* gcc.dg/compat/struct-layout-1_generate.c (dg_options): New. Moved
[official-gcc.git] / gcc / expr.c
blob32c8d01fe7f40d5bf82179a1f66d29964e03c017
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "machmode.h"
27 #include "real.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "flags.h"
31 #include "regs.h"
32 #include "hard-reg-set.h"
33 #include "except.h"
34 #include "function.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
38 #include "expr.h"
39 #include "optabs.h"
40 #include "libfuncs.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "output.h"
44 #include "typeclass.h"
45 #include "toplev.h"
46 #include "ggc.h"
47 #include "langhooks.h"
48 #include "intl.h"
49 #include "tm_p.h"
50 #include "tree-iterator.h"
51 #include "tree-pass.h"
52 #include "tree-flow.h"
53 #include "target.h"
54 #include "timevar.h"
55 #include "df.h"
56 #include "diagnostic.h"
58 /* Decide whether a function's arguments should be processed
59 from first to last or from last to first.
61 They should if the stack and args grow in opposite directions, but
62 only if we have push insns. */
64 #ifdef PUSH_ROUNDING
66 #ifndef PUSH_ARGS_REVERSED
67 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
68 #define PUSH_ARGS_REVERSED /* If it's last to first. */
69 #endif
70 #endif
72 #endif
74 #ifndef STACK_PUSH_CODE
75 #ifdef STACK_GROWS_DOWNWARD
76 #define STACK_PUSH_CODE PRE_DEC
77 #else
78 #define STACK_PUSH_CODE PRE_INC
79 #endif
80 #endif
83 /* If this is nonzero, we do not bother generating VOLATILE
84 around volatile memory references, and we are willing to
85 output indirect addresses. If cse is to follow, we reject
86 indirect addresses so a useful potential cse is generated;
87 if it is used only once, instruction combination will produce
88 the same indirect address eventually. */
89 int cse_not_expected;
91 /* This structure is used by move_by_pieces to describe the move to
92 be performed. */
93 struct move_by_pieces
95 rtx to;
96 rtx to_addr;
97 int autinc_to;
98 int explicit_inc_to;
99 rtx from;
100 rtx from_addr;
101 int autinc_from;
102 int explicit_inc_from;
103 unsigned HOST_WIDE_INT len;
104 HOST_WIDE_INT offset;
105 int reverse;
108 /* This structure is used by store_by_pieces to describe the clear to
109 be performed. */
111 struct store_by_pieces
113 rtx to;
114 rtx to_addr;
115 int autinc_to;
116 int explicit_inc_to;
117 unsigned HOST_WIDE_INT len;
118 HOST_WIDE_INT offset;
119 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
120 void *constfundata;
121 int reverse;
124 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
125 unsigned int,
126 unsigned int);
127 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
128 struct move_by_pieces *);
129 static bool block_move_libcall_safe_for_call_parm (void);
130 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT);
131 static tree emit_block_move_libcall_fn (int);
132 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
133 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
134 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
135 static void store_by_pieces_1 (struct store_by_pieces *, unsigned int);
136 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
137 struct store_by_pieces *);
138 static tree clear_storage_libcall_fn (int);
139 static rtx compress_float_constant (rtx, rtx);
140 static rtx get_subtarget (rtx);
141 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
142 HOST_WIDE_INT, enum machine_mode,
143 tree, tree, int, alias_set_type);
144 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
145 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
146 tree, tree, alias_set_type, bool);
148 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
150 static int is_aligning_offset (const_tree, const_tree);
151 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
152 enum expand_modifier);
153 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
154 static rtx do_store_flag (tree, rtx, enum machine_mode, int);
155 #ifdef PUSH_ROUNDING
156 static void emit_single_push_insn (enum machine_mode, rtx, tree);
157 #endif
158 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
159 static rtx const_vector_from_tree (tree);
160 static void write_complex_part (rtx, rtx, bool);
162 /* Record for each mode whether we can move a register directly to or
163 from an object of that mode in memory. If we can't, we won't try
164 to use that mode directly when accessing a field of that mode. */
166 static char direct_load[NUM_MACHINE_MODES];
167 static char direct_store[NUM_MACHINE_MODES];
169 /* Record for each mode whether we can float-extend from memory. */
171 static bool float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
173 /* This macro is used to determine whether move_by_pieces should be called
174 to perform a structure copy. */
175 #ifndef MOVE_BY_PIECES_P
176 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
177 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
178 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
179 #endif
181 /* This macro is used to determine whether clear_by_pieces should be
182 called to clear storage. */
183 #ifndef CLEAR_BY_PIECES_P
184 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
185 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
186 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
187 #endif
189 /* This macro is used to determine whether store_by_pieces should be
190 called to "memset" storage with byte values other than zero. */
191 #ifndef SET_BY_PIECES_P
192 #define SET_BY_PIECES_P(SIZE, ALIGN) \
193 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
194 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
195 #endif
197 /* This macro is used to determine whether store_by_pieces should be
198 called to "memcpy" storage when the source is a constant string. */
199 #ifndef STORE_BY_PIECES_P
200 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
201 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
202 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
203 #endif
205 /* This array records the insn_code of insns to perform block moves. */
206 enum insn_code movmem_optab[NUM_MACHINE_MODES];
208 /* This array records the insn_code of insns to perform block sets. */
209 enum insn_code setmem_optab[NUM_MACHINE_MODES];
211 /* These arrays record the insn_code of three different kinds of insns
212 to perform block compares. */
213 enum insn_code cmpstr_optab[NUM_MACHINE_MODES];
214 enum insn_code cmpstrn_optab[NUM_MACHINE_MODES];
215 enum insn_code cmpmem_optab[NUM_MACHINE_MODES];
217 /* Synchronization primitives. */
218 enum insn_code sync_add_optab[NUM_MACHINE_MODES];
219 enum insn_code sync_sub_optab[NUM_MACHINE_MODES];
220 enum insn_code sync_ior_optab[NUM_MACHINE_MODES];
221 enum insn_code sync_and_optab[NUM_MACHINE_MODES];
222 enum insn_code sync_xor_optab[NUM_MACHINE_MODES];
223 enum insn_code sync_nand_optab[NUM_MACHINE_MODES];
224 enum insn_code sync_old_add_optab[NUM_MACHINE_MODES];
225 enum insn_code sync_old_sub_optab[NUM_MACHINE_MODES];
226 enum insn_code sync_old_ior_optab[NUM_MACHINE_MODES];
227 enum insn_code sync_old_and_optab[NUM_MACHINE_MODES];
228 enum insn_code sync_old_xor_optab[NUM_MACHINE_MODES];
229 enum insn_code sync_old_nand_optab[NUM_MACHINE_MODES];
230 enum insn_code sync_new_add_optab[NUM_MACHINE_MODES];
231 enum insn_code sync_new_sub_optab[NUM_MACHINE_MODES];
232 enum insn_code sync_new_ior_optab[NUM_MACHINE_MODES];
233 enum insn_code sync_new_and_optab[NUM_MACHINE_MODES];
234 enum insn_code sync_new_xor_optab[NUM_MACHINE_MODES];
235 enum insn_code sync_new_nand_optab[NUM_MACHINE_MODES];
236 enum insn_code sync_compare_and_swap[NUM_MACHINE_MODES];
237 enum insn_code sync_compare_and_swap_cc[NUM_MACHINE_MODES];
238 enum insn_code sync_lock_test_and_set[NUM_MACHINE_MODES];
239 enum insn_code sync_lock_release[NUM_MACHINE_MODES];
241 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
243 #ifndef SLOW_UNALIGNED_ACCESS
244 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
245 #endif
247 /* This is run to set up which modes can be used
248 directly in memory and to initialize the block move optab. It is run
249 at the beginning of compilation and when the target is reinitialized. */
251 void
252 init_expr_target (void)
254 rtx insn, pat;
255 enum machine_mode mode;
256 int num_clobbers;
257 rtx mem, mem1;
258 rtx reg;
260 /* Try indexing by frame ptr and try by stack ptr.
261 It is known that on the Convex the stack ptr isn't a valid index.
262 With luck, one or the other is valid on any machine. */
263 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
264 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
266 /* A scratch register we can modify in-place below to avoid
267 useless RTL allocations. */
268 reg = gen_rtx_REG (VOIDmode, -1);
270 insn = rtx_alloc (INSN);
271 pat = gen_rtx_SET (0, NULL_RTX, NULL_RTX);
272 PATTERN (insn) = pat;
274 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
275 mode = (enum machine_mode) ((int) mode + 1))
277 int regno;
279 direct_load[(int) mode] = direct_store[(int) mode] = 0;
280 PUT_MODE (mem, mode);
281 PUT_MODE (mem1, mode);
282 PUT_MODE (reg, mode);
284 /* See if there is some register that can be used in this mode and
285 directly loaded or stored from memory. */
287 if (mode != VOIDmode && mode != BLKmode)
288 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
289 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
290 regno++)
292 if (! HARD_REGNO_MODE_OK (regno, mode))
293 continue;
295 SET_REGNO (reg, regno);
297 SET_SRC (pat) = mem;
298 SET_DEST (pat) = reg;
299 if (recog (pat, insn, &num_clobbers) >= 0)
300 direct_load[(int) mode] = 1;
302 SET_SRC (pat) = mem1;
303 SET_DEST (pat) = reg;
304 if (recog (pat, insn, &num_clobbers) >= 0)
305 direct_load[(int) mode] = 1;
307 SET_SRC (pat) = reg;
308 SET_DEST (pat) = mem;
309 if (recog (pat, insn, &num_clobbers) >= 0)
310 direct_store[(int) mode] = 1;
312 SET_SRC (pat) = reg;
313 SET_DEST (pat) = mem1;
314 if (recog (pat, insn, &num_clobbers) >= 0)
315 direct_store[(int) mode] = 1;
319 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
321 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
322 mode = GET_MODE_WIDER_MODE (mode))
324 enum machine_mode srcmode;
325 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
326 srcmode = GET_MODE_WIDER_MODE (srcmode))
328 enum insn_code ic;
330 ic = can_extend_p (mode, srcmode, 0);
331 if (ic == CODE_FOR_nothing)
332 continue;
334 PUT_MODE (mem, srcmode);
336 if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
337 float_extend_from_mem[mode][srcmode] = true;
342 /* This is run at the start of compiling a function. */
344 void
345 init_expr (void)
347 memset (&crtl->expr, 0, sizeof (crtl->expr));
350 /* Copy data from FROM to TO, where the machine modes are not the same.
351 Both modes may be integer, or both may be floating, or both may be
352 fixed-point.
353 UNSIGNEDP should be nonzero if FROM is an unsigned type.
354 This causes zero-extension instead of sign-extension. */
356 void
357 convert_move (rtx to, rtx from, int unsignedp)
359 enum machine_mode to_mode = GET_MODE (to);
360 enum machine_mode from_mode = GET_MODE (from);
361 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
362 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
363 enum insn_code code;
364 rtx libcall;
366 /* rtx code for making an equivalent value. */
367 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
368 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
371 gcc_assert (to_real == from_real);
372 gcc_assert (to_mode != BLKmode);
373 gcc_assert (from_mode != BLKmode);
375 /* If the source and destination are already the same, then there's
376 nothing to do. */
377 if (to == from)
378 return;
380 /* If FROM is a SUBREG that indicates that we have already done at least
381 the required extension, strip it. We don't handle such SUBREGs as
382 TO here. */
384 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
385 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
386 >= GET_MODE_SIZE (to_mode))
387 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
388 from = gen_lowpart (to_mode, from), from_mode = to_mode;
390 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
392 if (to_mode == from_mode
393 || (from_mode == VOIDmode && CONSTANT_P (from)))
395 emit_move_insn (to, from);
396 return;
399 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
401 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
403 if (VECTOR_MODE_P (to_mode))
404 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
405 else
406 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
408 emit_move_insn (to, from);
409 return;
412 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
414 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
415 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
416 return;
419 if (to_real)
421 rtx value, insns;
422 convert_optab tab;
424 gcc_assert ((GET_MODE_PRECISION (from_mode)
425 != GET_MODE_PRECISION (to_mode))
426 || (DECIMAL_FLOAT_MODE_P (from_mode)
427 != DECIMAL_FLOAT_MODE_P (to_mode)));
429 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
430 /* Conversion between decimal float and binary float, same size. */
431 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
432 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
433 tab = sext_optab;
434 else
435 tab = trunc_optab;
437 /* Try converting directly if the insn is supported. */
439 code = convert_optab_handler (tab, to_mode, from_mode)->insn_code;
440 if (code != CODE_FOR_nothing)
442 emit_unop_insn (code, to, from,
443 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
444 return;
447 /* Otherwise use a libcall. */
448 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
450 /* Is this conversion implemented yet? */
451 gcc_assert (libcall);
453 start_sequence ();
454 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
455 1, from, from_mode);
456 insns = get_insns ();
457 end_sequence ();
458 emit_libcall_block (insns, to, value,
459 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
460 from)
461 : gen_rtx_FLOAT_EXTEND (to_mode, from));
462 return;
465 /* Handle pointer conversion. */ /* SPEE 900220. */
466 /* Targets are expected to provide conversion insns between PxImode and
467 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
468 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
470 enum machine_mode full_mode
471 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
473 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)->insn_code
474 != CODE_FOR_nothing);
476 if (full_mode != from_mode)
477 from = convert_to_mode (full_mode, from, unsignedp);
478 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode)->insn_code,
479 to, from, UNKNOWN);
480 return;
482 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
484 rtx new_from;
485 enum machine_mode full_mode
486 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
488 gcc_assert (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code
489 != CODE_FOR_nothing);
491 if (to_mode == full_mode)
493 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code,
494 to, from, UNKNOWN);
495 return;
498 new_from = gen_reg_rtx (full_mode);
499 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code,
500 new_from, from, UNKNOWN);
502 /* else proceed to integer conversions below. */
503 from_mode = full_mode;
504 from = new_from;
507 /* Make sure both are fixed-point modes or both are not. */
508 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
509 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
510 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
512 /* If we widen from_mode to to_mode and they are in the same class,
513 we won't saturate the result.
514 Otherwise, always saturate the result to play safe. */
515 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
516 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
517 expand_fixed_convert (to, from, 0, 0);
518 else
519 expand_fixed_convert (to, from, 0, 1);
520 return;
523 /* Now both modes are integers. */
525 /* Handle expanding beyond a word. */
526 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
527 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
529 rtx insns;
530 rtx lowpart;
531 rtx fill_value;
532 rtx lowfrom;
533 int i;
534 enum machine_mode lowpart_mode;
535 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
537 /* Try converting directly if the insn is supported. */
538 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
539 != CODE_FOR_nothing)
541 /* If FROM is a SUBREG, put it into a register. Do this
542 so that we always generate the same set of insns for
543 better cse'ing; if an intermediate assignment occurred,
544 we won't be doing the operation directly on the SUBREG. */
545 if (optimize > 0 && GET_CODE (from) == SUBREG)
546 from = force_reg (from_mode, from);
547 emit_unop_insn (code, to, from, equiv_code);
548 return;
550 /* Next, try converting via full word. */
551 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
552 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
553 != CODE_FOR_nothing))
555 rtx word_to = gen_reg_rtx (word_mode);
556 if (REG_P (to))
558 if (reg_overlap_mentioned_p (to, from))
559 from = force_reg (from_mode, from);
560 emit_clobber (to);
562 convert_move (word_to, from, unsignedp);
563 emit_unop_insn (code, to, word_to, equiv_code);
564 return;
567 /* No special multiword conversion insn; do it by hand. */
568 start_sequence ();
570 /* Since we will turn this into a no conflict block, we must ensure
571 that the source does not overlap the target. */
573 if (reg_overlap_mentioned_p (to, from))
574 from = force_reg (from_mode, from);
576 /* Get a copy of FROM widened to a word, if necessary. */
577 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
578 lowpart_mode = word_mode;
579 else
580 lowpart_mode = from_mode;
582 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
584 lowpart = gen_lowpart (lowpart_mode, to);
585 emit_move_insn (lowpart, lowfrom);
587 /* Compute the value to put in each remaining word. */
588 if (unsignedp)
589 fill_value = const0_rtx;
590 else
592 #ifdef HAVE_slt
593 if (HAVE_slt
594 && insn_data[(int) CODE_FOR_slt].operand[0].mode == word_mode
595 && STORE_FLAG_VALUE == -1)
597 emit_cmp_insn (lowfrom, const0_rtx, NE, NULL_RTX,
598 lowpart_mode, 0);
599 fill_value = gen_reg_rtx (word_mode);
600 emit_insn (gen_slt (fill_value));
602 else
603 #endif
605 fill_value
606 = expand_shift (RSHIFT_EXPR, lowpart_mode, lowfrom,
607 size_int (GET_MODE_BITSIZE (lowpart_mode) - 1),
608 NULL_RTX, 0);
609 fill_value = convert_to_mode (word_mode, fill_value, 1);
613 /* Fill the remaining words. */
614 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
616 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
617 rtx subword = operand_subword (to, index, 1, to_mode);
619 gcc_assert (subword);
621 if (fill_value != subword)
622 emit_move_insn (subword, fill_value);
625 insns = get_insns ();
626 end_sequence ();
628 emit_insn (insns);
629 return;
632 /* Truncating multi-word to a word or less. */
633 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
634 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
636 if (!((MEM_P (from)
637 && ! MEM_VOLATILE_P (from)
638 && direct_load[(int) to_mode]
639 && ! mode_dependent_address_p (XEXP (from, 0)))
640 || REG_P (from)
641 || GET_CODE (from) == SUBREG))
642 from = force_reg (from_mode, from);
643 convert_move (to, gen_lowpart (word_mode, from), 0);
644 return;
647 /* Now follow all the conversions between integers
648 no more than a word long. */
650 /* For truncation, usually we can just refer to FROM in a narrower mode. */
651 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
652 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
653 GET_MODE_BITSIZE (from_mode)))
655 if (!((MEM_P (from)
656 && ! MEM_VOLATILE_P (from)
657 && direct_load[(int) to_mode]
658 && ! mode_dependent_address_p (XEXP (from, 0)))
659 || REG_P (from)
660 || GET_CODE (from) == SUBREG))
661 from = force_reg (from_mode, from);
662 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
663 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
664 from = copy_to_reg (from);
665 emit_move_insn (to, gen_lowpart (to_mode, from));
666 return;
669 /* Handle extension. */
670 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
672 /* Convert directly if that works. */
673 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
674 != CODE_FOR_nothing)
676 emit_unop_insn (code, to, from, equiv_code);
677 return;
679 else
681 enum machine_mode intermediate;
682 rtx tmp;
683 tree shift_amount;
685 /* Search for a mode to convert via. */
686 for (intermediate = from_mode; intermediate != VOIDmode;
687 intermediate = GET_MODE_WIDER_MODE (intermediate))
688 if (((can_extend_p (to_mode, intermediate, unsignedp)
689 != CODE_FOR_nothing)
690 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
691 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
692 GET_MODE_BITSIZE (intermediate))))
693 && (can_extend_p (intermediate, from_mode, unsignedp)
694 != CODE_FOR_nothing))
696 convert_move (to, convert_to_mode (intermediate, from,
697 unsignedp), unsignedp);
698 return;
701 /* No suitable intermediate mode.
702 Generate what we need with shifts. */
703 shift_amount = build_int_cst (NULL_TREE,
704 GET_MODE_BITSIZE (to_mode)
705 - GET_MODE_BITSIZE (from_mode));
706 from = gen_lowpart (to_mode, force_reg (from_mode, from));
707 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
708 to, unsignedp);
709 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
710 to, unsignedp);
711 if (tmp != to)
712 emit_move_insn (to, tmp);
713 return;
717 /* Support special truncate insns for certain modes. */
718 if (convert_optab_handler (trunc_optab, to_mode, from_mode)->insn_code != CODE_FOR_nothing)
720 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode)->insn_code,
721 to, from, UNKNOWN);
722 return;
725 /* Handle truncation of volatile memrefs, and so on;
726 the things that couldn't be truncated directly,
727 and for which there was no special instruction.
729 ??? Code above formerly short-circuited this, for most integer
730 mode pairs, with a force_reg in from_mode followed by a recursive
731 call to this routine. Appears always to have been wrong. */
732 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
734 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
735 emit_move_insn (to, temp);
736 return;
739 /* Mode combination is not recognized. */
740 gcc_unreachable ();
743 /* Return an rtx for a value that would result
744 from converting X to mode MODE.
745 Both X and MODE may be floating, or both integer.
746 UNSIGNEDP is nonzero if X is an unsigned value.
747 This can be done by referring to a part of X in place
748 or by copying to a new temporary with conversion. */
751 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
753 return convert_modes (mode, VOIDmode, x, unsignedp);
756 /* Return an rtx for a value that would result
757 from converting X from mode OLDMODE to mode MODE.
758 Both modes may be floating, or both integer.
759 UNSIGNEDP is nonzero if X is an unsigned value.
761 This can be done by referring to a part of X in place
762 or by copying to a new temporary with conversion.
764 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
767 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
769 rtx temp;
771 /* If FROM is a SUBREG that indicates that we have already done at least
772 the required extension, strip it. */
774 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
775 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
776 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
777 x = gen_lowpart (mode, x);
779 if (GET_MODE (x) != VOIDmode)
780 oldmode = GET_MODE (x);
782 if (mode == oldmode)
783 return x;
785 /* There is one case that we must handle specially: If we are converting
786 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
787 we are to interpret the constant as unsigned, gen_lowpart will do
788 the wrong if the constant appears negative. What we want to do is
789 make the high-order word of the constant zero, not all ones. */
791 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
792 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
793 && GET_CODE (x) == CONST_INT && INTVAL (x) < 0)
795 HOST_WIDE_INT val = INTVAL (x);
797 if (oldmode != VOIDmode
798 && HOST_BITS_PER_WIDE_INT > GET_MODE_BITSIZE (oldmode))
800 int width = GET_MODE_BITSIZE (oldmode);
802 /* We need to zero extend VAL. */
803 val &= ((HOST_WIDE_INT) 1 << width) - 1;
806 return immed_double_const (val, (HOST_WIDE_INT) 0, mode);
809 /* We can do this with a gen_lowpart if both desired and current modes
810 are integer, and this is either a constant integer, a register, or a
811 non-volatile MEM. Except for the constant case where MODE is no
812 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
814 if ((GET_CODE (x) == CONST_INT
815 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
816 || (GET_MODE_CLASS (mode) == MODE_INT
817 && GET_MODE_CLASS (oldmode) == MODE_INT
818 && (GET_CODE (x) == CONST_DOUBLE
819 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
820 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
821 && direct_load[(int) mode])
822 || (REG_P (x)
823 && (! HARD_REGISTER_P (x)
824 || HARD_REGNO_MODE_OK (REGNO (x), mode))
825 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
826 GET_MODE_BITSIZE (GET_MODE (x)))))))))
828 /* ?? If we don't know OLDMODE, we have to assume here that
829 X does not need sign- or zero-extension. This may not be
830 the case, but it's the best we can do. */
831 if (GET_CODE (x) == CONST_INT && oldmode != VOIDmode
832 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
834 HOST_WIDE_INT val = INTVAL (x);
835 int width = GET_MODE_BITSIZE (oldmode);
837 /* We must sign or zero-extend in this case. Start by
838 zero-extending, then sign extend if we need to. */
839 val &= ((HOST_WIDE_INT) 1 << width) - 1;
840 if (! unsignedp
841 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
842 val |= (HOST_WIDE_INT) (-1) << width;
844 return gen_int_mode (val, mode);
847 return gen_lowpart (mode, x);
850 /* Converting from integer constant into mode is always equivalent to an
851 subreg operation. */
852 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
854 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
855 return simplify_gen_subreg (mode, x, oldmode, 0);
858 temp = gen_reg_rtx (mode);
859 convert_move (temp, x, unsignedp);
860 return temp;
863 /* STORE_MAX_PIECES is the number of bytes at a time that we can
864 store efficiently. Due to internal GCC limitations, this is
865 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
866 for an immediate constant. */
868 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
870 /* Determine whether the LEN bytes can be moved by using several move
871 instructions. Return nonzero if a call to move_by_pieces should
872 succeed. */
875 can_move_by_pieces (unsigned HOST_WIDE_INT len,
876 unsigned int align ATTRIBUTE_UNUSED)
878 return MOVE_BY_PIECES_P (len, align);
881 /* Generate several move instructions to copy LEN bytes from block FROM to
882 block TO. (These are MEM rtx's with BLKmode).
884 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
885 used to push FROM to the stack.
887 ALIGN is maximum stack alignment we can assume.
889 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
890 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
891 stpcpy. */
894 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
895 unsigned int align, int endp)
897 struct move_by_pieces data;
898 rtx to_addr, from_addr = XEXP (from, 0);
899 unsigned int max_size = MOVE_MAX_PIECES + 1;
900 enum machine_mode mode = VOIDmode, tmode;
901 enum insn_code icode;
903 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
905 data.offset = 0;
906 data.from_addr = from_addr;
907 if (to)
909 to_addr = XEXP (to, 0);
910 data.to = to;
911 data.autinc_to
912 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
913 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
914 data.reverse
915 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
917 else
919 to_addr = NULL_RTX;
920 data.to = NULL_RTX;
921 data.autinc_to = 1;
922 #ifdef STACK_GROWS_DOWNWARD
923 data.reverse = 1;
924 #else
925 data.reverse = 0;
926 #endif
928 data.to_addr = to_addr;
929 data.from = from;
930 data.autinc_from
931 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
932 || GET_CODE (from_addr) == POST_INC
933 || GET_CODE (from_addr) == POST_DEC);
935 data.explicit_inc_from = 0;
936 data.explicit_inc_to = 0;
937 if (data.reverse) data.offset = len;
938 data.len = len;
940 /* If copying requires more than two move insns,
941 copy addresses to registers (to make displacements shorter)
942 and use post-increment if available. */
943 if (!(data.autinc_from && data.autinc_to)
944 && move_by_pieces_ninsns (len, align, max_size) > 2)
946 /* Find the mode of the largest move... */
947 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
948 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
949 if (GET_MODE_SIZE (tmode) < max_size)
950 mode = tmode;
952 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
954 data.from_addr = copy_addr_to_reg (plus_constant (from_addr, len));
955 data.autinc_from = 1;
956 data.explicit_inc_from = -1;
958 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
960 data.from_addr = copy_addr_to_reg (from_addr);
961 data.autinc_from = 1;
962 data.explicit_inc_from = 1;
964 if (!data.autinc_from && CONSTANT_P (from_addr))
965 data.from_addr = copy_addr_to_reg (from_addr);
966 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
968 data.to_addr = copy_addr_to_reg (plus_constant (to_addr, len));
969 data.autinc_to = 1;
970 data.explicit_inc_to = -1;
972 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
974 data.to_addr = copy_addr_to_reg (to_addr);
975 data.autinc_to = 1;
976 data.explicit_inc_to = 1;
978 if (!data.autinc_to && CONSTANT_P (to_addr))
979 data.to_addr = copy_addr_to_reg (to_addr);
982 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
983 if (align >= GET_MODE_ALIGNMENT (tmode))
984 align = GET_MODE_ALIGNMENT (tmode);
985 else
987 enum machine_mode xmode;
989 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
990 tmode != VOIDmode;
991 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
992 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
993 || SLOW_UNALIGNED_ACCESS (tmode, align))
994 break;
996 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
999 /* First move what we can in the largest integer mode, then go to
1000 successively smaller modes. */
1002 while (max_size > 1)
1004 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1005 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1006 if (GET_MODE_SIZE (tmode) < max_size)
1007 mode = tmode;
1009 if (mode == VOIDmode)
1010 break;
1012 icode = optab_handler (mov_optab, mode)->insn_code;
1013 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1014 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
1016 max_size = GET_MODE_SIZE (mode);
1019 /* The code above should have handled everything. */
1020 gcc_assert (!data.len);
1022 if (endp)
1024 rtx to1;
1026 gcc_assert (!data.reverse);
1027 if (data.autinc_to)
1029 if (endp == 2)
1031 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
1032 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
1033 else
1034 data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
1035 -1));
1037 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
1038 data.offset);
1040 else
1042 if (endp == 2)
1043 --data.offset;
1044 to1 = adjust_address (data.to, QImode, data.offset);
1046 return to1;
1048 else
1049 return data.to;
1052 /* Return number of insns required to move L bytes by pieces.
1053 ALIGN (in bits) is maximum alignment we can assume. */
1055 static unsigned HOST_WIDE_INT
1056 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1057 unsigned int max_size)
1059 unsigned HOST_WIDE_INT n_insns = 0;
1060 enum machine_mode tmode;
1062 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
1063 if (align >= GET_MODE_ALIGNMENT (tmode))
1064 align = GET_MODE_ALIGNMENT (tmode);
1065 else
1067 enum machine_mode tmode, xmode;
1069 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
1070 tmode != VOIDmode;
1071 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
1072 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
1073 || SLOW_UNALIGNED_ACCESS (tmode, align))
1074 break;
1076 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
1079 while (max_size > 1)
1081 enum machine_mode mode = VOIDmode;
1082 enum insn_code icode;
1084 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1085 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1086 if (GET_MODE_SIZE (tmode) < max_size)
1087 mode = tmode;
1089 if (mode == VOIDmode)
1090 break;
1092 icode = optab_handler (mov_optab, mode)->insn_code;
1093 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1094 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1096 max_size = GET_MODE_SIZE (mode);
1099 gcc_assert (!l);
1100 return n_insns;
1103 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1104 with move instructions for mode MODE. GENFUN is the gen_... function
1105 to make a move insn for that mode. DATA has all the other info. */
1107 static void
1108 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1109 struct move_by_pieces *data)
1111 unsigned int size = GET_MODE_SIZE (mode);
1112 rtx to1 = NULL_RTX, from1;
1114 while (data->len >= size)
1116 if (data->reverse)
1117 data->offset -= size;
1119 if (data->to)
1121 if (data->autinc_to)
1122 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1123 data->offset);
1124 else
1125 to1 = adjust_address (data->to, mode, data->offset);
1128 if (data->autinc_from)
1129 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1130 data->offset);
1131 else
1132 from1 = adjust_address (data->from, mode, data->offset);
1134 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1135 emit_insn (gen_add2_insn (data->to_addr,
1136 GEN_INT (-(HOST_WIDE_INT)size)));
1137 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1138 emit_insn (gen_add2_insn (data->from_addr,
1139 GEN_INT (-(HOST_WIDE_INT)size)));
1141 if (data->to)
1142 emit_insn ((*genfun) (to1, from1));
1143 else
1145 #ifdef PUSH_ROUNDING
1146 emit_single_push_insn (mode, from1, NULL);
1147 #else
1148 gcc_unreachable ();
1149 #endif
1152 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1153 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1154 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1155 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1157 if (! data->reverse)
1158 data->offset += size;
1160 data->len -= size;
1164 /* Emit code to move a block Y to a block X. This may be done with
1165 string-move instructions, with multiple scalar move instructions,
1166 or with a library call.
1168 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1169 SIZE is an rtx that says how long they are.
1170 ALIGN is the maximum alignment we can assume they have.
1171 METHOD describes what kind of copy this is, and what mechanisms may be used.
1173 Return the address of the new block, if memcpy is called and returns it,
1174 0 otherwise. */
1177 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1178 unsigned int expected_align, HOST_WIDE_INT expected_size)
1180 bool may_use_call;
1181 rtx retval = 0;
1182 unsigned int align;
1184 switch (method)
1186 case BLOCK_OP_NORMAL:
1187 case BLOCK_OP_TAILCALL:
1188 may_use_call = true;
1189 break;
1191 case BLOCK_OP_CALL_PARM:
1192 may_use_call = block_move_libcall_safe_for_call_parm ();
1194 /* Make inhibit_defer_pop nonzero around the library call
1195 to force it to pop the arguments right away. */
1196 NO_DEFER_POP;
1197 break;
1199 case BLOCK_OP_NO_LIBCALL:
1200 may_use_call = false;
1201 break;
1203 default:
1204 gcc_unreachable ();
1207 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1209 gcc_assert (MEM_P (x));
1210 gcc_assert (MEM_P (y));
1211 gcc_assert (size);
1213 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1214 block copy is more efficient for other large modes, e.g. DCmode. */
1215 x = adjust_address (x, BLKmode, 0);
1216 y = adjust_address (y, BLKmode, 0);
1218 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1219 can be incorrect is coming from __builtin_memcpy. */
1220 if (GET_CODE (size) == CONST_INT)
1222 if (INTVAL (size) == 0)
1223 return 0;
1225 x = shallow_copy_rtx (x);
1226 y = shallow_copy_rtx (y);
1227 set_mem_size (x, size);
1228 set_mem_size (y, size);
1231 if (GET_CODE (size) == CONST_INT && MOVE_BY_PIECES_P (INTVAL (size), align))
1232 move_by_pieces (x, y, INTVAL (size), align, 0);
1233 else if (emit_block_move_via_movmem (x, y, size, align,
1234 expected_align, expected_size))
1236 else if (may_use_call)
1237 retval = emit_block_move_via_libcall (x, y, size,
1238 method == BLOCK_OP_TAILCALL);
1239 else
1240 emit_block_move_via_loop (x, y, size, align);
1242 if (method == BLOCK_OP_CALL_PARM)
1243 OK_DEFER_POP;
1245 return retval;
1249 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1251 return emit_block_move_hints (x, y, size, method, 0, -1);
1254 /* A subroutine of emit_block_move. Returns true if calling the
1255 block move libcall will not clobber any parameters which may have
1256 already been placed on the stack. */
1258 static bool
1259 block_move_libcall_safe_for_call_parm (void)
1261 #if defined (REG_PARM_STACK_SPACE)
1262 tree fn;
1263 #endif
1265 /* If arguments are pushed on the stack, then they're safe. */
1266 if (PUSH_ARGS)
1267 return true;
1269 /* If registers go on the stack anyway, any argument is sure to clobber
1270 an outgoing argument. */
1271 #if defined (REG_PARM_STACK_SPACE)
1272 fn = emit_block_move_libcall_fn (false);
1273 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1274 && REG_PARM_STACK_SPACE (fn) != 0)
1275 return false;
1276 #endif
1278 /* If any argument goes in memory, then it might clobber an outgoing
1279 argument. */
1281 CUMULATIVE_ARGS args_so_far;
1282 tree fn, arg;
1284 fn = emit_block_move_libcall_fn (false);
1285 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
1287 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1288 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1290 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1291 rtx tmp = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
1292 if (!tmp || !REG_P (tmp))
1293 return false;
1294 if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
1295 return false;
1296 FUNCTION_ARG_ADVANCE (args_so_far, mode, NULL_TREE, 1);
1299 return true;
1302 /* A subroutine of emit_block_move. Expand a movmem pattern;
1303 return true if successful. */
1305 static bool
1306 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1307 unsigned int expected_align, HOST_WIDE_INT expected_size)
1309 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
1310 int save_volatile_ok = volatile_ok;
1311 enum machine_mode mode;
1313 if (expected_align < align)
1314 expected_align = align;
1316 /* Since this is a move insn, we don't care about volatility. */
1317 volatile_ok = 1;
1319 /* Try the most limited insn first, because there's no point
1320 including more than one in the machine description unless
1321 the more limited one has some advantage. */
1323 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1324 mode = GET_MODE_WIDER_MODE (mode))
1326 enum insn_code code = movmem_optab[(int) mode];
1327 insn_operand_predicate_fn pred;
1329 if (code != CODE_FOR_nothing
1330 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1331 here because if SIZE is less than the mode mask, as it is
1332 returned by the macro, it will definitely be less than the
1333 actual mode mask. */
1334 && ((GET_CODE (size) == CONST_INT
1335 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1336 <= (GET_MODE_MASK (mode) >> 1)))
1337 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
1338 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
1339 || (*pred) (x, BLKmode))
1340 && ((pred = insn_data[(int) code].operand[1].predicate) == 0
1341 || (*pred) (y, BLKmode))
1342 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
1343 || (*pred) (opalign, VOIDmode)))
1345 rtx op2;
1346 rtx last = get_last_insn ();
1347 rtx pat;
1349 op2 = convert_to_mode (mode, size, 1);
1350 pred = insn_data[(int) code].operand[2].predicate;
1351 if (pred != 0 && ! (*pred) (op2, mode))
1352 op2 = copy_to_mode_reg (mode, op2);
1354 /* ??? When called via emit_block_move_for_call, it'd be
1355 nice if there were some way to inform the backend, so
1356 that it doesn't fail the expansion because it thinks
1357 emitting the libcall would be more efficient. */
1359 if (insn_data[(int) code].n_operands == 4)
1360 pat = GEN_FCN ((int) code) (x, y, op2, opalign);
1361 else
1362 pat = GEN_FCN ((int) code) (x, y, op2, opalign,
1363 GEN_INT (expected_align
1364 / BITS_PER_UNIT),
1365 GEN_INT (expected_size));
1366 if (pat)
1368 emit_insn (pat);
1369 volatile_ok = save_volatile_ok;
1370 return true;
1372 else
1373 delete_insns_since (last);
1377 volatile_ok = save_volatile_ok;
1378 return false;
1381 /* A subroutine of emit_block_move. Expand a call to memcpy.
1382 Return the return value from memcpy, 0 otherwise. */
1385 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1387 rtx dst_addr, src_addr;
1388 tree call_expr, fn, src_tree, dst_tree, size_tree;
1389 enum machine_mode size_mode;
1390 rtx retval;
1392 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1393 pseudos. We can then place those new pseudos into a VAR_DECL and
1394 use them later. */
1396 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1397 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1399 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1400 src_addr = convert_memory_address (ptr_mode, src_addr);
1402 dst_tree = make_tree (ptr_type_node, dst_addr);
1403 src_tree = make_tree (ptr_type_node, src_addr);
1405 size_mode = TYPE_MODE (sizetype);
1407 size = convert_to_mode (size_mode, size, 1);
1408 size = copy_to_mode_reg (size_mode, size);
1410 /* It is incorrect to use the libcall calling conventions to call
1411 memcpy in this context. This could be a user call to memcpy and
1412 the user may wish to examine the return value from memcpy. For
1413 targets where libcalls and normal calls have different conventions
1414 for returning pointers, we could end up generating incorrect code. */
1416 size_tree = make_tree (sizetype, size);
1418 fn = emit_block_move_libcall_fn (true);
1419 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1420 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1422 retval = expand_normal (call_expr);
1424 return retval;
1427 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1428 for the function we use for block copies. The first time FOR_CALL
1429 is true, we call assemble_external. */
1431 static GTY(()) tree block_move_fn;
1433 void
1434 init_block_move_fn (const char *asmspec)
1436 if (!block_move_fn)
1438 tree args, fn;
1440 fn = get_identifier ("memcpy");
1441 args = build_function_type_list (ptr_type_node, ptr_type_node,
1442 const_ptr_type_node, sizetype,
1443 NULL_TREE);
1445 fn = build_decl (FUNCTION_DECL, fn, args);
1446 DECL_EXTERNAL (fn) = 1;
1447 TREE_PUBLIC (fn) = 1;
1448 DECL_ARTIFICIAL (fn) = 1;
1449 TREE_NOTHROW (fn) = 1;
1450 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1451 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1453 block_move_fn = fn;
1456 if (asmspec)
1457 set_user_assembler_name (block_move_fn, asmspec);
1460 static tree
1461 emit_block_move_libcall_fn (int for_call)
1463 static bool emitted_extern;
1465 if (!block_move_fn)
1466 init_block_move_fn (NULL);
1468 if (for_call && !emitted_extern)
1470 emitted_extern = true;
1471 make_decl_rtl (block_move_fn);
1472 assemble_external (block_move_fn);
1475 return block_move_fn;
1478 /* A subroutine of emit_block_move. Copy the data via an explicit
1479 loop. This is used only when libcalls are forbidden. */
1480 /* ??? It'd be nice to copy in hunks larger than QImode. */
1482 static void
1483 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1484 unsigned int align ATTRIBUTE_UNUSED)
1486 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1487 enum machine_mode iter_mode;
1489 iter_mode = GET_MODE (size);
1490 if (iter_mode == VOIDmode)
1491 iter_mode = word_mode;
1493 top_label = gen_label_rtx ();
1494 cmp_label = gen_label_rtx ();
1495 iter = gen_reg_rtx (iter_mode);
1497 emit_move_insn (iter, const0_rtx);
1499 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1500 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1501 do_pending_stack_adjust ();
1503 emit_jump (cmp_label);
1504 emit_label (top_label);
1506 tmp = convert_modes (Pmode, iter_mode, iter, true);
1507 x_addr = gen_rtx_PLUS (Pmode, x_addr, tmp);
1508 y_addr = gen_rtx_PLUS (Pmode, y_addr, tmp);
1509 x = change_address (x, QImode, x_addr);
1510 y = change_address (y, QImode, y_addr);
1512 emit_move_insn (x, y);
1514 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1515 true, OPTAB_LIB_WIDEN);
1516 if (tmp != iter)
1517 emit_move_insn (iter, tmp);
1519 emit_label (cmp_label);
1521 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1522 true, top_label);
1525 /* Copy all or part of a value X into registers starting at REGNO.
1526 The number of registers to be filled is NREGS. */
1528 void
1529 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1531 int i;
1532 #ifdef HAVE_load_multiple
1533 rtx pat;
1534 rtx last;
1535 #endif
1537 if (nregs == 0)
1538 return;
1540 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1541 x = validize_mem (force_const_mem (mode, x));
1543 /* See if the machine can do this with a load multiple insn. */
1544 #ifdef HAVE_load_multiple
1545 if (HAVE_load_multiple)
1547 last = get_last_insn ();
1548 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1549 GEN_INT (nregs));
1550 if (pat)
1552 emit_insn (pat);
1553 return;
1555 else
1556 delete_insns_since (last);
1558 #endif
1560 for (i = 0; i < nregs; i++)
1561 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1562 operand_subword_force (x, i, mode));
1565 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1566 The number of registers to be filled is NREGS. */
1568 void
1569 move_block_from_reg (int regno, rtx x, int nregs)
1571 int i;
1573 if (nregs == 0)
1574 return;
1576 /* See if the machine can do this with a store multiple insn. */
1577 #ifdef HAVE_store_multiple
1578 if (HAVE_store_multiple)
1580 rtx last = get_last_insn ();
1581 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1582 GEN_INT (nregs));
1583 if (pat)
1585 emit_insn (pat);
1586 return;
1588 else
1589 delete_insns_since (last);
1591 #endif
1593 for (i = 0; i < nregs; i++)
1595 rtx tem = operand_subword (x, i, 1, BLKmode);
1597 gcc_assert (tem);
1599 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1603 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1604 ORIG, where ORIG is a non-consecutive group of registers represented by
1605 a PARALLEL. The clone is identical to the original except in that the
1606 original set of registers is replaced by a new set of pseudo registers.
1607 The new set has the same modes as the original set. */
1610 gen_group_rtx (rtx orig)
1612 int i, length;
1613 rtx *tmps;
1615 gcc_assert (GET_CODE (orig) == PARALLEL);
1617 length = XVECLEN (orig, 0);
1618 tmps = XALLOCAVEC (rtx, length);
1620 /* Skip a NULL entry in first slot. */
1621 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1623 if (i)
1624 tmps[0] = 0;
1626 for (; i < length; i++)
1628 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1629 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1631 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1634 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1637 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1638 except that values are placed in TMPS[i], and must later be moved
1639 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1641 static void
1642 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1644 rtx src;
1645 int start, i;
1646 enum machine_mode m = GET_MODE (orig_src);
1648 gcc_assert (GET_CODE (dst) == PARALLEL);
1650 if (m != VOIDmode
1651 && !SCALAR_INT_MODE_P (m)
1652 && !MEM_P (orig_src)
1653 && GET_CODE (orig_src) != CONCAT)
1655 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1656 if (imode == BLKmode)
1657 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1658 else
1659 src = gen_reg_rtx (imode);
1660 if (imode != BLKmode)
1661 src = gen_lowpart (GET_MODE (orig_src), src);
1662 emit_move_insn (src, orig_src);
1663 /* ...and back again. */
1664 if (imode != BLKmode)
1665 src = gen_lowpart (imode, src);
1666 emit_group_load_1 (tmps, dst, src, type, ssize);
1667 return;
1670 /* Check for a NULL entry, used to indicate that the parameter goes
1671 both on the stack and in registers. */
1672 if (XEXP (XVECEXP (dst, 0, 0), 0))
1673 start = 0;
1674 else
1675 start = 1;
1677 /* Process the pieces. */
1678 for (i = start; i < XVECLEN (dst, 0); i++)
1680 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1681 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1682 unsigned int bytelen = GET_MODE_SIZE (mode);
1683 int shift = 0;
1685 /* Handle trailing fragments that run over the size of the struct. */
1686 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1688 /* Arrange to shift the fragment to where it belongs.
1689 extract_bit_field loads to the lsb of the reg. */
1690 if (
1691 #ifdef BLOCK_REG_PADDING
1692 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1693 == (BYTES_BIG_ENDIAN ? upward : downward)
1694 #else
1695 BYTES_BIG_ENDIAN
1696 #endif
1698 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1699 bytelen = ssize - bytepos;
1700 gcc_assert (bytelen > 0);
1703 /* If we won't be loading directly from memory, protect the real source
1704 from strange tricks we might play; but make sure that the source can
1705 be loaded directly into the destination. */
1706 src = orig_src;
1707 if (!MEM_P (orig_src)
1708 && (!CONSTANT_P (orig_src)
1709 || (GET_MODE (orig_src) != mode
1710 && GET_MODE (orig_src) != VOIDmode)))
1712 if (GET_MODE (orig_src) == VOIDmode)
1713 src = gen_reg_rtx (mode);
1714 else
1715 src = gen_reg_rtx (GET_MODE (orig_src));
1717 emit_move_insn (src, orig_src);
1720 /* Optimize the access just a bit. */
1721 if (MEM_P (src)
1722 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1723 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1724 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1725 && bytelen == GET_MODE_SIZE (mode))
1727 tmps[i] = gen_reg_rtx (mode);
1728 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1730 else if (COMPLEX_MODE_P (mode)
1731 && GET_MODE (src) == mode
1732 && bytelen == GET_MODE_SIZE (mode))
1733 /* Let emit_move_complex do the bulk of the work. */
1734 tmps[i] = src;
1735 else if (GET_CODE (src) == CONCAT)
1737 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1738 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1740 if ((bytepos == 0 && bytelen == slen0)
1741 || (bytepos != 0 && bytepos + bytelen <= slen))
1743 /* The following assumes that the concatenated objects all
1744 have the same size. In this case, a simple calculation
1745 can be used to determine the object and the bit field
1746 to be extracted. */
1747 tmps[i] = XEXP (src, bytepos / slen0);
1748 if (! CONSTANT_P (tmps[i])
1749 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1750 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1751 (bytepos % slen0) * BITS_PER_UNIT,
1752 1, NULL_RTX, mode, mode);
1754 else
1756 rtx mem;
1758 gcc_assert (!bytepos);
1759 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1760 emit_move_insn (mem, src);
1761 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1762 0, 1, NULL_RTX, mode, mode);
1765 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1766 SIMD register, which is currently broken. While we get GCC
1767 to emit proper RTL for these cases, let's dump to memory. */
1768 else if (VECTOR_MODE_P (GET_MODE (dst))
1769 && REG_P (src))
1771 int slen = GET_MODE_SIZE (GET_MODE (src));
1772 rtx mem;
1774 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1775 emit_move_insn (mem, src);
1776 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1778 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1779 && XVECLEN (dst, 0) > 1)
1780 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1781 else if (CONSTANT_P (src))
1783 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
1785 if (len == ssize)
1786 tmps[i] = src;
1787 else
1789 rtx first, second;
1791 gcc_assert (2 * len == ssize);
1792 split_double (src, &first, &second);
1793 if (i)
1794 tmps[i] = second;
1795 else
1796 tmps[i] = first;
1799 else if (REG_P (src) && GET_MODE (src) == mode)
1800 tmps[i] = src;
1801 else
1802 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1803 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
1804 mode, mode);
1806 if (shift)
1807 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1808 build_int_cst (NULL_TREE, shift), tmps[i], 0);
1812 /* Emit code to move a block SRC of type TYPE to a block DST,
1813 where DST is non-consecutive registers represented by a PARALLEL.
1814 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1815 if not known. */
1817 void
1818 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1820 rtx *tmps;
1821 int i;
1823 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
1824 emit_group_load_1 (tmps, dst, src, type, ssize);
1826 /* Copy the extracted pieces into the proper (probable) hard regs. */
1827 for (i = 0; i < XVECLEN (dst, 0); i++)
1829 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1830 if (d == NULL)
1831 continue;
1832 emit_move_insn (d, tmps[i]);
1836 /* Similar, but load SRC into new pseudos in a format that looks like
1837 PARALLEL. This can later be fed to emit_group_move to get things
1838 in the right place. */
1841 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1843 rtvec vec;
1844 int i;
1846 vec = rtvec_alloc (XVECLEN (parallel, 0));
1847 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1849 /* Convert the vector to look just like the original PARALLEL, except
1850 with the computed values. */
1851 for (i = 0; i < XVECLEN (parallel, 0); i++)
1853 rtx e = XVECEXP (parallel, 0, i);
1854 rtx d = XEXP (e, 0);
1856 if (d)
1858 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1859 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1861 RTVEC_ELT (vec, i) = e;
1864 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1867 /* Emit code to move a block SRC to block DST, where SRC and DST are
1868 non-consecutive groups of registers, each represented by a PARALLEL. */
1870 void
1871 emit_group_move (rtx dst, rtx src)
1873 int i;
1875 gcc_assert (GET_CODE (src) == PARALLEL
1876 && GET_CODE (dst) == PARALLEL
1877 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1879 /* Skip first entry if NULL. */
1880 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1881 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1882 XEXP (XVECEXP (src, 0, i), 0));
1885 /* Move a group of registers represented by a PARALLEL into pseudos. */
1888 emit_group_move_into_temps (rtx src)
1890 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1891 int i;
1893 for (i = 0; i < XVECLEN (src, 0); i++)
1895 rtx e = XVECEXP (src, 0, i);
1896 rtx d = XEXP (e, 0);
1898 if (d)
1899 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1900 RTVEC_ELT (vec, i) = e;
1903 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1906 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1907 where SRC is non-consecutive registers represented by a PARALLEL.
1908 SSIZE represents the total size of block ORIG_DST, or -1 if not
1909 known. */
1911 void
1912 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1914 rtx *tmps, dst;
1915 int start, finish, i;
1916 enum machine_mode m = GET_MODE (orig_dst);
1918 gcc_assert (GET_CODE (src) == PARALLEL);
1920 if (!SCALAR_INT_MODE_P (m)
1921 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1923 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1924 if (imode == BLKmode)
1925 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1926 else
1927 dst = gen_reg_rtx (imode);
1928 emit_group_store (dst, src, type, ssize);
1929 if (imode != BLKmode)
1930 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1931 emit_move_insn (orig_dst, dst);
1932 return;
1935 /* Check for a NULL entry, used to indicate that the parameter goes
1936 both on the stack and in registers. */
1937 if (XEXP (XVECEXP (src, 0, 0), 0))
1938 start = 0;
1939 else
1940 start = 1;
1941 finish = XVECLEN (src, 0);
1943 tmps = XALLOCAVEC (rtx, finish);
1945 /* Copy the (probable) hard regs into pseudos. */
1946 for (i = start; i < finish; i++)
1948 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1949 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1951 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1952 emit_move_insn (tmps[i], reg);
1954 else
1955 tmps[i] = reg;
1958 /* If we won't be storing directly into memory, protect the real destination
1959 from strange tricks we might play. */
1960 dst = orig_dst;
1961 if (GET_CODE (dst) == PARALLEL)
1963 rtx temp;
1965 /* We can get a PARALLEL dst if there is a conditional expression in
1966 a return statement. In that case, the dst and src are the same,
1967 so no action is necessary. */
1968 if (rtx_equal_p (dst, src))
1969 return;
1971 /* It is unclear if we can ever reach here, but we may as well handle
1972 it. Allocate a temporary, and split this into a store/load to/from
1973 the temporary. */
1975 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1976 emit_group_store (temp, src, type, ssize);
1977 emit_group_load (dst, temp, type, ssize);
1978 return;
1980 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1982 enum machine_mode outer = GET_MODE (dst);
1983 enum machine_mode inner;
1984 HOST_WIDE_INT bytepos;
1985 bool done = false;
1986 rtx temp;
1988 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1989 dst = gen_reg_rtx (outer);
1991 /* Make life a bit easier for combine. */
1992 /* If the first element of the vector is the low part
1993 of the destination mode, use a paradoxical subreg to
1994 initialize the destination. */
1995 if (start < finish)
1997 inner = GET_MODE (tmps[start]);
1998 bytepos = subreg_lowpart_offset (inner, outer);
1999 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
2001 temp = simplify_gen_subreg (outer, tmps[start],
2002 inner, 0);
2003 if (temp)
2005 emit_move_insn (dst, temp);
2006 done = true;
2007 start++;
2012 /* If the first element wasn't the low part, try the last. */
2013 if (!done
2014 && start < finish - 1)
2016 inner = GET_MODE (tmps[finish - 1]);
2017 bytepos = subreg_lowpart_offset (inner, outer);
2018 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
2020 temp = simplify_gen_subreg (outer, tmps[finish - 1],
2021 inner, 0);
2022 if (temp)
2024 emit_move_insn (dst, temp);
2025 done = true;
2026 finish--;
2031 /* Otherwise, simply initialize the result to zero. */
2032 if (!done)
2033 emit_move_insn (dst, CONST0_RTX (outer));
2036 /* Process the pieces. */
2037 for (i = start; i < finish; i++)
2039 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2040 enum machine_mode mode = GET_MODE (tmps[i]);
2041 unsigned int bytelen = GET_MODE_SIZE (mode);
2042 unsigned int adj_bytelen = bytelen;
2043 rtx dest = dst;
2045 /* Handle trailing fragments that run over the size of the struct. */
2046 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2047 adj_bytelen = ssize - bytepos;
2049 if (GET_CODE (dst) == CONCAT)
2051 if (bytepos + adj_bytelen
2052 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2053 dest = XEXP (dst, 0);
2054 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2056 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2057 dest = XEXP (dst, 1);
2059 else
2061 enum machine_mode dest_mode = GET_MODE (dest);
2062 enum machine_mode tmp_mode = GET_MODE (tmps[i]);
2064 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2066 if (GET_MODE_ALIGNMENT (dest_mode)
2067 >= GET_MODE_ALIGNMENT (tmp_mode))
2069 dest = assign_stack_temp (dest_mode,
2070 GET_MODE_SIZE (dest_mode),
2072 emit_move_insn (adjust_address (dest,
2073 tmp_mode,
2074 bytepos),
2075 tmps[i]);
2076 dst = dest;
2078 else
2080 dest = assign_stack_temp (tmp_mode,
2081 GET_MODE_SIZE (tmp_mode),
2083 emit_move_insn (dest, tmps[i]);
2084 dst = adjust_address (dest, dest_mode, bytepos);
2086 break;
2090 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2092 /* store_bit_field always takes its value from the lsb.
2093 Move the fragment to the lsb if it's not already there. */
2094 if (
2095 #ifdef BLOCK_REG_PADDING
2096 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2097 == (BYTES_BIG_ENDIAN ? upward : downward)
2098 #else
2099 BYTES_BIG_ENDIAN
2100 #endif
2103 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2104 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2105 build_int_cst (NULL_TREE, shift),
2106 tmps[i], 0);
2108 bytelen = adj_bytelen;
2111 /* Optimize the access just a bit. */
2112 if (MEM_P (dest)
2113 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2114 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2115 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2116 && bytelen == GET_MODE_SIZE (mode))
2117 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2118 else
2119 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2120 mode, tmps[i]);
2123 /* Copy from the pseudo into the (probable) hard reg. */
2124 if (orig_dst != dst)
2125 emit_move_insn (orig_dst, dst);
2128 /* Generate code to copy a BLKmode object of TYPE out of a
2129 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2130 is null, a stack temporary is created. TGTBLK is returned.
2132 The purpose of this routine is to handle functions that return
2133 BLKmode structures in registers. Some machines (the PA for example)
2134 want to return all small structures in registers regardless of the
2135 structure's alignment. */
2138 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2140 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2141 rtx src = NULL, dst = NULL;
2142 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2143 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2144 enum machine_mode copy_mode;
2146 if (tgtblk == 0)
2148 tgtblk = assign_temp (build_qualified_type (type,
2149 (TYPE_QUALS (type)
2150 | TYPE_QUAL_CONST)),
2151 0, 1, 1);
2152 preserve_temp_slots (tgtblk);
2155 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2156 into a new pseudo which is a full word. */
2158 if (GET_MODE (srcreg) != BLKmode
2159 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2160 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2162 /* If the structure doesn't take up a whole number of words, see whether
2163 SRCREG is padded on the left or on the right. If it's on the left,
2164 set PADDING_CORRECTION to the number of bits to skip.
2166 In most ABIs, the structure will be returned at the least end of
2167 the register, which translates to right padding on little-endian
2168 targets and left padding on big-endian targets. The opposite
2169 holds if the structure is returned at the most significant
2170 end of the register. */
2171 if (bytes % UNITS_PER_WORD != 0
2172 && (targetm.calls.return_in_msb (type)
2173 ? !BYTES_BIG_ENDIAN
2174 : BYTES_BIG_ENDIAN))
2175 padding_correction
2176 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2178 /* Copy the structure BITSIZE bits at a time. If the target lives in
2179 memory, take care of not reading/writing past its end by selecting
2180 a copy mode suited to BITSIZE. This should always be possible given
2181 how it is computed.
2183 We could probably emit more efficient code for machines which do not use
2184 strict alignment, but it doesn't seem worth the effort at the current
2185 time. */
2187 copy_mode = word_mode;
2188 if (MEM_P (tgtblk))
2190 enum machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2191 if (mem_mode != BLKmode)
2192 copy_mode = mem_mode;
2195 for (bitpos = 0, xbitpos = padding_correction;
2196 bitpos < bytes * BITS_PER_UNIT;
2197 bitpos += bitsize, xbitpos += bitsize)
2199 /* We need a new source operand each time xbitpos is on a
2200 word boundary and when xbitpos == padding_correction
2201 (the first time through). */
2202 if (xbitpos % BITS_PER_WORD == 0
2203 || xbitpos == padding_correction)
2204 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2205 GET_MODE (srcreg));
2207 /* We need a new destination operand each time bitpos is on
2208 a word boundary. */
2209 if (bitpos % BITS_PER_WORD == 0)
2210 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2212 /* Use xbitpos for the source extraction (right justified) and
2213 bitpos for the destination store (left justified). */
2214 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, copy_mode,
2215 extract_bit_field (src, bitsize,
2216 xbitpos % BITS_PER_WORD, 1,
2217 NULL_RTX, copy_mode, copy_mode));
2220 return tgtblk;
2223 /* Add a USE expression for REG to the (possibly empty) list pointed
2224 to by CALL_FUSAGE. REG must denote a hard register. */
2226 void
2227 use_reg (rtx *call_fusage, rtx reg)
2229 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2231 *call_fusage
2232 = gen_rtx_EXPR_LIST (VOIDmode,
2233 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2236 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2237 starting at REGNO. All of these registers must be hard registers. */
2239 void
2240 use_regs (rtx *call_fusage, int regno, int nregs)
2242 int i;
2244 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2246 for (i = 0; i < nregs; i++)
2247 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2250 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2251 PARALLEL REGS. This is for calls that pass values in multiple
2252 non-contiguous locations. The Irix 6 ABI has examples of this. */
2254 void
2255 use_group_regs (rtx *call_fusage, rtx regs)
2257 int i;
2259 for (i = 0; i < XVECLEN (regs, 0); i++)
2261 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2263 /* A NULL entry means the parameter goes both on the stack and in
2264 registers. This can also be a MEM for targets that pass values
2265 partially on the stack and partially in registers. */
2266 if (reg != 0 && REG_P (reg))
2267 use_reg (call_fusage, reg);
2272 /* Determine whether the LEN bytes generated by CONSTFUN can be
2273 stored to memory using several move instructions. CONSTFUNDATA is
2274 a pointer which will be passed as argument in every CONSTFUN call.
2275 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2276 a memset operation and false if it's a copy of a constant string.
2277 Return nonzero if a call to store_by_pieces should succeed. */
2280 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2281 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2282 void *constfundata, unsigned int align, bool memsetp)
2284 unsigned HOST_WIDE_INT l;
2285 unsigned int max_size;
2286 HOST_WIDE_INT offset = 0;
2287 enum machine_mode mode, tmode;
2288 enum insn_code icode;
2289 int reverse;
2290 rtx cst;
2292 if (len == 0)
2293 return 1;
2295 if (! (memsetp
2296 ? SET_BY_PIECES_P (len, align)
2297 : STORE_BY_PIECES_P (len, align)))
2298 return 0;
2300 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2301 if (align >= GET_MODE_ALIGNMENT (tmode))
2302 align = GET_MODE_ALIGNMENT (tmode);
2303 else
2305 enum machine_mode xmode;
2307 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2308 tmode != VOIDmode;
2309 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2310 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2311 || SLOW_UNALIGNED_ACCESS (tmode, align))
2312 break;
2314 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2317 /* We would first store what we can in the largest integer mode, then go to
2318 successively smaller modes. */
2320 for (reverse = 0;
2321 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2322 reverse++)
2324 l = len;
2325 mode = VOIDmode;
2326 max_size = STORE_MAX_PIECES + 1;
2327 while (max_size > 1)
2329 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2330 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2331 if (GET_MODE_SIZE (tmode) < max_size)
2332 mode = tmode;
2334 if (mode == VOIDmode)
2335 break;
2337 icode = optab_handler (mov_optab, mode)->insn_code;
2338 if (icode != CODE_FOR_nothing
2339 && align >= GET_MODE_ALIGNMENT (mode))
2341 unsigned int size = GET_MODE_SIZE (mode);
2343 while (l >= size)
2345 if (reverse)
2346 offset -= size;
2348 cst = (*constfun) (constfundata, offset, mode);
2349 if (!LEGITIMATE_CONSTANT_P (cst))
2350 return 0;
2352 if (!reverse)
2353 offset += size;
2355 l -= size;
2359 max_size = GET_MODE_SIZE (mode);
2362 /* The code above should have handled everything. */
2363 gcc_assert (!l);
2366 return 1;
2369 /* Generate several move instructions to store LEN bytes generated by
2370 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2371 pointer which will be passed as argument in every CONSTFUN call.
2372 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2373 a memset operation and false if it's a copy of a constant string.
2374 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2375 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2376 stpcpy. */
2379 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2380 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2381 void *constfundata, unsigned int align, bool memsetp, int endp)
2383 struct store_by_pieces data;
2385 if (len == 0)
2387 gcc_assert (endp != 2);
2388 return to;
2391 gcc_assert (memsetp
2392 ? SET_BY_PIECES_P (len, align)
2393 : STORE_BY_PIECES_P (len, align));
2394 data.constfun = constfun;
2395 data.constfundata = constfundata;
2396 data.len = len;
2397 data.to = to;
2398 store_by_pieces_1 (&data, align);
2399 if (endp)
2401 rtx to1;
2403 gcc_assert (!data.reverse);
2404 if (data.autinc_to)
2406 if (endp == 2)
2408 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2409 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2410 else
2411 data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
2412 -1));
2414 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2415 data.offset);
2417 else
2419 if (endp == 2)
2420 --data.offset;
2421 to1 = adjust_address (data.to, QImode, data.offset);
2423 return to1;
2425 else
2426 return data.to;
2429 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2430 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2432 static void
2433 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2435 struct store_by_pieces data;
2437 if (len == 0)
2438 return;
2440 data.constfun = clear_by_pieces_1;
2441 data.constfundata = NULL;
2442 data.len = len;
2443 data.to = to;
2444 store_by_pieces_1 (&data, align);
2447 /* Callback routine for clear_by_pieces.
2448 Return const0_rtx unconditionally. */
2450 static rtx
2451 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2452 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2453 enum machine_mode mode ATTRIBUTE_UNUSED)
2455 return const0_rtx;
2458 /* Subroutine of clear_by_pieces and store_by_pieces.
2459 Generate several move instructions to store LEN bytes of block TO. (A MEM
2460 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2462 static void
2463 store_by_pieces_1 (struct store_by_pieces *data ATTRIBUTE_UNUSED,
2464 unsigned int align ATTRIBUTE_UNUSED)
2466 rtx to_addr = XEXP (data->to, 0);
2467 unsigned int max_size = STORE_MAX_PIECES + 1;
2468 enum machine_mode mode = VOIDmode, tmode;
2469 enum insn_code icode;
2471 data->offset = 0;
2472 data->to_addr = to_addr;
2473 data->autinc_to
2474 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2475 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2477 data->explicit_inc_to = 0;
2478 data->reverse
2479 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2480 if (data->reverse)
2481 data->offset = data->len;
2483 /* If storing requires more than two move insns,
2484 copy addresses to registers (to make displacements shorter)
2485 and use post-increment if available. */
2486 if (!data->autinc_to
2487 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2489 /* Determine the main mode we'll be using. */
2490 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2491 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2492 if (GET_MODE_SIZE (tmode) < max_size)
2493 mode = tmode;
2495 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2497 data->to_addr = copy_addr_to_reg (plus_constant (to_addr, data->len));
2498 data->autinc_to = 1;
2499 data->explicit_inc_to = -1;
2502 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2503 && ! data->autinc_to)
2505 data->to_addr = copy_addr_to_reg (to_addr);
2506 data->autinc_to = 1;
2507 data->explicit_inc_to = 1;
2510 if ( !data->autinc_to && CONSTANT_P (to_addr))
2511 data->to_addr = copy_addr_to_reg (to_addr);
2514 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2515 if (align >= GET_MODE_ALIGNMENT (tmode))
2516 align = GET_MODE_ALIGNMENT (tmode);
2517 else
2519 enum machine_mode xmode;
2521 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2522 tmode != VOIDmode;
2523 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2524 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2525 || SLOW_UNALIGNED_ACCESS (tmode, align))
2526 break;
2528 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2531 /* First store what we can in the largest integer mode, then go to
2532 successively smaller modes. */
2534 while (max_size > 1)
2536 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2537 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2538 if (GET_MODE_SIZE (tmode) < max_size)
2539 mode = tmode;
2541 if (mode == VOIDmode)
2542 break;
2544 icode = optab_handler (mov_optab, mode)->insn_code;
2545 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2546 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2548 max_size = GET_MODE_SIZE (mode);
2551 /* The code above should have handled everything. */
2552 gcc_assert (!data->len);
2555 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2556 with move instructions for mode MODE. GENFUN is the gen_... function
2557 to make a move insn for that mode. DATA has all the other info. */
2559 static void
2560 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2561 struct store_by_pieces *data)
2563 unsigned int size = GET_MODE_SIZE (mode);
2564 rtx to1, cst;
2566 while (data->len >= size)
2568 if (data->reverse)
2569 data->offset -= size;
2571 if (data->autinc_to)
2572 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2573 data->offset);
2574 else
2575 to1 = adjust_address (data->to, mode, data->offset);
2577 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2578 emit_insn (gen_add2_insn (data->to_addr,
2579 GEN_INT (-(HOST_WIDE_INT) size)));
2581 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2582 emit_insn ((*genfun) (to1, cst));
2584 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2585 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2587 if (! data->reverse)
2588 data->offset += size;
2590 data->len -= size;
2594 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2595 its length in bytes. */
2598 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2599 unsigned int expected_align, HOST_WIDE_INT expected_size)
2601 enum machine_mode mode = GET_MODE (object);
2602 unsigned int align;
2604 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2606 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2607 just move a zero. Otherwise, do this a piece at a time. */
2608 if (mode != BLKmode
2609 && GET_CODE (size) == CONST_INT
2610 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2612 rtx zero = CONST0_RTX (mode);
2613 if (zero != NULL)
2615 emit_move_insn (object, zero);
2616 return NULL;
2619 if (COMPLEX_MODE_P (mode))
2621 zero = CONST0_RTX (GET_MODE_INNER (mode));
2622 if (zero != NULL)
2624 write_complex_part (object, zero, 0);
2625 write_complex_part (object, zero, 1);
2626 return NULL;
2631 if (size == const0_rtx)
2632 return NULL;
2634 align = MEM_ALIGN (object);
2636 if (GET_CODE (size) == CONST_INT
2637 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2638 clear_by_pieces (object, INTVAL (size), align);
2639 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2640 expected_align, expected_size))
2642 else
2643 return set_storage_via_libcall (object, size, const0_rtx,
2644 method == BLOCK_OP_TAILCALL);
2646 return NULL;
2650 clear_storage (rtx object, rtx size, enum block_op_methods method)
2652 return clear_storage_hints (object, size, method, 0, -1);
2656 /* A subroutine of clear_storage. Expand a call to memset.
2657 Return the return value of memset, 0 otherwise. */
2660 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2662 tree call_expr, fn, object_tree, size_tree, val_tree;
2663 enum machine_mode size_mode;
2664 rtx retval;
2666 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2667 place those into new pseudos into a VAR_DECL and use them later. */
2669 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2671 size_mode = TYPE_MODE (sizetype);
2672 size = convert_to_mode (size_mode, size, 1);
2673 size = copy_to_mode_reg (size_mode, size);
2675 /* It is incorrect to use the libcall calling conventions to call
2676 memset in this context. This could be a user call to memset and
2677 the user may wish to examine the return value from memset. For
2678 targets where libcalls and normal calls have different conventions
2679 for returning pointers, we could end up generating incorrect code. */
2681 object_tree = make_tree (ptr_type_node, object);
2682 if (GET_CODE (val) != CONST_INT)
2683 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2684 size_tree = make_tree (sizetype, size);
2685 val_tree = make_tree (integer_type_node, val);
2687 fn = clear_storage_libcall_fn (true);
2688 call_expr = build_call_expr (fn, 3,
2689 object_tree, integer_zero_node, size_tree);
2690 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2692 retval = expand_normal (call_expr);
2694 return retval;
2697 /* A subroutine of set_storage_via_libcall. Create the tree node
2698 for the function we use for block clears. The first time FOR_CALL
2699 is true, we call assemble_external. */
2701 static GTY(()) tree block_clear_fn;
2703 void
2704 init_block_clear_fn (const char *asmspec)
2706 if (!block_clear_fn)
2708 tree fn, args;
2710 fn = get_identifier ("memset");
2711 args = build_function_type_list (ptr_type_node, ptr_type_node,
2712 integer_type_node, sizetype,
2713 NULL_TREE);
2715 fn = build_decl (FUNCTION_DECL, fn, args);
2716 DECL_EXTERNAL (fn) = 1;
2717 TREE_PUBLIC (fn) = 1;
2718 DECL_ARTIFICIAL (fn) = 1;
2719 TREE_NOTHROW (fn) = 1;
2720 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2721 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2723 block_clear_fn = fn;
2726 if (asmspec)
2727 set_user_assembler_name (block_clear_fn, asmspec);
2730 static tree
2731 clear_storage_libcall_fn (int for_call)
2733 static bool emitted_extern;
2735 if (!block_clear_fn)
2736 init_block_clear_fn (NULL);
2738 if (for_call && !emitted_extern)
2740 emitted_extern = true;
2741 make_decl_rtl (block_clear_fn);
2742 assemble_external (block_clear_fn);
2745 return block_clear_fn;
2748 /* Expand a setmem pattern; return true if successful. */
2750 bool
2751 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2752 unsigned int expected_align, HOST_WIDE_INT expected_size)
2754 /* Try the most limited insn first, because there's no point
2755 including more than one in the machine description unless
2756 the more limited one has some advantage. */
2758 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
2759 enum machine_mode mode;
2761 if (expected_align < align)
2762 expected_align = align;
2764 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2765 mode = GET_MODE_WIDER_MODE (mode))
2767 enum insn_code code = setmem_optab[(int) mode];
2768 insn_operand_predicate_fn pred;
2770 if (code != CODE_FOR_nothing
2771 /* We don't need MODE to be narrower than
2772 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2773 the mode mask, as it is returned by the macro, it will
2774 definitely be less than the actual mode mask. */
2775 && ((GET_CODE (size) == CONST_INT
2776 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2777 <= (GET_MODE_MASK (mode) >> 1)))
2778 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
2779 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
2780 || (*pred) (object, BLKmode))
2781 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
2782 || (*pred) (opalign, VOIDmode)))
2784 rtx opsize, opchar;
2785 enum machine_mode char_mode;
2786 rtx last = get_last_insn ();
2787 rtx pat;
2789 opsize = convert_to_mode (mode, size, 1);
2790 pred = insn_data[(int) code].operand[1].predicate;
2791 if (pred != 0 && ! (*pred) (opsize, mode))
2792 opsize = copy_to_mode_reg (mode, opsize);
2794 opchar = val;
2795 char_mode = insn_data[(int) code].operand[2].mode;
2796 if (char_mode != VOIDmode)
2798 opchar = convert_to_mode (char_mode, opchar, 1);
2799 pred = insn_data[(int) code].operand[2].predicate;
2800 if (pred != 0 && ! (*pred) (opchar, char_mode))
2801 opchar = copy_to_mode_reg (char_mode, opchar);
2804 if (insn_data[(int) code].n_operands == 4)
2805 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign);
2806 else
2807 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign,
2808 GEN_INT (expected_align
2809 / BITS_PER_UNIT),
2810 GEN_INT (expected_size));
2811 if (pat)
2813 emit_insn (pat);
2814 return true;
2816 else
2817 delete_insns_since (last);
2821 return false;
2825 /* Write to one of the components of the complex value CPLX. Write VAL to
2826 the real part if IMAG_P is false, and the imaginary part if its true. */
2828 static void
2829 write_complex_part (rtx cplx, rtx val, bool imag_p)
2831 enum machine_mode cmode;
2832 enum machine_mode imode;
2833 unsigned ibitsize;
2835 if (GET_CODE (cplx) == CONCAT)
2837 emit_move_insn (XEXP (cplx, imag_p), val);
2838 return;
2841 cmode = GET_MODE (cplx);
2842 imode = GET_MODE_INNER (cmode);
2843 ibitsize = GET_MODE_BITSIZE (imode);
2845 /* For MEMs simplify_gen_subreg may generate an invalid new address
2846 because, e.g., the original address is considered mode-dependent
2847 by the target, which restricts simplify_subreg from invoking
2848 adjust_address_nv. Instead of preparing fallback support for an
2849 invalid address, we call adjust_address_nv directly. */
2850 if (MEM_P (cplx))
2852 emit_move_insn (adjust_address_nv (cplx, imode,
2853 imag_p ? GET_MODE_SIZE (imode) : 0),
2854 val);
2855 return;
2858 /* If the sub-object is at least word sized, then we know that subregging
2859 will work. This special case is important, since store_bit_field
2860 wants to operate on integer modes, and there's rarely an OImode to
2861 correspond to TCmode. */
2862 if (ibitsize >= BITS_PER_WORD
2863 /* For hard regs we have exact predicates. Assume we can split
2864 the original object if it spans an even number of hard regs.
2865 This special case is important for SCmode on 64-bit platforms
2866 where the natural size of floating-point regs is 32-bit. */
2867 || (REG_P (cplx)
2868 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2869 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2871 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2872 imag_p ? GET_MODE_SIZE (imode) : 0);
2873 if (part)
2875 emit_move_insn (part, val);
2876 return;
2878 else
2879 /* simplify_gen_subreg may fail for sub-word MEMs. */
2880 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2883 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
2886 /* Extract one of the components of the complex value CPLX. Extract the
2887 real part if IMAG_P is false, and the imaginary part if it's true. */
2889 static rtx
2890 read_complex_part (rtx cplx, bool imag_p)
2892 enum machine_mode cmode, imode;
2893 unsigned ibitsize;
2895 if (GET_CODE (cplx) == CONCAT)
2896 return XEXP (cplx, imag_p);
2898 cmode = GET_MODE (cplx);
2899 imode = GET_MODE_INNER (cmode);
2900 ibitsize = GET_MODE_BITSIZE (imode);
2902 /* Special case reads from complex constants that got spilled to memory. */
2903 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2905 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2906 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2908 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2909 if (CONSTANT_CLASS_P (part))
2910 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2914 /* For MEMs simplify_gen_subreg may generate an invalid new address
2915 because, e.g., the original address is considered mode-dependent
2916 by the target, which restricts simplify_subreg from invoking
2917 adjust_address_nv. Instead of preparing fallback support for an
2918 invalid address, we call adjust_address_nv directly. */
2919 if (MEM_P (cplx))
2920 return adjust_address_nv (cplx, imode,
2921 imag_p ? GET_MODE_SIZE (imode) : 0);
2923 /* If the sub-object is at least word sized, then we know that subregging
2924 will work. This special case is important, since extract_bit_field
2925 wants to operate on integer modes, and there's rarely an OImode to
2926 correspond to TCmode. */
2927 if (ibitsize >= BITS_PER_WORD
2928 /* For hard regs we have exact predicates. Assume we can split
2929 the original object if it spans an even number of hard regs.
2930 This special case is important for SCmode on 64-bit platforms
2931 where the natural size of floating-point regs is 32-bit. */
2932 || (REG_P (cplx)
2933 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2934 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2936 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2937 imag_p ? GET_MODE_SIZE (imode) : 0);
2938 if (ret)
2939 return ret;
2940 else
2941 /* simplify_gen_subreg may fail for sub-word MEMs. */
2942 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2945 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2946 true, NULL_RTX, imode, imode);
2949 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2950 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2951 represented in NEW_MODE. If FORCE is true, this will never happen, as
2952 we'll force-create a SUBREG if needed. */
2954 static rtx
2955 emit_move_change_mode (enum machine_mode new_mode,
2956 enum machine_mode old_mode, rtx x, bool force)
2958 rtx ret;
2960 if (push_operand (x, GET_MODE (x)))
2962 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
2963 MEM_COPY_ATTRIBUTES (ret, x);
2965 else if (MEM_P (x))
2967 /* We don't have to worry about changing the address since the
2968 size in bytes is supposed to be the same. */
2969 if (reload_in_progress)
2971 /* Copy the MEM to change the mode and move any
2972 substitutions from the old MEM to the new one. */
2973 ret = adjust_address_nv (x, new_mode, 0);
2974 copy_replacements (x, ret);
2976 else
2977 ret = adjust_address (x, new_mode, 0);
2979 else
2981 /* Note that we do want simplify_subreg's behavior of validating
2982 that the new mode is ok for a hard register. If we were to use
2983 simplify_gen_subreg, we would create the subreg, but would
2984 probably run into the target not being able to implement it. */
2985 /* Except, of course, when FORCE is true, when this is exactly what
2986 we want. Which is needed for CCmodes on some targets. */
2987 if (force)
2988 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
2989 else
2990 ret = simplify_subreg (new_mode, x, old_mode, 0);
2993 return ret;
2996 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2997 an integer mode of the same size as MODE. Returns the instruction
2998 emitted, or NULL if such a move could not be generated. */
3000 static rtx
3001 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
3003 enum machine_mode imode;
3004 enum insn_code code;
3006 /* There must exist a mode of the exact size we require. */
3007 imode = int_mode_for_mode (mode);
3008 if (imode == BLKmode)
3009 return NULL_RTX;
3011 /* The target must support moves in this mode. */
3012 code = optab_handler (mov_optab, imode)->insn_code;
3013 if (code == CODE_FOR_nothing)
3014 return NULL_RTX;
3016 x = emit_move_change_mode (imode, mode, x, force);
3017 if (x == NULL_RTX)
3018 return NULL_RTX;
3019 y = emit_move_change_mode (imode, mode, y, force);
3020 if (y == NULL_RTX)
3021 return NULL_RTX;
3022 return emit_insn (GEN_FCN (code) (x, y));
3025 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3026 Return an equivalent MEM that does not use an auto-increment. */
3028 static rtx
3029 emit_move_resolve_push (enum machine_mode mode, rtx x)
3031 enum rtx_code code = GET_CODE (XEXP (x, 0));
3032 HOST_WIDE_INT adjust;
3033 rtx temp;
3035 adjust = GET_MODE_SIZE (mode);
3036 #ifdef PUSH_ROUNDING
3037 adjust = PUSH_ROUNDING (adjust);
3038 #endif
3039 if (code == PRE_DEC || code == POST_DEC)
3040 adjust = -adjust;
3041 else if (code == PRE_MODIFY || code == POST_MODIFY)
3043 rtx expr = XEXP (XEXP (x, 0), 1);
3044 HOST_WIDE_INT val;
3046 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3047 gcc_assert (GET_CODE (XEXP (expr, 1)) == CONST_INT);
3048 val = INTVAL (XEXP (expr, 1));
3049 if (GET_CODE (expr) == MINUS)
3050 val = -val;
3051 gcc_assert (adjust == val || adjust == -val);
3052 adjust = val;
3055 /* Do not use anti_adjust_stack, since we don't want to update
3056 stack_pointer_delta. */
3057 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3058 GEN_INT (adjust), stack_pointer_rtx,
3059 0, OPTAB_LIB_WIDEN);
3060 if (temp != stack_pointer_rtx)
3061 emit_move_insn (stack_pointer_rtx, temp);
3063 switch (code)
3065 case PRE_INC:
3066 case PRE_DEC:
3067 case PRE_MODIFY:
3068 temp = stack_pointer_rtx;
3069 break;
3070 case POST_INC:
3071 case POST_DEC:
3072 case POST_MODIFY:
3073 temp = plus_constant (stack_pointer_rtx, -adjust);
3074 break;
3075 default:
3076 gcc_unreachable ();
3079 return replace_equiv_address (x, temp);
3082 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3083 X is known to satisfy push_operand, and MODE is known to be complex.
3084 Returns the last instruction emitted. */
3087 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
3089 enum machine_mode submode = GET_MODE_INNER (mode);
3090 bool imag_first;
3092 #ifdef PUSH_ROUNDING
3093 unsigned int submodesize = GET_MODE_SIZE (submode);
3095 /* In case we output to the stack, but the size is smaller than the
3096 machine can push exactly, we need to use move instructions. */
3097 if (PUSH_ROUNDING (submodesize) != submodesize)
3099 x = emit_move_resolve_push (mode, x);
3100 return emit_move_insn (x, y);
3102 #endif
3104 /* Note that the real part always precedes the imag part in memory
3105 regardless of machine's endianness. */
3106 switch (GET_CODE (XEXP (x, 0)))
3108 case PRE_DEC:
3109 case POST_DEC:
3110 imag_first = true;
3111 break;
3112 case PRE_INC:
3113 case POST_INC:
3114 imag_first = false;
3115 break;
3116 default:
3117 gcc_unreachable ();
3120 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3121 read_complex_part (y, imag_first));
3122 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3123 read_complex_part (y, !imag_first));
3126 /* A subroutine of emit_move_complex. Perform the move from Y to X
3127 via two moves of the parts. Returns the last instruction emitted. */
3130 emit_move_complex_parts (rtx x, rtx y)
3132 /* Show the output dies here. This is necessary for SUBREGs
3133 of pseudos since we cannot track their lifetimes correctly;
3134 hard regs shouldn't appear here except as return values. */
3135 if (!reload_completed && !reload_in_progress
3136 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3137 emit_clobber (x);
3139 write_complex_part (x, read_complex_part (y, false), false);
3140 write_complex_part (x, read_complex_part (y, true), true);
3142 return get_last_insn ();
3145 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3146 MODE is known to be complex. Returns the last instruction emitted. */
3148 static rtx
3149 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3151 bool try_int;
3153 /* Need to take special care for pushes, to maintain proper ordering
3154 of the data, and possibly extra padding. */
3155 if (push_operand (x, mode))
3156 return emit_move_complex_push (mode, x, y);
3158 /* See if we can coerce the target into moving both values at once. */
3160 /* Move floating point as parts. */
3161 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3162 && optab_handler (mov_optab, GET_MODE_INNER (mode))->insn_code != CODE_FOR_nothing)
3163 try_int = false;
3164 /* Not possible if the values are inherently not adjacent. */
3165 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3166 try_int = false;
3167 /* Is possible if both are registers (or subregs of registers). */
3168 else if (register_operand (x, mode) && register_operand (y, mode))
3169 try_int = true;
3170 /* If one of the operands is a memory, and alignment constraints
3171 are friendly enough, we may be able to do combined memory operations.
3172 We do not attempt this if Y is a constant because that combination is
3173 usually better with the by-parts thing below. */
3174 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3175 && (!STRICT_ALIGNMENT
3176 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3177 try_int = true;
3178 else
3179 try_int = false;
3181 if (try_int)
3183 rtx ret;
3185 /* For memory to memory moves, optimal behavior can be had with the
3186 existing block move logic. */
3187 if (MEM_P (x) && MEM_P (y))
3189 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3190 BLOCK_OP_NO_LIBCALL);
3191 return get_last_insn ();
3194 ret = emit_move_via_integer (mode, x, y, true);
3195 if (ret)
3196 return ret;
3199 return emit_move_complex_parts (x, y);
3202 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3203 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3205 static rtx
3206 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3208 rtx ret;
3210 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3211 if (mode != CCmode)
3213 enum insn_code code = optab_handler (mov_optab, CCmode)->insn_code;
3214 if (code != CODE_FOR_nothing)
3216 x = emit_move_change_mode (CCmode, mode, x, true);
3217 y = emit_move_change_mode (CCmode, mode, y, true);
3218 return emit_insn (GEN_FCN (code) (x, y));
3222 /* Otherwise, find the MODE_INT mode of the same width. */
3223 ret = emit_move_via_integer (mode, x, y, false);
3224 gcc_assert (ret != NULL);
3225 return ret;
3228 /* Return true if word I of OP lies entirely in the
3229 undefined bits of a paradoxical subreg. */
3231 static bool
3232 undefined_operand_subword_p (const_rtx op, int i)
3234 enum machine_mode innermode, innermostmode;
3235 int offset;
3236 if (GET_CODE (op) != SUBREG)
3237 return false;
3238 innermode = GET_MODE (op);
3239 innermostmode = GET_MODE (SUBREG_REG (op));
3240 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3241 /* The SUBREG_BYTE represents offset, as if the value were stored in
3242 memory, except for a paradoxical subreg where we define
3243 SUBREG_BYTE to be 0; undo this exception as in
3244 simplify_subreg. */
3245 if (SUBREG_BYTE (op) == 0
3246 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3248 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3249 if (WORDS_BIG_ENDIAN)
3250 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3251 if (BYTES_BIG_ENDIAN)
3252 offset += difference % UNITS_PER_WORD;
3254 if (offset >= GET_MODE_SIZE (innermostmode)
3255 || offset <= -GET_MODE_SIZE (word_mode))
3256 return true;
3257 return false;
3260 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3261 MODE is any multi-word or full-word mode that lacks a move_insn
3262 pattern. Note that you will get better code if you define such
3263 patterns, even if they must turn into multiple assembler instructions. */
3265 static rtx
3266 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3268 rtx last_insn = 0;
3269 rtx seq, inner;
3270 bool need_clobber;
3271 int i;
3273 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3275 /* If X is a push on the stack, do the push now and replace
3276 X with a reference to the stack pointer. */
3277 if (push_operand (x, mode))
3278 x = emit_move_resolve_push (mode, x);
3280 /* If we are in reload, see if either operand is a MEM whose address
3281 is scheduled for replacement. */
3282 if (reload_in_progress && MEM_P (x)
3283 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3284 x = replace_equiv_address_nv (x, inner);
3285 if (reload_in_progress && MEM_P (y)
3286 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3287 y = replace_equiv_address_nv (y, inner);
3289 start_sequence ();
3291 need_clobber = false;
3292 for (i = 0;
3293 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3294 i++)
3296 rtx xpart = operand_subword (x, i, 1, mode);
3297 rtx ypart;
3299 /* Do not generate code for a move if it would come entirely
3300 from the undefined bits of a paradoxical subreg. */
3301 if (undefined_operand_subword_p (y, i))
3302 continue;
3304 ypart = operand_subword (y, i, 1, mode);
3306 /* If we can't get a part of Y, put Y into memory if it is a
3307 constant. Otherwise, force it into a register. Then we must
3308 be able to get a part of Y. */
3309 if (ypart == 0 && CONSTANT_P (y))
3311 y = use_anchored_address (force_const_mem (mode, y));
3312 ypart = operand_subword (y, i, 1, mode);
3314 else if (ypart == 0)
3315 ypart = operand_subword_force (y, i, mode);
3317 gcc_assert (xpart && ypart);
3319 need_clobber |= (GET_CODE (xpart) == SUBREG);
3321 last_insn = emit_move_insn (xpart, ypart);
3324 seq = get_insns ();
3325 end_sequence ();
3327 /* Show the output dies here. This is necessary for SUBREGs
3328 of pseudos since we cannot track their lifetimes correctly;
3329 hard regs shouldn't appear here except as return values.
3330 We never want to emit such a clobber after reload. */
3331 if (x != y
3332 && ! (reload_in_progress || reload_completed)
3333 && need_clobber != 0)
3334 emit_clobber (x);
3336 emit_insn (seq);
3338 return last_insn;
3341 /* Low level part of emit_move_insn.
3342 Called just like emit_move_insn, but assumes X and Y
3343 are basically valid. */
3346 emit_move_insn_1 (rtx x, rtx y)
3348 enum machine_mode mode = GET_MODE (x);
3349 enum insn_code code;
3351 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3353 code = optab_handler (mov_optab, mode)->insn_code;
3354 if (code != CODE_FOR_nothing)
3355 return emit_insn (GEN_FCN (code) (x, y));
3357 /* Expand complex moves by moving real part and imag part. */
3358 if (COMPLEX_MODE_P (mode))
3359 return emit_move_complex (mode, x, y);
3361 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3362 || ALL_FIXED_POINT_MODE_P (mode))
3364 rtx result = emit_move_via_integer (mode, x, y, true);
3366 /* If we can't find an integer mode, use multi words. */
3367 if (result)
3368 return result;
3369 else
3370 return emit_move_multi_word (mode, x, y);
3373 if (GET_MODE_CLASS (mode) == MODE_CC)
3374 return emit_move_ccmode (mode, x, y);
3376 /* Try using a move pattern for the corresponding integer mode. This is
3377 only safe when simplify_subreg can convert MODE constants into integer
3378 constants. At present, it can only do this reliably if the value
3379 fits within a HOST_WIDE_INT. */
3380 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3382 rtx ret = emit_move_via_integer (mode, x, y, false);
3383 if (ret)
3384 return ret;
3387 return emit_move_multi_word (mode, x, y);
3390 /* Generate code to copy Y into X.
3391 Both Y and X must have the same mode, except that
3392 Y can be a constant with VOIDmode.
3393 This mode cannot be BLKmode; use emit_block_move for that.
3395 Return the last instruction emitted. */
3398 emit_move_insn (rtx x, rtx y)
3400 enum machine_mode mode = GET_MODE (x);
3401 rtx y_cst = NULL_RTX;
3402 rtx last_insn, set;
3404 gcc_assert (mode != BLKmode
3405 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3407 if (CONSTANT_P (y))
3409 if (optimize
3410 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3411 && (last_insn = compress_float_constant (x, y)))
3412 return last_insn;
3414 y_cst = y;
3416 if (!LEGITIMATE_CONSTANT_P (y))
3418 y = force_const_mem (mode, y);
3420 /* If the target's cannot_force_const_mem prevented the spill,
3421 assume that the target's move expanders will also take care
3422 of the non-legitimate constant. */
3423 if (!y)
3424 y = y_cst;
3425 else
3426 y = use_anchored_address (y);
3430 /* If X or Y are memory references, verify that their addresses are valid
3431 for the machine. */
3432 if (MEM_P (x)
3433 && (! memory_address_p (GET_MODE (x), XEXP (x, 0))
3434 && ! push_operand (x, GET_MODE (x))))
3435 x = validize_mem (x);
3437 if (MEM_P (y)
3438 && ! memory_address_p (GET_MODE (y), XEXP (y, 0)))
3439 y = validize_mem (y);
3441 gcc_assert (mode != BLKmode);
3443 last_insn = emit_move_insn_1 (x, y);
3445 if (y_cst && REG_P (x)
3446 && (set = single_set (last_insn)) != NULL_RTX
3447 && SET_DEST (set) == x
3448 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3449 set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
3451 return last_insn;
3454 /* If Y is representable exactly in a narrower mode, and the target can
3455 perform the extension directly from constant or memory, then emit the
3456 move as an extension. */
3458 static rtx
3459 compress_float_constant (rtx x, rtx y)
3461 enum machine_mode dstmode = GET_MODE (x);
3462 enum machine_mode orig_srcmode = GET_MODE (y);
3463 enum machine_mode srcmode;
3464 REAL_VALUE_TYPE r;
3465 int oldcost, newcost;
3466 bool speed = optimize_insn_for_speed_p ();
3468 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3470 if (LEGITIMATE_CONSTANT_P (y))
3471 oldcost = rtx_cost (y, SET, speed);
3472 else
3473 oldcost = rtx_cost (force_const_mem (dstmode, y), SET, speed);
3475 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3476 srcmode != orig_srcmode;
3477 srcmode = GET_MODE_WIDER_MODE (srcmode))
3479 enum insn_code ic;
3480 rtx trunc_y, last_insn;
3482 /* Skip if the target can't extend this way. */
3483 ic = can_extend_p (dstmode, srcmode, 0);
3484 if (ic == CODE_FOR_nothing)
3485 continue;
3487 /* Skip if the narrowed value isn't exact. */
3488 if (! exact_real_truncate (srcmode, &r))
3489 continue;
3491 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3493 if (LEGITIMATE_CONSTANT_P (trunc_y))
3495 /* Skip if the target needs extra instructions to perform
3496 the extension. */
3497 if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
3498 continue;
3499 /* This is valid, but may not be cheaper than the original. */
3500 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3501 if (oldcost < newcost)
3502 continue;
3504 else if (float_extend_from_mem[dstmode][srcmode])
3506 trunc_y = force_const_mem (srcmode, trunc_y);
3507 /* This is valid, but may not be cheaper than the original. */
3508 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3509 if (oldcost < newcost)
3510 continue;
3511 trunc_y = validize_mem (trunc_y);
3513 else
3514 continue;
3516 /* For CSE's benefit, force the compressed constant pool entry
3517 into a new pseudo. This constant may be used in different modes,
3518 and if not, combine will put things back together for us. */
3519 trunc_y = force_reg (srcmode, trunc_y);
3520 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3521 last_insn = get_last_insn ();
3523 if (REG_P (x))
3524 set_unique_reg_note (last_insn, REG_EQUAL, y);
3526 return last_insn;
3529 return NULL_RTX;
3532 /* Pushing data onto the stack. */
3534 /* Push a block of length SIZE (perhaps variable)
3535 and return an rtx to address the beginning of the block.
3536 The value may be virtual_outgoing_args_rtx.
3538 EXTRA is the number of bytes of padding to push in addition to SIZE.
3539 BELOW nonzero means this padding comes at low addresses;
3540 otherwise, the padding comes at high addresses. */
3543 push_block (rtx size, int extra, int below)
3545 rtx temp;
3547 size = convert_modes (Pmode, ptr_mode, size, 1);
3548 if (CONSTANT_P (size))
3549 anti_adjust_stack (plus_constant (size, extra));
3550 else if (REG_P (size) && extra == 0)
3551 anti_adjust_stack (size);
3552 else
3554 temp = copy_to_mode_reg (Pmode, size);
3555 if (extra != 0)
3556 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3557 temp, 0, OPTAB_LIB_WIDEN);
3558 anti_adjust_stack (temp);
3561 #ifndef STACK_GROWS_DOWNWARD
3562 if (0)
3563 #else
3564 if (1)
3565 #endif
3567 temp = virtual_outgoing_args_rtx;
3568 if (extra != 0 && below)
3569 temp = plus_constant (temp, extra);
3571 else
3573 if (GET_CODE (size) == CONST_INT)
3574 temp = plus_constant (virtual_outgoing_args_rtx,
3575 -INTVAL (size) - (below ? 0 : extra));
3576 else if (extra != 0 && !below)
3577 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3578 negate_rtx (Pmode, plus_constant (size, extra)));
3579 else
3580 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3581 negate_rtx (Pmode, size));
3584 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3587 #ifdef PUSH_ROUNDING
3589 /* Emit single push insn. */
3591 static void
3592 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3594 rtx dest_addr;
3595 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3596 rtx dest;
3597 enum insn_code icode;
3598 insn_operand_predicate_fn pred;
3600 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3601 /* If there is push pattern, use it. Otherwise try old way of throwing
3602 MEM representing push operation to move expander. */
3603 icode = optab_handler (push_optab, mode)->insn_code;
3604 if (icode != CODE_FOR_nothing)
3606 if (((pred = insn_data[(int) icode].operand[0].predicate)
3607 && !((*pred) (x, mode))))
3608 x = force_reg (mode, x);
3609 emit_insn (GEN_FCN (icode) (x));
3610 return;
3612 if (GET_MODE_SIZE (mode) == rounded_size)
3613 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3614 /* If we are to pad downward, adjust the stack pointer first and
3615 then store X into the stack location using an offset. This is
3616 because emit_move_insn does not know how to pad; it does not have
3617 access to type. */
3618 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3620 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3621 HOST_WIDE_INT offset;
3623 emit_move_insn (stack_pointer_rtx,
3624 expand_binop (Pmode,
3625 #ifdef STACK_GROWS_DOWNWARD
3626 sub_optab,
3627 #else
3628 add_optab,
3629 #endif
3630 stack_pointer_rtx,
3631 GEN_INT (rounded_size),
3632 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3634 offset = (HOST_WIDE_INT) padding_size;
3635 #ifdef STACK_GROWS_DOWNWARD
3636 if (STACK_PUSH_CODE == POST_DEC)
3637 /* We have already decremented the stack pointer, so get the
3638 previous value. */
3639 offset += (HOST_WIDE_INT) rounded_size;
3640 #else
3641 if (STACK_PUSH_CODE == POST_INC)
3642 /* We have already incremented the stack pointer, so get the
3643 previous value. */
3644 offset -= (HOST_WIDE_INT) rounded_size;
3645 #endif
3646 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3648 else
3650 #ifdef STACK_GROWS_DOWNWARD
3651 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3652 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3653 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3654 #else
3655 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3656 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3657 GEN_INT (rounded_size));
3658 #endif
3659 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3662 dest = gen_rtx_MEM (mode, dest_addr);
3664 if (type != 0)
3666 set_mem_attributes (dest, type, 1);
3668 if (flag_optimize_sibling_calls)
3669 /* Function incoming arguments may overlap with sibling call
3670 outgoing arguments and we cannot allow reordering of reads
3671 from function arguments with stores to outgoing arguments
3672 of sibling calls. */
3673 set_mem_alias_set (dest, 0);
3675 emit_move_insn (dest, x);
3677 #endif
3679 /* Generate code to push X onto the stack, assuming it has mode MODE and
3680 type TYPE.
3681 MODE is redundant except when X is a CONST_INT (since they don't
3682 carry mode info).
3683 SIZE is an rtx for the size of data to be copied (in bytes),
3684 needed only if X is BLKmode.
3686 ALIGN (in bits) is maximum alignment we can assume.
3688 If PARTIAL and REG are both nonzero, then copy that many of the first
3689 bytes of X into registers starting with REG, and push the rest of X.
3690 The amount of space pushed is decreased by PARTIAL bytes.
3691 REG must be a hard register in this case.
3692 If REG is zero but PARTIAL is not, take any all others actions for an
3693 argument partially in registers, but do not actually load any
3694 registers.
3696 EXTRA is the amount in bytes of extra space to leave next to this arg.
3697 This is ignored if an argument block has already been allocated.
3699 On a machine that lacks real push insns, ARGS_ADDR is the address of
3700 the bottom of the argument block for this call. We use indexing off there
3701 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3702 argument block has not been preallocated.
3704 ARGS_SO_FAR is the size of args previously pushed for this call.
3706 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3707 for arguments passed in registers. If nonzero, it will be the number
3708 of bytes required. */
3710 void
3711 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3712 unsigned int align, int partial, rtx reg, int extra,
3713 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3714 rtx alignment_pad)
3716 rtx xinner;
3717 enum direction stack_direction
3718 #ifdef STACK_GROWS_DOWNWARD
3719 = downward;
3720 #else
3721 = upward;
3722 #endif
3724 /* Decide where to pad the argument: `downward' for below,
3725 `upward' for above, or `none' for don't pad it.
3726 Default is below for small data on big-endian machines; else above. */
3727 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3729 /* Invert direction if stack is post-decrement.
3730 FIXME: why? */
3731 if (STACK_PUSH_CODE == POST_DEC)
3732 if (where_pad != none)
3733 where_pad = (where_pad == downward ? upward : downward);
3735 xinner = x;
3737 if (mode == BLKmode
3738 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
3740 /* Copy a block into the stack, entirely or partially. */
3742 rtx temp;
3743 int used;
3744 int offset;
3745 int skip;
3747 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3748 used = partial - offset;
3750 if (mode != BLKmode)
3752 /* A value is to be stored in an insufficiently aligned
3753 stack slot; copy via a suitably aligned slot if
3754 necessary. */
3755 size = GEN_INT (GET_MODE_SIZE (mode));
3756 if (!MEM_P (xinner))
3758 temp = assign_temp (type, 0, 1, 1);
3759 emit_move_insn (temp, xinner);
3760 xinner = temp;
3764 gcc_assert (size);
3766 /* USED is now the # of bytes we need not copy to the stack
3767 because registers will take care of them. */
3769 if (partial != 0)
3770 xinner = adjust_address (xinner, BLKmode, used);
3772 /* If the partial register-part of the arg counts in its stack size,
3773 skip the part of stack space corresponding to the registers.
3774 Otherwise, start copying to the beginning of the stack space,
3775 by setting SKIP to 0. */
3776 skip = (reg_parm_stack_space == 0) ? 0 : used;
3778 #ifdef PUSH_ROUNDING
3779 /* Do it with several push insns if that doesn't take lots of insns
3780 and if there is no difficulty with push insns that skip bytes
3781 on the stack for alignment purposes. */
3782 if (args_addr == 0
3783 && PUSH_ARGS
3784 && GET_CODE (size) == CONST_INT
3785 && skip == 0
3786 && MEM_ALIGN (xinner) >= align
3787 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3788 /* Here we avoid the case of a structure whose weak alignment
3789 forces many pushes of a small amount of data,
3790 and such small pushes do rounding that causes trouble. */
3791 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3792 || align >= BIGGEST_ALIGNMENT
3793 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3794 == (align / BITS_PER_UNIT)))
3795 && PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3797 /* Push padding now if padding above and stack grows down,
3798 or if padding below and stack grows up.
3799 But if space already allocated, this has already been done. */
3800 if (extra && args_addr == 0
3801 && where_pad != none && where_pad != stack_direction)
3802 anti_adjust_stack (GEN_INT (extra));
3804 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3806 else
3807 #endif /* PUSH_ROUNDING */
3809 rtx target;
3811 /* Otherwise make space on the stack and copy the data
3812 to the address of that space. */
3814 /* Deduct words put into registers from the size we must copy. */
3815 if (partial != 0)
3817 if (GET_CODE (size) == CONST_INT)
3818 size = GEN_INT (INTVAL (size) - used);
3819 else
3820 size = expand_binop (GET_MODE (size), sub_optab, size,
3821 GEN_INT (used), NULL_RTX, 0,
3822 OPTAB_LIB_WIDEN);
3825 /* Get the address of the stack space.
3826 In this case, we do not deal with EXTRA separately.
3827 A single stack adjust will do. */
3828 if (! args_addr)
3830 temp = push_block (size, extra, where_pad == downward);
3831 extra = 0;
3833 else if (GET_CODE (args_so_far) == CONST_INT)
3834 temp = memory_address (BLKmode,
3835 plus_constant (args_addr,
3836 skip + INTVAL (args_so_far)));
3837 else
3838 temp = memory_address (BLKmode,
3839 plus_constant (gen_rtx_PLUS (Pmode,
3840 args_addr,
3841 args_so_far),
3842 skip));
3844 if (!ACCUMULATE_OUTGOING_ARGS)
3846 /* If the source is referenced relative to the stack pointer,
3847 copy it to another register to stabilize it. We do not need
3848 to do this if we know that we won't be changing sp. */
3850 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3851 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3852 temp = copy_to_reg (temp);
3855 target = gen_rtx_MEM (BLKmode, temp);
3857 /* We do *not* set_mem_attributes here, because incoming arguments
3858 may overlap with sibling call outgoing arguments and we cannot
3859 allow reordering of reads from function arguments with stores
3860 to outgoing arguments of sibling calls. We do, however, want
3861 to record the alignment of the stack slot. */
3862 /* ALIGN may well be better aligned than TYPE, e.g. due to
3863 PARM_BOUNDARY. Assume the caller isn't lying. */
3864 set_mem_align (target, align);
3866 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
3869 else if (partial > 0)
3871 /* Scalar partly in registers. */
3873 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3874 int i;
3875 int not_stack;
3876 /* # bytes of start of argument
3877 that we must make space for but need not store. */
3878 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3879 int args_offset = INTVAL (args_so_far);
3880 int skip;
3882 /* Push padding now if padding above and stack grows down,
3883 or if padding below and stack grows up.
3884 But if space already allocated, this has already been done. */
3885 if (extra && args_addr == 0
3886 && where_pad != none && where_pad != stack_direction)
3887 anti_adjust_stack (GEN_INT (extra));
3889 /* If we make space by pushing it, we might as well push
3890 the real data. Otherwise, we can leave OFFSET nonzero
3891 and leave the space uninitialized. */
3892 if (args_addr == 0)
3893 offset = 0;
3895 /* Now NOT_STACK gets the number of words that we don't need to
3896 allocate on the stack. Convert OFFSET to words too. */
3897 not_stack = (partial - offset) / UNITS_PER_WORD;
3898 offset /= UNITS_PER_WORD;
3900 /* If the partial register-part of the arg counts in its stack size,
3901 skip the part of stack space corresponding to the registers.
3902 Otherwise, start copying to the beginning of the stack space,
3903 by setting SKIP to 0. */
3904 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3906 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3907 x = validize_mem (force_const_mem (mode, x));
3909 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3910 SUBREGs of such registers are not allowed. */
3911 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3912 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3913 x = copy_to_reg (x);
3915 /* Loop over all the words allocated on the stack for this arg. */
3916 /* We can do it by words, because any scalar bigger than a word
3917 has a size a multiple of a word. */
3918 #ifndef PUSH_ARGS_REVERSED
3919 for (i = not_stack; i < size; i++)
3920 #else
3921 for (i = size - 1; i >= not_stack; i--)
3922 #endif
3923 if (i >= not_stack + offset)
3924 emit_push_insn (operand_subword_force (x, i, mode),
3925 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3926 0, args_addr,
3927 GEN_INT (args_offset + ((i - not_stack + skip)
3928 * UNITS_PER_WORD)),
3929 reg_parm_stack_space, alignment_pad);
3931 else
3933 rtx addr;
3934 rtx dest;
3936 /* Push padding now if padding above and stack grows down,
3937 or if padding below and stack grows up.
3938 But if space already allocated, this has already been done. */
3939 if (extra && args_addr == 0
3940 && where_pad != none && where_pad != stack_direction)
3941 anti_adjust_stack (GEN_INT (extra));
3943 #ifdef PUSH_ROUNDING
3944 if (args_addr == 0 && PUSH_ARGS)
3945 emit_single_push_insn (mode, x, type);
3946 else
3947 #endif
3949 if (GET_CODE (args_so_far) == CONST_INT)
3950 addr
3951 = memory_address (mode,
3952 plus_constant (args_addr,
3953 INTVAL (args_so_far)));
3954 else
3955 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3956 args_so_far));
3957 dest = gen_rtx_MEM (mode, addr);
3959 /* We do *not* set_mem_attributes here, because incoming arguments
3960 may overlap with sibling call outgoing arguments and we cannot
3961 allow reordering of reads from function arguments with stores
3962 to outgoing arguments of sibling calls. We do, however, want
3963 to record the alignment of the stack slot. */
3964 /* ALIGN may well be better aligned than TYPE, e.g. due to
3965 PARM_BOUNDARY. Assume the caller isn't lying. */
3966 set_mem_align (dest, align);
3968 emit_move_insn (dest, x);
3972 /* If part should go in registers, copy that part
3973 into the appropriate registers. Do this now, at the end,
3974 since mem-to-mem copies above may do function calls. */
3975 if (partial > 0 && reg != 0)
3977 /* Handle calls that pass values in multiple non-contiguous locations.
3978 The Irix 6 ABI has examples of this. */
3979 if (GET_CODE (reg) == PARALLEL)
3980 emit_group_load (reg, x, type, -1);
3981 else
3983 gcc_assert (partial % UNITS_PER_WORD == 0);
3984 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
3988 if (extra && args_addr == 0 && where_pad == stack_direction)
3989 anti_adjust_stack (GEN_INT (extra));
3991 if (alignment_pad && args_addr == 0)
3992 anti_adjust_stack (alignment_pad);
3995 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3996 operations. */
3998 static rtx
3999 get_subtarget (rtx x)
4001 return (optimize
4002 || x == 0
4003 /* Only registers can be subtargets. */
4004 || !REG_P (x)
4005 /* Don't use hard regs to avoid extending their life. */
4006 || REGNO (x) < FIRST_PSEUDO_REGISTER
4007 ? 0 : x);
4010 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4011 FIELD is a bitfield. Returns true if the optimization was successful,
4012 and there's nothing else to do. */
4014 static bool
4015 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
4016 unsigned HOST_WIDE_INT bitpos,
4017 enum machine_mode mode1, rtx str_rtx,
4018 tree to, tree src)
4020 enum machine_mode str_mode = GET_MODE (str_rtx);
4021 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
4022 tree op0, op1;
4023 rtx value, result;
4024 optab binop;
4026 if (mode1 != VOIDmode
4027 || bitsize >= BITS_PER_WORD
4028 || str_bitsize > BITS_PER_WORD
4029 || TREE_SIDE_EFFECTS (to)
4030 || TREE_THIS_VOLATILE (to))
4031 return false;
4033 STRIP_NOPS (src);
4034 if (!BINARY_CLASS_P (src)
4035 || TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4036 return false;
4038 op0 = TREE_OPERAND (src, 0);
4039 op1 = TREE_OPERAND (src, 1);
4040 STRIP_NOPS (op0);
4042 if (!operand_equal_p (to, op0, 0))
4043 return false;
4045 if (MEM_P (str_rtx))
4047 unsigned HOST_WIDE_INT offset1;
4049 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4050 str_mode = word_mode;
4051 str_mode = get_best_mode (bitsize, bitpos,
4052 MEM_ALIGN (str_rtx), str_mode, 0);
4053 if (str_mode == VOIDmode)
4054 return false;
4055 str_bitsize = GET_MODE_BITSIZE (str_mode);
4057 offset1 = bitpos;
4058 bitpos %= str_bitsize;
4059 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4060 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4062 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4063 return false;
4065 /* If the bit field covers the whole REG/MEM, store_field
4066 will likely generate better code. */
4067 if (bitsize >= str_bitsize)
4068 return false;
4070 /* We can't handle fields split across multiple entities. */
4071 if (bitpos + bitsize > str_bitsize)
4072 return false;
4074 if (BYTES_BIG_ENDIAN)
4075 bitpos = str_bitsize - bitpos - bitsize;
4077 switch (TREE_CODE (src))
4079 case PLUS_EXPR:
4080 case MINUS_EXPR:
4081 /* For now, just optimize the case of the topmost bitfield
4082 where we don't need to do any masking and also
4083 1 bit bitfields where xor can be used.
4084 We might win by one instruction for the other bitfields
4085 too if insv/extv instructions aren't used, so that
4086 can be added later. */
4087 if (bitpos + bitsize != str_bitsize
4088 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4089 break;
4091 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4092 value = convert_modes (str_mode,
4093 TYPE_MODE (TREE_TYPE (op1)), value,
4094 TYPE_UNSIGNED (TREE_TYPE (op1)));
4096 /* We may be accessing data outside the field, which means
4097 we can alias adjacent data. */
4098 if (MEM_P (str_rtx))
4100 str_rtx = shallow_copy_rtx (str_rtx);
4101 set_mem_alias_set (str_rtx, 0);
4102 set_mem_expr (str_rtx, 0);
4105 binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
4106 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4108 value = expand_and (str_mode, value, const1_rtx, NULL);
4109 binop = xor_optab;
4111 value = expand_shift (LSHIFT_EXPR, str_mode, value,
4112 build_int_cst (NULL_TREE, bitpos),
4113 NULL_RTX, 1);
4114 result = expand_binop (str_mode, binop, str_rtx,
4115 value, str_rtx, 1, OPTAB_WIDEN);
4116 if (result != str_rtx)
4117 emit_move_insn (str_rtx, result);
4118 return true;
4120 case BIT_IOR_EXPR:
4121 case BIT_XOR_EXPR:
4122 if (TREE_CODE (op1) != INTEGER_CST)
4123 break;
4124 value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), EXPAND_NORMAL);
4125 value = convert_modes (GET_MODE (str_rtx),
4126 TYPE_MODE (TREE_TYPE (op1)), value,
4127 TYPE_UNSIGNED (TREE_TYPE (op1)));
4129 /* We may be accessing data outside the field, which means
4130 we can alias adjacent data. */
4131 if (MEM_P (str_rtx))
4133 str_rtx = shallow_copy_rtx (str_rtx);
4134 set_mem_alias_set (str_rtx, 0);
4135 set_mem_expr (str_rtx, 0);
4138 binop = TREE_CODE (src) == BIT_IOR_EXPR ? ior_optab : xor_optab;
4139 if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
4141 rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
4142 - 1);
4143 value = expand_and (GET_MODE (str_rtx), value, mask,
4144 NULL_RTX);
4146 value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
4147 build_int_cst (NULL_TREE, bitpos),
4148 NULL_RTX, 1);
4149 result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
4150 value, str_rtx, 1, OPTAB_WIDEN);
4151 if (result != str_rtx)
4152 emit_move_insn (str_rtx, result);
4153 return true;
4155 default:
4156 break;
4159 return false;
4163 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4164 is true, try generating a nontemporal store. */
4166 void
4167 expand_assignment (tree to, tree from, bool nontemporal)
4169 rtx to_rtx = 0;
4170 rtx result;
4172 /* Don't crash if the lhs of the assignment was erroneous. */
4173 if (TREE_CODE (to) == ERROR_MARK)
4175 result = expand_normal (from);
4176 return;
4179 /* Optimize away no-op moves without side-effects. */
4180 if (operand_equal_p (to, from, 0))
4181 return;
4183 /* Assignment of a structure component needs special treatment
4184 if the structure component's rtx is not simply a MEM.
4185 Assignment of an array element at a constant index, and assignment of
4186 an array element in an unaligned packed structure field, has the same
4187 problem. */
4188 if (handled_component_p (to)
4189 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4191 enum machine_mode mode1;
4192 HOST_WIDE_INT bitsize, bitpos;
4193 tree offset;
4194 int unsignedp;
4195 int volatilep = 0;
4196 tree tem;
4198 push_temp_slots ();
4199 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4200 &unsignedp, &volatilep, true);
4202 /* If we are going to use store_bit_field and extract_bit_field,
4203 make sure to_rtx will be safe for multiple use. */
4205 to_rtx = expand_normal (tem);
4207 if (offset != 0)
4209 rtx offset_rtx;
4211 if (!MEM_P (to_rtx))
4213 /* We can get constant negative offsets into arrays with broken
4214 user code. Translate this to a trap instead of ICEing. */
4215 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4216 expand_builtin_trap ();
4217 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4220 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4221 #ifdef POINTERS_EXTEND_UNSIGNED
4222 if (GET_MODE (offset_rtx) != Pmode)
4223 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
4224 #else
4225 if (GET_MODE (offset_rtx) != ptr_mode)
4226 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
4227 #endif
4229 /* A constant address in TO_RTX can have VOIDmode, we must not try
4230 to call force_reg for that case. Avoid that case. */
4231 if (MEM_P (to_rtx)
4232 && GET_MODE (to_rtx) == BLKmode
4233 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
4234 && bitsize > 0
4235 && (bitpos % bitsize) == 0
4236 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4237 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4239 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4240 bitpos = 0;
4243 to_rtx = offset_address (to_rtx, offset_rtx,
4244 highest_pow2_factor_for_target (to,
4245 offset));
4248 /* Handle expand_expr of a complex value returning a CONCAT. */
4249 if (GET_CODE (to_rtx) == CONCAT)
4251 if (TREE_CODE (TREE_TYPE (from)) == COMPLEX_TYPE)
4253 gcc_assert (bitpos == 0);
4254 result = store_expr (from, to_rtx, false, nontemporal);
4256 else
4258 gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
4259 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4260 nontemporal);
4263 else
4265 if (MEM_P (to_rtx))
4267 /* If the field is at offset zero, we could have been given the
4268 DECL_RTX of the parent struct. Don't munge it. */
4269 to_rtx = shallow_copy_rtx (to_rtx);
4271 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4273 /* Deal with volatile and readonly fields. The former is only
4274 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4275 if (volatilep)
4276 MEM_VOLATILE_P (to_rtx) = 1;
4277 if (component_uses_parent_alias_set (to))
4278 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4281 if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
4282 to_rtx, to, from))
4283 result = NULL;
4284 else
4285 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
4286 TREE_TYPE (tem), get_alias_set (to),
4287 nontemporal);
4290 if (result)
4291 preserve_temp_slots (result);
4292 free_temp_slots ();
4293 pop_temp_slots ();
4294 return;
4297 /* If the rhs is a function call and its value is not an aggregate,
4298 call the function before we start to compute the lhs.
4299 This is needed for correct code for cases such as
4300 val = setjmp (buf) on machines where reference to val
4301 requires loading up part of an address in a separate insn.
4303 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4304 since it might be a promoted variable where the zero- or sign- extension
4305 needs to be done. Handling this in the normal way is safe because no
4306 computation is done before the call. */
4307 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4308 && COMPLETE_TYPE_P (TREE_TYPE (from))
4309 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4310 && ! ((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
4311 && REG_P (DECL_RTL (to))))
4313 rtx value;
4315 push_temp_slots ();
4316 value = expand_normal (from);
4317 if (to_rtx == 0)
4318 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4320 /* Handle calls that return values in multiple non-contiguous locations.
4321 The Irix 6 ABI has examples of this. */
4322 if (GET_CODE (to_rtx) == PARALLEL)
4323 emit_group_load (to_rtx, value, TREE_TYPE (from),
4324 int_size_in_bytes (TREE_TYPE (from)));
4325 else if (GET_MODE (to_rtx) == BLKmode)
4326 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4327 else
4329 if (POINTER_TYPE_P (TREE_TYPE (to)))
4330 value = convert_memory_address (GET_MODE (to_rtx), value);
4331 emit_move_insn (to_rtx, value);
4333 preserve_temp_slots (to_rtx);
4334 free_temp_slots ();
4335 pop_temp_slots ();
4336 return;
4339 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4340 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4342 if (to_rtx == 0)
4343 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4345 /* Don't move directly into a return register. */
4346 if (TREE_CODE (to) == RESULT_DECL
4347 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4349 rtx temp;
4351 push_temp_slots ();
4352 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
4354 if (GET_CODE (to_rtx) == PARALLEL)
4355 emit_group_load (to_rtx, temp, TREE_TYPE (from),
4356 int_size_in_bytes (TREE_TYPE (from)));
4357 else
4358 emit_move_insn (to_rtx, temp);
4360 preserve_temp_slots (to_rtx);
4361 free_temp_slots ();
4362 pop_temp_slots ();
4363 return;
4366 /* In case we are returning the contents of an object which overlaps
4367 the place the value is being stored, use a safe function when copying
4368 a value through a pointer into a structure value return block. */
4369 if (TREE_CODE (to) == RESULT_DECL && TREE_CODE (from) == INDIRECT_REF
4370 && cfun->returns_struct
4371 && !cfun->returns_pcc_struct)
4373 rtx from_rtx, size;
4375 push_temp_slots ();
4376 size = expr_size (from);
4377 from_rtx = expand_normal (from);
4379 emit_library_call (memmove_libfunc, LCT_NORMAL,
4380 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4381 XEXP (from_rtx, 0), Pmode,
4382 convert_to_mode (TYPE_MODE (sizetype),
4383 size, TYPE_UNSIGNED (sizetype)),
4384 TYPE_MODE (sizetype));
4386 preserve_temp_slots (to_rtx);
4387 free_temp_slots ();
4388 pop_temp_slots ();
4389 return;
4392 /* Compute FROM and store the value in the rtx we got. */
4394 push_temp_slots ();
4395 result = store_expr (from, to_rtx, 0, nontemporal);
4396 preserve_temp_slots (result);
4397 free_temp_slots ();
4398 pop_temp_slots ();
4399 return;
4402 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
4403 succeeded, false otherwise. */
4405 static bool
4406 emit_storent_insn (rtx to, rtx from)
4408 enum machine_mode mode = GET_MODE (to), imode;
4409 enum insn_code code = optab_handler (storent_optab, mode)->insn_code;
4410 rtx pattern;
4412 if (code == CODE_FOR_nothing)
4413 return false;
4415 imode = insn_data[code].operand[0].mode;
4416 if (!insn_data[code].operand[0].predicate (to, imode))
4417 return false;
4419 imode = insn_data[code].operand[1].mode;
4420 if (!insn_data[code].operand[1].predicate (from, imode))
4422 from = copy_to_mode_reg (imode, from);
4423 if (!insn_data[code].operand[1].predicate (from, imode))
4424 return false;
4427 pattern = GEN_FCN (code) (to, from);
4428 if (pattern == NULL_RTX)
4429 return false;
4431 emit_insn (pattern);
4432 return true;
4435 /* Generate code for computing expression EXP,
4436 and storing the value into TARGET.
4438 If the mode is BLKmode then we may return TARGET itself.
4439 It turns out that in BLKmode it doesn't cause a problem.
4440 because C has no operators that could combine two different
4441 assignments into the same BLKmode object with different values
4442 with no sequence point. Will other languages need this to
4443 be more thorough?
4445 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4446 stack, and block moves may need to be treated specially.
4448 If NONTEMPORAL is true, try using a nontemporal store instruction. */
4451 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
4453 rtx temp;
4454 rtx alt_rtl = NULL_RTX;
4455 int dont_return_target = 0;
4457 if (VOID_TYPE_P (TREE_TYPE (exp)))
4459 /* C++ can generate ?: expressions with a throw expression in one
4460 branch and an rvalue in the other. Here, we resolve attempts to
4461 store the throw expression's nonexistent result. */
4462 gcc_assert (!call_param_p);
4463 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
4464 return NULL_RTX;
4466 if (TREE_CODE (exp) == COMPOUND_EXPR)
4468 /* Perform first part of compound expression, then assign from second
4469 part. */
4470 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4471 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4472 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4473 nontemporal);
4475 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4477 /* For conditional expression, get safe form of the target. Then
4478 test the condition, doing the appropriate assignment on either
4479 side. This avoids the creation of unnecessary temporaries.
4480 For non-BLKmode, it is more efficient not to do this. */
4482 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4484 do_pending_stack_adjust ();
4485 NO_DEFER_POP;
4486 jumpifnot (TREE_OPERAND (exp, 0), lab1);
4487 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4488 nontemporal);
4489 emit_jump_insn (gen_jump (lab2));
4490 emit_barrier ();
4491 emit_label (lab1);
4492 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
4493 nontemporal);
4494 emit_label (lab2);
4495 OK_DEFER_POP;
4497 return NULL_RTX;
4499 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4500 /* If this is a scalar in a register that is stored in a wider mode
4501 than the declared mode, compute the result into its declared mode
4502 and then convert to the wider mode. Our value is the computed
4503 expression. */
4505 rtx inner_target = 0;
4507 /* We can do the conversion inside EXP, which will often result
4508 in some optimizations. Do the conversion in two steps: first
4509 change the signedness, if needed, then the extend. But don't
4510 do this if the type of EXP is a subtype of something else
4511 since then the conversion might involve more than just
4512 converting modes. */
4513 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4514 && TREE_TYPE (TREE_TYPE (exp)) == 0
4515 && GET_MODE_PRECISION (GET_MODE (target))
4516 == TYPE_PRECISION (TREE_TYPE (exp)))
4518 if (TYPE_UNSIGNED (TREE_TYPE (exp))
4519 != SUBREG_PROMOTED_UNSIGNED_P (target))
4521 /* Some types, e.g. Fortran's logical*4, won't have a signed
4522 version, so use the mode instead. */
4523 tree ntype
4524 = (signed_or_unsigned_type_for
4525 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)));
4526 if (ntype == NULL)
4527 ntype = lang_hooks.types.type_for_mode
4528 (TYPE_MODE (TREE_TYPE (exp)),
4529 SUBREG_PROMOTED_UNSIGNED_P (target));
4531 exp = fold_convert (ntype, exp);
4534 exp = fold_convert (lang_hooks.types.type_for_mode
4535 (GET_MODE (SUBREG_REG (target)),
4536 SUBREG_PROMOTED_UNSIGNED_P (target)),
4537 exp);
4539 inner_target = SUBREG_REG (target);
4542 temp = expand_expr (exp, inner_target, VOIDmode,
4543 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4545 /* If TEMP is a VOIDmode constant, use convert_modes to make
4546 sure that we properly convert it. */
4547 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4549 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4550 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4551 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4552 GET_MODE (target), temp,
4553 SUBREG_PROMOTED_UNSIGNED_P (target));
4556 convert_move (SUBREG_REG (target), temp,
4557 SUBREG_PROMOTED_UNSIGNED_P (target));
4559 return NULL_RTX;
4561 else if (TREE_CODE (exp) == STRING_CST
4562 && !nontemporal && !call_param_p
4563 && TREE_STRING_LENGTH (exp) > 0
4564 && TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
4566 /* Optimize initialization of an array with a STRING_CST. */
4567 HOST_WIDE_INT exp_len, str_copy_len;
4568 rtx dest_mem;
4570 exp_len = int_expr_size (exp);
4571 if (exp_len <= 0)
4572 goto normal_expr;
4574 str_copy_len = strlen (TREE_STRING_POINTER (exp));
4575 if (str_copy_len < TREE_STRING_LENGTH (exp) - 1)
4576 goto normal_expr;
4578 str_copy_len = TREE_STRING_LENGTH (exp);
4579 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0)
4581 str_copy_len += STORE_MAX_PIECES - 1;
4582 str_copy_len &= ~(STORE_MAX_PIECES - 1);
4584 str_copy_len = MIN (str_copy_len, exp_len);
4585 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
4586 CONST_CAST(char *, TREE_STRING_POINTER (exp)),
4587 MEM_ALIGN (target), false))
4588 goto normal_expr;
4590 dest_mem = target;
4592 dest_mem = store_by_pieces (dest_mem,
4593 str_copy_len, builtin_strncpy_read_str,
4594 CONST_CAST(char *, TREE_STRING_POINTER (exp)),
4595 MEM_ALIGN (target), false,
4596 exp_len > str_copy_len ? 1 : 0);
4597 if (exp_len > str_copy_len)
4598 clear_storage (adjust_address (dest_mem, BLKmode, 0),
4599 GEN_INT (exp_len - str_copy_len),
4600 BLOCK_OP_NORMAL);
4601 return NULL_RTX;
4603 else
4605 rtx tmp_target;
4607 normal_expr:
4608 /* If we want to use a nontemporal store, force the value to
4609 register first. */
4610 tmp_target = nontemporal ? NULL_RTX : target;
4611 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
4612 (call_param_p
4613 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
4614 &alt_rtl);
4615 /* Return TARGET if it's a specified hardware register.
4616 If TARGET is a volatile mem ref, either return TARGET
4617 or return a reg copied *from* TARGET; ANSI requires this.
4619 Otherwise, if TEMP is not TARGET, return TEMP
4620 if it is constant (for efficiency),
4621 or if we really want the correct value. */
4622 if (!(target && REG_P (target)
4623 && REGNO (target) < FIRST_PSEUDO_REGISTER)
4624 && !(MEM_P (target) && MEM_VOLATILE_P (target))
4625 && ! rtx_equal_p (temp, target)
4626 && CONSTANT_P (temp))
4627 dont_return_target = 1;
4630 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4631 the same as that of TARGET, adjust the constant. This is needed, for
4632 example, in case it is a CONST_DOUBLE and we want only a word-sized
4633 value. */
4634 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
4635 && TREE_CODE (exp) != ERROR_MARK
4636 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
4637 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4638 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
4640 /* If value was not generated in the target, store it there.
4641 Convert the value to TARGET's type first if necessary and emit the
4642 pending incrementations that have been queued when expanding EXP.
4643 Note that we cannot emit the whole queue blindly because this will
4644 effectively disable the POST_INC optimization later.
4646 If TEMP and TARGET compare equal according to rtx_equal_p, but
4647 one or both of them are volatile memory refs, we have to distinguish
4648 two cases:
4649 - expand_expr has used TARGET. In this case, we must not generate
4650 another copy. This can be detected by TARGET being equal according
4651 to == .
4652 - expand_expr has not used TARGET - that means that the source just
4653 happens to have the same RTX form. Since temp will have been created
4654 by expand_expr, it will compare unequal according to == .
4655 We must generate a copy in this case, to reach the correct number
4656 of volatile memory references. */
4658 if ((! rtx_equal_p (temp, target)
4659 || (temp != target && (side_effects_p (temp)
4660 || side_effects_p (target))))
4661 && TREE_CODE (exp) != ERROR_MARK
4662 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4663 but TARGET is not valid memory reference, TEMP will differ
4664 from TARGET although it is really the same location. */
4665 && !(alt_rtl && rtx_equal_p (alt_rtl, target))
4666 /* If there's nothing to copy, don't bother. Don't call
4667 expr_size unless necessary, because some front-ends (C++)
4668 expr_size-hook must not be given objects that are not
4669 supposed to be bit-copied or bit-initialized. */
4670 && expr_size (exp) != const0_rtx)
4672 if (GET_MODE (temp) != GET_MODE (target)
4673 && GET_MODE (temp) != VOIDmode)
4675 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
4676 if (dont_return_target)
4678 /* In this case, we will return TEMP,
4679 so make sure it has the proper mode.
4680 But don't forget to store the value into TARGET. */
4681 temp = convert_to_mode (GET_MODE (target), temp, unsignedp);
4682 emit_move_insn (target, temp);
4684 else if (GET_MODE (target) == BLKmode
4685 || GET_MODE (temp) == BLKmode)
4686 emit_block_move (target, temp, expr_size (exp),
4687 (call_param_p
4688 ? BLOCK_OP_CALL_PARM
4689 : BLOCK_OP_NORMAL));
4690 else
4691 convert_move (target, temp, unsignedp);
4694 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
4696 /* Handle copying a string constant into an array. The string
4697 constant may be shorter than the array. So copy just the string's
4698 actual length, and clear the rest. First get the size of the data
4699 type of the string, which is actually the size of the target. */
4700 rtx size = expr_size (exp);
4702 if (GET_CODE (size) == CONST_INT
4703 && INTVAL (size) < TREE_STRING_LENGTH (exp))
4704 emit_block_move (target, temp, size,
4705 (call_param_p
4706 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4707 else
4709 /* Compute the size of the data to copy from the string. */
4710 tree copy_size
4711 = size_binop (MIN_EXPR,
4712 make_tree (sizetype, size),
4713 size_int (TREE_STRING_LENGTH (exp)));
4714 rtx copy_size_rtx
4715 = expand_expr (copy_size, NULL_RTX, VOIDmode,
4716 (call_param_p
4717 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
4718 rtx label = 0;
4720 /* Copy that much. */
4721 copy_size_rtx = convert_to_mode (ptr_mode, copy_size_rtx,
4722 TYPE_UNSIGNED (sizetype));
4723 emit_block_move (target, temp, copy_size_rtx,
4724 (call_param_p
4725 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4727 /* Figure out how much is left in TARGET that we have to clear.
4728 Do all calculations in ptr_mode. */
4729 if (GET_CODE (copy_size_rtx) == CONST_INT)
4731 size = plus_constant (size, -INTVAL (copy_size_rtx));
4732 target = adjust_address (target, BLKmode,
4733 INTVAL (copy_size_rtx));
4735 else
4737 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
4738 copy_size_rtx, NULL_RTX, 0,
4739 OPTAB_LIB_WIDEN);
4741 #ifdef POINTERS_EXTEND_UNSIGNED
4742 if (GET_MODE (copy_size_rtx) != Pmode)
4743 copy_size_rtx = convert_to_mode (Pmode, copy_size_rtx,
4744 TYPE_UNSIGNED (sizetype));
4745 #endif
4747 target = offset_address (target, copy_size_rtx,
4748 highest_pow2_factor (copy_size));
4749 label = gen_label_rtx ();
4750 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
4751 GET_MODE (size), 0, label);
4754 if (size != const0_rtx)
4755 clear_storage (target, size, BLOCK_OP_NORMAL);
4757 if (label)
4758 emit_label (label);
4761 /* Handle calls that return values in multiple non-contiguous locations.
4762 The Irix 6 ABI has examples of this. */
4763 else if (GET_CODE (target) == PARALLEL)
4764 emit_group_load (target, temp, TREE_TYPE (exp),
4765 int_size_in_bytes (TREE_TYPE (exp)));
4766 else if (GET_MODE (temp) == BLKmode)
4767 emit_block_move (target, temp, expr_size (exp),
4768 (call_param_p
4769 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4770 else if (nontemporal
4771 && emit_storent_insn (target, temp))
4772 /* If we managed to emit a nontemporal store, there is nothing else to
4773 do. */
4775 else
4777 temp = force_operand (temp, target);
4778 if (temp != target)
4779 emit_move_insn (target, temp);
4783 return NULL_RTX;
4786 /* Helper for categorize_ctor_elements. Identical interface. */
4788 static bool
4789 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4790 HOST_WIDE_INT *p_elt_count,
4791 bool *p_must_clear)
4793 unsigned HOST_WIDE_INT idx;
4794 HOST_WIDE_INT nz_elts, elt_count;
4795 tree value, purpose;
4797 /* Whether CTOR is a valid constant initializer, in accordance with what
4798 initializer_constant_valid_p does. If inferred from the constructor
4799 elements, true until proven otherwise. */
4800 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
4801 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
4803 nz_elts = 0;
4804 elt_count = 0;
4806 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
4808 HOST_WIDE_INT mult;
4810 mult = 1;
4811 if (TREE_CODE (purpose) == RANGE_EXPR)
4813 tree lo_index = TREE_OPERAND (purpose, 0);
4814 tree hi_index = TREE_OPERAND (purpose, 1);
4816 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
4817 mult = (tree_low_cst (hi_index, 1)
4818 - tree_low_cst (lo_index, 1) + 1);
4821 switch (TREE_CODE (value))
4823 case CONSTRUCTOR:
4825 HOST_WIDE_INT nz = 0, ic = 0;
4827 bool const_elt_p
4828 = categorize_ctor_elements_1 (value, &nz, &ic, p_must_clear);
4830 nz_elts += mult * nz;
4831 elt_count += mult * ic;
4833 if (const_from_elts_p && const_p)
4834 const_p = const_elt_p;
4836 break;
4838 case INTEGER_CST:
4839 case REAL_CST:
4840 case FIXED_CST:
4841 if (!initializer_zerop (value))
4842 nz_elts += mult;
4843 elt_count += mult;
4844 break;
4846 case STRING_CST:
4847 nz_elts += mult * TREE_STRING_LENGTH (value);
4848 elt_count += mult * TREE_STRING_LENGTH (value);
4849 break;
4851 case COMPLEX_CST:
4852 if (!initializer_zerop (TREE_REALPART (value)))
4853 nz_elts += mult;
4854 if (!initializer_zerop (TREE_IMAGPART (value)))
4855 nz_elts += mult;
4856 elt_count += mult;
4857 break;
4859 case VECTOR_CST:
4861 tree v;
4862 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
4864 if (!initializer_zerop (TREE_VALUE (v)))
4865 nz_elts += mult;
4866 elt_count += mult;
4869 break;
4871 default:
4872 nz_elts += mult;
4873 elt_count += mult;
4875 if (const_from_elts_p && const_p)
4876 const_p = initializer_constant_valid_p (value, TREE_TYPE (value))
4877 != NULL_TREE;
4878 break;
4882 if (!*p_must_clear
4883 && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
4884 || TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
4886 tree init_sub_type;
4887 bool clear_this = true;
4889 if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
4891 /* We don't expect more than one element of the union to be
4892 initialized. Not sure what we should do otherwise... */
4893 gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
4894 == 1);
4896 init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
4897 CONSTRUCTOR_ELTS (ctor),
4898 0)->value);
4900 /* ??? We could look at each element of the union, and find the
4901 largest element. Which would avoid comparing the size of the
4902 initialized element against any tail padding in the union.
4903 Doesn't seem worth the effort... */
4904 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
4905 TYPE_SIZE (init_sub_type)) == 1)
4907 /* And now we have to find out if the element itself is fully
4908 constructed. E.g. for union { struct { int a, b; } s; } u
4909 = { .s = { .a = 1 } }. */
4910 if (elt_count == count_type_elements (init_sub_type, false))
4911 clear_this = false;
4915 *p_must_clear = clear_this;
4918 *p_nz_elts += nz_elts;
4919 *p_elt_count += elt_count;
4921 return const_p;
4924 /* Examine CTOR to discover:
4925 * how many scalar fields are set to nonzero values,
4926 and place it in *P_NZ_ELTS;
4927 * how many scalar fields in total are in CTOR,
4928 and place it in *P_ELT_COUNT.
4929 * if a type is a union, and the initializer from the constructor
4930 is not the largest element in the union, then set *p_must_clear.
4932 Return whether or not CTOR is a valid static constant initializer, the same
4933 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
4935 bool
4936 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4937 HOST_WIDE_INT *p_elt_count,
4938 bool *p_must_clear)
4940 *p_nz_elts = 0;
4941 *p_elt_count = 0;
4942 *p_must_clear = false;
4944 return
4945 categorize_ctor_elements_1 (ctor, p_nz_elts, p_elt_count, p_must_clear);
4948 /* Count the number of scalars in TYPE. Return -1 on overflow or
4949 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
4950 array member at the end of the structure. */
4952 HOST_WIDE_INT
4953 count_type_elements (const_tree type, bool allow_flexarr)
4955 const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
4956 switch (TREE_CODE (type))
4958 case ARRAY_TYPE:
4960 tree telts = array_type_nelts (type);
4961 if (telts && host_integerp (telts, 1))
4963 HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
4964 HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
4965 if (n == 0)
4966 return 0;
4967 else if (max / n > m)
4968 return n * m;
4970 return -1;
4973 case RECORD_TYPE:
4975 HOST_WIDE_INT n = 0, t;
4976 tree f;
4978 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
4979 if (TREE_CODE (f) == FIELD_DECL)
4981 t = count_type_elements (TREE_TYPE (f), false);
4982 if (t < 0)
4984 /* Check for structures with flexible array member. */
4985 tree tf = TREE_TYPE (f);
4986 if (allow_flexarr
4987 && TREE_CHAIN (f) == NULL
4988 && TREE_CODE (tf) == ARRAY_TYPE
4989 && TYPE_DOMAIN (tf)
4990 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
4991 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
4992 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
4993 && int_size_in_bytes (type) >= 0)
4994 break;
4996 return -1;
4998 n += t;
5001 return n;
5004 case UNION_TYPE:
5005 case QUAL_UNION_TYPE:
5006 return -1;
5008 case COMPLEX_TYPE:
5009 return 2;
5011 case VECTOR_TYPE:
5012 return TYPE_VECTOR_SUBPARTS (type);
5014 case INTEGER_TYPE:
5015 case REAL_TYPE:
5016 case FIXED_POINT_TYPE:
5017 case ENUMERAL_TYPE:
5018 case BOOLEAN_TYPE:
5019 case POINTER_TYPE:
5020 case OFFSET_TYPE:
5021 case REFERENCE_TYPE:
5022 return 1;
5024 case VOID_TYPE:
5025 case METHOD_TYPE:
5026 case FUNCTION_TYPE:
5027 case LANG_TYPE:
5028 default:
5029 gcc_unreachable ();
5033 /* Return 1 if EXP contains mostly (3/4) zeros. */
5035 static int
5036 mostly_zeros_p (const_tree exp)
5038 if (TREE_CODE (exp) == CONSTRUCTOR)
5041 HOST_WIDE_INT nz_elts, count, elts;
5042 bool must_clear;
5044 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5045 if (must_clear)
5046 return 1;
5048 elts = count_type_elements (TREE_TYPE (exp), false);
5050 return nz_elts < elts / 4;
5053 return initializer_zerop (exp);
5056 /* Return 1 if EXP contains all zeros. */
5058 static int
5059 all_zeros_p (const_tree exp)
5061 if (TREE_CODE (exp) == CONSTRUCTOR)
5064 HOST_WIDE_INT nz_elts, count;
5065 bool must_clear;
5067 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5068 return nz_elts == 0;
5071 return initializer_zerop (exp);
5074 /* Helper function for store_constructor.
5075 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5076 TYPE is the type of the CONSTRUCTOR, not the element type.
5077 CLEARED is as for store_constructor.
5078 ALIAS_SET is the alias set to use for any stores.
5080 This provides a recursive shortcut back to store_constructor when it isn't
5081 necessary to go through store_field. This is so that we can pass through
5082 the cleared field to let store_constructor know that we may not have to
5083 clear a substructure if the outer structure has already been cleared. */
5085 static void
5086 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5087 HOST_WIDE_INT bitpos, enum machine_mode mode,
5088 tree exp, tree type, int cleared,
5089 alias_set_type alias_set)
5091 if (TREE_CODE (exp) == CONSTRUCTOR
5092 /* We can only call store_constructor recursively if the size and
5093 bit position are on a byte boundary. */
5094 && bitpos % BITS_PER_UNIT == 0
5095 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5096 /* If we have a nonzero bitpos for a register target, then we just
5097 let store_field do the bitfield handling. This is unlikely to
5098 generate unnecessary clear instructions anyways. */
5099 && (bitpos == 0 || MEM_P (target)))
5101 if (MEM_P (target))
5102 target
5103 = adjust_address (target,
5104 GET_MODE (target) == BLKmode
5105 || 0 != (bitpos
5106 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5107 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5110 /* Update the alias set, if required. */
5111 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5112 && MEM_ALIAS_SET (target) != 0)
5114 target = copy_rtx (target);
5115 set_mem_alias_set (target, alias_set);
5118 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5120 else
5121 store_field (target, bitsize, bitpos, mode, exp, type, alias_set, false);
5124 /* Store the value of constructor EXP into the rtx TARGET.
5125 TARGET is either a REG or a MEM; we know it cannot conflict, since
5126 safe_from_p has been called.
5127 CLEARED is true if TARGET is known to have been zero'd.
5128 SIZE is the number of bytes of TARGET we are allowed to modify: this
5129 may not be the same as the size of EXP if we are assigning to a field
5130 which has been packed to exclude padding bits. */
5132 static void
5133 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5135 tree type = TREE_TYPE (exp);
5136 #ifdef WORD_REGISTER_OPERATIONS
5137 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5138 #endif
5140 switch (TREE_CODE (type))
5142 case RECORD_TYPE:
5143 case UNION_TYPE:
5144 case QUAL_UNION_TYPE:
5146 unsigned HOST_WIDE_INT idx;
5147 tree field, value;
5149 /* If size is zero or the target is already cleared, do nothing. */
5150 if (size == 0 || cleared)
5151 cleared = 1;
5152 /* We either clear the aggregate or indicate the value is dead. */
5153 else if ((TREE_CODE (type) == UNION_TYPE
5154 || TREE_CODE (type) == QUAL_UNION_TYPE)
5155 && ! CONSTRUCTOR_ELTS (exp))
5156 /* If the constructor is empty, clear the union. */
5158 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
5159 cleared = 1;
5162 /* If we are building a static constructor into a register,
5163 set the initial value as zero so we can fold the value into
5164 a constant. But if more than one register is involved,
5165 this probably loses. */
5166 else if (REG_P (target) && TREE_STATIC (exp)
5167 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
5169 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5170 cleared = 1;
5173 /* If the constructor has fewer fields than the structure or
5174 if we are initializing the structure to mostly zeros, clear
5175 the whole structure first. Don't do this if TARGET is a
5176 register whose mode size isn't equal to SIZE since
5177 clear_storage can't handle this case. */
5178 else if (size > 0
5179 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
5180 != fields_length (type))
5181 || mostly_zeros_p (exp))
5182 && (!REG_P (target)
5183 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
5184 == size)))
5186 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5187 cleared = 1;
5190 if (REG_P (target) && !cleared)
5191 emit_clobber (target);
5193 /* Store each element of the constructor into the
5194 corresponding field of TARGET. */
5195 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
5197 enum machine_mode mode;
5198 HOST_WIDE_INT bitsize;
5199 HOST_WIDE_INT bitpos = 0;
5200 tree offset;
5201 rtx to_rtx = target;
5203 /* Just ignore missing fields. We cleared the whole
5204 structure, above, if any fields are missing. */
5205 if (field == 0)
5206 continue;
5208 if (cleared && initializer_zerop (value))
5209 continue;
5211 if (host_integerp (DECL_SIZE (field), 1))
5212 bitsize = tree_low_cst (DECL_SIZE (field), 1);
5213 else
5214 bitsize = -1;
5216 mode = DECL_MODE (field);
5217 if (DECL_BIT_FIELD (field))
5218 mode = VOIDmode;
5220 offset = DECL_FIELD_OFFSET (field);
5221 if (host_integerp (offset, 0)
5222 && host_integerp (bit_position (field), 0))
5224 bitpos = int_bit_position (field);
5225 offset = 0;
5227 else
5228 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
5230 if (offset)
5232 rtx offset_rtx;
5234 offset
5235 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
5236 make_tree (TREE_TYPE (exp),
5237 target));
5239 offset_rtx = expand_normal (offset);
5240 gcc_assert (MEM_P (to_rtx));
5242 #ifdef POINTERS_EXTEND_UNSIGNED
5243 if (GET_MODE (offset_rtx) != Pmode)
5244 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
5245 #else
5246 if (GET_MODE (offset_rtx) != ptr_mode)
5247 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
5248 #endif
5250 to_rtx = offset_address (to_rtx, offset_rtx,
5251 highest_pow2_factor (offset));
5254 #ifdef WORD_REGISTER_OPERATIONS
5255 /* If this initializes a field that is smaller than a
5256 word, at the start of a word, try to widen it to a full
5257 word. This special case allows us to output C++ member
5258 function initializations in a form that the optimizers
5259 can understand. */
5260 if (REG_P (target)
5261 && bitsize < BITS_PER_WORD
5262 && bitpos % BITS_PER_WORD == 0
5263 && GET_MODE_CLASS (mode) == MODE_INT
5264 && TREE_CODE (value) == INTEGER_CST
5265 && exp_size >= 0
5266 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
5268 tree type = TREE_TYPE (value);
5270 if (TYPE_PRECISION (type) < BITS_PER_WORD)
5272 type = lang_hooks.types.type_for_size
5273 (BITS_PER_WORD, TYPE_UNSIGNED (type));
5274 value = fold_convert (type, value);
5277 if (BYTES_BIG_ENDIAN)
5278 value
5279 = fold_build2 (LSHIFT_EXPR, type, value,
5280 build_int_cst (type,
5281 BITS_PER_WORD - bitsize));
5282 bitsize = BITS_PER_WORD;
5283 mode = word_mode;
5285 #endif
5287 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
5288 && DECL_NONADDRESSABLE_P (field))
5290 to_rtx = copy_rtx (to_rtx);
5291 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
5294 store_constructor_field (to_rtx, bitsize, bitpos, mode,
5295 value, type, cleared,
5296 get_alias_set (TREE_TYPE (field)));
5298 break;
5300 case ARRAY_TYPE:
5302 tree value, index;
5303 unsigned HOST_WIDE_INT i;
5304 int need_to_clear;
5305 tree domain;
5306 tree elttype = TREE_TYPE (type);
5307 int const_bounds_p;
5308 HOST_WIDE_INT minelt = 0;
5309 HOST_WIDE_INT maxelt = 0;
5311 domain = TYPE_DOMAIN (type);
5312 const_bounds_p = (TYPE_MIN_VALUE (domain)
5313 && TYPE_MAX_VALUE (domain)
5314 && host_integerp (TYPE_MIN_VALUE (domain), 0)
5315 && host_integerp (TYPE_MAX_VALUE (domain), 0));
5317 /* If we have constant bounds for the range of the type, get them. */
5318 if (const_bounds_p)
5320 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
5321 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
5324 /* If the constructor has fewer elements than the array, clear
5325 the whole array first. Similarly if this is static
5326 constructor of a non-BLKmode object. */
5327 if (cleared)
5328 need_to_clear = 0;
5329 else if (REG_P (target) && TREE_STATIC (exp))
5330 need_to_clear = 1;
5331 else
5333 unsigned HOST_WIDE_INT idx;
5334 tree index, value;
5335 HOST_WIDE_INT count = 0, zero_count = 0;
5336 need_to_clear = ! const_bounds_p;
5338 /* This loop is a more accurate version of the loop in
5339 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5340 is also needed to check for missing elements. */
5341 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
5343 HOST_WIDE_INT this_node_count;
5345 if (need_to_clear)
5346 break;
5348 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5350 tree lo_index = TREE_OPERAND (index, 0);
5351 tree hi_index = TREE_OPERAND (index, 1);
5353 if (! host_integerp (lo_index, 1)
5354 || ! host_integerp (hi_index, 1))
5356 need_to_clear = 1;
5357 break;
5360 this_node_count = (tree_low_cst (hi_index, 1)
5361 - tree_low_cst (lo_index, 1) + 1);
5363 else
5364 this_node_count = 1;
5366 count += this_node_count;
5367 if (mostly_zeros_p (value))
5368 zero_count += this_node_count;
5371 /* Clear the entire array first if there are any missing
5372 elements, or if the incidence of zero elements is >=
5373 75%. */
5374 if (! need_to_clear
5375 && (count < maxelt - minelt + 1
5376 || 4 * zero_count >= 3 * count))
5377 need_to_clear = 1;
5380 if (need_to_clear && size > 0)
5382 if (REG_P (target))
5383 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5384 else
5385 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5386 cleared = 1;
5389 if (!cleared && REG_P (target))
5390 /* Inform later passes that the old value is dead. */
5391 emit_clobber (target);
5393 /* Store each element of the constructor into the
5394 corresponding element of TARGET, determined by counting the
5395 elements. */
5396 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5398 enum machine_mode mode;
5399 HOST_WIDE_INT bitsize;
5400 HOST_WIDE_INT bitpos;
5401 int unsignedp;
5402 rtx xtarget = target;
5404 if (cleared && initializer_zerop (value))
5405 continue;
5407 unsignedp = TYPE_UNSIGNED (elttype);
5408 mode = TYPE_MODE (elttype);
5409 if (mode == BLKmode)
5410 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
5411 ? tree_low_cst (TYPE_SIZE (elttype), 1)
5412 : -1);
5413 else
5414 bitsize = GET_MODE_BITSIZE (mode);
5416 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5418 tree lo_index = TREE_OPERAND (index, 0);
5419 tree hi_index = TREE_OPERAND (index, 1);
5420 rtx index_r, pos_rtx;
5421 HOST_WIDE_INT lo, hi, count;
5422 tree position;
5424 /* If the range is constant and "small", unroll the loop. */
5425 if (const_bounds_p
5426 && host_integerp (lo_index, 0)
5427 && host_integerp (hi_index, 0)
5428 && (lo = tree_low_cst (lo_index, 0),
5429 hi = tree_low_cst (hi_index, 0),
5430 count = hi - lo + 1,
5431 (!MEM_P (target)
5432 || count <= 2
5433 || (host_integerp (TYPE_SIZE (elttype), 1)
5434 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
5435 <= 40 * 8)))))
5437 lo -= minelt; hi -= minelt;
5438 for (; lo <= hi; lo++)
5440 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
5442 if (MEM_P (target)
5443 && !MEM_KEEP_ALIAS_SET_P (target)
5444 && TREE_CODE (type) == ARRAY_TYPE
5445 && TYPE_NONALIASED_COMPONENT (type))
5447 target = copy_rtx (target);
5448 MEM_KEEP_ALIAS_SET_P (target) = 1;
5451 store_constructor_field
5452 (target, bitsize, bitpos, mode, value, type, cleared,
5453 get_alias_set (elttype));
5456 else
5458 rtx loop_start = gen_label_rtx ();
5459 rtx loop_end = gen_label_rtx ();
5460 tree exit_cond;
5462 expand_normal (hi_index);
5463 unsignedp = TYPE_UNSIGNED (domain);
5465 index = build_decl (VAR_DECL, NULL_TREE, domain);
5467 index_r
5468 = gen_reg_rtx (promote_mode (domain, DECL_MODE (index),
5469 &unsignedp, 0));
5470 SET_DECL_RTL (index, index_r);
5471 store_expr (lo_index, index_r, 0, false);
5473 /* Build the head of the loop. */
5474 do_pending_stack_adjust ();
5475 emit_label (loop_start);
5477 /* Assign value to element index. */
5478 position =
5479 fold_convert (ssizetype,
5480 fold_build2 (MINUS_EXPR,
5481 TREE_TYPE (index),
5482 index,
5483 TYPE_MIN_VALUE (domain)));
5485 position =
5486 size_binop (MULT_EXPR, position,
5487 fold_convert (ssizetype,
5488 TYPE_SIZE_UNIT (elttype)));
5490 pos_rtx = expand_normal (position);
5491 xtarget = offset_address (target, pos_rtx,
5492 highest_pow2_factor (position));
5493 xtarget = adjust_address (xtarget, mode, 0);
5494 if (TREE_CODE (value) == CONSTRUCTOR)
5495 store_constructor (value, xtarget, cleared,
5496 bitsize / BITS_PER_UNIT);
5497 else
5498 store_expr (value, xtarget, 0, false);
5500 /* Generate a conditional jump to exit the loop. */
5501 exit_cond = build2 (LT_EXPR, integer_type_node,
5502 index, hi_index);
5503 jumpif (exit_cond, loop_end);
5505 /* Update the loop counter, and jump to the head of
5506 the loop. */
5507 expand_assignment (index,
5508 build2 (PLUS_EXPR, TREE_TYPE (index),
5509 index, integer_one_node),
5510 false);
5512 emit_jump (loop_start);
5514 /* Build the end of the loop. */
5515 emit_label (loop_end);
5518 else if ((index != 0 && ! host_integerp (index, 0))
5519 || ! host_integerp (TYPE_SIZE (elttype), 1))
5521 tree position;
5523 if (index == 0)
5524 index = ssize_int (1);
5526 if (minelt)
5527 index = fold_convert (ssizetype,
5528 fold_build2 (MINUS_EXPR,
5529 TREE_TYPE (index),
5530 index,
5531 TYPE_MIN_VALUE (domain)));
5533 position =
5534 size_binop (MULT_EXPR, index,
5535 fold_convert (ssizetype,
5536 TYPE_SIZE_UNIT (elttype)));
5537 xtarget = offset_address (target,
5538 expand_normal (position),
5539 highest_pow2_factor (position));
5540 xtarget = adjust_address (xtarget, mode, 0);
5541 store_expr (value, xtarget, 0, false);
5543 else
5545 if (index != 0)
5546 bitpos = ((tree_low_cst (index, 0) - minelt)
5547 * tree_low_cst (TYPE_SIZE (elttype), 1));
5548 else
5549 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
5551 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
5552 && TREE_CODE (type) == ARRAY_TYPE
5553 && TYPE_NONALIASED_COMPONENT (type))
5555 target = copy_rtx (target);
5556 MEM_KEEP_ALIAS_SET_P (target) = 1;
5558 store_constructor_field (target, bitsize, bitpos, mode, value,
5559 type, cleared, get_alias_set (elttype));
5562 break;
5565 case VECTOR_TYPE:
5567 unsigned HOST_WIDE_INT idx;
5568 constructor_elt *ce;
5569 int i;
5570 int need_to_clear;
5571 int icode = 0;
5572 tree elttype = TREE_TYPE (type);
5573 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
5574 enum machine_mode eltmode = TYPE_MODE (elttype);
5575 HOST_WIDE_INT bitsize;
5576 HOST_WIDE_INT bitpos;
5577 rtvec vector = NULL;
5578 unsigned n_elts;
5580 gcc_assert (eltmode != BLKmode);
5582 n_elts = TYPE_VECTOR_SUBPARTS (type);
5583 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
5585 enum machine_mode mode = GET_MODE (target);
5587 icode = (int) optab_handler (vec_init_optab, mode)->insn_code;
5588 if (icode != CODE_FOR_nothing)
5590 unsigned int i;
5592 vector = rtvec_alloc (n_elts);
5593 for (i = 0; i < n_elts; i++)
5594 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
5598 /* If the constructor has fewer elements than the vector,
5599 clear the whole array first. Similarly if this is static
5600 constructor of a non-BLKmode object. */
5601 if (cleared)
5602 need_to_clear = 0;
5603 else if (REG_P (target) && TREE_STATIC (exp))
5604 need_to_clear = 1;
5605 else
5607 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
5608 tree value;
5610 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
5612 int n_elts_here = tree_low_cst
5613 (int_const_binop (TRUNC_DIV_EXPR,
5614 TYPE_SIZE (TREE_TYPE (value)),
5615 TYPE_SIZE (elttype), 0), 1);
5617 count += n_elts_here;
5618 if (mostly_zeros_p (value))
5619 zero_count += n_elts_here;
5622 /* Clear the entire vector first if there are any missing elements,
5623 or if the incidence of zero elements is >= 75%. */
5624 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
5627 if (need_to_clear && size > 0 && !vector)
5629 if (REG_P (target))
5630 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5631 else
5632 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5633 cleared = 1;
5636 /* Inform later passes that the old value is dead. */
5637 if (!cleared && !vector && REG_P (target))
5638 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5640 /* Store each element of the constructor into the corresponding
5641 element of TARGET, determined by counting the elements. */
5642 for (idx = 0, i = 0;
5643 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
5644 idx++, i += bitsize / elt_size)
5646 HOST_WIDE_INT eltpos;
5647 tree value = ce->value;
5649 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
5650 if (cleared && initializer_zerop (value))
5651 continue;
5653 if (ce->index)
5654 eltpos = tree_low_cst (ce->index, 1);
5655 else
5656 eltpos = i;
5658 if (vector)
5660 /* Vector CONSTRUCTORs should only be built from smaller
5661 vectors in the case of BLKmode vectors. */
5662 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
5663 RTVEC_ELT (vector, eltpos)
5664 = expand_normal (value);
5666 else
5668 enum machine_mode value_mode =
5669 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
5670 ? TYPE_MODE (TREE_TYPE (value))
5671 : eltmode;
5672 bitpos = eltpos * elt_size;
5673 store_constructor_field (target, bitsize, bitpos,
5674 value_mode, value, type,
5675 cleared, get_alias_set (elttype));
5679 if (vector)
5680 emit_insn (GEN_FCN (icode)
5681 (target,
5682 gen_rtx_PARALLEL (GET_MODE (target), vector)));
5683 break;
5686 default:
5687 gcc_unreachable ();
5691 /* Store the value of EXP (an expression tree)
5692 into a subfield of TARGET which has mode MODE and occupies
5693 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5694 If MODE is VOIDmode, it means that we are storing into a bit-field.
5696 Always return const0_rtx unless we have something particular to
5697 return.
5699 TYPE is the type of the underlying object,
5701 ALIAS_SET is the alias set for the destination. This value will
5702 (in general) be different from that for TARGET, since TARGET is a
5703 reference to the containing structure.
5705 If NONTEMPORAL is true, try generating a nontemporal store. */
5707 static rtx
5708 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
5709 enum machine_mode mode, tree exp, tree type,
5710 alias_set_type alias_set, bool nontemporal)
5712 HOST_WIDE_INT width_mask = 0;
5714 if (TREE_CODE (exp) == ERROR_MARK)
5715 return const0_rtx;
5717 /* If we have nothing to store, do nothing unless the expression has
5718 side-effects. */
5719 if (bitsize == 0)
5720 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5721 else if (bitsize >= 0 && bitsize < HOST_BITS_PER_WIDE_INT)
5722 width_mask = ((HOST_WIDE_INT) 1 << bitsize) - 1;
5724 /* If we are storing into an unaligned field of an aligned union that is
5725 in a register, we may have the mode of TARGET being an integer mode but
5726 MODE == BLKmode. In that case, get an aligned object whose size and
5727 alignment are the same as TARGET and store TARGET into it (we can avoid
5728 the store if the field being stored is the entire width of TARGET). Then
5729 call ourselves recursively to store the field into a BLKmode version of
5730 that object. Finally, load from the object into TARGET. This is not
5731 very efficient in general, but should only be slightly more expensive
5732 than the otherwise-required unaligned accesses. Perhaps this can be
5733 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5734 twice, once with emit_move_insn and once via store_field. */
5736 if (mode == BLKmode
5737 && (REG_P (target) || GET_CODE (target) == SUBREG))
5739 rtx object = assign_temp (type, 0, 1, 1);
5740 rtx blk_object = adjust_address (object, BLKmode, 0);
5742 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
5743 emit_move_insn (object, target);
5745 store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set,
5746 nontemporal);
5748 emit_move_insn (target, object);
5750 /* We want to return the BLKmode version of the data. */
5751 return blk_object;
5754 if (GET_CODE (target) == CONCAT)
5756 /* We're storing into a struct containing a single __complex. */
5758 gcc_assert (!bitpos);
5759 return store_expr (exp, target, 0, nontemporal);
5762 /* If the structure is in a register or if the component
5763 is a bit field, we cannot use addressing to access it.
5764 Use bit-field techniques or SUBREG to store in it. */
5766 if (mode == VOIDmode
5767 || (mode != BLKmode && ! direct_store[(int) mode]
5768 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
5769 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
5770 || REG_P (target)
5771 || GET_CODE (target) == SUBREG
5772 /* If the field isn't aligned enough to store as an ordinary memref,
5773 store it as a bit field. */
5774 || (mode != BLKmode
5775 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
5776 || bitpos % GET_MODE_ALIGNMENT (mode))
5777 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
5778 || (bitpos % BITS_PER_UNIT != 0)))
5779 /* If the RHS and field are a constant size and the size of the
5780 RHS isn't the same size as the bitfield, we must use bitfield
5781 operations. */
5782 || (bitsize >= 0
5783 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
5784 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0))
5786 rtx temp;
5788 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5789 implies a mask operation. If the precision is the same size as
5790 the field we're storing into, that mask is redundant. This is
5791 particularly common with bit field assignments generated by the
5792 C front end. */
5793 if (TREE_CODE (exp) == NOP_EXPR)
5795 tree type = TREE_TYPE (exp);
5796 if (INTEGRAL_TYPE_P (type)
5797 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
5798 && bitsize == TYPE_PRECISION (type))
5800 type = TREE_TYPE (TREE_OPERAND (exp, 0));
5801 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
5802 exp = TREE_OPERAND (exp, 0);
5806 temp = expand_normal (exp);
5808 /* If BITSIZE is narrower than the size of the type of EXP
5809 we will be narrowing TEMP. Normally, what's wanted are the
5810 low-order bits. However, if EXP's type is a record and this is
5811 big-endian machine, we want the upper BITSIZE bits. */
5812 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
5813 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
5814 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
5815 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
5816 size_int (GET_MODE_BITSIZE (GET_MODE (temp))
5817 - bitsize),
5818 NULL_RTX, 1);
5820 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5821 MODE. */
5822 if (mode != VOIDmode && mode != BLKmode
5823 && mode != TYPE_MODE (TREE_TYPE (exp)))
5824 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
5826 /* If the modes of TEMP and TARGET are both BLKmode, both
5827 must be in memory and BITPOS must be aligned on a byte
5828 boundary. If so, we simply do a block copy. Likewise
5829 for a BLKmode-like TARGET. */
5830 if (GET_MODE (temp) == BLKmode
5831 && (GET_MODE (target) == BLKmode
5832 || (MEM_P (target)
5833 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
5834 && (bitpos % BITS_PER_UNIT) == 0
5835 && (bitsize % BITS_PER_UNIT) == 0)))
5837 gcc_assert (MEM_P (target) && MEM_P (temp)
5838 && (bitpos % BITS_PER_UNIT) == 0);
5840 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
5841 emit_block_move (target, temp,
5842 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
5843 / BITS_PER_UNIT),
5844 BLOCK_OP_NORMAL);
5846 return const0_rtx;
5849 /* Store the value in the bitfield. */
5850 store_bit_field (target, bitsize, bitpos, mode, temp);
5852 return const0_rtx;
5854 else
5856 /* Now build a reference to just the desired component. */
5857 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
5859 if (to_rtx == target)
5860 to_rtx = copy_rtx (to_rtx);
5862 MEM_SET_IN_STRUCT_P (to_rtx, 1);
5863 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
5864 set_mem_alias_set (to_rtx, alias_set);
5866 return store_expr (exp, to_rtx, 0, nontemporal);
5870 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5871 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5872 codes and find the ultimate containing object, which we return.
5874 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5875 bit position, and *PUNSIGNEDP to the signedness of the field.
5876 If the position of the field is variable, we store a tree
5877 giving the variable offset (in units) in *POFFSET.
5878 This offset is in addition to the bit position.
5879 If the position is not variable, we store 0 in *POFFSET.
5881 If any of the extraction expressions is volatile,
5882 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5884 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
5885 Otherwise, it is a mode that can be used to access the field.
5887 If the field describes a variable-sized object, *PMODE is set to
5888 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
5889 this case, but the address of the object can be found.
5891 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5892 look through nodes that serve as markers of a greater alignment than
5893 the one that can be deduced from the expression. These nodes make it
5894 possible for front-ends to prevent temporaries from being created by
5895 the middle-end on alignment considerations. For that purpose, the
5896 normal operating mode at high-level is to always pass FALSE so that
5897 the ultimate containing object is really returned; moreover, the
5898 associated predicate handled_component_p will always return TRUE
5899 on these nodes, thus indicating that they are essentially handled
5900 by get_inner_reference. TRUE should only be passed when the caller
5901 is scanning the expression in order to build another representation
5902 and specifically knows how to handle these nodes; as such, this is
5903 the normal operating mode in the RTL expanders. */
5905 tree
5906 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
5907 HOST_WIDE_INT *pbitpos, tree *poffset,
5908 enum machine_mode *pmode, int *punsignedp,
5909 int *pvolatilep, bool keep_aligning)
5911 tree size_tree = 0;
5912 enum machine_mode mode = VOIDmode;
5913 bool blkmode_bitfield = false;
5914 tree offset = size_zero_node;
5915 tree bit_offset = bitsize_zero_node;
5917 /* First get the mode, signedness, and size. We do this from just the
5918 outermost expression. */
5919 if (TREE_CODE (exp) == COMPONENT_REF)
5921 tree field = TREE_OPERAND (exp, 1);
5922 size_tree = DECL_SIZE (field);
5923 if (!DECL_BIT_FIELD (field))
5924 mode = DECL_MODE (field);
5925 else if (DECL_MODE (field) == BLKmode)
5926 blkmode_bitfield = true;
5928 *punsignedp = DECL_UNSIGNED (field);
5930 else if (TREE_CODE (exp) == BIT_FIELD_REF)
5932 size_tree = TREE_OPERAND (exp, 1);
5933 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
5934 || TYPE_UNSIGNED (TREE_TYPE (exp)));
5936 /* For vector types, with the correct size of access, use the mode of
5937 inner type. */
5938 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
5939 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
5940 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
5941 mode = TYPE_MODE (TREE_TYPE (exp));
5943 else
5945 mode = TYPE_MODE (TREE_TYPE (exp));
5946 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
5948 if (mode == BLKmode)
5949 size_tree = TYPE_SIZE (TREE_TYPE (exp));
5950 else
5951 *pbitsize = GET_MODE_BITSIZE (mode);
5954 if (size_tree != 0)
5956 if (! host_integerp (size_tree, 1))
5957 mode = BLKmode, *pbitsize = -1;
5958 else
5959 *pbitsize = tree_low_cst (size_tree, 1);
5962 /* Compute cumulative bit-offset for nested component-refs and array-refs,
5963 and find the ultimate containing object. */
5964 while (1)
5966 switch (TREE_CODE (exp))
5968 case BIT_FIELD_REF:
5969 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5970 TREE_OPERAND (exp, 2));
5971 break;
5973 case COMPONENT_REF:
5975 tree field = TREE_OPERAND (exp, 1);
5976 tree this_offset = component_ref_field_offset (exp);
5978 /* If this field hasn't been filled in yet, don't go past it.
5979 This should only happen when folding expressions made during
5980 type construction. */
5981 if (this_offset == 0)
5982 break;
5984 offset = size_binop (PLUS_EXPR, offset, this_offset);
5985 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5986 DECL_FIELD_BIT_OFFSET (field));
5988 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
5990 break;
5992 case ARRAY_REF:
5993 case ARRAY_RANGE_REF:
5995 tree index = TREE_OPERAND (exp, 1);
5996 tree low_bound = array_ref_low_bound (exp);
5997 tree unit_size = array_ref_element_size (exp);
5999 /* We assume all arrays have sizes that are a multiple of a byte.
6000 First subtract the lower bound, if any, in the type of the
6001 index, then convert to sizetype and multiply by the size of
6002 the array element. */
6003 if (! integer_zerop (low_bound))
6004 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
6005 index, low_bound);
6007 offset = size_binop (PLUS_EXPR, offset,
6008 size_binop (MULT_EXPR,
6009 fold_convert (sizetype, index),
6010 unit_size));
6012 break;
6014 case REALPART_EXPR:
6015 break;
6017 case IMAGPART_EXPR:
6018 bit_offset = size_binop (PLUS_EXPR, bit_offset,
6019 bitsize_int (*pbitsize));
6020 break;
6022 case VIEW_CONVERT_EXPR:
6023 if (keep_aligning && STRICT_ALIGNMENT
6024 && (TYPE_ALIGN (TREE_TYPE (exp))
6025 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
6026 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
6027 < BIGGEST_ALIGNMENT)
6028 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
6029 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
6030 goto done;
6031 break;
6033 default:
6034 goto done;
6037 /* If any reference in the chain is volatile, the effect is volatile. */
6038 if (TREE_THIS_VOLATILE (exp))
6039 *pvolatilep = 1;
6041 exp = TREE_OPERAND (exp, 0);
6043 done:
6045 /* If OFFSET is constant, see if we can return the whole thing as a
6046 constant bit position. Make sure to handle overflow during
6047 this conversion. */
6048 if (host_integerp (offset, 0))
6050 double_int tem = double_int_mul (tree_to_double_int (offset),
6051 uhwi_to_double_int (BITS_PER_UNIT));
6052 tem = double_int_add (tem, tree_to_double_int (bit_offset));
6053 if (double_int_fits_in_shwi_p (tem))
6055 *pbitpos = double_int_to_shwi (tem);
6056 *poffset = offset = NULL_TREE;
6060 /* Otherwise, split it up. */
6061 if (offset)
6063 *pbitpos = tree_low_cst (bit_offset, 0);
6064 *poffset = offset;
6067 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6068 if (mode == VOIDmode
6069 && blkmode_bitfield
6070 && (*pbitpos % BITS_PER_UNIT) == 0
6071 && (*pbitsize % BITS_PER_UNIT) == 0)
6072 *pmode = BLKmode;
6073 else
6074 *pmode = mode;
6076 return exp;
6079 /* Given an expression EXP that may be a COMPONENT_REF or an ARRAY_REF,
6080 look for whether EXP or any nested component-refs within EXP is marked
6081 as PACKED. */
6083 bool
6084 contains_packed_reference (const_tree exp)
6086 bool packed_p = false;
6088 while (1)
6090 switch (TREE_CODE (exp))
6092 case COMPONENT_REF:
6094 tree field = TREE_OPERAND (exp, 1);
6095 packed_p = DECL_PACKED (field)
6096 || TYPE_PACKED (TREE_TYPE (field))
6097 || TYPE_PACKED (TREE_TYPE (exp));
6098 if (packed_p)
6099 goto done;
6101 break;
6103 case BIT_FIELD_REF:
6104 case ARRAY_REF:
6105 case ARRAY_RANGE_REF:
6106 case REALPART_EXPR:
6107 case IMAGPART_EXPR:
6108 case VIEW_CONVERT_EXPR:
6109 break;
6111 default:
6112 goto done;
6114 exp = TREE_OPERAND (exp, 0);
6116 done:
6117 return packed_p;
6120 /* Return a tree of sizetype representing the size, in bytes, of the element
6121 of EXP, an ARRAY_REF. */
6123 tree
6124 array_ref_element_size (tree exp)
6126 tree aligned_size = TREE_OPERAND (exp, 3);
6127 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
6129 /* If a size was specified in the ARRAY_REF, it's the size measured
6130 in alignment units of the element type. So multiply by that value. */
6131 if (aligned_size)
6133 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6134 sizetype from another type of the same width and signedness. */
6135 if (TREE_TYPE (aligned_size) != sizetype)
6136 aligned_size = fold_convert (sizetype, aligned_size);
6137 return size_binop (MULT_EXPR, aligned_size,
6138 size_int (TYPE_ALIGN_UNIT (elmt_type)));
6141 /* Otherwise, take the size from that of the element type. Substitute
6142 any PLACEHOLDER_EXPR that we have. */
6143 else
6144 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
6147 /* Return a tree representing the lower bound of the array mentioned in
6148 EXP, an ARRAY_REF. */
6150 tree
6151 array_ref_low_bound (tree exp)
6153 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6155 /* If a lower bound is specified in EXP, use it. */
6156 if (TREE_OPERAND (exp, 2))
6157 return TREE_OPERAND (exp, 2);
6159 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6160 substituting for a PLACEHOLDER_EXPR as needed. */
6161 if (domain_type && TYPE_MIN_VALUE (domain_type))
6162 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
6164 /* Otherwise, return a zero of the appropriate type. */
6165 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
6168 /* Return a tree representing the upper bound of the array mentioned in
6169 EXP, an ARRAY_REF. */
6171 tree
6172 array_ref_up_bound (tree exp)
6174 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6176 /* If there is a domain type and it has an upper bound, use it, substituting
6177 for a PLACEHOLDER_EXPR as needed. */
6178 if (domain_type && TYPE_MAX_VALUE (domain_type))
6179 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
6181 /* Otherwise fail. */
6182 return NULL_TREE;
6185 /* Return a tree representing the offset, in bytes, of the field referenced
6186 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6188 tree
6189 component_ref_field_offset (tree exp)
6191 tree aligned_offset = TREE_OPERAND (exp, 2);
6192 tree field = TREE_OPERAND (exp, 1);
6194 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6195 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6196 value. */
6197 if (aligned_offset)
6199 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6200 sizetype from another type of the same width and signedness. */
6201 if (TREE_TYPE (aligned_offset) != sizetype)
6202 aligned_offset = fold_convert (sizetype, aligned_offset);
6203 return size_binop (MULT_EXPR, aligned_offset,
6204 size_int (DECL_OFFSET_ALIGN (field) / BITS_PER_UNIT));
6207 /* Otherwise, take the offset from that of the field. Substitute
6208 any PLACEHOLDER_EXPR that we have. */
6209 else
6210 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
6213 /* Return 1 if T is an expression that get_inner_reference handles. */
6216 handled_component_p (const_tree t)
6218 switch (TREE_CODE (t))
6220 case BIT_FIELD_REF:
6221 case COMPONENT_REF:
6222 case ARRAY_REF:
6223 case ARRAY_RANGE_REF:
6224 case VIEW_CONVERT_EXPR:
6225 case REALPART_EXPR:
6226 case IMAGPART_EXPR:
6227 return 1;
6229 default:
6230 return 0;
6234 /* Given an rtx VALUE that may contain additions and multiplications, return
6235 an equivalent value that just refers to a register, memory, or constant.
6236 This is done by generating instructions to perform the arithmetic and
6237 returning a pseudo-register containing the value.
6239 The returned value may be a REG, SUBREG, MEM or constant. */
6242 force_operand (rtx value, rtx target)
6244 rtx op1, op2;
6245 /* Use subtarget as the target for operand 0 of a binary operation. */
6246 rtx subtarget = get_subtarget (target);
6247 enum rtx_code code = GET_CODE (value);
6249 /* Check for subreg applied to an expression produced by loop optimizer. */
6250 if (code == SUBREG
6251 && !REG_P (SUBREG_REG (value))
6252 && !MEM_P (SUBREG_REG (value)))
6254 value
6255 = simplify_gen_subreg (GET_MODE (value),
6256 force_reg (GET_MODE (SUBREG_REG (value)),
6257 force_operand (SUBREG_REG (value),
6258 NULL_RTX)),
6259 GET_MODE (SUBREG_REG (value)),
6260 SUBREG_BYTE (value));
6261 code = GET_CODE (value);
6264 /* Check for a PIC address load. */
6265 if ((code == PLUS || code == MINUS)
6266 && XEXP (value, 0) == pic_offset_table_rtx
6267 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
6268 || GET_CODE (XEXP (value, 1)) == LABEL_REF
6269 || GET_CODE (XEXP (value, 1)) == CONST))
6271 if (!subtarget)
6272 subtarget = gen_reg_rtx (GET_MODE (value));
6273 emit_move_insn (subtarget, value);
6274 return subtarget;
6277 if (ARITHMETIC_P (value))
6279 op2 = XEXP (value, 1);
6280 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
6281 subtarget = 0;
6282 if (code == MINUS && GET_CODE (op2) == CONST_INT)
6284 code = PLUS;
6285 op2 = negate_rtx (GET_MODE (value), op2);
6288 /* Check for an addition with OP2 a constant integer and our first
6289 operand a PLUS of a virtual register and something else. In that
6290 case, we want to emit the sum of the virtual register and the
6291 constant first and then add the other value. This allows virtual
6292 register instantiation to simply modify the constant rather than
6293 creating another one around this addition. */
6294 if (code == PLUS && GET_CODE (op2) == CONST_INT
6295 && GET_CODE (XEXP (value, 0)) == PLUS
6296 && REG_P (XEXP (XEXP (value, 0), 0))
6297 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6298 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
6300 rtx temp = expand_simple_binop (GET_MODE (value), code,
6301 XEXP (XEXP (value, 0), 0), op2,
6302 subtarget, 0, OPTAB_LIB_WIDEN);
6303 return expand_simple_binop (GET_MODE (value), code, temp,
6304 force_operand (XEXP (XEXP (value,
6305 0), 1), 0),
6306 target, 0, OPTAB_LIB_WIDEN);
6309 op1 = force_operand (XEXP (value, 0), subtarget);
6310 op2 = force_operand (op2, NULL_RTX);
6311 switch (code)
6313 case MULT:
6314 return expand_mult (GET_MODE (value), op1, op2, target, 1);
6315 case DIV:
6316 if (!INTEGRAL_MODE_P (GET_MODE (value)))
6317 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6318 target, 1, OPTAB_LIB_WIDEN);
6319 else
6320 return expand_divmod (0,
6321 FLOAT_MODE_P (GET_MODE (value))
6322 ? RDIV_EXPR : TRUNC_DIV_EXPR,
6323 GET_MODE (value), op1, op2, target, 0);
6324 case MOD:
6325 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6326 target, 0);
6327 case UDIV:
6328 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
6329 target, 1);
6330 case UMOD:
6331 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6332 target, 1);
6333 case ASHIFTRT:
6334 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6335 target, 0, OPTAB_LIB_WIDEN);
6336 default:
6337 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6338 target, 1, OPTAB_LIB_WIDEN);
6341 if (UNARY_P (value))
6343 if (!target)
6344 target = gen_reg_rtx (GET_MODE (value));
6345 op1 = force_operand (XEXP (value, 0), NULL_RTX);
6346 switch (code)
6348 case ZERO_EXTEND:
6349 case SIGN_EXTEND:
6350 case TRUNCATE:
6351 case FLOAT_EXTEND:
6352 case FLOAT_TRUNCATE:
6353 convert_move (target, op1, code == ZERO_EXTEND);
6354 return target;
6356 case FIX:
6357 case UNSIGNED_FIX:
6358 expand_fix (target, op1, code == UNSIGNED_FIX);
6359 return target;
6361 case FLOAT:
6362 case UNSIGNED_FLOAT:
6363 expand_float (target, op1, code == UNSIGNED_FLOAT);
6364 return target;
6366 default:
6367 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
6371 #ifdef INSN_SCHEDULING
6372 /* On machines that have insn scheduling, we want all memory reference to be
6373 explicit, so we need to deal with such paradoxical SUBREGs. */
6374 if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
6375 && (GET_MODE_SIZE (GET_MODE (value))
6376 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
6377 value
6378 = simplify_gen_subreg (GET_MODE (value),
6379 force_reg (GET_MODE (SUBREG_REG (value)),
6380 force_operand (SUBREG_REG (value),
6381 NULL_RTX)),
6382 GET_MODE (SUBREG_REG (value)),
6383 SUBREG_BYTE (value));
6384 #endif
6386 return value;
6389 /* Subroutine of expand_expr: return nonzero iff there is no way that
6390 EXP can reference X, which is being modified. TOP_P is nonzero if this
6391 call is going to be used to determine whether we need a temporary
6392 for EXP, as opposed to a recursive call to this function.
6394 It is always safe for this routine to return zero since it merely
6395 searches for optimization opportunities. */
6398 safe_from_p (const_rtx x, tree exp, int top_p)
6400 rtx exp_rtl = 0;
6401 int i, nops;
6403 if (x == 0
6404 /* If EXP has varying size, we MUST use a target since we currently
6405 have no way of allocating temporaries of variable size
6406 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6407 So we assume here that something at a higher level has prevented a
6408 clash. This is somewhat bogus, but the best we can do. Only
6409 do this when X is BLKmode and when we are at the top level. */
6410 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
6411 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
6412 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
6413 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
6414 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
6415 != INTEGER_CST)
6416 && GET_MODE (x) == BLKmode)
6417 /* If X is in the outgoing argument area, it is always safe. */
6418 || (MEM_P (x)
6419 && (XEXP (x, 0) == virtual_outgoing_args_rtx
6420 || (GET_CODE (XEXP (x, 0)) == PLUS
6421 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
6422 return 1;
6424 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6425 find the underlying pseudo. */
6426 if (GET_CODE (x) == SUBREG)
6428 x = SUBREG_REG (x);
6429 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6430 return 0;
6433 /* Now look at our tree code and possibly recurse. */
6434 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
6436 case tcc_declaration:
6437 exp_rtl = DECL_RTL_IF_SET (exp);
6438 break;
6440 case tcc_constant:
6441 return 1;
6443 case tcc_exceptional:
6444 if (TREE_CODE (exp) == TREE_LIST)
6446 while (1)
6448 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
6449 return 0;
6450 exp = TREE_CHAIN (exp);
6451 if (!exp)
6452 return 1;
6453 if (TREE_CODE (exp) != TREE_LIST)
6454 return safe_from_p (x, exp, 0);
6457 else if (TREE_CODE (exp) == CONSTRUCTOR)
6459 constructor_elt *ce;
6460 unsigned HOST_WIDE_INT idx;
6462 for (idx = 0;
6463 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
6464 idx++)
6465 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
6466 || !safe_from_p (x, ce->value, 0))
6467 return 0;
6468 return 1;
6470 else if (TREE_CODE (exp) == ERROR_MARK)
6471 return 1; /* An already-visited SAVE_EXPR? */
6472 else
6473 return 0;
6475 case tcc_statement:
6476 /* The only case we look at here is the DECL_INITIAL inside a
6477 DECL_EXPR. */
6478 return (TREE_CODE (exp) != DECL_EXPR
6479 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
6480 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
6481 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
6483 case tcc_binary:
6484 case tcc_comparison:
6485 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
6486 return 0;
6487 /* Fall through. */
6489 case tcc_unary:
6490 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6492 case tcc_expression:
6493 case tcc_reference:
6494 case tcc_vl_exp:
6495 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6496 the expression. If it is set, we conflict iff we are that rtx or
6497 both are in memory. Otherwise, we check all operands of the
6498 expression recursively. */
6500 switch (TREE_CODE (exp))
6502 case ADDR_EXPR:
6503 /* If the operand is static or we are static, we can't conflict.
6504 Likewise if we don't conflict with the operand at all. */
6505 if (staticp (TREE_OPERAND (exp, 0))
6506 || TREE_STATIC (exp)
6507 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
6508 return 1;
6510 /* Otherwise, the only way this can conflict is if we are taking
6511 the address of a DECL a that address if part of X, which is
6512 very rare. */
6513 exp = TREE_OPERAND (exp, 0);
6514 if (DECL_P (exp))
6516 if (!DECL_RTL_SET_P (exp)
6517 || !MEM_P (DECL_RTL (exp)))
6518 return 0;
6519 else
6520 exp_rtl = XEXP (DECL_RTL (exp), 0);
6522 break;
6524 case MISALIGNED_INDIRECT_REF:
6525 case ALIGN_INDIRECT_REF:
6526 case INDIRECT_REF:
6527 if (MEM_P (x)
6528 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
6529 get_alias_set (exp)))
6530 return 0;
6531 break;
6533 case CALL_EXPR:
6534 /* Assume that the call will clobber all hard registers and
6535 all of memory. */
6536 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6537 || MEM_P (x))
6538 return 0;
6539 break;
6541 case WITH_CLEANUP_EXPR:
6542 case CLEANUP_POINT_EXPR:
6543 /* Lowered by gimplify.c. */
6544 gcc_unreachable ();
6546 case SAVE_EXPR:
6547 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6549 default:
6550 break;
6553 /* If we have an rtx, we do not need to scan our operands. */
6554 if (exp_rtl)
6555 break;
6557 nops = TREE_OPERAND_LENGTH (exp);
6558 for (i = 0; i < nops; i++)
6559 if (TREE_OPERAND (exp, i) != 0
6560 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
6561 return 0;
6563 break;
6565 case tcc_type:
6566 /* Should never get a type here. */
6567 gcc_unreachable ();
6570 /* If we have an rtl, find any enclosed object. Then see if we conflict
6571 with it. */
6572 if (exp_rtl)
6574 if (GET_CODE (exp_rtl) == SUBREG)
6576 exp_rtl = SUBREG_REG (exp_rtl);
6577 if (REG_P (exp_rtl)
6578 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
6579 return 0;
6582 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6583 are memory and they conflict. */
6584 return ! (rtx_equal_p (x, exp_rtl)
6585 || (MEM_P (x) && MEM_P (exp_rtl)
6586 && true_dependence (exp_rtl, VOIDmode, x,
6587 rtx_addr_varies_p)));
6590 /* If we reach here, it is safe. */
6591 return 1;
6595 /* Return the highest power of two that EXP is known to be a multiple of.
6596 This is used in updating alignment of MEMs in array references. */
6598 unsigned HOST_WIDE_INT
6599 highest_pow2_factor (const_tree exp)
6601 unsigned HOST_WIDE_INT c0, c1;
6603 switch (TREE_CODE (exp))
6605 case INTEGER_CST:
6606 /* We can find the lowest bit that's a one. If the low
6607 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6608 We need to handle this case since we can find it in a COND_EXPR,
6609 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6610 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6611 later ICE. */
6612 if (TREE_OVERFLOW (exp))
6613 return BIGGEST_ALIGNMENT;
6614 else
6616 /* Note: tree_low_cst is intentionally not used here,
6617 we don't care about the upper bits. */
6618 c0 = TREE_INT_CST_LOW (exp);
6619 c0 &= -c0;
6620 return c0 ? c0 : BIGGEST_ALIGNMENT;
6622 break;
6624 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
6625 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6626 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6627 return MIN (c0, c1);
6629 case MULT_EXPR:
6630 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6631 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6632 return c0 * c1;
6634 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
6635 case CEIL_DIV_EXPR:
6636 if (integer_pow2p (TREE_OPERAND (exp, 1))
6637 && host_integerp (TREE_OPERAND (exp, 1), 1))
6639 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6640 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
6641 return MAX (1, c0 / c1);
6643 break;
6645 case BIT_AND_EXPR:
6646 /* The highest power of two of a bit-and expression is the maximum of
6647 that of its operands. We typically get here for a complex LHS and
6648 a constant negative power of two on the RHS to force an explicit
6649 alignment, so don't bother looking at the LHS. */
6650 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6652 CASE_CONVERT:
6653 case SAVE_EXPR:
6654 return highest_pow2_factor (TREE_OPERAND (exp, 0));
6656 case COMPOUND_EXPR:
6657 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6659 case COND_EXPR:
6660 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6661 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
6662 return MIN (c0, c1);
6664 default:
6665 break;
6668 return 1;
6671 /* Similar, except that the alignment requirements of TARGET are
6672 taken into account. Assume it is at least as aligned as its
6673 type, unless it is a COMPONENT_REF in which case the layout of
6674 the structure gives the alignment. */
6676 static unsigned HOST_WIDE_INT
6677 highest_pow2_factor_for_target (const_tree target, const_tree exp)
6679 unsigned HOST_WIDE_INT target_align, factor;
6681 factor = highest_pow2_factor (exp);
6682 if (TREE_CODE (target) == COMPONENT_REF)
6683 target_align = DECL_ALIGN_UNIT (TREE_OPERAND (target, 1));
6684 else
6685 target_align = TYPE_ALIGN_UNIT (TREE_TYPE (target));
6686 return MAX (factor, target_align);
6689 /* Return &VAR expression for emulated thread local VAR. */
6691 static tree
6692 emutls_var_address (tree var)
6694 tree emuvar = emutls_decl (var);
6695 tree fn = built_in_decls [BUILT_IN_EMUTLS_GET_ADDRESS];
6696 tree arg = build_fold_addr_expr_with_type (emuvar, ptr_type_node);
6697 tree arglist = build_tree_list (NULL_TREE, arg);
6698 tree call = build_function_call_expr (fn, arglist);
6699 return fold_convert (build_pointer_type (TREE_TYPE (var)), call);
6703 /* Subroutine of expand_expr. Expand the two operands of a binary
6704 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6705 The value may be stored in TARGET if TARGET is nonzero. The
6706 MODIFIER argument is as documented by expand_expr. */
6708 static void
6709 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
6710 enum expand_modifier modifier)
6712 if (! safe_from_p (target, exp1, 1))
6713 target = 0;
6714 if (operand_equal_p (exp0, exp1, 0))
6716 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6717 *op1 = copy_rtx (*op0);
6719 else
6721 /* If we need to preserve evaluation order, copy exp0 into its own
6722 temporary variable so that it can't be clobbered by exp1. */
6723 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
6724 exp0 = save_expr (exp0);
6725 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6726 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
6731 /* Return a MEM that contains constant EXP. DEFER is as for
6732 output_constant_def and MODIFIER is as for expand_expr. */
6734 static rtx
6735 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
6737 rtx mem;
6739 mem = output_constant_def (exp, defer);
6740 if (modifier != EXPAND_INITIALIZER)
6741 mem = use_anchored_address (mem);
6742 return mem;
6745 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6746 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6748 static rtx
6749 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
6750 enum expand_modifier modifier)
6752 rtx result, subtarget;
6753 tree inner, offset;
6754 HOST_WIDE_INT bitsize, bitpos;
6755 int volatilep, unsignedp;
6756 enum machine_mode mode1;
6758 /* If we are taking the address of a constant and are at the top level,
6759 we have to use output_constant_def since we can't call force_const_mem
6760 at top level. */
6761 /* ??? This should be considered a front-end bug. We should not be
6762 generating ADDR_EXPR of something that isn't an LVALUE. The only
6763 exception here is STRING_CST. */
6764 if (CONSTANT_CLASS_P (exp))
6765 return XEXP (expand_expr_constant (exp, 0, modifier), 0);
6767 /* Everything must be something allowed by is_gimple_addressable. */
6768 switch (TREE_CODE (exp))
6770 case INDIRECT_REF:
6771 /* This case will happen via recursion for &a->b. */
6772 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
6774 case CONST_DECL:
6775 /* Recurse and make the output_constant_def clause above handle this. */
6776 return expand_expr_addr_expr_1 (DECL_INITIAL (exp), target,
6777 tmode, modifier);
6779 case REALPART_EXPR:
6780 /* The real part of the complex number is always first, therefore
6781 the address is the same as the address of the parent object. */
6782 offset = 0;
6783 bitpos = 0;
6784 inner = TREE_OPERAND (exp, 0);
6785 break;
6787 case IMAGPART_EXPR:
6788 /* The imaginary part of the complex number is always second.
6789 The expression is therefore always offset by the size of the
6790 scalar type. */
6791 offset = 0;
6792 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
6793 inner = TREE_OPERAND (exp, 0);
6794 break;
6796 case VAR_DECL:
6797 /* TLS emulation hook - replace __thread VAR's &VAR with
6798 __emutls_get_address (&_emutls.VAR). */
6799 if (! targetm.have_tls
6800 && TREE_CODE (exp) == VAR_DECL
6801 && DECL_THREAD_LOCAL_P (exp))
6803 exp = emutls_var_address (exp);
6804 return expand_expr (exp, target, tmode, modifier);
6806 /* Fall through. */
6808 default:
6809 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6810 expand_expr, as that can have various side effects; LABEL_DECLs for
6811 example, may not have their DECL_RTL set yet. Expand the rtl of
6812 CONSTRUCTORs too, which should yield a memory reference for the
6813 constructor's contents. Assume language specific tree nodes can
6814 be expanded in some interesting way. */
6815 if (DECL_P (exp)
6816 || TREE_CODE (exp) == CONSTRUCTOR
6817 || TREE_CODE (exp) >= LAST_AND_UNUSED_TREE_CODE)
6819 result = expand_expr (exp, target, tmode,
6820 modifier == EXPAND_INITIALIZER
6821 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
6823 /* If the DECL isn't in memory, then the DECL wasn't properly
6824 marked TREE_ADDRESSABLE, which will be either a front-end
6825 or a tree optimizer bug. */
6826 gcc_assert (MEM_P (result));
6827 result = XEXP (result, 0);
6829 /* ??? Is this needed anymore? */
6830 if (DECL_P (exp) && !TREE_USED (exp) == 0)
6832 assemble_external (exp);
6833 TREE_USED (exp) = 1;
6836 if (modifier != EXPAND_INITIALIZER
6837 && modifier != EXPAND_CONST_ADDRESS)
6838 result = force_operand (result, target);
6839 return result;
6842 /* Pass FALSE as the last argument to get_inner_reference although
6843 we are expanding to RTL. The rationale is that we know how to
6844 handle "aligning nodes" here: we can just bypass them because
6845 they won't change the final object whose address will be returned
6846 (they actually exist only for that purpose). */
6847 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6848 &mode1, &unsignedp, &volatilep, false);
6849 break;
6852 /* We must have made progress. */
6853 gcc_assert (inner != exp);
6855 subtarget = offset || bitpos ? NULL_RTX : target;
6856 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier);
6858 if (offset)
6860 rtx tmp;
6862 if (modifier != EXPAND_NORMAL)
6863 result = force_operand (result, NULL);
6864 tmp = expand_expr (offset, NULL_RTX, tmode,
6865 modifier == EXPAND_INITIALIZER
6866 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
6868 result = convert_memory_address (tmode, result);
6869 tmp = convert_memory_address (tmode, tmp);
6871 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
6872 result = gen_rtx_PLUS (tmode, result, tmp);
6873 else
6875 subtarget = bitpos ? NULL_RTX : target;
6876 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
6877 1, OPTAB_LIB_WIDEN);
6881 if (bitpos)
6883 /* Someone beforehand should have rejected taking the address
6884 of such an object. */
6885 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
6887 result = plus_constant (result, bitpos / BITS_PER_UNIT);
6888 if (modifier < EXPAND_SUM)
6889 result = force_operand (result, target);
6892 return result;
6895 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6896 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6898 static rtx
6899 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
6900 enum expand_modifier modifier)
6902 enum machine_mode rmode;
6903 rtx result;
6905 /* Target mode of VOIDmode says "whatever's natural". */
6906 if (tmode == VOIDmode)
6907 tmode = TYPE_MODE (TREE_TYPE (exp));
6909 /* We can get called with some Weird Things if the user does silliness
6910 like "(short) &a". In that case, convert_memory_address won't do
6911 the right thing, so ignore the given target mode. */
6912 if (tmode != Pmode && tmode != ptr_mode)
6913 tmode = Pmode;
6915 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
6916 tmode, modifier);
6918 /* Despite expand_expr claims concerning ignoring TMODE when not
6919 strictly convenient, stuff breaks if we don't honor it. Note
6920 that combined with the above, we only do this for pointer modes. */
6921 rmode = GET_MODE (result);
6922 if (rmode == VOIDmode)
6923 rmode = tmode;
6924 if (rmode != tmode)
6925 result = convert_memory_address (tmode, result);
6927 return result;
6930 /* Generate code for computing CONSTRUCTOR EXP.
6931 An rtx for the computed value is returned. If AVOID_TEMP_MEM
6932 is TRUE, instead of creating a temporary variable in memory
6933 NULL is returned and the caller needs to handle it differently. */
6935 static rtx
6936 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
6937 bool avoid_temp_mem)
6939 tree type = TREE_TYPE (exp);
6940 enum machine_mode mode = TYPE_MODE (type);
6942 /* Try to avoid creating a temporary at all. This is possible
6943 if all of the initializer is zero.
6944 FIXME: try to handle all [0..255] initializers we can handle
6945 with memset. */
6946 if (TREE_STATIC (exp)
6947 && !TREE_ADDRESSABLE (exp)
6948 && target != 0 && mode == BLKmode
6949 && all_zeros_p (exp))
6951 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
6952 return target;
6955 /* All elts simple constants => refer to a constant in memory. But
6956 if this is a non-BLKmode mode, let it store a field at a time
6957 since that should make a CONST_INT or CONST_DOUBLE when we
6958 fold. Likewise, if we have a target we can use, it is best to
6959 store directly into the target unless the type is large enough
6960 that memcpy will be used. If we are making an initializer and
6961 all operands are constant, put it in memory as well.
6963 FIXME: Avoid trying to fill vector constructors piece-meal.
6964 Output them with output_constant_def below unless we're sure
6965 they're zeros. This should go away when vector initializers
6966 are treated like VECTOR_CST instead of arrays. */
6967 if ((TREE_STATIC (exp)
6968 && ((mode == BLKmode
6969 && ! (target != 0 && safe_from_p (target, exp, 1)))
6970 || TREE_ADDRESSABLE (exp)
6971 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
6972 && (! MOVE_BY_PIECES_P
6973 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
6974 TYPE_ALIGN (type)))
6975 && ! mostly_zeros_p (exp))))
6976 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
6977 && TREE_CONSTANT (exp)))
6979 rtx constructor;
6981 if (avoid_temp_mem)
6982 return NULL_RTX;
6984 constructor = expand_expr_constant (exp, 1, modifier);
6986 if (modifier != EXPAND_CONST_ADDRESS
6987 && modifier != EXPAND_INITIALIZER
6988 && modifier != EXPAND_SUM)
6989 constructor = validize_mem (constructor);
6991 return constructor;
6994 /* Handle calls that pass values in multiple non-contiguous
6995 locations. The Irix 6 ABI has examples of this. */
6996 if (target == 0 || ! safe_from_p (target, exp, 1)
6997 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
6999 if (avoid_temp_mem)
7000 return NULL_RTX;
7002 target
7003 = assign_temp (build_qualified_type (type, (TYPE_QUALS (type)
7004 | (TREE_READONLY (exp)
7005 * TYPE_QUAL_CONST))),
7006 0, TREE_ADDRESSABLE (exp), 1);
7009 store_constructor (exp, target, 0, int_expr_size (exp));
7010 return target;
7014 /* expand_expr: generate code for computing expression EXP.
7015 An rtx for the computed value is returned. The value is never null.
7016 In the case of a void EXP, const0_rtx is returned.
7018 The value may be stored in TARGET if TARGET is nonzero.
7019 TARGET is just a suggestion; callers must assume that
7020 the rtx returned may not be the same as TARGET.
7022 If TARGET is CONST0_RTX, it means that the value will be ignored.
7024 If TMODE is not VOIDmode, it suggests generating the
7025 result in mode TMODE. But this is done only when convenient.
7026 Otherwise, TMODE is ignored and the value generated in its natural mode.
7027 TMODE is just a suggestion; callers must assume that
7028 the rtx returned may not have mode TMODE.
7030 Note that TARGET may have neither TMODE nor MODE. In that case, it
7031 probably will not be used.
7033 If MODIFIER is EXPAND_SUM then when EXP is an addition
7034 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7035 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7036 products as above, or REG or MEM, or constant.
7037 Ordinarily in such cases we would output mul or add instructions
7038 and then return a pseudo reg containing the sum.
7040 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7041 it also marks a label as absolutely required (it can't be dead).
7042 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7043 This is used for outputting expressions used in initializers.
7045 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7046 with a constant address even if that address is not normally legitimate.
7047 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7049 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7050 a call parameter. Such targets require special care as we haven't yet
7051 marked TARGET so that it's safe from being trashed by libcalls. We
7052 don't want to use TARGET for anything but the final result;
7053 Intermediate values must go elsewhere. Additionally, calls to
7054 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7056 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7057 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7058 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7059 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7060 recursively. */
7062 static rtx expand_expr_real_1 (tree, rtx, enum machine_mode,
7063 enum expand_modifier, rtx *);
7066 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
7067 enum expand_modifier modifier, rtx *alt_rtl)
7069 int rn = -1;
7070 rtx ret, last = NULL;
7072 /* Handle ERROR_MARK before anybody tries to access its type. */
7073 if (TREE_CODE (exp) == ERROR_MARK
7074 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
7076 ret = CONST0_RTX (tmode);
7077 return ret ? ret : const0_rtx;
7080 if (flag_non_call_exceptions)
7082 rn = lookup_expr_eh_region (exp);
7084 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't throw. */
7085 if (rn >= 0)
7086 last = get_last_insn ();
7089 /* If this is an expression of some kind and it has an associated line
7090 number, then emit the line number before expanding the expression.
7092 We need to save and restore the file and line information so that
7093 errors discovered during expansion are emitted with the right
7094 information. It would be better of the diagnostic routines
7095 used the file/line information embedded in the tree nodes rather
7096 than globals. */
7097 if (cfun && EXPR_HAS_LOCATION (exp))
7099 location_t saved_location = input_location;
7100 input_location = EXPR_LOCATION (exp);
7101 set_curr_insn_source_location (input_location);
7103 /* Record where the insns produced belong. */
7104 set_curr_insn_block (TREE_BLOCK (exp));
7106 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7108 input_location = saved_location;
7110 else
7112 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7115 /* If using non-call exceptions, mark all insns that may trap.
7116 expand_call() will mark CALL_INSNs before we get to this code,
7117 but it doesn't handle libcalls, and these may trap. */
7118 if (rn >= 0)
7120 rtx insn;
7121 for (insn = next_real_insn (last); insn;
7122 insn = next_real_insn (insn))
7124 if (! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
7125 /* If we want exceptions for non-call insns, any
7126 may_trap_p instruction may throw. */
7127 && GET_CODE (PATTERN (insn)) != CLOBBER
7128 && GET_CODE (PATTERN (insn)) != USE
7129 && (CALL_P (insn) || may_trap_p (PATTERN (insn))))
7130 add_reg_note (insn, REG_EH_REGION, GEN_INT (rn));
7134 return ret;
7137 static rtx
7138 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
7139 enum expand_modifier modifier, rtx *alt_rtl)
7141 rtx op0, op1, op2, temp, decl_rtl;
7142 tree type;
7143 int unsignedp;
7144 enum machine_mode mode;
7145 enum tree_code code = TREE_CODE (exp);
7146 optab this_optab;
7147 rtx subtarget, original_target;
7148 int ignore;
7149 tree context, subexp0, subexp1;
7150 bool reduce_bit_field;
7151 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
7152 ? reduce_to_bit_field_precision ((expr), \
7153 target, \
7154 type) \
7155 : (expr))
7157 type = TREE_TYPE (exp);
7158 mode = TYPE_MODE (type);
7159 unsignedp = TYPE_UNSIGNED (type);
7161 ignore = (target == const0_rtx
7162 || ((CONVERT_EXPR_CODE_P (code)
7163 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
7164 && TREE_CODE (type) == VOID_TYPE));
7166 /* An operation in what may be a bit-field type needs the
7167 result to be reduced to the precision of the bit-field type,
7168 which is narrower than that of the type's mode. */
7169 reduce_bit_field = (!ignore
7170 && TREE_CODE (type) == INTEGER_TYPE
7171 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
7173 /* If we are going to ignore this result, we need only do something
7174 if there is a side-effect somewhere in the expression. If there
7175 is, short-circuit the most common cases here. Note that we must
7176 not call expand_expr with anything but const0_rtx in case this
7177 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
7179 if (ignore)
7181 if (! TREE_SIDE_EFFECTS (exp))
7182 return const0_rtx;
7184 /* Ensure we reference a volatile object even if value is ignored, but
7185 don't do this if all we are doing is taking its address. */
7186 if (TREE_THIS_VOLATILE (exp)
7187 && TREE_CODE (exp) != FUNCTION_DECL
7188 && mode != VOIDmode && mode != BLKmode
7189 && modifier != EXPAND_CONST_ADDRESS)
7191 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
7192 if (MEM_P (temp))
7193 temp = copy_to_reg (temp);
7194 return const0_rtx;
7197 if (TREE_CODE_CLASS (code) == tcc_unary
7198 || code == COMPONENT_REF || code == INDIRECT_REF)
7199 return expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
7200 modifier);
7202 else if (TREE_CODE_CLASS (code) == tcc_binary
7203 || TREE_CODE_CLASS (code) == tcc_comparison
7204 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
7206 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
7207 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
7208 return const0_rtx;
7210 else if (code == BIT_FIELD_REF)
7212 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
7213 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
7214 expand_expr (TREE_OPERAND (exp, 2), const0_rtx, VOIDmode, modifier);
7215 return const0_rtx;
7218 target = 0;
7221 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
7222 target = 0;
7224 /* Use subtarget as the target for operand 0 of a binary operation. */
7225 subtarget = get_subtarget (target);
7226 original_target = target;
7228 switch (code)
7230 case LABEL_DECL:
7232 tree function = decl_function_context (exp);
7234 temp = label_rtx (exp);
7235 temp = gen_rtx_LABEL_REF (Pmode, temp);
7237 if (function != current_function_decl
7238 && function != 0)
7239 LABEL_REF_NONLOCAL_P (temp) = 1;
7241 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
7242 return temp;
7245 case SSA_NAME:
7246 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
7247 NULL);
7249 case PARM_DECL:
7250 case VAR_DECL:
7251 /* If a static var's type was incomplete when the decl was written,
7252 but the type is complete now, lay out the decl now. */
7253 if (DECL_SIZE (exp) == 0
7254 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
7255 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
7256 layout_decl (exp, 0);
7258 /* TLS emulation hook - replace __thread vars with
7259 *__emutls_get_address (&_emutls.var). */
7260 if (! targetm.have_tls
7261 && TREE_CODE (exp) == VAR_DECL
7262 && DECL_THREAD_LOCAL_P (exp))
7264 exp = build_fold_indirect_ref (emutls_var_address (exp));
7265 return expand_expr_real_1 (exp, target, tmode, modifier, NULL);
7268 /* ... fall through ... */
7270 case FUNCTION_DECL:
7271 case RESULT_DECL:
7272 decl_rtl = DECL_RTL (exp);
7273 gcc_assert (decl_rtl);
7274 decl_rtl = copy_rtx (decl_rtl);
7276 /* Ensure variable marked as used even if it doesn't go through
7277 a parser. If it hasn't be used yet, write out an external
7278 definition. */
7279 if (! TREE_USED (exp))
7281 assemble_external (exp);
7282 TREE_USED (exp) = 1;
7285 /* Show we haven't gotten RTL for this yet. */
7286 temp = 0;
7288 /* Variables inherited from containing functions should have
7289 been lowered by this point. */
7290 context = decl_function_context (exp);
7291 gcc_assert (!context
7292 || context == current_function_decl
7293 || TREE_STATIC (exp)
7294 /* ??? C++ creates functions that are not TREE_STATIC. */
7295 || TREE_CODE (exp) == FUNCTION_DECL);
7297 /* This is the case of an array whose size is to be determined
7298 from its initializer, while the initializer is still being parsed.
7299 See expand_decl. */
7301 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
7302 temp = validize_mem (decl_rtl);
7304 /* If DECL_RTL is memory, we are in the normal case and the
7305 address is not valid, get the address into a register. */
7307 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
7309 if (alt_rtl)
7310 *alt_rtl = decl_rtl;
7311 decl_rtl = use_anchored_address (decl_rtl);
7312 if (modifier != EXPAND_CONST_ADDRESS
7313 && modifier != EXPAND_SUM
7314 && !memory_address_p (DECL_MODE (exp), XEXP (decl_rtl, 0)))
7315 temp = replace_equiv_address (decl_rtl,
7316 copy_rtx (XEXP (decl_rtl, 0)));
7319 /* If we got something, return it. But first, set the alignment
7320 if the address is a register. */
7321 if (temp != 0)
7323 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
7324 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
7326 return temp;
7329 /* If the mode of DECL_RTL does not match that of the decl, it
7330 must be a promoted value. We return a SUBREG of the wanted mode,
7331 but mark it so that we know that it was already extended. */
7333 if (REG_P (decl_rtl)
7334 && GET_MODE (decl_rtl) != DECL_MODE (exp))
7336 enum machine_mode pmode;
7338 /* Get the signedness used for this variable. Ensure we get the
7339 same mode we got when the variable was declared. */
7340 pmode = promote_mode (type, DECL_MODE (exp), &unsignedp,
7341 (TREE_CODE (exp) == RESULT_DECL
7342 || TREE_CODE (exp) == PARM_DECL) ? 1 : 0);
7343 gcc_assert (GET_MODE (decl_rtl) == pmode);
7345 temp = gen_lowpart_SUBREG (mode, decl_rtl);
7346 SUBREG_PROMOTED_VAR_P (temp) = 1;
7347 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
7348 return temp;
7351 return decl_rtl;
7353 case INTEGER_CST:
7354 temp = immed_double_const (TREE_INT_CST_LOW (exp),
7355 TREE_INT_CST_HIGH (exp), mode);
7357 return temp;
7359 case VECTOR_CST:
7361 tree tmp = NULL_TREE;
7362 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
7363 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
7364 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
7365 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
7366 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
7367 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
7368 return const_vector_from_tree (exp);
7369 if (GET_MODE_CLASS (mode) == MODE_INT)
7371 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
7372 if (type_for_mode)
7373 tmp = fold_unary (VIEW_CONVERT_EXPR, type_for_mode, exp);
7375 if (!tmp)
7376 tmp = build_constructor_from_list (type,
7377 TREE_VECTOR_CST_ELTS (exp));
7378 return expand_expr (tmp, ignore ? const0_rtx : target,
7379 tmode, modifier);
7382 case CONST_DECL:
7383 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
7385 case REAL_CST:
7386 /* If optimized, generate immediate CONST_DOUBLE
7387 which will be turned into memory by reload if necessary.
7389 We used to force a register so that loop.c could see it. But
7390 this does not allow gen_* patterns to perform optimizations with
7391 the constants. It also produces two insns in cases like "x = 1.0;".
7392 On most machines, floating-point constants are not permitted in
7393 many insns, so we'd end up copying it to a register in any case.
7395 Now, we do the copying in expand_binop, if appropriate. */
7396 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
7397 TYPE_MODE (TREE_TYPE (exp)));
7399 case FIXED_CST:
7400 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
7401 TYPE_MODE (TREE_TYPE (exp)));
7403 case COMPLEX_CST:
7404 /* Handle evaluating a complex constant in a CONCAT target. */
7405 if (original_target && GET_CODE (original_target) == CONCAT)
7407 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
7408 rtx rtarg, itarg;
7410 rtarg = XEXP (original_target, 0);
7411 itarg = XEXP (original_target, 1);
7413 /* Move the real and imaginary parts separately. */
7414 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
7415 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
7417 if (op0 != rtarg)
7418 emit_move_insn (rtarg, op0);
7419 if (op1 != itarg)
7420 emit_move_insn (itarg, op1);
7422 return original_target;
7425 /* ... fall through ... */
7427 case STRING_CST:
7428 temp = expand_expr_constant (exp, 1, modifier);
7430 /* temp contains a constant address.
7431 On RISC machines where a constant address isn't valid,
7432 make some insns to get that address into a register. */
7433 if (modifier != EXPAND_CONST_ADDRESS
7434 && modifier != EXPAND_INITIALIZER
7435 && modifier != EXPAND_SUM
7436 && ! memory_address_p (mode, XEXP (temp, 0)))
7437 return replace_equiv_address (temp,
7438 copy_rtx (XEXP (temp, 0)));
7439 return temp;
7441 case SAVE_EXPR:
7443 tree val = TREE_OPERAND (exp, 0);
7444 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
7446 if (!SAVE_EXPR_RESOLVED_P (exp))
7448 /* We can indeed still hit this case, typically via builtin
7449 expanders calling save_expr immediately before expanding
7450 something. Assume this means that we only have to deal
7451 with non-BLKmode values. */
7452 gcc_assert (GET_MODE (ret) != BLKmode);
7454 val = build_decl (VAR_DECL, NULL, TREE_TYPE (exp));
7455 DECL_ARTIFICIAL (val) = 1;
7456 DECL_IGNORED_P (val) = 1;
7457 TREE_OPERAND (exp, 0) = val;
7458 SAVE_EXPR_RESOLVED_P (exp) = 1;
7460 if (!CONSTANT_P (ret))
7461 ret = copy_to_reg (ret);
7462 SET_DECL_RTL (val, ret);
7465 return ret;
7468 case GOTO_EXPR:
7469 if (TREE_CODE (TREE_OPERAND (exp, 0)) == LABEL_DECL)
7470 expand_goto (TREE_OPERAND (exp, 0));
7471 else
7472 expand_computed_goto (TREE_OPERAND (exp, 0));
7473 return const0_rtx;
7475 case CONSTRUCTOR:
7476 /* If we don't need the result, just ensure we evaluate any
7477 subexpressions. */
7478 if (ignore)
7480 unsigned HOST_WIDE_INT idx;
7481 tree value;
7483 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
7484 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
7486 return const0_rtx;
7489 return expand_constructor (exp, target, modifier, false);
7491 case MISALIGNED_INDIRECT_REF:
7492 case ALIGN_INDIRECT_REF:
7493 case INDIRECT_REF:
7495 tree exp1 = TREE_OPERAND (exp, 0);
7497 if (modifier != EXPAND_WRITE)
7499 tree t;
7501 t = fold_read_from_constant_string (exp);
7502 if (t)
7503 return expand_expr (t, target, tmode, modifier);
7506 op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
7507 op0 = memory_address (mode, op0);
7509 if (code == ALIGN_INDIRECT_REF)
7511 int align = TYPE_ALIGN_UNIT (type);
7512 op0 = gen_rtx_AND (Pmode, op0, GEN_INT (-align));
7513 op0 = memory_address (mode, op0);
7516 temp = gen_rtx_MEM (mode, op0);
7518 set_mem_attributes (temp, exp, 0);
7520 /* Resolve the misalignment now, so that we don't have to remember
7521 to resolve it later. Of course, this only works for reads. */
7522 /* ??? When we get around to supporting writes, we'll have to handle
7523 this in store_expr directly. The vectorizer isn't generating
7524 those yet, however. */
7525 if (code == MISALIGNED_INDIRECT_REF)
7527 int icode;
7528 rtx reg, insn;
7530 gcc_assert (modifier == EXPAND_NORMAL
7531 || modifier == EXPAND_STACK_PARM);
7533 /* The vectorizer should have already checked the mode. */
7534 icode = optab_handler (movmisalign_optab, mode)->insn_code;
7535 gcc_assert (icode != CODE_FOR_nothing);
7537 /* We've already validated the memory, and we're creating a
7538 new pseudo destination. The predicates really can't fail. */
7539 reg = gen_reg_rtx (mode);
7541 /* Nor can the insn generator. */
7542 insn = GEN_FCN (icode) (reg, temp);
7543 emit_insn (insn);
7545 return reg;
7548 return temp;
7551 case TARGET_MEM_REF:
7553 struct mem_address addr;
7555 get_address_description (exp, &addr);
7556 op0 = addr_for_mem_ref (&addr, true);
7557 op0 = memory_address (mode, op0);
7558 temp = gen_rtx_MEM (mode, op0);
7559 set_mem_attributes (temp, TMR_ORIGINAL (exp), 0);
7561 return temp;
7563 case ARRAY_REF:
7566 tree array = TREE_OPERAND (exp, 0);
7567 tree index = TREE_OPERAND (exp, 1);
7569 /* Fold an expression like: "foo"[2].
7570 This is not done in fold so it won't happen inside &.
7571 Don't fold if this is for wide characters since it's too
7572 difficult to do correctly and this is a very rare case. */
7574 if (modifier != EXPAND_CONST_ADDRESS
7575 && modifier != EXPAND_INITIALIZER
7576 && modifier != EXPAND_MEMORY)
7578 tree t = fold_read_from_constant_string (exp);
7580 if (t)
7581 return expand_expr (t, target, tmode, modifier);
7584 /* If this is a constant index into a constant array,
7585 just get the value from the array. Handle both the cases when
7586 we have an explicit constructor and when our operand is a variable
7587 that was declared const. */
7589 if (modifier != EXPAND_CONST_ADDRESS
7590 && modifier != EXPAND_INITIALIZER
7591 && modifier != EXPAND_MEMORY
7592 && TREE_CODE (array) == CONSTRUCTOR
7593 && ! TREE_SIDE_EFFECTS (array)
7594 && TREE_CODE (index) == INTEGER_CST)
7596 unsigned HOST_WIDE_INT ix;
7597 tree field, value;
7599 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
7600 field, value)
7601 if (tree_int_cst_equal (field, index))
7603 if (!TREE_SIDE_EFFECTS (value))
7604 return expand_expr (fold (value), target, tmode, modifier);
7605 break;
7609 else if (optimize >= 1
7610 && modifier != EXPAND_CONST_ADDRESS
7611 && modifier != EXPAND_INITIALIZER
7612 && modifier != EXPAND_MEMORY
7613 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
7614 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
7615 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
7616 && targetm.binds_local_p (array))
7618 if (TREE_CODE (index) == INTEGER_CST)
7620 tree init = DECL_INITIAL (array);
7622 if (TREE_CODE (init) == CONSTRUCTOR)
7624 unsigned HOST_WIDE_INT ix;
7625 tree field, value;
7627 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
7628 field, value)
7629 if (tree_int_cst_equal (field, index))
7631 if (TREE_SIDE_EFFECTS (value))
7632 break;
7634 if (TREE_CODE (value) == CONSTRUCTOR)
7636 /* If VALUE is a CONSTRUCTOR, this
7637 optimization is only useful if
7638 this doesn't store the CONSTRUCTOR
7639 into memory. If it does, it is more
7640 efficient to just load the data from
7641 the array directly. */
7642 rtx ret = expand_constructor (value, target,
7643 modifier, true);
7644 if (ret == NULL_RTX)
7645 break;
7648 return expand_expr (fold (value), target, tmode,
7649 modifier);
7652 else if(TREE_CODE (init) == STRING_CST)
7654 tree index1 = index;
7655 tree low_bound = array_ref_low_bound (exp);
7656 index1 = fold_convert (sizetype, TREE_OPERAND (exp, 1));
7658 /* Optimize the special-case of a zero lower bound.
7660 We convert the low_bound to sizetype to avoid some problems
7661 with constant folding. (E.g. suppose the lower bound is 1,
7662 and its mode is QI. Without the conversion,l (ARRAY
7663 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
7664 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
7666 if (! integer_zerop (low_bound))
7667 index1 = size_diffop (index1, fold_convert (sizetype,
7668 low_bound));
7670 if (0 > compare_tree_int (index1,
7671 TREE_STRING_LENGTH (init)))
7673 tree type = TREE_TYPE (TREE_TYPE (init));
7674 enum machine_mode mode = TYPE_MODE (type);
7676 if (GET_MODE_CLASS (mode) == MODE_INT
7677 && GET_MODE_SIZE (mode) == 1)
7678 return gen_int_mode (TREE_STRING_POINTER (init)
7679 [TREE_INT_CST_LOW (index1)],
7680 mode);
7686 goto normal_inner_ref;
7688 case COMPONENT_REF:
7689 /* If the operand is a CONSTRUCTOR, we can just extract the
7690 appropriate field if it is present. */
7691 if (TREE_CODE (TREE_OPERAND (exp, 0)) == CONSTRUCTOR)
7693 unsigned HOST_WIDE_INT idx;
7694 tree field, value;
7696 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)),
7697 idx, field, value)
7698 if (field == TREE_OPERAND (exp, 1)
7699 /* We can normally use the value of the field in the
7700 CONSTRUCTOR. However, if this is a bitfield in
7701 an integral mode that we can fit in a HOST_WIDE_INT,
7702 we must mask only the number of bits in the bitfield,
7703 since this is done implicitly by the constructor. If
7704 the bitfield does not meet either of those conditions,
7705 we can't do this optimization. */
7706 && (! DECL_BIT_FIELD (field)
7707 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
7708 && (GET_MODE_BITSIZE (DECL_MODE (field))
7709 <= HOST_BITS_PER_WIDE_INT))))
7711 if (DECL_BIT_FIELD (field)
7712 && modifier == EXPAND_STACK_PARM)
7713 target = 0;
7714 op0 = expand_expr (value, target, tmode, modifier);
7715 if (DECL_BIT_FIELD (field))
7717 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
7718 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
7720 if (TYPE_UNSIGNED (TREE_TYPE (field)))
7722 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
7723 op0 = expand_and (imode, op0, op1, target);
7725 else
7727 tree count
7728 = build_int_cst (NULL_TREE,
7729 GET_MODE_BITSIZE (imode) - bitsize);
7731 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
7732 target, 0);
7733 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
7734 target, 0);
7738 return op0;
7741 goto normal_inner_ref;
7743 case BIT_FIELD_REF:
7744 case ARRAY_RANGE_REF:
7745 normal_inner_ref:
7747 enum machine_mode mode1, mode2;
7748 HOST_WIDE_INT bitsize, bitpos;
7749 tree offset;
7750 int volatilep = 0, must_force_mem;
7751 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
7752 &mode1, &unsignedp, &volatilep, true);
7753 rtx orig_op0, memloc;
7755 /* If we got back the original object, something is wrong. Perhaps
7756 we are evaluating an expression too early. In any event, don't
7757 infinitely recurse. */
7758 gcc_assert (tem != exp);
7760 /* If TEM's type is a union of variable size, pass TARGET to the inner
7761 computation, since it will need a temporary and TARGET is known
7762 to have to do. This occurs in unchecked conversion in Ada. */
7763 orig_op0 = op0
7764 = expand_expr (tem,
7765 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
7766 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
7767 != INTEGER_CST)
7768 && modifier != EXPAND_STACK_PARM
7769 ? target : NULL_RTX),
7770 VOIDmode,
7771 (modifier == EXPAND_INITIALIZER
7772 || modifier == EXPAND_CONST_ADDRESS
7773 || modifier == EXPAND_STACK_PARM)
7774 ? modifier : EXPAND_NORMAL);
7776 mode2
7777 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
7779 /* If we have either an offset, a BLKmode result, or a reference
7780 outside the underlying object, we must force it to memory.
7781 Such a case can occur in Ada if we have unchecked conversion
7782 of an expression from a scalar type to an aggregate type or
7783 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
7784 passed a partially uninitialized object or a view-conversion
7785 to a larger size. */
7786 must_force_mem = (offset
7787 || mode1 == BLKmode
7788 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
7790 /* If this is a constant, put it in a register if it is a legitimate
7791 constant and we don't need a memory reference. */
7792 if (CONSTANT_P (op0)
7793 && mode2 != BLKmode
7794 && LEGITIMATE_CONSTANT_P (op0)
7795 && !must_force_mem)
7796 op0 = force_reg (mode2, op0);
7798 /* Otherwise, if this is a constant, try to force it to the constant
7799 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
7800 is a legitimate constant. */
7801 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
7802 op0 = validize_mem (memloc);
7804 /* Otherwise, if this is a constant or the object is not in memory
7805 and need be, put it there. */
7806 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
7808 tree nt = build_qualified_type (TREE_TYPE (tem),
7809 (TYPE_QUALS (TREE_TYPE (tem))
7810 | TYPE_QUAL_CONST));
7811 memloc = assign_temp (nt, 1, 1, 1);
7812 emit_move_insn (memloc, op0);
7813 op0 = memloc;
7816 if (offset)
7818 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
7819 EXPAND_SUM);
7821 gcc_assert (MEM_P (op0));
7823 #ifdef POINTERS_EXTEND_UNSIGNED
7824 if (GET_MODE (offset_rtx) != Pmode)
7825 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
7826 #else
7827 if (GET_MODE (offset_rtx) != ptr_mode)
7828 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
7829 #endif
7831 if (GET_MODE (op0) == BLKmode
7832 /* A constant address in OP0 can have VOIDmode, we must
7833 not try to call force_reg in that case. */
7834 && GET_MODE (XEXP (op0, 0)) != VOIDmode
7835 && bitsize != 0
7836 && (bitpos % bitsize) == 0
7837 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
7838 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
7840 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
7841 bitpos = 0;
7844 op0 = offset_address (op0, offset_rtx,
7845 highest_pow2_factor (offset));
7848 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
7849 record its alignment as BIGGEST_ALIGNMENT. */
7850 if (MEM_P (op0) && bitpos == 0 && offset != 0
7851 && is_aligning_offset (offset, tem))
7852 set_mem_align (op0, BIGGEST_ALIGNMENT);
7854 /* Don't forget about volatility even if this is a bitfield. */
7855 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
7857 if (op0 == orig_op0)
7858 op0 = copy_rtx (op0);
7860 MEM_VOLATILE_P (op0) = 1;
7863 /* The following code doesn't handle CONCAT.
7864 Assume only bitpos == 0 can be used for CONCAT, due to
7865 one element arrays having the same mode as its element. */
7866 if (GET_CODE (op0) == CONCAT)
7868 gcc_assert (bitpos == 0
7869 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)));
7870 return op0;
7873 /* In cases where an aligned union has an unaligned object
7874 as a field, we might be extracting a BLKmode value from
7875 an integer-mode (e.g., SImode) object. Handle this case
7876 by doing the extract into an object as wide as the field
7877 (which we know to be the width of a basic mode), then
7878 storing into memory, and changing the mode to BLKmode. */
7879 if (mode1 == VOIDmode
7880 || REG_P (op0) || GET_CODE (op0) == SUBREG
7881 || (mode1 != BLKmode && ! direct_load[(int) mode1]
7882 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7883 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
7884 && modifier != EXPAND_CONST_ADDRESS
7885 && modifier != EXPAND_INITIALIZER)
7886 /* If the field isn't aligned enough to fetch as a memref,
7887 fetch it as a bit field. */
7888 || (mode1 != BLKmode
7889 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
7890 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
7891 || (MEM_P (op0)
7892 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
7893 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
7894 && ((modifier == EXPAND_CONST_ADDRESS
7895 || modifier == EXPAND_INITIALIZER)
7896 ? STRICT_ALIGNMENT
7897 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
7898 || (bitpos % BITS_PER_UNIT != 0)))
7899 /* If the type and the field are a constant size and the
7900 size of the type isn't the same size as the bitfield,
7901 we must use bitfield operations. */
7902 || (bitsize >= 0
7903 && TYPE_SIZE (TREE_TYPE (exp))
7904 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
7905 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
7906 bitsize)))
7908 enum machine_mode ext_mode = mode;
7910 if (ext_mode == BLKmode
7911 && ! (target != 0 && MEM_P (op0)
7912 && MEM_P (target)
7913 && bitpos % BITS_PER_UNIT == 0))
7914 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
7916 if (ext_mode == BLKmode)
7918 if (target == 0)
7919 target = assign_temp (type, 0, 1, 1);
7921 if (bitsize == 0)
7922 return target;
7924 /* In this case, BITPOS must start at a byte boundary and
7925 TARGET, if specified, must be a MEM. */
7926 gcc_assert (MEM_P (op0)
7927 && (!target || MEM_P (target))
7928 && !(bitpos % BITS_PER_UNIT));
7930 emit_block_move (target,
7931 adjust_address (op0, VOIDmode,
7932 bitpos / BITS_PER_UNIT),
7933 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
7934 / BITS_PER_UNIT),
7935 (modifier == EXPAND_STACK_PARM
7936 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
7938 return target;
7941 op0 = validize_mem (op0);
7943 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
7944 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
7946 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
7947 (modifier == EXPAND_STACK_PARM
7948 ? NULL_RTX : target),
7949 ext_mode, ext_mode);
7951 /* If the result is a record type and BITSIZE is narrower than
7952 the mode of OP0, an integral mode, and this is a big endian
7953 machine, we must put the field into the high-order bits. */
7954 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
7955 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
7956 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
7957 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
7958 size_int (GET_MODE_BITSIZE (GET_MODE (op0))
7959 - bitsize),
7960 op0, 1);
7962 /* If the result type is BLKmode, store the data into a temporary
7963 of the appropriate type, but with the mode corresponding to the
7964 mode for the data we have (op0's mode). It's tempting to make
7965 this a constant type, since we know it's only being stored once,
7966 but that can cause problems if we are taking the address of this
7967 COMPONENT_REF because the MEM of any reference via that address
7968 will have flags corresponding to the type, which will not
7969 necessarily be constant. */
7970 if (mode == BLKmode)
7972 HOST_WIDE_INT size = GET_MODE_BITSIZE (ext_mode);
7973 rtx new_rtx;
7975 /* If the reference doesn't use the alias set of its type,
7976 we cannot create the temporary using that type. */
7977 if (component_uses_parent_alias_set (exp))
7979 new_rtx = assign_stack_local (ext_mode, size, 0);
7980 set_mem_alias_set (new_rtx, get_alias_set (exp));
7982 else
7983 new_rtx = assign_stack_temp_for_type (ext_mode, size, 0, type);
7985 emit_move_insn (new_rtx, op0);
7986 op0 = copy_rtx (new_rtx);
7987 PUT_MODE (op0, BLKmode);
7988 set_mem_attributes (op0, exp, 1);
7991 return op0;
7994 /* If the result is BLKmode, use that to access the object
7995 now as well. */
7996 if (mode == BLKmode)
7997 mode1 = BLKmode;
7999 /* Get a reference to just this component. */
8000 if (modifier == EXPAND_CONST_ADDRESS
8001 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8002 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
8003 else
8004 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
8006 if (op0 == orig_op0)
8007 op0 = copy_rtx (op0);
8009 set_mem_attributes (op0, exp, 0);
8010 if (REG_P (XEXP (op0, 0)))
8011 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
8013 MEM_VOLATILE_P (op0) |= volatilep;
8014 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
8015 || modifier == EXPAND_CONST_ADDRESS
8016 || modifier == EXPAND_INITIALIZER)
8017 return op0;
8018 else if (target == 0)
8019 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8021 convert_move (target, op0, unsignedp);
8022 return target;
8025 case OBJ_TYPE_REF:
8026 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
8028 case CALL_EXPR:
8029 /* All valid uses of __builtin_va_arg_pack () are removed during
8030 inlining. */
8031 if (CALL_EXPR_VA_ARG_PACK (exp))
8032 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
8034 tree fndecl = get_callee_fndecl (exp), attr;
8036 if (fndecl
8037 && (attr = lookup_attribute ("error",
8038 DECL_ATTRIBUTES (fndecl))) != NULL)
8039 error ("%Kcall to %qs declared with attribute error: %s",
8040 exp, lang_hooks.decl_printable_name (fndecl, 1),
8041 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
8042 if (fndecl
8043 && (attr = lookup_attribute ("warning",
8044 DECL_ATTRIBUTES (fndecl))) != NULL)
8045 warning (0, "%Kcall to %qs declared with attribute warning: %s",
8046 exp, lang_hooks.decl_printable_name (fndecl, 1),
8047 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
8049 /* Check for a built-in function. */
8050 if (fndecl && DECL_BUILT_IN (fndecl))
8052 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_FRONTEND)
8053 return lang_hooks.expand_expr (exp, original_target,
8054 tmode, modifier, alt_rtl);
8055 else
8056 return expand_builtin (exp, target, subtarget, tmode, ignore);
8059 return expand_call (exp, target, ignore);
8061 case PAREN_EXPR:
8062 CASE_CONVERT:
8063 if (TREE_OPERAND (exp, 0) == error_mark_node)
8064 return const0_rtx;
8066 if (TREE_CODE (type) == UNION_TYPE)
8068 tree valtype = TREE_TYPE (TREE_OPERAND (exp, 0));
8070 /* If both input and output are BLKmode, this conversion isn't doing
8071 anything except possibly changing memory attribute. */
8072 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
8074 rtx result = expand_expr (TREE_OPERAND (exp, 0), target, tmode,
8075 modifier);
8077 result = copy_rtx (result);
8078 set_mem_attributes (result, exp, 0);
8079 return result;
8082 if (target == 0)
8084 if (TYPE_MODE (type) != BLKmode)
8085 target = gen_reg_rtx (TYPE_MODE (type));
8086 else
8087 target = assign_temp (type, 0, 1, 1);
8090 if (MEM_P (target))
8091 /* Store data into beginning of memory target. */
8092 store_expr (TREE_OPERAND (exp, 0),
8093 adjust_address (target, TYPE_MODE (valtype), 0),
8094 modifier == EXPAND_STACK_PARM,
8095 false);
8097 else
8099 gcc_assert (REG_P (target));
8101 /* Store this field into a union of the proper type. */
8102 store_field (target,
8103 MIN ((int_size_in_bytes (TREE_TYPE
8104 (TREE_OPERAND (exp, 0)))
8105 * BITS_PER_UNIT),
8106 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
8107 0, TYPE_MODE (valtype), TREE_OPERAND (exp, 0),
8108 type, 0, false);
8111 /* Return the entire union. */
8112 return target;
8115 if (mode == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
8117 op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode,
8118 modifier);
8120 /* If the signedness of the conversion differs and OP0 is
8121 a promoted SUBREG, clear that indication since we now
8122 have to do the proper extension. */
8123 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))) != unsignedp
8124 && GET_CODE (op0) == SUBREG)
8125 SUBREG_PROMOTED_VAR_P (op0) = 0;
8127 return REDUCE_BIT_FIELD (op0);
8130 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode,
8131 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
8132 if (GET_MODE (op0) == mode)
8135 /* If OP0 is a constant, just convert it into the proper mode. */
8136 else if (CONSTANT_P (op0))
8138 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
8139 enum machine_mode inner_mode = TYPE_MODE (inner_type);
8141 if (modifier == EXPAND_INITIALIZER)
8142 op0 = simplify_gen_subreg (mode, op0, inner_mode,
8143 subreg_lowpart_offset (mode,
8144 inner_mode));
8145 else
8146 op0= convert_modes (mode, inner_mode, op0,
8147 TYPE_UNSIGNED (inner_type));
8150 else if (modifier == EXPAND_INITIALIZER)
8151 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
8153 else if (target == 0)
8154 op0 = convert_to_mode (mode, op0,
8155 TYPE_UNSIGNED (TREE_TYPE
8156 (TREE_OPERAND (exp, 0))));
8157 else
8159 convert_move (target, op0,
8160 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
8161 op0 = target;
8164 return REDUCE_BIT_FIELD (op0);
8166 case VIEW_CONVERT_EXPR:
8167 op0 = NULL_RTX;
8169 /* If we are converting to BLKmode, try to avoid an intermediate
8170 temporary by fetching an inner memory reference. */
8171 if (mode == BLKmode
8172 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
8173 && TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))) != BLKmode
8174 && handled_component_p (TREE_OPERAND (exp, 0)))
8176 enum machine_mode mode1;
8177 HOST_WIDE_INT bitsize, bitpos;
8178 tree offset;
8179 int unsignedp;
8180 int volatilep = 0;
8181 tree tem
8182 = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, &bitpos,
8183 &offset, &mode1, &unsignedp, &volatilep,
8184 true);
8185 rtx orig_op0;
8187 /* ??? We should work harder and deal with non-zero offsets. */
8188 if (!offset
8189 && (bitpos % BITS_PER_UNIT) == 0
8190 && bitsize >= 0
8191 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) == 0)
8193 /* See the normal_inner_ref case for the rationale. */
8194 orig_op0
8195 = expand_expr (tem,
8196 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
8197 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
8198 != INTEGER_CST)
8199 && modifier != EXPAND_STACK_PARM
8200 ? target : NULL_RTX),
8201 VOIDmode,
8202 (modifier == EXPAND_INITIALIZER
8203 || modifier == EXPAND_CONST_ADDRESS
8204 || modifier == EXPAND_STACK_PARM)
8205 ? modifier : EXPAND_NORMAL);
8207 if (MEM_P (orig_op0))
8209 op0 = orig_op0;
8211 /* Get a reference to just this component. */
8212 if (modifier == EXPAND_CONST_ADDRESS
8213 || modifier == EXPAND_SUM
8214 || modifier == EXPAND_INITIALIZER)
8215 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
8216 else
8217 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
8219 if (op0 == orig_op0)
8220 op0 = copy_rtx (op0);
8222 set_mem_attributes (op0, TREE_OPERAND (exp, 0), 0);
8223 if (REG_P (XEXP (op0, 0)))
8224 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
8226 MEM_VOLATILE_P (op0) |= volatilep;
8231 if (!op0)
8232 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, modifier);
8234 /* If the input and output modes are both the same, we are done. */
8235 if (mode == GET_MODE (op0))
8237 /* If neither mode is BLKmode, and both modes are the same size
8238 then we can use gen_lowpart. */
8239 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
8240 && GET_MODE_SIZE (mode) == GET_MODE_SIZE (GET_MODE (op0)))
8242 if (GET_CODE (op0) == SUBREG)
8243 op0 = force_reg (GET_MODE (op0), op0);
8244 op0 = gen_lowpart (mode, op0);
8246 /* If both modes are integral, then we can convert from one to the
8247 other. */
8248 else if (SCALAR_INT_MODE_P (GET_MODE (op0)) && SCALAR_INT_MODE_P (mode))
8249 op0 = convert_modes (mode, GET_MODE (op0), op0,
8250 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
8251 /* As a last resort, spill op0 to memory, and reload it in a
8252 different mode. */
8253 else if (!MEM_P (op0))
8255 /* If the operand is not a MEM, force it into memory. Since we
8256 are going to be changing the mode of the MEM, don't call
8257 force_const_mem for constants because we don't allow pool
8258 constants to change mode. */
8259 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
8261 gcc_assert (!TREE_ADDRESSABLE (exp));
8263 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
8264 target
8265 = assign_stack_temp_for_type
8266 (TYPE_MODE (inner_type),
8267 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
8269 emit_move_insn (target, op0);
8270 op0 = target;
8273 /* At this point, OP0 is in the correct mode. If the output type is
8274 such that the operand is known to be aligned, indicate that it is.
8275 Otherwise, we need only be concerned about alignment for non-BLKmode
8276 results. */
8277 if (MEM_P (op0))
8279 op0 = copy_rtx (op0);
8281 if (TYPE_ALIGN_OK (type))
8282 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
8283 else if (STRICT_ALIGNMENT
8284 && mode != BLKmode
8285 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
8287 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
8288 HOST_WIDE_INT temp_size
8289 = MAX (int_size_in_bytes (inner_type),
8290 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
8291 rtx new_rtx
8292 = assign_stack_temp_for_type (mode, temp_size, 0, type);
8293 rtx new_with_op0_mode
8294 = adjust_address (new_rtx, GET_MODE (op0), 0);
8296 gcc_assert (!TREE_ADDRESSABLE (exp));
8298 if (GET_MODE (op0) == BLKmode)
8299 emit_block_move (new_with_op0_mode, op0,
8300 GEN_INT (GET_MODE_SIZE (mode)),
8301 (modifier == EXPAND_STACK_PARM
8302 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
8303 else
8304 emit_move_insn (new_with_op0_mode, op0);
8306 op0 = new_rtx;
8309 op0 = adjust_address (op0, mode, 0);
8312 return op0;
8314 case POINTER_PLUS_EXPR:
8315 /* Even though the sizetype mode and the pointer's mode can be different
8316 expand is able to handle this correctly and get the correct result out
8317 of the PLUS_EXPR code. */
8318 case PLUS_EXPR:
8320 /* Check if this is a case for multiplication and addition. */
8321 if ((TREE_CODE (type) == INTEGER_TYPE
8322 || TREE_CODE (type) == FIXED_POINT_TYPE)
8323 && TREE_CODE (TREE_OPERAND (exp, 0)) == MULT_EXPR)
8325 tree subsubexp0, subsubexp1;
8326 enum tree_code code0, code1, this_code;
8328 subexp0 = TREE_OPERAND (exp, 0);
8329 subsubexp0 = TREE_OPERAND (subexp0, 0);
8330 subsubexp1 = TREE_OPERAND (subexp0, 1);
8331 code0 = TREE_CODE (subsubexp0);
8332 code1 = TREE_CODE (subsubexp1);
8333 this_code = TREE_CODE (type) == INTEGER_TYPE ? NOP_EXPR
8334 : FIXED_CONVERT_EXPR;
8335 if (code0 == this_code && code1 == this_code
8336 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8337 < TYPE_PRECISION (TREE_TYPE (subsubexp0)))
8338 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8339 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp1, 0))))
8340 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8341 == TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp1, 0)))))
8343 tree op0type = TREE_TYPE (TREE_OPERAND (subsubexp0, 0));
8344 enum machine_mode innermode = TYPE_MODE (op0type);
8345 bool zextend_p = TYPE_UNSIGNED (op0type);
8346 bool sat_p = TYPE_SATURATING (TREE_TYPE (subsubexp0));
8347 if (sat_p == 0)
8348 this_optab = zextend_p ? umadd_widen_optab : smadd_widen_optab;
8349 else
8350 this_optab = zextend_p ? usmadd_widen_optab
8351 : ssmadd_widen_optab;
8352 if (mode == GET_MODE_2XWIDER_MODE (innermode)
8353 && (optab_handler (this_optab, mode)->insn_code
8354 != CODE_FOR_nothing))
8356 expand_operands (TREE_OPERAND (subsubexp0, 0),
8357 TREE_OPERAND (subsubexp1, 0),
8358 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8359 op2 = expand_expr (TREE_OPERAND (exp, 1), subtarget,
8360 VOIDmode, EXPAND_NORMAL);
8361 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
8362 target, unsignedp);
8363 gcc_assert (temp);
8364 return REDUCE_BIT_FIELD (temp);
8369 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8370 something else, make sure we add the register to the constant and
8371 then to the other thing. This case can occur during strength
8372 reduction and doing it this way will produce better code if the
8373 frame pointer or argument pointer is eliminated.
8375 fold-const.c will ensure that the constant is always in the inner
8376 PLUS_EXPR, so the only case we need to do anything about is if
8377 sp, ap, or fp is our second argument, in which case we must swap
8378 the innermost first argument and our second argument. */
8380 if (TREE_CODE (TREE_OPERAND (exp, 0)) == PLUS_EXPR
8381 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 1)) == INTEGER_CST
8382 && TREE_CODE (TREE_OPERAND (exp, 1)) == VAR_DECL
8383 && (DECL_RTL (TREE_OPERAND (exp, 1)) == frame_pointer_rtx
8384 || DECL_RTL (TREE_OPERAND (exp, 1)) == stack_pointer_rtx
8385 || DECL_RTL (TREE_OPERAND (exp, 1)) == arg_pointer_rtx))
8387 tree t = TREE_OPERAND (exp, 1);
8389 TREE_OPERAND (exp, 1) = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
8390 TREE_OPERAND (TREE_OPERAND (exp, 0), 0) = t;
8393 /* If the result is to be ptr_mode and we are adding an integer to
8394 something, we might be forming a constant. So try to use
8395 plus_constant. If it produces a sum and we can't accept it,
8396 use force_operand. This allows P = &ARR[const] to generate
8397 efficient code on machines where a SYMBOL_REF is not a valid
8398 address.
8400 If this is an EXPAND_SUM call, always return the sum. */
8401 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
8402 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
8404 if (modifier == EXPAND_STACK_PARM)
8405 target = 0;
8406 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST
8407 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8408 && TREE_CONSTANT (TREE_OPERAND (exp, 1)))
8410 rtx constant_part;
8412 op1 = expand_expr (TREE_OPERAND (exp, 1), subtarget, VOIDmode,
8413 EXPAND_SUM);
8414 /* Use immed_double_const to ensure that the constant is
8415 truncated according to the mode of OP1, then sign extended
8416 to a HOST_WIDE_INT. Using the constant directly can result
8417 in non-canonical RTL in a 64x32 cross compile. */
8418 constant_part
8419 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 0)),
8420 (HOST_WIDE_INT) 0,
8421 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))));
8422 op1 = plus_constant (op1, INTVAL (constant_part));
8423 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8424 op1 = force_operand (op1, target);
8425 return REDUCE_BIT_FIELD (op1);
8428 else if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
8429 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8430 && TREE_CONSTANT (TREE_OPERAND (exp, 0)))
8432 rtx constant_part;
8434 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
8435 (modifier == EXPAND_INITIALIZER
8436 ? EXPAND_INITIALIZER : EXPAND_SUM));
8437 if (! CONSTANT_P (op0))
8439 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
8440 VOIDmode, modifier);
8441 /* Return a PLUS if modifier says it's OK. */
8442 if (modifier == EXPAND_SUM
8443 || modifier == EXPAND_INITIALIZER)
8444 return simplify_gen_binary (PLUS, mode, op0, op1);
8445 goto binop2;
8447 /* Use immed_double_const to ensure that the constant is
8448 truncated according to the mode of OP1, then sign extended
8449 to a HOST_WIDE_INT. Using the constant directly can result
8450 in non-canonical RTL in a 64x32 cross compile. */
8451 constant_part
8452 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)),
8453 (HOST_WIDE_INT) 0,
8454 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))));
8455 op0 = plus_constant (op0, INTVAL (constant_part));
8456 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8457 op0 = force_operand (op0, target);
8458 return REDUCE_BIT_FIELD (op0);
8462 /* No sense saving up arithmetic to be done
8463 if it's all in the wrong mode to form part of an address.
8464 And force_operand won't know whether to sign-extend or
8465 zero-extend. */
8466 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8467 || mode != ptr_mode)
8469 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8470 subtarget, &op0, &op1, 0);
8471 if (op0 == const0_rtx)
8472 return op1;
8473 if (op1 == const0_rtx)
8474 return op0;
8475 goto binop2;
8478 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8479 subtarget, &op0, &op1, modifier);
8480 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8482 case MINUS_EXPR:
8483 /* Check if this is a case for multiplication and subtraction. */
8484 if ((TREE_CODE (type) == INTEGER_TYPE
8485 || TREE_CODE (type) == FIXED_POINT_TYPE)
8486 && TREE_CODE (TREE_OPERAND (exp, 1)) == MULT_EXPR)
8488 tree subsubexp0, subsubexp1;
8489 enum tree_code code0, code1, this_code;
8491 subexp1 = TREE_OPERAND (exp, 1);
8492 subsubexp0 = TREE_OPERAND (subexp1, 0);
8493 subsubexp1 = TREE_OPERAND (subexp1, 1);
8494 code0 = TREE_CODE (subsubexp0);
8495 code1 = TREE_CODE (subsubexp1);
8496 this_code = TREE_CODE (type) == INTEGER_TYPE ? NOP_EXPR
8497 : FIXED_CONVERT_EXPR;
8498 if (code0 == this_code && code1 == this_code
8499 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8500 < TYPE_PRECISION (TREE_TYPE (subsubexp0)))
8501 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8502 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp1, 0))))
8503 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8504 == TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp1, 0)))))
8506 tree op0type = TREE_TYPE (TREE_OPERAND (subsubexp0, 0));
8507 enum machine_mode innermode = TYPE_MODE (op0type);
8508 bool zextend_p = TYPE_UNSIGNED (op0type);
8509 bool sat_p = TYPE_SATURATING (TREE_TYPE (subsubexp0));
8510 if (sat_p == 0)
8511 this_optab = zextend_p ? umsub_widen_optab : smsub_widen_optab;
8512 else
8513 this_optab = zextend_p ? usmsub_widen_optab
8514 : ssmsub_widen_optab;
8515 if (mode == GET_MODE_2XWIDER_MODE (innermode)
8516 && (optab_handler (this_optab, mode)->insn_code
8517 != CODE_FOR_nothing))
8519 expand_operands (TREE_OPERAND (subsubexp0, 0),
8520 TREE_OPERAND (subsubexp1, 0),
8521 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8522 op2 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
8523 VOIDmode, EXPAND_NORMAL);
8524 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
8525 target, unsignedp);
8526 gcc_assert (temp);
8527 return REDUCE_BIT_FIELD (temp);
8532 /* For initializers, we are allowed to return a MINUS of two
8533 symbolic constants. Here we handle all cases when both operands
8534 are constant. */
8535 /* Handle difference of two symbolic constants,
8536 for the sake of an initializer. */
8537 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8538 && really_constant_p (TREE_OPERAND (exp, 0))
8539 && really_constant_p (TREE_OPERAND (exp, 1)))
8541 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8542 NULL_RTX, &op0, &op1, modifier);
8544 /* If the last operand is a CONST_INT, use plus_constant of
8545 the negated constant. Else make the MINUS. */
8546 if (GET_CODE (op1) == CONST_INT)
8547 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
8548 else
8549 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
8552 /* No sense saving up arithmetic to be done
8553 if it's all in the wrong mode to form part of an address.
8554 And force_operand won't know whether to sign-extend or
8555 zero-extend. */
8556 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8557 || mode != ptr_mode)
8558 goto binop;
8560 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8561 subtarget, &op0, &op1, modifier);
8563 /* Convert A - const to A + (-const). */
8564 if (GET_CODE (op1) == CONST_INT)
8566 op1 = negate_rtx (mode, op1);
8567 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8570 goto binop2;
8572 case MULT_EXPR:
8573 /* If this is a fixed-point operation, then we cannot use the code
8574 below because "expand_mult" doesn't support sat/no-sat fixed-point
8575 multiplications. */
8576 if (ALL_FIXED_POINT_MODE_P (mode))
8577 goto binop;
8579 /* If first operand is constant, swap them.
8580 Thus the following special case checks need only
8581 check the second operand. */
8582 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST)
8584 tree t1 = TREE_OPERAND (exp, 0);
8585 TREE_OPERAND (exp, 0) = TREE_OPERAND (exp, 1);
8586 TREE_OPERAND (exp, 1) = t1;
8589 /* Attempt to return something suitable for generating an
8590 indexed address, for machines that support that. */
8592 if (modifier == EXPAND_SUM && mode == ptr_mode
8593 && host_integerp (TREE_OPERAND (exp, 1), 0))
8595 tree exp1 = TREE_OPERAND (exp, 1);
8597 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
8598 EXPAND_SUM);
8600 if (!REG_P (op0))
8601 op0 = force_operand (op0, NULL_RTX);
8602 if (!REG_P (op0))
8603 op0 = copy_to_mode_reg (mode, op0);
8605 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
8606 gen_int_mode (tree_low_cst (exp1, 0),
8607 TYPE_MODE (TREE_TYPE (exp1)))));
8610 if (modifier == EXPAND_STACK_PARM)
8611 target = 0;
8613 /* Check for multiplying things that have been extended
8614 from a narrower type. If this machine supports multiplying
8615 in that narrower type with a result in the desired type,
8616 do it that way, and avoid the explicit type-conversion. */
8618 subexp0 = TREE_OPERAND (exp, 0);
8619 subexp1 = TREE_OPERAND (exp, 1);
8620 /* First, check if we have a multiplication of one signed and one
8621 unsigned operand. */
8622 if (TREE_CODE (subexp0) == NOP_EXPR
8623 && TREE_CODE (subexp1) == NOP_EXPR
8624 && TREE_CODE (type) == INTEGER_TYPE
8625 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
8626 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
8627 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
8628 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp1, 0))))
8629 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
8630 != TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp1, 0)))))
8632 enum machine_mode innermode
8633 = TYPE_MODE (TREE_TYPE (TREE_OPERAND (subexp0, 0)));
8634 this_optab = usmul_widen_optab;
8635 if (mode == GET_MODE_WIDER_MODE (innermode))
8637 if (optab_handler (this_optab, mode)->insn_code != CODE_FOR_nothing)
8639 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0))))
8640 expand_operands (TREE_OPERAND (subexp0, 0),
8641 TREE_OPERAND (subexp1, 0),
8642 NULL_RTX, &op0, &op1, 0);
8643 else
8644 expand_operands (TREE_OPERAND (subexp0, 0),
8645 TREE_OPERAND (subexp1, 0),
8646 NULL_RTX, &op1, &op0, 0);
8648 goto binop3;
8652 /* Check for a multiplication with matching signedness. */
8653 else if (TREE_CODE (TREE_OPERAND (exp, 0)) == NOP_EXPR
8654 && TREE_CODE (type) == INTEGER_TYPE
8655 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
8656 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
8657 && ((TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
8658 && int_fits_type_p (TREE_OPERAND (exp, 1),
8659 TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
8660 /* Don't use a widening multiply if a shift will do. */
8661 && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))))
8662 > HOST_BITS_PER_WIDE_INT)
8663 || exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))) < 0))
8665 (TREE_CODE (TREE_OPERAND (exp, 1)) == NOP_EXPR
8666 && (TYPE_PRECISION (TREE_TYPE
8667 (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
8668 == TYPE_PRECISION (TREE_TYPE
8669 (TREE_OPERAND
8670 (TREE_OPERAND (exp, 0), 0))))
8671 /* If both operands are extended, they must either both
8672 be zero-extended or both be sign-extended. */
8673 && (TYPE_UNSIGNED (TREE_TYPE
8674 (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
8675 == TYPE_UNSIGNED (TREE_TYPE
8676 (TREE_OPERAND
8677 (TREE_OPERAND (exp, 0), 0)))))))
8679 tree op0type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
8680 enum machine_mode innermode = TYPE_MODE (op0type);
8681 bool zextend_p = TYPE_UNSIGNED (op0type);
8682 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
8683 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
8685 if (mode == GET_MODE_2XWIDER_MODE (innermode))
8687 if (optab_handler (this_optab, mode)->insn_code != CODE_FOR_nothing)
8689 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
8690 expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
8691 TREE_OPERAND (exp, 1),
8692 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8693 else
8694 expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
8695 TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
8696 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8697 goto binop3;
8699 else if (optab_handler (other_optab, mode)->insn_code != CODE_FOR_nothing
8700 && innermode == word_mode)
8702 rtx htem, hipart;
8703 op0 = expand_normal (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
8704 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
8705 op1 = convert_modes (innermode, mode,
8706 expand_normal (TREE_OPERAND (exp, 1)),
8707 unsignedp);
8708 else
8709 op1 = expand_normal (TREE_OPERAND (TREE_OPERAND (exp, 1), 0));
8710 temp = expand_binop (mode, other_optab, op0, op1, target,
8711 unsignedp, OPTAB_LIB_WIDEN);
8712 hipart = gen_highpart (innermode, temp);
8713 htem = expand_mult_highpart_adjust (innermode, hipart,
8714 op0, op1, hipart,
8715 zextend_p);
8716 if (htem != hipart)
8717 emit_move_insn (hipart, htem);
8718 return REDUCE_BIT_FIELD (temp);
8722 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8723 subtarget, &op0, &op1, 0);
8724 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8726 case TRUNC_DIV_EXPR:
8727 case FLOOR_DIV_EXPR:
8728 case CEIL_DIV_EXPR:
8729 case ROUND_DIV_EXPR:
8730 case EXACT_DIV_EXPR:
8731 /* If this is a fixed-point operation, then we cannot use the code
8732 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8733 divisions. */
8734 if (ALL_FIXED_POINT_MODE_P (mode))
8735 goto binop;
8737 if (modifier == EXPAND_STACK_PARM)
8738 target = 0;
8739 /* Possible optimization: compute the dividend with EXPAND_SUM
8740 then if the divisor is constant can optimize the case
8741 where some terms of the dividend have coeffs divisible by it. */
8742 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8743 subtarget, &op0, &op1, 0);
8744 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
8746 case RDIV_EXPR:
8747 goto binop;
8749 case TRUNC_MOD_EXPR:
8750 case FLOOR_MOD_EXPR:
8751 case CEIL_MOD_EXPR:
8752 case ROUND_MOD_EXPR:
8753 if (modifier == EXPAND_STACK_PARM)
8754 target = 0;
8755 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8756 subtarget, &op0, &op1, 0);
8757 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
8759 case FIXED_CONVERT_EXPR:
8760 op0 = expand_normal (TREE_OPERAND (exp, 0));
8761 if (target == 0 || modifier == EXPAND_STACK_PARM)
8762 target = gen_reg_rtx (mode);
8764 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == INTEGER_TYPE
8765 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))))
8766 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
8767 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
8768 else
8769 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
8770 return target;
8772 case FIX_TRUNC_EXPR:
8773 op0 = expand_normal (TREE_OPERAND (exp, 0));
8774 if (target == 0 || modifier == EXPAND_STACK_PARM)
8775 target = gen_reg_rtx (mode);
8776 expand_fix (target, op0, unsignedp);
8777 return target;
8779 case FLOAT_EXPR:
8780 op0 = expand_normal (TREE_OPERAND (exp, 0));
8781 if (target == 0 || modifier == EXPAND_STACK_PARM)
8782 target = gen_reg_rtx (mode);
8783 /* expand_float can't figure out what to do if FROM has VOIDmode.
8784 So give it the correct mode. With -O, cse will optimize this. */
8785 if (GET_MODE (op0) == VOIDmode)
8786 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
8787 op0);
8788 expand_float (target, op0,
8789 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
8790 return target;
8792 case NEGATE_EXPR:
8793 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
8794 VOIDmode, EXPAND_NORMAL);
8795 if (modifier == EXPAND_STACK_PARM)
8796 target = 0;
8797 temp = expand_unop (mode,
8798 optab_for_tree_code (NEGATE_EXPR, type,
8799 optab_default),
8800 op0, target, 0);
8801 gcc_assert (temp);
8802 return REDUCE_BIT_FIELD (temp);
8804 case ABS_EXPR:
8805 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
8806 VOIDmode, EXPAND_NORMAL);
8807 if (modifier == EXPAND_STACK_PARM)
8808 target = 0;
8810 /* ABS_EXPR is not valid for complex arguments. */
8811 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
8812 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
8814 /* Unsigned abs is simply the operand. Testing here means we don't
8815 risk generating incorrect code below. */
8816 if (TYPE_UNSIGNED (type))
8817 return op0;
8819 return expand_abs (mode, op0, target, unsignedp,
8820 safe_from_p (target, TREE_OPERAND (exp, 0), 1));
8822 case MAX_EXPR:
8823 case MIN_EXPR:
8824 target = original_target;
8825 if (target == 0
8826 || modifier == EXPAND_STACK_PARM
8827 || (MEM_P (target) && MEM_VOLATILE_P (target))
8828 || GET_MODE (target) != mode
8829 || (REG_P (target)
8830 && REGNO (target) < FIRST_PSEUDO_REGISTER))
8831 target = gen_reg_rtx (mode);
8832 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8833 target, &op0, &op1, 0);
8835 /* First try to do it with a special MIN or MAX instruction.
8836 If that does not win, use a conditional jump to select the proper
8837 value. */
8838 this_optab = optab_for_tree_code (code, type, optab_default);
8839 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8840 OPTAB_WIDEN);
8841 if (temp != 0)
8842 return temp;
8844 /* At this point, a MEM target is no longer useful; we will get better
8845 code without it. */
8847 if (! REG_P (target))
8848 target = gen_reg_rtx (mode);
8850 /* If op1 was placed in target, swap op0 and op1. */
8851 if (target != op0 && target == op1)
8853 temp = op0;
8854 op0 = op1;
8855 op1 = temp;
8858 /* We generate better code and avoid problems with op1 mentioning
8859 target by forcing op1 into a pseudo if it isn't a constant. */
8860 if (! CONSTANT_P (op1))
8861 op1 = force_reg (mode, op1);
8864 enum rtx_code comparison_code;
8865 rtx cmpop1 = op1;
8867 if (code == MAX_EXPR)
8868 comparison_code = unsignedp ? GEU : GE;
8869 else
8870 comparison_code = unsignedp ? LEU : LE;
8872 /* Canonicalize to comparisons against 0. */
8873 if (op1 == const1_rtx)
8875 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8876 or (a != 0 ? a : 1) for unsigned.
8877 For MIN we are safe converting (a <= 1 ? a : 1)
8878 into (a <= 0 ? a : 1) */
8879 cmpop1 = const0_rtx;
8880 if (code == MAX_EXPR)
8881 comparison_code = unsignedp ? NE : GT;
8883 if (op1 == constm1_rtx && !unsignedp)
8885 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8886 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8887 cmpop1 = const0_rtx;
8888 if (code == MIN_EXPR)
8889 comparison_code = LT;
8891 #ifdef HAVE_conditional_move
8892 /* Use a conditional move if possible. */
8893 if (can_conditionally_move_p (mode))
8895 rtx insn;
8897 /* ??? Same problem as in expmed.c: emit_conditional_move
8898 forces a stack adjustment via compare_from_rtx, and we
8899 lose the stack adjustment if the sequence we are about
8900 to create is discarded. */
8901 do_pending_stack_adjust ();
8903 start_sequence ();
8905 /* Try to emit the conditional move. */
8906 insn = emit_conditional_move (target, comparison_code,
8907 op0, cmpop1, mode,
8908 op0, op1, mode,
8909 unsignedp);
8911 /* If we could do the conditional move, emit the sequence,
8912 and return. */
8913 if (insn)
8915 rtx seq = get_insns ();
8916 end_sequence ();
8917 emit_insn (seq);
8918 return target;
8921 /* Otherwise discard the sequence and fall back to code with
8922 branches. */
8923 end_sequence ();
8925 #endif
8926 if (target != op0)
8927 emit_move_insn (target, op0);
8929 temp = gen_label_rtx ();
8930 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
8931 unsignedp, mode, NULL_RTX, NULL_RTX, temp);
8933 emit_move_insn (target, op1);
8934 emit_label (temp);
8935 return target;
8937 case BIT_NOT_EXPR:
8938 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
8939 VOIDmode, EXPAND_NORMAL);
8940 if (modifier == EXPAND_STACK_PARM)
8941 target = 0;
8942 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8943 gcc_assert (temp);
8944 return temp;
8946 /* ??? Can optimize bitwise operations with one arg constant.
8947 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8948 and (a bitwise1 b) bitwise2 b (etc)
8949 but that is probably not worth while. */
8951 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
8952 boolean values when we want in all cases to compute both of them. In
8953 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8954 as actual zero-or-1 values and then bitwise anding. In cases where
8955 there cannot be any side effects, better code would be made by
8956 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8957 how to recognize those cases. */
8959 case TRUTH_AND_EXPR:
8960 code = BIT_AND_EXPR;
8961 case BIT_AND_EXPR:
8962 goto binop;
8964 case TRUTH_OR_EXPR:
8965 code = BIT_IOR_EXPR;
8966 case BIT_IOR_EXPR:
8967 goto binop;
8969 case TRUTH_XOR_EXPR:
8970 code = BIT_XOR_EXPR;
8971 case BIT_XOR_EXPR:
8972 goto binop;
8974 case LROTATE_EXPR:
8975 case RROTATE_EXPR:
8976 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
8977 || (GET_MODE_PRECISION (TYPE_MODE (type))
8978 == TYPE_PRECISION (type)));
8979 /* fall through */
8981 case LSHIFT_EXPR:
8982 case RSHIFT_EXPR:
8983 /* If this is a fixed-point operation, then we cannot use the code
8984 below because "expand_shift" doesn't support sat/no-sat fixed-point
8985 shifts. */
8986 if (ALL_FIXED_POINT_MODE_P (mode))
8987 goto binop;
8989 if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
8990 subtarget = 0;
8991 if (modifier == EXPAND_STACK_PARM)
8992 target = 0;
8993 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
8994 VOIDmode, EXPAND_NORMAL);
8995 temp = expand_shift (code, mode, op0, TREE_OPERAND (exp, 1), target,
8996 unsignedp);
8997 if (code == LSHIFT_EXPR)
8998 temp = REDUCE_BIT_FIELD (temp);
8999 return temp;
9001 /* Could determine the answer when only additive constants differ. Also,
9002 the addition of one can be handled by changing the condition. */
9003 case LT_EXPR:
9004 case LE_EXPR:
9005 case GT_EXPR:
9006 case GE_EXPR:
9007 case EQ_EXPR:
9008 case NE_EXPR:
9009 case UNORDERED_EXPR:
9010 case ORDERED_EXPR:
9011 case UNLT_EXPR:
9012 case UNLE_EXPR:
9013 case UNGT_EXPR:
9014 case UNGE_EXPR:
9015 case UNEQ_EXPR:
9016 case LTGT_EXPR:
9017 temp = do_store_flag (exp,
9018 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
9019 tmode != VOIDmode ? tmode : mode, 0);
9020 if (temp != 0)
9021 return temp;
9023 /* For foo != 0, load foo, and if it is nonzero load 1 instead. */
9024 if (code == NE_EXPR && integer_zerop (TREE_OPERAND (exp, 1))
9025 && original_target
9026 && REG_P (original_target)
9027 && (GET_MODE (original_target)
9028 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
9030 temp = expand_expr (TREE_OPERAND (exp, 0), original_target,
9031 VOIDmode, EXPAND_NORMAL);
9033 /* If temp is constant, we can just compute the result. */
9034 if (GET_CODE (temp) == CONST_INT)
9036 if (INTVAL (temp) != 0)
9037 emit_move_insn (target, const1_rtx);
9038 else
9039 emit_move_insn (target, const0_rtx);
9041 return target;
9044 if (temp != original_target)
9046 enum machine_mode mode1 = GET_MODE (temp);
9047 if (mode1 == VOIDmode)
9048 mode1 = tmode != VOIDmode ? tmode : mode;
9050 temp = copy_to_mode_reg (mode1, temp);
9053 op1 = gen_label_rtx ();
9054 emit_cmp_and_jump_insns (temp, const0_rtx, EQ, NULL_RTX,
9055 GET_MODE (temp), unsignedp, op1);
9056 emit_move_insn (temp, const1_rtx);
9057 emit_label (op1);
9058 return temp;
9061 /* If no set-flag instruction, must generate a conditional store
9062 into a temporary variable. Drop through and handle this
9063 like && and ||. */
9064 /* Although TRUTH_{AND,OR}IF_EXPR aren't present in GIMPLE, they
9065 are occassionally created by folding during expansion. */
9066 case TRUTH_ANDIF_EXPR:
9067 case TRUTH_ORIF_EXPR:
9068 if (! ignore
9069 && (target == 0
9070 || modifier == EXPAND_STACK_PARM
9071 || ! safe_from_p (target, exp, 1)
9072 /* Make sure we don't have a hard reg (such as function's return
9073 value) live across basic blocks, if not optimizing. */
9074 || (!optimize && REG_P (target)
9075 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9076 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9078 if (target)
9079 emit_move_insn (target, const0_rtx);
9081 op1 = gen_label_rtx ();
9082 jumpifnot (exp, op1);
9084 if (target)
9085 emit_move_insn (target, const1_rtx);
9087 emit_label (op1);
9088 return ignore ? const0_rtx : target;
9090 case TRUTH_NOT_EXPR:
9091 if (modifier == EXPAND_STACK_PARM)
9092 target = 0;
9093 op0 = expand_expr (TREE_OPERAND (exp, 0), target,
9094 VOIDmode, EXPAND_NORMAL);
9095 /* The parser is careful to generate TRUTH_NOT_EXPR
9096 only with operands that are always zero or one. */
9097 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
9098 target, 1, OPTAB_LIB_WIDEN);
9099 gcc_assert (temp);
9100 return temp;
9102 case STATEMENT_LIST:
9104 tree_stmt_iterator iter;
9106 gcc_assert (ignore);
9108 for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
9109 expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
9111 return const0_rtx;
9113 case COND_EXPR:
9114 /* A COND_EXPR with its type being VOID_TYPE represents a
9115 conditional jump and is handled in
9116 expand_gimple_cond_expr. */
9117 gcc_assert (!VOID_TYPE_P (TREE_TYPE (exp)));
9119 /* Note that COND_EXPRs whose type is a structure or union
9120 are required to be constructed to contain assignments of
9121 a temporary variable, so that we can evaluate them here
9122 for side effect only. If type is void, we must do likewise. */
9124 gcc_assert (!TREE_ADDRESSABLE (type)
9125 && !ignore
9126 && TREE_TYPE (TREE_OPERAND (exp, 1)) != void_type_node
9127 && TREE_TYPE (TREE_OPERAND (exp, 2)) != void_type_node);
9129 /* If we are not to produce a result, we have no target. Otherwise,
9130 if a target was specified use it; it will not be used as an
9131 intermediate target unless it is safe. If no target, use a
9132 temporary. */
9134 if (modifier != EXPAND_STACK_PARM
9135 && original_target
9136 && safe_from_p (original_target, TREE_OPERAND (exp, 0), 1)
9137 && GET_MODE (original_target) == mode
9138 #ifdef HAVE_conditional_move
9139 && (! can_conditionally_move_p (mode)
9140 || REG_P (original_target))
9141 #endif
9142 && !MEM_P (original_target))
9143 temp = original_target;
9144 else
9145 temp = assign_temp (type, 0, 0, 1);
9147 do_pending_stack_adjust ();
9148 NO_DEFER_POP;
9149 op0 = gen_label_rtx ();
9150 op1 = gen_label_rtx ();
9151 jumpifnot (TREE_OPERAND (exp, 0), op0);
9152 store_expr (TREE_OPERAND (exp, 1), temp,
9153 modifier == EXPAND_STACK_PARM,
9154 false);
9156 emit_jump_insn (gen_jump (op1));
9157 emit_barrier ();
9158 emit_label (op0);
9159 store_expr (TREE_OPERAND (exp, 2), temp,
9160 modifier == EXPAND_STACK_PARM,
9161 false);
9163 emit_label (op1);
9164 OK_DEFER_POP;
9165 return temp;
9167 case VEC_COND_EXPR:
9168 target = expand_vec_cond_expr (exp, target);
9169 return target;
9171 case MODIFY_EXPR:
9173 tree lhs = TREE_OPERAND (exp, 0);
9174 tree rhs = TREE_OPERAND (exp, 1);
9175 gcc_assert (ignore);
9177 /* Check for |= or &= of a bitfield of size one into another bitfield
9178 of size 1. In this case, (unless we need the result of the
9179 assignment) we can do this more efficiently with a
9180 test followed by an assignment, if necessary.
9182 ??? At this point, we can't get a BIT_FIELD_REF here. But if
9183 things change so we do, this code should be enhanced to
9184 support it. */
9185 if (TREE_CODE (lhs) == COMPONENT_REF
9186 && (TREE_CODE (rhs) == BIT_IOR_EXPR
9187 || TREE_CODE (rhs) == BIT_AND_EXPR)
9188 && TREE_OPERAND (rhs, 0) == lhs
9189 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
9190 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
9191 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
9193 rtx label = gen_label_rtx ();
9194 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
9195 do_jump (TREE_OPERAND (rhs, 1),
9196 value ? label : 0,
9197 value ? 0 : label);
9198 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
9199 MOVE_NONTEMPORAL (exp));
9200 do_pending_stack_adjust ();
9201 emit_label (label);
9202 return const0_rtx;
9205 expand_assignment (lhs, rhs, MOVE_NONTEMPORAL (exp));
9206 return const0_rtx;
9209 case RETURN_EXPR:
9210 if (!TREE_OPERAND (exp, 0))
9211 expand_null_return ();
9212 else
9213 expand_return (TREE_OPERAND (exp, 0));
9214 return const0_rtx;
9216 case ADDR_EXPR:
9217 return expand_expr_addr_expr (exp, target, tmode, modifier);
9219 case COMPLEX_EXPR:
9220 /* Get the rtx code of the operands. */
9221 op0 = expand_normal (TREE_OPERAND (exp, 0));
9222 op1 = expand_normal (TREE_OPERAND (exp, 1));
9224 if (!target)
9225 target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
9227 /* Move the real (op0) and imaginary (op1) parts to their location. */
9228 write_complex_part (target, op0, false);
9229 write_complex_part (target, op1, true);
9231 return target;
9233 case REALPART_EXPR:
9234 op0 = expand_normal (TREE_OPERAND (exp, 0));
9235 return read_complex_part (op0, false);
9237 case IMAGPART_EXPR:
9238 op0 = expand_normal (TREE_OPERAND (exp, 0));
9239 return read_complex_part (op0, true);
9241 case RESX_EXPR:
9242 expand_resx_expr (exp);
9243 return const0_rtx;
9245 case TRY_CATCH_EXPR:
9246 case CATCH_EXPR:
9247 case EH_FILTER_EXPR:
9248 case TRY_FINALLY_EXPR:
9249 /* Lowered by tree-eh.c. */
9250 gcc_unreachable ();
9252 case WITH_CLEANUP_EXPR:
9253 case CLEANUP_POINT_EXPR:
9254 case TARGET_EXPR:
9255 case CASE_LABEL_EXPR:
9256 case VA_ARG_EXPR:
9257 case BIND_EXPR:
9258 case INIT_EXPR:
9259 case CONJ_EXPR:
9260 case COMPOUND_EXPR:
9261 case PREINCREMENT_EXPR:
9262 case PREDECREMENT_EXPR:
9263 case POSTINCREMENT_EXPR:
9264 case POSTDECREMENT_EXPR:
9265 case LOOP_EXPR:
9266 case EXIT_EXPR:
9267 /* Lowered by gimplify.c. */
9268 gcc_unreachable ();
9270 case CHANGE_DYNAMIC_TYPE_EXPR:
9271 /* This is ignored at the RTL level. The tree level set
9272 DECL_POINTER_ALIAS_SET of any variable to be 0, which is
9273 overkill for the RTL layer but is all that we can
9274 represent. */
9275 return const0_rtx;
9277 case EXC_PTR_EXPR:
9278 return get_exception_pointer ();
9280 case FILTER_EXPR:
9281 return get_exception_filter ();
9283 case FDESC_EXPR:
9284 /* Function descriptors are not valid except for as
9285 initialization constants, and should not be expanded. */
9286 gcc_unreachable ();
9288 case SWITCH_EXPR:
9289 expand_case (exp);
9290 return const0_rtx;
9292 case LABEL_EXPR:
9293 expand_label (TREE_OPERAND (exp, 0));
9294 return const0_rtx;
9296 case ASM_EXPR:
9297 expand_asm_expr (exp);
9298 return const0_rtx;
9300 case WITH_SIZE_EXPR:
9301 /* WITH_SIZE_EXPR expands to its first argument. The caller should
9302 have pulled out the size to use in whatever context it needed. */
9303 return expand_expr_real (TREE_OPERAND (exp, 0), original_target, tmode,
9304 modifier, alt_rtl);
9306 case REALIGN_LOAD_EXPR:
9308 tree oprnd0 = TREE_OPERAND (exp, 0);
9309 tree oprnd1 = TREE_OPERAND (exp, 1);
9310 tree oprnd2 = TREE_OPERAND (exp, 2);
9311 rtx op2;
9313 this_optab = optab_for_tree_code (code, type, optab_default);
9314 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9315 op2 = expand_normal (oprnd2);
9316 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9317 target, unsignedp);
9318 gcc_assert (temp);
9319 return temp;
9322 case DOT_PROD_EXPR:
9324 tree oprnd0 = TREE_OPERAND (exp, 0);
9325 tree oprnd1 = TREE_OPERAND (exp, 1);
9326 tree oprnd2 = TREE_OPERAND (exp, 2);
9327 rtx op2;
9329 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9330 op2 = expand_normal (oprnd2);
9331 target = expand_widen_pattern_expr (exp, op0, op1, op2,
9332 target, unsignedp);
9333 return target;
9336 case WIDEN_SUM_EXPR:
9338 tree oprnd0 = TREE_OPERAND (exp, 0);
9339 tree oprnd1 = TREE_OPERAND (exp, 1);
9341 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, 0);
9342 target = expand_widen_pattern_expr (exp, op0, NULL_RTX, op1,
9343 target, unsignedp);
9344 return target;
9347 case REDUC_MAX_EXPR:
9348 case REDUC_MIN_EXPR:
9349 case REDUC_PLUS_EXPR:
9351 op0 = expand_normal (TREE_OPERAND (exp, 0));
9352 this_optab = optab_for_tree_code (code, type, optab_default);
9353 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
9354 gcc_assert (temp);
9355 return temp;
9358 case VEC_EXTRACT_EVEN_EXPR:
9359 case VEC_EXTRACT_ODD_EXPR:
9361 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
9362 NULL_RTX, &op0, &op1, 0);
9363 this_optab = optab_for_tree_code (code, type, optab_default);
9364 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
9365 OPTAB_WIDEN);
9366 gcc_assert (temp);
9367 return temp;
9370 case VEC_INTERLEAVE_HIGH_EXPR:
9371 case VEC_INTERLEAVE_LOW_EXPR:
9373 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
9374 NULL_RTX, &op0, &op1, 0);
9375 this_optab = optab_for_tree_code (code, type, optab_default);
9376 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
9377 OPTAB_WIDEN);
9378 gcc_assert (temp);
9379 return temp;
9382 case VEC_LSHIFT_EXPR:
9383 case VEC_RSHIFT_EXPR:
9385 target = expand_vec_shift_expr (exp, target);
9386 return target;
9389 case VEC_UNPACK_HI_EXPR:
9390 case VEC_UNPACK_LO_EXPR:
9392 op0 = expand_normal (TREE_OPERAND (exp, 0));
9393 this_optab = optab_for_tree_code (code, type, optab_default);
9394 temp = expand_widen_pattern_expr (exp, op0, NULL_RTX, NULL_RTX,
9395 target, unsignedp);
9396 gcc_assert (temp);
9397 return temp;
9400 case VEC_UNPACK_FLOAT_HI_EXPR:
9401 case VEC_UNPACK_FLOAT_LO_EXPR:
9403 op0 = expand_normal (TREE_OPERAND (exp, 0));
9404 /* The signedness is determined from input operand. */
9405 this_optab = optab_for_tree_code (code,
9406 TREE_TYPE (TREE_OPERAND (exp, 0)),
9407 optab_default);
9408 temp = expand_widen_pattern_expr
9409 (exp, op0, NULL_RTX, NULL_RTX,
9410 target, TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
9412 gcc_assert (temp);
9413 return temp;
9416 case VEC_WIDEN_MULT_HI_EXPR:
9417 case VEC_WIDEN_MULT_LO_EXPR:
9419 tree oprnd0 = TREE_OPERAND (exp, 0);
9420 tree oprnd1 = TREE_OPERAND (exp, 1);
9422 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, 0);
9423 target = expand_widen_pattern_expr (exp, op0, op1, NULL_RTX,
9424 target, unsignedp);
9425 gcc_assert (target);
9426 return target;
9429 case VEC_PACK_TRUNC_EXPR:
9430 case VEC_PACK_SAT_EXPR:
9431 case VEC_PACK_FIX_TRUNC_EXPR:
9432 mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
9433 goto binop;
9435 default:
9436 return lang_hooks.expand_expr (exp, original_target, tmode,
9437 modifier, alt_rtl);
9440 /* Here to do an ordinary binary operator. */
9441 binop:
9442 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
9443 subtarget, &op0, &op1, 0);
9444 binop2:
9445 this_optab = optab_for_tree_code (code, type, optab_default);
9446 binop3:
9447 if (modifier == EXPAND_STACK_PARM)
9448 target = 0;
9449 temp = expand_binop (mode, this_optab, op0, op1, target,
9450 unsignedp, OPTAB_LIB_WIDEN);
9451 gcc_assert (temp);
9452 return REDUCE_BIT_FIELD (temp);
9454 #undef REDUCE_BIT_FIELD
9456 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
9457 signedness of TYPE), possibly returning the result in TARGET. */
9458 static rtx
9459 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
9461 HOST_WIDE_INT prec = TYPE_PRECISION (type);
9462 if (target && GET_MODE (target) != GET_MODE (exp))
9463 target = 0;
9464 /* For constant values, reduce using build_int_cst_type. */
9465 if (GET_CODE (exp) == CONST_INT)
9467 HOST_WIDE_INT value = INTVAL (exp);
9468 tree t = build_int_cst_type (type, value);
9469 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
9471 else if (TYPE_UNSIGNED (type))
9473 rtx mask;
9474 if (prec < HOST_BITS_PER_WIDE_INT)
9475 mask = immed_double_const (((unsigned HOST_WIDE_INT) 1 << prec) - 1, 0,
9476 GET_MODE (exp));
9477 else
9478 mask = immed_double_const ((unsigned HOST_WIDE_INT) -1,
9479 ((unsigned HOST_WIDE_INT) 1
9480 << (prec - HOST_BITS_PER_WIDE_INT)) - 1,
9481 GET_MODE (exp));
9482 return expand_and (GET_MODE (exp), exp, mask, target);
9484 else
9486 tree count = build_int_cst (NULL_TREE,
9487 GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
9488 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9489 return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9493 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
9494 when applied to the address of EXP produces an address known to be
9495 aligned more than BIGGEST_ALIGNMENT. */
9497 static int
9498 is_aligning_offset (const_tree offset, const_tree exp)
9500 /* Strip off any conversions. */
9501 while (CONVERT_EXPR_P (offset))
9502 offset = TREE_OPERAND (offset, 0);
9504 /* We must now have a BIT_AND_EXPR with a constant that is one less than
9505 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
9506 if (TREE_CODE (offset) != BIT_AND_EXPR
9507 || !host_integerp (TREE_OPERAND (offset, 1), 1)
9508 || compare_tree_int (TREE_OPERAND (offset, 1),
9509 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
9510 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
9511 return 0;
9513 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
9514 It must be NEGATE_EXPR. Then strip any more conversions. */
9515 offset = TREE_OPERAND (offset, 0);
9516 while (CONVERT_EXPR_P (offset))
9517 offset = TREE_OPERAND (offset, 0);
9519 if (TREE_CODE (offset) != NEGATE_EXPR)
9520 return 0;
9522 offset = TREE_OPERAND (offset, 0);
9523 while (CONVERT_EXPR_P (offset))
9524 offset = TREE_OPERAND (offset, 0);
9526 /* This must now be the address of EXP. */
9527 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
9530 /* Return the tree node if an ARG corresponds to a string constant or zero
9531 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
9532 in bytes within the string that ARG is accessing. The type of the
9533 offset will be `sizetype'. */
9535 tree
9536 string_constant (tree arg, tree *ptr_offset)
9538 tree array, offset, lower_bound;
9539 STRIP_NOPS (arg);
9541 if (TREE_CODE (arg) == ADDR_EXPR)
9543 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
9545 *ptr_offset = size_zero_node;
9546 return TREE_OPERAND (arg, 0);
9548 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
9550 array = TREE_OPERAND (arg, 0);
9551 offset = size_zero_node;
9553 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
9555 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
9556 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
9557 if (TREE_CODE (array) != STRING_CST
9558 && TREE_CODE (array) != VAR_DECL)
9559 return 0;
9561 /* Check if the array has a nonzero lower bound. */
9562 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
9563 if (!integer_zerop (lower_bound))
9565 /* If the offset and base aren't both constants, return 0. */
9566 if (TREE_CODE (lower_bound) != INTEGER_CST)
9567 return 0;
9568 if (TREE_CODE (offset) != INTEGER_CST)
9569 return 0;
9570 /* Adjust offset by the lower bound. */
9571 offset = size_diffop (fold_convert (sizetype, offset),
9572 fold_convert (sizetype, lower_bound));
9575 else
9576 return 0;
9578 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
9580 tree arg0 = TREE_OPERAND (arg, 0);
9581 tree arg1 = TREE_OPERAND (arg, 1);
9583 STRIP_NOPS (arg0);
9584 STRIP_NOPS (arg1);
9586 if (TREE_CODE (arg0) == ADDR_EXPR
9587 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
9588 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
9590 array = TREE_OPERAND (arg0, 0);
9591 offset = arg1;
9593 else if (TREE_CODE (arg1) == ADDR_EXPR
9594 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
9595 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
9597 array = TREE_OPERAND (arg1, 0);
9598 offset = arg0;
9600 else
9601 return 0;
9603 else
9604 return 0;
9606 if (TREE_CODE (array) == STRING_CST)
9608 *ptr_offset = fold_convert (sizetype, offset);
9609 return array;
9611 else if (TREE_CODE (array) == VAR_DECL)
9613 int length;
9615 /* Variables initialized to string literals can be handled too. */
9616 if (DECL_INITIAL (array) == NULL_TREE
9617 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
9618 return 0;
9620 /* If they are read-only, non-volatile and bind locally. */
9621 if (! TREE_READONLY (array)
9622 || TREE_SIDE_EFFECTS (array)
9623 || ! targetm.binds_local_p (array))
9624 return 0;
9626 /* Avoid const char foo[4] = "abcde"; */
9627 if (DECL_SIZE_UNIT (array) == NULL_TREE
9628 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
9629 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
9630 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
9631 return 0;
9633 /* If variable is bigger than the string literal, OFFSET must be constant
9634 and inside of the bounds of the string literal. */
9635 offset = fold_convert (sizetype, offset);
9636 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
9637 && (! host_integerp (offset, 1)
9638 || compare_tree_int (offset, length) >= 0))
9639 return 0;
9641 *ptr_offset = offset;
9642 return DECL_INITIAL (array);
9645 return 0;
9648 /* Generate code to calculate EXP using a store-flag instruction
9649 and return an rtx for the result. EXP is either a comparison
9650 or a TRUTH_NOT_EXPR whose operand is a comparison.
9652 If TARGET is nonzero, store the result there if convenient.
9654 If ONLY_CHEAP is nonzero, only do this if it is likely to be very
9655 cheap.
9657 Return zero if there is no suitable set-flag instruction
9658 available on this machine.
9660 Once expand_expr has been called on the arguments of the comparison,
9661 we are committed to doing the store flag, since it is not safe to
9662 re-evaluate the expression. We emit the store-flag insn by calling
9663 emit_store_flag, but only expand the arguments if we have a reason
9664 to believe that emit_store_flag will be successful. If we think that
9665 it will, but it isn't, we have to simulate the store-flag with a
9666 set/jump/set sequence. */
9668 static rtx
9669 do_store_flag (tree exp, rtx target, enum machine_mode mode, int only_cheap)
9671 enum rtx_code code;
9672 tree arg0, arg1, type;
9673 tree tem;
9674 enum machine_mode operand_mode;
9675 int invert = 0;
9676 int unsignedp;
9677 rtx op0, op1;
9678 enum insn_code icode;
9679 rtx subtarget = target;
9680 rtx result, label;
9682 /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
9683 result at the end. We can't simply invert the test since it would
9684 have already been inverted if it were valid. This case occurs for
9685 some floating-point comparisons. */
9687 if (TREE_CODE (exp) == TRUTH_NOT_EXPR)
9688 invert = 1, exp = TREE_OPERAND (exp, 0);
9690 arg0 = TREE_OPERAND (exp, 0);
9691 arg1 = TREE_OPERAND (exp, 1);
9693 /* Don't crash if the comparison was erroneous. */
9694 if (arg0 == error_mark_node || arg1 == error_mark_node)
9695 return const0_rtx;
9697 type = TREE_TYPE (arg0);
9698 operand_mode = TYPE_MODE (type);
9699 unsignedp = TYPE_UNSIGNED (type);
9701 /* We won't bother with BLKmode store-flag operations because it would mean
9702 passing a lot of information to emit_store_flag. */
9703 if (operand_mode == BLKmode)
9704 return 0;
9706 /* We won't bother with store-flag operations involving function pointers
9707 when function pointers must be canonicalized before comparisons. */
9708 #ifdef HAVE_canonicalize_funcptr_for_compare
9709 if (HAVE_canonicalize_funcptr_for_compare
9710 && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == POINTER_TYPE
9711 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
9712 == FUNCTION_TYPE))
9713 || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 1))) == POINTER_TYPE
9714 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))))
9715 == FUNCTION_TYPE))))
9716 return 0;
9717 #endif
9719 STRIP_NOPS (arg0);
9720 STRIP_NOPS (arg1);
9722 /* Get the rtx comparison code to use. We know that EXP is a comparison
9723 operation of some type. Some comparisons against 1 and -1 can be
9724 converted to comparisons with zero. Do so here so that the tests
9725 below will be aware that we have a comparison with zero. These
9726 tests will not catch constants in the first operand, but constants
9727 are rarely passed as the first operand. */
9729 switch (TREE_CODE (exp))
9731 case EQ_EXPR:
9732 code = EQ;
9733 break;
9734 case NE_EXPR:
9735 code = NE;
9736 break;
9737 case LT_EXPR:
9738 if (integer_onep (arg1))
9739 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
9740 else
9741 code = unsignedp ? LTU : LT;
9742 break;
9743 case LE_EXPR:
9744 if (! unsignedp && integer_all_onesp (arg1))
9745 arg1 = integer_zero_node, code = LT;
9746 else
9747 code = unsignedp ? LEU : LE;
9748 break;
9749 case GT_EXPR:
9750 if (! unsignedp && integer_all_onesp (arg1))
9751 arg1 = integer_zero_node, code = GE;
9752 else
9753 code = unsignedp ? GTU : GT;
9754 break;
9755 case GE_EXPR:
9756 if (integer_onep (arg1))
9757 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
9758 else
9759 code = unsignedp ? GEU : GE;
9760 break;
9762 case UNORDERED_EXPR:
9763 code = UNORDERED;
9764 break;
9765 case ORDERED_EXPR:
9766 code = ORDERED;
9767 break;
9768 case UNLT_EXPR:
9769 code = UNLT;
9770 break;
9771 case UNLE_EXPR:
9772 code = UNLE;
9773 break;
9774 case UNGT_EXPR:
9775 code = UNGT;
9776 break;
9777 case UNGE_EXPR:
9778 code = UNGE;
9779 break;
9780 case UNEQ_EXPR:
9781 code = UNEQ;
9782 break;
9783 case LTGT_EXPR:
9784 code = LTGT;
9785 break;
9787 default:
9788 gcc_unreachable ();
9791 /* Put a constant second. */
9792 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
9793 || TREE_CODE (arg0) == FIXED_CST)
9795 tem = arg0; arg0 = arg1; arg1 = tem;
9796 code = swap_condition (code);
9799 /* If this is an equality or inequality test of a single bit, we can
9800 do this by shifting the bit being tested to the low-order bit and
9801 masking the result with the constant 1. If the condition was EQ,
9802 we xor it with 1. This does not require an scc insn and is faster
9803 than an scc insn even if we have it.
9805 The code to make this transformation was moved into fold_single_bit_test,
9806 so we just call into the folder and expand its result. */
9808 if ((code == NE || code == EQ)
9809 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
9810 && integer_pow2p (TREE_OPERAND (arg0, 1)))
9812 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
9813 return expand_expr (fold_single_bit_test (code == NE ? NE_EXPR : EQ_EXPR,
9814 arg0, arg1, type),
9815 target, VOIDmode, EXPAND_NORMAL);
9818 /* Now see if we are likely to be able to do this. Return if not. */
9819 if (! can_compare_p (code, operand_mode, ccp_store_flag))
9820 return 0;
9822 icode = setcc_gen_code[(int) code];
9824 if (icode == CODE_FOR_nothing)
9826 enum machine_mode wmode;
9828 for (wmode = operand_mode;
9829 icode == CODE_FOR_nothing && wmode != VOIDmode;
9830 wmode = GET_MODE_WIDER_MODE (wmode))
9831 icode = optab_handler (cstore_optab, wmode)->insn_code;
9834 if (icode == CODE_FOR_nothing
9835 || (only_cheap && insn_data[(int) icode].operand[0].mode != mode))
9837 /* We can only do this if it is one of the special cases that
9838 can be handled without an scc insn. */
9839 if ((code == LT && integer_zerop (arg1))
9840 || (! only_cheap && code == GE && integer_zerop (arg1)))
9842 else if (! only_cheap && (code == NE || code == EQ)
9843 && TREE_CODE (type) != REAL_TYPE
9844 && ((optab_handler (abs_optab, operand_mode)->insn_code
9845 != CODE_FOR_nothing)
9846 || (optab_handler (ffs_optab, operand_mode)->insn_code
9847 != CODE_FOR_nothing)))
9849 else
9850 return 0;
9853 if (! get_subtarget (target)
9854 || GET_MODE (subtarget) != operand_mode)
9855 subtarget = 0;
9857 expand_operands (arg0, arg1, subtarget, &op0, &op1, 0);
9859 if (target == 0)
9860 target = gen_reg_rtx (mode);
9862 result = emit_store_flag (target, code, op0, op1,
9863 operand_mode, unsignedp, 1);
9865 if (result)
9867 if (invert)
9868 result = expand_binop (mode, xor_optab, result, const1_rtx,
9869 result, 0, OPTAB_LIB_WIDEN);
9870 return result;
9873 /* If this failed, we have to do this with set/compare/jump/set code. */
9874 if (!REG_P (target)
9875 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
9876 target = gen_reg_rtx (GET_MODE (target));
9878 emit_move_insn (target, invert ? const0_rtx : const1_rtx);
9879 label = gen_label_rtx ();
9880 do_compare_rtx_and_jump (op0, op1, code, unsignedp, operand_mode, NULL_RTX,
9881 NULL_RTX, label);
9883 emit_move_insn (target, invert ? const1_rtx : const0_rtx);
9884 emit_label (label);
9886 return target;
9890 /* Stubs in case we haven't got a casesi insn. */
9891 #ifndef HAVE_casesi
9892 # define HAVE_casesi 0
9893 # define gen_casesi(a, b, c, d, e) (0)
9894 # define CODE_FOR_casesi CODE_FOR_nothing
9895 #endif
9897 /* If the machine does not have a case insn that compares the bounds,
9898 this means extra overhead for dispatch tables, which raises the
9899 threshold for using them. */
9900 #ifndef CASE_VALUES_THRESHOLD
9901 #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
9902 #endif /* CASE_VALUES_THRESHOLD */
9904 unsigned int
9905 case_values_threshold (void)
9907 return CASE_VALUES_THRESHOLD;
9910 /* Attempt to generate a casesi instruction. Returns 1 if successful,
9911 0 otherwise (i.e. if there is no casesi instruction). */
9913 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
9914 rtx table_label ATTRIBUTE_UNUSED, rtx default_label,
9915 rtx fallback_label ATTRIBUTE_UNUSED)
9917 enum machine_mode index_mode = SImode;
9918 int index_bits = GET_MODE_BITSIZE (index_mode);
9919 rtx op1, op2, index;
9920 enum machine_mode op_mode;
9922 if (! HAVE_casesi)
9923 return 0;
9925 /* Convert the index to SImode. */
9926 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
9928 enum machine_mode omode = TYPE_MODE (index_type);
9929 rtx rangertx = expand_normal (range);
9931 /* We must handle the endpoints in the original mode. */
9932 index_expr = build2 (MINUS_EXPR, index_type,
9933 index_expr, minval);
9934 minval = integer_zero_node;
9935 index = expand_normal (index_expr);
9936 if (default_label)
9937 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
9938 omode, 1, default_label);
9939 /* Now we can safely truncate. */
9940 index = convert_to_mode (index_mode, index, 0);
9942 else
9944 if (TYPE_MODE (index_type) != index_mode)
9946 index_type = lang_hooks.types.type_for_size (index_bits, 0);
9947 index_expr = fold_convert (index_type, index_expr);
9950 index = expand_normal (index_expr);
9953 do_pending_stack_adjust ();
9955 op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
9956 if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
9957 (index, op_mode))
9958 index = copy_to_mode_reg (op_mode, index);
9960 op1 = expand_normal (minval);
9962 op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
9963 op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
9964 op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
9965 if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
9966 (op1, op_mode))
9967 op1 = copy_to_mode_reg (op_mode, op1);
9969 op2 = expand_normal (range);
9971 op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
9972 op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
9973 op2, TYPE_UNSIGNED (TREE_TYPE (range)));
9974 if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
9975 (op2, op_mode))
9976 op2 = copy_to_mode_reg (op_mode, op2);
9978 emit_jump_insn (gen_casesi (index, op1, op2,
9979 table_label, !default_label
9980 ? fallback_label : default_label));
9981 return 1;
9984 /* Attempt to generate a tablejump instruction; same concept. */
9985 #ifndef HAVE_tablejump
9986 #define HAVE_tablejump 0
9987 #define gen_tablejump(x, y) (0)
9988 #endif
9990 /* Subroutine of the next function.
9992 INDEX is the value being switched on, with the lowest value
9993 in the table already subtracted.
9994 MODE is its expected mode (needed if INDEX is constant).
9995 RANGE is the length of the jump table.
9996 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
9998 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
9999 index value is out of range. */
10001 static void
10002 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
10003 rtx default_label)
10005 rtx temp, vector;
10007 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
10008 cfun->cfg->max_jumptable_ents = INTVAL (range);
10010 /* Do an unsigned comparison (in the proper mode) between the index
10011 expression and the value which represents the length of the range.
10012 Since we just finished subtracting the lower bound of the range
10013 from the index expression, this comparison allows us to simultaneously
10014 check that the original index expression value is both greater than
10015 or equal to the minimum value of the range and less than or equal to
10016 the maximum value of the range. */
10018 if (default_label)
10019 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
10020 default_label);
10022 /* If index is in range, it must fit in Pmode.
10023 Convert to Pmode so we can index with it. */
10024 if (mode != Pmode)
10025 index = convert_to_mode (Pmode, index, 1);
10027 /* Don't let a MEM slip through, because then INDEX that comes
10028 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10029 and break_out_memory_refs will go to work on it and mess it up. */
10030 #ifdef PIC_CASE_VECTOR_ADDRESS
10031 if (flag_pic && !REG_P (index))
10032 index = copy_to_mode_reg (Pmode, index);
10033 #endif
10035 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
10036 GET_MODE_SIZE, because this indicates how large insns are. The other
10037 uses should all be Pmode, because they are addresses. This code
10038 could fail if addresses and insns are not the same size. */
10039 index = gen_rtx_PLUS (Pmode,
10040 gen_rtx_MULT (Pmode, index,
10041 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
10042 gen_rtx_LABEL_REF (Pmode, table_label));
10043 #ifdef PIC_CASE_VECTOR_ADDRESS
10044 if (flag_pic)
10045 index = PIC_CASE_VECTOR_ADDRESS (index);
10046 else
10047 #endif
10048 index = memory_address (CASE_VECTOR_MODE, index);
10049 temp = gen_reg_rtx (CASE_VECTOR_MODE);
10050 vector = gen_const_mem (CASE_VECTOR_MODE, index);
10051 convert_move (temp, vector, 0);
10053 emit_jump_insn (gen_tablejump (temp, table_label));
10055 /* If we are generating PIC code or if the table is PC-relative, the
10056 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
10057 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
10058 emit_barrier ();
10062 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
10063 rtx table_label, rtx default_label)
10065 rtx index;
10067 if (! HAVE_tablejump)
10068 return 0;
10070 index_expr = fold_build2 (MINUS_EXPR, index_type,
10071 fold_convert (index_type, index_expr),
10072 fold_convert (index_type, minval));
10073 index = expand_normal (index_expr);
10074 do_pending_stack_adjust ();
10076 do_tablejump (index, TYPE_MODE (index_type),
10077 convert_modes (TYPE_MODE (index_type),
10078 TYPE_MODE (TREE_TYPE (range)),
10079 expand_normal (range),
10080 TYPE_UNSIGNED (TREE_TYPE (range))),
10081 table_label, default_label);
10082 return 1;
10085 /* Nonzero if the mode is a valid vector mode for this architecture.
10086 This returns nonzero even if there is no hardware support for the
10087 vector mode, but we can emulate with narrower modes. */
10090 vector_mode_valid_p (enum machine_mode mode)
10092 enum mode_class mclass = GET_MODE_CLASS (mode);
10093 enum machine_mode innermode;
10095 /* Doh! What's going on? */
10096 if (mclass != MODE_VECTOR_INT
10097 && mclass != MODE_VECTOR_FLOAT
10098 && mclass != MODE_VECTOR_FRACT
10099 && mclass != MODE_VECTOR_UFRACT
10100 && mclass != MODE_VECTOR_ACCUM
10101 && mclass != MODE_VECTOR_UACCUM)
10102 return 0;
10104 /* Hardware support. Woo hoo! */
10105 if (targetm.vector_mode_supported_p (mode))
10106 return 1;
10108 innermode = GET_MODE_INNER (mode);
10110 /* We should probably return 1 if requesting V4DI and we have no DI,
10111 but we have V2DI, but this is probably very unlikely. */
10113 /* If we have support for the inner mode, we can safely emulate it.
10114 We may not have V2DI, but me can emulate with a pair of DIs. */
10115 return targetm.scalar_mode_supported_p (innermode);
10118 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
10119 static rtx
10120 const_vector_from_tree (tree exp)
10122 rtvec v;
10123 int units, i;
10124 tree link, elt;
10125 enum machine_mode inner, mode;
10127 mode = TYPE_MODE (TREE_TYPE (exp));
10129 if (initializer_zerop (exp))
10130 return CONST0_RTX (mode);
10132 units = GET_MODE_NUNITS (mode);
10133 inner = GET_MODE_INNER (mode);
10135 v = rtvec_alloc (units);
10137 link = TREE_VECTOR_CST_ELTS (exp);
10138 for (i = 0; link; link = TREE_CHAIN (link), ++i)
10140 elt = TREE_VALUE (link);
10142 if (TREE_CODE (elt) == REAL_CST)
10143 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
10144 inner);
10145 else if (TREE_CODE (elt) == FIXED_CST)
10146 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
10147 inner);
10148 else
10149 RTVEC_ELT (v, i) = immed_double_const (TREE_INT_CST_LOW (elt),
10150 TREE_INT_CST_HIGH (elt),
10151 inner);
10154 /* Initialize remaining elements to 0. */
10155 for (; i < units; ++i)
10156 RTVEC_ELT (v, i) = CONST0_RTX (inner);
10158 return gen_rtx_CONST_VECTOR (mode, v);
10160 #include "gt-expr.h"