* gcc.dg/compat/struct-layout-1_generate.c (dg_options): New. Moved
[official-gcc.git] / gcc / sel-sched-ir.c
blob84a2725b8eb378b0887b76b6300ad7613b633556
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006, 2007, 2008 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "toplev.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "insn-attr.h"
33 #include "except.h"
34 #include "toplev.h"
35 #include "recog.h"
36 #include "params.h"
37 #include "target.h"
38 #include "timevar.h"
39 #include "tree-pass.h"
40 #include "sched-int.h"
41 #include "ggc.h"
42 #include "tree.h"
43 #include "vec.h"
44 #include "langhooks.h"
45 #include "rtlhooks-def.h"
47 #ifdef INSN_SCHEDULING
48 #include "sel-sched-ir.h"
49 /* We don't have to use it except for sel_print_insn. */
50 #include "sel-sched-dump.h"
52 /* A vector holding bb info for whole scheduling pass. */
53 VEC(sel_global_bb_info_def, heap) *sel_global_bb_info = NULL;
55 /* A vector holding bb info. */
56 VEC(sel_region_bb_info_def, heap) *sel_region_bb_info = NULL;
58 /* A pool for allocating all lists. */
59 alloc_pool sched_lists_pool;
61 /* This contains information about successors for compute_av_set. */
62 struct succs_info current_succs;
64 /* Data structure to describe interaction with the generic scheduler utils. */
65 static struct common_sched_info_def sel_common_sched_info;
67 /* The loop nest being pipelined. */
68 struct loop *current_loop_nest;
70 /* LOOP_NESTS is a vector containing the corresponding loop nest for
71 each region. */
72 static VEC(loop_p, heap) *loop_nests = NULL;
74 /* Saves blocks already in loop regions, indexed by bb->index. */
75 static sbitmap bbs_in_loop_rgns = NULL;
77 /* CFG hooks that are saved before changing create_basic_block hook. */
78 static struct cfg_hooks orig_cfg_hooks;
81 /* Array containing reverse topological index of function basic blocks,
82 indexed by BB->INDEX. */
83 static int *rev_top_order_index = NULL;
85 /* Length of the above array. */
86 static int rev_top_order_index_len = -1;
88 /* A regset pool structure. */
89 static struct
91 /* The stack to which regsets are returned. */
92 regset *v;
94 /* Its pointer. */
95 int n;
97 /* Its size. */
98 int s;
100 /* In VV we save all generated regsets so that, when destructing the
101 pool, we can compare it with V and check that every regset was returned
102 back to pool. */
103 regset *vv;
105 /* The pointer of VV stack. */
106 int nn;
108 /* Its size. */
109 int ss;
111 /* The difference between allocated and returned regsets. */
112 int diff;
113 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
115 /* This represents the nop pool. */
116 static struct
118 /* The vector which holds previously emitted nops. */
119 insn_t *v;
121 /* Its pointer. */
122 int n;
124 /* Its size. */
125 int s;
126 } nop_pool = { NULL, 0, 0 };
128 /* The pool for basic block notes. */
129 static rtx_vec_t bb_note_pool;
131 /* A NOP pattern used to emit placeholder insns. */
132 rtx nop_pattern = NULL_RTX;
133 /* A special instruction that resides in EXIT_BLOCK.
134 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
135 rtx exit_insn = NULL_RTX;
137 /* TRUE if while scheduling current region, which is loop, its preheader
138 was removed. */
139 bool preheader_removed = false;
142 /* Forward static declarations. */
143 static void fence_clear (fence_t);
145 static void deps_init_id (idata_t, insn_t, bool);
146 static void init_id_from_df (idata_t, insn_t, bool);
147 static expr_t set_insn_init (expr_t, vinsn_t, int);
149 static void cfg_preds (basic_block, insn_t **, int *);
150 static void prepare_insn_expr (insn_t, int);
151 static void free_history_vect (VEC (expr_history_def, heap) **);
153 static void move_bb_info (basic_block, basic_block);
154 static void remove_empty_bb (basic_block, bool);
155 static void sel_remove_loop_preheader (void);
157 static bool insn_is_the_only_one_in_bb_p (insn_t);
158 static void create_initial_data_sets (basic_block);
160 static void invalidate_av_set (basic_block);
161 static void extend_insn_data (void);
162 static void sel_init_new_insn (insn_t, int);
163 static void finish_insns (void);
165 /* Various list functions. */
167 /* Copy an instruction list L. */
168 ilist_t
169 ilist_copy (ilist_t l)
171 ilist_t head = NULL, *tailp = &head;
173 while (l)
175 ilist_add (tailp, ILIST_INSN (l));
176 tailp = &ILIST_NEXT (*tailp);
177 l = ILIST_NEXT (l);
180 return head;
183 /* Invert an instruction list L. */
184 ilist_t
185 ilist_invert (ilist_t l)
187 ilist_t res = NULL;
189 while (l)
191 ilist_add (&res, ILIST_INSN (l));
192 l = ILIST_NEXT (l);
195 return res;
198 /* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
199 void
200 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
202 bnd_t bnd;
204 _list_add (lp);
205 bnd = BLIST_BND (*lp);
207 BND_TO (bnd) = to;
208 BND_PTR (bnd) = ptr;
209 BND_AV (bnd) = NULL;
210 BND_AV1 (bnd) = NULL;
211 BND_DC (bnd) = dc;
214 /* Remove the list note pointed to by LP. */
215 void
216 blist_remove (blist_t *lp)
218 bnd_t b = BLIST_BND (*lp);
220 av_set_clear (&BND_AV (b));
221 av_set_clear (&BND_AV1 (b));
222 ilist_clear (&BND_PTR (b));
224 _list_remove (lp);
227 /* Init a fence tail L. */
228 void
229 flist_tail_init (flist_tail_t l)
231 FLIST_TAIL_HEAD (l) = NULL;
232 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
235 /* Try to find fence corresponding to INSN in L. */
236 fence_t
237 flist_lookup (flist_t l, insn_t insn)
239 while (l)
241 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
242 return FLIST_FENCE (l);
244 l = FLIST_NEXT (l);
247 return NULL;
250 /* Init the fields of F before running fill_insns. */
251 static void
252 init_fence_for_scheduling (fence_t f)
254 FENCE_BNDS (f) = NULL;
255 FENCE_PROCESSED_P (f) = false;
256 FENCE_SCHEDULED_P (f) = false;
259 /* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
260 static void
261 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
262 insn_t last_scheduled_insn, VEC(rtx,gc) *executing_insns,
263 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
264 int cycle, int cycle_issued_insns,
265 bool starts_cycle_p, bool after_stall_p)
267 fence_t f;
269 _list_add (lp);
270 f = FLIST_FENCE (*lp);
272 FENCE_INSN (f) = insn;
274 gcc_assert (state != NULL);
275 FENCE_STATE (f) = state;
277 FENCE_CYCLE (f) = cycle;
278 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
279 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
280 FENCE_AFTER_STALL_P (f) = after_stall_p;
282 gcc_assert (dc != NULL);
283 FENCE_DC (f) = dc;
285 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
286 FENCE_TC (f) = tc;
288 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
289 FENCE_EXECUTING_INSNS (f) = executing_insns;
290 FENCE_READY_TICKS (f) = ready_ticks;
291 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
292 FENCE_SCHED_NEXT (f) = sched_next;
294 init_fence_for_scheduling (f);
297 /* Remove the head node of the list pointed to by LP. */
298 static void
299 flist_remove (flist_t *lp)
301 if (FENCE_INSN (FLIST_FENCE (*lp)))
302 fence_clear (FLIST_FENCE (*lp));
303 _list_remove (lp);
306 /* Clear the fence list pointed to by LP. */
307 void
308 flist_clear (flist_t *lp)
310 while (*lp)
311 flist_remove (lp);
314 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
315 void
316 def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
318 def_t d;
320 _list_add (dl);
321 d = DEF_LIST_DEF (*dl);
323 d->orig_insn = original_insn;
324 d->crosses_call = crosses_call;
328 /* Functions to work with target contexts. */
330 /* Bulk target context. It is convenient for debugging purposes to ensure
331 that there are no uninitialized (null) target contexts. */
332 static tc_t bulk_tc = (tc_t) 1;
334 /* Target hooks wrappers. In the future we can provide some default
335 implementations for them. */
337 /* Allocate a store for the target context. */
338 static tc_t
339 alloc_target_context (void)
341 return (targetm.sched.alloc_sched_context
342 ? targetm.sched.alloc_sched_context () : bulk_tc);
345 /* Init target context TC.
346 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
347 Overwise, copy current backend context to TC. */
348 static void
349 init_target_context (tc_t tc, bool clean_p)
351 if (targetm.sched.init_sched_context)
352 targetm.sched.init_sched_context (tc, clean_p);
355 /* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
356 int init_target_context (). */
357 tc_t
358 create_target_context (bool clean_p)
360 tc_t tc = alloc_target_context ();
362 init_target_context (tc, clean_p);
363 return tc;
366 /* Copy TC to the current backend context. */
367 void
368 set_target_context (tc_t tc)
370 if (targetm.sched.set_sched_context)
371 targetm.sched.set_sched_context (tc);
374 /* TC is about to be destroyed. Free any internal data. */
375 static void
376 clear_target_context (tc_t tc)
378 if (targetm.sched.clear_sched_context)
379 targetm.sched.clear_sched_context (tc);
382 /* Clear and free it. */
383 static void
384 delete_target_context (tc_t tc)
386 clear_target_context (tc);
388 if (targetm.sched.free_sched_context)
389 targetm.sched.free_sched_context (tc);
392 /* Make a copy of FROM in TO.
393 NB: May be this should be a hook. */
394 static void
395 copy_target_context (tc_t to, tc_t from)
397 tc_t tmp = create_target_context (false);
399 set_target_context (from);
400 init_target_context (to, false);
402 set_target_context (tmp);
403 delete_target_context (tmp);
406 /* Create a copy of TC. */
407 static tc_t
408 create_copy_of_target_context (tc_t tc)
410 tc_t copy = alloc_target_context ();
412 copy_target_context (copy, tc);
414 return copy;
417 /* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
418 is the same as in init_target_context (). */
419 void
420 reset_target_context (tc_t tc, bool clean_p)
422 clear_target_context (tc);
423 init_target_context (tc, clean_p);
426 /* Functions to work with dependence contexts.
427 Dc (aka deps context, aka deps_t, aka struct deps *) is short for dependence
428 context. It accumulates information about processed insns to decide if
429 current insn is dependent on the processed ones. */
431 /* Make a copy of FROM in TO. */
432 static void
433 copy_deps_context (deps_t to, deps_t from)
435 init_deps (to);
436 deps_join (to, from);
439 /* Allocate store for dep context. */
440 static deps_t
441 alloc_deps_context (void)
443 return XNEW (struct deps);
446 /* Allocate and initialize dep context. */
447 static deps_t
448 create_deps_context (void)
450 deps_t dc = alloc_deps_context ();
452 init_deps (dc);
453 return dc;
456 /* Create a copy of FROM. */
457 static deps_t
458 create_copy_of_deps_context (deps_t from)
460 deps_t to = alloc_deps_context ();
462 copy_deps_context (to, from);
463 return to;
466 /* Clean up internal data of DC. */
467 static void
468 clear_deps_context (deps_t dc)
470 free_deps (dc);
473 /* Clear and free DC. */
474 static void
475 delete_deps_context (deps_t dc)
477 clear_deps_context (dc);
478 free (dc);
481 /* Clear and init DC. */
482 static void
483 reset_deps_context (deps_t dc)
485 clear_deps_context (dc);
486 init_deps (dc);
489 /* This structure describes the dependence analysis hooks for advancing
490 dependence context. */
491 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
493 NULL,
495 NULL, /* start_insn */
496 NULL, /* finish_insn */
497 NULL, /* start_lhs */
498 NULL, /* finish_lhs */
499 NULL, /* start_rhs */
500 NULL, /* finish_rhs */
501 haifa_note_reg_set,
502 haifa_note_reg_clobber,
503 haifa_note_reg_use,
504 NULL, /* note_mem_dep */
505 NULL, /* note_dep */
507 0, 0, 0
510 /* Process INSN and add its impact on DC. */
511 void
512 advance_deps_context (deps_t dc, insn_t insn)
514 sched_deps_info = &advance_deps_context_sched_deps_info;
515 deps_analyze_insn (dc, insn);
519 /* Functions to work with DFA states. */
521 /* Allocate store for a DFA state. */
522 static state_t
523 state_alloc (void)
525 return xmalloc (dfa_state_size);
528 /* Allocate and initialize DFA state. */
529 static state_t
530 state_create (void)
532 state_t state = state_alloc ();
534 state_reset (state);
535 advance_state (state);
536 return state;
539 /* Free DFA state. */
540 static void
541 state_free (state_t state)
543 free (state);
546 /* Make a copy of FROM in TO. */
547 static void
548 state_copy (state_t to, state_t from)
550 memcpy (to, from, dfa_state_size);
553 /* Create a copy of FROM. */
554 static state_t
555 state_create_copy (state_t from)
557 state_t to = state_alloc ();
559 state_copy (to, from);
560 return to;
564 /* Functions to work with fences. */
566 /* Clear the fence. */
567 static void
568 fence_clear (fence_t f)
570 state_t s = FENCE_STATE (f);
571 deps_t dc = FENCE_DC (f);
572 void *tc = FENCE_TC (f);
574 ilist_clear (&FENCE_BNDS (f));
576 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
577 || (s == NULL && dc == NULL && tc == NULL));
579 if (s != NULL)
580 free (s);
582 if (dc != NULL)
583 delete_deps_context (dc);
585 if (tc != NULL)
586 delete_target_context (tc);
587 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
588 free (FENCE_READY_TICKS (f));
589 FENCE_READY_TICKS (f) = NULL;
592 /* Init a list of fences with successors of OLD_FENCE. */
593 void
594 init_fences (insn_t old_fence)
596 insn_t succ;
597 succ_iterator si;
598 bool first = true;
599 int ready_ticks_size = get_max_uid () + 1;
601 FOR_EACH_SUCC_1 (succ, si, old_fence,
602 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
605 if (first)
606 first = false;
607 else
608 gcc_assert (flag_sel_sched_pipelining_outer_loops);
610 flist_add (&fences, succ,
611 state_create (),
612 create_deps_context () /* dc */,
613 create_target_context (true) /* tc */,
614 NULL_RTX /* last_scheduled_insn */,
615 NULL, /* executing_insns */
616 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
617 ready_ticks_size,
618 NULL_RTX /* sched_next */,
619 1 /* cycle */, 0 /* cycle_issued_insns */,
620 1 /* starts_cycle_p */, 0 /* after_stall_p */);
624 /* Merges two fences (filling fields of fence F with resulting values) by
625 following rules: 1) state, target context and last scheduled insn are
626 propagated from fallthrough edge if it is available;
627 2) deps context and cycle is propagated from more probable edge;
628 3) all other fields are set to corresponding constant values.
630 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
631 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE and AFTER_STALL_P
632 are the corresponding fields of the second fence. */
633 static void
634 merge_fences (fence_t f, insn_t insn,
635 state_t state, deps_t dc, void *tc,
636 rtx last_scheduled_insn, VEC(rtx, gc) *executing_insns,
637 int *ready_ticks, int ready_ticks_size,
638 rtx sched_next, int cycle, bool after_stall_p)
640 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
642 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
643 && !sched_next && !FENCE_SCHED_NEXT (f));
645 /* Check if we can decide which path fences came.
646 If we can't (or don't want to) - reset all. */
647 if (last_scheduled_insn == NULL
648 || last_scheduled_insn_old == NULL
649 /* This is a case when INSN is reachable on several paths from
650 one insn (this can happen when pipelining of outer loops is on and
651 there are two edges: one going around of inner loop and the other -
652 right through it; in such case just reset everything). */
653 || last_scheduled_insn == last_scheduled_insn_old)
655 state_reset (FENCE_STATE (f));
656 state_free (state);
658 reset_deps_context (FENCE_DC (f));
659 delete_deps_context (dc);
661 reset_target_context (FENCE_TC (f), true);
662 delete_target_context (tc);
664 if (cycle > FENCE_CYCLE (f))
665 FENCE_CYCLE (f) = cycle;
667 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
668 VEC_free (rtx, gc, executing_insns);
669 free (ready_ticks);
670 if (FENCE_EXECUTING_INSNS (f))
671 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
672 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
673 if (FENCE_READY_TICKS (f))
674 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
676 else
678 edge edge_old = NULL, edge_new = NULL;
679 edge candidate;
680 succ_iterator si;
681 insn_t succ;
683 /* Find fallthrough edge. */
684 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
685 candidate = find_fallthru_edge (BLOCK_FOR_INSN (insn)->prev_bb);
687 if (!candidate
688 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
689 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
691 /* No fallthrough edge leading to basic block of INSN. */
692 state_reset (FENCE_STATE (f));
693 state_free (state);
695 reset_target_context (FENCE_TC (f), true);
696 delete_target_context (tc);
698 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
700 else
701 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
703 /* Would be weird if same insn is successor of several fallthrough
704 edges. */
705 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
706 != BLOCK_FOR_INSN (last_scheduled_insn_old));
708 state_free (FENCE_STATE (f));
709 FENCE_STATE (f) = state;
711 delete_target_context (FENCE_TC (f));
712 FENCE_TC (f) = tc;
714 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
716 else
718 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
719 state_free (state);
720 delete_target_context (tc);
722 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
723 != BLOCK_FOR_INSN (last_scheduled_insn));
726 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
727 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
728 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
730 if (succ == insn)
732 /* No same successor allowed from several edges. */
733 gcc_assert (!edge_old);
734 edge_old = si.e1;
737 /* Find edge of second predecessor (last_scheduled_insn->insn). */
738 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
739 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
741 if (succ == insn)
743 /* No same successor allowed from several edges. */
744 gcc_assert (!edge_new);
745 edge_new = si.e1;
749 /* Check if we can choose most probable predecessor. */
750 if (edge_old == NULL || edge_new == NULL)
752 reset_deps_context (FENCE_DC (f));
753 delete_deps_context (dc);
754 VEC_free (rtx, gc, executing_insns);
755 free (ready_ticks);
757 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
758 if (FENCE_EXECUTING_INSNS (f))
759 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
760 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
761 if (FENCE_READY_TICKS (f))
762 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
764 else
765 if (edge_new->probability > edge_old->probability)
767 delete_deps_context (FENCE_DC (f));
768 FENCE_DC (f) = dc;
769 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
770 FENCE_EXECUTING_INSNS (f) = executing_insns;
771 free (FENCE_READY_TICKS (f));
772 FENCE_READY_TICKS (f) = ready_ticks;
773 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
774 FENCE_CYCLE (f) = cycle;
776 else
778 /* Leave DC and CYCLE untouched. */
779 delete_deps_context (dc);
780 VEC_free (rtx, gc, executing_insns);
781 free (ready_ticks);
785 /* Fill remaining invariant fields. */
786 if (after_stall_p)
787 FENCE_AFTER_STALL_P (f) = 1;
789 FENCE_ISSUED_INSNS (f) = 0;
790 FENCE_STARTS_CYCLE_P (f) = 1;
791 FENCE_SCHED_NEXT (f) = NULL;
794 /* Add a new fence to NEW_FENCES list, initializing it from all
795 other parameters. */
796 static void
797 add_to_fences (flist_tail_t new_fences, insn_t insn,
798 state_t state, deps_t dc, void *tc, rtx last_scheduled_insn,
799 VEC(rtx, gc) *executing_insns, int *ready_ticks,
800 int ready_ticks_size, rtx sched_next, int cycle,
801 int cycle_issued_insns, bool starts_cycle_p, bool after_stall_p)
803 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
805 if (! f)
807 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
808 last_scheduled_insn, executing_insns, ready_ticks,
809 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
810 starts_cycle_p, after_stall_p);
812 FLIST_TAIL_TAILP (new_fences)
813 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
815 else
817 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
818 executing_insns, ready_ticks, ready_ticks_size,
819 sched_next, cycle, after_stall_p);
823 /* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
824 void
825 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
827 fence_t f, old;
828 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
830 old = FLIST_FENCE (old_fences);
831 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
832 FENCE_INSN (FLIST_FENCE (old_fences)));
833 if (f)
835 merge_fences (f, old->insn, old->state, old->dc, old->tc,
836 old->last_scheduled_insn, old->executing_insns,
837 old->ready_ticks, old->ready_ticks_size,
838 old->sched_next, old->cycle,
839 old->after_stall_p);
841 else
843 _list_add (tailp);
844 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
845 *FLIST_FENCE (*tailp) = *old;
846 init_fence_for_scheduling (FLIST_FENCE (*tailp));
848 FENCE_INSN (old) = NULL;
851 /* Add a new fence to NEW_FENCES list and initialize most of its data
852 as a clean one. */
853 void
854 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
856 int ready_ticks_size = get_max_uid () + 1;
858 add_to_fences (new_fences,
859 succ, state_create (), create_deps_context (),
860 create_target_context (true),
861 NULL_RTX, NULL,
862 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
863 NULL_RTX, FENCE_CYCLE (fence) + 1,
864 0, 1, FENCE_AFTER_STALL_P (fence));
867 /* Add a new fence to NEW_FENCES list and initialize all of its data
868 from FENCE and SUCC. */
869 void
870 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
872 int * new_ready_ticks
873 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
875 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
876 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
877 add_to_fences (new_fences,
878 succ, state_create_copy (FENCE_STATE (fence)),
879 create_copy_of_deps_context (FENCE_DC (fence)),
880 create_copy_of_target_context (FENCE_TC (fence)),
881 FENCE_LAST_SCHEDULED_INSN (fence),
882 VEC_copy (rtx, gc, FENCE_EXECUTING_INSNS (fence)),
883 new_ready_ticks,
884 FENCE_READY_TICKS_SIZE (fence),
885 FENCE_SCHED_NEXT (fence),
886 FENCE_CYCLE (fence),
887 FENCE_ISSUED_INSNS (fence),
888 FENCE_STARTS_CYCLE_P (fence),
889 FENCE_AFTER_STALL_P (fence));
893 /* Functions to work with regset and nop pools. */
895 /* Returns the new regset from pool. It might have some of the bits set
896 from the previous usage. */
897 regset
898 get_regset_from_pool (void)
900 regset rs;
902 if (regset_pool.n != 0)
903 rs = regset_pool.v[--regset_pool.n];
904 else
905 /* We need to create the regset. */
907 rs = ALLOC_REG_SET (&reg_obstack);
909 if (regset_pool.nn == regset_pool.ss)
910 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
911 (regset_pool.ss = 2 * regset_pool.ss + 1));
912 regset_pool.vv[regset_pool.nn++] = rs;
915 regset_pool.diff++;
917 return rs;
920 /* Same as above, but returns the empty regset. */
921 regset
922 get_clear_regset_from_pool (void)
924 regset rs = get_regset_from_pool ();
926 CLEAR_REG_SET (rs);
927 return rs;
930 /* Return regset RS to the pool for future use. */
931 void
932 return_regset_to_pool (regset rs)
934 regset_pool.diff--;
936 if (regset_pool.n == regset_pool.s)
937 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
938 (regset_pool.s = 2 * regset_pool.s + 1));
939 regset_pool.v[regset_pool.n++] = rs;
942 #ifdef ENABLE_CHECKING
943 /* This is used as a qsort callback for sorting regset pool stacks.
944 X and XX are addresses of two regsets. They are never equal. */
945 static int
946 cmp_v_in_regset_pool (const void *x, const void *xx)
948 return *((const regset *) x) - *((const regset *) xx);
950 #endif
952 /* Free the regset pool possibly checking for memory leaks. */
953 void
954 free_regset_pool (void)
956 #ifdef ENABLE_CHECKING
958 regset *v = regset_pool.v;
959 int i = 0;
960 int n = regset_pool.n;
962 regset *vv = regset_pool.vv;
963 int ii = 0;
964 int nn = regset_pool.nn;
966 int diff = 0;
968 gcc_assert (n <= nn);
970 /* Sort both vectors so it will be possible to compare them. */
971 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
972 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
974 while (ii < nn)
976 if (v[i] == vv[ii])
977 i++;
978 else
979 /* VV[II] was lost. */
980 diff++;
982 ii++;
985 gcc_assert (diff == regset_pool.diff);
987 #endif
989 /* If not true - we have a memory leak. */
990 gcc_assert (regset_pool.diff == 0);
992 while (regset_pool.n)
994 --regset_pool.n;
995 FREE_REG_SET (regset_pool.v[regset_pool.n]);
998 free (regset_pool.v);
999 regset_pool.v = NULL;
1000 regset_pool.s = 0;
1002 free (regset_pool.vv);
1003 regset_pool.vv = NULL;
1004 regset_pool.nn = 0;
1005 regset_pool.ss = 0;
1007 regset_pool.diff = 0;
1011 /* Functions to work with nop pools. NOP insns are used as temporary
1012 placeholders of the insns being scheduled to allow correct update of
1013 the data sets. When update is finished, NOPs are deleted. */
1015 /* A vinsn that is used to represent a nop. This vinsn is shared among all
1016 nops sel-sched generates. */
1017 static vinsn_t nop_vinsn = NULL;
1019 /* Emit a nop before INSN, taking it from pool. */
1020 insn_t
1021 get_nop_from_pool (insn_t insn)
1023 insn_t nop;
1024 bool old_p = nop_pool.n != 0;
1025 int flags;
1027 if (old_p)
1028 nop = nop_pool.v[--nop_pool.n];
1029 else
1030 nop = nop_pattern;
1032 nop = emit_insn_before (nop, insn);
1034 if (old_p)
1035 flags = INSN_INIT_TODO_SSID;
1036 else
1037 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1039 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1040 sel_init_new_insn (nop, flags);
1042 return nop;
1045 /* Remove NOP from the instruction stream and return it to the pool. */
1046 void
1047 return_nop_to_pool (insn_t nop)
1049 gcc_assert (INSN_IN_STREAM_P (nop));
1050 sel_remove_insn (nop, false, true);
1052 if (nop_pool.n == nop_pool.s)
1053 nop_pool.v = XRESIZEVEC (rtx, nop_pool.v,
1054 (nop_pool.s = 2 * nop_pool.s + 1));
1055 nop_pool.v[nop_pool.n++] = nop;
1058 /* Free the nop pool. */
1059 void
1060 free_nop_pool (void)
1062 nop_pool.n = 0;
1063 nop_pool.s = 0;
1064 free (nop_pool.v);
1065 nop_pool.v = NULL;
1069 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1070 The callback is given two rtxes XX and YY and writes the new rtxes
1071 to NX and NY in case some needs to be skipped. */
1072 static int
1073 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1075 const_rtx x = *xx;
1076 const_rtx y = *yy;
1078 if (GET_CODE (x) == UNSPEC
1079 && (targetm.sched.skip_rtx_p == NULL
1080 || targetm.sched.skip_rtx_p (x)))
1082 *nx = XVECEXP (x, 0, 0);
1083 *ny = CONST_CAST_RTX (y);
1084 return 1;
1087 if (GET_CODE (y) == UNSPEC
1088 && (targetm.sched.skip_rtx_p == NULL
1089 || targetm.sched.skip_rtx_p (y)))
1091 *nx = CONST_CAST_RTX (x);
1092 *ny = XVECEXP (y, 0, 0);
1093 return 1;
1096 return 0;
1099 /* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
1100 to support ia64 speculation. When changes are needed, new rtx X and new mode
1101 NMODE are written, and the callback returns true. */
1102 static int
1103 hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1104 rtx *nx, enum machine_mode* nmode)
1106 if (GET_CODE (x) == UNSPEC
1107 && targetm.sched.skip_rtx_p
1108 && targetm.sched.skip_rtx_p (x))
1110 *nx = XVECEXP (x, 0 ,0);
1111 *nmode = 0;
1112 return 1;
1115 return 0;
1118 /* Returns LHS and RHS are ok to be scheduled separately. */
1119 static bool
1120 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1122 if (lhs == NULL || rhs == NULL)
1123 return false;
1125 /* Do not schedule CONST, CONST_INT and CONST_DOUBLE etc as rhs: no point
1126 to use reg, if const can be used. Moreover, scheduling const as rhs may
1127 lead to mode mismatch cause consts don't have modes but they could be
1128 merged from branches where the same const used in different modes. */
1129 if (CONSTANT_P (rhs))
1130 return false;
1132 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1133 if (COMPARISON_P (rhs))
1134 return false;
1136 /* Do not allow single REG to be an rhs. */
1137 if (REG_P (rhs))
1138 return false;
1140 /* See comment at find_used_regs_1 (*1) for explanation of this
1141 restriction. */
1142 /* FIXME: remove this later. */
1143 if (MEM_P (lhs))
1144 return false;
1146 /* This will filter all tricky things like ZERO_EXTRACT etc.
1147 For now we don't handle it. */
1148 if (!REG_P (lhs) && !MEM_P (lhs))
1149 return false;
1151 return true;
1154 /* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1155 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
1156 used e.g. for insns from recovery blocks. */
1157 static void
1158 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1160 hash_rtx_callback_function hrcf;
1161 int insn_class;
1163 VINSN_INSN_RTX (vi) = insn;
1164 VINSN_COUNT (vi) = 0;
1165 vi->cost = -1;
1167 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1168 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1169 else
1170 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1172 /* Hash vinsn depending on whether it is separable or not. */
1173 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1174 if (VINSN_SEPARABLE_P (vi))
1176 rtx rhs = VINSN_RHS (vi);
1178 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1179 NULL, NULL, false, hrcf);
1180 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1181 VOIDmode, NULL, NULL,
1182 false, hrcf);
1184 else
1186 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1187 NULL, NULL, false, hrcf);
1188 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1191 insn_class = haifa_classify_insn (insn);
1192 if (insn_class >= 2
1193 && (!targetm.sched.get_insn_spec_ds
1194 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1195 == 0)))
1196 VINSN_MAY_TRAP_P (vi) = true;
1197 else
1198 VINSN_MAY_TRAP_P (vi) = false;
1201 /* Indicate that VI has become the part of an rtx object. */
1202 void
1203 vinsn_attach (vinsn_t vi)
1205 /* Assert that VI is not pending for deletion. */
1206 gcc_assert (VINSN_INSN_RTX (vi));
1208 VINSN_COUNT (vi)++;
1211 /* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
1212 VINSN_TYPE (VI). */
1213 static vinsn_t
1214 vinsn_create (insn_t insn, bool force_unique_p)
1216 vinsn_t vi = XCNEW (struct vinsn_def);
1218 vinsn_init (vi, insn, force_unique_p);
1219 return vi;
1222 /* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1223 the copy. */
1224 vinsn_t
1225 vinsn_copy (vinsn_t vi, bool reattach_p)
1227 rtx copy;
1228 bool unique = VINSN_UNIQUE_P (vi);
1229 vinsn_t new_vi;
1231 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1232 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1233 if (reattach_p)
1235 vinsn_detach (vi);
1236 vinsn_attach (new_vi);
1239 return new_vi;
1242 /* Delete the VI vinsn and free its data. */
1243 static void
1244 vinsn_delete (vinsn_t vi)
1246 gcc_assert (VINSN_COUNT (vi) == 0);
1248 return_regset_to_pool (VINSN_REG_SETS (vi));
1249 return_regset_to_pool (VINSN_REG_USES (vi));
1250 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1252 free (vi);
1255 /* Indicate that VI is no longer a part of some rtx object.
1256 Remove VI if it is no longer needed. */
1257 void
1258 vinsn_detach (vinsn_t vi)
1260 gcc_assert (VINSN_COUNT (vi) > 0);
1262 if (--VINSN_COUNT (vi) == 0)
1263 vinsn_delete (vi);
1266 /* Returns TRUE if VI is a branch. */
1267 bool
1268 vinsn_cond_branch_p (vinsn_t vi)
1270 insn_t insn;
1272 if (!VINSN_UNIQUE_P (vi))
1273 return false;
1275 insn = VINSN_INSN_RTX (vi);
1276 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1277 return false;
1279 return control_flow_insn_p (insn);
1282 /* Return latency of INSN. */
1283 static int
1284 sel_insn_rtx_cost (rtx insn)
1286 int cost;
1288 /* A USE insn, or something else we don't need to
1289 understand. We can't pass these directly to
1290 result_ready_cost or insn_default_latency because it will
1291 trigger a fatal error for unrecognizable insns. */
1292 if (recog_memoized (insn) < 0)
1293 cost = 0;
1294 else
1296 cost = insn_default_latency (insn);
1298 if (cost < 0)
1299 cost = 0;
1302 return cost;
1305 /* Return the cost of the VI.
1306 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1308 sel_vinsn_cost (vinsn_t vi)
1310 int cost = vi->cost;
1312 if (cost < 0)
1314 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1315 vi->cost = cost;
1318 return cost;
1322 /* Functions for insn emitting. */
1324 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1325 EXPR and SEQNO. */
1326 insn_t
1327 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1329 insn_t new_insn;
1331 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1333 new_insn = emit_insn_after (pattern, after);
1334 set_insn_init (expr, NULL, seqno);
1335 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1337 return new_insn;
1340 /* Force newly generated vinsns to be unique. */
1341 static bool init_insn_force_unique_p = false;
1343 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1344 initialize its data from EXPR and SEQNO. */
1345 insn_t
1346 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1347 insn_t after)
1349 insn_t insn;
1351 gcc_assert (!init_insn_force_unique_p);
1353 init_insn_force_unique_p = true;
1354 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1355 CANT_MOVE (insn) = 1;
1356 init_insn_force_unique_p = false;
1358 return insn;
1361 /* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
1362 take it as a new vinsn instead of EXPR's vinsn.
1363 We simplify insns later, after scheduling region in
1364 simplify_changed_insns. */
1365 insn_t
1366 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1367 insn_t after)
1369 expr_t emit_expr;
1370 insn_t insn;
1371 int flags;
1373 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1374 seqno);
1375 insn = EXPR_INSN_RTX (emit_expr);
1376 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1378 flags = INSN_INIT_TODO_SSID;
1379 if (INSN_LUID (insn) == 0)
1380 flags |= INSN_INIT_TODO_LUID;
1381 sel_init_new_insn (insn, flags);
1383 return insn;
1386 /* Move insn from EXPR after AFTER. */
1387 insn_t
1388 sel_move_insn (expr_t expr, int seqno, insn_t after)
1390 insn_t insn = EXPR_INSN_RTX (expr);
1391 basic_block bb = BLOCK_FOR_INSN (after);
1392 insn_t next = NEXT_INSN (after);
1394 /* Assert that in move_op we disconnected this insn properly. */
1395 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1396 PREV_INSN (insn) = after;
1397 NEXT_INSN (insn) = next;
1399 NEXT_INSN (after) = insn;
1400 PREV_INSN (next) = insn;
1402 /* Update links from insn to bb and vice versa. */
1403 df_insn_change_bb (insn, bb);
1404 if (BB_END (bb) == after)
1405 BB_END (bb) = insn;
1407 prepare_insn_expr (insn, seqno);
1408 return insn;
1412 /* Functions to work with right-hand sides. */
1414 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1415 VECT and return true when found. Use NEW_VINSN for comparison only when
1416 COMPARE_VINSNS is true. Write to INDP the index on which
1417 the search has stopped, such that inserting the new element at INDP will
1418 retain VECT's sort order. */
1419 static bool
1420 find_in_history_vect_1 (VEC(expr_history_def, heap) *vect,
1421 unsigned uid, vinsn_t new_vinsn,
1422 bool compare_vinsns, int *indp)
1424 expr_history_def *arr;
1425 int i, j, len = VEC_length (expr_history_def, vect);
1427 if (len == 0)
1429 *indp = 0;
1430 return false;
1433 arr = VEC_address (expr_history_def, vect);
1434 i = 0, j = len - 1;
1436 while (i <= j)
1438 unsigned auid = arr[i].uid;
1439 vinsn_t avinsn = arr[i].new_expr_vinsn;
1441 if (auid == uid
1442 /* When undoing transformation on a bookkeeping copy, the new vinsn
1443 may not be exactly equal to the one that is saved in the vector.
1444 This is because the insn whose copy we're checking was possibly
1445 substituted itself. */
1446 && (! compare_vinsns
1447 || vinsn_equal_p (avinsn, new_vinsn)))
1449 *indp = i;
1450 return true;
1452 else if (auid > uid)
1453 break;
1454 i++;
1457 *indp = i;
1458 return false;
1461 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1462 the position found or -1, if no such value is in vector.
1463 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1465 find_in_history_vect (VEC(expr_history_def, heap) *vect, rtx insn,
1466 vinsn_t new_vinsn, bool originators_p)
1468 int ind;
1470 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1471 false, &ind))
1472 return ind;
1474 if (INSN_ORIGINATORS (insn) && originators_p)
1476 unsigned uid;
1477 bitmap_iterator bi;
1479 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1480 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1481 return ind;
1484 return -1;
1487 /* Insert new element in a sorted history vector pointed to by PVECT,
1488 if it is not there already. The element is searched using
1489 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1490 the history of a transformation. */
1491 void
1492 insert_in_history_vect (VEC (expr_history_def, heap) **pvect,
1493 unsigned uid, enum local_trans_type type,
1494 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1495 ds_t spec_ds)
1497 VEC(expr_history_def, heap) *vect = *pvect;
1498 expr_history_def temp;
1499 bool res;
1500 int ind;
1502 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1504 if (res)
1506 expr_history_def *phist = VEC_index (expr_history_def, vect, ind);
1508 /* When merging, either old vinsns are the *same* or, if not, both
1509 old and new vinsns are different pointers. In the latter case,
1510 though, new vinsns should be equal. */
1511 gcc_assert (phist->old_expr_vinsn == old_expr_vinsn
1512 || (phist->new_expr_vinsn != new_expr_vinsn
1513 && (vinsn_equal_p
1514 (phist->old_expr_vinsn, old_expr_vinsn))));
1516 /* It is possible that speculation types of expressions that were
1517 propagated through different paths will be different here. In this
1518 case, merge the status to get the correct check later. */
1519 if (phist->spec_ds != spec_ds)
1520 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1521 return;
1524 temp.uid = uid;
1525 temp.old_expr_vinsn = old_expr_vinsn;
1526 temp.new_expr_vinsn = new_expr_vinsn;
1527 temp.spec_ds = spec_ds;
1528 temp.type = type;
1530 vinsn_attach (old_expr_vinsn);
1531 vinsn_attach (new_expr_vinsn);
1532 VEC_safe_insert (expr_history_def, heap, vect, ind, &temp);
1533 *pvect = vect;
1536 /* Free history vector PVECT. */
1537 static void
1538 free_history_vect (VEC (expr_history_def, heap) **pvect)
1540 unsigned i;
1541 expr_history_def *phist;
1543 if (! *pvect)
1544 return;
1546 for (i = 0;
1547 VEC_iterate (expr_history_def, *pvect, i, phist);
1548 i++)
1550 vinsn_detach (phist->old_expr_vinsn);
1551 vinsn_detach (phist->new_expr_vinsn);
1554 VEC_free (expr_history_def, heap, *pvect);
1555 *pvect = NULL;
1559 /* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1560 bool
1561 vinsn_equal_p (vinsn_t x, vinsn_t y)
1563 rtx_equal_p_callback_function repcf;
1565 if (x == y)
1566 return true;
1568 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1569 return false;
1571 if (VINSN_HASH (x) != VINSN_HASH (y))
1572 return false;
1574 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1575 if (VINSN_SEPARABLE_P (x))
1577 /* Compare RHSes of VINSNs. */
1578 gcc_assert (VINSN_RHS (x));
1579 gcc_assert (VINSN_RHS (y));
1581 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1584 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1588 /* Functions for working with expressions. */
1590 /* Initialize EXPR. */
1591 static void
1592 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1593 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1594 ds_t spec_to_check_ds, int orig_sched_cycle,
1595 VEC(expr_history_def, heap) *history, bool target_available,
1596 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1597 bool cant_move)
1599 vinsn_attach (vi);
1601 EXPR_VINSN (expr) = vi;
1602 EXPR_SPEC (expr) = spec;
1603 EXPR_USEFULNESS (expr) = use;
1604 EXPR_PRIORITY (expr) = priority;
1605 EXPR_PRIORITY_ADJ (expr) = 0;
1606 EXPR_SCHED_TIMES (expr) = sched_times;
1607 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1608 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1609 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1610 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1612 if (history)
1613 EXPR_HISTORY_OF_CHANGES (expr) = history;
1614 else
1615 EXPR_HISTORY_OF_CHANGES (expr) = NULL;
1617 EXPR_TARGET_AVAILABLE (expr) = target_available;
1618 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1619 EXPR_WAS_RENAMED (expr) = was_renamed;
1620 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1621 EXPR_CANT_MOVE (expr) = cant_move;
1624 /* Make a copy of the expr FROM into the expr TO. */
1625 void
1626 copy_expr (expr_t to, expr_t from)
1628 VEC(expr_history_def, heap) *temp = NULL;
1630 if (EXPR_HISTORY_OF_CHANGES (from))
1632 unsigned i;
1633 expr_history_def *phist;
1635 temp = VEC_copy (expr_history_def, heap, EXPR_HISTORY_OF_CHANGES (from));
1636 for (i = 0;
1637 VEC_iterate (expr_history_def, temp, i, phist);
1638 i++)
1640 vinsn_attach (phist->old_expr_vinsn);
1641 vinsn_attach (phist->new_expr_vinsn);
1645 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1646 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1647 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1648 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1649 EXPR_ORIG_SCHED_CYCLE (from), temp,
1650 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1651 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1652 EXPR_CANT_MOVE (from));
1655 /* Same, but the final expr will not ever be in av sets, so don't copy
1656 "uninteresting" data such as bitmap cache. */
1657 void
1658 copy_expr_onside (expr_t to, expr_t from)
1660 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1661 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1662 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0, NULL,
1663 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1664 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1665 EXPR_CANT_MOVE (from));
1668 /* Prepare the expr of INSN for scheduling. Used when moving insn and when
1669 initializing new insns. */
1670 static void
1671 prepare_insn_expr (insn_t insn, int seqno)
1673 expr_t expr = INSN_EXPR (insn);
1674 ds_t ds;
1676 INSN_SEQNO (insn) = seqno;
1677 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1678 EXPR_SPEC (expr) = 0;
1679 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1680 EXPR_WAS_SUBSTITUTED (expr) = 0;
1681 EXPR_WAS_RENAMED (expr) = 0;
1682 EXPR_TARGET_AVAILABLE (expr) = 1;
1683 INSN_LIVE_VALID_P (insn) = false;
1685 /* ??? If this expression is speculative, make its dependence
1686 as weak as possible. We can filter this expression later
1687 in process_spec_exprs, because we do not distinguish
1688 between the status we got during compute_av_set and the
1689 existing status. To be fixed. */
1690 ds = EXPR_SPEC_DONE_DS (expr);
1691 if (ds)
1692 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1694 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1697 /* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
1698 is non-null when expressions are merged from different successors at
1699 a split point. */
1700 static void
1701 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1703 if (EXPR_TARGET_AVAILABLE (to) < 0
1704 || EXPR_TARGET_AVAILABLE (from) < 0)
1705 EXPR_TARGET_AVAILABLE (to) = -1;
1706 else
1708 /* We try to detect the case when one of the expressions
1709 can only be reached through another one. In this case,
1710 we can do better. */
1711 if (split_point == NULL)
1713 int toind, fromind;
1715 toind = EXPR_ORIG_BB_INDEX (to);
1716 fromind = EXPR_ORIG_BB_INDEX (from);
1718 if (toind && toind == fromind)
1719 /* Do nothing -- everything is done in
1720 merge_with_other_exprs. */
1722 else
1723 EXPR_TARGET_AVAILABLE (to) = -1;
1725 else
1726 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1730 /* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
1731 is non-null when expressions are merged from different successors at
1732 a split point. */
1733 static void
1734 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1736 ds_t old_to_ds, old_from_ds;
1738 old_to_ds = EXPR_SPEC_DONE_DS (to);
1739 old_from_ds = EXPR_SPEC_DONE_DS (from);
1741 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1742 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1743 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1745 /* When merging e.g. control & data speculative exprs, or a control
1746 speculative with a control&data speculative one, we really have
1747 to change vinsn too. Also, when speculative status is changed,
1748 we also need to record this as a transformation in expr's history. */
1749 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1751 old_to_ds = ds_get_speculation_types (old_to_ds);
1752 old_from_ds = ds_get_speculation_types (old_from_ds);
1754 if (old_to_ds != old_from_ds)
1756 ds_t record_ds;
1758 /* When both expressions are speculative, we need to change
1759 the vinsn first. */
1760 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1762 int res;
1764 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1765 gcc_assert (res >= 0);
1768 if (split_point != NULL)
1770 /* Record the change with proper status. */
1771 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1772 record_ds &= ~(old_to_ds & SPECULATIVE);
1773 record_ds &= ~(old_from_ds & SPECULATIVE);
1775 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1776 INSN_UID (split_point), TRANS_SPECULATION,
1777 EXPR_VINSN (from), EXPR_VINSN (to),
1778 record_ds);
1785 /* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1786 this is done along different paths. */
1787 void
1788 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1790 int i;
1791 expr_history_def *phist;
1793 /* For now, we just set the spec of resulting expr to be minimum of the specs
1794 of merged exprs. */
1795 if (EXPR_SPEC (to) > EXPR_SPEC (from))
1796 EXPR_SPEC (to) = EXPR_SPEC (from);
1798 if (split_point)
1799 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1800 else
1801 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1802 EXPR_USEFULNESS (from));
1804 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1805 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1807 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1808 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1810 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1811 EXPR_ORIG_BB_INDEX (to) = 0;
1813 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1814 EXPR_ORIG_SCHED_CYCLE (from));
1816 /* We keep this vector sorted. */
1817 for (i = 0;
1818 VEC_iterate (expr_history_def, EXPR_HISTORY_OF_CHANGES (from),
1819 i, phist);
1820 i++)
1821 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1822 phist->uid, phist->type,
1823 phist->old_expr_vinsn, phist->new_expr_vinsn,
1824 phist->spec_ds);
1826 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1827 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1828 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1830 update_target_availability (to, from, split_point);
1831 update_speculative_bits (to, from, split_point);
1834 /* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
1835 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
1836 are merged from different successors at a split point. */
1837 void
1838 merge_expr (expr_t to, expr_t from, insn_t split_point)
1840 vinsn_t to_vi = EXPR_VINSN (to);
1841 vinsn_t from_vi = EXPR_VINSN (from);
1843 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1845 /* Make sure that speculative pattern is propagated into exprs that
1846 have non-speculative one. This will provide us with consistent
1847 speculative bits and speculative patterns inside expr. */
1848 if (EXPR_SPEC_DONE_DS (to) == 0
1849 && EXPR_SPEC_DONE_DS (from) != 0)
1850 change_vinsn_in_expr (to, EXPR_VINSN (from));
1852 merge_expr_data (to, from, split_point);
1853 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1856 /* Clear the information of this EXPR. */
1857 void
1858 clear_expr (expr_t expr)
1861 vinsn_detach (EXPR_VINSN (expr));
1862 EXPR_VINSN (expr) = NULL;
1864 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1867 /* For a given LV_SET, mark EXPR having unavailable target register. */
1868 static void
1869 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1871 if (EXPR_SEPARABLE_P (expr))
1873 if (REG_P (EXPR_LHS (expr))
1874 && bitmap_bit_p (lv_set, REGNO (EXPR_LHS (expr))))
1876 /* If it's an insn like r1 = use (r1, ...), and it exists in
1877 different forms in each of the av_sets being merged, we can't say
1878 whether original destination register is available or not.
1879 However, this still works if destination register is not used
1880 in the original expression: if the branch at which LV_SET we're
1881 looking here is not actually 'other branch' in sense that same
1882 expression is available through it (but it can't be determined
1883 at computation stage because of transformations on one of the
1884 branches), it still won't affect the availability.
1885 Liveness of a register somewhere on a code motion path means
1886 it's either read somewhere on a codemotion path, live on
1887 'other' branch, live at the point immediately following
1888 the original operation, or is read by the original operation.
1889 The latter case is filtered out in the condition below.
1890 It still doesn't cover the case when register is defined and used
1891 somewhere within the code motion path, and in this case we could
1892 miss a unifying code motion along both branches using a renamed
1893 register, but it won't affect a code correctness since upon
1894 an actual code motion a bookkeeping code would be generated. */
1895 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1896 REGNO (EXPR_LHS (expr))))
1897 EXPR_TARGET_AVAILABLE (expr) = -1;
1898 else
1899 EXPR_TARGET_AVAILABLE (expr) = false;
1902 else
1904 unsigned regno;
1905 reg_set_iterator rsi;
1907 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1908 0, regno, rsi)
1909 if (bitmap_bit_p (lv_set, regno))
1911 EXPR_TARGET_AVAILABLE (expr) = false;
1912 break;
1915 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1916 0, regno, rsi)
1917 if (bitmap_bit_p (lv_set, regno))
1919 EXPR_TARGET_AVAILABLE (expr) = false;
1920 break;
1925 /* Try to make EXPR speculative. Return 1 when EXPR's pattern
1926 or dependence status have changed, 2 when also the target register
1927 became unavailable, 0 if nothing had to be changed. */
1929 speculate_expr (expr_t expr, ds_t ds)
1931 int res;
1932 rtx orig_insn_rtx;
1933 rtx spec_pat;
1934 ds_t target_ds, current_ds;
1936 /* Obtain the status we need to put on EXPR. */
1937 target_ds = (ds & SPECULATIVE);
1938 current_ds = EXPR_SPEC_DONE_DS (expr);
1939 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1941 orig_insn_rtx = EXPR_INSN_RTX (expr);
1943 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1945 switch (res)
1947 case 0:
1948 EXPR_SPEC_DONE_DS (expr) = ds;
1949 return current_ds != ds ? 1 : 0;
1951 case 1:
1953 rtx spec_insn_rtx = create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1954 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1956 change_vinsn_in_expr (expr, spec_vinsn);
1957 EXPR_SPEC_DONE_DS (expr) = ds;
1958 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1960 /* Do not allow clobbering the address register of speculative
1961 insns. */
1962 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1963 expr_dest_regno (expr)))
1965 EXPR_TARGET_AVAILABLE (expr) = false;
1966 return 2;
1969 return 1;
1972 case -1:
1973 return -1;
1975 default:
1976 gcc_unreachable ();
1977 return -1;
1981 /* Return a destination register, if any, of EXPR. */
1983 expr_dest_reg (expr_t expr)
1985 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
1987 if (dest != NULL_RTX && REG_P (dest))
1988 return dest;
1990 return NULL_RTX;
1993 /* Returns the REGNO of the R's destination. */
1994 unsigned
1995 expr_dest_regno (expr_t expr)
1997 rtx dest = expr_dest_reg (expr);
1999 gcc_assert (dest != NULL_RTX);
2000 return REGNO (dest);
2003 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2004 AV_SET having unavailable target register. */
2005 void
2006 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2008 expr_t expr;
2009 av_set_iterator avi;
2011 FOR_EACH_EXPR (expr, avi, join_set)
2012 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2013 set_unavailable_target_for_expr (expr, lv_set);
2017 /* Av set functions. */
2019 /* Add a new element to av set SETP.
2020 Return the element added. */
2021 static av_set_t
2022 av_set_add_element (av_set_t *setp)
2024 /* Insert at the beginning of the list. */
2025 _list_add (setp);
2026 return *setp;
2029 /* Add EXPR to SETP. */
2030 void
2031 av_set_add (av_set_t *setp, expr_t expr)
2033 av_set_t elem;
2035 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2036 elem = av_set_add_element (setp);
2037 copy_expr (_AV_SET_EXPR (elem), expr);
2040 /* Same, but do not copy EXPR. */
2041 static void
2042 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2044 av_set_t elem;
2046 elem = av_set_add_element (setp);
2047 *_AV_SET_EXPR (elem) = *expr;
2050 /* Remove expr pointed to by IP from the av_set. */
2051 void
2052 av_set_iter_remove (av_set_iterator *ip)
2054 clear_expr (_AV_SET_EXPR (*ip->lp));
2055 _list_iter_remove (ip);
2058 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2059 sense of vinsn_equal_p function. Return NULL if no such expr is
2060 in SET was found. */
2061 expr_t
2062 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2064 expr_t expr;
2065 av_set_iterator i;
2067 FOR_EACH_EXPR (expr, i, set)
2068 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2069 return expr;
2070 return NULL;
2073 /* Same, but also remove the EXPR found. */
2074 static expr_t
2075 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2077 expr_t expr;
2078 av_set_iterator i;
2080 FOR_EACH_EXPR_1 (expr, i, setp)
2081 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2083 _list_iter_remove_nofree (&i);
2084 return expr;
2086 return NULL;
2089 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2090 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2091 Returns NULL if no such expr is in SET was found. */
2092 static expr_t
2093 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2095 expr_t cur_expr;
2096 av_set_iterator i;
2098 FOR_EACH_EXPR (cur_expr, i, set)
2100 if (cur_expr == expr)
2101 continue;
2102 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2103 return cur_expr;
2106 return NULL;
2109 /* If other expression is already in AVP, remove one of them. */
2110 expr_t
2111 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2113 expr_t expr2;
2115 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2116 if (expr2 != NULL)
2118 /* Reset target availability on merge, since taking it only from one
2119 of the exprs would be controversial for different code. */
2120 EXPR_TARGET_AVAILABLE (expr2) = -1;
2121 EXPR_USEFULNESS (expr2) = 0;
2123 merge_expr (expr2, expr, NULL);
2125 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2126 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2128 av_set_iter_remove (ip);
2129 return expr2;
2132 return expr;
2135 /* Return true if there is an expr that correlates to VI in SET. */
2136 bool
2137 av_set_is_in_p (av_set_t set, vinsn_t vi)
2139 return av_set_lookup (set, vi) != NULL;
2142 /* Return a copy of SET. */
2143 av_set_t
2144 av_set_copy (av_set_t set)
2146 expr_t expr;
2147 av_set_iterator i;
2148 av_set_t res = NULL;
2150 FOR_EACH_EXPR (expr, i, set)
2151 av_set_add (&res, expr);
2153 return res;
2156 /* Join two av sets that do not have common elements by attaching second set
2157 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2158 _AV_SET_NEXT of first set's last element). */
2159 static void
2160 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2162 gcc_assert (*to_tailp == NULL);
2163 *to_tailp = *fromp;
2164 *fromp = NULL;
2167 /* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2168 pointed to by FROMP afterwards. */
2169 void
2170 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2172 expr_t expr1;
2173 av_set_iterator i;
2175 /* Delete from TOP all exprs, that present in FROMP. */
2176 FOR_EACH_EXPR_1 (expr1, i, top)
2178 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2180 if (expr2)
2182 merge_expr (expr2, expr1, insn);
2183 av_set_iter_remove (&i);
2187 join_distinct_sets (i.lp, fromp);
2190 /* Same as above, but also update availability of target register in
2191 TOP judging by TO_LV_SET and FROM_LV_SET. */
2192 void
2193 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2194 regset from_lv_set, insn_t insn)
2196 expr_t expr1;
2197 av_set_iterator i;
2198 av_set_t *to_tailp, in_both_set = NULL;
2200 /* Delete from TOP all expres, that present in FROMP. */
2201 FOR_EACH_EXPR_1 (expr1, i, top)
2203 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2205 if (expr2)
2207 /* It may be that the expressions have different destination
2208 registers, in which case we need to check liveness here. */
2209 if (EXPR_SEPARABLE_P (expr1))
2211 int regno1 = (REG_P (EXPR_LHS (expr1))
2212 ? (int) expr_dest_regno (expr1) : -1);
2213 int regno2 = (REG_P (EXPR_LHS (expr2))
2214 ? (int) expr_dest_regno (expr2) : -1);
2216 /* ??? We don't have a way to check restrictions for
2217 *other* register on the current path, we did it only
2218 for the current target register. Give up. */
2219 if (regno1 != regno2)
2220 EXPR_TARGET_AVAILABLE (expr2) = -1;
2222 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2223 EXPR_TARGET_AVAILABLE (expr2) = -1;
2225 merge_expr (expr2, expr1, insn);
2226 av_set_add_nocopy (&in_both_set, expr2);
2227 av_set_iter_remove (&i);
2229 else
2230 /* EXPR1 is present in TOP, but not in FROMP. Check it on
2231 FROM_LV_SET. */
2232 set_unavailable_target_for_expr (expr1, from_lv_set);
2234 to_tailp = i.lp;
2236 /* These expressions are not present in TOP. Check liveness
2237 restrictions on TO_LV_SET. */
2238 FOR_EACH_EXPR (expr1, i, *fromp)
2239 set_unavailable_target_for_expr (expr1, to_lv_set);
2241 join_distinct_sets (i.lp, &in_both_set);
2242 join_distinct_sets (to_tailp, fromp);
2245 /* Clear av_set pointed to by SETP. */
2246 void
2247 av_set_clear (av_set_t *setp)
2249 expr_t expr;
2250 av_set_iterator i;
2252 FOR_EACH_EXPR_1 (expr, i, setp)
2253 av_set_iter_remove (&i);
2255 gcc_assert (*setp == NULL);
2258 /* Leave only one non-speculative element in the SETP. */
2259 void
2260 av_set_leave_one_nonspec (av_set_t *setp)
2262 expr_t expr;
2263 av_set_iterator i;
2264 bool has_one_nonspec = false;
2266 /* Keep all speculative exprs, and leave one non-speculative
2267 (the first one). */
2268 FOR_EACH_EXPR_1 (expr, i, setp)
2270 if (!EXPR_SPEC_DONE_DS (expr))
2272 if (has_one_nonspec)
2273 av_set_iter_remove (&i);
2274 else
2275 has_one_nonspec = true;
2280 /* Return the N'th element of the SET. */
2281 expr_t
2282 av_set_element (av_set_t set, int n)
2284 expr_t expr;
2285 av_set_iterator i;
2287 FOR_EACH_EXPR (expr, i, set)
2288 if (n-- == 0)
2289 return expr;
2291 gcc_unreachable ();
2292 return NULL;
2295 /* Deletes all expressions from AVP that are conditional branches (IFs). */
2296 void
2297 av_set_substract_cond_branches (av_set_t *avp)
2299 av_set_iterator i;
2300 expr_t expr;
2302 FOR_EACH_EXPR_1 (expr, i, avp)
2303 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2304 av_set_iter_remove (&i);
2307 /* Multiplies usefulness attribute of each member of av-set *AVP by
2308 value PROB / ALL_PROB. */
2309 void
2310 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2312 av_set_iterator i;
2313 expr_t expr;
2315 FOR_EACH_EXPR (expr, i, av)
2316 EXPR_USEFULNESS (expr) = (all_prob
2317 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2318 : 0);
2321 /* Leave in AVP only those expressions, which are present in AV,
2322 and return it. */
2323 void
2324 av_set_intersect (av_set_t *avp, av_set_t av)
2326 av_set_iterator i;
2327 expr_t expr;
2329 FOR_EACH_EXPR_1 (expr, i, avp)
2330 if (av_set_lookup (av, EXPR_VINSN (expr)) == NULL)
2331 av_set_iter_remove (&i);
2336 /* Dependence hooks to initialize insn data. */
2338 /* This is used in hooks callable from dependence analysis when initializing
2339 instruction's data. */
2340 static struct
2342 /* Where the dependence was found (lhs/rhs). */
2343 deps_where_t where;
2345 /* The actual data object to initialize. */
2346 idata_t id;
2348 /* True when the insn should not be made clonable. */
2349 bool force_unique_p;
2351 /* True when insn should be treated as of type USE, i.e. never renamed. */
2352 bool force_use_p;
2353 } deps_init_id_data;
2356 /* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
2357 clonable. */
2358 static void
2359 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2361 int type;
2363 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2364 That clonable insns which can be separated into lhs and rhs have type SET.
2365 Other clonable insns have type USE. */
2366 type = GET_CODE (insn);
2368 /* Only regular insns could be cloned. */
2369 if (type == INSN && !force_unique_p)
2370 type = SET;
2371 else if (type == JUMP_INSN && simplejump_p (insn))
2372 type = PC;
2374 IDATA_TYPE (id) = type;
2375 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2376 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2377 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2380 /* Start initializing insn data. */
2381 static void
2382 deps_init_id_start_insn (insn_t insn)
2384 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2386 setup_id_for_insn (deps_init_id_data.id, insn,
2387 deps_init_id_data.force_unique_p);
2388 deps_init_id_data.where = DEPS_IN_INSN;
2391 /* Start initializing lhs data. */
2392 static void
2393 deps_init_id_start_lhs (rtx lhs)
2395 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2396 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2398 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2400 IDATA_LHS (deps_init_id_data.id) = lhs;
2401 deps_init_id_data.where = DEPS_IN_LHS;
2405 /* Finish initializing lhs data. */
2406 static void
2407 deps_init_id_finish_lhs (void)
2409 deps_init_id_data.where = DEPS_IN_INSN;
2412 /* Note a set of REGNO. */
2413 static void
2414 deps_init_id_note_reg_set (int regno)
2416 haifa_note_reg_set (regno);
2418 if (deps_init_id_data.where == DEPS_IN_RHS)
2419 deps_init_id_data.force_use_p = true;
2421 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2422 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2424 #ifdef STACK_REGS
2425 /* Make instructions that set stack registers to be ineligible for
2426 renaming to avoid issues with find_used_regs. */
2427 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2428 deps_init_id_data.force_use_p = true;
2429 #endif
2432 /* Note a clobber of REGNO. */
2433 static void
2434 deps_init_id_note_reg_clobber (int regno)
2436 haifa_note_reg_clobber (regno);
2438 if (deps_init_id_data.where == DEPS_IN_RHS)
2439 deps_init_id_data.force_use_p = true;
2441 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2442 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2445 /* Note a use of REGNO. */
2446 static void
2447 deps_init_id_note_reg_use (int regno)
2449 haifa_note_reg_use (regno);
2451 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2452 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2455 /* Start initializing rhs data. */
2456 static void
2457 deps_init_id_start_rhs (rtx rhs)
2459 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2461 /* And there was no sel_deps_reset_to_insn (). */
2462 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2464 IDATA_RHS (deps_init_id_data.id) = rhs;
2465 deps_init_id_data.where = DEPS_IN_RHS;
2469 /* Finish initializing rhs data. */
2470 static void
2471 deps_init_id_finish_rhs (void)
2473 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2474 || deps_init_id_data.where == DEPS_IN_INSN);
2475 deps_init_id_data.where = DEPS_IN_INSN;
2478 /* Finish initializing insn data. */
2479 static void
2480 deps_init_id_finish_insn (void)
2482 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2484 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2486 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2487 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2489 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2490 || deps_init_id_data.force_use_p)
2492 /* This should be a USE, as we don't want to schedule its RHS
2493 separately. However, we still want to have them recorded
2494 for the purposes of substitution. That's why we don't
2495 simply call downgrade_to_use () here. */
2496 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2497 gcc_assert (!lhs == !rhs);
2499 IDATA_TYPE (deps_init_id_data.id) = USE;
2503 deps_init_id_data.where = DEPS_IN_NOWHERE;
2506 /* This is dependence info used for initializing insn's data. */
2507 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2509 /* This initializes most of the static part of the above structure. */
2510 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2512 NULL,
2514 deps_init_id_start_insn,
2515 deps_init_id_finish_insn,
2516 deps_init_id_start_lhs,
2517 deps_init_id_finish_lhs,
2518 deps_init_id_start_rhs,
2519 deps_init_id_finish_rhs,
2520 deps_init_id_note_reg_set,
2521 deps_init_id_note_reg_clobber,
2522 deps_init_id_note_reg_use,
2523 NULL, /* note_mem_dep */
2524 NULL, /* note_dep */
2526 0, /* use_cselib */
2527 0, /* use_deps_list */
2528 0 /* generate_spec_deps */
2531 /* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2532 we don't actually need information about lhs and rhs. */
2533 static void
2534 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2536 rtx pat = PATTERN (insn);
2538 if (GET_CODE (insn) == INSN
2539 && GET_CODE (pat) == SET
2540 && !force_unique_p)
2542 IDATA_RHS (id) = SET_SRC (pat);
2543 IDATA_LHS (id) = SET_DEST (pat);
2545 else
2546 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2549 /* Possibly downgrade INSN to USE. */
2550 static void
2551 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2553 bool must_be_use = false;
2554 unsigned uid = INSN_UID (insn);
2555 struct df_ref **rec;
2556 rtx lhs = IDATA_LHS (id);
2557 rtx rhs = IDATA_RHS (id);
2559 /* We downgrade only SETs. */
2560 if (IDATA_TYPE (id) != SET)
2561 return;
2563 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2565 IDATA_TYPE (id) = USE;
2566 return;
2569 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2571 struct df_ref *def = *rec;
2573 if (DF_REF_INSN (def)
2574 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2575 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2577 must_be_use = true;
2578 break;
2581 #ifdef STACK_REGS
2582 /* Make instructions that set stack registers to be ineligible for
2583 renaming to avoid issues with find_used_regs. */
2584 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2586 must_be_use = true;
2587 break;
2589 #endif
2592 if (must_be_use)
2593 IDATA_TYPE (id) = USE;
2596 /* Setup register sets describing INSN in ID. */
2597 static void
2598 setup_id_reg_sets (idata_t id, insn_t insn)
2600 unsigned uid = INSN_UID (insn);
2601 struct df_ref **rec;
2602 regset tmp = get_clear_regset_from_pool ();
2604 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2606 struct df_ref *def = *rec;
2607 unsigned int regno = DF_REF_REGNO (def);
2609 /* Post modifies are treated like clobbers by sched-deps.c. */
2610 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2611 | DF_REF_PRE_POST_MODIFY)))
2612 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2613 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2615 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2617 #ifdef STACK_REGS
2618 /* For stack registers, treat writes to them as writes
2619 to the first one to be consistent with sched-deps.c. */
2620 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2621 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2622 #endif
2624 /* Mark special refs that generate read/write def pair. */
2625 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2626 || regno == STACK_POINTER_REGNUM)
2627 bitmap_set_bit (tmp, regno);
2630 for (rec = DF_INSN_UID_USES (uid); *rec; rec++)
2632 struct df_ref *use = *rec;
2633 unsigned int regno = DF_REF_REGNO (use);
2635 /* When these refs are met for the first time, skip them, as
2636 these uses are just counterparts of some defs. */
2637 if (bitmap_bit_p (tmp, regno))
2638 bitmap_clear_bit (tmp, regno);
2639 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2641 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2643 #ifdef STACK_REGS
2644 /* For stack registers, treat reads from them as reads from
2645 the first one to be consistent with sched-deps.c. */
2646 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2647 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2648 #endif
2652 return_regset_to_pool (tmp);
2655 /* Initialize instruction data for INSN in ID using DF's data. */
2656 static void
2657 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2659 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2661 setup_id_for_insn (id, insn, force_unique_p);
2662 setup_id_lhs_rhs (id, insn, force_unique_p);
2664 if (INSN_NOP_P (insn))
2665 return;
2667 maybe_downgrade_id_to_use (id, insn);
2668 setup_id_reg_sets (id, insn);
2671 /* Initialize instruction data for INSN in ID. */
2672 static void
2673 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2675 struct deps _dc, *dc = &_dc;
2677 deps_init_id_data.where = DEPS_IN_NOWHERE;
2678 deps_init_id_data.id = id;
2679 deps_init_id_data.force_unique_p = force_unique_p;
2680 deps_init_id_data.force_use_p = false;
2682 init_deps (dc);
2684 memcpy (&deps_init_id_sched_deps_info,
2685 &const_deps_init_id_sched_deps_info,
2686 sizeof (deps_init_id_sched_deps_info));
2688 if (spec_info != NULL)
2689 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2691 sched_deps_info = &deps_init_id_sched_deps_info;
2693 deps_analyze_insn (dc, insn);
2695 free_deps (dc);
2697 deps_init_id_data.id = NULL;
2702 /* Implement hooks for collecting fundamental insn properties like if insn is
2703 an ASM or is within a SCHED_GROUP. */
2705 /* True when a "one-time init" data for INSN was already inited. */
2706 static bool
2707 first_time_insn_init (insn_t insn)
2709 return INSN_LIVE (insn) == NULL;
2712 /* Hash an entry in a transformed_insns hashtable. */
2713 static hashval_t
2714 hash_transformed_insns (const void *p)
2716 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2719 /* Compare the entries in a transformed_insns hashtable. */
2720 static int
2721 eq_transformed_insns (const void *p, const void *q)
2723 rtx i1 = VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2724 rtx i2 = VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2726 if (INSN_UID (i1) == INSN_UID (i2))
2727 return 1;
2728 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2731 /* Free an entry in a transformed_insns hashtable. */
2732 static void
2733 free_transformed_insns (void *p)
2735 struct transformed_insns *pti = (struct transformed_insns *) p;
2737 vinsn_detach (pti->vinsn_old);
2738 vinsn_detach (pti->vinsn_new);
2739 free (pti);
2742 /* Init the s_i_d data for INSN which should be inited just once, when
2743 we first see the insn. */
2744 static void
2745 init_first_time_insn_data (insn_t insn)
2747 /* This should not be set if this is the first time we init data for
2748 insn. */
2749 gcc_assert (first_time_insn_init (insn));
2751 /* These are needed for nops too. */
2752 INSN_LIVE (insn) = get_regset_from_pool ();
2753 INSN_LIVE_VALID_P (insn) = false;
2755 if (!INSN_NOP_P (insn))
2757 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2758 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2759 INSN_TRANSFORMED_INSNS (insn)
2760 = htab_create (16, hash_transformed_insns,
2761 eq_transformed_insns, free_transformed_insns);
2762 init_deps (&INSN_DEPS_CONTEXT (insn));
2766 /* Free the same data as above for INSN. */
2767 static void
2768 free_first_time_insn_data (insn_t insn)
2770 gcc_assert (! first_time_insn_init (insn));
2772 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2773 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2774 htab_delete (INSN_TRANSFORMED_INSNS (insn));
2775 return_regset_to_pool (INSN_LIVE (insn));
2776 INSN_LIVE (insn) = NULL;
2777 INSN_LIVE_VALID_P (insn) = false;
2779 /* This is allocated only for bookkeeping insns. */
2780 if (INSN_ORIGINATORS (insn))
2781 BITMAP_FREE (INSN_ORIGINATORS (insn));
2782 free_deps (&INSN_DEPS_CONTEXT (insn));
2785 /* Initialize region-scope data structures for basic blocks. */
2786 static void
2787 init_global_and_expr_for_bb (basic_block bb)
2789 if (sel_bb_empty_p (bb))
2790 return;
2792 invalidate_av_set (bb);
2795 /* Data for global dependency analysis (to initialize CANT_MOVE and
2796 SCHED_GROUP_P). */
2797 static struct
2799 /* Previous insn. */
2800 insn_t prev_insn;
2801 } init_global_data;
2803 /* Determine if INSN is in the sched_group, is an asm or should not be
2804 cloned. After that initialize its expr. */
2805 static void
2806 init_global_and_expr_for_insn (insn_t insn)
2808 if (LABEL_P (insn))
2809 return;
2811 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2813 init_global_data.prev_insn = NULL_RTX;
2814 return;
2817 gcc_assert (INSN_P (insn));
2819 if (SCHED_GROUP_P (insn))
2820 /* Setup a sched_group. */
2822 insn_t prev_insn = init_global_data.prev_insn;
2824 if (prev_insn)
2825 INSN_SCHED_NEXT (prev_insn) = insn;
2827 init_global_data.prev_insn = insn;
2829 else
2830 init_global_data.prev_insn = NULL_RTX;
2832 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2833 || asm_noperands (PATTERN (insn)) >= 0)
2834 /* Mark INSN as an asm. */
2835 INSN_ASM_P (insn) = true;
2838 bool force_unique_p;
2839 ds_t spec_done_ds;
2841 /* Certain instructions cannot be cloned. */
2842 if (CANT_MOVE (insn)
2843 || INSN_ASM_P (insn)
2844 || SCHED_GROUP_P (insn)
2845 || prologue_epilogue_contains (insn)
2846 /* Exception handling insns are always unique. */
2847 || (flag_non_call_exceptions && can_throw_internal (insn))
2848 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
2849 || control_flow_insn_p (insn))
2850 force_unique_p = true;
2851 else
2852 force_unique_p = false;
2854 if (targetm.sched.get_insn_spec_ds)
2856 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
2857 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
2859 else
2860 spec_done_ds = 0;
2862 /* Initialize INSN's expr. */
2863 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
2864 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
2865 spec_done_ds, 0, 0, NULL, true, false, false, false,
2866 CANT_MOVE (insn));
2869 init_first_time_insn_data (insn);
2872 /* Scan the region and initialize instruction data for basic blocks BBS. */
2873 void
2874 sel_init_global_and_expr (bb_vec_t bbs)
2876 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
2877 const struct sched_scan_info_def ssi =
2879 NULL, /* extend_bb */
2880 init_global_and_expr_for_bb, /* init_bb */
2881 extend_insn_data, /* extend_insn */
2882 init_global_and_expr_for_insn /* init_insn */
2885 sched_scan (&ssi, bbs, NULL, NULL, NULL);
2888 /* Finalize region-scope data structures for basic blocks. */
2889 static void
2890 finish_global_and_expr_for_bb (basic_block bb)
2892 av_set_clear (&BB_AV_SET (bb));
2893 BB_AV_LEVEL (bb) = 0;
2896 /* Finalize INSN's data. */
2897 static void
2898 finish_global_and_expr_insn (insn_t insn)
2900 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
2901 return;
2903 gcc_assert (INSN_P (insn));
2905 if (INSN_LUID (insn) > 0)
2907 free_first_time_insn_data (insn);
2908 INSN_WS_LEVEL (insn) = 0;
2909 CANT_MOVE (insn) = 0;
2911 /* We can no longer assert this, as vinsns of this insn could be
2912 easily live in other insn's caches. This should be changed to
2913 a counter-like approach among all vinsns. */
2914 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
2915 clear_expr (INSN_EXPR (insn));
2919 /* Finalize per instruction data for the whole region. */
2920 void
2921 sel_finish_global_and_expr (void)
2924 bb_vec_t bbs;
2925 int i;
2927 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
2929 for (i = 0; i < current_nr_blocks; i++)
2930 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
2932 /* Clear AV_SETs and INSN_EXPRs. */
2934 const struct sched_scan_info_def ssi =
2936 NULL, /* extend_bb */
2937 finish_global_and_expr_for_bb, /* init_bb */
2938 NULL, /* extend_insn */
2939 finish_global_and_expr_insn /* init_insn */
2942 sched_scan (&ssi, bbs, NULL, NULL, NULL);
2945 VEC_free (basic_block, heap, bbs);
2948 finish_insns ();
2952 /* In the below hooks, we merely calculate whether or not a dependence
2953 exists, and in what part of insn. However, we will need more data
2954 when we'll start caching dependence requests. */
2956 /* Container to hold information for dependency analysis. */
2957 static struct
2959 deps_t dc;
2961 /* A variable to track which part of rtx we are scanning in
2962 sched-deps.c: sched_analyze_insn (). */
2963 deps_where_t where;
2965 /* Current producer. */
2966 insn_t pro;
2968 /* Current consumer. */
2969 vinsn_t con;
2971 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
2972 X is from { INSN, LHS, RHS }. */
2973 ds_t has_dep_p[DEPS_IN_NOWHERE];
2974 } has_dependence_data;
2976 /* Start analyzing dependencies of INSN. */
2977 static void
2978 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
2980 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
2982 has_dependence_data.where = DEPS_IN_INSN;
2985 /* Finish analyzing dependencies of an insn. */
2986 static void
2987 has_dependence_finish_insn (void)
2989 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
2991 has_dependence_data.where = DEPS_IN_NOWHERE;
2994 /* Start analyzing dependencies of LHS. */
2995 static void
2996 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
2998 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3000 if (VINSN_LHS (has_dependence_data.con) != NULL)
3001 has_dependence_data.where = DEPS_IN_LHS;
3004 /* Finish analyzing dependencies of an lhs. */
3005 static void
3006 has_dependence_finish_lhs (void)
3008 has_dependence_data.where = DEPS_IN_INSN;
3011 /* Start analyzing dependencies of RHS. */
3012 static void
3013 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3015 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3017 if (VINSN_RHS (has_dependence_data.con) != NULL)
3018 has_dependence_data.where = DEPS_IN_RHS;
3021 /* Start analyzing dependencies of an rhs. */
3022 static void
3023 has_dependence_finish_rhs (void)
3025 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3026 || has_dependence_data.where == DEPS_IN_INSN);
3028 has_dependence_data.where = DEPS_IN_INSN;
3031 /* Note a set of REGNO. */
3032 static void
3033 has_dependence_note_reg_set (int regno)
3035 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3037 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3038 VINSN_INSN_RTX
3039 (has_dependence_data.con)))
3041 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3043 if (reg_last->sets != NULL
3044 || reg_last->clobbers != NULL)
3045 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3047 if (reg_last->uses)
3048 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3052 /* Note a clobber of REGNO. */
3053 static void
3054 has_dependence_note_reg_clobber (int regno)
3056 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3058 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3059 VINSN_INSN_RTX
3060 (has_dependence_data.con)))
3062 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3064 if (reg_last->sets)
3065 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3067 if (reg_last->uses)
3068 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3072 /* Note a use of REGNO. */
3073 static void
3074 has_dependence_note_reg_use (int regno)
3076 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3078 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3079 VINSN_INSN_RTX
3080 (has_dependence_data.con)))
3082 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3084 if (reg_last->sets)
3085 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3087 if (reg_last->clobbers)
3088 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3090 /* Handle BE_IN_SPEC. */
3091 if (reg_last->uses)
3093 ds_t pro_spec_checked_ds;
3095 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3096 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3098 if (pro_spec_checked_ds != 0)
3099 /* Merge BE_IN_SPEC bits into *DSP. */
3100 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3101 NULL_RTX, NULL_RTX);
3106 /* Note a memory dependence. */
3107 static void
3108 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3109 rtx pending_mem ATTRIBUTE_UNUSED,
3110 insn_t pending_insn ATTRIBUTE_UNUSED,
3111 ds_t ds ATTRIBUTE_UNUSED)
3113 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3114 VINSN_INSN_RTX (has_dependence_data.con)))
3116 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3118 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3122 /* Note a dependence. */
3123 static void
3124 has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3125 ds_t ds ATTRIBUTE_UNUSED)
3127 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3128 VINSN_INSN_RTX (has_dependence_data.con)))
3130 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3132 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3136 /* Mark the insn as having a hard dependence that prevents speculation. */
3137 void
3138 sel_mark_hard_insn (rtx insn)
3140 int i;
3142 /* Only work when we're in has_dependence_p mode.
3143 ??? This is a hack, this should actually be a hook. */
3144 if (!has_dependence_data.dc || !has_dependence_data.pro)
3145 return;
3147 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3148 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3150 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3151 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3154 /* This structure holds the hooks for the dependency analysis used when
3155 actually processing dependencies in the scheduler. */
3156 static struct sched_deps_info_def has_dependence_sched_deps_info;
3158 /* This initializes most of the fields of the above structure. */
3159 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3161 NULL,
3163 has_dependence_start_insn,
3164 has_dependence_finish_insn,
3165 has_dependence_start_lhs,
3166 has_dependence_finish_lhs,
3167 has_dependence_start_rhs,
3168 has_dependence_finish_rhs,
3169 has_dependence_note_reg_set,
3170 has_dependence_note_reg_clobber,
3171 has_dependence_note_reg_use,
3172 has_dependence_note_mem_dep,
3173 has_dependence_note_dep,
3175 0, /* use_cselib */
3176 0, /* use_deps_list */
3177 0 /* generate_spec_deps */
3180 /* Initialize has_dependence_sched_deps_info with extra spec field. */
3181 static void
3182 setup_has_dependence_sched_deps_info (void)
3184 memcpy (&has_dependence_sched_deps_info,
3185 &const_has_dependence_sched_deps_info,
3186 sizeof (has_dependence_sched_deps_info));
3188 if (spec_info != NULL)
3189 has_dependence_sched_deps_info.generate_spec_deps = 1;
3191 sched_deps_info = &has_dependence_sched_deps_info;
3194 /* Remove all dependences found and recorded in has_dependence_data array. */
3195 void
3196 sel_clear_has_dependence (void)
3198 int i;
3200 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3201 has_dependence_data.has_dep_p[i] = 0;
3204 /* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3205 to the dependence information array in HAS_DEP_PP. */
3206 ds_t
3207 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3209 int i;
3210 ds_t ds;
3211 struct deps *dc;
3213 if (INSN_SIMPLEJUMP_P (pred))
3214 /* Unconditional jump is just a transfer of control flow.
3215 Ignore it. */
3216 return false;
3218 dc = &INSN_DEPS_CONTEXT (pred);
3219 if (!dc->readonly)
3221 has_dependence_data.pro = NULL;
3222 /* Initialize empty dep context with information about PRED. */
3223 advance_deps_context (dc, pred);
3224 dc->readonly = 1;
3227 has_dependence_data.where = DEPS_IN_NOWHERE;
3228 has_dependence_data.pro = pred;
3229 has_dependence_data.con = EXPR_VINSN (expr);
3230 has_dependence_data.dc = dc;
3232 sel_clear_has_dependence ();
3234 /* Now catch all dependencies that would be generated between PRED and
3235 INSN. */
3236 setup_has_dependence_sched_deps_info ();
3237 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3238 has_dependence_data.dc = NULL;
3240 /* When a barrier was found, set DEPS_IN_INSN bits. */
3241 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3242 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3243 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3244 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3246 /* Do not allow stores to memory to move through checks. Currently
3247 we don't move this to sched-deps.c as the check doesn't have
3248 obvious places to which this dependence can be attached.
3249 FIMXE: this should go to a hook. */
3250 if (EXPR_LHS (expr)
3251 && MEM_P (EXPR_LHS (expr))
3252 && sel_insn_is_speculation_check (pred))
3253 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3255 *has_dep_pp = has_dependence_data.has_dep_p;
3256 ds = 0;
3257 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3258 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3259 NULL_RTX, NULL_RTX);
3261 return ds;
3265 /* Dependence hooks implementation that checks dependence latency constraints
3266 on the insns being scheduled. The entry point for these routines is
3267 tick_check_p predicate. */
3269 static struct
3271 /* An expr we are currently checking. */
3272 expr_t expr;
3274 /* A minimal cycle for its scheduling. */
3275 int cycle;
3277 /* Whether we have seen a true dependence while checking. */
3278 bool seen_true_dep_p;
3279 } tick_check_data;
3281 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3282 on PRO with status DS and weight DW. */
3283 static void
3284 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3286 expr_t con_expr = tick_check_data.expr;
3287 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3289 if (con_insn != pro_insn)
3291 enum reg_note dt;
3292 int tick;
3294 if (/* PROducer was removed from above due to pipelining. */
3295 !INSN_IN_STREAM_P (pro_insn)
3296 /* Or PROducer was originally on the next iteration regarding the
3297 CONsumer. */
3298 || (INSN_SCHED_TIMES (pro_insn)
3299 - EXPR_SCHED_TIMES (con_expr)) > 1)
3300 /* Don't count this dependence. */
3301 return;
3303 dt = ds_to_dt (ds);
3304 if (dt == REG_DEP_TRUE)
3305 tick_check_data.seen_true_dep_p = true;
3307 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3310 dep_def _dep, *dep = &_dep;
3312 init_dep (dep, pro_insn, con_insn, dt);
3314 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3317 /* When there are several kinds of dependencies between pro and con,
3318 only REG_DEP_TRUE should be taken into account. */
3319 if (tick > tick_check_data.cycle
3320 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3321 tick_check_data.cycle = tick;
3325 /* An implementation of note_dep hook. */
3326 static void
3327 tick_check_note_dep (insn_t pro, ds_t ds)
3329 tick_check_dep_with_dw (pro, ds, 0);
3332 /* An implementation of note_mem_dep hook. */
3333 static void
3334 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3336 dw_t dw;
3338 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3339 ? estimate_dep_weak (mem1, mem2)
3340 : 0);
3342 tick_check_dep_with_dw (pro, ds, dw);
3345 /* This structure contains hooks for dependence analysis used when determining
3346 whether an insn is ready for scheduling. */
3347 static struct sched_deps_info_def tick_check_sched_deps_info =
3349 NULL,
3351 NULL,
3352 NULL,
3353 NULL,
3354 NULL,
3355 NULL,
3356 NULL,
3357 haifa_note_reg_set,
3358 haifa_note_reg_clobber,
3359 haifa_note_reg_use,
3360 tick_check_note_mem_dep,
3361 tick_check_note_dep,
3363 0, 0, 0
3366 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3367 scheduled. Return 0 if all data from producers in DC is ready. */
3369 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3371 int cycles_left;
3372 /* Initialize variables. */
3373 tick_check_data.expr = expr;
3374 tick_check_data.cycle = 0;
3375 tick_check_data.seen_true_dep_p = false;
3376 sched_deps_info = &tick_check_sched_deps_info;
3378 gcc_assert (!dc->readonly);
3379 dc->readonly = 1;
3380 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3381 dc->readonly = 0;
3383 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3385 return cycles_left >= 0 ? cycles_left : 0;
3389 /* Functions to work with insns. */
3391 /* Returns true if LHS of INSN is the same as DEST of an insn
3392 being moved. */
3393 bool
3394 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3396 rtx lhs = INSN_LHS (insn);
3398 if (lhs == NULL || dest == NULL)
3399 return false;
3401 return rtx_equal_p (lhs, dest);
3404 /* Return s_i_d entry of INSN. Callable from debugger. */
3405 sel_insn_data_def
3406 insn_sid (insn_t insn)
3408 return *SID (insn);
3411 /* True when INSN is a speculative check. We can tell this by looking
3412 at the data structures of the selective scheduler, not by examining
3413 the pattern. */
3414 bool
3415 sel_insn_is_speculation_check (rtx insn)
3417 return s_i_d && !! INSN_SPEC_CHECKED_DS (insn);
3420 /* Extracts machine mode MODE and destination location DST_LOC
3421 for given INSN. */
3422 void
3423 get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode)
3425 rtx pat = PATTERN (insn);
3427 gcc_assert (dst_loc);
3428 gcc_assert (GET_CODE (pat) == SET);
3430 *dst_loc = SET_DEST (pat);
3432 gcc_assert (*dst_loc);
3433 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3435 if (mode)
3436 *mode = GET_MODE (*dst_loc);
3439 /* Returns true when moving through JUMP will result in bookkeeping
3440 creation. */
3441 bool
3442 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3444 insn_t succ;
3445 succ_iterator si;
3447 FOR_EACH_SUCC (succ, si, jump)
3448 if (sel_num_cfg_preds_gt_1 (succ))
3449 return true;
3451 return false;
3454 /* Return 'true' if INSN is the only one in its basic block. */
3455 static bool
3456 insn_is_the_only_one_in_bb_p (insn_t insn)
3458 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3461 #ifdef ENABLE_CHECKING
3462 /* Check that the region we're scheduling still has at most one
3463 backedge. */
3464 static void
3465 verify_backedges (void)
3467 if (pipelining_p)
3469 int i, n = 0;
3470 edge e;
3471 edge_iterator ei;
3473 for (i = 0; i < current_nr_blocks; i++)
3474 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (BB_TO_BLOCK (i))->succs)
3475 if (in_current_region_p (e->dest)
3476 && BLOCK_TO_BB (e->dest->index) < i)
3477 n++;
3479 gcc_assert (n <= 1);
3482 #endif
3485 /* Functions to work with control flow. */
3487 /* Tidy the possibly empty block BB. */
3488 bool
3489 maybe_tidy_empty_bb (basic_block bb)
3491 basic_block succ_bb, pred_bb;
3492 bool rescan_p;
3494 /* Keep empty bb only if this block immediately precedes EXIT and
3495 has incoming non-fallthrough edge. Otherwise remove it. */
3496 if (!sel_bb_empty_p (bb)
3497 || (single_succ_p (bb)
3498 && single_succ (bb) == EXIT_BLOCK_PTR
3499 && (!single_pred_p (bb)
3500 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU))))
3501 return false;
3503 free_data_sets (bb);
3505 /* Do not delete BB if it has more than one successor.
3506 That can occur when we moving a jump. */
3507 if (!single_succ_p (bb))
3509 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3510 sel_merge_blocks (bb->prev_bb, bb);
3511 return true;
3514 succ_bb = single_succ (bb);
3515 rescan_p = true;
3516 pred_bb = NULL;
3518 /* Redirect all non-fallthru edges to the next bb. */
3519 while (rescan_p)
3521 edge e;
3522 edge_iterator ei;
3524 rescan_p = false;
3526 FOR_EACH_EDGE (e, ei, bb->preds)
3528 pred_bb = e->src;
3530 if (!(e->flags & EDGE_FALLTHRU))
3532 sel_redirect_edge_and_branch (e, succ_bb);
3533 rescan_p = true;
3534 break;
3539 /* If it is possible - merge BB with its predecessor. */
3540 if (can_merge_blocks_p (bb->prev_bb, bb))
3541 sel_merge_blocks (bb->prev_bb, bb);
3542 else
3543 /* Otherwise this is a block without fallthru predecessor.
3544 Just delete it. */
3546 gcc_assert (pred_bb != NULL);
3548 move_bb_info (pred_bb, bb);
3549 remove_empty_bb (bb, true);
3552 #ifdef ENABLE_CHECKING
3553 verify_backedges ();
3554 #endif
3556 return true;
3559 /* Tidy the control flow after we have removed original insn from
3560 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3561 is true, also try to optimize control flow on non-empty blocks. */
3562 bool
3563 tidy_control_flow (basic_block xbb, bool full_tidying)
3565 bool changed = true;
3567 /* First check whether XBB is empty. */
3568 changed = maybe_tidy_empty_bb (xbb);
3569 if (changed || !full_tidying)
3570 return changed;
3572 /* Check if there is a unnecessary jump after insn left. */
3573 if (jump_leads_only_to_bb_p (BB_END (xbb), xbb->next_bb)
3574 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3575 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3577 if (sel_remove_insn (BB_END (xbb), false, false))
3578 return true;
3579 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3582 /* Check if there is an unnecessary jump in previous basic block leading
3583 to next basic block left after removing INSN from stream.
3584 If it is so, remove that jump and redirect edge to current
3585 basic block (where there was INSN before deletion). This way
3586 when NOP will be deleted several instructions later with its
3587 basic block we will not get a jump to next instruction, which
3588 can be harmful. */
3589 if (sel_bb_head (xbb) == sel_bb_end (xbb)
3590 && !sel_bb_empty_p (xbb)
3591 && INSN_NOP_P (sel_bb_end (xbb))
3592 /* Flow goes fallthru from current block to the next. */
3593 && EDGE_COUNT (xbb->succs) == 1
3594 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3595 /* When successor is an EXIT block, it may not be the next block. */
3596 && single_succ (xbb) != EXIT_BLOCK_PTR
3597 /* And unconditional jump in previous basic block leads to
3598 next basic block of XBB and this jump can be safely removed. */
3599 && in_current_region_p (xbb->prev_bb)
3600 && jump_leads_only_to_bb_p (BB_END (xbb->prev_bb), xbb->next_bb)
3601 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3602 /* Also this jump is not at the scheduling boundary. */
3603 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3605 /* Clear data structures of jump - jump itself will be removed
3606 by sel_redirect_edge_and_branch. */
3607 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3608 sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3609 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3611 /* It can turn out that after removing unused jump, basic block
3612 that contained that jump, becomes empty too. In such case
3613 remove it too. */
3614 if (sel_bb_empty_p (xbb->prev_bb))
3615 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3618 return changed;
3621 /* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3622 do not delete insn's data, because it will be later re-emitted.
3623 Return true if we have removed some blocks afterwards. */
3624 bool
3625 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3627 basic_block bb = BLOCK_FOR_INSN (insn);
3629 gcc_assert (INSN_IN_STREAM_P (insn));
3631 if (only_disconnect)
3633 insn_t prev = PREV_INSN (insn);
3634 insn_t next = NEXT_INSN (insn);
3635 basic_block bb = BLOCK_FOR_INSN (insn);
3637 NEXT_INSN (prev) = next;
3638 PREV_INSN (next) = prev;
3640 if (BB_HEAD (bb) == insn)
3642 gcc_assert (BLOCK_FOR_INSN (prev) == bb);
3643 BB_HEAD (bb) = prev;
3645 if (BB_END (bb) == insn)
3646 BB_END (bb) = prev;
3648 else
3650 remove_insn (insn);
3651 clear_expr (INSN_EXPR (insn));
3654 /* It is necessary to null this fields before calling add_insn (). */
3655 PREV_INSN (insn) = NULL_RTX;
3656 NEXT_INSN (insn) = NULL_RTX;
3658 return tidy_control_flow (bb, full_tidying);
3661 /* Estimate number of the insns in BB. */
3662 static int
3663 sel_estimate_number_of_insns (basic_block bb)
3665 int res = 0;
3666 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3668 for (; insn != next_tail; insn = NEXT_INSN (insn))
3669 if (INSN_P (insn))
3670 res++;
3672 return res;
3675 /* We don't need separate luids for notes or labels. */
3676 static int
3677 sel_luid_for_non_insn (rtx x)
3679 gcc_assert (NOTE_P (x) || LABEL_P (x));
3681 return -1;
3684 /* Return seqno of the only predecessor of INSN. */
3685 static int
3686 get_seqno_of_a_pred (insn_t insn)
3688 int seqno;
3690 gcc_assert (INSN_SIMPLEJUMP_P (insn));
3692 if (!sel_bb_head_p (insn))
3693 seqno = INSN_SEQNO (PREV_INSN (insn));
3694 else
3696 basic_block bb = BLOCK_FOR_INSN (insn);
3698 if (single_pred_p (bb)
3699 && !in_current_region_p (single_pred (bb)))
3701 /* We can have preds outside a region when splitting edges
3702 for pipelining of an outer loop. Use succ instead.
3703 There should be only one of them. */
3704 insn_t succ = NULL;
3705 succ_iterator si;
3706 bool first = true;
3708 gcc_assert (flag_sel_sched_pipelining_outer_loops
3709 && current_loop_nest);
3710 FOR_EACH_SUCC_1 (succ, si, insn,
3711 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
3713 gcc_assert (first);
3714 first = false;
3717 gcc_assert (succ != NULL);
3718 seqno = INSN_SEQNO (succ);
3720 else
3722 insn_t *preds;
3723 int n;
3725 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
3726 gcc_assert (n == 1);
3728 seqno = INSN_SEQNO (preds[0]);
3730 free (preds);
3734 return seqno;
3737 /* Find the proper seqno for inserting at INSN. */
3739 get_seqno_by_preds (rtx insn)
3741 basic_block bb = BLOCK_FOR_INSN (insn);
3742 rtx tmp = insn, head = BB_HEAD (bb);
3743 insn_t *preds;
3744 int n, i, seqno;
3746 while (tmp != head)
3747 if (INSN_P (tmp))
3748 return INSN_SEQNO (tmp);
3749 else
3750 tmp = PREV_INSN (tmp);
3752 cfg_preds (bb, &preds, &n);
3753 for (i = 0, seqno = -1; i < n; i++)
3754 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
3756 gcc_assert (seqno > 0);
3757 return seqno;
3762 /* Extend pass-scope data structures for basic blocks. */
3763 void
3764 sel_extend_global_bb_info (void)
3766 VEC_safe_grow_cleared (sel_global_bb_info_def, heap, sel_global_bb_info,
3767 last_basic_block);
3770 /* Extend region-scope data structures for basic blocks. */
3771 static void
3772 extend_region_bb_info (void)
3774 VEC_safe_grow_cleared (sel_region_bb_info_def, heap, sel_region_bb_info,
3775 last_basic_block);
3778 /* Extend all data structures to fit for all basic blocks. */
3779 static void
3780 extend_bb_info (void)
3782 sel_extend_global_bb_info ();
3783 extend_region_bb_info ();
3786 /* Finalize pass-scope data structures for basic blocks. */
3787 void
3788 sel_finish_global_bb_info (void)
3790 VEC_free (sel_global_bb_info_def, heap, sel_global_bb_info);
3793 /* Finalize region-scope data structures for basic blocks. */
3794 static void
3795 finish_region_bb_info (void)
3797 VEC_free (sel_region_bb_info_def, heap, sel_region_bb_info);
3801 /* Data for each insn in current region. */
3802 VEC (sel_insn_data_def, heap) *s_i_d = NULL;
3804 /* A vector for the insns we've emitted. */
3805 static insn_vec_t new_insns = NULL;
3807 /* Extend data structures for insns from current region. */
3808 static void
3809 extend_insn_data (void)
3811 int reserve;
3813 sched_extend_target ();
3814 sched_deps_init (false);
3816 /* Extend data structures for insns from current region. */
3817 reserve = (sched_max_luid + 1
3818 - VEC_length (sel_insn_data_def, s_i_d));
3819 if (reserve > 0
3820 && ! VEC_space (sel_insn_data_def, s_i_d, reserve))
3821 VEC_safe_grow_cleared (sel_insn_data_def, heap, s_i_d,
3822 3 * sched_max_luid / 2);
3825 /* Finalize data structures for insns from current region. */
3826 static void
3827 finish_insns (void)
3829 unsigned i;
3831 /* Clear here all dependence contexts that may have left from insns that were
3832 removed during the scheduling. */
3833 for (i = 0; i < VEC_length (sel_insn_data_def, s_i_d); i++)
3835 sel_insn_data_def *sid_entry = VEC_index (sel_insn_data_def, s_i_d, i);
3837 if (sid_entry->live)
3838 return_regset_to_pool (sid_entry->live);
3839 if (sid_entry->analyzed_deps)
3841 BITMAP_FREE (sid_entry->analyzed_deps);
3842 BITMAP_FREE (sid_entry->found_deps);
3843 htab_delete (sid_entry->transformed_insns);
3844 free_deps (&sid_entry->deps_context);
3846 if (EXPR_VINSN (&sid_entry->expr))
3848 clear_expr (&sid_entry->expr);
3850 /* Also, clear CANT_MOVE bit here, because we really don't want it
3851 to be passed to the next region. */
3852 CANT_MOVE_BY_LUID (i) = 0;
3856 VEC_free (sel_insn_data_def, heap, s_i_d);
3859 /* A proxy to pass initialization data to init_insn (). */
3860 static sel_insn_data_def _insn_init_ssid;
3861 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
3863 /* If true create a new vinsn. Otherwise use the one from EXPR. */
3864 static bool insn_init_create_new_vinsn_p;
3866 /* Set all necessary data for initialization of the new insn[s]. */
3867 static expr_t
3868 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
3870 expr_t x = &insn_init_ssid->expr;
3872 copy_expr_onside (x, expr);
3873 if (vi != NULL)
3875 insn_init_create_new_vinsn_p = false;
3876 change_vinsn_in_expr (x, vi);
3878 else
3879 insn_init_create_new_vinsn_p = true;
3881 insn_init_ssid->seqno = seqno;
3882 return x;
3885 /* Init data for INSN. */
3886 static void
3887 init_insn_data (insn_t insn)
3889 expr_t expr;
3890 sel_insn_data_t ssid = insn_init_ssid;
3892 /* The fields mentioned below are special and hence are not being
3893 propagated to the new insns. */
3894 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
3895 && !ssid->after_stall_p && ssid->sched_cycle == 0);
3896 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
3898 expr = INSN_EXPR (insn);
3899 copy_expr (expr, &ssid->expr);
3900 prepare_insn_expr (insn, ssid->seqno);
3902 if (insn_init_create_new_vinsn_p)
3903 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
3905 if (first_time_insn_init (insn))
3906 init_first_time_insn_data (insn);
3909 /* This is used to initialize spurious jumps generated by
3910 sel_redirect_edge (). */
3911 static void
3912 init_simplejump_data (insn_t insn)
3914 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
3915 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0, NULL, true, false, false,
3916 false, true);
3917 INSN_SEQNO (insn) = get_seqno_of_a_pred (insn);
3918 init_first_time_insn_data (insn);
3921 /* Perform deferred initialization of insns. This is used to process
3922 a new jump that may be created by redirect_edge. */
3923 void
3924 sel_init_new_insn (insn_t insn, int flags)
3926 /* We create data structures for bb when the first insn is emitted in it. */
3927 if (INSN_P (insn)
3928 && INSN_IN_STREAM_P (insn)
3929 && insn_is_the_only_one_in_bb_p (insn))
3931 extend_bb_info ();
3932 create_initial_data_sets (BLOCK_FOR_INSN (insn));
3935 if (flags & INSN_INIT_TODO_LUID)
3936 sched_init_luids (NULL, NULL, NULL, insn);
3938 if (flags & INSN_INIT_TODO_SSID)
3940 extend_insn_data ();
3941 init_insn_data (insn);
3942 clear_expr (&insn_init_ssid->expr);
3945 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
3947 extend_insn_data ();
3948 init_simplejump_data (insn);
3951 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
3952 == CONTAINING_RGN (BB_TO_BLOCK (0)));
3956 /* Functions to init/finish work with lv sets. */
3958 /* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
3959 static void
3960 init_lv_set (basic_block bb)
3962 gcc_assert (!BB_LV_SET_VALID_P (bb));
3964 BB_LV_SET (bb) = get_regset_from_pool ();
3965 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
3966 BB_LV_SET_VALID_P (bb) = true;
3969 /* Copy liveness information to BB from FROM_BB. */
3970 static void
3971 copy_lv_set_from (basic_block bb, basic_block from_bb)
3973 gcc_assert (!BB_LV_SET_VALID_P (bb));
3975 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
3976 BB_LV_SET_VALID_P (bb) = true;
3979 /* Initialize lv set of all bb headers. */
3980 void
3981 init_lv_sets (void)
3983 basic_block bb;
3985 /* Initialize of LV sets. */
3986 FOR_EACH_BB (bb)
3987 init_lv_set (bb);
3989 /* Don't forget EXIT_BLOCK. */
3990 init_lv_set (EXIT_BLOCK_PTR);
3993 /* Release lv set of HEAD. */
3994 static void
3995 free_lv_set (basic_block bb)
3997 gcc_assert (BB_LV_SET (bb) != NULL);
3999 return_regset_to_pool (BB_LV_SET (bb));
4000 BB_LV_SET (bb) = NULL;
4001 BB_LV_SET_VALID_P (bb) = false;
4004 /* Finalize lv sets of all bb headers. */
4005 void
4006 free_lv_sets (void)
4008 basic_block bb;
4010 /* Don't forget EXIT_BLOCK. */
4011 free_lv_set (EXIT_BLOCK_PTR);
4013 /* Free LV sets. */
4014 FOR_EACH_BB (bb)
4015 if (BB_LV_SET (bb))
4016 free_lv_set (bb);
4019 /* Initialize an invalid AV_SET for BB.
4020 This set will be updated next time compute_av () process BB. */
4021 static void
4022 invalidate_av_set (basic_block bb)
4024 gcc_assert (BB_AV_LEVEL (bb) <= 0
4025 && BB_AV_SET (bb) == NULL);
4027 BB_AV_LEVEL (bb) = -1;
4030 /* Create initial data sets for BB (they will be invalid). */
4031 static void
4032 create_initial_data_sets (basic_block bb)
4034 if (BB_LV_SET (bb))
4035 BB_LV_SET_VALID_P (bb) = false;
4036 else
4037 BB_LV_SET (bb) = get_regset_from_pool ();
4038 invalidate_av_set (bb);
4041 /* Free av set of BB. */
4042 static void
4043 free_av_set (basic_block bb)
4045 av_set_clear (&BB_AV_SET (bb));
4046 BB_AV_LEVEL (bb) = 0;
4049 /* Free data sets of BB. */
4050 void
4051 free_data_sets (basic_block bb)
4053 free_lv_set (bb);
4054 free_av_set (bb);
4057 /* Exchange lv sets of TO and FROM. */
4058 static void
4059 exchange_lv_sets (basic_block to, basic_block from)
4062 regset to_lv_set = BB_LV_SET (to);
4064 BB_LV_SET (to) = BB_LV_SET (from);
4065 BB_LV_SET (from) = to_lv_set;
4069 bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4071 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4072 BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4077 /* Exchange av sets of TO and FROM. */
4078 static void
4079 exchange_av_sets (basic_block to, basic_block from)
4082 av_set_t to_av_set = BB_AV_SET (to);
4084 BB_AV_SET (to) = BB_AV_SET (from);
4085 BB_AV_SET (from) = to_av_set;
4089 int to_av_level = BB_AV_LEVEL (to);
4091 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4092 BB_AV_LEVEL (from) = to_av_level;
4096 /* Exchange data sets of TO and FROM. */
4097 void
4098 exchange_data_sets (basic_block to, basic_block from)
4100 exchange_lv_sets (to, from);
4101 exchange_av_sets (to, from);
4104 /* Copy data sets of FROM to TO. */
4105 void
4106 copy_data_sets (basic_block to, basic_block from)
4108 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4109 gcc_assert (BB_AV_SET (to) == NULL);
4111 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4112 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4114 if (BB_AV_SET_VALID_P (from))
4116 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4118 if (BB_LV_SET_VALID_P (from))
4120 gcc_assert (BB_LV_SET (to) != NULL);
4121 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4125 /* Return an av set for INSN, if any. */
4126 av_set_t
4127 get_av_set (insn_t insn)
4129 av_set_t av_set;
4131 gcc_assert (AV_SET_VALID_P (insn));
4133 if (sel_bb_head_p (insn))
4134 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4135 else
4136 av_set = NULL;
4138 return av_set;
4141 /* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4143 get_av_level (insn_t insn)
4145 int av_level;
4147 gcc_assert (INSN_P (insn));
4149 if (sel_bb_head_p (insn))
4150 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4151 else
4152 av_level = INSN_WS_LEVEL (insn);
4154 return av_level;
4159 /* Variables to work with control-flow graph. */
4161 /* The basic block that already has been processed by the sched_data_update (),
4162 but hasn't been in sel_add_bb () yet. */
4163 static VEC (basic_block, heap) *last_added_blocks = NULL;
4165 /* A pool for allocating successor infos. */
4166 static struct
4168 /* A stack for saving succs_info structures. */
4169 struct succs_info *stack;
4171 /* Its size. */
4172 int size;
4174 /* Top of the stack. */
4175 int top;
4177 /* Maximal value of the top. */
4178 int max_top;
4179 } succs_info_pool;
4181 /* Functions to work with control-flow graph. */
4183 /* Return basic block note of BB. */
4184 insn_t
4185 sel_bb_head (basic_block bb)
4187 insn_t head;
4189 if (bb == EXIT_BLOCK_PTR)
4191 gcc_assert (exit_insn != NULL_RTX);
4192 head = exit_insn;
4194 else
4196 insn_t note;
4198 note = bb_note (bb);
4199 head = next_nonnote_insn (note);
4201 if (head && BLOCK_FOR_INSN (head) != bb)
4202 head = NULL_RTX;
4205 return head;
4208 /* Return true if INSN is a basic block header. */
4209 bool
4210 sel_bb_head_p (insn_t insn)
4212 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4215 /* Return last insn of BB. */
4216 insn_t
4217 sel_bb_end (basic_block bb)
4219 if (sel_bb_empty_p (bb))
4220 return NULL_RTX;
4222 gcc_assert (bb != EXIT_BLOCK_PTR);
4224 return BB_END (bb);
4227 /* Return true if INSN is the last insn in its basic block. */
4228 bool
4229 sel_bb_end_p (insn_t insn)
4231 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4234 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4235 bool
4236 sel_bb_empty_p (basic_block bb)
4238 return sel_bb_head (bb) == NULL;
4241 /* True when BB belongs to the current scheduling region. */
4242 bool
4243 in_current_region_p (basic_block bb)
4245 if (bb->index < NUM_FIXED_BLOCKS)
4246 return false;
4248 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4251 /* Return the block which is a fallthru bb of a conditional jump JUMP. */
4252 basic_block
4253 fallthru_bb_of_jump (rtx jump)
4255 if (!JUMP_P (jump))
4256 return NULL;
4258 if (any_uncondjump_p (jump))
4259 return single_succ (BLOCK_FOR_INSN (jump));
4261 if (!any_condjump_p (jump))
4262 return NULL;
4264 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4267 /* Remove all notes from BB. */
4268 static void
4269 init_bb (basic_block bb)
4271 remove_notes (bb_note (bb), BB_END (bb));
4272 BB_NOTE_LIST (bb) = note_list;
4275 void
4276 sel_init_bbs (bb_vec_t bbs, basic_block bb)
4278 const struct sched_scan_info_def ssi =
4280 extend_bb_info, /* extend_bb */
4281 init_bb, /* init_bb */
4282 NULL, /* extend_insn */
4283 NULL /* init_insn */
4286 sched_scan (&ssi, bbs, bb, new_insns, NULL);
4289 /* Restore other notes for the whole region. */
4290 static void
4291 sel_restore_other_notes (void)
4293 int bb;
4295 for (bb = 0; bb < current_nr_blocks; bb++)
4297 basic_block first, last;
4299 first = EBB_FIRST_BB (bb);
4300 last = EBB_LAST_BB (bb)->next_bb;
4304 note_list = BB_NOTE_LIST (first);
4305 restore_other_notes (NULL, first);
4306 BB_NOTE_LIST (first) = NULL_RTX;
4308 first = first->next_bb;
4310 while (first != last);
4314 /* Free per-bb data structures. */
4315 void
4316 sel_finish_bbs (void)
4318 sel_restore_other_notes ();
4320 /* Remove current loop preheader from this loop. */
4321 if (current_loop_nest)
4322 sel_remove_loop_preheader ();
4324 finish_region_bb_info ();
4327 /* Return true if INSN has a single successor of type FLAGS. */
4328 bool
4329 sel_insn_has_single_succ_p (insn_t insn, int flags)
4331 insn_t succ;
4332 succ_iterator si;
4333 bool first_p = true;
4335 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4337 if (first_p)
4338 first_p = false;
4339 else
4340 return false;
4343 return true;
4346 /* Allocate successor's info. */
4347 static struct succs_info *
4348 alloc_succs_info (void)
4350 if (succs_info_pool.top == succs_info_pool.max_top)
4352 int i;
4354 if (++succs_info_pool.max_top >= succs_info_pool.size)
4355 gcc_unreachable ();
4357 i = ++succs_info_pool.top;
4358 succs_info_pool.stack[i].succs_ok = VEC_alloc (rtx, heap, 10);
4359 succs_info_pool.stack[i].succs_other = VEC_alloc (rtx, heap, 10);
4360 succs_info_pool.stack[i].probs_ok = VEC_alloc (int, heap, 10);
4362 else
4363 succs_info_pool.top++;
4365 return &succs_info_pool.stack[succs_info_pool.top];
4368 /* Free successor's info. */
4369 void
4370 free_succs_info (struct succs_info * sinfo)
4372 gcc_assert (succs_info_pool.top >= 0
4373 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4374 succs_info_pool.top--;
4376 /* Clear stale info. */
4377 VEC_block_remove (rtx, sinfo->succs_ok,
4378 0, VEC_length (rtx, sinfo->succs_ok));
4379 VEC_block_remove (rtx, sinfo->succs_other,
4380 0, VEC_length (rtx, sinfo->succs_other));
4381 VEC_block_remove (int, sinfo->probs_ok,
4382 0, VEC_length (int, sinfo->probs_ok));
4383 sinfo->all_prob = 0;
4384 sinfo->succs_ok_n = 0;
4385 sinfo->all_succs_n = 0;
4388 /* Compute successor info for INSN. FLAGS are the flags passed
4389 to the FOR_EACH_SUCC_1 iterator. */
4390 struct succs_info *
4391 compute_succs_info (insn_t insn, short flags)
4393 succ_iterator si;
4394 insn_t succ;
4395 struct succs_info *sinfo = alloc_succs_info ();
4397 /* Traverse *all* successors and decide what to do with each. */
4398 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4400 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4401 perform code motion through inner loops. */
4402 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4404 if (current_flags & flags)
4406 VEC_safe_push (rtx, heap, sinfo->succs_ok, succ);
4407 VEC_safe_push (int, heap, sinfo->probs_ok,
4408 /* FIXME: Improve calculation when skipping
4409 inner loop to exits. */
4410 (si.bb_end
4411 ? si.e1->probability
4412 : REG_BR_PROB_BASE));
4413 sinfo->succs_ok_n++;
4415 else
4416 VEC_safe_push (rtx, heap, sinfo->succs_other, succ);
4418 /* Compute all_prob. */
4419 if (!si.bb_end)
4420 sinfo->all_prob = REG_BR_PROB_BASE;
4421 else
4422 sinfo->all_prob += si.e1->probability;
4424 sinfo->all_succs_n++;
4427 return sinfo;
4430 /* Return the predecessors of BB in PREDS and their number in N.
4431 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4432 static void
4433 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4435 edge e;
4436 edge_iterator ei;
4438 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4440 FOR_EACH_EDGE (e, ei, bb->preds)
4442 basic_block pred_bb = e->src;
4443 insn_t bb_end = BB_END (pred_bb);
4445 /* ??? This code is not supposed to walk out of a region. */
4446 gcc_assert (in_current_region_p (pred_bb));
4448 if (sel_bb_empty_p (pred_bb))
4449 cfg_preds_1 (pred_bb, preds, n, size);
4450 else
4452 if (*n == *size)
4453 *preds = XRESIZEVEC (insn_t, *preds,
4454 (*size = 2 * *size + 1));
4455 (*preds)[(*n)++] = bb_end;
4459 gcc_assert (*n != 0);
4462 /* Find all predecessors of BB and record them in PREDS and their number
4463 in N. Empty blocks are skipped, and only normal (forward in-region)
4464 edges are processed. */
4465 static void
4466 cfg_preds (basic_block bb, insn_t **preds, int *n)
4468 int size = 0;
4470 *preds = NULL;
4471 *n = 0;
4472 cfg_preds_1 (bb, preds, n, &size);
4475 /* Returns true if we are moving INSN through join point. */
4476 bool
4477 sel_num_cfg_preds_gt_1 (insn_t insn)
4479 basic_block bb;
4481 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4482 return false;
4484 bb = BLOCK_FOR_INSN (insn);
4486 while (1)
4488 if (EDGE_COUNT (bb->preds) > 1)
4489 return true;
4491 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4492 bb = EDGE_PRED (bb, 0)->src;
4494 if (!sel_bb_empty_p (bb))
4495 break;
4498 return false;
4501 /* Returns true when BB should be the end of an ebb. Adapted from the
4502 code in sched-ebb.c. */
4503 bool
4504 bb_ends_ebb_p (basic_block bb)
4506 basic_block next_bb = bb_next_bb (bb);
4507 edge e;
4508 edge_iterator ei;
4510 if (next_bb == EXIT_BLOCK_PTR
4511 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4512 || (LABEL_P (BB_HEAD (next_bb))
4513 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4514 Work around that. */
4515 && !single_pred_p (next_bb)))
4516 return true;
4518 if (!in_current_region_p (next_bb))
4519 return true;
4521 FOR_EACH_EDGE (e, ei, bb->succs)
4522 if ((e->flags & EDGE_FALLTHRU) != 0)
4524 gcc_assert (e->dest == next_bb);
4526 return false;
4529 return true;
4532 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4533 successor of INSN. */
4534 bool
4535 in_same_ebb_p (insn_t insn, insn_t succ)
4537 basic_block ptr = BLOCK_FOR_INSN (insn);
4539 for(;;)
4541 if (ptr == BLOCK_FOR_INSN (succ))
4542 return true;
4544 if (bb_ends_ebb_p (ptr))
4545 return false;
4547 ptr = bb_next_bb (ptr);
4550 gcc_unreachable ();
4551 return false;
4554 /* Recomputes the reverse topological order for the function and
4555 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4556 modified appropriately. */
4557 static void
4558 recompute_rev_top_order (void)
4560 int *postorder;
4561 int n_blocks, i;
4563 if (!rev_top_order_index || rev_top_order_index_len < last_basic_block)
4565 rev_top_order_index_len = last_basic_block;
4566 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4567 rev_top_order_index_len);
4570 postorder = XNEWVEC (int, n_basic_blocks);
4572 n_blocks = post_order_compute (postorder, true, false);
4573 gcc_assert (n_basic_blocks == n_blocks);
4575 /* Build reverse function: for each basic block with BB->INDEX == K
4576 rev_top_order_index[K] is it's reverse topological sort number. */
4577 for (i = 0; i < n_blocks; i++)
4579 gcc_assert (postorder[i] < rev_top_order_index_len);
4580 rev_top_order_index[postorder[i]] = i;
4583 free (postorder);
4586 /* Clear all flags from insns in BB that could spoil its rescheduling. */
4587 void
4588 clear_outdated_rtx_info (basic_block bb)
4590 rtx insn;
4592 FOR_BB_INSNS (bb, insn)
4593 if (INSN_P (insn))
4595 SCHED_GROUP_P (insn) = 0;
4596 INSN_AFTER_STALL_P (insn) = 0;
4597 INSN_SCHED_TIMES (insn) = 0;
4598 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4600 /* We cannot use the changed caches, as previously we could ignore
4601 the LHS dependence due to enabled renaming and transform
4602 the expression, and currently we'll be unable to do this. */
4603 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4607 /* Add BB_NOTE to the pool of available basic block notes. */
4608 static void
4609 return_bb_to_pool (basic_block bb)
4611 rtx note = bb_note (bb);
4613 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4614 && bb->aux == NULL);
4616 /* It turns out that current cfg infrastructure does not support
4617 reuse of basic blocks. Don't bother for now. */
4618 /*VEC_safe_push (rtx, heap, bb_note_pool, note);*/
4621 /* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4622 static rtx
4623 get_bb_note_from_pool (void)
4625 if (VEC_empty (rtx, bb_note_pool))
4626 return NULL_RTX;
4627 else
4629 rtx note = VEC_pop (rtx, bb_note_pool);
4631 PREV_INSN (note) = NULL_RTX;
4632 NEXT_INSN (note) = NULL_RTX;
4634 return note;
4638 /* Free bb_note_pool. */
4639 void
4640 free_bb_note_pool (void)
4642 VEC_free (rtx, heap, bb_note_pool);
4645 /* Setup scheduler pool and successor structure. */
4646 void
4647 alloc_sched_pools (void)
4649 int succs_size;
4651 succs_size = MAX_WS + 1;
4652 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
4653 succs_info_pool.size = succs_size;
4654 succs_info_pool.top = -1;
4655 succs_info_pool.max_top = -1;
4657 sched_lists_pool = create_alloc_pool ("sel-sched-lists",
4658 sizeof (struct _list_node), 500);
4661 /* Free the pools. */
4662 void
4663 free_sched_pools (void)
4665 int i;
4667 free_alloc_pool (sched_lists_pool);
4668 gcc_assert (succs_info_pool.top == -1);
4669 for (i = 0; i < succs_info_pool.max_top; i++)
4671 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_ok);
4672 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_other);
4673 VEC_free (int, heap, succs_info_pool.stack[i].probs_ok);
4675 free (succs_info_pool.stack);
4679 /* Returns a position in RGN where BB can be inserted retaining
4680 topological order. */
4681 static int
4682 find_place_to_insert_bb (basic_block bb, int rgn)
4684 bool has_preds_outside_rgn = false;
4685 edge e;
4686 edge_iterator ei;
4688 /* Find whether we have preds outside the region. */
4689 FOR_EACH_EDGE (e, ei, bb->preds)
4690 if (!in_current_region_p (e->src))
4692 has_preds_outside_rgn = true;
4693 break;
4696 /* Recompute the top order -- needed when we have > 1 pred
4697 and in case we don't have preds outside. */
4698 if (flag_sel_sched_pipelining_outer_loops
4699 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
4701 int i, bbi = bb->index, cur_bbi;
4703 recompute_rev_top_order ();
4704 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
4706 cur_bbi = BB_TO_BLOCK (i);
4707 if (rev_top_order_index[bbi]
4708 < rev_top_order_index[cur_bbi])
4709 break;
4712 /* We skipped the right block, so we increase i. We accomodate
4713 it for increasing by step later, so we decrease i. */
4714 return (i + 1) - 1;
4716 else if (has_preds_outside_rgn)
4718 /* This is the case when we generate an extra empty block
4719 to serve as region head during pipelining. */
4720 e = EDGE_SUCC (bb, 0);
4721 gcc_assert (EDGE_COUNT (bb->succs) == 1
4722 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
4723 && (BLOCK_TO_BB (e->dest->index) == 0));
4724 return -1;
4727 /* We don't have preds outside the region. We should have
4728 the only pred, because the multiple preds case comes from
4729 the pipelining of outer loops, and that is handled above.
4730 Just take the bbi of this single pred. */
4731 if (EDGE_COUNT (bb->succs) > 0)
4733 int pred_bbi;
4735 gcc_assert (EDGE_COUNT (bb->preds) == 1);
4737 pred_bbi = EDGE_PRED (bb, 0)->src->index;
4738 return BLOCK_TO_BB (pred_bbi);
4740 else
4741 /* BB has no successors. It is safe to put it in the end. */
4742 return current_nr_blocks - 1;
4745 /* Deletes an empty basic block freeing its data. */
4746 static void
4747 delete_and_free_basic_block (basic_block bb)
4749 gcc_assert (sel_bb_empty_p (bb));
4751 if (BB_LV_SET (bb))
4752 free_lv_set (bb);
4754 bitmap_clear_bit (blocks_to_reschedule, bb->index);
4756 /* Can't assert av_set properties because we use sel_aremove_bb
4757 when removing loop preheader from the region. At the point of
4758 removing the preheader we already have deallocated sel_region_bb_info. */
4759 gcc_assert (BB_LV_SET (bb) == NULL
4760 && !BB_LV_SET_VALID_P (bb)
4761 && BB_AV_LEVEL (bb) == 0
4762 && BB_AV_SET (bb) == NULL);
4764 delete_basic_block (bb);
4767 /* Add BB to the current region and update the region data. */
4768 static void
4769 add_block_to_current_region (basic_block bb)
4771 int i, pos, bbi = -2, rgn;
4773 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
4774 bbi = find_place_to_insert_bb (bb, rgn);
4775 bbi += 1;
4776 pos = RGN_BLOCKS (rgn) + bbi;
4778 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
4779 && ebb_head[bbi] == pos);
4781 /* Make a place for the new block. */
4782 extend_regions ();
4784 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
4785 BLOCK_TO_BB (rgn_bb_table[i])++;
4787 memmove (rgn_bb_table + pos + 1,
4788 rgn_bb_table + pos,
4789 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
4791 /* Initialize data for BB. */
4792 rgn_bb_table[pos] = bb->index;
4793 BLOCK_TO_BB (bb->index) = bbi;
4794 CONTAINING_RGN (bb->index) = rgn;
4796 RGN_NR_BLOCKS (rgn)++;
4798 for (i = rgn + 1; i <= nr_regions; i++)
4799 RGN_BLOCKS (i)++;
4802 /* Remove BB from the current region and update the region data. */
4803 static void
4804 remove_bb_from_region (basic_block bb)
4806 int i, pos, bbi = -2, rgn;
4808 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
4809 bbi = BLOCK_TO_BB (bb->index);
4810 pos = RGN_BLOCKS (rgn) + bbi;
4812 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
4813 && ebb_head[bbi] == pos);
4815 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
4816 BLOCK_TO_BB (rgn_bb_table[i])--;
4818 memmove (rgn_bb_table + pos,
4819 rgn_bb_table + pos + 1,
4820 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
4822 RGN_NR_BLOCKS (rgn)--;
4823 for (i = rgn + 1; i <= nr_regions; i++)
4824 RGN_BLOCKS (i)--;
4827 /* Add BB to the current region and update all data. If BB is NULL, add all
4828 blocks from last_added_blocks vector. */
4829 static void
4830 sel_add_bb (basic_block bb)
4832 /* Extend luids so that new notes will receive zero luids. */
4833 sched_init_luids (NULL, NULL, NULL, NULL);
4834 sched_init_bbs ();
4835 sel_init_bbs (last_added_blocks, NULL);
4837 /* When bb is passed explicitly, the vector should contain
4838 the only element that equals to bb; otherwise, the vector
4839 should not be NULL. */
4840 gcc_assert (last_added_blocks != NULL);
4842 if (bb != NULL)
4844 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
4845 && VEC_index (basic_block,
4846 last_added_blocks, 0) == bb);
4847 add_block_to_current_region (bb);
4849 /* We associate creating/deleting data sets with the first insn
4850 appearing / disappearing in the bb. */
4851 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
4852 create_initial_data_sets (bb);
4854 VEC_free (basic_block, heap, last_added_blocks);
4856 else
4857 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
4859 int i;
4860 basic_block temp_bb = NULL;
4862 for (i = 0;
4863 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
4865 add_block_to_current_region (bb);
4866 temp_bb = bb;
4869 /* We need to fetch at least one bb so we know the region
4870 to update. */
4871 gcc_assert (temp_bb != NULL);
4872 bb = temp_bb;
4874 VEC_free (basic_block, heap, last_added_blocks);
4877 rgn_setup_region (CONTAINING_RGN (bb->index));
4880 /* Remove BB from the current region and update all data.
4881 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
4882 static void
4883 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
4885 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
4887 remove_bb_from_region (bb);
4888 return_bb_to_pool (bb);
4889 bitmap_clear_bit (blocks_to_reschedule, bb->index);
4891 if (remove_from_cfg_p)
4892 delete_and_free_basic_block (bb);
4894 rgn_setup_region (CONTAINING_RGN (bb->index));
4897 /* Concatenate info of EMPTY_BB to info of MERGE_BB. */
4898 static void
4899 move_bb_info (basic_block merge_bb, basic_block empty_bb)
4901 gcc_assert (in_current_region_p (merge_bb));
4903 concat_note_lists (BB_NOTE_LIST (empty_bb),
4904 &BB_NOTE_LIST (merge_bb));
4905 BB_NOTE_LIST (empty_bb) = NULL_RTX;
4909 /* Remove an empty basic block EMPTY_BB. When MERGE_UP_P is true, we put
4910 EMPTY_BB's note lists into its predecessor instead of putting them
4911 into the successor. When REMOVE_FROM_CFG_P is true, also remove
4912 the empty block. */
4913 void
4914 sel_remove_empty_bb (basic_block empty_bb, bool merge_up_p,
4915 bool remove_from_cfg_p)
4917 basic_block merge_bb;
4919 gcc_assert (sel_bb_empty_p (empty_bb));
4921 if (merge_up_p)
4923 merge_bb = empty_bb->prev_bb;
4924 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1
4925 && EDGE_PRED (empty_bb, 0)->src == merge_bb);
4927 else
4929 edge e;
4930 edge_iterator ei;
4932 merge_bb = bb_next_bb (empty_bb);
4934 /* Redirect incoming edges (except fallthrough one) of EMPTY_BB to its
4935 successor block. */
4936 for (ei = ei_start (empty_bb->preds);
4937 (e = ei_safe_edge (ei)); )
4939 if (! (e->flags & EDGE_FALLTHRU))
4940 sel_redirect_edge_and_branch (e, merge_bb);
4941 else
4942 ei_next (&ei);
4945 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1
4946 && EDGE_SUCC (empty_bb, 0)->dest == merge_bb);
4949 move_bb_info (merge_bb, empty_bb);
4950 remove_empty_bb (empty_bb, remove_from_cfg_p);
4953 /* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
4954 region, but keep it in CFG. */
4955 static void
4956 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
4958 /* The block should contain just a note or a label.
4959 We try to check whether it is unused below. */
4960 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
4961 || LABEL_P (BB_HEAD (empty_bb)));
4963 /* If basic block has predecessors or successors, redirect them. */
4964 if (remove_from_cfg_p
4965 && (EDGE_COUNT (empty_bb->preds) > 0
4966 || EDGE_COUNT (empty_bb->succs) > 0))
4968 basic_block pred;
4969 basic_block succ;
4971 /* We need to init PRED and SUCC before redirecting edges. */
4972 if (EDGE_COUNT (empty_bb->preds) > 0)
4974 edge e;
4976 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
4978 e = EDGE_PRED (empty_bb, 0);
4979 gcc_assert (e->src == empty_bb->prev_bb
4980 && (e->flags & EDGE_FALLTHRU));
4982 pred = empty_bb->prev_bb;
4984 else
4985 pred = NULL;
4987 if (EDGE_COUNT (empty_bb->succs) > 0)
4989 /* We do not check fallthruness here as above, because
4990 after removing a jump the edge may actually be not fallthru. */
4991 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
4992 succ = EDGE_SUCC (empty_bb, 0)->dest;
4994 else
4995 succ = NULL;
4997 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
4999 edge e = EDGE_PRED (empty_bb, 0);
5001 if (e->flags & EDGE_FALLTHRU)
5002 redirect_edge_succ_nodup (e, succ);
5003 else
5004 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5007 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5009 edge e = EDGE_SUCC (empty_bb, 0);
5011 if (find_edge (pred, e->dest) == NULL)
5012 redirect_edge_pred (e, pred);
5016 /* Finish removing. */
5017 sel_remove_bb (empty_bb, remove_from_cfg_p);
5020 /* An implementation of create_basic_block hook, which additionally updates
5021 per-bb data structures. */
5022 static basic_block
5023 sel_create_basic_block (void *headp, void *endp, basic_block after)
5025 basic_block new_bb;
5026 insn_t new_bb_note;
5028 gcc_assert (flag_sel_sched_pipelining_outer_loops
5029 || last_added_blocks == NULL);
5031 new_bb_note = get_bb_note_from_pool ();
5033 if (new_bb_note == NULL_RTX)
5034 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5035 else
5037 new_bb = create_basic_block_structure ((rtx) headp, (rtx) endp,
5038 new_bb_note, after);
5039 new_bb->aux = NULL;
5042 VEC_safe_push (basic_block, heap, last_added_blocks, new_bb);
5044 return new_bb;
5047 /* Implement sched_init_only_bb (). */
5048 static void
5049 sel_init_only_bb (basic_block bb, basic_block after)
5051 gcc_assert (after == NULL);
5053 extend_regions ();
5054 rgn_make_new_region_out_of_new_block (bb);
5057 /* Update the latch when we've splitted or merged it from FROM block to TO.
5058 This should be checked for all outer loops, too. */
5059 static void
5060 change_loops_latches (basic_block from, basic_block to)
5062 gcc_assert (from != to);
5064 if (current_loop_nest)
5066 struct loop *loop;
5068 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5069 if (considered_for_pipelining_p (loop) && loop->latch == from)
5071 gcc_assert (loop == current_loop_nest);
5072 loop->latch = to;
5073 gcc_assert (loop_latch_edge (loop));
5078 /* Splits BB on two basic blocks, adding it to the region and extending
5079 per-bb data structures. Returns the newly created bb. */
5080 static basic_block
5081 sel_split_block (basic_block bb, rtx after)
5083 basic_block new_bb;
5084 insn_t insn;
5086 new_bb = sched_split_block_1 (bb, after);
5087 sel_add_bb (new_bb);
5089 /* This should be called after sel_add_bb, because this uses
5090 CONTAINING_RGN for the new block, which is not yet initialized.
5091 FIXME: this function may be a no-op now. */
5092 change_loops_latches (bb, new_bb);
5094 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5095 FOR_BB_INSNS (new_bb, insn)
5096 if (INSN_P (insn))
5097 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5099 if (sel_bb_empty_p (bb))
5101 gcc_assert (!sel_bb_empty_p (new_bb));
5103 /* NEW_BB has data sets that need to be updated and BB holds
5104 data sets that should be removed. Exchange these data sets
5105 so that we won't lose BB's valid data sets. */
5106 exchange_data_sets (new_bb, bb);
5107 free_data_sets (bb);
5110 if (!sel_bb_empty_p (new_bb)
5111 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5112 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5114 return new_bb;
5117 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5118 Otherwise returns NULL. */
5119 static rtx
5120 check_for_new_jump (basic_block bb, int prev_max_uid)
5122 rtx end;
5124 end = sel_bb_end (bb);
5125 if (end && INSN_UID (end) >= prev_max_uid)
5126 return end;
5127 return NULL;
5130 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5131 New means having UID at least equal to PREV_MAX_UID. */
5132 static rtx
5133 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5135 rtx jump;
5137 /* Return immediately if no new insns were emitted. */
5138 if (get_max_uid () == prev_max_uid)
5139 return NULL;
5141 /* Now check both blocks for new jumps. It will ever be only one. */
5142 if ((jump = check_for_new_jump (from, prev_max_uid)))
5143 return jump;
5145 if (jump_bb != NULL
5146 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5147 return jump;
5148 return NULL;
5151 /* Splits E and adds the newly created basic block to the current region.
5152 Returns this basic block. */
5153 basic_block
5154 sel_split_edge (edge e)
5156 basic_block new_bb, src, other_bb = NULL;
5157 int prev_max_uid;
5158 rtx jump;
5160 src = e->src;
5161 prev_max_uid = get_max_uid ();
5162 new_bb = split_edge (e);
5164 if (flag_sel_sched_pipelining_outer_loops
5165 && current_loop_nest)
5167 int i;
5168 basic_block bb;
5170 /* Some of the basic blocks might not have been added to the loop.
5171 Add them here, until this is fixed in force_fallthru. */
5172 for (i = 0;
5173 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5174 if (!bb->loop_father)
5176 add_bb_to_loop (bb, e->dest->loop_father);
5178 gcc_assert (!other_bb && (new_bb->index != bb->index));
5179 other_bb = bb;
5183 /* Add all last_added_blocks to the region. */
5184 sel_add_bb (NULL);
5186 jump = find_new_jump (src, new_bb, prev_max_uid);
5187 if (jump)
5188 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5190 /* Put the correct lv set on this block. */
5191 if (other_bb && !sel_bb_empty_p (other_bb))
5192 compute_live (sel_bb_head (other_bb));
5194 return new_bb;
5197 /* Implement sched_create_empty_bb (). */
5198 static basic_block
5199 sel_create_empty_bb (basic_block after)
5201 basic_block new_bb;
5203 new_bb = sched_create_empty_bb_1 (after);
5205 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5206 later. */
5207 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5208 && VEC_index (basic_block, last_added_blocks, 0) == new_bb);
5210 VEC_free (basic_block, heap, last_added_blocks);
5211 return new_bb;
5214 /* Implement sched_create_recovery_block. ORIG_INSN is where block
5215 will be splitted to insert a check. */
5216 basic_block
5217 sel_create_recovery_block (insn_t orig_insn)
5219 basic_block first_bb, second_bb, recovery_block;
5220 basic_block before_recovery = NULL;
5221 rtx jump;
5223 first_bb = BLOCK_FOR_INSN (orig_insn);
5224 if (sel_bb_end_p (orig_insn))
5226 /* Avoid introducing an empty block while splitting. */
5227 gcc_assert (single_succ_p (first_bb));
5228 second_bb = single_succ (first_bb);
5230 else
5231 second_bb = sched_split_block (first_bb, orig_insn);
5233 recovery_block = sched_create_recovery_block (&before_recovery);
5234 if (before_recovery)
5235 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR);
5237 gcc_assert (sel_bb_empty_p (recovery_block));
5238 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5239 if (current_loops != NULL)
5240 add_bb_to_loop (recovery_block, first_bb->loop_father);
5242 sel_add_bb (recovery_block);
5244 jump = BB_END (recovery_block);
5245 gcc_assert (sel_bb_head (recovery_block) == jump);
5246 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5248 return recovery_block;
5251 /* Merge basic block B into basic block A. */
5252 void
5253 sel_merge_blocks (basic_block a, basic_block b)
5255 gcc_assert (can_merge_blocks_p (a, b));
5257 sel_remove_empty_bb (b, true, false);
5258 merge_blocks (a, b);
5260 change_loops_latches (b, a);
5263 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5264 data structures for possibly created bb and insns. Returns the newly
5265 added bb or NULL, when a bb was not needed. */
5266 void
5267 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5269 basic_block jump_bb, src;
5270 int prev_max_uid;
5271 rtx jump;
5273 gcc_assert (!sel_bb_empty_p (e->src));
5275 src = e->src;
5276 prev_max_uid = get_max_uid ();
5277 jump_bb = redirect_edge_and_branch_force (e, to);
5279 if (jump_bb != NULL)
5280 sel_add_bb (jump_bb);
5282 /* This function could not be used to spoil the loop structure by now,
5283 thus we don't care to update anything. But check it to be sure. */
5284 if (current_loop_nest
5285 && pipelining_p)
5286 gcc_assert (loop_latch_edge (current_loop_nest));
5288 jump = find_new_jump (src, jump_bb, prev_max_uid);
5289 if (jump)
5290 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5293 /* A wrapper for redirect_edge_and_branch. */
5294 void
5295 sel_redirect_edge_and_branch (edge e, basic_block to)
5297 bool latch_edge_p;
5298 basic_block src;
5299 int prev_max_uid;
5300 rtx jump;
5302 latch_edge_p = (pipelining_p
5303 && current_loop_nest
5304 && e == loop_latch_edge (current_loop_nest));
5306 src = e->src;
5307 prev_max_uid = get_max_uid ();
5309 redirect_edge_and_branch (e, to);
5310 gcc_assert (last_added_blocks == NULL);
5312 /* When we've redirected a latch edge, update the header. */
5313 if (latch_edge_p)
5315 current_loop_nest->header = to;
5316 gcc_assert (loop_latch_edge (current_loop_nest));
5319 jump = find_new_jump (src, NULL, prev_max_uid);
5320 if (jump)
5321 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5324 /* This variable holds the cfg hooks used by the selective scheduler. */
5325 static struct cfg_hooks sel_cfg_hooks;
5327 /* Register sel-sched cfg hooks. */
5328 void
5329 sel_register_cfg_hooks (void)
5331 sched_split_block = sel_split_block;
5333 orig_cfg_hooks = get_cfg_hooks ();
5334 sel_cfg_hooks = orig_cfg_hooks;
5336 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5338 set_cfg_hooks (sel_cfg_hooks);
5340 sched_init_only_bb = sel_init_only_bb;
5341 sched_split_block = sel_split_block;
5342 sched_create_empty_bb = sel_create_empty_bb;
5345 /* Unregister sel-sched cfg hooks. */
5346 void
5347 sel_unregister_cfg_hooks (void)
5349 sched_create_empty_bb = NULL;
5350 sched_split_block = NULL;
5351 sched_init_only_bb = NULL;
5353 set_cfg_hooks (orig_cfg_hooks);
5357 /* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5358 LABEL is where this jump should be directed. */
5360 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5362 rtx insn_rtx;
5364 gcc_assert (!INSN_P (pattern));
5366 start_sequence ();
5368 if (label == NULL_RTX)
5369 insn_rtx = emit_insn (pattern);
5370 else
5372 insn_rtx = emit_jump_insn (pattern);
5373 JUMP_LABEL (insn_rtx) = label;
5374 ++LABEL_NUSES (label);
5377 end_sequence ();
5379 sched_init_luids (NULL, NULL, NULL, NULL);
5380 sched_extend_target ();
5381 sched_deps_init (false);
5383 /* Initialize INSN_CODE now. */
5384 recog_memoized (insn_rtx);
5385 return insn_rtx;
5388 /* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5389 must not be clonable. */
5390 vinsn_t
5391 create_vinsn_from_insn_rtx (rtx insn_rtx, bool force_unique_p)
5393 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5395 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5396 return vinsn_create (insn_rtx, force_unique_p);
5399 /* Create a copy of INSN_RTX. */
5401 create_copy_of_insn_rtx (rtx insn_rtx)
5403 rtx res;
5405 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5407 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5408 NULL_RTX);
5409 return res;
5412 /* Change vinsn field of EXPR to hold NEW_VINSN. */
5413 void
5414 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5416 vinsn_detach (EXPR_VINSN (expr));
5418 EXPR_VINSN (expr) = new_vinsn;
5419 vinsn_attach (new_vinsn);
5422 /* Helpers for global init. */
5423 /* This structure is used to be able to call existing bundling mechanism
5424 and calculate insn priorities. */
5425 static struct haifa_sched_info sched_sel_haifa_sched_info =
5427 NULL, /* init_ready_list */
5428 NULL, /* can_schedule_ready_p */
5429 NULL, /* schedule_more_p */
5430 NULL, /* new_ready */
5431 NULL, /* rgn_rank */
5432 sel_print_insn, /* rgn_print_insn */
5433 contributes_to_priority,
5435 NULL, NULL,
5436 NULL, NULL,
5437 0, 0,
5439 NULL, /* add_remove_insn */
5440 NULL, /* begin_schedule_ready */
5441 NULL, /* advance_target_bb */
5442 SEL_SCHED | NEW_BBS
5445 /* Setup special insns used in the scheduler. */
5446 void
5447 setup_nop_and_exit_insns (void)
5449 gcc_assert (nop_pattern == NULL_RTX
5450 && exit_insn == NULL_RTX);
5452 nop_pattern = gen_nop ();
5454 start_sequence ();
5455 emit_insn (nop_pattern);
5456 exit_insn = get_insns ();
5457 end_sequence ();
5458 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR);
5461 /* Free special insns used in the scheduler. */
5462 void
5463 free_nop_and_exit_insns (void)
5465 exit_insn = NULL_RTX;
5466 nop_pattern = NULL_RTX;
5469 /* Setup a special vinsn used in new insns initialization. */
5470 void
5471 setup_nop_vinsn (void)
5473 nop_vinsn = vinsn_create (exit_insn, false);
5474 vinsn_attach (nop_vinsn);
5477 /* Free a special vinsn used in new insns initialization. */
5478 void
5479 free_nop_vinsn (void)
5481 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5482 vinsn_detach (nop_vinsn);
5483 nop_vinsn = NULL;
5486 /* Call a set_sched_flags hook. */
5487 void
5488 sel_set_sched_flags (void)
5490 /* ??? This means that set_sched_flags were called, and we decided to
5491 support speculation. However, set_sched_flags also modifies flags
5492 on current_sched_info, doing this only at global init. And we
5493 sometimes change c_s_i later. So put the correct flags again. */
5494 if (spec_info && targetm.sched.set_sched_flags)
5495 targetm.sched.set_sched_flags (spec_info);
5498 /* Setup pointers to global sched info structures. */
5499 void
5500 sel_setup_sched_infos (void)
5502 rgn_setup_common_sched_info ();
5504 memcpy (&sel_common_sched_info, common_sched_info,
5505 sizeof (sel_common_sched_info));
5507 sel_common_sched_info.fix_recovery_cfg = NULL;
5508 sel_common_sched_info.add_block = NULL;
5509 sel_common_sched_info.estimate_number_of_insns
5510 = sel_estimate_number_of_insns;
5511 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5512 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5514 common_sched_info = &sel_common_sched_info;
5516 current_sched_info = &sched_sel_haifa_sched_info;
5517 current_sched_info->sched_max_insns_priority =
5518 get_rgn_sched_max_insns_priority ();
5520 sel_set_sched_flags ();
5524 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5525 *BB_ORD_INDEX after that is increased. */
5526 static void
5527 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5529 RGN_NR_BLOCKS (rgn) += 1;
5530 RGN_DONT_CALC_DEPS (rgn) = 0;
5531 RGN_HAS_REAL_EBB (rgn) = 0;
5532 CONTAINING_RGN (bb->index) = rgn;
5533 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5534 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5535 (*bb_ord_index)++;
5537 /* FIXME: it is true only when not scheduling ebbs. */
5538 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5541 /* Functions to support pipelining of outer loops. */
5543 /* Creates a new empty region and returns it's number. */
5544 static int
5545 sel_create_new_region (void)
5547 int new_rgn_number = nr_regions;
5549 RGN_NR_BLOCKS (new_rgn_number) = 0;
5551 /* FIXME: This will work only when EBBs are not created. */
5552 if (new_rgn_number != 0)
5553 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5554 RGN_NR_BLOCKS (new_rgn_number - 1);
5555 else
5556 RGN_BLOCKS (new_rgn_number) = 0;
5558 /* Set the blocks of the next region so the other functions may
5559 calculate the number of blocks in the region. */
5560 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5561 RGN_NR_BLOCKS (new_rgn_number);
5563 nr_regions++;
5565 return new_rgn_number;
5568 /* If X has a smaller topological sort number than Y, returns -1;
5569 if greater, returns 1. */
5570 static int
5571 bb_top_order_comparator (const void *x, const void *y)
5573 basic_block bb1 = *(const basic_block *) x;
5574 basic_block bb2 = *(const basic_block *) y;
5576 gcc_assert (bb1 == bb2
5577 || rev_top_order_index[bb1->index]
5578 != rev_top_order_index[bb2->index]);
5580 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5581 bbs with greater number should go earlier. */
5582 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5583 return -1;
5584 else
5585 return 1;
5588 /* Create a region for LOOP and return its number. If we don't want
5589 to pipeline LOOP, return -1. */
5590 static int
5591 make_region_from_loop (struct loop *loop)
5593 unsigned int i;
5594 int new_rgn_number = -1;
5595 struct loop *inner;
5597 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5598 int bb_ord_index = 0;
5599 basic_block *loop_blocks;
5600 basic_block preheader_block;
5602 if (loop->num_nodes
5603 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5604 return -1;
5606 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
5607 for (inner = loop->inner; inner; inner = inner->inner)
5608 if (flow_bb_inside_loop_p (inner, loop->latch))
5609 return -1;
5611 loop->ninsns = num_loop_insns (loop);
5612 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
5613 return -1;
5615 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
5617 for (i = 0; i < loop->num_nodes; i++)
5618 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
5620 free (loop_blocks);
5621 return -1;
5624 preheader_block = loop_preheader_edge (loop)->src;
5625 gcc_assert (preheader_block);
5626 gcc_assert (loop_blocks[0] == loop->header);
5628 new_rgn_number = sel_create_new_region ();
5630 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
5631 SET_BIT (bbs_in_loop_rgns, preheader_block->index);
5633 for (i = 0; i < loop->num_nodes; i++)
5635 /* Add only those blocks that haven't been scheduled in the inner loop.
5636 The exception is the basic blocks with bookkeeping code - they should
5637 be added to the region (and they actually don't belong to the loop
5638 body, but to the region containing that loop body). */
5640 gcc_assert (new_rgn_number >= 0);
5642 if (! TEST_BIT (bbs_in_loop_rgns, loop_blocks[i]->index))
5644 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
5645 new_rgn_number);
5646 SET_BIT (bbs_in_loop_rgns, loop_blocks[i]->index);
5650 free (loop_blocks);
5651 MARK_LOOP_FOR_PIPELINING (loop);
5653 return new_rgn_number;
5656 /* Create a new region from preheader blocks LOOP_BLOCKS. */
5657 void
5658 make_region_from_loop_preheader (VEC(basic_block, heap) **loop_blocks)
5660 unsigned int i;
5661 int new_rgn_number = -1;
5662 basic_block bb;
5664 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5665 int bb_ord_index = 0;
5667 new_rgn_number = sel_create_new_region ();
5669 for (i = 0; VEC_iterate (basic_block, *loop_blocks, i, bb); i++)
5671 gcc_assert (new_rgn_number >= 0);
5673 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
5676 VEC_free (basic_block, heap, *loop_blocks);
5677 gcc_assert (*loop_blocks == NULL);
5681 /* Create region(s) from loop nest LOOP, such that inner loops will be
5682 pipelined before outer loops. Returns true when a region for LOOP
5683 is created. */
5684 static bool
5685 make_regions_from_loop_nest (struct loop *loop)
5687 struct loop *cur_loop;
5688 int rgn_number;
5690 /* Traverse all inner nodes of the loop. */
5691 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
5692 if (! TEST_BIT (bbs_in_loop_rgns, cur_loop->header->index))
5693 return false;
5695 /* At this moment all regular inner loops should have been pipelined.
5696 Try to create a region from this loop. */
5697 rgn_number = make_region_from_loop (loop);
5699 if (rgn_number < 0)
5700 return false;
5702 VEC_safe_push (loop_p, heap, loop_nests, loop);
5703 return true;
5706 /* Initalize data structures needed. */
5707 void
5708 sel_init_pipelining (void)
5710 /* Collect loop information to be used in outer loops pipelining. */
5711 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
5712 | LOOPS_HAVE_FALLTHRU_PREHEADERS
5713 | LOOPS_HAVE_RECORDED_EXITS
5714 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
5715 current_loop_nest = NULL;
5717 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block);
5718 sbitmap_zero (bbs_in_loop_rgns);
5720 recompute_rev_top_order ();
5723 /* Returns a struct loop for region RGN. */
5724 loop_p
5725 get_loop_nest_for_rgn (unsigned int rgn)
5727 /* Regions created with extend_rgns don't have corresponding loop nests,
5728 because they don't represent loops. */
5729 if (rgn < VEC_length (loop_p, loop_nests))
5730 return VEC_index (loop_p, loop_nests, rgn);
5731 else
5732 return NULL;
5735 /* True when LOOP was included into pipelining regions. */
5736 bool
5737 considered_for_pipelining_p (struct loop *loop)
5739 if (loop_depth (loop) == 0)
5740 return false;
5742 /* Now, the loop could be too large or irreducible. Check whether its
5743 region is in LOOP_NESTS.
5744 We determine the region number of LOOP as the region number of its
5745 latch. We can't use header here, because this header could be
5746 just removed preheader and it will give us the wrong region number.
5747 Latch can't be used because it could be in the inner loop too. */
5748 if (LOOP_MARKED_FOR_PIPELINING_P (loop) && pipelining_p)
5750 int rgn = CONTAINING_RGN (loop->latch->index);
5752 gcc_assert ((unsigned) rgn < VEC_length (loop_p, loop_nests));
5753 return true;
5756 return false;
5759 /* Makes regions from the rest of the blocks, after loops are chosen
5760 for pipelining. */
5761 static void
5762 make_regions_from_the_rest (void)
5764 int cur_rgn_blocks;
5765 int *loop_hdr;
5766 int i;
5768 basic_block bb;
5769 edge e;
5770 edge_iterator ei;
5771 int *degree;
5772 int new_regions;
5774 /* Index in rgn_bb_table where to start allocating new regions. */
5775 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
5776 new_regions = nr_regions;
5778 /* Make regions from all the rest basic blocks - those that don't belong to
5779 any loop or belong to irreducible loops. Prepare the data structures
5780 for extend_rgns. */
5782 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
5783 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
5784 loop. */
5785 loop_hdr = XNEWVEC (int, last_basic_block);
5786 degree = XCNEWVEC (int, last_basic_block);
5789 /* For each basic block that belongs to some loop assign the number
5790 of innermost loop it belongs to. */
5791 for (i = 0; i < last_basic_block; i++)
5792 loop_hdr[i] = -1;
5794 FOR_EACH_BB (bb)
5796 if (bb->loop_father && !bb->loop_father->num == 0
5797 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
5798 loop_hdr[bb->index] = bb->loop_father->num;
5801 /* For each basic block degree is calculated as the number of incoming
5802 edges, that are going out of bbs that are not yet scheduled.
5803 The basic blocks that are scheduled have degree value of zero. */
5804 FOR_EACH_BB (bb)
5806 degree[bb->index] = 0;
5808 if (!TEST_BIT (bbs_in_loop_rgns, bb->index))
5810 FOR_EACH_EDGE (e, ei, bb->preds)
5811 if (!TEST_BIT (bbs_in_loop_rgns, e->src->index))
5812 degree[bb->index]++;
5814 else
5815 degree[bb->index] = -1;
5818 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
5820 /* Any block that did not end up in a region is placed into a region
5821 by itself. */
5822 FOR_EACH_BB (bb)
5823 if (degree[bb->index] >= 0)
5825 rgn_bb_table[cur_rgn_blocks] = bb->index;
5826 RGN_NR_BLOCKS (nr_regions) = 1;
5827 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
5828 RGN_DONT_CALC_DEPS (nr_regions) = 0;
5829 RGN_HAS_REAL_EBB (nr_regions) = 0;
5830 CONTAINING_RGN (bb->index) = nr_regions++;
5831 BLOCK_TO_BB (bb->index) = 0;
5834 free (degree);
5835 free (loop_hdr);
5838 /* Free data structures used in pipelining of loops. */
5839 void sel_finish_pipelining (void)
5841 loop_iterator li;
5842 struct loop *loop;
5844 /* Release aux fields so we don't free them later by mistake. */
5845 FOR_EACH_LOOP (li, loop, 0)
5846 loop->aux = NULL;
5848 loop_optimizer_finalize ();
5850 VEC_free (loop_p, heap, loop_nests);
5852 free (rev_top_order_index);
5853 rev_top_order_index = NULL;
5856 /* This function replaces the find_rgns when
5857 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
5858 void
5859 sel_find_rgns (void)
5861 sel_init_pipelining ();
5862 extend_regions ();
5864 if (current_loops)
5866 loop_p loop;
5867 loop_iterator li;
5869 FOR_EACH_LOOP (li, loop, (flag_sel_sched_pipelining_outer_loops
5870 ? LI_FROM_INNERMOST
5871 : LI_ONLY_INNERMOST))
5872 make_regions_from_loop_nest (loop);
5875 /* Make regions from all the rest basic blocks and schedule them.
5876 These blocks include blocks that don't belong to any loop or belong
5877 to irreducible loops. */
5878 make_regions_from_the_rest ();
5880 /* We don't need bbs_in_loop_rgns anymore. */
5881 sbitmap_free (bbs_in_loop_rgns);
5882 bbs_in_loop_rgns = NULL;
5885 /* Adds the preheader blocks from previous loop to current region taking
5886 it from LOOP_PREHEADER_BLOCKS (current_loop_nest).
5887 This function is only used with -fsel-sched-pipelining-outer-loops. */
5888 void
5889 sel_add_loop_preheaders (void)
5891 int i;
5892 basic_block bb;
5893 VEC(basic_block, heap) *preheader_blocks
5894 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
5896 for (i = 0;
5897 VEC_iterate (basic_block, preheader_blocks, i, bb);
5898 i++)
5899 sel_add_bb (bb);
5901 VEC_free (basic_block, heap, preheader_blocks);
5904 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
5905 Please note that the function should also work when pipelining_p is
5906 false, because it is used when deciding whether we should or should
5907 not reschedule pipelined code. */
5908 bool
5909 sel_is_loop_preheader_p (basic_block bb)
5911 if (current_loop_nest)
5913 struct loop *outer;
5915 if (preheader_removed)
5916 return false;
5918 /* Preheader is the first block in the region. */
5919 if (BLOCK_TO_BB (bb->index) == 0)
5920 return true;
5922 /* We used to find a preheader with the topological information.
5923 Check that the above code is equivalent to what we did before. */
5925 if (in_current_region_p (current_loop_nest->header))
5926 gcc_assert (!(BLOCK_TO_BB (bb->index)
5927 < BLOCK_TO_BB (current_loop_nest->header->index)));
5929 /* Support the situation when the latch block of outer loop
5930 could be from here. */
5931 for (outer = loop_outer (current_loop_nest);
5932 outer;
5933 outer = loop_outer (outer))
5934 if (considered_for_pipelining_p (outer) && outer->latch == bb)
5935 gcc_unreachable ();
5938 return false;
5941 /* Checks whether JUMP leads to basic block DEST_BB and no other blocks. */
5942 bool
5943 jump_leads_only_to_bb_p (insn_t jump, basic_block dest_bb)
5945 basic_block jump_bb = BLOCK_FOR_INSN (jump);
5947 /* It is not jump, jump with side-effects or jump can lead to several
5948 basic blocks. */
5949 if (!onlyjump_p (jump)
5950 || !any_uncondjump_p (jump))
5951 return false;
5953 /* Several outgoing edges, abnormal edge or destination of jump is
5954 not DEST_BB. */
5955 if (EDGE_COUNT (jump_bb->succs) != 1
5956 || EDGE_SUCC (jump_bb, 0)->flags & EDGE_ABNORMAL
5957 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
5958 return false;
5960 /* If not anything of the upper. */
5961 return true;
5964 /* Removes the loop preheader from the current region and saves it in
5965 PREHEADER_BLOCKS of the father loop, so they will be added later to
5966 region that represents an outer loop. */
5967 static void
5968 sel_remove_loop_preheader (void)
5970 int i, old_len;
5971 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5972 basic_block bb;
5973 bool all_empty_p = true;
5974 VEC(basic_block, heap) *preheader_blocks
5975 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
5977 gcc_assert (current_loop_nest);
5978 old_len = VEC_length (basic_block, preheader_blocks);
5980 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
5981 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
5983 bb = BASIC_BLOCK (BB_TO_BLOCK (i));
5985 /* If the basic block belongs to region, but doesn't belong to
5986 corresponding loop, then it should be a preheader. */
5987 if (sel_is_loop_preheader_p (bb))
5989 VEC_safe_push (basic_block, heap, preheader_blocks, bb);
5990 if (BB_END (bb) != bb_note (bb))
5991 all_empty_p = false;
5995 /* Remove these blocks only after iterating over the whole region. */
5996 for (i = VEC_length (basic_block, preheader_blocks) - 1;
5997 i >= old_len;
5998 i--)
6000 bb = VEC_index (basic_block, preheader_blocks, i);
6001 sel_remove_bb (bb, false);
6004 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6006 if (!all_empty_p)
6007 /* Immediately create new region from preheader. */
6008 make_region_from_loop_preheader (&preheader_blocks);
6009 else
6011 /* If all preheader blocks are empty - dont create new empty region.
6012 Instead, remove them completely. */
6013 for (i = 0; VEC_iterate (basic_block, preheader_blocks, i, bb); i++)
6015 edge e;
6016 edge_iterator ei;
6017 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6019 /* Redirect all incoming edges to next basic block. */
6020 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6022 if (! (e->flags & EDGE_FALLTHRU))
6023 redirect_edge_and_branch (e, bb->next_bb);
6024 else
6025 redirect_edge_succ (e, bb->next_bb);
6027 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6028 delete_and_free_basic_block (bb);
6030 /* Check if after deleting preheader there is a nonconditional
6031 jump in PREV_BB that leads to the next basic block NEXT_BB.
6032 If it is so - delete this jump and clear data sets of its
6033 basic block if it becomes empty. */
6034 if (next_bb->prev_bb == prev_bb
6035 && prev_bb != ENTRY_BLOCK_PTR
6036 && jump_leads_only_to_bb_p (BB_END (prev_bb), next_bb))
6038 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6039 if (BB_END (prev_bb) == bb_note (prev_bb))
6040 free_data_sets (prev_bb);
6044 VEC_free (basic_block, heap, preheader_blocks);
6046 else
6047 /* Store preheader within the father's loop structure. */
6048 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6049 preheader_blocks);
6051 #endif