* gcc.dg/compat/struct-layout-1_generate.c (dg_options): New. Moved
[official-gcc.git] / gcc / ada / exp_util.adb
blobb36f80d46cd32da0d4a872fd63bed5c613512cd0
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ U T I L --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2008, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Exp_Aggr; use Exp_Aggr;
33 with Exp_Ch6; use Exp_Ch6;
34 with Exp_Ch7; use Exp_Ch7;
35 with Inline; use Inline;
36 with Itypes; use Itypes;
37 with Lib; use Lib;
38 with Nlists; use Nlists;
39 with Nmake; use Nmake;
40 with Opt; use Opt;
41 with Restrict; use Restrict;
42 with Rident; use Rident;
43 with Sem; use Sem;
44 with Sem_Ch8; use Sem_Ch8;
45 with Sem_Eval; use Sem_Eval;
46 with Sem_Res; use Sem_Res;
47 with Sem_Type; use Sem_Type;
48 with Sem_Util; use Sem_Util;
49 with Snames; use Snames;
50 with Stand; use Stand;
51 with Stringt; use Stringt;
52 with Targparm; use Targparm;
53 with Tbuild; use Tbuild;
54 with Ttypes; use Ttypes;
55 with Uintp; use Uintp;
56 with Urealp; use Urealp;
57 with Validsw; use Validsw;
59 package body Exp_Util is
61 -----------------------
62 -- Local Subprograms --
63 -----------------------
65 function Build_Task_Array_Image
66 (Loc : Source_Ptr;
67 Id_Ref : Node_Id;
68 A_Type : Entity_Id;
69 Dyn : Boolean := False) return Node_Id;
70 -- Build function to generate the image string for a task that is an
71 -- array component, concatenating the images of each index. To avoid
72 -- storage leaks, the string is built with successive slice assignments.
73 -- The flag Dyn indicates whether this is called for the initialization
74 -- procedure of an array of tasks, or for the name of a dynamically
75 -- created task that is assigned to an indexed component.
77 function Build_Task_Image_Function
78 (Loc : Source_Ptr;
79 Decls : List_Id;
80 Stats : List_Id;
81 Res : Entity_Id) return Node_Id;
82 -- Common processing for Task_Array_Image and Task_Record_Image.
83 -- Build function body that computes image.
85 procedure Build_Task_Image_Prefix
86 (Loc : Source_Ptr;
87 Len : out Entity_Id;
88 Res : out Entity_Id;
89 Pos : out Entity_Id;
90 Prefix : Entity_Id;
91 Sum : Node_Id;
92 Decls : List_Id;
93 Stats : List_Id);
94 -- Common processing for Task_Array_Image and Task_Record_Image.
95 -- Create local variables and assign prefix of name to result string.
97 function Build_Task_Record_Image
98 (Loc : Source_Ptr;
99 Id_Ref : Node_Id;
100 Dyn : Boolean := False) return Node_Id;
101 -- Build function to generate the image string for a task that is a
102 -- record component. Concatenate name of variable with that of selector.
103 -- The flag Dyn indicates whether this is called for the initialization
104 -- procedure of record with task components, or for a dynamically
105 -- created task that is assigned to a selected component.
107 function Make_CW_Equivalent_Type
108 (T : Entity_Id;
109 E : Node_Id) return Entity_Id;
110 -- T is a class-wide type entity, E is the initial expression node that
111 -- constrains T in case such as: " X: T := E" or "new T'(E)"
112 -- This function returns the entity of the Equivalent type and inserts
113 -- on the fly the necessary declaration such as:
115 -- type anon is record
116 -- _parent : Root_Type (T); constrained with E discriminants (if any)
117 -- Extension : String (1 .. expr to match size of E);
118 -- end record;
120 -- This record is compatible with any object of the class of T thanks
121 -- to the first field and has the same size as E thanks to the second.
123 function Make_Literal_Range
124 (Loc : Source_Ptr;
125 Literal_Typ : Entity_Id) return Node_Id;
126 -- Produce a Range node whose bounds are:
127 -- Low_Bound (Literal_Type) ..
128 -- Low_Bound (Literal_Type) + (Length (Literal_Typ) - 1)
129 -- this is used for expanding declarations like X : String := "sdfgdfg";
131 -- If the index type of the target array is not integer, we generate:
132 -- Low_Bound (Literal_Type) ..
133 -- Literal_Type'Val
134 -- (Literal_Type'Pos (Low_Bound (Literal_Type))
135 -- + (Length (Literal_Typ) -1))
137 function New_Class_Wide_Subtype
138 (CW_Typ : Entity_Id;
139 N : Node_Id) return Entity_Id;
140 -- Create an implicit subtype of CW_Typ attached to node N
142 ----------------------
143 -- Adjust_Condition --
144 ----------------------
146 procedure Adjust_Condition (N : Node_Id) is
147 begin
148 if No (N) then
149 return;
150 end if;
152 declare
153 Loc : constant Source_Ptr := Sloc (N);
154 T : constant Entity_Id := Etype (N);
155 Ti : Entity_Id;
157 begin
158 -- For now, we simply ignore a call where the argument has no
159 -- type (probably case of unanalyzed condition), or has a type
160 -- that is not Boolean. This is because this is a pretty marginal
161 -- piece of functionality, and violations of these rules are
162 -- likely to be truly marginal (how much code uses Fortran Logical
163 -- as the barrier to a protected entry?) and we do not want to
164 -- blow up existing programs. We can change this to an assertion
165 -- after 3.12a is released ???
167 if No (T) or else not Is_Boolean_Type (T) then
168 return;
169 end if;
171 -- Apply validity checking if needed
173 if Validity_Checks_On and Validity_Check_Tests then
174 Ensure_Valid (N);
175 end if;
177 -- Immediate return if standard boolean, the most common case,
178 -- where nothing needs to be done.
180 if Base_Type (T) = Standard_Boolean then
181 return;
182 end if;
184 -- Case of zero/non-zero semantics or non-standard enumeration
185 -- representation. In each case, we rewrite the node as:
187 -- ityp!(N) /= False'Enum_Rep
189 -- where ityp is an integer type with large enough size to hold
190 -- any value of type T.
192 if Nonzero_Is_True (T) or else Has_Non_Standard_Rep (T) then
193 if Esize (T) <= Esize (Standard_Integer) then
194 Ti := Standard_Integer;
195 else
196 Ti := Standard_Long_Long_Integer;
197 end if;
199 Rewrite (N,
200 Make_Op_Ne (Loc,
201 Left_Opnd => Unchecked_Convert_To (Ti, N),
202 Right_Opnd =>
203 Make_Attribute_Reference (Loc,
204 Attribute_Name => Name_Enum_Rep,
205 Prefix =>
206 New_Occurrence_Of (First_Literal (T), Loc))));
207 Analyze_And_Resolve (N, Standard_Boolean);
209 else
210 Rewrite (N, Convert_To (Standard_Boolean, N));
211 Analyze_And_Resolve (N, Standard_Boolean);
212 end if;
213 end;
214 end Adjust_Condition;
216 ------------------------
217 -- Adjust_Result_Type --
218 ------------------------
220 procedure Adjust_Result_Type (N : Node_Id; T : Entity_Id) is
221 begin
222 -- Ignore call if current type is not Standard.Boolean
224 if Etype (N) /= Standard_Boolean then
225 return;
226 end if;
228 -- If result is already of correct type, nothing to do. Note that
229 -- this will get the most common case where everything has a type
230 -- of Standard.Boolean.
232 if Base_Type (T) = Standard_Boolean then
233 return;
235 else
236 declare
237 KP : constant Node_Kind := Nkind (Parent (N));
239 begin
240 -- If result is to be used as a Condition in the syntax, no need
241 -- to convert it back, since if it was changed to Standard.Boolean
242 -- using Adjust_Condition, that is just fine for this usage.
244 if KP in N_Raise_xxx_Error or else KP in N_Has_Condition then
245 return;
247 -- If result is an operand of another logical operation, no need
248 -- to reset its type, since Standard.Boolean is just fine, and
249 -- such operations always do Adjust_Condition on their operands.
251 elsif KP in N_Op_Boolean
252 or else KP = N_And_Then
253 or else KP = N_Or_Else
254 or else KP = N_Op_Not
255 then
256 return;
258 -- Otherwise we perform a conversion from the current type,
259 -- which must be Standard.Boolean, to the desired type.
261 else
262 Set_Analyzed (N);
263 Rewrite (N, Convert_To (T, N));
264 Analyze_And_Resolve (N, T);
265 end if;
266 end;
267 end if;
268 end Adjust_Result_Type;
270 --------------------------
271 -- Append_Freeze_Action --
272 --------------------------
274 procedure Append_Freeze_Action (T : Entity_Id; N : Node_Id) is
275 Fnode : Node_Id;
277 begin
278 Ensure_Freeze_Node (T);
279 Fnode := Freeze_Node (T);
281 if No (Actions (Fnode)) then
282 Set_Actions (Fnode, New_List);
283 end if;
285 Append (N, Actions (Fnode));
286 end Append_Freeze_Action;
288 ---------------------------
289 -- Append_Freeze_Actions --
290 ---------------------------
292 procedure Append_Freeze_Actions (T : Entity_Id; L : List_Id) is
293 Fnode : constant Node_Id := Freeze_Node (T);
295 begin
296 if No (L) then
297 return;
299 else
300 if No (Actions (Fnode)) then
301 Set_Actions (Fnode, L);
303 else
304 Append_List (L, Actions (Fnode));
305 end if;
307 end if;
308 end Append_Freeze_Actions;
310 ------------------------
311 -- Build_Runtime_Call --
312 ------------------------
314 function Build_Runtime_Call (Loc : Source_Ptr; RE : RE_Id) return Node_Id is
315 begin
316 -- If entity is not available, we can skip making the call (this avoids
317 -- junk duplicated error messages in a number of cases).
319 if not RTE_Available (RE) then
320 return Make_Null_Statement (Loc);
321 else
322 return
323 Make_Procedure_Call_Statement (Loc,
324 Name => New_Reference_To (RTE (RE), Loc));
325 end if;
326 end Build_Runtime_Call;
328 ----------------------------
329 -- Build_Task_Array_Image --
330 ----------------------------
332 -- This function generates the body for a function that constructs the
333 -- image string for a task that is an array component. The function is
334 -- local to the init proc for the array type, and is called for each one
335 -- of the components. The constructed image has the form of an indexed
336 -- component, whose prefix is the outer variable of the array type.
337 -- The n-dimensional array type has known indices Index, Index2...
338 -- Id_Ref is an indexed component form created by the enclosing init proc.
339 -- Its successive indices are Val1, Val2, ... which are the loop variables
340 -- in the loops that call the individual task init proc on each component.
342 -- The generated function has the following structure:
344 -- function F return String is
345 -- Pref : string renames Task_Name;
346 -- T1 : String := Index1'Image (Val1);
347 -- ...
348 -- Tn : String := indexn'image (Valn);
349 -- Len : Integer := T1'Length + ... + Tn'Length + n + 1;
350 -- -- Len includes commas and the end parentheses.
351 -- Res : String (1..Len);
352 -- Pos : Integer := Pref'Length;
354 -- begin
355 -- Res (1 .. Pos) := Pref;
356 -- Pos := Pos + 1;
357 -- Res (Pos) := '(';
358 -- Pos := Pos + 1;
359 -- Res (Pos .. Pos + T1'Length - 1) := T1;
360 -- Pos := Pos + T1'Length;
361 -- Res (Pos) := '.';
362 -- Pos := Pos + 1;
363 -- ...
364 -- Res (Pos .. Pos + Tn'Length - 1) := Tn;
365 -- Res (Len) := ')';
367 -- return Res;
368 -- end F;
370 -- Needless to say, multidimensional arrays of tasks are rare enough
371 -- that the bulkiness of this code is not really a concern.
373 function Build_Task_Array_Image
374 (Loc : Source_Ptr;
375 Id_Ref : Node_Id;
376 A_Type : Entity_Id;
377 Dyn : Boolean := False) return Node_Id
379 Dims : constant Nat := Number_Dimensions (A_Type);
380 -- Number of dimensions for array of tasks
382 Temps : array (1 .. Dims) of Entity_Id;
383 -- Array of temporaries to hold string for each index
385 Indx : Node_Id;
386 -- Index expression
388 Len : Entity_Id;
389 -- Total length of generated name
391 Pos : Entity_Id;
392 -- Running index for substring assignments
394 Pref : Entity_Id;
395 -- Name of enclosing variable, prefix of resulting name
397 Res : Entity_Id;
398 -- String to hold result
400 Val : Node_Id;
401 -- Value of successive indices
403 Sum : Node_Id;
404 -- Expression to compute total size of string
406 T : Entity_Id;
407 -- Entity for name at one index position
409 Decls : constant List_Id := New_List;
410 Stats : constant List_Id := New_List;
412 begin
413 Pref := Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
415 -- For a dynamic task, the name comes from the target variable.
416 -- For a static one it is a formal of the enclosing init proc.
418 if Dyn then
419 Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
420 Append_To (Decls,
421 Make_Object_Declaration (Loc,
422 Defining_Identifier => Pref,
423 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
424 Expression =>
425 Make_String_Literal (Loc,
426 Strval => String_From_Name_Buffer)));
428 else
429 Append_To (Decls,
430 Make_Object_Renaming_Declaration (Loc,
431 Defining_Identifier => Pref,
432 Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
433 Name => Make_Identifier (Loc, Name_uTask_Name)));
434 end if;
436 Indx := First_Index (A_Type);
437 Val := First (Expressions (Id_Ref));
439 for J in 1 .. Dims loop
440 T := Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
441 Temps (J) := T;
443 Append_To (Decls,
444 Make_Object_Declaration (Loc,
445 Defining_Identifier => T,
446 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
447 Expression =>
448 Make_Attribute_Reference (Loc,
449 Attribute_Name => Name_Image,
450 Prefix =>
451 New_Occurrence_Of (Etype (Indx), Loc),
452 Expressions => New_List (
453 New_Copy_Tree (Val)))));
455 Next_Index (Indx);
456 Next (Val);
457 end loop;
459 Sum := Make_Integer_Literal (Loc, Dims + 1);
461 Sum :=
462 Make_Op_Add (Loc,
463 Left_Opnd => Sum,
464 Right_Opnd =>
465 Make_Attribute_Reference (Loc,
466 Attribute_Name => Name_Length,
467 Prefix =>
468 New_Occurrence_Of (Pref, Loc),
469 Expressions => New_List (Make_Integer_Literal (Loc, 1))));
471 for J in 1 .. Dims loop
472 Sum :=
473 Make_Op_Add (Loc,
474 Left_Opnd => Sum,
475 Right_Opnd =>
476 Make_Attribute_Reference (Loc,
477 Attribute_Name => Name_Length,
478 Prefix =>
479 New_Occurrence_Of (Temps (J), Loc),
480 Expressions => New_List (Make_Integer_Literal (Loc, 1))));
481 end loop;
483 Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
485 Set_Character_Literal_Name (Char_Code (Character'Pos ('(')));
487 Append_To (Stats,
488 Make_Assignment_Statement (Loc,
489 Name => Make_Indexed_Component (Loc,
490 Prefix => New_Occurrence_Of (Res, Loc),
491 Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
492 Expression =>
493 Make_Character_Literal (Loc,
494 Chars => Name_Find,
495 Char_Literal_Value =>
496 UI_From_Int (Character'Pos ('(')))));
498 Append_To (Stats,
499 Make_Assignment_Statement (Loc,
500 Name => New_Occurrence_Of (Pos, Loc),
501 Expression =>
502 Make_Op_Add (Loc,
503 Left_Opnd => New_Occurrence_Of (Pos, Loc),
504 Right_Opnd => Make_Integer_Literal (Loc, 1))));
506 for J in 1 .. Dims loop
508 Append_To (Stats,
509 Make_Assignment_Statement (Loc,
510 Name => Make_Slice (Loc,
511 Prefix => New_Occurrence_Of (Res, Loc),
512 Discrete_Range =>
513 Make_Range (Loc,
514 Low_Bound => New_Occurrence_Of (Pos, Loc),
515 High_Bound => Make_Op_Subtract (Loc,
516 Left_Opnd =>
517 Make_Op_Add (Loc,
518 Left_Opnd => New_Occurrence_Of (Pos, Loc),
519 Right_Opnd =>
520 Make_Attribute_Reference (Loc,
521 Attribute_Name => Name_Length,
522 Prefix =>
523 New_Occurrence_Of (Temps (J), Loc),
524 Expressions =>
525 New_List (Make_Integer_Literal (Loc, 1)))),
526 Right_Opnd => Make_Integer_Literal (Loc, 1)))),
528 Expression => New_Occurrence_Of (Temps (J), Loc)));
530 if J < Dims then
531 Append_To (Stats,
532 Make_Assignment_Statement (Loc,
533 Name => New_Occurrence_Of (Pos, Loc),
534 Expression =>
535 Make_Op_Add (Loc,
536 Left_Opnd => New_Occurrence_Of (Pos, Loc),
537 Right_Opnd =>
538 Make_Attribute_Reference (Loc,
539 Attribute_Name => Name_Length,
540 Prefix => New_Occurrence_Of (Temps (J), Loc),
541 Expressions =>
542 New_List (Make_Integer_Literal (Loc, 1))))));
544 Set_Character_Literal_Name (Char_Code (Character'Pos (',')));
546 Append_To (Stats,
547 Make_Assignment_Statement (Loc,
548 Name => Make_Indexed_Component (Loc,
549 Prefix => New_Occurrence_Of (Res, Loc),
550 Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
551 Expression =>
552 Make_Character_Literal (Loc,
553 Chars => Name_Find,
554 Char_Literal_Value =>
555 UI_From_Int (Character'Pos (',')))));
557 Append_To (Stats,
558 Make_Assignment_Statement (Loc,
559 Name => New_Occurrence_Of (Pos, Loc),
560 Expression =>
561 Make_Op_Add (Loc,
562 Left_Opnd => New_Occurrence_Of (Pos, Loc),
563 Right_Opnd => Make_Integer_Literal (Loc, 1))));
564 end if;
565 end loop;
567 Set_Character_Literal_Name (Char_Code (Character'Pos (')')));
569 Append_To (Stats,
570 Make_Assignment_Statement (Loc,
571 Name => Make_Indexed_Component (Loc,
572 Prefix => New_Occurrence_Of (Res, Loc),
573 Expressions => New_List (New_Occurrence_Of (Len, Loc))),
574 Expression =>
575 Make_Character_Literal (Loc,
576 Chars => Name_Find,
577 Char_Literal_Value =>
578 UI_From_Int (Character'Pos (')')))));
579 return Build_Task_Image_Function (Loc, Decls, Stats, Res);
580 end Build_Task_Array_Image;
582 ----------------------------
583 -- Build_Task_Image_Decls --
584 ----------------------------
586 function Build_Task_Image_Decls
587 (Loc : Source_Ptr;
588 Id_Ref : Node_Id;
589 A_Type : Entity_Id;
590 In_Init_Proc : Boolean := False) return List_Id
592 Decls : constant List_Id := New_List;
593 T_Id : Entity_Id := Empty;
594 Decl : Node_Id;
595 Expr : Node_Id := Empty;
596 Fun : Node_Id := Empty;
597 Is_Dyn : constant Boolean :=
598 Nkind (Parent (Id_Ref)) = N_Assignment_Statement
599 and then
600 Nkind (Expression (Parent (Id_Ref))) = N_Allocator;
602 begin
603 -- If Discard_Names or No_Implicit_Heap_Allocations are in effect,
604 -- generate a dummy declaration only.
606 if Restriction_Active (No_Implicit_Heap_Allocations)
607 or else Global_Discard_Names
608 then
609 T_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('J'));
610 Name_Len := 0;
612 return
613 New_List (
614 Make_Object_Declaration (Loc,
615 Defining_Identifier => T_Id,
616 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
617 Expression =>
618 Make_String_Literal (Loc,
619 Strval => String_From_Name_Buffer)));
621 else
622 if Nkind (Id_Ref) = N_Identifier
623 or else Nkind (Id_Ref) = N_Defining_Identifier
624 then
625 -- For a simple variable, the image of the task is built from
626 -- the name of the variable. To avoid possible conflict with
627 -- the anonymous type created for a single protected object,
628 -- add a numeric suffix.
630 T_Id :=
631 Make_Defining_Identifier (Loc,
632 New_External_Name (Chars (Id_Ref), 'T', 1));
634 Get_Name_String (Chars (Id_Ref));
636 Expr :=
637 Make_String_Literal (Loc,
638 Strval => String_From_Name_Buffer);
640 elsif Nkind (Id_Ref) = N_Selected_Component then
641 T_Id :=
642 Make_Defining_Identifier (Loc,
643 New_External_Name (Chars (Selector_Name (Id_Ref)), 'T'));
644 Fun := Build_Task_Record_Image (Loc, Id_Ref, Is_Dyn);
646 elsif Nkind (Id_Ref) = N_Indexed_Component then
647 T_Id :=
648 Make_Defining_Identifier (Loc,
649 New_External_Name (Chars (A_Type), 'N'));
651 Fun := Build_Task_Array_Image (Loc, Id_Ref, A_Type, Is_Dyn);
652 end if;
653 end if;
655 if Present (Fun) then
656 Append (Fun, Decls);
657 Expr := Make_Function_Call (Loc,
658 Name => New_Occurrence_Of (Defining_Entity (Fun), Loc));
660 if not In_Init_Proc and then VM_Target = No_VM then
661 Set_Uses_Sec_Stack (Defining_Entity (Fun));
662 end if;
663 end if;
665 Decl := Make_Object_Declaration (Loc,
666 Defining_Identifier => T_Id,
667 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
668 Constant_Present => True,
669 Expression => Expr);
671 Append (Decl, Decls);
672 return Decls;
673 end Build_Task_Image_Decls;
675 -------------------------------
676 -- Build_Task_Image_Function --
677 -------------------------------
679 function Build_Task_Image_Function
680 (Loc : Source_Ptr;
681 Decls : List_Id;
682 Stats : List_Id;
683 Res : Entity_Id) return Node_Id
685 Spec : Node_Id;
687 begin
688 Append_To (Stats,
689 Make_Simple_Return_Statement (Loc,
690 Expression => New_Occurrence_Of (Res, Loc)));
692 Spec := Make_Function_Specification (Loc,
693 Defining_Unit_Name =>
694 Make_Defining_Identifier (Loc, New_Internal_Name ('F')),
695 Result_Definition => New_Occurrence_Of (Standard_String, Loc));
697 -- Calls to 'Image use the secondary stack, which must be cleaned
698 -- up after the task name is built.
700 return Make_Subprogram_Body (Loc,
701 Specification => Spec,
702 Declarations => Decls,
703 Handled_Statement_Sequence =>
704 Make_Handled_Sequence_Of_Statements (Loc, Statements => Stats));
705 end Build_Task_Image_Function;
707 -----------------------------
708 -- Build_Task_Image_Prefix --
709 -----------------------------
711 procedure Build_Task_Image_Prefix
712 (Loc : Source_Ptr;
713 Len : out Entity_Id;
714 Res : out Entity_Id;
715 Pos : out Entity_Id;
716 Prefix : Entity_Id;
717 Sum : Node_Id;
718 Decls : List_Id;
719 Stats : List_Id)
721 begin
722 Len := Make_Defining_Identifier (Loc, New_Internal_Name ('L'));
724 Append_To (Decls,
725 Make_Object_Declaration (Loc,
726 Defining_Identifier => Len,
727 Object_Definition => New_Occurrence_Of (Standard_Integer, Loc),
728 Expression => Sum));
730 Res := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
732 Append_To (Decls,
733 Make_Object_Declaration (Loc,
734 Defining_Identifier => Res,
735 Object_Definition =>
736 Make_Subtype_Indication (Loc,
737 Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
738 Constraint =>
739 Make_Index_Or_Discriminant_Constraint (Loc,
740 Constraints =>
741 New_List (
742 Make_Range (Loc,
743 Low_Bound => Make_Integer_Literal (Loc, 1),
744 High_Bound => New_Occurrence_Of (Len, Loc)))))));
746 Pos := Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
748 Append_To (Decls,
749 Make_Object_Declaration (Loc,
750 Defining_Identifier => Pos,
751 Object_Definition => New_Occurrence_Of (Standard_Integer, Loc)));
753 -- Pos := Prefix'Length;
755 Append_To (Stats,
756 Make_Assignment_Statement (Loc,
757 Name => New_Occurrence_Of (Pos, Loc),
758 Expression =>
759 Make_Attribute_Reference (Loc,
760 Attribute_Name => Name_Length,
761 Prefix => New_Occurrence_Of (Prefix, Loc),
762 Expressions =>
763 New_List (Make_Integer_Literal (Loc, 1)))));
765 -- Res (1 .. Pos) := Prefix;
767 Append_To (Stats,
768 Make_Assignment_Statement (Loc,
769 Name => Make_Slice (Loc,
770 Prefix => New_Occurrence_Of (Res, Loc),
771 Discrete_Range =>
772 Make_Range (Loc,
773 Low_Bound => Make_Integer_Literal (Loc, 1),
774 High_Bound => New_Occurrence_Of (Pos, Loc))),
776 Expression => New_Occurrence_Of (Prefix, Loc)));
778 Append_To (Stats,
779 Make_Assignment_Statement (Loc,
780 Name => New_Occurrence_Of (Pos, Loc),
781 Expression =>
782 Make_Op_Add (Loc,
783 Left_Opnd => New_Occurrence_Of (Pos, Loc),
784 Right_Opnd => Make_Integer_Literal (Loc, 1))));
785 end Build_Task_Image_Prefix;
787 -----------------------------
788 -- Build_Task_Record_Image --
789 -----------------------------
791 function Build_Task_Record_Image
792 (Loc : Source_Ptr;
793 Id_Ref : Node_Id;
794 Dyn : Boolean := False) return Node_Id
796 Len : Entity_Id;
797 -- Total length of generated name
799 Pos : Entity_Id;
800 -- Index into result
802 Res : Entity_Id;
803 -- String to hold result
805 Pref : Entity_Id;
806 -- Name of enclosing variable, prefix of resulting name
808 Sum : Node_Id;
809 -- Expression to compute total size of string
811 Sel : Entity_Id;
812 -- Entity for selector name
814 Decls : constant List_Id := New_List;
815 Stats : constant List_Id := New_List;
817 begin
818 Pref := Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
820 -- For a dynamic task, the name comes from the target variable.
821 -- For a static one it is a formal of the enclosing init proc.
823 if Dyn then
824 Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
825 Append_To (Decls,
826 Make_Object_Declaration (Loc,
827 Defining_Identifier => Pref,
828 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
829 Expression =>
830 Make_String_Literal (Loc,
831 Strval => String_From_Name_Buffer)));
833 else
834 Append_To (Decls,
835 Make_Object_Renaming_Declaration (Loc,
836 Defining_Identifier => Pref,
837 Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
838 Name => Make_Identifier (Loc, Name_uTask_Name)));
839 end if;
841 Sel := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
843 Get_Name_String (Chars (Selector_Name (Id_Ref)));
845 Append_To (Decls,
846 Make_Object_Declaration (Loc,
847 Defining_Identifier => Sel,
848 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
849 Expression =>
850 Make_String_Literal (Loc,
851 Strval => String_From_Name_Buffer)));
853 Sum := Make_Integer_Literal (Loc, Nat (Name_Len + 1));
855 Sum :=
856 Make_Op_Add (Loc,
857 Left_Opnd => Sum,
858 Right_Opnd =>
859 Make_Attribute_Reference (Loc,
860 Attribute_Name => Name_Length,
861 Prefix =>
862 New_Occurrence_Of (Pref, Loc),
863 Expressions => New_List (Make_Integer_Literal (Loc, 1))));
865 Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
867 Set_Character_Literal_Name (Char_Code (Character'Pos ('.')));
869 -- Res (Pos) := '.';
871 Append_To (Stats,
872 Make_Assignment_Statement (Loc,
873 Name => Make_Indexed_Component (Loc,
874 Prefix => New_Occurrence_Of (Res, Loc),
875 Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
876 Expression =>
877 Make_Character_Literal (Loc,
878 Chars => Name_Find,
879 Char_Literal_Value =>
880 UI_From_Int (Character'Pos ('.')))));
882 Append_To (Stats,
883 Make_Assignment_Statement (Loc,
884 Name => New_Occurrence_Of (Pos, Loc),
885 Expression =>
886 Make_Op_Add (Loc,
887 Left_Opnd => New_Occurrence_Of (Pos, Loc),
888 Right_Opnd => Make_Integer_Literal (Loc, 1))));
890 -- Res (Pos .. Len) := Selector;
892 Append_To (Stats,
893 Make_Assignment_Statement (Loc,
894 Name => Make_Slice (Loc,
895 Prefix => New_Occurrence_Of (Res, Loc),
896 Discrete_Range =>
897 Make_Range (Loc,
898 Low_Bound => New_Occurrence_Of (Pos, Loc),
899 High_Bound => New_Occurrence_Of (Len, Loc))),
900 Expression => New_Occurrence_Of (Sel, Loc)));
902 return Build_Task_Image_Function (Loc, Decls, Stats, Res);
903 end Build_Task_Record_Image;
905 ----------------------------------
906 -- Component_May_Be_Bit_Aligned --
907 ----------------------------------
909 function Component_May_Be_Bit_Aligned (Comp : Entity_Id) return Boolean is
910 begin
911 -- If no component clause, then everything is fine, since the back end
912 -- never bit-misaligns by default, even if there is a pragma Packed for
913 -- the record.
915 if No (Component_Clause (Comp)) then
916 return False;
917 end if;
919 -- It is only array and record types that cause trouble
921 if not Is_Record_Type (Etype (Comp))
922 and then not Is_Array_Type (Etype (Comp))
923 then
924 return False;
926 -- If we know that we have a small (64 bits or less) record
927 -- or bit-packed array, then everything is fine, since the
928 -- back end can handle these cases correctly.
930 elsif Esize (Comp) <= 64
931 and then (Is_Record_Type (Etype (Comp))
932 or else Is_Bit_Packed_Array (Etype (Comp)))
933 then
934 return False;
936 -- Otherwise if the component is not byte aligned, we know we have the
937 -- nasty unaligned case.
939 elsif Normalized_First_Bit (Comp) /= Uint_0
940 or else Esize (Comp) mod System_Storage_Unit /= Uint_0
941 then
942 return True;
944 -- If we are large and byte aligned, then OK at this level
946 else
947 return False;
948 end if;
949 end Component_May_Be_Bit_Aligned;
951 -----------------------------------
952 -- Corresponding_Runtime_Package --
953 -----------------------------------
955 function Corresponding_Runtime_Package (Typ : Entity_Id) return RTU_Id is
956 Pkg_Id : RTU_Id := RTU_Null;
958 begin
959 pragma Assert (Is_Concurrent_Type (Typ));
961 if Ekind (Typ) in Protected_Kind then
962 if Has_Entries (Typ)
963 or else Has_Interrupt_Handler (Typ)
964 or else (Has_Attach_Handler (Typ)
965 and then not Restricted_Profile)
967 -- A protected type without entries that covers an interface and
968 -- overrides the abstract routines with protected procedures is
969 -- considered equivalent to a protected type with entries in the
970 -- context of dispatching select statements. It is sufficient to
971 -- check for the presence of an interface list in the declaration
972 -- node to recognize this case.
974 or else Present (Interface_List (Parent (Typ)))
975 then
976 if Abort_Allowed
977 or else Restriction_Active (No_Entry_Queue) = False
978 or else Number_Entries (Typ) > 1
979 or else (Has_Attach_Handler (Typ)
980 and then not Restricted_Profile)
981 then
982 Pkg_Id := System_Tasking_Protected_Objects_Entries;
983 else
984 Pkg_Id := System_Tasking_Protected_Objects_Single_Entry;
985 end if;
987 else
988 Pkg_Id := System_Tasking_Protected_Objects;
989 end if;
990 end if;
992 return Pkg_Id;
993 end Corresponding_Runtime_Package;
995 -------------------------------
996 -- Convert_To_Actual_Subtype --
997 -------------------------------
999 procedure Convert_To_Actual_Subtype (Exp : Entity_Id) is
1000 Act_ST : Entity_Id;
1002 begin
1003 Act_ST := Get_Actual_Subtype (Exp);
1005 if Act_ST = Etype (Exp) then
1006 return;
1008 else
1009 Rewrite (Exp,
1010 Convert_To (Act_ST, Relocate_Node (Exp)));
1011 Analyze_And_Resolve (Exp, Act_ST);
1012 end if;
1013 end Convert_To_Actual_Subtype;
1015 -----------------------------------
1016 -- Current_Sem_Unit_Declarations --
1017 -----------------------------------
1019 function Current_Sem_Unit_Declarations return List_Id is
1020 U : Node_Id := Unit (Cunit (Current_Sem_Unit));
1021 Decls : List_Id;
1023 begin
1024 -- If the current unit is a package body, locate the visible
1025 -- declarations of the package spec.
1027 if Nkind (U) = N_Package_Body then
1028 U := Unit (Library_Unit (Cunit (Current_Sem_Unit)));
1029 end if;
1031 if Nkind (U) = N_Package_Declaration then
1032 U := Specification (U);
1033 Decls := Visible_Declarations (U);
1035 if No (Decls) then
1036 Decls := New_List;
1037 Set_Visible_Declarations (U, Decls);
1038 end if;
1040 else
1041 Decls := Declarations (U);
1043 if No (Decls) then
1044 Decls := New_List;
1045 Set_Declarations (U, Decls);
1046 end if;
1047 end if;
1049 return Decls;
1050 end Current_Sem_Unit_Declarations;
1052 -----------------------
1053 -- Duplicate_Subexpr --
1054 -----------------------
1056 function Duplicate_Subexpr
1057 (Exp : Node_Id;
1058 Name_Req : Boolean := False) return Node_Id
1060 begin
1061 Remove_Side_Effects (Exp, Name_Req);
1062 return New_Copy_Tree (Exp);
1063 end Duplicate_Subexpr;
1065 ---------------------------------
1066 -- Duplicate_Subexpr_No_Checks --
1067 ---------------------------------
1069 function Duplicate_Subexpr_No_Checks
1070 (Exp : Node_Id;
1071 Name_Req : Boolean := False) return Node_Id
1073 New_Exp : Node_Id;
1075 begin
1076 Remove_Side_Effects (Exp, Name_Req);
1077 New_Exp := New_Copy_Tree (Exp);
1078 Remove_Checks (New_Exp);
1079 return New_Exp;
1080 end Duplicate_Subexpr_No_Checks;
1082 -----------------------------------
1083 -- Duplicate_Subexpr_Move_Checks --
1084 -----------------------------------
1086 function Duplicate_Subexpr_Move_Checks
1087 (Exp : Node_Id;
1088 Name_Req : Boolean := False) return Node_Id
1090 New_Exp : Node_Id;
1092 begin
1093 Remove_Side_Effects (Exp, Name_Req);
1094 New_Exp := New_Copy_Tree (Exp);
1095 Remove_Checks (Exp);
1096 return New_Exp;
1097 end Duplicate_Subexpr_Move_Checks;
1099 --------------------
1100 -- Ensure_Defined --
1101 --------------------
1103 procedure Ensure_Defined (Typ : Entity_Id; N : Node_Id) is
1104 IR : Node_Id;
1106 begin
1107 -- An itype reference must only be created if this is a local
1108 -- itype, so that gigi can elaborate it on the proper objstack.
1110 if Is_Itype (Typ)
1111 and then Scope (Typ) = Current_Scope
1112 then
1113 IR := Make_Itype_Reference (Sloc (N));
1114 Set_Itype (IR, Typ);
1115 Insert_Action (N, IR);
1116 end if;
1117 end Ensure_Defined;
1119 --------------------
1120 -- Entry_Names_OK --
1121 --------------------
1123 function Entry_Names_OK return Boolean is
1124 begin
1125 return
1126 not Restricted_Profile
1127 and then not Global_Discard_Names
1128 and then not Restriction_Active (No_Implicit_Heap_Allocations)
1129 and then not Restriction_Active (No_Local_Allocators);
1130 end Entry_Names_OK;
1132 ---------------------
1133 -- Evolve_And_Then --
1134 ---------------------
1136 procedure Evolve_And_Then (Cond : in out Node_Id; Cond1 : Node_Id) is
1137 begin
1138 if No (Cond) then
1139 Cond := Cond1;
1140 else
1141 Cond :=
1142 Make_And_Then (Sloc (Cond1),
1143 Left_Opnd => Cond,
1144 Right_Opnd => Cond1);
1145 end if;
1146 end Evolve_And_Then;
1148 --------------------
1149 -- Evolve_Or_Else --
1150 --------------------
1152 procedure Evolve_Or_Else (Cond : in out Node_Id; Cond1 : Node_Id) is
1153 begin
1154 if No (Cond) then
1155 Cond := Cond1;
1156 else
1157 Cond :=
1158 Make_Or_Else (Sloc (Cond1),
1159 Left_Opnd => Cond,
1160 Right_Opnd => Cond1);
1161 end if;
1162 end Evolve_Or_Else;
1164 ------------------------------
1165 -- Expand_Subtype_From_Expr --
1166 ------------------------------
1168 -- This function is applicable for both static and dynamic allocation of
1169 -- objects which are constrained by an initial expression. Basically it
1170 -- transforms an unconstrained subtype indication into a constrained one.
1171 -- The expression may also be transformed in certain cases in order to
1172 -- avoid multiple evaluation. In the static allocation case, the general
1173 -- scheme is:
1175 -- Val : T := Expr;
1177 -- is transformed into
1179 -- Val : Constrained_Subtype_of_T := Maybe_Modified_Expr;
1181 -- Here are the main cases :
1183 -- <if Expr is a Slice>
1184 -- Val : T ([Index_Subtype (Expr)]) := Expr;
1186 -- <elsif Expr is a String Literal>
1187 -- Val : T (T'First .. T'First + Length (string literal) - 1) := Expr;
1189 -- <elsif Expr is Constrained>
1190 -- subtype T is Type_Of_Expr
1191 -- Val : T := Expr;
1193 -- <elsif Expr is an entity_name>
1194 -- Val : T (constraints taken from Expr) := Expr;
1196 -- <else>
1197 -- type Axxx is access all T;
1198 -- Rval : Axxx := Expr'ref;
1199 -- Val : T (constraints taken from Rval) := Rval.all;
1201 -- ??? note: when the Expression is allocated in the secondary stack
1202 -- we could use it directly instead of copying it by declaring
1203 -- Val : T (...) renames Rval.all
1205 procedure Expand_Subtype_From_Expr
1206 (N : Node_Id;
1207 Unc_Type : Entity_Id;
1208 Subtype_Indic : Node_Id;
1209 Exp : Node_Id)
1211 Loc : constant Source_Ptr := Sloc (N);
1212 Exp_Typ : constant Entity_Id := Etype (Exp);
1213 T : Entity_Id;
1215 begin
1216 -- In general we cannot build the subtype if expansion is disabled,
1217 -- because internal entities may not have been defined. However, to
1218 -- avoid some cascaded errors, we try to continue when the expression
1219 -- is an array (or string), because it is safe to compute the bounds.
1220 -- It is in fact required to do so even in a generic context, because
1221 -- there may be constants that depend on bounds of string literal.
1223 if not Expander_Active
1224 and then (No (Etype (Exp))
1225 or else Base_Type (Etype (Exp)) /= Standard_String)
1226 then
1227 return;
1228 end if;
1230 if Nkind (Exp) = N_Slice then
1231 declare
1232 Slice_Type : constant Entity_Id := Etype (First_Index (Exp_Typ));
1234 begin
1235 Rewrite (Subtype_Indic,
1236 Make_Subtype_Indication (Loc,
1237 Subtype_Mark => New_Reference_To (Unc_Type, Loc),
1238 Constraint =>
1239 Make_Index_Or_Discriminant_Constraint (Loc,
1240 Constraints => New_List
1241 (New_Reference_To (Slice_Type, Loc)))));
1243 -- This subtype indication may be used later for constraint checks
1244 -- we better make sure that if a variable was used as a bound of
1245 -- of the original slice, its value is frozen.
1247 Force_Evaluation (Low_Bound (Scalar_Range (Slice_Type)));
1248 Force_Evaluation (High_Bound (Scalar_Range (Slice_Type)));
1249 end;
1251 elsif Ekind (Exp_Typ) = E_String_Literal_Subtype then
1252 Rewrite (Subtype_Indic,
1253 Make_Subtype_Indication (Loc,
1254 Subtype_Mark => New_Reference_To (Unc_Type, Loc),
1255 Constraint =>
1256 Make_Index_Or_Discriminant_Constraint (Loc,
1257 Constraints => New_List (
1258 Make_Literal_Range (Loc,
1259 Literal_Typ => Exp_Typ)))));
1261 elsif Is_Constrained (Exp_Typ)
1262 and then not Is_Class_Wide_Type (Unc_Type)
1263 then
1264 if Is_Itype (Exp_Typ) then
1266 -- Within an initialization procedure, a selected component
1267 -- denotes a component of the enclosing record, and it appears
1268 -- as an actual in a call to its own initialization procedure.
1269 -- If this component depends on the outer discriminant, we must
1270 -- generate the proper actual subtype for it.
1272 if Nkind (Exp) = N_Selected_Component
1273 and then Within_Init_Proc
1274 then
1275 declare
1276 Decl : constant Node_Id :=
1277 Build_Actual_Subtype_Of_Component (Exp_Typ, Exp);
1278 begin
1279 if Present (Decl) then
1280 Insert_Action (N, Decl);
1281 T := Defining_Identifier (Decl);
1282 else
1283 T := Exp_Typ;
1284 end if;
1285 end;
1287 -- No need to generate a new one (new what???)
1289 else
1290 T := Exp_Typ;
1291 end if;
1293 else
1294 T :=
1295 Make_Defining_Identifier (Loc,
1296 Chars => New_Internal_Name ('T'));
1298 Insert_Action (N,
1299 Make_Subtype_Declaration (Loc,
1300 Defining_Identifier => T,
1301 Subtype_Indication => New_Reference_To (Exp_Typ, Loc)));
1303 -- This type is marked as an itype even though it has an
1304 -- explicit declaration because otherwise it can be marked
1305 -- with Is_Generic_Actual_Type and generate spurious errors.
1306 -- (see sem_ch8.Analyze_Package_Renaming and sem_type.covers)
1308 Set_Is_Itype (T);
1309 Set_Associated_Node_For_Itype (T, Exp);
1310 end if;
1312 Rewrite (Subtype_Indic, New_Reference_To (T, Loc));
1314 -- nothing needs to be done for private types with unknown discriminants
1315 -- if the underlying type is not an unconstrained composite type.
1317 elsif Is_Private_Type (Unc_Type)
1318 and then Has_Unknown_Discriminants (Unc_Type)
1319 and then (not Is_Composite_Type (Underlying_Type (Unc_Type))
1320 or else Is_Constrained (Underlying_Type (Unc_Type)))
1321 then
1322 null;
1324 -- Nothing to be done for derived types with unknown discriminants if
1325 -- the parent type also has unknown discriminants.
1327 elsif Is_Record_Type (Unc_Type)
1328 and then not Is_Class_Wide_Type (Unc_Type)
1329 and then Has_Unknown_Discriminants (Unc_Type)
1330 and then Has_Unknown_Discriminants (Underlying_Type (Unc_Type))
1331 then
1332 null;
1334 -- In Ada95, Nothing to be done if the type of the expression is
1335 -- limited, because in this case the expression cannot be copied,
1336 -- and its use can only be by reference.
1338 -- In Ada2005, the context can be an object declaration whose expression
1339 -- is a function that returns in place. If the nominal subtype has
1340 -- unknown discriminants, the call still provides constraints on the
1341 -- object, and we have to create an actual subtype from it.
1343 -- If the type is class-wide, the expression is dynamically tagged and
1344 -- we do not create an actual subtype either. Ditto for an interface.
1346 elsif Is_Limited_Type (Exp_Typ)
1347 and then
1348 (Is_Class_Wide_Type (Exp_Typ)
1349 or else Is_Interface (Exp_Typ)
1350 or else not Has_Unknown_Discriminants (Exp_Typ)
1351 or else not Is_Composite_Type (Unc_Type))
1352 then
1353 null;
1355 -- For limited interfaces, nothing to be done
1357 -- This branch may be redundant once the limited interface issue is
1358 -- sorted out???
1360 elsif Is_Interface (Exp_Typ)
1361 and then Is_Limited_Interface (Exp_Typ)
1362 then
1363 null;
1365 -- For limited objects initialized with build in place function calls,
1366 -- nothing to be done; otherwise we prematurely introduce an N_Reference
1367 -- node in the expression initializing the object, which breaks the
1368 -- circuitry that detects and adds the additional arguments to the
1369 -- called function.
1371 elsif Is_Build_In_Place_Function_Call (Exp) then
1372 null;
1374 else
1375 Remove_Side_Effects (Exp);
1376 Rewrite (Subtype_Indic,
1377 Make_Subtype_From_Expr (Exp, Unc_Type));
1378 end if;
1379 end Expand_Subtype_From_Expr;
1381 ------------------------
1382 -- Find_Interface_ADT --
1383 ------------------------
1385 function Find_Interface_ADT
1386 (T : Entity_Id;
1387 Iface : Entity_Id) return Elmt_Id
1389 ADT : Elmt_Id;
1390 Typ : Entity_Id := T;
1392 begin
1393 pragma Assert (Is_Interface (Iface));
1395 -- Handle private types
1397 if Has_Private_Declaration (Typ)
1398 and then Present (Full_View (Typ))
1399 then
1400 Typ := Full_View (Typ);
1401 end if;
1403 -- Handle access types
1405 if Is_Access_Type (Typ) then
1406 Typ := Directly_Designated_Type (Typ);
1407 end if;
1409 -- Handle task and protected types implementing interfaces
1411 if Is_Concurrent_Type (Typ) then
1412 Typ := Corresponding_Record_Type (Typ);
1413 end if;
1415 pragma Assert
1416 (not Is_Class_Wide_Type (Typ)
1417 and then Ekind (Typ) /= E_Incomplete_Type);
1419 if Is_Ancestor (Iface, Typ) then
1420 return First_Elmt (Access_Disp_Table (Typ));
1422 else
1423 ADT :=
1424 Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Typ))));
1425 while Present (ADT)
1426 and then Present (Related_Type (Node (ADT)))
1427 and then Related_Type (Node (ADT)) /= Iface
1428 and then not Is_Ancestor (Iface, Related_Type (Node (ADT)))
1429 loop
1430 Next_Elmt (ADT);
1431 end loop;
1433 pragma Assert (Present (Related_Type (Node (ADT))));
1434 return ADT;
1435 end if;
1436 end Find_Interface_ADT;
1438 ------------------------
1439 -- Find_Interface_Tag --
1440 ------------------------
1442 function Find_Interface_Tag
1443 (T : Entity_Id;
1444 Iface : Entity_Id) return Entity_Id
1446 AI_Tag : Entity_Id;
1447 Found : Boolean := False;
1448 Typ : Entity_Id := T;
1450 procedure Find_Tag (Typ : Entity_Id);
1451 -- Internal subprogram used to recursively climb to the ancestors
1453 --------------
1454 -- Find_Tag --
1455 --------------
1457 procedure Find_Tag (Typ : Entity_Id) is
1458 AI_Elmt : Elmt_Id;
1459 AI : Node_Id;
1461 begin
1462 -- Check if the interface is an immediate ancestor of the type and
1463 -- therefore shares the main tag.
1465 if Typ = Iface then
1466 pragma Assert (Etype (First_Tag_Component (Typ)) = RTE (RE_Tag));
1467 AI_Tag := First_Tag_Component (Typ);
1468 Found := True;
1469 return;
1470 end if;
1472 -- Climb to the root type handling private types
1474 if Present (Full_View (Etype (Typ))) then
1475 if Full_View (Etype (Typ)) /= Typ then
1476 Find_Tag (Full_View (Etype (Typ)));
1477 end if;
1479 elsif Etype (Typ) /= Typ then
1480 Find_Tag (Etype (Typ));
1481 end if;
1483 -- Traverse the list of interfaces implemented by the type
1485 if not Found
1486 and then Present (Interfaces (Typ))
1487 and then not (Is_Empty_Elmt_List (Interfaces (Typ)))
1488 then
1489 -- Skip the tag associated with the primary table
1491 pragma Assert (Etype (First_Tag_Component (Typ)) = RTE (RE_Tag));
1492 AI_Tag := Next_Tag_Component (First_Tag_Component (Typ));
1493 pragma Assert (Present (AI_Tag));
1495 AI_Elmt := First_Elmt (Interfaces (Typ));
1496 while Present (AI_Elmt) loop
1497 AI := Node (AI_Elmt);
1499 if AI = Iface or else Is_Ancestor (Iface, AI) then
1500 Found := True;
1501 return;
1502 end if;
1504 AI_Tag := Next_Tag_Component (AI_Tag);
1505 Next_Elmt (AI_Elmt);
1506 end loop;
1507 end if;
1508 end Find_Tag;
1510 -- Start of processing for Find_Interface_Tag
1512 begin
1513 pragma Assert (Is_Interface (Iface));
1515 -- Handle private types
1517 if Has_Private_Declaration (Typ)
1518 and then Present (Full_View (Typ))
1519 then
1520 Typ := Full_View (Typ);
1521 end if;
1523 -- Handle access types
1525 if Is_Access_Type (Typ) then
1526 Typ := Directly_Designated_Type (Typ);
1527 end if;
1529 -- Handle task and protected types implementing interfaces
1531 if Is_Concurrent_Type (Typ) then
1532 Typ := Corresponding_Record_Type (Typ);
1533 end if;
1535 if Is_Class_Wide_Type (Typ) then
1536 Typ := Etype (Typ);
1537 end if;
1539 -- Handle entities from the limited view
1541 if Ekind (Typ) = E_Incomplete_Type then
1542 pragma Assert (Present (Non_Limited_View (Typ)));
1543 Typ := Non_Limited_View (Typ);
1544 end if;
1546 Find_Tag (Typ);
1547 pragma Assert (Found);
1548 return AI_Tag;
1549 end Find_Interface_Tag;
1551 ------------------
1552 -- Find_Prim_Op --
1553 ------------------
1555 function Find_Prim_Op (T : Entity_Id; Name : Name_Id) return Entity_Id is
1556 Prim : Elmt_Id;
1557 Typ : Entity_Id := T;
1558 Op : Entity_Id;
1560 begin
1561 if Is_Class_Wide_Type (Typ) then
1562 Typ := Root_Type (Typ);
1563 end if;
1565 Typ := Underlying_Type (Typ);
1567 -- Loop through primitive operations
1569 Prim := First_Elmt (Primitive_Operations (Typ));
1570 while Present (Prim) loop
1571 Op := Node (Prim);
1573 -- We can retrieve primitive operations by name if it is an internal
1574 -- name. For equality we must check that both of its operands have
1575 -- the same type, to avoid confusion with user-defined equalities
1576 -- than may have a non-symmetric signature.
1578 exit when Chars (Op) = Name
1579 and then
1580 (Name /= Name_Op_Eq
1581 or else Etype (First_Entity (Op)) = Etype (Last_Entity (Op)));
1583 Next_Elmt (Prim);
1585 -- Raise Program_Error if no primitive found
1587 if No (Prim) then
1588 raise Program_Error;
1589 end if;
1590 end loop;
1592 return Node (Prim);
1593 end Find_Prim_Op;
1595 ------------------
1596 -- Find_Prim_Op --
1597 ------------------
1599 function Find_Prim_Op
1600 (T : Entity_Id;
1601 Name : TSS_Name_Type) return Entity_Id
1603 Prim : Elmt_Id;
1604 Typ : Entity_Id := T;
1606 begin
1607 if Is_Class_Wide_Type (Typ) then
1608 Typ := Root_Type (Typ);
1609 end if;
1611 Typ := Underlying_Type (Typ);
1613 Prim := First_Elmt (Primitive_Operations (Typ));
1614 while not Is_TSS (Node (Prim), Name) loop
1615 Next_Elmt (Prim);
1617 -- Raise program error if no primitive found
1619 if No (Prim) then
1620 raise Program_Error;
1621 end if;
1622 end loop;
1624 return Node (Prim);
1625 end Find_Prim_Op;
1627 ----------------------------
1628 -- Find_Protection_Object --
1629 ----------------------------
1631 function Find_Protection_Object (Scop : Entity_Id) return Entity_Id is
1632 S : Entity_Id;
1634 begin
1635 S := Scop;
1636 while Present (S) loop
1637 if (Ekind (S) = E_Entry
1638 or else Ekind (S) = E_Entry_Family
1639 or else Ekind (S) = E_Function
1640 or else Ekind (S) = E_Procedure)
1641 and then Present (Protection_Object (S))
1642 then
1643 return Protection_Object (S);
1644 end if;
1646 S := Scope (S);
1647 end loop;
1649 -- If we do not find a Protection object in the scope chain, then
1650 -- something has gone wrong, most likely the object was never created.
1652 raise Program_Error;
1653 end Find_Protection_Object;
1655 ----------------------
1656 -- Force_Evaluation --
1657 ----------------------
1659 procedure Force_Evaluation (Exp : Node_Id; Name_Req : Boolean := False) is
1660 begin
1661 Remove_Side_Effects (Exp, Name_Req, Variable_Ref => True);
1662 end Force_Evaluation;
1664 ------------------------
1665 -- Generate_Poll_Call --
1666 ------------------------
1668 procedure Generate_Poll_Call (N : Node_Id) is
1669 begin
1670 -- No poll call if polling not active
1672 if not Polling_Required then
1673 return;
1675 -- Otherwise generate require poll call
1677 else
1678 Insert_Before_And_Analyze (N,
1679 Make_Procedure_Call_Statement (Sloc (N),
1680 Name => New_Occurrence_Of (RTE (RE_Poll), Sloc (N))));
1681 end if;
1682 end Generate_Poll_Call;
1684 ---------------------------------
1685 -- Get_Current_Value_Condition --
1686 ---------------------------------
1688 -- Note: the implementation of this procedure is very closely tied to the
1689 -- implementation of Set_Current_Value_Condition. In the Get procedure, we
1690 -- interpret Current_Value fields set by the Set procedure, so the two
1691 -- procedures need to be closely coordinated.
1693 procedure Get_Current_Value_Condition
1694 (Var : Node_Id;
1695 Op : out Node_Kind;
1696 Val : out Node_Id)
1698 Loc : constant Source_Ptr := Sloc (Var);
1699 Ent : constant Entity_Id := Entity (Var);
1701 procedure Process_Current_Value_Condition
1702 (N : Node_Id;
1703 S : Boolean);
1704 -- N is an expression which holds either True (S = True) or False (S =
1705 -- False) in the condition. This procedure digs out the expression and
1706 -- if it refers to Ent, sets Op and Val appropriately.
1708 -------------------------------------
1709 -- Process_Current_Value_Condition --
1710 -------------------------------------
1712 procedure Process_Current_Value_Condition
1713 (N : Node_Id;
1714 S : Boolean)
1716 Cond : Node_Id;
1717 Sens : Boolean;
1719 begin
1720 Cond := N;
1721 Sens := S;
1723 -- Deal with NOT operators, inverting sense
1725 while Nkind (Cond) = N_Op_Not loop
1726 Cond := Right_Opnd (Cond);
1727 Sens := not Sens;
1728 end loop;
1730 -- Deal with AND THEN and AND cases
1732 if Nkind (Cond) = N_And_Then
1733 or else Nkind (Cond) = N_Op_And
1734 then
1735 -- Don't ever try to invert a condition that is of the form
1736 -- of an AND or AND THEN (since we are not doing sufficiently
1737 -- general processing to allow this).
1739 if Sens = False then
1740 Op := N_Empty;
1741 Val := Empty;
1742 return;
1743 end if;
1745 -- Recursively process AND and AND THEN branches
1747 Process_Current_Value_Condition (Left_Opnd (Cond), True);
1749 if Op /= N_Empty then
1750 return;
1751 end if;
1753 Process_Current_Value_Condition (Right_Opnd (Cond), True);
1754 return;
1756 -- Case of relational operator
1758 elsif Nkind (Cond) in N_Op_Compare then
1759 Op := Nkind (Cond);
1761 -- Invert sense of test if inverted test
1763 if Sens = False then
1764 case Op is
1765 when N_Op_Eq => Op := N_Op_Ne;
1766 when N_Op_Ne => Op := N_Op_Eq;
1767 when N_Op_Lt => Op := N_Op_Ge;
1768 when N_Op_Gt => Op := N_Op_Le;
1769 when N_Op_Le => Op := N_Op_Gt;
1770 when N_Op_Ge => Op := N_Op_Lt;
1771 when others => raise Program_Error;
1772 end case;
1773 end if;
1775 -- Case of entity op value
1777 if Is_Entity_Name (Left_Opnd (Cond))
1778 and then Ent = Entity (Left_Opnd (Cond))
1779 and then Compile_Time_Known_Value (Right_Opnd (Cond))
1780 then
1781 Val := Right_Opnd (Cond);
1783 -- Case of value op entity
1785 elsif Is_Entity_Name (Right_Opnd (Cond))
1786 and then Ent = Entity (Right_Opnd (Cond))
1787 and then Compile_Time_Known_Value (Left_Opnd (Cond))
1788 then
1789 Val := Left_Opnd (Cond);
1791 -- We are effectively swapping operands
1793 case Op is
1794 when N_Op_Eq => null;
1795 when N_Op_Ne => null;
1796 when N_Op_Lt => Op := N_Op_Gt;
1797 when N_Op_Gt => Op := N_Op_Lt;
1798 when N_Op_Le => Op := N_Op_Ge;
1799 when N_Op_Ge => Op := N_Op_Le;
1800 when others => raise Program_Error;
1801 end case;
1803 else
1804 Op := N_Empty;
1805 end if;
1807 return;
1809 -- Case of Boolean variable reference, return as though the
1810 -- reference had said var = True.
1812 else
1813 if Is_Entity_Name (Cond)
1814 and then Ent = Entity (Cond)
1815 then
1816 Val := New_Occurrence_Of (Standard_True, Sloc (Cond));
1818 if Sens = False then
1819 Op := N_Op_Ne;
1820 else
1821 Op := N_Op_Eq;
1822 end if;
1823 end if;
1824 end if;
1825 end Process_Current_Value_Condition;
1827 -- Start of processing for Get_Current_Value_Condition
1829 begin
1830 Op := N_Empty;
1831 Val := Empty;
1833 -- Immediate return, nothing doing, if this is not an object
1835 if Ekind (Ent) not in Object_Kind then
1836 return;
1837 end if;
1839 -- Otherwise examine current value
1841 declare
1842 CV : constant Node_Id := Current_Value (Ent);
1843 Sens : Boolean;
1844 Stm : Node_Id;
1846 begin
1847 -- If statement. Condition is known true in THEN section, known False
1848 -- in any ELSIF or ELSE part, and unknown outside the IF statement.
1850 if Nkind (CV) = N_If_Statement then
1852 -- Before start of IF statement
1854 if Loc < Sloc (CV) then
1855 return;
1857 -- After end of IF statement
1859 elsif Loc >= Sloc (CV) + Text_Ptr (UI_To_Int (End_Span (CV))) then
1860 return;
1861 end if;
1863 -- At this stage we know that we are within the IF statement, but
1864 -- unfortunately, the tree does not record the SLOC of the ELSE so
1865 -- we cannot use a simple SLOC comparison to distinguish between
1866 -- the then/else statements, so we have to climb the tree.
1868 declare
1869 N : Node_Id;
1871 begin
1872 N := Parent (Var);
1873 while Parent (N) /= CV loop
1874 N := Parent (N);
1876 -- If we fall off the top of the tree, then that's odd, but
1877 -- perhaps it could occur in some error situation, and the
1878 -- safest response is simply to assume that the outcome of
1879 -- the condition is unknown. No point in bombing during an
1880 -- attempt to optimize things.
1882 if No (N) then
1883 return;
1884 end if;
1885 end loop;
1887 -- Now we have N pointing to a node whose parent is the IF
1888 -- statement in question, so now we can tell if we are within
1889 -- the THEN statements.
1891 if Is_List_Member (N)
1892 and then List_Containing (N) = Then_Statements (CV)
1893 then
1894 Sens := True;
1896 -- If the variable reference does not come from source, we
1897 -- cannot reliably tell whether it appears in the else part.
1898 -- In particular, if it appears in generated code for a node
1899 -- that requires finalization, it may be attached to a list
1900 -- that has not been yet inserted into the code. For now,
1901 -- treat it as unknown.
1903 elsif not Comes_From_Source (N) then
1904 return;
1906 -- Otherwise we must be in ELSIF or ELSE part
1908 else
1909 Sens := False;
1910 end if;
1911 end;
1913 -- ELSIF part. Condition is known true within the referenced
1914 -- ELSIF, known False in any subsequent ELSIF or ELSE part, and
1915 -- unknown before the ELSE part or after the IF statement.
1917 elsif Nkind (CV) = N_Elsif_Part then
1918 Stm := Parent (CV);
1920 -- Before start of ELSIF part
1922 if Loc < Sloc (CV) then
1923 return;
1925 -- After end of IF statement
1927 elsif Loc >= Sloc (Stm) +
1928 Text_Ptr (UI_To_Int (End_Span (Stm)))
1929 then
1930 return;
1931 end if;
1933 -- Again we lack the SLOC of the ELSE, so we need to climb the
1934 -- tree to see if we are within the ELSIF part in question.
1936 declare
1937 N : Node_Id;
1939 begin
1940 N := Parent (Var);
1941 while Parent (N) /= Stm loop
1942 N := Parent (N);
1944 -- If we fall off the top of the tree, then that's odd, but
1945 -- perhaps it could occur in some error situation, and the
1946 -- safest response is simply to assume that the outcome of
1947 -- the condition is unknown. No point in bombing during an
1948 -- attempt to optimize things.
1950 if No (N) then
1951 return;
1952 end if;
1953 end loop;
1955 -- Now we have N pointing to a node whose parent is the IF
1956 -- statement in question, so see if is the ELSIF part we want.
1957 -- the THEN statements.
1959 if N = CV then
1960 Sens := True;
1962 -- Otherwise we must be in subsequent ELSIF or ELSE part
1964 else
1965 Sens := False;
1966 end if;
1967 end;
1969 -- Iteration scheme of while loop. The condition is known to be
1970 -- true within the body of the loop.
1972 elsif Nkind (CV) = N_Iteration_Scheme then
1973 declare
1974 Loop_Stmt : constant Node_Id := Parent (CV);
1976 begin
1977 -- Before start of body of loop
1979 if Loc < Sloc (Loop_Stmt) then
1980 return;
1982 -- After end of LOOP statement
1984 elsif Loc >= Sloc (End_Label (Loop_Stmt)) then
1985 return;
1987 -- We are within the body of the loop
1989 else
1990 Sens := True;
1991 end if;
1992 end;
1994 -- All other cases of Current_Value settings
1996 else
1997 return;
1998 end if;
2000 -- If we fall through here, then we have a reportable condition, Sens
2001 -- is True if the condition is true and False if it needs inverting.
2003 Process_Current_Value_Condition (Condition (CV), Sens);
2004 end;
2005 end Get_Current_Value_Condition;
2007 ---------------------------------
2008 -- Has_Controlled_Coextensions --
2009 ---------------------------------
2011 function Has_Controlled_Coextensions (Typ : Entity_Id) return Boolean is
2012 D_Typ : Entity_Id;
2013 Discr : Entity_Id;
2015 begin
2016 -- Only consider record types
2018 if Ekind (Typ) /= E_Record_Type
2019 and then Ekind (Typ) /= E_Record_Subtype
2020 then
2021 return False;
2022 end if;
2024 if Has_Discriminants (Typ) then
2025 Discr := First_Discriminant (Typ);
2026 while Present (Discr) loop
2027 D_Typ := Etype (Discr);
2029 if Ekind (D_Typ) = E_Anonymous_Access_Type
2030 and then
2031 (Is_Controlled (Directly_Designated_Type (D_Typ))
2032 or else
2033 Is_Concurrent_Type (Directly_Designated_Type (D_Typ)))
2034 then
2035 return True;
2036 end if;
2038 Next_Discriminant (Discr);
2039 end loop;
2040 end if;
2042 return False;
2043 end Has_Controlled_Coextensions;
2045 --------------------
2046 -- Homonym_Number --
2047 --------------------
2049 function Homonym_Number (Subp : Entity_Id) return Nat is
2050 Count : Nat;
2051 Hom : Entity_Id;
2053 begin
2054 Count := 1;
2055 Hom := Homonym (Subp);
2056 while Present (Hom) loop
2057 if Scope (Hom) = Scope (Subp) then
2058 Count := Count + 1;
2059 end if;
2061 Hom := Homonym (Hom);
2062 end loop;
2064 return Count;
2065 end Homonym_Number;
2067 ------------------------------
2068 -- In_Unconditional_Context --
2069 ------------------------------
2071 function In_Unconditional_Context (Node : Node_Id) return Boolean is
2072 P : Node_Id;
2074 begin
2075 P := Node;
2076 while Present (P) loop
2077 case Nkind (P) is
2078 when N_Subprogram_Body =>
2079 return True;
2081 when N_If_Statement =>
2082 return False;
2084 when N_Loop_Statement =>
2085 return False;
2087 when N_Case_Statement =>
2088 return False;
2090 when others =>
2091 P := Parent (P);
2092 end case;
2093 end loop;
2095 return False;
2096 end In_Unconditional_Context;
2098 -------------------
2099 -- Insert_Action --
2100 -------------------
2102 procedure Insert_Action (Assoc_Node : Node_Id; Ins_Action : Node_Id) is
2103 begin
2104 if Present (Ins_Action) then
2105 Insert_Actions (Assoc_Node, New_List (Ins_Action));
2106 end if;
2107 end Insert_Action;
2109 -- Version with check(s) suppressed
2111 procedure Insert_Action
2112 (Assoc_Node : Node_Id; Ins_Action : Node_Id; Suppress : Check_Id)
2114 begin
2115 Insert_Actions (Assoc_Node, New_List (Ins_Action), Suppress);
2116 end Insert_Action;
2118 --------------------
2119 -- Insert_Actions --
2120 --------------------
2122 procedure Insert_Actions (Assoc_Node : Node_Id; Ins_Actions : List_Id) is
2123 N : Node_Id;
2124 P : Node_Id;
2126 Wrapped_Node : Node_Id := Empty;
2128 begin
2129 if No (Ins_Actions) or else Is_Empty_List (Ins_Actions) then
2130 return;
2131 end if;
2133 -- Ignore insert of actions from inside default expression (or other
2134 -- similar "spec expression") in the special spec-expression analyze
2135 -- mode. Any insertions at this point have no relevance, since we are
2136 -- only doing the analyze to freeze the types of any static expressions.
2137 -- See section "Handling of Default Expressions" in the spec of package
2138 -- Sem for further details.
2140 if In_Spec_Expression then
2141 return;
2142 end if;
2144 -- If the action derives from stuff inside a record, then the actions
2145 -- are attached to the current scope, to be inserted and analyzed on
2146 -- exit from the scope. The reason for this is that we may also
2147 -- be generating freeze actions at the same time, and they must
2148 -- eventually be elaborated in the correct order.
2150 if Is_Record_Type (Current_Scope)
2151 and then not Is_Frozen (Current_Scope)
2152 then
2153 if No (Scope_Stack.Table
2154 (Scope_Stack.Last).Pending_Freeze_Actions)
2155 then
2156 Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions :=
2157 Ins_Actions;
2158 else
2159 Append_List
2160 (Ins_Actions,
2161 Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions);
2162 end if;
2164 return;
2165 end if;
2167 -- We now intend to climb up the tree to find the right point to
2168 -- insert the actions. We start at Assoc_Node, unless this node is
2169 -- a subexpression in which case we start with its parent. We do this
2170 -- for two reasons. First it speeds things up. Second, if Assoc_Node
2171 -- is itself one of the special nodes like N_And_Then, then we assume
2172 -- that an initial request to insert actions for such a node does not
2173 -- expect the actions to get deposited in the node for later handling
2174 -- when the node is expanded, since clearly the node is being dealt
2175 -- with by the caller. Note that in the subexpression case, N is
2176 -- always the child we came from.
2178 -- N_Raise_xxx_Error is an annoying special case, it is a statement
2179 -- if it has type Standard_Void_Type, and a subexpression otherwise.
2180 -- otherwise. Procedure attribute references are also statements.
2182 if Nkind (Assoc_Node) in N_Subexpr
2183 and then (Nkind (Assoc_Node) in N_Raise_xxx_Error
2184 or else Etype (Assoc_Node) /= Standard_Void_Type)
2185 and then (Nkind (Assoc_Node) /= N_Attribute_Reference
2186 or else
2187 not Is_Procedure_Attribute_Name
2188 (Attribute_Name (Assoc_Node)))
2189 then
2190 P := Assoc_Node; -- ??? does not agree with above!
2191 N := Parent (Assoc_Node);
2193 -- Non-subexpression case. Note that N is initially Empty in this
2194 -- case (N is only guaranteed Non-Empty in the subexpr case).
2196 else
2197 P := Assoc_Node;
2198 N := Empty;
2199 end if;
2201 -- Capture root of the transient scope
2203 if Scope_Is_Transient then
2204 Wrapped_Node := Node_To_Be_Wrapped;
2205 end if;
2207 loop
2208 pragma Assert (Present (P));
2210 case Nkind (P) is
2212 -- Case of right operand of AND THEN or OR ELSE. Put the actions
2213 -- in the Actions field of the right operand. They will be moved
2214 -- out further when the AND THEN or OR ELSE operator is expanded.
2215 -- Nothing special needs to be done for the left operand since
2216 -- in that case the actions are executed unconditionally.
2218 when N_And_Then | N_Or_Else =>
2219 if N = Right_Opnd (P) then
2221 -- We are now going to either append the actions to the
2222 -- actions field of the short-circuit operation. We will
2223 -- also analyze the actions now.
2225 -- This analysis is really too early, the proper thing would
2226 -- be to just park them there now, and only analyze them if
2227 -- we find we really need them, and to it at the proper
2228 -- final insertion point. However attempting to this proved
2229 -- tricky, so for now we just kill current values before and
2230 -- after the analyze call to make sure we avoid peculiar
2231 -- optimizations from this out of order insertion.
2233 Kill_Current_Values;
2235 if Present (Actions (P)) then
2236 Insert_List_After_And_Analyze
2237 (Last (Actions (P)), Ins_Actions);
2238 else
2239 Set_Actions (P, Ins_Actions);
2240 Analyze_List (Actions (P));
2241 end if;
2243 Kill_Current_Values;
2245 return;
2246 end if;
2248 -- Then or Else operand of conditional expression. Add actions to
2249 -- Then_Actions or Else_Actions field as appropriate. The actions
2250 -- will be moved further out when the conditional is expanded.
2252 when N_Conditional_Expression =>
2253 declare
2254 ThenX : constant Node_Id := Next (First (Expressions (P)));
2255 ElseX : constant Node_Id := Next (ThenX);
2257 begin
2258 -- Actions belong to the then expression, temporarily
2259 -- place them as Then_Actions of the conditional expr.
2260 -- They will be moved to the proper place later when
2261 -- the conditional expression is expanded.
2263 if N = ThenX then
2264 if Present (Then_Actions (P)) then
2265 Insert_List_After_And_Analyze
2266 (Last (Then_Actions (P)), Ins_Actions);
2267 else
2268 Set_Then_Actions (P, Ins_Actions);
2269 Analyze_List (Then_Actions (P));
2270 end if;
2272 return;
2274 -- Actions belong to the else expression, temporarily
2275 -- place them as Else_Actions of the conditional expr.
2276 -- They will be moved to the proper place later when
2277 -- the conditional expression is expanded.
2279 elsif N = ElseX then
2280 if Present (Else_Actions (P)) then
2281 Insert_List_After_And_Analyze
2282 (Last (Else_Actions (P)), Ins_Actions);
2283 else
2284 Set_Else_Actions (P, Ins_Actions);
2285 Analyze_List (Else_Actions (P));
2286 end if;
2288 return;
2290 -- Actions belong to the condition. In this case they are
2291 -- unconditionally executed, and so we can continue the
2292 -- search for the proper insert point.
2294 else
2295 null;
2296 end if;
2297 end;
2299 -- Case of appearing in the condition of a while expression or
2300 -- elsif. We insert the actions into the Condition_Actions field.
2301 -- They will be moved further out when the while loop or elsif
2302 -- is analyzed.
2304 when N_Iteration_Scheme |
2305 N_Elsif_Part
2307 if N = Condition (P) then
2308 if Present (Condition_Actions (P)) then
2309 Insert_List_After_And_Analyze
2310 (Last (Condition_Actions (P)), Ins_Actions);
2311 else
2312 Set_Condition_Actions (P, Ins_Actions);
2314 -- Set the parent of the insert actions explicitly.
2315 -- This is not a syntactic field, but we need the
2316 -- parent field set, in particular so that freeze
2317 -- can understand that it is dealing with condition
2318 -- actions, and properly insert the freezing actions.
2320 Set_Parent (Ins_Actions, P);
2321 Analyze_List (Condition_Actions (P));
2322 end if;
2324 return;
2325 end if;
2327 -- Statements, declarations, pragmas, representation clauses
2329 when
2330 -- Statements
2332 N_Procedure_Call_Statement |
2333 N_Statement_Other_Than_Procedure_Call |
2335 -- Pragmas
2337 N_Pragma |
2339 -- Representation_Clause
2341 N_At_Clause |
2342 N_Attribute_Definition_Clause |
2343 N_Enumeration_Representation_Clause |
2344 N_Record_Representation_Clause |
2346 -- Declarations
2348 N_Abstract_Subprogram_Declaration |
2349 N_Entry_Body |
2350 N_Exception_Declaration |
2351 N_Exception_Renaming_Declaration |
2352 N_Formal_Abstract_Subprogram_Declaration |
2353 N_Formal_Concrete_Subprogram_Declaration |
2354 N_Formal_Object_Declaration |
2355 N_Formal_Type_Declaration |
2356 N_Full_Type_Declaration |
2357 N_Function_Instantiation |
2358 N_Generic_Function_Renaming_Declaration |
2359 N_Generic_Package_Declaration |
2360 N_Generic_Package_Renaming_Declaration |
2361 N_Generic_Procedure_Renaming_Declaration |
2362 N_Generic_Subprogram_Declaration |
2363 N_Implicit_Label_Declaration |
2364 N_Incomplete_Type_Declaration |
2365 N_Number_Declaration |
2366 N_Object_Declaration |
2367 N_Object_Renaming_Declaration |
2368 N_Package_Body |
2369 N_Package_Body_Stub |
2370 N_Package_Declaration |
2371 N_Package_Instantiation |
2372 N_Package_Renaming_Declaration |
2373 N_Private_Extension_Declaration |
2374 N_Private_Type_Declaration |
2375 N_Procedure_Instantiation |
2376 N_Protected_Body |
2377 N_Protected_Body_Stub |
2378 N_Protected_Type_Declaration |
2379 N_Single_Task_Declaration |
2380 N_Subprogram_Body |
2381 N_Subprogram_Body_Stub |
2382 N_Subprogram_Declaration |
2383 N_Subprogram_Renaming_Declaration |
2384 N_Subtype_Declaration |
2385 N_Task_Body |
2386 N_Task_Body_Stub |
2387 N_Task_Type_Declaration |
2389 -- Freeze entity behaves like a declaration or statement
2391 N_Freeze_Entity
2393 -- Do not insert here if the item is not a list member (this
2394 -- happens for example with a triggering statement, and the
2395 -- proper approach is to insert before the entire select).
2397 if not Is_List_Member (P) then
2398 null;
2400 -- Do not insert if parent of P is an N_Component_Association
2401 -- node (i.e. we are in the context of an N_Aggregate or
2402 -- N_Extension_Aggregate node. In this case we want to insert
2403 -- before the entire aggregate.
2405 elsif Nkind (Parent (P)) = N_Component_Association then
2406 null;
2408 -- Do not insert if the parent of P is either an N_Variant
2409 -- node or an N_Record_Definition node, meaning in either
2410 -- case that P is a member of a component list, and that
2411 -- therefore the actions should be inserted outside the
2412 -- complete record declaration.
2414 elsif Nkind (Parent (P)) = N_Variant
2415 or else Nkind (Parent (P)) = N_Record_Definition
2416 then
2417 null;
2419 -- Do not insert freeze nodes within the loop generated for
2420 -- an aggregate, because they may be elaborated too late for
2421 -- subsequent use in the back end: within a package spec the
2422 -- loop is part of the elaboration procedure and is only
2423 -- elaborated during the second pass.
2424 -- If the loop comes from source, or the entity is local to
2425 -- the loop itself it must remain within.
2427 elsif Nkind (Parent (P)) = N_Loop_Statement
2428 and then not Comes_From_Source (Parent (P))
2429 and then Nkind (First (Ins_Actions)) = N_Freeze_Entity
2430 and then
2431 Scope (Entity (First (Ins_Actions))) /= Current_Scope
2432 then
2433 null;
2435 -- Otherwise we can go ahead and do the insertion
2437 elsif P = Wrapped_Node then
2438 Store_Before_Actions_In_Scope (Ins_Actions);
2439 return;
2441 else
2442 Insert_List_Before_And_Analyze (P, Ins_Actions);
2443 return;
2444 end if;
2446 -- A special case, N_Raise_xxx_Error can act either as a
2447 -- statement or a subexpression. We tell the difference
2448 -- by looking at the Etype. It is set to Standard_Void_Type
2449 -- in the statement case.
2451 when
2452 N_Raise_xxx_Error =>
2453 if Etype (P) = Standard_Void_Type then
2454 if P = Wrapped_Node then
2455 Store_Before_Actions_In_Scope (Ins_Actions);
2456 else
2457 Insert_List_Before_And_Analyze (P, Ins_Actions);
2458 end if;
2460 return;
2462 -- In the subexpression case, keep climbing
2464 else
2465 null;
2466 end if;
2468 -- If a component association appears within a loop created for
2469 -- an array aggregate, attach the actions to the association so
2470 -- they can be subsequently inserted within the loop. For other
2471 -- component associations insert outside of the aggregate. For
2472 -- an association that will generate a loop, its Loop_Actions
2473 -- attribute is already initialized (see exp_aggr.adb).
2475 -- The list of loop_actions can in turn generate additional ones,
2476 -- that are inserted before the associated node. If the associated
2477 -- node is outside the aggregate, the new actions are collected
2478 -- at the end of the loop actions, to respect the order in which
2479 -- they are to be elaborated.
2481 when
2482 N_Component_Association =>
2483 if Nkind (Parent (P)) = N_Aggregate
2484 and then Present (Loop_Actions (P))
2485 then
2486 if Is_Empty_List (Loop_Actions (P)) then
2487 Set_Loop_Actions (P, Ins_Actions);
2488 Analyze_List (Ins_Actions);
2490 else
2491 declare
2492 Decl : Node_Id;
2494 begin
2495 -- Check whether these actions were generated
2496 -- by a declaration that is part of the loop_
2497 -- actions for the component_association.
2499 Decl := Assoc_Node;
2500 while Present (Decl) loop
2501 exit when Parent (Decl) = P
2502 and then Is_List_Member (Decl)
2503 and then
2504 List_Containing (Decl) = Loop_Actions (P);
2505 Decl := Parent (Decl);
2506 end loop;
2508 if Present (Decl) then
2509 Insert_List_Before_And_Analyze
2510 (Decl, Ins_Actions);
2511 else
2512 Insert_List_After_And_Analyze
2513 (Last (Loop_Actions (P)), Ins_Actions);
2514 end if;
2515 end;
2516 end if;
2518 return;
2520 else
2521 null;
2522 end if;
2524 -- Another special case, an attribute denoting a procedure call
2526 when
2527 N_Attribute_Reference =>
2528 if Is_Procedure_Attribute_Name (Attribute_Name (P)) then
2529 if P = Wrapped_Node then
2530 Store_Before_Actions_In_Scope (Ins_Actions);
2531 else
2532 Insert_List_Before_And_Analyze (P, Ins_Actions);
2533 end if;
2535 return;
2537 -- In the subexpression case, keep climbing
2539 else
2540 null;
2541 end if;
2543 -- For all other node types, keep climbing tree
2545 when
2546 N_Abortable_Part |
2547 N_Accept_Alternative |
2548 N_Access_Definition |
2549 N_Access_Function_Definition |
2550 N_Access_Procedure_Definition |
2551 N_Access_To_Object_Definition |
2552 N_Aggregate |
2553 N_Allocator |
2554 N_Case_Statement_Alternative |
2555 N_Character_Literal |
2556 N_Compilation_Unit |
2557 N_Compilation_Unit_Aux |
2558 N_Component_Clause |
2559 N_Component_Declaration |
2560 N_Component_Definition |
2561 N_Component_List |
2562 N_Constrained_Array_Definition |
2563 N_Decimal_Fixed_Point_Definition |
2564 N_Defining_Character_Literal |
2565 N_Defining_Identifier |
2566 N_Defining_Operator_Symbol |
2567 N_Defining_Program_Unit_Name |
2568 N_Delay_Alternative |
2569 N_Delta_Constraint |
2570 N_Derived_Type_Definition |
2571 N_Designator |
2572 N_Digits_Constraint |
2573 N_Discriminant_Association |
2574 N_Discriminant_Specification |
2575 N_Empty |
2576 N_Entry_Body_Formal_Part |
2577 N_Entry_Call_Alternative |
2578 N_Entry_Declaration |
2579 N_Entry_Index_Specification |
2580 N_Enumeration_Type_Definition |
2581 N_Error |
2582 N_Exception_Handler |
2583 N_Expanded_Name |
2584 N_Explicit_Dereference |
2585 N_Extension_Aggregate |
2586 N_Floating_Point_Definition |
2587 N_Formal_Decimal_Fixed_Point_Definition |
2588 N_Formal_Derived_Type_Definition |
2589 N_Formal_Discrete_Type_Definition |
2590 N_Formal_Floating_Point_Definition |
2591 N_Formal_Modular_Type_Definition |
2592 N_Formal_Ordinary_Fixed_Point_Definition |
2593 N_Formal_Package_Declaration |
2594 N_Formal_Private_Type_Definition |
2595 N_Formal_Signed_Integer_Type_Definition |
2596 N_Function_Call |
2597 N_Function_Specification |
2598 N_Generic_Association |
2599 N_Handled_Sequence_Of_Statements |
2600 N_Identifier |
2601 N_In |
2602 N_Index_Or_Discriminant_Constraint |
2603 N_Indexed_Component |
2604 N_Integer_Literal |
2605 N_Itype_Reference |
2606 N_Label |
2607 N_Loop_Parameter_Specification |
2608 N_Mod_Clause |
2609 N_Modular_Type_Definition |
2610 N_Not_In |
2611 N_Null |
2612 N_Op_Abs |
2613 N_Op_Add |
2614 N_Op_And |
2615 N_Op_Concat |
2616 N_Op_Divide |
2617 N_Op_Eq |
2618 N_Op_Expon |
2619 N_Op_Ge |
2620 N_Op_Gt |
2621 N_Op_Le |
2622 N_Op_Lt |
2623 N_Op_Minus |
2624 N_Op_Mod |
2625 N_Op_Multiply |
2626 N_Op_Ne |
2627 N_Op_Not |
2628 N_Op_Or |
2629 N_Op_Plus |
2630 N_Op_Rem |
2631 N_Op_Rotate_Left |
2632 N_Op_Rotate_Right |
2633 N_Op_Shift_Left |
2634 N_Op_Shift_Right |
2635 N_Op_Shift_Right_Arithmetic |
2636 N_Op_Subtract |
2637 N_Op_Xor |
2638 N_Operator_Symbol |
2639 N_Ordinary_Fixed_Point_Definition |
2640 N_Others_Choice |
2641 N_Package_Specification |
2642 N_Parameter_Association |
2643 N_Parameter_Specification |
2644 N_Pop_Constraint_Error_Label |
2645 N_Pop_Program_Error_Label |
2646 N_Pop_Storage_Error_Label |
2647 N_Pragma_Argument_Association |
2648 N_Procedure_Specification |
2649 N_Protected_Definition |
2650 N_Push_Constraint_Error_Label |
2651 N_Push_Program_Error_Label |
2652 N_Push_Storage_Error_Label |
2653 N_Qualified_Expression |
2654 N_Range |
2655 N_Range_Constraint |
2656 N_Real_Literal |
2657 N_Real_Range_Specification |
2658 N_Record_Definition |
2659 N_Reference |
2660 N_Selected_Component |
2661 N_Signed_Integer_Type_Definition |
2662 N_Single_Protected_Declaration |
2663 N_Slice |
2664 N_String_Literal |
2665 N_Subprogram_Info |
2666 N_Subtype_Indication |
2667 N_Subunit |
2668 N_Task_Definition |
2669 N_Terminate_Alternative |
2670 N_Triggering_Alternative |
2671 N_Type_Conversion |
2672 N_Unchecked_Expression |
2673 N_Unchecked_Type_Conversion |
2674 N_Unconstrained_Array_Definition |
2675 N_Unused_At_End |
2676 N_Unused_At_Start |
2677 N_Use_Package_Clause |
2678 N_Use_Type_Clause |
2679 N_Variant |
2680 N_Variant_Part |
2681 N_Validate_Unchecked_Conversion |
2682 N_With_Clause
2684 null;
2686 end case;
2688 -- Make sure that inserted actions stay in the transient scope
2690 if P = Wrapped_Node then
2691 Store_Before_Actions_In_Scope (Ins_Actions);
2692 return;
2693 end if;
2695 -- If we fall through above tests, keep climbing tree
2697 N := P;
2699 if Nkind (Parent (N)) = N_Subunit then
2701 -- This is the proper body corresponding to a stub. Insertion
2702 -- must be done at the point of the stub, which is in the decla-
2703 -- rative part of the parent unit.
2705 P := Corresponding_Stub (Parent (N));
2707 else
2708 P := Parent (N);
2709 end if;
2710 end loop;
2711 end Insert_Actions;
2713 -- Version with check(s) suppressed
2715 procedure Insert_Actions
2716 (Assoc_Node : Node_Id;
2717 Ins_Actions : List_Id;
2718 Suppress : Check_Id)
2720 begin
2721 if Suppress = All_Checks then
2722 declare
2723 Svg : constant Suppress_Array := Scope_Suppress;
2724 begin
2725 Scope_Suppress := (others => True);
2726 Insert_Actions (Assoc_Node, Ins_Actions);
2727 Scope_Suppress := Svg;
2728 end;
2730 else
2731 declare
2732 Svg : constant Boolean := Scope_Suppress (Suppress);
2733 begin
2734 Scope_Suppress (Suppress) := True;
2735 Insert_Actions (Assoc_Node, Ins_Actions);
2736 Scope_Suppress (Suppress) := Svg;
2737 end;
2738 end if;
2739 end Insert_Actions;
2741 --------------------------
2742 -- Insert_Actions_After --
2743 --------------------------
2745 procedure Insert_Actions_After
2746 (Assoc_Node : Node_Id;
2747 Ins_Actions : List_Id)
2749 begin
2750 if Scope_Is_Transient
2751 and then Assoc_Node = Node_To_Be_Wrapped
2752 then
2753 Store_After_Actions_In_Scope (Ins_Actions);
2754 else
2755 Insert_List_After_And_Analyze (Assoc_Node, Ins_Actions);
2756 end if;
2757 end Insert_Actions_After;
2759 ---------------------------------
2760 -- Insert_Library_Level_Action --
2761 ---------------------------------
2763 procedure Insert_Library_Level_Action (N : Node_Id) is
2764 Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
2766 begin
2767 Push_Scope (Cunit_Entity (Main_Unit));
2768 -- ??? should this be Current_Sem_Unit instead of Main_Unit?
2770 if No (Actions (Aux)) then
2771 Set_Actions (Aux, New_List (N));
2772 else
2773 Append (N, Actions (Aux));
2774 end if;
2776 Analyze (N);
2777 Pop_Scope;
2778 end Insert_Library_Level_Action;
2780 ----------------------------------
2781 -- Insert_Library_Level_Actions --
2782 ----------------------------------
2784 procedure Insert_Library_Level_Actions (L : List_Id) is
2785 Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
2787 begin
2788 if Is_Non_Empty_List (L) then
2789 Push_Scope (Cunit_Entity (Main_Unit));
2790 -- ??? should this be Current_Sem_Unit instead of Main_Unit?
2792 if No (Actions (Aux)) then
2793 Set_Actions (Aux, L);
2794 Analyze_List (L);
2795 else
2796 Insert_List_After_And_Analyze (Last (Actions (Aux)), L);
2797 end if;
2799 Pop_Scope;
2800 end if;
2801 end Insert_Library_Level_Actions;
2803 ----------------------
2804 -- Inside_Init_Proc --
2805 ----------------------
2807 function Inside_Init_Proc return Boolean is
2808 S : Entity_Id;
2810 begin
2811 S := Current_Scope;
2812 while Present (S)
2813 and then S /= Standard_Standard
2814 loop
2815 if Is_Init_Proc (S) then
2816 return True;
2817 else
2818 S := Scope (S);
2819 end if;
2820 end loop;
2822 return False;
2823 end Inside_Init_Proc;
2825 ----------------------------
2826 -- Is_All_Null_Statements --
2827 ----------------------------
2829 function Is_All_Null_Statements (L : List_Id) return Boolean is
2830 Stm : Node_Id;
2832 begin
2833 Stm := First (L);
2834 while Present (Stm) loop
2835 if Nkind (Stm) /= N_Null_Statement then
2836 return False;
2837 end if;
2839 Next (Stm);
2840 end loop;
2842 return True;
2843 end Is_All_Null_Statements;
2845 ----------------------------------
2846 -- Is_Library_Level_Tagged_Type --
2847 ----------------------------------
2849 function Is_Library_Level_Tagged_Type (Typ : Entity_Id) return Boolean is
2850 begin
2851 return Is_Tagged_Type (Typ)
2852 and then Is_Library_Level_Entity (Typ);
2853 end Is_Library_Level_Tagged_Type;
2855 ----------------------------------
2856 -- Is_Possibly_Unaligned_Object --
2857 ----------------------------------
2859 function Is_Possibly_Unaligned_Object (N : Node_Id) return Boolean is
2860 T : constant Entity_Id := Etype (N);
2862 begin
2863 -- If renamed object, apply test to underlying object
2865 if Is_Entity_Name (N)
2866 and then Is_Object (Entity (N))
2867 and then Present (Renamed_Object (Entity (N)))
2868 then
2869 return Is_Possibly_Unaligned_Object (Renamed_Object (Entity (N)));
2870 end if;
2872 -- Tagged and controlled types and aliased types are always aligned,
2873 -- as are concurrent types.
2875 if Is_Aliased (T)
2876 or else Has_Controlled_Component (T)
2877 or else Is_Concurrent_Type (T)
2878 or else Is_Tagged_Type (T)
2879 or else Is_Controlled (T)
2880 then
2881 return False;
2882 end if;
2884 -- If this is an element of a packed array, may be unaligned
2886 if Is_Ref_To_Bit_Packed_Array (N) then
2887 return True;
2888 end if;
2890 -- Case of component reference
2892 if Nkind (N) = N_Selected_Component then
2893 declare
2894 P : constant Node_Id := Prefix (N);
2895 C : constant Entity_Id := Entity (Selector_Name (N));
2896 M : Nat;
2897 S : Nat;
2899 begin
2900 -- If component reference is for an array with non-static bounds,
2901 -- then it is always aligned: we can only process unaligned
2902 -- arrays with static bounds (more accurately bounds known at
2903 -- compile time).
2905 if Is_Array_Type (T)
2906 and then not Compile_Time_Known_Bounds (T)
2907 then
2908 return False;
2909 end if;
2911 -- If component is aliased, it is definitely properly aligned
2913 if Is_Aliased (C) then
2914 return False;
2915 end if;
2917 -- If component is for a type implemented as a scalar, and the
2918 -- record is packed, and the component is other than the first
2919 -- component of the record, then the component may be unaligned.
2921 if Is_Packed (Etype (P))
2922 and then Represented_As_Scalar (Etype (C))
2923 and then First_Entity (Scope (C)) /= C
2924 then
2925 return True;
2926 end if;
2928 -- Compute maximum possible alignment for T
2930 -- If alignment is known, then that settles things
2932 if Known_Alignment (T) then
2933 M := UI_To_Int (Alignment (T));
2935 -- If alignment is not known, tentatively set max alignment
2937 else
2938 M := Ttypes.Maximum_Alignment;
2940 -- We can reduce this if the Esize is known since the default
2941 -- alignment will never be more than the smallest power of 2
2942 -- that does not exceed this Esize value.
2944 if Known_Esize (T) then
2945 S := UI_To_Int (Esize (T));
2947 while (M / 2) >= S loop
2948 M := M / 2;
2949 end loop;
2950 end if;
2951 end if;
2953 -- If the component reference is for a record that has a specified
2954 -- alignment, and we either know it is too small, or cannot tell,
2955 -- then the component may be unaligned
2957 if Known_Alignment (Etype (P))
2958 and then Alignment (Etype (P)) < Ttypes.Maximum_Alignment
2959 and then M > Alignment (Etype (P))
2960 then
2961 return True;
2962 end if;
2964 -- Case of component clause present which may specify an
2965 -- unaligned position.
2967 if Present (Component_Clause (C)) then
2969 -- Otherwise we can do a test to make sure that the actual
2970 -- start position in the record, and the length, are both
2971 -- consistent with the required alignment. If not, we know
2972 -- that we are unaligned.
2974 declare
2975 Align_In_Bits : constant Nat := M * System_Storage_Unit;
2976 begin
2977 if Component_Bit_Offset (C) mod Align_In_Bits /= 0
2978 or else Esize (C) mod Align_In_Bits /= 0
2979 then
2980 return True;
2981 end if;
2982 end;
2983 end if;
2985 -- Otherwise, for a component reference, test prefix
2987 return Is_Possibly_Unaligned_Object (P);
2988 end;
2990 -- If not a component reference, must be aligned
2992 else
2993 return False;
2994 end if;
2995 end Is_Possibly_Unaligned_Object;
2997 ---------------------------------
2998 -- Is_Possibly_Unaligned_Slice --
2999 ---------------------------------
3001 function Is_Possibly_Unaligned_Slice (N : Node_Id) return Boolean is
3002 begin
3003 -- Go to renamed object
3005 if Is_Entity_Name (N)
3006 and then Is_Object (Entity (N))
3007 and then Present (Renamed_Object (Entity (N)))
3008 then
3009 return Is_Possibly_Unaligned_Slice (Renamed_Object (Entity (N)));
3010 end if;
3012 -- The reference must be a slice
3014 if Nkind (N) /= N_Slice then
3015 return False;
3016 end if;
3018 -- Always assume the worst for a nested record component with a
3019 -- component clause, which gigi/gcc does not appear to handle well.
3020 -- It is not clear why this special test is needed at all ???
3022 if Nkind (Prefix (N)) = N_Selected_Component
3023 and then Nkind (Prefix (Prefix (N))) = N_Selected_Component
3024 and then
3025 Present (Component_Clause (Entity (Selector_Name (Prefix (N)))))
3026 then
3027 return True;
3028 end if;
3030 -- We only need to worry if the target has strict alignment
3032 if not Target_Strict_Alignment then
3033 return False;
3034 end if;
3036 -- If it is a slice, then look at the array type being sliced
3038 declare
3039 Sarr : constant Node_Id := Prefix (N);
3040 -- Prefix of the slice, i.e. the array being sliced
3042 Styp : constant Entity_Id := Etype (Prefix (N));
3043 -- Type of the array being sliced
3045 Pref : Node_Id;
3046 Ptyp : Entity_Id;
3048 begin
3049 -- The problems arise if the array object that is being sliced
3050 -- is a component of a record or array, and we cannot guarantee
3051 -- the alignment of the array within its containing object.
3053 -- To investigate this, we look at successive prefixes to see
3054 -- if we have a worrisome indexed or selected component.
3056 Pref := Sarr;
3057 loop
3058 -- Case of array is part of an indexed component reference
3060 if Nkind (Pref) = N_Indexed_Component then
3061 Ptyp := Etype (Prefix (Pref));
3063 -- The only problematic case is when the array is packed,
3064 -- in which case we really know nothing about the alignment
3065 -- of individual components.
3067 if Is_Bit_Packed_Array (Ptyp) then
3068 return True;
3069 end if;
3071 -- Case of array is part of a selected component reference
3073 elsif Nkind (Pref) = N_Selected_Component then
3074 Ptyp := Etype (Prefix (Pref));
3076 -- We are definitely in trouble if the record in question
3077 -- has an alignment, and either we know this alignment is
3078 -- inconsistent with the alignment of the slice, or we
3079 -- don't know what the alignment of the slice should be.
3081 if Known_Alignment (Ptyp)
3082 and then (Unknown_Alignment (Styp)
3083 or else Alignment (Styp) > Alignment (Ptyp))
3084 then
3085 return True;
3086 end if;
3088 -- We are in potential trouble if the record type is packed.
3089 -- We could special case when we know that the array is the
3090 -- first component, but that's not such a simple case ???
3092 if Is_Packed (Ptyp) then
3093 return True;
3094 end if;
3096 -- We are in trouble if there is a component clause, and
3097 -- either we do not know the alignment of the slice, or
3098 -- the alignment of the slice is inconsistent with the
3099 -- bit position specified by the component clause.
3101 declare
3102 Field : constant Entity_Id := Entity (Selector_Name (Pref));
3103 begin
3104 if Present (Component_Clause (Field))
3105 and then
3106 (Unknown_Alignment (Styp)
3107 or else
3108 (Component_Bit_Offset (Field) mod
3109 (System_Storage_Unit * Alignment (Styp))) /= 0)
3110 then
3111 return True;
3112 end if;
3113 end;
3115 -- For cases other than selected or indexed components we
3116 -- know we are OK, since no issues arise over alignment.
3118 else
3119 return False;
3120 end if;
3122 -- We processed an indexed component or selected component
3123 -- reference that looked safe, so keep checking prefixes.
3125 Pref := Prefix (Pref);
3126 end loop;
3127 end;
3128 end Is_Possibly_Unaligned_Slice;
3130 --------------------------------
3131 -- Is_Ref_To_Bit_Packed_Array --
3132 --------------------------------
3134 function Is_Ref_To_Bit_Packed_Array (N : Node_Id) return Boolean is
3135 Result : Boolean;
3136 Expr : Node_Id;
3138 begin
3139 if Is_Entity_Name (N)
3140 and then Is_Object (Entity (N))
3141 and then Present (Renamed_Object (Entity (N)))
3142 then
3143 return Is_Ref_To_Bit_Packed_Array (Renamed_Object (Entity (N)));
3144 end if;
3146 if Nkind (N) = N_Indexed_Component
3147 or else
3148 Nkind (N) = N_Selected_Component
3149 then
3150 if Is_Bit_Packed_Array (Etype (Prefix (N))) then
3151 Result := True;
3152 else
3153 Result := Is_Ref_To_Bit_Packed_Array (Prefix (N));
3154 end if;
3156 if Result and then Nkind (N) = N_Indexed_Component then
3157 Expr := First (Expressions (N));
3158 while Present (Expr) loop
3159 Force_Evaluation (Expr);
3160 Next (Expr);
3161 end loop;
3162 end if;
3164 return Result;
3166 else
3167 return False;
3168 end if;
3169 end Is_Ref_To_Bit_Packed_Array;
3171 --------------------------------
3172 -- Is_Ref_To_Bit_Packed_Slice --
3173 --------------------------------
3175 function Is_Ref_To_Bit_Packed_Slice (N : Node_Id) return Boolean is
3176 begin
3177 if Nkind (N) = N_Type_Conversion then
3178 return Is_Ref_To_Bit_Packed_Slice (Expression (N));
3180 elsif Is_Entity_Name (N)
3181 and then Is_Object (Entity (N))
3182 and then Present (Renamed_Object (Entity (N)))
3183 then
3184 return Is_Ref_To_Bit_Packed_Slice (Renamed_Object (Entity (N)));
3186 elsif Nkind (N) = N_Slice
3187 and then Is_Bit_Packed_Array (Etype (Prefix (N)))
3188 then
3189 return True;
3191 elsif Nkind (N) = N_Indexed_Component
3192 or else
3193 Nkind (N) = N_Selected_Component
3194 then
3195 return Is_Ref_To_Bit_Packed_Slice (Prefix (N));
3197 else
3198 return False;
3199 end if;
3200 end Is_Ref_To_Bit_Packed_Slice;
3202 -----------------------
3203 -- Is_Renamed_Object --
3204 -----------------------
3206 function Is_Renamed_Object (N : Node_Id) return Boolean is
3207 Pnod : constant Node_Id := Parent (N);
3208 Kind : constant Node_Kind := Nkind (Pnod);
3210 begin
3211 if Kind = N_Object_Renaming_Declaration then
3212 return True;
3214 elsif Kind = N_Indexed_Component
3215 or else Kind = N_Selected_Component
3216 then
3217 return Is_Renamed_Object (Pnod);
3219 else
3220 return False;
3221 end if;
3222 end Is_Renamed_Object;
3224 ----------------------------
3225 -- Is_Untagged_Derivation --
3226 ----------------------------
3228 function Is_Untagged_Derivation (T : Entity_Id) return Boolean is
3229 begin
3230 return (not Is_Tagged_Type (T) and then Is_Derived_Type (T))
3231 or else
3232 (Is_Private_Type (T) and then Present (Full_View (T))
3233 and then not Is_Tagged_Type (Full_View (T))
3234 and then Is_Derived_Type (Full_View (T))
3235 and then Etype (Full_View (T)) /= T);
3236 end Is_Untagged_Derivation;
3238 ---------------------------
3239 -- Is_Volatile_Reference --
3240 ---------------------------
3242 function Is_Volatile_Reference (N : Node_Id) return Boolean is
3243 begin
3244 if Nkind (N) in N_Has_Etype
3245 and then Present (Etype (N))
3246 and then Treat_As_Volatile (Etype (N))
3247 then
3248 return True;
3250 elsif Is_Entity_Name (N) then
3251 return Treat_As_Volatile (Entity (N));
3253 elsif Nkind (N) = N_Slice then
3254 return Is_Volatile_Reference (Prefix (N));
3256 elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
3257 if (Is_Entity_Name (Prefix (N))
3258 and then Has_Volatile_Components (Entity (Prefix (N))))
3259 or else (Present (Etype (Prefix (N)))
3260 and then Has_Volatile_Components (Etype (Prefix (N))))
3261 then
3262 return True;
3263 else
3264 return Is_Volatile_Reference (Prefix (N));
3265 end if;
3267 else
3268 return False;
3269 end if;
3270 end Is_Volatile_Reference;
3272 --------------------
3273 -- Kill_Dead_Code --
3274 --------------------
3276 procedure Kill_Dead_Code (N : Node_Id; Warn : Boolean := False) is
3277 begin
3278 if Present (N) then
3279 Remove_Warning_Messages (N);
3281 if Warn then
3282 Error_Msg_F
3283 ("?this code can never be executed and has been deleted!", N);
3284 end if;
3286 -- Recurse into block statements and bodies to process declarations
3287 -- and statements
3289 if Nkind (N) = N_Block_Statement
3290 or else Nkind (N) = N_Subprogram_Body
3291 or else Nkind (N) = N_Package_Body
3292 then
3293 Kill_Dead_Code (Declarations (N), False);
3294 Kill_Dead_Code (Statements (Handled_Statement_Sequence (N)));
3296 if Nkind (N) = N_Subprogram_Body then
3297 Set_Is_Eliminated (Defining_Entity (N));
3298 end if;
3300 elsif Nkind (N) = N_Package_Declaration then
3301 Kill_Dead_Code (Visible_Declarations (Specification (N)));
3302 Kill_Dead_Code (Private_Declarations (Specification (N)));
3304 -- ??? After this point, Delete_Tree has been called on all
3305 -- declarations in Specification (N), so references to
3306 -- entities therein look suspicious.
3308 declare
3309 E : Entity_Id := First_Entity (Defining_Entity (N));
3310 begin
3311 while Present (E) loop
3312 if Ekind (E) = E_Operator then
3313 Set_Is_Eliminated (E);
3314 end if;
3316 Next_Entity (E);
3317 end loop;
3318 end;
3320 -- Recurse into composite statement to kill individual statements,
3321 -- in particular instantiations.
3323 elsif Nkind (N) = N_If_Statement then
3324 Kill_Dead_Code (Then_Statements (N));
3325 Kill_Dead_Code (Elsif_Parts (N));
3326 Kill_Dead_Code (Else_Statements (N));
3328 elsif Nkind (N) = N_Loop_Statement then
3329 Kill_Dead_Code (Statements (N));
3331 elsif Nkind (N) = N_Case_Statement then
3332 declare
3333 Alt : Node_Id;
3334 begin
3335 Alt := First (Alternatives (N));
3336 while Present (Alt) loop
3337 Kill_Dead_Code (Statements (Alt));
3338 Next (Alt);
3339 end loop;
3340 end;
3342 elsif Nkind (N) = N_Case_Statement_Alternative then
3343 Kill_Dead_Code (Statements (N));
3345 -- Deal with dead instances caused by deleting instantiations
3347 elsif Nkind (N) in N_Generic_Instantiation then
3348 Remove_Dead_Instance (N);
3349 end if;
3350 end if;
3351 end Kill_Dead_Code;
3353 -- Case where argument is a list of nodes to be killed
3355 procedure Kill_Dead_Code (L : List_Id; Warn : Boolean := False) is
3356 N : Node_Id;
3357 W : Boolean;
3358 begin
3359 W := Warn;
3360 if Is_Non_Empty_List (L) then
3361 N := First (L);
3362 while Present (N) loop
3363 Kill_Dead_Code (N, W);
3364 W := False;
3365 Next (N);
3366 end loop;
3367 end if;
3368 end Kill_Dead_Code;
3370 ------------------------
3371 -- Known_Non_Negative --
3372 ------------------------
3374 function Known_Non_Negative (Opnd : Node_Id) return Boolean is
3375 begin
3376 if Is_OK_Static_Expression (Opnd)
3377 and then Expr_Value (Opnd) >= 0
3378 then
3379 return True;
3381 else
3382 declare
3383 Lo : constant Node_Id := Type_Low_Bound (Etype (Opnd));
3385 begin
3386 return
3387 Is_OK_Static_Expression (Lo) and then Expr_Value (Lo) >= 0;
3388 end;
3389 end if;
3390 end Known_Non_Negative;
3392 --------------------
3393 -- Known_Non_Null --
3394 --------------------
3396 function Known_Non_Null (N : Node_Id) return Boolean is
3397 begin
3398 -- Checks for case where N is an entity reference
3400 if Is_Entity_Name (N) and then Present (Entity (N)) then
3401 declare
3402 E : constant Entity_Id := Entity (N);
3403 Op : Node_Kind;
3404 Val : Node_Id;
3406 begin
3407 -- First check if we are in decisive conditional
3409 Get_Current_Value_Condition (N, Op, Val);
3411 if Known_Null (Val) then
3412 if Op = N_Op_Eq then
3413 return False;
3414 elsif Op = N_Op_Ne then
3415 return True;
3416 end if;
3417 end if;
3419 -- If OK to do replacement, test Is_Known_Non_Null flag
3421 if OK_To_Do_Constant_Replacement (E) then
3422 return Is_Known_Non_Null (E);
3424 -- Otherwise if not safe to do replacement, then say so
3426 else
3427 return False;
3428 end if;
3429 end;
3431 -- True if access attribute
3433 elsif Nkind (N) = N_Attribute_Reference
3434 and then (Attribute_Name (N) = Name_Access
3435 or else
3436 Attribute_Name (N) = Name_Unchecked_Access
3437 or else
3438 Attribute_Name (N) = Name_Unrestricted_Access)
3439 then
3440 return True;
3442 -- True if allocator
3444 elsif Nkind (N) = N_Allocator then
3445 return True;
3447 -- For a conversion, true if expression is known non-null
3449 elsif Nkind (N) = N_Type_Conversion then
3450 return Known_Non_Null (Expression (N));
3452 -- Above are all cases where the value could be determined to be
3453 -- non-null. In all other cases, we don't know, so return False.
3455 else
3456 return False;
3457 end if;
3458 end Known_Non_Null;
3460 ----------------
3461 -- Known_Null --
3462 ----------------
3464 function Known_Null (N : Node_Id) return Boolean is
3465 begin
3466 -- Checks for case where N is an entity reference
3468 if Is_Entity_Name (N) and then Present (Entity (N)) then
3469 declare
3470 E : constant Entity_Id := Entity (N);
3471 Op : Node_Kind;
3472 Val : Node_Id;
3474 begin
3475 -- Constant null value is for sure null
3477 if Ekind (E) = E_Constant
3478 and then Known_Null (Constant_Value (E))
3479 then
3480 return True;
3481 end if;
3483 -- First check if we are in decisive conditional
3485 Get_Current_Value_Condition (N, Op, Val);
3487 if Known_Null (Val) then
3488 if Op = N_Op_Eq then
3489 return True;
3490 elsif Op = N_Op_Ne then
3491 return False;
3492 end if;
3493 end if;
3495 -- If OK to do replacement, test Is_Known_Null flag
3497 if OK_To_Do_Constant_Replacement (E) then
3498 return Is_Known_Null (E);
3500 -- Otherwise if not safe to do replacement, then say so
3502 else
3503 return False;
3504 end if;
3505 end;
3507 -- True if explicit reference to null
3509 elsif Nkind (N) = N_Null then
3510 return True;
3512 -- For a conversion, true if expression is known null
3514 elsif Nkind (N) = N_Type_Conversion then
3515 return Known_Null (Expression (N));
3517 -- Above are all cases where the value could be determined to be null.
3518 -- In all other cases, we don't know, so return False.
3520 else
3521 return False;
3522 end if;
3523 end Known_Null;
3525 -----------------------------
3526 -- Make_CW_Equivalent_Type --
3527 -----------------------------
3529 -- Create a record type used as an equivalent of any member
3530 -- of the class which takes its size from exp.
3532 -- Generate the following code:
3534 -- type Equiv_T is record
3535 -- _parent : T (List of discriminant constraints taken from Exp);
3536 -- Ext__50 : Storage_Array (1 .. (Exp'size - Typ'object_size)/8);
3537 -- end Equiv_T;
3539 -- ??? Note that this type does not guarantee same alignment as all
3540 -- derived types
3542 function Make_CW_Equivalent_Type
3543 (T : Entity_Id;
3544 E : Node_Id) return Entity_Id
3546 Loc : constant Source_Ptr := Sloc (E);
3547 Root_Typ : constant Entity_Id := Root_Type (T);
3548 List_Def : constant List_Id := Empty_List;
3549 Comp_List : constant List_Id := New_List;
3550 Equiv_Type : Entity_Id;
3551 Range_Type : Entity_Id;
3552 Str_Type : Entity_Id;
3553 Constr_Root : Entity_Id;
3554 Sizexpr : Node_Id;
3556 begin
3557 if not Has_Discriminants (Root_Typ) then
3558 Constr_Root := Root_Typ;
3559 else
3560 Constr_Root :=
3561 Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
3563 -- subtype cstr__n is T (List of discr constraints taken from Exp)
3565 Append_To (List_Def,
3566 Make_Subtype_Declaration (Loc,
3567 Defining_Identifier => Constr_Root,
3568 Subtype_Indication =>
3569 Make_Subtype_From_Expr (E, Root_Typ)));
3570 end if;
3572 -- Generate the range subtype declaration
3574 Range_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('G'));
3576 if not Is_Interface (Root_Typ) then
3577 -- subtype rg__xx is
3578 -- Storage_Offset range 1 .. (Expr'size - typ'size) / Storage_Unit
3580 Sizexpr :=
3581 Make_Op_Subtract (Loc,
3582 Left_Opnd =>
3583 Make_Attribute_Reference (Loc,
3584 Prefix =>
3585 OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)),
3586 Attribute_Name => Name_Size),
3587 Right_Opnd =>
3588 Make_Attribute_Reference (Loc,
3589 Prefix => New_Reference_To (Constr_Root, Loc),
3590 Attribute_Name => Name_Object_Size));
3591 else
3592 -- subtype rg__xx is
3593 -- Storage_Offset range 1 .. Expr'size / Storage_Unit
3595 Sizexpr :=
3596 Make_Attribute_Reference (Loc,
3597 Prefix =>
3598 OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)),
3599 Attribute_Name => Name_Size);
3600 end if;
3602 Set_Paren_Count (Sizexpr, 1);
3604 Append_To (List_Def,
3605 Make_Subtype_Declaration (Loc,
3606 Defining_Identifier => Range_Type,
3607 Subtype_Indication =>
3608 Make_Subtype_Indication (Loc,
3609 Subtype_Mark => New_Reference_To (RTE (RE_Storage_Offset), Loc),
3610 Constraint => Make_Range_Constraint (Loc,
3611 Range_Expression =>
3612 Make_Range (Loc,
3613 Low_Bound => Make_Integer_Literal (Loc, 1),
3614 High_Bound =>
3615 Make_Op_Divide (Loc,
3616 Left_Opnd => Sizexpr,
3617 Right_Opnd => Make_Integer_Literal (Loc,
3618 Intval => System_Storage_Unit)))))));
3620 -- subtype str__nn is Storage_Array (rg__x);
3622 Str_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
3623 Append_To (List_Def,
3624 Make_Subtype_Declaration (Loc,
3625 Defining_Identifier => Str_Type,
3626 Subtype_Indication =>
3627 Make_Subtype_Indication (Loc,
3628 Subtype_Mark => New_Reference_To (RTE (RE_Storage_Array), Loc),
3629 Constraint =>
3630 Make_Index_Or_Discriminant_Constraint (Loc,
3631 Constraints =>
3632 New_List (New_Reference_To (Range_Type, Loc))))));
3634 -- type Equiv_T is record
3635 -- [ _parent : Tnn; ]
3636 -- E : Str_Type;
3637 -- end Equiv_T;
3639 Equiv_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
3641 -- When the target requires front-end layout, it's necessary to allow
3642 -- the equivalent type to be frozen so that layout can occur (when the
3643 -- associated class-wide subtype is frozen, the equivalent type will
3644 -- be frozen, see freeze.adb). For other targets, Gigi wants to have
3645 -- the equivalent type marked as frozen and deals with this type itself.
3646 -- In the Gigi case this will also avoid the generation of an init
3647 -- procedure for the type.
3649 if not Frontend_Layout_On_Target then
3650 Set_Is_Frozen (Equiv_Type);
3651 end if;
3653 Set_Ekind (Equiv_Type, E_Record_Type);
3654 Set_Parent_Subtype (Equiv_Type, Constr_Root);
3656 if not Is_Interface (Root_Typ) then
3657 Append_To (Comp_List,
3658 Make_Component_Declaration (Loc,
3659 Defining_Identifier =>
3660 Make_Defining_Identifier (Loc, Name_uParent),
3661 Component_Definition =>
3662 Make_Component_Definition (Loc,
3663 Aliased_Present => False,
3664 Subtype_Indication => New_Reference_To (Constr_Root, Loc))));
3665 end if;
3667 Append_To (Comp_List,
3668 Make_Component_Declaration (Loc,
3669 Defining_Identifier =>
3670 Make_Defining_Identifier (Loc,
3671 Chars => New_Internal_Name ('C')),
3672 Component_Definition =>
3673 Make_Component_Definition (Loc,
3674 Aliased_Present => False,
3675 Subtype_Indication => New_Reference_To (Str_Type, Loc))));
3677 Append_To (List_Def,
3678 Make_Full_Type_Declaration (Loc,
3679 Defining_Identifier => Equiv_Type,
3680 Type_Definition =>
3681 Make_Record_Definition (Loc,
3682 Component_List =>
3683 Make_Component_List (Loc,
3684 Component_Items => Comp_List,
3685 Variant_Part => Empty))));
3687 -- Suppress all checks during the analysis of the expanded code
3688 -- to avoid the generation of spurious warnings under ZFP run-time.
3690 Insert_Actions (E, List_Def, Suppress => All_Checks);
3691 return Equiv_Type;
3692 end Make_CW_Equivalent_Type;
3694 ------------------------
3695 -- Make_Literal_Range --
3696 ------------------------
3698 function Make_Literal_Range
3699 (Loc : Source_Ptr;
3700 Literal_Typ : Entity_Id) return Node_Id
3702 Lo : constant Node_Id :=
3703 New_Copy_Tree (String_Literal_Low_Bound (Literal_Typ));
3704 Index : constant Entity_Id := Etype (Lo);
3706 Hi : Node_Id;
3707 Length_Expr : constant Node_Id :=
3708 Make_Op_Subtract (Loc,
3709 Left_Opnd =>
3710 Make_Integer_Literal (Loc,
3711 Intval => String_Literal_Length (Literal_Typ)),
3712 Right_Opnd =>
3713 Make_Integer_Literal (Loc, 1));
3715 begin
3716 Set_Analyzed (Lo, False);
3718 if Is_Integer_Type (Index) then
3719 Hi :=
3720 Make_Op_Add (Loc,
3721 Left_Opnd => New_Copy_Tree (Lo),
3722 Right_Opnd => Length_Expr);
3723 else
3724 Hi :=
3725 Make_Attribute_Reference (Loc,
3726 Attribute_Name => Name_Val,
3727 Prefix => New_Occurrence_Of (Index, Loc),
3728 Expressions => New_List (
3729 Make_Op_Add (Loc,
3730 Left_Opnd =>
3731 Make_Attribute_Reference (Loc,
3732 Attribute_Name => Name_Pos,
3733 Prefix => New_Occurrence_Of (Index, Loc),
3734 Expressions => New_List (New_Copy_Tree (Lo))),
3735 Right_Opnd => Length_Expr)));
3736 end if;
3738 return
3739 Make_Range (Loc,
3740 Low_Bound => Lo,
3741 High_Bound => Hi);
3742 end Make_Literal_Range;
3744 ----------------------------
3745 -- Make_Subtype_From_Expr --
3746 ----------------------------
3748 -- 1. If Expr is an unconstrained array expression, creates
3749 -- Unc_Type(Expr'first(1)..Expr'last(1),..., Expr'first(n)..Expr'last(n))
3751 -- 2. If Expr is a unconstrained discriminated type expression, creates
3752 -- Unc_Type(Expr.Discr1, ... , Expr.Discr_n)
3754 -- 3. If Expr is class-wide, creates an implicit class wide subtype
3756 function Make_Subtype_From_Expr
3757 (E : Node_Id;
3758 Unc_Typ : Entity_Id) return Node_Id
3760 Loc : constant Source_Ptr := Sloc (E);
3761 List_Constr : constant List_Id := New_List;
3762 D : Entity_Id;
3764 Full_Subtyp : Entity_Id;
3765 Priv_Subtyp : Entity_Id;
3766 Utyp : Entity_Id;
3767 Full_Exp : Node_Id;
3769 begin
3770 if Is_Private_Type (Unc_Typ)
3771 and then Has_Unknown_Discriminants (Unc_Typ)
3772 then
3773 -- Prepare the subtype completion, Go to base type to
3774 -- find underlying type, because the type may be a generic
3775 -- actual or an explicit subtype.
3777 Utyp := Underlying_Type (Base_Type (Unc_Typ));
3778 Full_Subtyp := Make_Defining_Identifier (Loc,
3779 New_Internal_Name ('C'));
3780 Full_Exp :=
3781 Unchecked_Convert_To
3782 (Utyp, Duplicate_Subexpr_No_Checks (E));
3783 Set_Parent (Full_Exp, Parent (E));
3785 Priv_Subtyp :=
3786 Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
3788 Insert_Action (E,
3789 Make_Subtype_Declaration (Loc,
3790 Defining_Identifier => Full_Subtyp,
3791 Subtype_Indication => Make_Subtype_From_Expr (Full_Exp, Utyp)));
3793 -- Define the dummy private subtype
3795 Set_Ekind (Priv_Subtyp, Subtype_Kind (Ekind (Unc_Typ)));
3796 Set_Etype (Priv_Subtyp, Base_Type (Unc_Typ));
3797 Set_Scope (Priv_Subtyp, Full_Subtyp);
3798 Set_Is_Constrained (Priv_Subtyp);
3799 Set_Is_Tagged_Type (Priv_Subtyp, Is_Tagged_Type (Unc_Typ));
3800 Set_Is_Itype (Priv_Subtyp);
3801 Set_Associated_Node_For_Itype (Priv_Subtyp, E);
3803 if Is_Tagged_Type (Priv_Subtyp) then
3804 Set_Class_Wide_Type
3805 (Base_Type (Priv_Subtyp), Class_Wide_Type (Unc_Typ));
3806 Set_Primitive_Operations (Priv_Subtyp,
3807 Primitive_Operations (Unc_Typ));
3808 end if;
3810 Set_Full_View (Priv_Subtyp, Full_Subtyp);
3812 return New_Reference_To (Priv_Subtyp, Loc);
3814 elsif Is_Array_Type (Unc_Typ) then
3815 for J in 1 .. Number_Dimensions (Unc_Typ) loop
3816 Append_To (List_Constr,
3817 Make_Range (Loc,
3818 Low_Bound =>
3819 Make_Attribute_Reference (Loc,
3820 Prefix => Duplicate_Subexpr_No_Checks (E),
3821 Attribute_Name => Name_First,
3822 Expressions => New_List (
3823 Make_Integer_Literal (Loc, J))),
3825 High_Bound =>
3826 Make_Attribute_Reference (Loc,
3827 Prefix => Duplicate_Subexpr_No_Checks (E),
3828 Attribute_Name => Name_Last,
3829 Expressions => New_List (
3830 Make_Integer_Literal (Loc, J)))));
3831 end loop;
3833 elsif Is_Class_Wide_Type (Unc_Typ) then
3834 declare
3835 CW_Subtype : Entity_Id;
3836 EQ_Typ : Entity_Id := Empty;
3838 begin
3839 -- A class-wide equivalent type is not needed when VM_Target
3840 -- because the VM back-ends handle the class-wide object
3841 -- initialization itself (and doesn't need or want the
3842 -- additional intermediate type to handle the assignment).
3844 if Expander_Active and then VM_Target = No_VM then
3845 EQ_Typ := Make_CW_Equivalent_Type (Unc_Typ, E);
3846 end if;
3848 CW_Subtype := New_Class_Wide_Subtype (Unc_Typ, E);
3849 Set_Equivalent_Type (CW_Subtype, EQ_Typ);
3851 if Present (EQ_Typ) then
3852 Set_Is_Class_Wide_Equivalent_Type (EQ_Typ);
3853 end if;
3855 Set_Cloned_Subtype (CW_Subtype, Base_Type (Unc_Typ));
3857 return New_Occurrence_Of (CW_Subtype, Loc);
3858 end;
3860 -- Indefinite record type with discriminants
3862 else
3863 D := First_Discriminant (Unc_Typ);
3864 while Present (D) loop
3865 Append_To (List_Constr,
3866 Make_Selected_Component (Loc,
3867 Prefix => Duplicate_Subexpr_No_Checks (E),
3868 Selector_Name => New_Reference_To (D, Loc)));
3870 Next_Discriminant (D);
3871 end loop;
3872 end if;
3874 return
3875 Make_Subtype_Indication (Loc,
3876 Subtype_Mark => New_Reference_To (Unc_Typ, Loc),
3877 Constraint =>
3878 Make_Index_Or_Discriminant_Constraint (Loc,
3879 Constraints => List_Constr));
3880 end Make_Subtype_From_Expr;
3882 -----------------------------
3883 -- May_Generate_Large_Temp --
3884 -----------------------------
3886 -- At the current time, the only types that we return False for (i.e.
3887 -- where we decide we know they cannot generate large temps) are ones
3888 -- where we know the size is 256 bits or less at compile time, and we
3889 -- are still not doing a thorough job on arrays and records ???
3891 function May_Generate_Large_Temp (Typ : Entity_Id) return Boolean is
3892 begin
3893 if not Size_Known_At_Compile_Time (Typ) then
3894 return False;
3896 elsif Esize (Typ) /= 0 and then Esize (Typ) <= 256 then
3897 return False;
3899 elsif Is_Array_Type (Typ)
3900 and then Present (Packed_Array_Type (Typ))
3901 then
3902 return May_Generate_Large_Temp (Packed_Array_Type (Typ));
3904 -- We could do more here to find other small types ???
3906 else
3907 return True;
3908 end if;
3909 end May_Generate_Large_Temp;
3911 ----------------------------
3912 -- New_Class_Wide_Subtype --
3913 ----------------------------
3915 function New_Class_Wide_Subtype
3916 (CW_Typ : Entity_Id;
3917 N : Node_Id) return Entity_Id
3919 Res : constant Entity_Id := Create_Itype (E_Void, N);
3920 Res_Name : constant Name_Id := Chars (Res);
3921 Res_Scope : constant Entity_Id := Scope (Res);
3923 begin
3924 Copy_Node (CW_Typ, Res);
3925 Set_Comes_From_Source (Res, False);
3926 Set_Sloc (Res, Sloc (N));
3927 Set_Is_Itype (Res);
3928 Set_Associated_Node_For_Itype (Res, N);
3929 Set_Is_Public (Res, False); -- By default, may be changed below.
3930 Set_Public_Status (Res);
3931 Set_Chars (Res, Res_Name);
3932 Set_Scope (Res, Res_Scope);
3933 Set_Ekind (Res, E_Class_Wide_Subtype);
3934 Set_Next_Entity (Res, Empty);
3935 Set_Etype (Res, Base_Type (CW_Typ));
3937 -- For targets where front-end layout is required, reset the Is_Frozen
3938 -- status of the subtype to False (it can be implicitly set to true
3939 -- from the copy of the class-wide type). For other targets, Gigi
3940 -- doesn't want the class-wide subtype to go through the freezing
3941 -- process (though it's unclear why that causes problems and it would
3942 -- be nice to allow freezing to occur normally for all targets ???).
3944 if Frontend_Layout_On_Target then
3945 Set_Is_Frozen (Res, False);
3946 end if;
3948 Set_Freeze_Node (Res, Empty);
3949 return (Res);
3950 end New_Class_Wide_Subtype;
3952 --------------------------------
3953 -- Non_Limited_Designated_Type --
3954 ---------------------------------
3956 function Non_Limited_Designated_Type (T : Entity_Id) return Entity_Id is
3957 Desig : constant Entity_Id := Designated_Type (T);
3958 begin
3959 if Ekind (Desig) = E_Incomplete_Type
3960 and then Present (Non_Limited_View (Desig))
3961 then
3962 return Non_Limited_View (Desig);
3963 else
3964 return Desig;
3965 end if;
3966 end Non_Limited_Designated_Type;
3968 -----------------------------------
3969 -- OK_To_Do_Constant_Replacement --
3970 -----------------------------------
3972 function OK_To_Do_Constant_Replacement (E : Entity_Id) return Boolean is
3973 ES : constant Entity_Id := Scope (E);
3974 CS : Entity_Id;
3976 begin
3977 -- Do not replace statically allocated objects, because they may be
3978 -- modified outside the current scope.
3980 if Is_Statically_Allocated (E) then
3981 return False;
3983 -- Do not replace aliased or volatile objects, since we don't know what
3984 -- else might change the value.
3986 elsif Is_Aliased (E) or else Treat_As_Volatile (E) then
3987 return False;
3989 -- Debug flag -gnatdM disconnects this optimization
3991 elsif Debug_Flag_MM then
3992 return False;
3994 -- Otherwise check scopes
3996 else
3997 CS := Current_Scope;
3999 loop
4000 -- If we are in right scope, replacement is safe
4002 if CS = ES then
4003 return True;
4005 -- Packages do not affect the determination of safety
4007 elsif Ekind (CS) = E_Package then
4008 exit when CS = Standard_Standard;
4009 CS := Scope (CS);
4011 -- Blocks do not affect the determination of safety
4013 elsif Ekind (CS) = E_Block then
4014 CS := Scope (CS);
4016 -- Loops do not affect the determination of safety. Note that we
4017 -- kill all current values on entry to a loop, so we are just
4018 -- talking about processing within a loop here.
4020 elsif Ekind (CS) = E_Loop then
4021 CS := Scope (CS);
4023 -- Otherwise, the reference is dubious, and we cannot be sure that
4024 -- it is safe to do the replacement.
4026 else
4027 exit;
4028 end if;
4029 end loop;
4031 return False;
4032 end if;
4033 end OK_To_Do_Constant_Replacement;
4035 ------------------------------------
4036 -- Possible_Bit_Aligned_Component --
4037 ------------------------------------
4039 function Possible_Bit_Aligned_Component (N : Node_Id) return Boolean is
4040 begin
4041 case Nkind (N) is
4043 -- Case of indexed component
4045 when N_Indexed_Component =>
4046 declare
4047 P : constant Node_Id := Prefix (N);
4048 Ptyp : constant Entity_Id := Etype (P);
4050 begin
4051 -- If we know the component size and it is less than 64, then
4052 -- we are definitely OK. The back end always does assignment of
4053 -- misaligned small objects correctly.
4055 if Known_Static_Component_Size (Ptyp)
4056 and then Component_Size (Ptyp) <= 64
4057 then
4058 return False;
4060 -- Otherwise, we need to test the prefix, to see if we are
4061 -- indexing from a possibly unaligned component.
4063 else
4064 return Possible_Bit_Aligned_Component (P);
4065 end if;
4066 end;
4068 -- Case of selected component
4070 when N_Selected_Component =>
4071 declare
4072 P : constant Node_Id := Prefix (N);
4073 Comp : constant Entity_Id := Entity (Selector_Name (N));
4075 begin
4076 -- If there is no component clause, then we are in the clear
4077 -- since the back end will never misalign a large component
4078 -- unless it is forced to do so. In the clear means we need
4079 -- only the recursive test on the prefix.
4081 if Component_May_Be_Bit_Aligned (Comp) then
4082 return True;
4083 else
4084 return Possible_Bit_Aligned_Component (P);
4085 end if;
4086 end;
4088 -- For a slice, test the prefix, if that is possibly misaligned,
4089 -- then for sure the slice is!
4091 when N_Slice =>
4092 return Possible_Bit_Aligned_Component (Prefix (N));
4094 -- If we have none of the above, it means that we have fallen off the
4095 -- top testing prefixes recursively, and we now have a stand alone
4096 -- object, where we don't have a problem.
4098 when others =>
4099 return False;
4101 end case;
4102 end Possible_Bit_Aligned_Component;
4104 -------------------------
4105 -- Remove_Side_Effects --
4106 -------------------------
4108 procedure Remove_Side_Effects
4109 (Exp : Node_Id;
4110 Name_Req : Boolean := False;
4111 Variable_Ref : Boolean := False)
4113 Loc : constant Source_Ptr := Sloc (Exp);
4114 Exp_Type : constant Entity_Id := Etype (Exp);
4115 Svg_Suppress : constant Suppress_Array := Scope_Suppress;
4116 Def_Id : Entity_Id;
4117 Ref_Type : Entity_Id;
4118 Res : Node_Id;
4119 Ptr_Typ_Decl : Node_Id;
4120 New_Exp : Node_Id;
4121 E : Node_Id;
4123 function Side_Effect_Free (N : Node_Id) return Boolean;
4124 -- Determines if the tree N represents an expression that is known not
4125 -- to have side effects, and for which no processing is required.
4127 function Side_Effect_Free (L : List_Id) return Boolean;
4128 -- Determines if all elements of the list L are side effect free
4130 function Safe_Prefixed_Reference (N : Node_Id) return Boolean;
4131 -- The argument N is a construct where the Prefix is dereferenced if it
4132 -- is an access type and the result is a variable. The call returns True
4133 -- if the construct is side effect free (not considering side effects in
4134 -- other than the prefix which are to be tested by the caller).
4136 function Within_In_Parameter (N : Node_Id) return Boolean;
4137 -- Determines if N is a subcomponent of a composite in-parameter. If so,
4138 -- N is not side-effect free when the actual is global and modifiable
4139 -- indirectly from within a subprogram, because it may be passed by
4140 -- reference. The front-end must be conservative here and assume that
4141 -- this may happen with any array or record type. On the other hand, we
4142 -- cannot create temporaries for all expressions for which this
4143 -- condition is true, for various reasons that might require clearing up
4144 -- ??? For example, discriminant references that appear out of place, or
4145 -- spurious type errors with class-wide expressions. As a result, we
4146 -- limit the transformation to loop bounds, which is so far the only
4147 -- case that requires it.
4149 -----------------------------
4150 -- Safe_Prefixed_Reference --
4151 -----------------------------
4153 function Safe_Prefixed_Reference (N : Node_Id) return Boolean is
4154 begin
4155 -- If prefix is not side effect free, definitely not safe
4157 if not Side_Effect_Free (Prefix (N)) then
4158 return False;
4160 -- If the prefix is of an access type that is not access-to-constant,
4161 -- then this construct is a variable reference, which means it is to
4162 -- be considered to have side effects if Variable_Ref is set True
4163 -- Exception is an access to an entity that is a constant or an
4164 -- in-parameter which does not come from source, and is the result
4165 -- of a previous removal of side-effects.
4167 elsif Is_Access_Type (Etype (Prefix (N)))
4168 and then not Is_Access_Constant (Etype (Prefix (N)))
4169 and then Variable_Ref
4170 then
4171 if not Is_Entity_Name (Prefix (N)) then
4172 return False;
4173 else
4174 return Ekind (Entity (Prefix (N))) = E_Constant
4175 or else Ekind (Entity (Prefix (N))) = E_In_Parameter;
4176 end if;
4178 -- The following test is the simplest way of solving a complex
4179 -- problem uncovered by BB08-010: Side effect on loop bound that
4180 -- is a subcomponent of a global variable:
4181 -- If a loop bound is a subcomponent of a global variable, a
4182 -- modification of that variable within the loop may incorrectly
4183 -- affect the execution of the loop.
4185 elsif not
4186 (Nkind (Parent (Parent (N))) /= N_Loop_Parameter_Specification
4187 or else not Within_In_Parameter (Prefix (N)))
4188 then
4189 return False;
4191 -- All other cases are side effect free
4193 else
4194 return True;
4195 end if;
4196 end Safe_Prefixed_Reference;
4198 ----------------------
4199 -- Side_Effect_Free --
4200 ----------------------
4202 function Side_Effect_Free (N : Node_Id) return Boolean is
4203 begin
4204 -- Note on checks that could raise Constraint_Error. Strictly, if
4205 -- we take advantage of 11.6, these checks do not count as side
4206 -- effects. However, we would just as soon consider that they are
4207 -- side effects, since the backend CSE does not work very well on
4208 -- expressions which can raise Constraint_Error. On the other
4209 -- hand, if we do not consider them to be side effect free, then
4210 -- we get some awkward expansions in -gnato mode, resulting in
4211 -- code insertions at a point where we do not have a clear model
4212 -- for performing the insertions.
4214 -- Special handling for entity names
4216 if Is_Entity_Name (N) then
4218 -- If the entity is a constant, it is definitely side effect
4219 -- free. Note that the test of Is_Variable (N) below might
4220 -- be expected to catch this case, but it does not, because
4221 -- this test goes to the original tree, and we may have
4222 -- already rewritten a variable node with a constant as
4223 -- a result of an earlier Force_Evaluation call.
4225 if Ekind (Entity (N)) = E_Constant
4226 or else Ekind (Entity (N)) = E_In_Parameter
4227 then
4228 return True;
4230 -- Functions are not side effect free
4232 elsif Ekind (Entity (N)) = E_Function then
4233 return False;
4235 -- Variables are considered to be a side effect if Variable_Ref
4236 -- is set or if we have a volatile reference and Name_Req is off.
4237 -- If Name_Req is True then we can't help returning a name which
4238 -- effectively allows multiple references in any case.
4240 elsif Is_Variable (N) then
4241 return not Variable_Ref
4242 and then (not Is_Volatile_Reference (N) or else Name_Req);
4244 -- Any other entity (e.g. a subtype name) is definitely side
4245 -- effect free.
4247 else
4248 return True;
4249 end if;
4251 -- A value known at compile time is always side effect free
4253 elsif Compile_Time_Known_Value (N) then
4254 return True;
4256 -- A variable renaming is not side-effect free, because the
4257 -- renaming will function like a macro in the front-end in
4258 -- some cases, and an assignment can modify the component
4259 -- designated by N, so we need to create a temporary for it.
4261 elsif Is_Entity_Name (Original_Node (N))
4262 and then Is_Renaming_Of_Object (Entity (Original_Node (N)))
4263 and then Ekind (Entity (Original_Node (N))) /= E_Constant
4264 then
4265 return False;
4266 end if;
4268 -- For other than entity names and compile time known values,
4269 -- check the node kind for special processing.
4271 case Nkind (N) is
4273 -- An attribute reference is side effect free if its expressions
4274 -- are side effect free and its prefix is side effect free or
4275 -- is an entity reference.
4277 -- Is this right? what about x'first where x is a variable???
4279 when N_Attribute_Reference =>
4280 return Side_Effect_Free (Expressions (N))
4281 and then Attribute_Name (N) /= Name_Input
4282 and then (Is_Entity_Name (Prefix (N))
4283 or else Side_Effect_Free (Prefix (N)));
4285 -- A binary operator is side effect free if and both operands
4286 -- are side effect free. For this purpose binary operators
4287 -- include membership tests and short circuit forms
4289 when N_Binary_Op |
4290 N_Membership_Test |
4291 N_And_Then |
4292 N_Or_Else =>
4293 return Side_Effect_Free (Left_Opnd (N))
4294 and then Side_Effect_Free (Right_Opnd (N));
4296 -- An explicit dereference is side effect free only if it is
4297 -- a side effect free prefixed reference.
4299 when N_Explicit_Dereference =>
4300 return Safe_Prefixed_Reference (N);
4302 -- A call to _rep_to_pos is side effect free, since we generate
4303 -- this pure function call ourselves. Moreover it is critically
4304 -- important to make this exception, since otherwise we can
4305 -- have discriminants in array components which don't look
4306 -- side effect free in the case of an array whose index type
4307 -- is an enumeration type with an enumeration rep clause.
4309 -- All other function calls are not side effect free
4311 when N_Function_Call =>
4312 return Nkind (Name (N)) = N_Identifier
4313 and then Is_TSS (Name (N), TSS_Rep_To_Pos)
4314 and then
4315 Side_Effect_Free (First (Parameter_Associations (N)));
4317 -- An indexed component is side effect free if it is a side
4318 -- effect free prefixed reference and all the indexing
4319 -- expressions are side effect free.
4321 when N_Indexed_Component =>
4322 return Side_Effect_Free (Expressions (N))
4323 and then Safe_Prefixed_Reference (N);
4325 -- A type qualification is side effect free if the expression
4326 -- is side effect free.
4328 when N_Qualified_Expression =>
4329 return Side_Effect_Free (Expression (N));
4331 -- A selected component is side effect free only if it is a
4332 -- side effect free prefixed reference. If it designates a
4333 -- component with a rep. clause it must be treated has having
4334 -- a potential side effect, because it may be modified through
4335 -- a renaming, and a subsequent use of the renaming as a macro
4336 -- will yield the wrong value. This complex interaction between
4337 -- renaming and removing side effects is a reminder that the
4338 -- latter has become a headache to maintain, and that it should
4339 -- be removed in favor of the gcc mechanism to capture values ???
4341 when N_Selected_Component =>
4342 if Nkind (Parent (N)) = N_Explicit_Dereference
4343 and then Has_Non_Standard_Rep (Designated_Type (Etype (N)))
4344 then
4345 return False;
4346 else
4347 return Safe_Prefixed_Reference (N);
4348 end if;
4350 -- A range is side effect free if the bounds are side effect free
4352 when N_Range =>
4353 return Side_Effect_Free (Low_Bound (N))
4354 and then Side_Effect_Free (High_Bound (N));
4356 -- A slice is side effect free if it is a side effect free
4357 -- prefixed reference and the bounds are side effect free.
4359 when N_Slice =>
4360 return Side_Effect_Free (Discrete_Range (N))
4361 and then Safe_Prefixed_Reference (N);
4363 -- A type conversion is side effect free if the expression to be
4364 -- converted is side effect free.
4366 when N_Type_Conversion =>
4367 return Side_Effect_Free (Expression (N));
4369 -- A unary operator is side effect free if the operand
4370 -- is side effect free.
4372 when N_Unary_Op =>
4373 return Side_Effect_Free (Right_Opnd (N));
4375 -- An unchecked type conversion is side effect free only if it
4376 -- is safe and its argument is side effect free.
4378 when N_Unchecked_Type_Conversion =>
4379 return Safe_Unchecked_Type_Conversion (N)
4380 and then Side_Effect_Free (Expression (N));
4382 -- An unchecked expression is side effect free if its expression
4383 -- is side effect free.
4385 when N_Unchecked_Expression =>
4386 return Side_Effect_Free (Expression (N));
4388 -- A literal is side effect free
4390 when N_Character_Literal |
4391 N_Integer_Literal |
4392 N_Real_Literal |
4393 N_String_Literal =>
4394 return True;
4396 -- We consider that anything else has side effects. This is a bit
4397 -- crude, but we are pretty close for most common cases, and we
4398 -- are certainly correct (i.e. we never return True when the
4399 -- answer should be False).
4401 when others =>
4402 return False;
4403 end case;
4404 end Side_Effect_Free;
4406 -- A list is side effect free if all elements of the list are
4407 -- side effect free.
4409 function Side_Effect_Free (L : List_Id) return Boolean is
4410 N : Node_Id;
4412 begin
4413 if L = No_List or else L = Error_List then
4414 return True;
4416 else
4417 N := First (L);
4418 while Present (N) loop
4419 if not Side_Effect_Free (N) then
4420 return False;
4421 else
4422 Next (N);
4423 end if;
4424 end loop;
4426 return True;
4427 end if;
4428 end Side_Effect_Free;
4430 -------------------------
4431 -- Within_In_Parameter --
4432 -------------------------
4434 function Within_In_Parameter (N : Node_Id) return Boolean is
4435 begin
4436 if not Comes_From_Source (N) then
4437 return False;
4439 elsif Is_Entity_Name (N) then
4440 return Ekind (Entity (N)) = E_In_Parameter;
4442 elsif Nkind (N) = N_Indexed_Component
4443 or else Nkind (N) = N_Selected_Component
4444 then
4445 return Within_In_Parameter (Prefix (N));
4446 else
4448 return False;
4449 end if;
4450 end Within_In_Parameter;
4452 -- Start of processing for Remove_Side_Effects
4454 begin
4455 -- If we are side effect free already or expansion is disabled,
4456 -- there is nothing to do.
4458 if Side_Effect_Free (Exp) or else not Expander_Active then
4459 return;
4460 end if;
4462 -- All this must not have any checks
4464 Scope_Suppress := (others => True);
4466 -- If it is a scalar type and we need to capture the value, just make
4467 -- a copy. Likewise for a function call, an attribute reference or an
4468 -- operator. And if we have a volatile reference and Name_Req is not
4469 -- set (see comments above for Side_Effect_Free).
4471 if Is_Elementary_Type (Exp_Type)
4472 and then (Variable_Ref
4473 or else Nkind (Exp) = N_Function_Call
4474 or else Nkind (Exp) = N_Attribute_Reference
4475 or else Nkind (Exp) in N_Op
4476 or else (not Name_Req and then Is_Volatile_Reference (Exp)))
4477 then
4478 Def_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
4479 Set_Etype (Def_Id, Exp_Type);
4480 Res := New_Reference_To (Def_Id, Loc);
4482 E :=
4483 Make_Object_Declaration (Loc,
4484 Defining_Identifier => Def_Id,
4485 Object_Definition => New_Reference_To (Exp_Type, Loc),
4486 Constant_Present => True,
4487 Expression => Relocate_Node (Exp));
4489 Set_Assignment_OK (E);
4490 Insert_Action (Exp, E);
4492 -- If the expression has the form v.all then we can just capture
4493 -- the pointer, and then do an explicit dereference on the result.
4495 elsif Nkind (Exp) = N_Explicit_Dereference then
4496 Def_Id :=
4497 Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
4498 Res :=
4499 Make_Explicit_Dereference (Loc, New_Reference_To (Def_Id, Loc));
4501 Insert_Action (Exp,
4502 Make_Object_Declaration (Loc,
4503 Defining_Identifier => Def_Id,
4504 Object_Definition =>
4505 New_Reference_To (Etype (Prefix (Exp)), Loc),
4506 Constant_Present => True,
4507 Expression => Relocate_Node (Prefix (Exp))));
4509 -- Similar processing for an unchecked conversion of an expression
4510 -- of the form v.all, where we want the same kind of treatment.
4512 elsif Nkind (Exp) = N_Unchecked_Type_Conversion
4513 and then Nkind (Expression (Exp)) = N_Explicit_Dereference
4514 then
4515 Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref);
4516 Scope_Suppress := Svg_Suppress;
4517 return;
4519 -- If this is a type conversion, leave the type conversion and remove
4520 -- the side effects in the expression. This is important in several
4521 -- circumstances: for change of representations, and also when this is
4522 -- a view conversion to a smaller object, where gigi can end up creating
4523 -- its own temporary of the wrong size.
4525 elsif Nkind (Exp) = N_Type_Conversion then
4526 Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref);
4527 Scope_Suppress := Svg_Suppress;
4528 return;
4530 -- If this is an unchecked conversion that Gigi can't handle, make
4531 -- a copy or a use a renaming to capture the value.
4533 elsif Nkind (Exp) = N_Unchecked_Type_Conversion
4534 and then not Safe_Unchecked_Type_Conversion (Exp)
4535 then
4536 if CW_Or_Has_Controlled_Part (Exp_Type) then
4538 -- Use a renaming to capture the expression, rather than create
4539 -- a controlled temporary.
4541 Def_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
4542 Res := New_Reference_To (Def_Id, Loc);
4544 Insert_Action (Exp,
4545 Make_Object_Renaming_Declaration (Loc,
4546 Defining_Identifier => Def_Id,
4547 Subtype_Mark => New_Reference_To (Exp_Type, Loc),
4548 Name => Relocate_Node (Exp)));
4550 else
4551 Def_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
4552 Set_Etype (Def_Id, Exp_Type);
4553 Res := New_Reference_To (Def_Id, Loc);
4555 E :=
4556 Make_Object_Declaration (Loc,
4557 Defining_Identifier => Def_Id,
4558 Object_Definition => New_Reference_To (Exp_Type, Loc),
4559 Constant_Present => not Is_Variable (Exp),
4560 Expression => Relocate_Node (Exp));
4562 Set_Assignment_OK (E);
4563 Insert_Action (Exp, E);
4564 end if;
4566 -- For expressions that denote objects, we can use a renaming scheme.
4567 -- We skip using this if we have a volatile reference and we do not
4568 -- have Name_Req set true (see comments above for Side_Effect_Free).
4570 elsif Is_Object_Reference (Exp)
4571 and then Nkind (Exp) /= N_Function_Call
4572 and then (Name_Req or else not Is_Volatile_Reference (Exp))
4573 then
4574 Def_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
4576 if Nkind (Exp) = N_Selected_Component
4577 and then Nkind (Prefix (Exp)) = N_Function_Call
4578 and then Is_Array_Type (Exp_Type)
4579 then
4580 -- Avoid generating a variable-sized temporary, by generating
4581 -- the renaming declaration just for the function call. The
4582 -- transformation could be refined to apply only when the array
4583 -- component is constrained by a discriminant???
4585 Res :=
4586 Make_Selected_Component (Loc,
4587 Prefix => New_Occurrence_Of (Def_Id, Loc),
4588 Selector_Name => Selector_Name (Exp));
4590 Insert_Action (Exp,
4591 Make_Object_Renaming_Declaration (Loc,
4592 Defining_Identifier => Def_Id,
4593 Subtype_Mark =>
4594 New_Reference_To (Base_Type (Etype (Prefix (Exp))), Loc),
4595 Name => Relocate_Node (Prefix (Exp))));
4597 else
4598 Res := New_Reference_To (Def_Id, Loc);
4600 Insert_Action (Exp,
4601 Make_Object_Renaming_Declaration (Loc,
4602 Defining_Identifier => Def_Id,
4603 Subtype_Mark => New_Reference_To (Exp_Type, Loc),
4604 Name => Relocate_Node (Exp)));
4606 end if;
4608 -- If this is a packed reference, or a selected component with a
4609 -- non-standard representation, a reference to the temporary will
4610 -- be replaced by a copy of the original expression (see
4611 -- Exp_Ch2.Expand_Renaming). Otherwise the temporary must be
4612 -- elaborated by gigi, and is of course not to be replaced in-line
4613 -- by the expression it renames, which would defeat the purpose of
4614 -- removing the side-effect.
4616 if (Nkind (Exp) = N_Selected_Component
4617 or else Nkind (Exp) = N_Indexed_Component)
4618 and then Has_Non_Standard_Rep (Etype (Prefix (Exp)))
4619 then
4620 null;
4621 else
4622 Set_Is_Renaming_Of_Object (Def_Id, False);
4623 end if;
4625 -- Otherwise we generate a reference to the value
4627 else
4628 -- Special processing for function calls that return a task. We need
4629 -- to build a declaration that will enable build-in-place expansion
4630 -- of the call.
4632 -- This is relevant only in Ada 2005 mode. In Ada 95 programs we have
4633 -- to accommodate functions returning limited objects by reference.
4635 if Nkind (Exp) = N_Function_Call
4636 and then Is_Task_Type (Etype (Exp))
4637 and then Ada_Version >= Ada_05
4638 then
4639 declare
4640 Obj : constant Entity_Id :=
4641 Make_Defining_Identifier (Loc,
4642 Chars => New_Internal_Name ('F'));
4643 Decl : Node_Id;
4645 begin
4646 Decl :=
4647 Make_Object_Declaration (Loc,
4648 Defining_Identifier => Obj,
4649 Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
4650 Expression => Relocate_Node (Exp));
4651 Insert_Action (Exp, Decl);
4652 Set_Etype (Obj, Exp_Type);
4653 Rewrite (Exp, New_Occurrence_Of (Obj, Loc));
4654 return;
4655 end;
4656 end if;
4658 Ref_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
4660 Ptr_Typ_Decl :=
4661 Make_Full_Type_Declaration (Loc,
4662 Defining_Identifier => Ref_Type,
4663 Type_Definition =>
4664 Make_Access_To_Object_Definition (Loc,
4665 All_Present => True,
4666 Subtype_Indication =>
4667 New_Reference_To (Exp_Type, Loc)));
4669 E := Exp;
4670 Insert_Action (Exp, Ptr_Typ_Decl);
4672 Def_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
4673 Set_Etype (Def_Id, Exp_Type);
4675 Res :=
4676 Make_Explicit_Dereference (Loc,
4677 Prefix => New_Reference_To (Def_Id, Loc));
4679 if Nkind (E) = N_Explicit_Dereference then
4680 New_Exp := Relocate_Node (Prefix (E));
4681 else
4682 E := Relocate_Node (E);
4683 New_Exp := Make_Reference (Loc, E);
4684 end if;
4686 if Is_Delayed_Aggregate (E) then
4688 -- The expansion of nested aggregates is delayed until the
4689 -- enclosing aggregate is expanded. As aggregates are often
4690 -- qualified, the predicate applies to qualified expressions
4691 -- as well, indicating that the enclosing aggregate has not
4692 -- been expanded yet. At this point the aggregate is part of
4693 -- a stand-alone declaration, and must be fully expanded.
4695 if Nkind (E) = N_Qualified_Expression then
4696 Set_Expansion_Delayed (Expression (E), False);
4697 Set_Analyzed (Expression (E), False);
4698 else
4699 Set_Expansion_Delayed (E, False);
4700 end if;
4702 Set_Analyzed (E, False);
4703 end if;
4705 Insert_Action (Exp,
4706 Make_Object_Declaration (Loc,
4707 Defining_Identifier => Def_Id,
4708 Object_Definition => New_Reference_To (Ref_Type, Loc),
4709 Expression => New_Exp));
4710 end if;
4712 -- Preserve the Assignment_OK flag in all copies, since at least
4713 -- one copy may be used in a context where this flag must be set
4714 -- (otherwise why would the flag be set in the first place).
4716 Set_Assignment_OK (Res, Assignment_OK (Exp));
4718 -- Finally rewrite the original expression and we are done
4720 Rewrite (Exp, Res);
4721 Analyze_And_Resolve (Exp, Exp_Type);
4722 Scope_Suppress := Svg_Suppress;
4723 end Remove_Side_Effects;
4725 ---------------------------
4726 -- Represented_As_Scalar --
4727 ---------------------------
4729 function Represented_As_Scalar (T : Entity_Id) return Boolean is
4730 UT : constant Entity_Id := Underlying_Type (T);
4731 begin
4732 return Is_Scalar_Type (UT)
4733 or else (Is_Bit_Packed_Array (UT)
4734 and then Is_Scalar_Type (Packed_Array_Type (UT)));
4735 end Represented_As_Scalar;
4737 ------------------------------------
4738 -- Safe_Unchecked_Type_Conversion --
4739 ------------------------------------
4741 -- Note: this function knows quite a bit about the exact requirements
4742 -- of Gigi with respect to unchecked type conversions, and its code
4743 -- must be coordinated with any changes in Gigi in this area.
4745 -- The above requirements should be documented in Sinfo ???
4747 function Safe_Unchecked_Type_Conversion (Exp : Node_Id) return Boolean is
4748 Otyp : Entity_Id;
4749 Ityp : Entity_Id;
4750 Oalign : Uint;
4751 Ialign : Uint;
4752 Pexp : constant Node_Id := Parent (Exp);
4754 begin
4755 -- If the expression is the RHS of an assignment or object declaration
4756 -- we are always OK because there will always be a target.
4758 -- Object renaming declarations, (generated for view conversions of
4759 -- actuals in inlined calls), like object declarations, provide an
4760 -- explicit type, and are safe as well.
4762 if (Nkind (Pexp) = N_Assignment_Statement
4763 and then Expression (Pexp) = Exp)
4764 or else Nkind (Pexp) = N_Object_Declaration
4765 or else Nkind (Pexp) = N_Object_Renaming_Declaration
4766 then
4767 return True;
4769 -- If the expression is the prefix of an N_Selected_Component
4770 -- we should also be OK because GCC knows to look inside the
4771 -- conversion except if the type is discriminated. We assume
4772 -- that we are OK anyway if the type is not set yet or if it is
4773 -- controlled since we can't afford to introduce a temporary in
4774 -- this case.
4776 elsif Nkind (Pexp) = N_Selected_Component
4777 and then Prefix (Pexp) = Exp
4778 then
4779 if No (Etype (Pexp)) then
4780 return True;
4781 else
4782 return
4783 not Has_Discriminants (Etype (Pexp))
4784 or else Is_Constrained (Etype (Pexp));
4785 end if;
4786 end if;
4788 -- Set the output type, this comes from Etype if it is set, otherwise
4789 -- we take it from the subtype mark, which we assume was already
4790 -- fully analyzed.
4792 if Present (Etype (Exp)) then
4793 Otyp := Etype (Exp);
4794 else
4795 Otyp := Entity (Subtype_Mark (Exp));
4796 end if;
4798 -- The input type always comes from the expression, and we assume
4799 -- this is indeed always analyzed, so we can simply get the Etype.
4801 Ityp := Etype (Expression (Exp));
4803 -- Initialize alignments to unknown so far
4805 Oalign := No_Uint;
4806 Ialign := No_Uint;
4808 -- Replace a concurrent type by its corresponding record type
4809 -- and each type by its underlying type and do the tests on those.
4810 -- The original type may be a private type whose completion is a
4811 -- concurrent type, so find the underlying type first.
4813 if Present (Underlying_Type (Otyp)) then
4814 Otyp := Underlying_Type (Otyp);
4815 end if;
4817 if Present (Underlying_Type (Ityp)) then
4818 Ityp := Underlying_Type (Ityp);
4819 end if;
4821 if Is_Concurrent_Type (Otyp) then
4822 Otyp := Corresponding_Record_Type (Otyp);
4823 end if;
4825 if Is_Concurrent_Type (Ityp) then
4826 Ityp := Corresponding_Record_Type (Ityp);
4827 end if;
4829 -- If the base types are the same, we know there is no problem since
4830 -- this conversion will be a noop.
4832 if Implementation_Base_Type (Otyp) = Implementation_Base_Type (Ityp) then
4833 return True;
4835 -- Same if this is an upwards conversion of an untagged type, and there
4836 -- are no constraints involved (could be more general???)
4838 elsif Etype (Ityp) = Otyp
4839 and then not Is_Tagged_Type (Ityp)
4840 and then not Has_Discriminants (Ityp)
4841 and then No (First_Rep_Item (Base_Type (Ityp)))
4842 then
4843 return True;
4845 -- If the size of output type is known at compile time, there is
4846 -- never a problem. Note that unconstrained records are considered
4847 -- to be of known size, but we can't consider them that way here,
4848 -- because we are talking about the actual size of the object.
4850 -- We also make sure that in addition to the size being known, we do
4851 -- not have a case which might generate an embarrassingly large temp
4852 -- in stack checking mode.
4854 elsif Size_Known_At_Compile_Time (Otyp)
4855 and then
4856 (not Stack_Checking_Enabled
4857 or else not May_Generate_Large_Temp (Otyp))
4858 and then not (Is_Record_Type (Otyp) and then not Is_Constrained (Otyp))
4859 then
4860 return True;
4862 -- If either type is tagged, then we know the alignment is OK so
4863 -- Gigi will be able to use pointer punning.
4865 elsif Is_Tagged_Type (Otyp) or else Is_Tagged_Type (Ityp) then
4866 return True;
4868 -- If either type is a limited record type, we cannot do a copy, so
4869 -- say safe since there's nothing else we can do.
4871 elsif Is_Limited_Record (Otyp) or else Is_Limited_Record (Ityp) then
4872 return True;
4874 -- Conversions to and from packed array types are always ignored and
4875 -- hence are safe.
4877 elsif Is_Packed_Array_Type (Otyp)
4878 or else Is_Packed_Array_Type (Ityp)
4879 then
4880 return True;
4881 end if;
4883 -- The only other cases known to be safe is if the input type's
4884 -- alignment is known to be at least the maximum alignment for the
4885 -- target or if both alignments are known and the output type's
4886 -- alignment is no stricter than the input's. We can use the alignment
4887 -- of the component type of an array if a type is an unpacked
4888 -- array type.
4890 if Present (Alignment_Clause (Otyp)) then
4891 Oalign := Expr_Value (Expression (Alignment_Clause (Otyp)));
4893 elsif Is_Array_Type (Otyp)
4894 and then Present (Alignment_Clause (Component_Type (Otyp)))
4895 then
4896 Oalign := Expr_Value (Expression (Alignment_Clause
4897 (Component_Type (Otyp))));
4898 end if;
4900 if Present (Alignment_Clause (Ityp)) then
4901 Ialign := Expr_Value (Expression (Alignment_Clause (Ityp)));
4903 elsif Is_Array_Type (Ityp)
4904 and then Present (Alignment_Clause (Component_Type (Ityp)))
4905 then
4906 Ialign := Expr_Value (Expression (Alignment_Clause
4907 (Component_Type (Ityp))));
4908 end if;
4910 if Ialign /= No_Uint and then Ialign > Maximum_Alignment then
4911 return True;
4913 elsif Ialign /= No_Uint and then Oalign /= No_Uint
4914 and then Ialign <= Oalign
4915 then
4916 return True;
4918 -- Otherwise, Gigi cannot handle this and we must make a temporary
4920 else
4921 return False;
4922 end if;
4923 end Safe_Unchecked_Type_Conversion;
4925 ---------------------------------
4926 -- Set_Current_Value_Condition --
4927 ---------------------------------
4929 -- Note: the implementation of this procedure is very closely tied to the
4930 -- implementation of Get_Current_Value_Condition. Here we set required
4931 -- Current_Value fields, and in Get_Current_Value_Condition, we interpret
4932 -- them, so they must have a consistent view.
4934 procedure Set_Current_Value_Condition (Cnode : Node_Id) is
4936 procedure Set_Entity_Current_Value (N : Node_Id);
4937 -- If N is an entity reference, where the entity is of an appropriate
4938 -- kind, then set the current value of this entity to Cnode, unless
4939 -- there is already a definite value set there.
4941 procedure Set_Expression_Current_Value (N : Node_Id);
4942 -- If N is of an appropriate form, sets an appropriate entry in current
4943 -- value fields of relevant entities. Multiple entities can be affected
4944 -- in the case of an AND or AND THEN.
4946 ------------------------------
4947 -- Set_Entity_Current_Value --
4948 ------------------------------
4950 procedure Set_Entity_Current_Value (N : Node_Id) is
4951 begin
4952 if Is_Entity_Name (N) then
4953 declare
4954 Ent : constant Entity_Id := Entity (N);
4956 begin
4957 -- Don't capture if not safe to do so
4959 if not Safe_To_Capture_Value (N, Ent, Cond => True) then
4960 return;
4961 end if;
4963 -- Here we have a case where the Current_Value field may
4964 -- need to be set. We set it if it is not already set to a
4965 -- compile time expression value.
4967 -- Note that this represents a decision that one condition
4968 -- blots out another previous one. That's certainly right
4969 -- if they occur at the same level. If the second one is
4970 -- nested, then the decision is neither right nor wrong (it
4971 -- would be equally OK to leave the outer one in place, or
4972 -- take the new inner one. Really we should record both, but
4973 -- our data structures are not that elaborate.
4975 if Nkind (Current_Value (Ent)) not in N_Subexpr then
4976 Set_Current_Value (Ent, Cnode);
4977 end if;
4978 end;
4979 end if;
4980 end Set_Entity_Current_Value;
4982 ----------------------------------
4983 -- Set_Expression_Current_Value --
4984 ----------------------------------
4986 procedure Set_Expression_Current_Value (N : Node_Id) is
4987 Cond : Node_Id;
4989 begin
4990 Cond := N;
4992 -- Loop to deal with (ignore for now) any NOT operators present. The
4993 -- presence of NOT operators will be handled properly when we call
4994 -- Get_Current_Value_Condition.
4996 while Nkind (Cond) = N_Op_Not loop
4997 Cond := Right_Opnd (Cond);
4998 end loop;
5000 -- For an AND or AND THEN, recursively process operands
5002 if Nkind (Cond) = N_Op_And or else Nkind (Cond) = N_And_Then then
5003 Set_Expression_Current_Value (Left_Opnd (Cond));
5004 Set_Expression_Current_Value (Right_Opnd (Cond));
5005 return;
5006 end if;
5008 -- Check possible relational operator
5010 if Nkind (Cond) in N_Op_Compare then
5011 if Compile_Time_Known_Value (Right_Opnd (Cond)) then
5012 Set_Entity_Current_Value (Left_Opnd (Cond));
5013 elsif Compile_Time_Known_Value (Left_Opnd (Cond)) then
5014 Set_Entity_Current_Value (Right_Opnd (Cond));
5015 end if;
5017 -- Check possible boolean variable reference
5019 else
5020 Set_Entity_Current_Value (Cond);
5021 end if;
5022 end Set_Expression_Current_Value;
5024 -- Start of processing for Set_Current_Value_Condition
5026 begin
5027 Set_Expression_Current_Value (Condition (Cnode));
5028 end Set_Current_Value_Condition;
5030 --------------------------
5031 -- Set_Elaboration_Flag --
5032 --------------------------
5034 procedure Set_Elaboration_Flag (N : Node_Id; Spec_Id : Entity_Id) is
5035 Loc : constant Source_Ptr := Sloc (N);
5036 Ent : constant Entity_Id := Elaboration_Entity (Spec_Id);
5037 Asn : Node_Id;
5039 begin
5040 if Present (Ent) then
5042 -- Nothing to do if at the compilation unit level, because in this
5043 -- case the flag is set by the binder generated elaboration routine.
5045 if Nkind (Parent (N)) = N_Compilation_Unit then
5046 null;
5048 -- Here we do need to generate an assignment statement
5050 else
5051 Check_Restriction (No_Elaboration_Code, N);
5052 Asn :=
5053 Make_Assignment_Statement (Loc,
5054 Name => New_Occurrence_Of (Ent, Loc),
5055 Expression => New_Occurrence_Of (Standard_True, Loc));
5057 if Nkind (Parent (N)) = N_Subunit then
5058 Insert_After (Corresponding_Stub (Parent (N)), Asn);
5059 else
5060 Insert_After (N, Asn);
5061 end if;
5063 Analyze (Asn);
5065 -- Kill current value indication. This is necessary because the
5066 -- tests of this flag are inserted out of sequence and must not
5067 -- pick up bogus indications of the wrong constant value.
5069 Set_Current_Value (Ent, Empty);
5070 end if;
5071 end if;
5072 end Set_Elaboration_Flag;
5074 ----------------------------
5075 -- Set_Renamed_Subprogram --
5076 ----------------------------
5078 procedure Set_Renamed_Subprogram (N : Node_Id; E : Entity_Id) is
5079 begin
5080 -- If input node is an identifier, we can just reset it
5082 if Nkind (N) = N_Identifier then
5083 Set_Chars (N, Chars (E));
5084 Set_Entity (N, E);
5086 -- Otherwise we have to do a rewrite, preserving Comes_From_Source
5088 else
5089 declare
5090 CS : constant Boolean := Comes_From_Source (N);
5091 begin
5092 Rewrite (N, Make_Identifier (Sloc (N), Chars => Chars (E)));
5093 Set_Entity (N, E);
5094 Set_Comes_From_Source (N, CS);
5095 Set_Analyzed (N, True);
5096 end;
5097 end if;
5098 end Set_Renamed_Subprogram;
5100 ----------------------------------
5101 -- Silly_Boolean_Array_Not_Test --
5102 ----------------------------------
5104 -- This procedure implements an odd and silly test. We explicitly check
5105 -- for the case where the 'First of the component type is equal to the
5106 -- 'Last of this component type, and if this is the case, we make sure
5107 -- that constraint error is raised. The reason is that the NOT is bound
5108 -- to cause CE in this case, and we will not otherwise catch it.
5110 -- Believe it or not, this was reported as a bug. Note that nearly
5111 -- always, the test will evaluate statically to False, so the code will
5112 -- be statically removed, and no extra overhead caused.
5114 procedure Silly_Boolean_Array_Not_Test (N : Node_Id; T : Entity_Id) is
5115 Loc : constant Source_Ptr := Sloc (N);
5116 CT : constant Entity_Id := Component_Type (T);
5118 begin
5119 Insert_Action (N,
5120 Make_Raise_Constraint_Error (Loc,
5121 Condition =>
5122 Make_Op_Eq (Loc,
5123 Left_Opnd =>
5124 Make_Attribute_Reference (Loc,
5125 Prefix => New_Occurrence_Of (CT, Loc),
5126 Attribute_Name => Name_First),
5128 Right_Opnd =>
5129 Make_Attribute_Reference (Loc,
5130 Prefix => New_Occurrence_Of (CT, Loc),
5131 Attribute_Name => Name_Last)),
5132 Reason => CE_Range_Check_Failed));
5133 end Silly_Boolean_Array_Not_Test;
5135 ----------------------------------
5136 -- Silly_Boolean_Array_Xor_Test --
5137 ----------------------------------
5139 -- This procedure implements an odd and silly test. We explicitly check
5140 -- for the XOR case where the component type is True .. True, since this
5141 -- will raise constraint error. A special check is required since CE
5142 -- will not be required otherwise (cf Expand_Packed_Not).
5144 -- No such check is required for AND and OR, since for both these cases
5145 -- False op False = False, and True op True = True.
5147 procedure Silly_Boolean_Array_Xor_Test (N : Node_Id; T : Entity_Id) is
5148 Loc : constant Source_Ptr := Sloc (N);
5149 CT : constant Entity_Id := Component_Type (T);
5150 BT : constant Entity_Id := Base_Type (CT);
5152 begin
5153 Insert_Action (N,
5154 Make_Raise_Constraint_Error (Loc,
5155 Condition =>
5156 Make_Op_And (Loc,
5157 Left_Opnd =>
5158 Make_Op_Eq (Loc,
5159 Left_Opnd =>
5160 Make_Attribute_Reference (Loc,
5161 Prefix => New_Occurrence_Of (CT, Loc),
5162 Attribute_Name => Name_First),
5164 Right_Opnd =>
5165 Convert_To (BT,
5166 New_Occurrence_Of (Standard_True, Loc))),
5168 Right_Opnd =>
5169 Make_Op_Eq (Loc,
5170 Left_Opnd =>
5171 Make_Attribute_Reference (Loc,
5172 Prefix => New_Occurrence_Of (CT, Loc),
5173 Attribute_Name => Name_Last),
5175 Right_Opnd =>
5176 Convert_To (BT,
5177 New_Occurrence_Of (Standard_True, Loc)))),
5178 Reason => CE_Range_Check_Failed));
5179 end Silly_Boolean_Array_Xor_Test;
5181 --------------------------
5182 -- Target_Has_Fixed_Ops --
5183 --------------------------
5185 Integer_Sized_Small : Ureal;
5186 -- Set to 2.0 ** -(Integer'Size - 1) the first time that this
5187 -- function is called (we don't want to compute it more than once!)
5189 Long_Integer_Sized_Small : Ureal;
5190 -- Set to 2.0 ** -(Long_Integer'Size - 1) the first time that this
5191 -- function is called (we don't want to compute it more than once)
5193 First_Time_For_THFO : Boolean := True;
5194 -- Set to False after first call (if Fractional_Fixed_Ops_On_Target)
5196 function Target_Has_Fixed_Ops
5197 (Left_Typ : Entity_Id;
5198 Right_Typ : Entity_Id;
5199 Result_Typ : Entity_Id) return Boolean
5201 function Is_Fractional_Type (Typ : Entity_Id) return Boolean;
5202 -- Return True if the given type is a fixed-point type with a small
5203 -- value equal to 2 ** (-(T'Object_Size - 1)) and whose values have
5204 -- an absolute value less than 1.0. This is currently limited
5205 -- to fixed-point types that map to Integer or Long_Integer.
5207 ------------------------
5208 -- Is_Fractional_Type --
5209 ------------------------
5211 function Is_Fractional_Type (Typ : Entity_Id) return Boolean is
5212 begin
5213 if Esize (Typ) = Standard_Integer_Size then
5214 return Small_Value (Typ) = Integer_Sized_Small;
5216 elsif Esize (Typ) = Standard_Long_Integer_Size then
5217 return Small_Value (Typ) = Long_Integer_Sized_Small;
5219 else
5220 return False;
5221 end if;
5222 end Is_Fractional_Type;
5224 -- Start of processing for Target_Has_Fixed_Ops
5226 begin
5227 -- Return False if Fractional_Fixed_Ops_On_Target is false
5229 if not Fractional_Fixed_Ops_On_Target then
5230 return False;
5231 end if;
5233 -- Here the target has Fractional_Fixed_Ops, if first time, compute
5234 -- standard constants used by Is_Fractional_Type.
5236 if First_Time_For_THFO then
5237 First_Time_For_THFO := False;
5239 Integer_Sized_Small :=
5240 UR_From_Components
5241 (Num => Uint_1,
5242 Den => UI_From_Int (Standard_Integer_Size - 1),
5243 Rbase => 2);
5245 Long_Integer_Sized_Small :=
5246 UR_From_Components
5247 (Num => Uint_1,
5248 Den => UI_From_Int (Standard_Long_Integer_Size - 1),
5249 Rbase => 2);
5250 end if;
5252 -- Return True if target supports fixed-by-fixed multiply/divide
5253 -- for fractional fixed-point types (see Is_Fractional_Type) and
5254 -- the operand and result types are equivalent fractional types.
5256 return Is_Fractional_Type (Base_Type (Left_Typ))
5257 and then Is_Fractional_Type (Base_Type (Right_Typ))
5258 and then Is_Fractional_Type (Base_Type (Result_Typ))
5259 and then Esize (Left_Typ) = Esize (Right_Typ)
5260 and then Esize (Left_Typ) = Esize (Result_Typ);
5261 end Target_Has_Fixed_Ops;
5263 ------------------------------------------
5264 -- Type_May_Have_Bit_Aligned_Components --
5265 ------------------------------------------
5267 function Type_May_Have_Bit_Aligned_Components
5268 (Typ : Entity_Id) return Boolean
5270 begin
5271 -- Array type, check component type
5273 if Is_Array_Type (Typ) then
5274 return
5275 Type_May_Have_Bit_Aligned_Components (Component_Type (Typ));
5277 -- Record type, check components
5279 elsif Is_Record_Type (Typ) then
5280 declare
5281 E : Entity_Id;
5283 begin
5284 E := First_Component_Or_Discriminant (Typ);
5285 while Present (E) loop
5286 if Component_May_Be_Bit_Aligned (E)
5287 or else Type_May_Have_Bit_Aligned_Components (Etype (E))
5288 then
5289 return True;
5290 end if;
5292 Next_Component_Or_Discriminant (E);
5293 end loop;
5295 return False;
5296 end;
5298 -- Type other than array or record is always OK
5300 else
5301 return False;
5302 end if;
5303 end Type_May_Have_Bit_Aligned_Components;
5305 ----------------------------
5306 -- Wrap_Cleanup_Procedure --
5307 ----------------------------
5309 procedure Wrap_Cleanup_Procedure (N : Node_Id) is
5310 Loc : constant Source_Ptr := Sloc (N);
5311 Stseq : constant Node_Id := Handled_Statement_Sequence (N);
5312 Stmts : constant List_Id := Statements (Stseq);
5314 begin
5315 if Abort_Allowed then
5316 Prepend_To (Stmts, Build_Runtime_Call (Loc, RE_Abort_Defer));
5317 Append_To (Stmts, Build_Runtime_Call (Loc, RE_Abort_Undefer));
5318 end if;
5319 end Wrap_Cleanup_Procedure;
5321 end Exp_Util;