* gcc.dg/compat/struct-layout-1_generate.c (dg_options): New. Moved
[official-gcc.git] / gcc / alias.c
blob113548942a25038e43d5c02660cda0f2997eb10a
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
3 2007 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "function.h"
30 #include "alias.h"
31 #include "emit-rtl.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "flags.h"
36 #include "output.h"
37 #include "toplev.h"
38 #include "cselib.h"
39 #include "splay-tree.h"
40 #include "ggc.h"
41 #include "langhooks.h"
42 #include "timevar.h"
43 #include "target.h"
44 #include "cgraph.h"
45 #include "varray.h"
46 #include "tree-pass.h"
47 #include "ipa-type-escape.h"
48 #include "df.h"
50 /* The aliasing API provided here solves related but different problems:
52 Say there exists (in c)
54 struct X {
55 struct Y y1;
56 struct Z z2;
57 } x1, *px1, *px2;
59 struct Y y2, *py;
60 struct Z z2, *pz;
63 py = &px1.y1;
64 px2 = &x1;
66 Consider the four questions:
68 Can a store to x1 interfere with px2->y1?
69 Can a store to x1 interfere with px2->z2?
70 (*px2).z2
71 Can a store to x1 change the value pointed to by with py?
72 Can a store to x1 change the value pointed to by with pz?
74 The answer to these questions can be yes, yes, yes, and maybe.
76 The first two questions can be answered with a simple examination
77 of the type system. If structure X contains a field of type Y then
78 a store thru a pointer to an X can overwrite any field that is
79 contained (recursively) in an X (unless we know that px1 != px2).
81 The last two of the questions can be solved in the same way as the
82 first two questions but this is too conservative. The observation
83 is that in some cases analysis we can know if which (if any) fields
84 are addressed and if those addresses are used in bad ways. This
85 analysis may be language specific. In C, arbitrary operations may
86 be applied to pointers. However, there is some indication that
87 this may be too conservative for some C++ types.
89 The pass ipa-type-escape does this analysis for the types whose
90 instances do not escape across the compilation boundary.
92 Historically in GCC, these two problems were combined and a single
93 data structure was used to represent the solution to these
94 problems. We now have two similar but different data structures,
95 The data structure to solve the last two question is similar to the
96 first, but does not contain have the fields in it whose address are
97 never taken. For types that do escape the compilation unit, the
98 data structures will have identical information.
101 /* The alias sets assigned to MEMs assist the back-end in determining
102 which MEMs can alias which other MEMs. In general, two MEMs in
103 different alias sets cannot alias each other, with one important
104 exception. Consider something like:
106 struct S { int i; double d; };
108 a store to an `S' can alias something of either type `int' or type
109 `double'. (However, a store to an `int' cannot alias a `double'
110 and vice versa.) We indicate this via a tree structure that looks
111 like:
112 struct S
115 |/_ _\|
116 int double
118 (The arrows are directed and point downwards.)
119 In this situation we say the alias set for `struct S' is the
120 `superset' and that those for `int' and `double' are `subsets'.
122 To see whether two alias sets can point to the same memory, we must
123 see if either alias set is a subset of the other. We need not trace
124 past immediate descendants, however, since we propagate all
125 grandchildren up one level.
127 Alias set zero is implicitly a superset of all other alias sets.
128 However, this is no actual entry for alias set zero. It is an
129 error to attempt to explicitly construct a subset of zero. */
131 struct alias_set_entry GTY(())
133 /* The alias set number, as stored in MEM_ALIAS_SET. */
134 alias_set_type alias_set;
136 /* Nonzero if would have a child of zero: this effectively makes this
137 alias set the same as alias set zero. */
138 int has_zero_child;
140 /* The children of the alias set. These are not just the immediate
141 children, but, in fact, all descendants. So, if we have:
143 struct T { struct S s; float f; }
145 continuing our example above, the children here will be all of
146 `int', `double', `float', and `struct S'. */
147 splay_tree GTY((param1_is (int), param2_is (int))) children;
149 typedef struct alias_set_entry *alias_set_entry;
151 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
152 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
153 static void record_set (rtx, const_rtx, void *);
154 static int base_alias_check (rtx, rtx, enum machine_mode,
155 enum machine_mode);
156 static rtx find_base_value (rtx);
157 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
158 static int insert_subset_children (splay_tree_node, void*);
159 static tree find_base_decl (tree);
160 static alias_set_entry get_alias_set_entry (alias_set_type);
161 static const_rtx fixed_scalar_and_varying_struct_p (const_rtx, const_rtx, rtx, rtx,
162 bool (*) (const_rtx, bool));
163 static int aliases_everything_p (const_rtx);
164 static bool nonoverlapping_component_refs_p (const_tree, const_tree);
165 static tree decl_for_component_ref (tree);
166 static rtx adjust_offset_for_component_ref (tree, rtx);
167 static int write_dependence_p (const_rtx, const_rtx, int);
169 static void memory_modified_1 (rtx, const_rtx, void *);
170 static void record_alias_subset (alias_set_type, alias_set_type);
172 /* Set up all info needed to perform alias analysis on memory references. */
174 /* Returns the size in bytes of the mode of X. */
175 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
177 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
178 different alias sets. We ignore alias sets in functions making use
179 of variable arguments because the va_arg macros on some systems are
180 not legal ANSI C. */
181 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
182 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
184 /* Cap the number of passes we make over the insns propagating alias
185 information through set chains. 10 is a completely arbitrary choice. */
186 #define MAX_ALIAS_LOOP_PASSES 10
188 /* reg_base_value[N] gives an address to which register N is related.
189 If all sets after the first add or subtract to the current value
190 or otherwise modify it so it does not point to a different top level
191 object, reg_base_value[N] is equal to the address part of the source
192 of the first set.
194 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
195 expressions represent certain special values: function arguments and
196 the stack, frame, and argument pointers.
198 The contents of an ADDRESS is not normally used, the mode of the
199 ADDRESS determines whether the ADDRESS is a function argument or some
200 other special value. Pointer equality, not rtx_equal_p, determines whether
201 two ADDRESS expressions refer to the same base address.
203 The only use of the contents of an ADDRESS is for determining if the
204 current function performs nonlocal memory memory references for the
205 purposes of marking the function as a constant function. */
207 static GTY(()) VEC(rtx,gc) *reg_base_value;
208 static rtx *new_reg_base_value;
210 /* We preserve the copy of old array around to avoid amount of garbage
211 produced. About 8% of garbage produced were attributed to this
212 array. */
213 static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value;
215 /* Static hunks of RTL used by the aliasing code; these are initialized
216 once per function to avoid unnecessary RTL allocations. */
217 static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
219 #define REG_BASE_VALUE(X) \
220 (REGNO (X) < VEC_length (rtx, reg_base_value) \
221 ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0)
223 /* Vector indexed by N giving the initial (unchanging) value known for
224 pseudo-register N. This array is initialized in init_alias_analysis,
225 and does not change until end_alias_analysis is called. */
226 static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
228 /* Indicates number of valid entries in reg_known_value. */
229 static GTY(()) unsigned int reg_known_value_size;
231 /* Vector recording for each reg_known_value whether it is due to a
232 REG_EQUIV note. Future passes (viz., reload) may replace the
233 pseudo with the equivalent expression and so we account for the
234 dependences that would be introduced if that happens.
236 The REG_EQUIV notes created in assign_parms may mention the arg
237 pointer, and there are explicit insns in the RTL that modify the
238 arg pointer. Thus we must ensure that such insns don't get
239 scheduled across each other because that would invalidate the
240 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
241 wrong, but solving the problem in the scheduler will likely give
242 better code, so we do it here. */
243 static bool *reg_known_equiv_p;
245 /* True when scanning insns from the start of the rtl to the
246 NOTE_INSN_FUNCTION_BEG note. */
247 static bool copying_arguments;
249 DEF_VEC_P(alias_set_entry);
250 DEF_VEC_ALLOC_P(alias_set_entry,gc);
252 /* The splay-tree used to store the various alias set entries. */
253 static GTY (()) VEC(alias_set_entry,gc) *alias_sets;
255 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
256 such an entry, or NULL otherwise. */
258 static inline alias_set_entry
259 get_alias_set_entry (alias_set_type alias_set)
261 return VEC_index (alias_set_entry, alias_sets, alias_set);
264 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
265 the two MEMs cannot alias each other. */
267 static inline int
268 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
270 /* Perform a basic sanity check. Namely, that there are no alias sets
271 if we're not using strict aliasing. This helps to catch bugs
272 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
273 where a MEM is allocated in some way other than by the use of
274 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
275 use alias sets to indicate that spilled registers cannot alias each
276 other, we might need to remove this check. */
277 gcc_assert (flag_strict_aliasing
278 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
280 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
283 /* Insert the NODE into the splay tree given by DATA. Used by
284 record_alias_subset via splay_tree_foreach. */
286 static int
287 insert_subset_children (splay_tree_node node, void *data)
289 splay_tree_insert ((splay_tree) data, node->key, node->value);
291 return 0;
294 /* Return true if the first alias set is a subset of the second. */
296 bool
297 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
299 alias_set_entry ase;
301 /* Everything is a subset of the "aliases everything" set. */
302 if (set2 == 0)
303 return true;
305 /* Otherwise, check if set1 is a subset of set2. */
306 ase = get_alias_set_entry (set2);
307 if (ase != 0
308 && ((ase->has_zero_child && set1 == 0)
309 || splay_tree_lookup (ase->children,
310 (splay_tree_key) set1)))
311 return true;
312 return false;
315 /* Return 1 if the two specified alias sets may conflict. */
318 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
320 alias_set_entry ase;
322 /* The easy case. */
323 if (alias_sets_must_conflict_p (set1, set2))
324 return 1;
326 /* See if the first alias set is a subset of the second. */
327 ase = get_alias_set_entry (set1);
328 if (ase != 0
329 && (ase->has_zero_child
330 || splay_tree_lookup (ase->children,
331 (splay_tree_key) set2)))
332 return 1;
334 /* Now do the same, but with the alias sets reversed. */
335 ase = get_alias_set_entry (set2);
336 if (ase != 0
337 && (ase->has_zero_child
338 || splay_tree_lookup (ase->children,
339 (splay_tree_key) set1)))
340 return 1;
342 /* The two alias sets are distinct and neither one is the
343 child of the other. Therefore, they cannot conflict. */
344 return 0;
347 /* Return 1 if the two specified alias sets will always conflict. */
350 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
352 if (set1 == 0 || set2 == 0 || set1 == set2)
353 return 1;
355 return 0;
358 /* Return 1 if any MEM object of type T1 will always conflict (using the
359 dependency routines in this file) with any MEM object of type T2.
360 This is used when allocating temporary storage. If T1 and/or T2 are
361 NULL_TREE, it means we know nothing about the storage. */
364 objects_must_conflict_p (tree t1, tree t2)
366 alias_set_type set1, set2;
368 /* If neither has a type specified, we don't know if they'll conflict
369 because we may be using them to store objects of various types, for
370 example the argument and local variables areas of inlined functions. */
371 if (t1 == 0 && t2 == 0)
372 return 0;
374 /* If they are the same type, they must conflict. */
375 if (t1 == t2
376 /* Likewise if both are volatile. */
377 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
378 return 1;
380 set1 = t1 ? get_alias_set (t1) : 0;
381 set2 = t2 ? get_alias_set (t2) : 0;
383 /* We can't use alias_sets_conflict_p because we must make sure
384 that every subtype of t1 will conflict with every subtype of
385 t2 for which a pair of subobjects of these respective subtypes
386 overlaps on the stack. */
387 return alias_sets_must_conflict_p (set1, set2);
390 /* T is an expression with pointer type. Find the DECL on which this
391 expression is based. (For example, in `a[i]' this would be `a'.)
392 If there is no such DECL, or a unique decl cannot be determined,
393 NULL_TREE is returned. */
395 static tree
396 find_base_decl (tree t)
398 tree d0, d1;
400 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
401 return 0;
403 /* If this is a declaration, return it. If T is based on a restrict
404 qualified decl, return that decl. */
405 if (DECL_P (t))
407 if (TREE_CODE (t) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (t))
408 t = DECL_GET_RESTRICT_BASE (t);
409 return t;
412 /* Handle general expressions. It would be nice to deal with
413 COMPONENT_REFs here. If we could tell that `a' and `b' were the
414 same, then `a->f' and `b->f' are also the same. */
415 switch (TREE_CODE_CLASS (TREE_CODE (t)))
417 case tcc_unary:
418 return find_base_decl (TREE_OPERAND (t, 0));
420 case tcc_binary:
421 /* Return 0 if found in neither or both are the same. */
422 d0 = find_base_decl (TREE_OPERAND (t, 0));
423 d1 = find_base_decl (TREE_OPERAND (t, 1));
424 if (d0 == d1)
425 return d0;
426 else if (d0 == 0)
427 return d1;
428 else if (d1 == 0)
429 return d0;
430 else
431 return 0;
433 default:
434 return 0;
438 /* Return true if all nested component references handled by
439 get_inner_reference in T are such that we should use the alias set
440 provided by the object at the heart of T.
442 This is true for non-addressable components (which don't have their
443 own alias set), as well as components of objects in alias set zero.
444 This later point is a special case wherein we wish to override the
445 alias set used by the component, but we don't have per-FIELD_DECL
446 assignable alias sets. */
448 bool
449 component_uses_parent_alias_set (const_tree t)
451 while (1)
453 /* If we're at the end, it vacuously uses its own alias set. */
454 if (!handled_component_p (t))
455 return false;
457 switch (TREE_CODE (t))
459 case COMPONENT_REF:
460 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
461 return true;
462 break;
464 case ARRAY_REF:
465 case ARRAY_RANGE_REF:
466 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
467 return true;
468 break;
470 case REALPART_EXPR:
471 case IMAGPART_EXPR:
472 break;
474 default:
475 /* Bitfields and casts are never addressable. */
476 return true;
479 t = TREE_OPERAND (t, 0);
480 if (get_alias_set (TREE_TYPE (t)) == 0)
481 return true;
485 /* Return the alias set for T, which may be either a type or an
486 expression. Call language-specific routine for help, if needed. */
488 alias_set_type
489 get_alias_set (tree t)
491 alias_set_type set;
493 /* If we're not doing any alias analysis, just assume everything
494 aliases everything else. Also return 0 if this or its type is
495 an error. */
496 if (! flag_strict_aliasing || t == error_mark_node
497 || (! TYPE_P (t)
498 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
499 return 0;
501 /* We can be passed either an expression or a type. This and the
502 language-specific routine may make mutually-recursive calls to each other
503 to figure out what to do. At each juncture, we see if this is a tree
504 that the language may need to handle specially. First handle things that
505 aren't types. */
506 if (! TYPE_P (t))
508 tree inner = t;
510 /* Remove any nops, then give the language a chance to do
511 something with this tree before we look at it. */
512 STRIP_NOPS (t);
513 set = lang_hooks.get_alias_set (t);
514 if (set != -1)
515 return set;
517 /* First see if the actual object referenced is an INDIRECT_REF from a
518 restrict-qualified pointer or a "void *". */
519 while (handled_component_p (inner))
521 inner = TREE_OPERAND (inner, 0);
522 STRIP_NOPS (inner);
525 /* Check for accesses through restrict-qualified pointers. */
526 if (INDIRECT_REF_P (inner))
528 tree decl;
530 if (TREE_CODE (TREE_OPERAND (inner, 0)) == SSA_NAME)
531 decl = SSA_NAME_VAR (TREE_OPERAND (inner, 0));
532 else
533 decl = find_base_decl (TREE_OPERAND (inner, 0));
535 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
537 /* If we haven't computed the actual alias set, do it now. */
538 if (DECL_POINTER_ALIAS_SET (decl) == -2)
540 tree pointed_to_type = TREE_TYPE (TREE_TYPE (decl));
542 /* No two restricted pointers can point at the same thing.
543 However, a restricted pointer can point at the same thing
544 as an unrestricted pointer, if that unrestricted pointer
545 is based on the restricted pointer. So, we make the
546 alias set for the restricted pointer a subset of the
547 alias set for the type pointed to by the type of the
548 decl. */
549 alias_set_type pointed_to_alias_set
550 = get_alias_set (pointed_to_type);
552 if (pointed_to_alias_set == 0)
553 /* It's not legal to make a subset of alias set zero. */
554 DECL_POINTER_ALIAS_SET (decl) = 0;
555 else if (AGGREGATE_TYPE_P (pointed_to_type))
556 /* For an aggregate, we must treat the restricted
557 pointer the same as an ordinary pointer. If we
558 were to make the type pointed to by the
559 restricted pointer a subset of the pointed-to
560 type, then we would believe that other subsets
561 of the pointed-to type (such as fields of that
562 type) do not conflict with the type pointed to
563 by the restricted pointer. */
564 DECL_POINTER_ALIAS_SET (decl)
565 = pointed_to_alias_set;
566 else
568 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
569 record_alias_subset (pointed_to_alias_set,
570 DECL_POINTER_ALIAS_SET (decl));
574 /* We use the alias set indicated in the declaration. */
575 return DECL_POINTER_ALIAS_SET (decl);
578 /* If we have an INDIRECT_REF via a void pointer, we don't
579 know anything about what that might alias. Likewise if the
580 pointer is marked that way. */
581 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE
582 || (TYPE_REF_CAN_ALIAS_ALL
583 (TREE_TYPE (TREE_OPERAND (inner, 0)))))
584 return 0;
587 /* Otherwise, pick up the outermost object that we could have a pointer
588 to, processing conversions as above. */
589 while (component_uses_parent_alias_set (t))
591 t = TREE_OPERAND (t, 0);
592 STRIP_NOPS (t);
595 /* If we've already determined the alias set for a decl, just return
596 it. This is necessary for C++ anonymous unions, whose component
597 variables don't look like union members (boo!). */
598 if (TREE_CODE (t) == VAR_DECL
599 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
600 return MEM_ALIAS_SET (DECL_RTL (t));
602 /* Now all we care about is the type. */
603 t = TREE_TYPE (t);
606 /* Variant qualifiers don't affect the alias set, so get the main
607 variant. Always use the canonical type as well.
608 If this is a type with a known alias set, return it. */
609 t = TYPE_MAIN_VARIANT (t);
610 if (TYPE_CANONICAL (t))
611 t = TYPE_CANONICAL (t);
612 if (TYPE_ALIAS_SET_KNOWN_P (t))
613 return TYPE_ALIAS_SET (t);
615 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
616 if (!COMPLETE_TYPE_P (t))
618 /* For arrays with unknown size the conservative answer is the
619 alias set of the element type. */
620 if (TREE_CODE (t) == ARRAY_TYPE)
621 return get_alias_set (TREE_TYPE (t));
623 /* But return zero as a conservative answer for incomplete types. */
624 return 0;
627 /* See if the language has special handling for this type. */
628 set = lang_hooks.get_alias_set (t);
629 if (set != -1)
630 return set;
632 /* There are no objects of FUNCTION_TYPE, so there's no point in
633 using up an alias set for them. (There are, of course, pointers
634 and references to functions, but that's different.) */
635 else if (TREE_CODE (t) == FUNCTION_TYPE
636 || TREE_CODE (t) == METHOD_TYPE)
637 set = 0;
639 /* Unless the language specifies otherwise, let vector types alias
640 their components. This avoids some nasty type punning issues in
641 normal usage. And indeed lets vectors be treated more like an
642 array slice. */
643 else if (TREE_CODE (t) == VECTOR_TYPE)
644 set = get_alias_set (TREE_TYPE (t));
646 /* Unless the language specifies otherwise, treat array types the
647 same as their components. This avoids the asymmetry we get
648 through recording the components. Consider accessing a
649 character(kind=1) through a reference to a character(kind=1)[1:1].
650 Or consider if we want to assign integer(kind=4)[0:D.1387] and
651 integer(kind=4)[4] the same alias set or not.
652 Just be pragmatic here and make sure the array and its element
653 type get the same alias set assigned. */
654 else if (TREE_CODE (t) == ARRAY_TYPE
655 && !TYPE_NONALIASED_COMPONENT (t))
656 set = get_alias_set (TREE_TYPE (t));
658 else
659 /* Otherwise make a new alias set for this type. */
660 set = new_alias_set ();
662 TYPE_ALIAS_SET (t) = set;
664 /* If this is an aggregate type, we must record any component aliasing
665 information. */
666 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
667 record_component_aliases (t);
669 return set;
672 /* Return a brand-new alias set. */
674 alias_set_type
675 new_alias_set (void)
677 if (flag_strict_aliasing)
679 if (alias_sets == 0)
680 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
681 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
682 return VEC_length (alias_set_entry, alias_sets) - 1;
684 else
685 return 0;
688 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
689 not everything that aliases SUPERSET also aliases SUBSET. For example,
690 in C, a store to an `int' can alias a load of a structure containing an
691 `int', and vice versa. But it can't alias a load of a 'double' member
692 of the same structure. Here, the structure would be the SUPERSET and
693 `int' the SUBSET. This relationship is also described in the comment at
694 the beginning of this file.
696 This function should be called only once per SUPERSET/SUBSET pair.
698 It is illegal for SUPERSET to be zero; everything is implicitly a
699 subset of alias set zero. */
701 static void
702 record_alias_subset (alias_set_type superset, alias_set_type subset)
704 alias_set_entry superset_entry;
705 alias_set_entry subset_entry;
707 /* It is possible in complex type situations for both sets to be the same,
708 in which case we can ignore this operation. */
709 if (superset == subset)
710 return;
712 gcc_assert (superset);
714 superset_entry = get_alias_set_entry (superset);
715 if (superset_entry == 0)
717 /* Create an entry for the SUPERSET, so that we have a place to
718 attach the SUBSET. */
719 superset_entry = GGC_NEW (struct alias_set_entry);
720 superset_entry->alias_set = superset;
721 superset_entry->children
722 = splay_tree_new_ggc (splay_tree_compare_ints);
723 superset_entry->has_zero_child = 0;
724 VEC_replace (alias_set_entry, alias_sets, superset, superset_entry);
727 if (subset == 0)
728 superset_entry->has_zero_child = 1;
729 else
731 subset_entry = get_alias_set_entry (subset);
732 /* If there is an entry for the subset, enter all of its children
733 (if they are not already present) as children of the SUPERSET. */
734 if (subset_entry)
736 if (subset_entry->has_zero_child)
737 superset_entry->has_zero_child = 1;
739 splay_tree_foreach (subset_entry->children, insert_subset_children,
740 superset_entry->children);
743 /* Enter the SUBSET itself as a child of the SUPERSET. */
744 splay_tree_insert (superset_entry->children,
745 (splay_tree_key) subset, 0);
749 /* Record that component types of TYPE, if any, are part of that type for
750 aliasing purposes. For record types, we only record component types
751 for fields that are not marked non-addressable. For array types, we
752 only record the component type if it is not marked non-aliased. */
754 void
755 record_component_aliases (tree type)
757 alias_set_type superset = get_alias_set (type);
758 tree field;
760 if (superset == 0)
761 return;
763 switch (TREE_CODE (type))
765 case RECORD_TYPE:
766 case UNION_TYPE:
767 case QUAL_UNION_TYPE:
768 /* Recursively record aliases for the base classes, if there are any. */
769 if (TYPE_BINFO (type))
771 int i;
772 tree binfo, base_binfo;
774 for (binfo = TYPE_BINFO (type), i = 0;
775 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
776 record_alias_subset (superset,
777 get_alias_set (BINFO_TYPE (base_binfo)));
779 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
780 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
781 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
782 break;
784 case COMPLEX_TYPE:
785 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
786 break;
788 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
789 element type. */
791 default:
792 break;
796 /* Allocate an alias set for use in storing and reading from the varargs
797 spill area. */
799 static GTY(()) alias_set_type varargs_set = -1;
801 alias_set_type
802 get_varargs_alias_set (void)
804 #if 1
805 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
806 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
807 consistently use the varargs alias set for loads from the varargs
808 area. So don't use it anywhere. */
809 return 0;
810 #else
811 if (varargs_set == -1)
812 varargs_set = new_alias_set ();
814 return varargs_set;
815 #endif
818 /* Likewise, but used for the fixed portions of the frame, e.g., register
819 save areas. */
821 static GTY(()) alias_set_type frame_set = -1;
823 alias_set_type
824 get_frame_alias_set (void)
826 if (frame_set == -1)
827 frame_set = new_alias_set ();
829 return frame_set;
832 /* Inside SRC, the source of a SET, find a base address. */
834 static rtx
835 find_base_value (rtx src)
837 unsigned int regno;
839 #if defined (FIND_BASE_TERM)
840 /* Try machine-dependent ways to find the base term. */
841 src = FIND_BASE_TERM (src);
842 #endif
844 switch (GET_CODE (src))
846 case SYMBOL_REF:
847 case LABEL_REF:
848 return src;
850 case REG:
851 regno = REGNO (src);
852 /* At the start of a function, argument registers have known base
853 values which may be lost later. Returning an ADDRESS
854 expression here allows optimization based on argument values
855 even when the argument registers are used for other purposes. */
856 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
857 return new_reg_base_value[regno];
859 /* If a pseudo has a known base value, return it. Do not do this
860 for non-fixed hard regs since it can result in a circular
861 dependency chain for registers which have values at function entry.
863 The test above is not sufficient because the scheduler may move
864 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
865 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
866 && regno < VEC_length (rtx, reg_base_value))
868 /* If we're inside init_alias_analysis, use new_reg_base_value
869 to reduce the number of relaxation iterations. */
870 if (new_reg_base_value && new_reg_base_value[regno]
871 && DF_REG_DEF_COUNT (regno) == 1)
872 return new_reg_base_value[regno];
874 if (VEC_index (rtx, reg_base_value, regno))
875 return VEC_index (rtx, reg_base_value, regno);
878 return 0;
880 case MEM:
881 /* Check for an argument passed in memory. Only record in the
882 copying-arguments block; it is too hard to track changes
883 otherwise. */
884 if (copying_arguments
885 && (XEXP (src, 0) == arg_pointer_rtx
886 || (GET_CODE (XEXP (src, 0)) == PLUS
887 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
888 return gen_rtx_ADDRESS (VOIDmode, src);
889 return 0;
891 case CONST:
892 src = XEXP (src, 0);
893 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
894 break;
896 /* ... fall through ... */
898 case PLUS:
899 case MINUS:
901 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
903 /* If either operand is a REG that is a known pointer, then it
904 is the base. */
905 if (REG_P (src_0) && REG_POINTER (src_0))
906 return find_base_value (src_0);
907 if (REG_P (src_1) && REG_POINTER (src_1))
908 return find_base_value (src_1);
910 /* If either operand is a REG, then see if we already have
911 a known value for it. */
912 if (REG_P (src_0))
914 temp = find_base_value (src_0);
915 if (temp != 0)
916 src_0 = temp;
919 if (REG_P (src_1))
921 temp = find_base_value (src_1);
922 if (temp!= 0)
923 src_1 = temp;
926 /* If either base is named object or a special address
927 (like an argument or stack reference), then use it for the
928 base term. */
929 if (src_0 != 0
930 && (GET_CODE (src_0) == SYMBOL_REF
931 || GET_CODE (src_0) == LABEL_REF
932 || (GET_CODE (src_0) == ADDRESS
933 && GET_MODE (src_0) != VOIDmode)))
934 return src_0;
936 if (src_1 != 0
937 && (GET_CODE (src_1) == SYMBOL_REF
938 || GET_CODE (src_1) == LABEL_REF
939 || (GET_CODE (src_1) == ADDRESS
940 && GET_MODE (src_1) != VOIDmode)))
941 return src_1;
943 /* Guess which operand is the base address:
944 If either operand is a symbol, then it is the base. If
945 either operand is a CONST_INT, then the other is the base. */
946 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
947 return find_base_value (src_0);
948 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
949 return find_base_value (src_1);
951 return 0;
954 case LO_SUM:
955 /* The standard form is (lo_sum reg sym) so look only at the
956 second operand. */
957 return find_base_value (XEXP (src, 1));
959 case AND:
960 /* If the second operand is constant set the base
961 address to the first operand. */
962 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
963 return find_base_value (XEXP (src, 0));
964 return 0;
966 case TRUNCATE:
967 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
968 break;
969 /* Fall through. */
970 case HIGH:
971 case PRE_INC:
972 case PRE_DEC:
973 case POST_INC:
974 case POST_DEC:
975 case PRE_MODIFY:
976 case POST_MODIFY:
977 return find_base_value (XEXP (src, 0));
979 case ZERO_EXTEND:
980 case SIGN_EXTEND: /* used for NT/Alpha pointers */
982 rtx temp = find_base_value (XEXP (src, 0));
984 if (temp != 0 && CONSTANT_P (temp))
985 temp = convert_memory_address (Pmode, temp);
987 return temp;
990 default:
991 break;
994 return 0;
997 /* Called from init_alias_analysis indirectly through note_stores. */
999 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1000 register N has been set in this function. */
1001 static char *reg_seen;
1003 /* Addresses which are known not to alias anything else are identified
1004 by a unique integer. */
1005 static int unique_id;
1007 static void
1008 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1010 unsigned regno;
1011 rtx src;
1012 int n;
1014 if (!REG_P (dest))
1015 return;
1017 regno = REGNO (dest);
1019 gcc_assert (regno < VEC_length (rtx, reg_base_value));
1021 /* If this spans multiple hard registers, then we must indicate that every
1022 register has an unusable value. */
1023 if (regno < FIRST_PSEUDO_REGISTER)
1024 n = hard_regno_nregs[regno][GET_MODE (dest)];
1025 else
1026 n = 1;
1027 if (n != 1)
1029 while (--n >= 0)
1031 reg_seen[regno + n] = 1;
1032 new_reg_base_value[regno + n] = 0;
1034 return;
1037 if (set)
1039 /* A CLOBBER wipes out any old value but does not prevent a previously
1040 unset register from acquiring a base address (i.e. reg_seen is not
1041 set). */
1042 if (GET_CODE (set) == CLOBBER)
1044 new_reg_base_value[regno] = 0;
1045 return;
1047 src = SET_SRC (set);
1049 else
1051 if (reg_seen[regno])
1053 new_reg_base_value[regno] = 0;
1054 return;
1056 reg_seen[regno] = 1;
1057 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
1058 GEN_INT (unique_id++));
1059 return;
1062 /* If this is not the first set of REGNO, see whether the new value
1063 is related to the old one. There are two cases of interest:
1065 (1) The register might be assigned an entirely new value
1066 that has the same base term as the original set.
1068 (2) The set might be a simple self-modification that
1069 cannot change REGNO's base value.
1071 If neither case holds, reject the original base value as invalid.
1072 Note that the following situation is not detected:
1074 extern int x, y; int *p = &x; p += (&y-&x);
1076 ANSI C does not allow computing the difference of addresses
1077 of distinct top level objects. */
1078 if (new_reg_base_value[regno] != 0
1079 && find_base_value (src) != new_reg_base_value[regno])
1080 switch (GET_CODE (src))
1082 case LO_SUM:
1083 case MINUS:
1084 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1085 new_reg_base_value[regno] = 0;
1086 break;
1087 case PLUS:
1088 /* If the value we add in the PLUS is also a valid base value,
1089 this might be the actual base value, and the original value
1090 an index. */
1092 rtx other = NULL_RTX;
1094 if (XEXP (src, 0) == dest)
1095 other = XEXP (src, 1);
1096 else if (XEXP (src, 1) == dest)
1097 other = XEXP (src, 0);
1099 if (! other || find_base_value (other))
1100 new_reg_base_value[regno] = 0;
1101 break;
1103 case AND:
1104 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
1105 new_reg_base_value[regno] = 0;
1106 break;
1107 default:
1108 new_reg_base_value[regno] = 0;
1109 break;
1111 /* If this is the first set of a register, record the value. */
1112 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1113 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1114 new_reg_base_value[regno] = find_base_value (src);
1116 reg_seen[regno] = 1;
1119 /* If a value is known for REGNO, return it. */
1122 get_reg_known_value (unsigned int regno)
1124 if (regno >= FIRST_PSEUDO_REGISTER)
1126 regno -= FIRST_PSEUDO_REGISTER;
1127 if (regno < reg_known_value_size)
1128 return reg_known_value[regno];
1130 return NULL;
1133 /* Set it. */
1135 static void
1136 set_reg_known_value (unsigned int regno, rtx val)
1138 if (regno >= FIRST_PSEUDO_REGISTER)
1140 regno -= FIRST_PSEUDO_REGISTER;
1141 if (regno < reg_known_value_size)
1142 reg_known_value[regno] = val;
1146 /* Similarly for reg_known_equiv_p. */
1148 bool
1149 get_reg_known_equiv_p (unsigned int regno)
1151 if (regno >= FIRST_PSEUDO_REGISTER)
1153 regno -= FIRST_PSEUDO_REGISTER;
1154 if (regno < reg_known_value_size)
1155 return reg_known_equiv_p[regno];
1157 return false;
1160 static void
1161 set_reg_known_equiv_p (unsigned int regno, bool val)
1163 if (regno >= FIRST_PSEUDO_REGISTER)
1165 regno -= FIRST_PSEUDO_REGISTER;
1166 if (regno < reg_known_value_size)
1167 reg_known_equiv_p[regno] = val;
1172 /* Returns a canonical version of X, from the point of view alias
1173 analysis. (For example, if X is a MEM whose address is a register,
1174 and the register has a known value (say a SYMBOL_REF), then a MEM
1175 whose address is the SYMBOL_REF is returned.) */
1178 canon_rtx (rtx x)
1180 /* Recursively look for equivalences. */
1181 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1183 rtx t = get_reg_known_value (REGNO (x));
1184 if (t == x)
1185 return x;
1186 if (t)
1187 return canon_rtx (t);
1190 if (GET_CODE (x) == PLUS)
1192 rtx x0 = canon_rtx (XEXP (x, 0));
1193 rtx x1 = canon_rtx (XEXP (x, 1));
1195 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1197 if (GET_CODE (x0) == CONST_INT)
1198 return plus_constant (x1, INTVAL (x0));
1199 else if (GET_CODE (x1) == CONST_INT)
1200 return plus_constant (x0, INTVAL (x1));
1201 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1205 /* This gives us much better alias analysis when called from
1206 the loop optimizer. Note we want to leave the original
1207 MEM alone, but need to return the canonicalized MEM with
1208 all the flags with their original values. */
1209 else if (MEM_P (x))
1210 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1212 return x;
1215 /* Return 1 if X and Y are identical-looking rtx's.
1216 Expect that X and Y has been already canonicalized.
1218 We use the data in reg_known_value above to see if two registers with
1219 different numbers are, in fact, equivalent. */
1221 static int
1222 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1224 int i;
1225 int j;
1226 enum rtx_code code;
1227 const char *fmt;
1229 if (x == 0 && y == 0)
1230 return 1;
1231 if (x == 0 || y == 0)
1232 return 0;
1234 if (x == y)
1235 return 1;
1237 code = GET_CODE (x);
1238 /* Rtx's of different codes cannot be equal. */
1239 if (code != GET_CODE (y))
1240 return 0;
1242 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1243 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1245 if (GET_MODE (x) != GET_MODE (y))
1246 return 0;
1248 /* Some RTL can be compared without a recursive examination. */
1249 switch (code)
1251 case REG:
1252 return REGNO (x) == REGNO (y);
1254 case LABEL_REF:
1255 return XEXP (x, 0) == XEXP (y, 0);
1257 case SYMBOL_REF:
1258 return XSTR (x, 0) == XSTR (y, 0);
1260 case VALUE:
1261 case CONST_INT:
1262 case CONST_DOUBLE:
1263 case CONST_FIXED:
1264 /* There's no need to compare the contents of CONST_DOUBLEs or
1265 CONST_INTs because pointer equality is a good enough
1266 comparison for these nodes. */
1267 return 0;
1269 default:
1270 break;
1273 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1274 if (code == PLUS)
1275 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1276 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1277 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1278 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1279 /* For commutative operations, the RTX match if the operand match in any
1280 order. Also handle the simple binary and unary cases without a loop. */
1281 if (COMMUTATIVE_P (x))
1283 rtx xop0 = canon_rtx (XEXP (x, 0));
1284 rtx yop0 = canon_rtx (XEXP (y, 0));
1285 rtx yop1 = canon_rtx (XEXP (y, 1));
1287 return ((rtx_equal_for_memref_p (xop0, yop0)
1288 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1289 || (rtx_equal_for_memref_p (xop0, yop1)
1290 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1292 else if (NON_COMMUTATIVE_P (x))
1294 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1295 canon_rtx (XEXP (y, 0)))
1296 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1297 canon_rtx (XEXP (y, 1))));
1299 else if (UNARY_P (x))
1300 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1301 canon_rtx (XEXP (y, 0)));
1303 /* Compare the elements. If any pair of corresponding elements
1304 fail to match, return 0 for the whole things.
1306 Limit cases to types which actually appear in addresses. */
1308 fmt = GET_RTX_FORMAT (code);
1309 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1311 switch (fmt[i])
1313 case 'i':
1314 if (XINT (x, i) != XINT (y, i))
1315 return 0;
1316 break;
1318 case 'E':
1319 /* Two vectors must have the same length. */
1320 if (XVECLEN (x, i) != XVECLEN (y, i))
1321 return 0;
1323 /* And the corresponding elements must match. */
1324 for (j = 0; j < XVECLEN (x, i); j++)
1325 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1326 canon_rtx (XVECEXP (y, i, j))) == 0)
1327 return 0;
1328 break;
1330 case 'e':
1331 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1332 canon_rtx (XEXP (y, i))) == 0)
1333 return 0;
1334 break;
1336 /* This can happen for asm operands. */
1337 case 's':
1338 if (strcmp (XSTR (x, i), XSTR (y, i)))
1339 return 0;
1340 break;
1342 /* This can happen for an asm which clobbers memory. */
1343 case '0':
1344 break;
1346 /* It is believed that rtx's at this level will never
1347 contain anything but integers and other rtx's,
1348 except for within LABEL_REFs and SYMBOL_REFs. */
1349 default:
1350 gcc_unreachable ();
1353 return 1;
1357 find_base_term (rtx x)
1359 cselib_val *val;
1360 struct elt_loc_list *l;
1362 #if defined (FIND_BASE_TERM)
1363 /* Try machine-dependent ways to find the base term. */
1364 x = FIND_BASE_TERM (x);
1365 #endif
1367 switch (GET_CODE (x))
1369 case REG:
1370 return REG_BASE_VALUE (x);
1372 case TRUNCATE:
1373 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1374 return 0;
1375 /* Fall through. */
1376 case HIGH:
1377 case PRE_INC:
1378 case PRE_DEC:
1379 case POST_INC:
1380 case POST_DEC:
1381 case PRE_MODIFY:
1382 case POST_MODIFY:
1383 return find_base_term (XEXP (x, 0));
1385 case ZERO_EXTEND:
1386 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1388 rtx temp = find_base_term (XEXP (x, 0));
1390 if (temp != 0 && CONSTANT_P (temp))
1391 temp = convert_memory_address (Pmode, temp);
1393 return temp;
1396 case VALUE:
1397 val = CSELIB_VAL_PTR (x);
1398 if (!val)
1399 return 0;
1400 for (l = val->locs; l; l = l->next)
1401 if ((x = find_base_term (l->loc)) != 0)
1402 return x;
1403 return 0;
1405 case CONST:
1406 x = XEXP (x, 0);
1407 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1408 return 0;
1409 /* Fall through. */
1410 case LO_SUM:
1411 case PLUS:
1412 case MINUS:
1414 rtx tmp1 = XEXP (x, 0);
1415 rtx tmp2 = XEXP (x, 1);
1417 /* This is a little bit tricky since we have to determine which of
1418 the two operands represents the real base address. Otherwise this
1419 routine may return the index register instead of the base register.
1421 That may cause us to believe no aliasing was possible, when in
1422 fact aliasing is possible.
1424 We use a few simple tests to guess the base register. Additional
1425 tests can certainly be added. For example, if one of the operands
1426 is a shift or multiply, then it must be the index register and the
1427 other operand is the base register. */
1429 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1430 return find_base_term (tmp2);
1432 /* If either operand is known to be a pointer, then use it
1433 to determine the base term. */
1434 if (REG_P (tmp1) && REG_POINTER (tmp1))
1435 return find_base_term (tmp1);
1437 if (REG_P (tmp2) && REG_POINTER (tmp2))
1438 return find_base_term (tmp2);
1440 /* Neither operand was known to be a pointer. Go ahead and find the
1441 base term for both operands. */
1442 tmp1 = find_base_term (tmp1);
1443 tmp2 = find_base_term (tmp2);
1445 /* If either base term is named object or a special address
1446 (like an argument or stack reference), then use it for the
1447 base term. */
1448 if (tmp1 != 0
1449 && (GET_CODE (tmp1) == SYMBOL_REF
1450 || GET_CODE (tmp1) == LABEL_REF
1451 || (GET_CODE (tmp1) == ADDRESS
1452 && GET_MODE (tmp1) != VOIDmode)))
1453 return tmp1;
1455 if (tmp2 != 0
1456 && (GET_CODE (tmp2) == SYMBOL_REF
1457 || GET_CODE (tmp2) == LABEL_REF
1458 || (GET_CODE (tmp2) == ADDRESS
1459 && GET_MODE (tmp2) != VOIDmode)))
1460 return tmp2;
1462 /* We could not determine which of the two operands was the
1463 base register and which was the index. So we can determine
1464 nothing from the base alias check. */
1465 return 0;
1468 case AND:
1469 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1470 return find_base_term (XEXP (x, 0));
1471 return 0;
1473 case SYMBOL_REF:
1474 case LABEL_REF:
1475 return x;
1477 default:
1478 return 0;
1482 /* Return 0 if the addresses X and Y are known to point to different
1483 objects, 1 if they might be pointers to the same object. */
1485 static int
1486 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1487 enum machine_mode y_mode)
1489 rtx x_base = find_base_term (x);
1490 rtx y_base = find_base_term (y);
1492 /* If the address itself has no known base see if a known equivalent
1493 value has one. If either address still has no known base, nothing
1494 is known about aliasing. */
1495 if (x_base == 0)
1497 rtx x_c;
1499 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1500 return 1;
1502 x_base = find_base_term (x_c);
1503 if (x_base == 0)
1504 return 1;
1507 if (y_base == 0)
1509 rtx y_c;
1510 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1511 return 1;
1513 y_base = find_base_term (y_c);
1514 if (y_base == 0)
1515 return 1;
1518 /* If the base addresses are equal nothing is known about aliasing. */
1519 if (rtx_equal_p (x_base, y_base))
1520 return 1;
1522 /* The base addresses of the read and write are different expressions.
1523 If they are both symbols and they are not accessed via AND, there is
1524 no conflict. We can bring knowledge of object alignment into play
1525 here. For example, on alpha, "char a, b;" can alias one another,
1526 though "char a; long b;" cannot. */
1527 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1529 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1530 return 1;
1531 if (GET_CODE (x) == AND
1532 && (GET_CODE (XEXP (x, 1)) != CONST_INT
1533 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1534 return 1;
1535 if (GET_CODE (y) == AND
1536 && (GET_CODE (XEXP (y, 1)) != CONST_INT
1537 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1538 return 1;
1539 /* Differing symbols never alias. */
1540 return 0;
1543 /* If one address is a stack reference there can be no alias:
1544 stack references using different base registers do not alias,
1545 a stack reference can not alias a parameter, and a stack reference
1546 can not alias a global. */
1547 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1548 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1549 return 0;
1551 if (! flag_argument_noalias)
1552 return 1;
1554 if (flag_argument_noalias > 1)
1555 return 0;
1557 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1558 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1561 /* Convert the address X into something we can use. This is done by returning
1562 it unchanged unless it is a value; in the latter case we call cselib to get
1563 a more useful rtx. */
1566 get_addr (rtx x)
1568 cselib_val *v;
1569 struct elt_loc_list *l;
1571 if (GET_CODE (x) != VALUE)
1572 return x;
1573 v = CSELIB_VAL_PTR (x);
1574 if (v)
1576 for (l = v->locs; l; l = l->next)
1577 if (CONSTANT_P (l->loc))
1578 return l->loc;
1579 for (l = v->locs; l; l = l->next)
1580 if (!REG_P (l->loc) && !MEM_P (l->loc))
1581 return l->loc;
1582 if (v->locs)
1583 return v->locs->loc;
1585 return x;
1588 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1589 where SIZE is the size in bytes of the memory reference. If ADDR
1590 is not modified by the memory reference then ADDR is returned. */
1592 static rtx
1593 addr_side_effect_eval (rtx addr, int size, int n_refs)
1595 int offset = 0;
1597 switch (GET_CODE (addr))
1599 case PRE_INC:
1600 offset = (n_refs + 1) * size;
1601 break;
1602 case PRE_DEC:
1603 offset = -(n_refs + 1) * size;
1604 break;
1605 case POST_INC:
1606 offset = n_refs * size;
1607 break;
1608 case POST_DEC:
1609 offset = -n_refs * size;
1610 break;
1612 default:
1613 return addr;
1616 if (offset)
1617 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1618 GEN_INT (offset));
1619 else
1620 addr = XEXP (addr, 0);
1621 addr = canon_rtx (addr);
1623 return addr;
1626 /* Return nonzero if X and Y (memory addresses) could reference the
1627 same location in memory. C is an offset accumulator. When
1628 C is nonzero, we are testing aliases between X and Y + C.
1629 XSIZE is the size in bytes of the X reference,
1630 similarly YSIZE is the size in bytes for Y.
1631 Expect that canon_rtx has been already called for X and Y.
1633 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1634 referenced (the reference was BLKmode), so make the most pessimistic
1635 assumptions.
1637 If XSIZE or YSIZE is negative, we may access memory outside the object
1638 being referenced as a side effect. This can happen when using AND to
1639 align memory references, as is done on the Alpha.
1641 Nice to notice that varying addresses cannot conflict with fp if no
1642 local variables had their addresses taken, but that's too hard now. */
1644 static int
1645 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1647 if (GET_CODE (x) == VALUE)
1648 x = get_addr (x);
1649 if (GET_CODE (y) == VALUE)
1650 y = get_addr (y);
1651 if (GET_CODE (x) == HIGH)
1652 x = XEXP (x, 0);
1653 else if (GET_CODE (x) == LO_SUM)
1654 x = XEXP (x, 1);
1655 else
1656 x = addr_side_effect_eval (x, xsize, 0);
1657 if (GET_CODE (y) == HIGH)
1658 y = XEXP (y, 0);
1659 else if (GET_CODE (y) == LO_SUM)
1660 y = XEXP (y, 1);
1661 else
1662 y = addr_side_effect_eval (y, ysize, 0);
1664 if (rtx_equal_for_memref_p (x, y))
1666 if (xsize <= 0 || ysize <= 0)
1667 return 1;
1668 if (c >= 0 && xsize > c)
1669 return 1;
1670 if (c < 0 && ysize+c > 0)
1671 return 1;
1672 return 0;
1675 /* This code used to check for conflicts involving stack references and
1676 globals but the base address alias code now handles these cases. */
1678 if (GET_CODE (x) == PLUS)
1680 /* The fact that X is canonicalized means that this
1681 PLUS rtx is canonicalized. */
1682 rtx x0 = XEXP (x, 0);
1683 rtx x1 = XEXP (x, 1);
1685 if (GET_CODE (y) == PLUS)
1687 /* The fact that Y is canonicalized means that this
1688 PLUS rtx is canonicalized. */
1689 rtx y0 = XEXP (y, 0);
1690 rtx y1 = XEXP (y, 1);
1692 if (rtx_equal_for_memref_p (x1, y1))
1693 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1694 if (rtx_equal_for_memref_p (x0, y0))
1695 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1696 if (GET_CODE (x1) == CONST_INT)
1698 if (GET_CODE (y1) == CONST_INT)
1699 return memrefs_conflict_p (xsize, x0, ysize, y0,
1700 c - INTVAL (x1) + INTVAL (y1));
1701 else
1702 return memrefs_conflict_p (xsize, x0, ysize, y,
1703 c - INTVAL (x1));
1705 else if (GET_CODE (y1) == CONST_INT)
1706 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1708 return 1;
1710 else if (GET_CODE (x1) == CONST_INT)
1711 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1713 else if (GET_CODE (y) == PLUS)
1715 /* The fact that Y is canonicalized means that this
1716 PLUS rtx is canonicalized. */
1717 rtx y0 = XEXP (y, 0);
1718 rtx y1 = XEXP (y, 1);
1720 if (GET_CODE (y1) == CONST_INT)
1721 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1722 else
1723 return 1;
1726 if (GET_CODE (x) == GET_CODE (y))
1727 switch (GET_CODE (x))
1729 case MULT:
1731 /* Handle cases where we expect the second operands to be the
1732 same, and check only whether the first operand would conflict
1733 or not. */
1734 rtx x0, y0;
1735 rtx x1 = canon_rtx (XEXP (x, 1));
1736 rtx y1 = canon_rtx (XEXP (y, 1));
1737 if (! rtx_equal_for_memref_p (x1, y1))
1738 return 1;
1739 x0 = canon_rtx (XEXP (x, 0));
1740 y0 = canon_rtx (XEXP (y, 0));
1741 if (rtx_equal_for_memref_p (x0, y0))
1742 return (xsize == 0 || ysize == 0
1743 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1745 /* Can't properly adjust our sizes. */
1746 if (GET_CODE (x1) != CONST_INT)
1747 return 1;
1748 xsize /= INTVAL (x1);
1749 ysize /= INTVAL (x1);
1750 c /= INTVAL (x1);
1751 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1754 default:
1755 break;
1758 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1759 as an access with indeterminate size. Assume that references
1760 besides AND are aligned, so if the size of the other reference is
1761 at least as large as the alignment, assume no other overlap. */
1762 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
1764 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1765 xsize = -1;
1766 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
1768 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
1770 /* ??? If we are indexing far enough into the array/structure, we
1771 may yet be able to determine that we can not overlap. But we
1772 also need to that we are far enough from the end not to overlap
1773 a following reference, so we do nothing with that for now. */
1774 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1775 ysize = -1;
1776 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
1779 if (CONSTANT_P (x))
1781 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1783 c += (INTVAL (y) - INTVAL (x));
1784 return (xsize <= 0 || ysize <= 0
1785 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1788 if (GET_CODE (x) == CONST)
1790 if (GET_CODE (y) == CONST)
1791 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1792 ysize, canon_rtx (XEXP (y, 0)), c);
1793 else
1794 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1795 ysize, y, c);
1797 if (GET_CODE (y) == CONST)
1798 return memrefs_conflict_p (xsize, x, ysize,
1799 canon_rtx (XEXP (y, 0)), c);
1801 if (CONSTANT_P (y))
1802 return (xsize <= 0 || ysize <= 0
1803 || (rtx_equal_for_memref_p (x, y)
1804 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1806 return 1;
1808 return 1;
1811 /* Functions to compute memory dependencies.
1813 Since we process the insns in execution order, we can build tables
1814 to keep track of what registers are fixed (and not aliased), what registers
1815 are varying in known ways, and what registers are varying in unknown
1816 ways.
1818 If both memory references are volatile, then there must always be a
1819 dependence between the two references, since their order can not be
1820 changed. A volatile and non-volatile reference can be interchanged
1821 though.
1823 A MEM_IN_STRUCT reference at a non-AND varying address can never
1824 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1825 also must allow AND addresses, because they may generate accesses
1826 outside the object being referenced. This is used to generate
1827 aligned addresses from unaligned addresses, for instance, the alpha
1828 storeqi_unaligned pattern. */
1830 /* Read dependence: X is read after read in MEM takes place. There can
1831 only be a dependence here if both reads are volatile. */
1834 read_dependence (const_rtx mem, const_rtx x)
1836 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1839 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1840 MEM2 is a reference to a structure at a varying address, or returns
1841 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1842 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1843 to decide whether or not an address may vary; it should return
1844 nonzero whenever variation is possible.
1845 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1847 static const_rtx
1848 fixed_scalar_and_varying_struct_p (const_rtx mem1, const_rtx mem2, rtx mem1_addr,
1849 rtx mem2_addr,
1850 bool (*varies_p) (const_rtx, bool))
1852 if (! flag_strict_aliasing)
1853 return NULL_RTX;
1855 if (MEM_ALIAS_SET (mem2)
1856 && MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
1857 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
1858 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1859 varying address. */
1860 return mem1;
1862 if (MEM_ALIAS_SET (mem1)
1863 && MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
1864 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
1865 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1866 varying address. */
1867 return mem2;
1869 return NULL_RTX;
1872 /* Returns nonzero if something about the mode or address format MEM1
1873 indicates that it might well alias *anything*. */
1875 static int
1876 aliases_everything_p (const_rtx mem)
1878 if (GET_CODE (XEXP (mem, 0)) == AND)
1879 /* If the address is an AND, it's very hard to know at what it is
1880 actually pointing. */
1881 return 1;
1883 return 0;
1886 /* Return true if we can determine that the fields referenced cannot
1887 overlap for any pair of objects. */
1889 static bool
1890 nonoverlapping_component_refs_p (const_tree x, const_tree y)
1892 const_tree fieldx, fieldy, typex, typey, orig_y;
1896 /* The comparison has to be done at a common type, since we don't
1897 know how the inheritance hierarchy works. */
1898 orig_y = y;
1901 fieldx = TREE_OPERAND (x, 1);
1902 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
1904 y = orig_y;
1907 fieldy = TREE_OPERAND (y, 1);
1908 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
1910 if (typex == typey)
1911 goto found;
1913 y = TREE_OPERAND (y, 0);
1915 while (y && TREE_CODE (y) == COMPONENT_REF);
1917 x = TREE_OPERAND (x, 0);
1919 while (x && TREE_CODE (x) == COMPONENT_REF);
1920 /* Never found a common type. */
1921 return false;
1923 found:
1924 /* If we're left with accessing different fields of a structure,
1925 then no overlap. */
1926 if (TREE_CODE (typex) == RECORD_TYPE
1927 && fieldx != fieldy)
1928 return true;
1930 /* The comparison on the current field failed. If we're accessing
1931 a very nested structure, look at the next outer level. */
1932 x = TREE_OPERAND (x, 0);
1933 y = TREE_OPERAND (y, 0);
1935 while (x && y
1936 && TREE_CODE (x) == COMPONENT_REF
1937 && TREE_CODE (y) == COMPONENT_REF);
1939 return false;
1942 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1944 static tree
1945 decl_for_component_ref (tree x)
1949 x = TREE_OPERAND (x, 0);
1951 while (x && TREE_CODE (x) == COMPONENT_REF);
1953 return x && DECL_P (x) ? x : NULL_TREE;
1956 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1957 offset of the field reference. */
1959 static rtx
1960 adjust_offset_for_component_ref (tree x, rtx offset)
1962 HOST_WIDE_INT ioffset;
1964 if (! offset)
1965 return NULL_RTX;
1967 ioffset = INTVAL (offset);
1970 tree offset = component_ref_field_offset (x);
1971 tree field = TREE_OPERAND (x, 1);
1973 if (! host_integerp (offset, 1))
1974 return NULL_RTX;
1975 ioffset += (tree_low_cst (offset, 1)
1976 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1977 / BITS_PER_UNIT));
1979 x = TREE_OPERAND (x, 0);
1981 while (x && TREE_CODE (x) == COMPONENT_REF);
1983 return GEN_INT (ioffset);
1986 /* The function returns nonzero if X is an address containg VALUE. */
1987 static int
1988 value_addr_p (rtx x)
1990 if (GET_CODE (x) == VALUE)
1991 return 1;
1992 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == VALUE)
1993 return 1;
1994 return 0;
1997 /* The function returns nonzero if X is a stack address. */
1998 static int
1999 stack_addr_p (rtx x)
2001 if (x == hard_frame_pointer_rtx || x == frame_pointer_rtx
2002 || x == arg_pointer_rtx || x == stack_pointer_rtx)
2003 return 1;
2004 if (GET_CODE (x) == PLUS
2005 && (XEXP (x, 0) == hard_frame_pointer_rtx
2006 || XEXP (x, 0) == frame_pointer_rtx
2007 || XEXP (x, 0) == arg_pointer_rtx
2008 || XEXP (x, 0) == stack_pointer_rtx)
2009 && CONSTANT_P (XEXP (x, 1)))
2010 return 1;
2011 return 0;
2014 /* Return nonzero if we can determine the exprs corresponding to memrefs
2015 X and Y and they do not overlap. */
2018 nonoverlapping_memrefs_p (const_rtx x, const_rtx y)
2020 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2021 rtx rtlx, rtly;
2022 rtx basex, basey;
2023 rtx x_addr, y_addr;
2024 rtx moffsetx, moffsety;
2025 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2027 if (flag_ira && optimize && reload_completed)
2029 /* We need this code for IRA because of stack slot sharing. RTL
2030 in decl can be different than RTL used in insns. It is a
2031 safe code although it can be conservative sometime. */
2032 x_addr = canon_rtx (get_addr (XEXP (x, 0)));
2033 y_addr = canon_rtx (get_addr (XEXP (y, 0)));
2035 if (value_addr_p (x_addr) || value_addr_p (y_addr))
2036 return 0;
2038 if (stack_addr_p (x_addr) && stack_addr_p (y_addr)
2039 && memrefs_conflict_p (SIZE_FOR_MODE (y), y_addr,
2040 SIZE_FOR_MODE (x), x_addr, 0))
2041 return 0;
2044 /* Unless both have exprs, we can't tell anything. */
2045 if (exprx == 0 || expry == 0)
2046 return 0;
2048 /* If both are field references, we may be able to determine something. */
2049 if (TREE_CODE (exprx) == COMPONENT_REF
2050 && TREE_CODE (expry) == COMPONENT_REF
2051 && nonoverlapping_component_refs_p (exprx, expry))
2052 return 1;
2055 /* If the field reference test failed, look at the DECLs involved. */
2056 moffsetx = MEM_OFFSET (x);
2057 if (TREE_CODE (exprx) == COMPONENT_REF)
2059 if (TREE_CODE (expry) == VAR_DECL
2060 && POINTER_TYPE_P (TREE_TYPE (expry)))
2062 tree field = TREE_OPERAND (exprx, 1);
2063 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2064 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2065 TREE_TYPE (field)))
2066 return 1;
2069 tree t = decl_for_component_ref (exprx);
2070 if (! t)
2071 return 0;
2072 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
2073 exprx = t;
2076 else if (INDIRECT_REF_P (exprx))
2078 exprx = TREE_OPERAND (exprx, 0);
2079 if (flag_argument_noalias < 2
2080 || TREE_CODE (exprx) != PARM_DECL)
2081 return 0;
2084 moffsety = MEM_OFFSET (y);
2085 if (TREE_CODE (expry) == COMPONENT_REF)
2087 if (TREE_CODE (exprx) == VAR_DECL
2088 && POINTER_TYPE_P (TREE_TYPE (exprx)))
2090 tree field = TREE_OPERAND (expry, 1);
2091 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2092 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2093 TREE_TYPE (field)))
2094 return 1;
2097 tree t = decl_for_component_ref (expry);
2098 if (! t)
2099 return 0;
2100 moffsety = adjust_offset_for_component_ref (expry, moffsety);
2101 expry = t;
2104 else if (INDIRECT_REF_P (expry))
2106 expry = TREE_OPERAND (expry, 0);
2107 if (flag_argument_noalias < 2
2108 || TREE_CODE (expry) != PARM_DECL)
2109 return 0;
2112 if (! DECL_P (exprx) || ! DECL_P (expry))
2113 return 0;
2115 rtlx = DECL_RTL (exprx);
2116 rtly = DECL_RTL (expry);
2118 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2119 can't overlap unless they are the same because we never reuse that part
2120 of the stack frame used for locals for spilled pseudos. */
2121 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2122 && ! rtx_equal_p (rtlx, rtly))
2123 return 1;
2125 /* Get the base and offsets of both decls. If either is a register, we
2126 know both are and are the same, so use that as the base. The only
2127 we can avoid overlap is if we can deduce that they are nonoverlapping
2128 pieces of that decl, which is very rare. */
2129 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2130 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2131 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2133 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2134 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2135 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2137 /* If the bases are different, we know they do not overlap if both
2138 are constants or if one is a constant and the other a pointer into the
2139 stack frame. Otherwise a different base means we can't tell if they
2140 overlap or not. */
2141 if (! rtx_equal_p (basex, basey))
2142 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2143 || (CONSTANT_P (basex) && REG_P (basey)
2144 && REGNO_PTR_FRAME_P (REGNO (basey)))
2145 || (CONSTANT_P (basey) && REG_P (basex)
2146 && REGNO_PTR_FRAME_P (REGNO (basex))));
2148 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2149 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2150 : -1);
2151 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2152 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2153 -1);
2155 /* If we have an offset for either memref, it can update the values computed
2156 above. */
2157 if (moffsetx)
2158 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2159 if (moffsety)
2160 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
2162 /* If a memref has both a size and an offset, we can use the smaller size.
2163 We can't do this if the offset isn't known because we must view this
2164 memref as being anywhere inside the DECL's MEM. */
2165 if (MEM_SIZE (x) && moffsetx)
2166 sizex = INTVAL (MEM_SIZE (x));
2167 if (MEM_SIZE (y) && moffsety)
2168 sizey = INTVAL (MEM_SIZE (y));
2170 /* Put the values of the memref with the lower offset in X's values. */
2171 if (offsetx > offsety)
2173 tem = offsetx, offsetx = offsety, offsety = tem;
2174 tem = sizex, sizex = sizey, sizey = tem;
2177 /* If we don't know the size of the lower-offset value, we can't tell
2178 if they conflict. Otherwise, we do the test. */
2179 return sizex >= 0 && offsety >= offsetx + sizex;
2182 /* True dependence: X is read after store in MEM takes place. */
2185 true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x,
2186 bool (*varies) (const_rtx, bool))
2188 rtx x_addr, mem_addr;
2189 rtx base;
2191 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2192 return 1;
2194 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2195 This is used in epilogue deallocation functions, and in cselib. */
2196 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2197 return 1;
2198 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2199 return 1;
2200 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2201 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2202 return 1;
2204 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2205 return 0;
2207 /* Read-only memory is by definition never modified, and therefore can't
2208 conflict with anything. We don't expect to find read-only set on MEM,
2209 but stupid user tricks can produce them, so don't die. */
2210 if (MEM_READONLY_P (x))
2211 return 0;
2213 if (nonoverlapping_memrefs_p (mem, x))
2214 return 0;
2216 if (mem_mode == VOIDmode)
2217 mem_mode = GET_MODE (mem);
2219 x_addr = get_addr (XEXP (x, 0));
2220 mem_addr = get_addr (XEXP (mem, 0));
2222 base = find_base_term (x_addr);
2223 if (base && (GET_CODE (base) == LABEL_REF
2224 || (GET_CODE (base) == SYMBOL_REF
2225 && CONSTANT_POOL_ADDRESS_P (base))))
2226 return 0;
2228 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2229 return 0;
2231 x_addr = canon_rtx (x_addr);
2232 mem_addr = canon_rtx (mem_addr);
2234 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2235 SIZE_FOR_MODE (x), x_addr, 0))
2236 return 0;
2238 if (aliases_everything_p (x))
2239 return 1;
2241 /* We cannot use aliases_everything_p to test MEM, since we must look
2242 at MEM_MODE, rather than GET_MODE (MEM). */
2243 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2244 return 1;
2246 /* In true_dependence we also allow BLKmode to alias anything. Why
2247 don't we do this in anti_dependence and output_dependence? */
2248 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2249 return 1;
2251 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2252 varies);
2255 /* Canonical true dependence: X is read after store in MEM takes place.
2256 Variant of true_dependence which assumes MEM has already been
2257 canonicalized (hence we no longer do that here).
2258 The mem_addr argument has been added, since true_dependence computed
2259 this value prior to canonicalizing. */
2262 canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2263 const_rtx x, bool (*varies) (const_rtx, bool))
2265 rtx x_addr;
2267 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2268 return 1;
2270 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2271 This is used in epilogue deallocation functions. */
2272 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2273 return 1;
2274 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2275 return 1;
2276 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2277 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2278 return 1;
2280 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2281 return 0;
2283 /* Read-only memory is by definition never modified, and therefore can't
2284 conflict with anything. We don't expect to find read-only set on MEM,
2285 but stupid user tricks can produce them, so don't die. */
2286 if (MEM_READONLY_P (x))
2287 return 0;
2289 if (nonoverlapping_memrefs_p (x, mem))
2290 return 0;
2292 x_addr = get_addr (XEXP (x, 0));
2294 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2295 return 0;
2297 x_addr = canon_rtx (x_addr);
2298 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2299 SIZE_FOR_MODE (x), x_addr, 0))
2300 return 0;
2302 if (aliases_everything_p (x))
2303 return 1;
2305 /* We cannot use aliases_everything_p to test MEM, since we must look
2306 at MEM_MODE, rather than GET_MODE (MEM). */
2307 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2308 return 1;
2310 /* In true_dependence we also allow BLKmode to alias anything. Why
2311 don't we do this in anti_dependence and output_dependence? */
2312 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2313 return 1;
2315 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2316 varies);
2319 /* Returns nonzero if a write to X might alias a previous read from
2320 (or, if WRITEP is nonzero, a write to) MEM. */
2322 static int
2323 write_dependence_p (const_rtx mem, const_rtx x, int writep)
2325 rtx x_addr, mem_addr;
2326 const_rtx fixed_scalar;
2327 rtx base;
2329 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2330 return 1;
2332 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2333 This is used in epilogue deallocation functions. */
2334 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2335 return 1;
2336 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2337 return 1;
2338 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2339 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2340 return 1;
2342 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2343 return 0;
2345 /* A read from read-only memory can't conflict with read-write memory. */
2346 if (!writep && MEM_READONLY_P (mem))
2347 return 0;
2349 if (nonoverlapping_memrefs_p (x, mem))
2350 return 0;
2352 x_addr = get_addr (XEXP (x, 0));
2353 mem_addr = get_addr (XEXP (mem, 0));
2355 if (! writep)
2357 base = find_base_term (mem_addr);
2358 if (base && (GET_CODE (base) == LABEL_REF
2359 || (GET_CODE (base) == SYMBOL_REF
2360 && CONSTANT_POOL_ADDRESS_P (base))))
2361 return 0;
2364 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2365 GET_MODE (mem)))
2366 return 0;
2368 x_addr = canon_rtx (x_addr);
2369 mem_addr = canon_rtx (mem_addr);
2371 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2372 SIZE_FOR_MODE (x), x_addr, 0))
2373 return 0;
2375 fixed_scalar
2376 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2377 rtx_addr_varies_p);
2379 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2380 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2383 /* Anti dependence: X is written after read in MEM takes place. */
2386 anti_dependence (const_rtx mem, const_rtx x)
2388 return write_dependence_p (mem, x, /*writep=*/0);
2391 /* Output dependence: X is written after store in MEM takes place. */
2394 output_dependence (const_rtx mem, const_rtx x)
2396 return write_dependence_p (mem, x, /*writep=*/1);
2400 void
2401 init_alias_target (void)
2403 int i;
2405 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2407 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2408 /* Check whether this register can hold an incoming pointer
2409 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2410 numbers, so translate if necessary due to register windows. */
2411 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2412 && HARD_REGNO_MODE_OK (i, Pmode))
2413 static_reg_base_value[i]
2414 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2416 static_reg_base_value[STACK_POINTER_REGNUM]
2417 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2418 static_reg_base_value[ARG_POINTER_REGNUM]
2419 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2420 static_reg_base_value[FRAME_POINTER_REGNUM]
2421 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2422 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2423 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2424 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2425 #endif
2428 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2429 to be memory reference. */
2430 static bool memory_modified;
2431 static void
2432 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2434 if (MEM_P (x))
2436 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
2437 memory_modified = true;
2442 /* Return true when INSN possibly modify memory contents of MEM
2443 (i.e. address can be modified). */
2444 bool
2445 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
2447 if (!INSN_P (insn))
2448 return false;
2449 memory_modified = false;
2450 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
2451 return memory_modified;
2454 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2455 array. */
2457 void
2458 init_alias_analysis (void)
2460 unsigned int maxreg = max_reg_num ();
2461 int changed, pass;
2462 int i;
2463 unsigned int ui;
2464 rtx insn;
2466 timevar_push (TV_ALIAS_ANALYSIS);
2468 reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
2469 reg_known_value = GGC_CNEWVEC (rtx, reg_known_value_size);
2470 reg_known_equiv_p = XCNEWVEC (bool, reg_known_value_size);
2472 /* If we have memory allocated from the previous run, use it. */
2473 if (old_reg_base_value)
2474 reg_base_value = old_reg_base_value;
2476 if (reg_base_value)
2477 VEC_truncate (rtx, reg_base_value, 0);
2479 VEC_safe_grow_cleared (rtx, gc, reg_base_value, maxreg);
2481 new_reg_base_value = XNEWVEC (rtx, maxreg);
2482 reg_seen = XNEWVEC (char, maxreg);
2484 /* The basic idea is that each pass through this loop will use the
2485 "constant" information from the previous pass to propagate alias
2486 information through another level of assignments.
2488 This could get expensive if the assignment chains are long. Maybe
2489 we should throttle the number of iterations, possibly based on
2490 the optimization level or flag_expensive_optimizations.
2492 We could propagate more information in the first pass by making use
2493 of DF_REG_DEF_COUNT to determine immediately that the alias information
2494 for a pseudo is "constant".
2496 A program with an uninitialized variable can cause an infinite loop
2497 here. Instead of doing a full dataflow analysis to detect such problems
2498 we just cap the number of iterations for the loop.
2500 The state of the arrays for the set chain in question does not matter
2501 since the program has undefined behavior. */
2503 pass = 0;
2506 /* Assume nothing will change this iteration of the loop. */
2507 changed = 0;
2509 /* We want to assign the same IDs each iteration of this loop, so
2510 start counting from zero each iteration of the loop. */
2511 unique_id = 0;
2513 /* We're at the start of the function each iteration through the
2514 loop, so we're copying arguments. */
2515 copying_arguments = true;
2517 /* Wipe the potential alias information clean for this pass. */
2518 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2520 /* Wipe the reg_seen array clean. */
2521 memset (reg_seen, 0, maxreg);
2523 /* Mark all hard registers which may contain an address.
2524 The stack, frame and argument pointers may contain an address.
2525 An argument register which can hold a Pmode value may contain
2526 an address even if it is not in BASE_REGS.
2528 The address expression is VOIDmode for an argument and
2529 Pmode for other registers. */
2531 memcpy (new_reg_base_value, static_reg_base_value,
2532 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2534 /* Walk the insns adding values to the new_reg_base_value array. */
2535 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2537 if (INSN_P (insn))
2539 rtx note, set;
2541 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2542 /* The prologue/epilogue insns are not threaded onto the
2543 insn chain until after reload has completed. Thus,
2544 there is no sense wasting time checking if INSN is in
2545 the prologue/epilogue until after reload has completed. */
2546 if (reload_completed
2547 && prologue_epilogue_contains (insn))
2548 continue;
2549 #endif
2551 /* If this insn has a noalias note, process it, Otherwise,
2552 scan for sets. A simple set will have no side effects
2553 which could change the base value of any other register. */
2555 if (GET_CODE (PATTERN (insn)) == SET
2556 && REG_NOTES (insn) != 0
2557 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2558 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2559 else
2560 note_stores (PATTERN (insn), record_set, NULL);
2562 set = single_set (insn);
2564 if (set != 0
2565 && REG_P (SET_DEST (set))
2566 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2568 unsigned int regno = REGNO (SET_DEST (set));
2569 rtx src = SET_SRC (set);
2570 rtx t;
2572 note = find_reg_equal_equiv_note (insn);
2573 if (note && REG_NOTE_KIND (note) == REG_EQUAL
2574 && DF_REG_DEF_COUNT (regno) != 1)
2575 note = NULL_RTX;
2577 if (note != NULL_RTX
2578 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2579 && ! rtx_varies_p (XEXP (note, 0), 1)
2580 && ! reg_overlap_mentioned_p (SET_DEST (set),
2581 XEXP (note, 0)))
2583 set_reg_known_value (regno, XEXP (note, 0));
2584 set_reg_known_equiv_p (regno,
2585 REG_NOTE_KIND (note) == REG_EQUIV);
2587 else if (DF_REG_DEF_COUNT (regno) == 1
2588 && GET_CODE (src) == PLUS
2589 && REG_P (XEXP (src, 0))
2590 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2591 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2593 t = plus_constant (t, INTVAL (XEXP (src, 1)));
2594 set_reg_known_value (regno, t);
2595 set_reg_known_equiv_p (regno, 0);
2597 else if (DF_REG_DEF_COUNT (regno) == 1
2598 && ! rtx_varies_p (src, 1))
2600 set_reg_known_value (regno, src);
2601 set_reg_known_equiv_p (regno, 0);
2605 else if (NOTE_P (insn)
2606 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
2607 copying_arguments = false;
2610 /* Now propagate values from new_reg_base_value to reg_base_value. */
2611 gcc_assert (maxreg == (unsigned int) max_reg_num ());
2613 for (ui = 0; ui < maxreg; ui++)
2615 if (new_reg_base_value[ui]
2616 && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui)
2617 && ! rtx_equal_p (new_reg_base_value[ui],
2618 VEC_index (rtx, reg_base_value, ui)))
2620 VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]);
2621 changed = 1;
2625 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2627 /* Fill in the remaining entries. */
2628 for (i = 0; i < (int)reg_known_value_size; i++)
2629 if (reg_known_value[i] == 0)
2630 reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
2632 /* Clean up. */
2633 free (new_reg_base_value);
2634 new_reg_base_value = 0;
2635 free (reg_seen);
2636 reg_seen = 0;
2637 timevar_pop (TV_ALIAS_ANALYSIS);
2640 void
2641 end_alias_analysis (void)
2643 old_reg_base_value = reg_base_value;
2644 ggc_free (reg_known_value);
2645 reg_known_value = 0;
2646 reg_known_value_size = 0;
2647 free (reg_known_equiv_p);
2648 reg_known_equiv_p = 0;
2651 #include "gt-alias.h"