET_CODE (i3elt) == USE
1007 && GET_CODE (XEXP (i3elt, 0)) == REG
1008 && (REGNO (XEXP (i3elt, 0)) == regno
1009 ? reg_set_between_p (XEXP (elt, 0),
1010 PREV_INSN (insn), i3)
1011 : regno >= FIRST_PSEUDO_REGISTER))
1012 return 0;
1014 while (--i >= 0);
1016 break;
1018 /* We can ignore CLOBBERs. */
1019 case CLOBBER:
1020 break;
1022 case SET:
1023 /* Ignore SETs whose result isn't used but not those that
1024 have side-effects. */
1025 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1026 && ! side_effects_p (elt))
1027 break;
1029 /* If we have already found a SET, this is a second one and
1030 so we cannot combine with this insn. */
1031 if (set)
1032 return 0;
1034 set = elt;
1035 break;
1037 default:
1038 /* Anything else means we can't combine. */
1039 return 0;
1043 if (set == 0
1044 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1045 so don't do anything with it. */
1046 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1047 return 0;
1049 else
1050 return 0;
1052 if (set == 0)
1053 return 0;
1055 set = expand_field_assignment (set);
1056 src = SET_SRC (set), dest = SET_DEST (set);
1058 /* Don't eliminate a store in the stack pointer. */
1059 if (dest == stack_pointer_rtx
1060 /* If we couldn't eliminate a field assignment, we can't combine. */
1061 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
1062 /* Don't combine with an insn that sets a register to itself if it has
1063 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1064 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1065 /* Can't merge an ASM_OPERANDS. */
1066 || GET_CODE (src) == ASM_OPERANDS
1067 /* Can't merge a function call. */
1068 || GET_CODE (src) == CALL
1069 /* Don't eliminate a function call argument. */
1070 || (GET_CODE (i3) == CALL_INSN
1071 && (find_reg_fusage (i3, USE, dest)
1072 || (GET_CODE (dest) == REG
1073 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1074 && global_regs[REGNO (dest)])))
1075 /* Don't substitute into an incremented register. */
1076 || FIND_REG_INC_NOTE (i3, dest)
1077 || (succ && FIND_REG_INC_NOTE (succ, dest))
1078 #if 0
1079 /* Don't combine the end of a libcall into anything. */
1080 /* ??? This gives worse code, and appears to be unnecessary, since no
1081 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1082 use REG_RETVAL notes for noconflict blocks, but other code here
1083 makes sure that those insns don't disappear. */
1084 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1085 #endif
1086 /* Make sure that DEST is not used after SUCC but before I3. */
1087 || (succ && ! all_adjacent
1088 && reg_used_between_p (dest, succ, i3))
1089 /* Make sure that the value that is to be substituted for the register
1090 does not use any registers whose values alter in between. However,
1091 If the insns are adjacent, a use can't cross a set even though we
1092 think it might (this can happen for a sequence of insns each setting
1093 the same destination; reg_last_set of that register might point to
1094 a NOTE). If INSN has a REG_EQUIV note, the register is always
1095 equivalent to the memory so the substitution is valid even if there
1096 are intervening stores. Also, don't move a volatile asm or
1097 UNSPEC_VOLATILE across any other insns. */
1098 || (! all_adjacent
1099 && (((GET_CODE (src) != MEM
1100 || ! find_reg_note (insn, REG_EQUIV, src))
1101 && use_crosses_set_p (src, INSN_CUID (insn)))
1102 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1103 || GET_CODE (src) == UNSPEC_VOLATILE))
1104 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1105 better register allocation by not doing the combine. */
1106 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1107 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1108 /* Don't combine across a CALL_INSN, because that would possibly
1109 change whether the life span of some REGs crosses calls or not,
1110 and it is a pain to update that information.
1111 Exception: if source is a constant, moving it later can't hurt.
1112 Accept that special case, because it helps -fforce-addr a lot. */
1113 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1114 return 0;
1116 /* DEST must either be a REG or CC0. */
1117 if (GET_CODE (dest) == REG)
1119 /* If register alignment is being enforced for multi-word items in all
1120 cases except for parameters, it is possible to have a register copy
1121 insn referencing a hard register that is not allowed to contain the
1122 mode being copied and which would not be valid as an operand of most
1123 insns. Eliminate this problem by not combining with such an insn.
1125 Also, on some machines we don't want to extend the life of a hard
1126 register. */
1128 if (GET_CODE (src) == REG
1129 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1130 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1131 /* Don't extend the life of a hard register unless it is
1132 user variable (if we have few registers) or it can't
1133 fit into the desired register (meaning something special
1134 is going on).
1135 Also avoid substituting a return register into I3, because
1136 reload can't handle a conflict with constraints of other
1137 inputs. */
1138 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1139 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1140 return 0;
1142 else if (GET_CODE (dest) != CC0)
1143 return 0;
1145 /* Don't substitute for a register intended as a clobberable operand.
1146 Similarly, don't substitute an expression containing a register that
1147 will be clobbered in I3. */
1148 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1149 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1150 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1151 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1152 src)
1153 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1154 return 0;
1156 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1157 or not), reject, unless nothing volatile comes between it and I3 */
1159 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1161 /* Make sure succ doesn't contain a volatile reference. */
1162 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1163 return 0;
1165 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1166 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1167 return 0;
1170 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1171 to be an explicit register variable, and was chosen for a reason. */
1173 if (GET_CODE (src) == ASM_OPERANDS
1174 && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1175 return 0;
1177 /* If there are any volatile insns between INSN and I3, reject, because
1178 they might affect machine state. */
1180 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1181 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1182 return 0;
1184 /* If INSN or I2 contains an autoincrement or autodecrement,
1185 make sure that register is not used between there and I3,
1186 and not already used in I3 either.
1187 Also insist that I3 not be a jump; if it were one
1188 and the incremented register were spilled, we would lose. */
1190 #ifdef AUTO_INC_DEC
1191 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1192 if (REG_NOTE_KIND (link) == REG_INC
1193 && (GET_CODE (i3) == JUMP_INSN
1194 || reg_used_between_p (XEXP (link, 0), insn, i3)
1195 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1196 return 0;
1197 #endif
1199 #ifdef HAVE_cc0
1200 /* Don't combine an insn that follows a CC0-setting insn.
1201 An insn that uses CC0 must not be separated from the one that sets it.
1202 We do, however, allow I2 to follow a CC0-setting insn if that insn
1203 is passed as I1; in that case it will be deleted also.
1204 We also allow combining in this case if all the insns are adjacent
1205 because that would leave the two CC0 insns adjacent as well.
1206 It would be more logical to test whether CC0 occurs inside I1 or I2,
1207 but that would be much slower, and this ought to be equivalent. */
1209 p = prev_nonnote_insn (insn);
1210 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1211 && ! all_adjacent)
1212 return 0;
1213 #endif
1215 /* If we get here, we have passed all the tests and the combination is
1216 to be allowed. */
1218 *pdest = dest;
1219 *psrc = src;
1221 return 1;
1224 /* Check if PAT is an insn - or a part of it - used to set up an
1225 argument for a function in a hard register. */
1227 static int
1228 sets_function_arg_p (pat)
1229 rtx pat;
1231 int i;
1232 rtx inner_dest;
1234 switch (GET_CODE (pat))
1236 case INSN:
1237 return sets_function_arg_p (PATTERN (pat));
1239 case PARALLEL:
1240 for (i = XVECLEN (pat, 0); --i >= 0;)
1241 if (sets_function_arg_p (XVECEXP (pat, 0, i)))
1242 return 1;
1244 break;
1246 case SET:
1247 inner_dest = SET_DEST (pat);
1248 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1249 || GET_CODE (inner_dest) == SUBREG
1250 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1251 inner_dest = XEXP (inner_dest, 0);
1253 return (GET_CODE (inner_dest) == REG
1254 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1255 && FUNCTION_ARG_REGNO_P (REGNO (inner_dest)));
1257 default:
1258 break;
1261 return 0;
1264 /* LOC is the location within I3 that contains its pattern or the component
1265 of a PARALLEL of the pattern. We validate that it is valid for combining.
1267 One problem is if I3 modifies its output, as opposed to replacing it
1268 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1269 so would produce an insn that is not equivalent to the original insns.
1271 Consider:
1273 (set (reg:DI 101) (reg:DI 100))
1274 (set (subreg:SI (reg:DI 101) 0) <foo>)
1276 This is NOT equivalent to:
1278 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1279 (set (reg:DI 101) (reg:DI 100))])
1281 Not only does this modify 100 (in which case it might still be valid
1282 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1284 We can also run into a problem if I2 sets a register that I1
1285 uses and I1 gets directly substituted into I3 (not via I2). In that
1286 case, we would be getting the wrong value of I2DEST into I3, so we
1287 must reject the combination. This case occurs when I2 and I1 both
1288 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1289 If I1_NOT_IN_SRC is non-zero, it means that finding I1 in the source
1290 of a SET must prevent combination from occurring.
1292 Before doing the above check, we first try to expand a field assignment
1293 into a set of logical operations.
1295 If PI3_DEST_KILLED is non-zero, it is a pointer to a location in which
1296 we place a register that is both set and used within I3. If more than one
1297 such register is detected, we fail.
1299 Return 1 if the combination is valid, zero otherwise. */
1301 static int
1302 combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
1303 rtx i3;
1304 rtx *loc;
1305 rtx i2dest;
1306 rtx i1dest;
1307 int i1_not_in_src;
1308 rtx *pi3dest_killed;
1310 rtx x = *loc;
1312 if (GET_CODE (x) == SET)
1314 rtx set = expand_field_assignment (x);
1315 rtx dest = SET_DEST (set);
1316 rtx src = SET_SRC (set);
1317 rtx inner_dest = dest;
1319 #if 0
1320 rtx inner_src = src;
1321 #endif
1323 SUBST (*loc, set);
1325 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1326 || GET_CODE (inner_dest) == SUBREG
1327 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1328 inner_dest = XEXP (inner_dest, 0);
1330 /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
1331 was added. */
1332 #if 0
1333 while (GET_CODE (inner_src) == STRICT_LOW_PART
1334 || GET_CODE (inner_src) == SUBREG
1335 || GET_CODE (inner_src) == ZERO_EXTRACT)
1336 inner_src = XEXP (inner_src, 0);
1338 /* If it is better that two different modes keep two different pseudos,
1339 avoid combining them. This avoids producing the following pattern
1340 on a 386:
1341 (set (subreg:SI (reg/v:QI 21) 0)
1342 (lshiftrt:SI (reg/v:SI 20)
1343 (const_int 24)))
1344 If that were made, reload could not handle the pair of
1345 reg 20/21, since it would try to get any GENERAL_REGS
1346 but some of them don't handle QImode. */
1348 if (rtx_equal_p (inner_src, i2dest)
1349 && GET_CODE (inner_dest) == REG
1350 && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
1351 return 0;
1352 #endif
1354 /* Check for the case where I3 modifies its output, as
1355 discussed above. */
1356 if ((inner_dest != dest
1357 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1358 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1360 /* This is the same test done in can_combine_p except we can't test
1361 all_adjacent; we don't have to, since this instruction will stay
1362 in place, thus we are not considering increasing the lifetime of
1363 INNER_DEST.
1365 Also, if this insn sets a function argument, combining it with
1366 something that might need a spill could clobber a previous
1367 function argument; the all_adjacent test in can_combine_p also
1368 checks this; here, we do a more specific test for this case. */
1370 || (GET_CODE (inner_dest) == REG
1371 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1372 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1373 GET_MODE (inner_dest))))
1374 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1375 return 0;
1377 /* If DEST is used in I3, it is being killed in this insn,
1378 so record that for later.
1379 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1380 STACK_POINTER_REGNUM, since these are always considered to be
1381 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1382 if (pi3dest_killed && GET_CODE (dest) == REG
1383 && reg_referenced_p (dest, PATTERN (i3))
1384 && REGNO (dest) != FRAME_POINTER_REGNUM
1385 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1386 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1387 #endif
1388 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1389 && (REGNO (dest) != ARG_POINTER_REGNUM
1390 || ! fixed_regs [REGNO (dest)])
1391 #endif
1392 && REGNO (dest) != STACK_POINTER_REGNUM)
1394 if (*pi3dest_killed)
1395 return 0;
1397 *pi3dest_killed = dest;
1401 else if (GET_CODE (x) == PARALLEL)
1403 int i;
1405 for (i = 0; i < XVECLEN (x, 0); i++)
1406 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1407 i1_not_in_src, pi3dest_killed))
1408 return 0;
1411 return 1;
1414 /* Return 1 if X is an arithmetic expression that contains a multiplication
1415 and division. We don't count multiplications by powers of two here. */
1417 static int
1418 contains_muldiv (x)
1419 rtx x;
1421 switch (GET_CODE (x))
1423 case MOD: case DIV: case UMOD: case UDIV:
1424 return 1;
1426 case MULT:
1427 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1428 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1429 default:
1430 switch (GET_RTX_CLASS (GET_CODE (x)))
1432 case 'c': case '<': case '2':
1433 return contains_muldiv (XEXP (x, 0))
1434 || contains_muldiv (XEXP (x, 1));
1436 case '1':
1437 return contains_muldiv (XEXP (x, 0));
1439 default:
1440 return 0;
1445 /* Determine whether INSN can be used in a combination. Return nonzero if
1446 not. This is used in try_combine to detect early some cases where we
1447 can't perform combinations. */
1449 static int
1450 cant_combine_insn_p (insn)
1451 rtx insn;
1453 rtx set;
1454 rtx src, dest;
1456 /* If this isn't really an insn, we can't do anything.
1457 This can occur when flow deletes an insn that it has merged into an
1458 auto-increment address. */
1459 if (! INSN_P (insn))
1460 return 1;
1462 /* Never combine loads and stores involving hard regs. The register
1463 allocator can usually handle such reg-reg moves by tying. If we allow
1464 the combiner to make substitutions of hard regs, we risk aborting in
1465 reload on machines that have SMALL_REGISTER_CLASSES.
1466 As an exception, we allow combinations involving fixed regs; these are
1467 not available to the register allocator so there's no risk involved. */
1469 set = single_set (insn);
1470 if (! set)
1471 return 0;
1472 src = SET_SRC (set);
1473 dest = SET_DEST (set);
1474 if (GET_CODE (src) == SUBREG)
1475 src = SUBREG_REG (src);
1476 if (GET_CODE (dest) == SUBREG)
1477 dest = SUBREG_REG (dest);
1478 if (REG_P (src) && REG_P (dest)
1479 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1480 && ! fixed_regs[REGNO (src)])
1481 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1482 && ! fixed_regs[REGNO (dest)])))
1483 return 1;
1485 return 0;
1488 /* Try to combine the insns I1 and I2 into I3.
1489 Here I1 and I2 appear earlier than I3.
1490 I1 can be zero; then we combine just I2 into I3.
1492 If we are combining three insns and the resulting insn is not recognized,
1493 try splitting it into two insns. If that happens, I2 and I3 are retained
1494 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1495 are pseudo-deleted.
1497 Return 0 if the combination does not work. Then nothing is changed.
1498 If we did the combination, return the insn at which combine should
1499 resume scanning.
1501 Set NEW_DIRECT_JUMP_P to a non-zero value if try_combine creates a
1502 new direct jump instruction. */
1504 static rtx
1505 try_combine (i3, i2, i1, new_direct_jump_p)
1506 rtx i3, i2, i1;
1507 int *new_direct_jump_p;
1509 /* New patterns for I3 and I2, respectively. */
1510 rtx newpat, newi2pat = 0;
1511 int substed_i2 = 0, substed_i1 = 0;
1512 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1513 int added_sets_1, added_sets_2;
1514 /* Total number of SETs to put into I3. */
1515 int total_sets;
1516 /* Nonzero is I2's body now appears in I3. */
1517 int i2_is_used;
1518 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1519 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1520 /* Contains I3 if the destination of I3 is used in its source, which means
1521 that the old life of I3 is being killed. If that usage is placed into
1522 I2 and not in I3, a REG_DEAD note must be made. */
1523 rtx i3dest_killed = 0;
1524 /* SET_DEST and SET_SRC of I2 and I1. */
1525 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1526 /* PATTERN (I2), or a copy of it in certain cases. */
1527 rtx i2pat;
1528 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1529 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1530 int i1_feeds_i3 = 0;
1531 /* Notes that must be added to REG_NOTES in I3 and I2. */
1532 rtx new_i3_notes, new_i2_notes;
1533 /* Notes that we substituted I3 into I2 instead of the normal case. */
1534 int i3_subst_into_i2 = 0;
1535 /* Notes that I1, I2 or I3 is a MULT operation. */
1536 int have_mult = 0;
1538 int maxreg;
1539 rtx temp;
1540 rtx link;
1541 int i;
1543 /* Exit early if one of the insns involved can't be used for
1544 combinations. */
1545 if (cant_combine_insn_p (i3)
1546 || cant_combine_insn_p (i2)
1547 || (i1 && cant_combine_insn_p (i1))
1548 /* We also can't do anything if I3 has a
1549 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1550 libcall. */
1551 #if 0
1552 /* ??? This gives worse code, and appears to be unnecessary, since no
1553 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1554 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1555 #endif
1557 return 0;
1559 combine_attempts++;
1560 undobuf.other_insn = 0;
1562 /* Reset the hard register usage information. */
1563 CLEAR_HARD_REG_SET (newpat_used_regs);
1565 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1566 code below, set I1 to be the earlier of the two insns. */
1567 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1568 temp = i1, i1 = i2, i2 = temp;
1570 added_links_insn = 0;
1572 /* First check for one important special-case that the code below will
1573 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1574 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1575 we may be able to replace that destination with the destination of I3.
1576 This occurs in the common code where we compute both a quotient and
1577 remainder into a structure, in which case we want to do the computation
1578 directly into the structure to avoid register-register copies.
1580 Note that this case handles both multiple sets in I2 and also
1581 cases where I2 has a number of CLOBBER or PARALLELs.
1583 We make very conservative checks below and only try to handle the
1584 most common cases of this. For example, we only handle the case
1585 where I2 and I3 are adjacent to avoid making difficult register
1586 usage tests. */
1588 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1589 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1590 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1591 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1592 && GET_CODE (PATTERN (i2)) == PARALLEL
1593 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1594 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1595 below would need to check what is inside (and reg_overlap_mentioned_p
1596 doesn't support those codes anyway). Don't allow those destinations;
1597 the resulting insn isn't likely to be recognized anyway. */
1598 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1599 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1600 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1601 SET_DEST (PATTERN (i3)))
1602 && next_real_insn (i2) == i3)
1604 rtx p2 = PATTERN (i2);
1606 /* Make sure that the destination of I3,
1607 which we are going to substitute into one output of I2,
1608 is not used within another output of I2. We must avoid making this:
1609 (parallel [(set (mem (reg 69)) ...)
1610 (set (reg 69) ...)])
1611 which is not well-defined as to order of actions.
1612 (Besides, reload can't handle output reloads for this.)
1614 The problem can also happen if the dest of I3 is a memory ref,
1615 if another dest in I2 is an indirect memory ref. */
1616 for (i = 0; i < XVECLEN (p2, 0); i++)
1617 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1618 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1619 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1620 SET_DEST (XVECEXP (p2, 0, i))))
1621 break;
1623 if (i == XVECLEN (p2, 0))
1624 for (i = 0; i < XVECLEN (p2, 0); i++)
1625 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1626 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1627 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1629 combine_merges++;
1631 subst_insn = i3;
1632 subst_low_cuid = INSN_CUID (i2);
1634 added_sets_2 = added_sets_1 = 0;
1635 i2dest = SET_SRC (PATTERN (i3));
1637 /* Replace the dest in I2 with our dest and make the resulting
1638 insn the new pattern for I3. Then skip to where we
1639 validate the pattern. Everything was set up above. */
1640 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1641 SET_DEST (PATTERN (i3)));
1643 newpat = p2;
1644 i3_subst_into_i2 = 1;
1645 goto validate_replacement;
1649 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1650 one of those words to another constant, merge them by making a new
1651 constant. */
1652 if (i1 == 0
1653 && (temp = single_set (i2)) != 0
1654 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1655 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1656 && GET_CODE (SET_DEST (temp)) == REG
1657 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1658 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1659 && GET_CODE (PATTERN (i3)) == SET
1660 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1661 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1662 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1663 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1664 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1666 HOST_WIDE_INT lo, hi;
1668 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1669 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1670 else
1672 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1673 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1676 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1678 /* We don't handle the case of the target word being wider
1679 than a host wide int. */
1680 if (HOST_BITS_PER_WIDE_INT < BITS_PER_WORD)
1681 abort ();
1683 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1684 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1685 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1687 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1688 hi = INTVAL (SET_SRC (PATTERN (i3)));
1689 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1691 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1692 >> (HOST_BITS_PER_WIDE_INT - 1));
1694 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1695 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1696 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1697 (INTVAL (SET_SRC (PATTERN (i3)))));
1698 if (hi == sign)
1699 hi = lo < 0 ? -1 : 0;
1701 else
1702 /* We don't handle the case of the higher word not fitting
1703 entirely in either hi or lo. */
1704 abort ();
1706 combine_merges++;
1707 subst_insn = i3;
1708 subst_low_cuid = INSN_CUID (i2);
1709 added_sets_2 = added_sets_1 = 0;
1710 i2dest = SET_DEST (temp);
1712 SUBST (SET_SRC (temp),
1713 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1715 newpat = PATTERN (i2);
1716 goto validate_replacement;
1719 #ifndef HAVE_cc0
1720 /* If we have no I1 and I2 looks like:
1721 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1722 (set Y OP)])
1723 make up a dummy I1 that is
1724 (set Y OP)
1725 and change I2 to be
1726 (set (reg:CC X) (compare:CC Y (const_int 0)))
1728 (We can ignore any trailing CLOBBERs.)
1730 This undoes a previous combination and allows us to match a branch-and-
1731 decrement insn. */
1733 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1734 && XVECLEN (PATTERN (i2), 0) >= 2
1735 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1736 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1737 == MODE_CC)
1738 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1739 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1740 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1741 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1742 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1743 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1745 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1746 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1747 break;
1749 if (i == 1)
1751 /* We make I1 with the same INSN_UID as I2. This gives it
1752 the same INSN_CUID for value tracking. Our fake I1 will
1753 never appear in the insn stream so giving it the same INSN_UID
1754 as I2 will not cause a problem. */
1756 subst_prev_insn = i1
1757 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1758 BLOCK_FOR_INSN (i2), INSN_SCOPE (i2),
1759 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1760 NULL_RTX);
1762 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1763 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1764 SET_DEST (PATTERN (i1)));
1767 #endif
1769 /* Verify that I2 and I1 are valid for combining. */
1770 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1771 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1773 undo_all ();
1774 return 0;
1777 /* Record whether I2DEST is used in I2SRC and similarly for the other
1778 cases. Knowing this will help in register status updating below. */
1779 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1780 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1781 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1783 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1784 in I2SRC. */
1785 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1787 /* Ensure that I3's pattern can be the destination of combines. */
1788 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1789 i1 && i2dest_in_i1src && i1_feeds_i3,
1790 &i3dest_killed))
1792 undo_all ();
1793 return 0;
1796 /* See if any of the insns is a MULT operation. Unless one is, we will
1797 reject a combination that is, since it must be slower. Be conservative
1798 here. */
1799 if (GET_CODE (i2src) == MULT
1800 || (i1 != 0 && GET_CODE (i1src) == MULT)
1801 || (GET_CODE (PATTERN (i3)) == SET
1802 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1803 have_mult = 1;
1805 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1806 We used to do this EXCEPT in one case: I3 has a post-inc in an
1807 output operand. However, that exception can give rise to insns like
1808 mov r3,(r3)+
1809 which is a famous insn on the PDP-11 where the value of r3 used as the
1810 source was model-dependent. Avoid this sort of thing. */
1812 #if 0
1813 if (!(GET_CODE (PATTERN (i3)) == SET
1814 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1815 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1816 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1817 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1818 /* It's not the exception. */
1819 #endif
1820 #ifdef AUTO_INC_DEC
1821 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1822 if (REG_NOTE_KIND (link) == REG_INC
1823 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1824 || (i1 != 0
1825 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1827 undo_all ();
1828 return 0;
1830 #endif
1832 /* See if the SETs in I1 or I2 need to be kept around in the merged
1833 instruction: whenever the value set there is still needed past I3.
1834 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1836 For the SET in I1, we have two cases: If I1 and I2 independently
1837 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1838 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1839 in I1 needs to be kept around unless I1DEST dies or is set in either
1840 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1841 I1DEST. If so, we know I1 feeds into I2. */
1843 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1845 added_sets_1
1846 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1847 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1849 /* If the set in I2 needs to be kept around, we must make a copy of
1850 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1851 PATTERN (I2), we are only substituting for the original I1DEST, not into
1852 an already-substituted copy. This also prevents making self-referential
1853 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1854 I2DEST. */
1856 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1857 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1858 : PATTERN (i2));
1860 if (added_sets_2)
1861 i2pat = copy_rtx (i2pat);
1863 combine_merges++;
1865 /* Substitute in the latest insn for the regs set by the earlier ones. */
1867 maxreg = max_reg_num ();
1869 subst_insn = i3;
1871 /* It is possible that the source of I2 or I1 may be performing an
1872 unneeded operation, such as a ZERO_EXTEND of something that is known
1873 to have the high part zero. Handle that case by letting subst look at
1874 the innermost one of them.
1876 Another way to do this would be to have a function that tries to
1877 simplify a single insn instead of merging two or more insns. We don't
1878 do this because of the potential of infinite loops and because
1879 of the potential extra memory required. However, doing it the way
1880 we are is a bit of a kludge and doesn't catch all cases.
1882 But only do this if -fexpensive-optimizations since it slows things down
1883 and doesn't usually win. */
1885 if (flag_expensive_optimizations)
1887 /* Pass pc_rtx so no substitutions are done, just simplifications.
1888 The cases that we are interested in here do not involve the few
1889 cases were is_replaced is checked. */
1890 if (i1)
1892 subst_low_cuid = INSN_CUID (i1);
1893 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1895 else
1897 subst_low_cuid = INSN_CUID (i2);
1898 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1902 #ifndef HAVE_cc0
1903 /* Many machines that don't use CC0 have insns that can both perform an
1904 arithmetic operation and set the condition code. These operations will
1905 be represented as a PARALLEL with the first element of the vector
1906 being a COMPARE of an arithmetic operation with the constant zero.
1907 The second element of the vector will set some pseudo to the result
1908 of the same arithmetic operation. If we simplify the COMPARE, we won't
1909 match such a pattern and so will generate an extra insn. Here we test
1910 for this case, where both the comparison and the operation result are
1911 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1912 I2SRC. Later we will make the PARALLEL that contains I2. */
1914 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1915 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1916 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1917 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1919 #ifdef EXTRA_CC_MODES
1920 rtx *cc_use;
1921 enum machine_mode compare_mode;
1922 #endif
1924 newpat = PATTERN (i3);
1925 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1927 i2_is_used = 1;
1929 #ifdef EXTRA_CC_MODES
1930 /* See if a COMPARE with the operand we substituted in should be done
1931 with the mode that is currently being used. If not, do the same
1932 processing we do in `subst' for a SET; namely, if the destination
1933 is used only once, try to replace it with a register of the proper
1934 mode and also replace the COMPARE. */
1935 if (undobuf.other_insn == 0
1936 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1937 &undobuf.other_insn))
1938 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1939 i2src, const0_rtx))
1940 != GET_MODE (SET_DEST (newpat))))
1942 unsigned int regno = REGNO (SET_DEST (newpat));
1943 rtx new_dest = gen_rtx_REG (compare_mode, regno);
1945 if (regno < FIRST_PSEUDO_REGISTER
1946 || (REG_N_SETS (regno) == 1 && ! added_sets_2
1947 && ! REG_USERVAR_P (SET_DEST (newpat))))
1949 if (regno >= FIRST_PSEUDO_REGISTER)
1950 SUBST (regno_reg_rtx[regno], new_dest);
1952 SUBST (SET_DEST (newpat), new_dest);
1953 SUBST (XEXP (*cc_use, 0), new_dest);
1954 SUBST (SET_SRC (newpat),
1955 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
1957 else
1958 undobuf.other_insn = 0;
1960 #endif
1962 else
1963 #endif
1965 n_occurrences = 0; /* `subst' counts here */
1967 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1968 need to make a unique copy of I2SRC each time we substitute it
1969 to avoid self-referential rtl. */
1971 subst_low_cuid = INSN_CUID (i2);
1972 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1973 ! i1_feeds_i3 && i1dest_in_i1src);
1974 substed_i2 = 1;
1976 /* Record whether i2's body now appears within i3's body. */
1977 i2_is_used = n_occurrences;
1980 /* If we already got a failure, don't try to do more. Otherwise,
1981 try to substitute in I1 if we have it. */
1983 if (i1 && GET_CODE (newpat) != CLOBBER)
1985 /* Before we can do this substitution, we must redo the test done
1986 above (see detailed comments there) that ensures that I1DEST
1987 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1989 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1990 0, (rtx*) 0))
1992 undo_all ();
1993 return 0;
1996 n_occurrences = 0;
1997 subst_low_cuid = INSN_CUID (i1);
1998 newpat = subst (newpat, i1dest, i1src, 0, 0);
1999 substed_i1 = 1;
2002 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2003 to count all the ways that I2SRC and I1SRC can be used. */
2004 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2005 && i2_is_used + added_sets_2 > 1)
2006 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2007 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2008 > 1))
2009 /* Fail if we tried to make a new register (we used to abort, but there's
2010 really no reason to). */
2011 || max_reg_num () != maxreg
2012 /* Fail if we couldn't do something and have a CLOBBER. */
2013 || GET_CODE (newpat) == CLOBBER
2014 /* Fail if this new pattern is a MULT and we didn't have one before
2015 at the outer level. */
2016 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2017 && ! have_mult))
2019 undo_all ();
2020 return 0;
2023 /* If the actions of the earlier insns must be kept
2024 in addition to substituting them into the latest one,
2025 we must make a new PARALLEL for the latest insn
2026 to hold additional the SETs. */
2028 if (added_sets_1 || added_sets_2)
2030 combine_extras++;
2032 if (GET_CODE (newpat) == PARALLEL)
2034 rtvec old = XVEC (newpat, 0);
2035 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2036 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2037 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2038 sizeof (old->elem[0]) * old->num_elem);
2040 else
2042 rtx old = newpat;
2043 total_sets = 1 + added_sets_1 + added_sets_2;
2044 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2045 XVECEXP (newpat, 0, 0) = old;
2048 if (added_sets_1)
2049 XVECEXP (newpat, 0, --total_sets)
2050 = (GET_CODE (PATTERN (i1)) == PARALLEL
2051 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2053 if (added_sets_2)
2055 /* If there is no I1, use I2's body as is. We used to also not do
2056 the subst call below if I2 was substituted into I3,
2057 but that could lose a simplification. */
2058 if (i1 == 0)
2059 XVECEXP (newpat, 0, --total_sets) = i2pat;
2060 else
2061 /* See comment where i2pat is assigned. */
2062 XVECEXP (newpat, 0, --total_sets)
2063 = subst (i2pat, i1dest, i1src, 0, 0);
2067 /* We come here when we are replacing a destination in I2 with the
2068 destination of I3. */
2069 validate_replacement:
2071 /* Note which hard regs this insn has as inputs. */
2072 mark_used_regs_combine (newpat);
2074 /* Is the result of combination a valid instruction? */
2075 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2077 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2078 the second SET's destination is a register that is unused. In that case,
2079 we just need the first SET. This can occur when simplifying a divmod
2080 insn. We *must* test for this case here because the code below that
2081 splits two independent SETs doesn't handle this case correctly when it
2082 updates the register status. Also check the case where the first
2083 SET's destination is unused. That would not cause incorrect code, but
2084 does cause an unneeded insn to remain. */
2086 if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2087 && XVECLEN (newpat, 0) == 2
2088 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2089 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2090 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
2091 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
2092 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
2093 && asm_noperands (newpat) < 0)
2095 newpat = XVECEXP (newpat, 0, 0);
2096 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2099 else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2100 && XVECLEN (newpat, 0) == 2
2101 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2102 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2103 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
2104 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
2105 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
2106 && asm_noperands (newpat) < 0)
2108 newpat = XVECEXP (newpat, 0, 1);
2109 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2112 /* If we were combining three insns and the result is a simple SET
2113 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2114 insns. There are two ways to do this. It can be split using a
2115 machine-specific method (like when you have an addition of a large
2116 constant) or by combine in the function find_split_point. */
2118 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2119 && asm_noperands (newpat) < 0)
2121 rtx m_split, *split;
2122 rtx ni2dest = i2dest;
2124 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2125 use I2DEST as a scratch register will help. In the latter case,
2126 convert I2DEST to the mode of the source of NEWPAT if we can. */
2128 m_split = split_insns (newpat, i3);
2130 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2131 inputs of NEWPAT. */
2133 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2134 possible to try that as a scratch reg. This would require adding
2135 more code to make it work though. */
2137 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2139 /* If I2DEST is a hard register or the only use of a pseudo,
2140 we can change its mode. */
2141 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2142 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2143 && GET_CODE (i2dest) == REG
2144 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2145 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2146 && ! REG_USERVAR_P (i2dest))))
2147 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2148 REGNO (i2dest));
2150 m_split = split_insns (gen_rtx_PARALLEL
2151 (VOIDmode,
2152 gen_rtvec (2, newpat,
2153 gen_rtx_CLOBBER (VOIDmode,
2154 ni2dest))),
2155 i3);
2156 /* If the split with the mode-changed register didn't work, try
2157 the original register. */
2158 if (! m_split && ni2dest != i2dest)
2160 ni2dest = i2dest;
2161 m_split = split_insns (gen_rtx_PARALLEL
2162 (VOIDmode,
2163 gen_rtvec (2, newpat,
2164 gen_rtx_CLOBBER (VOIDmode,
2165 i2dest))),
2166 i3);
2170 /* If we've split a jump pattern, we'll wind up with a sequence even
2171 with one instruction. We can handle that below, so extract it. */
2172 if (m_split && GET_CODE (m_split) == SEQUENCE
2173 && XVECLEN (m_split, 0) == 1)
2174 m_split = PATTERN (XVECEXP (m_split, 0, 0));
2176 if (m_split && GET_CODE (m_split) != SEQUENCE)
2178 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2179 if (insn_code_number >= 0)
2180 newpat = m_split;
2182 else if (m_split && GET_CODE (m_split) == SEQUENCE
2183 && XVECLEN (m_split, 0) == 2
2184 && (next_real_insn (i2) == i3
2185 || ! use_crosses_set_p (PATTERN (XVECEXP (m_split, 0, 0)),
2186 INSN_CUID (i2))))
2188 rtx i2set, i3set;
2189 rtx newi3pat = PATTERN (XVECEXP (m_split, 0, 1));
2190 newi2pat = PATTERN (XVECEXP (m_split, 0, 0));
2192 i3set = single_set (XVECEXP (m_split, 0, 1));
2193 i2set = single_set (XVECEXP (m_split, 0, 0));
2195 /* In case we changed the mode of I2DEST, replace it in the
2196 pseudo-register table here. We can't do it above in case this
2197 code doesn't get executed and we do a split the other way. */
2199 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2200 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2202 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2204 /* If I2 or I3 has multiple SETs, we won't know how to track
2205 register status, so don't use these insns. If I2's destination
2206 is used between I2 and I3, we also can't use these insns. */
2208 if (i2_code_number >= 0 && i2set && i3set
2209 && (next_real_insn (i2) == i3
2210 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2211 insn_code_number = recog_for_combine (&newi3pat, i3,
2212 &new_i3_notes);
2213 if (insn_code_number >= 0)
2214 newpat = newi3pat;
2216 /* It is possible that both insns now set the destination of I3.
2217 If so, we must show an extra use of it. */
2219 if (insn_code_number >= 0)
2221 rtx new_i3_dest = SET_DEST (i3set);
2222 rtx new_i2_dest = SET_DEST (i2set);
2224 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2225 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2226 || GET_CODE (new_i3_dest) == SUBREG)
2227 new_i3_dest = XEXP (new_i3_dest, 0);
2229 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2230 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2231 || GET_CODE (new_i2_dest) == SUBREG)
2232 new_i2_dest = XEXP (new_i2_dest, 0);
2234 if (GET_CODE (new_i3_dest) == REG
2235 && GET_CODE (new_i2_dest) == REG
2236 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2237 REG_N_SETS (REGNO (new_i2_dest))++;
2241 /* If we can split it and use I2DEST, go ahead and see if that
2242 helps things be recognized. Verify that none of the registers
2243 are set between I2 and I3. */
2244 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2245 #ifdef HAVE_cc0
2246 && GET_CODE (i2dest) == REG
2247 #endif
2248 /* We need I2DEST in the proper mode. If it is a hard register
2249 or the only use of a pseudo, we can change its mode. */
2250 && (GET_MODE (*split) == GET_MODE (i2dest)
2251 || GET_MODE (*split) == VOIDmode
2252 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2253 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2254 && ! REG_USERVAR_P (i2dest)))
2255 && (next_real_insn (i2) == i3
2256 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2257 /* We can't overwrite I2DEST if its value is still used by
2258 NEWPAT. */
2259 && ! reg_referenced_p (i2dest, newpat))
2261 rtx newdest = i2dest;
2262 enum rtx_code split_code = GET_CODE (*split);
2263 enum machine_mode split_mode = GET_MODE (*split);
2265 /* Get NEWDEST as a register in the proper mode. We have already
2266 validated that we can do this. */
2267 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2269 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2271 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2272 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2275 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2276 an ASHIFT. This can occur if it was inside a PLUS and hence
2277 appeared to be a memory address. This is a kludge. */
2278 if (split_code == MULT
2279 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2280 && INTVAL (XEXP (*split, 1)) > 0
2281 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2283 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2284 XEXP (*split, 0), GEN_INT (i)));
2285 /* Update split_code because we may not have a multiply
2286 anymore. */
2287 split_code = GET_CODE (*split);
2290 #ifdef INSN_SCHEDULING
2291 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2292 be written as a ZERO_EXTEND. */
2293 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2294 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2295 SUBREG_REG (*split)));
2296 #endif
2298 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2299 SUBST (*split, newdest);
2300 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2302 /* If the split point was a MULT and we didn't have one before,
2303 don't use one now. */
2304 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2305 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2309 /* Check for a case where we loaded from memory in a narrow mode and
2310 then sign extended it, but we need both registers. In that case,
2311 we have a PARALLEL with both loads from the same memory location.
2312 We can split this into a load from memory followed by a register-register
2313 copy. This saves at least one insn, more if register allocation can
2314 eliminate the copy.
2316 We cannot do this if the destination of the second assignment is
2317 a register that we have already assumed is zero-extended. Similarly
2318 for a SUBREG of such a register. */
2320 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2321 && GET_CODE (newpat) == PARALLEL
2322 && XVECLEN (newpat, 0) == 2
2323 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2324 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2325 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2326 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2327 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2328 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2329 INSN_CUID (i2))
2330 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2331 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2332 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2333 (GET_CODE (temp) == REG
2334 && reg_nonzero_bits[REGNO (temp)] != 0
2335 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2336 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2337 && (reg_nonzero_bits[REGNO (temp)]
2338 != GET_MODE_MASK (word_mode))))
2339 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2340 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2341 (GET_CODE (temp) == REG
2342 && reg_nonzero_bits[REGNO (temp)] != 0
2343 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2344 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2345 && (reg_nonzero_bits[REGNO (temp)]
2346 != GET_MODE_MASK (word_mode)))))
2347 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2348 SET_SRC (XVECEXP (newpat, 0, 1)))
2349 && ! find_reg_note (i3, REG_UNUSED,
2350 SET_DEST (XVECEXP (newpat, 0, 0))))
2352 rtx ni2dest;
2354 newi2pat = XVECEXP (newpat, 0, 0);
2355 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2356 newpat = XVECEXP (newpat, 0, 1);
2357 SUBST (SET_SRC (newpat),
2358 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
2359 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2361 if (i2_code_number >= 0)
2362 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2364 if (insn_code_number >= 0)
2366 rtx insn;
2367 rtx link;
2369 /* If we will be able to accept this, we have made a change to the
2370 destination of I3. This can invalidate a LOG_LINKS pointing
2371 to I3. No other part of combine.c makes such a transformation.
2373 The new I3 will have a destination that was previously the
2374 destination of I1 or I2 and which was used in i2 or I3. Call
2375 distribute_links to make a LOG_LINK from the next use of
2376 that destination. */
2378 PATTERN (i3) = newpat;
2379 distribute_links (gen_rtx_INSN_LIST (VOIDmode, i3, NULL_RTX));
2381 /* I3 now uses what used to be its destination and which is
2382 now I2's destination. That means we need a LOG_LINK from
2383 I3 to I2. But we used to have one, so we still will.
2385 However, some later insn might be using I2's dest and have
2386 a LOG_LINK pointing at I3. We must remove this link.
2387 The simplest way to remove the link is to point it at I1,
2388 which we know will be a NOTE. */
2390 for (insn = NEXT_INSN (i3);
2391 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2392 || insn != this_basic_block->next_bb->head);
2393 insn = NEXT_INSN (insn))
2395 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2397 for (link = LOG_LINKS (insn); link;
2398 link = XEXP (link, 1))
2399 if (XEXP (link, 0) == i3)
2400 XEXP (link, 0) = i1;
2402 break;
2408 /* Similarly, check for a case where we have a PARALLEL of two independent
2409 SETs but we started with three insns. In this case, we can do the sets
2410 as two separate insns. This case occurs when some SET allows two
2411 other insns to combine, but the destination of that SET is still live. */
2413 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2414 && GET_CODE (newpat) == PARALLEL
2415 && XVECLEN (newpat, 0) == 2
2416 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2417 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2418 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2419 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2420 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2421 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2422 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2423 INSN_CUID (i2))
2424 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2425 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2426 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2427 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2428 XVECEXP (newpat, 0, 0))
2429 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2430 XVECEXP (newpat, 0, 1))
2431 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2432 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2434 /* Normally, it doesn't matter which of the two is done first,
2435 but it does if one references cc0. In that case, it has to
2436 be first. */
2437 #ifdef HAVE_cc0
2438 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2440 newi2pat = XVECEXP (newpat, 0, 0);
2441 newpat = XVECEXP (newpat, 0, 1);
2443 else
2444 #endif
2446 newi2pat = XVECEXP (newpat, 0, 1);
2447 newpat = XVECEXP (newpat, 0, 0);
2450 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2452 if (i2_code_number >= 0)
2453 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2456 /* If it still isn't recognized, fail and change things back the way they
2457 were. */
2458 if ((insn_code_number < 0
2459 /* Is the result a reasonable ASM_OPERANDS? */
2460 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2462 undo_all ();
2463 return 0;
2466 /* If we had to change another insn, make sure it is valid also. */
2467 if (undobuf.other_insn)
2469 rtx other_pat = PATTERN (undobuf.other_insn);
2470 rtx new_other_notes;
2471 rtx note, next;
2473 CLEAR_HARD_REG_SET (newpat_used_regs);
2475 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2476 &new_other_notes);
2478 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2480 undo_all ();
2481 return 0;
2484 PATTERN (undobuf.other_insn) = other_pat;
2486 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2487 are still valid. Then add any non-duplicate notes added by
2488 recog_for_combine. */
2489 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2491 next = XEXP (note, 1);
2493 if (REG_NOTE_KIND (note) == REG_UNUSED
2494 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2496 if (GET_CODE (XEXP (note, 0)) == REG)
2497 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2499 remove_note (undobuf.other_insn, note);
2503 for (note = new_other_notes; note; note = XEXP (note, 1))
2504 if (GET_CODE (XEXP (note, 0)) == REG)
2505 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2507 distribute_notes (new_other_notes, undobuf.other_insn,
2508 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2510 #ifdef HAVE_cc0
2511 /* If I2 is the setter CC0 and I3 is the user CC0 then check whether
2512 they are adjacent to each other or not. */
2514 rtx p = prev_nonnote_insn (i3);
2515 if (p && p != i2 && GET_CODE (p) == INSN && newi2pat
2516 && sets_cc0_p (newi2pat))
2518 undo_all ();
2519 return 0;
2522 #endif
2524 /* We now know that we can do this combination. Merge the insns and
2525 update the status of registers and LOG_LINKS. */
2528 rtx i3notes, i2notes, i1notes = 0;
2529 rtx i3links, i2links, i1links = 0;
2530 rtx midnotes = 0;
2531 unsigned int regno;
2532 /* Compute which registers we expect to eliminate. newi2pat may be setting
2533 either i3dest or i2dest, so we must check it. Also, i1dest may be the
2534 same as i3dest, in which case newi2pat may be setting i1dest. */
2535 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
2536 || i2dest_in_i2src || i2dest_in_i1src
2537 ? 0 : i2dest);
2538 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
2539 || (newi2pat && reg_set_p (i1dest, newi2pat))
2540 ? 0 : i1dest);
2542 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2543 clear them. */
2544 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2545 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2546 if (i1)
2547 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2549 /* Ensure that we do not have something that should not be shared but
2550 occurs multiple times in the new insns. Check this by first
2551 resetting all the `used' flags and then copying anything is shared. */
2553 reset_used_flags (i3notes);
2554 reset_used_flags (i2notes);
2555 reset_used_flags (i1notes);
2556 reset_used_flags (newpat);
2557 reset_used_flags (newi2pat);
2558 if (undobuf.other_insn)
2559 reset_used_flags (PATTERN (undobuf.other_insn));
2561 i3notes = copy_rtx_if_shared (i3notes);
2562 i2notes = copy_rtx_if_shared (i2notes);
2563 i1notes = copy_rtx_if_shared (i1notes);
2564 newpat = copy_rtx_if_shared (newpat);
2565 newi2pat = copy_rtx_if_shared (newi2pat);
2566 if (undobuf.other_insn)
2567 reset_used_flags (PATTERN (undobuf.other_insn));
2569 INSN_CODE (i3) = insn_code_number;
2570 PATTERN (i3) = newpat;
2572 if (GET_CODE (i3) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (i3))
2574 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2576 reset_used_flags (call_usage);
2577 call_usage = copy_rtx (call_usage);
2579 if (substed_i2)
2580 replace_rtx (call_usage, i2dest, i2src);
2582 if (substed_i1)
2583 replace_rtx (call_usage, i1dest, i1src);
2585 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2588 if (undobuf.other_insn)
2589 INSN_CODE (undobuf.other_insn) = other_code_number;
2591 /* We had one special case above where I2 had more than one set and
2592 we replaced a destination of one of those sets with the destination
2593 of I3. In that case, we have to update LOG_LINKS of insns later
2594 in this basic block. Note that this (expensive) case is rare.
2596 Also, in this case, we must pretend that all REG_NOTEs for I2
2597 actually came from I3, so that REG_UNUSED notes from I2 will be
2598 properly handled. */
2600 if (i3_subst_into_i2)
2602 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2603 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2604 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2605 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2606 && ! find_reg_note (i2, REG_UNUSED,
2607 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2608 for (temp = NEXT_INSN (i2);
2609 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2610 || this_basic_block->head != temp);
2611 temp = NEXT_INSN (temp))
2612 if (temp != i3 && INSN_P (temp))
2613 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2614 if (XEXP (link, 0) == i2)
2615 XEXP (link, 0) = i3;
2617 if (i3notes)
2619 rtx link = i3notes;
2620 while (XEXP (link, 1))
2621 link = XEXP (link, 1);
2622 XEXP (link, 1) = i2notes;
2624 else
2625 i3notes = i2notes;
2626 i2notes = 0;
2629 LOG_LINKS (i3) = 0;
2630 REG_NOTES (i3) = 0;
2631 LOG_LINKS (i2) = 0;
2632 REG_NOTES (i2) = 0;
2634 if (newi2pat)
2636 INSN_CODE (i2) = i2_code_number;
2637 PATTERN (i2) = newi2pat;
2639 else
2641 PUT_CODE (i2, NOTE);
2642 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2643 NOTE_SOURCE_FILE (i2) = 0;
2646 if (i1)
2648 LOG_LINKS (i1) = 0;
2649 REG_NOTES (i1) = 0;
2650 PUT_CODE (i1, NOTE);
2651 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2652 NOTE_SOURCE_FILE (i1) = 0;
2655 /* Get death notes for everything that is now used in either I3 or
2656 I2 and used to die in a previous insn. If we built two new
2657 patterns, move from I1 to I2 then I2 to I3 so that we get the
2658 proper movement on registers that I2 modifies. */
2660 if (newi2pat)
2662 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2663 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2665 else
2666 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2667 i3, &midnotes);
2669 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2670 if (i3notes)
2671 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2672 elim_i2, elim_i1);
2673 if (i2notes)
2674 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2675 elim_i2, elim_i1);
2676 if (i1notes)
2677 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
2678 elim_i2, elim_i1);
2679 if (midnotes)
2680 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2681 elim_i2, elim_i1);
2683 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2684 know these are REG_UNUSED and want them to go to the desired insn,
2685 so we always pass it as i3. We have not counted the notes in
2686 reg_n_deaths yet, so we need to do so now. */
2688 if (newi2pat && new_i2_notes)
2690 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2691 if (GET_CODE (XEXP (temp, 0)) == REG)
2692 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2694 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2697 if (new_i3_notes)
2699 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2700 if (GET_CODE (XEXP (temp, 0)) == REG)
2701 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2703 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
2706 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2707 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2708 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2709 in that case, it might delete I2. Similarly for I2 and I1.
2710 Show an additional death due to the REG_DEAD note we make here. If
2711 we discard it in distribute_notes, we will decrement it again. */
2713 if (i3dest_killed)
2715 if (GET_CODE (i3dest_killed) == REG)
2716 REG_N_DEATHS (REGNO (i3dest_killed))++;
2718 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2719 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2720 NULL_RTX),
2721 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
2722 else
2723 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2724 NULL_RTX),
2725 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2726 elim_i2, elim_i1);
2729 if (i2dest_in_i2src)
2731 if (GET_CODE (i2dest) == REG)
2732 REG_N_DEATHS (REGNO (i2dest))++;
2734 if (newi2pat && reg_set_p (i2dest, newi2pat))
2735 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2736 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2737 else
2738 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2739 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2740 NULL_RTX, NULL_RTX);
2743 if (i1dest_in_i1src)
2745 if (GET_CODE (i1dest) == REG)
2746 REG_N_DEATHS (REGNO (i1dest))++;
2748 if (newi2pat && reg_set_p (i1dest, newi2pat))
2749 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2750 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2751 else
2752 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2753 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2754 NULL_RTX, NULL_RTX);
2757 distribute_links (i3links);
2758 distribute_links (i2links);
2759 distribute_links (i1links);
2761 if (GET_CODE (i2dest) == REG)
2763 rtx link;
2764 rtx i2_insn = 0, i2_val = 0, set;
2766 /* The insn that used to set this register doesn't exist, and
2767 this life of the register may not exist either. See if one of
2768 I3's links points to an insn that sets I2DEST. If it does,
2769 that is now the last known value for I2DEST. If we don't update
2770 this and I2 set the register to a value that depended on its old
2771 contents, we will get confused. If this insn is used, thing
2772 will be set correctly in combine_instructions. */
2774 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2775 if ((set = single_set (XEXP (link, 0))) != 0
2776 && rtx_equal_p (i2dest, SET_DEST (set)))
2777 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2779 record_value_for_reg (i2dest, i2_insn, i2_val);
2781 /* If the reg formerly set in I2 died only once and that was in I3,
2782 zero its use count so it won't make `reload' do any work. */
2783 if (! added_sets_2
2784 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2785 && ! i2dest_in_i2src)
2787 regno = REGNO (i2dest);
2788 REG_N_SETS (regno)--;
2792 if (i1 && GET_CODE (i1dest) == REG)
2794 rtx link;
2795 rtx i1_insn = 0, i1_val = 0, set;
2797 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2798 if ((set = single_set (XEXP (link, 0))) != 0
2799 && rtx_equal_p (i1dest, SET_DEST (set)))
2800 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2802 record_value_for_reg (i1dest, i1_insn, i1_val);
2804 regno = REGNO (i1dest);
2805 if (! added_sets_1 && ! i1dest_in_i1src)
2806 REG_N_SETS (regno)--;
2809 /* Update reg_nonzero_bits et al for any changes that may have been made
2810 to this insn. The order of set_nonzero_bits_and_sign_copies() is
2811 important. Because newi2pat can affect nonzero_bits of newpat */
2812 if (newi2pat)
2813 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2814 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2816 /* Set new_direct_jump_p if a new return or simple jump instruction
2817 has been created.
2819 If I3 is now an unconditional jump, ensure that it has a
2820 BARRIER following it since it may have initially been a
2821 conditional jump. It may also be the last nonnote insn. */
2823 if (GET_CODE (newpat) == RETURN || any_uncondjump_p (i3))
2825 *new_direct_jump_p = 1;
2827 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2828 || GET_CODE (temp) != BARRIER)
2829 emit_barrier_after (i3);
2831 /* An NOOP jump does not need barrier, but it does need cleaning up
2832 of CFG. */
2833 if (GET_CODE (newpat) == SET
2834 && SET_SRC (newpat) == pc_rtx
2835 && SET_DEST (newpat) == pc_rtx)
2836 *new_direct_jump_p = 1;
2839 combine_successes++;
2840 undo_commit ();
2842 /* Clear this here, so that subsequent get_last_value calls are not
2843 affected. */
2844 subst_prev_insn = NULL_RTX;
2846 if (added_links_insn
2847 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2848 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2849 return added_links_insn;
2850 else
2851 return newi2pat ? i2 : i3;
2854 /* Undo all the modifications recorded in undobuf. */
2856 static void
2857 undo_all ()
2859 struct undo *undo, *next;
2861 for (undo = undobuf.undos; undo; undo = next)
2863 next = undo->next;
2864 if (undo->is_int)
2865 *undo->where.i = undo->old_contents.i;
2866 else
2867 *undo->where.r = undo->old_contents.r;
2869 undo->next = undobuf.frees;
2870 undobuf.frees = undo;
2873 undobuf.undos = 0;
2875 /* Clear this here, so that subsequent get_last_value calls are not
2876 affected. */
2877 subst_prev_insn = NULL_RTX;
2880 /* We've committed to accepting the changes we made. Move all
2881 of the undos to the free list. */
2883 static void
2884 undo_commit ()
2886 struct undo *undo, *next;
2888 for (undo = undobuf.undos; undo; undo = next)
2890 next = undo->next;
2891 undo->next = undobuf.frees;
2892 undobuf.frees = undo;
2894 undobuf.undos = 0;
2898 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2899 where we have an arithmetic expression and return that point. LOC will
2900 be inside INSN.
2902 try_combine will call this function to see if an insn can be split into
2903 two insns. */
2905 static rtx *
2906 find_split_point (loc, insn)
2907 rtx *loc;
2908 rtx insn;
2910 rtx x = *loc;
2911 enum rtx_code code = GET_CODE (x);
2912 rtx *split;
2913 unsigned HOST_WIDE_INT len = 0;
2914 HOST_WIDE_INT pos = 0;
2915 int unsignedp = 0;
2916 rtx inner = NULL_RTX;
2918 /* First special-case some codes. */
2919 switch (code)
2921 case SUBREG:
2922 #ifdef INSN_SCHEDULING
2923 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2924 point. */
2925 if (GET_CODE (SUBREG_REG (x)) == MEM)
2926 return loc;
2927 #endif
2928 return find_split_point (&SUBREG_REG (x), insn);
2930 case MEM:
2931 #ifdef HAVE_lo_sum
2932 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2933 using LO_SUM and HIGH. */
2934 if (GET_CODE (XEXP (x, 0)) == CONST
2935 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2937 SUBST (XEXP (x, 0),
2938 gen_rtx_LO_SUM (Pmode,
2939 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
2940 XEXP (x, 0)));
2941 return &XEXP (XEXP (x, 0), 0);
2943 #endif
2945 /* If we have a PLUS whose second operand is a constant and the
2946 address is not valid, perhaps will can split it up using
2947 the machine-specific way to split large constants. We use
2948 the first pseudo-reg (one of the virtual regs) as a placeholder;
2949 it will not remain in the result. */
2950 if (GET_CODE (XEXP (x, 0)) == PLUS
2951 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2952 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2954 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2955 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2956 subst_insn);
2958 /* This should have produced two insns, each of which sets our
2959 placeholder. If the source of the second is a valid address,
2960 we can make put both sources together and make a split point
2961 in the middle. */
2963 if (seq && XVECLEN (seq, 0) == 2
2964 && GET_CODE (XVECEXP (seq, 0, 0)) == INSN
2965 && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) == SET
2966 && SET_DEST (PATTERN (XVECEXP (seq, 0, 0))) == reg
2967 && ! reg_mentioned_p (reg,
2968 SET_SRC (PATTERN (XVECEXP (seq, 0, 0))))
2969 && GET_CODE (XVECEXP (seq, 0, 1)) == INSN
2970 && GET_CODE (PATTERN (XVECEXP (seq, 0, 1))) == SET
2971 && SET_DEST (PATTERN (XVECEXP (seq, 0, 1))) == reg
2972 && memory_address_p (GET_MODE (x),
2973 SET_SRC (PATTERN (XVECEXP (seq, 0, 1)))))
2975 rtx src1 = SET_SRC (PATTERN (XVECEXP (seq, 0, 0)));
2976 rtx src2 = SET_SRC (PATTERN (XVECEXP (seq, 0, 1)));
2978 /* Replace the placeholder in SRC2 with SRC1. If we can
2979 find where in SRC2 it was placed, that can become our
2980 split point and we can replace this address with SRC2.
2981 Just try two obvious places. */
2983 src2 = replace_rtx (src2, reg, src1);
2984 split = 0;
2985 if (XEXP (src2, 0) == src1)
2986 split = &XEXP (src2, 0);
2987 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2988 && XEXP (XEXP (src2, 0), 0) == src1)
2989 split = &XEXP (XEXP (src2, 0), 0);
2991 if (split)
2993 SUBST (XEXP (x, 0), src2);
2994 return split;
2998 /* If that didn't work, perhaps the first operand is complex and
2999 needs to be computed separately, so make a split point there.
3000 This will occur on machines that just support REG + CONST
3001 and have a constant moved through some previous computation. */
3003 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
3004 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3005 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
3006 == 'o')))
3007 return &XEXP (XEXP (x, 0), 0);
3009 break;
3011 case SET:
3012 #ifdef HAVE_cc0
3013 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3014 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3015 we need to put the operand into a register. So split at that
3016 point. */
3018 if (SET_DEST (x) == cc0_rtx
3019 && GET_CODE (SET_SRC (x)) != COMPARE
3020 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3021 && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
3022 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3023 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
3024 return &SET_SRC (x);
3025 #endif
3027 /* See if we can split SET_SRC as it stands. */
3028 split = find_split_point (&SET_SRC (x), insn);
3029 if (split && split != &SET_SRC (x))
3030 return split;
3032 /* See if we can split SET_DEST as it stands. */
3033 split = find_split_point (&SET_DEST (x), insn);
3034 if (split && split != &SET_DEST (x))
3035 return split;
3037 /* See if this is a bitfield assignment with everything constant. If
3038 so, this is an IOR of an AND, so split it into that. */
3039 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3040 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3041 <= HOST_BITS_PER_WIDE_INT)
3042 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3043 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3044 && GET_CODE (SET_SRC (x)) == CONST_INT
3045 && ((INTVAL (XEXP (SET_DEST (x), 1))
3046 + INTVAL (XEXP (SET_DEST (x), 2)))
3047 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3048 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3050 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3051 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3052 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3053 rtx dest = XEXP (SET_DEST (x), 0);
3054 enum machine_mode mode = GET_MODE (dest);
3055 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3057 if (BITS_BIG_ENDIAN)
3058 pos = GET_MODE_BITSIZE (mode) - len - pos;
3060 if (src == mask)
3061 SUBST (SET_SRC (x),
3062 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3063 else
3064 SUBST (SET_SRC (x),
3065 gen_binary (IOR, mode,
3066 gen_binary (AND, mode, dest,
3067 gen_int_mode (~(mask << pos),
3068 mode)),
3069 GEN_INT (src << pos)));
3071 SUBST (SET_DEST (x), dest);
3073 split = find_split_point (&SET_SRC (x), insn);
3074 if (split && split != &SET_SRC (x))
3075 return split;
3078 /* Otherwise, see if this is an operation that we can split into two.
3079 If so, try to split that. */
3080 code = GET_CODE (SET_SRC (x));
3082 switch (code)
3084 case AND:
3085 /* If we are AND'ing with a large constant that is only a single
3086 bit and the result is only being used in a context where we
3087 need to know if it is zero or non-zero, replace it with a bit
3088 extraction. This will avoid the large constant, which might
3089 have taken more than one insn to make. If the constant were
3090 not a valid argument to the AND but took only one insn to make,
3091 this is no worse, but if it took more than one insn, it will
3092 be better. */
3094 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3095 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3096 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3097 && GET_CODE (SET_DEST (x)) == REG
3098 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3099 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3100 && XEXP (*split, 0) == SET_DEST (x)
3101 && XEXP (*split, 1) == const0_rtx)
3103 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3104 XEXP (SET_SRC (x), 0),
3105 pos, NULL_RTX, 1, 1, 0, 0);
3106 if (extraction != 0)
3108 SUBST (SET_SRC (x), extraction);
3109 return find_split_point (loc, insn);
3112 break;
3114 case NE:
3115 /* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3116 is known to be on, this can be converted into a NEG of a shift. */
3117 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3118 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3119 && 1 <= (pos = exact_log2
3120 (nonzero_bits (XEXP (SET_SRC (x), 0),
3121 GET_MODE (XEXP (SET_SRC (x), 0))))))
3123 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3125 SUBST (SET_SRC (x),
3126 gen_rtx_NEG (mode,
3127 gen_rtx_LSHIFTRT (mode,
3128 XEXP (SET_SRC (x), 0),
3129 GEN_INT (pos))));
3131 split = find_split_point (&SET_SRC (x), insn);
3132 if (split && split != &SET_SRC (x))
3133 return split;
3135 break;
3137 case SIGN_EXTEND:
3138 inner = XEXP (SET_SRC (x), 0);
3140 /* We can't optimize if either mode is a partial integer
3141 mode as we don't know how many bits are significant
3142 in those modes. */
3143 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3144 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3145 break;
3147 pos = 0;
3148 len = GET_MODE_BITSIZE (GET_MODE (inner));
3149 unsignedp = 0;
3150 break;
3152 case SIGN_EXTRACT:
3153 case ZERO_EXTRACT:
3154 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3155 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3157 inner = XEXP (SET_SRC (x), 0);
3158 len = INTVAL (XEXP (SET_SRC (x), 1));
3159 pos = INTVAL (XEXP (SET_SRC (x), 2));
3161 if (BITS_BIG_ENDIAN)
3162 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3163 unsignedp = (code == ZERO_EXTRACT);
3165 break;
3167 default:
3168 break;
3171 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3173 enum machine_mode mode = GET_MODE (SET_SRC (x));
3175 /* For unsigned, we have a choice of a shift followed by an
3176 AND or two shifts. Use two shifts for field sizes where the
3177 constant might be too large. We assume here that we can
3178 always at least get 8-bit constants in an AND insn, which is
3179 true for every current RISC. */
3181 if (unsignedp && len <= 8)
3183 SUBST (SET_SRC (x),
3184 gen_rtx_AND (mode,
3185 gen_rtx_LSHIFTRT
3186 (mode, gen_lowpart_for_combine (mode, inner),
3187 GEN_INT (pos)),
3188 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3190 split = find_split_point (&SET_SRC (x), insn);
3191 if (split && split != &SET_SRC (x))
3192 return split;
3194 else
3196 SUBST (SET_SRC (x),
3197 gen_rtx_fmt_ee
3198 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3199 gen_rtx_ASHIFT (mode,
3200 gen_lowpart_for_combine (mode, inner),
3201 GEN_INT (GET_MODE_BITSIZE (mode)
3202 - len - pos)),
3203 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3205 split = find_split_point (&SET_SRC (x), insn);
3206 if (split && split != &SET_SRC (x))
3207 return split;
3211 /* See if this is a simple operation with a constant as the second
3212 operand. It might be that this constant is out of range and hence
3213 could be used as a split point. */
3214 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3215 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3216 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
3217 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3218 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
3219 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3220 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
3221 == 'o'))))
3222 return &XEXP (SET_SRC (x), 1);
3224 /* Finally, see if this is a simple operation with its first operand
3225 not in a register. The operation might require this operand in a
3226 register, so return it as a split point. We can always do this
3227 because if the first operand were another operation, we would have
3228 already found it as a split point. */
3229 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3230 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3231 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
3232 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
3233 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3234 return &XEXP (SET_SRC (x), 0);
3236 return 0;
3238 case AND:
3239 case IOR:
3240 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3241 it is better to write this as (not (ior A B)) so we can split it.
3242 Similarly for IOR. */
3243 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3245 SUBST (*loc,
3246 gen_rtx_NOT (GET_MODE (x),
3247 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3248 GET_MODE (x),
3249 XEXP (XEXP (x, 0), 0),
3250 XEXP (XEXP (x, 1), 0))));
3251 return find_split_point (loc, insn);
3254 /* Many RISC machines have a large set of logical insns. If the
3255 second operand is a NOT, put it first so we will try to split the
3256 other operand first. */
3257 if (GET_CODE (XEXP (x, 1)) == NOT)
3259 rtx tem = XEXP (x, 0);
3260 SUBST (XEXP (x, 0), XEXP (x, 1));
3261 SUBST (XEXP (x, 1), tem);
3263 break;
3265 default:
3266 break;
3269 /* Otherwise, select our actions depending on our rtx class. */
3270 switch (GET_RTX_CLASS (code))
3272 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3273 case '3':
3274 split = find_split_point (&XEXP (x, 2), insn);
3275 if (split)
3276 return split;
3277 /* ... fall through ... */
3278 case '2':
3279 case 'c':
3280 case '<':
3281 split = find_split_point (&XEXP (x, 1), insn);
3282 if (split)
3283 return split;
3284 /* ... fall through ... */
3285 case '1':
3286 /* Some machines have (and (shift ...) ...) insns. If X is not
3287 an AND, but XEXP (X, 0) is, use it as our split point. */
3288 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3289 return &XEXP (x, 0);
3291 split = find_split_point (&XEXP (x, 0), insn);
3292 if (split)
3293 return split;
3294 return loc;
3297 /* Otherwise, we don't have a split point. */
3298 return 0;
3301 /* Throughout X, replace FROM with TO, and return the result.
3302 The result is TO if X is FROM;
3303 otherwise the result is X, but its contents may have been modified.
3304 If they were modified, a record was made in undobuf so that
3305 undo_all will (among other things) return X to its original state.
3307 If the number of changes necessary is too much to record to undo,
3308 the excess changes are not made, so the result is invalid.
3309 The changes already made can still be undone.
3310 undobuf.num_undo is incremented for such changes, so by testing that
3311 the caller can tell whether the result is valid.
3313 `n_occurrences' is incremented each time FROM is replaced.
3315 IN_DEST is non-zero if we are processing the SET_DEST of a SET.
3317 UNIQUE_COPY is non-zero if each substitution must be unique. We do this
3318 by copying if `n_occurrences' is non-zero. */
3320 static rtx
3321 subst (x, from, to, in_dest, unique_copy)
3322 rtx x, from, to;
3323 int in_dest;
3324 int unique_copy;
3326 enum rtx_code code = GET_CODE (x);
3327 enum machine_mode op0_mode = VOIDmode;
3328 const char *fmt;
3329 int len, i;
3330 rtx new;
3332 /* Two expressions are equal if they are identical copies of a shared
3333 RTX or if they are both registers with the same register number
3334 and mode. */
3336 #define COMBINE_RTX_EQUAL_P(X,Y) \
3337 ((X) == (Y) \
3338 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3339 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3341 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3343 n_occurrences++;
3344 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3347 /* If X and FROM are the same register but different modes, they will
3348 not have been seen as equal above. However, flow.c will make a
3349 LOG_LINKS entry for that case. If we do nothing, we will try to
3350 rerecognize our original insn and, when it succeeds, we will
3351 delete the feeding insn, which is incorrect.
3353 So force this insn not to match in this (rare) case. */
3354 if (! in_dest && code == REG && GET_CODE (from) == REG
3355 && REGNO (x) == REGNO (from))
3356 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3358 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3359 of which may contain things that can be combined. */
3360 if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
3361 return x;
3363 /* It is possible to have a subexpression appear twice in the insn.
3364 Suppose that FROM is a register that appears within TO.
3365 Then, after that subexpression has been scanned once by `subst',
3366 the second time it is scanned, TO may be found. If we were
3367 to scan TO here, we would find FROM within it and create a
3368 self-referent rtl structure which is completely wrong. */
3369 if (COMBINE_RTX_EQUAL_P (x, to))
3370 return to;
3372 /* Parallel asm_operands need special attention because all of the
3373 inputs are shared across the arms. Furthermore, unsharing the
3374 rtl results in recognition failures. Failure to handle this case
3375 specially can result in circular rtl.
3377 Solve this by doing a normal pass across the first entry of the
3378 parallel, and only processing the SET_DESTs of the subsequent
3379 entries. Ug. */
3381 if (code == PARALLEL
3382 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3383 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3385 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3387 /* If this substitution failed, this whole thing fails. */
3388 if (GET_CODE (new) == CLOBBER
3389 && XEXP (new, 0) == const0_rtx)
3390 return new;
3392 SUBST (XVECEXP (x, 0, 0), new);
3394 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3396 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3398 if (GET_CODE (dest) != REG
3399 && GET_CODE (dest) != CC0
3400 && GET_CODE (dest) != PC)
3402 new = subst (dest, from, to, 0, unique_copy);
3404 /* If this substitution failed, this whole thing fails. */
3405 if (GET_CODE (new) == CLOBBER
3406 && XEXP (new, 0) == const0_rtx)
3407 return new;
3409 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3413 else
3415 len = GET_RTX_LENGTH (code);
3416 fmt = GET_RTX_FORMAT (code);
3418 /* We don't need to process a SET_DEST that is a register, CC0,
3419 or PC, so set up to skip this common case. All other cases
3420 where we want to suppress replacing something inside a
3421 SET_SRC are handled via the IN_DEST operand. */
3422 if (code == SET
3423 && (GET_CODE (SET_DEST (x)) == REG
3424 || GET_CODE (SET_DEST (x)) == CC0
3425 || GET_CODE (SET_DEST (x)) == PC))
3426 fmt = "ie";
3428 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3429 constant. */
3430 if (fmt[0] == 'e')
3431 op0_mode = GET_MODE (XEXP (x, 0));
3433 for (i = 0; i < len; i++)
3435 if (fmt[i] == 'E')
3437 int j;
3438 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3440 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3442 new = (unique_copy && n_occurrences
3443 ? copy_rtx (to) : to);
3444 n_occurrences++;
3446 else
3448 new = subst (XVECEXP (x, i, j), from, to, 0,
3449 unique_copy);
3451 /* If this substitution failed, this whole thing
3452 fails. */
3453 if (GET_CODE (new) == CLOBBER
3454 && XEXP (new, 0) == const0_rtx)
3455 return new;
3458 SUBST (XVECEXP (x, i, j), new);
3461 else if (fmt[i] == 'e')
3463 /* If this is a register being set, ignore it. */
3464 new = XEXP (x, i);
3465 if (in_dest
3466 && (code == SUBREG || code == STRICT_LOW_PART
3467 || code == ZERO_EXTRACT)
3468 && i == 0
3469 && GET_CODE (new) == REG)
3472 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3474 /* In general, don't install a subreg involving two
3475 modes not tieable. It can worsen register
3476 allocation, and can even make invalid reload
3477 insns, since the reg inside may need to be copied
3478 from in the outside mode, and that may be invalid
3479 if it is an fp reg copied in integer mode.
3481 We allow two exceptions to this: It is valid if
3482 it is inside another SUBREG and the mode of that
3483 SUBREG and the mode of the inside of TO is
3484 tieable and it is valid if X is a SET that copies
3485 FROM to CC0. */
3487 if (GET_CODE (to) == SUBREG
3488 && ! MODES_TIEABLE_P (GET_MODE (to),
3489 GET_MODE (SUBREG_REG (to)))
3490 && ! (code == SUBREG
3491 && MODES_TIEABLE_P (GET_MODE (x),
3492 GET_MODE (SUBREG_REG (to))))
3493 #ifdef HAVE_cc0
3494 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3495 #endif
3497 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3499 #ifdef CLASS_CANNOT_CHANGE_MODE
3500 if (code == SUBREG
3501 && GET_CODE (to) == REG
3502 && REGNO (to) < FIRST_PSEUDO_REGISTER
3503 && (TEST_HARD_REG_BIT
3504 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
3505 REGNO (to)))
3506 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (to),
3507 GET_MODE (x)))
3508 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3509 #endif
3511 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3512 n_occurrences++;
3514 else
3515 /* If we are in a SET_DEST, suppress most cases unless we
3516 have gone inside a MEM, in which case we want to
3517 simplify the address. We assume here that things that
3518 are actually part of the destination have their inner
3519 parts in the first expression. This is true for SUBREG,
3520 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3521 things aside from REG and MEM that should appear in a
3522 SET_DEST. */
3523 new = subst (XEXP (x, i), from, to,
3524 (((in_dest
3525 && (code == SUBREG || code == STRICT_LOW_PART
3526 || code == ZERO_EXTRACT))
3527 || code == SET)
3528 && i == 0), unique_copy);
3530 /* If we found that we will have to reject this combination,
3531 indicate that by returning the CLOBBER ourselves, rather than
3532 an expression containing it. This will speed things up as
3533 well as prevent accidents where two CLOBBERs are considered
3534 to be equal, thus producing an incorrect simplification. */
3536 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3537 return new;
3539 if (GET_CODE (new) == CONST_INT && GET_CODE (x) == SUBREG)
3541 if (VECTOR_MODE_P (GET_MODE (x)))
3542 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3544 x = simplify_subreg (GET_MODE (x), new,
3545 GET_MODE (SUBREG_REG (x)),
3546 SUBREG_BYTE (x));
3547 if (! x)
3548 abort ();
3550 else if (GET_CODE (new) == CONST_INT
3551 && GET_CODE (x) == ZERO_EXTEND)
3553 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3554 new, GET_MODE (XEXP (x, 0)));
3555 if (! x)
3556 abort ();
3558 else
3559 SUBST (XEXP (x, i), new);
3564 /* Try to simplify X. If the simplification changed the code, it is likely
3565 that further simplification will help, so loop, but limit the number
3566 of repetitions that will be performed. */
3568 for (i = 0; i < 4; i++)
3570 /* If X is sufficiently simple, don't bother trying to do anything
3571 with it. */
3572 if (code != CONST_INT && code != REG && code != CLOBBER)
3573 x = combine_simplify_rtx (x, op0_mode, i == 3, in_dest);
3575 if (GET_CODE (x) == code)
3576 break;
3578 code = GET_CODE (x);
3580 /* We no longer know the original mode of operand 0 since we
3581 have changed the form of X) */
3582 op0_mode = VOIDmode;
3585 return x;
3588 /* Simplify X, a piece of RTL. We just operate on the expression at the
3589 outer level; call `subst' to simplify recursively. Return the new
3590 expression.
3592 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3593 will be the iteration even if an expression with a code different from
3594 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3596 static rtx
3597 combine_simplify_rtx (x, op0_mode, last, in_dest)
3598 rtx x;
3599 enum machine_mode op0_mode;
3600 int last;
3601 int in_dest;
3603 enum rtx_code code = GET_CODE (x);
3604 enum machine_mode mode = GET_MODE (x);
3605 rtx temp;
3606 rtx reversed;
3607 int i;
3609 /* If this is a commutative operation, put a constant last and a complex
3610 expression first. We don't need to do this for comparisons here. */
3611 if (GET_RTX_CLASS (code) == 'c'
3612 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3614 temp = XEXP (x, 0);
3615 SUBST (XEXP (x, 0), XEXP (x, 1));
3616 SUBST (XEXP (x, 1), temp);
3619 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3620 sign extension of a PLUS with a constant, reverse the order of the sign
3621 extension and the addition. Note that this not the same as the original
3622 code, but overflow is undefined for signed values. Also note that the
3623 PLUS will have been partially moved "inside" the sign-extension, so that
3624 the first operand of X will really look like:
3625 (ashiftrt (plus (ashift A C4) C5) C4).
3626 We convert this to
3627 (plus (ashiftrt (ashift A C4) C2) C4)
3628 and replace the first operand of X with that expression. Later parts
3629 of this function may simplify the expression further.
3631 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3632 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3633 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3635 We do this to simplify address expressions. */
3637 if ((code == PLUS || code == MINUS || code == MULT)
3638 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3639 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3640 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3641 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3642 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3643 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3644 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3645 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3646 XEXP (XEXP (XEXP (x, 0), 0), 1),
3647 XEXP (XEXP (x, 0), 1))) != 0)
3649 rtx new
3650 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3651 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3652 INTVAL (XEXP (XEXP (x, 0), 1)));
3654 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3655 INTVAL (XEXP (XEXP (x, 0), 1)));
3657 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3660 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3661 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3662 things. Check for cases where both arms are testing the same
3663 condition.
3665 Don't do anything if all operands are very simple. */
3667 if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3668 || GET_RTX_CLASS (code) == '<')
3669 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3670 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3671 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3672 == 'o')))
3673 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3674 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3675 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3676 == 'o')))))
3677 || (GET_RTX_CLASS (code) == '1'
3678 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3679 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3680 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3681 == 'o'))))))
3683 rtx cond, true_rtx, false_rtx;
3685 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3686 if (cond != 0
3687 /* If everything is a comparison, what we have is highly unlikely
3688 to be simpler, so don't use it. */
3689 && ! (GET_RTX_CLASS (code) == '<'
3690 && (GET_RTX_CLASS (GET_CODE (true_rtx)) == '<'
3691 || GET_RTX_CLASS (GET_CODE (false_rtx)) == '<')))
3693 rtx cop1 = const0_rtx;
3694 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3696 if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3697 return x;
3699 /* Simplify the alternative arms; this may collapse the true and
3700 false arms to store-flag values. */
3701 true_rtx = subst (true_rtx, pc_rtx, pc_rtx, 0, 0);
3702 false_rtx = subst (false_rtx, pc_rtx, pc_rtx, 0, 0);
3704 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3705 is unlikely to be simpler. */
3706 if (general_operand (true_rtx, VOIDmode)
3707 && general_operand (false_rtx, VOIDmode))
3709 /* Restarting if we generate a store-flag expression will cause
3710 us to loop. Just drop through in this case. */
3712 /* If the result values are STORE_FLAG_VALUE and zero, we can
3713 just make the comparison operation. */
3714 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3715 x = gen_binary (cond_code, mode, cond, cop1);
3716 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3717 && reverse_condition (cond_code) != UNKNOWN)
3718 x = gen_binary (reverse_condition (cond_code),
3719 mode, cond, cop1);
3721 /* Likewise, we can make the negate of a comparison operation
3722 if the result values are - STORE_FLAG_VALUE and zero. */
3723 else if (GET_CODE (true_rtx) == CONST_INT
3724 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3725 && false_rtx == const0_rtx)
3726 x = simplify_gen_unary (NEG, mode,
3727 gen_binary (cond_code, mode, cond,
3728 cop1),
3729 mode);
3730 else if (GET_CODE (false_rtx) == CONST_INT
3731 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3732 && true_rtx == const0_rtx)
3733 x = simplify_gen_unary (NEG, mode,
3734 gen_binary (reverse_condition
3735 (cond_code),
3736 mode, cond, cop1),
3737 mode);
3738 else
3739 return gen_rtx_IF_THEN_ELSE (mode,
3740 gen_binary (cond_code, VOIDmode,
3741 cond, cop1),
3742 true_rtx, false_rtx);
3744 code = GET_CODE (x);
3745 op0_mode = VOIDmode;
3750 /* Try to fold this expression in case we have constants that weren't
3751 present before. */
3752 temp = 0;
3753 switch (GET_RTX_CLASS (code))
3755 case '1':
3756 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3757 break;
3758 case '<':
3760 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3761 if (cmp_mode == VOIDmode)
3763 cmp_mode = GET_MODE (XEXP (x, 1));
3764 if (cmp_mode == VOIDmode)
3765 cmp_mode = op0_mode;
3767 temp = simplify_relational_operation (code, cmp_mode,
3768 XEXP (x, 0), XEXP (x, 1));
3770 #ifdef FLOAT_STORE_FLAG_VALUE
3771 if (temp != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3773 if (temp == const0_rtx)
3774 temp = CONST0_RTX (mode);
3775 else
3776 temp = CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE (mode),
3777 mode);
3779 #endif
3780 break;
3781 case 'c':
3782 case '2':
3783 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3784 break;
3785 case 'b':
3786 case '3':
3787 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3788 XEXP (x, 1), XEXP (x, 2));
3789 break;
3792 if (temp)
3794 x = temp;
3795 code = GET_CODE (temp);
3796 op0_mode = VOIDmode;
3797 mode = GET_MODE (temp);
3800 /* First see if we can apply the inverse distributive law. */
3801 if (code == PLUS || code == MINUS
3802 || code == AND || code == IOR || code == XOR)
3804 x = apply_distributive_law (x);
3805 code = GET_CODE (x);
3806 op0_mode = VOIDmode;
3809 /* If CODE is an associative operation not otherwise handled, see if we
3810 can associate some operands. This can win if they are constants or
3811 if they are logically related (i.e. (a & b) & a). */
3812 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3813 || code == AND || code == IOR || code == XOR
3814 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3815 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3816 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3818 if (GET_CODE (XEXP (x, 0)) == code)
3820 rtx other = XEXP (XEXP (x, 0), 0);
3821 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3822 rtx inner_op1 = XEXP (x, 1);
3823 rtx inner;
3825 /* Make sure we pass the constant operand if any as the second
3826 one if this is a commutative operation. */
3827 if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3829 rtx tem = inner_op0;
3830 inner_op0 = inner_op1;
3831 inner_op1 = tem;
3833 inner = simplify_binary_operation (code == MINUS ? PLUS
3834 : code == DIV ? MULT
3835 : code,
3836 mode, inner_op0, inner_op1);
3838 /* For commutative operations, try the other pair if that one
3839 didn't simplify. */
3840 if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3842 other = XEXP (XEXP (x, 0), 1);
3843 inner = simplify_binary_operation (code, mode,
3844 XEXP (XEXP (x, 0), 0),
3845 XEXP (x, 1));
3848 if (inner)
3849 return gen_binary (code, mode, other, inner);
3853 /* A little bit of algebraic simplification here. */
3854 switch (code)
3856 case MEM:
3857 /* Ensure that our address has any ASHIFTs converted to MULT in case
3858 address-recognizing predicates are called later. */
3859 temp = make_compound_operation (XEXP (x, 0), MEM);
3860 SUBST (XEXP (x, 0), temp);
3861 break;
3863 case SUBREG:
3864 if (op0_mode == VOIDmode)
3865 op0_mode = GET_MODE (SUBREG_REG (x));
3867 /* simplify_subreg can't use gen_lowpart_for_combine. */
3868 if (CONSTANT_P (SUBREG_REG (x))
3869 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x))
3870 return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3872 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3873 break;
3875 rtx temp;
3876 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3877 SUBREG_BYTE (x));
3878 if (temp)
3879 return temp;
3882 /* Don't change the mode of the MEM if that would change the meaning
3883 of the address. */
3884 if (GET_CODE (SUBREG_REG (x)) == MEM
3885 && (MEM_VOLATILE_P (SUBREG_REG (x))
3886 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
3887 return gen_rtx_CLOBBER (mode, const0_rtx);
3889 /* Note that we cannot do any narrowing for non-constants since
3890 we might have been counting on using the fact that some bits were
3891 zero. We now do this in the SET. */
3893 break;
3895 case NOT:
3896 /* (not (plus X -1)) can become (neg X). */
3897 if (GET_CODE (XEXP (x, 0)) == PLUS
3898 && XEXP (XEXP (x, 0), 1) == constm1_rtx)
3899 return gen_rtx_NEG (mode, XEXP (XEXP (x, 0), 0));
3901 /* Similarly, (not (neg X)) is (plus X -1). */
3902 if (GET_CODE (XEXP (x, 0)) == NEG)
3903 return gen_rtx_PLUS (mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3905 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
3906 if (GET_CODE (XEXP (x, 0)) == XOR
3907 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3908 && (temp = simplify_unary_operation (NOT, mode,
3909 XEXP (XEXP (x, 0), 1),
3910 mode)) != 0)
3911 return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
3913 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
3914 other than 1, but that is not valid. We could do a similar
3915 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3916 but this doesn't seem common enough to bother with. */
3917 if (GET_CODE (XEXP (x, 0)) == ASHIFT
3918 && XEXP (XEXP (x, 0), 0) == const1_rtx)
3919 return gen_rtx_ROTATE (mode, simplify_gen_unary (NOT, mode,
3920 const1_rtx, mode),
3921 XEXP (XEXP (x, 0), 1));
3923 if (GET_CODE (XEXP (x, 0)) == SUBREG
3924 && subreg_lowpart_p (XEXP (x, 0))
3925 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3926 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3927 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3928 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3930 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3932 x = gen_rtx_ROTATE (inner_mode,
3933 simplify_gen_unary (NOT, inner_mode, const1_rtx,
3934 inner_mode),
3935 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3936 return gen_lowpart_for_combine (mode, x);
3939 /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3940 reversing the comparison code if valid. */
3941 if (STORE_FLAG_VALUE == -1
3942 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3943 && (reversed = reversed_comparison (x, mode, XEXP (XEXP (x, 0), 0),
3944 XEXP (XEXP (x, 0), 1))))
3945 return reversed;
3947 /* (not (ashiftrt foo C)) where C is the number of bits in FOO minus 1
3948 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
3949 perform the above simplification. */
3951 if (STORE_FLAG_VALUE == -1
3952 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3953 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3954 && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
3955 return gen_rtx_GE (mode, XEXP (XEXP (x, 0), 0), const0_rtx);
3957 /* Apply De Morgan's laws to reduce number of patterns for machines
3958 with negating logical insns (and-not, nand, etc.). If result has
3959 only one NOT, put it first, since that is how the patterns are
3960 coded. */
3962 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3964 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3965 enum machine_mode op_mode;
3967 op_mode = GET_MODE (in1);
3968 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
3970 op_mode = GET_MODE (in2);
3971 if (op_mode == VOIDmode)
3972 op_mode = mode;
3973 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
3975 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
3977 rtx tem = in2;
3978 in2 = in1; in1 = tem;
3981 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
3982 mode, in1, in2);
3984 break;
3986 case NEG:
3987 /* (neg (plus X 1)) can become (not X). */
3988 if (GET_CODE (XEXP (x, 0)) == PLUS
3989 && XEXP (XEXP (x, 0), 1) == const1_rtx)
3990 return gen_rtx_NOT (mode, XEXP (XEXP (x, 0), 0));
3992 /* Similarly, (neg (not X)) is (plus X 1). */
3993 if (GET_CODE (XEXP (x, 0)) == NOT)
3994 return plus_constant (XEXP (XEXP (x, 0), 0), 1);
3996 /* (neg (minus X Y)) can become (minus Y X). This transformation
3997 isn't safe for modes with signed zeros, since if X and Y are
3998 both +0, (minus Y X) is the same as (minus X Y). If the rounding
3999 mode is towards +infinity (or -infinity) then the two expressions
4000 will be rounded differently. */
4001 if (GET_CODE (XEXP (x, 0)) == MINUS
4002 && !HONOR_SIGNED_ZEROS (mode)
4003 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
4004 return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
4005 XEXP (XEXP (x, 0), 0));
4007 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4008 if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
4009 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4010 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
4012 /* NEG commutes with ASHIFT since it is multiplication. Only do this
4013 if we can then eliminate the NEG (e.g.,
4014 if the operand is a constant). */
4016 if (GET_CODE (XEXP (x, 0)) == ASHIFT)
4018 temp = simplify_unary_operation (NEG, mode,
4019 XEXP (XEXP (x, 0), 0), mode);
4020 if (temp)
4021 return gen_binary (ASHIFT, mode, temp, XEXP (XEXP (x, 0), 1));
4024 temp = expand_compound_operation (XEXP (x, 0));
4026 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4027 replaced by (lshiftrt X C). This will convert
4028 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4030 if (GET_CODE (temp) == ASHIFTRT
4031 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4032 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4033 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4034 INTVAL (XEXP (temp, 1)));
4036 /* If X has only a single bit that might be nonzero, say, bit I, convert
4037 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4038 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4039 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4040 or a SUBREG of one since we'd be making the expression more
4041 complex if it was just a register. */
4043 if (GET_CODE (temp) != REG
4044 && ! (GET_CODE (temp) == SUBREG
4045 && GET_CODE (SUBREG_REG (temp)) == REG)
4046 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4048 rtx temp1 = simplify_shift_const
4049 (NULL_RTX, ASHIFTRT, mode,
4050 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4051 GET_MODE_BITSIZE (mode) - 1 - i),
4052 GET_MODE_BITSIZE (mode) - 1 - i);
4054 /* If all we did was surround TEMP with the two shifts, we
4055 haven't improved anything, so don't use it. Otherwise,
4056 we are better off with TEMP1. */
4057 if (GET_CODE (temp1) != ASHIFTRT
4058 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4059 || XEXP (XEXP (temp1, 0), 0) != temp)
4060 return temp1;
4062 break;
4064 case TRUNCATE:
4065 /* We can't handle truncation to a partial integer mode here
4066 because we don't know the real bitsize of the partial
4067 integer mode. */
4068 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4069 break;
4071 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4072 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4073 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4074 SUBST (XEXP (x, 0),
4075 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4076 GET_MODE_MASK (mode), NULL_RTX, 0));
4078 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4079 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4080 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4081 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4082 return XEXP (XEXP (x, 0), 0);
4084 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4085 (OP:SI foo:SI) if OP is NEG or ABS. */
4086 if ((GET_CODE (XEXP (x, 0)) == ABS
4087 || GET_CODE (XEXP (x, 0)) == NEG)
4088 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4089 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4090 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4091 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4092 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4094 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4095 (truncate:SI x). */
4096 if (GET_CODE (XEXP (x, 0)) == SUBREG
4097 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4098 && subreg_lowpart_p (XEXP (x, 0)))
4099 return SUBREG_REG (XEXP (x, 0));
4101 /* If we know that the value is already truncated, we can
4102 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4103 is nonzero for the corresponding modes. But don't do this
4104 for an (LSHIFTRT (MULT ...)) since this will cause problems
4105 with the umulXi3_highpart patterns. */
4106 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4107 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4108 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4109 >= GET_MODE_BITSIZE (mode) + 1
4110 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4111 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4112 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4114 /* A truncate of a comparison can be replaced with a subreg if
4115 STORE_FLAG_VALUE permits. This is like the previous test,
4116 but it works even if the comparison is done in a mode larger
4117 than HOST_BITS_PER_WIDE_INT. */
4118 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4119 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4120 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4121 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4123 /* Similarly, a truncate of a register whose value is a
4124 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4125 permits. */
4126 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4127 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4128 && (temp = get_last_value (XEXP (x, 0)))
4129 && GET_RTX_CLASS (GET_CODE (temp)) == '<')
4130 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4132 break;
4134 case FLOAT_TRUNCATE:
4135 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4136 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4137 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4138 return XEXP (XEXP (x, 0), 0);
4140 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4141 (OP:SF foo:SF) if OP is NEG or ABS. */
4142 if ((GET_CODE (XEXP (x, 0)) == ABS
4143 || GET_CODE (XEXP (x, 0)) == NEG)
4144 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4145 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4146 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4147 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4149 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4150 is (float_truncate:SF x). */
4151 if (GET_CODE (XEXP (x, 0)) == SUBREG
4152 && subreg_lowpart_p (XEXP (x, 0))
4153 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4154 return SUBREG_REG (XEXP (x, 0));
4155 break;
4157 #ifdef HAVE_cc0
4158 case COMPARE:
4159 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4160 using cc0, in which case we want to leave it as a COMPARE
4161 so we can distinguish it from a register-register-copy. */
4162 if (XEXP (x, 1) == const0_rtx)
4163 return XEXP (x, 0);
4165 /* x - 0 is the same as x unless x's mode has signed zeros and
4166 allows rounding towards -infinity. Under those conditions,
4167 0 - 0 is -0. */
4168 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4169 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4170 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4171 return XEXP (x, 0);
4172 break;
4173 #endif
4175 case CONST:
4176 /* (const (const X)) can become (const X). Do it this way rather than
4177 returning the inner CONST since CONST can be shared with a
4178 REG_EQUAL note. */
4179 if (GET_CODE (XEXP (x, 0)) == CONST)
4180 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4181 break;
4183 #ifdef HAVE_lo_sum
4184 case LO_SUM:
4185 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4186 can add in an offset. find_split_point will split this address up
4187 again if it doesn't match. */
4188 if (GET_CODE (XEXP (x, 0)) == HIGH
4189 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4190 return XEXP (x, 1);
4191 break;
4192 #endif
4194 case PLUS:
4195 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4196 outermost. That's because that's the way indexed addresses are
4197 supposed to appear. This code used to check many more cases, but
4198 they are now checked elsewhere. */
4199 if (GET_CODE (XEXP (x, 0)) == PLUS
4200 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4201 return gen_binary (PLUS, mode,
4202 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4203 XEXP (x, 1)),
4204 XEXP (XEXP (x, 0), 1));
4206 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4207 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4208 bit-field and can be replaced by either a sign_extend or a
4209 sign_extract. The `and' may be a zero_extend and the two
4210 <c>, -<c> constants may be reversed. */
4211 if (GET_CODE (XEXP (x, 0)) == XOR
4212 && GET_CODE (XEXP (x, 1)) == CONST_INT
4213 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4214 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4215 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4216 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4217 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4218 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4219 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4220 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4221 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4222 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4223 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4224 == (unsigned int) i + 1))))
4225 return simplify_shift_const
4226 (NULL_RTX, ASHIFTRT, mode,
4227 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4228 XEXP (XEXP (XEXP (x, 0), 0), 0),
4229 GET_MODE_BITSIZE (mode) - (i + 1)),
4230 GET_MODE_BITSIZE (mode) - (i + 1));
4232 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4233 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4234 is 1. This produces better code than the alternative immediately
4235 below. */
4236 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4237 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4238 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4239 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4240 XEXP (XEXP (x, 0), 0),
4241 XEXP (XEXP (x, 0), 1))))
4242 return
4243 simplify_gen_unary (NEG, mode, reversed, mode);
4245 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4246 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4247 the bitsize of the mode - 1. This allows simplification of
4248 "a = (b & 8) == 0;" */
4249 if (XEXP (x, 1) == constm1_rtx
4250 && GET_CODE (XEXP (x, 0)) != REG
4251 && ! (GET_CODE (XEXP (x,0)) == SUBREG
4252 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
4253 && nonzero_bits (XEXP (x, 0), mode) == 1)
4254 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4255 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4256 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4257 GET_MODE_BITSIZE (mode) - 1),
4258 GET_MODE_BITSIZE (mode) - 1);
4260 /* If we are adding two things that have no bits in common, convert
4261 the addition into an IOR. This will often be further simplified,
4262 for example in cases like ((a & 1) + (a & 2)), which can
4263 become a & 3. */
4265 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4266 && (nonzero_bits (XEXP (x, 0), mode)
4267 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4269 /* Try to simplify the expression further. */
4270 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4271 temp = combine_simplify_rtx (tor, mode, last, in_dest);
4273 /* If we could, great. If not, do not go ahead with the IOR
4274 replacement, since PLUS appears in many special purpose
4275 address arithmetic instructions. */
4276 if (GET_CODE (temp) != CLOBBER && temp != tor)
4277 return temp;
4279 break;
4281 case MINUS:
4282 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4283 by reversing the comparison code if valid. */
4284 if (STORE_FLAG_VALUE == 1
4285 && XEXP (x, 0) == const1_rtx
4286 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
4287 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4288 XEXP (XEXP (x, 1), 0),
4289 XEXP (XEXP (x, 1), 1))))
4290 return reversed;
4292 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4293 (and <foo> (const_int pow2-1)) */
4294 if (GET_CODE (XEXP (x, 1)) == AND
4295 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4296 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4297 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4298 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4299 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4301 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4302 integers. */
4303 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4304 return gen_binary (MINUS, mode,
4305 gen_binary (MINUS, mode, XEXP (x, 0),
4306 XEXP (XEXP (x, 1), 0)),
4307 XEXP (XEXP (x, 1), 1));
4308 break;
4310 case MULT:
4311 /* If we have (mult (plus A B) C), apply the distributive law and then
4312 the inverse distributive law to see if things simplify. This
4313 occurs mostly in addresses, often when unrolling loops. */
4315 if (GET_CODE (XEXP (x, 0)) == PLUS)
4317 x = apply_distributive_law
4318 (gen_binary (PLUS, mode,
4319 gen_binary (MULT, mode,
4320 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4321 gen_binary (MULT, mode,
4322 XEXP (XEXP (x, 0), 1),
4323 copy_rtx (XEXP (x, 1)))));
4325 if (GET_CODE (x) != MULT)
4326 return x;
4328 /* Try simplify a*(b/c) as (a*b)/c. */
4329 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4330 && GET_CODE (XEXP (x, 0)) == DIV)
4332 rtx tem = simplify_binary_operation (MULT, mode,
4333 XEXP (XEXP (x, 0), 0),
4334 XEXP (x, 1));
4335 if (tem)
4336 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4338 break;
4340 case UDIV:
4341 /* If this is a divide by a power of two, treat it as a shift if
4342 its first operand is a shift. */
4343 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4344 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4345 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4346 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4347 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4348 || GET_CODE (XEXP (x, 0)) == ROTATE
4349 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4350 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4351 break;
4353 case EQ: case NE:
4354 case GT: case GTU: case GE: case GEU:
4355 case LT: case LTU: case LE: case LEU:
4356 case UNEQ: case LTGT:
4357 case UNGT: case UNGE:
4358 case UNLT: case UNLE:
4359 case UNORDERED: case ORDERED:
4360 /* If the first operand is a condition code, we can't do anything
4361 with it. */
4362 if (GET_CODE (XEXP (x, 0)) == COMPARE
4363 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4364 #ifdef HAVE_cc0
4365 && XEXP (x, 0) != cc0_rtx
4366 #endif
4369 rtx op0 = XEXP (x, 0);
4370 rtx op1 = XEXP (x, 1);
4371 enum rtx_code new_code;
4373 if (GET_CODE (op0) == COMPARE)
4374 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4376 /* Simplify our comparison, if possible. */
4377 new_code = simplify_comparison (code, &op0, &op1);
4379 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4380 if only the low-order bit is possibly nonzero in X (such as when
4381 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4382 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4383 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4384 (plus X 1).
4386 Remove any ZERO_EXTRACT we made when thinking this was a
4387 comparison. It may now be simpler to use, e.g., an AND. If a
4388 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4389 the call to make_compound_operation in the SET case. */
4391 if (STORE_FLAG_VALUE == 1
4392 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4393 && op1 == const0_rtx
4394 && mode == GET_MODE (op0)
4395 && nonzero_bits (op0, mode) == 1)
4396 return gen_lowpart_for_combine (mode,
4397 expand_compound_operation (op0));
4399 else if (STORE_FLAG_VALUE == 1
4400 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4401 && op1 == const0_rtx
4402 && mode == GET_MODE (op0)
4403 && (num_sign_bit_copies (op0, mode)
4404 == GET_MODE_BITSIZE (mode)))
4406 op0 = expand_compound_operation (op0);
4407 return simplify_gen_unary (NEG, mode,
4408 gen_lowpart_for_combine (mode, op0),
4409 mode);
4412 else if (STORE_FLAG_VALUE == 1
4413 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4414 && op1 == const0_rtx
4415 && mode == GET_MODE (op0)
4416 && nonzero_bits (op0, mode) == 1)
4418 op0 = expand_compound_operation (op0);
4419 return gen_binary (XOR, mode,
4420 gen_lowpart_for_combine (mode, op0),
4421 const1_rtx);
4424 else if (STORE_FLAG_VALUE == 1
4425 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4426 && op1 == const0_rtx
4427 && mode == GET_MODE (op0)
4428 && (num_sign_bit_copies (op0, mode)
4429 == GET_MODE_BITSIZE (mode)))
4431 op0 = expand_compound_operation (op0);
4432 return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
4435 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4436 those above. */
4437 if (STORE_FLAG_VALUE == -1
4438 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4439 && op1 == const0_rtx
4440 && (num_sign_bit_copies (op0, mode)
4441 == GET_MODE_BITSIZE (mode)))
4442 return gen_lowpart_for_combine (mode,
4443 expand_compound_operation (op0));
4445 else if (STORE_FLAG_VALUE == -1
4446 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4447 && op1 == const0_rtx
4448 && mode == GET_MODE (op0)
4449 && nonzero_bits (op0, mode) == 1)
4451 op0 = expand_compound_operation (op0);
4452 return simplify_gen_unary (NEG, mode,
4453 gen_lowpart_for_combine (mode, op0),
4454 mode);
4457 else if (STORE_FLAG_VALUE == -1
4458 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4459 && op1 == const0_rtx
4460 && mode == GET_MODE (op0)
4461 && (num_sign_bit_copies (op0, mode)
4462 == GET_MODE_BITSIZE (mode)))
4464 op0 = expand_compound_operation (op0);
4465 return simplify_gen_unary (NOT, mode,
4466 gen_lowpart_for_combine (mode, op0),
4467 mode);
4470 /* If X is 0/1, (eq X 0) is X-1. */
4471 else if (STORE_FLAG_VALUE == -1
4472 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4473 && op1 == const0_rtx
4474 && mode == GET_MODE (op0)
4475 && nonzero_bits (op0, mode) == 1)
4477 op0 = expand_compound_operation (op0);
4478 return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
4481 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4482 one bit that might be nonzero, we can convert (ne x 0) to
4483 (ashift x c) where C puts the bit in the sign bit. Remove any
4484 AND with STORE_FLAG_VALUE when we are done, since we are only
4485 going to test the sign bit. */
4486 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4487 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4488 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4489 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE(mode)-1))
4490 && op1 == const0_rtx
4491 && mode == GET_MODE (op0)
4492 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4494 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4495 expand_compound_operation (op0),
4496 GET_MODE_BITSIZE (mode) - 1 - i);
4497 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4498 return XEXP (x, 0);
4499 else
4500 return x;
4503 /* If the code changed, return a whole new comparison. */
4504 if (new_code != code)
4505 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4507 /* Otherwise, keep this operation, but maybe change its operands.
4508 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4509 SUBST (XEXP (x, 0), op0);
4510 SUBST (XEXP (x, 1), op1);
4512 break;
4514 case IF_THEN_ELSE:
4515 return simplify_if_then_else (x);
4517 case ZERO_EXTRACT:
4518 case SIGN_EXTRACT:
4519 case ZERO_EXTEND:
4520 case SIGN_EXTEND:
4521 /* If we are processing SET_DEST, we are done. */
4522 if (in_dest)
4523 return x;
4525 return expand_compound_operation (x);
4527 case SET:
4528 return simplify_set (x);
4530 case AND:
4531 case IOR:
4532 case XOR:
4533 return simplify_logical (x, last);
4535 case ABS:
4536 /* (abs (neg <foo>)) -> (abs <foo>) */
4537 if (GET_CODE (XEXP (x, 0)) == NEG)
4538 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4540 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4541 do nothing. */
4542 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4543 break;
4545 /* If operand is something known to be positive, ignore the ABS. */
4546 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4547 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4548 <= HOST_BITS_PER_WIDE_INT)
4549 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4550 & ((HOST_WIDE_INT) 1
4551 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4552 == 0)))
4553 return XEXP (x, 0);
4555 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4556 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4557 return gen_rtx_NEG (mode, XEXP (x, 0));
4559 break;
4561 case FFS:
4562 /* (ffs (*_extend <X>)) = (ffs <X>) */
4563 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4564 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4565 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4566 break;
4568 case FLOAT:
4569 /* (float (sign_extend <X>)) = (float <X>). */
4570 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4571 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4572 break;
4574 case ASHIFT:
4575 case LSHIFTRT:
4576 case ASHIFTRT:
4577 case ROTATE:
4578 case ROTATERT:
4579 /* If this is a shift by a constant amount, simplify it. */
4580 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4581 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4582 INTVAL (XEXP (x, 1)));
4584 #ifdef SHIFT_COUNT_TRUNCATED
4585 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4586 SUBST (XEXP (x, 1),
4587 force_to_mode (XEXP (x, 1), GET_MODE (x),
4588 ((HOST_WIDE_INT) 1
4589 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4590 - 1,
4591 NULL_RTX, 0));
4592 #endif
4594 break;
4596 case VEC_SELECT:
4598 rtx op0 = XEXP (x, 0);
4599 rtx op1 = XEXP (x, 1);
4600 int len;
4602 if (GET_CODE (op1) != PARALLEL)
4603 abort ();
4604 len = XVECLEN (op1, 0);
4605 if (len == 1
4606 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4607 && GET_CODE (op0) == VEC_CONCAT)
4609 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4611 /* Try to find the element in the VEC_CONCAT. */
4612 for (;;)
4614 if (GET_MODE (op0) == GET_MODE (x))
4615 return op0;
4616 if (GET_CODE (op0) == VEC_CONCAT)
4618 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4619 if (op0_size < offset)
4620 op0 = XEXP (op0, 0);
4621 else
4623 offset -= op0_size;
4624 op0 = XEXP (op0, 1);
4627 else
4628 break;
4633 break;
4635 default:
4636 break;
4639 return x;
4642 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4644 static rtx
4645 simplify_if_then_else (x)
4646 rtx x;
4648 enum machine_mode mode = GET_MODE (x);
4649 rtx cond = XEXP (x, 0);
4650 rtx true_rtx = XEXP (x, 1);
4651 rtx false_rtx = XEXP (x, 2);
4652 enum rtx_code true_code = GET_CODE (cond);
4653 int comparison_p = GET_RTX_CLASS (true_code) == '<';
4654 rtx temp;
4655 int i;
4656 enum rtx_code false_code;
4657 rtx reversed;
4659 /* Simplify storing of the truth value. */
4660 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4661 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4663 /* Also when the truth value has to be reversed. */
4664 if (comparison_p
4665 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4666 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4667 XEXP (cond, 1))))
4668 return reversed;
4670 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4671 in it is being compared against certain values. Get the true and false
4672 comparisons and see if that says anything about the value of each arm. */
4674 if (comparison_p
4675 && ((false_code = combine_reversed_comparison_code (cond))
4676 != UNKNOWN)
4677 && GET_CODE (XEXP (cond, 0)) == REG)
4679 HOST_WIDE_INT nzb;
4680 rtx from = XEXP (cond, 0);
4681 rtx true_val = XEXP (cond, 1);
4682 rtx false_val = true_val;
4683 int swapped = 0;
4685 /* If FALSE_CODE is EQ, swap the codes and arms. */
4687 if (false_code == EQ)
4689 swapped = 1, true_code = EQ, false_code = NE;
4690 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4693 /* If we are comparing against zero and the expression being tested has
4694 only a single bit that might be nonzero, that is its value when it is
4695 not equal to zero. Similarly if it is known to be -1 or 0. */
4697 if (true_code == EQ && true_val == const0_rtx
4698 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4699 false_code = EQ, false_val = GEN_INT (nzb);
4700 else if (true_code == EQ && true_val == const0_rtx
4701 && (num_sign_bit_copies (from, GET_MODE (from))
4702 == GET_MODE_BITSIZE (GET_MODE (from))))
4703 false_code = EQ, false_val = constm1_rtx;
4705 /* Now simplify an arm if we know the value of the register in the
4706 branch and it is used in the arm. Be careful due to the potential
4707 of locally-shared RTL. */
4709 if (reg_mentioned_p (from, true_rtx))
4710 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4711 from, true_val),
4712 pc_rtx, pc_rtx, 0, 0);
4713 if (reg_mentioned_p (from, false_rtx))
4714 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4715 from, false_val),
4716 pc_rtx, pc_rtx, 0, 0);
4718 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4719 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4721 true_rtx = XEXP (x, 1);
4722 false_rtx = XEXP (x, 2);
4723 true_code = GET_CODE (cond);
4726 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4727 reversed, do so to avoid needing two sets of patterns for
4728 subtract-and-branch insns. Similarly if we have a constant in the true
4729 arm, the false arm is the same as the first operand of the comparison, or
4730 the false arm is more complicated than the true arm. */
4732 if (comparison_p
4733 && combine_reversed_comparison_code (cond) != UNKNOWN
4734 && (true_rtx == pc_rtx
4735 || (CONSTANT_P (true_rtx)
4736 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4737 || true_rtx == const0_rtx
4738 || (GET_RTX_CLASS (GET_CODE (true_rtx)) == 'o'
4739 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4740 || (GET_CODE (true_rtx) == SUBREG
4741 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true_rtx))) == 'o'
4742 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4743 || reg_mentioned_p (true_rtx, false_rtx)
4744 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4746 true_code = reversed_comparison_code (cond, NULL);
4747 SUBST (XEXP (x, 0),
4748 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4749 XEXP (cond, 1)));
4751 SUBST (XEXP (x, 1), false_rtx);
4752 SUBST (XEXP (x, 2), true_rtx);
4754 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4755 cond = XEXP (x, 0);
4757 /* It is possible that the conditional has been simplified out. */
4758 true_code = GET_CODE (cond);
4759 comparison_p = GET_RTX_CLASS (true_code) == '<';
4762 /* If the two arms are identical, we don't need the comparison. */
4764 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4765 return true_rtx;
4767 /* Convert a == b ? b : a to "a". */
4768 if (true_code == EQ && ! side_effects_p (cond)
4769 && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4770 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4771 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4772 return false_rtx;
4773 else if (true_code == NE && ! side_effects_p (cond)
4774 && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4775 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4776 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4777 return true_rtx;
4779 /* Look for cases where we have (abs x) or (neg (abs X)). */
4781 if (GET_MODE_CLASS (mode) == MODE_INT
4782 && GET_CODE (false_rtx) == NEG
4783 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4784 && comparison_p
4785 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4786 && ! side_effects_p (true_rtx))
4787 switch (true_code)
4789 case GT:
4790 case GE:
4791 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4792 case LT:
4793 case LE:
4794 return
4795 simplify_gen_unary (NEG, mode,
4796 simplify_gen_unary (ABS, mode, true_rtx, mode),
4797 mode);
4798 default:
4799 break;
4802 /* Look for MIN or MAX. */
4804 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4805 && comparison_p
4806 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4807 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4808 && ! side_effects_p (cond))
4809 switch (true_code)
4811 case GE:
4812 case GT:
4813 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4814 case LE:
4815 case LT:
4816 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4817 case GEU:
4818 case GTU:
4819 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4820 case LEU:
4821 case LTU:
4822 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4823 default:
4824 break;
4827 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4828 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4829 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4830 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4831 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4832 neither 1 or -1, but it isn't worth checking for. */
4834 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4835 && comparison_p && mode != VOIDmode && ! side_effects_p (x))
4837 rtx t = make_compound_operation (true_rtx, SET);
4838 rtx f = make_compound_operation (false_rtx, SET);
4839 rtx cond_op0 = XEXP (cond, 0);
4840 rtx cond_op1 = XEXP (cond, 1);
4841 enum rtx_code op = NIL, extend_op = NIL;
4842 enum machine_mode m = mode;
4843 rtx z = 0, c1 = NULL_RTX;
4845 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4846 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4847 || GET_CODE (t) == ASHIFT
4848 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4849 && rtx_equal_p (XEXP (t, 0), f))
4850 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4852 /* If an identity-zero op is commutative, check whether there
4853 would be a match if we swapped the operands. */
4854 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4855 || GET_CODE (t) == XOR)
4856 && rtx_equal_p (XEXP (t, 1), f))
4857 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4858 else if (GET_CODE (t) == SIGN_EXTEND
4859 && (GET_CODE (XEXP (t, 0)) == PLUS
4860 || GET_CODE (XEXP (t, 0)) == MINUS
4861 || GET_CODE (XEXP (t, 0)) == IOR
4862 || GET_CODE (XEXP (t, 0)) == XOR
4863 || GET_CODE (XEXP (t, 0)) == ASHIFT
4864 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4865 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4866 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4867 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4868 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4869 && (num_sign_bit_copies (f, GET_MODE (f))
4870 > (GET_MODE_BITSIZE (mode)
4871 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4873 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4874 extend_op = SIGN_EXTEND;
4875 m = GET_MODE (XEXP (t, 0));
4877 else if (GET_CODE (t) == SIGN_EXTEND
4878 && (GET_CODE (XEXP (t, 0)) == PLUS
4879 || GET_CODE (XEXP (t, 0)) == IOR
4880 || GET_CODE (XEXP (t, 0)) == XOR)
4881 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4882 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4883 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4884 && (num_sign_bit_copies (f, GET_MODE (f))
4885 > (GET_MODE_BITSIZE (mode)
4886 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4888 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4889 extend_op = SIGN_EXTEND;
4890 m = GET_MODE (XEXP (t, 0));
4892 else if (GET_CODE (t) == ZERO_EXTEND
4893 && (GET_CODE (XEXP (t, 0)) == PLUS
4894 || GET_CODE (XEXP (t, 0)) == MINUS
4895 || GET_CODE (XEXP (t, 0)) == IOR
4896 || GET_CODE (XEXP (t, 0)) == XOR
4897 || GET_CODE (XEXP (t, 0)) == ASHIFT
4898 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4899 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4900 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4901 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4902 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4903 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4904 && ((nonzero_bits (f, GET_MODE (f))
4905 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4906 == 0))
4908 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4909 extend_op = ZERO_EXTEND;
4910 m = GET_MODE (XEXP (t, 0));
4912 else if (GET_CODE (t) == ZERO_EXTEND
4913 && (GET_CODE (XEXP (t, 0)) == PLUS
4914 || GET_CODE (XEXP (t, 0)) == IOR
4915 || GET_CODE (XEXP (t, 0)) == XOR)
4916 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4917 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4918 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4919 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4920 && ((nonzero_bits (f, GET_MODE (f))
4921 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4922 == 0))
4924 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4925 extend_op = ZERO_EXTEND;
4926 m = GET_MODE (XEXP (t, 0));
4929 if (z)
4931 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4932 pc_rtx, pc_rtx, 0, 0);
4933 temp = gen_binary (MULT, m, temp,
4934 gen_binary (MULT, m, c1, const_true_rtx));
4935 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
4936 temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
4938 if (extend_op != NIL)
4939 temp = simplify_gen_unary (extend_op, mode, temp, m);
4941 return temp;
4945 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4946 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4947 negation of a single bit, we can convert this operation to a shift. We
4948 can actually do this more generally, but it doesn't seem worth it. */
4950 if (true_code == NE && XEXP (cond, 1) == const0_rtx
4951 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
4952 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
4953 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
4954 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
4955 == GET_MODE_BITSIZE (mode))
4956 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
4957 return
4958 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4959 gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
4961 return x;
4964 /* Simplify X, a SET expression. Return the new expression. */
4966 static rtx
4967 simplify_set (x)
4968 rtx x;
4970 rtx src = SET_SRC (x);
4971 rtx dest = SET_DEST (x);
4972 enum machine_mode mode
4973 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
4974 rtx other_insn;
4975 rtx *cc_use;
4977 /* (set (pc) (return)) gets written as (return). */
4978 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
4979 return src;
4981 /* Now that we know for sure which bits of SRC we are using, see if we can
4982 simplify the expression for the object knowing that we only need the
4983 low-order bits. */
4985 if (GET_MODE_CLASS (mode) == MODE_INT)
4987 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
4988 SUBST (SET_SRC (x), src);
4991 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
4992 the comparison result and try to simplify it unless we already have used
4993 undobuf.other_insn. */
4994 if ((GET_CODE (src) == COMPARE
4995 #ifdef HAVE_cc0
4996 || dest == cc0_rtx
4997 #endif
4999 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5000 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5001 && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
5002 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5004 enum rtx_code old_code = GET_CODE (*cc_use);
5005 enum rtx_code new_code;
5006 rtx op0, op1;
5007 int other_changed = 0;
5008 enum machine_mode compare_mode = GET_MODE (dest);
5010 if (GET_CODE (src) == COMPARE)
5011 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5012 else
5013 op0 = src, op1 = const0_rtx;
5015 /* Simplify our comparison, if possible. */
5016 new_code = simplify_comparison (old_code, &op0, &op1);
5018 #ifdef EXTRA_CC_MODES
5019 /* If this machine has CC modes other than CCmode, check to see if we
5020 need to use a different CC mode here. */
5021 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5022 #endif /* EXTRA_CC_MODES */
5024 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
5025 /* If the mode changed, we have to change SET_DEST, the mode in the
5026 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5027 a hard register, just build new versions with the proper mode. If it
5028 is a pseudo, we lose unless it is only time we set the pseudo, in
5029 which case we can safely change its mode. */
5030 if (compare_mode != GET_MODE (dest))
5032 unsigned int regno = REGNO (dest);
5033 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5035 if (regno < FIRST_PSEUDO_REGISTER
5036 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5038 if (regno >= FIRST_PSEUDO_REGISTER)
5039 SUBST (regno_reg_rtx[regno], new_dest);
5041 SUBST (SET_DEST (x), new_dest);
5042 SUBST (XEXP (*cc_use, 0), new_dest);
5043 other_changed = 1;
5045 dest = new_dest;
5048 #endif
5050 /* If the code changed, we have to build a new comparison in
5051 undobuf.other_insn. */
5052 if (new_code != old_code)
5054 unsigned HOST_WIDE_INT mask;
5056 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5057 dest, const0_rtx));
5059 /* If the only change we made was to change an EQ into an NE or
5060 vice versa, OP0 has only one bit that might be nonzero, and OP1
5061 is zero, check if changing the user of the condition code will
5062 produce a valid insn. If it won't, we can keep the original code
5063 in that insn by surrounding our operation with an XOR. */
5065 if (((old_code == NE && new_code == EQ)
5066 || (old_code == EQ && new_code == NE))
5067 && ! other_changed && op1 == const0_rtx
5068 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5069 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5071 rtx pat = PATTERN (other_insn), note = 0;
5073 if ((recog_for_combine (&pat, other_insn, &note) < 0
5074 && ! check_asm_operands (pat)))
5076 PUT_CODE (*cc_use, old_code);
5077 other_insn = 0;
5079 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5083 other_changed = 1;
5086 if (other_changed)
5087 undobuf.other_insn = other_insn;
5089 #ifdef HAVE_cc0
5090 /* If we are now comparing against zero, change our source if
5091 needed. If we do not use cc0, we always have a COMPARE. */
5092 if (op1 == const0_rtx && dest == cc0_rtx)
5094 SUBST (SET_SRC (x), op0);
5095 src = op0;
5097 else
5098 #endif
5100 /* Otherwise, if we didn't previously have a COMPARE in the
5101 correct mode, we need one. */
5102 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5104 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5105 src = SET_SRC (x);
5107 else
5109 /* Otherwise, update the COMPARE if needed. */
5110 SUBST (XEXP (src, 0), op0);
5111 SUBST (XEXP (src, 1), op1);
5114 else
5116 /* Get SET_SRC in a form where we have placed back any
5117 compound expressions. Then do the checks below. */
5118 src = make_compound_operation (src, SET);
5119 SUBST (SET_SRC (x), src);
5122 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5123 and X being a REG or (subreg (reg)), we may be able to convert this to
5124 (set (subreg:m2 x) (op)).
5126 We can always do this if M1 is narrower than M2 because that means that
5127 we only care about the low bits of the result.
5129 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5130 perform a narrower operation than requested since the high-order bits will
5131 be undefined. On machine where it is defined, this transformation is safe
5132 as long as M1 and M2 have the same number of words. */
5134 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5135 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
5136 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5137 / UNITS_PER_WORD)
5138 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5139 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5140 #ifndef WORD_REGISTER_OPERATIONS
5141 && (GET_MODE_SIZE (GET_MODE (src))
5142 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5143 #endif
5144 #ifdef CLASS_CANNOT_CHANGE_MODE
5145 && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
5146 && (TEST_HARD_REG_BIT
5147 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
5148 REGNO (dest)))
5149 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (src),
5150 GET_MODE (SUBREG_REG (src))))
5151 #endif
5152 && (GET_CODE (dest) == REG
5153 || (GET_CODE (dest) == SUBREG
5154 && GET_CODE (SUBREG_REG (dest)) == REG)))
5156 SUBST (SET_DEST (x),
5157 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
5158 dest));
5159 SUBST (SET_SRC (x), SUBREG_REG (src));
5161 src = SET_SRC (x), dest = SET_DEST (x);
5164 #ifdef HAVE_cc0
5165 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5166 in SRC. */
5167 if (dest == cc0_rtx
5168 && GET_CODE (src) == SUBREG
5169 && subreg_lowpart_p (src)
5170 && (GET_MODE_BITSIZE (GET_MODE (src))
5171 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5173 rtx inner = SUBREG_REG (src);
5174 enum machine_mode inner_mode = GET_MODE (inner);
5176 /* Here we make sure that we don't have a sign bit on. */
5177 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5178 && (nonzero_bits (inner, inner_mode)
5179 < ((unsigned HOST_WIDE_INT) 1
5180 << (GET_MODE_BITSIZE (inner_mode) - 1))))
5182 SUBST (SET_SRC (x), inner);
5183 src = SET_SRC (x);
5186 #endif
5188 #ifdef LOAD_EXTEND_OP
5189 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5190 would require a paradoxical subreg. Replace the subreg with a
5191 zero_extend to avoid the reload that would otherwise be required. */
5193 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5194 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
5195 && SUBREG_BYTE (src) == 0
5196 && (GET_MODE_SIZE (GET_MODE (src))
5197 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5198 && GET_CODE (SUBREG_REG (src)) == MEM)
5200 SUBST (SET_SRC (x),
5201 gen_rtx (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5202 GET_MODE (src), SUBREG_REG (src)));
5204 src = SET_SRC (x);
5206 #endif
5208 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5209 are comparing an item known to be 0 or -1 against 0, use a logical
5210 operation instead. Check for one of the arms being an IOR of the other
5211 arm with some value. We compute three terms to be IOR'ed together. In
5212 practice, at most two will be nonzero. Then we do the IOR's. */
5214 if (GET_CODE (dest) != PC
5215 && GET_CODE (src) == IF_THEN_ELSE
5216 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5217 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5218 && XEXP (XEXP (src, 0), 1) == const0_rtx
5219 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5220 #ifdef HAVE_conditional_move
5221 && ! can_conditionally_move_p (GET_MODE (src))
5222 #endif
5223 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5224 GET_MODE (XEXP (XEXP (src, 0), 0)))
5225 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5226 && ! side_effects_p (src))
5228 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5229 ? XEXP (src, 1) : XEXP (src, 2));
5230 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5231 ? XEXP (src, 2) : XEXP (src, 1));
5232 rtx term1 = const0_rtx, term2, term3;
5234 if (GET_CODE (true_rtx) == IOR
5235 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5236 term1 = false_rtx, true_rtx = XEXP(true_rtx, 1), false_rtx = const0_rtx;
5237 else if (GET_CODE (true_rtx) == IOR
5238 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5239 term1 = false_rtx, true_rtx = XEXP(true_rtx, 0), false_rtx = const0_rtx;
5240 else if (GET_CODE (false_rtx) == IOR
5241 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5242 term1 = true_rtx, false_rtx = XEXP(false_rtx, 1), true_rtx = const0_rtx;
5243 else if (GET_CODE (false_rtx) == IOR
5244 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5245 term1 = true_rtx, false_rtx = XEXP(false_rtx, 0), true_rtx = const0_rtx;
5247 term2 = gen_binary (AND, GET_MODE (src),
5248 XEXP (XEXP (src, 0), 0), true_rtx);
5249 term3 = gen_binary (AND, GET_MODE (src),
5250 simplify_gen_unary (NOT, GET_MODE (src),
5251 XEXP (XEXP (src, 0), 0),
5252 GET_MODE (src)),
5253 false_rtx);
5255 SUBST (SET_SRC (x),
5256 gen_binary (IOR, GET_MODE (src),
5257 gen_binary (IOR, GET_MODE (src), term1, term2),
5258 term3));
5260 src = SET_SRC (x);
5263 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5264 whole thing fail. */
5265 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5266 return src;
5267 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5268 return dest;
5269 else
5270 /* Convert this into a field assignment operation, if possible. */
5271 return make_field_assignment (x);
5274 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5275 result. LAST is nonzero if this is the last retry. */
5277 static rtx
5278 simplify_logical (x, last)
5279 rtx x;
5280 int last;
5282 enum machine_mode mode = GET_MODE (x);
5283 rtx op0 = XEXP (x, 0);
5284 rtx op1 = XEXP (x, 1);
5285 rtx reversed;
5287 switch (GET_CODE (x))
5289 case AND:
5290 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5291 insn (and may simplify more). */
5292 if (GET_CODE (op0) == XOR
5293 && rtx_equal_p (XEXP (op0, 0), op1)
5294 && ! side_effects_p (op1))
5295 x = gen_binary (AND, mode,
5296 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5297 op1);
5299 if (GET_CODE (op0) == XOR
5300 && rtx_equal_p (XEXP (op0, 1), op1)
5301 && ! side_effects_p (op1))
5302 x = gen_binary (AND, mode,
5303 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5304 op1);
5306 /* Similarly for (~(A ^ B)) & A. */
5307 if (GET_CODE (op0) == NOT
5308 && GET_CODE (XEXP (op0, 0)) == XOR
5309 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5310 && ! side_effects_p (op1))
5311 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5313 if (GET_CODE (op0) == NOT
5314 && GET_CODE (XEXP (op0, 0)) == XOR
5315 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5316 && ! side_effects_p (op1))
5317 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5319 /* We can call simplify_and_const_int only if we don't lose
5320 any (sign) bits when converting INTVAL (op1) to
5321 "unsigned HOST_WIDE_INT". */
5322 if (GET_CODE (op1) == CONST_INT
5323 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5324 || INTVAL (op1) > 0))
5326 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5328 /* If we have (ior (and (X C1) C2)) and the next restart would be
5329 the last, simplify this by making C1 as small as possible
5330 and then exit. */
5331 if (last
5332 && GET_CODE (x) == IOR && GET_CODE (op0) == AND
5333 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5334 && GET_CODE (op1) == CONST_INT)
5335 return gen_binary (IOR, mode,
5336 gen_binary (AND, mode, XEXP (op0, 0),
5337 GEN_INT (INTVAL (XEXP (op0, 1))
5338 & ~INTVAL (op1))), op1);
5340 if (GET_CODE (x) != AND)
5341 return x;
5343 if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
5344 || GET_RTX_CLASS (GET_CODE (x)) == '2')
5345 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5348 /* Convert (A | B) & A to A. */
5349 if (GET_CODE (op0) == IOR
5350 && (rtx_equal_p (XEXP (op0, 0), op1)
5351 || rtx_equal_p (XEXP (op0, 1), op1))
5352 && ! side_effects_p (XEXP (op0, 0))
5353 && ! side_effects_p (XEXP (op0, 1)))
5354 return op1;
5356 /* In the following group of tests (and those in case IOR below),
5357 we start with some combination of logical operations and apply
5358 the distributive law followed by the inverse distributive law.
5359 Most of the time, this results in no change. However, if some of
5360 the operands are the same or inverses of each other, simplifications
5361 will result.
5363 For example, (and (ior A B) (not B)) can occur as the result of
5364 expanding a bit field assignment. When we apply the distributive
5365 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5366 which then simplifies to (and (A (not B))).
5368 If we have (and (ior A B) C), apply the distributive law and then
5369 the inverse distributive law to see if things simplify. */
5371 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5373 x = apply_distributive_law
5374 (gen_binary (GET_CODE (op0), mode,
5375 gen_binary (AND, mode, XEXP (op0, 0), op1),
5376 gen_binary (AND, mode, XEXP (op0, 1),
5377 copy_rtx (op1))));
5378 if (GET_CODE (x) != AND)
5379 return x;
5382 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5383 return apply_distributive_law
5384 (gen_binary (GET_CODE (op1), mode,
5385 gen_binary (AND, mode, XEXP (op1, 0), op0),
5386 gen_binary (AND, mode, XEXP (op1, 1),
5387 copy_rtx (op0))));
5389 /* Similarly, taking advantage of the fact that
5390 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5392 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5393 return apply_distributive_law
5394 (gen_binary (XOR, mode,
5395 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5396 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5397 XEXP (op1, 1))));
5399 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5400 return apply_distributive_law
5401 (gen_binary (XOR, mode,
5402 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5403 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5404 break;
5406 case IOR:
5407 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5408 if (GET_CODE (op1) == CONST_INT
5409 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5410 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5411 return op1;
5413 /* Convert (A & B) | A to A. */
5414 if (GET_CODE (op0) == AND
5415 && (rtx_equal_p (XEXP (op0, 0), op1)
5416 || rtx_equal_p (XEXP (op0, 1), op1))
5417 && ! side_effects_p (XEXP (op0, 0))
5418 && ! side_effects_p (XEXP (op0, 1)))
5419 return op1;
5421 /* If we have (ior (and A B) C), apply the distributive law and then
5422 the inverse distributive law to see if things simplify. */
5424 if (GET_CODE (op0) == AND)
5426 x = apply_distributive_law
5427 (gen_binary (AND, mode,
5428 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5429 gen_binary (IOR, mode, XEXP (op0, 1),
5430 copy_rtx (op1))));
5432 if (GET_CODE (x) != IOR)
5433 return x;
5436 if (GET_CODE (op1) == AND)
5438 x = apply_distributive_law
5439 (gen_binary (AND, mode,
5440 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5441 gen_binary (IOR, mode, XEXP (op1, 1),
5442 copy_rtx (op0))));
5444 if (GET_CODE (x) != IOR)
5445 return x;
5448 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5449 mode size to (rotate A CX). */
5451 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5452 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5453 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5454 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5455 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5456 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5457 == GET_MODE_BITSIZE (mode)))
5458 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5459 (GET_CODE (op0) == ASHIFT
5460 ? XEXP (op0, 1) : XEXP (op1, 1)));
5462 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5463 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5464 does not affect any of the bits in OP1, it can really be done
5465 as a PLUS and we can associate. We do this by seeing if OP1
5466 can be safely shifted left C bits. */
5467 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5468 && GET_CODE (XEXP (op0, 0)) == PLUS
5469 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5470 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5471 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5473 int count = INTVAL (XEXP (op0, 1));
5474 HOST_WIDE_INT mask = INTVAL (op1) << count;
5476 if (mask >> count == INTVAL (op1)
5477 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5479 SUBST (XEXP (XEXP (op0, 0), 1),
5480 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5481 return op0;
5484 break;
5486 case XOR:
5487 /* If we are XORing two things that have no bits in common,
5488 convert them into an IOR. This helps to detect rotation encoded
5489 using those methods and possibly other simplifications. */
5491 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5492 && (nonzero_bits (op0, mode)
5493 & nonzero_bits (op1, mode)) == 0)
5494 return (gen_binary (IOR, mode, op0, op1));
5496 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5497 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5498 (NOT y). */
5500 int num_negated = 0;
5502 if (GET_CODE (op0) == NOT)
5503 num_negated++, op0 = XEXP (op0, 0);
5504 if (GET_CODE (op1) == NOT)
5505 num_negated++, op1 = XEXP (op1, 0);
5507 if (num_negated == 2)
5509 SUBST (XEXP (x, 0), op0);
5510 SUBST (XEXP (x, 1), op1);
5512 else if (num_negated == 1)
5513 return
5514 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5515 mode);
5518 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5519 correspond to a machine insn or result in further simplifications
5520 if B is a constant. */
5522 if (GET_CODE (op0) == AND
5523 && rtx_equal_p (XEXP (op0, 1), op1)
5524 && ! side_effects_p (op1))
5525 return gen_binary (AND, mode,
5526 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5527 op1);
5529 else if (GET_CODE (op0) == AND
5530 && rtx_equal_p (XEXP (op0, 0), op1)
5531 && ! side_effects_p (op1))
5532 return gen_binary (AND, mode,
5533 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5534 op1);
5536 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5537 comparison if STORE_FLAG_VALUE is 1. */
5538 if (STORE_FLAG_VALUE == 1
5539 && op1 == const1_rtx
5540 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5541 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5542 XEXP (op0, 1))))
5543 return reversed;
5545 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5546 is (lt foo (const_int 0)), so we can perform the above
5547 simplification if STORE_FLAG_VALUE is 1. */
5549 if (STORE_FLAG_VALUE == 1
5550 && op1 == const1_rtx
5551 && GET_CODE (op0) == LSHIFTRT
5552 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5553 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5554 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5556 /* (xor (comparison foo bar) (const_int sign-bit))
5557 when STORE_FLAG_VALUE is the sign bit. */
5558 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5559 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5560 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5561 && op1 == const_true_rtx
5562 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5563 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5564 XEXP (op0, 1))))
5565 return reversed;
5567 break;
5569 default:
5570 abort ();
5573 return x;
5576 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5577 operations" because they can be replaced with two more basic operations.
5578 ZERO_EXTEND is also considered "compound" because it can be replaced with
5579 an AND operation, which is simpler, though only one operation.
5581 The function expand_compound_operation is called with an rtx expression
5582 and will convert it to the appropriate shifts and AND operations,
5583 simplifying at each stage.
5585 The function make_compound_operation is called to convert an expression
5586 consisting of shifts and ANDs into the equivalent compound expression.
5587 It is the inverse of this function, loosely speaking. */
5589 static rtx
5590 expand_compound_operation (x)
5591 rtx x;
5593 unsigned HOST_WIDE_INT pos = 0, len;
5594 int unsignedp = 0;
5595 unsigned int modewidth;
5596 rtx tem;
5598 switch (GET_CODE (x))
5600 case ZERO_EXTEND:
5601 unsignedp = 1;
5602 case SIGN_EXTEND:
5603 /* We can't necessarily use a const_int for a multiword mode;
5604 it depends on implicitly extending the value.
5605 Since we don't know the right way to extend it,
5606 we can't tell whether the implicit way is right.
5608 Even for a mode that is no wider than a const_int,
5609 we can't win, because we need to sign extend one of its bits through
5610 the rest of it, and we don't know which bit. */
5611 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5612 return x;
5614 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5615 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5616 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5617 reloaded. If not for that, MEM's would very rarely be safe.
5619 Reject MODEs bigger than a word, because we might not be able
5620 to reference a two-register group starting with an arbitrary register
5621 (and currently gen_lowpart might crash for a SUBREG). */
5623 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5624 return x;
5626 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5627 /* If the inner object has VOIDmode (the only way this can happen
5628 is if it is an ASM_OPERANDS), we can't do anything since we don't
5629 know how much masking to do. */
5630 if (len == 0)
5631 return x;
5633 break;
5635 case ZERO_EXTRACT:
5636 unsignedp = 1;
5637 case SIGN_EXTRACT:
5638 /* If the operand is a CLOBBER, just return it. */
5639 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5640 return XEXP (x, 0);
5642 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5643 || GET_CODE (XEXP (x, 2)) != CONST_INT
5644 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5645 return x;
5647 len = INTVAL (XEXP (x, 1));
5648 pos = INTVAL (XEXP (x, 2));
5650 /* If this goes outside the object being extracted, replace the object
5651 with a (use (mem ...)) construct that only combine understands
5652 and is used only for this purpose. */
5653 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5654 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5656 if (BITS_BIG_ENDIAN)
5657 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5659 break;
5661 default:
5662 return x;
5664 /* Convert sign extension to zero extension, if we know that the high
5665 bit is not set, as this is easier to optimize. It will be converted
5666 back to cheaper alternative in make_extraction. */
5667 if (GET_CODE (x) == SIGN_EXTEND
5668 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5669 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5670 & ~(((unsigned HOST_WIDE_INT)
5671 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5672 >> 1))
5673 == 0)))
5675 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5676 return expand_compound_operation (temp);
5679 /* We can optimize some special cases of ZERO_EXTEND. */
5680 if (GET_CODE (x) == ZERO_EXTEND)
5682 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5683 know that the last value didn't have any inappropriate bits
5684 set. */
5685 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5686 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5687 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5688 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5689 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5690 return XEXP (XEXP (x, 0), 0);
5692 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5693 if (GET_CODE (XEXP (x, 0)) == SUBREG
5694 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5695 && subreg_lowpart_p (XEXP (x, 0))
5696 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5697 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5698 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5699 return SUBREG_REG (XEXP (x, 0));
5701 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5702 is a comparison and STORE_FLAG_VALUE permits. This is like
5703 the first case, but it works even when GET_MODE (x) is larger
5704 than HOST_WIDE_INT. */
5705 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5706 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5707 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
5708 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5709 <= HOST_BITS_PER_WIDE_INT)
5710 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5711 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5712 return XEXP (XEXP (x, 0), 0);
5714 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5715 if (GET_CODE (XEXP (x, 0)) == SUBREG
5716 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5717 && subreg_lowpart_p (XEXP (x, 0))
5718 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
5719 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5720 <= HOST_BITS_PER_WIDE_INT)
5721 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5722 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5723 return SUBREG_REG (XEXP (x, 0));
5727 /* If we reach here, we want to return a pair of shifts. The inner
5728 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5729 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5730 logical depending on the value of UNSIGNEDP.
5732 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5733 converted into an AND of a shift.
5735 We must check for the case where the left shift would have a negative
5736 count. This can happen in a case like (x >> 31) & 255 on machines
5737 that can't shift by a constant. On those machines, we would first
5738 combine the shift with the AND to produce a variable-position
5739 extraction. Then the constant of 31 would be substituted in to produce
5740 a such a position. */
5742 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5743 if (modewidth + len >= pos)
5744 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5745 GET_MODE (x),
5746 simplify_shift_const (NULL_RTX, ASHIFT,
5747 GET_MODE (x),
5748 XEXP (x, 0),
5749 modewidth - pos - len),
5750 modewidth - len);
5752 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5753 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5754 simplify_shift_const (NULL_RTX, LSHIFTRT,
5755 GET_MODE (x),
5756 XEXP (x, 0), pos),
5757 ((HOST_WIDE_INT) 1 << len) - 1);
5758 else
5759 /* Any other cases we can't handle. */
5760 return x;
5762 /* If we couldn't do this for some reason, return the original
5763 expression. */
5764 if (GET_CODE (tem) == CLOBBER)
5765 return x;
5767 return tem;
5770 /* X is a SET which contains an assignment of one object into
5771 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5772 or certain SUBREGS). If possible, convert it into a series of
5773 logical operations.
5775 We half-heartedly support variable positions, but do not at all
5776 support variable lengths. */
5778 static rtx
5779 expand_field_assignment (x)
5780 rtx x;
5782 rtx inner;
5783 rtx pos; /* Always counts from low bit. */
5784 int len;
5785 rtx mask;
5786 enum machine_mode compute_mode;
5788 /* Loop until we find something we can't simplify. */
5789 while (1)
5791 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5792 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5794 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5795 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5796 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5798 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5799 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5801 inner = XEXP (SET_DEST (x), 0);
5802 len = INTVAL (XEXP (SET_DEST (x), 1));
5803 pos = XEXP (SET_DEST (x), 2);
5805 /* If the position is constant and spans the width of INNER,
5806 surround INNER with a USE to indicate this. */
5807 if (GET_CODE (pos) == CONST_INT
5808 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5809 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5811 if (BITS_BIG_ENDIAN)
5813 if (GET_CODE (pos) == CONST_INT)
5814 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5815 - INTVAL (pos));
5816 else if (GET_CODE (pos) == MINUS
5817 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5818 && (INTVAL (XEXP (pos, 1))
5819 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5820 /* If position is ADJUST - X, new position is X. */
5821 pos = XEXP (pos, 0);
5822 else
5823 pos = gen_binary (MINUS, GET_MODE (pos),
5824 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5825 - len),
5826 pos);
5830 /* A SUBREG between two modes that occupy the same numbers of words
5831 can be done by moving the SUBREG to the source. */
5832 else if (GET_CODE (SET_DEST (x)) == SUBREG
5833 /* We need SUBREGs to compute nonzero_bits properly. */
5834 && nonzero_sign_valid
5835 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5836 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5837 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5838 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5840 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5841 gen_lowpart_for_combine
5842 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5843 SET_SRC (x)));
5844 continue;
5846 else
5847 break;
5849 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5850 inner = SUBREG_REG (inner);
5852 compute_mode = GET_MODE (inner);
5854 /* Don't attempt bitwise arithmetic on non-integral modes. */
5855 if (! INTEGRAL_MODE_P (compute_mode))
5857 enum machine_mode imode;
5859 /* Something is probably seriously wrong if this matches. */
5860 if (! FLOAT_MODE_P (compute_mode))
5861 break;
5863 /* Try to find an integral mode to pun with. */
5864 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5865 if (imode == BLKmode)
5866 break;
5868 compute_mode = imode;
5869 inner = gen_lowpart_for_combine (imode, inner);
5872 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5873 if (len < HOST_BITS_PER_WIDE_INT)
5874 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5875 else
5876 break;
5878 /* Now compute the equivalent expression. Make a copy of INNER
5879 for the SET_DEST in case it is a MEM into which we will substitute;
5880 we don't want shared RTL in that case. */
5881 x = gen_rtx_SET
5882 (VOIDmode, copy_rtx (inner),
5883 gen_binary (IOR, compute_mode,
5884 gen_binary (AND, compute_mode,
5885 simplify_gen_unary (NOT, compute_mode,
5886 gen_binary (ASHIFT,
5887 compute_mode,
5888 mask, pos),
5889 compute_mode),
5890 inner),
5891 gen_binary (ASHIFT, compute_mode,
5892 gen_binary (AND, compute_mode,
5893 gen_lowpart_for_combine
5894 (compute_mode, SET_SRC (x)),
5895 mask),
5896 pos)));
5899 return x;
5902 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5903 it is an RTX that represents a variable starting position; otherwise,
5904 POS is the (constant) starting bit position (counted from the LSB).
5906 INNER may be a USE. This will occur when we started with a bitfield
5907 that went outside the boundary of the object in memory, which is
5908 allowed on most machines. To isolate this case, we produce a USE
5909 whose mode is wide enough and surround the MEM with it. The only
5910 code that understands the USE is this routine. If it is not removed,
5911 it will cause the resulting insn not to match.
5913 UNSIGNEDP is non-zero for an unsigned reference and zero for a
5914 signed reference.
5916 IN_DEST is non-zero if this is a reference in the destination of a
5917 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If non-zero,
5918 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5919 be used.
5921 IN_COMPARE is non-zero if we are in a COMPARE. This means that a
5922 ZERO_EXTRACT should be built even for bits starting at bit 0.
5924 MODE is the desired mode of the result (if IN_DEST == 0).
5926 The result is an RTX for the extraction or NULL_RTX if the target
5927 can't handle it. */
5929 static rtx
5930 make_extraction (mode, inner, pos, pos_rtx, len,
5931 unsignedp, in_dest, in_compare)
5932 enum machine_mode mode;
5933 rtx inner;
5934 HOST_WIDE_INT pos;
5935 rtx pos_rtx;
5936 unsigned HOST_WIDE_INT len;
5937 int unsignedp;
5938 int in_dest, in_compare;
5940 /* This mode describes the size of the storage area
5941 to fetch the overall value from. Within that, we
5942 ignore the POS lowest bits, etc. */
5943 enum machine_mode is_mode = GET_MODE (inner);
5944 enum machine_mode inner_mode;
5945 enum machine_mode wanted_inner_mode = byte_mode;
5946 enum machine_mode wanted_inner_reg_mode = word_mode;
5947 enum machine_mode pos_mode = word_mode;
5948 enum machine_mode extraction_mode = word_mode;
5949 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5950 int spans_byte = 0;
5951 rtx new = 0;
5952 rtx orig_pos_rtx = pos_rtx;
5953 HOST_WIDE_INT orig_pos;
5955 /* Get some information about INNER and get the innermost object. */
5956 if (GET_CODE (inner) == USE)
5957 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
5958 /* We don't need to adjust the position because we set up the USE
5959 to pretend that it was a full-word object. */
5960 spans_byte = 1, inner = XEXP (inner, 0);
5961 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5963 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5964 consider just the QI as the memory to extract from.
5965 The subreg adds or removes high bits; its mode is
5966 irrelevant to the meaning of this extraction,
5967 since POS and LEN count from the lsb. */
5968 if (GET_CODE (SUBREG_REG (inner)) == MEM)
5969 is_mode = GET_MODE (SUBREG_REG (inner));
5970 inner = SUBREG_REG (inner);
5973 inner_mode = GET_MODE (inner);
5975 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
5976 pos = INTVAL (pos_rtx), pos_rtx = 0;
5978 /* See if this can be done without an extraction. We never can if the
5979 width of the field is not the same as that of some integer mode. For
5980 registers, we can only avoid the extraction if the position is at the
5981 low-order bit and this is either not in the destination or we have the
5982 appropriate STRICT_LOW_PART operation available.
5984 For MEM, we can avoid an extract if the field starts on an appropriate
5985 boundary and we can change the mode of the memory reference. However,
5986 we cannot directly access the MEM if we have a USE and the underlying
5987 MEM is not TMODE. This combination means that MEM was being used in a
5988 context where bits outside its mode were being referenced; that is only
5989 valid in bit-field insns. */
5991 if (tmode != BLKmode
5992 && ! (spans_byte && inner_mode != tmode)
5993 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
5994 && GET_CODE (inner) != MEM
5995 && (! in_dest
5996 || (GET_CODE (inner) == REG
5997 && have_insn_for (STRICT_LOW_PART, tmode))))
5998 || (GET_CODE (inner) == MEM && pos_rtx == 0
5999 && (pos
6000 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6001 : BITS_PER_UNIT)) == 0
6002 /* We can't do this if we are widening INNER_MODE (it
6003 may not be aligned, for one thing). */
6004 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6005 && (inner_mode == tmode
6006 || (! mode_dependent_address_p (XEXP (inner, 0))
6007 && ! MEM_VOLATILE_P (inner))))))
6009 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6010 field. If the original and current mode are the same, we need not
6011 adjust the offset. Otherwise, we do if bytes big endian.
6013 If INNER is not a MEM, get a piece consisting of just the field
6014 of interest (in this case POS % BITS_PER_WORD must be 0). */
6016 if (GET_CODE (inner) == MEM)
6018 HOST_WIDE_INT offset;
6020 /* POS counts from lsb, but make OFFSET count in memory order. */
6021 if (BYTES_BIG_ENDIAN)
6022 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6023 else
6024 offset = pos / BITS_PER_UNIT;
6026 new = adjust_address_nv (inner, tmode, offset);
6028 else if (GET_CODE (inner) == REG)
6030 /* We can't call gen_lowpart_for_combine here since we always want
6031 a SUBREG and it would sometimes return a new hard register. */
6032 if (tmode != inner_mode)
6034 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6036 if (WORDS_BIG_ENDIAN
6037 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6038 final_word = ((GET_MODE_SIZE (inner_mode)
6039 - GET_MODE_SIZE (tmode))
6040 / UNITS_PER_WORD) - final_word;
6042 final_word *= UNITS_PER_WORD;
6043 if (BYTES_BIG_ENDIAN &&
6044 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6045 final_word += (GET_MODE_SIZE (inner_mode)
6046 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6048 new = gen_rtx_SUBREG (tmode, inner, final_word);
6050 else
6051 new = inner;
6053 else
6054 new = force_to_mode (inner, tmode,
6055 len >= HOST_BITS_PER_WIDE_INT
6056 ? ~(unsigned HOST_WIDE_INT) 0
6057 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6058 NULL_RTX, 0);
6060 /* If this extraction is going into the destination of a SET,
6061 make a STRICT_LOW_PART unless we made a MEM. */
6063 if (in_dest)
6064 return (GET_CODE (new) == MEM ? new
6065 : (GET_CODE (new) != SUBREG
6066 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6067 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6069 if (mode == tmode)
6070 return new;
6072 if (GET_CODE (new) == CONST_INT)
6073 return gen_int_mode (INTVAL (new), mode);
6075 /* If we know that no extraneous bits are set, and that the high
6076 bit is not set, convert the extraction to the cheaper of
6077 sign and zero extension, that are equivalent in these cases. */
6078 if (flag_expensive_optimizations
6079 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6080 && ((nonzero_bits (new, tmode)
6081 & ~(((unsigned HOST_WIDE_INT)
6082 GET_MODE_MASK (tmode))
6083 >> 1))
6084 == 0)))
6086 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6087 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6089 /* Prefer ZERO_EXTENSION, since it gives more information to
6090 backends. */
6091 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6092 return temp;
6093 return temp1;
6096 /* Otherwise, sign- or zero-extend unless we already are in the
6097 proper mode. */
6099 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6100 mode, new));
6103 /* Unless this is a COMPARE or we have a funny memory reference,
6104 don't do anything with zero-extending field extracts starting at
6105 the low-order bit since they are simple AND operations. */
6106 if (pos_rtx == 0 && pos == 0 && ! in_dest
6107 && ! in_compare && ! spans_byte && unsignedp)
6108 return 0;
6110 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6111 we would be spanning bytes or if the position is not a constant and the
6112 length is not 1. In all other cases, we would only be going outside
6113 our object in cases when an original shift would have been
6114 undefined. */
6115 if (! spans_byte && GET_CODE (inner) == MEM
6116 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6117 || (pos_rtx != 0 && len != 1)))
6118 return 0;
6120 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6121 and the mode for the result. */
6122 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6124 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6125 pos_mode = mode_for_extraction (EP_insv, 2);
6126 extraction_mode = mode_for_extraction (EP_insv, 3);
6129 if (! in_dest && unsignedp
6130 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6132 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6133 pos_mode = mode_for_extraction (EP_extzv, 3);
6134 extraction_mode = mode_for_extraction (EP_extzv, 0);
6137 if (! in_dest && ! unsignedp
6138 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6140 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6141 pos_mode = mode_for_extraction (EP_extv, 3);
6142 extraction_mode = mode_for_extraction (EP_extv, 0);
6145 /* Never narrow an object, since that might not be safe. */
6147 if (mode != VOIDmode
6148 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6149 extraction_mode = mode;
6151 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6152 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6153 pos_mode = GET_MODE (pos_rtx);
6155 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6156 if we have to change the mode of memory and cannot, the desired mode is
6157 EXTRACTION_MODE. */
6158 if (GET_CODE (inner) != MEM)
6159 wanted_inner_mode = wanted_inner_reg_mode;
6160 else if (inner_mode != wanted_inner_mode
6161 && (mode_dependent_address_p (XEXP (inner, 0))
6162 || MEM_VOLATILE_P (inner)))
6163 wanted_inner_mode = extraction_mode;
6165 orig_pos = pos;
6167 if (BITS_BIG_ENDIAN)
6169 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6170 BITS_BIG_ENDIAN style. If position is constant, compute new
6171 position. Otherwise, build subtraction.
6172 Note that POS is relative to the mode of the original argument.
6173 If it's a MEM we need to recompute POS relative to that.
6174 However, if we're extracting from (or inserting into) a register,
6175 we want to recompute POS relative to wanted_inner_mode. */
6176 int width = (GET_CODE (inner) == MEM
6177 ? GET_MODE_BITSIZE (is_mode)
6178 : GET_MODE_BITSIZE (wanted_inner_mode));
6180 if (pos_rtx == 0)
6181 pos = width - len - pos;
6182 else
6183 pos_rtx
6184 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6185 /* POS may be less than 0 now, but we check for that below.
6186 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
6189 /* If INNER has a wider mode, make it smaller. If this is a constant
6190 extract, try to adjust the byte to point to the byte containing
6191 the value. */
6192 if (wanted_inner_mode != VOIDmode
6193 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6194 && ((GET_CODE (inner) == MEM
6195 && (inner_mode == wanted_inner_mode
6196 || (! mode_dependent_address_p (XEXP (inner, 0))
6197 && ! MEM_VOLATILE_P (inner))))))
6199 int offset = 0;
6201 /* The computations below will be correct if the machine is big
6202 endian in both bits and bytes or little endian in bits and bytes.
6203 If it is mixed, we must adjust. */
6205 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6206 adjust OFFSET to compensate. */
6207 if (BYTES_BIG_ENDIAN
6208 && ! spans_byte
6209 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6210 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6212 /* If this is a constant position, we can move to the desired byte. */
6213 if (pos_rtx == 0)
6215 offset += pos / BITS_PER_UNIT;
6216 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6219 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6220 && ! spans_byte
6221 && is_mode != wanted_inner_mode)
6222 offset = (GET_MODE_SIZE (is_mode)
6223 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6225 if (offset != 0 || inner_mode != wanted_inner_mode)
6226 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6229 /* If INNER is not memory, we can always get it into the proper mode. If we
6230 are changing its mode, POS must be a constant and smaller than the size
6231 of the new mode. */
6232 else if (GET_CODE (inner) != MEM)
6234 if (GET_MODE (inner) != wanted_inner_mode
6235 && (pos_rtx != 0
6236 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6237 return 0;
6239 inner = force_to_mode (inner, wanted_inner_mode,
6240 pos_rtx
6241 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6242 ? ~(unsigned HOST_WIDE_INT) 0
6243 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6244 << orig_pos),
6245 NULL_RTX, 0);
6248 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6249 have to zero extend. Otherwise, we can just use a SUBREG. */
6250 if (pos_rtx != 0
6251 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6253 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6255 /* If we know that no extraneous bits are set, and that the high
6256 bit is not set, convert extraction to cheaper one - either
6257 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6258 cases. */
6259 if (flag_expensive_optimizations
6260 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6261 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6262 & ~(((unsigned HOST_WIDE_INT)
6263 GET_MODE_MASK (GET_MODE (pos_rtx)))
6264 >> 1))
6265 == 0)))
6267 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6269 /* Prefer ZERO_EXTENSION, since it gives more information to
6270 backends. */
6271 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6272 temp = temp1;
6274 pos_rtx = temp;
6276 else if (pos_rtx != 0
6277 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6278 pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
6280 /* Make POS_RTX unless we already have it and it is correct. If we don't
6281 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6282 be a CONST_INT. */
6283 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6284 pos_rtx = orig_pos_rtx;
6286 else if (pos_rtx == 0)
6287 pos_rtx = GEN_INT (pos);
6289 /* Make the required operation. See if we can use existing rtx. */
6290 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6291 extraction_mode, inner, GEN_INT (len), pos_rtx);
6292 if (! in_dest)
6293 new = gen_lowpart_for_combine (mode, new);
6295 return new;
6298 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6299 with any other operations in X. Return X without that shift if so. */
6301 static rtx
6302 extract_left_shift (x, count)
6303 rtx x;
6304 int count;
6306 enum rtx_code code = GET_CODE (x);
6307 enum machine_mode mode = GET_MODE (x);
6308 rtx tem;
6310 switch (code)
6312 case ASHIFT:
6313 /* This is the shift itself. If it is wide enough, we will return
6314 either the value being shifted if the shift count is equal to
6315 COUNT or a shift for the difference. */
6316 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6317 && INTVAL (XEXP (x, 1)) >= count)
6318 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6319 INTVAL (XEXP (x, 1)) - count);
6320 break;
6322 case NEG: case NOT:
6323 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6324 return simplify_gen_unary (code, mode, tem, mode);
6326 break;
6328 case PLUS: case IOR: case XOR: case AND:
6329 /* If we can safely shift this constant and we find the inner shift,
6330 make a new operation. */
6331 if (GET_CODE (XEXP (x,1)) == CONST_INT
6332 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6333 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6334 return gen_binary (code, mode, tem,
6335 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6337 break;
6339 default:
6340 break;
6343 return 0;
6346 /* Look at the expression rooted at X. Look for expressions
6347 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6348 Form these expressions.
6350 Return the new rtx, usually just X.
6352 Also, for machines like the VAX that don't have logical shift insns,
6353 try to convert logical to arithmetic shift operations in cases where
6354 they are equivalent. This undoes the canonicalizations to logical
6355 shifts done elsewhere.
6357 We try, as much as possible, to re-use rtl expressions to save memory.
6359 IN_CODE says what kind of expression we are processing. Normally, it is
6360 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6361 being kludges), it is MEM. When processing the arguments of a comparison
6362 or a COMPARE against zero, it is COMPARE. */
6364 static rtx
6365 make_compound_operation (x, in_code)
6366 rtx x;
6367 enum rtx_code in_code;
6369 enum rtx_code code = GET_CODE (x);
6370 enum machine_mode mode = GET_MODE (x);
6371 int mode_width = GET_MODE_BITSIZE (mode);
6372 rtx rhs, lhs;
6373 enum rtx_code next_code;
6374 int i;
6375 rtx new = 0;
6376 rtx tem;
6377 const char *fmt;
6379 /* Select the code to be used in recursive calls. Once we are inside an
6380 address, we stay there. If we have a comparison, set to COMPARE,
6381 but once inside, go back to our default of SET. */
6383 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6384 : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
6385 && XEXP (x, 1) == const0_rtx) ? COMPARE
6386 : in_code == COMPARE ? SET : in_code);
6388 /* Process depending on the code of this operation. If NEW is set
6389 non-zero, it will be returned. */
6391 switch (code)
6393 case ASHIFT:
6394 /* Convert shifts by constants into multiplications if inside
6395 an address. */
6396 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6397 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6398 && INTVAL (XEXP (x, 1)) >= 0)
6400 new = make_compound_operation (XEXP (x, 0), next_code);
6401 new = gen_rtx_MULT (mode, new,
6402 GEN_INT ((HOST_WIDE_INT) 1
6403 << INTVAL (XEXP (x, 1))));
6405 break;
6407 case AND:
6408 /* If the second operand is not a constant, we can't do anything
6409 with it. */
6410 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6411 break;
6413 /* If the constant is a power of two minus one and the first operand
6414 is a logical right shift, make an extraction. */
6415 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6416 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6418 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6419 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6420 0, in_code == COMPARE);
6423 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6424 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6425 && subreg_lowpart_p (XEXP (x, 0))
6426 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6427 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6429 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6430 next_code);
6431 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6432 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6433 0, in_code == COMPARE);
6435 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6436 else if ((GET_CODE (XEXP (x, 0)) == XOR
6437 || GET_CODE (XEXP (x, 0)) == IOR)
6438 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6439 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6440 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6442 /* Apply the distributive law, and then try to make extractions. */
6443 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6444 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6445 XEXP (x, 1)),
6446 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6447 XEXP (x, 1)));
6448 new = make_compound_operation (new, in_code);
6451 /* If we are have (and (rotate X C) M) and C is larger than the number
6452 of bits in M, this is an extraction. */
6454 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6455 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6456 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6457 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6459 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6460 new = make_extraction (mode, new,
6461 (GET_MODE_BITSIZE (mode)
6462 - INTVAL (XEXP (XEXP (x, 0), 1))),
6463 NULL_RTX, i, 1, 0, in_code == COMPARE);
6466 /* On machines without logical shifts, if the operand of the AND is
6467 a logical shift and our mask turns off all the propagated sign
6468 bits, we can replace the logical shift with an arithmetic shift. */
6469 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6470 && !have_insn_for (LSHIFTRT, mode)
6471 && have_insn_for (ASHIFTRT, mode)
6472 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6473 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6474 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6475 && mode_width <= HOST_BITS_PER_WIDE_INT)
6477 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6479 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6480 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6481 SUBST (XEXP (x, 0),
6482 gen_rtx_ASHIFTRT (mode,
6483 make_compound_operation
6484 (XEXP (XEXP (x, 0), 0), next_code),
6485 XEXP (XEXP (x, 0), 1)));
6488 /* If the constant is one less than a power of two, this might be
6489 representable by an extraction even if no shift is present.
6490 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6491 we are in a COMPARE. */
6492 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6493 new = make_extraction (mode,
6494 make_compound_operation (XEXP (x, 0),
6495 next_code),
6496 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6498 /* If we are in a comparison and this is an AND with a power of two,
6499 convert this into the appropriate bit extract. */
6500 else if (in_code == COMPARE
6501 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6502 new = make_extraction (mode,
6503 make_compound_operation (XEXP (x, 0),
6504 next_code),
6505 i, NULL_RTX, 1, 1, 0, 1);
6507 break;
6509 case LSHIFTRT:
6510 /* If the sign bit is known to be zero, replace this with an
6511 arithmetic shift. */
6512 if (have_insn_for (ASHIFTRT, mode)
6513 && ! have_insn_for (LSHIFTRT, mode)
6514 && mode_width <= HOST_BITS_PER_WIDE_INT
6515 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6517 new = gen_rtx_ASHIFTRT (mode,
6518 make_compound_operation (XEXP (x, 0),
6519 next_code),
6520 XEXP (x, 1));
6521 break;
6524 /* ... fall through ... */
6526 case ASHIFTRT:
6527 lhs = XEXP (x, 0);
6528 rhs = XEXP (x, 1);
6530 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6531 this is a SIGN_EXTRACT. */
6532 if (GET_CODE (rhs) == CONST_INT
6533 && GET_CODE (lhs) == ASHIFT
6534 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6535 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6537 new = make_compound_operation (XEXP (lhs, 0), next_code);
6538 new = make_extraction (mode, new,
6539 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6540 NULL_RTX, mode_width - INTVAL (rhs),
6541 code == LSHIFTRT, 0, in_code == COMPARE);
6542 break;
6545 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6546 If so, try to merge the shifts into a SIGN_EXTEND. We could
6547 also do this for some cases of SIGN_EXTRACT, but it doesn't
6548 seem worth the effort; the case checked for occurs on Alpha. */
6550 if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
6551 && ! (GET_CODE (lhs) == SUBREG
6552 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
6553 && GET_CODE (rhs) == CONST_INT
6554 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6555 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6556 new = make_extraction (mode, make_compound_operation (new, next_code),
6557 0, NULL_RTX, mode_width - INTVAL (rhs),
6558 code == LSHIFTRT, 0, in_code == COMPARE);
6560 break;
6562 case SUBREG:
6563 /* Call ourselves recursively on the inner expression. If we are
6564 narrowing the object and it has a different RTL code from
6565 what it originally did, do this SUBREG as a force_to_mode. */
6567 tem = make_compound_operation (SUBREG_REG (x), in_code);
6568 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6569 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6570 && subreg_lowpart_p (x))
6572 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6573 NULL_RTX, 0);
6575 /* If we have something other than a SUBREG, we might have
6576 done an expansion, so rerun ourselves. */
6577 if (GET_CODE (newer) != SUBREG)
6578 newer = make_compound_operation (newer, in_code);
6580 return newer;
6583 /* If this is a paradoxical subreg, and the new code is a sign or
6584 zero extension, omit the subreg and widen the extension. If it
6585 is a regular subreg, we can still get rid of the subreg by not
6586 widening so much, or in fact removing the extension entirely. */
6587 if ((GET_CODE (tem) == SIGN_EXTEND
6588 || GET_CODE (tem) == ZERO_EXTEND)
6589 && subreg_lowpart_p (x))
6591 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6592 || (GET_MODE_SIZE (mode) >
6593 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6594 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6595 else
6596 tem = gen_lowpart_for_combine (mode, XEXP (tem, 0));
6597 return tem;
6599 break;
6601 default:
6602 break;
6605 if (new)
6607 x = gen_lowpart_for_combine (mode, new);
6608 code = GET_CODE (x);
6611 /* Now recursively process each operand of this operation. */
6612 fmt = GET_RTX_FORMAT (code);
6613 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6614 if (fmt[i] == 'e')
6616 new = make_compound_operation (XEXP (x, i), next_code);
6617 SUBST (XEXP (x, i), new);
6620 return x;
6623 /* Given M see if it is a value that would select a field of bits
6624 within an item, but not the entire word. Return -1 if not.
6625 Otherwise, return the starting position of the field, where 0 is the
6626 low-order bit.
6628 *PLEN is set to the length of the field. */
6630 static int
6631 get_pos_from_mask (m, plen)
6632 unsigned HOST_WIDE_INT m;
6633 unsigned HOST_WIDE_INT *plen;
6635 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6636 int pos = exact_log2 (m & -m);
6637 int len;
6639 if (pos < 0)
6640 return -1;
6642 /* Now shift off the low-order zero bits and see if we have a power of
6643 two minus 1. */
6644 len = exact_log2 ((m >> pos) + 1);
6646 if (len <= 0)
6647 return -1;
6649 *plen = len;
6650 return pos;
6653 /* See if X can be simplified knowing that we will only refer to it in
6654 MODE and will only refer to those bits that are nonzero in MASK.
6655 If other bits are being computed or if masking operations are done
6656 that select a superset of the bits in MASK, they can sometimes be
6657 ignored.
6659 Return a possibly simplified expression, but always convert X to
6660 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6662 Also, if REG is non-zero and X is a register equal in value to REG,
6663 replace X with REG.
6665 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6666 are all off in X. This is used when X will be complemented, by either
6667 NOT, NEG, or XOR. */
6669 static rtx
6670 force_to_mode (x, mode, mask, reg, just_select)
6671 rtx x;
6672 enum machine_mode mode;
6673 unsigned HOST_WIDE_INT mask;
6674 rtx reg;
6675 int just_select;
6677 enum rtx_code code = GET_CODE (x);
6678 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6679 enum machine_mode op_mode;
6680 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6681 rtx op0, op1, temp;
6683 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6684 code below will do the wrong thing since the mode of such an
6685 expression is VOIDmode.
6687 Also do nothing if X is a CLOBBER; this can happen if X was
6688 the return value from a call to gen_lowpart_for_combine. */
6689 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6690 return x;
6692 /* We want to perform the operation is its present mode unless we know
6693 that the operation is valid in MODE, in which case we do the operation
6694 in MODE. */
6695 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6696 && have_insn_for (code, mode))
6697 ? mode : GET_MODE (x));
6699 /* It is not valid to do a right-shift in a narrower mode
6700 than the one it came in with. */
6701 if ((code == LSHIFTRT || code == ASHIFTRT)
6702 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6703 op_mode = GET_MODE (x);
6705 /* Truncate MASK to fit OP_MODE. */
6706 if (op_mode)
6707 mask &= GET_MODE_MASK (op_mode);
6709 /* When we have an arithmetic operation, or a shift whose count we
6710 do not know, we need to assume that all bit the up to the highest-order
6711 bit in MASK will be needed. This is how we form such a mask. */
6712 if (op_mode)
6713 fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
6714 ? GET_MODE_MASK (op_mode)
6715 : (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6716 - 1));
6717 else
6718 fuller_mask = ~(HOST_WIDE_INT) 0;
6720 /* Determine what bits of X are guaranteed to be (non)zero. */
6721 nonzero = nonzero_bits (x, mode);
6723 /* If none of the bits in X are needed, return a zero. */
6724 if (! just_select && (nonzero & mask) == 0)
6725 return const0_rtx;
6727 /* If X is a CONST_INT, return a new one. Do this here since the
6728 test below will fail. */
6729 if (GET_CODE (x) == CONST_INT)
6730 return gen_int_mode (INTVAL (x) & mask, mode);
6732 /* If X is narrower than MODE and we want all the bits in X's mode, just
6733 get X in the proper mode. */
6734 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6735 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6736 return gen_lowpart_for_combine (mode, x);
6738 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6739 MASK are already known to be zero in X, we need not do anything. */
6740 if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
6741 return x;
6743 switch (code)
6745 case CLOBBER:
6746 /* If X is a (clobber (const_int)), return it since we know we are
6747 generating something that won't match. */
6748 return x;
6750 case USE:
6751 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6752 spanned the boundary of the MEM. If we are now masking so it is
6753 within that boundary, we don't need the USE any more. */
6754 if (! BITS_BIG_ENDIAN
6755 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6756 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6757 break;
6759 case SIGN_EXTEND:
6760 case ZERO_EXTEND:
6761 case ZERO_EXTRACT:
6762 case SIGN_EXTRACT:
6763 x = expand_compound_operation (x);
6764 if (GET_CODE (x) != code)
6765 return force_to_mode (x, mode, mask, reg, next_select);
6766 break;
6768 case REG:
6769 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6770 || rtx_equal_p (reg, get_last_value (x))))
6771 x = reg;
6772 break;
6774 case SUBREG:
6775 if (subreg_lowpart_p (x)
6776 /* We can ignore the effect of this SUBREG if it narrows the mode or
6777 if the constant masks to zero all the bits the mode doesn't
6778 have. */
6779 && ((GET_MODE_SIZE (GET_MODE (x))
6780 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6781 || (0 == (mask
6782 & GET_MODE_MASK (GET_MODE (x))
6783 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6784 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6785 break;
6787 case AND:
6788 /* If this is an AND with a constant, convert it into an AND
6789 whose constant is the AND of that constant with MASK. If it
6790 remains an AND of MASK, delete it since it is redundant. */
6792 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6794 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6795 mask & INTVAL (XEXP (x, 1)));
6797 /* If X is still an AND, see if it is an AND with a mask that
6798 is just some low-order bits. If so, and it is MASK, we don't
6799 need it. */
6801 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6802 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6803 == (HOST_WIDE_INT) mask))
6804 x = XEXP (x, 0);
6806 /* If it remains an AND, try making another AND with the bits
6807 in the mode mask that aren't in MASK turned on. If the
6808 constant in the AND is wide enough, this might make a
6809 cheaper constant. */
6811 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6812 && GET_MODE_MASK (GET_MODE (x)) != mask
6813 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6815 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6816 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6817 int width = GET_MODE_BITSIZE (GET_MODE (x));
6818 rtx y;
6820 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6821 number, sign extend it. */
6822 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6823 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6824 cval |= (HOST_WIDE_INT) -1 << width;
6826 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6827 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6828 x = y;
6831 break;
6834 goto binop;
6836 case PLUS:
6837 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6838 low-order bits (as in an alignment operation) and FOO is already
6839 aligned to that boundary, mask C1 to that boundary as well.
6840 This may eliminate that PLUS and, later, the AND. */
6843 unsigned int width = GET_MODE_BITSIZE (mode);
6844 unsigned HOST_WIDE_INT smask = mask;
6846 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6847 number, sign extend it. */
6849 if (width < HOST_BITS_PER_WIDE_INT
6850 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6851 smask |= (HOST_WIDE_INT) -1 << width;
6853 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6854 && exact_log2 (- smask) >= 0
6855 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6856 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6857 return force_to_mode (plus_constant (XEXP (x, 0),
6858 (INTVAL (XEXP (x, 1)) & smask)),
6859 mode, smask, reg, next_select);
6862 /* ... fall through ... */
6864 case MULT:
6865 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6866 most significant bit in MASK since carries from those bits will
6867 affect the bits we are interested in. */
6868 mask = fuller_mask;
6869 goto binop;
6871 case MINUS:
6872 /* If X is (minus C Y) where C's least set bit is larger than any bit
6873 in the mask, then we may replace with (neg Y). */
6874 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6875 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
6876 & -INTVAL (XEXP (x, 0))))
6877 > mask))
6879 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
6880 GET_MODE (x));
6881 return force_to_mode (x, mode, mask, reg, next_select);
6884 /* Similarly, if C contains every bit in the mask, then we may
6885 replace with (not Y). */
6886 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6887 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) mask)
6888 == INTVAL (XEXP (x, 0))))
6890 x = simplify_gen_unary (NOT, GET_MODE (x),
6891 XEXP (x, 1), GET_MODE (x));
6892 return force_to_mode (x, mode, mask, reg, next_select);
6895 mask = fuller_mask;
6896 goto binop;
6898 case IOR:
6899 case XOR:
6900 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
6901 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
6902 operation which may be a bitfield extraction. Ensure that the
6903 constant we form is not wider than the mode of X. */
6905 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6906 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6907 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6908 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6909 && GET_CODE (XEXP (x, 1)) == CONST_INT
6910 && ((INTVAL (XEXP (XEXP (x, 0), 1))
6911 + floor_log2 (INTVAL (XEXP (x, 1))))
6912 < GET_MODE_BITSIZE (GET_MODE (x)))
6913 && (INTVAL (XEXP (x, 1))
6914 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
6916 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
6917 << INTVAL (XEXP (XEXP (x, 0), 1)));
6918 temp = gen_binary (GET_CODE (x), GET_MODE (x),
6919 XEXP (XEXP (x, 0), 0), temp);
6920 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
6921 XEXP (XEXP (x, 0), 1));
6922 return force_to_mode (x, mode, mask, reg, next_select);
6925 binop:
6926 /* For most binary operations, just propagate into the operation and
6927 change the mode if we have an operation of that mode. */
6929 op0 = gen_lowpart_for_combine (op_mode,
6930 force_to_mode (XEXP (x, 0), mode, mask,
6931 reg, next_select));
6932 op1 = gen_lowpart_for_combine (op_mode,
6933 force_to_mode (XEXP (x, 1), mode, mask,
6934 reg, next_select));
6936 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6937 x = gen_binary (code, op_mode, op0, op1);
6938 break;
6940 case ASHIFT:
6941 /* For left shifts, do the same, but just for the first operand.
6942 However, we cannot do anything with shifts where we cannot
6943 guarantee that the counts are smaller than the size of the mode
6944 because such a count will have a different meaning in a
6945 wider mode. */
6947 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
6948 && INTVAL (XEXP (x, 1)) >= 0
6949 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
6950 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
6951 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
6952 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
6953 break;
6955 /* If the shift count is a constant and we can do arithmetic in
6956 the mode of the shift, refine which bits we need. Otherwise, use the
6957 conservative form of the mask. */
6958 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6959 && INTVAL (XEXP (x, 1)) >= 0
6960 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
6961 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6962 mask >>= INTVAL (XEXP (x, 1));
6963 else
6964 mask = fuller_mask;
6966 op0 = gen_lowpart_for_combine (op_mode,
6967 force_to_mode (XEXP (x, 0), op_mode,
6968 mask, reg, next_select));
6970 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
6971 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
6972 break;
6974 case LSHIFTRT:
6975 /* Here we can only do something if the shift count is a constant,
6976 this shift constant is valid for the host, and we can do arithmetic
6977 in OP_MODE. */
6979 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6980 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6981 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6983 rtx inner = XEXP (x, 0);
6984 unsigned HOST_WIDE_INT inner_mask;
6986 /* Select the mask of the bits we need for the shift operand. */
6987 inner_mask = mask << INTVAL (XEXP (x, 1));
6989 /* We can only change the mode of the shift if we can do arithmetic
6990 in the mode of the shift and INNER_MASK is no wider than the
6991 width of OP_MODE. */
6992 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
6993 || (inner_mask & ~GET_MODE_MASK (op_mode)) != 0)
6994 op_mode = GET_MODE (x);
6996 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
6998 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
6999 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7002 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7003 shift and AND produces only copies of the sign bit (C2 is one less
7004 than a power of two), we can do this with just a shift. */
7006 if (GET_CODE (x) == LSHIFTRT
7007 && GET_CODE (XEXP (x, 1)) == CONST_INT
7008 /* The shift puts one of the sign bit copies in the least significant
7009 bit. */
7010 && ((INTVAL (XEXP (x, 1))
7011 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7012 >= GET_MODE_BITSIZE (GET_MODE (x)))
7013 && exact_log2 (mask + 1) >= 0
7014 /* Number of bits left after the shift must be more than the mask
7015 needs. */
7016 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7017 <= GET_MODE_BITSIZE (GET_MODE (x)))
7018 /* Must be more sign bit copies than the mask needs. */
7019 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7020 >= exact_log2 (mask + 1)))
7021 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7022 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7023 - exact_log2 (mask + 1)));
7025 goto shiftrt;
7027 case ASHIFTRT:
7028 /* If we are just looking for the sign bit, we don't need this shift at
7029 all, even if it has a variable count. */
7030 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7031 && (mask == ((unsigned HOST_WIDE_INT) 1
7032 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7033 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7035 /* If this is a shift by a constant, get a mask that contains those bits
7036 that are not copies of the sign bit. We then have two cases: If
7037 MASK only includes those bits, this can be a logical shift, which may
7038 allow simplifications. If MASK is a single-bit field not within
7039 those bits, we are requesting a copy of the sign bit and hence can
7040 shift the sign bit to the appropriate location. */
7042 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7043 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7045 int i = -1;
7047 /* If the considered data is wider than HOST_WIDE_INT, we can't
7048 represent a mask for all its bits in a single scalar.
7049 But we only care about the lower bits, so calculate these. */
7051 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7053 nonzero = ~(HOST_WIDE_INT) 0;
7055 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7056 is the number of bits a full-width mask would have set.
7057 We need only shift if these are fewer than nonzero can
7058 hold. If not, we must keep all bits set in nonzero. */
7060 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7061 < HOST_BITS_PER_WIDE_INT)
7062 nonzero >>= INTVAL (XEXP (x, 1))
7063 + HOST_BITS_PER_WIDE_INT
7064 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7066 else
7068 nonzero = GET_MODE_MASK (GET_MODE (x));
7069 nonzero >>= INTVAL (XEXP (x, 1));
7072 if ((mask & ~nonzero) == 0
7073 || (i = exact_log2 (mask)) >= 0)
7075 x = simplify_shift_const
7076 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7077 i < 0 ? INTVAL (XEXP (x, 1))
7078 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7080 if (GET_CODE (x) != ASHIFTRT)
7081 return force_to_mode (x, mode, mask, reg, next_select);
7085 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7086 even if the shift count isn't a constant. */
7087 if (mask == 1)
7088 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7090 shiftrt:
7092 /* If this is a zero- or sign-extension operation that just affects bits
7093 we don't care about, remove it. Be sure the call above returned
7094 something that is still a shift. */
7096 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7097 && GET_CODE (XEXP (x, 1)) == CONST_INT
7098 && INTVAL (XEXP (x, 1)) >= 0
7099 && (INTVAL (XEXP (x, 1))
7100 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7101 && GET_CODE (XEXP (x, 0)) == ASHIFT
7102 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7103 && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
7104 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7105 reg, next_select);
7107 break;
7109 case ROTATE:
7110 case ROTATERT:
7111 /* If the shift count is constant and we can do computations
7112 in the mode of X, compute where the bits we care about are.
7113 Otherwise, we can't do anything. Don't change the mode of
7114 the shift or propagate MODE into the shift, though. */
7115 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7116 && INTVAL (XEXP (x, 1)) >= 0)
7118 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7119 GET_MODE (x), GEN_INT (mask),
7120 XEXP (x, 1));
7121 if (temp && GET_CODE(temp) == CONST_INT)
7122 SUBST (XEXP (x, 0),
7123 force_to_mode (XEXP (x, 0), GET_MODE (x),
7124 INTVAL (temp), reg, next_select));
7126 break;
7128 case NEG:
7129 /* If we just want the low-order bit, the NEG isn't needed since it
7130 won't change the low-order bit. */
7131 if (mask == 1)
7132 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7134 /* We need any bits less significant than the most significant bit in
7135 MASK since carries from those bits will affect the bits we are
7136 interested in. */
7137 mask = fuller_mask;
7138 goto unop;
7140 case NOT:
7141 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7142 same as the XOR case above. Ensure that the constant we form is not
7143 wider than the mode of X. */
7145 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7146 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7147 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7148 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7149 < GET_MODE_BITSIZE (GET_MODE (x)))
7150 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7152 temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1)));
7153 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7154 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7156 return force_to_mode (x, mode, mask, reg, next_select);
7159 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7160 use the full mask inside the NOT. */
7161 mask = fuller_mask;
7163 unop:
7164 op0 = gen_lowpart_for_combine (op_mode,
7165 force_to_mode (XEXP (x, 0), mode, mask,
7166 reg, next_select));
7167 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7168 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7169 break;
7171 case NE:
7172 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7173 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7174 which is equal to STORE_FLAG_VALUE. */
7175 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7176 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7177 && nonzero_bits (XEXP (x, 0), mode) == STORE_FLAG_VALUE)
7178 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7180 break;
7182 case IF_THEN_ELSE:
7183 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7184 written in a narrower mode. We play it safe and do not do so. */
7186 SUBST (XEXP (x, 1),
7187 gen_lowpart_for_combine (GET_MODE (x),
7188 force_to_mode (XEXP (x, 1), mode,
7189 mask, reg, next_select)));
7190 SUBST (XEXP (x, 2),
7191 gen_lowpart_for_combine (GET_MODE (x),
7192 force_to_mode (XEXP (x, 2), mode,
7193 mask, reg,next_select)));
7194 break;
7196 default:
7197 break;
7200 /* Ensure we return a value of the proper mode. */
7201 return gen_lowpart_for_combine (mode, x);
7204 /* Return nonzero if X is an expression that has one of two values depending on
7205 whether some other value is zero or nonzero. In that case, we return the
7206 value that is being tested, *PTRUE is set to the value if the rtx being
7207 returned has a nonzero value, and *PFALSE is set to the other alternative.
7209 If we return zero, we set *PTRUE and *PFALSE to X. */
7211 static rtx
7212 if_then_else_cond (x, ptrue, pfalse)
7213 rtx x;
7214 rtx *ptrue, *pfalse;
7216 enum machine_mode mode = GET_MODE (x);
7217 enum rtx_code code = GET_CODE (x);
7218 rtx cond0, cond1, true0, true1, false0, false1;
7219 unsigned HOST_WIDE_INT nz;
7221 /* If we are comparing a value against zero, we are done. */
7222 if ((code == NE || code == EQ)
7223 && GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 0)
7225 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7226 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7227 return XEXP (x, 0);
7230 /* If this is a unary operation whose operand has one of two values, apply
7231 our opcode to compute those values. */
7232 else if (GET_RTX_CLASS (code) == '1'
7233 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7235 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7236 *pfalse = simplify_gen_unary (code, mode, false0,
7237 GET_MODE (XEXP (x, 0)));
7238 return cond0;
7241 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7242 make can't possibly match and would suppress other optimizations. */
7243 else if (code == COMPARE)
7246 /* If this is a binary operation, see if either side has only one of two
7247 values. If either one does or if both do and they are conditional on
7248 the same value, compute the new true and false values. */
7249 else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
7250 || GET_RTX_CLASS (code) == '<')
7252 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7253 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7255 if ((cond0 != 0 || cond1 != 0)
7256 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7258 /* If if_then_else_cond returned zero, then true/false are the
7259 same rtl. We must copy one of them to prevent invalid rtl
7260 sharing. */
7261 if (cond0 == 0)
7262 true0 = copy_rtx (true0);
7263 else if (cond1 == 0)
7264 true1 = copy_rtx (true1);
7266 *ptrue = gen_binary (code, mode, true0, true1);
7267 *pfalse = gen_binary (code, mode, false0, false1);
7268 return cond0 ? cond0 : cond1;
7271 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7272 operands is zero when the other is non-zero, and vice-versa,
7273 and STORE_FLAG_VALUE is 1 or -1. */
7275 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7276 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7277 || code == UMAX)
7278 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7280 rtx op0 = XEXP (XEXP (x, 0), 1);
7281 rtx op1 = XEXP (XEXP (x, 1), 1);
7283 cond0 = XEXP (XEXP (x, 0), 0);
7284 cond1 = XEXP (XEXP (x, 1), 0);
7286 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7287 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7288 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7289 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7290 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7291 || ((swap_condition (GET_CODE (cond0))
7292 == combine_reversed_comparison_code (cond1))
7293 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7294 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7295 && ! side_effects_p (x))
7297 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7298 *pfalse = gen_binary (MULT, mode,
7299 (code == MINUS
7300 ? simplify_gen_unary (NEG, mode, op1,
7301 mode)
7302 : op1),
7303 const_true_rtx);
7304 return cond0;
7308 /* Similarly for MULT, AND and UMIN, except that for these the result
7309 is always zero. */
7310 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7311 && (code == MULT || code == AND || code == UMIN)
7312 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7314 cond0 = XEXP (XEXP (x, 0), 0);
7315 cond1 = XEXP (XEXP (x, 1), 0);
7317 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7318 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7319 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7320 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7321 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7322 || ((swap_condition (GET_CODE (cond0))
7323 == combine_reversed_comparison_code (cond1))
7324 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7325 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7326 && ! side_effects_p (x))
7328 *ptrue = *pfalse = const0_rtx;
7329 return cond0;
7334 else if (code == IF_THEN_ELSE)
7336 /* If we have IF_THEN_ELSE already, extract the condition and
7337 canonicalize it if it is NE or EQ. */
7338 cond0 = XEXP (x, 0);
7339 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7340 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7341 return XEXP (cond0, 0);
7342 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7344 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7345 return XEXP (cond0, 0);
7347 else
7348 return cond0;
7351 /* If X is a SUBREG, we can narrow both the true and false values
7352 if the inner expression, if there is a condition. */
7353 else if (code == SUBREG
7354 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7355 &true0, &false0)))
7357 *ptrue = simplify_gen_subreg (mode, true0,
7358 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7359 *pfalse = simplify_gen_subreg (mode, false0,
7360 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7362 return cond0;
7365 /* If X is a constant, this isn't special and will cause confusions
7366 if we treat it as such. Likewise if it is equivalent to a constant. */
7367 else if (CONSTANT_P (x)
7368 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7371 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7372 will be least confusing to the rest of the compiler. */
7373 else if (mode == BImode)
7375 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7376 return x;
7379 /* If X is known to be either 0 or -1, those are the true and
7380 false values when testing X. */
7381 else if (x == constm1_rtx || x == const0_rtx
7382 || (mode != VOIDmode
7383 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7385 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7386 return x;
7389 /* Likewise for 0 or a single bit. */
7390 else if (mode != VOIDmode
7391 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7392 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7394 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7395 return x;
7398 /* Otherwise fail; show no condition with true and false values the same. */
7399 *ptrue = *pfalse = x;
7400 return 0;
7403 /* Return the value of expression X given the fact that condition COND
7404 is known to be true when applied to REG as its first operand and VAL
7405 as its second. X is known to not be shared and so can be modified in
7406 place.
7408 We only handle the simplest cases, and specifically those cases that
7409 arise with IF_THEN_ELSE expressions. */
7411 static rtx
7412 known_cond (x, cond, reg, val)
7413 rtx x;
7414 enum rtx_code cond;
7415 rtx reg, val;
7417 enum rtx_code code = GET_CODE (x);
7418 rtx temp;
7419 const char *fmt;
7420 int i, j;
7422 if (side_effects_p (x))
7423 return x;
7425 /* If either operand of the condition is a floating point value,
7426 then we have to avoid collapsing an EQ comparison. */
7427 if (cond == EQ
7428 && rtx_equal_p (x, reg)
7429 && ! FLOAT_MODE_P (GET_MODE (x))
7430 && ! FLOAT_MODE_P (GET_MODE (val)))
7431 return val;
7433 if (cond == UNEQ && rtx_equal_p (x, reg))
7434 return val;
7436 /* If X is (abs REG) and we know something about REG's relationship
7437 with zero, we may be able to simplify this. */
7439 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7440 switch (cond)
7442 case GE: case GT: case EQ:
7443 return XEXP (x, 0);
7444 case LT: case LE:
7445 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7446 XEXP (x, 0),
7447 GET_MODE (XEXP (x, 0)));
7448 default:
7449 break;
7452 /* The only other cases we handle are MIN, MAX, and comparisons if the
7453 operands are the same as REG and VAL. */
7455 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
7457 if (rtx_equal_p (XEXP (x, 0), val))
7458 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7460 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7462 if (GET_RTX_CLASS (code) == '<')
7464 if (comparison_dominates_p (cond, code))
7465 return const_true_rtx;
7467 code = combine_reversed_comparison_code (x);
7468 if (code != UNKNOWN
7469 && comparison_dominates_p (cond, code))
7470 return const0_rtx;
7471 else
7472 return x;
7474 else if (code == SMAX || code == SMIN
7475 || code == UMIN || code == UMAX)
7477 int unsignedp = (code == UMIN || code == UMAX);
7479 /* Do not reverse the condition when it is NE or EQ.
7480 This is because we cannot conclude anything about
7481 the value of 'SMAX (x, y)' when x is not equal to y,
7482 but we can when x equals y. */
7483 if ((code == SMAX || code == UMAX)
7484 && ! (cond == EQ || cond == NE))
7485 cond = reverse_condition (cond);
7487 switch (cond)
7489 case GE: case GT:
7490 return unsignedp ? x : XEXP (x, 1);
7491 case LE: case LT:
7492 return unsignedp ? x : XEXP (x, 0);
7493 case GEU: case GTU:
7494 return unsignedp ? XEXP (x, 1) : x;
7495 case LEU: case LTU:
7496 return unsignedp ? XEXP (x, 0) : x;
7497 default:
7498 break;
7503 else if (code == SUBREG)
7505 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7506 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7508 if (SUBREG_REG (x) != r)
7510 /* We must simplify subreg here, before we lose track of the
7511 original inner_mode. */
7512 new = simplify_subreg (GET_MODE (x), r,
7513 inner_mode, SUBREG_BYTE (x));
7514 if (new)
7515 return new;
7516 else
7517 SUBST (SUBREG_REG (x), r);
7520 return x;
7522 /* We don't have to handle SIGN_EXTEND here, because even in the
7523 case of replacing something with a modeless CONST_INT, a
7524 CONST_INT is already (supposed to be) a valid sign extension for
7525 its narrower mode, which implies it's already properly
7526 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7527 story is different. */
7528 else if (code == ZERO_EXTEND)
7530 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7531 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7533 if (XEXP (x, 0) != r)
7535 /* We must simplify the zero_extend here, before we lose
7536 track of the original inner_mode. */
7537 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7538 r, inner_mode);
7539 if (new)
7540 return new;
7541 else
7542 SUBST (XEXP (x, 0), r);
7545 return x;
7548 fmt = GET_RTX_FORMAT (code);
7549 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7551 if (fmt[i] == 'e')
7552 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7553 else if (fmt[i] == 'E')
7554 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7555 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7556 cond, reg, val));
7559 return x;
7562 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7563 assignment as a field assignment. */
7565 static int
7566 rtx_equal_for_field_assignment_p (x, y)
7567 rtx x;
7568 rtx y;
7570 if (x == y || rtx_equal_p (x, y))
7571 return 1;
7573 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7574 return 0;
7576 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7577 Note that all SUBREGs of MEM are paradoxical; otherwise they
7578 would have been rewritten. */
7579 if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7580 && GET_CODE (SUBREG_REG (y)) == MEM
7581 && rtx_equal_p (SUBREG_REG (y),
7582 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
7583 return 1;
7585 if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7586 && GET_CODE (SUBREG_REG (x)) == MEM
7587 && rtx_equal_p (SUBREG_REG (x),
7588 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
7589 return 1;
7591 /* We used to see if get_last_value of X and Y were the same but that's
7592 not correct. In one direction, we'll cause the assignment to have
7593 the wrong destination and in the case, we'll import a register into this
7594 insn that might have already have been dead. So fail if none of the
7595 above cases are true. */
7596 return 0;
7599 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7600 Return that assignment if so.
7602 We only handle the most common cases. */
7604 static rtx
7605 make_field_assignment (x)
7606 rtx x;
7608 rtx dest = SET_DEST (x);
7609 rtx src = SET_SRC (x);
7610 rtx assign;
7611 rtx rhs, lhs;
7612 HOST_WIDE_INT c1;
7613 HOST_WIDE_INT pos;
7614 unsigned HOST_WIDE_INT len;
7615 rtx other;
7616 enum machine_mode mode;
7618 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7619 a clear of a one-bit field. We will have changed it to
7620 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7621 for a SUBREG. */
7623 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7624 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7625 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7626 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7628 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7629 1, 1, 1, 0);
7630 if (assign != 0)
7631 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7632 return x;
7635 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7636 && subreg_lowpart_p (XEXP (src, 0))
7637 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7638 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7639 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7640 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7641 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7643 assign = make_extraction (VOIDmode, dest, 0,
7644 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7645 1, 1, 1, 0);
7646 if (assign != 0)
7647 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7648 return x;
7651 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7652 one-bit field. */
7653 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7654 && XEXP (XEXP (src, 0), 0) == const1_rtx
7655 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7657 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7658 1, 1, 1, 0);
7659 if (assign != 0)
7660 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7661 return x;
7664 /* The other case we handle is assignments into a constant-position
7665 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7666 a mask that has all one bits except for a group of zero bits and
7667 OTHER is known to have zeros where C1 has ones, this is such an
7668 assignment. Compute the position and length from C1. Shift OTHER
7669 to the appropriate position, force it to the required mode, and
7670 make the extraction. Check for the AND in both operands. */
7672 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7673 return x;
7675 rhs = expand_compound_operation (XEXP (src, 0));
7676 lhs = expand_compound_operation (XEXP (src, 1));
7678 if (GET_CODE (rhs) == AND
7679 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7680 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7681 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7682 else if (GET_CODE (lhs) == AND
7683 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7684 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7685 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7686 else
7687 return x;
7689 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7690 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7691 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7692 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7693 return x;
7695 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7696 if (assign == 0)
7697 return x;
7699 /* The mode to use for the source is the mode of the assignment, or of
7700 what is inside a possible STRICT_LOW_PART. */
7701 mode = (GET_CODE (assign) == STRICT_LOW_PART
7702 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7704 /* Shift OTHER right POS places and make it the source, restricting it
7705 to the proper length and mode. */
7707 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7708 GET_MODE (src), other, pos),
7709 mode,
7710 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7711 ? ~(unsigned HOST_WIDE_INT) 0
7712 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7713 dest, 0);
7715 return gen_rtx_SET (VOIDmode, assign, src);
7718 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7719 if so. */
7721 static rtx
7722 apply_distributive_law (x)
7723 rtx x;
7725 enum rtx_code code = GET_CODE (x);
7726 rtx lhs, rhs, other;
7727 rtx tem;
7728 enum rtx_code inner_code;
7730 /* Distributivity is not true for floating point.
7731 It can change the value. So don't do it.
7732 -- rms and moshier@world.std.com. */
7733 if (FLOAT_MODE_P (GET_MODE (x)))
7734 return x;
7736 /* The outer operation can only be one of the following: */
7737 if (code != IOR && code != AND && code != XOR
7738 && code != PLUS && code != MINUS)
7739 return x;
7741 lhs = XEXP (x, 0), rhs = XEXP (x, 1);
7743 /* If either operand is a primitive we can't do anything, so get out
7744 fast. */
7745 if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
7746 || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
7747 return x;
7749 lhs = expand_compound_operation (lhs);
7750 rhs = expand_compound_operation (rhs);
7751 inner_code = GET_CODE (lhs);
7752 if (inner_code != GET_CODE (rhs))
7753 return x;
7755 /* See if the inner and outer operations distribute. */
7756 switch (inner_code)
7758 case LSHIFTRT:
7759 case ASHIFTRT:
7760 case AND:
7761 case IOR:
7762 /* These all distribute except over PLUS. */
7763 if (code == PLUS || code == MINUS)
7764 return x;
7765 break;
7767 case MULT:
7768 if (code != PLUS && code != MINUS)
7769 return x;
7770 break;
7772 case ASHIFT:
7773 /* This is also a multiply, so it distributes over everything. */
7774 break;
7776 case SUBREG:
7777 /* Non-paradoxical SUBREGs distributes over all operations, provided
7778 the inner modes and byte offsets are the same, this is an extraction
7779 of a low-order part, we don't convert an fp operation to int or
7780 vice versa, and we would not be converting a single-word
7781 operation into a multi-word operation. The latter test is not
7782 required, but it prevents generating unneeded multi-word operations.
7783 Some of the previous tests are redundant given the latter test, but
7784 are retained because they are required for correctness.
7786 We produce the result slightly differently in this case. */
7788 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7789 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7790 || ! subreg_lowpart_p (lhs)
7791 || (GET_MODE_CLASS (GET_MODE (lhs))
7792 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7793 || (GET_MODE_SIZE (GET_MODE (lhs))
7794 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7795 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7796 return x;
7798 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7799 SUBREG_REG (lhs), SUBREG_REG (rhs));
7800 return gen_lowpart_for_combine (GET_MODE (x), tem);
7802 default:
7803 return x;
7806 /* Set LHS and RHS to the inner operands (A and B in the example
7807 above) and set OTHER to the common operand (C in the example).
7808 These is only one way to do this unless the inner operation is
7809 commutative. */
7810 if (GET_RTX_CLASS (inner_code) == 'c'
7811 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7812 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7813 else if (GET_RTX_CLASS (inner_code) == 'c'
7814 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7815 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7816 else if (GET_RTX_CLASS (inner_code) == 'c'
7817 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7818 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7819 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7820 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7821 else
7822 return x;
7824 /* Form the new inner operation, seeing if it simplifies first. */
7825 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7827 /* There is one exception to the general way of distributing:
7828 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
7829 if (code == XOR && inner_code == IOR)
7831 inner_code = AND;
7832 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
7835 /* We may be able to continuing distributing the result, so call
7836 ourselves recursively on the inner operation before forming the
7837 outer operation, which we return. */
7838 return gen_binary (inner_code, GET_MODE (x),
7839 apply_distributive_law (tem), other);
7842 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7843 in MODE.
7845 Return an equivalent form, if different from X. Otherwise, return X. If
7846 X is zero, we are to always construct the equivalent form. */
7848 static rtx
7849 simplify_and_const_int (x, mode, varop, constop)
7850 rtx x;
7851 enum machine_mode mode;
7852 rtx varop;
7853 unsigned HOST_WIDE_INT constop;
7855 unsigned HOST_WIDE_INT nonzero;
7856 int i;
7858 /* Simplify VAROP knowing that we will be only looking at some of the
7859 bits in it.
7861 Note by passing in CONSTOP, we guarantee that the bits not set in
7862 CONSTOP are not significant and will never be examined. We must
7863 ensure that is the case by explicitly masking out those bits
7864 before returning. */
7865 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
7867 /* If VAROP is a CLOBBER, we will fail so return it. */
7868 if (GET_CODE (varop) == CLOBBER)
7869 return varop;
7871 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
7872 to VAROP and return the new constant. */
7873 if (GET_CODE (varop) == CONST_INT)
7874 return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
7876 /* See what bits may be nonzero in VAROP. Unlike the general case of
7877 a call to nonzero_bits, here we don't care about bits outside
7878 MODE. */
7880 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
7882 /* Turn off all bits in the constant that are known to already be zero.
7883 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
7884 which is tested below. */
7886 constop &= nonzero;
7888 /* If we don't have any bits left, return zero. */
7889 if (constop == 0)
7890 return const0_rtx;
7892 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
7893 a power of two, we can replace this with an ASHIFT. */
7894 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
7895 && (i = exact_log2 (constop)) >= 0)
7896 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
7898 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
7899 or XOR, then try to apply the distributive law. This may eliminate
7900 operations if either branch can be simplified because of the AND.
7901 It may also make some cases more complex, but those cases probably
7902 won't match a pattern either with or without this. */
7904 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
7905 return
7906 gen_lowpart_for_combine
7907 (mode,
7908 apply_distributive_law
7909 (gen_binary (GET_CODE (varop), GET_MODE (varop),
7910 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7911 XEXP (varop, 0), constop),
7912 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7913 XEXP (varop, 1), constop))));
7915 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
7916 the AND and see if one of the operands simplifies to zero. If so, we
7917 may eliminate it. */
7919 if (GET_CODE (varop) == PLUS
7920 && exact_log2 (constop + 1) >= 0)
7922 rtx o0, o1;
7924 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
7925 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
7926 if (o0 == const0_rtx)
7927 return o1;
7928 if (o1 == const0_rtx)
7929 return o0;
7932 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
7933 if we already had one (just check for the simplest cases). */
7934 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
7935 && GET_MODE (XEXP (x, 0)) == mode
7936 && SUBREG_REG (XEXP (x, 0)) == varop)
7937 varop = XEXP (x, 0);
7938 else
7939 varop = gen_lowpart_for_combine (mode, varop);
7941 /* If we can't make the SUBREG, try to return what we were given. */
7942 if (GET_CODE (varop) == CLOBBER)
7943 return x ? x : varop;
7945 /* If we are only masking insignificant bits, return VAROP. */
7946 if (constop == nonzero)
7947 x = varop;
7948 else
7950 /* Otherwise, return an AND. */
7951 constop = trunc_int_for_mode (constop, mode);
7952 /* See how much, if any, of X we can use. */
7953 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
7954 x = gen_binary (AND, mode, varop, GEN_INT (constop));
7956 else
7958 if (GET_CODE (XEXP (x, 1)) != CONST_INT
7959 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
7960 SUBST (XEXP (x, 1), GEN_INT (constop));
7962 SUBST (XEXP (x, 0), varop);
7966 return x;
7969 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
7970 We don't let nonzero_bits recur into num_sign_bit_copies, because that
7971 is less useful. We can't allow both, because that results in exponential
7972 run time recursion. There is a nullstone testcase that triggered
7973 this. This macro avoids accidental uses of num_sign_bit_copies. */
7974 #define num_sign_bit_copies()
7976 /* Given an expression, X, compute which bits in X can be non-zero.
7977 We don't care about bits outside of those defined in MODE.
7979 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
7980 a shift, AND, or zero_extract, we can do better. */
7982 static unsigned HOST_WIDE_INT
7983 nonzero_bits (x, mode)
7984 rtx x;
7985 enum machine_mode mode;
7987 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
7988 unsigned HOST_WIDE_INT inner_nz;
7989 enum rtx_code code;
7990 unsigned int mode_width = GET_MODE_BITSIZE (mode);
7991 rtx tem;
7993 /* For floating-point values, assume all bits are needed. */
7994 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
7995 return nonzero;
7997 /* If X is wider than MODE, use its mode instead. */
7998 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
8000 mode = GET_MODE (x);
8001 nonzero = GET_MODE_MASK (mode);
8002 mode_width = GET_MODE_BITSIZE (mode);
8005 if (mode_width > HOST_BITS_PER_WIDE_INT)
8006 /* Our only callers in this case look for single bit values. So
8007 just return the mode mask. Those tests will then be false. */
8008 return nonzero;
8010 #ifndef WORD_REGISTER_OPERATIONS
8011 /* If MODE is wider than X, but both are a single word for both the host
8012 and target machines, we can compute this from which bits of the
8013 object might be nonzero in its own mode, taking into account the fact
8014 that on many CISC machines, accessing an object in a wider mode
8015 causes the high-order bits to become undefined. So they are
8016 not known to be zero. */
8018 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
8019 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
8020 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
8021 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
8023 nonzero &= nonzero_bits (x, GET_MODE (x));
8024 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
8025 return nonzero;
8027 #endif
8029 code = GET_CODE (x);
8030 switch (code)
8032 case REG:
8033 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8034 /* If pointers extend unsigned and this is a pointer in Pmode, say that
8035 all the bits above ptr_mode are known to be zero. */
8036 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8037 && REG_POINTER (x))
8038 nonzero &= GET_MODE_MASK (ptr_mode);
8039 #endif
8041 /* Include declared information about alignment of pointers. */
8042 /* ??? We don't properly preserve REG_POINTER changes across
8043 pointer-to-integer casts, so we can't trust it except for
8044 things that we know must be pointers. See execute/960116-1.c. */
8045 if ((x == stack_pointer_rtx
8046 || x == frame_pointer_rtx
8047 || x == arg_pointer_rtx)
8048 && REGNO_POINTER_ALIGN (REGNO (x)))
8050 unsigned HOST_WIDE_INT alignment
8051 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
8053 #ifdef PUSH_ROUNDING
8054 /* If PUSH_ROUNDING is defined, it is possible for the
8055 stack to be momentarily aligned only to that amount,
8056 so we pick the least alignment. */
8057 if (x == stack_pointer_rtx && PUSH_ARGS)
8058 alignment = MIN (PUSH_ROUNDING (1), alignment);
8059 #endif
8061 nonzero &= ~(alignment - 1);
8064 /* If X is a register whose nonzero bits value is current, use it.
8065 Otherwise, if X is a register whose value we can find, use that
8066 value. Otherwise, use the previously-computed global nonzero bits
8067 for this register. */
8069 if (reg_last_set_value[REGNO (x)] != 0
8070 && (reg_last_set_mode[REGNO (x)] == mode
8071 || (GET_MODE_CLASS (reg_last_set_mode[REGNO (x)]) == MODE_INT
8072 && GET_MODE_CLASS (mode) == MODE_INT))
8073 && (reg_last_set_label[REGNO (x)] == label_tick
8074 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8075 && REG_N_SETS (REGNO (x)) == 1
8076 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8077 REGNO (x))))
8078 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8079 return reg_last_set_nonzero_bits[REGNO (x)] & nonzero;
8081 tem = get_last_value (x);
8083 if (tem)
8085 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8086 /* If X is narrower than MODE and TEM is a non-negative
8087 constant that would appear negative in the mode of X,
8088 sign-extend it for use in reg_nonzero_bits because some
8089 machines (maybe most) will actually do the sign-extension
8090 and this is the conservative approach.
8092 ??? For 2.5, try to tighten up the MD files in this regard
8093 instead of this kludge. */
8095 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
8096 && GET_CODE (tem) == CONST_INT
8097 && INTVAL (tem) > 0
8098 && 0 != (INTVAL (tem)
8099 & ((HOST_WIDE_INT) 1
8100 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8101 tem = GEN_INT (INTVAL (tem)
8102 | ((HOST_WIDE_INT) (-1)
8103 << GET_MODE_BITSIZE (GET_MODE (x))));
8104 #endif
8105 return nonzero_bits (tem, mode) & nonzero;
8107 else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
8109 unsigned HOST_WIDE_INT mask = reg_nonzero_bits[REGNO (x)];
8111 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width)
8112 /* We don't know anything about the upper bits. */
8113 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8114 return nonzero & mask;
8116 else
8117 return nonzero;
8119 case CONST_INT:
8120 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8121 /* If X is negative in MODE, sign-extend the value. */
8122 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
8123 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
8124 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
8125 #endif
8127 return INTVAL (x);
8129 case MEM:
8130 #ifdef LOAD_EXTEND_OP
8131 /* In many, if not most, RISC machines, reading a byte from memory
8132 zeros the rest of the register. Noticing that fact saves a lot
8133 of extra zero-extends. */
8134 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
8135 nonzero &= GET_MODE_MASK (GET_MODE (x));
8136 #endif
8137 break;
8139 case EQ: case NE:
8140 case UNEQ: case LTGT:
8141 case GT: case GTU: case UNGT:
8142 case LT: case LTU: case UNLT:
8143 case GE: case GEU: case UNGE:
8144 case LE: case LEU: case UNLE:
8145 case UNORDERED: case ORDERED:
8147 /* If this produces an integer result, we know which bits are set.
8148 Code here used to clear bits outside the mode of X, but that is
8149 now done above. */
8151 if (GET_MODE_CLASS (mode) == MODE_INT
8152 && mode_width <= HOST_BITS_PER_WIDE_INT)
8153 nonzero = STORE_FLAG_VALUE;
8154 break;
8156 case NEG:
8157 #if 0
8158 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8159 and num_sign_bit_copies. */
8160 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8161 == GET_MODE_BITSIZE (GET_MODE (x)))
8162 nonzero = 1;
8163 #endif
8165 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
8166 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
8167 break;
8169 case ABS:
8170 #if 0
8171 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8172 and num_sign_bit_copies. */
8173 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8174 == GET_MODE_BITSIZE (GET_MODE (x)))
8175 nonzero = 1;
8176 #endif
8177 break;
8179 case TRUNCATE:
8180 nonzero &= (nonzero_bits (XEXP (x, 0), mode) & GET_MODE_MASK (mode));
8181 break;
8183 case ZERO_EXTEND:
8184 nonzero &= nonzero_bits (XEXP (x, 0), mode);
8185 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8186 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8187 break;
8189 case SIGN_EXTEND:
8190 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8191 Otherwise, show all the bits in the outer mode but not the inner
8192 may be non-zero. */
8193 inner_nz = nonzero_bits (XEXP (x, 0), mode);
8194 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8196 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8197 if (inner_nz
8198 & (((HOST_WIDE_INT) 1
8199 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
8200 inner_nz |= (GET_MODE_MASK (mode)
8201 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
8204 nonzero &= inner_nz;
8205 break;
8207 case AND:
8208 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
8209 & nonzero_bits (XEXP (x, 1), mode));
8210 break;
8212 case XOR: case IOR:
8213 case UMIN: case UMAX: case SMIN: case SMAX:
8215 unsigned HOST_WIDE_INT nonzero0 = nonzero_bits (XEXP (x, 0), mode);
8217 /* Don't call nonzero_bits for the second time if it cannot change
8218 anything. */
8219 if ((nonzero & nonzero0) != nonzero)
8220 nonzero &= (nonzero0 | nonzero_bits (XEXP (x, 1), mode));
8222 break;
8224 case PLUS: case MINUS:
8225 case MULT:
8226 case DIV: case UDIV:
8227 case MOD: case UMOD:
8228 /* We can apply the rules of arithmetic to compute the number of
8229 high- and low-order zero bits of these operations. We start by
8230 computing the width (position of the highest-order non-zero bit)
8231 and the number of low-order zero bits for each value. */
8233 unsigned HOST_WIDE_INT nz0 = nonzero_bits (XEXP (x, 0), mode);
8234 unsigned HOST_WIDE_INT nz1 = nonzero_bits (XEXP (x, 1), mode);
8235 int width0 = floor_log2 (nz0) + 1;
8236 int width1 = floor_log2 (nz1) + 1;
8237 int low0 = floor_log2 (nz0 & -nz0);
8238 int low1 = floor_log2 (nz1 & -nz1);
8239 HOST_WIDE_INT op0_maybe_minusp
8240 = (nz0 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8241 HOST_WIDE_INT op1_maybe_minusp
8242 = (nz1 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8243 unsigned int result_width = mode_width;
8244 int result_low = 0;
8246 switch (code)
8248 case PLUS:
8249 result_width = MAX (width0, width1) + 1;
8250 result_low = MIN (low0, low1);
8251 break;
8252 case MINUS:
8253 result_low = MIN (low0, low1);
8254 break;
8255 case MULT:
8256 result_width = width0 + width1;
8257 result_low = low0 + low1;
8258 break;
8259 case DIV:
8260 if (width1 == 0)
8261 break;
8262 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8263 result_width = width0;
8264 break;
8265 case UDIV:
8266 if (width1 == 0)
8267 break;
8268 result_width = width0;
8269 break;
8270 case MOD:
8271 if (width1 == 0)
8272 break;
8273 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8274 result_width = MIN (width0, width1);
8275 result_low = MIN (low0, low1);
8276 break;
8277 case UMOD:
8278 if (width1 == 0)
8279 break;
8280 result_width = MIN (width0, width1);
8281 result_low = MIN (low0, low1);
8282 break;
8283 default:
8284 abort ();
8287 if (result_width < mode_width)
8288 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
8290 if (result_low > 0)
8291 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
8293 #ifdef POINTERS_EXTEND_UNSIGNED
8294 /* If pointers extend unsigned and this is an addition or subtraction
8295 to a pointer in Pmode, all the bits above ptr_mode are known to be
8296 zero. */
8297 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
8298 && (code == PLUS || code == MINUS)
8299 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8300 nonzero &= GET_MODE_MASK (ptr_mode);
8301 #endif
8303 break;
8305 case ZERO_EXTRACT:
8306 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8307 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8308 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
8309 break;
8311 case SUBREG:
8312 /* If this is a SUBREG formed for a promoted variable that has
8313 been zero-extended, we know that at least the high-order bits
8314 are zero, though others might be too. */
8316 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
8317 nonzero = (GET_MODE_MASK (GET_MODE (x))
8318 & nonzero_bits (SUBREG_REG (x), GET_MODE (x)));
8320 /* If the inner mode is a single word for both the host and target
8321 machines, we can compute this from which bits of the inner
8322 object might be nonzero. */
8323 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
8324 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8325 <= HOST_BITS_PER_WIDE_INT))
8327 nonzero &= nonzero_bits (SUBREG_REG (x), mode);
8329 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8330 /* If this is a typical RISC machine, we only have to worry
8331 about the way loads are extended. */
8332 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8333 ? (((nonzero
8334 & (((unsigned HOST_WIDE_INT) 1
8335 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
8336 != 0))
8337 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
8338 #endif
8340 /* On many CISC machines, accessing an object in a wider mode
8341 causes the high-order bits to become undefined. So they are
8342 not known to be zero. */
8343 if (GET_MODE_SIZE (GET_MODE (x))
8344 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8345 nonzero |= (GET_MODE_MASK (GET_MODE (x))
8346 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
8349 break;
8351 case ASHIFTRT:
8352 case LSHIFTRT:
8353 case ASHIFT:
8354 case ROTATE:
8355 /* The nonzero bits are in two classes: any bits within MODE
8356 that aren't in GET_MODE (x) are always significant. The rest of the
8357 nonzero bits are those that are significant in the operand of
8358 the shift when shifted the appropriate number of bits. This
8359 shows that high-order bits are cleared by the right shift and
8360 low-order bits by left shifts. */
8361 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8362 && INTVAL (XEXP (x, 1)) >= 0
8363 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8365 enum machine_mode inner_mode = GET_MODE (x);
8366 unsigned int width = GET_MODE_BITSIZE (inner_mode);
8367 int count = INTVAL (XEXP (x, 1));
8368 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
8369 unsigned HOST_WIDE_INT op_nonzero = nonzero_bits (XEXP (x, 0), mode);
8370 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
8371 unsigned HOST_WIDE_INT outer = 0;
8373 if (mode_width > width)
8374 outer = (op_nonzero & nonzero & ~mode_mask);
8376 if (code == LSHIFTRT)
8377 inner >>= count;
8378 else if (code == ASHIFTRT)
8380 inner >>= count;
8382 /* If the sign bit may have been nonzero before the shift, we
8383 need to mark all the places it could have been copied to
8384 by the shift as possibly nonzero. */
8385 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
8386 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
8388 else if (code == ASHIFT)
8389 inner <<= count;
8390 else
8391 inner = ((inner << (count % width)
8392 | (inner >> (width - (count % width)))) & mode_mask);
8394 nonzero &= (outer | inner);
8396 break;
8398 case FFS:
8399 /* This is at most the number of bits in the mode. */
8400 nonzero = ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width) + 1)) - 1;
8401 break;
8403 case IF_THEN_ELSE:
8404 nonzero &= (nonzero_bits (XEXP (x, 1), mode)
8405 | nonzero_bits (XEXP (x, 2), mode));
8406 break;
8408 default:
8409 break;
8412 return nonzero;
8415 /* See the macro definition above. */
8416 #undef num_sign_bit_copies
8418 /* Return the number of bits at the high-order end of X that are known to
8419 be equal to the sign bit. X will be used in mode MODE; if MODE is
8420 VOIDmode, X will be used in its own mode. The returned value will always
8421 be between 1 and the number of bits in MODE. */
8423 static unsigned int
8424 num_sign_bit_copies (x, mode)
8425 rtx x;
8426 enum machine_mode mode;
8428 enum rtx_code code = GET_CODE (x);
8429 unsigned int bitwidth;
8430 int num0, num1, result;
8431 unsigned HOST_WIDE_INT nonzero;
8432 rtx tem;
8434 /* If we weren't given a mode, use the mode of X. If the mode is still
8435 VOIDmode, we don't know anything. Likewise if one of the modes is
8436 floating-point. */
8438 if (mode == VOIDmode)
8439 mode = GET_MODE (x);
8441 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
8442 return 1;
8444 bitwidth = GET_MODE_BITSIZE (mode);
8446 /* For a smaller object, just ignore the high bits. */
8447 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
8449 num0 = num_sign_bit_copies (x, GET_MODE (x));
8450 return MAX (1,
8451 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
8454 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
8456 #ifndef WORD_REGISTER_OPERATIONS
8457 /* If this machine does not do all register operations on the entire
8458 register and MODE is wider than the mode of X, we can say nothing
8459 at all about the high-order bits. */
8460 return 1;
8461 #else
8462 /* Likewise on machines that do, if the mode of the object is smaller
8463 than a word and loads of that size don't sign extend, we can say
8464 nothing about the high order bits. */
8465 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
8466 #ifdef LOAD_EXTEND_OP
8467 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
8468 #endif
8470 return 1;
8471 #endif
8474 switch (code)
8476 case REG:
8478 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8479 /* If pointers extend signed and this is a pointer in Pmode, say that
8480 all the bits above ptr_mode are known to be sign bit copies. */
8481 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
8482 && REG_POINTER (x))
8483 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
8484 #endif
8486 if (reg_last_set_value[REGNO (x)] != 0
8487 && reg_last_set_mode[REGNO (x)] == mode
8488 && (reg_last_set_label[REGNO (x)] == label_tick
8489 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8490 && REG_N_SETS (REGNO (x)) == 1
8491 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8492 REGNO (x))))
8493 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8494 return reg_last_set_sign_bit_copies[REGNO (x)];
8496 tem = get_last_value (x);
8497 if (tem != 0)
8498 return num_sign_bit_copies (tem, mode);
8500 if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0
8501 && GET_MODE_BITSIZE (GET_MODE (x)) == bitwidth)
8502 return reg_sign_bit_copies[REGNO (x)];
8503 break;
8505 case MEM:
8506 #ifdef LOAD_EXTEND_OP
8507 /* Some RISC machines sign-extend all loads of smaller than a word. */
8508 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
8509 return MAX (1, ((int) bitwidth
8510 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
8511 #endif
8512 break;
8514 case CONST_INT:
8515 /* If the constant is negative, take its 1's complement and remask.
8516 Then see how many zero bits we have. */
8517 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
8518 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8519 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8520 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8522 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8524 case SUBREG:
8525 /* If this is a SUBREG for a promoted object that is sign-extended
8526 and we are looking at it in a wider mode, we know that at least the
8527 high-order bits are known to be sign bit copies. */
8529 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
8531 num0 = num_sign_bit_copies (SUBREG_REG (x), mode);
8532 return MAX ((int) bitwidth
8533 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
8534 num0);
8537 /* For a smaller object, just ignore the high bits. */
8538 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
8540 num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode);
8541 return MAX (1, (num0
8542 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8543 - bitwidth)));
8546 #ifdef WORD_REGISTER_OPERATIONS
8547 #ifdef LOAD_EXTEND_OP
8548 /* For paradoxical SUBREGs on machines where all register operations
8549 affect the entire register, just look inside. Note that we are
8550 passing MODE to the recursive call, so the number of sign bit copies
8551 will remain relative to that mode, not the inner mode. */
8553 /* This works only if loads sign extend. Otherwise, if we get a
8554 reload for the inner part, it may be loaded from the stack, and
8555 then we lose all sign bit copies that existed before the store
8556 to the stack. */
8558 if ((GET_MODE_SIZE (GET_MODE (x))
8559 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8560 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND)
8561 return num_sign_bit_copies (SUBREG_REG (x), mode);
8562 #endif
8563 #endif
8564 break;
8566 case SIGN_EXTRACT:
8567 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
8568 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
8569 break;
8571 case SIGN_EXTEND:
8572 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8573 + num_sign_bit_copies (XEXP (x, 0), VOIDmode));
8575 case TRUNCATE:
8576 /* For a smaller object, just ignore the high bits. */
8577 num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode);
8578 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8579 - bitwidth)));
8581 case NOT:
8582 return num_sign_bit_copies (XEXP (x, 0), mode);
8584 case ROTATE: case ROTATERT:
8585 /* If we are rotating left by a number of bits less than the number
8586 of sign bit copies, we can just subtract that amount from the
8587 number. */
8588 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8589 && INTVAL (XEXP (x, 1)) >= 0
8590 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
8592 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8593 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
8594 : (int) bitwidth - INTVAL (XEXP (x, 1))));
8596 break;
8598 case NEG:
8599 /* In general, this subtracts one sign bit copy. But if the value
8600 is known to be positive, the number of sign bit copies is the
8601 same as that of the input. Finally, if the input has just one bit
8602 that might be nonzero, all the bits are copies of the sign bit. */
8603 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8604 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8605 return num0 > 1 ? num0 - 1 : 1;
8607 nonzero = nonzero_bits (XEXP (x, 0), mode);
8608 if (nonzero == 1)
8609 return bitwidth;
8611 if (num0 > 1
8612 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
8613 num0--;
8615 return num0;
8617 case IOR: case AND: case XOR:
8618 case SMIN: case SMAX: case UMIN: case UMAX:
8619 /* Logical operations will preserve the number of sign-bit copies.
8620 MIN and MAX operations always return one of the operands. */
8621 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8622 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8623 return MIN (num0, num1);
8625 case PLUS: case MINUS:
8626 /* For addition and subtraction, we can have a 1-bit carry. However,
8627 if we are subtracting 1 from a positive number, there will not
8628 be such a carry. Furthermore, if the positive number is known to
8629 be 0 or 1, we know the result is either -1 or 0. */
8631 if (code == PLUS && XEXP (x, 1) == constm1_rtx
8632 && bitwidth <= HOST_BITS_PER_WIDE_INT)
8634 nonzero = nonzero_bits (XEXP (x, 0), mode);
8635 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8636 return (nonzero == 1 || nonzero == 0 ? bitwidth
8637 : bitwidth - floor_log2 (nonzero) - 1);
8640 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8641 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8642 result = MAX (1, MIN (num0, num1) - 1);
8644 #ifdef POINTERS_EXTEND_UNSIGNED
8645 /* If pointers extend signed and this is an addition or subtraction
8646 to a pointer in Pmode, all the bits above ptr_mode are known to be
8647 sign bit copies. */
8648 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8649 && (code == PLUS || code == MINUS)
8650 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8651 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
8652 - GET_MODE_BITSIZE (ptr_mode) + 1),
8653 result);
8654 #endif
8655 return result;
8657 case MULT:
8658 /* The number of bits of the product is the sum of the number of
8659 bits of both terms. However, unless one of the terms if known
8660 to be positive, we must allow for an additional bit since negating
8661 a negative number can remove one sign bit copy. */
8663 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8664 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8666 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
8667 if (result > 0
8668 && (bitwidth > HOST_BITS_PER_WIDE_INT
8669 || (((nonzero_bits (XEXP (x, 0), mode)
8670 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8671 && ((nonzero_bits (XEXP (x, 1), mode)
8672 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
8673 result--;
8675 return MAX (1, result);
8677 case UDIV:
8678 /* The result must be <= the first operand. If the first operand
8679 has the high bit set, we know nothing about the number of sign
8680 bit copies. */
8681 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8682 return 1;
8683 else if ((nonzero_bits (XEXP (x, 0), mode)
8684 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8685 return 1;
8686 else
8687 return num_sign_bit_copies (XEXP (x, 0), mode);
8689 case UMOD:
8690 /* The result must be <= the second operand. */
8691 return num_sign_bit_copies (XEXP (x, 1), mode);
8693 case DIV:
8694 /* Similar to unsigned division, except that we have to worry about
8695 the case where the divisor is negative, in which case we have
8696 to add 1. */
8697 result = num_sign_bit_copies (XEXP (x, 0), mode);
8698 if (result > 1
8699 && (bitwidth > HOST_BITS_PER_WIDE_INT
8700 || (nonzero_bits (XEXP (x, 1), mode)
8701 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8702 result--;
8704 return result;
8706 case MOD:
8707 result = num_sign_bit_copies (XEXP (x, 1), mode);
8708 if (result > 1
8709 && (bitwidth > HOST_BITS_PER_WIDE_INT
8710 || (nonzero_bits (XEXP (x, 1), mode)
8711 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8712 result--;
8714 return result;
8716 case ASHIFTRT:
8717 /* Shifts by a constant add to the number of bits equal to the
8718 sign bit. */
8719 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8720 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8721 && INTVAL (XEXP (x, 1)) > 0)
8722 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
8724 return num0;
8726 case ASHIFT:
8727 /* Left shifts destroy copies. */
8728 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8729 || INTVAL (XEXP (x, 1)) < 0
8730 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
8731 return 1;
8733 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8734 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
8736 case IF_THEN_ELSE:
8737 num0 = num_sign_bit_copies (XEXP (x, 1), mode);
8738 num1 = num_sign_bit_copies (XEXP (x, 2), mode);
8739 return MIN (num0, num1);
8741 case EQ: case NE: case GE: case GT: case LE: case LT:
8742 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
8743 case GEU: case GTU: case LEU: case LTU:
8744 case UNORDERED: case ORDERED:
8745 /* If the constant is negative, take its 1's complement and remask.
8746 Then see how many zero bits we have. */
8747 nonzero = STORE_FLAG_VALUE;
8748 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8749 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8750 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8752 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8753 break;
8755 default:
8756 break;
8759 /* If we haven't been able to figure it out by one of the above rules,
8760 see if some of the high-order bits are known to be zero. If so,
8761 count those bits and return one less than that amount. If we can't
8762 safely compute the mask for this mode, always return BITWIDTH. */
8764 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8765 return 1;
8767 nonzero = nonzero_bits (x, mode);
8768 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
8769 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
8772 /* Return the number of "extended" bits there are in X, when interpreted
8773 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8774 unsigned quantities, this is the number of high-order zero bits.
8775 For signed quantities, this is the number of copies of the sign bit
8776 minus 1. In both case, this function returns the number of "spare"
8777 bits. For example, if two quantities for which this function returns
8778 at least 1 are added, the addition is known not to overflow.
8780 This function will always return 0 unless called during combine, which
8781 implies that it must be called from a define_split. */
8783 unsigned int
8784 extended_count (x, mode, unsignedp)
8785 rtx x;
8786 enum machine_mode mode;
8787 int unsignedp;
8789 if (nonzero_sign_valid == 0)
8790 return 0;
8792 return (unsignedp
8793 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8794 ? (GET_MODE_BITSIZE (mode) - 1
8795 - floor_log2 (nonzero_bits (x, mode)))
8796 : 0)
8797 : num_sign_bit_copies (x, mode) - 1);
8800 /* This function is called from `simplify_shift_const' to merge two
8801 outer operations. Specifically, we have already found that we need
8802 to perform operation *POP0 with constant *PCONST0 at the outermost
8803 position. We would now like to also perform OP1 with constant CONST1
8804 (with *POP0 being done last).
8806 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8807 the resulting operation. *PCOMP_P is set to 1 if we would need to
8808 complement the innermost operand, otherwise it is unchanged.
8810 MODE is the mode in which the operation will be done. No bits outside
8811 the width of this mode matter. It is assumed that the width of this mode
8812 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8814 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
8815 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8816 result is simply *PCONST0.
8818 If the resulting operation cannot be expressed as one operation, we
8819 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8821 static int
8822 merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
8823 enum rtx_code *pop0;
8824 HOST_WIDE_INT *pconst0;
8825 enum rtx_code op1;
8826 HOST_WIDE_INT const1;
8827 enum machine_mode mode;
8828 int *pcomp_p;
8830 enum rtx_code op0 = *pop0;
8831 HOST_WIDE_INT const0 = *pconst0;
8833 const0 &= GET_MODE_MASK (mode);
8834 const1 &= GET_MODE_MASK (mode);
8836 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8837 if (op0 == AND)
8838 const1 &= const0;
8840 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
8841 if OP0 is SET. */
8843 if (op1 == NIL || op0 == SET)
8844 return 1;
8846 else if (op0 == NIL)
8847 op0 = op1, const0 = const1;
8849 else if (op0 == op1)
8851 switch (op0)
8853 case AND:
8854 const0 &= const1;
8855 break;
8856 case IOR:
8857 const0 |= const1;
8858 break;
8859 case XOR:
8860 const0 ^= const1;
8861 break;
8862 case PLUS:
8863 const0 += const1;
8864 break;
8865 case NEG:
8866 op0 = NIL;
8867 break;
8868 default:
8869 break;
8873 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8874 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8875 return 0;
8877 /* If the two constants aren't the same, we can't do anything. The
8878 remaining six cases can all be done. */
8879 else if (const0 != const1)
8880 return 0;
8882 else
8883 switch (op0)
8885 case IOR:
8886 if (op1 == AND)
8887 /* (a & b) | b == b */
8888 op0 = SET;
8889 else /* op1 == XOR */
8890 /* (a ^ b) | b == a | b */
8892 break;
8894 case XOR:
8895 if (op1 == AND)
8896 /* (a & b) ^ b == (~a) & b */
8897 op0 = AND, *pcomp_p = 1;
8898 else /* op1 == IOR */
8899 /* (a | b) ^ b == a & ~b */
8900 op0 = AND, *pconst0 = ~const0;
8901 break;
8903 case AND:
8904 if (op1 == IOR)
8905 /* (a | b) & b == b */
8906 op0 = SET;
8907 else /* op1 == XOR */
8908 /* (a ^ b) & b) == (~a) & b */
8909 *pcomp_p = 1;
8910 break;
8911 default:
8912 break;
8915 /* Check for NO-OP cases. */
8916 const0 &= GET_MODE_MASK (mode);
8917 if (const0 == 0
8918 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8919 op0 = NIL;
8920 else if (const0 == 0 && op0 == AND)
8921 op0 = SET;
8922 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8923 && op0 == AND)
8924 op0 = NIL;
8926 /* ??? Slightly redundant with the above mask, but not entirely.
8927 Moving this above means we'd have to sign-extend the mode mask
8928 for the final test. */
8929 const0 = trunc_int_for_mode (const0, mode);
8931 *pop0 = op0;
8932 *pconst0 = const0;
8934 return 1;
8937 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8938 The result of the shift is RESULT_MODE. X, if non-zero, is an expression
8939 that we started with.
8941 The shift is normally computed in the widest mode we find in VAROP, as
8942 long as it isn't a different number of words than RESULT_MODE. Exceptions
8943 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8945 static rtx
8946 simplify_shift_const (x, code, result_mode, varop, orig_count)
8947 rtx x;
8948 enum rtx_code code;
8949 enum machine_mode result_mode;
8950 rtx varop;
8951 int orig_count;
8953 enum rtx_code orig_code = code;
8954 unsigned int count;
8955 int signed_count;
8956 enum machine_mode mode = result_mode;
8957 enum machine_mode shift_mode, tmode;
8958 unsigned int mode_words
8959 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8960 /* We form (outer_op (code varop count) (outer_const)). */
8961 enum rtx_code outer_op = NIL;
8962 HOST_WIDE_INT outer_const = 0;
8963 rtx const_rtx;
8964 int complement_p = 0;
8965 rtx new;
8967 /* Make sure and truncate the "natural" shift on the way in. We don't
8968 want to do this inside the loop as it makes it more difficult to
8969 combine shifts. */
8970 #ifdef SHIFT_COUNT_TRUNCATED
8971 if (SHIFT_COUNT_TRUNCATED)
8972 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8973 #endif
8975 /* If we were given an invalid count, don't do anything except exactly
8976 what was requested. */
8978 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8980 if (x)
8981 return x;
8983 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
8986 count = orig_count;
8988 /* Unless one of the branches of the `if' in this loop does a `continue',
8989 we will `break' the loop after the `if'. */
8991 while (count != 0)
8993 /* If we have an operand of (clobber (const_int 0)), just return that
8994 value. */
8995 if (GET_CODE (varop) == CLOBBER)
8996 return varop;
8998 /* If we discovered we had to complement VAROP, leave. Making a NOT
8999 here would cause an infinite loop. */
9000 if (complement_p)
9001 break;
9003 /* Convert ROTATERT to ROTATE. */
9004 if (code == ROTATERT)
9005 code = ROTATE, count = GET_MODE_BITSIZE (result_mode) - count;
9007 /* We need to determine what mode we will do the shift in. If the
9008 shift is a right shift or a ROTATE, we must always do it in the mode
9009 it was originally done in. Otherwise, we can do it in MODE, the
9010 widest mode encountered. */
9011 shift_mode
9012 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9013 ? result_mode : mode);
9015 /* Handle cases where the count is greater than the size of the mode
9016 minus 1. For ASHIFT, use the size minus one as the count (this can
9017 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9018 take the count modulo the size. For other shifts, the result is
9019 zero.
9021 Since these shifts are being produced by the compiler by combining
9022 multiple operations, each of which are defined, we know what the
9023 result is supposed to be. */
9025 if (count > GET_MODE_BITSIZE (shift_mode) - 1)
9027 if (code == ASHIFTRT)
9028 count = GET_MODE_BITSIZE (shift_mode) - 1;
9029 else if (code == ROTATE || code == ROTATERT)
9030 count %= GET_MODE_BITSIZE (shift_mode);
9031 else
9033 /* We can't simply return zero because there may be an
9034 outer op. */
9035 varop = const0_rtx;
9036 count = 0;
9037 break;
9041 /* An arithmetic right shift of a quantity known to be -1 or 0
9042 is a no-op. */
9043 if (code == ASHIFTRT
9044 && (num_sign_bit_copies (varop, shift_mode)
9045 == GET_MODE_BITSIZE (shift_mode)))
9047 count = 0;
9048 break;
9051 /* If we are doing an arithmetic right shift and discarding all but
9052 the sign bit copies, this is equivalent to doing a shift by the
9053 bitsize minus one. Convert it into that shift because it will often
9054 allow other simplifications. */
9056 if (code == ASHIFTRT
9057 && (count + num_sign_bit_copies (varop, shift_mode)
9058 >= GET_MODE_BITSIZE (shift_mode)))
9059 count = GET_MODE_BITSIZE (shift_mode) - 1;
9061 /* We simplify the tests below and elsewhere by converting
9062 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9063 `make_compound_operation' will convert it to an ASHIFTRT for
9064 those machines (such as VAX) that don't have an LSHIFTRT. */
9065 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9066 && code == ASHIFTRT
9067 && ((nonzero_bits (varop, shift_mode)
9068 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9069 == 0))
9070 code = LSHIFTRT;
9072 switch (GET_CODE (varop))
9074 case SIGN_EXTEND:
9075 case ZERO_EXTEND:
9076 case SIGN_EXTRACT:
9077 case ZERO_EXTRACT:
9078 new = expand_compound_operation (varop);
9079 if (new != varop)
9081 varop = new;
9082 continue;
9084 break;
9086 case MEM:
9087 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9088 minus the width of a smaller mode, we can do this with a
9089 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9090 if ((code == ASHIFTRT || code == LSHIFTRT)
9091 && ! mode_dependent_address_p (XEXP (varop, 0))
9092 && ! MEM_VOLATILE_P (varop)
9093 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9094 MODE_INT, 1)) != BLKmode)
9096 new = adjust_address_nv (varop, tmode,
9097 BYTES_BIG_ENDIAN ? 0
9098 : count / BITS_PER_UNIT);
9100 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9101 : ZERO_EXTEND, mode, new);
9102 count = 0;
9103 continue;
9105 break;
9107 case USE:
9108 /* Similar to the case above, except that we can only do this if
9109 the resulting mode is the same as that of the underlying
9110 MEM and adjust the address depending on the *bits* endianness
9111 because of the way that bit-field extract insns are defined. */
9112 if ((code == ASHIFTRT || code == LSHIFTRT)
9113 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9114 MODE_INT, 1)) != BLKmode
9115 && tmode == GET_MODE (XEXP (varop, 0)))
9117 if (BITS_BIG_ENDIAN)
9118 new = XEXP (varop, 0);
9119 else
9121 new = copy_rtx (XEXP (varop, 0));
9122 SUBST (XEXP (new, 0),
9123 plus_constant (XEXP (new, 0),
9124 count / BITS_PER_UNIT));
9127 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9128 : ZERO_EXTEND, mode, new);
9129 count = 0;
9130 continue;
9132 break;
9134 case SUBREG:
9135 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9136 the same number of words as what we've seen so far. Then store
9137 the widest mode in MODE. */
9138 if (subreg_lowpart_p (varop)
9139 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9140 > GET_MODE_SIZE (GET_MODE (varop)))
9141 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9142 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9143 == mode_words))
9145 varop = SUBREG_REG (varop);
9146 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9147 mode = GET_MODE (varop);
9148 continue;
9150 break;
9152 case MULT:
9153 /* Some machines use MULT instead of ASHIFT because MULT
9154 is cheaper. But it is still better on those machines to
9155 merge two shifts into one. */
9156 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9157 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9159 varop
9160 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
9161 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9162 continue;
9164 break;
9166 case UDIV:
9167 /* Similar, for when divides are cheaper. */
9168 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9169 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9171 varop
9172 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
9173 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9174 continue;
9176 break;
9178 case ASHIFTRT:
9179 /* If we are extracting just the sign bit of an arithmetic
9180 right shift, that shift is not needed. However, the sign
9181 bit of a wider mode may be different from what would be
9182 interpreted as the sign bit in a narrower mode, so, if
9183 the result is narrower, don't discard the shift. */
9184 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9185 && (GET_MODE_BITSIZE (result_mode)
9186 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9188 varop = XEXP (varop, 0);
9189 continue;
9192 /* ... fall through ... */
9194 case LSHIFTRT:
9195 case ASHIFT:
9196 case ROTATE:
9197 /* Here we have two nested shifts. The result is usually the
9198 AND of a new shift with a mask. We compute the result below. */
9199 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9200 && INTVAL (XEXP (varop, 1)) >= 0
9201 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9202 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9203 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9205 enum rtx_code first_code = GET_CODE (varop);
9206 unsigned int first_count = INTVAL (XEXP (varop, 1));
9207 unsigned HOST_WIDE_INT mask;
9208 rtx mask_rtx;
9210 /* We have one common special case. We can't do any merging if
9211 the inner code is an ASHIFTRT of a smaller mode. However, if
9212 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9213 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9214 we can convert it to
9215 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9216 This simplifies certain SIGN_EXTEND operations. */
9217 if (code == ASHIFT && first_code == ASHIFTRT
9218 && (GET_MODE_BITSIZE (result_mode)
9219 - GET_MODE_BITSIZE (GET_MODE (varop))) == count)
9221 /* C3 has the low-order C1 bits zero. */
9223 mask = (GET_MODE_MASK (mode)
9224 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9226 varop = simplify_and_const_int (NULL_RTX, result_mode,
9227 XEXP (varop, 0), mask);
9228 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9229 varop, count);
9230 count = first_count;
9231 code = ASHIFTRT;
9232 continue;
9235 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9236 than C1 high-order bits equal to the sign bit, we can convert
9237 this to either an ASHIFT or an ASHIFTRT depending on the
9238 two counts.
9240 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9242 if (code == ASHIFTRT && first_code == ASHIFT
9243 && GET_MODE (varop) == shift_mode
9244 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9245 > first_count))
9247 varop = XEXP (varop, 0);
9249 signed_count = count - first_count;
9250 if (signed_count < 0)
9251 count = -signed_count, code = ASHIFT;
9252 else
9253 count = signed_count;
9255 continue;
9258 /* There are some cases we can't do. If CODE is ASHIFTRT,
9259 we can only do this if FIRST_CODE is also ASHIFTRT.
9261 We can't do the case when CODE is ROTATE and FIRST_CODE is
9262 ASHIFTRT.
9264 If the mode of this shift is not the mode of the outer shift,
9265 we can't do this if either shift is a right shift or ROTATE.
9267 Finally, we can't do any of these if the mode is too wide
9268 unless the codes are the same.
9270 Handle the case where the shift codes are the same
9271 first. */
9273 if (code == first_code)
9275 if (GET_MODE (varop) != result_mode
9276 && (code == ASHIFTRT || code == LSHIFTRT
9277 || code == ROTATE))
9278 break;
9280 count += first_count;
9281 varop = XEXP (varop, 0);
9282 continue;
9285 if (code == ASHIFTRT
9286 || (code == ROTATE && first_code == ASHIFTRT)
9287 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9288 || (GET_MODE (varop) != result_mode
9289 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9290 || first_code == ROTATE
9291 || code == ROTATE)))
9292 break;
9294 /* To compute the mask to apply after the shift, shift the
9295 nonzero bits of the inner shift the same way the
9296 outer shift will. */
9298 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9300 mask_rtx
9301 = simplify_binary_operation (code, result_mode, mask_rtx,
9302 GEN_INT (count));
9304 /* Give up if we can't compute an outer operation to use. */
9305 if (mask_rtx == 0
9306 || GET_CODE (mask_rtx) != CONST_INT
9307 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9308 INTVAL (mask_rtx),
9309 result_mode, &complement_p))
9310 break;
9312 /* If the shifts are in the same direction, we add the
9313 counts. Otherwise, we subtract them. */
9314 signed_count = count;
9315 if ((code == ASHIFTRT || code == LSHIFTRT)
9316 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9317 signed_count += first_count;
9318 else
9319 signed_count -= first_count;
9321 /* If COUNT is positive, the new shift is usually CODE,
9322 except for the two exceptions below, in which case it is
9323 FIRST_CODE. If the count is negative, FIRST_CODE should
9324 always be used */
9325 if (signed_count > 0
9326 && ((first_code == ROTATE && code == ASHIFT)
9327 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9328 code = first_code, count = signed_count;
9329 else if (signed_count < 0)
9330 code = first_code, count = -signed_count;
9331 else
9332 count = signed_count;
9334 varop = XEXP (varop, 0);
9335 continue;
9338 /* If we have (A << B << C) for any shift, we can convert this to
9339 (A << C << B). This wins if A is a constant. Only try this if
9340 B is not a constant. */
9342 else if (GET_CODE (varop) == code
9343 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9344 && 0 != (new
9345 = simplify_binary_operation (code, mode,
9346 XEXP (varop, 0),
9347 GEN_INT (count))))
9349 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9350 count = 0;
9351 continue;
9353 break;
9355 case NOT:
9356 /* Make this fit the case below. */
9357 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9358 GEN_INT (GET_MODE_MASK (mode)));
9359 continue;
9361 case IOR:
9362 case AND:
9363 case XOR:
9364 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9365 with C the size of VAROP - 1 and the shift is logical if
9366 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9367 we have an (le X 0) operation. If we have an arithmetic shift
9368 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9369 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9371 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9372 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9373 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9374 && (code == LSHIFTRT || code == ASHIFTRT)
9375 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
9376 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9378 count = 0;
9379 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9380 const0_rtx);
9382 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9383 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9385 continue;
9388 /* If we have (shift (logical)), move the logical to the outside
9389 to allow it to possibly combine with another logical and the
9390 shift to combine with another shift. This also canonicalizes to
9391 what a ZERO_EXTRACT looks like. Also, some machines have
9392 (and (shift)) insns. */
9394 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9395 && (new = simplify_binary_operation (code, result_mode,
9396 XEXP (varop, 1),
9397 GEN_INT (count))) != 0
9398 && GET_CODE (new) == CONST_INT
9399 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9400 INTVAL (new), result_mode, &complement_p))
9402 varop = XEXP (varop, 0);
9403 continue;
9406 /* If we can't do that, try to simplify the shift in each arm of the
9407 logical expression, make a new logical expression, and apply
9408 the inverse distributive law. */
9410 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9411 XEXP (varop, 0), count);
9412 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9413 XEXP (varop, 1), count);
9415 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
9416 varop = apply_distributive_law (varop);
9418 count = 0;
9420 break;
9422 case EQ:
9423 /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9424 says that the sign bit can be tested, FOO has mode MODE, C is
9425 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9426 that may be nonzero. */
9427 if (code == LSHIFTRT
9428 && XEXP (varop, 1) == const0_rtx
9429 && GET_MODE (XEXP (varop, 0)) == result_mode
9430 && count == GET_MODE_BITSIZE (result_mode) - 1
9431 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9432 && ((STORE_FLAG_VALUE
9433 & ((HOST_WIDE_INT) 1
9434 < (GET_MODE_BITSIZE (result_mode) - 1))))
9435 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9436 && merge_outer_ops (&outer_op, &outer_const, XOR,
9437 (HOST_WIDE_INT) 1, result_mode,
9438 &complement_p))
9440 varop = XEXP (varop, 0);
9441 count = 0;
9442 continue;
9444 break;
9446 case NEG:
9447 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9448 than the number of bits in the mode is equivalent to A. */
9449 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9450 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9452 varop = XEXP (varop, 0);
9453 count = 0;
9454 continue;
9457 /* NEG commutes with ASHIFT since it is multiplication. Move the
9458 NEG outside to allow shifts to combine. */
9459 if (code == ASHIFT
9460 && merge_outer_ops (&outer_op, &outer_const, NEG,
9461 (HOST_WIDE_INT) 0, result_mode,
9462 &complement_p))
9464 varop = XEXP (varop, 0);
9465 continue;
9467 break;
9469 case PLUS:
9470 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9471 is one less than the number of bits in the mode is
9472 equivalent to (xor A 1). */
9473 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9474 && XEXP (varop, 1) == constm1_rtx
9475 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9476 && merge_outer_ops (&outer_op, &outer_const, XOR,
9477 (HOST_WIDE_INT) 1, result_mode,
9478 &complement_p))
9480 count = 0;
9481 varop = XEXP (varop, 0);
9482 continue;
9485 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9486 that might be nonzero in BAR are those being shifted out and those
9487 bits are known zero in FOO, we can replace the PLUS with FOO.
9488 Similarly in the other operand order. This code occurs when
9489 we are computing the size of a variable-size array. */
9491 if ((code == ASHIFTRT || code == LSHIFTRT)
9492 && count < HOST_BITS_PER_WIDE_INT
9493 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9494 && (nonzero_bits (XEXP (varop, 1), result_mode)
9495 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9497 varop = XEXP (varop, 0);
9498 continue;
9500 else if ((code == ASHIFTRT || code == LSHIFTRT)
9501 && count < HOST_BITS_PER_WIDE_INT
9502 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9503 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9504 >> count)
9505 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9506 & nonzero_bits (XEXP (varop, 1),
9507 result_mode)))
9509 varop = XEXP (varop, 1);
9510 continue;
9513 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9514 if (code == ASHIFT
9515 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9516 && (new = simplify_binary_operation (ASHIFT, result_mode,
9517 XEXP (varop, 1),
9518 GEN_INT (count))) != 0
9519 && GET_CODE (new) == CONST_INT
9520 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9521 INTVAL (new), result_mode, &complement_p))
9523 varop = XEXP (varop, 0);
9524 continue;
9526 break;
9528 case MINUS:
9529 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9530 with C the size of VAROP - 1 and the shift is logical if
9531 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9532 we have a (gt X 0) operation. If the shift is arithmetic with
9533 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9534 we have a (neg (gt X 0)) operation. */
9536 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9537 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9538 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
9539 && (code == LSHIFTRT || code == ASHIFTRT)
9540 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9541 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9542 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9544 count = 0;
9545 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9546 const0_rtx);
9548 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9549 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9551 continue;
9553 break;
9555 case TRUNCATE:
9556 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9557 if the truncate does not affect the value. */
9558 if (code == LSHIFTRT
9559 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9560 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9561 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9562 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9563 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9565 rtx varop_inner = XEXP (varop, 0);
9567 varop_inner
9568 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9569 XEXP (varop_inner, 0),
9570 GEN_INT
9571 (count + INTVAL (XEXP (varop_inner, 1))));
9572 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9573 count = 0;
9574 continue;
9576 break;
9578 default:
9579 break;
9582 break;
9585 /* We need to determine what mode to do the shift in. If the shift is
9586 a right shift or ROTATE, we must always do it in the mode it was
9587 originally done in. Otherwise, we can do it in MODE, the widest mode
9588 encountered. The code we care about is that of the shift that will
9589 actually be done, not the shift that was originally requested. */
9590 shift_mode
9591 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9592 ? result_mode : mode);
9594 /* We have now finished analyzing the shift. The result should be
9595 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9596 OUTER_OP is non-NIL, it is an operation that needs to be applied
9597 to the result of the shift. OUTER_CONST is the relevant constant,
9598 but we must turn off all bits turned off in the shift.
9600 If we were passed a value for X, see if we can use any pieces of
9601 it. If not, make new rtx. */
9603 if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
9604 && GET_CODE (XEXP (x, 1)) == CONST_INT
9605 && INTVAL (XEXP (x, 1)) == count)
9606 const_rtx = XEXP (x, 1);
9607 else
9608 const_rtx = GEN_INT (count);
9610 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9611 && GET_MODE (XEXP (x, 0)) == shift_mode
9612 && SUBREG_REG (XEXP (x, 0)) == varop)
9613 varop = XEXP (x, 0);
9614 else if (GET_MODE (varop) != shift_mode)
9615 varop = gen_lowpart_for_combine (shift_mode, varop);
9617 /* If we can't make the SUBREG, try to return what we were given. */
9618 if (GET_CODE (varop) == CLOBBER)
9619 return x ? x : varop;
9621 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9622 if (new != 0)
9623 x = new;
9624 else
9625 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9627 /* If we have an outer operation and we just made a shift, it is
9628 possible that we could have simplified the shift were it not
9629 for the outer operation. So try to do the simplification
9630 recursively. */
9632 if (outer_op != NIL && GET_CODE (x) == code
9633 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9634 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9635 INTVAL (XEXP (x, 1)));
9637 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9638 turn off all the bits that the shift would have turned off. */
9639 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9640 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9641 GET_MODE_MASK (result_mode) >> orig_count);
9643 /* Do the remainder of the processing in RESULT_MODE. */
9644 x = gen_lowpart_for_combine (result_mode, x);
9646 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9647 operation. */
9648 if (complement_p)
9649 x =simplify_gen_unary (NOT, result_mode, x, result_mode);
9651 if (outer_op != NIL)
9653 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9654 outer_const = trunc_int_for_mode (outer_const, result_mode);
9656 if (outer_op == AND)
9657 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9658 else if (outer_op == SET)
9659 /* This means that we have determined that the result is
9660 equivalent to a constant. This should be rare. */
9661 x = GEN_INT (outer_const);
9662 else if (GET_RTX_CLASS (outer_op) == '1')
9663 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9664 else
9665 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9668 return x;
9671 /* Like recog, but we receive the address of a pointer to a new pattern.
9672 We try to match the rtx that the pointer points to.
9673 If that fails, we may try to modify or replace the pattern,
9674 storing the replacement into the same pointer object.
9676 Modifications include deletion or addition of CLOBBERs.
9678 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9679 the CLOBBERs are placed.
9681 The value is the final insn code from the pattern ultimately matched,
9682 or -1. */
9684 static int
9685 recog_for_combine (pnewpat, insn, pnotes)
9686 rtx *pnewpat;
9687 rtx insn;
9688 rtx *pnotes;
9690 rtx pat = *pnewpat;
9691 int insn_code_number;
9692 int num_clobbers_to_add = 0;
9693 int i;
9694 rtx notes = 0;
9695 rtx dummy_insn;
9697 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9698 we use to indicate that something didn't match. If we find such a
9699 thing, force rejection. */
9700 if (GET_CODE (pat) == PARALLEL)
9701 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9702 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9703 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9704 return -1;
9706 /* *pnewpat does not have to be actual PATTERN (insn), so make a dummy
9707 instruction for pattern recognition. */
9708 dummy_insn = shallow_copy_rtx (insn);
9709 PATTERN (dummy_insn) = pat;
9710 REG_NOTES (dummy_insn) = 0;
9712 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
9714 /* If it isn't, there is the possibility that we previously had an insn
9715 that clobbered some register as a side effect, but the combined
9716 insn doesn't need to do that. So try once more without the clobbers
9717 unless this represents an ASM insn. */
9719 if (insn_code_number < 0 && ! check_asm_operands (pat)
9720 && GET_CODE (pat) == PARALLEL)
9722 int pos;
9724 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9725 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9727 if (i != pos)
9728 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9729 pos++;
9732 SUBST_INT (XVECLEN (pat, 0), pos);
9734 if (pos == 1)
9735 pat = XVECEXP (pat, 0, 0);
9737 PATTERN (dummy_insn) = pat;
9738 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
9741 /* Recognize all noop sets, these will be killed by followup pass. */
9742 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9743 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9745 /* If we had any clobbers to add, make a new pattern than contains
9746 them. Then check to make sure that all of them are dead. */
9747 if (num_clobbers_to_add)
9749 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9750 rtvec_alloc (GET_CODE (pat) == PARALLEL
9751 ? (XVECLEN (pat, 0)
9752 + num_clobbers_to_add)
9753 : num_clobbers_to_add + 1));
9755 if (GET_CODE (pat) == PARALLEL)
9756 for (i = 0; i < XVECLEN (pat, 0); i++)
9757 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9758 else
9759 XVECEXP (newpat, 0, 0) = pat;
9761 add_clobbers (newpat, insn_code_number);
9763 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9764 i < XVECLEN (newpat, 0); i++)
9766 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
9767 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9768 return -1;
9769 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9770 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9772 pat = newpat;
9775 *pnewpat = pat;
9776 *pnotes = notes;
9778 return insn_code_number;
9781 /* Like gen_lowpart but for use by combine. In combine it is not possible
9782 to create any new pseudoregs. However, it is safe to create
9783 invalid memory addresses, because combine will try to recognize
9784 them and all they will do is make the combine attempt fail.
9786 If for some reason this cannot do its job, an rtx
9787 (clobber (const_int 0)) is returned.
9788 An insn containing that will not be recognized. */
9790 #undef gen_lowpart
9792 static rtx
9793 gen_lowpart_for_combine (mode, x)
9794 enum machine_mode mode;
9795 rtx x;
9797 rtx result;
9799 if (GET_MODE (x) == mode)
9800 return x;
9802 /* We can only support MODE being wider than a word if X is a
9803 constant integer or has a mode the same size. */
9805 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
9806 && ! ((GET_MODE (x) == VOIDmode
9807 && (GET_CODE (x) == CONST_INT
9808 || GET_CODE (x) == CONST_DOUBLE))
9809 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
9810 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9812 /* simplify_gen_subreg does not know how to handle the case where we try
9813 to convert an integer constant to a vector.
9814 ??? We could try to teach it to generate CONST_VECTORs. */
9815 if (GET_MODE (x) == VOIDmode && VECTOR_MODE_P (mode))
9816 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9818 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9819 won't know what to do. So we will strip off the SUBREG here and
9820 process normally. */
9821 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
9823 x = SUBREG_REG (x);
9824 if (GET_MODE (x) == mode)
9825 return x;
9828 result = gen_lowpart_common (mode, x);
9829 #ifdef CLASS_CANNOT_CHANGE_MODE
9830 if (result != 0
9831 && GET_CODE (result) == SUBREG
9832 && GET_CODE (SUBREG_REG (result)) == REG
9833 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER
9834 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (result),
9835 GET_MODE (SUBREG_REG (result))))
9836 REG_CHANGES_MODE (REGNO (SUBREG_REG (result))) = 1;
9837 #endif
9839 if (result)
9840 return result;
9842 if (GET_CODE (x) == MEM)
9844 int offset = 0;
9846 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9847 address. */
9848 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9849 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9851 /* If we want to refer to something bigger than the original memref,
9852 generate a perverse subreg instead. That will force a reload
9853 of the original memref X. */
9854 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
9855 return gen_rtx_SUBREG (mode, x, 0);
9857 if (WORDS_BIG_ENDIAN)
9858 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
9859 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
9861 if (BYTES_BIG_ENDIAN)
9863 /* Adjust the address so that the address-after-the-data is
9864 unchanged. */
9865 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
9866 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
9869 return adjust_address_nv (x, mode, offset);
9872 /* If X is a comparison operator, rewrite it in a new mode. This
9873 probably won't match, but may allow further simplifications. */
9874 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
9875 return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
9877 /* If we couldn't simplify X any other way, just enclose it in a
9878 SUBREG. Normally, this SUBREG won't match, but some patterns may
9879 include an explicit SUBREG or we may simplify it further in combine. */
9880 else
9882 int offset = 0;
9883 rtx res;
9885 offset = subreg_lowpart_offset (mode, GET_MODE (x));
9886 res = simplify_gen_subreg (mode, x, GET_MODE (x), offset);
9887 if (res)
9888 return res;
9889 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9893 /* These routines make binary and unary operations by first seeing if they
9894 fold; if not, a new expression is allocated. */
9896 static rtx
9897 gen_binary (code, mode, op0, op1)
9898 enum rtx_code code;
9899 enum machine_mode mode;
9900 rtx op0, op1;
9902 rtx result;
9903 rtx tem;
9905 if (GET_RTX_CLASS (code) == 'c'
9906 && swap_commutative_operands_p (op0, op1))
9907 tem = op0, op0 = op1, op1 = tem;
9909 if (GET_RTX_CLASS (code) == '<')
9911 enum machine_mode op_mode = GET_MODE (op0);
9913 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
9914 just (REL_OP X Y). */
9915 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
9917 op1 = XEXP (op0, 1);
9918 op0 = XEXP (op0, 0);
9919 op_mode = GET_MODE (op0);
9922 if (op_mode == VOIDmode)
9923 op_mode = GET_MODE (op1);
9924 result = simplify_relational_operation (code, op_mode, op0, op1);
9926 else
9927 result = simplify_binary_operation (code, mode, op0, op1);
9929 if (result)
9930 return result;
9932 /* Put complex operands first and constants second. */
9933 if (GET_RTX_CLASS (code) == 'c'
9934 && swap_commutative_operands_p (op0, op1))
9935 return gen_rtx_fmt_ee (code, mode, op1, op0);
9937 /* If we are turning off bits already known off in OP0, we need not do
9938 an AND. */
9939 else if (code == AND && GET_CODE (op1) == CONST_INT
9940 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9941 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
9942 return op0;
9944 return gen_rtx_fmt_ee (code, mode, op0, op1);
9947 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9948 comparison code that will be tested.
9950 The result is a possibly different comparison code to use. *POP0 and
9951 *POP1 may be updated.
9953 It is possible that we might detect that a comparison is either always
9954 true or always false. However, we do not perform general constant
9955 folding in combine, so this knowledge isn't useful. Such tautologies
9956 should have been detected earlier. Hence we ignore all such cases. */
9958 static enum rtx_code
9959 simplify_comparison (code, pop0, pop1)
9960 enum rtx_code code;
9961 rtx *pop0;
9962 rtx *pop1;
9964 rtx op0 = *pop0;
9965 rtx op1 = *pop1;
9966 rtx tem, tem1;
9967 int i;
9968 enum machine_mode mode, tmode;
9970 /* Try a few ways of applying the same transformation to both operands. */
9971 while (1)
9973 #ifndef WORD_REGISTER_OPERATIONS
9974 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9975 so check specially. */
9976 if (code != GTU && code != GEU && code != LTU && code != LEU
9977 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9978 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9979 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9980 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9981 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9982 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9983 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9984 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9985 && GET_CODE (XEXP (op1, 1)) == CONST_INT
9986 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
9987 && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
9988 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
9989 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
9990 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
9991 && (INTVAL (XEXP (op0, 1))
9992 == (GET_MODE_BITSIZE (GET_MODE (op0))
9993 - (GET_MODE_BITSIZE
9994 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9996 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9997 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9999 #endif
10001 /* If both operands are the same constant shift, see if we can ignore the
10002 shift. We can if the shift is a rotate or if the bits shifted out of
10003 this shift are known to be zero for both inputs and if the type of
10004 comparison is compatible with the shift. */
10005 if (GET_CODE (op0) == GET_CODE (op1)
10006 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10007 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10008 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10009 && (code != GT && code != LT && code != GE && code != LE))
10010 || (GET_CODE (op0) == ASHIFTRT
10011 && (code != GTU && code != LTU
10012 && code != GEU && code != LEU)))
10013 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10014 && INTVAL (XEXP (op0, 1)) >= 0
10015 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10016 && XEXP (op0, 1) == XEXP (op1, 1))
10018 enum machine_mode mode = GET_MODE (op0);
10019 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10020 int shift_count = INTVAL (XEXP (op0, 1));
10022 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10023 mask &= (mask >> shift_count) << shift_count;
10024 else if (GET_CODE (op0) == ASHIFT)
10025 mask = (mask & (mask << shift_count)) >> shift_count;
10027 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10028 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10029 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10030 else
10031 break;
10034 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10035 SUBREGs are of the same mode, and, in both cases, the AND would
10036 be redundant if the comparison was done in the narrower mode,
10037 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10038 and the operand's possibly nonzero bits are 0xffffff01; in that case
10039 if we only care about QImode, we don't need the AND). This case
10040 occurs if the output mode of an scc insn is not SImode and
10041 STORE_FLAG_VALUE == 1 (e.g., the 386).
10043 Similarly, check for a case where the AND's are ZERO_EXTEND
10044 operations from some narrower mode even though a SUBREG is not
10045 present. */
10047 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10048 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10049 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10051 rtx inner_op0 = XEXP (op0, 0);
10052 rtx inner_op1 = XEXP (op1, 0);
10053 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10054 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10055 int changed = 0;
10057 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10058 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10059 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10060 && (GET_MODE (SUBREG_REG (inner_op0))
10061 == GET_MODE (SUBREG_REG (inner_op1)))
10062 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10063 <= HOST_BITS_PER_WIDE_INT)
10064 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10065 GET_MODE (SUBREG_REG (inner_op0)))))
10066 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10067 GET_MODE (SUBREG_REG (inner_op1))))))
10069 op0 = SUBREG_REG (inner_op0);
10070 op1 = SUBREG_REG (inner_op1);
10072 /* The resulting comparison is always unsigned since we masked
10073 off the original sign bit. */
10074 code = unsigned_condition (code);
10076 changed = 1;
10079 else if (c0 == c1)
10080 for (tmode = GET_CLASS_NARROWEST_MODE
10081 (GET_MODE_CLASS (GET_MODE (op0)));
10082 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10083 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10085 op0 = gen_lowpart_for_combine (tmode, inner_op0);
10086 op1 = gen_lowpart_for_combine (tmode, inner_op1);
10087 code = unsigned_condition (code);
10088 changed = 1;
10089 break;
10092 if (! changed)
10093 break;
10096 /* If both operands are NOT, we can strip off the outer operation
10097 and adjust the comparison code for swapped operands; similarly for
10098 NEG, except that this must be an equality comparison. */
10099 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10100 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10101 && (code == EQ || code == NE)))
10102 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10104 else
10105 break;
10108 /* If the first operand is a constant, swap the operands and adjust the
10109 comparison code appropriately, but don't do this if the second operand
10110 is already a constant integer. */
10111 if (swap_commutative_operands_p (op0, op1))
10113 tem = op0, op0 = op1, op1 = tem;
10114 code = swap_condition (code);
10117 /* We now enter a loop during which we will try to simplify the comparison.
10118 For the most part, we only are concerned with comparisons with zero,
10119 but some things may really be comparisons with zero but not start
10120 out looking that way. */
10122 while (GET_CODE (op1) == CONST_INT)
10124 enum machine_mode mode = GET_MODE (op0);
10125 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10126 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10127 int equality_comparison_p;
10128 int sign_bit_comparison_p;
10129 int unsigned_comparison_p;
10130 HOST_WIDE_INT const_op;
10132 /* We only want to handle integral modes. This catches VOIDmode,
10133 CCmode, and the floating-point modes. An exception is that we
10134 can handle VOIDmode if OP0 is a COMPARE or a comparison
10135 operation. */
10137 if (GET_MODE_CLASS (mode) != MODE_INT
10138 && ! (mode == VOIDmode
10139 && (GET_CODE (op0) == COMPARE
10140 || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
10141 break;
10143 /* Get the constant we are comparing against and turn off all bits
10144 not on in our mode. */
10145 const_op = trunc_int_for_mode (INTVAL (op1), mode);
10146 op1 = GEN_INT (const_op);
10148 /* If we are comparing against a constant power of two and the value
10149 being compared can only have that single bit nonzero (e.g., it was
10150 `and'ed with that bit), we can replace this with a comparison
10151 with zero. */
10152 if (const_op
10153 && (code == EQ || code == NE || code == GE || code == GEU
10154 || code == LT || code == LTU)
10155 && mode_width <= HOST_BITS_PER_WIDE_INT
10156 && exact_log2 (const_op) >= 0
10157 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10159 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10160 op1 = const0_rtx, const_op = 0;
10163 /* Similarly, if we are comparing a value known to be either -1 or
10164 0 with -1, change it to the opposite comparison against zero. */
10166 if (const_op == -1
10167 && (code == EQ || code == NE || code == GT || code == LE
10168 || code == GEU || code == LTU)
10169 && num_sign_bit_copies (op0, mode) == mode_width)
10171 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10172 op1 = const0_rtx, const_op = 0;
10175 /* Do some canonicalizations based on the comparison code. We prefer
10176 comparisons against zero and then prefer equality comparisons.
10177 If we can reduce the size of a constant, we will do that too. */
10179 switch (code)
10181 case LT:
10182 /* < C is equivalent to <= (C - 1) */
10183 if (const_op > 0)
10185 const_op -= 1;
10186 op1 = GEN_INT (const_op);
10187 code = LE;
10188 /* ... fall through to LE case below. */
10190 else
10191 break;
10193 case LE:
10194 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10195 if (const_op < 0)
10197 const_op += 1;
10198 op1 = GEN_INT (const_op);
10199 code = LT;
10202 /* If we are doing a <= 0 comparison on a value known to have
10203 a zero sign bit, we can replace this with == 0. */
10204 else if (const_op == 0
10205 && mode_width <= HOST_BITS_PER_WIDE_INT
10206 && (nonzero_bits (op0, mode)
10207 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10208 code = EQ;
10209 break;
10211 case GE:
10212 /* >= C is equivalent to > (C - 1). */
10213 if (const_op > 0)
10215 const_op -= 1;
10216 op1 = GEN_INT (const_op);
10217 code = GT;
10218 /* ... fall through to GT below. */
10220 else
10221 break;
10223 case GT:
10224 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10225 if (const_op < 0)
10227 const_op += 1;
10228 op1 = GEN_INT (const_op);
10229 code = GE;
10232 /* If we are doing a > 0 comparison on a value known to have
10233 a zero sign bit, we can replace this with != 0. */
10234 else if (const_op == 0
10235 && mode_width <= HOST_BITS_PER_WIDE_INT
10236 && (nonzero_bits (op0, mode)
10237 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10238 code = NE;
10239 break;
10241 case LTU:
10242 /* < C is equivalent to <= (C - 1). */
10243 if (const_op > 0)
10245 const_op -= 1;
10246 op1 = GEN_INT (const_op);
10247 code = LEU;
10248 /* ... fall through ... */
10251 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10252 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10253 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10255 const_op = 0, op1 = const0_rtx;
10256 code = GE;
10257 break;
10259 else
10260 break;
10262 case LEU:
10263 /* unsigned <= 0 is equivalent to == 0 */
10264 if (const_op == 0)
10265 code = EQ;
10267 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10268 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10269 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10271 const_op = 0, op1 = const0_rtx;
10272 code = GE;
10274 break;
10276 case GEU:
10277 /* >= C is equivalent to < (C - 1). */
10278 if (const_op > 1)
10280 const_op -= 1;
10281 op1 = GEN_INT (const_op);
10282 code = GTU;
10283 /* ... fall through ... */
10286 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10287 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10288 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10290 const_op = 0, op1 = const0_rtx;
10291 code = LT;
10292 break;
10294 else
10295 break;
10297 case GTU:
10298 /* unsigned > 0 is equivalent to != 0 */
10299 if (const_op == 0)
10300 code = NE;
10302 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10303 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10304 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10306 const_op = 0, op1 = const0_rtx;
10307 code = LT;
10309 break;
10311 default:
10312 break;
10315 /* Compute some predicates to simplify code below. */
10317 equality_comparison_p = (code == EQ || code == NE);
10318 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10319 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10320 || code == GEU);
10322 /* If this is a sign bit comparison and we can do arithmetic in
10323 MODE, say that we will only be needing the sign bit of OP0. */
10324 if (sign_bit_comparison_p
10325 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10326 op0 = force_to_mode (op0, mode,
10327 ((HOST_WIDE_INT) 1
10328 << (GET_MODE_BITSIZE (mode) - 1)),
10329 NULL_RTX, 0);
10331 /* Now try cases based on the opcode of OP0. If none of the cases
10332 does a "continue", we exit this loop immediately after the
10333 switch. */
10335 switch (GET_CODE (op0))
10337 case ZERO_EXTRACT:
10338 /* If we are extracting a single bit from a variable position in
10339 a constant that has only a single bit set and are comparing it
10340 with zero, we can convert this into an equality comparison
10341 between the position and the location of the single bit. */
10343 if (GET_CODE (XEXP (op0, 0)) == CONST_INT
10344 && XEXP (op0, 1) == const1_rtx
10345 && equality_comparison_p && const_op == 0
10346 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10348 if (BITS_BIG_ENDIAN)
10350 enum machine_mode new_mode
10351 = mode_for_extraction (EP_extzv, 1);
10352 if (new_mode == MAX_MACHINE_MODE)
10353 i = BITS_PER_WORD - 1 - i;
10354 else
10356 mode = new_mode;
10357 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10361 op0 = XEXP (op0, 2);
10362 op1 = GEN_INT (i);
10363 const_op = i;
10365 /* Result is nonzero iff shift count is equal to I. */
10366 code = reverse_condition (code);
10367 continue;
10370 /* ... fall through ... */
10372 case SIGN_EXTRACT:
10373 tem = expand_compound_operation (op0);
10374 if (tem != op0)
10376 op0 = tem;
10377 continue;
10379 break;
10381 case NOT:
10382 /* If testing for equality, we can take the NOT of the constant. */
10383 if (equality_comparison_p
10384 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10386 op0 = XEXP (op0, 0);
10387 op1 = tem;
10388 continue;
10391 /* If just looking at the sign bit, reverse the sense of the
10392 comparison. */
10393 if (sign_bit_comparison_p)
10395 op0 = XEXP (op0, 0);
10396 code = (code == GE ? LT : GE);
10397 continue;
10399 break;
10401 case NEG:
10402 /* If testing for equality, we can take the NEG of the constant. */
10403 if (equality_comparison_p
10404 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10406 op0 = XEXP (op0, 0);
10407 op1 = tem;
10408 continue;
10411 /* The remaining cases only apply to comparisons with zero. */
10412 if (const_op != 0)
10413 break;
10415 /* When X is ABS or is known positive,
10416 (neg X) is < 0 if and only if X != 0. */
10418 if (sign_bit_comparison_p
10419 && (GET_CODE (XEXP (op0, 0)) == ABS
10420 || (mode_width <= HOST_BITS_PER_WIDE_INT
10421 && (nonzero_bits (XEXP (op0, 0), mode)
10422 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10424 op0 = XEXP (op0, 0);
10425 code = (code == LT ? NE : EQ);
10426 continue;
10429 /* If we have NEG of something whose two high-order bits are the
10430 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10431 if (num_sign_bit_copies (op0, mode) >= 2)
10433 op0 = XEXP (op0, 0);
10434 code = swap_condition (code);
10435 continue;
10437 break;
10439 case ROTATE:
10440 /* If we are testing equality and our count is a constant, we
10441 can perform the inverse operation on our RHS. */
10442 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10443 && (tem = simplify_binary_operation (ROTATERT, mode,
10444 op1, XEXP (op0, 1))) != 0)
10446 op0 = XEXP (op0, 0);
10447 op1 = tem;
10448 continue;
10451 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10452 a particular bit. Convert it to an AND of a constant of that
10453 bit. This will be converted into a ZERO_EXTRACT. */
10454 if (const_op == 0 && sign_bit_comparison_p
10455 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10456 && mode_width <= HOST_BITS_PER_WIDE_INT)
10458 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10459 ((HOST_WIDE_INT) 1
10460 << (mode_width - 1
10461 - INTVAL (XEXP (op0, 1)))));
10462 code = (code == LT ? NE : EQ);
10463 continue;
10466 /* Fall through. */
10468 case ABS:
10469 /* ABS is ignorable inside an equality comparison with zero. */
10470 if (const_op == 0 && equality_comparison_p)
10472 op0 = XEXP (op0, 0);
10473 continue;
10475 break;
10477 case SIGN_EXTEND:
10478 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10479 to (compare FOO CONST) if CONST fits in FOO's mode and we
10480 are either testing inequality or have an unsigned comparison
10481 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10482 if (! unsigned_comparison_p
10483 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10484 <= HOST_BITS_PER_WIDE_INT)
10485 && ((unsigned HOST_WIDE_INT) const_op
10486 < (((unsigned HOST_WIDE_INT) 1
10487 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10489 op0 = XEXP (op0, 0);
10490 continue;
10492 break;
10494 case SUBREG:
10495 /* Check for the case where we are comparing A - C1 with C2,
10496 both constants are smaller than 1/2 the maximum positive
10497 value in MODE, and the comparison is equality or unsigned.
10498 In that case, if A is either zero-extended to MODE or has
10499 sufficient sign bits so that the high-order bit in MODE
10500 is a copy of the sign in the inner mode, we can prove that it is
10501 safe to do the operation in the wider mode. This simplifies
10502 many range checks. */
10504 if (mode_width <= HOST_BITS_PER_WIDE_INT
10505 && subreg_lowpart_p (op0)
10506 && GET_CODE (SUBREG_REG (op0)) == PLUS
10507 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10508 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10509 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10510 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10511 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10512 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10513 GET_MODE (SUBREG_REG (op0)))
10514 & ~GET_MODE_MASK (mode))
10515 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10516 GET_MODE (SUBREG_REG (op0)))
10517 > (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10518 - GET_MODE_BITSIZE (mode)))))
10520 op0 = SUBREG_REG (op0);
10521 continue;
10524 /* If the inner mode is narrower and we are extracting the low part,
10525 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10526 if (subreg_lowpart_p (op0)
10527 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10528 /* Fall through */ ;
10529 else
10530 break;
10532 /* ... fall through ... */
10534 case ZERO_EXTEND:
10535 if ((unsigned_comparison_p || equality_comparison_p)
10536 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10537 <= HOST_BITS_PER_WIDE_INT)
10538 && ((unsigned HOST_WIDE_INT) const_op
10539 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10541 op0 = XEXP (op0, 0);
10542 continue;
10544 break;
10546 case PLUS:
10547 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10548 this for equality comparisons due to pathological cases involving
10549 overflows. */
10550 if (equality_comparison_p
10551 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10552 op1, XEXP (op0, 1))))
10554 op0 = XEXP (op0, 0);
10555 op1 = tem;
10556 continue;
10559 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10560 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10561 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10563 op0 = XEXP (XEXP (op0, 0), 0);
10564 code = (code == LT ? EQ : NE);
10565 continue;
10567 break;
10569 case MINUS:
10570 /* We used to optimize signed comparisons against zero, but that
10571 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10572 arrive here as equality comparisons, or (GEU, LTU) are
10573 optimized away. No need to special-case them. */
10575 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10576 (eq B (minus A C)), whichever simplifies. We can only do
10577 this for equality comparisons due to pathological cases involving
10578 overflows. */
10579 if (equality_comparison_p
10580 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10581 XEXP (op0, 1), op1)))
10583 op0 = XEXP (op0, 0);
10584 op1 = tem;
10585 continue;
10588 if (equality_comparison_p
10589 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10590 XEXP (op0, 0), op1)))
10592 op0 = XEXP (op0, 1);
10593 op1 = tem;
10594 continue;
10597 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10598 of bits in X minus 1, is one iff X > 0. */
10599 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10600 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10601 && INTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
10602 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10604 op0 = XEXP (op0, 1);
10605 code = (code == GE ? LE : GT);
10606 continue;
10608 break;
10610 case XOR:
10611 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10612 if C is zero or B is a constant. */
10613 if (equality_comparison_p
10614 && 0 != (tem = simplify_binary_operation (XOR, mode,
10615 XEXP (op0, 1), op1)))
10617 op0 = XEXP (op0, 0);
10618 op1 = tem;
10619 continue;
10621 break;
10623 case EQ: case NE:
10624 case UNEQ: case LTGT:
10625 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10626 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10627 case UNORDERED: case ORDERED:
10628 /* We can't do anything if OP0 is a condition code value, rather
10629 than an actual data value. */
10630 if (const_op != 0
10631 #ifdef HAVE_cc0
10632 || XEXP (op0, 0) == cc0_rtx
10633 #endif
10634 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10635 break;
10637 /* Get the two operands being compared. */
10638 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10639 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10640 else
10641 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10643 /* Check for the cases where we simply want the result of the
10644 earlier test or the opposite of that result. */
10645 if (code == NE || code == EQ
10646 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10647 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10648 && (STORE_FLAG_VALUE
10649 & (((HOST_WIDE_INT) 1
10650 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10651 && (code == LT || code == GE)))
10653 enum rtx_code new_code;
10654 if (code == LT || code == NE)
10655 new_code = GET_CODE (op0);
10656 else
10657 new_code = combine_reversed_comparison_code (op0);
10659 if (new_code != UNKNOWN)
10661 code = new_code;
10662 op0 = tem;
10663 op1 = tem1;
10664 continue;
10667 break;
10669 case IOR:
10670 /* The sign bit of (ior (plus X (const_int -1)) X) is non-zero
10671 iff X <= 0. */
10672 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10673 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10674 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10676 op0 = XEXP (op0, 1);
10677 code = (code == GE ? GT : LE);
10678 continue;
10680 break;
10682 case AND:
10683 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10684 will be converted to a ZERO_EXTRACT later. */
10685 if (const_op == 0 && equality_comparison_p
10686 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10687 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10689 op0 = simplify_and_const_int
10690 (op0, mode, gen_rtx_LSHIFTRT (mode,
10691 XEXP (op0, 1),
10692 XEXP (XEXP (op0, 0), 1)),
10693 (HOST_WIDE_INT) 1);
10694 continue;
10697 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10698 zero and X is a comparison and C1 and C2 describe only bits set
10699 in STORE_FLAG_VALUE, we can compare with X. */
10700 if (const_op == 0 && equality_comparison_p
10701 && mode_width <= HOST_BITS_PER_WIDE_INT
10702 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10703 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10704 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10705 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10706 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10708 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10709 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10710 if ((~STORE_FLAG_VALUE & mask) == 0
10711 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
10712 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10713 && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
10715 op0 = XEXP (XEXP (op0, 0), 0);
10716 continue;
10720 /* If we are doing an equality comparison of an AND of a bit equal
10721 to the sign bit, replace this with a LT or GE comparison of
10722 the underlying value. */
10723 if (equality_comparison_p
10724 && const_op == 0
10725 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10726 && mode_width <= HOST_BITS_PER_WIDE_INT
10727 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10728 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10730 op0 = XEXP (op0, 0);
10731 code = (code == EQ ? GE : LT);
10732 continue;
10735 /* If this AND operation is really a ZERO_EXTEND from a narrower
10736 mode, the constant fits within that mode, and this is either an
10737 equality or unsigned comparison, try to do this comparison in
10738 the narrower mode. */
10739 if ((equality_comparison_p || unsigned_comparison_p)
10740 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10741 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10742 & GET_MODE_MASK (mode))
10743 + 1)) >= 0
10744 && const_op >> i == 0
10745 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10747 op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
10748 continue;
10751 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1 fits
10752 in both M1 and M2 and the SUBREG is either paradoxical or
10753 represents the low part, permute the SUBREG and the AND and
10754 try again. */
10755 if (GET_CODE (XEXP (op0, 0)) == SUBREG
10756 && (0
10757 #ifdef WORD_REGISTER_OPERATIONS
10758 || ((mode_width
10759 > (GET_MODE_BITSIZE
10760 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10761 && mode_width <= BITS_PER_WORD)
10762 #endif
10763 || ((mode_width
10764 <= (GET_MODE_BITSIZE
10765 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10766 && subreg_lowpart_p (XEXP (op0, 0))))
10767 #ifndef WORD_REGISTER_OPERATIONS
10768 /* It is unsafe to commute the AND into the SUBREG if the SUBREG
10769 is paradoxical and WORD_REGISTER_OPERATIONS is not defined.
10770 As originally written the upper bits have a defined value
10771 due to the AND operation. However, if we commute the AND
10772 inside the SUBREG then they no longer have defined values
10773 and the meaning of the code has been changed. */
10774 && (GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)))
10775 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0)))))
10776 #endif
10777 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10778 && mode_width <= HOST_BITS_PER_WIDE_INT
10779 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10780 <= HOST_BITS_PER_WIDE_INT)
10781 && (INTVAL (XEXP (op0, 1)) & ~mask) == 0
10782 && 0 == (~GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10783 & INTVAL (XEXP (op0, 1)))
10784 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1)) != mask
10785 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10786 != GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10790 = gen_lowpart_for_combine
10791 (mode,
10792 gen_binary (AND, GET_MODE (SUBREG_REG (XEXP (op0, 0))),
10793 SUBREG_REG (XEXP (op0, 0)), XEXP (op0, 1)));
10794 continue;
10797 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10798 (eq (and (lshiftrt X) 1) 0). */
10799 if (const_op == 0 && equality_comparison_p
10800 && XEXP (op0, 1) == const1_rtx
10801 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10802 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == NOT)
10804 op0 = simplify_and_const_int
10805 (op0, mode,
10806 gen_rtx_LSHIFTRT (mode, XEXP (XEXP (XEXP (op0, 0), 0), 0),
10807 XEXP (XEXP (op0, 0), 1)),
10808 (HOST_WIDE_INT) 1);
10809 code = (code == NE ? EQ : NE);
10810 continue;
10812 break;
10814 case ASHIFT:
10815 /* If we have (compare (ashift FOO N) (const_int C)) and
10816 the high order N bits of FOO (N+1 if an inequality comparison)
10817 are known to be zero, we can do this by comparing FOO with C
10818 shifted right N bits so long as the low-order N bits of C are
10819 zero. */
10820 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10821 && INTVAL (XEXP (op0, 1)) >= 0
10822 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10823 < HOST_BITS_PER_WIDE_INT)
10824 && ((const_op
10825 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10826 && mode_width <= HOST_BITS_PER_WIDE_INT
10827 && (nonzero_bits (XEXP (op0, 0), mode)
10828 & ~(mask >> (INTVAL (XEXP (op0, 1))
10829 + ! equality_comparison_p))) == 0)
10831 /* We must perform a logical shift, not an arithmetic one,
10832 as we want the top N bits of C to be zero. */
10833 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10835 temp >>= INTVAL (XEXP (op0, 1));
10836 op1 = gen_int_mode (temp, mode);
10837 op0 = XEXP (op0, 0);
10838 continue;
10841 /* If we are doing a sign bit comparison, it means we are testing
10842 a particular bit. Convert it to the appropriate AND. */
10843 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10844 && mode_width <= HOST_BITS_PER_WIDE_INT)
10846 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10847 ((HOST_WIDE_INT) 1
10848 << (mode_width - 1
10849 - INTVAL (XEXP (op0, 1)))));
10850 code = (code == LT ? NE : EQ);
10851 continue;
10854 /* If this an equality comparison with zero and we are shifting
10855 the low bit to the sign bit, we can convert this to an AND of the
10856 low-order bit. */
10857 if (const_op == 0 && equality_comparison_p
10858 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10859 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10861 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10862 (HOST_WIDE_INT) 1);
10863 continue;
10865 break;
10867 case ASHIFTRT:
10868 /* If this is an equality comparison with zero, we can do this
10869 as a logical shift, which might be much simpler. */
10870 if (equality_comparison_p && const_op == 0
10871 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10873 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10874 XEXP (op0, 0),
10875 INTVAL (XEXP (op0, 1)));
10876 continue;
10879 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10880 do the comparison in a narrower mode. */
10881 if (! unsigned_comparison_p
10882 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10883 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10884 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10885 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10886 MODE_INT, 1)) != BLKmode
10887 && (((unsigned HOST_WIDE_INT) const_op
10888 + (GET_MODE_MASK (tmode) >> 1) + 1)
10889 <= GET_MODE_MASK (tmode)))
10891 op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
10892 continue;
10895 /* Likewise if OP0 is a PLUS of a sign extension with a
10896 constant, which is usually represented with the PLUS
10897 between the shifts. */
10898 if (! unsigned_comparison_p
10899 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10900 && GET_CODE (XEXP (op0, 0)) == PLUS
10901 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10902 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10903 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10904 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10905 MODE_INT, 1)) != BLKmode
10906 && (((unsigned HOST_WIDE_INT) const_op
10907 + (GET_MODE_MASK (tmode) >> 1) + 1)
10908 <= GET_MODE_MASK (tmode)))
10910 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10911 rtx add_const = XEXP (XEXP (op0, 0), 1);
10912 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
10913 XEXP (op0, 1));
10915 op0 = gen_binary (PLUS, tmode,
10916 gen_lowpart_for_combine (tmode, inner),
10917 new_const);
10918 continue;
10921 /* ... fall through ... */
10922 case LSHIFTRT:
10923 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10924 the low order N bits of FOO are known to be zero, we can do this
10925 by comparing FOO with C shifted left N bits so long as no
10926 overflow occurs. */
10927 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10928 && INTVAL (XEXP (op0, 1)) >= 0
10929 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10930 && mode_width <= HOST_BITS_PER_WIDE_INT
10931 && (nonzero_bits (XEXP (op0, 0), mode)
10932 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10933 && (((unsigned HOST_WIDE_INT) const_op
10934 + (GET_CODE (op0) != LSHIFTRT
10935 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10936 + 1)
10937 : 0))
10938 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10940 /* If the shift was logical, then we must make the condition
10941 unsigned. */
10942 if (GET_CODE (op0) == LSHIFTRT)
10943 code = unsigned_condition (code);
10945 const_op <<= INTVAL (XEXP (op0, 1));
10946 op1 = GEN_INT (const_op);
10947 op0 = XEXP (op0, 0);
10948 continue;
10951 /* If we are using this shift to extract just the sign bit, we
10952 can replace this with an LT or GE comparison. */
10953 if (const_op == 0
10954 && (equality_comparison_p || sign_bit_comparison_p)
10955 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10956 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10958 op0 = XEXP (op0, 0);
10959 code = (code == NE || code == GT ? LT : GE);
10960 continue;
10962 break;
10964 default:
10965 break;
10968 break;
10971 /* Now make any compound operations involved in this comparison. Then,
10972 check for an outmost SUBREG on OP0 that is not doing anything or is
10973 paradoxical. The latter transformation must only be performed when
10974 it is known that the "extra" bits will be the same in op0 and op1 or
10975 that they don't matter. There are three cases to consider:
10977 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10978 care bits and we can assume they have any convenient value. So
10979 making the transformation is safe.
10981 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10982 In this case the upper bits of op0 are undefined. We should not make
10983 the simplification in that case as we do not know the contents of
10984 those bits.
10986 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10987 NIL. In that case we know those bits are zeros or ones. We must
10988 also be sure that they are the same as the upper bits of op1.
10990 We can never remove a SUBREG for a non-equality comparison because
10991 the sign bit is in a different place in the underlying object. */
10993 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10994 op1 = make_compound_operation (op1, SET);
10996 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10997 /* Case 3 above, to sometimes allow (subreg (mem x)), isn't
10998 implemented. */
10999 && GET_CODE (SUBREG_REG (op0)) == REG
11000 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11001 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11002 && (code == NE || code == EQ))
11004 if (GET_MODE_SIZE (GET_MODE (op0))
11005 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11007 op0 = SUBREG_REG (op0);
11008 op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
11010 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11011 <= HOST_BITS_PER_WIDE_INT)
11012 && (nonzero_bits (SUBREG_REG (op0),
11013 GET_MODE (SUBREG_REG (op0)))
11014 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11016 tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)), op1);
11018 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11019 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11020 op0 = SUBREG_REG (op0), op1 = tem;
11024 /* We now do the opposite procedure: Some machines don't have compare
11025 insns in all modes. If OP0's mode is an integer mode smaller than a
11026 word and we can't do a compare in that mode, see if there is a larger
11027 mode for which we can do the compare. There are a number of cases in
11028 which we can use the wider mode. */
11030 mode = GET_MODE (op0);
11031 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11032 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11033 && ! have_insn_for (COMPARE, mode))
11034 for (tmode = GET_MODE_WIDER_MODE (mode);
11035 (tmode != VOIDmode
11036 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11037 tmode = GET_MODE_WIDER_MODE (tmode))
11038 if (have_insn_for (COMPARE, tmode))
11040 int zero_extended;
11042 /* If the only nonzero bits in OP0 and OP1 are those in the
11043 narrower mode and this is an equality or unsigned comparison,
11044 we can use the wider mode. Similarly for sign-extended
11045 values, in which case it is true for all comparisons. */
11046 zero_extended = ((code == EQ || code == NE
11047 || code == GEU || code == GTU
11048 || code == LEU || code == LTU)
11049 && (nonzero_bits (op0, tmode)
11050 & ~GET_MODE_MASK (mode)) == 0
11051 && ((GET_CODE (op1) == CONST_INT
11052 || (nonzero_bits (op1, tmode)
11053 & ~GET_MODE_MASK (mode)) == 0)));
11055 if (zero_extended
11056 || ((num_sign_bit_copies (op0, tmode)
11057 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))
11058 && (num_sign_bit_copies (op1, tmode)
11059 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))))
11061 /* If OP0 is an AND and we don't have an AND in MODE either,
11062 make a new AND in the proper mode. */
11063 if (GET_CODE (op0) == AND
11064 && !have_insn_for (AND, mode))
11065 op0 = gen_binary (AND, tmode,
11066 gen_lowpart_for_combine (tmode,
11067 XEXP (op0, 0)),
11068 gen_lowpart_for_combine (tmode,
11069 XEXP (op0, 1)));
11071 op0 = gen_lowpart_for_combine (tmode, op0);
11072 if (zero_extended && GET_CODE (op1) == CONST_INT)
11073 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11074 op1 = gen_lowpart_for_combine (tmode, op1);
11075 break;
11078 /* If this is a test for negative, we can make an explicit
11079 test of the sign bit. */
11081 if (op1 == const0_rtx && (code == LT || code == GE)
11082 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11084 op0 = gen_binary (AND, tmode,
11085 gen_lowpart_for_combine (tmode, op0),
11086 GEN_INT ((HOST_WIDE_INT) 1
11087 << (GET_MODE_BITSIZE (mode) - 1)));
11088 code = (code == LT) ? NE : EQ;
11089 break;
11093 #ifdef CANONICALIZE_COMPARISON
11094 /* If this machine only supports a subset of valid comparisons, see if we
11095 can convert an unsupported one into a supported one. */
11096 CANONICALIZE_COMPARISON (code, op0, op1);
11097 #endif
11099 *pop0 = op0;
11100 *pop1 = op1;
11102 return code;
11105 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
11106 searching backward. */
11107 static enum rtx_code
11108 combine_reversed_comparison_code (exp)
11109 rtx exp;
11111 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
11112 rtx x;
11114 if (code1 != UNKNOWN
11115 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
11116 return code1;
11117 /* Otherwise try and find where the condition codes were last set and
11118 use that. */
11119 x = get_last_value (XEXP (exp, 0));
11120 if (!x || GET_CODE (x) != COMPARE)
11121 return UNKNOWN;
11122 return reversed_comparison_code_parts (GET_CODE (exp),
11123 XEXP (x, 0), XEXP (x, 1), NULL);
11125 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
11126 Return NULL_RTX in case we fail to do the reversal. */
11127 static rtx
11128 reversed_comparison (exp, mode, op0, op1)
11129 rtx exp, op0, op1;
11130 enum machine_mode mode;
11132 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
11133 if (reversed_code == UNKNOWN)
11134 return NULL_RTX;
11135 else
11136 return gen_binary (reversed_code, mode, op0, op1);
11139 /* Utility function for following routine. Called when X is part of a value
11140 being stored into reg_last_set_value. Sets reg_last_set_table_tick
11141 for each register mentioned. Similar to mention_regs in cse.c */
11143 static void
11144 update_table_tick (x)
11145 rtx x;
11147 enum rtx_code code = GET_CODE (x);
11148 const char *fmt = GET_RTX_FORMAT (code);
11149 int i;
11151 if (code == REG)
11153 unsigned int regno = REGNO (x);
11154 unsigned int endregno
11155 = regno + (regno < FIRST_PSEUDO_REGISTER
11156 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11157 unsigned int r;
11159 for (r = regno; r < endregno; r++)
11160 reg_last_set_table_tick[r] = label_tick;
11162 return;
11165 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11166 /* Note that we can't have an "E" in values stored; see
11167 get_last_value_validate. */
11168 if (fmt[i] == 'e')
11169 update_table_tick (XEXP (x, i));
11172 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11173 are saying that the register is clobbered and we no longer know its
11174 value. If INSN is zero, don't update reg_last_set; this is only permitted
11175 with VALUE also zero and is used to invalidate the register. */
11177 static void
11178 record_value_for_reg (reg, insn, value)
11179 rtx reg;
11180 rtx insn;
11181 rtx value;
11183 unsigned int regno = REGNO (reg);
11184 unsigned int endregno
11185 = regno + (regno < FIRST_PSEUDO_REGISTER
11186 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
11187 unsigned int i;
11189 /* If VALUE contains REG and we have a previous value for REG, substitute
11190 the previous value. */
11191 if (value && insn && reg_overlap_mentioned_p (reg, value))
11193 rtx tem;
11195 /* Set things up so get_last_value is allowed to see anything set up to
11196 our insn. */
11197 subst_low_cuid = INSN_CUID (insn);
11198 tem = get_last_value (reg);
11200 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11201 it isn't going to be useful and will take a lot of time to process,
11202 so just use the CLOBBER. */
11204 if (tem)
11206 if ((GET_RTX_CLASS (GET_CODE (tem)) == '2'
11207 || GET_RTX_CLASS (GET_CODE (tem)) == 'c')
11208 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11209 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11210 tem = XEXP (tem, 0);
11212 value = replace_rtx (copy_rtx (value), reg, tem);
11216 /* For each register modified, show we don't know its value, that
11217 we don't know about its bitwise content, that its value has been
11218 updated, and that we don't know the location of the death of the
11219 register. */
11220 for (i = regno; i < endregno; i++)
11222 if (insn)
11223 reg_last_set[i] = insn;
11225 reg_last_set_value[i] = 0;
11226 reg_last_set_mode[i] = 0;
11227 reg_last_set_nonzero_bits[i] = 0;
11228 reg_last_set_sign_bit_copies[i] = 0;
11229 reg_last_death[i] = 0;
11232 /* Mark registers that are being referenced in this value. */
11233 if (value)
11234 update_table_tick (value);
11236 /* Now update the status of each register being set.
11237 If someone is using this register in this block, set this register
11238 to invalid since we will get confused between the two lives in this
11239 basic block. This makes using this register always invalid. In cse, we
11240 scan the table to invalidate all entries using this register, but this
11241 is too much work for us. */
11243 for (i = regno; i < endregno; i++)
11245 reg_last_set_label[i] = label_tick;
11246 if (value && reg_last_set_table_tick[i] == label_tick)
11247 reg_last_set_invalid[i] = 1;
11248 else
11249 reg_last_set_invalid[i] = 0;
11252 /* The value being assigned might refer to X (like in "x++;"). In that
11253 case, we must replace it with (clobber (const_int 0)) to prevent
11254 infinite loops. */
11255 if (value && ! get_last_value_validate (&value, insn,
11256 reg_last_set_label[regno], 0))
11258 value = copy_rtx (value);
11259 if (! get_last_value_validate (&value, insn,
11260 reg_last_set_label[regno], 1))
11261 value = 0;
11264 /* For the main register being modified, update the value, the mode, the
11265 nonzero bits, and the number of sign bit copies. */
11267 reg_last_set_value[regno] = value;
11269 if (value)
11271 enum machine_mode mode = GET_MODE (reg);
11272 subst_low_cuid = INSN_CUID (insn);
11273 reg_last_set_mode[regno] = mode;
11274 if (GET_MODE_CLASS (mode) == MODE_INT
11275 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11276 mode = nonzero_bits_mode;
11277 reg_last_set_nonzero_bits[regno] = nonzero_bits (value, mode);
11278 reg_last_set_sign_bit_copies[regno]
11279 = num_sign_bit_copies (value, GET_MODE (reg));
11283 /* Called via note_stores from record_dead_and_set_regs to handle one
11284 SET or CLOBBER in an insn. DATA is the instruction in which the
11285 set is occurring. */
11287 static void
11288 record_dead_and_set_regs_1 (dest, setter, data)
11289 rtx dest, setter;
11290 void *data;
11292 rtx record_dead_insn = (rtx) data;
11294 if (GET_CODE (dest) == SUBREG)
11295 dest = SUBREG_REG (dest);
11297 if (GET_CODE (dest) == REG)
11299 /* If we are setting the whole register, we know its value. Otherwise
11300 show that we don't know the value. We can handle SUBREG in
11301 some cases. */
11302 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11303 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11304 else if (GET_CODE (setter) == SET
11305 && GET_CODE (SET_DEST (setter)) == SUBREG
11306 && SUBREG_REG (SET_DEST (setter)) == dest
11307 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11308 && subreg_lowpart_p (SET_DEST (setter)))
11309 record_value_for_reg (dest, record_dead_insn,
11310 gen_lowpart_for_combine (GET_MODE (dest),
11311 SET_SRC (setter)));
11312 else
11313 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11315 else if (GET_CODE (dest) == MEM
11316 /* Ignore pushes, they clobber nothing. */
11317 && ! push_operand (dest, GET_MODE (dest)))
11318 mem_last_set = INSN_CUID (record_dead_insn);
11321 /* Update the records of when each REG was most recently set or killed
11322 for the things done by INSN. This is the last thing done in processing
11323 INSN in the combiner loop.
11325 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11326 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11327 and also the similar information mem_last_set (which insn most recently
11328 modified memory) and last_call_cuid (which insn was the most recent
11329 subroutine call). */
11331 static void
11332 record_dead_and_set_regs (insn)
11333 rtx insn;
11335 rtx link;
11336 unsigned int i;
11338 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11340 if (REG_NOTE_KIND (link) == REG_DEAD
11341 && GET_CODE (XEXP (link, 0)) == REG)
11343 unsigned int regno = REGNO (XEXP (link, 0));
11344 unsigned int endregno
11345 = regno + (regno < FIRST_PSEUDO_REGISTER
11346 ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
11347 : 1);
11349 for (i = regno; i < endregno; i++)
11350 reg_last_death[i] = insn;
11352 else if (REG_NOTE_KIND (link) == REG_INC)
11353 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11356 if (GET_CODE (insn) == CALL_INSN)
11358 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11359 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11361 reg_last_set_value[i] = 0;
11362 reg_last_set_mode[i] = 0;
11363 reg_last_set_nonzero_bits[i] = 0;
11364 reg_last_set_sign_bit_copies[i] = 0;
11365 reg_last_death[i] = 0;
11368 last_call_cuid = mem_last_set = INSN_CUID (insn);
11370 /* Don't bother recording what this insn does. It might set the
11371 return value register, but we can't combine into a call
11372 pattern anyway, so there's no point trying (and it may cause
11373 a crash, if e.g. we wind up asking for last_set_value of a
11374 SUBREG of the return value register). */
11375 return;
11378 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11381 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11382 register present in the SUBREG, so for each such SUBREG go back and
11383 adjust nonzero and sign bit information of the registers that are
11384 known to have some zero/sign bits set.
11386 This is needed because when combine blows the SUBREGs away, the
11387 information on zero/sign bits is lost and further combines can be
11388 missed because of that. */
11390 static void
11391 record_promoted_value (insn, subreg)
11392 rtx insn;
11393 rtx subreg;
11395 rtx links, set;
11396 unsigned int regno = REGNO (SUBREG_REG (subreg));
11397 enum machine_mode mode = GET_MODE (subreg);
11399 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11400 return;
11402 for (links = LOG_LINKS (insn); links;)
11404 insn = XEXP (links, 0);
11405 set = single_set (insn);
11407 if (! set || GET_CODE (SET_DEST (set)) != REG
11408 || REGNO (SET_DEST (set)) != regno
11409 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11411 links = XEXP (links, 1);
11412 continue;
11415 if (reg_last_set[regno] == insn)
11417 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11418 reg_last_set_nonzero_bits[regno] &= GET_MODE_MASK (mode);
11421 if (GET_CODE (SET_SRC (set)) == REG)
11423 regno = REGNO (SET_SRC (set));
11424 links = LOG_LINKS (insn);
11426 else
11427 break;
11431 /* Scan X for promoted SUBREGs. For each one found,
11432 note what it implies to the registers used in it. */
11434 static void
11435 check_promoted_subreg (insn, x)
11436 rtx insn;
11437 rtx x;
11439 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11440 && GET_CODE (SUBREG_REG (x)) == REG)
11441 record_promoted_value (insn, x);
11442 else
11444 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11445 int i, j;
11447 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11448 switch (format[i])
11450 case 'e':
11451 check_promoted_subreg (insn, XEXP (x, i));
11452 break;
11453 case 'V':
11454 case 'E':
11455 if (XVEC (x, i) != 0)
11456 for (j = 0; j < XVECLEN (x, i); j++)
11457 check_promoted_subreg (insn, XVECEXP (x, i, j));
11458 break;
11463 /* Utility routine for the following function. Verify that all the registers
11464 mentioned in *LOC are valid when *LOC was part of a value set when
11465 label_tick == TICK. Return 0 if some are not.
11467 If REPLACE is non-zero, replace the invalid reference with
11468 (clobber (const_int 0)) and return 1. This replacement is useful because
11469 we often can get useful information about the form of a value (e.g., if
11470 it was produced by a shift that always produces -1 or 0) even though
11471 we don't know exactly what registers it was produced from. */
11473 static int
11474 get_last_value_validate (loc, insn, tick, replace)
11475 rtx *loc;
11476 rtx insn;
11477 int tick;
11478 int replace;
11480 rtx x = *loc;
11481 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11482 int len = GET_RTX_LENGTH (GET_CODE (x));
11483 int i;
11485 if (GET_CODE (x) == REG)
11487 unsigned int regno = REGNO (x);
11488 unsigned int endregno
11489 = regno + (regno < FIRST_PSEUDO_REGISTER
11490 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11491 unsigned int j;
11493 for (j = regno; j < endregno; j++)
11494 if (reg_last_set_invalid[j]
11495 /* If this is a pseudo-register that was only set once and not
11496 live at the beginning of the function, it is always valid. */
11497 || (! (regno >= FIRST_PSEUDO_REGISTER
11498 && REG_N_SETS (regno) == 1
11499 && (! REGNO_REG_SET_P
11500 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
11501 && reg_last_set_label[j] > tick))
11503 if (replace)
11504 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11505 return replace;
11508 return 1;
11510 /* If this is a memory reference, make sure that there were
11511 no stores after it that might have clobbered the value. We don't
11512 have alias info, so we assume any store invalidates it. */
11513 else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
11514 && INSN_CUID (insn) <= mem_last_set)
11516 if (replace)
11517 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11518 return replace;
11521 for (i = 0; i < len; i++)
11522 if ((fmt[i] == 'e'
11523 && get_last_value_validate (&XEXP (x, i), insn, tick, replace) == 0)
11524 /* Don't bother with these. They shouldn't occur anyway. */
11525 || fmt[i] == 'E')
11526 return 0;
11528 /* If we haven't found a reason for it to be invalid, it is valid. */
11529 return 1;
11532 /* Get the last value assigned to X, if known. Some registers
11533 in the value may be replaced with (clobber (const_int 0)) if their value
11534 is known longer known reliably. */
11536 static rtx
11537 get_last_value (x)
11538 rtx x;
11540 unsigned int regno;
11541 rtx value;
11543 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11544 then convert it to the desired mode. If this is a paradoxical SUBREG,
11545 we cannot predict what values the "extra" bits might have. */
11546 if (GET_CODE (x) == SUBREG
11547 && subreg_lowpart_p (x)
11548 && (GET_MODE_SIZE (GET_MODE (x))
11549 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11550 && (value = get_last_value (SUBREG_REG (x))) != 0)
11551 return gen_lowpart_for_combine (GET_MODE (x), value);
11553 if (GET_CODE (x) != REG)
11554 return 0;
11556 regno = REGNO (x);
11557 value = reg_last_set_value[regno];
11559 /* If we don't have a value, or if it isn't for this basic block and
11560 it's either a hard register, set more than once, or it's a live
11561 at the beginning of the function, return 0.
11563 Because if it's not live at the beginning of the function then the reg
11564 is always set before being used (is never used without being set).
11565 And, if it's set only once, and it's always set before use, then all
11566 uses must have the same last value, even if it's not from this basic
11567 block. */
11569 if (value == 0
11570 || (reg_last_set_label[regno] != label_tick
11571 && (regno < FIRST_PSEUDO_REGISTER
11572 || REG_N_SETS (regno) != 1
11573 || (REGNO_REG_SET_P
11574 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
11575 return 0;
11577 /* If the value was set in a later insn than the ones we are processing,
11578 we can't use it even if the register was only set once. */
11579 if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
11580 return 0;
11582 /* If the value has all its registers valid, return it. */
11583 if (get_last_value_validate (&value, reg_last_set[regno],
11584 reg_last_set_label[regno], 0))
11585 return value;
11587 /* Otherwise, make a copy and replace any invalid register with
11588 (clobber (const_int 0)). If that fails for some reason, return 0. */
11590 value = copy_rtx (value);
11591 if (get_last_value_validate (&value, reg_last_set[regno],
11592 reg_last_set_label[regno], 1))
11593 return value;
11595 return 0;
11598 /* Return nonzero if expression X refers to a REG or to memory
11599 that is set in an instruction more recent than FROM_CUID. */
11601 static int
11602 use_crosses_set_p (x, from_cuid)
11603 rtx x;
11604 int from_cuid;
11606 const char *fmt;
11607 int i;
11608 enum rtx_code code = GET_CODE (x);
11610 if (code == REG)
11612 unsigned int regno = REGNO (x);
11613 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11614 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11616 #ifdef PUSH_ROUNDING
11617 /* Don't allow uses of the stack pointer to be moved,
11618 because we don't know whether the move crosses a push insn. */
11619 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11620 return 1;
11621 #endif
11622 for (; regno < endreg; regno++)
11623 if (reg_last_set[regno]
11624 && INSN_CUID (reg_last_set[regno]) > from_cuid)
11625 return 1;
11626 return 0;
11629 if (code == MEM && mem_last_set > from_cuid)
11630 return 1;
11632 fmt = GET_RTX_FORMAT (code);
11634 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11636 if (fmt[i] == 'E')
11638 int j;
11639 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11640 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11641 return 1;
11643 else if (fmt[i] == 'e'
11644 && use_crosses_set_p (XEXP (x, i), from_cuid))
11645 return 1;
11647 return 0;
11650 /* Define three variables used for communication between the following
11651 routines. */
11653 static unsigned int reg_dead_regno, reg_dead_endregno;
11654 static int reg_dead_flag;
11656 /* Function called via note_stores from reg_dead_at_p.
11658 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11659 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11661 static void
11662 reg_dead_at_p_1 (dest, x, data)
11663 rtx dest;
11664 rtx x;
11665 void *data ATTRIBUTE_UNUSED;
11667 unsigned int regno, endregno;
11669 if (GET_CODE (dest) != REG)
11670 return;
11672 regno = REGNO (dest);
11673 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11674 ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
11676 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11677 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11680 /* Return non-zero if REG is known to be dead at INSN.
11682 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11683 referencing REG, it is dead. If we hit a SET referencing REG, it is
11684 live. Otherwise, see if it is live or dead at the start of the basic
11685 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11686 must be assumed to be always live. */
11688 static int
11689 reg_dead_at_p (reg, insn)
11690 rtx reg;
11691 rtx insn;
11693 basic_block block;
11694 unsigned int i;
11696 /* Set variables for reg_dead_at_p_1. */
11697 reg_dead_regno = REGNO (reg);
11698 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11699 ? HARD_REGNO_NREGS (reg_dead_regno,
11700 GET_MODE (reg))
11701 : 1);
11703 reg_dead_flag = 0;
11705 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
11706 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11708 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11709 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
11710 return 0;
11713 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11714 beginning of function. */
11715 for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
11716 insn = prev_nonnote_insn (insn))
11718 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11719 if (reg_dead_flag)
11720 return reg_dead_flag == 1 ? 1 : 0;
11722 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11723 return 1;
11726 /* Get the basic block that we were in. */
11727 if (insn == 0)
11728 block = ENTRY_BLOCK_PTR->next_bb;
11729 else
11731 FOR_EACH_BB (block)
11732 if (insn == block->head)
11733 break;
11735 if (block == EXIT_BLOCK_PTR)
11736 return 0;
11739 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11740 if (REGNO_REG_SET_P (block->global_live_at_start, i))
11741 return 0;
11743 return 1;
11746 /* Note hard registers in X that are used. This code is similar to
11747 that in flow.c, but much simpler since we don't care about pseudos. */
11749 static void
11750 mark_used_regs_combine (x)
11751 rtx x;
11753 RTX_CODE code = GET_CODE (x);
11754 unsigned int regno;
11755 int i;
11757 switch (code)
11759 case LABEL_REF:
11760 case SYMBOL_REF:
11761 case CONST_INT:
11762 case CONST:
11763 case CONST_DOUBLE:
11764 case CONST_VECTOR:
11765 case PC:
11766 case ADDR_VEC:
11767 case ADDR_DIFF_VEC:
11768 case ASM_INPUT:
11769 #ifdef HAVE_cc0
11770 /* CC0 must die in the insn after it is set, so we don't need to take
11771 special note of it here. */
11772 case CC0:
11773 #endif
11774 return;
11776 case CLOBBER:
11777 /* If we are clobbering a MEM, mark any hard registers inside the
11778 address as used. */
11779 if (GET_CODE (XEXP (x, 0)) == MEM)
11780 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11781 return;
11783 case REG:
11784 regno = REGNO (x);
11785 /* A hard reg in a wide mode may really be multiple registers.
11786 If so, mark all of them just like the first. */
11787 if (regno < FIRST_PSEUDO_REGISTER)
11789 unsigned int endregno, r;
11791 /* None of this applies to the stack, frame or arg pointers */
11792 if (regno == STACK_POINTER_REGNUM
11793 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11794 || regno == HARD_FRAME_POINTER_REGNUM
11795 #endif
11796 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11797 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11798 #endif
11799 || regno == FRAME_POINTER_REGNUM)
11800 return;
11802 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11803 for (r = regno; r < endregno; r++)
11804 SET_HARD_REG_BIT (newpat_used_regs, r);
11806 return;
11808 case SET:
11810 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11811 the address. */
11812 rtx testreg = SET_DEST (x);
11814 while (GET_CODE (testreg) == SUBREG
11815 || GET_CODE (testreg) == ZERO_EXTRACT
11816 || GET_CODE (testreg) == SIGN_EXTRACT
11817 || GET_CODE (testreg) == STRICT_LOW_PART)
11818 testreg = XEXP (testreg, 0);
11820 if (GET_CODE (testreg) == MEM)
11821 mark_used_regs_combine (XEXP (testreg, 0));
11823 mark_used_regs_combine (SET_SRC (x));
11825 return;
11827 default:
11828 break;
11831 /* Recursively scan the operands of this expression. */
11834 const char *fmt = GET_RTX_FORMAT (code);
11836 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11838 if (fmt[i] == 'e')
11839 mark_used_regs_combine (XEXP (x, i));
11840 else if (fmt[i] == 'E')
11842 int j;
11844 for (j = 0; j < XVECLEN (x, i); j++)
11845 mark_used_regs_combine (XVECEXP (x, i, j));
11851 /* Remove register number REGNO from the dead registers list of INSN.
11853 Return the note used to record the death, if there was one. */
11856 remove_death (regno, insn)
11857 unsigned int regno;
11858 rtx insn;
11860 rtx note = find_regno_note (insn, REG_DEAD, regno);
11862 if (note)
11864 REG_N_DEATHS (regno)--;
11865 remove_note (insn, note);
11868 return note;
11871 /* For each register (hardware or pseudo) used within expression X, if its
11872 death is in an instruction with cuid between FROM_CUID (inclusive) and
11873 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11874 list headed by PNOTES.
11876 That said, don't move registers killed by maybe_kill_insn.
11878 This is done when X is being merged by combination into TO_INSN. These
11879 notes will then be distributed as needed. */
11881 static void
11882 move_deaths (x, maybe_kill_insn, from_cuid, to_insn, pnotes)
11883 rtx x;
11884 rtx maybe_kill_insn;
11885 int from_cuid;
11886 rtx to_insn;
11887 rtx *pnotes;
11889 const char *fmt;
11890 int len, i;
11891 enum rtx_code code = GET_CODE (x);
11893 if (code == REG)
11895 unsigned int regno = REGNO (x);
11896 rtx where_dead = reg_last_death[regno];
11897 rtx before_dead, after_dead;
11899 /* Don't move the register if it gets killed in between from and to */
11900 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11901 && ! reg_referenced_p (x, maybe_kill_insn))
11902 return;
11904 /* WHERE_DEAD could be a USE insn made by combine, so first we
11905 make sure that we have insns with valid INSN_CUID values. */
11906 before_dead = where_dead;
11907 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11908 before_dead = PREV_INSN (before_dead);
11910 after_dead = where_dead;
11911 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11912 after_dead = NEXT_INSN (after_dead);
11914 if (before_dead && after_dead
11915 && INSN_CUID (before_dead) >= from_cuid
11916 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11917 || (where_dead != after_dead
11918 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11920 rtx note = remove_death (regno, where_dead);
11922 /* It is possible for the call above to return 0. This can occur
11923 when reg_last_death points to I2 or I1 that we combined with.
11924 In that case make a new note.
11926 We must also check for the case where X is a hard register
11927 and NOTE is a death note for a range of hard registers
11928 including X. In that case, we must put REG_DEAD notes for
11929 the remaining registers in place of NOTE. */
11931 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11932 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11933 > GET_MODE_SIZE (GET_MODE (x))))
11935 unsigned int deadregno = REGNO (XEXP (note, 0));
11936 unsigned int deadend
11937 = (deadregno + HARD_REGNO_NREGS (deadregno,
11938 GET_MODE (XEXP (note, 0))));
11939 unsigned int ourend
11940 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11941 unsigned int i;
11943 for (i = deadregno; i < deadend; i++)
11944 if (i < regno || i >= ourend)
11945 REG_NOTES (where_dead)
11946 = gen_rtx_EXPR_LIST (REG_DEAD,
11947 gen_rtx_REG (reg_raw_mode[i], i),
11948 REG_NOTES (where_dead));
11951 /* If we didn't find any note, or if we found a REG_DEAD note that
11952 covers only part of the given reg, and we have a multi-reg hard
11953 register, then to be safe we must check for REG_DEAD notes
11954 for each register other than the first. They could have
11955 their own REG_DEAD notes lying around. */
11956 else if ((note == 0
11957 || (note != 0
11958 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11959 < GET_MODE_SIZE (GET_MODE (x)))))
11960 && regno < FIRST_PSEUDO_REGISTER
11961 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
11963 unsigned int ourend
11964 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11965 unsigned int i, offset;
11966 rtx oldnotes = 0;
11968 if (note)
11969 offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
11970 else
11971 offset = 1;
11973 for (i = regno + offset; i < ourend; i++)
11974 move_deaths (gen_rtx_REG (reg_raw_mode[i], i),
11975 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11978 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11980 XEXP (note, 1) = *pnotes;
11981 *pnotes = note;
11983 else
11984 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11986 REG_N_DEATHS (regno)++;
11989 return;
11992 else if (GET_CODE (x) == SET)
11994 rtx dest = SET_DEST (x);
11996 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11998 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11999 that accesses one word of a multi-word item, some
12000 piece of everything register in the expression is used by
12001 this insn, so remove any old death. */
12002 /* ??? So why do we test for equality of the sizes? */
12004 if (GET_CODE (dest) == ZERO_EXTRACT
12005 || GET_CODE (dest) == STRICT_LOW_PART
12006 || (GET_CODE (dest) == SUBREG
12007 && (((GET_MODE_SIZE (GET_MODE (dest))
12008 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12009 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12010 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12012 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
12013 return;
12016 /* If this is some other SUBREG, we know it replaces the entire
12017 value, so use that as the destination. */
12018 if (GET_CODE (dest) == SUBREG)
12019 dest = SUBREG_REG (dest);
12021 /* If this is a MEM, adjust deaths of anything used in the address.
12022 For a REG (the only other possibility), the entire value is
12023 being replaced so the old value is not used in this insn. */
12025 if (GET_CODE (dest) == MEM)
12026 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
12027 to_insn, pnotes);
12028 return;
12031 else if (GET_CODE (x) == CLOBBER)
12032 return;
12034 len = GET_RTX_LENGTH (code);
12035 fmt = GET_RTX_FORMAT (code);
12037 for (i = 0; i < len; i++)
12039 if (fmt[i] == 'E')
12041 int j;
12042 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12043 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
12044 to_insn, pnotes);
12046 else if (fmt[i] == 'e')
12047 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
12051 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12052 pattern of an insn. X must be a REG. */
12054 static int
12055 reg_bitfield_target_p (x, body)
12056 rtx x;
12057 rtx body;
12059 int i;
12061 if (GET_CODE (body) == SET)
12063 rtx dest = SET_DEST (body);
12064 rtx target;
12065 unsigned int regno, tregno, endregno, endtregno;
12067 if (GET_CODE (dest) == ZERO_EXTRACT)
12068 target = XEXP (dest, 0);
12069 else if (GET_CODE (dest) == STRICT_LOW_PART)
12070 target = SUBREG_REG (XEXP (dest, 0));
12071 else
12072 return 0;
12074 if (GET_CODE (target) == SUBREG)
12075 target = SUBREG_REG (target);
12077 if (GET_CODE (target) != REG)
12078 return 0;
12080 tregno = REGNO (target), regno = REGNO (x);
12081 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12082 return target == x;
12084 endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
12085 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12087 return endregno > tregno && regno < endtregno;
12090 else if (GET_CODE (body) == PARALLEL)
12091 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12092 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12093 return 1;
12095 return 0;
12098 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12099 as appropriate. I3 and I2 are the insns resulting from the combination
12100 insns including FROM (I2 may be zero).
12102 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12103 not need REG_DEAD notes because they are being substituted for. This
12104 saves searching in the most common cases.
12106 Each note in the list is either ignored or placed on some insns, depending
12107 on the type of note. */
12109 static void
12110 distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
12111 rtx notes;
12112 rtx from_insn;
12113 rtx i3, i2;
12114 rtx elim_i2, elim_i1;
12116 rtx note, next_note;
12117 rtx tem;
12119 for (note = notes; note; note = next_note)
12121 rtx place = 0, place2 = 0;
12123 /* If this NOTE references a pseudo register, ensure it references
12124 the latest copy of that register. */
12125 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
12126 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
12127 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
12129 next_note = XEXP (note, 1);
12130 switch (REG_NOTE_KIND (note))
12132 case REG_BR_PROB:
12133 case REG_BR_PRED:
12134 case REG_EXEC_COUNT:
12135 /* Doesn't matter much where we put this, as long as it's somewhere.
12136 It is preferable to keep these notes on branches, which is most
12137 likely to be i3. */
12138 place = i3;
12139 break;
12141 case REG_VTABLE_REF:
12142 /* ??? Should remain with *a particular* memory load. Given the
12143 nature of vtable data, the last insn seems relatively safe. */
12144 place = i3;
12145 break;
12147 case REG_NON_LOCAL_GOTO:
12148 if (GET_CODE (i3) == JUMP_INSN)
12149 place = i3;
12150 else if (i2 && GET_CODE (i2) == JUMP_INSN)
12151 place = i2;
12152 else
12153 abort ();
12154 break;
12156 case REG_EH_REGION:
12157 /* These notes must remain with the call or trapping instruction. */
12158 if (GET_CODE (i3) == CALL_INSN)
12159 place = i3;
12160 else if (i2 && GET_CODE (i2) == CALL_INSN)
12161 place = i2;
12162 else if (flag_non_call_exceptions)
12164 if (may_trap_p (i3))
12165 place = i3;
12166 else if (i2 && may_trap_p (i2))
12167 place = i2;
12168 /* ??? Otherwise assume we've combined things such that we
12169 can now prove that the instructions can't trap. Drop the
12170 note in this case. */
12172 else
12173 abort ();
12174 break;
12176 case REG_NORETURN:
12177 case REG_SETJMP:
12178 /* These notes must remain with the call. It should not be
12179 possible for both I2 and I3 to be a call. */
12180 if (GET_CODE (i3) == CALL_INSN)
12181 place = i3;
12182 else if (i2 && GET_CODE (i2) == CALL_INSN)
12183 place = i2;
12184 else
12185 abort ();
12186 break;
12188 case REG_UNUSED:
12189 /* Any clobbers for i3 may still exist, and so we must process
12190 REG_UNUSED notes from that insn.
12192 Any clobbers from i2 or i1 can only exist if they were added by
12193 recog_for_combine. In that case, recog_for_combine created the
12194 necessary REG_UNUSED notes. Trying to keep any original
12195 REG_UNUSED notes from these insns can cause incorrect output
12196 if it is for the same register as the original i3 dest.
12197 In that case, we will notice that the register is set in i3,
12198 and then add a REG_UNUSED note for the destination of i3, which
12199 is wrong. However, it is possible to have REG_UNUSED notes from
12200 i2 or i1 for register which were both used and clobbered, so
12201 we keep notes from i2 or i1 if they will turn into REG_DEAD
12202 notes. */
12204 /* If this register is set or clobbered in I3, put the note there
12205 unless there is one already. */
12206 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12208 if (from_insn != i3)
12209 break;
12211 if (! (GET_CODE (XEXP (note, 0)) == REG
12212 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12213 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12214 place = i3;
12216 /* Otherwise, if this register is used by I3, then this register
12217 now dies here, so we must put a REG_DEAD note here unless there
12218 is one already. */
12219 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12220 && ! (GET_CODE (XEXP (note, 0)) == REG
12221 ? find_regno_note (i3, REG_DEAD,
12222 REGNO (XEXP (note, 0)))
12223 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12225 PUT_REG_NOTE_KIND (note, REG_DEAD);
12226 place = i3;
12228 break;
12230 case REG_EQUAL:
12231 case REG_EQUIV:
12232 case REG_NOALIAS:
12233 /* These notes say something about results of an insn. We can
12234 only support them if they used to be on I3 in which case they
12235 remain on I3. Otherwise they are ignored.
12237 If the note refers to an expression that is not a constant, we
12238 must also ignore the note since we cannot tell whether the
12239 equivalence is still true. It might be possible to do
12240 slightly better than this (we only have a problem if I2DEST
12241 or I1DEST is present in the expression), but it doesn't
12242 seem worth the trouble. */
12244 if (from_insn == i3
12245 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12246 place = i3;
12247 break;
12249 case REG_INC:
12250 case REG_NO_CONFLICT:
12251 /* These notes say something about how a register is used. They must
12252 be present on any use of the register in I2 or I3. */
12253 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12254 place = i3;
12256 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12258 if (place)
12259 place2 = i2;
12260 else
12261 place = i2;
12263 break;
12265 case REG_LABEL:
12266 /* This can show up in several ways -- either directly in the
12267 pattern, or hidden off in the constant pool with (or without?)
12268 a REG_EQUAL note. */
12269 /* ??? Ignore the without-reg_equal-note problem for now. */
12270 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12271 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12272 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12273 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12274 place = i3;
12276 if (i2
12277 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12278 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12279 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12280 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12282 if (place)
12283 place2 = i2;
12284 else
12285 place = i2;
12288 /* Don't attach REG_LABEL note to a JUMP_INSN which has
12289 JUMP_LABEL already. Instead, decrement LABEL_NUSES. */
12290 if (place && GET_CODE (place) == JUMP_INSN && JUMP_LABEL (place))
12292 if (JUMP_LABEL (place) != XEXP (note, 0))
12293 abort ();
12294 if (GET_CODE (JUMP_LABEL (place)) == CODE_LABEL)
12295 LABEL_NUSES (JUMP_LABEL (place))--;
12296 place = 0;
12298 if (place2 && GET_CODE (place2) == JUMP_INSN && JUMP_LABEL (place2))
12300 if (JUMP_LABEL (place2) != XEXP (note, 0))
12301 abort ();
12302 if (GET_CODE (JUMP_LABEL (place2)) == CODE_LABEL)
12303 LABEL_NUSES (JUMP_LABEL (place2))--;
12304 place2 = 0;
12306 break;
12308 case REG_NONNEG:
12309 case REG_WAS_0:
12310 /* These notes say something about the value of a register prior
12311 to the execution of an insn. It is too much trouble to see
12312 if the note is still correct in all situations. It is better
12313 to simply delete it. */
12314 break;
12316 case REG_RETVAL:
12317 /* If the insn previously containing this note still exists,
12318 put it back where it was. Otherwise move it to the previous
12319 insn. Adjust the corresponding REG_LIBCALL note. */
12320 if (GET_CODE (from_insn) != NOTE)
12321 place = from_insn;
12322 else
12324 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12325 place = prev_real_insn (from_insn);
12326 if (tem && place)
12327 XEXP (tem, 0) = place;
12328 /* If we're deleting the last remaining instruction of a
12329 libcall sequence, don't add the notes. */
12330 else if (XEXP (note, 0) == from_insn)
12331 tem = place = 0;
12333 break;
12335 case REG_LIBCALL:
12336 /* This is handled similarly to REG_RETVAL. */
12337 if (GET_CODE (from_insn) != NOTE)
12338 place = from_insn;
12339 else
12341 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12342 place = next_real_insn (from_insn);
12343 if (tem && place)
12344 XEXP (tem, 0) = place;
12345 /* If we're deleting the last remaining instruction of a
12346 libcall sequence, don't add the notes. */
12347 else if (XEXP (note, 0) == from_insn)
12348 tem = place = 0;
12350 break;
12352 case REG_DEAD:
12353 /* If the register is used as an input in I3, it dies there.
12354 Similarly for I2, if it is non-zero and adjacent to I3.
12356 If the register is not used as an input in either I3 or I2
12357 and it is not one of the registers we were supposed to eliminate,
12358 there are two possibilities. We might have a non-adjacent I2
12359 or we might have somehow eliminated an additional register
12360 from a computation. For example, we might have had A & B where
12361 we discover that B will always be zero. In this case we will
12362 eliminate the reference to A.
12364 In both cases, we must search to see if we can find a previous
12365 use of A and put the death note there. */
12367 if (from_insn
12368 && GET_CODE (from_insn) == CALL_INSN
12369 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12370 place = from_insn;
12371 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12372 place = i3;
12373 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12374 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12375 place = i2;
12377 if (rtx_equal_p (XEXP (note, 0), elim_i2)
12378 || rtx_equal_p (XEXP (note, 0), elim_i1))
12379 break;
12381 if (place == 0)
12383 basic_block bb = this_basic_block;
12385 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12387 if (! INSN_P (tem))
12389 if (tem == bb->head)
12390 break;
12391 continue;
12394 /* If the register is being set at TEM, see if that is all
12395 TEM is doing. If so, delete TEM. Otherwise, make this
12396 into a REG_UNUSED note instead. */
12397 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
12399 rtx set = single_set (tem);
12400 rtx inner_dest = 0;
12401 #ifdef HAVE_cc0
12402 rtx cc0_setter = NULL_RTX;
12403 #endif
12405 if (set != 0)
12406 for (inner_dest = SET_DEST (set);
12407 (GET_CODE (inner_dest) == STRICT_LOW_PART
12408 || GET_CODE (inner_dest) == SUBREG
12409 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12410 inner_dest = XEXP (inner_dest, 0))
12413 /* Verify that it was the set, and not a clobber that
12414 modified the register.
12416 CC0 targets must be careful to maintain setter/user
12417 pairs. If we cannot delete the setter due to side
12418 effects, mark the user with an UNUSED note instead
12419 of deleting it. */
12421 if (set != 0 && ! side_effects_p (SET_SRC (set))
12422 && rtx_equal_p (XEXP (note, 0), inner_dest)
12423 #ifdef HAVE_cc0
12424 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12425 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12426 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12427 #endif
12430 /* Move the notes and links of TEM elsewhere.
12431 This might delete other dead insns recursively.
12432 First set the pattern to something that won't use
12433 any register. */
12435 PATTERN (tem) = pc_rtx;
12437 distribute_notes (REG_NOTES (tem), tem, tem,
12438 NULL_RTX, NULL_RTX, NULL_RTX);
12439 distribute_links (LOG_LINKS (tem));
12441 PUT_CODE (tem, NOTE);
12442 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
12443 NOTE_SOURCE_FILE (tem) = 0;
12445 #ifdef HAVE_cc0
12446 /* Delete the setter too. */
12447 if (cc0_setter)
12449 PATTERN (cc0_setter) = pc_rtx;
12451 distribute_notes (REG_NOTES (cc0_setter),
12452 cc0_setter, cc0_setter,
12453 NULL_RTX, NULL_RTX, NULL_RTX);
12454 distribute_links (LOG_LINKS (cc0_setter));
12456 PUT_CODE (cc0_setter, NOTE);
12457 NOTE_LINE_NUMBER (cc0_setter)
12458 = NOTE_INSN_DELETED;
12459 NOTE_SOURCE_FILE (cc0_setter) = 0;
12461 #endif
12463 /* If the register is both set and used here, put the
12464 REG_DEAD note here, but place a REG_UNUSED note
12465 here too unless there already is one. */
12466 else if (reg_referenced_p (XEXP (note, 0),
12467 PATTERN (tem)))
12469 place = tem;
12471 if (! find_regno_note (tem, REG_UNUSED,
12472 REGNO (XEXP (note, 0))))
12473 REG_NOTES (tem)
12474 = gen_rtx_EXPR_LIST (REG_UNUSED, XEXP (note, 0),
12475 REG_NOTES (tem));
12477 else
12479 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12481 /* If there isn't already a REG_UNUSED note, put one
12482 here. */
12483 if (! find_regno_note (tem, REG_UNUSED,
12484 REGNO (XEXP (note, 0))))
12485 place = tem;
12486 break;
12489 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12490 || (GET_CODE (tem) == CALL_INSN
12491 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12493 place = tem;
12495 /* If we are doing a 3->2 combination, and we have a
12496 register which formerly died in i3 and was not used
12497 by i2, which now no longer dies in i3 and is used in
12498 i2 but does not die in i2, and place is between i2
12499 and i3, then we may need to move a link from place to
12500 i2. */
12501 if (i2 && INSN_UID (place) <= max_uid_cuid
12502 && INSN_CUID (place) > INSN_CUID (i2)
12503 && from_insn
12504 && INSN_CUID (from_insn) > INSN_CUID (i2)
12505 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12507 rtx links = LOG_LINKS (place);
12508 LOG_LINKS (place) = 0;
12509 distribute_links (links);
12511 break;
12514 if (tem == bb->head)
12515 break;
12518 /* We haven't found an insn for the death note and it
12519 is still a REG_DEAD note, but we have hit the beginning
12520 of the block. If the existing life info says the reg
12521 was dead, there's nothing left to do. Otherwise, we'll
12522 need to do a global life update after combine. */
12523 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12524 && REGNO_REG_SET_P (bb->global_live_at_start,
12525 REGNO (XEXP (note, 0))))
12527 SET_BIT (refresh_blocks, this_basic_block->index);
12528 need_refresh = 1;
12532 /* If the register is set or already dead at PLACE, we needn't do
12533 anything with this note if it is still a REG_DEAD note.
12534 We can here if it is set at all, not if is it totally replace,
12535 which is what `dead_or_set_p' checks, so also check for it being
12536 set partially. */
12538 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12540 unsigned int regno = REGNO (XEXP (note, 0));
12542 /* Similarly, if the instruction on which we want to place
12543 the note is a noop, we'll need do a global live update
12544 after we remove them in delete_noop_moves. */
12545 if (noop_move_p (place))
12547 SET_BIT (refresh_blocks, this_basic_block->index);
12548 need_refresh = 1;
12551 if (dead_or_set_p (place, XEXP (note, 0))
12552 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12554 /* Unless the register previously died in PLACE, clear
12555 reg_last_death. [I no longer understand why this is
12556 being done.] */
12557 if (reg_last_death[regno] != place)
12558 reg_last_death[regno] = 0;
12559 place = 0;
12561 else
12562 reg_last_death[regno] = place;
12564 /* If this is a death note for a hard reg that is occupying
12565 multiple registers, ensure that we are still using all
12566 parts of the object. If we find a piece of the object
12567 that is unused, we must arrange for an appropriate REG_DEAD
12568 note to be added for it. However, we can't just emit a USE
12569 and tag the note to it, since the register might actually
12570 be dead; so we recourse, and the recursive call then finds
12571 the previous insn that used this register. */
12573 if (place && regno < FIRST_PSEUDO_REGISTER
12574 && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
12576 unsigned int endregno
12577 = regno + HARD_REGNO_NREGS (regno,
12578 GET_MODE (XEXP (note, 0)));
12579 int all_used = 1;
12580 unsigned int i;
12582 for (i = regno; i < endregno; i++)
12583 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12584 && ! find_regno_fusage (place, USE, i))
12585 || dead_or_set_regno_p (place, i))
12586 all_used = 0;
12588 if (! all_used)
12590 /* Put only REG_DEAD notes for pieces that are
12591 not already dead or set. */
12593 for (i = regno; i < endregno;
12594 i += HARD_REGNO_NREGS (i, reg_raw_mode[i]))
12596 rtx piece = gen_rtx_REG (reg_raw_mode[i], i);
12597 basic_block bb = this_basic_block;
12599 if (! dead_or_set_p (place, piece)
12600 && ! reg_bitfield_target_p (piece,
12601 PATTERN (place)))
12603 rtx new_note
12604 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12606 distribute_notes (new_note, place, place,
12607 NULL_RTX, NULL_RTX, NULL_RTX);
12609 else if (! refers_to_regno_p (i, i + 1,
12610 PATTERN (place), 0)
12611 && ! find_regno_fusage (place, USE, i))
12612 for (tem = PREV_INSN (place); ;
12613 tem = PREV_INSN (tem))
12615 if (! INSN_P (tem))
12617 if (tem == bb->head)
12619 SET_BIT (refresh_blocks,
12620 this_basic_block->index);
12621 need_refresh = 1;
12622 break;
12624 continue;
12626 if (dead_or_set_p (tem, piece)
12627 || reg_bitfield_target_p (piece,
12628 PATTERN (tem)))
12630 REG_NOTES (tem)
12631 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12632 REG_NOTES (tem));
12633 break;
12639 place = 0;
12643 break;
12645 default:
12646 /* Any other notes should not be present at this point in the
12647 compilation. */
12648 abort ();
12651 if (place)
12653 XEXP (note, 1) = REG_NOTES (place);
12654 REG_NOTES (place) = note;
12656 else if ((REG_NOTE_KIND (note) == REG_DEAD
12657 || REG_NOTE_KIND (note) == REG_UNUSED)
12658 && GET_CODE (XEXP (note, 0)) == REG)
12659 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12661 if (place2)
12663 if ((REG_NOTE_KIND (note) == REG_DEAD
12664 || REG_NOTE_KIND (note) == REG_UNUSED)
12665 && GET_CODE (XEXP (note, 0)) == REG)
12666 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12668 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12669 REG_NOTE_KIND (note),
12670 XEXP (note, 0),
12671 REG_NOTES (place2));
12676 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12677 I3, I2, and I1 to new locations. This is also called in one case to
12678 add a link pointing at I3 when I3's destination is changed. */
12680 static void
12681 distribute_links (links)
12682 rtx links;
12684 rtx link, next_link;
12686 for (link = links; link; link = next_link)
12688 rtx place = 0;
12689 rtx insn;
12690 rtx set, reg;
12692 next_link = XEXP (link, 1);
12694 /* If the insn that this link points to is a NOTE or isn't a single
12695 set, ignore it. In the latter case, it isn't clear what we
12696 can do other than ignore the link, since we can't tell which
12697 register it was for. Such links wouldn't be used by combine
12698 anyway.
12700 It is not possible for the destination of the target of the link to
12701 have been changed by combine. The only potential of this is if we
12702 replace I3, I2, and I1 by I3 and I2. But in that case the
12703 destination of I2 also remains unchanged. */
12705 if (GET_CODE (XEXP (link, 0)) == NOTE
12706 || (set = single_set (XEXP (link, 0))) == 0)
12707 continue;
12709 reg = SET_DEST (set);
12710 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12711 || GET_CODE (reg) == SIGN_EXTRACT
12712 || GET_CODE (reg) == STRICT_LOW_PART)
12713 reg = XEXP (reg, 0);
12715 /* A LOG_LINK is defined as being placed on the first insn that uses
12716 a register and points to the insn that sets the register. Start
12717 searching at the next insn after the target of the link and stop
12718 when we reach a set of the register or the end of the basic block.
12720 Note that this correctly handles the link that used to point from
12721 I3 to I2. Also note that not much searching is typically done here
12722 since most links don't point very far away. */
12724 for (insn = NEXT_INSN (XEXP (link, 0));
12725 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12726 || this_basic_block->next_bb->head != insn));
12727 insn = NEXT_INSN (insn))
12728 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12730 if (reg_referenced_p (reg, PATTERN (insn)))
12731 place = insn;
12732 break;
12734 else if (GET_CODE (insn) == CALL_INSN
12735 && find_reg_fusage (insn, USE, reg))
12737 place = insn;
12738 break;
12741 /* If we found a place to put the link, place it there unless there
12742 is already a link to the same insn as LINK at that point. */
12744 if (place)
12746 rtx link2;
12748 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12749 if (XEXP (link2, 0) == XEXP (link, 0))
12750 break;
12752 if (link2 == 0)
12754 XEXP (link, 1) = LOG_LINKS (place);
12755 LOG_LINKS (place) = link;
12757 /* Set added_links_insn to the earliest insn we added a
12758 link to. */
12759 if (added_links_insn == 0
12760 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12761 added_links_insn = place;
12767 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12769 static int
12770 insn_cuid (insn)
12771 rtx insn;
12773 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12774 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
12775 insn = NEXT_INSN (insn);
12777 if (INSN_UID (insn) > max_uid_cuid)
12778 abort ();
12780 return INSN_CUID (insn);
12783 void
12784 dump_combine_stats (file)
12785 FILE *file;
12787 fnotice
12788 (file,
12789 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12790 combine_attempts, combine_merges, combine_extras, combine_successes);
12793 void
12794 dump_combine_total_stats (file)
12795 FILE *file;
12797 fnotice
12798 (file,
12799 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12800 total_attempts, total_merges, total_extras, total_successes);