* gcc.dg/compat/struct-layout-1_generate.c (dg_options): New. Moved
[official-gcc.git] / gcc / ira.c
blobf4d399cb4910542fd7dfbdd0cf953ccc55fb6564
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* The integrated register allocator (IRA) is a
23 regional register allocator performing graph coloring on a top-down
24 traversal of nested regions. Graph coloring in a region is based
25 on Chaitin-Briggs algorithm. It is called integrated because
26 register coalescing, register live range splitting, and choosing a
27 better hard register are done on-the-fly during coloring. Register
28 coalescing and choosing a cheaper hard register is done by hard
29 register preferencing during hard register assigning. The live
30 range splitting is a byproduct of the regional register allocation.
32 Major IRA notions are:
34 o *Region* is a part of CFG where graph coloring based on
35 Chaitin-Briggs algorithm is done. IRA can work on any set of
36 nested CFG regions forming a tree. Currently the regions are
37 the entire function for the root region and natural loops for
38 the other regions. Therefore data structure representing a
39 region is called loop_tree_node.
41 o *Cover class* is a register class belonging to a set of
42 non-intersecting register classes containing all of the
43 hard-registers available for register allocation. The set of
44 all cover classes for a target is defined in the corresponding
45 machine-description file according some criteria. Such notion
46 is needed because Chaitin-Briggs algorithm works on
47 non-intersected register classes.
49 o *Allocno* represents the live range of a pseudo-register in a
50 region. Besides the obvious attributes like the corresponding
51 pseudo-register number, cover class, conflicting allocnos and
52 conflicting hard-registers, there are a few allocno attributes
53 which are important for understanding the allocation algorithm:
55 - *Live ranges*. This is a list of ranges of *program
56 points* where the allocno lives. Program points represent
57 places where a pseudo can be born or become dead (there are
58 approximately two times more program points than the insns)
59 and they are represented by integers starting with 0. The
60 live ranges are used to find conflicts between allocnos of
61 different cover classes. They also play very important role
62 for the transformation of the IRA internal representation of
63 several regions into a one region representation. The later is
64 used during the reload pass work because each allocno
65 represents all of the corresponding pseudo-registers.
67 - *Hard-register costs*. This is a vector of size equal to the
68 number of available hard-registers of the allocno's cover
69 class. The cost of a callee-clobbered hard-register for an
70 allocno is increased by the cost of save/restore code around
71 the calls through the given allocno's life. If the allocno
72 is a move instruction operand and another operand is a
73 hard-register of the allocno's cover class, the cost of the
74 hard-register is decreased by the move cost.
76 When an allocno is assigned, the hard-register with minimal
77 full cost is used. Initially, a hard-register's full cost is
78 the corresponding value from the hard-register's cost vector.
79 If the allocno is connected by a *copy* (see below) to
80 another allocno which has just received a hard-register, the
81 cost of the hard-register is decreased. Before choosing a
82 hard-register for an allocno, the allocno's current costs of
83 the hard-registers are modified by the conflict hard-register
84 costs of all of the conflicting allocnos which are not
85 assigned yet.
87 - *Conflict hard-register costs*. This is a vector of the same
88 size as the hard-register costs vector. To permit an
89 unassigned allocno to get a better hard-register, IRA uses
90 this vector to calculate the final full cost of the
91 available hard-registers. Conflict hard-register costs of an
92 unassigned allocno are also changed with a change of the
93 hard-register cost of the allocno when a copy involving the
94 allocno is processed as described above. This is done to
95 show other unassigned allocnos that a given allocno prefers
96 some hard-registers in order to remove the move instruction
97 corresponding to the copy.
99 o *Cap*. If a pseudo-register does not live in a region but
100 lives in a nested region, IRA creates a special allocno called
101 a cap in the outer region. A region cap is also created for a
102 subregion cap.
104 o *Copy*. Allocnos can be connected by copies. Copies are used
105 to modify hard-register costs for allocnos during coloring.
106 Such modifications reflects a preference to use the same
107 hard-register for the allocnos connected by copies. Usually
108 copies are created for move insns (in this case it results in
109 register coalescing). But IRA also creates copies for operands
110 of an insn which should be assigned to the same hard-register
111 due to constraints in the machine description (it usually
112 results in removing a move generated in reload to satisfy
113 the constraints) and copies referring to the allocno which is
114 the output operand of an instruction and the allocno which is
115 an input operand dying in the instruction (creation of such
116 copies results in less register shuffling). IRA *does not*
117 create copies between the same register allocnos from different
118 regions because we use another technique for propagating
119 hard-register preference on the borders of regions.
121 Allocnos (including caps) for the upper region in the region tree
122 *accumulate* information important for coloring from allocnos with
123 the same pseudo-register from nested regions. This includes
124 hard-register and memory costs, conflicts with hard-registers,
125 allocno conflicts, allocno copies and more. *Thus, attributes for
126 allocnos in a region have the same values as if the region had no
127 subregions*. It means that attributes for allocnos in the
128 outermost region corresponding to the function have the same values
129 as though the allocation used only one region which is the entire
130 function. It also means that we can look at IRA work as if the
131 first IRA did allocation for all function then it improved the
132 allocation for loops then their subloops and so on.
134 IRA major passes are:
136 o Building IRA internal representation which consists of the
137 following subpasses:
139 * First, IRA builds regions and creates allocnos (file
140 ira-build.c) and initializes most of their attributes.
142 * Then IRA finds a cover class for each allocno and calculates
143 its initial (non-accumulated) cost of memory and each
144 hard-register of its cover class (file ira-cost.c).
146 * IRA creates live ranges of each allocno, calulates register
147 pressure for each cover class in each region, sets up
148 conflict hard registers for each allocno and info about calls
149 the allocno lives through (file ira-lives.c).
151 * IRA removes low register pressure loops from the regions
152 mostly to speed IRA up (file ira-build.c).
154 * IRA propagates accumulated allocno info from lower region
155 allocnos to corresponding upper region allocnos (file
156 ira-build.c).
158 * IRA creates all caps (file ira-build.c).
160 * Having live-ranges of allocnos and their cover classes, IRA
161 creates conflicting allocnos of the same cover class for each
162 allocno. Conflicting allocnos are stored as a bit vector or
163 array of pointers to the conflicting allocnos whatever is
164 more profitable (file ira-conflicts.c). At this point IRA
165 creates allocno copies.
167 o Coloring. Now IRA has all necessary info to start graph coloring
168 process. It is done in each region on top-down traverse of the
169 region tree (file ira-color.c). There are following subpasses:
171 * Optional aggressive coalescing of allocnos in the region.
173 * Putting allocnos onto the coloring stack. IRA uses Briggs
174 optimistic coloring which is a major improvement over
175 Chaitin's coloring. Therefore IRA does not spill allocnos at
176 this point. There is some freedom in the order of putting
177 allocnos on the stack which can affect the final result of
178 the allocation. IRA uses some heuristics to improve the order.
180 * Popping the allocnos from the stack and assigning them hard
181 registers. If IRA can not assign a hard register to an
182 allocno and the allocno is coalesced, IRA undoes the
183 coalescing and puts the uncoalesced allocnos onto the stack in
184 the hope that some such allocnos will get a hard register
185 separately. If IRA fails to assign hard register or memory
186 is more profitable for it, IRA spills the allocno. IRA
187 assigns the allocno the hard-register with minimal full
188 allocation cost which reflects the cost of usage of the
189 hard-register for the allocno and cost of usage of the
190 hard-register for allocnos conflicting with given allocno.
192 * After allono assigning in the region, IRA modifies the hard
193 register and memory costs for the corresponding allocnos in
194 the subregions to reflect the cost of possible loads, stores,
195 or moves on the border of the region and its subregions.
196 When default regional allocation algorithm is used
197 (-fira-algorithm=mixed), IRA just propagates the assignment
198 for allocnos if the register pressure in the region for the
199 corresponding cover class is less than number of available
200 hard registers for given cover class.
202 o Spill/restore code moving. When IRA performs an allocation
203 by traversing regions in top-down order, it does not know what
204 happens below in the region tree. Therefore, sometimes IRA
205 misses opportunities to perform a better allocation. A simple
206 optimization tries to improve allocation in a region having
207 subregions and containing in another region. If the
208 corresponding allocnos in the subregion are spilled, it spills
209 the region allocno if it is profitable. The optimization
210 implements a simple iterative algorithm performing profitable
211 transformations while they are still possible. It is fast in
212 practice, so there is no real need for a better time complexity
213 algorithm.
215 o Code change. After coloring, two allocnos representing the same
216 pseudo-register outside and inside a region respectively may be
217 assigned to different locations (hard-registers or memory). In
218 this case IRA creates and uses a new pseudo-register inside the
219 region and adds code to move allocno values on the region's
220 borders. This is done during top-down traversal of the regions
221 (file ira-emit.c). In some complicated cases IRA can create a
222 new allocno to move allocno values (e.g. when a swap of values
223 stored in two hard-registers is needed). At this stage, the
224 new allocno is marked as spilled. IRA still creates the
225 pseudo-register and the moves on the region borders even when
226 both allocnos were assigned to the same hard-register. If the
227 reload pass spills a pseudo-register for some reason, the
228 effect will be smaller because another allocno will still be in
229 the hard-register. In most cases, this is better then spilling
230 both allocnos. If reload does not change the allocation
231 for the two pseudo-registers, the trivial move will be removed
232 by post-reload optimizations. IRA does not generate moves for
233 allocnos assigned to the same hard register when the default
234 regional allocation algorithm is used and the register pressure
235 in the region for the corresponding allocno cover class is less
236 than number of available hard registers for given cover class.
237 IRA also does some optimizations to remove redundant stores and
238 to reduce code duplication on the region borders.
240 o Flattening internal representation. After changing code, IRA
241 transforms its internal representation for several regions into
242 one region representation (file ira-build.c). This process is
243 called IR flattening. Such process is more complicated than IR
244 rebuilding would be, but is much faster.
246 o After IR flattening, IRA tries to assign hard registers to all
247 spilled allocnos. This is impelemented by a simple and fast
248 priority coloring algorithm (see function
249 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
250 created during the code change pass can be assigned to hard
251 registers.
253 o At the end IRA calls the reload pass. The reload pass
254 communicates with IRA through several functions in file
255 ira-color.c to improve its decisions in
257 * sharing stack slots for the spilled pseudos based on IRA info
258 about pseudo-register conflicts.
260 * reassigning hard-registers to all spilled pseudos at the end
261 of each reload iteration.
263 * choosing a better hard-register to spill based on IRA info
264 about pseudo-register live ranges and the register pressure
265 in places where the pseudo-register lives.
267 IRA uses a lot of data representing the target processors. These
268 data are initilized in file ira.c.
270 If function has no loops (or the loops are ignored when
271 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
272 coloring (only instead of separate pass of coalescing, we use hard
273 register preferencing). In such case, IRA works much faster
274 because many things are not made (like IR flattening, the
275 spill/restore optimization, and the code change).
277 Literature is worth to read for better understanding the code:
279 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
280 Graph Coloring Register Allocation.
282 o David Callahan, Brian Koblenz. Register allocation via
283 hierarchical graph coloring.
285 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
286 Coloring Register Allocation: A Study of the Chaitin-Briggs and
287 Callahan-Koblenz Algorithms.
289 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
290 Register Allocation Based on Graph Fusion.
292 o Vladimir Makarov. The Integrated Register Allocator for GCC.
294 o Vladimir Makarov. The top-down register allocator for irregular
295 register file architectures.
300 #include "config.h"
301 #include "system.h"
302 #include "coretypes.h"
303 #include "tm.h"
304 #include "regs.h"
305 #include "rtl.h"
306 #include "tm_p.h"
307 #include "target.h"
308 #include "flags.h"
309 #include "obstack.h"
310 #include "bitmap.h"
311 #include "hard-reg-set.h"
312 #include "basic-block.h"
313 #include "expr.h"
314 #include "recog.h"
315 #include "params.h"
316 #include "timevar.h"
317 #include "tree-pass.h"
318 #include "output.h"
319 #include "reload.h"
320 #include "errors.h"
321 #include "integrate.h"
322 #include "df.h"
323 #include "ggc.h"
324 #include "ira-int.h"
327 /* A modified value of flag `-fira-verbose' used internally. */
328 int internal_flag_ira_verbose;
330 /* Dump file of the allocator if it is not NULL. */
331 FILE *ira_dump_file;
333 /* Pools for allocnos, copies, allocno live ranges. */
334 alloc_pool allocno_pool, copy_pool, allocno_live_range_pool;
336 /* The number of elements in the following array. */
337 int ira_spilled_reg_stack_slots_num;
339 /* The following array contains info about spilled pseudo-registers
340 stack slots used in current function so far. */
341 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
343 /* Correspondingly overall cost of the allocation, cost of the
344 allocnos assigned to hard-registers, cost of the allocnos assigned
345 to memory, cost of loads, stores and register move insns generated
346 for pseudo-register live range splitting (see ira-emit.c). */
347 int ira_overall_cost;
348 int ira_reg_cost, ira_mem_cost;
349 int ira_load_cost, ira_store_cost, ira_shuffle_cost;
350 int ira_move_loops_num, ira_additional_jumps_num;
352 /* Map: hard regs X modes -> set of hard registers for storing value
353 of given mode starting with given hard register. */
354 HARD_REG_SET ira_reg_mode_hard_regset[FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES];
356 /* The following two variables are array analogs of the macros
357 MEMORY_MOVE_COST and REGISTER_MOVE_COST. */
358 short int ira_memory_move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][2];
359 move_table *ira_register_move_cost[MAX_MACHINE_MODE];
361 /* Similar to may_move_in_cost but it is calculated in IRA instead of
362 regclass. Another difference is that we take only available hard
363 registers into account to figure out that one register class is a
364 subset of the another one. */
365 move_table *ira_may_move_in_cost[MAX_MACHINE_MODE];
367 /* Similar to may_move_out_cost but it is calculated in IRA instead of
368 regclass. Another difference is that we take only available hard
369 registers into account to figure out that one register class is a
370 subset of the another one. */
371 move_table *ira_may_move_out_cost[MAX_MACHINE_MODE];
373 /* Register class subset relation: TRUE if the first class is a subset
374 of the second one considering only hard registers available for the
375 allocation. */
376 int ira_class_subset_p[N_REG_CLASSES][N_REG_CLASSES];
378 /* Temporary hard reg set used for a different calculation. */
379 static HARD_REG_SET temp_hard_regset;
383 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
384 static void
385 setup_reg_mode_hard_regset (void)
387 int i, m, hard_regno;
389 for (m = 0; m < NUM_MACHINE_MODES; m++)
390 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
392 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
393 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
394 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
395 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
396 hard_regno + i);
402 /* Hard registers that can not be used for the register allocator for
403 all functions of the current compilation unit. */
404 static HARD_REG_SET no_unit_alloc_regs;
406 /* Array of the number of hard registers of given class which are
407 available for allocation. The order is defined by the
408 allocation order. */
409 short ira_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
411 /* The number of elements of the above array for given register
412 class. */
413 int ira_class_hard_regs_num[N_REG_CLASSES];
415 /* Index (in ira_class_hard_regs) for given register class and hard
416 register (in general case a hard register can belong to several
417 register classes). The index is negative for hard registers
418 unavailable for the allocation. */
419 short ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
421 /* The function sets up the three arrays declared above. */
422 static void
423 setup_class_hard_regs (void)
425 int cl, i, hard_regno, n;
426 HARD_REG_SET processed_hard_reg_set;
428 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
429 /* We could call ORDER_REGS_FOR_LOCAL_ALLOC here (it is usually
430 putting hard callee-used hard registers first). But our
431 heuristics work better. */
432 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
434 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
435 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
436 CLEAR_HARD_REG_SET (processed_hard_reg_set);
437 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
439 #ifdef REG_ALLOC_ORDER
440 hard_regno = reg_alloc_order[i];
441 #else
442 hard_regno = i;
443 #endif
444 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
445 continue;
446 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
447 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
448 ira_class_hard_reg_index[cl][hard_regno] = -1;
449 else
451 ira_class_hard_reg_index[cl][hard_regno] = n;
452 ira_class_hard_regs[cl][n++] = hard_regno;
455 ira_class_hard_regs_num[cl] = n;
459 /* Number of given class hard registers available for the register
460 allocation for given classes. */
461 int ira_available_class_regs[N_REG_CLASSES];
463 /* Set up IRA_AVAILABLE_CLASS_REGS. */
464 static void
465 setup_available_class_regs (void)
467 int i, j;
469 memset (ira_available_class_regs, 0, sizeof (ira_available_class_regs));
470 for (i = 0; i < N_REG_CLASSES; i++)
472 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
473 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
474 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
475 if (TEST_HARD_REG_BIT (temp_hard_regset, j))
476 ira_available_class_regs[i]++;
480 /* Set up global variables defining info about hard registers for the
481 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
482 that we can use the hard frame pointer for the allocation. */
483 static void
484 setup_alloc_regs (bool use_hard_frame_p)
486 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
487 if (! use_hard_frame_p)
488 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
489 setup_class_hard_regs ();
490 setup_available_class_regs ();
495 /* Set up IRA_MEMORY_MOVE_COST, IRA_REGISTER_MOVE_COST. */
496 static void
497 setup_class_subset_and_memory_move_costs (void)
499 int cl, cl2;
500 enum machine_mode mode;
501 HARD_REG_SET temp_hard_regset2;
503 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
504 ira_memory_move_cost[mode][NO_REGS][0]
505 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
506 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
508 if (cl != (int) NO_REGS)
509 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
511 ira_memory_move_cost[mode][cl][0] = MEMORY_MOVE_COST (mode, cl, 0);
512 ira_memory_move_cost[mode][cl][1] = MEMORY_MOVE_COST (mode, cl, 1);
513 /* Costs for NO_REGS are used in cost calculation on the
514 1st pass when the preferred register classes are not
515 known yet. In this case we take the best scenario. */
516 if (ira_memory_move_cost[mode][NO_REGS][0]
517 > ira_memory_move_cost[mode][cl][0])
518 ira_memory_move_cost[mode][NO_REGS][0]
519 = ira_memory_move_cost[mode][cl][0];
520 if (ira_memory_move_cost[mode][NO_REGS][1]
521 > ira_memory_move_cost[mode][cl][1])
522 ira_memory_move_cost[mode][NO_REGS][1]
523 = ira_memory_move_cost[mode][cl][1];
525 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
527 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
528 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
529 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
530 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
531 ira_class_subset_p[cl][cl2]
532 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
539 /* Define the following macro if allocation through malloc if
540 preferable. */
541 #define IRA_NO_OBSTACK
543 #ifndef IRA_NO_OBSTACK
544 /* Obstack used for storing all dynamic data (except bitmaps) of the
545 IRA. */
546 static struct obstack ira_obstack;
547 #endif
549 /* Obstack used for storing all bitmaps of the IRA. */
550 static struct bitmap_obstack ira_bitmap_obstack;
552 /* Allocate memory of size LEN for IRA data. */
553 void *
554 ira_allocate (size_t len)
556 void *res;
558 #ifndef IRA_NO_OBSTACK
559 res = obstack_alloc (&ira_obstack, len);
560 #else
561 res = xmalloc (len);
562 #endif
563 return res;
566 /* Reallocate memory PTR of size LEN for IRA data. */
567 void *
568 ira_reallocate (void *ptr, size_t len)
570 void *res;
572 #ifndef IRA_NO_OBSTACK
573 res = obstack_alloc (&ira_obstack, len);
574 #else
575 res = xrealloc (ptr, len);
576 #endif
577 return res;
580 /* Free memory ADDR allocated for IRA data. */
581 void
582 ira_free (void *addr ATTRIBUTE_UNUSED)
584 #ifndef IRA_NO_OBSTACK
585 /* do nothing */
586 #else
587 free (addr);
588 #endif
592 /* Allocate and returns bitmap for IRA. */
593 bitmap
594 ira_allocate_bitmap (void)
596 return BITMAP_ALLOC (&ira_bitmap_obstack);
599 /* Free bitmap B allocated for IRA. */
600 void
601 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
603 /* do nothing */
608 /* Output information about allocation of all allocnos (except for
609 caps) into file F. */
610 void
611 ira_print_disposition (FILE *f)
613 int i, n, max_regno;
614 ira_allocno_t a;
615 basic_block bb;
617 fprintf (f, "Disposition:");
618 max_regno = max_reg_num ();
619 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
620 for (a = ira_regno_allocno_map[i];
621 a != NULL;
622 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
624 if (n % 4 == 0)
625 fprintf (f, "\n");
626 n++;
627 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
628 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
629 fprintf (f, "b%-3d", bb->index);
630 else
631 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop->num);
632 if (ALLOCNO_HARD_REGNO (a) >= 0)
633 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
634 else
635 fprintf (f, " mem");
637 fprintf (f, "\n");
640 /* Outputs information about allocation of all allocnos into
641 stderr. */
642 void
643 ira_debug_disposition (void)
645 ira_print_disposition (stderr);
650 /* For each reg class, table listing all the classes contained in it
651 (excluding the class itself. Non-allocatable registers are
652 excluded from the consideration). */
653 static enum reg_class alloc_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
655 /* Initialize the table of subclasses of each reg class. */
656 static void
657 setup_reg_subclasses (void)
659 int i, j;
660 HARD_REG_SET temp_hard_regset2;
662 for (i = 0; i < N_REG_CLASSES; i++)
663 for (j = 0; j < N_REG_CLASSES; j++)
664 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
666 for (i = 0; i < N_REG_CLASSES; i++)
668 if (i == (int) NO_REGS)
669 continue;
671 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
672 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
673 if (hard_reg_set_empty_p (temp_hard_regset))
674 continue;
675 for (j = 0; j < N_REG_CLASSES; j++)
676 if (i != j)
678 enum reg_class *p;
680 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
681 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
682 if (! hard_reg_set_subset_p (temp_hard_regset,
683 temp_hard_regset2))
684 continue;
685 p = &alloc_reg_class_subclasses[j][0];
686 while (*p != LIM_REG_CLASSES) p++;
687 *p = (enum reg_class) i;
694 /* Number of cover classes. Cover classes is non-intersected register
695 classes containing all hard-registers available for the
696 allocation. */
697 int ira_reg_class_cover_size;
699 /* The array containing cover classes (see also comments for macro
700 IRA_COVER_CLASSES). Only first IRA_REG_CLASS_COVER_SIZE elements are
701 used for this. */
702 enum reg_class ira_reg_class_cover[N_REG_CLASSES];
704 /* The number of elements in the subsequent array. */
705 int ira_important_classes_num;
707 /* The array containing non-empty classes (including non-empty cover
708 classes) which are subclasses of cover classes. Such classes is
709 important for calculation of the hard register usage costs. */
710 enum reg_class ira_important_classes[N_REG_CLASSES];
712 /* The array containing indexes of important classes in the previous
713 array. The array elements are defined only for important
714 classes. */
715 int ira_important_class_nums[N_REG_CLASSES];
717 /* Check IRA_COVER_CLASSES and sets the four global variables defined
718 above. */
719 static void
720 setup_cover_and_important_classes (void)
722 int i, j;
723 enum reg_class cl;
724 const enum reg_class *classes;
725 HARD_REG_SET temp_hard_regset2;
727 classes = targetm.ira_cover_classes ();
728 ira_reg_class_cover_size = 0;
729 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
731 for (j = 0; j < i; j++)
732 if (reg_classes_intersect_p (cl, classes[j]))
733 gcc_unreachable ();
734 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
735 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
736 if (! hard_reg_set_empty_p (temp_hard_regset))
737 ira_reg_class_cover[ira_reg_class_cover_size++] = cl;
739 ira_important_classes_num = 0;
740 for (cl = 0; cl < N_REG_CLASSES; cl++)
742 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
743 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
744 if (! hard_reg_set_empty_p (temp_hard_regset))
745 for (j = 0; j < ira_reg_class_cover_size; j++)
747 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
748 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
749 COPY_HARD_REG_SET (temp_hard_regset2,
750 reg_class_contents[ira_reg_class_cover[j]]);
751 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
752 if (cl == ira_reg_class_cover[j]
753 || (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
754 && ! hard_reg_set_equal_p (temp_hard_regset,
755 temp_hard_regset2)))
757 ira_important_class_nums[cl] = ira_important_classes_num;
758 ira_important_classes[ira_important_classes_num++] = cl;
764 /* Map of all register classes to corresponding cover class containing
765 the given class. If given class is not a subset of a cover class,
766 we translate it into the cheapest cover class. */
767 enum reg_class ira_class_translate[N_REG_CLASSES];
769 /* Set up array IRA_CLASS_TRANSLATE. */
770 static void
771 setup_class_translate (void)
773 enum reg_class cl, cover_class, best_class, *cl_ptr;
774 enum machine_mode mode;
775 int i, cost, min_cost, best_cost;
777 for (cl = 0; cl < N_REG_CLASSES; cl++)
778 ira_class_translate[cl] = NO_REGS;
779 for (i = 0; i < ira_reg_class_cover_size; i++)
781 cover_class = ira_reg_class_cover[i];
782 for (cl_ptr = &alloc_reg_class_subclasses[cover_class][0];
783 (cl = *cl_ptr) != LIM_REG_CLASSES;
784 cl_ptr++)
786 if (ira_class_translate[cl] == NO_REGS)
787 ira_class_translate[cl] = cover_class;
788 #ifdef ENABLE_IRA_CHECKING
789 else
791 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
792 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
793 if (! hard_reg_set_empty_p (temp_hard_regset))
794 gcc_unreachable ();
796 #endif
798 ira_class_translate[cover_class] = cover_class;
800 /* For classes which are not fully covered by a cover class (in
801 other words covered by more one cover class), use the cheapest
802 cover class. */
803 for (cl = 0; cl < N_REG_CLASSES; cl++)
805 if (cl == NO_REGS || ira_class_translate[cl] != NO_REGS)
806 continue;
807 best_class = NO_REGS;
808 best_cost = INT_MAX;
809 for (i = 0; i < ira_reg_class_cover_size; i++)
811 cover_class = ira_reg_class_cover[i];
812 COPY_HARD_REG_SET (temp_hard_regset,
813 reg_class_contents[cover_class]);
814 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
815 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
816 if (! hard_reg_set_empty_p (temp_hard_regset))
818 min_cost = INT_MAX;
819 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
821 cost = (ira_memory_move_cost[mode][cl][0]
822 + ira_memory_move_cost[mode][cl][1]);
823 if (min_cost > cost)
824 min_cost = cost;
826 if (best_class == NO_REGS || best_cost > min_cost)
828 best_class = cover_class;
829 best_cost = min_cost;
833 ira_class_translate[cl] = best_class;
837 /* The biggest important reg_class inside of intersection of the two
838 reg_classes (that is calculated taking only hard registers
839 available for allocation into account). If the both reg_classes
840 contain no hard registers available for allocation, the value is
841 calculated by taking all hard-registers including fixed ones into
842 account. */
843 enum reg_class ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES];
845 /* The biggest important reg_class inside of union of the two
846 reg_classes (that is calculated taking only hard registers
847 available for allocation into account). If the both reg_classes
848 contain no hard registers available for allocation, the value is
849 calculated by taking all hard-registers including fixed ones into
850 account. In other words, the value is the corresponding
851 reg_class_subunion value. */
852 enum reg_class ira_reg_class_union[N_REG_CLASSES][N_REG_CLASSES];
854 /* Set up IRA_REG_CLASS_INTERSECT and IRA_REG_CLASS_UNION. */
855 static void
856 setup_reg_class_intersect_union (void)
858 int i, cl1, cl2, cl3;
859 HARD_REG_SET intersection_set, union_set, temp_set2;
861 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
863 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
865 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
866 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
867 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
868 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
869 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
870 if (hard_reg_set_empty_p (temp_hard_regset)
871 && hard_reg_set_empty_p (temp_set2))
873 for (i = 0;; i++)
875 cl3 = reg_class_subclasses[cl1][i];
876 if (cl3 == LIM_REG_CLASSES)
877 break;
878 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
879 cl3))
880 ira_reg_class_intersect[cl1][cl2] = cl3;
882 ira_reg_class_union[cl1][cl2] = reg_class_subunion[cl1][cl2];
883 continue;
885 ira_reg_class_union[cl1][cl2] = NO_REGS;
886 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
887 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
888 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
889 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
890 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
891 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
892 for (i = 0; i < ira_important_classes_num; i++)
894 cl3 = ira_important_classes[i];
895 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
896 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
897 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
899 COPY_HARD_REG_SET
900 (temp_set2,
901 reg_class_contents[(int)
902 ira_reg_class_intersect[cl1][cl2]]);
903 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
904 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
905 /* Ignore unavailable hard registers and prefer
906 smallest class for debugging purposes. */
907 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
908 && hard_reg_set_subset_p
909 (reg_class_contents[cl3],
910 reg_class_contents
911 [(int) ira_reg_class_intersect[cl1][cl2]])))
912 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
914 if (hard_reg_set_subset_p (temp_hard_regset, union_set))
916 COPY_HARD_REG_SET
917 (temp_set2,
918 reg_class_contents[(int) ira_reg_class_union[cl1][cl2]]);
919 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
920 if (ira_reg_class_union[cl1][cl2] == NO_REGS
921 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
923 && (! hard_reg_set_equal_p (temp_set2,
924 temp_hard_regset)
925 /* Ignore unavailable hard registers and
926 prefer smallest class for debugging
927 purposes. */
928 || hard_reg_set_subset_p
929 (reg_class_contents[cl3],
930 reg_class_contents
931 [(int) ira_reg_class_union[cl1][cl2]]))))
932 ira_reg_class_union[cl1][cl2] = (enum reg_class) cl3;
939 /* Output all cover classes and the translation map into file F. */
940 static void
941 print_class_cover (FILE *f)
943 static const char *const reg_class_names[] = REG_CLASS_NAMES;
944 int i;
946 fprintf (f, "Class cover:\n");
947 for (i = 0; i < ira_reg_class_cover_size; i++)
948 fprintf (f, " %s", reg_class_names[ira_reg_class_cover[i]]);
949 fprintf (f, "\nClass translation:\n");
950 for (i = 0; i < N_REG_CLASSES; i++)
951 fprintf (f, " %s -> %s\n", reg_class_names[i],
952 reg_class_names[ira_class_translate[i]]);
955 /* Output all cover classes and the translation map into
956 stderr. */
957 void
958 ira_debug_class_cover (void)
960 print_class_cover (stderr);
963 /* Set up different arrays concerning class subsets, cover and
964 important classes. */
965 static void
966 find_reg_class_closure (void)
968 setup_reg_subclasses ();
969 if (targetm.ira_cover_classes)
971 setup_cover_and_important_classes ();
972 setup_class_translate ();
973 setup_reg_class_intersect_union ();
979 /* Map: register class x machine mode -> number of hard registers of
980 given class needed to store value of given mode. If the number is
981 different, the size will be negative. */
982 int ira_reg_class_nregs[N_REG_CLASSES][MAX_MACHINE_MODE];
984 /* Maximal value of the previous array elements. */
985 int ira_max_nregs;
987 /* Form IRA_REG_CLASS_NREGS map. */
988 static void
989 setup_reg_class_nregs (void)
991 int m;
992 enum reg_class cl;
994 ira_max_nregs = -1;
995 for (cl = 0; cl < N_REG_CLASSES; cl++)
996 for (m = 0; m < MAX_MACHINE_MODE; m++)
998 ira_reg_class_nregs[cl][m] = CLASS_MAX_NREGS (cl, m);
999 if (ira_max_nregs < ira_reg_class_nregs[cl][m])
1000 ira_max_nregs = ira_reg_class_nregs[cl][m];
1006 /* Array whose values are hard regset of hard registers available for
1007 the allocation of given register class whose HARD_REGNO_MODE_OK
1008 values for given mode are zero. */
1009 HARD_REG_SET prohibited_class_mode_regs[N_REG_CLASSES][NUM_MACHINE_MODES];
1011 /* Set up PROHIBITED_CLASS_MODE_REGS. */
1012 static void
1013 setup_prohibited_class_mode_regs (void)
1015 int i, j, k, hard_regno;
1016 enum reg_class cl;
1018 for (i = 0; i < ira_reg_class_cover_size; i++)
1020 cl = ira_reg_class_cover[i];
1021 for (j = 0; j < NUM_MACHINE_MODES; j++)
1023 CLEAR_HARD_REG_SET (prohibited_class_mode_regs[cl][j]);
1024 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1026 hard_regno = ira_class_hard_regs[cl][k];
1027 if (! HARD_REGNO_MODE_OK (hard_regno, j))
1028 SET_HARD_REG_BIT (prohibited_class_mode_regs[cl][j],
1029 hard_regno);
1037 /* Allocate and initialize IRA_REGISTER_MOVE_COST,
1038 IRA_MAY_MOVE_IN_COST, and IRA_MAY_MOVE_OUT_COST for MODE if it is
1039 not done yet. */
1040 void
1041 ira_init_register_move_cost (enum machine_mode mode)
1043 int cl1, cl2;
1045 ira_assert (ira_register_move_cost[mode] == NULL
1046 && ira_may_move_in_cost[mode] == NULL
1047 && ira_may_move_out_cost[mode] == NULL);
1048 if (move_cost[mode] == NULL)
1049 init_move_cost (mode);
1050 ira_register_move_cost[mode] = move_cost[mode];
1051 /* Don't use ira_allocate because the tables exist out of scope of a
1052 IRA call. */
1053 ira_may_move_in_cost[mode]
1054 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1055 memcpy (ira_may_move_in_cost[mode], may_move_in_cost[mode],
1056 sizeof (move_table) * N_REG_CLASSES);
1057 ira_may_move_out_cost[mode]
1058 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1059 memcpy (ira_may_move_out_cost[mode], may_move_out_cost[mode],
1060 sizeof (move_table) * N_REG_CLASSES);
1061 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1063 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1065 if (ira_class_subset_p[cl1][cl2])
1066 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1067 if (ira_class_subset_p[cl2][cl1])
1068 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1075 /* This is called once during compiler work. It sets up
1076 different arrays whose values don't depend on the compiled
1077 function. */
1078 void
1079 ira_init_once (void)
1081 enum machine_mode mode;
1083 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1085 ira_register_move_cost[mode] = NULL;
1086 ira_may_move_in_cost[mode] = NULL;
1087 ira_may_move_out_cost[mode] = NULL;
1089 ira_init_costs_once ();
1092 /* Free ira_register_move_cost, ira_may_move_in_cost, and
1093 ira_may_move_out_cost for each mode. */
1094 static void
1095 free_register_move_costs (void)
1097 enum machine_mode mode;
1099 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1101 if (ira_may_move_in_cost[mode] != NULL)
1102 free (ira_may_move_in_cost[mode]);
1103 if (ira_may_move_out_cost[mode] != NULL)
1104 free (ira_may_move_out_cost[mode]);
1105 ira_register_move_cost[mode] = NULL;
1106 ira_may_move_in_cost[mode] = NULL;
1107 ira_may_move_out_cost[mode] = NULL;
1111 /* This is called every time when register related information is
1112 changed. */
1113 void
1114 ira_init (void)
1116 free_register_move_costs ();
1117 setup_reg_mode_hard_regset ();
1118 setup_alloc_regs (flag_omit_frame_pointer != 0);
1119 setup_class_subset_and_memory_move_costs ();
1120 find_reg_class_closure ();
1121 setup_reg_class_nregs ();
1122 setup_prohibited_class_mode_regs ();
1123 ira_init_costs ();
1126 /* Function called once at the end of compiler work. */
1127 void
1128 ira_finish_once (void)
1130 ira_finish_costs_once ();
1131 free_register_move_costs ();
1136 /* Array whose values are hard regset of hard registers for which
1137 move of the hard register in given mode into itself is
1138 prohibited. */
1139 HARD_REG_SET ira_prohibited_mode_move_regs[NUM_MACHINE_MODES];
1141 /* Flag of that the above array has been initialized. */
1142 static bool ira_prohibited_mode_move_regs_initialized_p = false;
1144 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1145 static void
1146 setup_prohibited_mode_move_regs (void)
1148 int i, j;
1149 rtx test_reg1, test_reg2, move_pat, move_insn;
1151 if (ira_prohibited_mode_move_regs_initialized_p)
1152 return;
1153 ira_prohibited_mode_move_regs_initialized_p = true;
1154 test_reg1 = gen_rtx_REG (VOIDmode, 0);
1155 test_reg2 = gen_rtx_REG (VOIDmode, 0);
1156 move_pat = gen_rtx_SET (VOIDmode, test_reg1, test_reg2);
1157 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, 0, move_pat, -1, 0);
1158 for (i = 0; i < NUM_MACHINE_MODES; i++)
1160 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1161 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1163 if (! HARD_REGNO_MODE_OK (j, i))
1164 continue;
1165 SET_REGNO (test_reg1, j);
1166 PUT_MODE (test_reg1, i);
1167 SET_REGNO (test_reg2, j);
1168 PUT_MODE (test_reg2, i);
1169 INSN_CODE (move_insn) = -1;
1170 recog_memoized (move_insn);
1171 if (INSN_CODE (move_insn) < 0)
1172 continue;
1173 extract_insn (move_insn);
1174 if (! constrain_operands (1))
1175 continue;
1176 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1183 /* Function specific hard registers that can not be used for the
1184 register allocation. */
1185 HARD_REG_SET ira_no_alloc_regs;
1187 /* Return TRUE if *LOC contains an asm. */
1188 static int
1189 insn_contains_asm_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
1191 if ( !*loc)
1192 return FALSE;
1193 if (GET_CODE (*loc) == ASM_OPERANDS)
1194 return TRUE;
1195 return FALSE;
1199 /* Return TRUE if INSN contains an ASM. */
1200 static bool
1201 insn_contains_asm (rtx insn)
1203 return for_each_rtx (&insn, insn_contains_asm_1, NULL);
1206 /* Set up regs_asm_clobbered. */
1207 static void
1208 compute_regs_asm_clobbered (char *regs_asm_clobbered)
1210 basic_block bb;
1212 memset (regs_asm_clobbered, 0, sizeof (char) * FIRST_PSEUDO_REGISTER);
1214 FOR_EACH_BB (bb)
1216 rtx insn;
1217 FOR_BB_INSNS_REVERSE (bb, insn)
1219 struct df_ref **def_rec;
1221 if (insn_contains_asm (insn))
1222 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
1224 struct df_ref *def = *def_rec;
1225 unsigned int dregno = DF_REF_REGNO (def);
1226 if (dregno < FIRST_PSEUDO_REGISTER)
1228 unsigned int i;
1229 enum machine_mode mode = GET_MODE (DF_REF_REAL_REG (def));
1230 unsigned int end = dregno
1231 + hard_regno_nregs[dregno][mode] - 1;
1233 for (i = dregno; i <= end; ++i)
1234 regs_asm_clobbered[i] = 1;
1242 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and REGS_EVER_LIVE. */
1243 static void
1244 setup_eliminable_regset (void)
1246 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an
1247 asm. Unlike regs_ever_live, elements of this array corresponding
1248 to eliminable regs (like the frame pointer) are set if an asm
1249 sets them. */
1250 char *regs_asm_clobbered
1251 = (char *) alloca (FIRST_PSEUDO_REGISTER * sizeof (char));
1252 #ifdef ELIMINABLE_REGS
1253 int i;
1254 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
1255 #endif
1256 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
1257 sp for alloca. So we can't eliminate the frame pointer in that
1258 case. At some point, we should improve this by emitting the
1259 sp-adjusting insns for this case. */
1260 int need_fp
1261 = (! flag_omit_frame_pointer
1262 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
1263 || crtl->accesses_prior_frames
1264 || crtl->stack_realign_needed
1265 || FRAME_POINTER_REQUIRED);
1267 frame_pointer_needed = need_fp;
1269 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
1270 CLEAR_HARD_REG_SET (eliminable_regset);
1272 compute_regs_asm_clobbered (regs_asm_clobbered);
1273 /* Build the regset of all eliminable registers and show we can't
1274 use those that we already know won't be eliminated. */
1275 #ifdef ELIMINABLE_REGS
1276 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
1278 bool cannot_elim
1279 = (! CAN_ELIMINATE (eliminables[i].from, eliminables[i].to)
1280 || (eliminables[i].to == STACK_POINTER_REGNUM && need_fp));
1282 if (! regs_asm_clobbered[eliminables[i].from])
1284 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
1286 if (cannot_elim)
1287 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
1289 else if (cannot_elim)
1290 error ("%s cannot be used in asm here",
1291 reg_names[eliminables[i].from]);
1292 else
1293 df_set_regs_ever_live (eliminables[i].from, true);
1295 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1296 if (! regs_asm_clobbered[HARD_FRAME_POINTER_REGNUM])
1298 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
1299 if (need_fp)
1300 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
1302 else if (need_fp)
1303 error ("%s cannot be used in asm here",
1304 reg_names[HARD_FRAME_POINTER_REGNUM]);
1305 else
1306 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
1307 #endif
1309 #else
1310 if (! regs_asm_clobbered[FRAME_POINTER_REGNUM])
1312 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
1313 if (need_fp)
1314 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
1316 else if (need_fp)
1317 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
1318 else
1319 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
1320 #endif
1325 /* The length of the following two arrays. */
1326 int ira_reg_equiv_len;
1328 /* The element value is TRUE if the corresponding regno value is
1329 invariant. */
1330 bool *ira_reg_equiv_invariant_p;
1332 /* The element value is equiv constant of given pseudo-register or
1333 NULL_RTX. */
1334 rtx *ira_reg_equiv_const;
1336 /* Set up the two arrays declared above. */
1337 static void
1338 find_reg_equiv_invariant_const (void)
1340 int i;
1341 bool invariant_p;
1342 rtx list, insn, note, constant, x;
1344 for (i = FIRST_PSEUDO_REGISTER; i < reg_equiv_init_size; i++)
1346 constant = NULL_RTX;
1347 invariant_p = false;
1348 for (list = reg_equiv_init[i]; list != NULL_RTX; list = XEXP (list, 1))
1350 insn = XEXP (list, 0);
1351 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
1353 if (note == NULL_RTX)
1354 continue;
1356 x = XEXP (note, 0);
1358 if (! function_invariant_p (x)
1359 || ! flag_pic
1360 /* A function invariant is often CONSTANT_P but may
1361 include a register. We promise to only pass CONSTANT_P
1362 objects to LEGITIMATE_PIC_OPERAND_P. */
1363 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
1365 /* It can happen that a REG_EQUIV note contains a MEM
1366 that is not a legitimate memory operand. As later
1367 stages of the reload assume that all addresses found
1368 in the reg_equiv_* arrays were originally legitimate,
1369 we ignore such REG_EQUIV notes. */
1370 if (memory_operand (x, VOIDmode))
1371 invariant_p = MEM_READONLY_P (x);
1372 else if (function_invariant_p (x))
1374 if (GET_CODE (x) == PLUS
1375 || x == frame_pointer_rtx || x == arg_pointer_rtx)
1376 invariant_p = true;
1377 else
1378 constant = x;
1382 ira_reg_equiv_invariant_p[i] = invariant_p;
1383 ira_reg_equiv_const[i] = constant;
1389 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
1390 the allocation found by IRA. */
1391 static void
1392 setup_reg_renumber (void)
1394 int regno, hard_regno;
1395 ira_allocno_t a;
1396 ira_allocno_iterator ai;
1398 caller_save_needed = 0;
1399 FOR_EACH_ALLOCNO (a, ai)
1401 /* There are no caps at this point. */
1402 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
1403 if (! ALLOCNO_ASSIGNED_P (a))
1404 /* It can happen if A is not referenced but partially anticipated
1405 somewhere in a region. */
1406 ALLOCNO_ASSIGNED_P (a) = true;
1407 ira_free_allocno_updated_costs (a);
1408 hard_regno = ALLOCNO_HARD_REGNO (a);
1409 regno = (int) REGNO (ALLOCNO_REG (a));
1410 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
1411 if (hard_regno >= 0 && ALLOCNO_CALLS_CROSSED_NUM (a) != 0
1412 && ! ira_hard_reg_not_in_set_p (hard_regno, ALLOCNO_MODE (a),
1413 call_used_reg_set))
1415 ira_assert (!optimize || flag_caller_saves
1416 || regno >= ira_reg_equiv_len
1417 || ira_reg_equiv_const[regno]
1418 || ira_reg_equiv_invariant_p[regno]);
1419 caller_save_needed = 1;
1424 /* Set up allocno assignment flags for further allocation
1425 improvements. */
1426 static void
1427 setup_allocno_assignment_flags (void)
1429 int hard_regno;
1430 ira_allocno_t a;
1431 ira_allocno_iterator ai;
1433 FOR_EACH_ALLOCNO (a, ai)
1435 if (! ALLOCNO_ASSIGNED_P (a))
1436 /* It can happen if A is not referenced but partially anticipated
1437 somewhere in a region. */
1438 ira_free_allocno_updated_costs (a);
1439 hard_regno = ALLOCNO_HARD_REGNO (a);
1440 /* Don't assign hard registers to allocnos which are destination
1441 of removed store at the end of loop. It has no sense to keep
1442 the same value in different hard registers. It is also
1443 impossible to assign hard registers correctly to such
1444 allocnos because the cost info and info about intersected
1445 calls are incorrect for them. */
1446 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
1447 || ALLOCNO_MEM_OPTIMIZED_DEST_P (a)
1448 || (ALLOCNO_MEMORY_COST (a)
1449 - ALLOCNO_COVER_CLASS_COST (a)) < 0);
1450 ira_assert (hard_regno < 0
1451 || ! ira_hard_reg_not_in_set_p (hard_regno, ALLOCNO_MODE (a),
1452 reg_class_contents
1453 [ALLOCNO_COVER_CLASS (a)]));
1457 /* Evaluate overall allocation cost and the costs for using hard
1458 registers and memory for allocnos. */
1459 static void
1460 calculate_allocation_cost (void)
1462 int hard_regno, cost;
1463 ira_allocno_t a;
1464 ira_allocno_iterator ai;
1466 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
1467 FOR_EACH_ALLOCNO (a, ai)
1469 hard_regno = ALLOCNO_HARD_REGNO (a);
1470 ira_assert (hard_regno < 0
1471 || ! ira_hard_reg_not_in_set_p
1472 (hard_regno, ALLOCNO_MODE (a),
1473 reg_class_contents[ALLOCNO_COVER_CLASS (a)]));
1474 if (hard_regno < 0)
1476 cost = ALLOCNO_MEMORY_COST (a);
1477 ira_mem_cost += cost;
1479 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
1481 cost = (ALLOCNO_HARD_REG_COSTS (a)
1482 [ira_class_hard_reg_index
1483 [ALLOCNO_COVER_CLASS (a)][hard_regno]]);
1484 ira_reg_cost += cost;
1486 else
1488 cost = ALLOCNO_COVER_CLASS_COST (a);
1489 ira_reg_cost += cost;
1491 ira_overall_cost += cost;
1494 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
1496 fprintf (ira_dump_file,
1497 "+++Costs: overall %d, reg %d, mem %d, ld %d, st %d, move %d\n",
1498 ira_overall_cost, ira_reg_cost, ira_mem_cost,
1499 ira_load_cost, ira_store_cost, ira_shuffle_cost);
1500 fprintf (ira_dump_file, "+++ move loops %d, new jumps %d\n",
1501 ira_move_loops_num, ira_additional_jumps_num);
1506 #ifdef ENABLE_IRA_CHECKING
1507 /* Check the correctness of the allocation. We do need this because
1508 of complicated code to transform more one region internal
1509 representation into one region representation. */
1510 static void
1511 check_allocation (void)
1513 ira_allocno_t a, conflict_a;
1514 int hard_regno, conflict_hard_regno, nregs, conflict_nregs;
1515 ira_allocno_conflict_iterator aci;
1516 ira_allocno_iterator ai;
1518 FOR_EACH_ALLOCNO (a, ai)
1520 if (ALLOCNO_CAP_MEMBER (a) != NULL
1521 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
1522 continue;
1523 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
1524 FOR_EACH_ALLOCNO_CONFLICT (a, conflict_a, aci)
1525 if ((conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a)) >= 0)
1527 conflict_nregs
1528 = (hard_regno_nregs
1529 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
1530 if ((conflict_hard_regno <= hard_regno
1531 && hard_regno < conflict_hard_regno + conflict_nregs)
1532 || (hard_regno <= conflict_hard_regno
1533 && conflict_hard_regno < hard_regno + nregs))
1535 fprintf (stderr, "bad allocation for %d and %d\n",
1536 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
1537 gcc_unreachable ();
1542 #endif
1544 /* Fix values of array REG_EQUIV_INIT after live range splitting done
1545 by IRA. */
1546 static void
1547 fix_reg_equiv_init (void)
1549 int max_regno = max_reg_num ();
1550 int i, new_regno;
1551 rtx x, prev, next, insn, set;
1553 if (reg_equiv_init_size < max_regno)
1555 reg_equiv_init
1556 = (rtx *) ggc_realloc (reg_equiv_init, max_regno * sizeof (rtx));
1557 while (reg_equiv_init_size < max_regno)
1558 reg_equiv_init[reg_equiv_init_size++] = NULL_RTX;
1559 for (i = FIRST_PSEUDO_REGISTER; i < reg_equiv_init_size; i++)
1560 for (prev = NULL_RTX, x = reg_equiv_init[i]; x != NULL_RTX; x = next)
1562 next = XEXP (x, 1);
1563 insn = XEXP (x, 0);
1564 set = single_set (insn);
1565 ira_assert (set != NULL_RTX
1566 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
1567 if (REG_P (SET_DEST (set))
1568 && ((int) REGNO (SET_DEST (set)) == i
1569 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
1570 new_regno = REGNO (SET_DEST (set));
1571 else if (REG_P (SET_SRC (set))
1572 && ((int) REGNO (SET_SRC (set)) == i
1573 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
1574 new_regno = REGNO (SET_SRC (set));
1575 else
1576 gcc_unreachable ();
1577 if (new_regno == i)
1578 prev = x;
1579 else
1581 if (prev == NULL_RTX)
1582 reg_equiv_init[i] = next;
1583 else
1584 XEXP (prev, 1) = next;
1585 XEXP (x, 1) = reg_equiv_init[new_regno];
1586 reg_equiv_init[new_regno] = x;
1592 #ifdef ENABLE_IRA_CHECKING
1593 /* Print redundant memory-memory copies. */
1594 static void
1595 print_redundant_copies (void)
1597 int hard_regno;
1598 ira_allocno_t a;
1599 ira_copy_t cp, next_cp;
1600 ira_allocno_iterator ai;
1602 FOR_EACH_ALLOCNO (a, ai)
1604 if (ALLOCNO_CAP_MEMBER (a) != NULL)
1605 /* It is a cap. */
1606 continue;
1607 hard_regno = ALLOCNO_HARD_REGNO (a);
1608 if (hard_regno >= 0)
1609 continue;
1610 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
1611 if (cp->first == a)
1612 next_cp = cp->next_first_allocno_copy;
1613 else
1615 next_cp = cp->next_second_allocno_copy;
1616 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
1617 && cp->insn != NULL_RTX
1618 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
1619 fprintf (ira_dump_file,
1620 " Redundant move from %d(freq %d):%d\n",
1621 INSN_UID (cp->insn), cp->freq, hard_regno);
1625 #endif
1627 /* Setup preferred and alternative classes for new pseudo-registers
1628 created by IRA starting with START. */
1629 static void
1630 setup_preferred_alternate_classes_for_new_pseudos (int start)
1632 int i, old_regno;
1633 int max_regno = max_reg_num ();
1635 for (i = start; i < max_regno; i++)
1637 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
1638 ira_assert (i != old_regno);
1639 setup_reg_classes (i, reg_preferred_class (old_regno),
1640 reg_alternate_class (old_regno));
1641 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1642 fprintf (ira_dump_file,
1643 " New r%d: setting preferred %s, alternative %s\n",
1644 i, reg_class_names[reg_preferred_class (old_regno)],
1645 reg_class_names[reg_alternate_class (old_regno)]);
1651 /* Regional allocation can create new pseudo-registers. This function
1652 expands some arrays for pseudo-registers. */
1653 static void
1654 expand_reg_info (int old_size)
1656 int i;
1657 int size = max_reg_num ();
1659 resize_reg_info ();
1660 for (i = old_size; i < size; i++)
1662 reg_renumber[i] = -1;
1663 setup_reg_classes (i, GENERAL_REGS, ALL_REGS);
1669 /* All natural loops. */
1670 struct loops ira_loops;
1672 /* This is the main entry of IRA. */
1673 static void
1674 ira (FILE *f)
1676 int overall_cost_before, allocated_reg_info_size;
1677 bool loops_p;
1678 int max_regno_before_ira, ira_max_point_before_emit;
1679 int rebuild_p;
1680 int saved_flag_ira_algorithm;
1681 basic_block bb;
1683 timevar_push (TV_IRA);
1685 if (flag_ira_verbose < 10)
1687 internal_flag_ira_verbose = flag_ira_verbose;
1688 ira_dump_file = f;
1690 else
1692 internal_flag_ira_verbose = flag_ira_verbose - 10;
1693 ira_dump_file = stderr;
1696 setup_prohibited_mode_move_regs ();
1698 df_note_add_problem ();
1700 if (optimize == 1)
1702 df_live_add_problem ();
1703 df_live_set_all_dirty ();
1705 #ifdef ENABLE_CHECKING
1706 df->changeable_flags |= DF_VERIFY_SCHEDULED;
1707 #endif
1708 df_analyze ();
1709 df_clear_flags (DF_NO_INSN_RESCAN);
1710 regstat_init_n_sets_and_refs ();
1711 regstat_compute_ri ();
1713 /* If we are not optimizing, then this is the only place before
1714 register allocation where dataflow is done. And that is needed
1715 to generate these warnings. */
1716 if (warn_clobbered)
1717 generate_setjmp_warnings ();
1719 rebuild_p = update_equiv_regs ();
1721 #ifndef IRA_NO_OBSTACK
1722 gcc_obstack_init (&ira_obstack);
1723 #endif
1724 bitmap_obstack_initialize (&ira_bitmap_obstack);
1725 if (optimize)
1727 max_regno = max_reg_num ();
1728 ira_reg_equiv_len = max_regno;
1729 ira_reg_equiv_invariant_p
1730 = (bool *) ira_allocate (max_regno * sizeof (bool));
1731 memset (ira_reg_equiv_invariant_p, 0, max_regno * sizeof (bool));
1732 ira_reg_equiv_const = (rtx *) ira_allocate (max_regno * sizeof (rtx));
1733 memset (ira_reg_equiv_const, 0, max_regno * sizeof (rtx));
1734 find_reg_equiv_invariant_const ();
1735 if (rebuild_p)
1737 timevar_push (TV_JUMP);
1738 rebuild_jump_labels (get_insns ());
1739 purge_all_dead_edges ();
1740 timevar_pop (TV_JUMP);
1744 max_regno_before_ira = allocated_reg_info_size = max_reg_num ();
1745 allocate_reg_info ();
1746 setup_eliminable_regset ();
1748 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
1749 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
1750 ira_move_loops_num = ira_additional_jumps_num = 0;
1752 ira_assert (current_loops == NULL);
1753 flow_loops_find (&ira_loops);
1754 current_loops = &ira_loops;
1755 saved_flag_ira_algorithm = flag_ira_algorithm;
1756 if (optimize && number_of_loops () > (unsigned) IRA_MAX_LOOPS_NUM)
1757 flag_ira_algorithm = IRA_ALGORITHM_CB;
1759 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
1760 fprintf (ira_dump_file, "Building IRA IR\n");
1761 loops_p = ira_build (optimize
1762 && (flag_ira_algorithm == IRA_ALGORITHM_REGIONAL
1763 || flag_ira_algorithm == IRA_ALGORITHM_MIXED));
1764 if (optimize)
1765 ira_color ();
1766 else
1767 ira_fast_allocation ();
1769 ira_max_point_before_emit = ira_max_point;
1771 ira_emit (loops_p);
1773 if (optimize)
1775 max_regno = max_reg_num ();
1777 if (! loops_p)
1778 ira_initiate_assign ();
1779 else
1781 expand_reg_info (allocated_reg_info_size);
1782 setup_preferred_alternate_classes_for_new_pseudos
1783 (allocated_reg_info_size);
1784 allocated_reg_info_size = max_regno;
1786 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
1787 fprintf (ira_dump_file, "Flattening IR\n");
1788 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
1789 /* New insns were generated: add notes and recalculate live
1790 info. */
1791 df_analyze ();
1793 flow_loops_find (&ira_loops);
1794 current_loops = &ira_loops;
1796 setup_allocno_assignment_flags ();
1797 ira_initiate_assign ();
1798 ira_reassign_conflict_allocnos (max_regno);
1802 setup_reg_renumber ();
1804 calculate_allocation_cost ();
1806 #ifdef ENABLE_IRA_CHECKING
1807 if (optimize)
1808 check_allocation ();
1809 #endif
1811 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1812 max_regno = max_reg_num ();
1814 /* Determine if the current function is a leaf before running IRA
1815 since this can impact optimizations done by the prologue and
1816 epilogue thus changing register elimination offsets. */
1817 current_function_is_leaf = leaf_function_p ();
1819 /* And the reg_equiv_memory_loc array. */
1820 VEC_safe_grow (rtx, gc, reg_equiv_memory_loc_vec, max_regno);
1821 memset (VEC_address (rtx, reg_equiv_memory_loc_vec), 0,
1822 sizeof (rtx) * max_regno);
1823 reg_equiv_memory_loc = VEC_address (rtx, reg_equiv_memory_loc_vec);
1825 if (max_regno != max_regno_before_ira)
1827 regstat_free_n_sets_and_refs ();
1828 regstat_free_ri ();
1829 regstat_init_n_sets_and_refs ();
1830 regstat_compute_ri ();
1833 allocate_initial_values (reg_equiv_memory_loc);
1835 overall_cost_before = ira_overall_cost;
1836 if (optimize)
1838 fix_reg_equiv_init ();
1840 #ifdef ENABLE_IRA_CHECKING
1841 print_redundant_copies ();
1842 #endif
1844 ira_spilled_reg_stack_slots_num = 0;
1845 ira_spilled_reg_stack_slots
1846 = ((struct ira_spilled_reg_stack_slot *)
1847 ira_allocate (max_regno
1848 * sizeof (struct ira_spilled_reg_stack_slot)));
1849 memset (ira_spilled_reg_stack_slots, 0,
1850 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
1853 timevar_pop (TV_IRA);
1855 timevar_push (TV_RELOAD);
1856 df_set_flags (DF_NO_INSN_RESCAN);
1857 build_insn_chain ();
1859 reload_completed = !reload (get_insns (), optimize > 0);
1861 timevar_pop (TV_RELOAD);
1863 timevar_push (TV_IRA);
1865 if (optimize)
1867 ira_free (ira_spilled_reg_stack_slots);
1869 ira_finish_assign ();
1872 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
1873 && overall_cost_before != ira_overall_cost)
1874 fprintf (ira_dump_file, "+++Overall after reload %d\n", ira_overall_cost);
1875 ira_destroy ();
1877 flow_loops_free (&ira_loops);
1878 free_dominance_info (CDI_DOMINATORS);
1879 FOR_ALL_BB (bb)
1880 bb->loop_father = NULL;
1881 current_loops = NULL;
1883 flag_ira_algorithm = saved_flag_ira_algorithm;
1885 regstat_free_ri ();
1886 regstat_free_n_sets_and_refs ();
1888 if (optimize)
1890 cleanup_cfg (CLEANUP_EXPENSIVE);
1892 ira_free (ira_reg_equiv_invariant_p);
1893 ira_free (ira_reg_equiv_const);
1896 bitmap_obstack_release (&ira_bitmap_obstack);
1897 #ifndef IRA_NO_OBSTACK
1898 obstack_free (&ira_obstack, NULL);
1899 #endif
1901 /* The code after the reload has changed so much that at this point
1902 we might as well just rescan everything. Not that
1903 df_rescan_all_insns is not going to help here because it does not
1904 touch the artificial uses and defs. */
1905 df_finish_pass (true);
1906 if (optimize > 1)
1907 df_live_add_problem ();
1908 df_scan_alloc (NULL);
1909 df_scan_blocks ();
1911 if (optimize)
1912 df_analyze ();
1914 timevar_pop (TV_IRA);
1919 static bool
1920 gate_ira (void)
1922 return flag_ira != 0;
1925 /* Run the integrated register allocator. */
1926 static unsigned int
1927 rest_of_handle_ira (void)
1929 ira (dump_file);
1930 return 0;
1933 struct rtl_opt_pass pass_ira =
1936 RTL_PASS,
1937 "ira", /* name */
1938 gate_ira, /* gate */
1939 rest_of_handle_ira, /* execute */
1940 NULL, /* sub */
1941 NULL, /* next */
1942 0, /* static_pass_number */
1943 0, /* tv_id */
1944 0, /* properties_required */
1945 0, /* properties_provided */
1946 0, /* properties_destroyed */
1947 0, /* todo_flags_start */
1948 TODO_dump_func |
1949 TODO_ggc_collect /* todo_flags_finish */