* gcc.dg/compat/struct-layout-1_generate.c (dg_options): New. Moved
[official-gcc.git] / gcc / optabs.c
blob127310390919babb6fb4a49368a1107d50a81633
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
29 /* Include insn-config.h before expr.h so that HAVE_conditional_move
30 is properly defined. */
31 #include "insn-config.h"
32 #include "rtl.h"
33 #include "tree.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "function.h"
37 #include "except.h"
38 #include "expr.h"
39 #include "optabs.h"
40 #include "libfuncs.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "ggc.h"
44 #include "real.h"
45 #include "basic-block.h"
46 #include "target.h"
48 /* Each optab contains info on how this target machine
49 can perform a particular operation
50 for all sizes and kinds of operands.
52 The operation to be performed is often specified
53 by passing one of these optabs as an argument.
55 See expr.h for documentation of these optabs. */
57 #if GCC_VERSION >= 4000
58 __extension__ struct optab optab_table[OTI_MAX]
59 = { [0 ... OTI_MAX - 1].handlers[0 ... NUM_MACHINE_MODES - 1].insn_code
60 = CODE_FOR_nothing };
61 #else
62 /* init_insn_codes will do runtime initialization otherwise. */
63 struct optab optab_table[OTI_MAX];
64 #endif
66 rtx libfunc_table[LTI_MAX];
68 /* Tables of patterns for converting one mode to another. */
69 #if GCC_VERSION >= 4000
70 __extension__ struct convert_optab convert_optab_table[COI_MAX]
71 = { [0 ... COI_MAX - 1].handlers[0 ... NUM_MACHINE_MODES - 1]
72 [0 ... NUM_MACHINE_MODES - 1].insn_code
73 = CODE_FOR_nothing };
74 #else
75 /* init_convert_optab will do runtime initialization otherwise. */
76 struct convert_optab convert_optab_table[COI_MAX];
77 #endif
79 /* Contains the optab used for each rtx code. */
80 optab code_to_optab[NUM_RTX_CODE + 1];
82 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
83 gives the gen_function to make a branch to test that condition. */
85 rtxfun bcc_gen_fctn[NUM_RTX_CODE];
87 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
88 gives the insn code to make a store-condition insn
89 to test that condition. */
91 enum insn_code setcc_gen_code[NUM_RTX_CODE];
93 #ifdef HAVE_conditional_move
94 /* Indexed by the machine mode, gives the insn code to make a conditional
95 move insn. This is not indexed by the rtx-code like bcc_gen_fctn and
96 setcc_gen_code to cut down on the number of named patterns. Consider a day
97 when a lot more rtx codes are conditional (eg: for the ARM). */
99 enum insn_code movcc_gen_code[NUM_MACHINE_MODES];
100 #endif
102 /* Indexed by the machine mode, gives the insn code for vector conditional
103 operation. */
105 enum insn_code vcond_gen_code[NUM_MACHINE_MODES];
106 enum insn_code vcondu_gen_code[NUM_MACHINE_MODES];
108 /* The insn generating function can not take an rtx_code argument.
109 TRAP_RTX is used as an rtx argument. Its code is replaced with
110 the code to be used in the trap insn and all other fields are ignored. */
111 static GTY(()) rtx trap_rtx;
113 static void prepare_float_lib_cmp (rtx *, rtx *, enum rtx_code *,
114 enum machine_mode *, int *);
115 static rtx expand_unop_direct (enum machine_mode, optab, rtx, rtx, int);
117 /* Debug facility for use in GDB. */
118 void debug_optab_libfuncs (void);
120 #ifndef HAVE_conditional_trap
121 #define HAVE_conditional_trap 0
122 #define gen_conditional_trap(a,b) (gcc_unreachable (), NULL_RTX)
123 #endif
125 /* Prefixes for the current version of decimal floating point (BID vs. DPD) */
126 #if ENABLE_DECIMAL_BID_FORMAT
127 #define DECIMAL_PREFIX "bid_"
128 #else
129 #define DECIMAL_PREFIX "dpd_"
130 #endif
133 /* Info about libfunc. We use same hashtable for normal optabs and conversion
134 optab. In the first case mode2 is unused. */
135 struct libfunc_entry GTY(())
137 size_t optab;
138 enum machine_mode mode1, mode2;
139 rtx libfunc;
142 /* Hash table used to convert declarations into nodes. */
143 static GTY((param_is (struct libfunc_entry))) htab_t libfunc_hash;
145 /* Used for attribute_hash. */
147 static hashval_t
148 hash_libfunc (const void *p)
150 const struct libfunc_entry *const e = (const struct libfunc_entry *) p;
152 return (((int) e->mode1 + (int) e->mode2 * NUM_MACHINE_MODES)
153 ^ e->optab);
156 /* Used for optab_hash. */
158 static int
159 eq_libfunc (const void *p, const void *q)
161 const struct libfunc_entry *const e1 = (const struct libfunc_entry *) p;
162 const struct libfunc_entry *const e2 = (const struct libfunc_entry *) q;
164 return (e1->optab == e2->optab
165 && e1->mode1 == e2->mode1
166 && e1->mode2 == e2->mode2);
169 /* Return libfunc corresponding operation defined by OPTAB converting
170 from MODE2 to MODE1. Trigger lazy initialization if needed, return NULL
171 if no libfunc is available. */
173 convert_optab_libfunc (convert_optab optab, enum machine_mode mode1,
174 enum machine_mode mode2)
176 struct libfunc_entry e;
177 struct libfunc_entry **slot;
179 e.optab = (size_t) (optab - &convert_optab_table[0]);
180 e.mode1 = mode1;
181 e.mode2 = mode2;
182 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, NO_INSERT);
183 if (!slot)
185 if (optab->libcall_gen)
187 optab->libcall_gen (optab, optab->libcall_basename, mode1, mode2);
188 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, NO_INSERT);
189 if (slot)
190 return (*slot)->libfunc;
191 else
192 return NULL;
194 return NULL;
196 return (*slot)->libfunc;
199 /* Return libfunc corresponding operation defined by OPTAB in MODE.
200 Trigger lazy initialization if needed, return NULL if no libfunc is
201 available. */
203 optab_libfunc (optab optab, enum machine_mode mode)
205 struct libfunc_entry e;
206 struct libfunc_entry **slot;
208 e.optab = (size_t) (optab - &optab_table[0]);
209 e.mode1 = mode;
210 e.mode2 = VOIDmode;
211 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, NO_INSERT);
212 if (!slot)
214 if (optab->libcall_gen)
216 optab->libcall_gen (optab, optab->libcall_basename,
217 optab->libcall_suffix, mode);
218 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash,
219 &e, NO_INSERT);
220 if (slot)
221 return (*slot)->libfunc;
222 else
223 return NULL;
225 return NULL;
227 return (*slot)->libfunc;
231 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
232 the result of operation CODE applied to OP0 (and OP1 if it is a binary
233 operation).
235 If the last insn does not set TARGET, don't do anything, but return 1.
237 If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
238 don't add the REG_EQUAL note but return 0. Our caller can then try
239 again, ensuring that TARGET is not one of the operands. */
241 static int
242 add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
244 rtx last_insn, insn, set;
245 rtx note;
247 gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns));
249 if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
250 && GET_RTX_CLASS (code) != RTX_BIN_ARITH
251 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
252 && GET_RTX_CLASS (code) != RTX_COMPARE
253 && GET_RTX_CLASS (code) != RTX_UNARY)
254 return 1;
256 if (GET_CODE (target) == ZERO_EXTRACT)
257 return 1;
259 for (last_insn = insns;
260 NEXT_INSN (last_insn) != NULL_RTX;
261 last_insn = NEXT_INSN (last_insn))
264 set = single_set (last_insn);
265 if (set == NULL_RTX)
266 return 1;
268 if (! rtx_equal_p (SET_DEST (set), target)
269 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
270 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
271 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
272 return 1;
274 /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
275 besides the last insn. */
276 if (reg_overlap_mentioned_p (target, op0)
277 || (op1 && reg_overlap_mentioned_p (target, op1)))
279 insn = PREV_INSN (last_insn);
280 while (insn != NULL_RTX)
282 if (reg_set_p (target, insn))
283 return 0;
285 insn = PREV_INSN (insn);
289 if (GET_RTX_CLASS (code) == RTX_UNARY)
290 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
291 else
292 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
294 set_unique_reg_note (last_insn, REG_EQUAL, note);
296 return 1;
299 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
300 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
301 not actually do a sign-extend or zero-extend, but can leave the
302 higher-order bits of the result rtx undefined, for example, in the case
303 of logical operations, but not right shifts. */
305 static rtx
306 widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode,
307 int unsignedp, int no_extend)
309 rtx result;
311 /* If we don't have to extend and this is a constant, return it. */
312 if (no_extend && GET_MODE (op) == VOIDmode)
313 return op;
315 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
316 extend since it will be more efficient to do so unless the signedness of
317 a promoted object differs from our extension. */
318 if (! no_extend
319 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
320 && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
321 return convert_modes (mode, oldmode, op, unsignedp);
323 /* If MODE is no wider than a single word, we return a paradoxical
324 SUBREG. */
325 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
326 return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
328 /* Otherwise, get an object of MODE, clobber it, and set the low-order
329 part to OP. */
331 result = gen_reg_rtx (mode);
332 emit_clobber (result);
333 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
334 return result;
337 /* Return the optab used for computing the operation given by the tree code,
338 CODE and the tree EXP. This function is not always usable (for example, it
339 cannot give complete results for multiplication or division) but probably
340 ought to be relied on more widely throughout the expander. */
341 optab
342 optab_for_tree_code (enum tree_code code, const_tree type,
343 enum optab_subtype subtype)
345 bool trapv;
346 switch (code)
348 case BIT_AND_EXPR:
349 return and_optab;
351 case BIT_IOR_EXPR:
352 return ior_optab;
354 case BIT_NOT_EXPR:
355 return one_cmpl_optab;
357 case BIT_XOR_EXPR:
358 return xor_optab;
360 case TRUNC_MOD_EXPR:
361 case CEIL_MOD_EXPR:
362 case FLOOR_MOD_EXPR:
363 case ROUND_MOD_EXPR:
364 return TYPE_UNSIGNED (type) ? umod_optab : smod_optab;
366 case RDIV_EXPR:
367 case TRUNC_DIV_EXPR:
368 case CEIL_DIV_EXPR:
369 case FLOOR_DIV_EXPR:
370 case ROUND_DIV_EXPR:
371 case EXACT_DIV_EXPR:
372 if (TYPE_SATURATING(type))
373 return TYPE_UNSIGNED(type) ? usdiv_optab : ssdiv_optab;
374 return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab;
376 case LSHIFT_EXPR:
377 if (VECTOR_MODE_P (TYPE_MODE (type)))
379 if (subtype == optab_vector)
380 return TYPE_SATURATING (type) ? NULL : vashl_optab;
382 gcc_assert (subtype == optab_scalar);
384 if (TYPE_SATURATING(type))
385 return TYPE_UNSIGNED(type) ? usashl_optab : ssashl_optab;
386 return ashl_optab;
388 case RSHIFT_EXPR:
389 if (VECTOR_MODE_P (TYPE_MODE (type)))
391 if (subtype == optab_vector)
392 return TYPE_UNSIGNED (type) ? vlshr_optab : vashr_optab;
394 gcc_assert (subtype == optab_scalar);
396 return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab;
398 case LROTATE_EXPR:
399 if (VECTOR_MODE_P (TYPE_MODE (type)))
401 if (subtype == optab_vector)
402 return vrotl_optab;
404 gcc_assert (subtype == optab_scalar);
406 return rotl_optab;
408 case RROTATE_EXPR:
409 if (VECTOR_MODE_P (TYPE_MODE (type)))
411 if (subtype == optab_vector)
412 return vrotr_optab;
414 gcc_assert (subtype == optab_scalar);
416 return rotr_optab;
418 case MAX_EXPR:
419 return TYPE_UNSIGNED (type) ? umax_optab : smax_optab;
421 case MIN_EXPR:
422 return TYPE_UNSIGNED (type) ? umin_optab : smin_optab;
424 case REALIGN_LOAD_EXPR:
425 return vec_realign_load_optab;
427 case WIDEN_SUM_EXPR:
428 return TYPE_UNSIGNED (type) ? usum_widen_optab : ssum_widen_optab;
430 case DOT_PROD_EXPR:
431 return TYPE_UNSIGNED (type) ? udot_prod_optab : sdot_prod_optab;
433 case REDUC_MAX_EXPR:
434 return TYPE_UNSIGNED (type) ? reduc_umax_optab : reduc_smax_optab;
436 case REDUC_MIN_EXPR:
437 return TYPE_UNSIGNED (type) ? reduc_umin_optab : reduc_smin_optab;
439 case REDUC_PLUS_EXPR:
440 return TYPE_UNSIGNED (type) ? reduc_uplus_optab : reduc_splus_optab;
442 case VEC_LSHIFT_EXPR:
443 return vec_shl_optab;
445 case VEC_RSHIFT_EXPR:
446 return vec_shr_optab;
448 case VEC_WIDEN_MULT_HI_EXPR:
449 return TYPE_UNSIGNED (type) ?
450 vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
452 case VEC_WIDEN_MULT_LO_EXPR:
453 return TYPE_UNSIGNED (type) ?
454 vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
456 case VEC_UNPACK_HI_EXPR:
457 return TYPE_UNSIGNED (type) ?
458 vec_unpacku_hi_optab : vec_unpacks_hi_optab;
460 case VEC_UNPACK_LO_EXPR:
461 return TYPE_UNSIGNED (type) ?
462 vec_unpacku_lo_optab : vec_unpacks_lo_optab;
464 case VEC_UNPACK_FLOAT_HI_EXPR:
465 /* The signedness is determined from input operand. */
466 return TYPE_UNSIGNED (type) ?
467 vec_unpacku_float_hi_optab : vec_unpacks_float_hi_optab;
469 case VEC_UNPACK_FLOAT_LO_EXPR:
470 /* The signedness is determined from input operand. */
471 return TYPE_UNSIGNED (type) ?
472 vec_unpacku_float_lo_optab : vec_unpacks_float_lo_optab;
474 case VEC_PACK_TRUNC_EXPR:
475 return vec_pack_trunc_optab;
477 case VEC_PACK_SAT_EXPR:
478 return TYPE_UNSIGNED (type) ? vec_pack_usat_optab : vec_pack_ssat_optab;
480 case VEC_PACK_FIX_TRUNC_EXPR:
481 /* The signedness is determined from output operand. */
482 return TYPE_UNSIGNED (type) ?
483 vec_pack_ufix_trunc_optab : vec_pack_sfix_trunc_optab;
485 default:
486 break;
489 trapv = INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type);
490 switch (code)
492 case POINTER_PLUS_EXPR:
493 case PLUS_EXPR:
494 if (TYPE_SATURATING(type))
495 return TYPE_UNSIGNED(type) ? usadd_optab : ssadd_optab;
496 return trapv ? addv_optab : add_optab;
498 case MINUS_EXPR:
499 if (TYPE_SATURATING(type))
500 return TYPE_UNSIGNED(type) ? ussub_optab : sssub_optab;
501 return trapv ? subv_optab : sub_optab;
503 case MULT_EXPR:
504 if (TYPE_SATURATING(type))
505 return TYPE_UNSIGNED(type) ? usmul_optab : ssmul_optab;
506 return trapv ? smulv_optab : smul_optab;
508 case NEGATE_EXPR:
509 if (TYPE_SATURATING(type))
510 return TYPE_UNSIGNED(type) ? usneg_optab : ssneg_optab;
511 return trapv ? negv_optab : neg_optab;
513 case ABS_EXPR:
514 return trapv ? absv_optab : abs_optab;
516 case VEC_EXTRACT_EVEN_EXPR:
517 return vec_extract_even_optab;
519 case VEC_EXTRACT_ODD_EXPR:
520 return vec_extract_odd_optab;
522 case VEC_INTERLEAVE_HIGH_EXPR:
523 return vec_interleave_high_optab;
525 case VEC_INTERLEAVE_LOW_EXPR:
526 return vec_interleave_low_optab;
528 default:
529 return NULL;
534 /* Expand vector widening operations.
536 There are two different classes of operations handled here:
537 1) Operations whose result is wider than all the arguments to the operation.
538 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
539 In this case OP0 and optionally OP1 would be initialized,
540 but WIDE_OP wouldn't (not relevant for this case).
541 2) Operations whose result is of the same size as the last argument to the
542 operation, but wider than all the other arguments to the operation.
543 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
544 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
546 E.g, when called to expand the following operations, this is how
547 the arguments will be initialized:
548 nops OP0 OP1 WIDE_OP
549 widening-sum 2 oprnd0 - oprnd1
550 widening-dot-product 3 oprnd0 oprnd1 oprnd2
551 widening-mult 2 oprnd0 oprnd1 -
552 type-promotion (vec-unpack) 1 oprnd0 - - */
555 expand_widen_pattern_expr (tree exp, rtx op0, rtx op1, rtx wide_op, rtx target,
556 int unsignedp)
558 tree oprnd0, oprnd1, oprnd2;
559 enum machine_mode wmode = 0, tmode0, tmode1 = 0;
560 optab widen_pattern_optab;
561 int icode;
562 enum machine_mode xmode0, xmode1 = 0, wxmode = 0;
563 rtx temp;
564 rtx pat;
565 rtx xop0, xop1, wxop;
566 int nops = TREE_OPERAND_LENGTH (exp);
568 oprnd0 = TREE_OPERAND (exp, 0);
569 tmode0 = TYPE_MODE (TREE_TYPE (oprnd0));
570 widen_pattern_optab =
571 optab_for_tree_code (TREE_CODE (exp), TREE_TYPE (oprnd0), optab_default);
572 icode = (int) optab_handler (widen_pattern_optab, tmode0)->insn_code;
573 gcc_assert (icode != CODE_FOR_nothing);
574 xmode0 = insn_data[icode].operand[1].mode;
576 if (nops >= 2)
578 oprnd1 = TREE_OPERAND (exp, 1);
579 tmode1 = TYPE_MODE (TREE_TYPE (oprnd1));
580 xmode1 = insn_data[icode].operand[2].mode;
583 /* The last operand is of a wider mode than the rest of the operands. */
584 if (nops == 2)
586 wmode = tmode1;
587 wxmode = xmode1;
589 else if (nops == 3)
591 gcc_assert (tmode1 == tmode0);
592 gcc_assert (op1);
593 oprnd2 = TREE_OPERAND (exp, 2);
594 wmode = TYPE_MODE (TREE_TYPE (oprnd2));
595 wxmode = insn_data[icode].operand[3].mode;
598 if (!wide_op)
599 wmode = wxmode = insn_data[icode].operand[0].mode;
601 if (!target
602 || ! (*insn_data[icode].operand[0].predicate) (target, wmode))
603 temp = gen_reg_rtx (wmode);
604 else
605 temp = target;
607 xop0 = op0;
608 xop1 = op1;
609 wxop = wide_op;
611 /* In case the insn wants input operands in modes different from
612 those of the actual operands, convert the operands. It would
613 seem that we don't need to convert CONST_INTs, but we do, so
614 that they're properly zero-extended, sign-extended or truncated
615 for their mode. */
617 if (GET_MODE (op0) != xmode0 && xmode0 != VOIDmode)
618 xop0 = convert_modes (xmode0,
619 GET_MODE (op0) != VOIDmode
620 ? GET_MODE (op0)
621 : tmode0,
622 xop0, unsignedp);
624 if (op1)
625 if (GET_MODE (op1) != xmode1 && xmode1 != VOIDmode)
626 xop1 = convert_modes (xmode1,
627 GET_MODE (op1) != VOIDmode
628 ? GET_MODE (op1)
629 : tmode1,
630 xop1, unsignedp);
632 if (wide_op)
633 if (GET_MODE (wide_op) != wxmode && wxmode != VOIDmode)
634 wxop = convert_modes (wxmode,
635 GET_MODE (wide_op) != VOIDmode
636 ? GET_MODE (wide_op)
637 : wmode,
638 wxop, unsignedp);
640 /* Now, if insn's predicates don't allow our operands, put them into
641 pseudo regs. */
643 if (! (*insn_data[icode].operand[1].predicate) (xop0, xmode0)
644 && xmode0 != VOIDmode)
645 xop0 = copy_to_mode_reg (xmode0, xop0);
647 if (op1)
649 if (! (*insn_data[icode].operand[2].predicate) (xop1, xmode1)
650 && xmode1 != VOIDmode)
651 xop1 = copy_to_mode_reg (xmode1, xop1);
653 if (wide_op)
655 if (! (*insn_data[icode].operand[3].predicate) (wxop, wxmode)
656 && wxmode != VOIDmode)
657 wxop = copy_to_mode_reg (wxmode, wxop);
659 pat = GEN_FCN (icode) (temp, xop0, xop1, wxop);
661 else
662 pat = GEN_FCN (icode) (temp, xop0, xop1);
664 else
666 if (wide_op)
668 if (! (*insn_data[icode].operand[2].predicate) (wxop, wxmode)
669 && wxmode != VOIDmode)
670 wxop = copy_to_mode_reg (wxmode, wxop);
672 pat = GEN_FCN (icode) (temp, xop0, wxop);
674 else
675 pat = GEN_FCN (icode) (temp, xop0);
678 emit_insn (pat);
679 return temp;
682 /* Generate code to perform an operation specified by TERNARY_OPTAB
683 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
685 UNSIGNEDP is for the case where we have to widen the operands
686 to perform the operation. It says to use zero-extension.
688 If TARGET is nonzero, the value
689 is generated there, if it is convenient to do so.
690 In all cases an rtx is returned for the locus of the value;
691 this may or may not be TARGET. */
694 expand_ternary_op (enum machine_mode mode, optab ternary_optab, rtx op0,
695 rtx op1, rtx op2, rtx target, int unsignedp)
697 int icode = (int) optab_handler (ternary_optab, mode)->insn_code;
698 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
699 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
700 enum machine_mode mode2 = insn_data[icode].operand[3].mode;
701 rtx temp;
702 rtx pat;
703 rtx xop0 = op0, xop1 = op1, xop2 = op2;
705 gcc_assert (optab_handler (ternary_optab, mode)->insn_code
706 != CODE_FOR_nothing);
708 if (!target || !insn_data[icode].operand[0].predicate (target, mode))
709 temp = gen_reg_rtx (mode);
710 else
711 temp = target;
713 /* In case the insn wants input operands in modes different from
714 those of the actual operands, convert the operands. It would
715 seem that we don't need to convert CONST_INTs, but we do, so
716 that they're properly zero-extended, sign-extended or truncated
717 for their mode. */
719 if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
720 xop0 = convert_modes (mode0,
721 GET_MODE (op0) != VOIDmode
722 ? GET_MODE (op0)
723 : mode,
724 xop0, unsignedp);
726 if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
727 xop1 = convert_modes (mode1,
728 GET_MODE (op1) != VOIDmode
729 ? GET_MODE (op1)
730 : mode,
731 xop1, unsignedp);
733 if (GET_MODE (op2) != mode2 && mode2 != VOIDmode)
734 xop2 = convert_modes (mode2,
735 GET_MODE (op2) != VOIDmode
736 ? GET_MODE (op2)
737 : mode,
738 xop2, unsignedp);
740 /* Now, if insn's predicates don't allow our operands, put them into
741 pseudo regs. */
743 if (!insn_data[icode].operand[1].predicate (xop0, mode0)
744 && mode0 != VOIDmode)
745 xop0 = copy_to_mode_reg (mode0, xop0);
747 if (!insn_data[icode].operand[2].predicate (xop1, mode1)
748 && mode1 != VOIDmode)
749 xop1 = copy_to_mode_reg (mode1, xop1);
751 if (!insn_data[icode].operand[3].predicate (xop2, mode2)
752 && mode2 != VOIDmode)
753 xop2 = copy_to_mode_reg (mode2, xop2);
755 pat = GEN_FCN (icode) (temp, xop0, xop1, xop2);
757 emit_insn (pat);
758 return temp;
762 /* Like expand_binop, but return a constant rtx if the result can be
763 calculated at compile time. The arguments and return value are
764 otherwise the same as for expand_binop. */
766 static rtx
767 simplify_expand_binop (enum machine_mode mode, optab binoptab,
768 rtx op0, rtx op1, rtx target, int unsignedp,
769 enum optab_methods methods)
771 if (CONSTANT_P (op0) && CONSTANT_P (op1))
773 rtx x = simplify_binary_operation (binoptab->code, mode, op0, op1);
775 if (x)
776 return x;
779 return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods);
782 /* Like simplify_expand_binop, but always put the result in TARGET.
783 Return true if the expansion succeeded. */
785 bool
786 force_expand_binop (enum machine_mode mode, optab binoptab,
787 rtx op0, rtx op1, rtx target, int unsignedp,
788 enum optab_methods methods)
790 rtx x = simplify_expand_binop (mode, binoptab, op0, op1,
791 target, unsignedp, methods);
792 if (x == 0)
793 return false;
794 if (x != target)
795 emit_move_insn (target, x);
796 return true;
799 /* Generate insns for VEC_LSHIFT_EXPR, VEC_RSHIFT_EXPR. */
802 expand_vec_shift_expr (tree vec_shift_expr, rtx target)
804 enum insn_code icode;
805 rtx rtx_op1, rtx_op2;
806 enum machine_mode mode1;
807 enum machine_mode mode2;
808 enum machine_mode mode = TYPE_MODE (TREE_TYPE (vec_shift_expr));
809 tree vec_oprnd = TREE_OPERAND (vec_shift_expr, 0);
810 tree shift_oprnd = TREE_OPERAND (vec_shift_expr, 1);
811 optab shift_optab;
812 rtx pat;
814 switch (TREE_CODE (vec_shift_expr))
816 case VEC_RSHIFT_EXPR:
817 shift_optab = vec_shr_optab;
818 break;
819 case VEC_LSHIFT_EXPR:
820 shift_optab = vec_shl_optab;
821 break;
822 default:
823 gcc_unreachable ();
826 icode = (int) optab_handler (shift_optab, mode)->insn_code;
827 gcc_assert (icode != CODE_FOR_nothing);
829 mode1 = insn_data[icode].operand[1].mode;
830 mode2 = insn_data[icode].operand[2].mode;
832 rtx_op1 = expand_normal (vec_oprnd);
833 if (!(*insn_data[icode].operand[1].predicate) (rtx_op1, mode1)
834 && mode1 != VOIDmode)
835 rtx_op1 = force_reg (mode1, rtx_op1);
837 rtx_op2 = expand_normal (shift_oprnd);
838 if (!(*insn_data[icode].operand[2].predicate) (rtx_op2, mode2)
839 && mode2 != VOIDmode)
840 rtx_op2 = force_reg (mode2, rtx_op2);
842 if (!target
843 || ! (*insn_data[icode].operand[0].predicate) (target, mode))
844 target = gen_reg_rtx (mode);
846 /* Emit instruction */
847 pat = GEN_FCN (icode) (target, rtx_op1, rtx_op2);
848 gcc_assert (pat);
849 emit_insn (pat);
851 return target;
854 /* This subroutine of expand_doubleword_shift handles the cases in which
855 the effective shift value is >= BITS_PER_WORD. The arguments and return
856 value are the same as for the parent routine, except that SUPERWORD_OP1
857 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
858 INTO_TARGET may be null if the caller has decided to calculate it. */
860 static bool
861 expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1,
862 rtx outof_target, rtx into_target,
863 int unsignedp, enum optab_methods methods)
865 if (into_target != 0)
866 if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1,
867 into_target, unsignedp, methods))
868 return false;
870 if (outof_target != 0)
872 /* For a signed right shift, we must fill OUTOF_TARGET with copies
873 of the sign bit, otherwise we must fill it with zeros. */
874 if (binoptab != ashr_optab)
875 emit_move_insn (outof_target, CONST0_RTX (word_mode));
876 else
877 if (!force_expand_binop (word_mode, binoptab,
878 outof_input, GEN_INT (BITS_PER_WORD - 1),
879 outof_target, unsignedp, methods))
880 return false;
882 return true;
885 /* This subroutine of expand_doubleword_shift handles the cases in which
886 the effective shift value is < BITS_PER_WORD. The arguments and return
887 value are the same as for the parent routine. */
889 static bool
890 expand_subword_shift (enum machine_mode op1_mode, optab binoptab,
891 rtx outof_input, rtx into_input, rtx op1,
892 rtx outof_target, rtx into_target,
893 int unsignedp, enum optab_methods methods,
894 unsigned HOST_WIDE_INT shift_mask)
896 optab reverse_unsigned_shift, unsigned_shift;
897 rtx tmp, carries;
899 reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab);
900 unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab);
902 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
903 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
904 the opposite direction to BINOPTAB. */
905 if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD)
907 carries = outof_input;
908 tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
909 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
910 0, true, methods);
912 else
914 /* We must avoid shifting by BITS_PER_WORD bits since that is either
915 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
916 has unknown behavior. Do a single shift first, then shift by the
917 remainder. It's OK to use ~OP1 as the remainder if shift counts
918 are truncated to the mode size. */
919 carries = expand_binop (word_mode, reverse_unsigned_shift,
920 outof_input, const1_rtx, 0, unsignedp, methods);
921 if (shift_mask == BITS_PER_WORD - 1)
923 tmp = immed_double_const (-1, -1, op1_mode);
924 tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp,
925 0, true, methods);
927 else
929 tmp = immed_double_const (BITS_PER_WORD - 1, 0, op1_mode);
930 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
931 0, true, methods);
934 if (tmp == 0 || carries == 0)
935 return false;
936 carries = expand_binop (word_mode, reverse_unsigned_shift,
937 carries, tmp, 0, unsignedp, methods);
938 if (carries == 0)
939 return false;
941 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
942 so the result can go directly into INTO_TARGET if convenient. */
943 tmp = expand_binop (word_mode, unsigned_shift, into_input, op1,
944 into_target, unsignedp, methods);
945 if (tmp == 0)
946 return false;
948 /* Now OR in the bits carried over from OUTOF_INPUT. */
949 if (!force_expand_binop (word_mode, ior_optab, tmp, carries,
950 into_target, unsignedp, methods))
951 return false;
953 /* Use a standard word_mode shift for the out-of half. */
954 if (outof_target != 0)
955 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
956 outof_target, unsignedp, methods))
957 return false;
959 return true;
963 #ifdef HAVE_conditional_move
964 /* Try implementing expand_doubleword_shift using conditional moves.
965 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
966 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
967 are the shift counts to use in the former and latter case. All other
968 arguments are the same as the parent routine. */
970 static bool
971 expand_doubleword_shift_condmove (enum machine_mode op1_mode, optab binoptab,
972 enum rtx_code cmp_code, rtx cmp1, rtx cmp2,
973 rtx outof_input, rtx into_input,
974 rtx subword_op1, rtx superword_op1,
975 rtx outof_target, rtx into_target,
976 int unsignedp, enum optab_methods methods,
977 unsigned HOST_WIDE_INT shift_mask)
979 rtx outof_superword, into_superword;
981 /* Put the superword version of the output into OUTOF_SUPERWORD and
982 INTO_SUPERWORD. */
983 outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0;
984 if (outof_target != 0 && subword_op1 == superword_op1)
986 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
987 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
988 into_superword = outof_target;
989 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
990 outof_superword, 0, unsignedp, methods))
991 return false;
993 else
995 into_superword = gen_reg_rtx (word_mode);
996 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
997 outof_superword, into_superword,
998 unsignedp, methods))
999 return false;
1002 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
1003 if (!expand_subword_shift (op1_mode, binoptab,
1004 outof_input, into_input, subword_op1,
1005 outof_target, into_target,
1006 unsignedp, methods, shift_mask))
1007 return false;
1009 /* Select between them. Do the INTO half first because INTO_SUPERWORD
1010 might be the current value of OUTOF_TARGET. */
1011 if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode,
1012 into_target, into_superword, word_mode, false))
1013 return false;
1015 if (outof_target != 0)
1016 if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode,
1017 outof_target, outof_superword,
1018 word_mode, false))
1019 return false;
1021 return true;
1023 #endif
1025 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
1026 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
1027 input operand; the shift moves bits in the direction OUTOF_INPUT->
1028 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
1029 of the target. OP1 is the shift count and OP1_MODE is its mode.
1030 If OP1 is constant, it will have been truncated as appropriate
1031 and is known to be nonzero.
1033 If SHIFT_MASK is zero, the result of word shifts is undefined when the
1034 shift count is outside the range [0, BITS_PER_WORD). This routine must
1035 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
1037 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
1038 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
1039 fill with zeros or sign bits as appropriate.
1041 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
1042 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
1043 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
1044 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
1045 are undefined.
1047 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
1048 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
1049 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
1050 function wants to calculate it itself.
1052 Return true if the shift could be successfully synthesized. */
1054 static bool
1055 expand_doubleword_shift (enum machine_mode op1_mode, optab binoptab,
1056 rtx outof_input, rtx into_input, rtx op1,
1057 rtx outof_target, rtx into_target,
1058 int unsignedp, enum optab_methods methods,
1059 unsigned HOST_WIDE_INT shift_mask)
1061 rtx superword_op1, tmp, cmp1, cmp2;
1062 rtx subword_label, done_label;
1063 enum rtx_code cmp_code;
1065 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
1066 fill the result with sign or zero bits as appropriate. If so, the value
1067 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
1068 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
1069 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
1071 This isn't worthwhile for constant shifts since the optimizers will
1072 cope better with in-range shift counts. */
1073 if (shift_mask >= BITS_PER_WORD
1074 && outof_target != 0
1075 && !CONSTANT_P (op1))
1077 if (!expand_doubleword_shift (op1_mode, binoptab,
1078 outof_input, into_input, op1,
1079 0, into_target,
1080 unsignedp, methods, shift_mask))
1081 return false;
1082 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
1083 outof_target, unsignedp, methods))
1084 return false;
1085 return true;
1088 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
1089 is true when the effective shift value is less than BITS_PER_WORD.
1090 Set SUPERWORD_OP1 to the shift count that should be used to shift
1091 OUTOF_INPUT into INTO_TARGET when the condition is false. */
1092 tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
1093 if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1)
1095 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
1096 is a subword shift count. */
1097 cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp,
1098 0, true, methods);
1099 cmp2 = CONST0_RTX (op1_mode);
1100 cmp_code = EQ;
1101 superword_op1 = op1;
1103 else
1105 /* Set CMP1 to OP1 - BITS_PER_WORD. */
1106 cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp,
1107 0, true, methods);
1108 cmp2 = CONST0_RTX (op1_mode);
1109 cmp_code = LT;
1110 superword_op1 = cmp1;
1112 if (cmp1 == 0)
1113 return false;
1115 /* If we can compute the condition at compile time, pick the
1116 appropriate subroutine. */
1117 tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2);
1118 if (tmp != 0 && GET_CODE (tmp) == CONST_INT)
1120 if (tmp == const0_rtx)
1121 return expand_superword_shift (binoptab, outof_input, superword_op1,
1122 outof_target, into_target,
1123 unsignedp, methods);
1124 else
1125 return expand_subword_shift (op1_mode, binoptab,
1126 outof_input, into_input, op1,
1127 outof_target, into_target,
1128 unsignedp, methods, shift_mask);
1131 #ifdef HAVE_conditional_move
1132 /* Try using conditional moves to generate straight-line code. */
1134 rtx start = get_last_insn ();
1135 if (expand_doubleword_shift_condmove (op1_mode, binoptab,
1136 cmp_code, cmp1, cmp2,
1137 outof_input, into_input,
1138 op1, superword_op1,
1139 outof_target, into_target,
1140 unsignedp, methods, shift_mask))
1141 return true;
1142 delete_insns_since (start);
1144 #endif
1146 /* As a last resort, use branches to select the correct alternative. */
1147 subword_label = gen_label_rtx ();
1148 done_label = gen_label_rtx ();
1150 NO_DEFER_POP;
1151 do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode,
1152 0, 0, subword_label);
1153 OK_DEFER_POP;
1155 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
1156 outof_target, into_target,
1157 unsignedp, methods))
1158 return false;
1160 emit_jump_insn (gen_jump (done_label));
1161 emit_barrier ();
1162 emit_label (subword_label);
1164 if (!expand_subword_shift (op1_mode, binoptab,
1165 outof_input, into_input, op1,
1166 outof_target, into_target,
1167 unsignedp, methods, shift_mask))
1168 return false;
1170 emit_label (done_label);
1171 return true;
1174 /* Subroutine of expand_binop. Perform a double word multiplication of
1175 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
1176 as the target's word_mode. This function return NULL_RTX if anything
1177 goes wrong, in which case it may have already emitted instructions
1178 which need to be deleted.
1180 If we want to multiply two two-word values and have normal and widening
1181 multiplies of single-word values, we can do this with three smaller
1182 multiplications.
1184 The multiplication proceeds as follows:
1185 _______________________
1186 [__op0_high_|__op0_low__]
1187 _______________________
1188 * [__op1_high_|__op1_low__]
1189 _______________________________________________
1190 _______________________
1191 (1) [__op0_low__*__op1_low__]
1192 _______________________
1193 (2a) [__op0_low__*__op1_high_]
1194 _______________________
1195 (2b) [__op0_high_*__op1_low__]
1196 _______________________
1197 (3) [__op0_high_*__op1_high_]
1200 This gives a 4-word result. Since we are only interested in the
1201 lower 2 words, partial result (3) and the upper words of (2a) and
1202 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1203 calculated using non-widening multiplication.
1205 (1), however, needs to be calculated with an unsigned widening
1206 multiplication. If this operation is not directly supported we
1207 try using a signed widening multiplication and adjust the result.
1208 This adjustment works as follows:
1210 If both operands are positive then no adjustment is needed.
1212 If the operands have different signs, for example op0_low < 0 and
1213 op1_low >= 0, the instruction treats the most significant bit of
1214 op0_low as a sign bit instead of a bit with significance
1215 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1216 with 2**BITS_PER_WORD - op0_low, and two's complements the
1217 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1218 the result.
1220 Similarly, if both operands are negative, we need to add
1221 (op0_low + op1_low) * 2**BITS_PER_WORD.
1223 We use a trick to adjust quickly. We logically shift op0_low right
1224 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1225 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1226 logical shift exists, we do an arithmetic right shift and subtract
1227 the 0 or -1. */
1229 static rtx
1230 expand_doubleword_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
1231 bool umulp, enum optab_methods methods)
1233 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1234 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1235 rtx wordm1 = umulp ? NULL_RTX : GEN_INT (BITS_PER_WORD - 1);
1236 rtx product, adjust, product_high, temp;
1238 rtx op0_high = operand_subword_force (op0, high, mode);
1239 rtx op0_low = operand_subword_force (op0, low, mode);
1240 rtx op1_high = operand_subword_force (op1, high, mode);
1241 rtx op1_low = operand_subword_force (op1, low, mode);
1243 /* If we're using an unsigned multiply to directly compute the product
1244 of the low-order words of the operands and perform any required
1245 adjustments of the operands, we begin by trying two more multiplications
1246 and then computing the appropriate sum.
1248 We have checked above that the required addition is provided.
1249 Full-word addition will normally always succeed, especially if
1250 it is provided at all, so we don't worry about its failure. The
1251 multiplication may well fail, however, so we do handle that. */
1253 if (!umulp)
1255 /* ??? This could be done with emit_store_flag where available. */
1256 temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1257 NULL_RTX, 1, methods);
1258 if (temp)
1259 op0_high = expand_binop (word_mode, add_optab, op0_high, temp,
1260 NULL_RTX, 0, OPTAB_DIRECT);
1261 else
1263 temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1264 NULL_RTX, 0, methods);
1265 if (!temp)
1266 return NULL_RTX;
1267 op0_high = expand_binop (word_mode, sub_optab, op0_high, temp,
1268 NULL_RTX, 0, OPTAB_DIRECT);
1271 if (!op0_high)
1272 return NULL_RTX;
1275 adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low,
1276 NULL_RTX, 0, OPTAB_DIRECT);
1277 if (!adjust)
1278 return NULL_RTX;
1280 /* OP0_HIGH should now be dead. */
1282 if (!umulp)
1284 /* ??? This could be done with emit_store_flag where available. */
1285 temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1286 NULL_RTX, 1, methods);
1287 if (temp)
1288 op1_high = expand_binop (word_mode, add_optab, op1_high, temp,
1289 NULL_RTX, 0, OPTAB_DIRECT);
1290 else
1292 temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1293 NULL_RTX, 0, methods);
1294 if (!temp)
1295 return NULL_RTX;
1296 op1_high = expand_binop (word_mode, sub_optab, op1_high, temp,
1297 NULL_RTX, 0, OPTAB_DIRECT);
1300 if (!op1_high)
1301 return NULL_RTX;
1304 temp = expand_binop (word_mode, smul_optab, op1_high, op0_low,
1305 NULL_RTX, 0, OPTAB_DIRECT);
1306 if (!temp)
1307 return NULL_RTX;
1309 /* OP1_HIGH should now be dead. */
1311 adjust = expand_binop (word_mode, add_optab, adjust, temp,
1312 adjust, 0, OPTAB_DIRECT);
1314 if (target && !REG_P (target))
1315 target = NULL_RTX;
1317 if (umulp)
1318 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1319 target, 1, OPTAB_DIRECT);
1320 else
1321 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1322 target, 1, OPTAB_DIRECT);
1324 if (!product)
1325 return NULL_RTX;
1327 product_high = operand_subword (product, high, 1, mode);
1328 adjust = expand_binop (word_mode, add_optab, product_high, adjust,
1329 REG_P (product_high) ? product_high : adjust,
1330 0, OPTAB_DIRECT);
1331 emit_move_insn (product_high, adjust);
1332 return product;
1335 /* Wrapper around expand_binop which takes an rtx code to specify
1336 the operation to perform, not an optab pointer. All other
1337 arguments are the same. */
1339 expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0,
1340 rtx op1, rtx target, int unsignedp,
1341 enum optab_methods methods)
1343 optab binop = code_to_optab[(int) code];
1344 gcc_assert (binop);
1346 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
1349 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
1350 binop. Order them according to commutative_operand_precedence and, if
1351 possible, try to put TARGET or a pseudo first. */
1352 static bool
1353 swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1)
1355 int op0_prec = commutative_operand_precedence (op0);
1356 int op1_prec = commutative_operand_precedence (op1);
1358 if (op0_prec < op1_prec)
1359 return true;
1361 if (op0_prec > op1_prec)
1362 return false;
1364 /* With equal precedence, both orders are ok, but it is better if the
1365 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
1366 if (target == 0 || REG_P (target))
1367 return (REG_P (op1) && !REG_P (op0)) || target == op1;
1368 else
1369 return rtx_equal_p (op1, target);
1372 /* Return true if BINOPTAB implements a shift operation. */
1374 static bool
1375 shift_optab_p (optab binoptab)
1377 switch (binoptab->code)
1379 case ASHIFT:
1380 case SS_ASHIFT:
1381 case US_ASHIFT:
1382 case ASHIFTRT:
1383 case LSHIFTRT:
1384 case ROTATE:
1385 case ROTATERT:
1386 return true;
1388 default:
1389 return false;
1393 /* Return true if BINOPTAB implements a commutative binary operation. */
1395 static bool
1396 commutative_optab_p (optab binoptab)
1398 return (GET_RTX_CLASS (binoptab->code) == RTX_COMM_ARITH
1399 || binoptab == smul_widen_optab
1400 || binoptab == umul_widen_optab
1401 || binoptab == smul_highpart_optab
1402 || binoptab == umul_highpart_optab);
1405 /* X is to be used in mode MODE as an operand to BINOPTAB. If we're
1406 optimizing, and if the operand is a constant that costs more than
1407 1 instruction, force the constant into a register and return that
1408 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
1410 static rtx
1411 avoid_expensive_constant (enum machine_mode mode, optab binoptab,
1412 rtx x, bool unsignedp)
1414 if (mode != VOIDmode
1415 && optimize
1416 && CONSTANT_P (x)
1417 && rtx_cost (x, binoptab->code, optimize_insn_for_speed_p ())
1418 > COSTS_N_INSNS (1))
1420 if (GET_CODE (x) == CONST_INT)
1422 HOST_WIDE_INT intval = trunc_int_for_mode (INTVAL (x), mode);
1423 if (intval != INTVAL (x))
1424 x = GEN_INT (intval);
1426 else
1427 x = convert_modes (mode, VOIDmode, x, unsignedp);
1428 x = force_reg (mode, x);
1430 return x;
1433 /* Helper function for expand_binop: handle the case where there
1434 is an insn that directly implements the indicated operation.
1435 Returns null if this is not possible. */
1436 static rtx
1437 expand_binop_directly (enum machine_mode mode, optab binoptab,
1438 rtx op0, rtx op1,
1439 rtx target, int unsignedp, enum optab_methods methods,
1440 rtx last)
1442 int icode = (int) optab_handler (binoptab, mode)->insn_code;
1443 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
1444 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
1445 enum machine_mode tmp_mode;
1446 bool commutative_p;
1447 rtx pat;
1448 rtx xop0 = op0, xop1 = op1;
1449 rtx temp;
1450 rtx swap;
1452 if (target)
1453 temp = target;
1454 else
1455 temp = gen_reg_rtx (mode);
1457 /* If it is a commutative operator and the modes would match
1458 if we would swap the operands, we can save the conversions. */
1459 commutative_p = commutative_optab_p (binoptab);
1460 if (commutative_p
1461 && GET_MODE (xop0) != mode0 && GET_MODE (xop1) != mode1
1462 && GET_MODE (xop0) == mode1 && GET_MODE (xop1) == mode1)
1464 swap = xop0;
1465 xop0 = xop1;
1466 xop1 = swap;
1469 /* If we are optimizing, force expensive constants into a register. */
1470 xop0 = avoid_expensive_constant (mode0, binoptab, xop0, unsignedp);
1471 if (!shift_optab_p (binoptab))
1472 xop1 = avoid_expensive_constant (mode1, binoptab, xop1, unsignedp);
1474 /* In case the insn wants input operands in modes different from
1475 those of the actual operands, convert the operands. It would
1476 seem that we don't need to convert CONST_INTs, but we do, so
1477 that they're properly zero-extended, sign-extended or truncated
1478 for their mode. */
1480 if (GET_MODE (xop0) != mode0 && mode0 != VOIDmode)
1481 xop0 = convert_modes (mode0,
1482 GET_MODE (xop0) != VOIDmode
1483 ? GET_MODE (xop0)
1484 : mode,
1485 xop0, unsignedp);
1487 if (GET_MODE (xop1) != mode1 && mode1 != VOIDmode)
1488 xop1 = convert_modes (mode1,
1489 GET_MODE (xop1) != VOIDmode
1490 ? GET_MODE (xop1)
1491 : mode,
1492 xop1, unsignedp);
1494 /* If operation is commutative,
1495 try to make the first operand a register.
1496 Even better, try to make it the same as the target.
1497 Also try to make the last operand a constant. */
1498 if (commutative_p
1499 && swap_commutative_operands_with_target (target, xop0, xop1))
1501 swap = xop1;
1502 xop1 = xop0;
1503 xop0 = swap;
1506 /* Now, if insn's predicates don't allow our operands, put them into
1507 pseudo regs. */
1509 if (!insn_data[icode].operand[1].predicate (xop0, mode0)
1510 && mode0 != VOIDmode)
1511 xop0 = copy_to_mode_reg (mode0, xop0);
1513 if (!insn_data[icode].operand[2].predicate (xop1, mode1)
1514 && mode1 != VOIDmode)
1515 xop1 = copy_to_mode_reg (mode1, xop1);
1517 if (binoptab == vec_pack_trunc_optab
1518 || binoptab == vec_pack_usat_optab
1519 || binoptab == vec_pack_ssat_optab
1520 || binoptab == vec_pack_ufix_trunc_optab
1521 || binoptab == vec_pack_sfix_trunc_optab)
1523 /* The mode of the result is different then the mode of the
1524 arguments. */
1525 tmp_mode = insn_data[icode].operand[0].mode;
1526 if (GET_MODE_NUNITS (tmp_mode) != 2 * GET_MODE_NUNITS (mode))
1527 return 0;
1529 else
1530 tmp_mode = mode;
1532 if (!insn_data[icode].operand[0].predicate (temp, tmp_mode))
1533 temp = gen_reg_rtx (tmp_mode);
1535 pat = GEN_FCN (icode) (temp, xop0, xop1);
1536 if (pat)
1538 /* If PAT is composed of more than one insn, try to add an appropriate
1539 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1540 operand, call expand_binop again, this time without a target. */
1541 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
1542 && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
1544 delete_insns_since (last);
1545 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
1546 unsignedp, methods);
1549 emit_insn (pat);
1550 return temp;
1553 delete_insns_since (last);
1554 return NULL_RTX;
1557 /* Generate code to perform an operation specified by BINOPTAB
1558 on operands OP0 and OP1, with result having machine-mode MODE.
1560 UNSIGNEDP is for the case where we have to widen the operands
1561 to perform the operation. It says to use zero-extension.
1563 If TARGET is nonzero, the value
1564 is generated there, if it is convenient to do so.
1565 In all cases an rtx is returned for the locus of the value;
1566 this may or may not be TARGET. */
1569 expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1,
1570 rtx target, int unsignedp, enum optab_methods methods)
1572 enum optab_methods next_methods
1573 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
1574 ? OPTAB_WIDEN : methods);
1575 enum mode_class mclass;
1576 enum machine_mode wider_mode;
1577 rtx libfunc;
1578 rtx temp;
1579 rtx entry_last = get_last_insn ();
1580 rtx last;
1582 mclass = GET_MODE_CLASS (mode);
1584 /* If subtracting an integer constant, convert this into an addition of
1585 the negated constant. */
1587 if (binoptab == sub_optab && GET_CODE (op1) == CONST_INT)
1589 op1 = negate_rtx (mode, op1);
1590 binoptab = add_optab;
1593 /* Record where to delete back to if we backtrack. */
1594 last = get_last_insn ();
1596 /* If we can do it with a three-operand insn, do so. */
1598 if (methods != OPTAB_MUST_WIDEN
1599 && optab_handler (binoptab, mode)->insn_code != CODE_FOR_nothing)
1601 temp = expand_binop_directly (mode, binoptab, op0, op1, target,
1602 unsignedp, methods, last);
1603 if (temp)
1604 return temp;
1607 /* If we were trying to rotate, and that didn't work, try rotating
1608 the other direction before falling back to shifts and bitwise-or. */
1609 if (((binoptab == rotl_optab
1610 && optab_handler (rotr_optab, mode)->insn_code != CODE_FOR_nothing)
1611 || (binoptab == rotr_optab
1612 && optab_handler (rotl_optab, mode)->insn_code != CODE_FOR_nothing))
1613 && mclass == MODE_INT)
1615 optab otheroptab = (binoptab == rotl_optab ? rotr_optab : rotl_optab);
1616 rtx newop1;
1617 unsigned int bits = GET_MODE_BITSIZE (mode);
1619 if (GET_CODE (op1) == CONST_INT)
1620 newop1 = GEN_INT (bits - INTVAL (op1));
1621 else if (targetm.shift_truncation_mask (mode) == bits - 1)
1622 newop1 = negate_rtx (mode, op1);
1623 else
1624 newop1 = expand_binop (mode, sub_optab,
1625 GEN_INT (bits), op1,
1626 NULL_RTX, unsignedp, OPTAB_DIRECT);
1628 temp = expand_binop_directly (mode, otheroptab, op0, newop1,
1629 target, unsignedp, methods, last);
1630 if (temp)
1631 return temp;
1634 /* If this is a multiply, see if we can do a widening operation that
1635 takes operands of this mode and makes a wider mode. */
1637 if (binoptab == smul_optab
1638 && GET_MODE_WIDER_MODE (mode) != VOIDmode
1639 && ((optab_handler ((unsignedp ? umul_widen_optab : smul_widen_optab),
1640 GET_MODE_WIDER_MODE (mode))->insn_code)
1641 != CODE_FOR_nothing))
1643 temp = expand_binop (GET_MODE_WIDER_MODE (mode),
1644 unsignedp ? umul_widen_optab : smul_widen_optab,
1645 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
1647 if (temp != 0)
1649 if (GET_MODE_CLASS (mode) == MODE_INT
1650 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1651 GET_MODE_BITSIZE (GET_MODE (temp))))
1652 return gen_lowpart (mode, temp);
1653 else
1654 return convert_to_mode (mode, temp, unsignedp);
1658 /* Look for a wider mode of the same class for which we think we
1659 can open-code the operation. Check for a widening multiply at the
1660 wider mode as well. */
1662 if (CLASS_HAS_WIDER_MODES_P (mclass)
1663 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
1664 for (wider_mode = GET_MODE_WIDER_MODE (mode);
1665 wider_mode != VOIDmode;
1666 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1668 if (optab_handler (binoptab, wider_mode)->insn_code != CODE_FOR_nothing
1669 || (binoptab == smul_optab
1670 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
1671 && ((optab_handler ((unsignedp ? umul_widen_optab
1672 : smul_widen_optab),
1673 GET_MODE_WIDER_MODE (wider_mode))->insn_code)
1674 != CODE_FOR_nothing)))
1676 rtx xop0 = op0, xop1 = op1;
1677 int no_extend = 0;
1679 /* For certain integer operations, we need not actually extend
1680 the narrow operands, as long as we will truncate
1681 the results to the same narrowness. */
1683 if ((binoptab == ior_optab || binoptab == and_optab
1684 || binoptab == xor_optab
1685 || binoptab == add_optab || binoptab == sub_optab
1686 || binoptab == smul_optab || binoptab == ashl_optab)
1687 && mclass == MODE_INT)
1689 no_extend = 1;
1690 xop0 = avoid_expensive_constant (mode, binoptab,
1691 xop0, unsignedp);
1692 if (binoptab != ashl_optab)
1693 xop1 = avoid_expensive_constant (mode, binoptab,
1694 xop1, unsignedp);
1697 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
1699 /* The second operand of a shift must always be extended. */
1700 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1701 no_extend && binoptab != ashl_optab);
1703 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1704 unsignedp, OPTAB_DIRECT);
1705 if (temp)
1707 if (mclass != MODE_INT
1708 || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1709 GET_MODE_BITSIZE (wider_mode)))
1711 if (target == 0)
1712 target = gen_reg_rtx (mode);
1713 convert_move (target, temp, 0);
1714 return target;
1716 else
1717 return gen_lowpart (mode, temp);
1719 else
1720 delete_insns_since (last);
1724 /* If operation is commutative,
1725 try to make the first operand a register.
1726 Even better, try to make it the same as the target.
1727 Also try to make the last operand a constant. */
1728 if (commutative_optab_p (binoptab)
1729 && swap_commutative_operands_with_target (target, op0, op1))
1731 temp = op1;
1732 op1 = op0;
1733 op0 = temp;
1736 /* These can be done a word at a time. */
1737 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
1738 && mclass == MODE_INT
1739 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
1740 && optab_handler (binoptab, word_mode)->insn_code != CODE_FOR_nothing)
1742 int i;
1743 rtx insns;
1744 rtx equiv_value;
1746 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1747 won't be accurate, so use a new target. */
1748 if (target == 0 || target == op0 || target == op1)
1749 target = gen_reg_rtx (mode);
1751 start_sequence ();
1753 /* Do the actual arithmetic. */
1754 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
1756 rtx target_piece = operand_subword (target, i, 1, mode);
1757 rtx x = expand_binop (word_mode, binoptab,
1758 operand_subword_force (op0, i, mode),
1759 operand_subword_force (op1, i, mode),
1760 target_piece, unsignedp, next_methods);
1762 if (x == 0)
1763 break;
1765 if (target_piece != x)
1766 emit_move_insn (target_piece, x);
1769 insns = get_insns ();
1770 end_sequence ();
1772 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
1774 if (binoptab->code != UNKNOWN)
1775 equiv_value
1776 = gen_rtx_fmt_ee (binoptab->code, mode,
1777 copy_rtx (op0), copy_rtx (op1));
1778 else
1779 equiv_value = 0;
1781 emit_insn (insns);
1782 return target;
1786 /* Synthesize double word shifts from single word shifts. */
1787 if ((binoptab == lshr_optab || binoptab == ashl_optab
1788 || binoptab == ashr_optab)
1789 && mclass == MODE_INT
1790 && (GET_CODE (op1) == CONST_INT || optimize_insn_for_speed_p ())
1791 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1792 && optab_handler (binoptab, word_mode)->insn_code != CODE_FOR_nothing
1793 && optab_handler (ashl_optab, word_mode)->insn_code != CODE_FOR_nothing
1794 && optab_handler (lshr_optab, word_mode)->insn_code != CODE_FOR_nothing)
1796 unsigned HOST_WIDE_INT shift_mask, double_shift_mask;
1797 enum machine_mode op1_mode;
1799 double_shift_mask = targetm.shift_truncation_mask (mode);
1800 shift_mask = targetm.shift_truncation_mask (word_mode);
1801 op1_mode = GET_MODE (op1) != VOIDmode ? GET_MODE (op1) : word_mode;
1803 /* Apply the truncation to constant shifts. */
1804 if (double_shift_mask > 0 && GET_CODE (op1) == CONST_INT)
1805 op1 = GEN_INT (INTVAL (op1) & double_shift_mask);
1807 if (op1 == CONST0_RTX (op1_mode))
1808 return op0;
1810 /* Make sure that this is a combination that expand_doubleword_shift
1811 can handle. See the comments there for details. */
1812 if (double_shift_mask == 0
1813 || (shift_mask == BITS_PER_WORD - 1
1814 && double_shift_mask == BITS_PER_WORD * 2 - 1))
1816 rtx insns;
1817 rtx into_target, outof_target;
1818 rtx into_input, outof_input;
1819 int left_shift, outof_word;
1821 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1822 won't be accurate, so use a new target. */
1823 if (target == 0 || target == op0 || target == op1)
1824 target = gen_reg_rtx (mode);
1826 start_sequence ();
1828 /* OUTOF_* is the word we are shifting bits away from, and
1829 INTO_* is the word that we are shifting bits towards, thus
1830 they differ depending on the direction of the shift and
1831 WORDS_BIG_ENDIAN. */
1833 left_shift = binoptab == ashl_optab;
1834 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1836 outof_target = operand_subword (target, outof_word, 1, mode);
1837 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1839 outof_input = operand_subword_force (op0, outof_word, mode);
1840 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1842 if (expand_doubleword_shift (op1_mode, binoptab,
1843 outof_input, into_input, op1,
1844 outof_target, into_target,
1845 unsignedp, next_methods, shift_mask))
1847 insns = get_insns ();
1848 end_sequence ();
1850 emit_insn (insns);
1851 return target;
1853 end_sequence ();
1857 /* Synthesize double word rotates from single word shifts. */
1858 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1859 && mclass == MODE_INT
1860 && GET_CODE (op1) == CONST_INT
1861 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1862 && optab_handler (ashl_optab, word_mode)->insn_code != CODE_FOR_nothing
1863 && optab_handler (lshr_optab, word_mode)->insn_code != CODE_FOR_nothing)
1865 rtx insns;
1866 rtx into_target, outof_target;
1867 rtx into_input, outof_input;
1868 rtx inter;
1869 int shift_count, left_shift, outof_word;
1871 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1872 won't be accurate, so use a new target. Do this also if target is not
1873 a REG, first because having a register instead may open optimization
1874 opportunities, and second because if target and op0 happen to be MEMs
1875 designating the same location, we would risk clobbering it too early
1876 in the code sequence we generate below. */
1877 if (target == 0 || target == op0 || target == op1 || ! REG_P (target))
1878 target = gen_reg_rtx (mode);
1880 start_sequence ();
1882 shift_count = INTVAL (op1);
1884 /* OUTOF_* is the word we are shifting bits away from, and
1885 INTO_* is the word that we are shifting bits towards, thus
1886 they differ depending on the direction of the shift and
1887 WORDS_BIG_ENDIAN. */
1889 left_shift = (binoptab == rotl_optab);
1890 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1892 outof_target = operand_subword (target, outof_word, 1, mode);
1893 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1895 outof_input = operand_subword_force (op0, outof_word, mode);
1896 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1898 if (shift_count == BITS_PER_WORD)
1900 /* This is just a word swap. */
1901 emit_move_insn (outof_target, into_input);
1902 emit_move_insn (into_target, outof_input);
1903 inter = const0_rtx;
1905 else
1907 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1908 rtx first_shift_count, second_shift_count;
1909 optab reverse_unsigned_shift, unsigned_shift;
1911 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1912 ? lshr_optab : ashl_optab);
1914 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1915 ? ashl_optab : lshr_optab);
1917 if (shift_count > BITS_PER_WORD)
1919 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1920 second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
1922 else
1924 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1925 second_shift_count = GEN_INT (shift_count);
1928 into_temp1 = expand_binop (word_mode, unsigned_shift,
1929 outof_input, first_shift_count,
1930 NULL_RTX, unsignedp, next_methods);
1931 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1932 into_input, second_shift_count,
1933 NULL_RTX, unsignedp, next_methods);
1935 if (into_temp1 != 0 && into_temp2 != 0)
1936 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1937 into_target, unsignedp, next_methods);
1938 else
1939 inter = 0;
1941 if (inter != 0 && inter != into_target)
1942 emit_move_insn (into_target, inter);
1944 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1945 into_input, first_shift_count,
1946 NULL_RTX, unsignedp, next_methods);
1947 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1948 outof_input, second_shift_count,
1949 NULL_RTX, unsignedp, next_methods);
1951 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1952 inter = expand_binop (word_mode, ior_optab,
1953 outof_temp1, outof_temp2,
1954 outof_target, unsignedp, next_methods);
1956 if (inter != 0 && inter != outof_target)
1957 emit_move_insn (outof_target, inter);
1960 insns = get_insns ();
1961 end_sequence ();
1963 if (inter != 0)
1965 emit_insn (insns);
1966 return target;
1970 /* These can be done a word at a time by propagating carries. */
1971 if ((binoptab == add_optab || binoptab == sub_optab)
1972 && mclass == MODE_INT
1973 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1974 && optab_handler (binoptab, word_mode)->insn_code != CODE_FOR_nothing)
1976 unsigned int i;
1977 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1978 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1979 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1980 rtx xop0, xop1, xtarget;
1982 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1983 value is one of those, use it. Otherwise, use 1 since it is the
1984 one easiest to get. */
1985 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1986 int normalizep = STORE_FLAG_VALUE;
1987 #else
1988 int normalizep = 1;
1989 #endif
1991 /* Prepare the operands. */
1992 xop0 = force_reg (mode, op0);
1993 xop1 = force_reg (mode, op1);
1995 xtarget = gen_reg_rtx (mode);
1997 if (target == 0 || !REG_P (target))
1998 target = xtarget;
2000 /* Indicate for flow that the entire target reg is being set. */
2001 if (REG_P (target))
2002 emit_clobber (xtarget);
2004 /* Do the actual arithmetic. */
2005 for (i = 0; i < nwords; i++)
2007 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
2008 rtx target_piece = operand_subword (xtarget, index, 1, mode);
2009 rtx op0_piece = operand_subword_force (xop0, index, mode);
2010 rtx op1_piece = operand_subword_force (xop1, index, mode);
2011 rtx x;
2013 /* Main add/subtract of the input operands. */
2014 x = expand_binop (word_mode, binoptab,
2015 op0_piece, op1_piece,
2016 target_piece, unsignedp, next_methods);
2017 if (x == 0)
2018 break;
2020 if (i + 1 < nwords)
2022 /* Store carry from main add/subtract. */
2023 carry_out = gen_reg_rtx (word_mode);
2024 carry_out = emit_store_flag_force (carry_out,
2025 (binoptab == add_optab
2026 ? LT : GT),
2027 x, op0_piece,
2028 word_mode, 1, normalizep);
2031 if (i > 0)
2033 rtx newx;
2035 /* Add/subtract previous carry to main result. */
2036 newx = expand_binop (word_mode,
2037 normalizep == 1 ? binoptab : otheroptab,
2038 x, carry_in,
2039 NULL_RTX, 1, next_methods);
2041 if (i + 1 < nwords)
2043 /* Get out carry from adding/subtracting carry in. */
2044 rtx carry_tmp = gen_reg_rtx (word_mode);
2045 carry_tmp = emit_store_flag_force (carry_tmp,
2046 (binoptab == add_optab
2047 ? LT : GT),
2048 newx, x,
2049 word_mode, 1, normalizep);
2051 /* Logical-ior the two poss. carry together. */
2052 carry_out = expand_binop (word_mode, ior_optab,
2053 carry_out, carry_tmp,
2054 carry_out, 0, next_methods);
2055 if (carry_out == 0)
2056 break;
2058 emit_move_insn (target_piece, newx);
2060 else
2062 if (x != target_piece)
2063 emit_move_insn (target_piece, x);
2066 carry_in = carry_out;
2069 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
2071 if (optab_handler (mov_optab, mode)->insn_code != CODE_FOR_nothing
2072 || ! rtx_equal_p (target, xtarget))
2074 rtx temp = emit_move_insn (target, xtarget);
2076 set_unique_reg_note (temp,
2077 REG_EQUAL,
2078 gen_rtx_fmt_ee (binoptab->code, mode,
2079 copy_rtx (xop0),
2080 copy_rtx (xop1)));
2082 else
2083 target = xtarget;
2085 return target;
2088 else
2089 delete_insns_since (last);
2092 /* Attempt to synthesize double word multiplies using a sequence of word
2093 mode multiplications. We first attempt to generate a sequence using a
2094 more efficient unsigned widening multiply, and if that fails we then
2095 try using a signed widening multiply. */
2097 if (binoptab == smul_optab
2098 && mclass == MODE_INT
2099 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
2100 && optab_handler (smul_optab, word_mode)->insn_code != CODE_FOR_nothing
2101 && optab_handler (add_optab, word_mode)->insn_code != CODE_FOR_nothing)
2103 rtx product = NULL_RTX;
2105 if (optab_handler (umul_widen_optab, mode)->insn_code
2106 != CODE_FOR_nothing)
2108 product = expand_doubleword_mult (mode, op0, op1, target,
2109 true, methods);
2110 if (!product)
2111 delete_insns_since (last);
2114 if (product == NULL_RTX
2115 && optab_handler (smul_widen_optab, mode)->insn_code
2116 != CODE_FOR_nothing)
2118 product = expand_doubleword_mult (mode, op0, op1, target,
2119 false, methods);
2120 if (!product)
2121 delete_insns_since (last);
2124 if (product != NULL_RTX)
2126 if (optab_handler (mov_optab, mode)->insn_code != CODE_FOR_nothing)
2128 temp = emit_move_insn (target ? target : product, product);
2129 set_unique_reg_note (temp,
2130 REG_EQUAL,
2131 gen_rtx_fmt_ee (MULT, mode,
2132 copy_rtx (op0),
2133 copy_rtx (op1)));
2135 return product;
2139 /* It can't be open-coded in this mode.
2140 Use a library call if one is available and caller says that's ok. */
2142 libfunc = optab_libfunc (binoptab, mode);
2143 if (libfunc
2144 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
2146 rtx insns;
2147 rtx op1x = op1;
2148 enum machine_mode op1_mode = mode;
2149 rtx value;
2151 start_sequence ();
2153 if (shift_optab_p (binoptab))
2155 op1_mode = targetm.libgcc_shift_count_mode ();
2156 /* Specify unsigned here,
2157 since negative shift counts are meaningless. */
2158 op1x = convert_to_mode (op1_mode, op1, 1);
2161 if (GET_MODE (op0) != VOIDmode
2162 && GET_MODE (op0) != mode)
2163 op0 = convert_to_mode (mode, op0, unsignedp);
2165 /* Pass 1 for NO_QUEUE so we don't lose any increments
2166 if the libcall is cse'd or moved. */
2167 value = emit_library_call_value (libfunc,
2168 NULL_RTX, LCT_CONST, mode, 2,
2169 op0, mode, op1x, op1_mode);
2171 insns = get_insns ();
2172 end_sequence ();
2174 target = gen_reg_rtx (mode);
2175 emit_libcall_block (insns, target, value,
2176 gen_rtx_fmt_ee (binoptab->code, mode, op0, op1));
2178 return target;
2181 delete_insns_since (last);
2183 /* It can't be done in this mode. Can we do it in a wider mode? */
2185 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
2186 || methods == OPTAB_MUST_WIDEN))
2188 /* Caller says, don't even try. */
2189 delete_insns_since (entry_last);
2190 return 0;
2193 /* Compute the value of METHODS to pass to recursive calls.
2194 Don't allow widening to be tried recursively. */
2196 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
2198 /* Look for a wider mode of the same class for which it appears we can do
2199 the operation. */
2201 if (CLASS_HAS_WIDER_MODES_P (mclass))
2203 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2204 wider_mode != VOIDmode;
2205 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2207 if ((optab_handler (binoptab, wider_mode)->insn_code
2208 != CODE_FOR_nothing)
2209 || (methods == OPTAB_LIB
2210 && optab_libfunc (binoptab, wider_mode)))
2212 rtx xop0 = op0, xop1 = op1;
2213 int no_extend = 0;
2215 /* For certain integer operations, we need not actually extend
2216 the narrow operands, as long as we will truncate
2217 the results to the same narrowness. */
2219 if ((binoptab == ior_optab || binoptab == and_optab
2220 || binoptab == xor_optab
2221 || binoptab == add_optab || binoptab == sub_optab
2222 || binoptab == smul_optab || binoptab == ashl_optab)
2223 && mclass == MODE_INT)
2224 no_extend = 1;
2226 xop0 = widen_operand (xop0, wider_mode, mode,
2227 unsignedp, no_extend);
2229 /* The second operand of a shift must always be extended. */
2230 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
2231 no_extend && binoptab != ashl_optab);
2233 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
2234 unsignedp, methods);
2235 if (temp)
2237 if (mclass != MODE_INT
2238 || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
2239 GET_MODE_BITSIZE (wider_mode)))
2241 if (target == 0)
2242 target = gen_reg_rtx (mode);
2243 convert_move (target, temp, 0);
2244 return target;
2246 else
2247 return gen_lowpart (mode, temp);
2249 else
2250 delete_insns_since (last);
2255 delete_insns_since (entry_last);
2256 return 0;
2259 /* Expand a binary operator which has both signed and unsigned forms.
2260 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2261 signed operations.
2263 If we widen unsigned operands, we may use a signed wider operation instead
2264 of an unsigned wider operation, since the result would be the same. */
2267 sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab,
2268 rtx op0, rtx op1, rtx target, int unsignedp,
2269 enum optab_methods methods)
2271 rtx temp;
2272 optab direct_optab = unsignedp ? uoptab : soptab;
2273 struct optab wide_soptab;
2275 /* Do it without widening, if possible. */
2276 temp = expand_binop (mode, direct_optab, op0, op1, target,
2277 unsignedp, OPTAB_DIRECT);
2278 if (temp || methods == OPTAB_DIRECT)
2279 return temp;
2281 /* Try widening to a signed int. Make a fake signed optab that
2282 hides any signed insn for direct use. */
2283 wide_soptab = *soptab;
2284 optab_handler (&wide_soptab, mode)->insn_code = CODE_FOR_nothing;
2285 /* We don't want to generate new hash table entries from this fake
2286 optab. */
2287 wide_soptab.libcall_gen = NULL;
2289 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2290 unsignedp, OPTAB_WIDEN);
2292 /* For unsigned operands, try widening to an unsigned int. */
2293 if (temp == 0 && unsignedp)
2294 temp = expand_binop (mode, uoptab, op0, op1, target,
2295 unsignedp, OPTAB_WIDEN);
2296 if (temp || methods == OPTAB_WIDEN)
2297 return temp;
2299 /* Use the right width lib call if that exists. */
2300 temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
2301 if (temp || methods == OPTAB_LIB)
2302 return temp;
2304 /* Must widen and use a lib call, use either signed or unsigned. */
2305 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2306 unsignedp, methods);
2307 if (temp != 0)
2308 return temp;
2309 if (unsignedp)
2310 return expand_binop (mode, uoptab, op0, op1, target,
2311 unsignedp, methods);
2312 return 0;
2315 /* Generate code to perform an operation specified by UNOPPTAB
2316 on operand OP0, with two results to TARG0 and TARG1.
2317 We assume that the order of the operands for the instruction
2318 is TARG0, TARG1, OP0.
2320 Either TARG0 or TARG1 may be zero, but what that means is that
2321 the result is not actually wanted. We will generate it into
2322 a dummy pseudo-reg and discard it. They may not both be zero.
2324 Returns 1 if this operation can be performed; 0 if not. */
2327 expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
2328 int unsignedp)
2330 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2331 enum mode_class mclass;
2332 enum machine_mode wider_mode;
2333 rtx entry_last = get_last_insn ();
2334 rtx last;
2336 mclass = GET_MODE_CLASS (mode);
2338 if (!targ0)
2339 targ0 = gen_reg_rtx (mode);
2340 if (!targ1)
2341 targ1 = gen_reg_rtx (mode);
2343 /* Record where to go back to if we fail. */
2344 last = get_last_insn ();
2346 if (optab_handler (unoptab, mode)->insn_code != CODE_FOR_nothing)
2348 int icode = (int) optab_handler (unoptab, mode)->insn_code;
2349 enum machine_mode mode0 = insn_data[icode].operand[2].mode;
2350 rtx pat;
2351 rtx xop0 = op0;
2353 if (GET_MODE (xop0) != VOIDmode
2354 && GET_MODE (xop0) != mode0)
2355 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2357 /* Now, if insn doesn't accept these operands, put them into pseudos. */
2358 if (!insn_data[icode].operand[2].predicate (xop0, mode0))
2359 xop0 = copy_to_mode_reg (mode0, xop0);
2361 /* We could handle this, but we should always be called with a pseudo
2362 for our targets and all insns should take them as outputs. */
2363 gcc_assert (insn_data[icode].operand[0].predicate (targ0, mode));
2364 gcc_assert (insn_data[icode].operand[1].predicate (targ1, mode));
2366 pat = GEN_FCN (icode) (targ0, targ1, xop0);
2367 if (pat)
2369 emit_insn (pat);
2370 return 1;
2372 else
2373 delete_insns_since (last);
2376 /* It can't be done in this mode. Can we do it in a wider mode? */
2378 if (CLASS_HAS_WIDER_MODES_P (mclass))
2380 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2381 wider_mode != VOIDmode;
2382 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2384 if (optab_handler (unoptab, wider_mode)->insn_code
2385 != CODE_FOR_nothing)
2387 rtx t0 = gen_reg_rtx (wider_mode);
2388 rtx t1 = gen_reg_rtx (wider_mode);
2389 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2391 if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
2393 convert_move (targ0, t0, unsignedp);
2394 convert_move (targ1, t1, unsignedp);
2395 return 1;
2397 else
2398 delete_insns_since (last);
2403 delete_insns_since (entry_last);
2404 return 0;
2407 /* Generate code to perform an operation specified by BINOPTAB
2408 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2409 We assume that the order of the operands for the instruction
2410 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2411 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2413 Either TARG0 or TARG1 may be zero, but what that means is that
2414 the result is not actually wanted. We will generate it into
2415 a dummy pseudo-reg and discard it. They may not both be zero.
2417 Returns 1 if this operation can be performed; 0 if not. */
2420 expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
2421 int unsignedp)
2423 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2424 enum mode_class mclass;
2425 enum machine_mode wider_mode;
2426 rtx entry_last = get_last_insn ();
2427 rtx last;
2429 mclass = GET_MODE_CLASS (mode);
2431 if (!targ0)
2432 targ0 = gen_reg_rtx (mode);
2433 if (!targ1)
2434 targ1 = gen_reg_rtx (mode);
2436 /* Record where to go back to if we fail. */
2437 last = get_last_insn ();
2439 if (optab_handler (binoptab, mode)->insn_code != CODE_FOR_nothing)
2441 int icode = (int) optab_handler (binoptab, mode)->insn_code;
2442 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2443 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
2444 rtx pat;
2445 rtx xop0 = op0, xop1 = op1;
2447 /* If we are optimizing, force expensive constants into a register. */
2448 xop0 = avoid_expensive_constant (mode0, binoptab, xop0, unsignedp);
2449 xop1 = avoid_expensive_constant (mode1, binoptab, xop1, unsignedp);
2451 /* In case the insn wants input operands in modes different from
2452 those of the actual operands, convert the operands. It would
2453 seem that we don't need to convert CONST_INTs, but we do, so
2454 that they're properly zero-extended, sign-extended or truncated
2455 for their mode. */
2457 if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
2458 xop0 = convert_modes (mode0,
2459 GET_MODE (op0) != VOIDmode
2460 ? GET_MODE (op0)
2461 : mode,
2462 xop0, unsignedp);
2464 if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
2465 xop1 = convert_modes (mode1,
2466 GET_MODE (op1) != VOIDmode
2467 ? GET_MODE (op1)
2468 : mode,
2469 xop1, unsignedp);
2471 /* Now, if insn doesn't accept these operands, put them into pseudos. */
2472 if (!insn_data[icode].operand[1].predicate (xop0, mode0))
2473 xop0 = copy_to_mode_reg (mode0, xop0);
2475 if (!insn_data[icode].operand[2].predicate (xop1, mode1))
2476 xop1 = copy_to_mode_reg (mode1, xop1);
2478 /* We could handle this, but we should always be called with a pseudo
2479 for our targets and all insns should take them as outputs. */
2480 gcc_assert (insn_data[icode].operand[0].predicate (targ0, mode));
2481 gcc_assert (insn_data[icode].operand[3].predicate (targ1, mode));
2483 pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
2484 if (pat)
2486 emit_insn (pat);
2487 return 1;
2489 else
2490 delete_insns_since (last);
2493 /* It can't be done in this mode. Can we do it in a wider mode? */
2495 if (CLASS_HAS_WIDER_MODES_P (mclass))
2497 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2498 wider_mode != VOIDmode;
2499 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2501 if (optab_handler (binoptab, wider_mode)->insn_code
2502 != CODE_FOR_nothing)
2504 rtx t0 = gen_reg_rtx (wider_mode);
2505 rtx t1 = gen_reg_rtx (wider_mode);
2506 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2507 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2509 if (expand_twoval_binop (binoptab, cop0, cop1,
2510 t0, t1, unsignedp))
2512 convert_move (targ0, t0, unsignedp);
2513 convert_move (targ1, t1, unsignedp);
2514 return 1;
2516 else
2517 delete_insns_since (last);
2522 delete_insns_since (entry_last);
2523 return 0;
2526 /* Expand the two-valued library call indicated by BINOPTAB, but
2527 preserve only one of the values. If TARG0 is non-NULL, the first
2528 value is placed into TARG0; otherwise the second value is placed
2529 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2530 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2531 This routine assumes that the value returned by the library call is
2532 as if the return value was of an integral mode twice as wide as the
2533 mode of OP0. Returns 1 if the call was successful. */
2535 bool
2536 expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
2537 rtx targ0, rtx targ1, enum rtx_code code)
2539 enum machine_mode mode;
2540 enum machine_mode libval_mode;
2541 rtx libval;
2542 rtx insns;
2543 rtx libfunc;
2545 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2546 gcc_assert (!targ0 != !targ1);
2548 mode = GET_MODE (op0);
2549 libfunc = optab_libfunc (binoptab, mode);
2550 if (!libfunc)
2551 return false;
2553 /* The value returned by the library function will have twice as
2554 many bits as the nominal MODE. */
2555 libval_mode = smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode),
2556 MODE_INT);
2557 start_sequence ();
2558 libval = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
2559 libval_mode, 2,
2560 op0, mode,
2561 op1, mode);
2562 /* Get the part of VAL containing the value that we want. */
2563 libval = simplify_gen_subreg (mode, libval, libval_mode,
2564 targ0 ? 0 : GET_MODE_SIZE (mode));
2565 insns = get_insns ();
2566 end_sequence ();
2567 /* Move the into the desired location. */
2568 emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
2569 gen_rtx_fmt_ee (code, mode, op0, op1));
2571 return true;
2575 /* Wrapper around expand_unop which takes an rtx code to specify
2576 the operation to perform, not an optab pointer. All other
2577 arguments are the same. */
2579 expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0,
2580 rtx target, int unsignedp)
2582 optab unop = code_to_optab[(int) code];
2583 gcc_assert (unop);
2585 return expand_unop (mode, unop, op0, target, unsignedp);
2588 /* Try calculating
2589 (clz:narrow x)
2591 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)). */
2592 static rtx
2593 widen_clz (enum machine_mode mode, rtx op0, rtx target)
2595 enum mode_class mclass = GET_MODE_CLASS (mode);
2596 if (CLASS_HAS_WIDER_MODES_P (mclass))
2598 enum machine_mode wider_mode;
2599 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2600 wider_mode != VOIDmode;
2601 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2603 if (optab_handler (clz_optab, wider_mode)->insn_code
2604 != CODE_FOR_nothing)
2606 rtx xop0, temp, last;
2608 last = get_last_insn ();
2610 if (target == 0)
2611 target = gen_reg_rtx (mode);
2612 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2613 temp = expand_unop (wider_mode, clz_optab, xop0, NULL_RTX, true);
2614 if (temp != 0)
2615 temp = expand_binop (wider_mode, sub_optab, temp,
2616 GEN_INT (GET_MODE_BITSIZE (wider_mode)
2617 - GET_MODE_BITSIZE (mode)),
2618 target, true, OPTAB_DIRECT);
2619 if (temp == 0)
2620 delete_insns_since (last);
2622 return temp;
2626 return 0;
2629 /* Try calculating clz of a double-word quantity as two clz's of word-sized
2630 quantities, choosing which based on whether the high word is nonzero. */
2631 static rtx
2632 expand_doubleword_clz (enum machine_mode mode, rtx op0, rtx target)
2634 rtx xop0 = force_reg (mode, op0);
2635 rtx subhi = gen_highpart (word_mode, xop0);
2636 rtx sublo = gen_lowpart (word_mode, xop0);
2637 rtx hi0_label = gen_label_rtx ();
2638 rtx after_label = gen_label_rtx ();
2639 rtx seq, temp, result;
2641 /* If we were not given a target, use a word_mode register, not a
2642 'mode' register. The result will fit, and nobody is expecting
2643 anything bigger (the return type of __builtin_clz* is int). */
2644 if (!target)
2645 target = gen_reg_rtx (word_mode);
2647 /* In any case, write to a word_mode scratch in both branches of the
2648 conditional, so we can ensure there is a single move insn setting
2649 'target' to tag a REG_EQUAL note on. */
2650 result = gen_reg_rtx (word_mode);
2652 start_sequence ();
2654 /* If the high word is not equal to zero,
2655 then clz of the full value is clz of the high word. */
2656 emit_cmp_and_jump_insns (subhi, CONST0_RTX (word_mode), EQ, 0,
2657 word_mode, true, hi0_label);
2659 temp = expand_unop_direct (word_mode, clz_optab, subhi, result, true);
2660 if (!temp)
2661 goto fail;
2663 if (temp != result)
2664 convert_move (result, temp, true);
2666 emit_jump_insn (gen_jump (after_label));
2667 emit_barrier ();
2669 /* Else clz of the full value is clz of the low word plus the number
2670 of bits in the high word. */
2671 emit_label (hi0_label);
2673 temp = expand_unop_direct (word_mode, clz_optab, sublo, 0, true);
2674 if (!temp)
2675 goto fail;
2676 temp = expand_binop (word_mode, add_optab, temp,
2677 GEN_INT (GET_MODE_BITSIZE (word_mode)),
2678 result, true, OPTAB_DIRECT);
2679 if (!temp)
2680 goto fail;
2681 if (temp != result)
2682 convert_move (result, temp, true);
2684 emit_label (after_label);
2685 convert_move (target, result, true);
2687 seq = get_insns ();
2688 end_sequence ();
2690 add_equal_note (seq, target, CLZ, xop0, 0);
2691 emit_insn (seq);
2692 return target;
2694 fail:
2695 end_sequence ();
2696 return 0;
2699 /* Try calculating
2700 (bswap:narrow x)
2702 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2703 static rtx
2704 widen_bswap (enum machine_mode mode, rtx op0, rtx target)
2706 enum mode_class mclass = GET_MODE_CLASS (mode);
2707 enum machine_mode wider_mode;
2708 rtx x, last;
2710 if (!CLASS_HAS_WIDER_MODES_P (mclass))
2711 return NULL_RTX;
2713 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2714 wider_mode != VOIDmode;
2715 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2716 if (optab_handler (bswap_optab, wider_mode)->insn_code != CODE_FOR_nothing)
2717 goto found;
2718 return NULL_RTX;
2720 found:
2721 last = get_last_insn ();
2723 x = widen_operand (op0, wider_mode, mode, true, true);
2724 x = expand_unop (wider_mode, bswap_optab, x, NULL_RTX, true);
2726 if (x != 0)
2727 x = expand_shift (RSHIFT_EXPR, wider_mode, x,
2728 size_int (GET_MODE_BITSIZE (wider_mode)
2729 - GET_MODE_BITSIZE (mode)),
2730 NULL_RTX, true);
2732 if (x != 0)
2734 if (target == 0)
2735 target = gen_reg_rtx (mode);
2736 emit_move_insn (target, gen_lowpart (mode, x));
2738 else
2739 delete_insns_since (last);
2741 return target;
2744 /* Try calculating bswap as two bswaps of two word-sized operands. */
2746 static rtx
2747 expand_doubleword_bswap (enum machine_mode mode, rtx op, rtx target)
2749 rtx t0, t1;
2751 t1 = expand_unop (word_mode, bswap_optab,
2752 operand_subword_force (op, 0, mode), NULL_RTX, true);
2753 t0 = expand_unop (word_mode, bswap_optab,
2754 operand_subword_force (op, 1, mode), NULL_RTX, true);
2756 if (target == 0)
2757 target = gen_reg_rtx (mode);
2758 if (REG_P (target))
2759 emit_clobber (target);
2760 emit_move_insn (operand_subword (target, 0, 1, mode), t0);
2761 emit_move_insn (operand_subword (target, 1, 1, mode), t1);
2763 return target;
2766 /* Try calculating (parity x) as (and (popcount x) 1), where
2767 popcount can also be done in a wider mode. */
2768 static rtx
2769 expand_parity (enum machine_mode mode, rtx op0, rtx target)
2771 enum mode_class mclass = GET_MODE_CLASS (mode);
2772 if (CLASS_HAS_WIDER_MODES_P (mclass))
2774 enum machine_mode wider_mode;
2775 for (wider_mode = mode; wider_mode != VOIDmode;
2776 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2778 if (optab_handler (popcount_optab, wider_mode)->insn_code
2779 != CODE_FOR_nothing)
2781 rtx xop0, temp, last;
2783 last = get_last_insn ();
2785 if (target == 0)
2786 target = gen_reg_rtx (mode);
2787 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2788 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2789 true);
2790 if (temp != 0)
2791 temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
2792 target, true, OPTAB_DIRECT);
2793 if (temp == 0)
2794 delete_insns_since (last);
2796 return temp;
2800 return 0;
2803 /* Try calculating ctz(x) as K - clz(x & -x) ,
2804 where K is GET_MODE_BITSIZE(mode) - 1.
2806 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2807 don't have to worry about what the hardware does in that case. (If
2808 the clz instruction produces the usual value at 0, which is K, the
2809 result of this code sequence will be -1; expand_ffs, below, relies
2810 on this. It might be nice to have it be K instead, for consistency
2811 with the (very few) processors that provide a ctz with a defined
2812 value, but that would take one more instruction, and it would be
2813 less convenient for expand_ffs anyway. */
2815 static rtx
2816 expand_ctz (enum machine_mode mode, rtx op0, rtx target)
2818 rtx seq, temp;
2820 if (optab_handler (clz_optab, mode)->insn_code == CODE_FOR_nothing)
2821 return 0;
2823 start_sequence ();
2825 temp = expand_unop_direct (mode, neg_optab, op0, NULL_RTX, true);
2826 if (temp)
2827 temp = expand_binop (mode, and_optab, op0, temp, NULL_RTX,
2828 true, OPTAB_DIRECT);
2829 if (temp)
2830 temp = expand_unop_direct (mode, clz_optab, temp, NULL_RTX, true);
2831 if (temp)
2832 temp = expand_binop (mode, sub_optab, GEN_INT (GET_MODE_BITSIZE (mode) - 1),
2833 temp, target,
2834 true, OPTAB_DIRECT);
2835 if (temp == 0)
2837 end_sequence ();
2838 return 0;
2841 seq = get_insns ();
2842 end_sequence ();
2844 add_equal_note (seq, temp, CTZ, op0, 0);
2845 emit_insn (seq);
2846 return temp;
2850 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2851 else with the sequence used by expand_clz.
2853 The ffs builtin promises to return zero for a zero value and ctz/clz
2854 may have an undefined value in that case. If they do not give us a
2855 convenient value, we have to generate a test and branch. */
2856 static rtx
2857 expand_ffs (enum machine_mode mode, rtx op0, rtx target)
2859 HOST_WIDE_INT val = 0;
2860 bool defined_at_zero = false;
2861 rtx temp, seq;
2863 if (optab_handler (ctz_optab, mode)->insn_code != CODE_FOR_nothing)
2865 start_sequence ();
2867 temp = expand_unop_direct (mode, ctz_optab, op0, 0, true);
2868 if (!temp)
2869 goto fail;
2871 defined_at_zero = (CTZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2);
2873 else if (optab_handler (clz_optab, mode)->insn_code != CODE_FOR_nothing)
2875 start_sequence ();
2876 temp = expand_ctz (mode, op0, 0);
2877 if (!temp)
2878 goto fail;
2880 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2)
2882 defined_at_zero = true;
2883 val = (GET_MODE_BITSIZE (mode) - 1) - val;
2886 else
2887 return 0;
2889 if (defined_at_zero && val == -1)
2890 /* No correction needed at zero. */;
2891 else
2893 /* We don't try to do anything clever with the situation found
2894 on some processors (eg Alpha) where ctz(0:mode) ==
2895 bitsize(mode). If someone can think of a way to send N to -1
2896 and leave alone all values in the range 0..N-1 (where N is a
2897 power of two), cheaper than this test-and-branch, please add it.
2899 The test-and-branch is done after the operation itself, in case
2900 the operation sets condition codes that can be recycled for this.
2901 (This is true on i386, for instance.) */
2903 rtx nonzero_label = gen_label_rtx ();
2904 emit_cmp_and_jump_insns (op0, CONST0_RTX (mode), NE, 0,
2905 mode, true, nonzero_label);
2907 convert_move (temp, GEN_INT (-1), false);
2908 emit_label (nonzero_label);
2911 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
2912 to produce a value in the range 0..bitsize. */
2913 temp = expand_binop (mode, add_optab, temp, GEN_INT (1),
2914 target, false, OPTAB_DIRECT);
2915 if (!temp)
2916 goto fail;
2918 seq = get_insns ();
2919 end_sequence ();
2921 add_equal_note (seq, temp, FFS, op0, 0);
2922 emit_insn (seq);
2923 return temp;
2925 fail:
2926 end_sequence ();
2927 return 0;
2930 /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
2931 conditions, VAL may already be a SUBREG against which we cannot generate
2932 a further SUBREG. In this case, we expect forcing the value into a
2933 register will work around the situation. */
2935 static rtx
2936 lowpart_subreg_maybe_copy (enum machine_mode omode, rtx val,
2937 enum machine_mode imode)
2939 rtx ret;
2940 ret = lowpart_subreg (omode, val, imode);
2941 if (ret == NULL)
2943 val = force_reg (imode, val);
2944 ret = lowpart_subreg (omode, val, imode);
2945 gcc_assert (ret != NULL);
2947 return ret;
2950 /* Expand a floating point absolute value or negation operation via a
2951 logical operation on the sign bit. */
2953 static rtx
2954 expand_absneg_bit (enum rtx_code code, enum machine_mode mode,
2955 rtx op0, rtx target)
2957 const struct real_format *fmt;
2958 int bitpos, word, nwords, i;
2959 enum machine_mode imode;
2960 HOST_WIDE_INT hi, lo;
2961 rtx temp, insns;
2963 /* The format has to have a simple sign bit. */
2964 fmt = REAL_MODE_FORMAT (mode);
2965 if (fmt == NULL)
2966 return NULL_RTX;
2968 bitpos = fmt->signbit_rw;
2969 if (bitpos < 0)
2970 return NULL_RTX;
2972 /* Don't create negative zeros if the format doesn't support them. */
2973 if (code == NEG && !fmt->has_signed_zero)
2974 return NULL_RTX;
2976 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
2978 imode = int_mode_for_mode (mode);
2979 if (imode == BLKmode)
2980 return NULL_RTX;
2981 word = 0;
2982 nwords = 1;
2984 else
2986 imode = word_mode;
2988 if (FLOAT_WORDS_BIG_ENDIAN)
2989 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
2990 else
2991 word = bitpos / BITS_PER_WORD;
2992 bitpos = bitpos % BITS_PER_WORD;
2993 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
2996 if (bitpos < HOST_BITS_PER_WIDE_INT)
2998 hi = 0;
2999 lo = (HOST_WIDE_INT) 1 << bitpos;
3001 else
3003 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
3004 lo = 0;
3006 if (code == ABS)
3007 lo = ~lo, hi = ~hi;
3009 if (target == 0 || target == op0)
3010 target = gen_reg_rtx (mode);
3012 if (nwords > 1)
3014 start_sequence ();
3016 for (i = 0; i < nwords; ++i)
3018 rtx targ_piece = operand_subword (target, i, 1, mode);
3019 rtx op0_piece = operand_subword_force (op0, i, mode);
3021 if (i == word)
3023 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
3024 op0_piece,
3025 immed_double_const (lo, hi, imode),
3026 targ_piece, 1, OPTAB_LIB_WIDEN);
3027 if (temp != targ_piece)
3028 emit_move_insn (targ_piece, temp);
3030 else
3031 emit_move_insn (targ_piece, op0_piece);
3034 insns = get_insns ();
3035 end_sequence ();
3037 emit_insn (insns);
3039 else
3041 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
3042 gen_lowpart (imode, op0),
3043 immed_double_const (lo, hi, imode),
3044 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
3045 target = lowpart_subreg_maybe_copy (mode, temp, imode);
3047 set_unique_reg_note (get_last_insn (), REG_EQUAL,
3048 gen_rtx_fmt_e (code, mode, copy_rtx (op0)));
3051 return target;
3054 /* As expand_unop, but will fail rather than attempt the operation in a
3055 different mode or with a libcall. */
3056 static rtx
3057 expand_unop_direct (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
3058 int unsignedp)
3060 if (optab_handler (unoptab, mode)->insn_code != CODE_FOR_nothing)
3062 int icode = (int) optab_handler (unoptab, mode)->insn_code;
3063 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
3064 rtx xop0 = op0;
3065 rtx last = get_last_insn ();
3066 rtx pat, temp;
3068 if (target)
3069 temp = target;
3070 else
3071 temp = gen_reg_rtx (mode);
3073 if (GET_MODE (xop0) != VOIDmode
3074 && GET_MODE (xop0) != mode0)
3075 xop0 = convert_to_mode (mode0, xop0, unsignedp);
3077 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
3079 if (!insn_data[icode].operand[1].predicate (xop0, mode0))
3080 xop0 = copy_to_mode_reg (mode0, xop0);
3082 if (!insn_data[icode].operand[0].predicate (temp, mode))
3083 temp = gen_reg_rtx (mode);
3085 pat = GEN_FCN (icode) (temp, xop0);
3086 if (pat)
3088 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
3089 && ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
3091 delete_insns_since (last);
3092 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
3095 emit_insn (pat);
3097 return temp;
3099 else
3100 delete_insns_since (last);
3102 return 0;
3105 /* Generate code to perform an operation specified by UNOPTAB
3106 on operand OP0, with result having machine-mode MODE.
3108 UNSIGNEDP is for the case where we have to widen the operands
3109 to perform the operation. It says to use zero-extension.
3111 If TARGET is nonzero, the value
3112 is generated there, if it is convenient to do so.
3113 In all cases an rtx is returned for the locus of the value;
3114 this may or may not be TARGET. */
3117 expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
3118 int unsignedp)
3120 enum mode_class mclass = GET_MODE_CLASS (mode);
3121 enum machine_mode wider_mode;
3122 rtx temp;
3123 rtx libfunc;
3125 temp = expand_unop_direct (mode, unoptab, op0, target, unsignedp);
3126 if (temp)
3127 return temp;
3129 /* It can't be done in this mode. Can we open-code it in a wider mode? */
3131 /* Widening (or narrowing) clz needs special treatment. */
3132 if (unoptab == clz_optab)
3134 temp = widen_clz (mode, op0, target);
3135 if (temp)
3136 return temp;
3138 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3139 && optab_handler (unoptab, word_mode)->insn_code != CODE_FOR_nothing)
3141 temp = expand_doubleword_clz (mode, op0, target);
3142 if (temp)
3143 return temp;
3146 goto try_libcall;
3149 /* Widening (or narrowing) bswap needs special treatment. */
3150 if (unoptab == bswap_optab)
3152 temp = widen_bswap (mode, op0, target);
3153 if (temp)
3154 return temp;
3156 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3157 && optab_handler (unoptab, word_mode)->insn_code != CODE_FOR_nothing)
3159 temp = expand_doubleword_bswap (mode, op0, target);
3160 if (temp)
3161 return temp;
3164 goto try_libcall;
3167 if (CLASS_HAS_WIDER_MODES_P (mclass))
3168 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3169 wider_mode != VOIDmode;
3170 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3172 if (optab_handler (unoptab, wider_mode)->insn_code != CODE_FOR_nothing)
3174 rtx xop0 = op0;
3175 rtx last = get_last_insn ();
3177 /* For certain operations, we need not actually extend
3178 the narrow operand, as long as we will truncate the
3179 results to the same narrowness. */
3181 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3182 (unoptab == neg_optab
3183 || unoptab == one_cmpl_optab)
3184 && mclass == MODE_INT);
3186 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3187 unsignedp);
3189 if (temp)
3191 if (mclass != MODE_INT
3192 || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
3193 GET_MODE_BITSIZE (wider_mode)))
3195 if (target == 0)
3196 target = gen_reg_rtx (mode);
3197 convert_move (target, temp, 0);
3198 return target;
3200 else
3201 return gen_lowpart (mode, temp);
3203 else
3204 delete_insns_since (last);
3208 /* These can be done a word at a time. */
3209 if (unoptab == one_cmpl_optab
3210 && mclass == MODE_INT
3211 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
3212 && optab_handler (unoptab, word_mode)->insn_code != CODE_FOR_nothing)
3214 int i;
3215 rtx insns;
3217 if (target == 0 || target == op0)
3218 target = gen_reg_rtx (mode);
3220 start_sequence ();
3222 /* Do the actual arithmetic. */
3223 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
3225 rtx target_piece = operand_subword (target, i, 1, mode);
3226 rtx x = expand_unop (word_mode, unoptab,
3227 operand_subword_force (op0, i, mode),
3228 target_piece, unsignedp);
3230 if (target_piece != x)
3231 emit_move_insn (target_piece, x);
3234 insns = get_insns ();
3235 end_sequence ();
3237 emit_insn (insns);
3238 return target;
3241 if (unoptab->code == NEG)
3243 /* Try negating floating point values by flipping the sign bit. */
3244 if (SCALAR_FLOAT_MODE_P (mode))
3246 temp = expand_absneg_bit (NEG, mode, op0, target);
3247 if (temp)
3248 return temp;
3251 /* If there is no negation pattern, and we have no negative zero,
3252 try subtracting from zero. */
3253 if (!HONOR_SIGNED_ZEROS (mode))
3255 temp = expand_binop (mode, (unoptab == negv_optab
3256 ? subv_optab : sub_optab),
3257 CONST0_RTX (mode), op0, target,
3258 unsignedp, OPTAB_DIRECT);
3259 if (temp)
3260 return temp;
3264 /* Try calculating parity (x) as popcount (x) % 2. */
3265 if (unoptab == parity_optab)
3267 temp = expand_parity (mode, op0, target);
3268 if (temp)
3269 return temp;
3272 /* Try implementing ffs (x) in terms of clz (x). */
3273 if (unoptab == ffs_optab)
3275 temp = expand_ffs (mode, op0, target);
3276 if (temp)
3277 return temp;
3280 /* Try implementing ctz (x) in terms of clz (x). */
3281 if (unoptab == ctz_optab)
3283 temp = expand_ctz (mode, op0, target);
3284 if (temp)
3285 return temp;
3288 try_libcall:
3289 /* Now try a library call in this mode. */
3290 libfunc = optab_libfunc (unoptab, mode);
3291 if (libfunc)
3293 rtx insns;
3294 rtx value;
3295 rtx eq_value;
3296 enum machine_mode outmode = mode;
3298 /* All of these functions return small values. Thus we choose to
3299 have them return something that isn't a double-word. */
3300 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
3301 || unoptab == popcount_optab || unoptab == parity_optab)
3302 outmode
3303 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node)));
3305 start_sequence ();
3307 /* Pass 1 for NO_QUEUE so we don't lose any increments
3308 if the libcall is cse'd or moved. */
3309 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, outmode,
3310 1, op0, mode);
3311 insns = get_insns ();
3312 end_sequence ();
3314 target = gen_reg_rtx (outmode);
3315 eq_value = gen_rtx_fmt_e (unoptab->code, mode, op0);
3316 if (GET_MODE_SIZE (outmode) < GET_MODE_SIZE (mode))
3317 eq_value = simplify_gen_unary (TRUNCATE, outmode, eq_value, mode);
3318 else if (GET_MODE_SIZE (outmode) > GET_MODE_SIZE (mode))
3319 eq_value = simplify_gen_unary (ZERO_EXTEND, outmode, eq_value, mode);
3320 emit_libcall_block (insns, target, value, eq_value);
3322 return target;
3325 /* It can't be done in this mode. Can we do it in a wider mode? */
3327 if (CLASS_HAS_WIDER_MODES_P (mclass))
3329 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3330 wider_mode != VOIDmode;
3331 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3333 if ((optab_handler (unoptab, wider_mode)->insn_code
3334 != CODE_FOR_nothing)
3335 || optab_libfunc (unoptab, wider_mode))
3337 rtx xop0 = op0;
3338 rtx last = get_last_insn ();
3340 /* For certain operations, we need not actually extend
3341 the narrow operand, as long as we will truncate the
3342 results to the same narrowness. */
3344 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3345 (unoptab == neg_optab
3346 || unoptab == one_cmpl_optab)
3347 && mclass == MODE_INT);
3349 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3350 unsignedp);
3352 /* If we are generating clz using wider mode, adjust the
3353 result. */
3354 if (unoptab == clz_optab && temp != 0)
3355 temp = expand_binop (wider_mode, sub_optab, temp,
3356 GEN_INT (GET_MODE_BITSIZE (wider_mode)
3357 - GET_MODE_BITSIZE (mode)),
3358 target, true, OPTAB_DIRECT);
3360 if (temp)
3362 if (mclass != MODE_INT)
3364 if (target == 0)
3365 target = gen_reg_rtx (mode);
3366 convert_move (target, temp, 0);
3367 return target;
3369 else
3370 return gen_lowpart (mode, temp);
3372 else
3373 delete_insns_since (last);
3378 /* One final attempt at implementing negation via subtraction,
3379 this time allowing widening of the operand. */
3380 if (unoptab->code == NEG && !HONOR_SIGNED_ZEROS (mode))
3382 rtx temp;
3383 temp = expand_binop (mode,
3384 unoptab == negv_optab ? subv_optab : sub_optab,
3385 CONST0_RTX (mode), op0,
3386 target, unsignedp, OPTAB_LIB_WIDEN);
3387 if (temp)
3388 return temp;
3391 return 0;
3394 /* Emit code to compute the absolute value of OP0, with result to
3395 TARGET if convenient. (TARGET may be 0.) The return value says
3396 where the result actually is to be found.
3398 MODE is the mode of the operand; the mode of the result is
3399 different but can be deduced from MODE.
3404 expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target,
3405 int result_unsignedp)
3407 rtx temp;
3409 if (! flag_trapv)
3410 result_unsignedp = 1;
3412 /* First try to do it with a special abs instruction. */
3413 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
3414 op0, target, 0);
3415 if (temp != 0)
3416 return temp;
3418 /* For floating point modes, try clearing the sign bit. */
3419 if (SCALAR_FLOAT_MODE_P (mode))
3421 temp = expand_absneg_bit (ABS, mode, op0, target);
3422 if (temp)
3423 return temp;
3426 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3427 if (optab_handler (smax_optab, mode)->insn_code != CODE_FOR_nothing
3428 && !HONOR_SIGNED_ZEROS (mode))
3430 rtx last = get_last_insn ();
3432 temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
3433 if (temp != 0)
3434 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3435 OPTAB_WIDEN);
3437 if (temp != 0)
3438 return temp;
3440 delete_insns_since (last);
3443 /* If this machine has expensive jumps, we can do integer absolute
3444 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3445 where W is the width of MODE. */
3447 if (GET_MODE_CLASS (mode) == MODE_INT
3448 && BRANCH_COST (optimize_insn_for_speed_p (),
3449 false) >= 2)
3451 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3452 size_int (GET_MODE_BITSIZE (mode) - 1),
3453 NULL_RTX, 0);
3455 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3456 OPTAB_LIB_WIDEN);
3457 if (temp != 0)
3458 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
3459 temp, extended, target, 0, OPTAB_LIB_WIDEN);
3461 if (temp != 0)
3462 return temp;
3465 return NULL_RTX;
3469 expand_abs (enum machine_mode mode, rtx op0, rtx target,
3470 int result_unsignedp, int safe)
3472 rtx temp, op1;
3474 if (! flag_trapv)
3475 result_unsignedp = 1;
3477 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
3478 if (temp != 0)
3479 return temp;
3481 /* If that does not win, use conditional jump and negate. */
3483 /* It is safe to use the target if it is the same
3484 as the source if this is also a pseudo register */
3485 if (op0 == target && REG_P (op0)
3486 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
3487 safe = 1;
3489 op1 = gen_label_rtx ();
3490 if (target == 0 || ! safe
3491 || GET_MODE (target) != mode
3492 || (MEM_P (target) && MEM_VOLATILE_P (target))
3493 || (REG_P (target)
3494 && REGNO (target) < FIRST_PSEUDO_REGISTER))
3495 target = gen_reg_rtx (mode);
3497 emit_move_insn (target, op0);
3498 NO_DEFER_POP;
3500 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
3501 NULL_RTX, NULL_RTX, op1);
3503 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3504 target, target, 0);
3505 if (op0 != target)
3506 emit_move_insn (target, op0);
3507 emit_label (op1);
3508 OK_DEFER_POP;
3509 return target;
3512 /* A subroutine of expand_copysign, perform the copysign operation using the
3513 abs and neg primitives advertised to exist on the target. The assumption
3514 is that we have a split register file, and leaving op0 in fp registers,
3515 and not playing with subregs so much, will help the register allocator. */
3517 static rtx
3518 expand_copysign_absneg (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3519 int bitpos, bool op0_is_abs)
3521 enum machine_mode imode;
3522 int icode;
3523 rtx sign, label;
3525 if (target == op1)
3526 target = NULL_RTX;
3528 /* Check if the back end provides an insn that handles signbit for the
3529 argument's mode. */
3530 icode = (int) signbit_optab->handlers [(int) mode].insn_code;
3531 if (icode != CODE_FOR_nothing)
3533 imode = insn_data[icode].operand[0].mode;
3534 sign = gen_reg_rtx (imode);
3535 emit_unop_insn (icode, sign, op1, UNKNOWN);
3537 else
3539 HOST_WIDE_INT hi, lo;
3541 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3543 imode = int_mode_for_mode (mode);
3544 if (imode == BLKmode)
3545 return NULL_RTX;
3546 op1 = gen_lowpart (imode, op1);
3548 else
3550 int word;
3552 imode = word_mode;
3553 if (FLOAT_WORDS_BIG_ENDIAN)
3554 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3555 else
3556 word = bitpos / BITS_PER_WORD;
3557 bitpos = bitpos % BITS_PER_WORD;
3558 op1 = operand_subword_force (op1, word, mode);
3561 if (bitpos < HOST_BITS_PER_WIDE_INT)
3563 hi = 0;
3564 lo = (HOST_WIDE_INT) 1 << bitpos;
3566 else
3568 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
3569 lo = 0;
3572 sign = gen_reg_rtx (imode);
3573 sign = expand_binop (imode, and_optab, op1,
3574 immed_double_const (lo, hi, imode),
3575 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3578 if (!op0_is_abs)
3580 op0 = expand_unop (mode, abs_optab, op0, target, 0);
3581 if (op0 == NULL)
3582 return NULL_RTX;
3583 target = op0;
3585 else
3587 if (target == NULL_RTX)
3588 target = copy_to_reg (op0);
3589 else
3590 emit_move_insn (target, op0);
3593 label = gen_label_rtx ();
3594 emit_cmp_and_jump_insns (sign, const0_rtx, EQ, NULL_RTX, imode, 1, label);
3596 if (GET_CODE (op0) == CONST_DOUBLE)
3597 op0 = simplify_unary_operation (NEG, mode, op0, mode);
3598 else
3599 op0 = expand_unop (mode, neg_optab, op0, target, 0);
3600 if (op0 != target)
3601 emit_move_insn (target, op0);
3603 emit_label (label);
3605 return target;
3609 /* A subroutine of expand_copysign, perform the entire copysign operation
3610 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3611 is true if op0 is known to have its sign bit clear. */
3613 static rtx
3614 expand_copysign_bit (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3615 int bitpos, bool op0_is_abs)
3617 enum machine_mode imode;
3618 HOST_WIDE_INT hi, lo;
3619 int word, nwords, i;
3620 rtx temp, insns;
3622 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3624 imode = int_mode_for_mode (mode);
3625 if (imode == BLKmode)
3626 return NULL_RTX;
3627 word = 0;
3628 nwords = 1;
3630 else
3632 imode = word_mode;
3634 if (FLOAT_WORDS_BIG_ENDIAN)
3635 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3636 else
3637 word = bitpos / BITS_PER_WORD;
3638 bitpos = bitpos % BITS_PER_WORD;
3639 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
3642 if (bitpos < HOST_BITS_PER_WIDE_INT)
3644 hi = 0;
3645 lo = (HOST_WIDE_INT) 1 << bitpos;
3647 else
3649 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
3650 lo = 0;
3653 if (target == 0 || target == op0 || target == op1)
3654 target = gen_reg_rtx (mode);
3656 if (nwords > 1)
3658 start_sequence ();
3660 for (i = 0; i < nwords; ++i)
3662 rtx targ_piece = operand_subword (target, i, 1, mode);
3663 rtx op0_piece = operand_subword_force (op0, i, mode);
3665 if (i == word)
3667 if (!op0_is_abs)
3668 op0_piece = expand_binop (imode, and_optab, op0_piece,
3669 immed_double_const (~lo, ~hi, imode),
3670 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3672 op1 = expand_binop (imode, and_optab,
3673 operand_subword_force (op1, i, mode),
3674 immed_double_const (lo, hi, imode),
3675 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3677 temp = expand_binop (imode, ior_optab, op0_piece, op1,
3678 targ_piece, 1, OPTAB_LIB_WIDEN);
3679 if (temp != targ_piece)
3680 emit_move_insn (targ_piece, temp);
3682 else
3683 emit_move_insn (targ_piece, op0_piece);
3686 insns = get_insns ();
3687 end_sequence ();
3689 emit_insn (insns);
3691 else
3693 op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1),
3694 immed_double_const (lo, hi, imode),
3695 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3697 op0 = gen_lowpart (imode, op0);
3698 if (!op0_is_abs)
3699 op0 = expand_binop (imode, and_optab, op0,
3700 immed_double_const (~lo, ~hi, imode),
3701 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3703 temp = expand_binop (imode, ior_optab, op0, op1,
3704 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
3705 target = lowpart_subreg_maybe_copy (mode, temp, imode);
3708 return target;
3711 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
3712 scalar floating point mode. Return NULL if we do not know how to
3713 expand the operation inline. */
3716 expand_copysign (rtx op0, rtx op1, rtx target)
3718 enum machine_mode mode = GET_MODE (op0);
3719 const struct real_format *fmt;
3720 bool op0_is_abs;
3721 rtx temp;
3723 gcc_assert (SCALAR_FLOAT_MODE_P (mode));
3724 gcc_assert (GET_MODE (op1) == mode);
3726 /* First try to do it with a special instruction. */
3727 temp = expand_binop (mode, copysign_optab, op0, op1,
3728 target, 0, OPTAB_DIRECT);
3729 if (temp)
3730 return temp;
3732 fmt = REAL_MODE_FORMAT (mode);
3733 if (fmt == NULL || !fmt->has_signed_zero)
3734 return NULL_RTX;
3736 op0_is_abs = false;
3737 if (GET_CODE (op0) == CONST_DOUBLE)
3739 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
3740 op0 = simplify_unary_operation (ABS, mode, op0, mode);
3741 op0_is_abs = true;
3744 if (fmt->signbit_ro >= 0
3745 && (GET_CODE (op0) == CONST_DOUBLE
3746 || (optab_handler (neg_optab, mode)->insn_code != CODE_FOR_nothing
3747 && optab_handler (abs_optab, mode)->insn_code != CODE_FOR_nothing)))
3749 temp = expand_copysign_absneg (mode, op0, op1, target,
3750 fmt->signbit_ro, op0_is_abs);
3751 if (temp)
3752 return temp;
3755 if (fmt->signbit_rw < 0)
3756 return NULL_RTX;
3757 return expand_copysign_bit (mode, op0, op1, target,
3758 fmt->signbit_rw, op0_is_abs);
3761 /* Generate an instruction whose insn-code is INSN_CODE,
3762 with two operands: an output TARGET and an input OP0.
3763 TARGET *must* be nonzero, and the output is always stored there.
3764 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3765 the value that is stored into TARGET.
3767 Return false if expansion failed. */
3769 bool
3770 maybe_emit_unop_insn (int icode, rtx target, rtx op0, enum rtx_code code)
3772 rtx temp;
3773 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
3774 rtx pat;
3775 rtx last = get_last_insn ();
3777 temp = target;
3779 /* Now, if insn does not accept our operands, put them into pseudos. */
3781 if (!insn_data[icode].operand[1].predicate (op0, mode0))
3782 op0 = copy_to_mode_reg (mode0, op0);
3784 if (!insn_data[icode].operand[0].predicate (temp, GET_MODE (temp)))
3785 temp = gen_reg_rtx (GET_MODE (temp));
3787 pat = GEN_FCN (icode) (temp, op0);
3788 if (!pat)
3790 delete_insns_since (last);
3791 return false;
3794 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
3795 add_equal_note (pat, temp, code, op0, NULL_RTX);
3797 emit_insn (pat);
3799 if (temp != target)
3800 emit_move_insn (target, temp);
3801 return true;
3803 /* Generate an instruction whose insn-code is INSN_CODE,
3804 with two operands: an output TARGET and an input OP0.
3805 TARGET *must* be nonzero, and the output is always stored there.
3806 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3807 the value that is stored into TARGET. */
3809 void
3810 emit_unop_insn (int icode, rtx target, rtx op0, enum rtx_code code)
3812 bool ok = maybe_emit_unop_insn (icode, target, op0, code);
3813 gcc_assert (ok);
3816 struct no_conflict_data
3818 rtx target, first, insn;
3819 bool must_stay;
3822 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
3823 the currently examined clobber / store has to stay in the list of
3824 insns that constitute the actual libcall block. */
3825 static void
3826 no_conflict_move_test (rtx dest, const_rtx set, void *p0)
3828 struct no_conflict_data *p= (struct no_conflict_data *) p0;
3830 /* If this inns directly contributes to setting the target, it must stay. */
3831 if (reg_overlap_mentioned_p (p->target, dest))
3832 p->must_stay = true;
3833 /* If we haven't committed to keeping any other insns in the list yet,
3834 there is nothing more to check. */
3835 else if (p->insn == p->first)
3836 return;
3837 /* If this insn sets / clobbers a register that feeds one of the insns
3838 already in the list, this insn has to stay too. */
3839 else if (reg_overlap_mentioned_p (dest, PATTERN (p->first))
3840 || (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest)))
3841 || reg_used_between_p (dest, p->first, p->insn)
3842 /* Likewise if this insn depends on a register set by a previous
3843 insn in the list, or if it sets a result (presumably a hard
3844 register) that is set or clobbered by a previous insn.
3845 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
3846 SET_DEST perform the former check on the address, and the latter
3847 check on the MEM. */
3848 || (GET_CODE (set) == SET
3849 && (modified_in_p (SET_SRC (set), p->first)
3850 || modified_in_p (SET_DEST (set), p->first)
3851 || modified_between_p (SET_SRC (set), p->first, p->insn)
3852 || modified_between_p (SET_DEST (set), p->first, p->insn))))
3853 p->must_stay = true;
3857 /* Emit code to make a call to a constant function or a library call.
3859 INSNS is a list containing all insns emitted in the call.
3860 These insns leave the result in RESULT. Our block is to copy RESULT
3861 to TARGET, which is logically equivalent to EQUIV.
3863 We first emit any insns that set a pseudo on the assumption that these are
3864 loading constants into registers; doing so allows them to be safely cse'ed
3865 between blocks. Then we emit all the other insns in the block, followed by
3866 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3867 note with an operand of EQUIV. */
3869 void
3870 emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
3872 rtx final_dest = target;
3873 rtx prev, next, last, insn;
3875 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3876 into a MEM later. Protect the libcall block from this change. */
3877 if (! REG_P (target) || REG_USERVAR_P (target))
3878 target = gen_reg_rtx (GET_MODE (target));
3880 /* If we're using non-call exceptions, a libcall corresponding to an
3881 operation that may trap may also trap. */
3882 if (flag_non_call_exceptions && may_trap_p (equiv))
3884 for (insn = insns; insn; insn = NEXT_INSN (insn))
3885 if (CALL_P (insn))
3887 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3889 if (note != 0 && INTVAL (XEXP (note, 0)) <= 0)
3890 remove_note (insn, note);
3893 else
3894 /* look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3895 reg note to indicate that this call cannot throw or execute a nonlocal
3896 goto (unless there is already a REG_EH_REGION note, in which case
3897 we update it). */
3898 for (insn = insns; insn; insn = NEXT_INSN (insn))
3899 if (CALL_P (insn))
3901 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3903 if (note != 0)
3904 XEXP (note, 0) = constm1_rtx;
3905 else
3906 add_reg_note (insn, REG_EH_REGION, constm1_rtx);
3909 /* First emit all insns that set pseudos. Remove them from the list as
3910 we go. Avoid insns that set pseudos which were referenced in previous
3911 insns. These can be generated by move_by_pieces, for example,
3912 to update an address. Similarly, avoid insns that reference things
3913 set in previous insns. */
3915 for (insn = insns; insn; insn = next)
3917 rtx set = single_set (insn);
3919 next = NEXT_INSN (insn);
3921 if (set != 0 && REG_P (SET_DEST (set))
3922 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3924 struct no_conflict_data data;
3926 data.target = const0_rtx;
3927 data.first = insns;
3928 data.insn = insn;
3929 data.must_stay = 0;
3930 note_stores (PATTERN (insn), no_conflict_move_test, &data);
3931 if (! data.must_stay)
3933 if (PREV_INSN (insn))
3934 NEXT_INSN (PREV_INSN (insn)) = next;
3935 else
3936 insns = next;
3938 if (next)
3939 PREV_INSN (next) = PREV_INSN (insn);
3941 add_insn (insn);
3945 /* Some ports use a loop to copy large arguments onto the stack.
3946 Don't move anything outside such a loop. */
3947 if (LABEL_P (insn))
3948 break;
3951 prev = get_last_insn ();
3953 /* Write the remaining insns followed by the final copy. */
3955 for (insn = insns; insn; insn = next)
3957 next = NEXT_INSN (insn);
3959 add_insn (insn);
3962 last = emit_move_insn (target, result);
3963 if (optab_handler (mov_optab, GET_MODE (target))->insn_code
3964 != CODE_FOR_nothing)
3965 set_unique_reg_note (last, REG_EQUAL, copy_rtx (equiv));
3967 if (final_dest != target)
3968 emit_move_insn (final_dest, target);
3971 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3972 PURPOSE describes how this comparison will be used. CODE is the rtx
3973 comparison code we will be using.
3975 ??? Actually, CODE is slightly weaker than that. A target is still
3976 required to implement all of the normal bcc operations, but not
3977 required to implement all (or any) of the unordered bcc operations. */
3980 can_compare_p (enum rtx_code code, enum machine_mode mode,
3981 enum can_compare_purpose purpose)
3985 if (optab_handler (cmp_optab, mode)->insn_code != CODE_FOR_nothing)
3987 if (purpose == ccp_jump)
3988 return bcc_gen_fctn[(int) code] != NULL;
3989 else if (purpose == ccp_store_flag)
3990 return setcc_gen_code[(int) code] != CODE_FOR_nothing;
3991 else
3992 /* There's only one cmov entry point, and it's allowed to fail. */
3993 return 1;
3995 if (purpose == ccp_jump
3996 && optab_handler (cbranch_optab, mode)->insn_code != CODE_FOR_nothing)
3997 return 1;
3998 if (purpose == ccp_cmov
3999 && optab_handler (cmov_optab, mode)->insn_code != CODE_FOR_nothing)
4000 return 1;
4001 if (purpose == ccp_store_flag
4002 && optab_handler (cstore_optab, mode)->insn_code != CODE_FOR_nothing)
4003 return 1;
4004 mode = GET_MODE_WIDER_MODE (mode);
4006 while (mode != VOIDmode);
4008 return 0;
4011 /* This function is called when we are going to emit a compare instruction that
4012 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
4014 *PMODE is the mode of the inputs (in case they are const_int).
4015 *PUNSIGNEDP nonzero says that the operands are unsigned;
4016 this matters if they need to be widened.
4018 If they have mode BLKmode, then SIZE specifies the size of both operands.
4020 This function performs all the setup necessary so that the caller only has
4021 to emit a single comparison insn. This setup can involve doing a BLKmode
4022 comparison or emitting a library call to perform the comparison if no insn
4023 is available to handle it.
4024 The values which are passed in through pointers can be modified; the caller
4025 should perform the comparison on the modified values. Constant
4026 comparisons must have already been folded. */
4028 static void
4029 prepare_cmp_insn (rtx *px, rtx *py, enum rtx_code *pcomparison, rtx size,
4030 enum machine_mode *pmode, int *punsignedp,
4031 enum can_compare_purpose purpose)
4033 enum machine_mode mode = *pmode;
4034 rtx x = *px, y = *py;
4035 int unsignedp = *punsignedp;
4036 rtx libfunc;
4038 /* If we are inside an appropriately-short loop and we are optimizing,
4039 force expensive constants into a register. */
4040 if (CONSTANT_P (x) && optimize
4041 && (rtx_cost (x, COMPARE, optimize_insn_for_speed_p ())
4042 > COSTS_N_INSNS (1)))
4043 x = force_reg (mode, x);
4045 if (CONSTANT_P (y) && optimize
4046 && (rtx_cost (y, COMPARE, optimize_insn_for_speed_p ())
4047 > COSTS_N_INSNS (1)))
4048 y = force_reg (mode, y);
4050 #ifdef HAVE_cc0
4051 /* Make sure if we have a canonical comparison. The RTL
4052 documentation states that canonical comparisons are required only
4053 for targets which have cc0. */
4054 gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y));
4055 #endif
4057 /* Don't let both operands fail to indicate the mode. */
4058 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
4059 x = force_reg (mode, x);
4061 /* Handle all BLKmode compares. */
4063 if (mode == BLKmode)
4065 enum machine_mode cmp_mode, result_mode;
4066 enum insn_code cmp_code;
4067 tree length_type;
4068 rtx libfunc;
4069 rtx result;
4070 rtx opalign
4071 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
4073 gcc_assert (size);
4075 /* Try to use a memory block compare insn - either cmpstr
4076 or cmpmem will do. */
4077 for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
4078 cmp_mode != VOIDmode;
4079 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
4081 cmp_code = cmpmem_optab[cmp_mode];
4082 if (cmp_code == CODE_FOR_nothing)
4083 cmp_code = cmpstr_optab[cmp_mode];
4084 if (cmp_code == CODE_FOR_nothing)
4085 cmp_code = cmpstrn_optab[cmp_mode];
4086 if (cmp_code == CODE_FOR_nothing)
4087 continue;
4089 /* Must make sure the size fits the insn's mode. */
4090 if ((GET_CODE (size) == CONST_INT
4091 && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
4092 || (GET_MODE_BITSIZE (GET_MODE (size))
4093 > GET_MODE_BITSIZE (cmp_mode)))
4094 continue;
4096 result_mode = insn_data[cmp_code].operand[0].mode;
4097 result = gen_reg_rtx (result_mode);
4098 size = convert_to_mode (cmp_mode, size, 1);
4099 emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
4101 *px = result;
4102 *py = const0_rtx;
4103 *pmode = result_mode;
4104 return;
4107 /* Otherwise call a library function, memcmp. */
4108 libfunc = memcmp_libfunc;
4109 length_type = sizetype;
4110 result_mode = TYPE_MODE (integer_type_node);
4111 cmp_mode = TYPE_MODE (length_type);
4112 size = convert_to_mode (TYPE_MODE (length_type), size,
4113 TYPE_UNSIGNED (length_type));
4115 result = emit_library_call_value (libfunc, 0, LCT_PURE,
4116 result_mode, 3,
4117 XEXP (x, 0), Pmode,
4118 XEXP (y, 0), Pmode,
4119 size, cmp_mode);
4120 *px = result;
4121 *py = const0_rtx;
4122 *pmode = result_mode;
4123 return;
4126 /* Don't allow operands to the compare to trap, as that can put the
4127 compare and branch in different basic blocks. */
4128 if (flag_non_call_exceptions)
4130 if (may_trap_p (x))
4131 x = force_reg (mode, x);
4132 if (may_trap_p (y))
4133 y = force_reg (mode, y);
4136 *px = x;
4137 *py = y;
4138 if (can_compare_p (*pcomparison, mode, purpose))
4139 return;
4141 /* Handle a lib call just for the mode we are using. */
4143 libfunc = optab_libfunc (cmp_optab, mode);
4144 if (libfunc && !SCALAR_FLOAT_MODE_P (mode))
4146 rtx result;
4148 /* If we want unsigned, and this mode has a distinct unsigned
4149 comparison routine, use that. */
4150 if (unsignedp)
4152 rtx ulibfunc = optab_libfunc (ucmp_optab, mode);
4153 if (ulibfunc)
4154 libfunc = ulibfunc;
4157 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4158 targetm.libgcc_cmp_return_mode (),
4159 2, x, mode, y, mode);
4161 /* There are two kinds of comparison routines. Biased routines
4162 return 0/1/2, and unbiased routines return -1/0/1. Other parts
4163 of gcc expect that the comparison operation is equivalent
4164 to the modified comparison. For signed comparisons compare the
4165 result against 1 in the biased case, and zero in the unbiased
4166 case. For unsigned comparisons always compare against 1 after
4167 biasing the unbiased result by adding 1. This gives us a way to
4168 represent LTU. */
4169 *px = result;
4170 *pmode = word_mode;
4171 *py = const1_rtx;
4173 if (!TARGET_LIB_INT_CMP_BIASED)
4175 if (*punsignedp)
4176 *px = plus_constant (result, 1);
4177 else
4178 *py = const0_rtx;
4180 return;
4183 gcc_assert (SCALAR_FLOAT_MODE_P (mode));
4184 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
4187 /* Before emitting an insn with code ICODE, make sure that X, which is going
4188 to be used for operand OPNUM of the insn, is converted from mode MODE to
4189 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
4190 that it is accepted by the operand predicate. Return the new value. */
4192 static rtx
4193 prepare_operand (int icode, rtx x, int opnum, enum machine_mode mode,
4194 enum machine_mode wider_mode, int unsignedp)
4196 if (mode != wider_mode)
4197 x = convert_modes (wider_mode, mode, x, unsignedp);
4199 if (!insn_data[icode].operand[opnum].predicate
4200 (x, insn_data[icode].operand[opnum].mode))
4202 if (reload_completed)
4203 return NULL_RTX;
4204 x = copy_to_mode_reg (insn_data[icode].operand[opnum].mode, x);
4207 return x;
4210 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
4211 we can do the comparison.
4212 The arguments are the same as for emit_cmp_and_jump_insns; but LABEL may
4213 be NULL_RTX which indicates that only a comparison is to be generated. */
4215 static void
4216 emit_cmp_and_jump_insn_1 (rtx x, rtx y, enum machine_mode mode,
4217 enum rtx_code comparison, int unsignedp, rtx label)
4219 rtx test = gen_rtx_fmt_ee (comparison, mode, x, y);
4220 enum mode_class mclass = GET_MODE_CLASS (mode);
4221 enum machine_mode wider_mode = mode;
4223 /* Try combined insns first. */
4226 enum insn_code icode;
4227 PUT_MODE (test, wider_mode);
4229 if (label)
4231 icode = optab_handler (cbranch_optab, wider_mode)->insn_code;
4233 if (icode != CODE_FOR_nothing
4234 && insn_data[icode].operand[0].predicate (test, wider_mode))
4236 x = prepare_operand (icode, x, 1, mode, wider_mode, unsignedp);
4237 y = prepare_operand (icode, y, 2, mode, wider_mode, unsignedp);
4238 emit_jump_insn (GEN_FCN (icode) (test, x, y, label));
4239 return;
4243 /* Handle some compares against zero. */
4244 icode = (int) optab_handler (tst_optab, wider_mode)->insn_code;
4245 if (y == CONST0_RTX (mode) && icode != CODE_FOR_nothing)
4247 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
4248 emit_insn (GEN_FCN (icode) (x));
4249 if (label)
4250 emit_jump_insn (bcc_gen_fctn[(int) comparison] (label));
4251 return;
4254 /* Handle compares for which there is a directly suitable insn. */
4256 icode = (int) optab_handler (cmp_optab, wider_mode)->insn_code;
4257 if (icode != CODE_FOR_nothing)
4259 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
4260 y = prepare_operand (icode, y, 1, mode, wider_mode, unsignedp);
4261 emit_insn (GEN_FCN (icode) (x, y));
4262 if (label)
4263 emit_jump_insn (bcc_gen_fctn[(int) comparison] (label));
4264 return;
4267 if (!CLASS_HAS_WIDER_MODES_P (mclass))
4268 break;
4270 wider_mode = GET_MODE_WIDER_MODE (wider_mode);
4272 while (wider_mode != VOIDmode);
4274 gcc_unreachable ();
4277 /* Generate code to compare X with Y so that the condition codes are
4278 set and to jump to LABEL if the condition is true. If X is a
4279 constant and Y is not a constant, then the comparison is swapped to
4280 ensure that the comparison RTL has the canonical form.
4282 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
4283 need to be widened by emit_cmp_insn. UNSIGNEDP is also used to select
4284 the proper branch condition code.
4286 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
4288 MODE is the mode of the inputs (in case they are const_int).
4290 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). It will
4291 be passed unchanged to emit_cmp_insn, then potentially converted into an
4292 unsigned variant based on UNSIGNEDP to select a proper jump instruction. */
4294 void
4295 emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
4296 enum machine_mode mode, int unsignedp, rtx label)
4298 rtx op0 = x, op1 = y;
4300 /* Swap operands and condition to ensure canonical RTL. */
4301 if (swap_commutative_operands_p (x, y))
4303 /* If we're not emitting a branch, callers are required to pass
4304 operands in an order conforming to canonical RTL. We relax this
4305 for commutative comparisons so callers using EQ don't need to do
4306 swapping by hand. */
4307 gcc_assert (label || (comparison == swap_condition (comparison)));
4309 op0 = y, op1 = x;
4310 comparison = swap_condition (comparison);
4313 #ifdef HAVE_cc0
4314 /* If OP0 is still a constant, then both X and Y must be constants.
4315 Force X into a register to create canonical RTL. */
4316 if (CONSTANT_P (op0))
4317 op0 = force_reg (mode, op0);
4318 #endif
4320 if (unsignedp)
4321 comparison = unsigned_condition (comparison);
4323 prepare_cmp_insn (&op0, &op1, &comparison, size, &mode, &unsignedp,
4324 ccp_jump);
4325 emit_cmp_and_jump_insn_1 (op0, op1, mode, comparison, unsignedp, label);
4328 /* Like emit_cmp_and_jump_insns, but generate only the comparison. */
4330 void
4331 emit_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
4332 enum machine_mode mode, int unsignedp)
4334 emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, 0);
4337 /* Emit a library call comparison between floating point X and Y.
4338 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4340 static void
4341 prepare_float_lib_cmp (rtx *px, rtx *py, enum rtx_code *pcomparison,
4342 enum machine_mode *pmode, int *punsignedp)
4344 enum rtx_code comparison = *pcomparison;
4345 enum rtx_code swapped = swap_condition (comparison);
4346 enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
4347 rtx x = *px;
4348 rtx y = *py;
4349 enum machine_mode orig_mode = GET_MODE (x);
4350 enum machine_mode mode, cmp_mode;
4351 rtx value, target, insns, equiv;
4352 rtx libfunc = 0;
4353 bool reversed_p = false;
4354 cmp_mode = targetm.libgcc_cmp_return_mode ();
4356 for (mode = orig_mode;
4357 mode != VOIDmode;
4358 mode = GET_MODE_WIDER_MODE (mode))
4360 if ((libfunc = optab_libfunc (code_to_optab[comparison], mode)))
4361 break;
4363 if ((libfunc = optab_libfunc (code_to_optab[swapped] , mode)))
4365 rtx tmp;
4366 tmp = x; x = y; y = tmp;
4367 comparison = swapped;
4368 break;
4371 if ((libfunc = optab_libfunc (code_to_optab[reversed], mode))
4372 && FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, reversed))
4374 comparison = reversed;
4375 reversed_p = true;
4376 break;
4380 gcc_assert (mode != VOIDmode);
4382 if (mode != orig_mode)
4384 x = convert_to_mode (mode, x, 0);
4385 y = convert_to_mode (mode, y, 0);
4388 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4389 the RTL. The allows the RTL optimizers to delete the libcall if the
4390 condition can be determined at compile-time. */
4391 if (comparison == UNORDERED)
4393 rtx temp = simplify_gen_relational (NE, cmp_mode, mode, x, x);
4394 equiv = simplify_gen_relational (NE, cmp_mode, mode, y, y);
4395 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4396 temp, const_true_rtx, equiv);
4398 else
4400 equiv = simplify_gen_relational (comparison, cmp_mode, mode, x, y);
4401 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4403 rtx true_rtx, false_rtx;
4405 switch (comparison)
4407 case EQ:
4408 true_rtx = const0_rtx;
4409 false_rtx = const_true_rtx;
4410 break;
4412 case NE:
4413 true_rtx = const_true_rtx;
4414 false_rtx = const0_rtx;
4415 break;
4417 case GT:
4418 true_rtx = const1_rtx;
4419 false_rtx = const0_rtx;
4420 break;
4422 case GE:
4423 true_rtx = const0_rtx;
4424 false_rtx = constm1_rtx;
4425 break;
4427 case LT:
4428 true_rtx = constm1_rtx;
4429 false_rtx = const0_rtx;
4430 break;
4432 case LE:
4433 true_rtx = const0_rtx;
4434 false_rtx = const1_rtx;
4435 break;
4437 default:
4438 gcc_unreachable ();
4440 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4441 equiv, true_rtx, false_rtx);
4445 start_sequence ();
4446 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4447 cmp_mode, 2, x, mode, y, mode);
4448 insns = get_insns ();
4449 end_sequence ();
4451 target = gen_reg_rtx (cmp_mode);
4452 emit_libcall_block (insns, target, value, equiv);
4454 if (comparison == UNORDERED
4455 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4456 comparison = reversed_p ? EQ : NE;
4458 *px = target;
4459 *py = const0_rtx;
4460 *pmode = cmp_mode;
4461 *pcomparison = comparison;
4462 *punsignedp = 0;
4465 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4467 void
4468 emit_indirect_jump (rtx loc)
4470 if (!insn_data[(int) CODE_FOR_indirect_jump].operand[0].predicate
4471 (loc, Pmode))
4472 loc = copy_to_mode_reg (Pmode, loc);
4474 emit_jump_insn (gen_indirect_jump (loc));
4475 emit_barrier ();
4478 #ifdef HAVE_conditional_move
4480 /* Emit a conditional move instruction if the machine supports one for that
4481 condition and machine mode.
4483 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4484 the mode to use should they be constants. If it is VOIDmode, they cannot
4485 both be constants.
4487 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4488 should be stored there. MODE is the mode to use should they be constants.
4489 If it is VOIDmode, they cannot both be constants.
4491 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4492 is not supported. */
4495 emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4496 enum machine_mode cmode, rtx op2, rtx op3,
4497 enum machine_mode mode, int unsignedp)
4499 rtx tem, subtarget, comparison, insn;
4500 enum insn_code icode;
4501 enum rtx_code reversed;
4503 /* If one operand is constant, make it the second one. Only do this
4504 if the other operand is not constant as well. */
4506 if (swap_commutative_operands_p (op0, op1))
4508 tem = op0;
4509 op0 = op1;
4510 op1 = tem;
4511 code = swap_condition (code);
4514 /* get_condition will prefer to generate LT and GT even if the old
4515 comparison was against zero, so undo that canonicalization here since
4516 comparisons against zero are cheaper. */
4517 if (code == LT && op1 == const1_rtx)
4518 code = LE, op1 = const0_rtx;
4519 else if (code == GT && op1 == constm1_rtx)
4520 code = GE, op1 = const0_rtx;
4522 if (cmode == VOIDmode)
4523 cmode = GET_MODE (op0);
4525 if (swap_commutative_operands_p (op2, op3)
4526 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4527 != UNKNOWN))
4529 tem = op2;
4530 op2 = op3;
4531 op3 = tem;
4532 code = reversed;
4535 if (mode == VOIDmode)
4536 mode = GET_MODE (op2);
4538 icode = movcc_gen_code[mode];
4540 if (icode == CODE_FOR_nothing)
4541 return 0;
4543 if (!target)
4544 target = gen_reg_rtx (mode);
4546 subtarget = target;
4548 /* If the insn doesn't accept these operands, put them in pseudos. */
4550 if (!insn_data[icode].operand[0].predicate
4551 (subtarget, insn_data[icode].operand[0].mode))
4552 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
4554 if (!insn_data[icode].operand[2].predicate
4555 (op2, insn_data[icode].operand[2].mode))
4556 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
4558 if (!insn_data[icode].operand[3].predicate
4559 (op3, insn_data[icode].operand[3].mode))
4560 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
4562 /* Everything should now be in the suitable form, so emit the compare insn
4563 and then the conditional move. */
4565 comparison
4566 = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
4568 /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
4569 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4570 return NULL and let the caller figure out how best to deal with this
4571 situation. */
4572 if (GET_CODE (comparison) != code)
4573 return NULL_RTX;
4575 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
4577 /* If that failed, then give up. */
4578 if (insn == 0)
4579 return 0;
4581 emit_insn (insn);
4583 if (subtarget != target)
4584 convert_move (target, subtarget, 0);
4586 return target;
4589 /* Return nonzero if a conditional move of mode MODE is supported.
4591 This function is for combine so it can tell whether an insn that looks
4592 like a conditional move is actually supported by the hardware. If we
4593 guess wrong we lose a bit on optimization, but that's it. */
4594 /* ??? sparc64 supports conditionally moving integers values based on fp
4595 comparisons, and vice versa. How do we handle them? */
4598 can_conditionally_move_p (enum machine_mode mode)
4600 if (movcc_gen_code[mode] != CODE_FOR_nothing)
4601 return 1;
4603 return 0;
4606 #endif /* HAVE_conditional_move */
4608 /* Emit a conditional addition instruction if the machine supports one for that
4609 condition and machine mode.
4611 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4612 the mode to use should they be constants. If it is VOIDmode, they cannot
4613 both be constants.
4615 OP2 should be stored in TARGET if the comparison is true, otherwise OP2+OP3
4616 should be stored there. MODE is the mode to use should they be constants.
4617 If it is VOIDmode, they cannot both be constants.
4619 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4620 is not supported. */
4623 emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4624 enum machine_mode cmode, rtx op2, rtx op3,
4625 enum machine_mode mode, int unsignedp)
4627 rtx tem, subtarget, comparison, insn;
4628 enum insn_code icode;
4629 enum rtx_code reversed;
4631 /* If one operand is constant, make it the second one. Only do this
4632 if the other operand is not constant as well. */
4634 if (swap_commutative_operands_p (op0, op1))
4636 tem = op0;
4637 op0 = op1;
4638 op1 = tem;
4639 code = swap_condition (code);
4642 /* get_condition will prefer to generate LT and GT even if the old
4643 comparison was against zero, so undo that canonicalization here since
4644 comparisons against zero are cheaper. */
4645 if (code == LT && op1 == const1_rtx)
4646 code = LE, op1 = const0_rtx;
4647 else if (code == GT && op1 == constm1_rtx)
4648 code = GE, op1 = const0_rtx;
4650 if (cmode == VOIDmode)
4651 cmode = GET_MODE (op0);
4653 if (swap_commutative_operands_p (op2, op3)
4654 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4655 != UNKNOWN))
4657 tem = op2;
4658 op2 = op3;
4659 op3 = tem;
4660 code = reversed;
4663 if (mode == VOIDmode)
4664 mode = GET_MODE (op2);
4666 icode = optab_handler (addcc_optab, mode)->insn_code;
4668 if (icode == CODE_FOR_nothing)
4669 return 0;
4671 if (!target)
4672 target = gen_reg_rtx (mode);
4674 /* If the insn doesn't accept these operands, put them in pseudos. */
4676 if (!insn_data[icode].operand[0].predicate
4677 (target, insn_data[icode].operand[0].mode))
4678 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
4679 else
4680 subtarget = target;
4682 if (!insn_data[icode].operand[2].predicate
4683 (op2, insn_data[icode].operand[2].mode))
4684 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
4686 if (!insn_data[icode].operand[3].predicate
4687 (op3, insn_data[icode].operand[3].mode))
4688 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
4690 /* Everything should now be in the suitable form, so emit the compare insn
4691 and then the conditional move. */
4693 comparison
4694 = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
4696 /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
4697 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4698 return NULL and let the caller figure out how best to deal with this
4699 situation. */
4700 if (GET_CODE (comparison) != code)
4701 return NULL_RTX;
4703 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
4705 /* If that failed, then give up. */
4706 if (insn == 0)
4707 return 0;
4709 emit_insn (insn);
4711 if (subtarget != target)
4712 convert_move (target, subtarget, 0);
4714 return target;
4717 /* These functions attempt to generate an insn body, rather than
4718 emitting the insn, but if the gen function already emits them, we
4719 make no attempt to turn them back into naked patterns. */
4721 /* Generate and return an insn body to add Y to X. */
4724 gen_add2_insn (rtx x, rtx y)
4726 int icode = (int) optab_handler (add_optab, GET_MODE (x))->insn_code;
4728 gcc_assert (insn_data[icode].operand[0].predicate
4729 (x, insn_data[icode].operand[0].mode));
4730 gcc_assert (insn_data[icode].operand[1].predicate
4731 (x, insn_data[icode].operand[1].mode));
4732 gcc_assert (insn_data[icode].operand[2].predicate
4733 (y, insn_data[icode].operand[2].mode));
4735 return GEN_FCN (icode) (x, x, y);
4738 /* Generate and return an insn body to add r1 and c,
4739 storing the result in r0. */
4742 gen_add3_insn (rtx r0, rtx r1, rtx c)
4744 int icode = (int) optab_handler (add_optab, GET_MODE (r0))->insn_code;
4746 if (icode == CODE_FOR_nothing
4747 || !(insn_data[icode].operand[0].predicate
4748 (r0, insn_data[icode].operand[0].mode))
4749 || !(insn_data[icode].operand[1].predicate
4750 (r1, insn_data[icode].operand[1].mode))
4751 || !(insn_data[icode].operand[2].predicate
4752 (c, insn_data[icode].operand[2].mode)))
4753 return NULL_RTX;
4755 return GEN_FCN (icode) (r0, r1, c);
4759 have_add2_insn (rtx x, rtx y)
4761 int icode;
4763 gcc_assert (GET_MODE (x) != VOIDmode);
4765 icode = (int) optab_handler (add_optab, GET_MODE (x))->insn_code;
4767 if (icode == CODE_FOR_nothing)
4768 return 0;
4770 if (!(insn_data[icode].operand[0].predicate
4771 (x, insn_data[icode].operand[0].mode))
4772 || !(insn_data[icode].operand[1].predicate
4773 (x, insn_data[icode].operand[1].mode))
4774 || !(insn_data[icode].operand[2].predicate
4775 (y, insn_data[icode].operand[2].mode)))
4776 return 0;
4778 return 1;
4781 /* Generate and return an insn body to subtract Y from X. */
4784 gen_sub2_insn (rtx x, rtx y)
4786 int icode = (int) optab_handler (sub_optab, GET_MODE (x))->insn_code;
4788 gcc_assert (insn_data[icode].operand[0].predicate
4789 (x, insn_data[icode].operand[0].mode));
4790 gcc_assert (insn_data[icode].operand[1].predicate
4791 (x, insn_data[icode].operand[1].mode));
4792 gcc_assert (insn_data[icode].operand[2].predicate
4793 (y, insn_data[icode].operand[2].mode));
4795 return GEN_FCN (icode) (x, x, y);
4798 /* Generate and return an insn body to subtract r1 and c,
4799 storing the result in r0. */
4802 gen_sub3_insn (rtx r0, rtx r1, rtx c)
4804 int icode = (int) optab_handler (sub_optab, GET_MODE (r0))->insn_code;
4806 if (icode == CODE_FOR_nothing
4807 || !(insn_data[icode].operand[0].predicate
4808 (r0, insn_data[icode].operand[0].mode))
4809 || !(insn_data[icode].operand[1].predicate
4810 (r1, insn_data[icode].operand[1].mode))
4811 || !(insn_data[icode].operand[2].predicate
4812 (c, insn_data[icode].operand[2].mode)))
4813 return NULL_RTX;
4815 return GEN_FCN (icode) (r0, r1, c);
4819 have_sub2_insn (rtx x, rtx y)
4821 int icode;
4823 gcc_assert (GET_MODE (x) != VOIDmode);
4825 icode = (int) optab_handler (sub_optab, GET_MODE (x))->insn_code;
4827 if (icode == CODE_FOR_nothing)
4828 return 0;
4830 if (!(insn_data[icode].operand[0].predicate
4831 (x, insn_data[icode].operand[0].mode))
4832 || !(insn_data[icode].operand[1].predicate
4833 (x, insn_data[icode].operand[1].mode))
4834 || !(insn_data[icode].operand[2].predicate
4835 (y, insn_data[icode].operand[2].mode)))
4836 return 0;
4838 return 1;
4841 /* Generate the body of an instruction to copy Y into X.
4842 It may be a list of insns, if one insn isn't enough. */
4845 gen_move_insn (rtx x, rtx y)
4847 rtx seq;
4849 start_sequence ();
4850 emit_move_insn_1 (x, y);
4851 seq = get_insns ();
4852 end_sequence ();
4853 return seq;
4856 /* Return the insn code used to extend FROM_MODE to TO_MODE.
4857 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4858 no such operation exists, CODE_FOR_nothing will be returned. */
4860 enum insn_code
4861 can_extend_p (enum machine_mode to_mode, enum machine_mode from_mode,
4862 int unsignedp)
4864 convert_optab tab;
4865 #ifdef HAVE_ptr_extend
4866 if (unsignedp < 0)
4867 return CODE_FOR_ptr_extend;
4868 #endif
4870 tab = unsignedp ? zext_optab : sext_optab;
4871 return convert_optab_handler (tab, to_mode, from_mode)->insn_code;
4874 /* Generate the body of an insn to extend Y (with mode MFROM)
4875 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4878 gen_extend_insn (rtx x, rtx y, enum machine_mode mto,
4879 enum machine_mode mfrom, int unsignedp)
4881 enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
4882 return GEN_FCN (icode) (x, y);
4885 /* can_fix_p and can_float_p say whether the target machine
4886 can directly convert a given fixed point type to
4887 a given floating point type, or vice versa.
4888 The returned value is the CODE_FOR_... value to use,
4889 or CODE_FOR_nothing if these modes cannot be directly converted.
4891 *TRUNCP_PTR is set to 1 if it is necessary to output
4892 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4894 static enum insn_code
4895 can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode,
4896 int unsignedp, int *truncp_ptr)
4898 convert_optab tab;
4899 enum insn_code icode;
4901 tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
4902 icode = convert_optab_handler (tab, fixmode, fltmode)->insn_code;
4903 if (icode != CODE_FOR_nothing)
4905 *truncp_ptr = 0;
4906 return icode;
4909 /* FIXME: This requires a port to define both FIX and FTRUNC pattern
4910 for this to work. We need to rework the fix* and ftrunc* patterns
4911 and documentation. */
4912 tab = unsignedp ? ufix_optab : sfix_optab;
4913 icode = convert_optab_handler (tab, fixmode, fltmode)->insn_code;
4914 if (icode != CODE_FOR_nothing
4915 && optab_handler (ftrunc_optab, fltmode)->insn_code != CODE_FOR_nothing)
4917 *truncp_ptr = 1;
4918 return icode;
4921 *truncp_ptr = 0;
4922 return CODE_FOR_nothing;
4925 static enum insn_code
4926 can_float_p (enum machine_mode fltmode, enum machine_mode fixmode,
4927 int unsignedp)
4929 convert_optab tab;
4931 tab = unsignedp ? ufloat_optab : sfloat_optab;
4932 return convert_optab_handler (tab, fltmode, fixmode)->insn_code;
4935 /* Generate code to convert FROM to floating point
4936 and store in TO. FROM must be fixed point and not VOIDmode.
4937 UNSIGNEDP nonzero means regard FROM as unsigned.
4938 Normally this is done by correcting the final value
4939 if it is negative. */
4941 void
4942 expand_float (rtx to, rtx from, int unsignedp)
4944 enum insn_code icode;
4945 rtx target = to;
4946 enum machine_mode fmode, imode;
4947 bool can_do_signed = false;
4949 /* Crash now, because we won't be able to decide which mode to use. */
4950 gcc_assert (GET_MODE (from) != VOIDmode);
4952 /* Look for an insn to do the conversion. Do it in the specified
4953 modes if possible; otherwise convert either input, output or both to
4954 wider mode. If the integer mode is wider than the mode of FROM,
4955 we can do the conversion signed even if the input is unsigned. */
4957 for (fmode = GET_MODE (to); fmode != VOIDmode;
4958 fmode = GET_MODE_WIDER_MODE (fmode))
4959 for (imode = GET_MODE (from); imode != VOIDmode;
4960 imode = GET_MODE_WIDER_MODE (imode))
4962 int doing_unsigned = unsignedp;
4964 if (fmode != GET_MODE (to)
4965 && significand_size (fmode) < GET_MODE_BITSIZE (GET_MODE (from)))
4966 continue;
4968 icode = can_float_p (fmode, imode, unsignedp);
4969 if (icode == CODE_FOR_nothing && unsignedp)
4971 enum insn_code scode = can_float_p (fmode, imode, 0);
4972 if (scode != CODE_FOR_nothing)
4973 can_do_signed = true;
4974 if (imode != GET_MODE (from))
4975 icode = scode, doing_unsigned = 0;
4978 if (icode != CODE_FOR_nothing)
4980 if (imode != GET_MODE (from))
4981 from = convert_to_mode (imode, from, unsignedp);
4983 if (fmode != GET_MODE (to))
4984 target = gen_reg_rtx (fmode);
4986 emit_unop_insn (icode, target, from,
4987 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
4989 if (target != to)
4990 convert_move (to, target, 0);
4991 return;
4995 /* Unsigned integer, and no way to convert directly. Convert as signed,
4996 then unconditionally adjust the result. */
4997 if (unsignedp && can_do_signed)
4999 rtx label = gen_label_rtx ();
5000 rtx temp;
5001 REAL_VALUE_TYPE offset;
5003 /* Look for a usable floating mode FMODE wider than the source and at
5004 least as wide as the target. Using FMODE will avoid rounding woes
5005 with unsigned values greater than the signed maximum value. */
5007 for (fmode = GET_MODE (to); fmode != VOIDmode;
5008 fmode = GET_MODE_WIDER_MODE (fmode))
5009 if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
5010 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
5011 break;
5013 if (fmode == VOIDmode)
5015 /* There is no such mode. Pretend the target is wide enough. */
5016 fmode = GET_MODE (to);
5018 /* Avoid double-rounding when TO is narrower than FROM. */
5019 if ((significand_size (fmode) + 1)
5020 < GET_MODE_BITSIZE (GET_MODE (from)))
5022 rtx temp1;
5023 rtx neglabel = gen_label_rtx ();
5025 /* Don't use TARGET if it isn't a register, is a hard register,
5026 or is the wrong mode. */
5027 if (!REG_P (target)
5028 || REGNO (target) < FIRST_PSEUDO_REGISTER
5029 || GET_MODE (target) != fmode)
5030 target = gen_reg_rtx (fmode);
5032 imode = GET_MODE (from);
5033 do_pending_stack_adjust ();
5035 /* Test whether the sign bit is set. */
5036 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
5037 0, neglabel);
5039 /* The sign bit is not set. Convert as signed. */
5040 expand_float (target, from, 0);
5041 emit_jump_insn (gen_jump (label));
5042 emit_barrier ();
5044 /* The sign bit is set.
5045 Convert to a usable (positive signed) value by shifting right
5046 one bit, while remembering if a nonzero bit was shifted
5047 out; i.e., compute (from & 1) | (from >> 1). */
5049 emit_label (neglabel);
5050 temp = expand_binop (imode, and_optab, from, const1_rtx,
5051 NULL_RTX, 1, OPTAB_LIB_WIDEN);
5052 temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
5053 NULL_RTX, 1);
5054 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
5055 OPTAB_LIB_WIDEN);
5056 expand_float (target, temp, 0);
5058 /* Multiply by 2 to undo the shift above. */
5059 temp = expand_binop (fmode, add_optab, target, target,
5060 target, 0, OPTAB_LIB_WIDEN);
5061 if (temp != target)
5062 emit_move_insn (target, temp);
5064 do_pending_stack_adjust ();
5065 emit_label (label);
5066 goto done;
5070 /* If we are about to do some arithmetic to correct for an
5071 unsigned operand, do it in a pseudo-register. */
5073 if (GET_MODE (to) != fmode
5074 || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
5075 target = gen_reg_rtx (fmode);
5077 /* Convert as signed integer to floating. */
5078 expand_float (target, from, 0);
5080 /* If FROM is negative (and therefore TO is negative),
5081 correct its value by 2**bitwidth. */
5083 do_pending_stack_adjust ();
5084 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
5085 0, label);
5088 real_2expN (&offset, GET_MODE_BITSIZE (GET_MODE (from)), fmode);
5089 temp = expand_binop (fmode, add_optab, target,
5090 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
5091 target, 0, OPTAB_LIB_WIDEN);
5092 if (temp != target)
5093 emit_move_insn (target, temp);
5095 do_pending_stack_adjust ();
5096 emit_label (label);
5097 goto done;
5100 /* No hardware instruction available; call a library routine. */
5102 rtx libfunc;
5103 rtx insns;
5104 rtx value;
5105 convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
5107 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
5108 from = convert_to_mode (SImode, from, unsignedp);
5110 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5111 gcc_assert (libfunc);
5113 start_sequence ();
5115 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5116 GET_MODE (to), 1, from,
5117 GET_MODE (from));
5118 insns = get_insns ();
5119 end_sequence ();
5121 emit_libcall_block (insns, target, value,
5122 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FLOAT : FLOAT,
5123 GET_MODE (to), from));
5126 done:
5128 /* Copy result to requested destination
5129 if we have been computing in a temp location. */
5131 if (target != to)
5133 if (GET_MODE (target) == GET_MODE (to))
5134 emit_move_insn (to, target);
5135 else
5136 convert_move (to, target, 0);
5140 /* Generate code to convert FROM to fixed point and store in TO. FROM
5141 must be floating point. */
5143 void
5144 expand_fix (rtx to, rtx from, int unsignedp)
5146 enum insn_code icode;
5147 rtx target = to;
5148 enum machine_mode fmode, imode;
5149 int must_trunc = 0;
5151 /* We first try to find a pair of modes, one real and one integer, at
5152 least as wide as FROM and TO, respectively, in which we can open-code
5153 this conversion. If the integer mode is wider than the mode of TO,
5154 we can do the conversion either signed or unsigned. */
5156 for (fmode = GET_MODE (from); fmode != VOIDmode;
5157 fmode = GET_MODE_WIDER_MODE (fmode))
5158 for (imode = GET_MODE (to); imode != VOIDmode;
5159 imode = GET_MODE_WIDER_MODE (imode))
5161 int doing_unsigned = unsignedp;
5163 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
5164 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
5165 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
5167 if (icode != CODE_FOR_nothing)
5169 rtx last = get_last_insn ();
5170 if (fmode != GET_MODE (from))
5171 from = convert_to_mode (fmode, from, 0);
5173 if (must_trunc)
5175 rtx temp = gen_reg_rtx (GET_MODE (from));
5176 from = expand_unop (GET_MODE (from), ftrunc_optab, from,
5177 temp, 0);
5180 if (imode != GET_MODE (to))
5181 target = gen_reg_rtx (imode);
5183 if (maybe_emit_unop_insn (icode, target, from,
5184 doing_unsigned ? UNSIGNED_FIX : FIX))
5186 if (target != to)
5187 convert_move (to, target, unsignedp);
5188 return;
5190 delete_insns_since (last);
5194 /* For an unsigned conversion, there is one more way to do it.
5195 If we have a signed conversion, we generate code that compares
5196 the real value to the largest representable positive number. If if
5197 is smaller, the conversion is done normally. Otherwise, subtract
5198 one plus the highest signed number, convert, and add it back.
5200 We only need to check all real modes, since we know we didn't find
5201 anything with a wider integer mode.
5203 This code used to extend FP value into mode wider than the destination.
5204 This is needed for decimal float modes which cannot accurately
5205 represent one plus the highest signed number of the same size, but
5206 not for binary modes. Consider, for instance conversion from SFmode
5207 into DImode.
5209 The hot path through the code is dealing with inputs smaller than 2^63
5210 and doing just the conversion, so there is no bits to lose.
5212 In the other path we know the value is positive in the range 2^63..2^64-1
5213 inclusive. (as for other input overflow happens and result is undefined)
5214 So we know that the most important bit set in mantissa corresponds to
5215 2^63. The subtraction of 2^63 should not generate any rounding as it
5216 simply clears out that bit. The rest is trivial. */
5218 if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
5219 for (fmode = GET_MODE (from); fmode != VOIDmode;
5220 fmode = GET_MODE_WIDER_MODE (fmode))
5221 if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0, &must_trunc)
5222 && (!DECIMAL_FLOAT_MODE_P (fmode)
5223 || GET_MODE_BITSIZE (fmode) > GET_MODE_BITSIZE (GET_MODE (to))))
5225 int bitsize;
5226 REAL_VALUE_TYPE offset;
5227 rtx limit, lab1, lab2, insn;
5229 bitsize = GET_MODE_BITSIZE (GET_MODE (to));
5230 real_2expN (&offset, bitsize - 1, fmode);
5231 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
5232 lab1 = gen_label_rtx ();
5233 lab2 = gen_label_rtx ();
5235 if (fmode != GET_MODE (from))
5236 from = convert_to_mode (fmode, from, 0);
5238 /* See if we need to do the subtraction. */
5239 do_pending_stack_adjust ();
5240 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
5241 0, lab1);
5243 /* If not, do the signed "fix" and branch around fixup code. */
5244 expand_fix (to, from, 0);
5245 emit_jump_insn (gen_jump (lab2));
5246 emit_barrier ();
5248 /* Otherwise, subtract 2**(N-1), convert to signed number,
5249 then add 2**(N-1). Do the addition using XOR since this
5250 will often generate better code. */
5251 emit_label (lab1);
5252 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
5253 NULL_RTX, 0, OPTAB_LIB_WIDEN);
5254 expand_fix (to, target, 0);
5255 target = expand_binop (GET_MODE (to), xor_optab, to,
5256 gen_int_mode
5257 ((HOST_WIDE_INT) 1 << (bitsize - 1),
5258 GET_MODE (to)),
5259 to, 1, OPTAB_LIB_WIDEN);
5261 if (target != to)
5262 emit_move_insn (to, target);
5264 emit_label (lab2);
5266 if (optab_handler (mov_optab, GET_MODE (to))->insn_code
5267 != CODE_FOR_nothing)
5269 /* Make a place for a REG_NOTE and add it. */
5270 insn = emit_move_insn (to, to);
5271 set_unique_reg_note (insn,
5272 REG_EQUAL,
5273 gen_rtx_fmt_e (UNSIGNED_FIX,
5274 GET_MODE (to),
5275 copy_rtx (from)));
5278 return;
5281 /* We can't do it with an insn, so use a library call. But first ensure
5282 that the mode of TO is at least as wide as SImode, since those are the
5283 only library calls we know about. */
5285 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
5287 target = gen_reg_rtx (SImode);
5289 expand_fix (target, from, unsignedp);
5291 else
5293 rtx insns;
5294 rtx value;
5295 rtx libfunc;
5297 convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
5298 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5299 gcc_assert (libfunc);
5301 start_sequence ();
5303 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5304 GET_MODE (to), 1, from,
5305 GET_MODE (from));
5306 insns = get_insns ();
5307 end_sequence ();
5309 emit_libcall_block (insns, target, value,
5310 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
5311 GET_MODE (to), from));
5314 if (target != to)
5316 if (GET_MODE (to) == GET_MODE (target))
5317 emit_move_insn (to, target);
5318 else
5319 convert_move (to, target, 0);
5323 /* Generate code to convert FROM or TO a fixed-point.
5324 If UINTP is true, either TO or FROM is an unsigned integer.
5325 If SATP is true, we need to saturate the result. */
5327 void
5328 expand_fixed_convert (rtx to, rtx from, int uintp, int satp)
5330 enum machine_mode to_mode = GET_MODE (to);
5331 enum machine_mode from_mode = GET_MODE (from);
5332 convert_optab tab;
5333 enum rtx_code this_code;
5334 enum insn_code code;
5335 rtx insns, value;
5336 rtx libfunc;
5338 if (to_mode == from_mode)
5340 emit_move_insn (to, from);
5341 return;
5344 if (uintp)
5346 tab = satp ? satfractuns_optab : fractuns_optab;
5347 this_code = satp ? UNSIGNED_SAT_FRACT : UNSIGNED_FRACT_CONVERT;
5349 else
5351 tab = satp ? satfract_optab : fract_optab;
5352 this_code = satp ? SAT_FRACT : FRACT_CONVERT;
5354 code = tab->handlers[to_mode][from_mode].insn_code;
5355 if (code != CODE_FOR_nothing)
5357 emit_unop_insn (code, to, from, this_code);
5358 return;
5361 libfunc = convert_optab_libfunc (tab, to_mode, from_mode);
5362 gcc_assert (libfunc);
5364 start_sequence ();
5365 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, to_mode,
5366 1, from, from_mode);
5367 insns = get_insns ();
5368 end_sequence ();
5370 emit_libcall_block (insns, to, value,
5371 gen_rtx_fmt_e (tab->code, to_mode, from));
5374 /* Generate code to convert FROM to fixed point and store in TO. FROM
5375 must be floating point, TO must be signed. Use the conversion optab
5376 TAB to do the conversion. */
5378 bool
5379 expand_sfix_optab (rtx to, rtx from, convert_optab tab)
5381 enum insn_code icode;
5382 rtx target = to;
5383 enum machine_mode fmode, imode;
5385 /* We first try to find a pair of modes, one real and one integer, at
5386 least as wide as FROM and TO, respectively, in which we can open-code
5387 this conversion. If the integer mode is wider than the mode of TO,
5388 we can do the conversion either signed or unsigned. */
5390 for (fmode = GET_MODE (from); fmode != VOIDmode;
5391 fmode = GET_MODE_WIDER_MODE (fmode))
5392 for (imode = GET_MODE (to); imode != VOIDmode;
5393 imode = GET_MODE_WIDER_MODE (imode))
5395 icode = convert_optab_handler (tab, imode, fmode)->insn_code;
5396 if (icode != CODE_FOR_nothing)
5398 rtx last = get_last_insn ();
5399 if (fmode != GET_MODE (from))
5400 from = convert_to_mode (fmode, from, 0);
5402 if (imode != GET_MODE (to))
5403 target = gen_reg_rtx (imode);
5405 if (!maybe_emit_unop_insn (icode, target, from, UNKNOWN))
5407 delete_insns_since (last);
5408 continue;
5410 if (target != to)
5411 convert_move (to, target, 0);
5412 return true;
5416 return false;
5419 /* Report whether we have an instruction to perform the operation
5420 specified by CODE on operands of mode MODE. */
5422 have_insn_for (enum rtx_code code, enum machine_mode mode)
5424 return (code_to_optab[(int) code] != 0
5425 && (optab_handler (code_to_optab[(int) code], mode)->insn_code
5426 != CODE_FOR_nothing));
5429 /* Set all insn_code fields to CODE_FOR_nothing. */
5431 static void
5432 init_insn_codes (void)
5434 unsigned int i;
5436 for (i = 0; i < (unsigned int) OTI_MAX; i++)
5438 unsigned int j;
5439 optab op;
5441 op = &optab_table[i];
5442 for (j = 0; j < NUM_MACHINE_MODES; j++)
5443 optab_handler (op, j)->insn_code = CODE_FOR_nothing;
5445 for (i = 0; i < (unsigned int) COI_MAX; i++)
5447 unsigned int j, k;
5448 convert_optab op;
5450 op = &convert_optab_table[i];
5451 for (j = 0; j < NUM_MACHINE_MODES; j++)
5452 for (k = 0; k < NUM_MACHINE_MODES; k++)
5453 convert_optab_handler (op, j, k)->insn_code = CODE_FOR_nothing;
5457 /* Initialize OP's code to CODE, and write it into the code_to_optab table. */
5458 static inline void
5459 init_optab (optab op, enum rtx_code code)
5461 op->code = code;
5462 code_to_optab[(int) code] = op;
5465 /* Same, but fill in its code as CODE, and do _not_ write it into
5466 the code_to_optab table. */
5467 static inline void
5468 init_optabv (optab op, enum rtx_code code)
5470 op->code = code;
5473 /* Conversion optabs never go in the code_to_optab table. */
5474 static void
5475 init_convert_optab (convert_optab op, enum rtx_code code)
5477 op->code = code;
5480 /* Initialize the libfunc fields of an entire group of entries in some
5481 optab. Each entry is set equal to a string consisting of a leading
5482 pair of underscores followed by a generic operation name followed by
5483 a mode name (downshifted to lowercase) followed by a single character
5484 representing the number of operands for the given operation (which is
5485 usually one of the characters '2', '3', or '4').
5487 OPTABLE is the table in which libfunc fields are to be initialized.
5488 OPNAME is the generic (string) name of the operation.
5489 SUFFIX is the character which specifies the number of operands for
5490 the given generic operation.
5491 MODE is the mode to generate for.
5494 static void
5495 gen_libfunc (optab optable, const char *opname, int suffix, enum machine_mode mode)
5497 unsigned opname_len = strlen (opname);
5498 const char *mname = GET_MODE_NAME (mode);
5499 unsigned mname_len = strlen (mname);
5500 char *libfunc_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
5501 char *p;
5502 const char *q;
5504 p = libfunc_name;
5505 *p++ = '_';
5506 *p++ = '_';
5507 for (q = opname; *q; )
5508 *p++ = *q++;
5509 for (q = mname; *q; q++)
5510 *p++ = TOLOWER (*q);
5511 *p++ = suffix;
5512 *p = '\0';
5514 set_optab_libfunc (optable, mode,
5515 ggc_alloc_string (libfunc_name, p - libfunc_name));
5518 /* Like gen_libfunc, but verify that integer operation is involved. */
5520 static void
5521 gen_int_libfunc (optab optable, const char *opname, char suffix,
5522 enum machine_mode mode)
5524 int maxsize = 2 * BITS_PER_WORD;
5526 if (GET_MODE_CLASS (mode) != MODE_INT)
5527 return;
5528 if (maxsize < LONG_LONG_TYPE_SIZE)
5529 maxsize = LONG_LONG_TYPE_SIZE;
5530 if (GET_MODE_CLASS (mode) != MODE_INT
5531 || mode < word_mode || GET_MODE_BITSIZE (mode) > maxsize)
5532 return;
5533 gen_libfunc (optable, opname, suffix, mode);
5536 /* Like gen_libfunc, but verify that FP and set decimal prefix if needed. */
5538 static void
5539 gen_fp_libfunc (optab optable, const char *opname, char suffix,
5540 enum machine_mode mode)
5542 char *dec_opname;
5544 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5545 gen_libfunc (optable, opname, suffix, mode);
5546 if (DECIMAL_FLOAT_MODE_P (mode))
5548 dec_opname = XALLOCAVEC (char, sizeof (DECIMAL_PREFIX) + strlen (opname));
5549 /* For BID support, change the name to have either a bid_ or dpd_ prefix
5550 depending on the low level floating format used. */
5551 memcpy (dec_opname, DECIMAL_PREFIX, sizeof (DECIMAL_PREFIX) - 1);
5552 strcpy (dec_opname + sizeof (DECIMAL_PREFIX) - 1, opname);
5553 gen_libfunc (optable, dec_opname, suffix, mode);
5557 /* Like gen_libfunc, but verify that fixed-point operation is involved. */
5559 static void
5560 gen_fixed_libfunc (optab optable, const char *opname, char suffix,
5561 enum machine_mode mode)
5563 if (!ALL_FIXED_POINT_MODE_P (mode))
5564 return;
5565 gen_libfunc (optable, opname, suffix, mode);
5568 /* Like gen_libfunc, but verify that signed fixed-point operation is
5569 involved. */
5571 static void
5572 gen_signed_fixed_libfunc (optab optable, const char *opname, char suffix,
5573 enum machine_mode mode)
5575 if (!SIGNED_FIXED_POINT_MODE_P (mode))
5576 return;
5577 gen_libfunc (optable, opname, suffix, mode);
5580 /* Like gen_libfunc, but verify that unsigned fixed-point operation is
5581 involved. */
5583 static void
5584 gen_unsigned_fixed_libfunc (optab optable, const char *opname, char suffix,
5585 enum machine_mode mode)
5587 if (!UNSIGNED_FIXED_POINT_MODE_P (mode))
5588 return;
5589 gen_libfunc (optable, opname, suffix, mode);
5592 /* Like gen_libfunc, but verify that FP or INT operation is involved. */
5594 static void
5595 gen_int_fp_libfunc (optab optable, const char *name, char suffix,
5596 enum machine_mode mode)
5598 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5599 gen_fp_libfunc (optable, name, suffix, mode);
5600 if (INTEGRAL_MODE_P (mode))
5601 gen_int_libfunc (optable, name, suffix, mode);
5604 /* Like gen_libfunc, but verify that FP or INT operation is involved
5605 and add 'v' suffix for integer operation. */
5607 static void
5608 gen_intv_fp_libfunc (optab optable, const char *name, char suffix,
5609 enum machine_mode mode)
5611 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5612 gen_fp_libfunc (optable, name, suffix, mode);
5613 if (GET_MODE_CLASS (mode) == MODE_INT)
5615 int len = strlen (name);
5616 char *v_name = XALLOCAVEC (char, len + 2);
5617 strcpy (v_name, name);
5618 v_name[len] = 'v';
5619 v_name[len + 1] = 0;
5620 gen_int_libfunc (optable, v_name, suffix, mode);
5624 /* Like gen_libfunc, but verify that FP or INT or FIXED operation is
5625 involved. */
5627 static void
5628 gen_int_fp_fixed_libfunc (optab optable, const char *name, char suffix,
5629 enum machine_mode mode)
5631 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5632 gen_fp_libfunc (optable, name, suffix, mode);
5633 if (INTEGRAL_MODE_P (mode))
5634 gen_int_libfunc (optable, name, suffix, mode);
5635 if (ALL_FIXED_POINT_MODE_P (mode))
5636 gen_fixed_libfunc (optable, name, suffix, mode);
5639 /* Like gen_libfunc, but verify that FP or INT or signed FIXED operation is
5640 involved. */
5642 static void
5643 gen_int_fp_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5644 enum machine_mode mode)
5646 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5647 gen_fp_libfunc (optable, name, suffix, mode);
5648 if (INTEGRAL_MODE_P (mode))
5649 gen_int_libfunc (optable, name, suffix, mode);
5650 if (SIGNED_FIXED_POINT_MODE_P (mode))
5651 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5654 /* Like gen_libfunc, but verify that INT or FIXED operation is
5655 involved. */
5657 static void
5658 gen_int_fixed_libfunc (optab optable, const char *name, char suffix,
5659 enum machine_mode mode)
5661 if (INTEGRAL_MODE_P (mode))
5662 gen_int_libfunc (optable, name, suffix, mode);
5663 if (ALL_FIXED_POINT_MODE_P (mode))
5664 gen_fixed_libfunc (optable, name, suffix, mode);
5667 /* Like gen_libfunc, but verify that INT or signed FIXED operation is
5668 involved. */
5670 static void
5671 gen_int_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5672 enum machine_mode mode)
5674 if (INTEGRAL_MODE_P (mode))
5675 gen_int_libfunc (optable, name, suffix, mode);
5676 if (SIGNED_FIXED_POINT_MODE_P (mode))
5677 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5680 /* Like gen_libfunc, but verify that INT or unsigned FIXED operation is
5681 involved. */
5683 static void
5684 gen_int_unsigned_fixed_libfunc (optab optable, const char *name, char suffix,
5685 enum machine_mode mode)
5687 if (INTEGRAL_MODE_P (mode))
5688 gen_int_libfunc (optable, name, suffix, mode);
5689 if (UNSIGNED_FIXED_POINT_MODE_P (mode))
5690 gen_unsigned_fixed_libfunc (optable, name, suffix, mode);
5693 /* Initialize the libfunc fields of an entire group of entries of an
5694 inter-mode-class conversion optab. The string formation rules are
5695 similar to the ones for init_libfuncs, above, but instead of having
5696 a mode name and an operand count these functions have two mode names
5697 and no operand count. */
5699 static void
5700 gen_interclass_conv_libfunc (convert_optab tab,
5701 const char *opname,
5702 enum machine_mode tmode,
5703 enum machine_mode fmode)
5705 size_t opname_len = strlen (opname);
5706 size_t mname_len = 0;
5708 const char *fname, *tname;
5709 const char *q;
5710 char *libfunc_name, *suffix;
5711 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5712 char *p;
5714 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5715 depends on which underlying decimal floating point format is used. */
5716 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5718 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5720 nondec_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
5721 nondec_name[0] = '_';
5722 nondec_name[1] = '_';
5723 memcpy (&nondec_name[2], opname, opname_len);
5724 nondec_suffix = nondec_name + opname_len + 2;
5726 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5727 dec_name[0] = '_';
5728 dec_name[1] = '_';
5729 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5730 memcpy (&dec_name[2+dec_len], opname, opname_len);
5731 dec_suffix = dec_name + dec_len + opname_len + 2;
5733 fname = GET_MODE_NAME (fmode);
5734 tname = GET_MODE_NAME (tmode);
5736 if (DECIMAL_FLOAT_MODE_P(fmode) || DECIMAL_FLOAT_MODE_P(tmode))
5738 libfunc_name = dec_name;
5739 suffix = dec_suffix;
5741 else
5743 libfunc_name = nondec_name;
5744 suffix = nondec_suffix;
5747 p = suffix;
5748 for (q = fname; *q; p++, q++)
5749 *p = TOLOWER (*q);
5750 for (q = tname; *q; p++, q++)
5751 *p = TOLOWER (*q);
5753 *p = '\0';
5755 set_conv_libfunc (tab, tmode, fmode,
5756 ggc_alloc_string (libfunc_name, p - libfunc_name));
5759 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5760 int->fp conversion. */
5762 static void
5763 gen_int_to_fp_conv_libfunc (convert_optab tab,
5764 const char *opname,
5765 enum machine_mode tmode,
5766 enum machine_mode fmode)
5768 if (GET_MODE_CLASS (fmode) != MODE_INT)
5769 return;
5770 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5771 return;
5772 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5775 /* ufloat_optab is special by using floatun for FP and floatuns decimal fp
5776 naming scheme. */
5778 static void
5779 gen_ufloat_conv_libfunc (convert_optab tab,
5780 const char *opname ATTRIBUTE_UNUSED,
5781 enum machine_mode tmode,
5782 enum machine_mode fmode)
5784 if (DECIMAL_FLOAT_MODE_P (tmode))
5785 gen_int_to_fp_conv_libfunc (tab, "floatuns", tmode, fmode);
5786 else
5787 gen_int_to_fp_conv_libfunc (tab, "floatun", tmode, fmode);
5790 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5791 fp->int conversion. */
5793 static void
5794 gen_int_to_fp_nondecimal_conv_libfunc (convert_optab tab,
5795 const char *opname,
5796 enum machine_mode tmode,
5797 enum machine_mode fmode)
5799 if (GET_MODE_CLASS (fmode) != MODE_INT)
5800 return;
5801 if (GET_MODE_CLASS (tmode) != MODE_FLOAT)
5802 return;
5803 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5806 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5807 fp->int conversion with no decimal floating point involved. */
5809 static void
5810 gen_fp_to_int_conv_libfunc (convert_optab tab,
5811 const char *opname,
5812 enum machine_mode tmode,
5813 enum machine_mode fmode)
5815 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5816 return;
5817 if (GET_MODE_CLASS (tmode) != MODE_INT)
5818 return;
5819 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5822 /* Initialize the libfunc fields of an of an intra-mode-class conversion optab.
5823 The string formation rules are
5824 similar to the ones for init_libfunc, above. */
5826 static void
5827 gen_intraclass_conv_libfunc (convert_optab tab, const char *opname,
5828 enum machine_mode tmode, enum machine_mode fmode)
5830 size_t opname_len = strlen (opname);
5831 size_t mname_len = 0;
5833 const char *fname, *tname;
5834 const char *q;
5835 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5836 char *libfunc_name, *suffix;
5837 char *p;
5839 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5840 depends on which underlying decimal floating point format is used. */
5841 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5843 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5845 nondec_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
5846 nondec_name[0] = '_';
5847 nondec_name[1] = '_';
5848 memcpy (&nondec_name[2], opname, opname_len);
5849 nondec_suffix = nondec_name + opname_len + 2;
5851 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5852 dec_name[0] = '_';
5853 dec_name[1] = '_';
5854 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5855 memcpy (&dec_name[2 + dec_len], opname, opname_len);
5856 dec_suffix = dec_name + dec_len + opname_len + 2;
5858 fname = GET_MODE_NAME (fmode);
5859 tname = GET_MODE_NAME (tmode);
5861 if (DECIMAL_FLOAT_MODE_P(fmode) || DECIMAL_FLOAT_MODE_P(tmode))
5863 libfunc_name = dec_name;
5864 suffix = dec_suffix;
5866 else
5868 libfunc_name = nondec_name;
5869 suffix = nondec_suffix;
5872 p = suffix;
5873 for (q = fname; *q; p++, q++)
5874 *p = TOLOWER (*q);
5875 for (q = tname; *q; p++, q++)
5876 *p = TOLOWER (*q);
5878 *p++ = '2';
5879 *p = '\0';
5881 set_conv_libfunc (tab, tmode, fmode,
5882 ggc_alloc_string (libfunc_name, p - libfunc_name));
5885 /* Pick proper libcall for trunc_optab. We need to chose if we do
5886 truncation or extension and interclass or intraclass. */
5888 static void
5889 gen_trunc_conv_libfunc (convert_optab tab,
5890 const char *opname,
5891 enum machine_mode tmode,
5892 enum machine_mode fmode)
5894 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5895 return;
5896 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5897 return;
5898 if (tmode == fmode)
5899 return;
5901 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5902 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5903 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5905 if (GET_MODE_PRECISION (fmode) <= GET_MODE_PRECISION (tmode))
5906 return;
5908 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5909 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5910 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5911 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5914 /* Pick proper libcall for extend_optab. We need to chose if we do
5915 truncation or extension and interclass or intraclass. */
5917 static void
5918 gen_extend_conv_libfunc (convert_optab tab,
5919 const char *opname ATTRIBUTE_UNUSED,
5920 enum machine_mode tmode,
5921 enum machine_mode fmode)
5923 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5924 return;
5925 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5926 return;
5927 if (tmode == fmode)
5928 return;
5930 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5931 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5932 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5934 if (GET_MODE_PRECISION (fmode) > GET_MODE_PRECISION (tmode))
5935 return;
5937 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5938 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5939 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5940 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5943 /* Pick proper libcall for fract_optab. We need to chose if we do
5944 interclass or intraclass. */
5946 static void
5947 gen_fract_conv_libfunc (convert_optab tab,
5948 const char *opname,
5949 enum machine_mode tmode,
5950 enum machine_mode fmode)
5952 if (tmode == fmode)
5953 return;
5954 if (!(ALL_FIXED_POINT_MODE_P (tmode) || ALL_FIXED_POINT_MODE_P (fmode)))
5955 return;
5957 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
5958 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5959 else
5960 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5963 /* Pick proper libcall for fractuns_optab. */
5965 static void
5966 gen_fractuns_conv_libfunc (convert_optab tab,
5967 const char *opname,
5968 enum machine_mode tmode,
5969 enum machine_mode fmode)
5971 if (tmode == fmode)
5972 return;
5973 /* One mode must be a fixed-point mode, and the other must be an integer
5974 mode. */
5975 if (!((ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT)
5976 || (ALL_FIXED_POINT_MODE_P (fmode)
5977 && GET_MODE_CLASS (tmode) == MODE_INT)))
5978 return;
5980 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5983 /* Pick proper libcall for satfract_optab. We need to chose if we do
5984 interclass or intraclass. */
5986 static void
5987 gen_satfract_conv_libfunc (convert_optab tab,
5988 const char *opname,
5989 enum machine_mode tmode,
5990 enum machine_mode fmode)
5992 if (tmode == fmode)
5993 return;
5994 /* TMODE must be a fixed-point mode. */
5995 if (!ALL_FIXED_POINT_MODE_P (tmode))
5996 return;
5998 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
5999 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
6000 else
6001 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6004 /* Pick proper libcall for satfractuns_optab. */
6006 static void
6007 gen_satfractuns_conv_libfunc (convert_optab tab,
6008 const char *opname,
6009 enum machine_mode tmode,
6010 enum machine_mode fmode)
6012 if (tmode == fmode)
6013 return;
6014 /* TMODE must be a fixed-point mode, and FMODE must be an integer mode. */
6015 if (!(ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT))
6016 return;
6018 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6021 /* A table of previously-created libfuncs, hashed by name. */
6022 static GTY ((param_is (union tree_node))) htab_t libfunc_decls;
6024 /* Hashtable callbacks for libfunc_decls. */
6026 static hashval_t
6027 libfunc_decl_hash (const void *entry)
6029 return htab_hash_string (IDENTIFIER_POINTER (DECL_NAME ((const_tree) entry)));
6032 static int
6033 libfunc_decl_eq (const void *entry1, const void *entry2)
6035 return DECL_NAME ((const_tree) entry1) == (const_tree) entry2;
6039 init_one_libfunc (const char *name)
6041 tree id, decl;
6042 void **slot;
6043 hashval_t hash;
6045 if (libfunc_decls == NULL)
6046 libfunc_decls = htab_create_ggc (37, libfunc_decl_hash,
6047 libfunc_decl_eq, NULL);
6049 /* See if we have already created a libfunc decl for this function. */
6050 id = get_identifier (name);
6051 hash = htab_hash_string (name);
6052 slot = htab_find_slot_with_hash (libfunc_decls, id, hash, INSERT);
6053 decl = (tree) *slot;
6054 if (decl == NULL)
6056 /* Create a new decl, so that it can be passed to
6057 targetm.encode_section_info. */
6058 /* ??? We don't have any type information except for this is
6059 a function. Pretend this is "int foo()". */
6060 decl = build_decl (FUNCTION_DECL, get_identifier (name),
6061 build_function_type (integer_type_node, NULL_TREE));
6062 DECL_ARTIFICIAL (decl) = 1;
6063 DECL_EXTERNAL (decl) = 1;
6064 TREE_PUBLIC (decl) = 1;
6066 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
6067 are the flags assigned by targetm.encode_section_info. */
6068 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
6070 *slot = decl;
6072 return XEXP (DECL_RTL (decl), 0);
6075 /* Call this to reset the function entry for one optab (OPTABLE) in mode
6076 MODE to NAME, which should be either 0 or a string constant. */
6077 void
6078 set_optab_libfunc (optab optable, enum machine_mode mode, const char *name)
6080 rtx val;
6081 struct libfunc_entry e;
6082 struct libfunc_entry **slot;
6083 e.optab = (size_t) (optable - &optab_table[0]);
6084 e.mode1 = mode;
6085 e.mode2 = VOIDmode;
6087 if (name)
6088 val = init_one_libfunc (name);
6089 else
6090 val = 0;
6091 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6092 if (*slot == NULL)
6093 *slot = GGC_NEW (struct libfunc_entry);
6094 (*slot)->optab = (size_t) (optable - &optab_table[0]);
6095 (*slot)->mode1 = mode;
6096 (*slot)->mode2 = VOIDmode;
6097 (*slot)->libfunc = val;
6100 /* Call this to reset the function entry for one conversion optab
6101 (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
6102 either 0 or a string constant. */
6103 void
6104 set_conv_libfunc (convert_optab optable, enum machine_mode tmode,
6105 enum machine_mode fmode, const char *name)
6107 rtx val;
6108 struct libfunc_entry e;
6109 struct libfunc_entry **slot;
6110 e.optab = (size_t) (optable - &convert_optab_table[0]);
6111 e.mode1 = tmode;
6112 e.mode2 = fmode;
6114 if (name)
6115 val = init_one_libfunc (name);
6116 else
6117 val = 0;
6118 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6119 if (*slot == NULL)
6120 *slot = GGC_NEW (struct libfunc_entry);
6121 (*slot)->optab = (size_t) (optable - &convert_optab_table[0]);
6122 (*slot)->mode1 = tmode;
6123 (*slot)->mode2 = fmode;
6124 (*slot)->libfunc = val;
6127 /* Call this to initialize the contents of the optabs
6128 appropriately for the current target machine. */
6130 void
6131 init_optabs (void)
6133 unsigned int i;
6134 enum machine_mode int_mode;
6135 static bool reinit;
6137 libfunc_hash = htab_create_ggc (10, hash_libfunc, eq_libfunc, NULL);
6138 /* Start by initializing all tables to contain CODE_FOR_nothing. */
6140 for (i = 0; i < NUM_RTX_CODE; i++)
6141 setcc_gen_code[i] = CODE_FOR_nothing;
6143 #ifdef HAVE_conditional_move
6144 for (i = 0; i < NUM_MACHINE_MODES; i++)
6145 movcc_gen_code[i] = CODE_FOR_nothing;
6146 #endif
6148 for (i = 0; i < NUM_MACHINE_MODES; i++)
6150 vcond_gen_code[i] = CODE_FOR_nothing;
6151 vcondu_gen_code[i] = CODE_FOR_nothing;
6154 #if GCC_VERSION >= 4000
6155 /* We statically initialize the insn_codes with CODE_FOR_nothing. */
6156 if (reinit)
6157 init_insn_codes ();
6158 #else
6159 init_insn_codes ();
6160 #endif
6162 init_optab (add_optab, PLUS);
6163 init_optabv (addv_optab, PLUS);
6164 init_optab (sub_optab, MINUS);
6165 init_optabv (subv_optab, MINUS);
6166 init_optab (ssadd_optab, SS_PLUS);
6167 init_optab (usadd_optab, US_PLUS);
6168 init_optab (sssub_optab, SS_MINUS);
6169 init_optab (ussub_optab, US_MINUS);
6170 init_optab (smul_optab, MULT);
6171 init_optab (ssmul_optab, SS_MULT);
6172 init_optab (usmul_optab, US_MULT);
6173 init_optabv (smulv_optab, MULT);
6174 init_optab (smul_highpart_optab, UNKNOWN);
6175 init_optab (umul_highpart_optab, UNKNOWN);
6176 init_optab (smul_widen_optab, UNKNOWN);
6177 init_optab (umul_widen_optab, UNKNOWN);
6178 init_optab (usmul_widen_optab, UNKNOWN);
6179 init_optab (smadd_widen_optab, UNKNOWN);
6180 init_optab (umadd_widen_optab, UNKNOWN);
6181 init_optab (ssmadd_widen_optab, UNKNOWN);
6182 init_optab (usmadd_widen_optab, UNKNOWN);
6183 init_optab (smsub_widen_optab, UNKNOWN);
6184 init_optab (umsub_widen_optab, UNKNOWN);
6185 init_optab (ssmsub_widen_optab, UNKNOWN);
6186 init_optab (usmsub_widen_optab, UNKNOWN);
6187 init_optab (sdiv_optab, DIV);
6188 init_optab (ssdiv_optab, SS_DIV);
6189 init_optab (usdiv_optab, US_DIV);
6190 init_optabv (sdivv_optab, DIV);
6191 init_optab (sdivmod_optab, UNKNOWN);
6192 init_optab (udiv_optab, UDIV);
6193 init_optab (udivmod_optab, UNKNOWN);
6194 init_optab (smod_optab, MOD);
6195 init_optab (umod_optab, UMOD);
6196 init_optab (fmod_optab, UNKNOWN);
6197 init_optab (remainder_optab, UNKNOWN);
6198 init_optab (ftrunc_optab, UNKNOWN);
6199 init_optab (and_optab, AND);
6200 init_optab (ior_optab, IOR);
6201 init_optab (xor_optab, XOR);
6202 init_optab (ashl_optab, ASHIFT);
6203 init_optab (ssashl_optab, SS_ASHIFT);
6204 init_optab (usashl_optab, US_ASHIFT);
6205 init_optab (ashr_optab, ASHIFTRT);
6206 init_optab (lshr_optab, LSHIFTRT);
6207 init_optab (rotl_optab, ROTATE);
6208 init_optab (rotr_optab, ROTATERT);
6209 init_optab (smin_optab, SMIN);
6210 init_optab (smax_optab, SMAX);
6211 init_optab (umin_optab, UMIN);
6212 init_optab (umax_optab, UMAX);
6213 init_optab (pow_optab, UNKNOWN);
6214 init_optab (atan2_optab, UNKNOWN);
6216 /* These three have codes assigned exclusively for the sake of
6217 have_insn_for. */
6218 init_optab (mov_optab, SET);
6219 init_optab (movstrict_optab, STRICT_LOW_PART);
6220 init_optab (cmp_optab, COMPARE);
6222 init_optab (storent_optab, UNKNOWN);
6224 init_optab (ucmp_optab, UNKNOWN);
6225 init_optab (tst_optab, UNKNOWN);
6227 init_optab (eq_optab, EQ);
6228 init_optab (ne_optab, NE);
6229 init_optab (gt_optab, GT);
6230 init_optab (ge_optab, GE);
6231 init_optab (lt_optab, LT);
6232 init_optab (le_optab, LE);
6233 init_optab (unord_optab, UNORDERED);
6235 init_optab (neg_optab, NEG);
6236 init_optab (ssneg_optab, SS_NEG);
6237 init_optab (usneg_optab, US_NEG);
6238 init_optabv (negv_optab, NEG);
6239 init_optab (abs_optab, ABS);
6240 init_optabv (absv_optab, ABS);
6241 init_optab (addcc_optab, UNKNOWN);
6242 init_optab (one_cmpl_optab, NOT);
6243 init_optab (bswap_optab, BSWAP);
6244 init_optab (ffs_optab, FFS);
6245 init_optab (clz_optab, CLZ);
6246 init_optab (ctz_optab, CTZ);
6247 init_optab (popcount_optab, POPCOUNT);
6248 init_optab (parity_optab, PARITY);
6249 init_optab (sqrt_optab, SQRT);
6250 init_optab (floor_optab, UNKNOWN);
6251 init_optab (ceil_optab, UNKNOWN);
6252 init_optab (round_optab, UNKNOWN);
6253 init_optab (btrunc_optab, UNKNOWN);
6254 init_optab (nearbyint_optab, UNKNOWN);
6255 init_optab (rint_optab, UNKNOWN);
6256 init_optab (sincos_optab, UNKNOWN);
6257 init_optab (sin_optab, UNKNOWN);
6258 init_optab (asin_optab, UNKNOWN);
6259 init_optab (cos_optab, UNKNOWN);
6260 init_optab (acos_optab, UNKNOWN);
6261 init_optab (exp_optab, UNKNOWN);
6262 init_optab (exp10_optab, UNKNOWN);
6263 init_optab (exp2_optab, UNKNOWN);
6264 init_optab (expm1_optab, UNKNOWN);
6265 init_optab (ldexp_optab, UNKNOWN);
6266 init_optab (scalb_optab, UNKNOWN);
6267 init_optab (logb_optab, UNKNOWN);
6268 init_optab (ilogb_optab, UNKNOWN);
6269 init_optab (log_optab, UNKNOWN);
6270 init_optab (log10_optab, UNKNOWN);
6271 init_optab (log2_optab, UNKNOWN);
6272 init_optab (log1p_optab, UNKNOWN);
6273 init_optab (tan_optab, UNKNOWN);
6274 init_optab (atan_optab, UNKNOWN);
6275 init_optab (copysign_optab, UNKNOWN);
6276 init_optab (signbit_optab, UNKNOWN);
6278 init_optab (isinf_optab, UNKNOWN);
6280 init_optab (strlen_optab, UNKNOWN);
6281 init_optab (cbranch_optab, UNKNOWN);
6282 init_optab (cmov_optab, UNKNOWN);
6283 init_optab (cstore_optab, UNKNOWN);
6284 init_optab (push_optab, UNKNOWN);
6286 init_optab (reduc_smax_optab, UNKNOWN);
6287 init_optab (reduc_umax_optab, UNKNOWN);
6288 init_optab (reduc_smin_optab, UNKNOWN);
6289 init_optab (reduc_umin_optab, UNKNOWN);
6290 init_optab (reduc_splus_optab, UNKNOWN);
6291 init_optab (reduc_uplus_optab, UNKNOWN);
6293 init_optab (ssum_widen_optab, UNKNOWN);
6294 init_optab (usum_widen_optab, UNKNOWN);
6295 init_optab (sdot_prod_optab, UNKNOWN);
6296 init_optab (udot_prod_optab, UNKNOWN);
6298 init_optab (vec_extract_optab, UNKNOWN);
6299 init_optab (vec_extract_even_optab, UNKNOWN);
6300 init_optab (vec_extract_odd_optab, UNKNOWN);
6301 init_optab (vec_interleave_high_optab, UNKNOWN);
6302 init_optab (vec_interleave_low_optab, UNKNOWN);
6303 init_optab (vec_set_optab, UNKNOWN);
6304 init_optab (vec_init_optab, UNKNOWN);
6305 init_optab (vec_shl_optab, UNKNOWN);
6306 init_optab (vec_shr_optab, UNKNOWN);
6307 init_optab (vec_realign_load_optab, UNKNOWN);
6308 init_optab (movmisalign_optab, UNKNOWN);
6309 init_optab (vec_widen_umult_hi_optab, UNKNOWN);
6310 init_optab (vec_widen_umult_lo_optab, UNKNOWN);
6311 init_optab (vec_widen_smult_hi_optab, UNKNOWN);
6312 init_optab (vec_widen_smult_lo_optab, UNKNOWN);
6313 init_optab (vec_unpacks_hi_optab, UNKNOWN);
6314 init_optab (vec_unpacks_lo_optab, UNKNOWN);
6315 init_optab (vec_unpacku_hi_optab, UNKNOWN);
6316 init_optab (vec_unpacku_lo_optab, UNKNOWN);
6317 init_optab (vec_unpacks_float_hi_optab, UNKNOWN);
6318 init_optab (vec_unpacks_float_lo_optab, UNKNOWN);
6319 init_optab (vec_unpacku_float_hi_optab, UNKNOWN);
6320 init_optab (vec_unpacku_float_lo_optab, UNKNOWN);
6321 init_optab (vec_pack_trunc_optab, UNKNOWN);
6322 init_optab (vec_pack_usat_optab, UNKNOWN);
6323 init_optab (vec_pack_ssat_optab, UNKNOWN);
6324 init_optab (vec_pack_ufix_trunc_optab, UNKNOWN);
6325 init_optab (vec_pack_sfix_trunc_optab, UNKNOWN);
6327 init_optab (powi_optab, UNKNOWN);
6329 /* Conversions. */
6330 init_convert_optab (sext_optab, SIGN_EXTEND);
6331 init_convert_optab (zext_optab, ZERO_EXTEND);
6332 init_convert_optab (trunc_optab, TRUNCATE);
6333 init_convert_optab (sfix_optab, FIX);
6334 init_convert_optab (ufix_optab, UNSIGNED_FIX);
6335 init_convert_optab (sfixtrunc_optab, UNKNOWN);
6336 init_convert_optab (ufixtrunc_optab, UNKNOWN);
6337 init_convert_optab (sfloat_optab, FLOAT);
6338 init_convert_optab (ufloat_optab, UNSIGNED_FLOAT);
6339 init_convert_optab (lrint_optab, UNKNOWN);
6340 init_convert_optab (lround_optab, UNKNOWN);
6341 init_convert_optab (lfloor_optab, UNKNOWN);
6342 init_convert_optab (lceil_optab, UNKNOWN);
6344 init_convert_optab (fract_optab, FRACT_CONVERT);
6345 init_convert_optab (fractuns_optab, UNSIGNED_FRACT_CONVERT);
6346 init_convert_optab (satfract_optab, SAT_FRACT);
6347 init_convert_optab (satfractuns_optab, UNSIGNED_SAT_FRACT);
6349 for (i = 0; i < NUM_MACHINE_MODES; i++)
6351 movmem_optab[i] = CODE_FOR_nothing;
6352 cmpstr_optab[i] = CODE_FOR_nothing;
6353 cmpstrn_optab[i] = CODE_FOR_nothing;
6354 cmpmem_optab[i] = CODE_FOR_nothing;
6355 setmem_optab[i] = CODE_FOR_nothing;
6357 sync_add_optab[i] = CODE_FOR_nothing;
6358 sync_sub_optab[i] = CODE_FOR_nothing;
6359 sync_ior_optab[i] = CODE_FOR_nothing;
6360 sync_and_optab[i] = CODE_FOR_nothing;
6361 sync_xor_optab[i] = CODE_FOR_nothing;
6362 sync_nand_optab[i] = CODE_FOR_nothing;
6363 sync_old_add_optab[i] = CODE_FOR_nothing;
6364 sync_old_sub_optab[i] = CODE_FOR_nothing;
6365 sync_old_ior_optab[i] = CODE_FOR_nothing;
6366 sync_old_and_optab[i] = CODE_FOR_nothing;
6367 sync_old_xor_optab[i] = CODE_FOR_nothing;
6368 sync_old_nand_optab[i] = CODE_FOR_nothing;
6369 sync_new_add_optab[i] = CODE_FOR_nothing;
6370 sync_new_sub_optab[i] = CODE_FOR_nothing;
6371 sync_new_ior_optab[i] = CODE_FOR_nothing;
6372 sync_new_and_optab[i] = CODE_FOR_nothing;
6373 sync_new_xor_optab[i] = CODE_FOR_nothing;
6374 sync_new_nand_optab[i] = CODE_FOR_nothing;
6375 sync_compare_and_swap[i] = CODE_FOR_nothing;
6376 sync_compare_and_swap_cc[i] = CODE_FOR_nothing;
6377 sync_lock_test_and_set[i] = CODE_FOR_nothing;
6378 sync_lock_release[i] = CODE_FOR_nothing;
6380 reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
6383 /* Fill in the optabs with the insns we support. */
6384 init_all_optabs ();
6386 /* Initialize the optabs with the names of the library functions. */
6387 add_optab->libcall_basename = "add";
6388 add_optab->libcall_suffix = '3';
6389 add_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6390 addv_optab->libcall_basename = "add";
6391 addv_optab->libcall_suffix = '3';
6392 addv_optab->libcall_gen = gen_intv_fp_libfunc;
6393 ssadd_optab->libcall_basename = "ssadd";
6394 ssadd_optab->libcall_suffix = '3';
6395 ssadd_optab->libcall_gen = gen_signed_fixed_libfunc;
6396 usadd_optab->libcall_basename = "usadd";
6397 usadd_optab->libcall_suffix = '3';
6398 usadd_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6399 sub_optab->libcall_basename = "sub";
6400 sub_optab->libcall_suffix = '3';
6401 sub_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6402 subv_optab->libcall_basename = "sub";
6403 subv_optab->libcall_suffix = '3';
6404 subv_optab->libcall_gen = gen_intv_fp_libfunc;
6405 sssub_optab->libcall_basename = "sssub";
6406 sssub_optab->libcall_suffix = '3';
6407 sssub_optab->libcall_gen = gen_signed_fixed_libfunc;
6408 ussub_optab->libcall_basename = "ussub";
6409 ussub_optab->libcall_suffix = '3';
6410 ussub_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6411 smul_optab->libcall_basename = "mul";
6412 smul_optab->libcall_suffix = '3';
6413 smul_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6414 smulv_optab->libcall_basename = "mul";
6415 smulv_optab->libcall_suffix = '3';
6416 smulv_optab->libcall_gen = gen_intv_fp_libfunc;
6417 ssmul_optab->libcall_basename = "ssmul";
6418 ssmul_optab->libcall_suffix = '3';
6419 ssmul_optab->libcall_gen = gen_signed_fixed_libfunc;
6420 usmul_optab->libcall_basename = "usmul";
6421 usmul_optab->libcall_suffix = '3';
6422 usmul_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6423 sdiv_optab->libcall_basename = "div";
6424 sdiv_optab->libcall_suffix = '3';
6425 sdiv_optab->libcall_gen = gen_int_fp_signed_fixed_libfunc;
6426 sdivv_optab->libcall_basename = "divv";
6427 sdivv_optab->libcall_suffix = '3';
6428 sdivv_optab->libcall_gen = gen_int_libfunc;
6429 ssdiv_optab->libcall_basename = "ssdiv";
6430 ssdiv_optab->libcall_suffix = '3';
6431 ssdiv_optab->libcall_gen = gen_signed_fixed_libfunc;
6432 udiv_optab->libcall_basename = "udiv";
6433 udiv_optab->libcall_suffix = '3';
6434 udiv_optab->libcall_gen = gen_int_unsigned_fixed_libfunc;
6435 usdiv_optab->libcall_basename = "usdiv";
6436 usdiv_optab->libcall_suffix = '3';
6437 usdiv_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6438 sdivmod_optab->libcall_basename = "divmod";
6439 sdivmod_optab->libcall_suffix = '4';
6440 sdivmod_optab->libcall_gen = gen_int_libfunc;
6441 udivmod_optab->libcall_basename = "udivmod";
6442 udivmod_optab->libcall_suffix = '4';
6443 udivmod_optab->libcall_gen = gen_int_libfunc;
6444 smod_optab->libcall_basename = "mod";
6445 smod_optab->libcall_suffix = '3';
6446 smod_optab->libcall_gen = gen_int_libfunc;
6447 umod_optab->libcall_basename = "umod";
6448 umod_optab->libcall_suffix = '3';
6449 umod_optab->libcall_gen = gen_int_libfunc;
6450 ftrunc_optab->libcall_basename = "ftrunc";
6451 ftrunc_optab->libcall_suffix = '2';
6452 ftrunc_optab->libcall_gen = gen_fp_libfunc;
6453 and_optab->libcall_basename = "and";
6454 and_optab->libcall_suffix = '3';
6455 and_optab->libcall_gen = gen_int_libfunc;
6456 ior_optab->libcall_basename = "ior";
6457 ior_optab->libcall_suffix = '3';
6458 ior_optab->libcall_gen = gen_int_libfunc;
6459 xor_optab->libcall_basename = "xor";
6460 xor_optab->libcall_suffix = '3';
6461 xor_optab->libcall_gen = gen_int_libfunc;
6462 ashl_optab->libcall_basename = "ashl";
6463 ashl_optab->libcall_suffix = '3';
6464 ashl_optab->libcall_gen = gen_int_fixed_libfunc;
6465 ssashl_optab->libcall_basename = "ssashl";
6466 ssashl_optab->libcall_suffix = '3';
6467 ssashl_optab->libcall_gen = gen_signed_fixed_libfunc;
6468 usashl_optab->libcall_basename = "usashl";
6469 usashl_optab->libcall_suffix = '3';
6470 usashl_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6471 ashr_optab->libcall_basename = "ashr";
6472 ashr_optab->libcall_suffix = '3';
6473 ashr_optab->libcall_gen = gen_int_signed_fixed_libfunc;
6474 lshr_optab->libcall_basename = "lshr";
6475 lshr_optab->libcall_suffix = '3';
6476 lshr_optab->libcall_gen = gen_int_unsigned_fixed_libfunc;
6477 smin_optab->libcall_basename = "min";
6478 smin_optab->libcall_suffix = '3';
6479 smin_optab->libcall_gen = gen_int_fp_libfunc;
6480 smax_optab->libcall_basename = "max";
6481 smax_optab->libcall_suffix = '3';
6482 smax_optab->libcall_gen = gen_int_fp_libfunc;
6483 umin_optab->libcall_basename = "umin";
6484 umin_optab->libcall_suffix = '3';
6485 umin_optab->libcall_gen = gen_int_libfunc;
6486 umax_optab->libcall_basename = "umax";
6487 umax_optab->libcall_suffix = '3';
6488 umax_optab->libcall_gen = gen_int_libfunc;
6489 neg_optab->libcall_basename = "neg";
6490 neg_optab->libcall_suffix = '2';
6491 neg_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6492 ssneg_optab->libcall_basename = "ssneg";
6493 ssneg_optab->libcall_suffix = '2';
6494 ssneg_optab->libcall_gen = gen_signed_fixed_libfunc;
6495 usneg_optab->libcall_basename = "usneg";
6496 usneg_optab->libcall_suffix = '2';
6497 usneg_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6498 negv_optab->libcall_basename = "neg";
6499 negv_optab->libcall_suffix = '2';
6500 negv_optab->libcall_gen = gen_intv_fp_libfunc;
6501 one_cmpl_optab->libcall_basename = "one_cmpl";
6502 one_cmpl_optab->libcall_suffix = '2';
6503 one_cmpl_optab->libcall_gen = gen_int_libfunc;
6504 ffs_optab->libcall_basename = "ffs";
6505 ffs_optab->libcall_suffix = '2';
6506 ffs_optab->libcall_gen = gen_int_libfunc;
6507 clz_optab->libcall_basename = "clz";
6508 clz_optab->libcall_suffix = '2';
6509 clz_optab->libcall_gen = gen_int_libfunc;
6510 ctz_optab->libcall_basename = "ctz";
6511 ctz_optab->libcall_suffix = '2';
6512 ctz_optab->libcall_gen = gen_int_libfunc;
6513 popcount_optab->libcall_basename = "popcount";
6514 popcount_optab->libcall_suffix = '2';
6515 popcount_optab->libcall_gen = gen_int_libfunc;
6516 parity_optab->libcall_basename = "parity";
6517 parity_optab->libcall_suffix = '2';
6518 parity_optab->libcall_gen = gen_int_libfunc;
6520 /* Comparison libcalls for integers MUST come in pairs,
6521 signed/unsigned. */
6522 cmp_optab->libcall_basename = "cmp";
6523 cmp_optab->libcall_suffix = '2';
6524 cmp_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6525 ucmp_optab->libcall_basename = "ucmp";
6526 ucmp_optab->libcall_suffix = '2';
6527 ucmp_optab->libcall_gen = gen_int_libfunc;
6529 /* EQ etc are floating point only. */
6530 eq_optab->libcall_basename = "eq";
6531 eq_optab->libcall_suffix = '2';
6532 eq_optab->libcall_gen = gen_fp_libfunc;
6533 ne_optab->libcall_basename = "ne";
6534 ne_optab->libcall_suffix = '2';
6535 ne_optab->libcall_gen = gen_fp_libfunc;
6536 gt_optab->libcall_basename = "gt";
6537 gt_optab->libcall_suffix = '2';
6538 gt_optab->libcall_gen = gen_fp_libfunc;
6539 ge_optab->libcall_basename = "ge";
6540 ge_optab->libcall_suffix = '2';
6541 ge_optab->libcall_gen = gen_fp_libfunc;
6542 lt_optab->libcall_basename = "lt";
6543 lt_optab->libcall_suffix = '2';
6544 lt_optab->libcall_gen = gen_fp_libfunc;
6545 le_optab->libcall_basename = "le";
6546 le_optab->libcall_suffix = '2';
6547 le_optab->libcall_gen = gen_fp_libfunc;
6548 unord_optab->libcall_basename = "unord";
6549 unord_optab->libcall_suffix = '2';
6550 unord_optab->libcall_gen = gen_fp_libfunc;
6552 powi_optab->libcall_basename = "powi";
6553 powi_optab->libcall_suffix = '2';
6554 powi_optab->libcall_gen = gen_fp_libfunc;
6556 /* Conversions. */
6557 sfloat_optab->libcall_basename = "float";
6558 sfloat_optab->libcall_gen = gen_int_to_fp_conv_libfunc;
6559 ufloat_optab->libcall_gen = gen_ufloat_conv_libfunc;
6560 sfix_optab->libcall_basename = "fix";
6561 sfix_optab->libcall_gen = gen_fp_to_int_conv_libfunc;
6562 ufix_optab->libcall_basename = "fixuns";
6563 ufix_optab->libcall_gen = gen_fp_to_int_conv_libfunc;
6564 lrint_optab->libcall_basename = "lrint";
6565 lrint_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
6566 lround_optab->libcall_basename = "lround";
6567 lround_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
6568 lfloor_optab->libcall_basename = "lfloor";
6569 lfloor_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
6570 lceil_optab->libcall_basename = "lceil";
6571 lceil_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
6573 /* trunc_optab is also used for FLOAT_EXTEND. */
6574 sext_optab->libcall_basename = "extend";
6575 sext_optab->libcall_gen = gen_extend_conv_libfunc;
6576 trunc_optab->libcall_basename = "trunc";
6577 trunc_optab->libcall_gen = gen_trunc_conv_libfunc;
6579 /* Conversions for fixed-point modes and other modes. */
6580 fract_optab->libcall_basename = "fract";
6581 fract_optab->libcall_gen = gen_fract_conv_libfunc;
6582 satfract_optab->libcall_basename = "satfract";
6583 satfract_optab->libcall_gen = gen_satfract_conv_libfunc;
6584 fractuns_optab->libcall_basename = "fractuns";
6585 fractuns_optab->libcall_gen = gen_fractuns_conv_libfunc;
6586 satfractuns_optab->libcall_basename = "satfractuns";
6587 satfractuns_optab->libcall_gen = gen_satfractuns_conv_libfunc;
6589 /* The ffs function operates on `int'. Fall back on it if we do not
6590 have a libgcc2 function for that width. */
6591 if (INT_TYPE_SIZE < BITS_PER_WORD)
6593 int_mode = mode_for_size (INT_TYPE_SIZE, MODE_INT, 0);
6594 set_optab_libfunc (ffs_optab, mode_for_size (INT_TYPE_SIZE, MODE_INT, 0),
6595 "ffs");
6598 /* Explicitly initialize the bswap libfuncs since we need them to be
6599 valid for things other than word_mode. */
6600 set_optab_libfunc (bswap_optab, SImode, "__bswapsi2");
6601 set_optab_libfunc (bswap_optab, DImode, "__bswapdi2");
6603 /* Use cabs for double complex abs, since systems generally have cabs.
6604 Don't define any libcall for float complex, so that cabs will be used. */
6605 if (complex_double_type_node)
6606 set_optab_libfunc (abs_optab, TYPE_MODE (complex_double_type_node), "cabs");
6608 abort_libfunc = init_one_libfunc ("abort");
6609 memcpy_libfunc = init_one_libfunc ("memcpy");
6610 memmove_libfunc = init_one_libfunc ("memmove");
6611 memcmp_libfunc = init_one_libfunc ("memcmp");
6612 memset_libfunc = init_one_libfunc ("memset");
6613 setbits_libfunc = init_one_libfunc ("__setbits");
6615 #ifndef DONT_USE_BUILTIN_SETJMP
6616 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
6617 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
6618 #else
6619 setjmp_libfunc = init_one_libfunc ("setjmp");
6620 longjmp_libfunc = init_one_libfunc ("longjmp");
6621 #endif
6622 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
6623 unwind_sjlj_unregister_libfunc
6624 = init_one_libfunc ("_Unwind_SjLj_Unregister");
6626 /* For function entry/exit instrumentation. */
6627 profile_function_entry_libfunc
6628 = init_one_libfunc ("__cyg_profile_func_enter");
6629 profile_function_exit_libfunc
6630 = init_one_libfunc ("__cyg_profile_func_exit");
6632 gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
6634 if (HAVE_conditional_trap)
6635 trap_rtx = gen_rtx_fmt_ee (EQ, VOIDmode, NULL_RTX, NULL_RTX);
6637 /* Allow the target to add more libcalls or rename some, etc. */
6638 targetm.init_libfuncs ();
6640 reinit = true;
6643 /* Print information about the current contents of the optabs on
6644 STDERR. */
6646 void
6647 debug_optab_libfuncs (void)
6649 int i;
6650 int j;
6651 int k;
6653 /* Dump the arithmetic optabs. */
6654 for (i = 0; i != (int) OTI_MAX; i++)
6655 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6657 optab o;
6658 rtx l;
6660 o = &optab_table[i];
6661 l = optab_libfunc (o, j);
6662 if (l)
6664 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6665 fprintf (stderr, "%s\t%s:\t%s\n",
6666 GET_RTX_NAME (o->code),
6667 GET_MODE_NAME (j),
6668 XSTR (l, 0));
6672 /* Dump the conversion optabs. */
6673 for (i = 0; i < (int) COI_MAX; ++i)
6674 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6675 for (k = 0; k < NUM_MACHINE_MODES; ++k)
6677 convert_optab o;
6678 rtx l;
6680 o = &convert_optab_table[i];
6681 l = convert_optab_libfunc (o, j, k);
6682 if (l)
6684 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6685 fprintf (stderr, "%s\t%s\t%s:\t%s\n",
6686 GET_RTX_NAME (o->code),
6687 GET_MODE_NAME (j),
6688 GET_MODE_NAME (k),
6689 XSTR (l, 0));
6695 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
6696 CODE. Return 0 on failure. */
6699 gen_cond_trap (enum rtx_code code ATTRIBUTE_UNUSED, rtx op1,
6700 rtx op2 ATTRIBUTE_UNUSED, rtx tcode ATTRIBUTE_UNUSED)
6702 enum machine_mode mode = GET_MODE (op1);
6703 enum insn_code icode;
6704 rtx insn;
6706 if (!HAVE_conditional_trap)
6707 return 0;
6709 if (mode == VOIDmode)
6710 return 0;
6712 icode = optab_handler (cmp_optab, mode)->insn_code;
6713 if (icode == CODE_FOR_nothing)
6714 return 0;
6716 start_sequence ();
6717 op1 = prepare_operand (icode, op1, 0, mode, mode, 0);
6718 op2 = prepare_operand (icode, op2, 1, mode, mode, 0);
6719 if (!op1 || !op2)
6721 end_sequence ();
6722 return 0;
6724 emit_insn (GEN_FCN (icode) (op1, op2));
6726 PUT_CODE (trap_rtx, code);
6727 gcc_assert (HAVE_conditional_trap);
6728 insn = gen_conditional_trap (trap_rtx, tcode);
6729 if (insn)
6731 emit_insn (insn);
6732 insn = get_insns ();
6734 end_sequence ();
6736 return insn;
6739 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
6740 or unsigned operation code. */
6742 static enum rtx_code
6743 get_rtx_code (enum tree_code tcode, bool unsignedp)
6745 enum rtx_code code;
6746 switch (tcode)
6748 case EQ_EXPR:
6749 code = EQ;
6750 break;
6751 case NE_EXPR:
6752 code = NE;
6753 break;
6754 case LT_EXPR:
6755 code = unsignedp ? LTU : LT;
6756 break;
6757 case LE_EXPR:
6758 code = unsignedp ? LEU : LE;
6759 break;
6760 case GT_EXPR:
6761 code = unsignedp ? GTU : GT;
6762 break;
6763 case GE_EXPR:
6764 code = unsignedp ? GEU : GE;
6765 break;
6767 case UNORDERED_EXPR:
6768 code = UNORDERED;
6769 break;
6770 case ORDERED_EXPR:
6771 code = ORDERED;
6772 break;
6773 case UNLT_EXPR:
6774 code = UNLT;
6775 break;
6776 case UNLE_EXPR:
6777 code = UNLE;
6778 break;
6779 case UNGT_EXPR:
6780 code = UNGT;
6781 break;
6782 case UNGE_EXPR:
6783 code = UNGE;
6784 break;
6785 case UNEQ_EXPR:
6786 code = UNEQ;
6787 break;
6788 case LTGT_EXPR:
6789 code = LTGT;
6790 break;
6792 default:
6793 gcc_unreachable ();
6795 return code;
6798 /* Return comparison rtx for COND. Use UNSIGNEDP to select signed or
6799 unsigned operators. Do not generate compare instruction. */
6801 static rtx
6802 vector_compare_rtx (tree cond, bool unsignedp, enum insn_code icode)
6804 enum rtx_code rcode;
6805 tree t_op0, t_op1;
6806 rtx rtx_op0, rtx_op1;
6808 /* This is unlikely. While generating VEC_COND_EXPR, auto vectorizer
6809 ensures that condition is a relational operation. */
6810 gcc_assert (COMPARISON_CLASS_P (cond));
6812 rcode = get_rtx_code (TREE_CODE (cond), unsignedp);
6813 t_op0 = TREE_OPERAND (cond, 0);
6814 t_op1 = TREE_OPERAND (cond, 1);
6816 /* Expand operands. */
6817 rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)),
6818 EXPAND_STACK_PARM);
6819 rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)),
6820 EXPAND_STACK_PARM);
6822 if (!insn_data[icode].operand[4].predicate (rtx_op0, GET_MODE (rtx_op0))
6823 && GET_MODE (rtx_op0) != VOIDmode)
6824 rtx_op0 = force_reg (GET_MODE (rtx_op0), rtx_op0);
6826 if (!insn_data[icode].operand[5].predicate (rtx_op1, GET_MODE (rtx_op1))
6827 && GET_MODE (rtx_op1) != VOIDmode)
6828 rtx_op1 = force_reg (GET_MODE (rtx_op1), rtx_op1);
6830 return gen_rtx_fmt_ee (rcode, VOIDmode, rtx_op0, rtx_op1);
6833 /* Return insn code for VEC_COND_EXPR EXPR. */
6835 static inline enum insn_code
6836 get_vcond_icode (tree expr, enum machine_mode mode)
6838 enum insn_code icode = CODE_FOR_nothing;
6840 if (TYPE_UNSIGNED (TREE_TYPE (expr)))
6841 icode = vcondu_gen_code[mode];
6842 else
6843 icode = vcond_gen_code[mode];
6844 return icode;
6847 /* Return TRUE iff, appropriate vector insns are available
6848 for vector cond expr expr in VMODE mode. */
6850 bool
6851 expand_vec_cond_expr_p (tree expr, enum machine_mode vmode)
6853 if (get_vcond_icode (expr, vmode) == CODE_FOR_nothing)
6854 return false;
6855 return true;
6858 /* Generate insns for VEC_COND_EXPR. */
6861 expand_vec_cond_expr (tree vec_cond_expr, rtx target)
6863 enum insn_code icode;
6864 rtx comparison, rtx_op1, rtx_op2, cc_op0, cc_op1;
6865 enum machine_mode mode = TYPE_MODE (TREE_TYPE (vec_cond_expr));
6866 bool unsignedp = TYPE_UNSIGNED (TREE_TYPE (vec_cond_expr));
6868 icode = get_vcond_icode (vec_cond_expr, mode);
6869 if (icode == CODE_FOR_nothing)
6870 return 0;
6872 if (!target || !insn_data[icode].operand[0].predicate (target, mode))
6873 target = gen_reg_rtx (mode);
6875 /* Get comparison rtx. First expand both cond expr operands. */
6876 comparison = vector_compare_rtx (TREE_OPERAND (vec_cond_expr, 0),
6877 unsignedp, icode);
6878 cc_op0 = XEXP (comparison, 0);
6879 cc_op1 = XEXP (comparison, 1);
6880 /* Expand both operands and force them in reg, if required. */
6881 rtx_op1 = expand_normal (TREE_OPERAND (vec_cond_expr, 1));
6882 if (!insn_data[icode].operand[1].predicate (rtx_op1, mode)
6883 && mode != VOIDmode)
6884 rtx_op1 = force_reg (mode, rtx_op1);
6886 rtx_op2 = expand_normal (TREE_OPERAND (vec_cond_expr, 2));
6887 if (!insn_data[icode].operand[2].predicate (rtx_op2, mode)
6888 && mode != VOIDmode)
6889 rtx_op2 = force_reg (mode, rtx_op2);
6891 /* Emit instruction! */
6892 emit_insn (GEN_FCN (icode) (target, rtx_op1, rtx_op2,
6893 comparison, cc_op0, cc_op1));
6895 return target;
6899 /* This is an internal subroutine of the other compare_and_swap expanders.
6900 MEM, OLD_VAL and NEW_VAL are as you'd expect for a compare-and-swap
6901 operation. TARGET is an optional place to store the value result of
6902 the operation. ICODE is the particular instruction to expand. Return
6903 the result of the operation. */
6905 static rtx
6906 expand_val_compare_and_swap_1 (rtx mem, rtx old_val, rtx new_val,
6907 rtx target, enum insn_code icode)
6909 enum machine_mode mode = GET_MODE (mem);
6910 rtx insn;
6912 if (!target || !insn_data[icode].operand[0].predicate (target, mode))
6913 target = gen_reg_rtx (mode);
6915 if (GET_MODE (old_val) != VOIDmode && GET_MODE (old_val) != mode)
6916 old_val = convert_modes (mode, GET_MODE (old_val), old_val, 1);
6917 if (!insn_data[icode].operand[2].predicate (old_val, mode))
6918 old_val = force_reg (mode, old_val);
6920 if (GET_MODE (new_val) != VOIDmode && GET_MODE (new_val) != mode)
6921 new_val = convert_modes (mode, GET_MODE (new_val), new_val, 1);
6922 if (!insn_data[icode].operand[3].predicate (new_val, mode))
6923 new_val = force_reg (mode, new_val);
6925 insn = GEN_FCN (icode) (target, mem, old_val, new_val);
6926 if (insn == NULL_RTX)
6927 return NULL_RTX;
6928 emit_insn (insn);
6930 return target;
6933 /* Expand a compare-and-swap operation and return its value. */
6936 expand_val_compare_and_swap (rtx mem, rtx old_val, rtx new_val, rtx target)
6938 enum machine_mode mode = GET_MODE (mem);
6939 enum insn_code icode = sync_compare_and_swap[mode];
6941 if (icode == CODE_FOR_nothing)
6942 return NULL_RTX;
6944 return expand_val_compare_and_swap_1 (mem, old_val, new_val, target, icode);
6947 /* Expand a compare-and-swap operation and store true into the result if
6948 the operation was successful and false otherwise. Return the result.
6949 Unlike other routines, TARGET is not optional. */
6952 expand_bool_compare_and_swap (rtx mem, rtx old_val, rtx new_val, rtx target)
6954 enum machine_mode mode = GET_MODE (mem);
6955 enum insn_code icode;
6956 rtx subtarget, label0, label1;
6958 /* If the target supports a compare-and-swap pattern that simultaneously
6959 sets some flag for success, then use it. Otherwise use the regular
6960 compare-and-swap and follow that immediately with a compare insn. */
6961 icode = sync_compare_and_swap_cc[mode];
6962 switch (icode)
6964 default:
6965 subtarget = expand_val_compare_and_swap_1 (mem, old_val, new_val,
6966 NULL_RTX, icode);
6967 if (subtarget != NULL_RTX)
6968 break;
6970 /* FALLTHRU */
6971 case CODE_FOR_nothing:
6972 icode = sync_compare_and_swap[mode];
6973 if (icode == CODE_FOR_nothing)
6974 return NULL_RTX;
6976 /* Ensure that if old_val == mem, that we're not comparing
6977 against an old value. */
6978 if (MEM_P (old_val))
6979 old_val = force_reg (mode, old_val);
6981 subtarget = expand_val_compare_and_swap_1 (mem, old_val, new_val,
6982 NULL_RTX, icode);
6983 if (subtarget == NULL_RTX)
6984 return NULL_RTX;
6986 emit_cmp_insn (subtarget, old_val, EQ, const0_rtx, mode, true);
6989 /* If the target has a sane STORE_FLAG_VALUE, then go ahead and use a
6990 setcc instruction from the beginning. We don't work too hard here,
6991 but it's nice to not be stupid about initial code gen either. */
6992 if (STORE_FLAG_VALUE == 1)
6994 icode = setcc_gen_code[EQ];
6995 if (icode != CODE_FOR_nothing)
6997 enum machine_mode cmode = insn_data[icode].operand[0].mode;
6998 rtx insn;
7000 subtarget = target;
7001 if (!insn_data[icode].operand[0].predicate (target, cmode))
7002 subtarget = gen_reg_rtx (cmode);
7004 insn = GEN_FCN (icode) (subtarget);
7005 if (insn)
7007 emit_insn (insn);
7008 if (GET_MODE (target) != GET_MODE (subtarget))
7010 convert_move (target, subtarget, 1);
7011 subtarget = target;
7013 return subtarget;
7018 /* Without an appropriate setcc instruction, use a set of branches to
7019 get 1 and 0 stored into target. Presumably if the target has a
7020 STORE_FLAG_VALUE that isn't 1, then this will get cleaned up by ifcvt. */
7022 label0 = gen_label_rtx ();
7023 label1 = gen_label_rtx ();
7025 emit_jump_insn (bcc_gen_fctn[EQ] (label0));
7026 emit_move_insn (target, const0_rtx);
7027 emit_jump_insn (gen_jump (label1));
7028 emit_barrier ();
7029 emit_label (label0);
7030 emit_move_insn (target, const1_rtx);
7031 emit_label (label1);
7033 return target;
7036 /* This is a helper function for the other atomic operations. This function
7037 emits a loop that contains SEQ that iterates until a compare-and-swap
7038 operation at the end succeeds. MEM is the memory to be modified. SEQ is
7039 a set of instructions that takes a value from OLD_REG as an input and
7040 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
7041 set to the current contents of MEM. After SEQ, a compare-and-swap will
7042 attempt to update MEM with NEW_REG. The function returns true when the
7043 loop was generated successfully. */
7045 static bool
7046 expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
7048 enum machine_mode mode = GET_MODE (mem);
7049 enum insn_code icode;
7050 rtx label, cmp_reg, subtarget;
7052 /* The loop we want to generate looks like
7054 cmp_reg = mem;
7055 label:
7056 old_reg = cmp_reg;
7057 seq;
7058 cmp_reg = compare-and-swap(mem, old_reg, new_reg)
7059 if (cmp_reg != old_reg)
7060 goto label;
7062 Note that we only do the plain load from memory once. Subsequent
7063 iterations use the value loaded by the compare-and-swap pattern. */
7065 label = gen_label_rtx ();
7066 cmp_reg = gen_reg_rtx (mode);
7068 emit_move_insn (cmp_reg, mem);
7069 emit_label (label);
7070 emit_move_insn (old_reg, cmp_reg);
7071 if (seq)
7072 emit_insn (seq);
7074 /* If the target supports a compare-and-swap pattern that simultaneously
7075 sets some flag for success, then use it. Otherwise use the regular
7076 compare-and-swap and follow that immediately with a compare insn. */
7077 icode = sync_compare_and_swap_cc[mode];
7078 switch (icode)
7080 default:
7081 subtarget = expand_val_compare_and_swap_1 (mem, old_reg, new_reg,
7082 cmp_reg, icode);
7083 if (subtarget != NULL_RTX)
7085 gcc_assert (subtarget == cmp_reg);
7086 break;
7089 /* FALLTHRU */
7090 case CODE_FOR_nothing:
7091 icode = sync_compare_and_swap[mode];
7092 if (icode == CODE_FOR_nothing)
7093 return false;
7095 subtarget = expand_val_compare_and_swap_1 (mem, old_reg, new_reg,
7096 cmp_reg, icode);
7097 if (subtarget == NULL_RTX)
7098 return false;
7099 if (subtarget != cmp_reg)
7100 emit_move_insn (cmp_reg, subtarget);
7102 emit_cmp_insn (cmp_reg, old_reg, EQ, const0_rtx, mode, true);
7105 /* ??? Mark this jump predicted not taken? */
7106 emit_jump_insn (bcc_gen_fctn[NE] (label));
7108 return true;
7111 /* This function generates the atomic operation MEM CODE= VAL. In this
7112 case, we do not care about any resulting value. Returns NULL if we
7113 cannot generate the operation. */
7116 expand_sync_operation (rtx mem, rtx val, enum rtx_code code)
7118 enum machine_mode mode = GET_MODE (mem);
7119 enum insn_code icode;
7120 rtx insn;
7122 /* Look to see if the target supports the operation directly. */
7123 switch (code)
7125 case PLUS:
7126 icode = sync_add_optab[mode];
7127 break;
7128 case IOR:
7129 icode = sync_ior_optab[mode];
7130 break;
7131 case XOR:
7132 icode = sync_xor_optab[mode];
7133 break;
7134 case AND:
7135 icode = sync_and_optab[mode];
7136 break;
7137 case NOT:
7138 icode = sync_nand_optab[mode];
7139 break;
7141 case MINUS:
7142 icode = sync_sub_optab[mode];
7143 if (icode == CODE_FOR_nothing || CONST_INT_P (val))
7145 icode = sync_add_optab[mode];
7146 if (icode != CODE_FOR_nothing)
7148 val = expand_simple_unop (mode, NEG, val, NULL_RTX, 1);
7149 code = PLUS;
7152 break;
7154 default:
7155 gcc_unreachable ();
7158 /* Generate the direct operation, if present. */
7159 if (icode != CODE_FOR_nothing)
7161 if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
7162 val = convert_modes (mode, GET_MODE (val), val, 1);
7163 if (!insn_data[icode].operand[1].predicate (val, mode))
7164 val = force_reg (mode, val);
7166 insn = GEN_FCN (icode) (mem, val);
7167 if (insn)
7169 emit_insn (insn);
7170 return const0_rtx;
7174 /* Failing that, generate a compare-and-swap loop in which we perform the
7175 operation with normal arithmetic instructions. */
7176 if (sync_compare_and_swap[mode] != CODE_FOR_nothing)
7178 rtx t0 = gen_reg_rtx (mode), t1;
7180 start_sequence ();
7182 t1 = t0;
7183 if (code == NOT)
7185 t1 = expand_simple_unop (mode, NOT, t1, NULL_RTX, true);
7186 code = AND;
7188 t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX,
7189 true, OPTAB_LIB_WIDEN);
7191 insn = get_insns ();
7192 end_sequence ();
7194 if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
7195 return const0_rtx;
7198 return NULL_RTX;
7201 /* This function generates the atomic operation MEM CODE= VAL. In this
7202 case, we do care about the resulting value: if AFTER is true then
7203 return the value MEM holds after the operation, if AFTER is false
7204 then return the value MEM holds before the operation. TARGET is an
7205 optional place for the result value to be stored. */
7208 expand_sync_fetch_operation (rtx mem, rtx val, enum rtx_code code,
7209 bool after, rtx target)
7211 enum machine_mode mode = GET_MODE (mem);
7212 enum insn_code old_code, new_code, icode;
7213 bool compensate;
7214 rtx insn;
7216 /* Look to see if the target supports the operation directly. */
7217 switch (code)
7219 case PLUS:
7220 old_code = sync_old_add_optab[mode];
7221 new_code = sync_new_add_optab[mode];
7222 break;
7223 case IOR:
7224 old_code = sync_old_ior_optab[mode];
7225 new_code = sync_new_ior_optab[mode];
7226 break;
7227 case XOR:
7228 old_code = sync_old_xor_optab[mode];
7229 new_code = sync_new_xor_optab[mode];
7230 break;
7231 case AND:
7232 old_code = sync_old_and_optab[mode];
7233 new_code = sync_new_and_optab[mode];
7234 break;
7235 case NOT:
7236 old_code = sync_old_nand_optab[mode];
7237 new_code = sync_new_nand_optab[mode];
7238 break;
7240 case MINUS:
7241 old_code = sync_old_sub_optab[mode];
7242 new_code = sync_new_sub_optab[mode];
7243 if ((old_code == CODE_FOR_nothing && new_code == CODE_FOR_nothing)
7244 || CONST_INT_P (val))
7246 old_code = sync_old_add_optab[mode];
7247 new_code = sync_new_add_optab[mode];
7248 if (old_code != CODE_FOR_nothing || new_code != CODE_FOR_nothing)
7250 val = expand_simple_unop (mode, NEG, val, NULL_RTX, 1);
7251 code = PLUS;
7254 break;
7256 default:
7257 gcc_unreachable ();
7260 /* If the target does supports the proper new/old operation, great. But
7261 if we only support the opposite old/new operation, check to see if we
7262 can compensate. In the case in which the old value is supported, then
7263 we can always perform the operation again with normal arithmetic. In
7264 the case in which the new value is supported, then we can only handle
7265 this in the case the operation is reversible. */
7266 compensate = false;
7267 if (after)
7269 icode = new_code;
7270 if (icode == CODE_FOR_nothing)
7272 icode = old_code;
7273 if (icode != CODE_FOR_nothing)
7274 compensate = true;
7277 else
7279 icode = old_code;
7280 if (icode == CODE_FOR_nothing
7281 && (code == PLUS || code == MINUS || code == XOR))
7283 icode = new_code;
7284 if (icode != CODE_FOR_nothing)
7285 compensate = true;
7289 /* If we found something supported, great. */
7290 if (icode != CODE_FOR_nothing)
7292 if (!target || !insn_data[icode].operand[0].predicate (target, mode))
7293 target = gen_reg_rtx (mode);
7295 if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
7296 val = convert_modes (mode, GET_MODE (val), val, 1);
7297 if (!insn_data[icode].operand[2].predicate (val, mode))
7298 val = force_reg (mode, val);
7300 insn = GEN_FCN (icode) (target, mem, val);
7301 if (insn)
7303 emit_insn (insn);
7305 /* If we need to compensate for using an operation with the
7306 wrong return value, do so now. */
7307 if (compensate)
7309 if (!after)
7311 if (code == PLUS)
7312 code = MINUS;
7313 else if (code == MINUS)
7314 code = PLUS;
7317 if (code == NOT)
7318 target = expand_simple_unop (mode, NOT, target, NULL_RTX, true);
7319 target = expand_simple_binop (mode, code, target, val, NULL_RTX,
7320 true, OPTAB_LIB_WIDEN);
7323 return target;
7327 /* Failing that, generate a compare-and-swap loop in which we perform the
7328 operation with normal arithmetic instructions. */
7329 if (sync_compare_and_swap[mode] != CODE_FOR_nothing)
7331 rtx t0 = gen_reg_rtx (mode), t1;
7333 if (!target || !register_operand (target, mode))
7334 target = gen_reg_rtx (mode);
7336 start_sequence ();
7338 if (!after)
7339 emit_move_insn (target, t0);
7340 t1 = t0;
7341 if (code == NOT)
7343 t1 = expand_simple_unop (mode, NOT, t1, NULL_RTX, true);
7344 code = AND;
7346 t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX,
7347 true, OPTAB_LIB_WIDEN);
7348 if (after)
7349 emit_move_insn (target, t1);
7351 insn = get_insns ();
7352 end_sequence ();
7354 if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
7355 return target;
7358 return NULL_RTX;
7361 /* This function expands a test-and-set operation. Ideally we atomically
7362 store VAL in MEM and return the previous value in MEM. Some targets
7363 may not support this operation and only support VAL with the constant 1;
7364 in this case while the return value will be 0/1, but the exact value
7365 stored in MEM is target defined. TARGET is an option place to stick
7366 the return value. */
7369 expand_sync_lock_test_and_set (rtx mem, rtx val, rtx target)
7371 enum machine_mode mode = GET_MODE (mem);
7372 enum insn_code icode;
7373 rtx insn;
7375 /* If the target supports the test-and-set directly, great. */
7376 icode = sync_lock_test_and_set[mode];
7377 if (icode != CODE_FOR_nothing)
7379 if (!target || !insn_data[icode].operand[0].predicate (target, mode))
7380 target = gen_reg_rtx (mode);
7382 if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
7383 val = convert_modes (mode, GET_MODE (val), val, 1);
7384 if (!insn_data[icode].operand[2].predicate (val, mode))
7385 val = force_reg (mode, val);
7387 insn = GEN_FCN (icode) (target, mem, val);
7388 if (insn)
7390 emit_insn (insn);
7391 return target;
7395 /* Otherwise, use a compare-and-swap loop for the exchange. */
7396 if (sync_compare_and_swap[mode] != CODE_FOR_nothing)
7398 if (!target || !register_operand (target, mode))
7399 target = gen_reg_rtx (mode);
7400 if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
7401 val = convert_modes (mode, GET_MODE (val), val, 1);
7402 if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
7403 return target;
7406 return NULL_RTX;
7409 #include "gt-optabs.h"