* gcc.dg/compat/struct-layout-1_generate.c (dg_options): New. Moved
[official-gcc.git] / gcc / cselib.c
blobd50d0c44f1798851d4b778e0063150482824f880
1 /* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "regs.h"
29 #include "hard-reg-set.h"
30 #include "flags.h"
31 #include "real.h"
32 #include "insn-config.h"
33 #include "recog.h"
34 #include "function.h"
35 #include "emit-rtl.h"
36 #include "toplev.h"
37 #include "output.h"
38 #include "ggc.h"
39 #include "hashtab.h"
40 #include "cselib.h"
41 #include "params.h"
42 #include "alloc-pool.h"
43 #include "target.h"
45 static bool cselib_record_memory;
46 static int entry_and_rtx_equal_p (const void *, const void *);
47 static hashval_t get_value_hash (const void *);
48 static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
49 static struct elt_loc_list *new_elt_loc_list (struct elt_loc_list *, rtx);
50 static void unchain_one_value (cselib_val *);
51 static void unchain_one_elt_list (struct elt_list **);
52 static void unchain_one_elt_loc_list (struct elt_loc_list **);
53 static int discard_useless_locs (void **, void *);
54 static int discard_useless_values (void **, void *);
55 static void remove_useless_values (void);
56 static rtx wrap_constant (enum machine_mode, rtx);
57 static unsigned int cselib_hash_rtx (rtx, int);
58 static cselib_val *new_cselib_val (unsigned int, enum machine_mode);
59 static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
60 static cselib_val *cselib_lookup_mem (rtx, int);
61 static void cselib_invalidate_regno (unsigned int, enum machine_mode);
62 static void cselib_invalidate_mem (rtx);
63 static void cselib_record_set (rtx, cselib_val *, cselib_val *);
64 static void cselib_record_sets (rtx);
66 /* There are three ways in which cselib can look up an rtx:
67 - for a REG, the reg_values table (which is indexed by regno) is used
68 - for a MEM, we recursively look up its address and then follow the
69 addr_list of that value
70 - for everything else, we compute a hash value and go through the hash
71 table. Since different rtx's can still have the same hash value,
72 this involves walking the table entries for a given value and comparing
73 the locations of the entries with the rtx we are looking up. */
75 /* A table that enables us to look up elts by their value. */
76 static htab_t cselib_hash_table;
78 /* This is a global so we don't have to pass this through every function.
79 It is used in new_elt_loc_list to set SETTING_INSN. */
80 static rtx cselib_current_insn;
82 /* Every new unknown value gets a unique number. */
83 static unsigned int next_unknown_value;
85 /* The number of registers we had when the varrays were last resized. */
86 static unsigned int cselib_nregs;
88 /* Count values without known locations. Whenever this grows too big, we
89 remove these useless values from the table. */
90 static int n_useless_values;
92 /* Number of useless values before we remove them from the hash table. */
93 #define MAX_USELESS_VALUES 32
95 /* This table maps from register number to values. It does not
96 contain pointers to cselib_val structures, but rather elt_lists.
97 The purpose is to be able to refer to the same register in
98 different modes. The first element of the list defines the mode in
99 which the register was set; if the mode is unknown or the value is
100 no longer valid in that mode, ELT will be NULL for the first
101 element. */
102 static struct elt_list **reg_values;
103 static unsigned int reg_values_size;
104 #define REG_VALUES(i) reg_values[i]
106 /* The largest number of hard regs used by any entry added to the
107 REG_VALUES table. Cleared on each cselib_clear_table() invocation. */
108 static unsigned int max_value_regs;
110 /* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
111 in cselib_clear_table() for fast emptying. */
112 static unsigned int *used_regs;
113 static unsigned int n_used_regs;
115 /* We pass this to cselib_invalidate_mem to invalidate all of
116 memory for a non-const call instruction. */
117 static GTY(()) rtx callmem;
119 /* Set by discard_useless_locs if it deleted the last location of any
120 value. */
121 static int values_became_useless;
123 /* Used as stop element of the containing_mem list so we can check
124 presence in the list by checking the next pointer. */
125 static cselib_val dummy_val;
127 /* Used to list all values that contain memory reference.
128 May or may not contain the useless values - the list is compacted
129 each time memory is invalidated. */
130 static cselib_val *first_containing_mem = &dummy_val;
131 static alloc_pool elt_loc_list_pool, elt_list_pool, cselib_val_pool, value_pool;
133 /* If nonnull, cselib will call this function before freeing useless
134 VALUEs. A VALUE is deemed useless if its "locs" field is null. */
135 void (*cselib_discard_hook) (cselib_val *);
138 /* Allocate a struct elt_list and fill in its two elements with the
139 arguments. */
141 static inline struct elt_list *
142 new_elt_list (struct elt_list *next, cselib_val *elt)
144 struct elt_list *el;
145 el = (struct elt_list *) pool_alloc (elt_list_pool);
146 el->next = next;
147 el->elt = elt;
148 return el;
151 /* Allocate a struct elt_loc_list and fill in its two elements with the
152 arguments. */
154 static inline struct elt_loc_list *
155 new_elt_loc_list (struct elt_loc_list *next, rtx loc)
157 struct elt_loc_list *el;
158 el = (struct elt_loc_list *) pool_alloc (elt_loc_list_pool);
159 el->next = next;
160 el->loc = loc;
161 el->setting_insn = cselib_current_insn;
162 return el;
165 /* The elt_list at *PL is no longer needed. Unchain it and free its
166 storage. */
168 static inline void
169 unchain_one_elt_list (struct elt_list **pl)
171 struct elt_list *l = *pl;
173 *pl = l->next;
174 pool_free (elt_list_pool, l);
177 /* Likewise for elt_loc_lists. */
179 static void
180 unchain_one_elt_loc_list (struct elt_loc_list **pl)
182 struct elt_loc_list *l = *pl;
184 *pl = l->next;
185 pool_free (elt_loc_list_pool, l);
188 /* Likewise for cselib_vals. This also frees the addr_list associated with
189 V. */
191 static void
192 unchain_one_value (cselib_val *v)
194 while (v->addr_list)
195 unchain_one_elt_list (&v->addr_list);
197 pool_free (cselib_val_pool, v);
200 /* Remove all entries from the hash table. Also used during
201 initialization. If CLEAR_ALL isn't set, then only clear the entries
202 which are known to have been used. */
204 void
205 cselib_clear_table (void)
207 unsigned int i;
209 for (i = 0; i < n_used_regs; i++)
210 REG_VALUES (used_regs[i]) = 0;
212 max_value_regs = 0;
214 n_used_regs = 0;
216 htab_empty (cselib_hash_table);
218 n_useless_values = 0;
220 next_unknown_value = 0;
222 first_containing_mem = &dummy_val;
225 /* The equality test for our hash table. The first argument ENTRY is a table
226 element (i.e. a cselib_val), while the second arg X is an rtx. We know
227 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
228 CONST of an appropriate mode. */
230 static int
231 entry_and_rtx_equal_p (const void *entry, const void *x_arg)
233 struct elt_loc_list *l;
234 const cselib_val *const v = (const cselib_val *) entry;
235 rtx x = CONST_CAST_RTX ((const_rtx)x_arg);
236 enum machine_mode mode = GET_MODE (x);
238 gcc_assert (GET_CODE (x) != CONST_INT && GET_CODE (x) != CONST_FIXED
239 && (mode != VOIDmode || GET_CODE (x) != CONST_DOUBLE));
241 if (mode != GET_MODE (v->val_rtx))
242 return 0;
244 /* Unwrap X if necessary. */
245 if (GET_CODE (x) == CONST
246 && (GET_CODE (XEXP (x, 0)) == CONST_INT
247 || GET_CODE (XEXP (x, 0)) == CONST_FIXED
248 || GET_CODE (XEXP (x, 0)) == CONST_DOUBLE))
249 x = XEXP (x, 0);
251 /* We don't guarantee that distinct rtx's have different hash values,
252 so we need to do a comparison. */
253 for (l = v->locs; l; l = l->next)
254 if (rtx_equal_for_cselib_p (l->loc, x))
255 return 1;
257 return 0;
260 /* The hash function for our hash table. The value is always computed with
261 cselib_hash_rtx when adding an element; this function just extracts the
262 hash value from a cselib_val structure. */
264 static hashval_t
265 get_value_hash (const void *entry)
267 const cselib_val *const v = (const cselib_val *) entry;
268 return v->value;
271 /* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
272 only return true for values which point to a cselib_val whose value
273 element has been set to zero, which implies the cselib_val will be
274 removed. */
277 references_value_p (const_rtx x, int only_useless)
279 const enum rtx_code code = GET_CODE (x);
280 const char *fmt = GET_RTX_FORMAT (code);
281 int i, j;
283 if (GET_CODE (x) == VALUE
284 && (! only_useless || CSELIB_VAL_PTR (x)->locs == 0))
285 return 1;
287 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
289 if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
290 return 1;
291 else if (fmt[i] == 'E')
292 for (j = 0; j < XVECLEN (x, i); j++)
293 if (references_value_p (XVECEXP (x, i, j), only_useless))
294 return 1;
297 return 0;
300 /* For all locations found in X, delete locations that reference useless
301 values (i.e. values without any location). Called through
302 htab_traverse. */
304 static int
305 discard_useless_locs (void **x, void *info ATTRIBUTE_UNUSED)
307 cselib_val *v = (cselib_val *)*x;
308 struct elt_loc_list **p = &v->locs;
309 int had_locs = v->locs != 0;
311 while (*p)
313 if (references_value_p ((*p)->loc, 1))
314 unchain_one_elt_loc_list (p);
315 else
316 p = &(*p)->next;
319 if (had_locs && v->locs == 0)
321 n_useless_values++;
322 values_became_useless = 1;
324 return 1;
327 /* If X is a value with no locations, remove it from the hashtable. */
329 static int
330 discard_useless_values (void **x, void *info ATTRIBUTE_UNUSED)
332 cselib_val *v = (cselib_val *)*x;
334 if (v->locs == 0)
336 if (cselib_discard_hook)
337 cselib_discard_hook (v);
339 CSELIB_VAL_PTR (v->val_rtx) = NULL;
340 htab_clear_slot (cselib_hash_table, x);
341 unchain_one_value (v);
342 n_useless_values--;
345 return 1;
348 /* Clean out useless values (i.e. those which no longer have locations
349 associated with them) from the hash table. */
351 static void
352 remove_useless_values (void)
354 cselib_val **p, *v;
355 /* First pass: eliminate locations that reference the value. That in
356 turn can make more values useless. */
359 values_became_useless = 0;
360 htab_traverse (cselib_hash_table, discard_useless_locs, 0);
362 while (values_became_useless);
364 /* Second pass: actually remove the values. */
366 p = &first_containing_mem;
367 for (v = *p; v != &dummy_val; v = v->next_containing_mem)
368 if (v->locs)
370 *p = v;
371 p = &(*p)->next_containing_mem;
373 *p = &dummy_val;
375 htab_traverse (cselib_hash_table, discard_useless_values, 0);
377 gcc_assert (!n_useless_values);
380 /* Return the mode in which a register was last set. If X is not a
381 register, return its mode. If the mode in which the register was
382 set is not known, or the value was already clobbered, return
383 VOIDmode. */
385 enum machine_mode
386 cselib_reg_set_mode (const_rtx x)
388 if (!REG_P (x))
389 return GET_MODE (x);
391 if (REG_VALUES (REGNO (x)) == NULL
392 || REG_VALUES (REGNO (x))->elt == NULL)
393 return VOIDmode;
395 return GET_MODE (REG_VALUES (REGNO (x))->elt->val_rtx);
398 /* Return nonzero if we can prove that X and Y contain the same value, taking
399 our gathered information into account. */
402 rtx_equal_for_cselib_p (rtx x, rtx y)
404 enum rtx_code code;
405 const char *fmt;
406 int i;
408 if (REG_P (x) || MEM_P (x))
410 cselib_val *e = cselib_lookup (x, GET_MODE (x), 0);
412 if (e)
413 x = e->val_rtx;
416 if (REG_P (y) || MEM_P (y))
418 cselib_val *e = cselib_lookup (y, GET_MODE (y), 0);
420 if (e)
421 y = e->val_rtx;
424 if (x == y)
425 return 1;
427 if (GET_CODE (x) == VALUE && GET_CODE (y) == VALUE)
428 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
430 if (GET_CODE (x) == VALUE)
432 cselib_val *e = CSELIB_VAL_PTR (x);
433 struct elt_loc_list *l;
435 for (l = e->locs; l; l = l->next)
437 rtx t = l->loc;
439 /* Avoid infinite recursion. */
440 if (REG_P (t) || MEM_P (t))
441 continue;
442 else if (rtx_equal_for_cselib_p (t, y))
443 return 1;
446 return 0;
449 if (GET_CODE (y) == VALUE)
451 cselib_val *e = CSELIB_VAL_PTR (y);
452 struct elt_loc_list *l;
454 for (l = e->locs; l; l = l->next)
456 rtx t = l->loc;
458 if (REG_P (t) || MEM_P (t))
459 continue;
460 else if (rtx_equal_for_cselib_p (x, t))
461 return 1;
464 return 0;
467 if (GET_CODE (x) != GET_CODE (y) || GET_MODE (x) != GET_MODE (y))
468 return 0;
470 /* These won't be handled correctly by the code below. */
471 switch (GET_CODE (x))
473 case CONST_DOUBLE:
474 case CONST_FIXED:
475 return 0;
477 case LABEL_REF:
478 return XEXP (x, 0) == XEXP (y, 0);
480 default:
481 break;
484 code = GET_CODE (x);
485 fmt = GET_RTX_FORMAT (code);
487 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
489 int j;
491 switch (fmt[i])
493 case 'w':
494 if (XWINT (x, i) != XWINT (y, i))
495 return 0;
496 break;
498 case 'n':
499 case 'i':
500 if (XINT (x, i) != XINT (y, i))
501 return 0;
502 break;
504 case 'V':
505 case 'E':
506 /* Two vectors must have the same length. */
507 if (XVECLEN (x, i) != XVECLEN (y, i))
508 return 0;
510 /* And the corresponding elements must match. */
511 for (j = 0; j < XVECLEN (x, i); j++)
512 if (! rtx_equal_for_cselib_p (XVECEXP (x, i, j),
513 XVECEXP (y, i, j)))
514 return 0;
515 break;
517 case 'e':
518 if (i == 1
519 && targetm.commutative_p (x, UNKNOWN)
520 && rtx_equal_for_cselib_p (XEXP (x, 1), XEXP (y, 0))
521 && rtx_equal_for_cselib_p (XEXP (x, 0), XEXP (y, 1)))
522 return 1;
523 if (! rtx_equal_for_cselib_p (XEXP (x, i), XEXP (y, i)))
524 return 0;
525 break;
527 case 'S':
528 case 's':
529 if (strcmp (XSTR (x, i), XSTR (y, i)))
530 return 0;
531 break;
533 case 'u':
534 /* These are just backpointers, so they don't matter. */
535 break;
537 case '0':
538 case 't':
539 break;
541 /* It is believed that rtx's at this level will never
542 contain anything but integers and other rtx's,
543 except for within LABEL_REFs and SYMBOL_REFs. */
544 default:
545 gcc_unreachable ();
548 return 1;
551 /* We need to pass down the mode of constants through the hash table
552 functions. For that purpose, wrap them in a CONST of the appropriate
553 mode. */
554 static rtx
555 wrap_constant (enum machine_mode mode, rtx x)
557 if (GET_CODE (x) != CONST_INT && GET_CODE (x) != CONST_FIXED
558 && (GET_CODE (x) != CONST_DOUBLE || GET_MODE (x) != VOIDmode))
559 return x;
560 gcc_assert (mode != VOIDmode);
561 return gen_rtx_CONST (mode, x);
564 /* Hash an rtx. Return 0 if we couldn't hash the rtx.
565 For registers and memory locations, we look up their cselib_val structure
566 and return its VALUE element.
567 Possible reasons for return 0 are: the object is volatile, or we couldn't
568 find a register or memory location in the table and CREATE is zero. If
569 CREATE is nonzero, table elts are created for regs and mem.
570 N.B. this hash function returns the same hash value for RTXes that
571 differ only in the order of operands, thus it is suitable for comparisons
572 that take commutativity into account.
573 If we wanted to also support associative rules, we'd have to use a different
574 strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
575 We used to have a MODE argument for hashing for CONST_INTs, but that
576 didn't make sense, since it caused spurious hash differences between
577 (set (reg:SI 1) (const_int))
578 (plus:SI (reg:SI 2) (reg:SI 1))
580 (plus:SI (reg:SI 2) (const_int))
581 If the mode is important in any context, it must be checked specifically
582 in a comparison anyway, since relying on hash differences is unsafe. */
584 static unsigned int
585 cselib_hash_rtx (rtx x, int create)
587 cselib_val *e;
588 int i, j;
589 enum rtx_code code;
590 const char *fmt;
591 unsigned int hash = 0;
593 code = GET_CODE (x);
594 hash += (unsigned) code + (unsigned) GET_MODE (x);
596 switch (code)
598 case MEM:
599 case REG:
600 e = cselib_lookup (x, GET_MODE (x), create);
601 if (! e)
602 return 0;
604 return e->value;
606 case CONST_INT:
607 hash += ((unsigned) CONST_INT << 7) + INTVAL (x);
608 return hash ? hash : (unsigned int) CONST_INT;
610 case CONST_DOUBLE:
611 /* This is like the general case, except that it only counts
612 the integers representing the constant. */
613 hash += (unsigned) code + (unsigned) GET_MODE (x);
614 if (GET_MODE (x) != VOIDmode)
615 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
616 else
617 hash += ((unsigned) CONST_DOUBLE_LOW (x)
618 + (unsigned) CONST_DOUBLE_HIGH (x));
619 return hash ? hash : (unsigned int) CONST_DOUBLE;
621 case CONST_FIXED:
622 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
623 hash += fixed_hash (CONST_FIXED_VALUE (x));
624 return hash ? hash : (unsigned int) CONST_FIXED;
626 case CONST_VECTOR:
628 int units;
629 rtx elt;
631 units = CONST_VECTOR_NUNITS (x);
633 for (i = 0; i < units; ++i)
635 elt = CONST_VECTOR_ELT (x, i);
636 hash += cselib_hash_rtx (elt, 0);
639 return hash;
642 /* Assume there is only one rtx object for any given label. */
643 case LABEL_REF:
644 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
645 differences and differences between each stage's debugging dumps. */
646 hash += (((unsigned int) LABEL_REF << 7)
647 + CODE_LABEL_NUMBER (XEXP (x, 0)));
648 return hash ? hash : (unsigned int) LABEL_REF;
650 case SYMBOL_REF:
652 /* Don't hash on the symbol's address to avoid bootstrap differences.
653 Different hash values may cause expressions to be recorded in
654 different orders and thus different registers to be used in the
655 final assembler. This also avoids differences in the dump files
656 between various stages. */
657 unsigned int h = 0;
658 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
660 while (*p)
661 h += (h << 7) + *p++; /* ??? revisit */
663 hash += ((unsigned int) SYMBOL_REF << 7) + h;
664 return hash ? hash : (unsigned int) SYMBOL_REF;
667 case PRE_DEC:
668 case PRE_INC:
669 case POST_DEC:
670 case POST_INC:
671 case POST_MODIFY:
672 case PRE_MODIFY:
673 case PC:
674 case CC0:
675 case CALL:
676 case UNSPEC_VOLATILE:
677 return 0;
679 case ASM_OPERANDS:
680 if (MEM_VOLATILE_P (x))
681 return 0;
683 break;
685 default:
686 break;
689 i = GET_RTX_LENGTH (code) - 1;
690 fmt = GET_RTX_FORMAT (code);
691 for (; i >= 0; i--)
693 switch (fmt[i])
695 case 'e':
697 rtx tem = XEXP (x, i);
698 unsigned int tem_hash = cselib_hash_rtx (tem, create);
700 if (tem_hash == 0)
701 return 0;
703 hash += tem_hash;
705 break;
706 case 'E':
707 for (j = 0; j < XVECLEN (x, i); j++)
709 unsigned int tem_hash
710 = cselib_hash_rtx (XVECEXP (x, i, j), create);
712 if (tem_hash == 0)
713 return 0;
715 hash += tem_hash;
717 break;
719 case 's':
721 const unsigned char *p = (const unsigned char *) XSTR (x, i);
723 if (p)
724 while (*p)
725 hash += *p++;
726 break;
729 case 'i':
730 hash += XINT (x, i);
731 break;
733 case '0':
734 case 't':
735 /* unused */
736 break;
738 default:
739 gcc_unreachable ();
743 return hash ? hash : 1 + (unsigned int) GET_CODE (x);
746 /* Create a new value structure for VALUE and initialize it. The mode of the
747 value is MODE. */
749 static inline cselib_val *
750 new_cselib_val (unsigned int value, enum machine_mode mode)
752 cselib_val *e = (cselib_val *) pool_alloc (cselib_val_pool);
754 gcc_assert (value);
756 e->value = value;
757 /* We use an alloc pool to allocate this RTL construct because it
758 accounts for about 8% of the overall memory usage. We know
759 precisely when we can have VALUE RTXen (when cselib is active)
760 so we don't need to put them in garbage collected memory.
761 ??? Why should a VALUE be an RTX in the first place? */
762 e->val_rtx = (rtx) pool_alloc (value_pool);
763 memset (e->val_rtx, 0, RTX_HDR_SIZE);
764 PUT_CODE (e->val_rtx, VALUE);
765 PUT_MODE (e->val_rtx, mode);
766 CSELIB_VAL_PTR (e->val_rtx) = e;
767 e->addr_list = 0;
768 e->locs = 0;
769 e->next_containing_mem = 0;
770 return e;
773 /* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
774 contains the data at this address. X is a MEM that represents the
775 value. Update the two value structures to represent this situation. */
777 static void
778 add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
780 struct elt_loc_list *l;
782 /* Avoid duplicates. */
783 for (l = mem_elt->locs; l; l = l->next)
784 if (MEM_P (l->loc)
785 && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt)
786 return;
788 addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
789 mem_elt->locs
790 = new_elt_loc_list (mem_elt->locs,
791 replace_equiv_address_nv (x, addr_elt->val_rtx));
792 if (mem_elt->next_containing_mem == NULL)
794 mem_elt->next_containing_mem = first_containing_mem;
795 first_containing_mem = mem_elt;
799 /* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
800 If CREATE, make a new one if we haven't seen it before. */
802 static cselib_val *
803 cselib_lookup_mem (rtx x, int create)
805 enum machine_mode mode = GET_MODE (x);
806 void **slot;
807 cselib_val *addr;
808 cselib_val *mem_elt;
809 struct elt_list *l;
811 if (MEM_VOLATILE_P (x) || mode == BLKmode
812 || !cselib_record_memory
813 || (FLOAT_MODE_P (mode) && flag_float_store))
814 return 0;
816 /* Look up the value for the address. */
817 addr = cselib_lookup (XEXP (x, 0), mode, create);
818 if (! addr)
819 return 0;
821 /* Find a value that describes a value of our mode at that address. */
822 for (l = addr->addr_list; l; l = l->next)
823 if (GET_MODE (l->elt->val_rtx) == mode)
824 return l->elt;
826 if (! create)
827 return 0;
829 mem_elt = new_cselib_val (++next_unknown_value, mode);
830 add_mem_for_addr (addr, mem_elt, x);
831 slot = htab_find_slot_with_hash (cselib_hash_table, wrap_constant (mode, x),
832 mem_elt->value, INSERT);
833 *slot = mem_elt;
834 return mem_elt;
837 /* Search thru the possible substitutions in P. We prefer a non reg
838 substitution because this allows us to expand the tree further. If
839 we find, just a reg, take the lowest regno. There may be several
840 non-reg results, we just take the first one because they will all
841 expand to the same place. */
843 static rtx
844 expand_loc (struct elt_loc_list *p, bitmap regs_active, int max_depth)
846 rtx reg_result = NULL;
847 unsigned int regno = UINT_MAX;
848 struct elt_loc_list *p_in = p;
850 for (; p; p = p -> next)
852 /* Avoid infinite recursion trying to expand a reg into a
853 the same reg. */
854 if ((REG_P (p->loc))
855 && (REGNO (p->loc) < regno)
856 && !bitmap_bit_p (regs_active, REGNO (p->loc)))
858 reg_result = p->loc;
859 regno = REGNO (p->loc);
861 /* Avoid infinite recursion and do not try to expand the
862 value. */
863 else if (GET_CODE (p->loc) == VALUE
864 && CSELIB_VAL_PTR (p->loc)->locs == p_in)
865 continue;
866 else if (!REG_P (p->loc))
868 rtx result;
869 if (dump_file)
871 print_inline_rtx (dump_file, p->loc, 0);
872 fprintf (dump_file, "\n");
874 result = cselib_expand_value_rtx (p->loc, regs_active, max_depth - 1);
875 if (result)
876 return result;
881 if (regno != UINT_MAX)
883 rtx result;
884 if (dump_file)
885 fprintf (dump_file, "r%d\n", regno);
887 result = cselib_expand_value_rtx (reg_result, regs_active, max_depth - 1);
888 if (result)
889 return result;
892 if (dump_file)
894 if (reg_result)
896 print_inline_rtx (dump_file, reg_result, 0);
897 fprintf (dump_file, "\n");
899 else
900 fprintf (dump_file, "NULL\n");
902 return reg_result;
906 /* Forward substitute and expand an expression out to its roots.
907 This is the opposite of common subexpression. Because local value
908 numbering is such a weak optimization, the expanded expression is
909 pretty much unique (not from a pointer equals point of view but
910 from a tree shape point of view.
912 This function returns NULL if the expansion fails. The expansion
913 will fail if there is no value number for one of the operands or if
914 one of the operands has been overwritten between the current insn
915 and the beginning of the basic block. For instance x has no
916 expansion in:
918 r1 <- r1 + 3
919 x <- r1 + 8
921 REGS_ACTIVE is a scratch bitmap that should be clear when passing in.
922 It is clear on return. */
925 cselib_expand_value_rtx (rtx orig, bitmap regs_active, int max_depth)
927 rtx copy, scopy;
928 int i, j;
929 RTX_CODE code;
930 const char *format_ptr;
932 code = GET_CODE (orig);
934 /* For the context of dse, if we end up expand into a huge tree, we
935 will not have a useful address, so we might as well just give up
936 quickly. */
937 if (max_depth <= 0)
938 return NULL;
940 switch (code)
942 case REG:
944 struct elt_list *l = REG_VALUES (REGNO (orig));
946 if (l && l->elt == NULL)
947 l = l->next;
948 for (; l; l = l->next)
949 if (GET_MODE (l->elt->val_rtx) == GET_MODE (orig))
951 rtx result;
952 int regno = REGNO (orig);
954 /* The only thing that we are not willing to do (this
955 is requirement of dse and if others potential uses
956 need this function we should add a parm to control
957 it) is that we will not substitute the
958 STACK_POINTER_REGNUM, FRAME_POINTER or the
959 HARD_FRAME_POINTER.
961 These expansions confuses the code that notices that
962 stores into the frame go dead at the end of the
963 function and that the frame is not effected by calls
964 to subroutines. If you allow the
965 STACK_POINTER_REGNUM substitution, then dse will
966 think that parameter pushing also goes dead which is
967 wrong. If you allow the FRAME_POINTER or the
968 HARD_FRAME_POINTER then you lose the opportunity to
969 make the frame assumptions. */
970 if (regno == STACK_POINTER_REGNUM
971 || regno == FRAME_POINTER_REGNUM
972 || regno == HARD_FRAME_POINTER_REGNUM)
973 return orig;
975 bitmap_set_bit (regs_active, regno);
977 if (dump_file)
978 fprintf (dump_file, "expanding: r%d into: ", regno);
980 result = expand_loc (l->elt->locs, regs_active, max_depth);
981 bitmap_clear_bit (regs_active, regno);
983 if (result)
984 return result;
985 else
986 return orig;
990 case CONST_INT:
991 case CONST_DOUBLE:
992 case CONST_VECTOR:
993 case SYMBOL_REF:
994 case CODE_LABEL:
995 case PC:
996 case CC0:
997 case SCRATCH:
998 /* SCRATCH must be shared because they represent distinct values. */
999 return orig;
1000 case CLOBBER:
1001 if (REG_P (XEXP (orig, 0)) && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0))))
1002 return orig;
1003 break;
1005 case CONST:
1006 if (shared_const_p (orig))
1007 return orig;
1008 break;
1011 case VALUE:
1013 rtx result;
1014 if (dump_file)
1015 fprintf (dump_file, "expanding value %s into: ", GET_MODE_NAME (GET_MODE (orig)));
1017 result = expand_loc (CSELIB_VAL_PTR (orig)->locs, regs_active, max_depth);
1018 if (result
1019 && GET_CODE (result) == CONST_INT
1020 && GET_MODE (orig) != VOIDmode)
1022 result = gen_rtx_CONST (GET_MODE (orig), result);
1023 if (dump_file)
1024 fprintf (dump_file, " wrapping const_int result in const to preserve mode %s\n",
1025 GET_MODE_NAME (GET_MODE (orig)));
1027 return result;
1029 default:
1030 break;
1033 /* Copy the various flags, fields, and other information. We assume
1034 that all fields need copying, and then clear the fields that should
1035 not be copied. That is the sensible default behavior, and forces
1036 us to explicitly document why we are *not* copying a flag. */
1037 copy = shallow_copy_rtx (orig);
1039 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
1041 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
1042 switch (*format_ptr++)
1044 case 'e':
1045 if (XEXP (orig, i) != NULL)
1047 rtx result = cselib_expand_value_rtx (XEXP (orig, i), regs_active, max_depth - 1);
1048 if (!result)
1049 return NULL;
1050 XEXP (copy, i) = result;
1052 break;
1054 case 'E':
1055 case 'V':
1056 if (XVEC (orig, i) != NULL)
1058 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
1059 for (j = 0; j < XVECLEN (copy, i); j++)
1061 rtx result = cselib_expand_value_rtx (XVECEXP (orig, i, j), regs_active, max_depth - 1);
1062 if (!result)
1063 return NULL;
1064 XVECEXP (copy, i, j) = result;
1067 break;
1069 case 't':
1070 case 'w':
1071 case 'i':
1072 case 's':
1073 case 'S':
1074 case 'T':
1075 case 'u':
1076 case 'B':
1077 case '0':
1078 /* These are left unchanged. */
1079 break;
1081 default:
1082 gcc_unreachable ();
1085 scopy = simplify_rtx (copy);
1086 if (scopy)
1087 return scopy;
1088 return copy;
1091 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
1092 with VALUE expressions. This way, it becomes independent of changes
1093 to registers and memory.
1094 X isn't actually modified; if modifications are needed, new rtl is
1095 allocated. However, the return value can share rtl with X. */
1098 cselib_subst_to_values (rtx x)
1100 enum rtx_code code = GET_CODE (x);
1101 const char *fmt = GET_RTX_FORMAT (code);
1102 cselib_val *e;
1103 struct elt_list *l;
1104 rtx copy = x;
1105 int i;
1107 switch (code)
1109 case REG:
1110 l = REG_VALUES (REGNO (x));
1111 if (l && l->elt == NULL)
1112 l = l->next;
1113 for (; l; l = l->next)
1114 if (GET_MODE (l->elt->val_rtx) == GET_MODE (x))
1115 return l->elt->val_rtx;
1117 gcc_unreachable ();
1119 case MEM:
1120 e = cselib_lookup_mem (x, 0);
1121 if (! e)
1123 /* This happens for autoincrements. Assign a value that doesn't
1124 match any other. */
1125 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
1127 return e->val_rtx;
1129 case CONST_DOUBLE:
1130 case CONST_VECTOR:
1131 case CONST_INT:
1132 case CONST_FIXED:
1133 return x;
1135 case POST_INC:
1136 case PRE_INC:
1137 case POST_DEC:
1138 case PRE_DEC:
1139 case POST_MODIFY:
1140 case PRE_MODIFY:
1141 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
1142 return e->val_rtx;
1144 default:
1145 break;
1148 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1150 if (fmt[i] == 'e')
1152 rtx t = cselib_subst_to_values (XEXP (x, i));
1154 if (t != XEXP (x, i) && x == copy)
1155 copy = shallow_copy_rtx (x);
1157 XEXP (copy, i) = t;
1159 else if (fmt[i] == 'E')
1161 int j, k;
1163 for (j = 0; j < XVECLEN (x, i); j++)
1165 rtx t = cselib_subst_to_values (XVECEXP (x, i, j));
1167 if (t != XVECEXP (x, i, j) && XVEC (x, i) == XVEC (copy, i))
1169 if (x == copy)
1170 copy = shallow_copy_rtx (x);
1172 XVEC (copy, i) = rtvec_alloc (XVECLEN (x, i));
1173 for (k = 0; k < j; k++)
1174 XVECEXP (copy, i, k) = XVECEXP (x, i, k);
1177 XVECEXP (copy, i, j) = t;
1182 return copy;
1185 /* Look up the rtl expression X in our tables and return the value it has.
1186 If CREATE is zero, we return NULL if we don't know the value. Otherwise,
1187 we create a new one if possible, using mode MODE if X doesn't have a mode
1188 (i.e. because it's a constant). */
1190 cselib_val *
1191 cselib_lookup (rtx x, enum machine_mode mode, int create)
1193 void **slot;
1194 cselib_val *e;
1195 unsigned int hashval;
1197 if (GET_MODE (x) != VOIDmode)
1198 mode = GET_MODE (x);
1200 if (GET_CODE (x) == VALUE)
1201 return CSELIB_VAL_PTR (x);
1203 if (REG_P (x))
1205 struct elt_list *l;
1206 unsigned int i = REGNO (x);
1208 l = REG_VALUES (i);
1209 if (l && l->elt == NULL)
1210 l = l->next;
1211 for (; l; l = l->next)
1212 if (mode == GET_MODE (l->elt->val_rtx))
1213 return l->elt;
1215 if (! create)
1216 return 0;
1218 if (i < FIRST_PSEUDO_REGISTER)
1220 unsigned int n = hard_regno_nregs[i][mode];
1222 if (n > max_value_regs)
1223 max_value_regs = n;
1226 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
1227 e->locs = new_elt_loc_list (e->locs, x);
1228 if (REG_VALUES (i) == 0)
1230 /* Maintain the invariant that the first entry of
1231 REG_VALUES, if present, must be the value used to set the
1232 register, or NULL. */
1233 used_regs[n_used_regs++] = i;
1234 REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
1236 REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
1237 slot = htab_find_slot_with_hash (cselib_hash_table, x, e->value, INSERT);
1238 *slot = e;
1239 return e;
1242 if (MEM_P (x))
1243 return cselib_lookup_mem (x, create);
1245 hashval = cselib_hash_rtx (x, create);
1246 /* Can't even create if hashing is not possible. */
1247 if (! hashval)
1248 return 0;
1250 slot = htab_find_slot_with_hash (cselib_hash_table, wrap_constant (mode, x),
1251 hashval, create ? INSERT : NO_INSERT);
1252 if (slot == 0)
1253 return 0;
1255 e = (cselib_val *) *slot;
1256 if (e)
1257 return e;
1259 e = new_cselib_val (hashval, mode);
1261 /* We have to fill the slot before calling cselib_subst_to_values:
1262 the hash table is inconsistent until we do so, and
1263 cselib_subst_to_values will need to do lookups. */
1264 *slot = (void *) e;
1265 e->locs = new_elt_loc_list (e->locs, cselib_subst_to_values (x));
1266 return e;
1269 /* Invalidate any entries in reg_values that overlap REGNO. This is called
1270 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
1271 is used to determine how many hard registers are being changed. If MODE
1272 is VOIDmode, then only REGNO is being changed; this is used when
1273 invalidating call clobbered registers across a call. */
1275 static void
1276 cselib_invalidate_regno (unsigned int regno, enum machine_mode mode)
1278 unsigned int endregno;
1279 unsigned int i;
1281 /* If we see pseudos after reload, something is _wrong_. */
1282 gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
1283 || reg_renumber[regno] < 0);
1285 /* Determine the range of registers that must be invalidated. For
1286 pseudos, only REGNO is affected. For hard regs, we must take MODE
1287 into account, and we must also invalidate lower register numbers
1288 if they contain values that overlap REGNO. */
1289 if (regno < FIRST_PSEUDO_REGISTER)
1291 gcc_assert (mode != VOIDmode);
1293 if (regno < max_value_regs)
1294 i = 0;
1295 else
1296 i = regno - max_value_regs;
1298 endregno = end_hard_regno (mode, regno);
1300 else
1302 i = regno;
1303 endregno = regno + 1;
1306 for (; i < endregno; i++)
1308 struct elt_list **l = &REG_VALUES (i);
1310 /* Go through all known values for this reg; if it overlaps the range
1311 we're invalidating, remove the value. */
1312 while (*l)
1314 cselib_val *v = (*l)->elt;
1315 struct elt_loc_list **p;
1316 unsigned int this_last = i;
1318 if (i < FIRST_PSEUDO_REGISTER && v != NULL)
1319 this_last = end_hard_regno (GET_MODE (v->val_rtx), i) - 1;
1321 if (this_last < regno || v == NULL)
1323 l = &(*l)->next;
1324 continue;
1327 /* We have an overlap. */
1328 if (*l == REG_VALUES (i))
1330 /* Maintain the invariant that the first entry of
1331 REG_VALUES, if present, must be the value used to set
1332 the register, or NULL. This is also nice because
1333 then we won't push the same regno onto user_regs
1334 multiple times. */
1335 (*l)->elt = NULL;
1336 l = &(*l)->next;
1338 else
1339 unchain_one_elt_list (l);
1341 /* Now, we clear the mapping from value to reg. It must exist, so
1342 this code will crash intentionally if it doesn't. */
1343 for (p = &v->locs; ; p = &(*p)->next)
1345 rtx x = (*p)->loc;
1347 if (REG_P (x) && REGNO (x) == i)
1349 unchain_one_elt_loc_list (p);
1350 break;
1353 if (v->locs == 0)
1354 n_useless_values++;
1359 /* Return 1 if X has a value that can vary even between two
1360 executions of the program. 0 means X can be compared reliably
1361 against certain constants or near-constants. */
1363 static bool
1364 cselib_rtx_varies_p (const_rtx x ATTRIBUTE_UNUSED, bool from_alias ATTRIBUTE_UNUSED)
1366 /* We actually don't need to verify very hard. This is because
1367 if X has actually changed, we invalidate the memory anyway,
1368 so assume that all common memory addresses are
1369 invariant. */
1370 return 0;
1373 /* Invalidate any locations in the table which are changed because of a
1374 store to MEM_RTX. If this is called because of a non-const call
1375 instruction, MEM_RTX is (mem:BLK const0_rtx). */
1377 static void
1378 cselib_invalidate_mem (rtx mem_rtx)
1380 cselib_val **vp, *v, *next;
1381 int num_mems = 0;
1382 rtx mem_addr;
1384 mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
1385 mem_rtx = canon_rtx (mem_rtx);
1387 vp = &first_containing_mem;
1388 for (v = *vp; v != &dummy_val; v = next)
1390 bool has_mem = false;
1391 struct elt_loc_list **p = &v->locs;
1392 int had_locs = v->locs != 0;
1394 while (*p)
1396 rtx x = (*p)->loc;
1397 cselib_val *addr;
1398 struct elt_list **mem_chain;
1400 /* MEMs may occur in locations only at the top level; below
1401 that every MEM or REG is substituted by its VALUE. */
1402 if (!MEM_P (x))
1404 p = &(*p)->next;
1405 continue;
1407 if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
1408 && ! canon_true_dependence (mem_rtx, GET_MODE (mem_rtx), mem_addr,
1409 x, cselib_rtx_varies_p))
1411 has_mem = true;
1412 num_mems++;
1413 p = &(*p)->next;
1414 continue;
1417 /* This one overlaps. */
1418 /* We must have a mapping from this MEM's address to the
1419 value (E). Remove that, too. */
1420 addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0);
1421 mem_chain = &addr->addr_list;
1422 for (;;)
1424 if ((*mem_chain)->elt == v)
1426 unchain_one_elt_list (mem_chain);
1427 break;
1430 mem_chain = &(*mem_chain)->next;
1433 unchain_one_elt_loc_list (p);
1436 if (had_locs && v->locs == 0)
1437 n_useless_values++;
1439 next = v->next_containing_mem;
1440 if (has_mem)
1442 *vp = v;
1443 vp = &(*vp)->next_containing_mem;
1445 else
1446 v->next_containing_mem = NULL;
1448 *vp = &dummy_val;
1451 /* Invalidate DEST, which is being assigned to or clobbered. */
1453 void
1454 cselib_invalidate_rtx (rtx dest)
1456 while (GET_CODE (dest) == SUBREG
1457 || GET_CODE (dest) == ZERO_EXTRACT
1458 || GET_CODE (dest) == STRICT_LOW_PART)
1459 dest = XEXP (dest, 0);
1461 if (REG_P (dest))
1462 cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
1463 else if (MEM_P (dest))
1464 cselib_invalidate_mem (dest);
1466 /* Some machines don't define AUTO_INC_DEC, but they still use push
1467 instructions. We need to catch that case here in order to
1468 invalidate the stack pointer correctly. Note that invalidating
1469 the stack pointer is different from invalidating DEST. */
1470 if (push_operand (dest, GET_MODE (dest)))
1471 cselib_invalidate_rtx (stack_pointer_rtx);
1474 /* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
1476 static void
1477 cselib_invalidate_rtx_note_stores (rtx dest, const_rtx ignore ATTRIBUTE_UNUSED,
1478 void *data ATTRIBUTE_UNUSED)
1480 cselib_invalidate_rtx (dest);
1483 /* Record the result of a SET instruction. DEST is being set; the source
1484 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
1485 describes its address. */
1487 static void
1488 cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
1490 int dreg = REG_P (dest) ? (int) REGNO (dest) : -1;
1492 if (src_elt == 0 || side_effects_p (dest))
1493 return;
1495 if (dreg >= 0)
1497 if (dreg < FIRST_PSEUDO_REGISTER)
1499 unsigned int n = hard_regno_nregs[dreg][GET_MODE (dest)];
1501 if (n > max_value_regs)
1502 max_value_regs = n;
1505 if (REG_VALUES (dreg) == 0)
1507 used_regs[n_used_regs++] = dreg;
1508 REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
1510 else
1512 /* The register should have been invalidated. */
1513 gcc_assert (REG_VALUES (dreg)->elt == 0);
1514 REG_VALUES (dreg)->elt = src_elt;
1517 if (src_elt->locs == 0)
1518 n_useless_values--;
1519 src_elt->locs = new_elt_loc_list (src_elt->locs, dest);
1521 else if (MEM_P (dest) && dest_addr_elt != 0
1522 && cselib_record_memory)
1524 if (src_elt->locs == 0)
1525 n_useless_values--;
1526 add_mem_for_addr (dest_addr_elt, src_elt, dest);
1530 /* Describe a single set that is part of an insn. */
1531 struct set
1533 rtx src;
1534 rtx dest;
1535 cselib_val *src_elt;
1536 cselib_val *dest_addr_elt;
1539 /* There is no good way to determine how many elements there can be
1540 in a PARALLEL. Since it's fairly cheap, use a really large number. */
1541 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
1543 /* Record the effects of any sets in INSN. */
1544 static void
1545 cselib_record_sets (rtx insn)
1547 int n_sets = 0;
1548 int i;
1549 struct set sets[MAX_SETS];
1550 rtx body = PATTERN (insn);
1551 rtx cond = 0;
1553 body = PATTERN (insn);
1554 if (GET_CODE (body) == COND_EXEC)
1556 cond = COND_EXEC_TEST (body);
1557 body = COND_EXEC_CODE (body);
1560 /* Find all sets. */
1561 if (GET_CODE (body) == SET)
1563 sets[0].src = SET_SRC (body);
1564 sets[0].dest = SET_DEST (body);
1565 n_sets = 1;
1567 else if (GET_CODE (body) == PARALLEL)
1569 /* Look through the PARALLEL and record the values being
1570 set, if possible. Also handle any CLOBBERs. */
1571 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
1573 rtx x = XVECEXP (body, 0, i);
1575 if (GET_CODE (x) == SET)
1577 sets[n_sets].src = SET_SRC (x);
1578 sets[n_sets].dest = SET_DEST (x);
1579 n_sets++;
1584 /* Look up the values that are read. Do this before invalidating the
1585 locations that are written. */
1586 for (i = 0; i < n_sets; i++)
1588 rtx dest = sets[i].dest;
1590 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
1591 the low part after invalidating any knowledge about larger modes. */
1592 if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
1593 sets[i].dest = dest = XEXP (dest, 0);
1595 /* We don't know how to record anything but REG or MEM. */
1596 if (REG_P (dest)
1597 || (MEM_P (dest) && cselib_record_memory))
1599 rtx src = sets[i].src;
1600 if (cond)
1601 src = gen_rtx_IF_THEN_ELSE (GET_MODE (dest), cond, src, dest);
1602 sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1);
1603 if (MEM_P (dest))
1604 sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0), Pmode, 1);
1605 else
1606 sets[i].dest_addr_elt = 0;
1610 /* Invalidate all locations written by this insn. Note that the elts we
1611 looked up in the previous loop aren't affected, just some of their
1612 locations may go away. */
1613 note_stores (body, cselib_invalidate_rtx_note_stores, NULL);
1615 /* If this is an asm, look for duplicate sets. This can happen when the
1616 user uses the same value as an output multiple times. This is valid
1617 if the outputs are not actually used thereafter. Treat this case as
1618 if the value isn't actually set. We do this by smashing the destination
1619 to pc_rtx, so that we won't record the value later. */
1620 if (n_sets >= 2 && asm_noperands (body) >= 0)
1622 for (i = 0; i < n_sets; i++)
1624 rtx dest = sets[i].dest;
1625 if (REG_P (dest) || MEM_P (dest))
1627 int j;
1628 for (j = i + 1; j < n_sets; j++)
1629 if (rtx_equal_p (dest, sets[j].dest))
1631 sets[i].dest = pc_rtx;
1632 sets[j].dest = pc_rtx;
1638 /* Now enter the equivalences in our tables. */
1639 for (i = 0; i < n_sets; i++)
1641 rtx dest = sets[i].dest;
1642 if (REG_P (dest)
1643 || (MEM_P (dest) && cselib_record_memory))
1644 cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
1648 /* Record the effects of INSN. */
1650 void
1651 cselib_process_insn (rtx insn)
1653 int i;
1654 rtx x;
1656 cselib_current_insn = insn;
1658 /* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp. */
1659 if (LABEL_P (insn)
1660 || (CALL_P (insn)
1661 && find_reg_note (insn, REG_SETJMP, NULL))
1662 || (NONJUMP_INSN_P (insn)
1663 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
1664 && MEM_VOLATILE_P (PATTERN (insn))))
1666 cselib_clear_table ();
1667 return;
1670 if (! INSN_P (insn))
1672 cselib_current_insn = 0;
1673 return;
1676 /* If this is a call instruction, forget anything stored in a
1677 call clobbered register, or, if this is not a const call, in
1678 memory. */
1679 if (CALL_P (insn))
1681 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1682 if (call_used_regs[i]
1683 || (REG_VALUES (i) && REG_VALUES (i)->elt
1684 && HARD_REGNO_CALL_PART_CLOBBERED (i,
1685 GET_MODE (REG_VALUES (i)->elt->val_rtx))))
1686 cselib_invalidate_regno (i, reg_raw_mode[i]);
1688 /* Since it is not clear how cselib is going to be used, be
1689 conservative here and treat looping pure or const functions
1690 as if they were regular functions. */
1691 if (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
1692 || !(RTL_CONST_OR_PURE_CALL_P (insn)))
1693 cselib_invalidate_mem (callmem);
1696 cselib_record_sets (insn);
1698 #ifdef AUTO_INC_DEC
1699 /* Clobber any registers which appear in REG_INC notes. We
1700 could keep track of the changes to their values, but it is
1701 unlikely to help. */
1702 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
1703 if (REG_NOTE_KIND (x) == REG_INC)
1704 cselib_invalidate_rtx (XEXP (x, 0));
1705 #endif
1707 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
1708 after we have processed the insn. */
1709 if (CALL_P (insn))
1710 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
1711 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
1712 cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
1714 cselib_current_insn = 0;
1716 if (n_useless_values > MAX_USELESS_VALUES
1717 /* remove_useless_values is linear in the hash table size. Avoid
1718 quadratic behavior for very large hashtables with very few
1719 useless elements. */
1720 && (unsigned int)n_useless_values > cselib_hash_table->n_elements / 4)
1721 remove_useless_values ();
1724 /* Initialize cselib for one pass. The caller must also call
1725 init_alias_analysis. */
1727 void
1728 cselib_init (bool record_memory)
1730 elt_list_pool = create_alloc_pool ("elt_list",
1731 sizeof (struct elt_list), 10);
1732 elt_loc_list_pool = create_alloc_pool ("elt_loc_list",
1733 sizeof (struct elt_loc_list), 10);
1734 cselib_val_pool = create_alloc_pool ("cselib_val_list",
1735 sizeof (cselib_val), 10);
1736 value_pool = create_alloc_pool ("value", RTX_CODE_SIZE (VALUE), 100);
1737 cselib_record_memory = record_memory;
1739 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything,
1740 see canon_true_dependence. This is only created once. */
1741 if (! callmem)
1742 callmem = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode));
1744 cselib_nregs = max_reg_num ();
1746 /* We preserve reg_values to allow expensive clearing of the whole thing.
1747 Reallocate it however if it happens to be too large. */
1748 if (!reg_values || reg_values_size < cselib_nregs
1749 || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
1751 if (reg_values)
1752 free (reg_values);
1753 /* Some space for newly emit instructions so we don't end up
1754 reallocating in between passes. */
1755 reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
1756 reg_values = XCNEWVEC (struct elt_list *, reg_values_size);
1758 used_regs = XNEWVEC (unsigned int, cselib_nregs);
1759 n_used_regs = 0;
1760 cselib_hash_table = htab_create (31, get_value_hash,
1761 entry_and_rtx_equal_p, NULL);
1764 /* Called when the current user is done with cselib. */
1766 void
1767 cselib_finish (void)
1769 cselib_discard_hook = NULL;
1770 free_alloc_pool (elt_list_pool);
1771 free_alloc_pool (elt_loc_list_pool);
1772 free_alloc_pool (cselib_val_pool);
1773 free_alloc_pool (value_pool);
1774 cselib_clear_table ();
1775 htab_delete (cselib_hash_table);
1776 free (used_regs);
1777 used_regs = 0;
1778 cselib_hash_table = 0;
1779 n_useless_values = 0;
1780 next_unknown_value = 0;
1783 #include "gt-cselib.h"