1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
27 #include "stringpool.h"
28 #include "stor-layout.h"
33 #include "hard-reg-set.h"
36 #include "insn-config.h"
37 #include "insn-attr.h"
38 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
44 #include "typeclass.h"
46 #include "langhooks.h"
49 #include "tree-iterator.h"
50 #include "basic-block.h"
51 #include "tree-ssa-alias.h"
52 #include "internal-fn.h"
53 #include "gimple-expr.h"
56 #include "gimple-ssa.h"
58 #include "tree-ssanames.h"
60 #include "common/common-target.h"
63 #include "diagnostic.h"
64 #include "tree-ssa-live.h"
65 #include "tree-outof-ssa.h"
66 #include "target-globals.h"
68 #include "tree-ssa-address.h"
69 #include "cfgexpand.h"
71 /* Decide whether a function's arguments should be processed
72 from first to last or from last to first.
74 They should if the stack and args grow in opposite directions, but
75 only if we have push insns. */
79 #ifndef PUSH_ARGS_REVERSED
80 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
81 #define PUSH_ARGS_REVERSED /* If it's last to first. */
87 #ifndef STACK_PUSH_CODE
88 #ifdef STACK_GROWS_DOWNWARD
89 #define STACK_PUSH_CODE PRE_DEC
91 #define STACK_PUSH_CODE PRE_INC
96 /* If this is nonzero, we do not bother generating VOLATILE
97 around volatile memory references, and we are willing to
98 output indirect addresses. If cse is to follow, we reject
99 indirect addresses so a useful potential cse is generated;
100 if it is used only once, instruction combination will produce
101 the same indirect address eventually. */
102 int cse_not_expected
;
104 /* This structure is used by move_by_pieces to describe the move to
106 struct move_by_pieces_d
115 int explicit_inc_from
;
116 unsigned HOST_WIDE_INT len
;
117 HOST_WIDE_INT offset
;
121 /* This structure is used by store_by_pieces to describe the clear to
124 struct store_by_pieces_d
130 unsigned HOST_WIDE_INT len
;
131 HOST_WIDE_INT offset
;
132 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
);
137 static void move_by_pieces_1 (insn_gen_fn
, machine_mode
,
138 struct move_by_pieces_d
*);
139 static bool block_move_libcall_safe_for_call_parm (void);
140 static bool emit_block_move_via_movmem (rtx
, rtx
, rtx
, unsigned, unsigned, HOST_WIDE_INT
,
141 unsigned HOST_WIDE_INT
, unsigned HOST_WIDE_INT
,
142 unsigned HOST_WIDE_INT
);
143 static tree
emit_block_move_libcall_fn (int);
144 static void emit_block_move_via_loop (rtx
, rtx
, rtx
, unsigned);
145 static rtx
clear_by_pieces_1 (void *, HOST_WIDE_INT
, enum machine_mode
);
146 static void clear_by_pieces (rtx
, unsigned HOST_WIDE_INT
, unsigned int);
147 static void store_by_pieces_1 (struct store_by_pieces_d
*, unsigned int);
148 static void store_by_pieces_2 (insn_gen_fn
, machine_mode
,
149 struct store_by_pieces_d
*);
150 static tree
clear_storage_libcall_fn (int);
151 static rtx
compress_float_constant (rtx
, rtx
);
152 static rtx
get_subtarget (rtx
);
153 static void store_constructor_field (rtx
, unsigned HOST_WIDE_INT
,
154 HOST_WIDE_INT
, enum machine_mode
,
155 tree
, int, alias_set_type
);
156 static void store_constructor (tree
, rtx
, int, HOST_WIDE_INT
);
157 static rtx
store_field (rtx
, HOST_WIDE_INT
, HOST_WIDE_INT
,
158 unsigned HOST_WIDE_INT
, unsigned HOST_WIDE_INT
,
159 enum machine_mode
, tree
, alias_set_type
, bool);
161 static unsigned HOST_WIDE_INT
highest_pow2_factor_for_target (const_tree
, const_tree
);
163 static int is_aligning_offset (const_tree
, const_tree
);
164 static void expand_operands (tree
, tree
, rtx
, rtx
*, rtx
*,
165 enum expand_modifier
);
166 static rtx
reduce_to_bit_field_precision (rtx
, rtx
, tree
);
167 static rtx
do_store_flag (sepops
, rtx
, enum machine_mode
);
169 static void emit_single_push_insn (enum machine_mode
, rtx
, tree
);
171 static void do_tablejump (rtx
, enum machine_mode
, rtx
, rtx
, rtx
, int);
172 static rtx
const_vector_from_tree (tree
);
173 static void write_complex_part (rtx
, rtx
, bool);
175 /* This macro is used to determine whether move_by_pieces should be called
176 to perform a structure copy. */
177 #ifndef MOVE_BY_PIECES_P
178 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
179 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
180 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
183 /* This macro is used to determine whether clear_by_pieces should be
184 called to clear storage. */
185 #ifndef CLEAR_BY_PIECES_P
186 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
187 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
188 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
191 /* This macro is used to determine whether store_by_pieces should be
192 called to "memset" storage with byte values other than zero. */
193 #ifndef SET_BY_PIECES_P
194 #define SET_BY_PIECES_P(SIZE, ALIGN) \
195 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
196 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
199 /* This macro is used to determine whether store_by_pieces should be
200 called to "memcpy" storage when the source is a constant string. */
201 #ifndef STORE_BY_PIECES_P
202 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
203 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
204 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
207 /* This is run to set up which modes can be used
208 directly in memory and to initialize the block move optab. It is run
209 at the beginning of compilation and when the target is reinitialized. */
212 init_expr_target (void)
215 enum machine_mode mode
;
220 /* Try indexing by frame ptr and try by stack ptr.
221 It is known that on the Convex the stack ptr isn't a valid index.
222 With luck, one or the other is valid on any machine. */
223 mem
= gen_rtx_MEM (VOIDmode
, stack_pointer_rtx
);
224 mem1
= gen_rtx_MEM (VOIDmode
, frame_pointer_rtx
);
226 /* A scratch register we can modify in-place below to avoid
227 useless RTL allocations. */
228 reg
= gen_rtx_REG (VOIDmode
, -1);
230 insn
= rtx_alloc (INSN
);
231 pat
= gen_rtx_SET (VOIDmode
, NULL_RTX
, NULL_RTX
);
232 PATTERN (insn
) = pat
;
234 for (mode
= VOIDmode
; (int) mode
< NUM_MACHINE_MODES
;
235 mode
= (enum machine_mode
) ((int) mode
+ 1))
239 direct_load
[(int) mode
] = direct_store
[(int) mode
] = 0;
240 PUT_MODE (mem
, mode
);
241 PUT_MODE (mem1
, mode
);
242 PUT_MODE (reg
, mode
);
244 /* See if there is some register that can be used in this mode and
245 directly loaded or stored from memory. */
247 if (mode
!= VOIDmode
&& mode
!= BLKmode
)
248 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
249 && (direct_load
[(int) mode
] == 0 || direct_store
[(int) mode
] == 0);
252 if (! HARD_REGNO_MODE_OK (regno
, mode
))
255 SET_REGNO (reg
, regno
);
258 SET_DEST (pat
) = reg
;
259 if (recog (pat
, insn
, &num_clobbers
) >= 0)
260 direct_load
[(int) mode
] = 1;
262 SET_SRC (pat
) = mem1
;
263 SET_DEST (pat
) = reg
;
264 if (recog (pat
, insn
, &num_clobbers
) >= 0)
265 direct_load
[(int) mode
] = 1;
268 SET_DEST (pat
) = mem
;
269 if (recog (pat
, insn
, &num_clobbers
) >= 0)
270 direct_store
[(int) mode
] = 1;
273 SET_DEST (pat
) = mem1
;
274 if (recog (pat
, insn
, &num_clobbers
) >= 0)
275 direct_store
[(int) mode
] = 1;
279 mem
= gen_rtx_MEM (VOIDmode
, gen_rtx_raw_REG (Pmode
, 10000));
281 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
282 mode
= GET_MODE_WIDER_MODE (mode
))
284 enum machine_mode srcmode
;
285 for (srcmode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); srcmode
!= mode
;
286 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
290 ic
= can_extend_p (mode
, srcmode
, 0);
291 if (ic
== CODE_FOR_nothing
)
294 PUT_MODE (mem
, srcmode
);
296 if (insn_operand_matches (ic
, 1, mem
))
297 float_extend_from_mem
[mode
][srcmode
] = true;
302 /* This is run at the start of compiling a function. */
307 memset (&crtl
->expr
, 0, sizeof (crtl
->expr
));
310 /* Copy data from FROM to TO, where the machine modes are not the same.
311 Both modes may be integer, or both may be floating, or both may be
313 UNSIGNEDP should be nonzero if FROM is an unsigned type.
314 This causes zero-extension instead of sign-extension. */
317 convert_move (rtx to
, rtx from
, int unsignedp
)
319 enum machine_mode to_mode
= GET_MODE (to
);
320 enum machine_mode from_mode
= GET_MODE (from
);
321 int to_real
= SCALAR_FLOAT_MODE_P (to_mode
);
322 int from_real
= SCALAR_FLOAT_MODE_P (from_mode
);
326 /* rtx code for making an equivalent value. */
327 enum rtx_code equiv_code
= (unsignedp
< 0 ? UNKNOWN
328 : (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
));
331 gcc_assert (to_real
== from_real
);
332 gcc_assert (to_mode
!= BLKmode
);
333 gcc_assert (from_mode
!= BLKmode
);
335 /* If the source and destination are already the same, then there's
340 /* If FROM is a SUBREG that indicates that we have already done at least
341 the required extension, strip it. We don't handle such SUBREGs as
344 if (GET_CODE (from
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (from
)
345 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (from
)))
346 >= GET_MODE_PRECISION (to_mode
))
347 && SUBREG_PROMOTED_UNSIGNED_P (from
) == unsignedp
)
348 from
= gen_lowpart (to_mode
, from
), from_mode
= to_mode
;
350 gcc_assert (GET_CODE (to
) != SUBREG
|| !SUBREG_PROMOTED_VAR_P (to
));
352 if (to_mode
== from_mode
353 || (from_mode
== VOIDmode
&& CONSTANT_P (from
)))
355 emit_move_insn (to
, from
);
359 if (VECTOR_MODE_P (to_mode
) || VECTOR_MODE_P (from_mode
))
361 gcc_assert (GET_MODE_BITSIZE (from_mode
) == GET_MODE_BITSIZE (to_mode
));
363 if (VECTOR_MODE_P (to_mode
))
364 from
= simplify_gen_subreg (to_mode
, from
, GET_MODE (from
), 0);
366 to
= simplify_gen_subreg (from_mode
, to
, GET_MODE (to
), 0);
368 emit_move_insn (to
, from
);
372 if (GET_CODE (to
) == CONCAT
&& GET_CODE (from
) == CONCAT
)
374 convert_move (XEXP (to
, 0), XEXP (from
, 0), unsignedp
);
375 convert_move (XEXP (to
, 1), XEXP (from
, 1), unsignedp
);
384 gcc_assert ((GET_MODE_PRECISION (from_mode
)
385 != GET_MODE_PRECISION (to_mode
))
386 || (DECIMAL_FLOAT_MODE_P (from_mode
)
387 != DECIMAL_FLOAT_MODE_P (to_mode
)));
389 if (GET_MODE_PRECISION (from_mode
) == GET_MODE_PRECISION (to_mode
))
390 /* Conversion between decimal float and binary float, same size. */
391 tab
= DECIMAL_FLOAT_MODE_P (from_mode
) ? trunc_optab
: sext_optab
;
392 else if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
))
397 /* Try converting directly if the insn is supported. */
399 code
= convert_optab_handler (tab
, to_mode
, from_mode
);
400 if (code
!= CODE_FOR_nothing
)
402 emit_unop_insn (code
, to
, from
,
403 tab
== sext_optab
? FLOAT_EXTEND
: FLOAT_TRUNCATE
);
407 /* Otherwise use a libcall. */
408 libcall
= convert_optab_libfunc (tab
, to_mode
, from_mode
);
410 /* Is this conversion implemented yet? */
411 gcc_assert (libcall
);
414 value
= emit_library_call_value (libcall
, NULL_RTX
, LCT_CONST
, to_mode
,
416 insns
= get_insns ();
418 emit_libcall_block (insns
, to
, value
,
419 tab
== trunc_optab
? gen_rtx_FLOAT_TRUNCATE (to_mode
,
421 : gen_rtx_FLOAT_EXTEND (to_mode
, from
));
425 /* Handle pointer conversion. */ /* SPEE 900220. */
426 /* Targets are expected to provide conversion insns between PxImode and
427 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
428 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
)
430 enum machine_mode full_mode
431 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode
), MODE_INT
);
433 gcc_assert (convert_optab_handler (trunc_optab
, to_mode
, full_mode
)
434 != CODE_FOR_nothing
);
436 if (full_mode
!= from_mode
)
437 from
= convert_to_mode (full_mode
, from
, unsignedp
);
438 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, full_mode
),
442 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
)
445 enum machine_mode full_mode
446 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode
), MODE_INT
);
447 convert_optab ctab
= unsignedp
? zext_optab
: sext_optab
;
448 enum insn_code icode
;
450 icode
= convert_optab_handler (ctab
, full_mode
, from_mode
);
451 gcc_assert (icode
!= CODE_FOR_nothing
);
453 if (to_mode
== full_mode
)
455 emit_unop_insn (icode
, to
, from
, UNKNOWN
);
459 new_from
= gen_reg_rtx (full_mode
);
460 emit_unop_insn (icode
, new_from
, from
, UNKNOWN
);
462 /* else proceed to integer conversions below. */
463 from_mode
= full_mode
;
467 /* Make sure both are fixed-point modes or both are not. */
468 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
) ==
469 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode
));
470 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
))
472 /* If we widen from_mode to to_mode and they are in the same class,
473 we won't saturate the result.
474 Otherwise, always saturate the result to play safe. */
475 if (GET_MODE_CLASS (from_mode
) == GET_MODE_CLASS (to_mode
)
476 && GET_MODE_SIZE (from_mode
) < GET_MODE_SIZE (to_mode
))
477 expand_fixed_convert (to
, from
, 0, 0);
479 expand_fixed_convert (to
, from
, 0, 1);
483 /* Now both modes are integers. */
485 /* Handle expanding beyond a word. */
486 if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
)
487 && GET_MODE_PRECISION (to_mode
) > BITS_PER_WORD
)
494 enum machine_mode lowpart_mode
;
495 int nwords
= CEIL (GET_MODE_SIZE (to_mode
), UNITS_PER_WORD
);
497 /* Try converting directly if the insn is supported. */
498 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
501 /* If FROM is a SUBREG, put it into a register. Do this
502 so that we always generate the same set of insns for
503 better cse'ing; if an intermediate assignment occurred,
504 we won't be doing the operation directly on the SUBREG. */
505 if (optimize
> 0 && GET_CODE (from
) == SUBREG
)
506 from
= force_reg (from_mode
, from
);
507 emit_unop_insn (code
, to
, from
, equiv_code
);
510 /* Next, try converting via full word. */
511 else if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
512 && ((code
= can_extend_p (to_mode
, word_mode
, unsignedp
))
513 != CODE_FOR_nothing
))
515 rtx word_to
= gen_reg_rtx (word_mode
);
518 if (reg_overlap_mentioned_p (to
, from
))
519 from
= force_reg (from_mode
, from
);
522 convert_move (word_to
, from
, unsignedp
);
523 emit_unop_insn (code
, to
, word_to
, equiv_code
);
527 /* No special multiword conversion insn; do it by hand. */
530 /* Since we will turn this into a no conflict block, we must ensure the
531 the source does not overlap the target so force it into an isolated
532 register when maybe so. Likewise for any MEM input, since the
533 conversion sequence might require several references to it and we
534 must ensure we're getting the same value every time. */
536 if (MEM_P (from
) || reg_overlap_mentioned_p (to
, from
))
537 from
= force_reg (from_mode
, from
);
539 /* Get a copy of FROM widened to a word, if necessary. */
540 if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
)
541 lowpart_mode
= word_mode
;
543 lowpart_mode
= from_mode
;
545 lowfrom
= convert_to_mode (lowpart_mode
, from
, unsignedp
);
547 lowpart
= gen_lowpart (lowpart_mode
, to
);
548 emit_move_insn (lowpart
, lowfrom
);
550 /* Compute the value to put in each remaining word. */
552 fill_value
= const0_rtx
;
554 fill_value
= emit_store_flag (gen_reg_rtx (word_mode
),
555 LT
, lowfrom
, const0_rtx
,
558 /* Fill the remaining words. */
559 for (i
= GET_MODE_SIZE (lowpart_mode
) / UNITS_PER_WORD
; i
< nwords
; i
++)
561 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
562 rtx subword
= operand_subword (to
, index
, 1, to_mode
);
564 gcc_assert (subword
);
566 if (fill_value
!= subword
)
567 emit_move_insn (subword
, fill_value
);
570 insns
= get_insns ();
577 /* Truncating multi-word to a word or less. */
578 if (GET_MODE_PRECISION (from_mode
) > BITS_PER_WORD
579 && GET_MODE_PRECISION (to_mode
) <= BITS_PER_WORD
)
582 && ! MEM_VOLATILE_P (from
)
583 && direct_load
[(int) to_mode
]
584 && ! mode_dependent_address_p (XEXP (from
, 0),
585 MEM_ADDR_SPACE (from
)))
587 || GET_CODE (from
) == SUBREG
))
588 from
= force_reg (from_mode
, from
);
589 convert_move (to
, gen_lowpart (word_mode
, from
), 0);
593 /* Now follow all the conversions between integers
594 no more than a word long. */
596 /* For truncation, usually we can just refer to FROM in a narrower mode. */
597 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
)
598 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
, from_mode
))
601 && ! MEM_VOLATILE_P (from
)
602 && direct_load
[(int) to_mode
]
603 && ! mode_dependent_address_p (XEXP (from
, 0),
604 MEM_ADDR_SPACE (from
)))
606 || GET_CODE (from
) == SUBREG
))
607 from
= force_reg (from_mode
, from
);
608 if (REG_P (from
) && REGNO (from
) < FIRST_PSEUDO_REGISTER
609 && ! HARD_REGNO_MODE_OK (REGNO (from
), to_mode
))
610 from
= copy_to_reg (from
);
611 emit_move_insn (to
, gen_lowpart (to_mode
, from
));
615 /* Handle extension. */
616 if (GET_MODE_PRECISION (to_mode
) > GET_MODE_PRECISION (from_mode
))
618 /* Convert directly if that works. */
619 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
622 emit_unop_insn (code
, to
, from
, equiv_code
);
627 enum machine_mode intermediate
;
631 /* Search for a mode to convert via. */
632 for (intermediate
= from_mode
; intermediate
!= VOIDmode
;
633 intermediate
= GET_MODE_WIDER_MODE (intermediate
))
634 if (((can_extend_p (to_mode
, intermediate
, unsignedp
)
636 || (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (intermediate
)
637 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
, intermediate
)))
638 && (can_extend_p (intermediate
, from_mode
, unsignedp
)
639 != CODE_FOR_nothing
))
641 convert_move (to
, convert_to_mode (intermediate
, from
,
642 unsignedp
), unsignedp
);
646 /* No suitable intermediate mode.
647 Generate what we need with shifts. */
648 shift_amount
= (GET_MODE_PRECISION (to_mode
)
649 - GET_MODE_PRECISION (from_mode
));
650 from
= gen_lowpart (to_mode
, force_reg (from_mode
, from
));
651 tmp
= expand_shift (LSHIFT_EXPR
, to_mode
, from
, shift_amount
,
653 tmp
= expand_shift (RSHIFT_EXPR
, to_mode
, tmp
, shift_amount
,
656 emit_move_insn (to
, tmp
);
661 /* Support special truncate insns for certain modes. */
662 if (convert_optab_handler (trunc_optab
, to_mode
,
663 from_mode
) != CODE_FOR_nothing
)
665 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, from_mode
),
670 /* Handle truncation of volatile memrefs, and so on;
671 the things that couldn't be truncated directly,
672 and for which there was no special instruction.
674 ??? Code above formerly short-circuited this, for most integer
675 mode pairs, with a force_reg in from_mode followed by a recursive
676 call to this routine. Appears always to have been wrong. */
677 if (GET_MODE_PRECISION (to_mode
) < GET_MODE_PRECISION (from_mode
))
679 rtx temp
= force_reg (to_mode
, gen_lowpart (to_mode
, from
));
680 emit_move_insn (to
, temp
);
684 /* Mode combination is not recognized. */
688 /* Return an rtx for a value that would result
689 from converting X to mode MODE.
690 Both X and MODE may be floating, or both integer.
691 UNSIGNEDP is nonzero if X is an unsigned value.
692 This can be done by referring to a part of X in place
693 or by copying to a new temporary with conversion. */
696 convert_to_mode (enum machine_mode mode
, rtx x
, int unsignedp
)
698 return convert_modes (mode
, VOIDmode
, x
, unsignedp
);
701 /* Return an rtx for a value that would result
702 from converting X from mode OLDMODE to mode MODE.
703 Both modes may be floating, or both integer.
704 UNSIGNEDP is nonzero if X is an unsigned value.
706 This can be done by referring to a part of X in place
707 or by copying to a new temporary with conversion.
709 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
712 convert_modes (enum machine_mode mode
, enum machine_mode oldmode
, rtx x
, int unsignedp
)
716 /* If FROM is a SUBREG that indicates that we have already done at least
717 the required extension, strip it. */
719 if (GET_CODE (x
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (x
)
720 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))) >= GET_MODE_SIZE (mode
)
721 && SUBREG_PROMOTED_UNSIGNED_P (x
) == unsignedp
)
722 x
= gen_lowpart (mode
, SUBREG_REG (x
));
724 if (GET_MODE (x
) != VOIDmode
)
725 oldmode
= GET_MODE (x
);
730 /* There is one case that we must handle specially: If we are converting
731 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
732 we are to interpret the constant as unsigned, gen_lowpart will do
733 the wrong if the constant appears negative. What we want to do is
734 make the high-order word of the constant zero, not all ones. */
736 if (unsignedp
&& GET_MODE_CLASS (mode
) == MODE_INT
737 && GET_MODE_BITSIZE (mode
) == HOST_BITS_PER_DOUBLE_INT
738 && CONST_INT_P (x
) && INTVAL (x
) < 0)
740 double_int val
= double_int::from_uhwi (INTVAL (x
));
742 /* We need to zero extend VAL. */
743 if (oldmode
!= VOIDmode
)
744 val
= val
.zext (GET_MODE_BITSIZE (oldmode
));
746 return immed_double_int_const (val
, mode
);
749 /* We can do this with a gen_lowpart if both desired and current modes
750 are integer, and this is either a constant integer, a register, or a
751 non-volatile MEM. Except for the constant case where MODE is no
752 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
755 && GET_MODE_PRECISION (mode
) <= HOST_BITS_PER_WIDE_INT
)
756 || (GET_MODE_CLASS (mode
) == MODE_INT
757 && GET_MODE_CLASS (oldmode
) == MODE_INT
758 && (CONST_DOUBLE_AS_INT_P (x
)
759 || (GET_MODE_PRECISION (mode
) <= GET_MODE_PRECISION (oldmode
)
760 && ((MEM_P (x
) && ! MEM_VOLATILE_P (x
)
761 && direct_load
[(int) mode
])
763 && (! HARD_REGISTER_P (x
)
764 || HARD_REGNO_MODE_OK (REGNO (x
), mode
))
765 && TRULY_NOOP_TRUNCATION_MODES_P (mode
,
768 /* ?? If we don't know OLDMODE, we have to assume here that
769 X does not need sign- or zero-extension. This may not be
770 the case, but it's the best we can do. */
771 if (CONST_INT_P (x
) && oldmode
!= VOIDmode
772 && GET_MODE_PRECISION (mode
) > GET_MODE_PRECISION (oldmode
))
774 HOST_WIDE_INT val
= INTVAL (x
);
776 /* We must sign or zero-extend in this case. Start by
777 zero-extending, then sign extend if we need to. */
778 val
&= GET_MODE_MASK (oldmode
);
780 && val_signbit_known_set_p (oldmode
, val
))
781 val
|= ~GET_MODE_MASK (oldmode
);
783 return gen_int_mode (val
, mode
);
786 return gen_lowpart (mode
, x
);
789 /* Converting from integer constant into mode is always equivalent to an
791 if (VECTOR_MODE_P (mode
) && GET_MODE (x
) == VOIDmode
)
793 gcc_assert (GET_MODE_BITSIZE (mode
) == GET_MODE_BITSIZE (oldmode
));
794 return simplify_gen_subreg (mode
, x
, oldmode
, 0);
797 temp
= gen_reg_rtx (mode
);
798 convert_move (temp
, x
, unsignedp
);
802 /* Return the largest alignment we can use for doing a move (or store)
803 of MAX_PIECES. ALIGN is the largest alignment we could use. */
806 alignment_for_piecewise_move (unsigned int max_pieces
, unsigned int align
)
808 enum machine_mode tmode
;
810 tmode
= mode_for_size (max_pieces
* BITS_PER_UNIT
, MODE_INT
, 1);
811 if (align
>= GET_MODE_ALIGNMENT (tmode
))
812 align
= GET_MODE_ALIGNMENT (tmode
);
815 enum machine_mode tmode
, xmode
;
817 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
819 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
820 if (GET_MODE_SIZE (tmode
) > max_pieces
821 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
824 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
830 /* Return the widest integer mode no wider than SIZE. If no such mode
831 can be found, return VOIDmode. */
833 static enum machine_mode
834 widest_int_mode_for_size (unsigned int size
)
836 enum machine_mode tmode
, mode
= VOIDmode
;
838 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
839 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
840 if (GET_MODE_SIZE (tmode
) < size
)
846 /* STORE_MAX_PIECES is the number of bytes at a time that we can
847 store efficiently. Due to internal GCC limitations, this is
848 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
849 for an immediate constant. */
851 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
853 /* Determine whether the LEN bytes can be moved by using several move
854 instructions. Return nonzero if a call to move_by_pieces should
858 can_move_by_pieces (unsigned HOST_WIDE_INT len ATTRIBUTE_UNUSED
,
859 unsigned int align ATTRIBUTE_UNUSED
)
861 return MOVE_BY_PIECES_P (len
, align
);
864 /* Generate several move instructions to copy LEN bytes from block FROM to
865 block TO. (These are MEM rtx's with BLKmode).
867 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
868 used to push FROM to the stack.
870 ALIGN is maximum stack alignment we can assume.
872 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
873 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
877 move_by_pieces (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
878 unsigned int align
, int endp
)
880 struct move_by_pieces_d data
;
881 enum machine_mode to_addr_mode
;
882 enum machine_mode from_addr_mode
= get_address_mode (from
);
883 rtx to_addr
, from_addr
= XEXP (from
, 0);
884 unsigned int max_size
= MOVE_MAX_PIECES
+ 1;
885 enum insn_code icode
;
887 align
= MIN (to
? MEM_ALIGN (to
) : align
, MEM_ALIGN (from
));
890 data
.from_addr
= from_addr
;
893 to_addr_mode
= get_address_mode (to
);
894 to_addr
= XEXP (to
, 0);
897 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
898 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
900 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
904 to_addr_mode
= VOIDmode
;
908 #ifdef STACK_GROWS_DOWNWARD
914 data
.to_addr
= to_addr
;
917 = (GET_CODE (from_addr
) == PRE_INC
|| GET_CODE (from_addr
) == PRE_DEC
918 || GET_CODE (from_addr
) == POST_INC
919 || GET_CODE (from_addr
) == POST_DEC
);
921 data
.explicit_inc_from
= 0;
922 data
.explicit_inc_to
= 0;
923 if (data
.reverse
) data
.offset
= len
;
926 /* If copying requires more than two move insns,
927 copy addresses to registers (to make displacements shorter)
928 and use post-increment if available. */
929 if (!(data
.autinc_from
&& data
.autinc_to
)
930 && move_by_pieces_ninsns (len
, align
, max_size
) > 2)
932 /* Find the mode of the largest move...
933 MODE might not be used depending on the definitions of the
934 USE_* macros below. */
935 enum machine_mode mode ATTRIBUTE_UNUSED
936 = widest_int_mode_for_size (max_size
);
938 if (USE_LOAD_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_from
)
940 data
.from_addr
= copy_to_mode_reg (from_addr_mode
,
941 plus_constant (from_addr_mode
,
943 data
.autinc_from
= 1;
944 data
.explicit_inc_from
= -1;
946 if (USE_LOAD_POST_INCREMENT (mode
) && ! data
.autinc_from
)
948 data
.from_addr
= copy_to_mode_reg (from_addr_mode
, from_addr
);
949 data
.autinc_from
= 1;
950 data
.explicit_inc_from
= 1;
952 if (!data
.autinc_from
&& CONSTANT_P (from_addr
))
953 data
.from_addr
= copy_to_mode_reg (from_addr_mode
, from_addr
);
954 if (USE_STORE_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_to
)
956 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
957 plus_constant (to_addr_mode
,
960 data
.explicit_inc_to
= -1;
962 if (USE_STORE_POST_INCREMENT (mode
) && ! data
.reverse
&& ! data
.autinc_to
)
964 data
.to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
966 data
.explicit_inc_to
= 1;
968 if (!data
.autinc_to
&& CONSTANT_P (to_addr
))
969 data
.to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
972 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
974 /* First move what we can in the largest integer mode, then go to
975 successively smaller modes. */
977 while (max_size
> 1 && data
.len
> 0)
979 enum machine_mode mode
= widest_int_mode_for_size (max_size
);
981 if (mode
== VOIDmode
)
984 icode
= optab_handler (mov_optab
, mode
);
985 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
986 move_by_pieces_1 (GEN_FCN (icode
), mode
, &data
);
988 max_size
= GET_MODE_SIZE (mode
);
991 /* The code above should have handled everything. */
992 gcc_assert (!data
.len
);
998 gcc_assert (!data
.reverse
);
1003 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
1004 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
1006 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
1007 plus_constant (to_addr_mode
,
1011 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
1018 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
1026 /* Return number of insns required to move L bytes by pieces.
1027 ALIGN (in bits) is maximum alignment we can assume. */
1029 unsigned HOST_WIDE_INT
1030 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l
, unsigned int align
,
1031 unsigned int max_size
)
1033 unsigned HOST_WIDE_INT n_insns
= 0;
1035 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
1037 while (max_size
> 1 && l
> 0)
1039 enum machine_mode mode
;
1040 enum insn_code icode
;
1042 mode
= widest_int_mode_for_size (max_size
);
1044 if (mode
== VOIDmode
)
1047 icode
= optab_handler (mov_optab
, mode
);
1048 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
1049 n_insns
+= l
/ GET_MODE_SIZE (mode
), l
%= GET_MODE_SIZE (mode
);
1051 max_size
= GET_MODE_SIZE (mode
);
1058 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1059 with move instructions for mode MODE. GENFUN is the gen_... function
1060 to make a move insn for that mode. DATA has all the other info. */
1063 move_by_pieces_1 (insn_gen_fn genfun
, machine_mode mode
,
1064 struct move_by_pieces_d
*data
)
1066 unsigned int size
= GET_MODE_SIZE (mode
);
1067 rtx to1
= NULL_RTX
, from1
;
1069 while (data
->len
>= size
)
1072 data
->offset
-= size
;
1076 if (data
->autinc_to
)
1077 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
1080 to1
= adjust_address (data
->to
, mode
, data
->offset
);
1083 if (data
->autinc_from
)
1084 from1
= adjust_automodify_address (data
->from
, mode
, data
->from_addr
,
1087 from1
= adjust_address (data
->from
, mode
, data
->offset
);
1089 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
1090 emit_insn (gen_add2_insn (data
->to_addr
,
1091 gen_int_mode (-(HOST_WIDE_INT
) size
,
1092 GET_MODE (data
->to_addr
))));
1093 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_from
< 0)
1094 emit_insn (gen_add2_insn (data
->from_addr
,
1095 gen_int_mode (-(HOST_WIDE_INT
) size
,
1096 GET_MODE (data
->from_addr
))));
1099 emit_insn ((*genfun
) (to1
, from1
));
1102 #ifdef PUSH_ROUNDING
1103 emit_single_push_insn (mode
, from1
, NULL
);
1109 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
1110 emit_insn (gen_add2_insn (data
->to_addr
,
1112 GET_MODE (data
->to_addr
))));
1113 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_from
> 0)
1114 emit_insn (gen_add2_insn (data
->from_addr
,
1116 GET_MODE (data
->from_addr
))));
1118 if (! data
->reverse
)
1119 data
->offset
+= size
;
1125 /* Emit code to move a block Y to a block X. This may be done with
1126 string-move instructions, with multiple scalar move instructions,
1127 or with a library call.
1129 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1130 SIZE is an rtx that says how long they are.
1131 ALIGN is the maximum alignment we can assume they have.
1132 METHOD describes what kind of copy this is, and what mechanisms may be used.
1133 MIN_SIZE is the minimal size of block to move
1134 MAX_SIZE is the maximal size of block to move, if it can not be represented
1135 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1137 Return the address of the new block, if memcpy is called and returns it,
1141 emit_block_move_hints (rtx x
, rtx y
, rtx size
, enum block_op_methods method
,
1142 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
1143 unsigned HOST_WIDE_INT min_size
,
1144 unsigned HOST_WIDE_INT max_size
,
1145 unsigned HOST_WIDE_INT probable_max_size
)
1152 if (CONST_INT_P (size
)
1153 && INTVAL (size
) == 0)
1158 case BLOCK_OP_NORMAL
:
1159 case BLOCK_OP_TAILCALL
:
1160 may_use_call
= true;
1163 case BLOCK_OP_CALL_PARM
:
1164 may_use_call
= block_move_libcall_safe_for_call_parm ();
1166 /* Make inhibit_defer_pop nonzero around the library call
1167 to force it to pop the arguments right away. */
1171 case BLOCK_OP_NO_LIBCALL
:
1172 may_use_call
= false;
1179 gcc_assert (MEM_P (x
) && MEM_P (y
));
1180 align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
1181 gcc_assert (align
>= BITS_PER_UNIT
);
1183 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1184 block copy is more efficient for other large modes, e.g. DCmode. */
1185 x
= adjust_address (x
, BLKmode
, 0);
1186 y
= adjust_address (y
, BLKmode
, 0);
1188 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1189 can be incorrect is coming from __builtin_memcpy. */
1190 if (CONST_INT_P (size
))
1192 x
= shallow_copy_rtx (x
);
1193 y
= shallow_copy_rtx (y
);
1194 set_mem_size (x
, INTVAL (size
));
1195 set_mem_size (y
, INTVAL (size
));
1198 if (CONST_INT_P (size
) && MOVE_BY_PIECES_P (INTVAL (size
), align
))
1199 move_by_pieces (x
, y
, INTVAL (size
), align
, 0);
1200 else if (emit_block_move_via_movmem (x
, y
, size
, align
,
1201 expected_align
, expected_size
,
1202 min_size
, max_size
, probable_max_size
))
1204 else if (may_use_call
1205 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x
))
1206 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y
)))
1208 /* Since x and y are passed to a libcall, mark the corresponding
1209 tree EXPR as addressable. */
1210 tree y_expr
= MEM_EXPR (y
);
1211 tree x_expr
= MEM_EXPR (x
);
1213 mark_addressable (y_expr
);
1215 mark_addressable (x_expr
);
1216 retval
= emit_block_move_via_libcall (x
, y
, size
,
1217 method
== BLOCK_OP_TAILCALL
);
1221 emit_block_move_via_loop (x
, y
, size
, align
);
1223 if (method
== BLOCK_OP_CALL_PARM
)
1230 emit_block_move (rtx x
, rtx y
, rtx size
, enum block_op_methods method
)
1232 unsigned HOST_WIDE_INT max
, min
= 0;
1233 if (GET_CODE (size
) == CONST_INT
)
1234 min
= max
= UINTVAL (size
);
1236 max
= GET_MODE_MASK (GET_MODE (size
));
1237 return emit_block_move_hints (x
, y
, size
, method
, 0, -1,
1241 /* A subroutine of emit_block_move. Returns true if calling the
1242 block move libcall will not clobber any parameters which may have
1243 already been placed on the stack. */
1246 block_move_libcall_safe_for_call_parm (void)
1248 #if defined (REG_PARM_STACK_SPACE)
1252 /* If arguments are pushed on the stack, then they're safe. */
1256 /* If registers go on the stack anyway, any argument is sure to clobber
1257 an outgoing argument. */
1258 #if defined (REG_PARM_STACK_SPACE)
1259 fn
= emit_block_move_libcall_fn (false);
1260 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1261 depend on its argument. */
1263 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn
? NULL_TREE
: TREE_TYPE (fn
)))
1264 && REG_PARM_STACK_SPACE (fn
) != 0)
1268 /* If any argument goes in memory, then it might clobber an outgoing
1271 CUMULATIVE_ARGS args_so_far_v
;
1272 cumulative_args_t args_so_far
;
1275 fn
= emit_block_move_libcall_fn (false);
1276 INIT_CUMULATIVE_ARGS (args_so_far_v
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
1277 args_so_far
= pack_cumulative_args (&args_so_far_v
);
1279 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1280 for ( ; arg
!= void_list_node
; arg
= TREE_CHAIN (arg
))
1282 enum machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
1283 rtx tmp
= targetm
.calls
.function_arg (args_so_far
, mode
,
1285 if (!tmp
|| !REG_P (tmp
))
1287 if (targetm
.calls
.arg_partial_bytes (args_so_far
, mode
, NULL
, 1))
1289 targetm
.calls
.function_arg_advance (args_so_far
, mode
,
1296 /* A subroutine of emit_block_move. Expand a movmem pattern;
1297 return true if successful. */
1300 emit_block_move_via_movmem (rtx x
, rtx y
, rtx size
, unsigned int align
,
1301 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
1302 unsigned HOST_WIDE_INT min_size
,
1303 unsigned HOST_WIDE_INT max_size
,
1304 unsigned HOST_WIDE_INT probable_max_size
)
1306 int save_volatile_ok
= volatile_ok
;
1307 enum machine_mode mode
;
1309 if (expected_align
< align
)
1310 expected_align
= align
;
1311 if (expected_size
!= -1)
1313 if ((unsigned HOST_WIDE_INT
)expected_size
> probable_max_size
)
1314 expected_size
= probable_max_size
;
1315 if ((unsigned HOST_WIDE_INT
)expected_size
< min_size
)
1316 expected_size
= min_size
;
1319 /* Since this is a move insn, we don't care about volatility. */
1322 /* Try the most limited insn first, because there's no point
1323 including more than one in the machine description unless
1324 the more limited one has some advantage. */
1326 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1327 mode
= GET_MODE_WIDER_MODE (mode
))
1329 enum insn_code code
= direct_optab_handler (movmem_optab
, mode
);
1331 if (code
!= CODE_FOR_nothing
1332 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1333 here because if SIZE is less than the mode mask, as it is
1334 returned by the macro, it will definitely be less than the
1335 actual mode mask. Since SIZE is within the Pmode address
1336 space, we limit MODE to Pmode. */
1337 && ((CONST_INT_P (size
)
1338 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
1339 <= (GET_MODE_MASK (mode
) >> 1)))
1340 || max_size
<= (GET_MODE_MASK (mode
) >> 1)
1341 || GET_MODE_BITSIZE (mode
) >= GET_MODE_BITSIZE (Pmode
)))
1343 struct expand_operand ops
[9];
1346 /* ??? When called via emit_block_move_for_call, it'd be
1347 nice if there were some way to inform the backend, so
1348 that it doesn't fail the expansion because it thinks
1349 emitting the libcall would be more efficient. */
1350 nops
= insn_data
[(int) code
].n_generator_args
;
1351 gcc_assert (nops
== 4 || nops
== 6 || nops
== 8 || nops
== 9);
1353 create_fixed_operand (&ops
[0], x
);
1354 create_fixed_operand (&ops
[1], y
);
1355 /* The check above guarantees that this size conversion is valid. */
1356 create_convert_operand_to (&ops
[2], size
, mode
, true);
1357 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
1360 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
1361 create_integer_operand (&ops
[5], expected_size
);
1365 create_integer_operand (&ops
[6], min_size
);
1366 /* If we can not represent the maximal size,
1367 make parameter NULL. */
1368 if ((HOST_WIDE_INT
) max_size
!= -1)
1369 create_integer_operand (&ops
[7], max_size
);
1371 create_fixed_operand (&ops
[7], NULL
);
1375 /* If we can not represent the maximal size,
1376 make parameter NULL. */
1377 if ((HOST_WIDE_INT
) probable_max_size
!= -1)
1378 create_integer_operand (&ops
[8], probable_max_size
);
1380 create_fixed_operand (&ops
[8], NULL
);
1382 if (maybe_expand_insn (code
, nops
, ops
))
1384 volatile_ok
= save_volatile_ok
;
1390 volatile_ok
= save_volatile_ok
;
1394 /* A subroutine of emit_block_move. Expand a call to memcpy.
1395 Return the return value from memcpy, 0 otherwise. */
1398 emit_block_move_via_libcall (rtx dst
, rtx src
, rtx size
, bool tailcall
)
1400 rtx dst_addr
, src_addr
;
1401 tree call_expr
, fn
, src_tree
, dst_tree
, size_tree
;
1402 enum machine_mode size_mode
;
1405 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1406 pseudos. We can then place those new pseudos into a VAR_DECL and
1409 dst_addr
= copy_addr_to_reg (XEXP (dst
, 0));
1410 src_addr
= copy_addr_to_reg (XEXP (src
, 0));
1412 dst_addr
= convert_memory_address (ptr_mode
, dst_addr
);
1413 src_addr
= convert_memory_address (ptr_mode
, src_addr
);
1415 dst_tree
= make_tree (ptr_type_node
, dst_addr
);
1416 src_tree
= make_tree (ptr_type_node
, src_addr
);
1418 size_mode
= TYPE_MODE (sizetype
);
1420 size
= convert_to_mode (size_mode
, size
, 1);
1421 size
= copy_to_mode_reg (size_mode
, size
);
1423 /* It is incorrect to use the libcall calling conventions to call
1424 memcpy in this context. This could be a user call to memcpy and
1425 the user may wish to examine the return value from memcpy. For
1426 targets where libcalls and normal calls have different conventions
1427 for returning pointers, we could end up generating incorrect code. */
1429 size_tree
= make_tree (sizetype
, size
);
1431 fn
= emit_block_move_libcall_fn (true);
1432 call_expr
= build_call_expr (fn
, 3, dst_tree
, src_tree
, size_tree
);
1433 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
1435 retval
= expand_normal (call_expr
);
1440 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1441 for the function we use for block copies. */
1443 static GTY(()) tree block_move_fn
;
1446 init_block_move_fn (const char *asmspec
)
1450 tree args
, fn
, attrs
, attr_args
;
1452 fn
= get_identifier ("memcpy");
1453 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
1454 const_ptr_type_node
, sizetype
,
1457 fn
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
, fn
, args
);
1458 DECL_EXTERNAL (fn
) = 1;
1459 TREE_PUBLIC (fn
) = 1;
1460 DECL_ARTIFICIAL (fn
) = 1;
1461 TREE_NOTHROW (fn
) = 1;
1462 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
1463 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
1465 attr_args
= build_tree_list (NULL_TREE
, build_string (1, "1"));
1466 attrs
= tree_cons (get_identifier ("fn spec"), attr_args
, NULL
);
1468 decl_attributes (&fn
, attrs
, ATTR_FLAG_BUILT_IN
);
1474 set_user_assembler_name (block_move_fn
, asmspec
);
1478 emit_block_move_libcall_fn (int for_call
)
1480 static bool emitted_extern
;
1483 init_block_move_fn (NULL
);
1485 if (for_call
&& !emitted_extern
)
1487 emitted_extern
= true;
1488 make_decl_rtl (block_move_fn
);
1491 return block_move_fn
;
1494 /* A subroutine of emit_block_move. Copy the data via an explicit
1495 loop. This is used only when libcalls are forbidden. */
1496 /* ??? It'd be nice to copy in hunks larger than QImode. */
1499 emit_block_move_via_loop (rtx x
, rtx y
, rtx size
,
1500 unsigned int align ATTRIBUTE_UNUSED
)
1502 rtx cmp_label
, top_label
, iter
, x_addr
, y_addr
, tmp
;
1503 enum machine_mode x_addr_mode
= get_address_mode (x
);
1504 enum machine_mode y_addr_mode
= get_address_mode (y
);
1505 enum machine_mode iter_mode
;
1507 iter_mode
= GET_MODE (size
);
1508 if (iter_mode
== VOIDmode
)
1509 iter_mode
= word_mode
;
1511 top_label
= gen_label_rtx ();
1512 cmp_label
= gen_label_rtx ();
1513 iter
= gen_reg_rtx (iter_mode
);
1515 emit_move_insn (iter
, const0_rtx
);
1517 x_addr
= force_operand (XEXP (x
, 0), NULL_RTX
);
1518 y_addr
= force_operand (XEXP (y
, 0), NULL_RTX
);
1519 do_pending_stack_adjust ();
1521 emit_jump (cmp_label
);
1522 emit_label (top_label
);
1524 tmp
= convert_modes (x_addr_mode
, iter_mode
, iter
, true);
1525 x_addr
= simplify_gen_binary (PLUS
, x_addr_mode
, x_addr
, tmp
);
1527 if (x_addr_mode
!= y_addr_mode
)
1528 tmp
= convert_modes (y_addr_mode
, iter_mode
, iter
, true);
1529 y_addr
= simplify_gen_binary (PLUS
, y_addr_mode
, y_addr
, tmp
);
1531 x
= change_address (x
, QImode
, x_addr
);
1532 y
= change_address (y
, QImode
, y_addr
);
1534 emit_move_insn (x
, y
);
1536 tmp
= expand_simple_binop (iter_mode
, PLUS
, iter
, const1_rtx
, iter
,
1537 true, OPTAB_LIB_WIDEN
);
1539 emit_move_insn (iter
, tmp
);
1541 emit_label (cmp_label
);
1543 emit_cmp_and_jump_insns (iter
, size
, LT
, NULL_RTX
, iter_mode
,
1544 true, top_label
, REG_BR_PROB_BASE
* 90 / 100);
1547 /* Copy all or part of a value X into registers starting at REGNO.
1548 The number of registers to be filled is NREGS. */
1551 move_block_to_reg (int regno
, rtx x
, int nregs
, enum machine_mode mode
)
1554 #ifdef HAVE_load_multiple
1562 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
1563 x
= validize_mem (force_const_mem (mode
, x
));
1565 /* See if the machine can do this with a load multiple insn. */
1566 #ifdef HAVE_load_multiple
1567 if (HAVE_load_multiple
)
1569 last
= get_last_insn ();
1570 pat
= gen_load_multiple (gen_rtx_REG (word_mode
, regno
), x
,
1578 delete_insns_since (last
);
1582 for (i
= 0; i
< nregs
; i
++)
1583 emit_move_insn (gen_rtx_REG (word_mode
, regno
+ i
),
1584 operand_subword_force (x
, i
, mode
));
1587 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1588 The number of registers to be filled is NREGS. */
1591 move_block_from_reg (int regno
, rtx x
, int nregs
)
1598 /* See if the machine can do this with a store multiple insn. */
1599 #ifdef HAVE_store_multiple
1600 if (HAVE_store_multiple
)
1602 rtx last
= get_last_insn ();
1603 rtx pat
= gen_store_multiple (x
, gen_rtx_REG (word_mode
, regno
),
1611 delete_insns_since (last
);
1615 for (i
= 0; i
< nregs
; i
++)
1617 rtx tem
= operand_subword (x
, i
, 1, BLKmode
);
1621 emit_move_insn (tem
, gen_rtx_REG (word_mode
, regno
+ i
));
1625 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1626 ORIG, where ORIG is a non-consecutive group of registers represented by
1627 a PARALLEL. The clone is identical to the original except in that the
1628 original set of registers is replaced by a new set of pseudo registers.
1629 The new set has the same modes as the original set. */
1632 gen_group_rtx (rtx orig
)
1637 gcc_assert (GET_CODE (orig
) == PARALLEL
);
1639 length
= XVECLEN (orig
, 0);
1640 tmps
= XALLOCAVEC (rtx
, length
);
1642 /* Skip a NULL entry in first slot. */
1643 i
= XEXP (XVECEXP (orig
, 0, 0), 0) ? 0 : 1;
1648 for (; i
< length
; i
++)
1650 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (orig
, 0, i
), 0));
1651 rtx offset
= XEXP (XVECEXP (orig
, 0, i
), 1);
1653 tmps
[i
] = gen_rtx_EXPR_LIST (VOIDmode
, gen_reg_rtx (mode
), offset
);
1656 return gen_rtx_PARALLEL (GET_MODE (orig
), gen_rtvec_v (length
, tmps
));
1659 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1660 except that values are placed in TMPS[i], and must later be moved
1661 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1664 emit_group_load_1 (rtx
*tmps
, rtx dst
, rtx orig_src
, tree type
, int ssize
)
1668 enum machine_mode m
= GET_MODE (orig_src
);
1670 gcc_assert (GET_CODE (dst
) == PARALLEL
);
1673 && !SCALAR_INT_MODE_P (m
)
1674 && !MEM_P (orig_src
)
1675 && GET_CODE (orig_src
) != CONCAT
)
1677 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_src
));
1678 if (imode
== BLKmode
)
1679 src
= assign_stack_temp (GET_MODE (orig_src
), ssize
);
1681 src
= gen_reg_rtx (imode
);
1682 if (imode
!= BLKmode
)
1683 src
= gen_lowpart (GET_MODE (orig_src
), src
);
1684 emit_move_insn (src
, orig_src
);
1685 /* ...and back again. */
1686 if (imode
!= BLKmode
)
1687 src
= gen_lowpart (imode
, src
);
1688 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1692 /* Check for a NULL entry, used to indicate that the parameter goes
1693 both on the stack and in registers. */
1694 if (XEXP (XVECEXP (dst
, 0, 0), 0))
1699 /* Process the pieces. */
1700 for (i
= start
; i
< XVECLEN (dst
, 0); i
++)
1702 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (dst
, 0, i
), 0));
1703 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (dst
, 0, i
), 1));
1704 unsigned int bytelen
= GET_MODE_SIZE (mode
);
1707 /* Handle trailing fragments that run over the size of the struct. */
1708 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
1710 /* Arrange to shift the fragment to where it belongs.
1711 extract_bit_field loads to the lsb of the reg. */
1713 #ifdef BLOCK_REG_PADDING
1714 BLOCK_REG_PADDING (GET_MODE (orig_src
), type
, i
== start
)
1715 == (BYTES_BIG_ENDIAN
? upward
: downward
)
1720 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
1721 bytelen
= ssize
- bytepos
;
1722 gcc_assert (bytelen
> 0);
1725 /* If we won't be loading directly from memory, protect the real source
1726 from strange tricks we might play; but make sure that the source can
1727 be loaded directly into the destination. */
1729 if (!MEM_P (orig_src
)
1730 && (!CONSTANT_P (orig_src
)
1731 || (GET_MODE (orig_src
) != mode
1732 && GET_MODE (orig_src
) != VOIDmode
)))
1734 if (GET_MODE (orig_src
) == VOIDmode
)
1735 src
= gen_reg_rtx (mode
);
1737 src
= gen_reg_rtx (GET_MODE (orig_src
));
1739 emit_move_insn (src
, orig_src
);
1742 /* Optimize the access just a bit. */
1744 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (src
))
1745 || MEM_ALIGN (src
) >= GET_MODE_ALIGNMENT (mode
))
1746 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
1747 && bytelen
== GET_MODE_SIZE (mode
))
1749 tmps
[i
] = gen_reg_rtx (mode
);
1750 emit_move_insn (tmps
[i
], adjust_address (src
, mode
, bytepos
));
1752 else if (COMPLEX_MODE_P (mode
)
1753 && GET_MODE (src
) == mode
1754 && bytelen
== GET_MODE_SIZE (mode
))
1755 /* Let emit_move_complex do the bulk of the work. */
1757 else if (GET_CODE (src
) == CONCAT
)
1759 unsigned int slen
= GET_MODE_SIZE (GET_MODE (src
));
1760 unsigned int slen0
= GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)));
1762 if ((bytepos
== 0 && bytelen
== slen0
)
1763 || (bytepos
!= 0 && bytepos
+ bytelen
<= slen
))
1765 /* The following assumes that the concatenated objects all
1766 have the same size. In this case, a simple calculation
1767 can be used to determine the object and the bit field
1769 tmps
[i
] = XEXP (src
, bytepos
/ slen0
);
1770 if (! CONSTANT_P (tmps
[i
])
1771 && (!REG_P (tmps
[i
]) || GET_MODE (tmps
[i
]) != mode
))
1772 tmps
[i
] = extract_bit_field (tmps
[i
], bytelen
* BITS_PER_UNIT
,
1773 (bytepos
% slen0
) * BITS_PER_UNIT
,
1774 1, NULL_RTX
, mode
, mode
);
1780 gcc_assert (!bytepos
);
1781 mem
= assign_stack_temp (GET_MODE (src
), slen
);
1782 emit_move_insn (mem
, src
);
1783 tmps
[i
] = extract_bit_field (mem
, bytelen
* BITS_PER_UNIT
,
1784 0, 1, NULL_RTX
, mode
, mode
);
1787 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1788 SIMD register, which is currently broken. While we get GCC
1789 to emit proper RTL for these cases, let's dump to memory. */
1790 else if (VECTOR_MODE_P (GET_MODE (dst
))
1793 int slen
= GET_MODE_SIZE (GET_MODE (src
));
1796 mem
= assign_stack_temp (GET_MODE (src
), slen
);
1797 emit_move_insn (mem
, src
);
1798 tmps
[i
] = adjust_address (mem
, mode
, (int) bytepos
);
1800 else if (CONSTANT_P (src
) && GET_MODE (dst
) != BLKmode
1801 && XVECLEN (dst
, 0) > 1)
1802 tmps
[i
] = simplify_gen_subreg (mode
, src
, GET_MODE (dst
), bytepos
);
1803 else if (CONSTANT_P (src
))
1805 HOST_WIDE_INT len
= (HOST_WIDE_INT
) bytelen
;
1813 gcc_assert (2 * len
== ssize
);
1814 split_double (src
, &first
, &second
);
1821 else if (REG_P (src
) && GET_MODE (src
) == mode
)
1824 tmps
[i
] = extract_bit_field (src
, bytelen
* BITS_PER_UNIT
,
1825 bytepos
* BITS_PER_UNIT
, 1, NULL_RTX
,
1829 tmps
[i
] = expand_shift (LSHIFT_EXPR
, mode
, tmps
[i
],
1834 /* Emit code to move a block SRC of type TYPE to a block DST,
1835 where DST is non-consecutive registers represented by a PARALLEL.
1836 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1840 emit_group_load (rtx dst
, rtx src
, tree type
, int ssize
)
1845 tmps
= XALLOCAVEC (rtx
, XVECLEN (dst
, 0));
1846 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1848 /* Copy the extracted pieces into the proper (probable) hard regs. */
1849 for (i
= 0; i
< XVECLEN (dst
, 0); i
++)
1851 rtx d
= XEXP (XVECEXP (dst
, 0, i
), 0);
1854 emit_move_insn (d
, tmps
[i
]);
1858 /* Similar, but load SRC into new pseudos in a format that looks like
1859 PARALLEL. This can later be fed to emit_group_move to get things
1860 in the right place. */
1863 emit_group_load_into_temps (rtx parallel
, rtx src
, tree type
, int ssize
)
1868 vec
= rtvec_alloc (XVECLEN (parallel
, 0));
1869 emit_group_load_1 (&RTVEC_ELT (vec
, 0), parallel
, src
, type
, ssize
);
1871 /* Convert the vector to look just like the original PARALLEL, except
1872 with the computed values. */
1873 for (i
= 0; i
< XVECLEN (parallel
, 0); i
++)
1875 rtx e
= XVECEXP (parallel
, 0, i
);
1876 rtx d
= XEXP (e
, 0);
1880 d
= force_reg (GET_MODE (d
), RTVEC_ELT (vec
, i
));
1881 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), d
, XEXP (e
, 1));
1883 RTVEC_ELT (vec
, i
) = e
;
1886 return gen_rtx_PARALLEL (GET_MODE (parallel
), vec
);
1889 /* Emit code to move a block SRC to block DST, where SRC and DST are
1890 non-consecutive groups of registers, each represented by a PARALLEL. */
1893 emit_group_move (rtx dst
, rtx src
)
1897 gcc_assert (GET_CODE (src
) == PARALLEL
1898 && GET_CODE (dst
) == PARALLEL
1899 && XVECLEN (src
, 0) == XVECLEN (dst
, 0));
1901 /* Skip first entry if NULL. */
1902 for (i
= XEXP (XVECEXP (src
, 0, 0), 0) ? 0 : 1; i
< XVECLEN (src
, 0); i
++)
1903 emit_move_insn (XEXP (XVECEXP (dst
, 0, i
), 0),
1904 XEXP (XVECEXP (src
, 0, i
), 0));
1907 /* Move a group of registers represented by a PARALLEL into pseudos. */
1910 emit_group_move_into_temps (rtx src
)
1912 rtvec vec
= rtvec_alloc (XVECLEN (src
, 0));
1915 for (i
= 0; i
< XVECLEN (src
, 0); i
++)
1917 rtx e
= XVECEXP (src
, 0, i
);
1918 rtx d
= XEXP (e
, 0);
1921 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), copy_to_reg (d
), XEXP (e
, 1));
1922 RTVEC_ELT (vec
, i
) = e
;
1925 return gen_rtx_PARALLEL (GET_MODE (src
), vec
);
1928 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1929 where SRC is non-consecutive registers represented by a PARALLEL.
1930 SSIZE represents the total size of block ORIG_DST, or -1 if not
1934 emit_group_store (rtx orig_dst
, rtx src
, tree type ATTRIBUTE_UNUSED
, int ssize
)
1937 int start
, finish
, i
;
1938 enum machine_mode m
= GET_MODE (orig_dst
);
1940 gcc_assert (GET_CODE (src
) == PARALLEL
);
1942 if (!SCALAR_INT_MODE_P (m
)
1943 && !MEM_P (orig_dst
) && GET_CODE (orig_dst
) != CONCAT
)
1945 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_dst
));
1946 if (imode
== BLKmode
)
1947 dst
= assign_stack_temp (GET_MODE (orig_dst
), ssize
);
1949 dst
= gen_reg_rtx (imode
);
1950 emit_group_store (dst
, src
, type
, ssize
);
1951 if (imode
!= BLKmode
)
1952 dst
= gen_lowpart (GET_MODE (orig_dst
), dst
);
1953 emit_move_insn (orig_dst
, dst
);
1957 /* Check for a NULL entry, used to indicate that the parameter goes
1958 both on the stack and in registers. */
1959 if (XEXP (XVECEXP (src
, 0, 0), 0))
1963 finish
= XVECLEN (src
, 0);
1965 tmps
= XALLOCAVEC (rtx
, finish
);
1967 /* Copy the (probable) hard regs into pseudos. */
1968 for (i
= start
; i
< finish
; i
++)
1970 rtx reg
= XEXP (XVECEXP (src
, 0, i
), 0);
1971 if (!REG_P (reg
) || REGNO (reg
) < FIRST_PSEUDO_REGISTER
)
1973 tmps
[i
] = gen_reg_rtx (GET_MODE (reg
));
1974 emit_move_insn (tmps
[i
], reg
);
1980 /* If we won't be storing directly into memory, protect the real destination
1981 from strange tricks we might play. */
1983 if (GET_CODE (dst
) == PARALLEL
)
1987 /* We can get a PARALLEL dst if there is a conditional expression in
1988 a return statement. In that case, the dst and src are the same,
1989 so no action is necessary. */
1990 if (rtx_equal_p (dst
, src
))
1993 /* It is unclear if we can ever reach here, but we may as well handle
1994 it. Allocate a temporary, and split this into a store/load to/from
1997 temp
= assign_stack_temp (GET_MODE (dst
), ssize
);
1998 emit_group_store (temp
, src
, type
, ssize
);
1999 emit_group_load (dst
, temp
, type
, ssize
);
2002 else if (!MEM_P (dst
) && GET_CODE (dst
) != CONCAT
)
2004 enum machine_mode outer
= GET_MODE (dst
);
2005 enum machine_mode inner
;
2006 HOST_WIDE_INT bytepos
;
2010 if (!REG_P (dst
) || REGNO (dst
) < FIRST_PSEUDO_REGISTER
)
2011 dst
= gen_reg_rtx (outer
);
2013 /* Make life a bit easier for combine. */
2014 /* If the first element of the vector is the low part
2015 of the destination mode, use a paradoxical subreg to
2016 initialize the destination. */
2019 inner
= GET_MODE (tmps
[start
]);
2020 bytepos
= subreg_lowpart_offset (inner
, outer
);
2021 if (INTVAL (XEXP (XVECEXP (src
, 0, start
), 1)) == bytepos
)
2023 temp
= simplify_gen_subreg (outer
, tmps
[start
],
2027 emit_move_insn (dst
, temp
);
2034 /* If the first element wasn't the low part, try the last. */
2036 && start
< finish
- 1)
2038 inner
= GET_MODE (tmps
[finish
- 1]);
2039 bytepos
= subreg_lowpart_offset (inner
, outer
);
2040 if (INTVAL (XEXP (XVECEXP (src
, 0, finish
- 1), 1)) == bytepos
)
2042 temp
= simplify_gen_subreg (outer
, tmps
[finish
- 1],
2046 emit_move_insn (dst
, temp
);
2053 /* Otherwise, simply initialize the result to zero. */
2055 emit_move_insn (dst
, CONST0_RTX (outer
));
2058 /* Process the pieces. */
2059 for (i
= start
; i
< finish
; i
++)
2061 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (src
, 0, i
), 1));
2062 enum machine_mode mode
= GET_MODE (tmps
[i
]);
2063 unsigned int bytelen
= GET_MODE_SIZE (mode
);
2064 unsigned int adj_bytelen
;
2067 /* Handle trailing fragments that run over the size of the struct. */
2068 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
2069 adj_bytelen
= ssize
- bytepos
;
2071 adj_bytelen
= bytelen
;
2073 if (GET_CODE (dst
) == CONCAT
)
2075 if (bytepos
+ adj_bytelen
2076 <= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2077 dest
= XEXP (dst
, 0);
2078 else if (bytepos
>= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2080 bytepos
-= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)));
2081 dest
= XEXP (dst
, 1);
2085 enum machine_mode dest_mode
= GET_MODE (dest
);
2086 enum machine_mode tmp_mode
= GET_MODE (tmps
[i
]);
2088 gcc_assert (bytepos
== 0 && XVECLEN (src
, 0));
2090 if (GET_MODE_ALIGNMENT (dest_mode
)
2091 >= GET_MODE_ALIGNMENT (tmp_mode
))
2093 dest
= assign_stack_temp (dest_mode
,
2094 GET_MODE_SIZE (dest_mode
));
2095 emit_move_insn (adjust_address (dest
,
2103 dest
= assign_stack_temp (tmp_mode
,
2104 GET_MODE_SIZE (tmp_mode
));
2105 emit_move_insn (dest
, tmps
[i
]);
2106 dst
= adjust_address (dest
, dest_mode
, bytepos
);
2112 /* Handle trailing fragments that run over the size of the struct. */
2113 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
2115 /* store_bit_field always takes its value from the lsb.
2116 Move the fragment to the lsb if it's not already there. */
2118 #ifdef BLOCK_REG_PADDING
2119 BLOCK_REG_PADDING (GET_MODE (orig_dst
), type
, i
== start
)
2120 == (BYTES_BIG_ENDIAN
? upward
: downward
)
2126 int shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
2127 tmps
[i
] = expand_shift (RSHIFT_EXPR
, mode
, tmps
[i
],
2131 /* Make sure not to write past the end of the struct. */
2132 store_bit_field (dest
,
2133 adj_bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
2134 bytepos
* BITS_PER_UNIT
, ssize
* BITS_PER_UNIT
- 1,
2138 /* Optimize the access just a bit. */
2139 else if (MEM_P (dest
)
2140 && (!SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (dest
))
2141 || MEM_ALIGN (dest
) >= GET_MODE_ALIGNMENT (mode
))
2142 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
2143 && bytelen
== GET_MODE_SIZE (mode
))
2144 emit_move_insn (adjust_address (dest
, mode
, bytepos
), tmps
[i
]);
2147 store_bit_field (dest
, bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
2148 0, 0, mode
, tmps
[i
]);
2151 /* Copy from the pseudo into the (probable) hard reg. */
2152 if (orig_dst
!= dst
)
2153 emit_move_insn (orig_dst
, dst
);
2156 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2157 of the value stored in X. */
2160 maybe_emit_group_store (rtx x
, tree type
)
2162 enum machine_mode mode
= TYPE_MODE (type
);
2163 gcc_checking_assert (GET_MODE (x
) == VOIDmode
|| GET_MODE (x
) == mode
);
2164 if (GET_CODE (x
) == PARALLEL
)
2166 rtx result
= gen_reg_rtx (mode
);
2167 emit_group_store (result
, x
, type
, int_size_in_bytes (type
));
2173 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2175 This is used on targets that return BLKmode values in registers. */
2178 copy_blkmode_from_reg (rtx target
, rtx srcreg
, tree type
)
2180 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (type
);
2181 rtx src
= NULL
, dst
= NULL
;
2182 unsigned HOST_WIDE_INT bitsize
= MIN (TYPE_ALIGN (type
), BITS_PER_WORD
);
2183 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0;
2184 enum machine_mode mode
= GET_MODE (srcreg
);
2185 enum machine_mode tmode
= GET_MODE (target
);
2186 enum machine_mode copy_mode
;
2188 /* BLKmode registers created in the back-end shouldn't have survived. */
2189 gcc_assert (mode
!= BLKmode
);
2191 /* If the structure doesn't take up a whole number of words, see whether
2192 SRCREG is padded on the left or on the right. If it's on the left,
2193 set PADDING_CORRECTION to the number of bits to skip.
2195 In most ABIs, the structure will be returned at the least end of
2196 the register, which translates to right padding on little-endian
2197 targets and left padding on big-endian targets. The opposite
2198 holds if the structure is returned at the most significant
2199 end of the register. */
2200 if (bytes
% UNITS_PER_WORD
!= 0
2201 && (targetm
.calls
.return_in_msb (type
)
2203 : BYTES_BIG_ENDIAN
))
2205 = (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
) * BITS_PER_UNIT
));
2207 /* We can use a single move if we have an exact mode for the size. */
2208 else if (MEM_P (target
)
2209 && (!SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
))
2210 || MEM_ALIGN (target
) >= GET_MODE_ALIGNMENT (mode
))
2211 && bytes
== GET_MODE_SIZE (mode
))
2213 emit_move_insn (adjust_address (target
, mode
, 0), srcreg
);
2217 /* And if we additionally have the same mode for a register. */
2218 else if (REG_P (target
)
2219 && GET_MODE (target
) == mode
2220 && bytes
== GET_MODE_SIZE (mode
))
2222 emit_move_insn (target
, srcreg
);
2226 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2227 into a new pseudo which is a full word. */
2228 if (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
2230 srcreg
= convert_to_mode (word_mode
, srcreg
, TYPE_UNSIGNED (type
));
2234 /* Copy the structure BITSIZE bits at a time. If the target lives in
2235 memory, take care of not reading/writing past its end by selecting
2236 a copy mode suited to BITSIZE. This should always be possible given
2239 If the target lives in register, make sure not to select a copy mode
2240 larger than the mode of the register.
2242 We could probably emit more efficient code for machines which do not use
2243 strict alignment, but it doesn't seem worth the effort at the current
2246 copy_mode
= word_mode
;
2249 enum machine_mode mem_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
2250 if (mem_mode
!= BLKmode
)
2251 copy_mode
= mem_mode
;
2253 else if (REG_P (target
) && GET_MODE_BITSIZE (tmode
) < BITS_PER_WORD
)
2256 for (bitpos
= 0, xbitpos
= padding_correction
;
2257 bitpos
< bytes
* BITS_PER_UNIT
;
2258 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2260 /* We need a new source operand each time xbitpos is on a
2261 word boundary and when xbitpos == padding_correction
2262 (the first time through). */
2263 if (xbitpos
% BITS_PER_WORD
== 0 || xbitpos
== padding_correction
)
2264 src
= operand_subword_force (srcreg
, xbitpos
/ BITS_PER_WORD
, mode
);
2266 /* We need a new destination operand each time bitpos is on
2268 if (REG_P (target
) && GET_MODE_BITSIZE (tmode
) < BITS_PER_WORD
)
2270 else if (bitpos
% BITS_PER_WORD
== 0)
2271 dst
= operand_subword (target
, bitpos
/ BITS_PER_WORD
, 1, tmode
);
2273 /* Use xbitpos for the source extraction (right justified) and
2274 bitpos for the destination store (left justified). */
2275 store_bit_field (dst
, bitsize
, bitpos
% BITS_PER_WORD
, 0, 0, copy_mode
,
2276 extract_bit_field (src
, bitsize
,
2277 xbitpos
% BITS_PER_WORD
, 1,
2278 NULL_RTX
, copy_mode
, copy_mode
));
2282 /* Copy BLKmode value SRC into a register of mode MODE. Return the
2283 register if it contains any data, otherwise return null.
2285 This is used on targets that return BLKmode values in registers. */
2288 copy_blkmode_to_reg (enum machine_mode mode
, tree src
)
2291 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0, bytes
;
2292 unsigned int bitsize
;
2293 rtx
*dst_words
, dst
, x
, src_word
= NULL_RTX
, dst_word
= NULL_RTX
;
2294 enum machine_mode dst_mode
;
2296 gcc_assert (TYPE_MODE (TREE_TYPE (src
)) == BLKmode
);
2298 x
= expand_normal (src
);
2300 bytes
= int_size_in_bytes (TREE_TYPE (src
));
2304 /* If the structure doesn't take up a whole number of words, see
2305 whether the register value should be padded on the left or on
2306 the right. Set PADDING_CORRECTION to the number of padding
2307 bits needed on the left side.
2309 In most ABIs, the structure will be returned at the least end of
2310 the register, which translates to right padding on little-endian
2311 targets and left padding on big-endian targets. The opposite
2312 holds if the structure is returned at the most significant
2313 end of the register. */
2314 if (bytes
% UNITS_PER_WORD
!= 0
2315 && (targetm
.calls
.return_in_msb (TREE_TYPE (src
))
2317 : BYTES_BIG_ENDIAN
))
2318 padding_correction
= (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
)
2321 n_regs
= (bytes
+ UNITS_PER_WORD
- 1) / UNITS_PER_WORD
;
2322 dst_words
= XALLOCAVEC (rtx
, n_regs
);
2323 bitsize
= MIN (TYPE_ALIGN (TREE_TYPE (src
)), BITS_PER_WORD
);
2325 /* Copy the structure BITSIZE bits at a time. */
2326 for (bitpos
= 0, xbitpos
= padding_correction
;
2327 bitpos
< bytes
* BITS_PER_UNIT
;
2328 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2330 /* We need a new destination pseudo each time xbitpos is
2331 on a word boundary and when xbitpos == padding_correction
2332 (the first time through). */
2333 if (xbitpos
% BITS_PER_WORD
== 0
2334 || xbitpos
== padding_correction
)
2336 /* Generate an appropriate register. */
2337 dst_word
= gen_reg_rtx (word_mode
);
2338 dst_words
[xbitpos
/ BITS_PER_WORD
] = dst_word
;
2340 /* Clear the destination before we move anything into it. */
2341 emit_move_insn (dst_word
, CONST0_RTX (word_mode
));
2344 /* We need a new source operand each time bitpos is on a word
2346 if (bitpos
% BITS_PER_WORD
== 0)
2347 src_word
= operand_subword_force (x
, bitpos
/ BITS_PER_WORD
, BLKmode
);
2349 /* Use bitpos for the source extraction (left justified) and
2350 xbitpos for the destination store (right justified). */
2351 store_bit_field (dst_word
, bitsize
, xbitpos
% BITS_PER_WORD
,
2353 extract_bit_field (src_word
, bitsize
,
2354 bitpos
% BITS_PER_WORD
, 1,
2355 NULL_RTX
, word_mode
, word_mode
));
2358 if (mode
== BLKmode
)
2360 /* Find the smallest integer mode large enough to hold the
2361 entire structure. */
2362 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2364 mode
= GET_MODE_WIDER_MODE (mode
))
2365 /* Have we found a large enough mode? */
2366 if (GET_MODE_SIZE (mode
) >= bytes
)
2369 /* A suitable mode should have been found. */
2370 gcc_assert (mode
!= VOIDmode
);
2373 if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (word_mode
))
2374 dst_mode
= word_mode
;
2377 dst
= gen_reg_rtx (dst_mode
);
2379 for (i
= 0; i
< n_regs
; i
++)
2380 emit_move_insn (operand_subword (dst
, i
, 0, dst_mode
), dst_words
[i
]);
2382 if (mode
!= dst_mode
)
2383 dst
= gen_lowpart (mode
, dst
);
2388 /* Add a USE expression for REG to the (possibly empty) list pointed
2389 to by CALL_FUSAGE. REG must denote a hard register. */
2392 use_reg_mode (rtx
*call_fusage
, rtx reg
, enum machine_mode mode
)
2394 gcc_assert (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
2397 = gen_rtx_EXPR_LIST (mode
, gen_rtx_USE (VOIDmode
, reg
), *call_fusage
);
2400 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2401 starting at REGNO. All of these registers must be hard registers. */
2404 use_regs (rtx
*call_fusage
, int regno
, int nregs
)
2408 gcc_assert (regno
+ nregs
<= FIRST_PSEUDO_REGISTER
);
2410 for (i
= 0; i
< nregs
; i
++)
2411 use_reg (call_fusage
, regno_reg_rtx
[regno
+ i
]);
2414 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2415 PARALLEL REGS. This is for calls that pass values in multiple
2416 non-contiguous locations. The Irix 6 ABI has examples of this. */
2419 use_group_regs (rtx
*call_fusage
, rtx regs
)
2423 for (i
= 0; i
< XVECLEN (regs
, 0); i
++)
2425 rtx reg
= XEXP (XVECEXP (regs
, 0, i
), 0);
2427 /* A NULL entry means the parameter goes both on the stack and in
2428 registers. This can also be a MEM for targets that pass values
2429 partially on the stack and partially in registers. */
2430 if (reg
!= 0 && REG_P (reg
))
2431 use_reg (call_fusage
, reg
);
2435 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2436 assigment and the code of the expresion on the RHS is CODE. Return
2440 get_def_for_expr (tree name
, enum tree_code code
)
2444 if (TREE_CODE (name
) != SSA_NAME
)
2447 def_stmt
= get_gimple_for_ssa_name (name
);
2449 || gimple_assign_rhs_code (def_stmt
) != code
)
2455 #ifdef HAVE_conditional_move
2456 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2457 assigment and the class of the expresion on the RHS is CLASS. Return
2461 get_def_for_expr_class (tree name
, enum tree_code_class tclass
)
2465 if (TREE_CODE (name
) != SSA_NAME
)
2468 def_stmt
= get_gimple_for_ssa_name (name
);
2470 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt
)) != tclass
)
2478 /* Determine whether the LEN bytes generated by CONSTFUN can be
2479 stored to memory using several move instructions. CONSTFUNDATA is
2480 a pointer which will be passed as argument in every CONSTFUN call.
2481 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2482 a memset operation and false if it's a copy of a constant string.
2483 Return nonzero if a call to store_by_pieces should succeed. */
2486 can_store_by_pieces (unsigned HOST_WIDE_INT len
,
2487 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2488 void *constfundata
, unsigned int align
, bool memsetp
)
2490 unsigned HOST_WIDE_INT l
;
2491 unsigned int max_size
;
2492 HOST_WIDE_INT offset
= 0;
2493 enum machine_mode mode
;
2494 enum insn_code icode
;
2496 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
2497 rtx cst ATTRIBUTE_UNUSED
;
2503 ? SET_BY_PIECES_P (len
, align
)
2504 : STORE_BY_PIECES_P (len
, align
)))
2507 align
= alignment_for_piecewise_move (STORE_MAX_PIECES
, align
);
2509 /* We would first store what we can in the largest integer mode, then go to
2510 successively smaller modes. */
2513 reverse
<= (HAVE_PRE_DECREMENT
|| HAVE_POST_DECREMENT
);
2517 max_size
= STORE_MAX_PIECES
+ 1;
2518 while (max_size
> 1 && l
> 0)
2520 mode
= widest_int_mode_for_size (max_size
);
2522 if (mode
== VOIDmode
)
2525 icode
= optab_handler (mov_optab
, mode
);
2526 if (icode
!= CODE_FOR_nothing
2527 && align
>= GET_MODE_ALIGNMENT (mode
))
2529 unsigned int size
= GET_MODE_SIZE (mode
);
2536 cst
= (*constfun
) (constfundata
, offset
, mode
);
2537 if (!targetm
.legitimate_constant_p (mode
, cst
))
2547 max_size
= GET_MODE_SIZE (mode
);
2550 /* The code above should have handled everything. */
2557 /* Generate several move instructions to store LEN bytes generated by
2558 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2559 pointer which will be passed as argument in every CONSTFUN call.
2560 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2561 a memset operation and false if it's a copy of a constant string.
2562 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2563 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2567 store_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
,
2568 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2569 void *constfundata
, unsigned int align
, bool memsetp
, int endp
)
2571 enum machine_mode to_addr_mode
= get_address_mode (to
);
2572 struct store_by_pieces_d data
;
2576 gcc_assert (endp
!= 2);
2581 ? SET_BY_PIECES_P (len
, align
)
2582 : STORE_BY_PIECES_P (len
, align
));
2583 data
.constfun
= constfun
;
2584 data
.constfundata
= constfundata
;
2587 store_by_pieces_1 (&data
, align
);
2592 gcc_assert (!data
.reverse
);
2597 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
2598 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
2600 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
2601 plus_constant (to_addr_mode
,
2605 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
2612 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
2620 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2621 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2624 clear_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
, unsigned int align
)
2626 struct store_by_pieces_d data
;
2631 data
.constfun
= clear_by_pieces_1
;
2632 data
.constfundata
= NULL
;
2635 store_by_pieces_1 (&data
, align
);
2638 /* Callback routine for clear_by_pieces.
2639 Return const0_rtx unconditionally. */
2642 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED
,
2643 HOST_WIDE_INT offset ATTRIBUTE_UNUSED
,
2644 enum machine_mode mode ATTRIBUTE_UNUSED
)
2649 /* Subroutine of clear_by_pieces and store_by_pieces.
2650 Generate several move instructions to store LEN bytes of block TO. (A MEM
2651 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2654 store_by_pieces_1 (struct store_by_pieces_d
*data ATTRIBUTE_UNUSED
,
2655 unsigned int align ATTRIBUTE_UNUSED
)
2657 enum machine_mode to_addr_mode
= get_address_mode (data
->to
);
2658 rtx to_addr
= XEXP (data
->to
, 0);
2659 unsigned int max_size
= STORE_MAX_PIECES
+ 1;
2660 enum insn_code icode
;
2663 data
->to_addr
= to_addr
;
2665 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
2666 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
2668 data
->explicit_inc_to
= 0;
2670 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
2672 data
->offset
= data
->len
;
2674 /* If storing requires more than two move insns,
2675 copy addresses to registers (to make displacements shorter)
2676 and use post-increment if available. */
2677 if (!data
->autinc_to
2678 && move_by_pieces_ninsns (data
->len
, align
, max_size
) > 2)
2680 /* Determine the main mode we'll be using.
2681 MODE might not be used depending on the definitions of the
2682 USE_* macros below. */
2683 enum machine_mode mode ATTRIBUTE_UNUSED
2684 = widest_int_mode_for_size (max_size
);
2686 if (USE_STORE_PRE_DECREMENT (mode
) && data
->reverse
&& ! data
->autinc_to
)
2688 data
->to_addr
= copy_to_mode_reg (to_addr_mode
,
2689 plus_constant (to_addr_mode
,
2692 data
->autinc_to
= 1;
2693 data
->explicit_inc_to
= -1;
2696 if (USE_STORE_POST_INCREMENT (mode
) && ! data
->reverse
2697 && ! data
->autinc_to
)
2699 data
->to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
2700 data
->autinc_to
= 1;
2701 data
->explicit_inc_to
= 1;
2704 if ( !data
->autinc_to
&& CONSTANT_P (to_addr
))
2705 data
->to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
2708 align
= alignment_for_piecewise_move (STORE_MAX_PIECES
, align
);
2710 /* First store what we can in the largest integer mode, then go to
2711 successively smaller modes. */
2713 while (max_size
> 1 && data
->len
> 0)
2715 enum machine_mode mode
= widest_int_mode_for_size (max_size
);
2717 if (mode
== VOIDmode
)
2720 icode
= optab_handler (mov_optab
, mode
);
2721 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
2722 store_by_pieces_2 (GEN_FCN (icode
), mode
, data
);
2724 max_size
= GET_MODE_SIZE (mode
);
2727 /* The code above should have handled everything. */
2728 gcc_assert (!data
->len
);
2731 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2732 with move instructions for mode MODE. GENFUN is the gen_... function
2733 to make a move insn for that mode. DATA has all the other info. */
2736 store_by_pieces_2 (insn_gen_fn genfun
, machine_mode mode
,
2737 struct store_by_pieces_d
*data
)
2739 unsigned int size
= GET_MODE_SIZE (mode
);
2742 while (data
->len
>= size
)
2745 data
->offset
-= size
;
2747 if (data
->autinc_to
)
2748 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
2751 to1
= adjust_address (data
->to
, mode
, data
->offset
);
2753 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
2754 emit_insn (gen_add2_insn (data
->to_addr
,
2755 gen_int_mode (-(HOST_WIDE_INT
) size
,
2756 GET_MODE (data
->to_addr
))));
2758 cst
= (*data
->constfun
) (data
->constfundata
, data
->offset
, mode
);
2759 emit_insn ((*genfun
) (to1
, cst
));
2761 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
2762 emit_insn (gen_add2_insn (data
->to_addr
,
2764 GET_MODE (data
->to_addr
))));
2766 if (! data
->reverse
)
2767 data
->offset
+= size
;
2773 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2774 its length in bytes. */
2777 clear_storage_hints (rtx object
, rtx size
, enum block_op_methods method
,
2778 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
2779 unsigned HOST_WIDE_INT min_size
,
2780 unsigned HOST_WIDE_INT max_size
,
2781 unsigned HOST_WIDE_INT probable_max_size
)
2783 enum machine_mode mode
= GET_MODE (object
);
2786 gcc_assert (method
== BLOCK_OP_NORMAL
|| method
== BLOCK_OP_TAILCALL
);
2788 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2789 just move a zero. Otherwise, do this a piece at a time. */
2791 && CONST_INT_P (size
)
2792 && INTVAL (size
) == (HOST_WIDE_INT
) GET_MODE_SIZE (mode
))
2794 rtx zero
= CONST0_RTX (mode
);
2797 emit_move_insn (object
, zero
);
2801 if (COMPLEX_MODE_P (mode
))
2803 zero
= CONST0_RTX (GET_MODE_INNER (mode
));
2806 write_complex_part (object
, zero
, 0);
2807 write_complex_part (object
, zero
, 1);
2813 if (size
== const0_rtx
)
2816 align
= MEM_ALIGN (object
);
2818 if (CONST_INT_P (size
)
2819 && CLEAR_BY_PIECES_P (INTVAL (size
), align
))
2820 clear_by_pieces (object
, INTVAL (size
), align
);
2821 else if (set_storage_via_setmem (object
, size
, const0_rtx
, align
,
2822 expected_align
, expected_size
,
2823 min_size
, max_size
, probable_max_size
))
2825 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object
)))
2826 return set_storage_via_libcall (object
, size
, const0_rtx
,
2827 method
== BLOCK_OP_TAILCALL
);
2835 clear_storage (rtx object
, rtx size
, enum block_op_methods method
)
2837 unsigned HOST_WIDE_INT max
, min
= 0;
2838 if (GET_CODE (size
) == CONST_INT
)
2839 min
= max
= UINTVAL (size
);
2841 max
= GET_MODE_MASK (GET_MODE (size
));
2842 return clear_storage_hints (object
, size
, method
, 0, -1, min
, max
, max
);
2846 /* A subroutine of clear_storage. Expand a call to memset.
2847 Return the return value of memset, 0 otherwise. */
2850 set_storage_via_libcall (rtx object
, rtx size
, rtx val
, bool tailcall
)
2852 tree call_expr
, fn
, object_tree
, size_tree
, val_tree
;
2853 enum machine_mode size_mode
;
2856 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2857 place those into new pseudos into a VAR_DECL and use them later. */
2859 object
= copy_addr_to_reg (XEXP (object
, 0));
2861 size_mode
= TYPE_MODE (sizetype
);
2862 size
= convert_to_mode (size_mode
, size
, 1);
2863 size
= copy_to_mode_reg (size_mode
, size
);
2865 /* It is incorrect to use the libcall calling conventions to call
2866 memset in this context. This could be a user call to memset and
2867 the user may wish to examine the return value from memset. For
2868 targets where libcalls and normal calls have different conventions
2869 for returning pointers, we could end up generating incorrect code. */
2871 object_tree
= make_tree (ptr_type_node
, object
);
2872 if (!CONST_INT_P (val
))
2873 val
= convert_to_mode (TYPE_MODE (integer_type_node
), val
, 1);
2874 size_tree
= make_tree (sizetype
, size
);
2875 val_tree
= make_tree (integer_type_node
, val
);
2877 fn
= clear_storage_libcall_fn (true);
2878 call_expr
= build_call_expr (fn
, 3, object_tree
, val_tree
, size_tree
);
2879 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
2881 retval
= expand_normal (call_expr
);
2886 /* A subroutine of set_storage_via_libcall. Create the tree node
2887 for the function we use for block clears. */
2889 tree block_clear_fn
;
2892 init_block_clear_fn (const char *asmspec
)
2894 if (!block_clear_fn
)
2898 fn
= get_identifier ("memset");
2899 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
2900 integer_type_node
, sizetype
,
2903 fn
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
, fn
, args
);
2904 DECL_EXTERNAL (fn
) = 1;
2905 TREE_PUBLIC (fn
) = 1;
2906 DECL_ARTIFICIAL (fn
) = 1;
2907 TREE_NOTHROW (fn
) = 1;
2908 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
2909 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
2911 block_clear_fn
= fn
;
2915 set_user_assembler_name (block_clear_fn
, asmspec
);
2919 clear_storage_libcall_fn (int for_call
)
2921 static bool emitted_extern
;
2923 if (!block_clear_fn
)
2924 init_block_clear_fn (NULL
);
2926 if (for_call
&& !emitted_extern
)
2928 emitted_extern
= true;
2929 make_decl_rtl (block_clear_fn
);
2932 return block_clear_fn
;
2935 /* Expand a setmem pattern; return true if successful. */
2938 set_storage_via_setmem (rtx object
, rtx size
, rtx val
, unsigned int align
,
2939 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
2940 unsigned HOST_WIDE_INT min_size
,
2941 unsigned HOST_WIDE_INT max_size
,
2942 unsigned HOST_WIDE_INT probable_max_size
)
2944 /* Try the most limited insn first, because there's no point
2945 including more than one in the machine description unless
2946 the more limited one has some advantage. */
2948 enum machine_mode mode
;
2950 if (expected_align
< align
)
2951 expected_align
= align
;
2952 if (expected_size
!= -1)
2954 if ((unsigned HOST_WIDE_INT
)expected_size
> max_size
)
2955 expected_size
= max_size
;
2956 if ((unsigned HOST_WIDE_INT
)expected_size
< min_size
)
2957 expected_size
= min_size
;
2960 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
2961 mode
= GET_MODE_WIDER_MODE (mode
))
2963 enum insn_code code
= direct_optab_handler (setmem_optab
, mode
);
2965 if (code
!= CODE_FOR_nothing
2966 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
2967 here because if SIZE is less than the mode mask, as it is
2968 returned by the macro, it will definitely be less than the
2969 actual mode mask. Since SIZE is within the Pmode address
2970 space, we limit MODE to Pmode. */
2971 && ((CONST_INT_P (size
)
2972 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
2973 <= (GET_MODE_MASK (mode
) >> 1)))
2974 || max_size
<= (GET_MODE_MASK (mode
) >> 1)
2975 || GET_MODE_BITSIZE (mode
) >= GET_MODE_BITSIZE (Pmode
)))
2977 struct expand_operand ops
[9];
2980 nops
= insn_data
[(int) code
].n_generator_args
;
2981 gcc_assert (nops
== 4 || nops
== 6 || nops
== 8 || nops
== 9);
2983 create_fixed_operand (&ops
[0], object
);
2984 /* The check above guarantees that this size conversion is valid. */
2985 create_convert_operand_to (&ops
[1], size
, mode
, true);
2986 create_convert_operand_from (&ops
[2], val
, byte_mode
, true);
2987 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
2990 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
2991 create_integer_operand (&ops
[5], expected_size
);
2995 create_integer_operand (&ops
[6], min_size
);
2996 /* If we can not represent the maximal size,
2997 make parameter NULL. */
2998 if ((HOST_WIDE_INT
) max_size
!= -1)
2999 create_integer_operand (&ops
[7], max_size
);
3001 create_fixed_operand (&ops
[7], NULL
);
3005 /* If we can not represent the maximal size,
3006 make parameter NULL. */
3007 if ((HOST_WIDE_INT
) probable_max_size
!= -1)
3008 create_integer_operand (&ops
[8], probable_max_size
);
3010 create_fixed_operand (&ops
[8], NULL
);
3012 if (maybe_expand_insn (code
, nops
, ops
))
3021 /* Write to one of the components of the complex value CPLX. Write VAL to
3022 the real part if IMAG_P is false, and the imaginary part if its true. */
3025 write_complex_part (rtx cplx
, rtx val
, bool imag_p
)
3027 enum machine_mode cmode
;
3028 enum machine_mode imode
;
3031 if (GET_CODE (cplx
) == CONCAT
)
3033 emit_move_insn (XEXP (cplx
, imag_p
), val
);
3037 cmode
= GET_MODE (cplx
);
3038 imode
= GET_MODE_INNER (cmode
);
3039 ibitsize
= GET_MODE_BITSIZE (imode
);
3041 /* For MEMs simplify_gen_subreg may generate an invalid new address
3042 because, e.g., the original address is considered mode-dependent
3043 by the target, which restricts simplify_subreg from invoking
3044 adjust_address_nv. Instead of preparing fallback support for an
3045 invalid address, we call adjust_address_nv directly. */
3048 emit_move_insn (adjust_address_nv (cplx
, imode
,
3049 imag_p
? GET_MODE_SIZE (imode
) : 0),
3054 /* If the sub-object is at least word sized, then we know that subregging
3055 will work. This special case is important, since store_bit_field
3056 wants to operate on integer modes, and there's rarely an OImode to
3057 correspond to TCmode. */
3058 if (ibitsize
>= BITS_PER_WORD
3059 /* For hard regs we have exact predicates. Assume we can split
3060 the original object if it spans an even number of hard regs.
3061 This special case is important for SCmode on 64-bit platforms
3062 where the natural size of floating-point regs is 32-bit. */
3064 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
3065 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
3067 rtx part
= simplify_gen_subreg (imode
, cplx
, cmode
,
3068 imag_p
? GET_MODE_SIZE (imode
) : 0);
3071 emit_move_insn (part
, val
);
3075 /* simplify_gen_subreg may fail for sub-word MEMs. */
3076 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
3079 store_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0, 0, 0, imode
, val
);
3082 /* Extract one of the components of the complex value CPLX. Extract the
3083 real part if IMAG_P is false, and the imaginary part if it's true. */
3086 read_complex_part (rtx cplx
, bool imag_p
)
3088 enum machine_mode cmode
, imode
;
3091 if (GET_CODE (cplx
) == CONCAT
)
3092 return XEXP (cplx
, imag_p
);
3094 cmode
= GET_MODE (cplx
);
3095 imode
= GET_MODE_INNER (cmode
);
3096 ibitsize
= GET_MODE_BITSIZE (imode
);
3098 /* Special case reads from complex constants that got spilled to memory. */
3099 if (MEM_P (cplx
) && GET_CODE (XEXP (cplx
, 0)) == SYMBOL_REF
)
3101 tree decl
= SYMBOL_REF_DECL (XEXP (cplx
, 0));
3102 if (decl
&& TREE_CODE (decl
) == COMPLEX_CST
)
3104 tree part
= imag_p
? TREE_IMAGPART (decl
) : TREE_REALPART (decl
);
3105 if (CONSTANT_CLASS_P (part
))
3106 return expand_expr (part
, NULL_RTX
, imode
, EXPAND_NORMAL
);
3110 /* For MEMs simplify_gen_subreg may generate an invalid new address
3111 because, e.g., the original address is considered mode-dependent
3112 by the target, which restricts simplify_subreg from invoking
3113 adjust_address_nv. Instead of preparing fallback support for an
3114 invalid address, we call adjust_address_nv directly. */
3116 return adjust_address_nv (cplx
, imode
,
3117 imag_p
? GET_MODE_SIZE (imode
) : 0);
3119 /* If the sub-object is at least word sized, then we know that subregging
3120 will work. This special case is important, since extract_bit_field
3121 wants to operate on integer modes, and there's rarely an OImode to
3122 correspond to TCmode. */
3123 if (ibitsize
>= BITS_PER_WORD
3124 /* For hard regs we have exact predicates. Assume we can split
3125 the original object if it spans an even number of hard regs.
3126 This special case is important for SCmode on 64-bit platforms
3127 where the natural size of floating-point regs is 32-bit. */
3129 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
3130 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
3132 rtx ret
= simplify_gen_subreg (imode
, cplx
, cmode
,
3133 imag_p
? GET_MODE_SIZE (imode
) : 0);
3137 /* simplify_gen_subreg may fail for sub-word MEMs. */
3138 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
3141 return extract_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0,
3142 true, NULL_RTX
, imode
, imode
);
3145 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3146 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3147 represented in NEW_MODE. If FORCE is true, this will never happen, as
3148 we'll force-create a SUBREG if needed. */
3151 emit_move_change_mode (enum machine_mode new_mode
,
3152 enum machine_mode old_mode
, rtx x
, bool force
)
3156 if (push_operand (x
, GET_MODE (x
)))
3158 ret
= gen_rtx_MEM (new_mode
, XEXP (x
, 0));
3159 MEM_COPY_ATTRIBUTES (ret
, x
);
3163 /* We don't have to worry about changing the address since the
3164 size in bytes is supposed to be the same. */
3165 if (reload_in_progress
)
3167 /* Copy the MEM to change the mode and move any
3168 substitutions from the old MEM to the new one. */
3169 ret
= adjust_address_nv (x
, new_mode
, 0);
3170 copy_replacements (x
, ret
);
3173 ret
= adjust_address (x
, new_mode
, 0);
3177 /* Note that we do want simplify_subreg's behavior of validating
3178 that the new mode is ok for a hard register. If we were to use
3179 simplify_gen_subreg, we would create the subreg, but would
3180 probably run into the target not being able to implement it. */
3181 /* Except, of course, when FORCE is true, when this is exactly what
3182 we want. Which is needed for CCmodes on some targets. */
3184 ret
= simplify_gen_subreg (new_mode
, x
, old_mode
, 0);
3186 ret
= simplify_subreg (new_mode
, x
, old_mode
, 0);
3192 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3193 an integer mode of the same size as MODE. Returns the instruction
3194 emitted, or NULL if such a move could not be generated. */
3197 emit_move_via_integer (enum machine_mode mode
, rtx x
, rtx y
, bool force
)
3199 enum machine_mode imode
;
3200 enum insn_code code
;
3202 /* There must exist a mode of the exact size we require. */
3203 imode
= int_mode_for_mode (mode
);
3204 if (imode
== BLKmode
)
3207 /* The target must support moves in this mode. */
3208 code
= optab_handler (mov_optab
, imode
);
3209 if (code
== CODE_FOR_nothing
)
3212 x
= emit_move_change_mode (imode
, mode
, x
, force
);
3215 y
= emit_move_change_mode (imode
, mode
, y
, force
);
3218 return emit_insn (GEN_FCN (code
) (x
, y
));
3221 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3222 Return an equivalent MEM that does not use an auto-increment. */
3225 emit_move_resolve_push (enum machine_mode mode
, rtx x
)
3227 enum rtx_code code
= GET_CODE (XEXP (x
, 0));
3228 HOST_WIDE_INT adjust
;
3231 adjust
= GET_MODE_SIZE (mode
);
3232 #ifdef PUSH_ROUNDING
3233 adjust
= PUSH_ROUNDING (adjust
);
3235 if (code
== PRE_DEC
|| code
== POST_DEC
)
3237 else if (code
== PRE_MODIFY
|| code
== POST_MODIFY
)
3239 rtx expr
= XEXP (XEXP (x
, 0), 1);
3242 gcc_assert (GET_CODE (expr
) == PLUS
|| GET_CODE (expr
) == MINUS
);
3243 gcc_assert (CONST_INT_P (XEXP (expr
, 1)));
3244 val
= INTVAL (XEXP (expr
, 1));
3245 if (GET_CODE (expr
) == MINUS
)
3247 gcc_assert (adjust
== val
|| adjust
== -val
);
3251 /* Do not use anti_adjust_stack, since we don't want to update
3252 stack_pointer_delta. */
3253 temp
= expand_simple_binop (Pmode
, PLUS
, stack_pointer_rtx
,
3254 gen_int_mode (adjust
, Pmode
), stack_pointer_rtx
,
3255 0, OPTAB_LIB_WIDEN
);
3256 if (temp
!= stack_pointer_rtx
)
3257 emit_move_insn (stack_pointer_rtx
, temp
);
3264 temp
= stack_pointer_rtx
;
3269 temp
= plus_constant (Pmode
, stack_pointer_rtx
, -adjust
);
3275 return replace_equiv_address (x
, temp
);
3278 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3279 X is known to satisfy push_operand, and MODE is known to be complex.
3280 Returns the last instruction emitted. */
3283 emit_move_complex_push (enum machine_mode mode
, rtx x
, rtx y
)
3285 enum machine_mode submode
= GET_MODE_INNER (mode
);
3288 #ifdef PUSH_ROUNDING
3289 unsigned int submodesize
= GET_MODE_SIZE (submode
);
3291 /* In case we output to the stack, but the size is smaller than the
3292 machine can push exactly, we need to use move instructions. */
3293 if (PUSH_ROUNDING (submodesize
) != submodesize
)
3295 x
= emit_move_resolve_push (mode
, x
);
3296 return emit_move_insn (x
, y
);
3300 /* Note that the real part always precedes the imag part in memory
3301 regardless of machine's endianness. */
3302 switch (GET_CODE (XEXP (x
, 0)))
3316 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3317 read_complex_part (y
, imag_first
));
3318 return emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3319 read_complex_part (y
, !imag_first
));
3322 /* A subroutine of emit_move_complex. Perform the move from Y to X
3323 via two moves of the parts. Returns the last instruction emitted. */
3326 emit_move_complex_parts (rtx x
, rtx y
)
3328 /* Show the output dies here. This is necessary for SUBREGs
3329 of pseudos since we cannot track their lifetimes correctly;
3330 hard regs shouldn't appear here except as return values. */
3331 if (!reload_completed
&& !reload_in_progress
3332 && REG_P (x
) && !reg_overlap_mentioned_p (x
, y
))
3335 write_complex_part (x
, read_complex_part (y
, false), false);
3336 write_complex_part (x
, read_complex_part (y
, true), true);
3338 return get_last_insn ();
3341 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3342 MODE is known to be complex. Returns the last instruction emitted. */
3345 emit_move_complex (enum machine_mode mode
, rtx x
, rtx y
)
3349 /* Need to take special care for pushes, to maintain proper ordering
3350 of the data, and possibly extra padding. */
3351 if (push_operand (x
, mode
))
3352 return emit_move_complex_push (mode
, x
, y
);
3354 /* See if we can coerce the target into moving both values at once, except
3355 for floating point where we favor moving as parts if this is easy. */
3356 if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
3357 && optab_handler (mov_optab
, GET_MODE_INNER (mode
)) != CODE_FOR_nothing
3359 && HARD_REGISTER_P (x
)
3360 && hard_regno_nregs
[REGNO (x
)][mode
] == 1)
3362 && HARD_REGISTER_P (y
)
3363 && hard_regno_nregs
[REGNO (y
)][mode
] == 1))
3365 /* Not possible if the values are inherently not adjacent. */
3366 else if (GET_CODE (x
) == CONCAT
|| GET_CODE (y
) == CONCAT
)
3368 /* Is possible if both are registers (or subregs of registers). */
3369 else if (register_operand (x
, mode
) && register_operand (y
, mode
))
3371 /* If one of the operands is a memory, and alignment constraints
3372 are friendly enough, we may be able to do combined memory operations.
3373 We do not attempt this if Y is a constant because that combination is
3374 usually better with the by-parts thing below. */
3375 else if ((MEM_P (x
) ? !CONSTANT_P (y
) : MEM_P (y
))
3376 && (!STRICT_ALIGNMENT
3377 || get_mode_alignment (mode
) == BIGGEST_ALIGNMENT
))
3386 /* For memory to memory moves, optimal behavior can be had with the
3387 existing block move logic. */
3388 if (MEM_P (x
) && MEM_P (y
))
3390 emit_block_move (x
, y
, GEN_INT (GET_MODE_SIZE (mode
)),
3391 BLOCK_OP_NO_LIBCALL
);
3392 return get_last_insn ();
3395 ret
= emit_move_via_integer (mode
, x
, y
, true);
3400 return emit_move_complex_parts (x
, y
);
3403 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3404 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3407 emit_move_ccmode (enum machine_mode mode
, rtx x
, rtx y
)
3411 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3414 enum insn_code code
= optab_handler (mov_optab
, CCmode
);
3415 if (code
!= CODE_FOR_nothing
)
3417 x
= emit_move_change_mode (CCmode
, mode
, x
, true);
3418 y
= emit_move_change_mode (CCmode
, mode
, y
, true);
3419 return emit_insn (GEN_FCN (code
) (x
, y
));
3423 /* Otherwise, find the MODE_INT mode of the same width. */
3424 ret
= emit_move_via_integer (mode
, x
, y
, false);
3425 gcc_assert (ret
!= NULL
);
3429 /* Return true if word I of OP lies entirely in the
3430 undefined bits of a paradoxical subreg. */
3433 undefined_operand_subword_p (const_rtx op
, int i
)
3435 enum machine_mode innermode
, innermostmode
;
3437 if (GET_CODE (op
) != SUBREG
)
3439 innermode
= GET_MODE (op
);
3440 innermostmode
= GET_MODE (SUBREG_REG (op
));
3441 offset
= i
* UNITS_PER_WORD
+ SUBREG_BYTE (op
);
3442 /* The SUBREG_BYTE represents offset, as if the value were stored in
3443 memory, except for a paradoxical subreg where we define
3444 SUBREG_BYTE to be 0; undo this exception as in
3446 if (SUBREG_BYTE (op
) == 0
3447 && GET_MODE_SIZE (innermostmode
) < GET_MODE_SIZE (innermode
))
3449 int difference
= (GET_MODE_SIZE (innermostmode
) - GET_MODE_SIZE (innermode
));
3450 if (WORDS_BIG_ENDIAN
)
3451 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
3452 if (BYTES_BIG_ENDIAN
)
3453 offset
+= difference
% UNITS_PER_WORD
;
3455 if (offset
>= GET_MODE_SIZE (innermostmode
)
3456 || offset
<= -GET_MODE_SIZE (word_mode
))
3461 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3462 MODE is any multi-word or full-word mode that lacks a move_insn
3463 pattern. Note that you will get better code if you define such
3464 patterns, even if they must turn into multiple assembler instructions. */
3467 emit_move_multi_word (enum machine_mode mode
, rtx x
, rtx y
)
3474 gcc_assert (GET_MODE_SIZE (mode
) >= UNITS_PER_WORD
);
3476 /* If X is a push on the stack, do the push now and replace
3477 X with a reference to the stack pointer. */
3478 if (push_operand (x
, mode
))
3479 x
= emit_move_resolve_push (mode
, x
);
3481 /* If we are in reload, see if either operand is a MEM whose address
3482 is scheduled for replacement. */
3483 if (reload_in_progress
&& MEM_P (x
)
3484 && (inner
= find_replacement (&XEXP (x
, 0))) != XEXP (x
, 0))
3485 x
= replace_equiv_address_nv (x
, inner
);
3486 if (reload_in_progress
&& MEM_P (y
)
3487 && (inner
= find_replacement (&XEXP (y
, 0))) != XEXP (y
, 0))
3488 y
= replace_equiv_address_nv (y
, inner
);
3492 need_clobber
= false;
3494 i
< (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
3497 rtx xpart
= operand_subword (x
, i
, 1, mode
);
3500 /* Do not generate code for a move if it would come entirely
3501 from the undefined bits of a paradoxical subreg. */
3502 if (undefined_operand_subword_p (y
, i
))
3505 ypart
= operand_subword (y
, i
, 1, mode
);
3507 /* If we can't get a part of Y, put Y into memory if it is a
3508 constant. Otherwise, force it into a register. Then we must
3509 be able to get a part of Y. */
3510 if (ypart
== 0 && CONSTANT_P (y
))
3512 y
= use_anchored_address (force_const_mem (mode
, y
));
3513 ypart
= operand_subword (y
, i
, 1, mode
);
3515 else if (ypart
== 0)
3516 ypart
= operand_subword_force (y
, i
, mode
);
3518 gcc_assert (xpart
&& ypart
);
3520 need_clobber
|= (GET_CODE (xpart
) == SUBREG
);
3522 last_insn
= emit_move_insn (xpart
, ypart
);
3528 /* Show the output dies here. This is necessary for SUBREGs
3529 of pseudos since we cannot track their lifetimes correctly;
3530 hard regs shouldn't appear here except as return values.
3531 We never want to emit such a clobber after reload. */
3533 && ! (reload_in_progress
|| reload_completed
)
3534 && need_clobber
!= 0)
3542 /* Low level part of emit_move_insn.
3543 Called just like emit_move_insn, but assumes X and Y
3544 are basically valid. */
3547 emit_move_insn_1 (rtx x
, rtx y
)
3549 enum machine_mode mode
= GET_MODE (x
);
3550 enum insn_code code
;
3552 gcc_assert ((unsigned int) mode
< (unsigned int) MAX_MACHINE_MODE
);
3554 code
= optab_handler (mov_optab
, mode
);
3555 if (code
!= CODE_FOR_nothing
)
3556 return emit_insn (GEN_FCN (code
) (x
, y
));
3558 /* Expand complex moves by moving real part and imag part. */
3559 if (COMPLEX_MODE_P (mode
))
3560 return emit_move_complex (mode
, x
, y
);
3562 if (GET_MODE_CLASS (mode
) == MODE_DECIMAL_FLOAT
3563 || ALL_FIXED_POINT_MODE_P (mode
))
3565 rtx result
= emit_move_via_integer (mode
, x
, y
, true);
3567 /* If we can't find an integer mode, use multi words. */
3571 return emit_move_multi_word (mode
, x
, y
);
3574 if (GET_MODE_CLASS (mode
) == MODE_CC
)
3575 return emit_move_ccmode (mode
, x
, y
);
3577 /* Try using a move pattern for the corresponding integer mode. This is
3578 only safe when simplify_subreg can convert MODE constants into integer
3579 constants. At present, it can only do this reliably if the value
3580 fits within a HOST_WIDE_INT. */
3581 if (!CONSTANT_P (y
) || GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
3583 rtx ret
= emit_move_via_integer (mode
, x
, y
, lra_in_progress
);
3587 if (! lra_in_progress
|| recog (PATTERN (ret
), ret
, 0) >= 0)
3592 return emit_move_multi_word (mode
, x
, y
);
3595 /* Generate code to copy Y into X.
3596 Both Y and X must have the same mode, except that
3597 Y can be a constant with VOIDmode.
3598 This mode cannot be BLKmode; use emit_block_move for that.
3600 Return the last instruction emitted. */
3603 emit_move_insn (rtx x
, rtx y
)
3605 enum machine_mode mode
= GET_MODE (x
);
3606 rtx y_cst
= NULL_RTX
;
3609 gcc_assert (mode
!= BLKmode
3610 && (GET_MODE (y
) == mode
|| GET_MODE (y
) == VOIDmode
));
3615 && SCALAR_FLOAT_MODE_P (GET_MODE (x
))
3616 && (last_insn
= compress_float_constant (x
, y
)))
3621 if (!targetm
.legitimate_constant_p (mode
, y
))
3623 y
= force_const_mem (mode
, y
);
3625 /* If the target's cannot_force_const_mem prevented the spill,
3626 assume that the target's move expanders will also take care
3627 of the non-legitimate constant. */
3631 y
= use_anchored_address (y
);
3635 /* If X or Y are memory references, verify that their addresses are valid
3638 && (! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
3640 && ! push_operand (x
, GET_MODE (x
))))
3641 x
= validize_mem (x
);
3644 && ! memory_address_addr_space_p (GET_MODE (y
), XEXP (y
, 0),
3645 MEM_ADDR_SPACE (y
)))
3646 y
= validize_mem (y
);
3648 gcc_assert (mode
!= BLKmode
);
3650 last_insn
= emit_move_insn_1 (x
, y
);
3652 if (y_cst
&& REG_P (x
)
3653 && (set
= single_set (last_insn
)) != NULL_RTX
3654 && SET_DEST (set
) == x
3655 && ! rtx_equal_p (y_cst
, SET_SRC (set
)))
3656 set_unique_reg_note (last_insn
, REG_EQUAL
, copy_rtx (y_cst
));
3661 /* If Y is representable exactly in a narrower mode, and the target can
3662 perform the extension directly from constant or memory, then emit the
3663 move as an extension. */
3666 compress_float_constant (rtx x
, rtx y
)
3668 enum machine_mode dstmode
= GET_MODE (x
);
3669 enum machine_mode orig_srcmode
= GET_MODE (y
);
3670 enum machine_mode srcmode
;
3672 int oldcost
, newcost
;
3673 bool speed
= optimize_insn_for_speed_p ();
3675 REAL_VALUE_FROM_CONST_DOUBLE (r
, y
);
3677 if (targetm
.legitimate_constant_p (dstmode
, y
))
3678 oldcost
= set_src_cost (y
, speed
);
3680 oldcost
= set_src_cost (force_const_mem (dstmode
, y
), speed
);
3682 for (srcmode
= GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode
));
3683 srcmode
!= orig_srcmode
;
3684 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
3687 rtx trunc_y
, last_insn
;
3689 /* Skip if the target can't extend this way. */
3690 ic
= can_extend_p (dstmode
, srcmode
, 0);
3691 if (ic
== CODE_FOR_nothing
)
3694 /* Skip if the narrowed value isn't exact. */
3695 if (! exact_real_truncate (srcmode
, &r
))
3698 trunc_y
= CONST_DOUBLE_FROM_REAL_VALUE (r
, srcmode
);
3700 if (targetm
.legitimate_constant_p (srcmode
, trunc_y
))
3702 /* Skip if the target needs extra instructions to perform
3704 if (!insn_operand_matches (ic
, 1, trunc_y
))
3706 /* This is valid, but may not be cheaper than the original. */
3707 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
3709 if (oldcost
< newcost
)
3712 else if (float_extend_from_mem
[dstmode
][srcmode
])
3714 trunc_y
= force_const_mem (srcmode
, trunc_y
);
3715 /* This is valid, but may not be cheaper than the original. */
3716 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
3718 if (oldcost
< newcost
)
3720 trunc_y
= validize_mem (trunc_y
);
3725 /* For CSE's benefit, force the compressed constant pool entry
3726 into a new pseudo. This constant may be used in different modes,
3727 and if not, combine will put things back together for us. */
3728 trunc_y
= force_reg (srcmode
, trunc_y
);
3730 /* If x is a hard register, perform the extension into a pseudo,
3731 so that e.g. stack realignment code is aware of it. */
3733 if (REG_P (x
) && HARD_REGISTER_P (x
))
3734 target
= gen_reg_rtx (dstmode
);
3736 emit_unop_insn (ic
, target
, trunc_y
, UNKNOWN
);
3737 last_insn
= get_last_insn ();
3740 set_unique_reg_note (last_insn
, REG_EQUAL
, y
);
3743 return emit_move_insn (x
, target
);
3750 /* Pushing data onto the stack. */
3752 /* Push a block of length SIZE (perhaps variable)
3753 and return an rtx to address the beginning of the block.
3754 The value may be virtual_outgoing_args_rtx.
3756 EXTRA is the number of bytes of padding to push in addition to SIZE.
3757 BELOW nonzero means this padding comes at low addresses;
3758 otherwise, the padding comes at high addresses. */
3761 push_block (rtx size
, int extra
, int below
)
3765 size
= convert_modes (Pmode
, ptr_mode
, size
, 1);
3766 if (CONSTANT_P (size
))
3767 anti_adjust_stack (plus_constant (Pmode
, size
, extra
));
3768 else if (REG_P (size
) && extra
== 0)
3769 anti_adjust_stack (size
);
3772 temp
= copy_to_mode_reg (Pmode
, size
);
3774 temp
= expand_binop (Pmode
, add_optab
, temp
,
3775 gen_int_mode (extra
, Pmode
),
3776 temp
, 0, OPTAB_LIB_WIDEN
);
3777 anti_adjust_stack (temp
);
3780 #ifndef STACK_GROWS_DOWNWARD
3786 temp
= virtual_outgoing_args_rtx
;
3787 if (extra
!= 0 && below
)
3788 temp
= plus_constant (Pmode
, temp
, extra
);
3792 if (CONST_INT_P (size
))
3793 temp
= plus_constant (Pmode
, virtual_outgoing_args_rtx
,
3794 -INTVAL (size
) - (below
? 0 : extra
));
3795 else if (extra
!= 0 && !below
)
3796 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3797 negate_rtx (Pmode
, plus_constant (Pmode
, size
,
3800 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3801 negate_rtx (Pmode
, size
));
3804 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT
), temp
);
3807 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3810 mem_autoinc_base (rtx mem
)
3814 rtx addr
= XEXP (mem
, 0);
3815 if (GET_RTX_CLASS (GET_CODE (addr
)) == RTX_AUTOINC
)
3816 return XEXP (addr
, 0);
3821 /* A utility routine used here, in reload, and in try_split. The insns
3822 after PREV up to and including LAST are known to adjust the stack,
3823 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3824 placing notes as appropriate. PREV may be NULL, indicating the
3825 entire insn sequence prior to LAST should be scanned.
3827 The set of allowed stack pointer modifications is small:
3828 (1) One or more auto-inc style memory references (aka pushes),
3829 (2) One or more addition/subtraction with the SP as destination,
3830 (3) A single move insn with the SP as destination,
3831 (4) A call_pop insn,
3832 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
3834 Insns in the sequence that do not modify the SP are ignored,
3835 except for noreturn calls.
3837 The return value is the amount of adjustment that can be trivially
3838 verified, via immediate operand or auto-inc. If the adjustment
3839 cannot be trivially extracted, the return value is INT_MIN. */
3842 find_args_size_adjust (rtx insn
)
3847 pat
= PATTERN (insn
);
3850 /* Look for a call_pop pattern. */
3853 /* We have to allow non-call_pop patterns for the case
3854 of emit_single_push_insn of a TLS address. */
3855 if (GET_CODE (pat
) != PARALLEL
)
3858 /* All call_pop have a stack pointer adjust in the parallel.
3859 The call itself is always first, and the stack adjust is
3860 usually last, so search from the end. */
3861 for (i
= XVECLEN (pat
, 0) - 1; i
> 0; --i
)
3863 set
= XVECEXP (pat
, 0, i
);
3864 if (GET_CODE (set
) != SET
)
3866 dest
= SET_DEST (set
);
3867 if (dest
== stack_pointer_rtx
)
3870 /* We'd better have found the stack pointer adjust. */
3873 /* Fall through to process the extracted SET and DEST
3874 as if it was a standalone insn. */
3876 else if (GET_CODE (pat
) == SET
)
3878 else if ((set
= single_set (insn
)) != NULL
)
3880 else if (GET_CODE (pat
) == PARALLEL
)
3882 /* ??? Some older ports use a parallel with a stack adjust
3883 and a store for a PUSH_ROUNDING pattern, rather than a
3884 PRE/POST_MODIFY rtx. Don't force them to update yet... */
3885 /* ??? See h8300 and m68k, pushqi1. */
3886 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; --i
)
3888 set
= XVECEXP (pat
, 0, i
);
3889 if (GET_CODE (set
) != SET
)
3891 dest
= SET_DEST (set
);
3892 if (dest
== stack_pointer_rtx
)
3895 /* We do not expect an auto-inc of the sp in the parallel. */
3896 gcc_checking_assert (mem_autoinc_base (dest
) != stack_pointer_rtx
);
3897 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
3898 != stack_pointer_rtx
);
3906 dest
= SET_DEST (set
);
3908 /* Look for direct modifications of the stack pointer. */
3909 if (REG_P (dest
) && REGNO (dest
) == STACK_POINTER_REGNUM
)
3911 /* Look for a trivial adjustment, otherwise assume nothing. */
3912 /* Note that the SPU restore_stack_block pattern refers to
3913 the stack pointer in V4SImode. Consider that non-trivial. */
3914 if (SCALAR_INT_MODE_P (GET_MODE (dest
))
3915 && GET_CODE (SET_SRC (set
)) == PLUS
3916 && XEXP (SET_SRC (set
), 0) == stack_pointer_rtx
3917 && CONST_INT_P (XEXP (SET_SRC (set
), 1)))
3918 return INTVAL (XEXP (SET_SRC (set
), 1));
3919 /* ??? Reload can generate no-op moves, which will be cleaned
3920 up later. Recognize it and continue searching. */
3921 else if (rtx_equal_p (dest
, SET_SRC (set
)))
3924 return HOST_WIDE_INT_MIN
;
3930 /* Otherwise only think about autoinc patterns. */
3931 if (mem_autoinc_base (dest
) == stack_pointer_rtx
)
3934 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
3935 != stack_pointer_rtx
);
3937 else if (mem_autoinc_base (SET_SRC (set
)) == stack_pointer_rtx
)
3938 mem
= SET_SRC (set
);
3942 addr
= XEXP (mem
, 0);
3943 switch (GET_CODE (addr
))
3947 return GET_MODE_SIZE (GET_MODE (mem
));
3950 return -GET_MODE_SIZE (GET_MODE (mem
));
3953 addr
= XEXP (addr
, 1);
3954 gcc_assert (GET_CODE (addr
) == PLUS
);
3955 gcc_assert (XEXP (addr
, 0) == stack_pointer_rtx
);
3956 gcc_assert (CONST_INT_P (XEXP (addr
, 1)));
3957 return INTVAL (XEXP (addr
, 1));
3965 fixup_args_size_notes (rtx prev
, rtx last
, int end_args_size
)
3967 int args_size
= end_args_size
;
3968 bool saw_unknown
= false;
3971 for (insn
= last
; insn
!= prev
; insn
= PREV_INSN (insn
))
3973 HOST_WIDE_INT this_delta
;
3975 if (!NONDEBUG_INSN_P (insn
))
3978 this_delta
= find_args_size_adjust (insn
);
3979 if (this_delta
== 0)
3982 || ACCUMULATE_OUTGOING_ARGS
3983 || find_reg_note (insn
, REG_NORETURN
, NULL_RTX
) == NULL_RTX
)
3987 gcc_assert (!saw_unknown
);
3988 if (this_delta
== HOST_WIDE_INT_MIN
)
3991 add_reg_note (insn
, REG_ARGS_SIZE
, GEN_INT (args_size
));
3992 #ifdef STACK_GROWS_DOWNWARD
3993 this_delta
= -(unsigned HOST_WIDE_INT
) this_delta
;
3995 args_size
-= this_delta
;
3998 return saw_unknown
? INT_MIN
: args_size
;
4001 #ifdef PUSH_ROUNDING
4002 /* Emit single push insn. */
4005 emit_single_push_insn_1 (enum machine_mode mode
, rtx x
, tree type
)
4008 unsigned rounded_size
= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
4010 enum insn_code icode
;
4012 stack_pointer_delta
+= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
4013 /* If there is push pattern, use it. Otherwise try old way of throwing
4014 MEM representing push operation to move expander. */
4015 icode
= optab_handler (push_optab
, mode
);
4016 if (icode
!= CODE_FOR_nothing
)
4018 struct expand_operand ops
[1];
4020 create_input_operand (&ops
[0], x
, mode
);
4021 if (maybe_expand_insn (icode
, 1, ops
))
4024 if (GET_MODE_SIZE (mode
) == rounded_size
)
4025 dest_addr
= gen_rtx_fmt_e (STACK_PUSH_CODE
, Pmode
, stack_pointer_rtx
);
4026 /* If we are to pad downward, adjust the stack pointer first and
4027 then store X into the stack location using an offset. This is
4028 because emit_move_insn does not know how to pad; it does not have
4030 else if (FUNCTION_ARG_PADDING (mode
, type
) == downward
)
4032 unsigned padding_size
= rounded_size
- GET_MODE_SIZE (mode
);
4033 HOST_WIDE_INT offset
;
4035 emit_move_insn (stack_pointer_rtx
,
4036 expand_binop (Pmode
,
4037 #ifdef STACK_GROWS_DOWNWARD
4043 gen_int_mode (rounded_size
, Pmode
),
4044 NULL_RTX
, 0, OPTAB_LIB_WIDEN
));
4046 offset
= (HOST_WIDE_INT
) padding_size
;
4047 #ifdef STACK_GROWS_DOWNWARD
4048 if (STACK_PUSH_CODE
== POST_DEC
)
4049 /* We have already decremented the stack pointer, so get the
4051 offset
+= (HOST_WIDE_INT
) rounded_size
;
4053 if (STACK_PUSH_CODE
== POST_INC
)
4054 /* We have already incremented the stack pointer, so get the
4056 offset
-= (HOST_WIDE_INT
) rounded_size
;
4058 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
4059 gen_int_mode (offset
, Pmode
));
4063 #ifdef STACK_GROWS_DOWNWARD
4064 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4065 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
4066 gen_int_mode (-(HOST_WIDE_INT
) rounded_size
,
4069 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4070 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
4071 gen_int_mode (rounded_size
, Pmode
));
4073 dest_addr
= gen_rtx_PRE_MODIFY (Pmode
, stack_pointer_rtx
, dest_addr
);
4076 dest
= gen_rtx_MEM (mode
, dest_addr
);
4080 set_mem_attributes (dest
, type
, 1);
4082 if (cfun
->tail_call_marked
)
4083 /* Function incoming arguments may overlap with sibling call
4084 outgoing arguments and we cannot allow reordering of reads
4085 from function arguments with stores to outgoing arguments
4086 of sibling calls. */
4087 set_mem_alias_set (dest
, 0);
4089 emit_move_insn (dest
, x
);
4092 /* Emit and annotate a single push insn. */
4095 emit_single_push_insn (enum machine_mode mode
, rtx x
, tree type
)
4097 int delta
, old_delta
= stack_pointer_delta
;
4098 rtx prev
= get_last_insn ();
4101 emit_single_push_insn_1 (mode
, x
, type
);
4103 last
= get_last_insn ();
4105 /* Notice the common case where we emitted exactly one insn. */
4106 if (PREV_INSN (last
) == prev
)
4108 add_reg_note (last
, REG_ARGS_SIZE
, GEN_INT (stack_pointer_delta
));
4112 delta
= fixup_args_size_notes (prev
, last
, stack_pointer_delta
);
4113 gcc_assert (delta
== INT_MIN
|| delta
== old_delta
);
4117 /* Generate code to push X onto the stack, assuming it has mode MODE and
4119 MODE is redundant except when X is a CONST_INT (since they don't
4121 SIZE is an rtx for the size of data to be copied (in bytes),
4122 needed only if X is BLKmode.
4124 ALIGN (in bits) is maximum alignment we can assume.
4126 If PARTIAL and REG are both nonzero, then copy that many of the first
4127 bytes of X into registers starting with REG, and push the rest of X.
4128 The amount of space pushed is decreased by PARTIAL bytes.
4129 REG must be a hard register in this case.
4130 If REG is zero but PARTIAL is not, take any all others actions for an
4131 argument partially in registers, but do not actually load any
4134 EXTRA is the amount in bytes of extra space to leave next to this arg.
4135 This is ignored if an argument block has already been allocated.
4137 On a machine that lacks real push insns, ARGS_ADDR is the address of
4138 the bottom of the argument block for this call. We use indexing off there
4139 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4140 argument block has not been preallocated.
4142 ARGS_SO_FAR is the size of args previously pushed for this call.
4144 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4145 for arguments passed in registers. If nonzero, it will be the number
4146 of bytes required. */
4149 emit_push_insn (rtx x
, enum machine_mode mode
, tree type
, rtx size
,
4150 unsigned int align
, int partial
, rtx reg
, int extra
,
4151 rtx args_addr
, rtx args_so_far
, int reg_parm_stack_space
,
4155 enum direction stack_direction
4156 #ifdef STACK_GROWS_DOWNWARD
4162 /* Decide where to pad the argument: `downward' for below,
4163 `upward' for above, or `none' for don't pad it.
4164 Default is below for small data on big-endian machines; else above. */
4165 enum direction where_pad
= FUNCTION_ARG_PADDING (mode
, type
);
4167 /* Invert direction if stack is post-decrement.
4169 if (STACK_PUSH_CODE
== POST_DEC
)
4170 if (where_pad
!= none
)
4171 where_pad
= (where_pad
== downward
? upward
: downward
);
4176 || (STRICT_ALIGNMENT
&& align
< GET_MODE_ALIGNMENT (mode
)))
4178 /* Copy a block into the stack, entirely or partially. */
4185 offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
4186 used
= partial
- offset
;
4188 if (mode
!= BLKmode
)
4190 /* A value is to be stored in an insufficiently aligned
4191 stack slot; copy via a suitably aligned slot if
4193 size
= GEN_INT (GET_MODE_SIZE (mode
));
4194 if (!MEM_P (xinner
))
4196 temp
= assign_temp (type
, 1, 1);
4197 emit_move_insn (temp
, xinner
);
4204 /* USED is now the # of bytes we need not copy to the stack
4205 because registers will take care of them. */
4208 xinner
= adjust_address (xinner
, BLKmode
, used
);
4210 /* If the partial register-part of the arg counts in its stack size,
4211 skip the part of stack space corresponding to the registers.
4212 Otherwise, start copying to the beginning of the stack space,
4213 by setting SKIP to 0. */
4214 skip
= (reg_parm_stack_space
== 0) ? 0 : used
;
4216 #ifdef PUSH_ROUNDING
4217 /* Do it with several push insns if that doesn't take lots of insns
4218 and if there is no difficulty with push insns that skip bytes
4219 on the stack for alignment purposes. */
4222 && CONST_INT_P (size
)
4224 && MEM_ALIGN (xinner
) >= align
4225 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size
) - used
, align
))
4226 /* Here we avoid the case of a structure whose weak alignment
4227 forces many pushes of a small amount of data,
4228 and such small pushes do rounding that causes trouble. */
4229 && ((! SLOW_UNALIGNED_ACCESS (word_mode
, align
))
4230 || align
>= BIGGEST_ALIGNMENT
4231 || (PUSH_ROUNDING (align
/ BITS_PER_UNIT
)
4232 == (align
/ BITS_PER_UNIT
)))
4233 && (HOST_WIDE_INT
) PUSH_ROUNDING (INTVAL (size
)) == INTVAL (size
))
4235 /* Push padding now if padding above and stack grows down,
4236 or if padding below and stack grows up.
4237 But if space already allocated, this has already been done. */
4238 if (extra
&& args_addr
== 0
4239 && where_pad
!= none
&& where_pad
!= stack_direction
)
4240 anti_adjust_stack (GEN_INT (extra
));
4242 move_by_pieces (NULL
, xinner
, INTVAL (size
) - used
, align
, 0);
4245 #endif /* PUSH_ROUNDING */
4249 /* Otherwise make space on the stack and copy the data
4250 to the address of that space. */
4252 /* Deduct words put into registers from the size we must copy. */
4255 if (CONST_INT_P (size
))
4256 size
= GEN_INT (INTVAL (size
) - used
);
4258 size
= expand_binop (GET_MODE (size
), sub_optab
, size
,
4259 gen_int_mode (used
, GET_MODE (size
)),
4260 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
4263 /* Get the address of the stack space.
4264 In this case, we do not deal with EXTRA separately.
4265 A single stack adjust will do. */
4268 temp
= push_block (size
, extra
, where_pad
== downward
);
4271 else if (CONST_INT_P (args_so_far
))
4272 temp
= memory_address (BLKmode
,
4273 plus_constant (Pmode
, args_addr
,
4274 skip
+ INTVAL (args_so_far
)));
4276 temp
= memory_address (BLKmode
,
4277 plus_constant (Pmode
,
4278 gen_rtx_PLUS (Pmode
,
4283 if (!ACCUMULATE_OUTGOING_ARGS
)
4285 /* If the source is referenced relative to the stack pointer,
4286 copy it to another register to stabilize it. We do not need
4287 to do this if we know that we won't be changing sp. */
4289 if (reg_mentioned_p (virtual_stack_dynamic_rtx
, temp
)
4290 || reg_mentioned_p (virtual_outgoing_args_rtx
, temp
))
4291 temp
= copy_to_reg (temp
);
4294 target
= gen_rtx_MEM (BLKmode
, temp
);
4296 /* We do *not* set_mem_attributes here, because incoming arguments
4297 may overlap with sibling call outgoing arguments and we cannot
4298 allow reordering of reads from function arguments with stores
4299 to outgoing arguments of sibling calls. We do, however, want
4300 to record the alignment of the stack slot. */
4301 /* ALIGN may well be better aligned than TYPE, e.g. due to
4302 PARM_BOUNDARY. Assume the caller isn't lying. */
4303 set_mem_align (target
, align
);
4305 emit_block_move (target
, xinner
, size
, BLOCK_OP_CALL_PARM
);
4308 else if (partial
> 0)
4310 /* Scalar partly in registers. */
4312 int size
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
;
4315 /* # bytes of start of argument
4316 that we must make space for but need not store. */
4317 int offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
4318 int args_offset
= INTVAL (args_so_far
);
4321 /* Push padding now if padding above and stack grows down,
4322 or if padding below and stack grows up.
4323 But if space already allocated, this has already been done. */
4324 if (extra
&& args_addr
== 0
4325 && where_pad
!= none
&& where_pad
!= stack_direction
)
4326 anti_adjust_stack (GEN_INT (extra
));
4328 /* If we make space by pushing it, we might as well push
4329 the real data. Otherwise, we can leave OFFSET nonzero
4330 and leave the space uninitialized. */
4334 /* Now NOT_STACK gets the number of words that we don't need to
4335 allocate on the stack. Convert OFFSET to words too. */
4336 not_stack
= (partial
- offset
) / UNITS_PER_WORD
;
4337 offset
/= UNITS_PER_WORD
;
4339 /* If the partial register-part of the arg counts in its stack size,
4340 skip the part of stack space corresponding to the registers.
4341 Otherwise, start copying to the beginning of the stack space,
4342 by setting SKIP to 0. */
4343 skip
= (reg_parm_stack_space
== 0) ? 0 : not_stack
;
4345 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
4346 x
= validize_mem (force_const_mem (mode
, x
));
4348 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4349 SUBREGs of such registers are not allowed. */
4350 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
4351 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
))
4352 x
= copy_to_reg (x
);
4354 /* Loop over all the words allocated on the stack for this arg. */
4355 /* We can do it by words, because any scalar bigger than a word
4356 has a size a multiple of a word. */
4357 #ifndef PUSH_ARGS_REVERSED
4358 for (i
= not_stack
; i
< size
; i
++)
4360 for (i
= size
- 1; i
>= not_stack
; i
--)
4362 if (i
>= not_stack
+ offset
)
4363 emit_push_insn (operand_subword_force (x
, i
, mode
),
4364 word_mode
, NULL_TREE
, NULL_RTX
, align
, 0, NULL_RTX
,
4366 GEN_INT (args_offset
+ ((i
- not_stack
+ skip
)
4368 reg_parm_stack_space
, alignment_pad
);
4375 /* Push padding now if padding above and stack grows down,
4376 or if padding below and stack grows up.
4377 But if space already allocated, this has already been done. */
4378 if (extra
&& args_addr
== 0
4379 && where_pad
!= none
&& where_pad
!= stack_direction
)
4380 anti_adjust_stack (GEN_INT (extra
));
4382 #ifdef PUSH_ROUNDING
4383 if (args_addr
== 0 && PUSH_ARGS
)
4384 emit_single_push_insn (mode
, x
, type
);
4388 if (CONST_INT_P (args_so_far
))
4390 = memory_address (mode
,
4391 plus_constant (Pmode
, args_addr
,
4392 INTVAL (args_so_far
)));
4394 addr
= memory_address (mode
, gen_rtx_PLUS (Pmode
, args_addr
,
4396 dest
= gen_rtx_MEM (mode
, addr
);
4398 /* We do *not* set_mem_attributes here, because incoming arguments
4399 may overlap with sibling call outgoing arguments and we cannot
4400 allow reordering of reads from function arguments with stores
4401 to outgoing arguments of sibling calls. We do, however, want
4402 to record the alignment of the stack slot. */
4403 /* ALIGN may well be better aligned than TYPE, e.g. due to
4404 PARM_BOUNDARY. Assume the caller isn't lying. */
4405 set_mem_align (dest
, align
);
4407 emit_move_insn (dest
, x
);
4411 /* If part should go in registers, copy that part
4412 into the appropriate registers. Do this now, at the end,
4413 since mem-to-mem copies above may do function calls. */
4414 if (partial
> 0 && reg
!= 0)
4416 /* Handle calls that pass values in multiple non-contiguous locations.
4417 The Irix 6 ABI has examples of this. */
4418 if (GET_CODE (reg
) == PARALLEL
)
4419 emit_group_load (reg
, x
, type
, -1);
4422 gcc_assert (partial
% UNITS_PER_WORD
== 0);
4423 move_block_to_reg (REGNO (reg
), x
, partial
/ UNITS_PER_WORD
, mode
);
4427 if (extra
&& args_addr
== 0 && where_pad
== stack_direction
)
4428 anti_adjust_stack (GEN_INT (extra
));
4430 if (alignment_pad
&& args_addr
== 0)
4431 anti_adjust_stack (alignment_pad
);
4434 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4438 get_subtarget (rtx x
)
4442 /* Only registers can be subtargets. */
4444 /* Don't use hard regs to avoid extending their life. */
4445 || REGNO (x
) < FIRST_PSEUDO_REGISTER
4449 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4450 FIELD is a bitfield. Returns true if the optimization was successful,
4451 and there's nothing else to do. */
4454 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize
,
4455 unsigned HOST_WIDE_INT bitpos
,
4456 unsigned HOST_WIDE_INT bitregion_start
,
4457 unsigned HOST_WIDE_INT bitregion_end
,
4458 enum machine_mode mode1
, rtx str_rtx
,
4461 enum machine_mode str_mode
= GET_MODE (str_rtx
);
4462 unsigned int str_bitsize
= GET_MODE_BITSIZE (str_mode
);
4467 enum tree_code code
;
4469 if (mode1
!= VOIDmode
4470 || bitsize
>= BITS_PER_WORD
4471 || str_bitsize
> BITS_PER_WORD
4472 || TREE_SIDE_EFFECTS (to
)
4473 || TREE_THIS_VOLATILE (to
))
4477 if (TREE_CODE (src
) != SSA_NAME
)
4479 if (TREE_CODE (TREE_TYPE (src
)) != INTEGER_TYPE
)
4482 srcstmt
= get_gimple_for_ssa_name (src
);
4484 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt
)) != tcc_binary
)
4487 code
= gimple_assign_rhs_code (srcstmt
);
4489 op0
= gimple_assign_rhs1 (srcstmt
);
4491 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4492 to find its initialization. Hopefully the initialization will
4493 be from a bitfield load. */
4494 if (TREE_CODE (op0
) == SSA_NAME
)
4496 gimple op0stmt
= get_gimple_for_ssa_name (op0
);
4498 /* We want to eventually have OP0 be the same as TO, which
4499 should be a bitfield. */
4501 || !is_gimple_assign (op0stmt
)
4502 || gimple_assign_rhs_code (op0stmt
) != TREE_CODE (to
))
4504 op0
= gimple_assign_rhs1 (op0stmt
);
4507 op1
= gimple_assign_rhs2 (srcstmt
);
4509 if (!operand_equal_p (to
, op0
, 0))
4512 if (MEM_P (str_rtx
))
4514 unsigned HOST_WIDE_INT offset1
;
4516 if (str_bitsize
== 0 || str_bitsize
> BITS_PER_WORD
)
4517 str_mode
= word_mode
;
4518 str_mode
= get_best_mode (bitsize
, bitpos
,
4519 bitregion_start
, bitregion_end
,
4520 MEM_ALIGN (str_rtx
), str_mode
, 0);
4521 if (str_mode
== VOIDmode
)
4523 str_bitsize
= GET_MODE_BITSIZE (str_mode
);
4526 bitpos
%= str_bitsize
;
4527 offset1
= (offset1
- bitpos
) / BITS_PER_UNIT
;
4528 str_rtx
= adjust_address (str_rtx
, str_mode
, offset1
);
4530 else if (!REG_P (str_rtx
) && GET_CODE (str_rtx
) != SUBREG
)
4533 /* If the bit field covers the whole REG/MEM, store_field
4534 will likely generate better code. */
4535 if (bitsize
>= str_bitsize
)
4538 /* We can't handle fields split across multiple entities. */
4539 if (bitpos
+ bitsize
> str_bitsize
)
4542 if (BYTES_BIG_ENDIAN
)
4543 bitpos
= str_bitsize
- bitpos
- bitsize
;
4549 /* For now, just optimize the case of the topmost bitfield
4550 where we don't need to do any masking and also
4551 1 bit bitfields where xor can be used.
4552 We might win by one instruction for the other bitfields
4553 too if insv/extv instructions aren't used, so that
4554 can be added later. */
4555 if (bitpos
+ bitsize
!= str_bitsize
4556 && (bitsize
!= 1 || TREE_CODE (op1
) != INTEGER_CST
))
4559 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
4560 value
= convert_modes (str_mode
,
4561 TYPE_MODE (TREE_TYPE (op1
)), value
,
4562 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4564 /* We may be accessing data outside the field, which means
4565 we can alias adjacent data. */
4566 if (MEM_P (str_rtx
))
4568 str_rtx
= shallow_copy_rtx (str_rtx
);
4569 set_mem_alias_set (str_rtx
, 0);
4570 set_mem_expr (str_rtx
, 0);
4573 binop
= code
== PLUS_EXPR
? add_optab
: sub_optab
;
4574 if (bitsize
== 1 && bitpos
+ bitsize
!= str_bitsize
)
4576 value
= expand_and (str_mode
, value
, const1_rtx
, NULL
);
4579 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
4580 result
= expand_binop (str_mode
, binop
, str_rtx
,
4581 value
, str_rtx
, 1, OPTAB_WIDEN
);
4582 if (result
!= str_rtx
)
4583 emit_move_insn (str_rtx
, result
);
4588 if (TREE_CODE (op1
) != INTEGER_CST
)
4590 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
4591 value
= convert_modes (str_mode
,
4592 TYPE_MODE (TREE_TYPE (op1
)), value
,
4593 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4595 /* We may be accessing data outside the field, which means
4596 we can alias adjacent data. */
4597 if (MEM_P (str_rtx
))
4599 str_rtx
= shallow_copy_rtx (str_rtx
);
4600 set_mem_alias_set (str_rtx
, 0);
4601 set_mem_expr (str_rtx
, 0);
4604 binop
= code
== BIT_IOR_EXPR
? ior_optab
: xor_optab
;
4605 if (bitpos
+ bitsize
!= str_bitsize
)
4607 rtx mask
= gen_int_mode (((unsigned HOST_WIDE_INT
) 1 << bitsize
) - 1,
4609 value
= expand_and (str_mode
, value
, mask
, NULL_RTX
);
4611 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
4612 result
= expand_binop (str_mode
, binop
, str_rtx
,
4613 value
, str_rtx
, 1, OPTAB_WIDEN
);
4614 if (result
!= str_rtx
)
4615 emit_move_insn (str_rtx
, result
);
4625 /* In the C++ memory model, consecutive bit fields in a structure are
4626 considered one memory location.
4628 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4629 returns the bit range of consecutive bits in which this COMPONENT_REF
4630 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4631 and *OFFSET may be adjusted in the process.
4633 If the access does not need to be restricted, 0 is returned in both
4634 *BITSTART and *BITEND. */
4637 get_bit_range (unsigned HOST_WIDE_INT
*bitstart
,
4638 unsigned HOST_WIDE_INT
*bitend
,
4640 HOST_WIDE_INT
*bitpos
,
4643 HOST_WIDE_INT bitoffset
;
4646 gcc_assert (TREE_CODE (exp
) == COMPONENT_REF
);
4648 field
= TREE_OPERAND (exp
, 1);
4649 repr
= DECL_BIT_FIELD_REPRESENTATIVE (field
);
4650 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4651 need to limit the range we can access. */
4654 *bitstart
= *bitend
= 0;
4658 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4659 part of a larger bit field, then the representative does not serve any
4660 useful purpose. This can occur in Ada. */
4661 if (handled_component_p (TREE_OPERAND (exp
, 0)))
4663 enum machine_mode rmode
;
4664 HOST_WIDE_INT rbitsize
, rbitpos
;
4668 get_inner_reference (TREE_OPERAND (exp
, 0), &rbitsize
, &rbitpos
,
4669 &roffset
, &rmode
, &unsignedp
, &volatilep
, false);
4670 if ((rbitpos
% BITS_PER_UNIT
) != 0)
4672 *bitstart
= *bitend
= 0;
4677 /* Compute the adjustment to bitpos from the offset of the field
4678 relative to the representative. DECL_FIELD_OFFSET of field and
4679 repr are the same by construction if they are not constants,
4680 see finish_bitfield_layout. */
4681 if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field
))
4682 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr
)))
4683 bitoffset
= (tree_to_uhwi (DECL_FIELD_OFFSET (field
))
4684 - tree_to_uhwi (DECL_FIELD_OFFSET (repr
))) * BITS_PER_UNIT
;
4687 bitoffset
+= (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
))
4688 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr
)));
4690 /* If the adjustment is larger than bitpos, we would have a negative bit
4691 position for the lower bound and this may wreak havoc later. Adjust
4692 offset and bitpos to make the lower bound non-negative in that case. */
4693 if (bitoffset
> *bitpos
)
4695 HOST_WIDE_INT adjust
= bitoffset
- *bitpos
;
4696 gcc_assert ((adjust
% BITS_PER_UNIT
) == 0);
4699 if (*offset
== NULL_TREE
)
4700 *offset
= size_int (-adjust
/ BITS_PER_UNIT
);
4703 = size_binop (MINUS_EXPR
, *offset
, size_int (adjust
/ BITS_PER_UNIT
));
4707 *bitstart
= *bitpos
- bitoffset
;
4709 *bitend
= *bitstart
+ tree_to_uhwi (DECL_SIZE (repr
)) - 1;
4712 /* Returns true if ADDR is an ADDR_EXPR of a DECL that does not reside
4713 in memory and has non-BLKmode. DECL_RTL must not be a MEM; if
4714 DECL_RTL was not set yet, return NORTL. */
4717 addr_expr_of_non_mem_decl_p_1 (tree addr
, bool nortl
)
4719 if (TREE_CODE (addr
) != ADDR_EXPR
)
4722 tree base
= TREE_OPERAND (addr
, 0);
4725 || TREE_ADDRESSABLE (base
)
4726 || DECL_MODE (base
) == BLKmode
)
4729 if (!DECL_RTL_SET_P (base
))
4732 return (!MEM_P (DECL_RTL (base
)));
4735 /* Returns true if the MEM_REF REF refers to an object that does not
4736 reside in memory and has non-BLKmode. */
4739 mem_ref_refers_to_non_mem_p (tree ref
)
4741 tree base
= TREE_OPERAND (ref
, 0);
4742 return addr_expr_of_non_mem_decl_p_1 (base
, false);
4745 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4746 is true, try generating a nontemporal store. */
4749 expand_assignment (tree to
, tree from
, bool nontemporal
)
4753 enum machine_mode mode
;
4755 enum insn_code icode
;
4757 /* Don't crash if the lhs of the assignment was erroneous. */
4758 if (TREE_CODE (to
) == ERROR_MARK
)
4760 expand_normal (from
);
4764 /* Optimize away no-op moves without side-effects. */
4765 if (operand_equal_p (to
, from
, 0))
4768 /* Handle misaligned stores. */
4769 mode
= TYPE_MODE (TREE_TYPE (to
));
4770 if ((TREE_CODE (to
) == MEM_REF
4771 || TREE_CODE (to
) == TARGET_MEM_REF
)
4773 && !mem_ref_refers_to_non_mem_p (to
)
4774 && ((align
= get_object_alignment (to
))
4775 < GET_MODE_ALIGNMENT (mode
))
4776 && (((icode
= optab_handler (movmisalign_optab
, mode
))
4777 != CODE_FOR_nothing
)
4778 || SLOW_UNALIGNED_ACCESS (mode
, align
)))
4782 reg
= expand_expr (from
, NULL_RTX
, VOIDmode
, EXPAND_NORMAL
);
4783 reg
= force_not_mem (reg
);
4784 mem
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4786 if (icode
!= CODE_FOR_nothing
)
4788 struct expand_operand ops
[2];
4790 create_fixed_operand (&ops
[0], mem
);
4791 create_input_operand (&ops
[1], reg
, mode
);
4792 /* The movmisalign<mode> pattern cannot fail, else the assignment
4793 would silently be omitted. */
4794 expand_insn (icode
, 2, ops
);
4797 store_bit_field (mem
, GET_MODE_BITSIZE (mode
), 0, 0, 0, mode
, reg
);
4801 /* Assignment of a structure component needs special treatment
4802 if the structure component's rtx is not simply a MEM.
4803 Assignment of an array element at a constant index, and assignment of
4804 an array element in an unaligned packed structure field, has the same
4805 problem. Same for (partially) storing into a non-memory object. */
4806 if (handled_component_p (to
)
4807 || (TREE_CODE (to
) == MEM_REF
4808 && mem_ref_refers_to_non_mem_p (to
))
4809 || TREE_CODE (TREE_TYPE (to
)) == ARRAY_TYPE
)
4811 enum machine_mode mode1
;
4812 HOST_WIDE_INT bitsize
, bitpos
;
4813 unsigned HOST_WIDE_INT bitregion_start
= 0;
4814 unsigned HOST_WIDE_INT bitregion_end
= 0;
4821 tem
= get_inner_reference (to
, &bitsize
, &bitpos
, &offset
, &mode1
,
4822 &unsignedp
, &volatilep
, true);
4824 /* Make sure bitpos is not negative, it can wreak havoc later. */
4827 gcc_assert (offset
== NULL_TREE
);
4828 offset
= size_int (bitpos
>> (BITS_PER_UNIT
== 8
4829 ? 3 : exact_log2 (BITS_PER_UNIT
)));
4830 bitpos
&= BITS_PER_UNIT
- 1;
4833 if (TREE_CODE (to
) == COMPONENT_REF
4834 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to
, 1)))
4835 get_bit_range (&bitregion_start
, &bitregion_end
, to
, &bitpos
, &offset
);
4836 /* The C++ memory model naturally applies to byte-aligned fields.
4837 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
4838 BITSIZE are not byte-aligned, there is no need to limit the range
4839 we can access. This can occur with packed structures in Ada. */
4840 else if (bitsize
> 0
4841 && bitsize
% BITS_PER_UNIT
== 0
4842 && bitpos
% BITS_PER_UNIT
== 0)
4844 bitregion_start
= bitpos
;
4845 bitregion_end
= bitpos
+ bitsize
- 1;
4848 to_rtx
= expand_expr (tem
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4850 /* If the field has a mode, we want to access it in the
4851 field's mode, not the computed mode.
4852 If a MEM has VOIDmode (external with incomplete type),
4853 use BLKmode for it instead. */
4856 if (mode1
!= VOIDmode
)
4857 to_rtx
= adjust_address (to_rtx
, mode1
, 0);
4858 else if (GET_MODE (to_rtx
) == VOIDmode
)
4859 to_rtx
= adjust_address (to_rtx
, BLKmode
, 0);
4864 enum machine_mode address_mode
;
4867 if (!MEM_P (to_rtx
))
4869 /* We can get constant negative offsets into arrays with broken
4870 user code. Translate this to a trap instead of ICEing. */
4871 gcc_assert (TREE_CODE (offset
) == INTEGER_CST
);
4872 expand_builtin_trap ();
4873 to_rtx
= gen_rtx_MEM (BLKmode
, const0_rtx
);
4876 offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
4877 address_mode
= get_address_mode (to_rtx
);
4878 if (GET_MODE (offset_rtx
) != address_mode
)
4879 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
4881 /* The check for a constant address in TO_RTX not having VOIDmode
4882 is probably no longer necessary. */
4884 && GET_MODE (to_rtx
) == BLKmode
4885 && GET_MODE (XEXP (to_rtx
, 0)) != VOIDmode
4887 && (bitpos
% bitsize
) == 0
4888 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
4889 && MEM_ALIGN (to_rtx
) == GET_MODE_ALIGNMENT (mode1
))
4891 to_rtx
= adjust_address (to_rtx
, mode1
, bitpos
/ BITS_PER_UNIT
);
4892 bitregion_start
= 0;
4893 if (bitregion_end
>= (unsigned HOST_WIDE_INT
) bitpos
)
4894 bitregion_end
-= bitpos
;
4898 to_rtx
= offset_address (to_rtx
, offset_rtx
,
4899 highest_pow2_factor_for_target (to
,
4903 /* No action is needed if the target is not a memory and the field
4904 lies completely outside that target. This can occur if the source
4905 code contains an out-of-bounds access to a small array. */
4907 && GET_MODE (to_rtx
) != BLKmode
4908 && (unsigned HOST_WIDE_INT
) bitpos
4909 >= GET_MODE_PRECISION (GET_MODE (to_rtx
)))
4911 expand_normal (from
);
4914 /* Handle expand_expr of a complex value returning a CONCAT. */
4915 else if (GET_CODE (to_rtx
) == CONCAT
)
4917 unsigned short mode_bitsize
= GET_MODE_BITSIZE (GET_MODE (to_rtx
));
4918 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from
)))
4920 && bitsize
== mode_bitsize
)
4921 result
= store_expr (from
, to_rtx
, false, nontemporal
);
4922 else if (bitsize
== mode_bitsize
/ 2
4923 && (bitpos
== 0 || bitpos
== mode_bitsize
/ 2))
4924 result
= store_expr (from
, XEXP (to_rtx
, bitpos
!= 0), false,
4926 else if (bitpos
+ bitsize
<= mode_bitsize
/ 2)
4927 result
= store_field (XEXP (to_rtx
, 0), bitsize
, bitpos
,
4928 bitregion_start
, bitregion_end
,
4930 get_alias_set (to
), nontemporal
);
4931 else if (bitpos
>= mode_bitsize
/ 2)
4932 result
= store_field (XEXP (to_rtx
, 1), bitsize
,
4933 bitpos
- mode_bitsize
/ 2,
4934 bitregion_start
, bitregion_end
,
4936 get_alias_set (to
), nontemporal
);
4937 else if (bitpos
== 0 && bitsize
== mode_bitsize
)
4940 result
= expand_normal (from
);
4941 from_rtx
= simplify_gen_subreg (GET_MODE (to_rtx
), result
,
4942 TYPE_MODE (TREE_TYPE (from
)), 0);
4943 emit_move_insn (XEXP (to_rtx
, 0),
4944 read_complex_part (from_rtx
, false));
4945 emit_move_insn (XEXP (to_rtx
, 1),
4946 read_complex_part (from_rtx
, true));
4950 rtx temp
= assign_stack_temp (GET_MODE (to_rtx
),
4951 GET_MODE_SIZE (GET_MODE (to_rtx
)));
4952 write_complex_part (temp
, XEXP (to_rtx
, 0), false);
4953 write_complex_part (temp
, XEXP (to_rtx
, 1), true);
4954 result
= store_field (temp
, bitsize
, bitpos
,
4955 bitregion_start
, bitregion_end
,
4957 get_alias_set (to
), nontemporal
);
4958 emit_move_insn (XEXP (to_rtx
, 0), read_complex_part (temp
, false));
4959 emit_move_insn (XEXP (to_rtx
, 1), read_complex_part (temp
, true));
4966 /* If the field is at offset zero, we could have been given the
4967 DECL_RTX of the parent struct. Don't munge it. */
4968 to_rtx
= shallow_copy_rtx (to_rtx
);
4969 set_mem_attributes_minus_bitpos (to_rtx
, to
, 0, bitpos
);
4971 MEM_VOLATILE_P (to_rtx
) = 1;
4974 if (optimize_bitfield_assignment_op (bitsize
, bitpos
,
4975 bitregion_start
, bitregion_end
,
4980 result
= store_field (to_rtx
, bitsize
, bitpos
,
4981 bitregion_start
, bitregion_end
,
4983 get_alias_set (to
), nontemporal
);
4987 preserve_temp_slots (result
);
4992 /* If the rhs is a function call and its value is not an aggregate,
4993 call the function before we start to compute the lhs.
4994 This is needed for correct code for cases such as
4995 val = setjmp (buf) on machines where reference to val
4996 requires loading up part of an address in a separate insn.
4998 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4999 since it might be a promoted variable where the zero- or sign- extension
5000 needs to be done. Handling this in the normal way is safe because no
5001 computation is done before the call. The same is true for SSA names. */
5002 if (TREE_CODE (from
) == CALL_EXPR
&& ! aggregate_value_p (from
, from
)
5003 && COMPLETE_TYPE_P (TREE_TYPE (from
))
5004 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from
))) == INTEGER_CST
5005 && ! (((TREE_CODE (to
) == VAR_DECL
5006 || TREE_CODE (to
) == PARM_DECL
5007 || TREE_CODE (to
) == RESULT_DECL
)
5008 && REG_P (DECL_RTL (to
)))
5009 || TREE_CODE (to
) == SSA_NAME
))
5014 value
= expand_normal (from
);
5016 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
5018 /* Handle calls that return values in multiple non-contiguous locations.
5019 The Irix 6 ABI has examples of this. */
5020 if (GET_CODE (to_rtx
) == PARALLEL
)
5022 if (GET_CODE (value
) == PARALLEL
)
5023 emit_group_move (to_rtx
, value
);
5025 emit_group_load (to_rtx
, value
, TREE_TYPE (from
),
5026 int_size_in_bytes (TREE_TYPE (from
)));
5028 else if (GET_CODE (value
) == PARALLEL
)
5029 emit_group_store (to_rtx
, value
, TREE_TYPE (from
),
5030 int_size_in_bytes (TREE_TYPE (from
)));
5031 else if (GET_MODE (to_rtx
) == BLKmode
)
5033 /* Handle calls that return BLKmode values in registers. */
5035 copy_blkmode_from_reg (to_rtx
, value
, TREE_TYPE (from
));
5037 emit_block_move (to_rtx
, value
, expr_size (from
), BLOCK_OP_NORMAL
);
5041 if (POINTER_TYPE_P (TREE_TYPE (to
)))
5042 value
= convert_memory_address_addr_space
5043 (GET_MODE (to_rtx
), value
,
5044 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to
))));
5046 emit_move_insn (to_rtx
, value
);
5048 preserve_temp_slots (to_rtx
);
5053 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5054 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
5056 /* Don't move directly into a return register. */
5057 if (TREE_CODE (to
) == RESULT_DECL
5058 && (REG_P (to_rtx
) || GET_CODE (to_rtx
) == PARALLEL
))
5064 /* If the source is itself a return value, it still is in a pseudo at
5065 this point so we can move it back to the return register directly. */
5067 && TYPE_MODE (TREE_TYPE (from
)) == BLKmode
5068 && TREE_CODE (from
) != CALL_EXPR
)
5069 temp
= copy_blkmode_to_reg (GET_MODE (to_rtx
), from
);
5071 temp
= expand_expr (from
, NULL_RTX
, GET_MODE (to_rtx
), EXPAND_NORMAL
);
5073 /* Handle calls that return values in multiple non-contiguous locations.
5074 The Irix 6 ABI has examples of this. */
5075 if (GET_CODE (to_rtx
) == PARALLEL
)
5077 if (GET_CODE (temp
) == PARALLEL
)
5078 emit_group_move (to_rtx
, temp
);
5080 emit_group_load (to_rtx
, temp
, TREE_TYPE (from
),
5081 int_size_in_bytes (TREE_TYPE (from
)));
5084 emit_move_insn (to_rtx
, temp
);
5086 preserve_temp_slots (to_rtx
);
5091 /* In case we are returning the contents of an object which overlaps
5092 the place the value is being stored, use a safe function when copying
5093 a value through a pointer into a structure value return block. */
5094 if (TREE_CODE (to
) == RESULT_DECL
5095 && TREE_CODE (from
) == INDIRECT_REF
5096 && ADDR_SPACE_GENERIC_P
5097 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from
, 0)))))
5098 && refs_may_alias_p (to
, from
)
5099 && cfun
->returns_struct
5100 && !cfun
->returns_pcc_struct
)
5105 size
= expr_size (from
);
5106 from_rtx
= expand_normal (from
);
5108 emit_library_call (memmove_libfunc
, LCT_NORMAL
,
5109 VOIDmode
, 3, XEXP (to_rtx
, 0), Pmode
,
5110 XEXP (from_rtx
, 0), Pmode
,
5111 convert_to_mode (TYPE_MODE (sizetype
),
5112 size
, TYPE_UNSIGNED (sizetype
)),
5113 TYPE_MODE (sizetype
));
5115 preserve_temp_slots (to_rtx
);
5120 /* Compute FROM and store the value in the rtx we got. */
5123 result
= store_expr (from
, to_rtx
, 0, nontemporal
);
5124 preserve_temp_slots (result
);
5129 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5130 succeeded, false otherwise. */
5133 emit_storent_insn (rtx to
, rtx from
)
5135 struct expand_operand ops
[2];
5136 enum machine_mode mode
= GET_MODE (to
);
5137 enum insn_code code
= optab_handler (storent_optab
, mode
);
5139 if (code
== CODE_FOR_nothing
)
5142 create_fixed_operand (&ops
[0], to
);
5143 create_input_operand (&ops
[1], from
, mode
);
5144 return maybe_expand_insn (code
, 2, ops
);
5147 /* Generate code for computing expression EXP,
5148 and storing the value into TARGET.
5150 If the mode is BLKmode then we may return TARGET itself.
5151 It turns out that in BLKmode it doesn't cause a problem.
5152 because C has no operators that could combine two different
5153 assignments into the same BLKmode object with different values
5154 with no sequence point. Will other languages need this to
5157 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5158 stack, and block moves may need to be treated specially.
5160 If NONTEMPORAL is true, try using a nontemporal store instruction. */
5163 store_expr (tree exp
, rtx target
, int call_param_p
, bool nontemporal
)
5166 rtx alt_rtl
= NULL_RTX
;
5167 location_t loc
= curr_insn_location ();
5169 if (VOID_TYPE_P (TREE_TYPE (exp
)))
5171 /* C++ can generate ?: expressions with a throw expression in one
5172 branch and an rvalue in the other. Here, we resolve attempts to
5173 store the throw expression's nonexistent result. */
5174 gcc_assert (!call_param_p
);
5175 expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
5178 if (TREE_CODE (exp
) == COMPOUND_EXPR
)
5180 /* Perform first part of compound expression, then assign from second
5182 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
5183 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
5184 return store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
,
5187 else if (TREE_CODE (exp
) == COND_EXPR
&& GET_MODE (target
) == BLKmode
)
5189 /* For conditional expression, get safe form of the target. Then
5190 test the condition, doing the appropriate assignment on either
5191 side. This avoids the creation of unnecessary temporaries.
5192 For non-BLKmode, it is more efficient not to do this. */
5194 rtx lab1
= gen_label_rtx (), lab2
= gen_label_rtx ();
5196 do_pending_stack_adjust ();
5198 jumpifnot (TREE_OPERAND (exp
, 0), lab1
, -1);
5199 store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
,
5201 emit_jump_insn (gen_jump (lab2
));
5204 store_expr (TREE_OPERAND (exp
, 2), target
, call_param_p
,
5211 else if (GET_CODE (target
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (target
))
5212 /* If this is a scalar in a register that is stored in a wider mode
5213 than the declared mode, compute the result into its declared mode
5214 and then convert to the wider mode. Our value is the computed
5217 rtx inner_target
= 0;
5219 /* We can do the conversion inside EXP, which will often result
5220 in some optimizations. Do the conversion in two steps: first
5221 change the signedness, if needed, then the extend. But don't
5222 do this if the type of EXP is a subtype of something else
5223 since then the conversion might involve more than just
5224 converting modes. */
5225 if (INTEGRAL_TYPE_P (TREE_TYPE (exp
))
5226 && TREE_TYPE (TREE_TYPE (exp
)) == 0
5227 && GET_MODE_PRECISION (GET_MODE (target
))
5228 == TYPE_PRECISION (TREE_TYPE (exp
)))
5230 if (TYPE_UNSIGNED (TREE_TYPE (exp
))
5231 != SUBREG_PROMOTED_UNSIGNED_P (target
))
5233 /* Some types, e.g. Fortran's logical*4, won't have a signed
5234 version, so use the mode instead. */
5236 = (signed_or_unsigned_type_for
5237 (SUBREG_PROMOTED_UNSIGNED_P (target
), TREE_TYPE (exp
)));
5239 ntype
= lang_hooks
.types
.type_for_mode
5240 (TYPE_MODE (TREE_TYPE (exp
)),
5241 SUBREG_PROMOTED_UNSIGNED_P (target
));
5243 exp
= fold_convert_loc (loc
, ntype
, exp
);
5246 exp
= fold_convert_loc (loc
, lang_hooks
.types
.type_for_mode
5247 (GET_MODE (SUBREG_REG (target
)),
5248 SUBREG_PROMOTED_UNSIGNED_P (target
)),
5251 inner_target
= SUBREG_REG (target
);
5254 temp
= expand_expr (exp
, inner_target
, VOIDmode
,
5255 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
5257 /* If TEMP is a VOIDmode constant, use convert_modes to make
5258 sure that we properly convert it. */
5259 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
)
5261 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
5262 temp
, SUBREG_PROMOTED_UNSIGNED_P (target
));
5263 temp
= convert_modes (GET_MODE (SUBREG_REG (target
)),
5264 GET_MODE (target
), temp
,
5265 SUBREG_PROMOTED_UNSIGNED_P (target
));
5268 convert_move (SUBREG_REG (target
), temp
,
5269 SUBREG_PROMOTED_UNSIGNED_P (target
));
5273 else if ((TREE_CODE (exp
) == STRING_CST
5274 || (TREE_CODE (exp
) == MEM_REF
5275 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
5276 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
5278 && integer_zerop (TREE_OPERAND (exp
, 1))))
5279 && !nontemporal
&& !call_param_p
5282 /* Optimize initialization of an array with a STRING_CST. */
5283 HOST_WIDE_INT exp_len
, str_copy_len
;
5285 tree str
= TREE_CODE (exp
) == STRING_CST
5286 ? exp
: TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
5288 exp_len
= int_expr_size (exp
);
5292 if (TREE_STRING_LENGTH (str
) <= 0)
5295 str_copy_len
= strlen (TREE_STRING_POINTER (str
));
5296 if (str_copy_len
< TREE_STRING_LENGTH (str
) - 1)
5299 str_copy_len
= TREE_STRING_LENGTH (str
);
5300 if ((STORE_MAX_PIECES
& (STORE_MAX_PIECES
- 1)) == 0
5301 && TREE_STRING_POINTER (str
)[TREE_STRING_LENGTH (str
) - 1] == '\0')
5303 str_copy_len
+= STORE_MAX_PIECES
- 1;
5304 str_copy_len
&= ~(STORE_MAX_PIECES
- 1);
5306 str_copy_len
= MIN (str_copy_len
, exp_len
);
5307 if (!can_store_by_pieces (str_copy_len
, builtin_strncpy_read_str
,
5308 CONST_CAST (char *, TREE_STRING_POINTER (str
)),
5309 MEM_ALIGN (target
), false))
5314 dest_mem
= store_by_pieces (dest_mem
,
5315 str_copy_len
, builtin_strncpy_read_str
,
5317 TREE_STRING_POINTER (str
)),
5318 MEM_ALIGN (target
), false,
5319 exp_len
> str_copy_len
? 1 : 0);
5320 if (exp_len
> str_copy_len
)
5321 clear_storage (adjust_address (dest_mem
, BLKmode
, 0),
5322 GEN_INT (exp_len
- str_copy_len
),
5331 /* If we want to use a nontemporal store, force the value to
5333 tmp_target
= nontemporal
? NULL_RTX
: target
;
5334 temp
= expand_expr_real (exp
, tmp_target
, GET_MODE (target
),
5336 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
),
5340 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5341 the same as that of TARGET, adjust the constant. This is needed, for
5342 example, in case it is a CONST_DOUBLE and we want only a word-sized
5344 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
5345 && TREE_CODE (exp
) != ERROR_MARK
5346 && GET_MODE (target
) != TYPE_MODE (TREE_TYPE (exp
)))
5347 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
5348 temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
5350 /* If value was not generated in the target, store it there.
5351 Convert the value to TARGET's type first if necessary and emit the
5352 pending incrementations that have been queued when expanding EXP.
5353 Note that we cannot emit the whole queue blindly because this will
5354 effectively disable the POST_INC optimization later.
5356 If TEMP and TARGET compare equal according to rtx_equal_p, but
5357 one or both of them are volatile memory refs, we have to distinguish
5359 - expand_expr has used TARGET. In this case, we must not generate
5360 another copy. This can be detected by TARGET being equal according
5362 - expand_expr has not used TARGET - that means that the source just
5363 happens to have the same RTX form. Since temp will have been created
5364 by expand_expr, it will compare unequal according to == .
5365 We must generate a copy in this case, to reach the correct number
5366 of volatile memory references. */
5368 if ((! rtx_equal_p (temp
, target
)
5369 || (temp
!= target
&& (side_effects_p (temp
)
5370 || side_effects_p (target
))))
5371 && TREE_CODE (exp
) != ERROR_MARK
5372 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5373 but TARGET is not valid memory reference, TEMP will differ
5374 from TARGET although it is really the same location. */
5376 && rtx_equal_p (alt_rtl
, target
)
5377 && !side_effects_p (alt_rtl
)
5378 && !side_effects_p (target
))
5379 /* If there's nothing to copy, don't bother. Don't call
5380 expr_size unless necessary, because some front-ends (C++)
5381 expr_size-hook must not be given objects that are not
5382 supposed to be bit-copied or bit-initialized. */
5383 && expr_size (exp
) != const0_rtx
)
5385 if (GET_MODE (temp
) != GET_MODE (target
) && GET_MODE (temp
) != VOIDmode
)
5387 if (GET_MODE (target
) == BLKmode
)
5389 /* Handle calls that return BLKmode values in registers. */
5390 if (REG_P (temp
) && TREE_CODE (exp
) == CALL_EXPR
)
5391 copy_blkmode_from_reg (target
, temp
, TREE_TYPE (exp
));
5393 store_bit_field (target
,
5394 INTVAL (expr_size (exp
)) * BITS_PER_UNIT
,
5395 0, 0, 0, GET_MODE (temp
), temp
);
5398 convert_move (target
, temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
5401 else if (GET_MODE (temp
) == BLKmode
&& TREE_CODE (exp
) == STRING_CST
)
5403 /* Handle copying a string constant into an array. The string
5404 constant may be shorter than the array. So copy just the string's
5405 actual length, and clear the rest. First get the size of the data
5406 type of the string, which is actually the size of the target. */
5407 rtx size
= expr_size (exp
);
5409 if (CONST_INT_P (size
)
5410 && INTVAL (size
) < TREE_STRING_LENGTH (exp
))
5411 emit_block_move (target
, temp
, size
,
5413 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5416 enum machine_mode pointer_mode
5417 = targetm
.addr_space
.pointer_mode (MEM_ADDR_SPACE (target
));
5418 enum machine_mode address_mode
= get_address_mode (target
);
5420 /* Compute the size of the data to copy from the string. */
5422 = size_binop_loc (loc
, MIN_EXPR
,
5423 make_tree (sizetype
, size
),
5424 size_int (TREE_STRING_LENGTH (exp
)));
5426 = expand_expr (copy_size
, NULL_RTX
, VOIDmode
,
5428 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
));
5431 /* Copy that much. */
5432 copy_size_rtx
= convert_to_mode (pointer_mode
, copy_size_rtx
,
5433 TYPE_UNSIGNED (sizetype
));
5434 emit_block_move (target
, temp
, copy_size_rtx
,
5436 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5438 /* Figure out how much is left in TARGET that we have to clear.
5439 Do all calculations in pointer_mode. */
5440 if (CONST_INT_P (copy_size_rtx
))
5442 size
= plus_constant (address_mode
, size
,
5443 -INTVAL (copy_size_rtx
));
5444 target
= adjust_address (target
, BLKmode
,
5445 INTVAL (copy_size_rtx
));
5449 size
= expand_binop (TYPE_MODE (sizetype
), sub_optab
, size
,
5450 copy_size_rtx
, NULL_RTX
, 0,
5453 if (GET_MODE (copy_size_rtx
) != address_mode
)
5454 copy_size_rtx
= convert_to_mode (address_mode
,
5456 TYPE_UNSIGNED (sizetype
));
5458 target
= offset_address (target
, copy_size_rtx
,
5459 highest_pow2_factor (copy_size
));
5460 label
= gen_label_rtx ();
5461 emit_cmp_and_jump_insns (size
, const0_rtx
, LT
, NULL_RTX
,
5462 GET_MODE (size
), 0, label
);
5465 if (size
!= const0_rtx
)
5466 clear_storage (target
, size
, BLOCK_OP_NORMAL
);
5472 /* Handle calls that return values in multiple non-contiguous locations.
5473 The Irix 6 ABI has examples of this. */
5474 else if (GET_CODE (target
) == PARALLEL
)
5476 if (GET_CODE (temp
) == PARALLEL
)
5477 emit_group_move (target
, temp
);
5479 emit_group_load (target
, temp
, TREE_TYPE (exp
),
5480 int_size_in_bytes (TREE_TYPE (exp
)));
5482 else if (GET_CODE (temp
) == PARALLEL
)
5483 emit_group_store (target
, temp
, TREE_TYPE (exp
),
5484 int_size_in_bytes (TREE_TYPE (exp
)));
5485 else if (GET_MODE (temp
) == BLKmode
)
5486 emit_block_move (target
, temp
, expr_size (exp
),
5488 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5489 /* If we emit a nontemporal store, there is nothing else to do. */
5490 else if (nontemporal
&& emit_storent_insn (target
, temp
))
5494 temp
= force_operand (temp
, target
);
5496 emit_move_insn (target
, temp
);
5503 /* Return true if field F of structure TYPE is a flexible array. */
5506 flexible_array_member_p (const_tree f
, const_tree type
)
5511 return (DECL_CHAIN (f
) == NULL
5512 && TREE_CODE (tf
) == ARRAY_TYPE
5514 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf
))
5515 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf
)))
5516 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf
))
5517 && int_size_in_bytes (type
) >= 0);
5520 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5521 must have in order for it to completely initialize a value of type TYPE.
5522 Return -1 if the number isn't known.
5524 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5526 static HOST_WIDE_INT
5527 count_type_elements (const_tree type
, bool for_ctor_p
)
5529 switch (TREE_CODE (type
))
5535 nelts
= array_type_nelts (type
);
5536 if (nelts
&& tree_fits_uhwi_p (nelts
))
5538 unsigned HOST_WIDE_INT n
;
5540 n
= tree_to_uhwi (nelts
) + 1;
5541 if (n
== 0 || for_ctor_p
)
5544 return n
* count_type_elements (TREE_TYPE (type
), false);
5546 return for_ctor_p
? -1 : 1;
5551 unsigned HOST_WIDE_INT n
;
5555 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
5556 if (TREE_CODE (f
) == FIELD_DECL
)
5559 n
+= count_type_elements (TREE_TYPE (f
), false);
5560 else if (!flexible_array_member_p (f
, type
))
5561 /* Don't count flexible arrays, which are not supposed
5562 to be initialized. */
5570 case QUAL_UNION_TYPE
:
5575 gcc_assert (!for_ctor_p
);
5576 /* Estimate the number of scalars in each field and pick the
5577 maximum. Other estimates would do instead; the idea is simply
5578 to make sure that the estimate is not sensitive to the ordering
5581 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
5582 if (TREE_CODE (f
) == FIELD_DECL
)
5584 m
= count_type_elements (TREE_TYPE (f
), false);
5585 /* If the field doesn't span the whole union, add an extra
5586 scalar for the rest. */
5587 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f
)),
5588 TYPE_SIZE (type
)) != 1)
5600 return TYPE_VECTOR_SUBPARTS (type
);
5604 case FIXED_POINT_TYPE
:
5609 case REFERENCE_TYPE
:
5625 /* Helper for categorize_ctor_elements. Identical interface. */
5628 categorize_ctor_elements_1 (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
5629 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
5631 unsigned HOST_WIDE_INT idx
;
5632 HOST_WIDE_INT nz_elts
, init_elts
, num_fields
;
5633 tree value
, purpose
, elt_type
;
5635 /* Whether CTOR is a valid constant initializer, in accordance with what
5636 initializer_constant_valid_p does. If inferred from the constructor
5637 elements, true until proven otherwise. */
5638 bool const_from_elts_p
= constructor_static_from_elts_p (ctor
);
5639 bool const_p
= const_from_elts_p
? true : TREE_STATIC (ctor
);
5644 elt_type
= NULL_TREE
;
5646 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), idx
, purpose
, value
)
5648 HOST_WIDE_INT mult
= 1;
5650 if (purpose
&& TREE_CODE (purpose
) == RANGE_EXPR
)
5652 tree lo_index
= TREE_OPERAND (purpose
, 0);
5653 tree hi_index
= TREE_OPERAND (purpose
, 1);
5655 if (tree_fits_uhwi_p (lo_index
) && tree_fits_uhwi_p (hi_index
))
5656 mult
= (tree_to_uhwi (hi_index
)
5657 - tree_to_uhwi (lo_index
) + 1);
5660 elt_type
= TREE_TYPE (value
);
5662 switch (TREE_CODE (value
))
5666 HOST_WIDE_INT nz
= 0, ic
= 0;
5668 bool const_elt_p
= categorize_ctor_elements_1 (value
, &nz
, &ic
,
5671 nz_elts
+= mult
* nz
;
5672 init_elts
+= mult
* ic
;
5674 if (const_from_elts_p
&& const_p
)
5675 const_p
= const_elt_p
;
5682 if (!initializer_zerop (value
))
5688 nz_elts
+= mult
* TREE_STRING_LENGTH (value
);
5689 init_elts
+= mult
* TREE_STRING_LENGTH (value
);
5693 if (!initializer_zerop (TREE_REALPART (value
)))
5695 if (!initializer_zerop (TREE_IMAGPART (value
)))
5703 for (i
= 0; i
< VECTOR_CST_NELTS (value
); ++i
)
5705 tree v
= VECTOR_CST_ELT (value
, i
);
5706 if (!initializer_zerop (v
))
5715 HOST_WIDE_INT tc
= count_type_elements (elt_type
, false);
5716 nz_elts
+= mult
* tc
;
5717 init_elts
+= mult
* tc
;
5719 if (const_from_elts_p
&& const_p
)
5720 const_p
= initializer_constant_valid_p (value
, elt_type
)
5727 if (*p_complete
&& !complete_ctor_at_level_p (TREE_TYPE (ctor
),
5728 num_fields
, elt_type
))
5729 *p_complete
= false;
5731 *p_nz_elts
+= nz_elts
;
5732 *p_init_elts
+= init_elts
;
5737 /* Examine CTOR to discover:
5738 * how many scalar fields are set to nonzero values,
5739 and place it in *P_NZ_ELTS;
5740 * how many scalar fields in total are in CTOR,
5741 and place it in *P_ELT_COUNT.
5742 * whether the constructor is complete -- in the sense that every
5743 meaningful byte is explicitly given a value --
5744 and place it in *P_COMPLETE.
5746 Return whether or not CTOR is a valid static constant initializer, the same
5747 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5750 categorize_ctor_elements (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
5751 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
5757 return categorize_ctor_elements_1 (ctor
, p_nz_elts
, p_init_elts
, p_complete
);
5760 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
5761 of which had type LAST_TYPE. Each element was itself a complete
5762 initializer, in the sense that every meaningful byte was explicitly
5763 given a value. Return true if the same is true for the constructor
5767 complete_ctor_at_level_p (const_tree type
, HOST_WIDE_INT num_elts
,
5768 const_tree last_type
)
5770 if (TREE_CODE (type
) == UNION_TYPE
5771 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
5776 gcc_assert (num_elts
== 1 && last_type
);
5778 /* ??? We could look at each element of the union, and find the
5779 largest element. Which would avoid comparing the size of the
5780 initialized element against any tail padding in the union.
5781 Doesn't seem worth the effort... */
5782 return simple_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (last_type
)) == 1;
5785 return count_type_elements (type
, true) == num_elts
;
5788 /* Return 1 if EXP contains mostly (3/4) zeros. */
5791 mostly_zeros_p (const_tree exp
)
5793 if (TREE_CODE (exp
) == CONSTRUCTOR
)
5795 HOST_WIDE_INT nz_elts
, init_elts
;
5798 categorize_ctor_elements (exp
, &nz_elts
, &init_elts
, &complete_p
);
5799 return !complete_p
|| nz_elts
< init_elts
/ 4;
5802 return initializer_zerop (exp
);
5805 /* Return 1 if EXP contains all zeros. */
5808 all_zeros_p (const_tree exp
)
5810 if (TREE_CODE (exp
) == CONSTRUCTOR
)
5812 HOST_WIDE_INT nz_elts
, init_elts
;
5815 categorize_ctor_elements (exp
, &nz_elts
, &init_elts
, &complete_p
);
5816 return nz_elts
== 0;
5819 return initializer_zerop (exp
);
5822 /* Helper function for store_constructor.
5823 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5824 CLEARED is as for store_constructor.
5825 ALIAS_SET is the alias set to use for any stores.
5827 This provides a recursive shortcut back to store_constructor when it isn't
5828 necessary to go through store_field. This is so that we can pass through
5829 the cleared field to let store_constructor know that we may not have to
5830 clear a substructure if the outer structure has already been cleared. */
5833 store_constructor_field (rtx target
, unsigned HOST_WIDE_INT bitsize
,
5834 HOST_WIDE_INT bitpos
, enum machine_mode mode
,
5835 tree exp
, int cleared
, alias_set_type alias_set
)
5837 if (TREE_CODE (exp
) == CONSTRUCTOR
5838 /* We can only call store_constructor recursively if the size and
5839 bit position are on a byte boundary. */
5840 && bitpos
% BITS_PER_UNIT
== 0
5841 && (bitsize
> 0 && bitsize
% BITS_PER_UNIT
== 0)
5842 /* If we have a nonzero bitpos for a register target, then we just
5843 let store_field do the bitfield handling. This is unlikely to
5844 generate unnecessary clear instructions anyways. */
5845 && (bitpos
== 0 || MEM_P (target
)))
5849 = adjust_address (target
,
5850 GET_MODE (target
) == BLKmode
5852 % GET_MODE_ALIGNMENT (GET_MODE (target
)))
5853 ? BLKmode
: VOIDmode
, bitpos
/ BITS_PER_UNIT
);
5856 /* Update the alias set, if required. */
5857 if (MEM_P (target
) && ! MEM_KEEP_ALIAS_SET_P (target
)
5858 && MEM_ALIAS_SET (target
) != 0)
5860 target
= copy_rtx (target
);
5861 set_mem_alias_set (target
, alias_set
);
5864 store_constructor (exp
, target
, cleared
, bitsize
/ BITS_PER_UNIT
);
5867 store_field (target
, bitsize
, bitpos
, 0, 0, mode
, exp
, alias_set
, false);
5871 /* Returns the number of FIELD_DECLs in TYPE. */
5874 fields_length (const_tree type
)
5876 tree t
= TYPE_FIELDS (type
);
5879 for (; t
; t
= DECL_CHAIN (t
))
5880 if (TREE_CODE (t
) == FIELD_DECL
)
5887 /* Store the value of constructor EXP into the rtx TARGET.
5888 TARGET is either a REG or a MEM; we know it cannot conflict, since
5889 safe_from_p has been called.
5890 CLEARED is true if TARGET is known to have been zero'd.
5891 SIZE is the number of bytes of TARGET we are allowed to modify: this
5892 may not be the same as the size of EXP if we are assigning to a field
5893 which has been packed to exclude padding bits. */
5896 store_constructor (tree exp
, rtx target
, int cleared
, HOST_WIDE_INT size
)
5898 tree type
= TREE_TYPE (exp
);
5899 #ifdef WORD_REGISTER_OPERATIONS
5900 HOST_WIDE_INT exp_size
= int_size_in_bytes (type
);
5903 switch (TREE_CODE (type
))
5907 case QUAL_UNION_TYPE
:
5909 unsigned HOST_WIDE_INT idx
;
5912 /* If size is zero or the target is already cleared, do nothing. */
5913 if (size
== 0 || cleared
)
5915 /* We either clear the aggregate or indicate the value is dead. */
5916 else if ((TREE_CODE (type
) == UNION_TYPE
5917 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
5918 && ! CONSTRUCTOR_ELTS (exp
))
5919 /* If the constructor is empty, clear the union. */
5921 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
5925 /* If we are building a static constructor into a register,
5926 set the initial value as zero so we can fold the value into
5927 a constant. But if more than one register is involved,
5928 this probably loses. */
5929 else if (REG_P (target
) && TREE_STATIC (exp
)
5930 && GET_MODE_SIZE (GET_MODE (target
)) <= UNITS_PER_WORD
)
5932 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5936 /* If the constructor has fewer fields than the structure or
5937 if we are initializing the structure to mostly zeros, clear
5938 the whole structure first. Don't do this if TARGET is a
5939 register whose mode size isn't equal to SIZE since
5940 clear_storage can't handle this case. */
5942 && (((int)vec_safe_length (CONSTRUCTOR_ELTS (exp
))
5943 != fields_length (type
))
5944 || mostly_zeros_p (exp
))
5946 || ((HOST_WIDE_INT
) GET_MODE_SIZE (GET_MODE (target
))
5949 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
5953 if (REG_P (target
) && !cleared
)
5954 emit_clobber (target
);
5956 /* Store each element of the constructor into the
5957 corresponding field of TARGET. */
5958 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, field
, value
)
5960 enum machine_mode mode
;
5961 HOST_WIDE_INT bitsize
;
5962 HOST_WIDE_INT bitpos
= 0;
5964 rtx to_rtx
= target
;
5966 /* Just ignore missing fields. We cleared the whole
5967 structure, above, if any fields are missing. */
5971 if (cleared
&& initializer_zerop (value
))
5974 if (tree_fits_uhwi_p (DECL_SIZE (field
)))
5975 bitsize
= tree_to_uhwi (DECL_SIZE (field
));
5979 mode
= DECL_MODE (field
);
5980 if (DECL_BIT_FIELD (field
))
5983 offset
= DECL_FIELD_OFFSET (field
);
5984 if (tree_fits_shwi_p (offset
)
5985 && tree_fits_shwi_p (bit_position (field
)))
5987 bitpos
= int_bit_position (field
);
5991 bitpos
= tree_to_shwi (DECL_FIELD_BIT_OFFSET (field
));
5995 enum machine_mode address_mode
;
5999 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset
,
6000 make_tree (TREE_TYPE (exp
),
6003 offset_rtx
= expand_normal (offset
);
6004 gcc_assert (MEM_P (to_rtx
));
6006 address_mode
= get_address_mode (to_rtx
);
6007 if (GET_MODE (offset_rtx
) != address_mode
)
6008 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
6010 to_rtx
= offset_address (to_rtx
, offset_rtx
,
6011 highest_pow2_factor (offset
));
6014 #ifdef WORD_REGISTER_OPERATIONS
6015 /* If this initializes a field that is smaller than a
6016 word, at the start of a word, try to widen it to a full
6017 word. This special case allows us to output C++ member
6018 function initializations in a form that the optimizers
6021 && bitsize
< BITS_PER_WORD
6022 && bitpos
% BITS_PER_WORD
== 0
6023 && GET_MODE_CLASS (mode
) == MODE_INT
6024 && TREE_CODE (value
) == INTEGER_CST
6026 && bitpos
+ BITS_PER_WORD
<= exp_size
* BITS_PER_UNIT
)
6028 tree type
= TREE_TYPE (value
);
6030 if (TYPE_PRECISION (type
) < BITS_PER_WORD
)
6032 type
= lang_hooks
.types
.type_for_mode
6033 (word_mode
, TYPE_UNSIGNED (type
));
6034 value
= fold_convert (type
, value
);
6037 if (BYTES_BIG_ENDIAN
)
6039 = fold_build2 (LSHIFT_EXPR
, type
, value
,
6040 build_int_cst (type
,
6041 BITS_PER_WORD
- bitsize
));
6042 bitsize
= BITS_PER_WORD
;
6047 if (MEM_P (to_rtx
) && !MEM_KEEP_ALIAS_SET_P (to_rtx
)
6048 && DECL_NONADDRESSABLE_P (field
))
6050 to_rtx
= copy_rtx (to_rtx
);
6051 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
6054 store_constructor_field (to_rtx
, bitsize
, bitpos
, mode
,
6056 get_alias_set (TREE_TYPE (field
)));
6063 unsigned HOST_WIDE_INT i
;
6066 tree elttype
= TREE_TYPE (type
);
6068 HOST_WIDE_INT minelt
= 0;
6069 HOST_WIDE_INT maxelt
= 0;
6071 domain
= TYPE_DOMAIN (type
);
6072 const_bounds_p
= (TYPE_MIN_VALUE (domain
)
6073 && TYPE_MAX_VALUE (domain
)
6074 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain
))
6075 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain
)));
6077 /* If we have constant bounds for the range of the type, get them. */
6080 minelt
= tree_to_shwi (TYPE_MIN_VALUE (domain
));
6081 maxelt
= tree_to_shwi (TYPE_MAX_VALUE (domain
));
6084 /* If the constructor has fewer elements than the array, clear
6085 the whole array first. Similarly if this is static
6086 constructor of a non-BLKmode object. */
6089 else if (REG_P (target
) && TREE_STATIC (exp
))
6093 unsigned HOST_WIDE_INT idx
;
6095 HOST_WIDE_INT count
= 0, zero_count
= 0;
6096 need_to_clear
= ! const_bounds_p
;
6098 /* This loop is a more accurate version of the loop in
6099 mostly_zeros_p (it handles RANGE_EXPR in an index). It
6100 is also needed to check for missing elements. */
6101 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, index
, value
)
6103 HOST_WIDE_INT this_node_count
;
6108 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
6110 tree lo_index
= TREE_OPERAND (index
, 0);
6111 tree hi_index
= TREE_OPERAND (index
, 1);
6113 if (! tree_fits_uhwi_p (lo_index
)
6114 || ! tree_fits_uhwi_p (hi_index
))
6120 this_node_count
= (tree_to_uhwi (hi_index
)
6121 - tree_to_uhwi (lo_index
) + 1);
6124 this_node_count
= 1;
6126 count
+= this_node_count
;
6127 if (mostly_zeros_p (value
))
6128 zero_count
+= this_node_count
;
6131 /* Clear the entire array first if there are any missing
6132 elements, or if the incidence of zero elements is >=
6135 && (count
< maxelt
- minelt
+ 1
6136 || 4 * zero_count
>= 3 * count
))
6140 if (need_to_clear
&& size
> 0)
6143 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6145 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
6149 if (!cleared
&& REG_P (target
))
6150 /* Inform later passes that the old value is dead. */
6151 emit_clobber (target
);
6153 /* Store each element of the constructor into the
6154 corresponding element of TARGET, determined by counting the
6156 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), i
, index
, value
)
6158 enum machine_mode mode
;
6159 HOST_WIDE_INT bitsize
;
6160 HOST_WIDE_INT bitpos
;
6161 rtx xtarget
= target
;
6163 if (cleared
&& initializer_zerop (value
))
6166 mode
= TYPE_MODE (elttype
);
6167 if (mode
== BLKmode
)
6168 bitsize
= (tree_fits_uhwi_p (TYPE_SIZE (elttype
))
6169 ? tree_to_uhwi (TYPE_SIZE (elttype
))
6172 bitsize
= GET_MODE_BITSIZE (mode
);
6174 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
6176 tree lo_index
= TREE_OPERAND (index
, 0);
6177 tree hi_index
= TREE_OPERAND (index
, 1);
6178 rtx index_r
, pos_rtx
;
6179 HOST_WIDE_INT lo
, hi
, count
;
6182 /* If the range is constant and "small", unroll the loop. */
6184 && tree_fits_shwi_p (lo_index
)
6185 && tree_fits_shwi_p (hi_index
)
6186 && (lo
= tree_to_shwi (lo_index
),
6187 hi
= tree_to_shwi (hi_index
),
6188 count
= hi
- lo
+ 1,
6191 || (tree_fits_uhwi_p (TYPE_SIZE (elttype
))
6192 && (tree_to_uhwi (TYPE_SIZE (elttype
)) * count
6195 lo
-= minelt
; hi
-= minelt
;
6196 for (; lo
<= hi
; lo
++)
6198 bitpos
= lo
* tree_to_shwi (TYPE_SIZE (elttype
));
6201 && !MEM_KEEP_ALIAS_SET_P (target
)
6202 && TREE_CODE (type
) == ARRAY_TYPE
6203 && TYPE_NONALIASED_COMPONENT (type
))
6205 target
= copy_rtx (target
);
6206 MEM_KEEP_ALIAS_SET_P (target
) = 1;
6209 store_constructor_field
6210 (target
, bitsize
, bitpos
, mode
, value
, cleared
,
6211 get_alias_set (elttype
));
6216 rtx loop_start
= gen_label_rtx ();
6217 rtx loop_end
= gen_label_rtx ();
6220 expand_normal (hi_index
);
6222 index
= build_decl (EXPR_LOCATION (exp
),
6223 VAR_DECL
, NULL_TREE
, domain
);
6224 index_r
= gen_reg_rtx (promote_decl_mode (index
, NULL
));
6225 SET_DECL_RTL (index
, index_r
);
6226 store_expr (lo_index
, index_r
, 0, false);
6228 /* Build the head of the loop. */
6229 do_pending_stack_adjust ();
6230 emit_label (loop_start
);
6232 /* Assign value to element index. */
6234 fold_convert (ssizetype
,
6235 fold_build2 (MINUS_EXPR
,
6238 TYPE_MIN_VALUE (domain
)));
6241 size_binop (MULT_EXPR
, position
,
6242 fold_convert (ssizetype
,
6243 TYPE_SIZE_UNIT (elttype
)));
6245 pos_rtx
= expand_normal (position
);
6246 xtarget
= offset_address (target
, pos_rtx
,
6247 highest_pow2_factor (position
));
6248 xtarget
= adjust_address (xtarget
, mode
, 0);
6249 if (TREE_CODE (value
) == CONSTRUCTOR
)
6250 store_constructor (value
, xtarget
, cleared
,
6251 bitsize
/ BITS_PER_UNIT
);
6253 store_expr (value
, xtarget
, 0, false);
6255 /* Generate a conditional jump to exit the loop. */
6256 exit_cond
= build2 (LT_EXPR
, integer_type_node
,
6258 jumpif (exit_cond
, loop_end
, -1);
6260 /* Update the loop counter, and jump to the head of
6262 expand_assignment (index
,
6263 build2 (PLUS_EXPR
, TREE_TYPE (index
),
6264 index
, integer_one_node
),
6267 emit_jump (loop_start
);
6269 /* Build the end of the loop. */
6270 emit_label (loop_end
);
6273 else if ((index
!= 0 && ! tree_fits_shwi_p (index
))
6274 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype
)))
6279 index
= ssize_int (1);
6282 index
= fold_convert (ssizetype
,
6283 fold_build2 (MINUS_EXPR
,
6286 TYPE_MIN_VALUE (domain
)));
6289 size_binop (MULT_EXPR
, index
,
6290 fold_convert (ssizetype
,
6291 TYPE_SIZE_UNIT (elttype
)));
6292 xtarget
= offset_address (target
,
6293 expand_normal (position
),
6294 highest_pow2_factor (position
));
6295 xtarget
= adjust_address (xtarget
, mode
, 0);
6296 store_expr (value
, xtarget
, 0, false);
6301 bitpos
= ((tree_to_shwi (index
) - minelt
)
6302 * tree_to_uhwi (TYPE_SIZE (elttype
)));
6304 bitpos
= (i
* tree_to_uhwi (TYPE_SIZE (elttype
)));
6306 if (MEM_P (target
) && !MEM_KEEP_ALIAS_SET_P (target
)
6307 && TREE_CODE (type
) == ARRAY_TYPE
6308 && TYPE_NONALIASED_COMPONENT (type
))
6310 target
= copy_rtx (target
);
6311 MEM_KEEP_ALIAS_SET_P (target
) = 1;
6313 store_constructor_field (target
, bitsize
, bitpos
, mode
, value
,
6314 cleared
, get_alias_set (elttype
));
6322 unsigned HOST_WIDE_INT idx
;
6323 constructor_elt
*ce
;
6326 int icode
= CODE_FOR_nothing
;
6327 tree elttype
= TREE_TYPE (type
);
6328 int elt_size
= tree_to_uhwi (TYPE_SIZE (elttype
));
6329 enum machine_mode eltmode
= TYPE_MODE (elttype
);
6330 HOST_WIDE_INT bitsize
;
6331 HOST_WIDE_INT bitpos
;
6332 rtvec vector
= NULL
;
6334 alias_set_type alias
;
6336 gcc_assert (eltmode
!= BLKmode
);
6338 n_elts
= TYPE_VECTOR_SUBPARTS (type
);
6339 if (REG_P (target
) && VECTOR_MODE_P (GET_MODE (target
)))
6341 enum machine_mode mode
= GET_MODE (target
);
6343 icode
= (int) optab_handler (vec_init_optab
, mode
);
6344 /* Don't use vec_init<mode> if some elements have VECTOR_TYPE. */
6345 if (icode
!= CODE_FOR_nothing
)
6349 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
6350 if (TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
)
6352 icode
= CODE_FOR_nothing
;
6356 if (icode
!= CODE_FOR_nothing
)
6360 vector
= rtvec_alloc (n_elts
);
6361 for (i
= 0; i
< n_elts
; i
++)
6362 RTVEC_ELT (vector
, i
) = CONST0_RTX (GET_MODE_INNER (mode
));
6366 /* If the constructor has fewer elements than the vector,
6367 clear the whole array first. Similarly if this is static
6368 constructor of a non-BLKmode object. */
6371 else if (REG_P (target
) && TREE_STATIC (exp
))
6375 unsigned HOST_WIDE_INT count
= 0, zero_count
= 0;
6378 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
6380 int n_elts_here
= tree_to_uhwi
6381 (int_const_binop (TRUNC_DIV_EXPR
,
6382 TYPE_SIZE (TREE_TYPE (value
)),
6383 TYPE_SIZE (elttype
)));
6385 count
+= n_elts_here
;
6386 if (mostly_zeros_p (value
))
6387 zero_count
+= n_elts_here
;
6390 /* Clear the entire vector first if there are any missing elements,
6391 or if the incidence of zero elements is >= 75%. */
6392 need_to_clear
= (count
< n_elts
|| 4 * zero_count
>= 3 * count
);
6395 if (need_to_clear
&& size
> 0 && !vector
)
6398 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6400 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
6404 /* Inform later passes that the old value is dead. */
6405 if (!cleared
&& !vector
&& REG_P (target
))
6406 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6409 alias
= MEM_ALIAS_SET (target
);
6411 alias
= get_alias_set (elttype
);
6413 /* Store each element of the constructor into the corresponding
6414 element of TARGET, determined by counting the elements. */
6415 for (idx
= 0, i
= 0;
6416 vec_safe_iterate (CONSTRUCTOR_ELTS (exp
), idx
, &ce
);
6417 idx
++, i
+= bitsize
/ elt_size
)
6419 HOST_WIDE_INT eltpos
;
6420 tree value
= ce
->value
;
6422 bitsize
= tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value
)));
6423 if (cleared
&& initializer_zerop (value
))
6427 eltpos
= tree_to_uhwi (ce
->index
);
6433 /* vec_init<mode> should not be used if there are VECTOR_TYPE
6435 gcc_assert (TREE_CODE (TREE_TYPE (value
)) != VECTOR_TYPE
);
6436 RTVEC_ELT (vector
, eltpos
)
6437 = expand_normal (value
);
6441 enum machine_mode value_mode
=
6442 TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
6443 ? TYPE_MODE (TREE_TYPE (value
))
6445 bitpos
= eltpos
* elt_size
;
6446 store_constructor_field (target
, bitsize
, bitpos
, value_mode
,
6447 value
, cleared
, alias
);
6452 emit_insn (GEN_FCN (icode
)
6454 gen_rtx_PARALLEL (GET_MODE (target
), vector
)));
6463 /* Store the value of EXP (an expression tree)
6464 into a subfield of TARGET which has mode MODE and occupies
6465 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6466 If MODE is VOIDmode, it means that we are storing into a bit-field.
6468 BITREGION_START is bitpos of the first bitfield in this region.
6469 BITREGION_END is the bitpos of the ending bitfield in this region.
6470 These two fields are 0, if the C++ memory model does not apply,
6471 or we are not interested in keeping track of bitfield regions.
6473 Always return const0_rtx unless we have something particular to
6476 ALIAS_SET is the alias set for the destination. This value will
6477 (in general) be different from that for TARGET, since TARGET is a
6478 reference to the containing structure.
6480 If NONTEMPORAL is true, try generating a nontemporal store. */
6483 store_field (rtx target
, HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
6484 unsigned HOST_WIDE_INT bitregion_start
,
6485 unsigned HOST_WIDE_INT bitregion_end
,
6486 enum machine_mode mode
, tree exp
,
6487 alias_set_type alias_set
, bool nontemporal
)
6489 if (TREE_CODE (exp
) == ERROR_MARK
)
6492 /* If we have nothing to store, do nothing unless the expression has
6495 return expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
6497 if (GET_CODE (target
) == CONCAT
)
6499 /* We're storing into a struct containing a single __complex. */
6501 gcc_assert (!bitpos
);
6502 return store_expr (exp
, target
, 0, nontemporal
);
6505 /* If the structure is in a register or if the component
6506 is a bit field, we cannot use addressing to access it.
6507 Use bit-field techniques or SUBREG to store in it. */
6509 if (mode
== VOIDmode
6510 || (mode
!= BLKmode
&& ! direct_store
[(int) mode
]
6511 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
6512 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
)
6514 || GET_CODE (target
) == SUBREG
6515 /* If the field isn't aligned enough to store as an ordinary memref,
6516 store it as a bit field. */
6518 && ((((MEM_ALIGN (target
) < GET_MODE_ALIGNMENT (mode
))
6519 || bitpos
% GET_MODE_ALIGNMENT (mode
))
6520 && SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
)))
6521 || (bitpos
% BITS_PER_UNIT
!= 0)))
6522 || (bitsize
>= 0 && mode
!= BLKmode
6523 && GET_MODE_BITSIZE (mode
) > bitsize
)
6524 /* If the RHS and field are a constant size and the size of the
6525 RHS isn't the same size as the bitfield, we must use bitfield
6528 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
6529 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)), bitsize
) != 0)
6530 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6531 decl we must use bitfield operations. */
6533 && TREE_CODE (exp
) == MEM_REF
6534 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
6535 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
6536 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp
, 0),0 ))
6537 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)) != BLKmode
))
6542 /* If EXP is a NOP_EXPR of precision less than its mode, then that
6543 implies a mask operation. If the precision is the same size as
6544 the field we're storing into, that mask is redundant. This is
6545 particularly common with bit field assignments generated by the
6547 nop_def
= get_def_for_expr (exp
, NOP_EXPR
);
6550 tree type
= TREE_TYPE (exp
);
6551 if (INTEGRAL_TYPE_P (type
)
6552 && TYPE_PRECISION (type
) < GET_MODE_BITSIZE (TYPE_MODE (type
))
6553 && bitsize
== TYPE_PRECISION (type
))
6555 tree op
= gimple_assign_rhs1 (nop_def
);
6556 type
= TREE_TYPE (op
);
6557 if (INTEGRAL_TYPE_P (type
) && TYPE_PRECISION (type
) >= bitsize
)
6562 temp
= expand_normal (exp
);
6564 /* If BITSIZE is narrower than the size of the type of EXP
6565 we will be narrowing TEMP. Normally, what's wanted are the
6566 low-order bits. However, if EXP's type is a record and this is
6567 big-endian machine, we want the upper BITSIZE bits. */
6568 if (BYTES_BIG_ENDIAN
&& GET_MODE_CLASS (GET_MODE (temp
)) == MODE_INT
6569 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (temp
))
6570 && TREE_CODE (TREE_TYPE (exp
)) == RECORD_TYPE
)
6571 temp
= expand_shift (RSHIFT_EXPR
, GET_MODE (temp
), temp
,
6572 GET_MODE_BITSIZE (GET_MODE (temp
)) - bitsize
,
6575 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
6576 if (mode
!= VOIDmode
&& mode
!= BLKmode
6577 && mode
!= TYPE_MODE (TREE_TYPE (exp
)))
6578 temp
= convert_modes (mode
, TYPE_MODE (TREE_TYPE (exp
)), temp
, 1);
6580 /* If the modes of TEMP and TARGET are both BLKmode, both
6581 must be in memory and BITPOS must be aligned on a byte
6582 boundary. If so, we simply do a block copy. Likewise
6583 for a BLKmode-like TARGET. */
6584 if (GET_MODE (temp
) == BLKmode
6585 && (GET_MODE (target
) == BLKmode
6587 && GET_MODE_CLASS (GET_MODE (target
)) == MODE_INT
6588 && (bitpos
% BITS_PER_UNIT
) == 0
6589 && (bitsize
% BITS_PER_UNIT
) == 0)))
6591 gcc_assert (MEM_P (target
) && MEM_P (temp
)
6592 && (bitpos
% BITS_PER_UNIT
) == 0);
6594 target
= adjust_address (target
, VOIDmode
, bitpos
/ BITS_PER_UNIT
);
6595 emit_block_move (target
, temp
,
6596 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
6603 /* Handle calls that return values in multiple non-contiguous locations.
6604 The Irix 6 ABI has examples of this. */
6605 if (GET_CODE (temp
) == PARALLEL
)
6607 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (exp
));
6609 if (mode
== BLKmode
)
6610 mode
= smallest_mode_for_size (size
* BITS_PER_UNIT
, MODE_INT
);
6611 temp_target
= gen_reg_rtx (mode
);
6612 emit_group_store (temp_target
, temp
, TREE_TYPE (exp
), size
);
6615 else if (mode
== BLKmode
)
6617 /* Handle calls that return BLKmode values in registers. */
6618 if (REG_P (temp
) && TREE_CODE (exp
) == CALL_EXPR
)
6620 rtx temp_target
= gen_reg_rtx (GET_MODE (temp
));
6621 copy_blkmode_from_reg (temp_target
, temp
, TREE_TYPE (exp
));
6626 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (exp
));
6628 mode
= smallest_mode_for_size (size
* BITS_PER_UNIT
, MODE_INT
);
6629 temp_target
= gen_reg_rtx (mode
);
6631 = extract_bit_field (temp
, size
* BITS_PER_UNIT
, 0, 1,
6632 temp_target
, mode
, mode
);
6637 /* Store the value in the bitfield. */
6638 store_bit_field (target
, bitsize
, bitpos
,
6639 bitregion_start
, bitregion_end
,
6646 /* Now build a reference to just the desired component. */
6647 rtx to_rtx
= adjust_address (target
, mode
, bitpos
/ BITS_PER_UNIT
);
6649 if (to_rtx
== target
)
6650 to_rtx
= copy_rtx (to_rtx
);
6652 if (!MEM_KEEP_ALIAS_SET_P (to_rtx
) && MEM_ALIAS_SET (to_rtx
) != 0)
6653 set_mem_alias_set (to_rtx
, alias_set
);
6655 return store_expr (exp
, to_rtx
, 0, nontemporal
);
6659 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
6660 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
6661 codes and find the ultimate containing object, which we return.
6663 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
6664 bit position, and *PUNSIGNEDP to the signedness of the field.
6665 If the position of the field is variable, we store a tree
6666 giving the variable offset (in units) in *POFFSET.
6667 This offset is in addition to the bit position.
6668 If the position is not variable, we store 0 in *POFFSET.
6670 If any of the extraction expressions is volatile,
6671 we store 1 in *PVOLATILEP. Otherwise we don't change that.
6673 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
6674 Otherwise, it is a mode that can be used to access the field.
6676 If the field describes a variable-sized object, *PMODE is set to
6677 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
6678 this case, but the address of the object can be found.
6680 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
6681 look through nodes that serve as markers of a greater alignment than
6682 the one that can be deduced from the expression. These nodes make it
6683 possible for front-ends to prevent temporaries from being created by
6684 the middle-end on alignment considerations. For that purpose, the
6685 normal operating mode at high-level is to always pass FALSE so that
6686 the ultimate containing object is really returned; moreover, the
6687 associated predicate handled_component_p will always return TRUE
6688 on these nodes, thus indicating that they are essentially handled
6689 by get_inner_reference. TRUE should only be passed when the caller
6690 is scanning the expression in order to build another representation
6691 and specifically knows how to handle these nodes; as such, this is
6692 the normal operating mode in the RTL expanders. */
6695 get_inner_reference (tree exp
, HOST_WIDE_INT
*pbitsize
,
6696 HOST_WIDE_INT
*pbitpos
, tree
*poffset
,
6697 enum machine_mode
*pmode
, int *punsignedp
,
6698 int *pvolatilep
, bool keep_aligning
)
6701 enum machine_mode mode
= VOIDmode
;
6702 bool blkmode_bitfield
= false;
6703 tree offset
= size_zero_node
;
6704 double_int bit_offset
= double_int_zero
;
6706 /* First get the mode, signedness, and size. We do this from just the
6707 outermost expression. */
6709 if (TREE_CODE (exp
) == COMPONENT_REF
)
6711 tree field
= TREE_OPERAND (exp
, 1);
6712 size_tree
= DECL_SIZE (field
);
6713 if (flag_strict_volatile_bitfields
> 0
6714 && TREE_THIS_VOLATILE (exp
)
6715 && DECL_BIT_FIELD_TYPE (field
)
6716 && DECL_MODE (field
) != BLKmode
)
6717 /* Volatile bitfields should be accessed in the mode of the
6718 field's type, not the mode computed based on the bit
6720 mode
= TYPE_MODE (DECL_BIT_FIELD_TYPE (field
));
6721 else if (!DECL_BIT_FIELD (field
))
6722 mode
= DECL_MODE (field
);
6723 else if (DECL_MODE (field
) == BLKmode
)
6724 blkmode_bitfield
= true;
6726 *punsignedp
= DECL_UNSIGNED (field
);
6728 else if (TREE_CODE (exp
) == BIT_FIELD_REF
)
6730 size_tree
= TREE_OPERAND (exp
, 1);
6731 *punsignedp
= (! INTEGRAL_TYPE_P (TREE_TYPE (exp
))
6732 || TYPE_UNSIGNED (TREE_TYPE (exp
)));
6734 /* For vector types, with the correct size of access, use the mode of
6736 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == VECTOR_TYPE
6737 && TREE_TYPE (exp
) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)))
6738 && tree_int_cst_equal (size_tree
, TYPE_SIZE (TREE_TYPE (exp
))))
6739 mode
= TYPE_MODE (TREE_TYPE (exp
));
6743 mode
= TYPE_MODE (TREE_TYPE (exp
));
6744 *punsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
6746 if (mode
== BLKmode
)
6747 size_tree
= TYPE_SIZE (TREE_TYPE (exp
));
6749 *pbitsize
= GET_MODE_BITSIZE (mode
);
6754 if (! tree_fits_uhwi_p (size_tree
))
6755 mode
= BLKmode
, *pbitsize
= -1;
6757 *pbitsize
= tree_to_uhwi (size_tree
);
6760 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6761 and find the ultimate containing object. */
6764 switch (TREE_CODE (exp
))
6767 bit_offset
+= tree_to_double_int (TREE_OPERAND (exp
, 2));
6772 tree field
= TREE_OPERAND (exp
, 1);
6773 tree this_offset
= component_ref_field_offset (exp
);
6775 /* If this field hasn't been filled in yet, don't go past it.
6776 This should only happen when folding expressions made during
6777 type construction. */
6778 if (this_offset
== 0)
6781 offset
= size_binop (PLUS_EXPR
, offset
, this_offset
);
6782 bit_offset
+= tree_to_double_int (DECL_FIELD_BIT_OFFSET (field
));
6784 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6789 case ARRAY_RANGE_REF
:
6791 tree index
= TREE_OPERAND (exp
, 1);
6792 tree low_bound
= array_ref_low_bound (exp
);
6793 tree unit_size
= array_ref_element_size (exp
);
6795 /* We assume all arrays have sizes that are a multiple of a byte.
6796 First subtract the lower bound, if any, in the type of the
6797 index, then convert to sizetype and multiply by the size of
6798 the array element. */
6799 if (! integer_zerop (low_bound
))
6800 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
6803 offset
= size_binop (PLUS_EXPR
, offset
,
6804 size_binop (MULT_EXPR
,
6805 fold_convert (sizetype
, index
),
6814 bit_offset
+= double_int::from_uhwi (*pbitsize
);
6817 case VIEW_CONVERT_EXPR
:
6818 if (keep_aligning
&& STRICT_ALIGNMENT
6819 && (TYPE_ALIGN (TREE_TYPE (exp
))
6820 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0))))
6821 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0)))
6822 < BIGGEST_ALIGNMENT
)
6823 && (TYPE_ALIGN_OK (TREE_TYPE (exp
))
6824 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
6829 /* Hand back the decl for MEM[&decl, off]. */
6830 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
)
6832 tree off
= TREE_OPERAND (exp
, 1);
6833 if (!integer_zerop (off
))
6835 double_int boff
, coff
= mem_ref_offset (exp
);
6836 boff
= coff
.lshift (BITS_PER_UNIT
== 8
6837 ? 3 : exact_log2 (BITS_PER_UNIT
));
6840 exp
= TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
6848 /* If any reference in the chain is volatile, the effect is volatile. */
6849 if (TREE_THIS_VOLATILE (exp
))
6852 exp
= TREE_OPERAND (exp
, 0);
6856 /* If OFFSET is constant, see if we can return the whole thing as a
6857 constant bit position. Make sure to handle overflow during
6859 if (TREE_CODE (offset
) == INTEGER_CST
)
6861 double_int tem
= tree_to_double_int (offset
);
6862 tem
= tem
.sext (TYPE_PRECISION (sizetype
));
6863 tem
= tem
.lshift (BITS_PER_UNIT
== 8 ? 3 : exact_log2 (BITS_PER_UNIT
));
6865 if (tem
.fits_shwi ())
6867 *pbitpos
= tem
.to_shwi ();
6868 *poffset
= offset
= NULL_TREE
;
6872 /* Otherwise, split it up. */
6875 /* Avoid returning a negative bitpos as this may wreak havoc later. */
6876 if (bit_offset
.is_negative ())
6879 = double_int::mask (BITS_PER_UNIT
== 8
6880 ? 3 : exact_log2 (BITS_PER_UNIT
));
6881 double_int tem
= bit_offset
.and_not (mask
);
6882 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
6883 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
6885 tem
= tem
.arshift (BITS_PER_UNIT
== 8
6886 ? 3 : exact_log2 (BITS_PER_UNIT
),
6887 HOST_BITS_PER_DOUBLE_INT
);
6888 offset
= size_binop (PLUS_EXPR
, offset
,
6889 double_int_to_tree (sizetype
, tem
));
6892 *pbitpos
= bit_offset
.to_shwi ();
6896 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6897 if (mode
== VOIDmode
6899 && (*pbitpos
% BITS_PER_UNIT
) == 0
6900 && (*pbitsize
% BITS_PER_UNIT
) == 0)
6908 /* Return a tree of sizetype representing the size, in bytes, of the element
6909 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6912 array_ref_element_size (tree exp
)
6914 tree aligned_size
= TREE_OPERAND (exp
, 3);
6915 tree elmt_type
= TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6916 location_t loc
= EXPR_LOCATION (exp
);
6918 /* If a size was specified in the ARRAY_REF, it's the size measured
6919 in alignment units of the element type. So multiply by that value. */
6922 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6923 sizetype from another type of the same width and signedness. */
6924 if (TREE_TYPE (aligned_size
) != sizetype
)
6925 aligned_size
= fold_convert_loc (loc
, sizetype
, aligned_size
);
6926 return size_binop_loc (loc
, MULT_EXPR
, aligned_size
,
6927 size_int (TYPE_ALIGN_UNIT (elmt_type
)));
6930 /* Otherwise, take the size from that of the element type. Substitute
6931 any PLACEHOLDER_EXPR that we have. */
6933 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type
), exp
);
6936 /* Return a tree representing the lower bound of the array mentioned in
6937 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6940 array_ref_low_bound (tree exp
)
6942 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6944 /* If a lower bound is specified in EXP, use it. */
6945 if (TREE_OPERAND (exp
, 2))
6946 return TREE_OPERAND (exp
, 2);
6948 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6949 substituting for a PLACEHOLDER_EXPR as needed. */
6950 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
6951 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type
), exp
);
6953 /* Otherwise, return a zero of the appropriate type. */
6954 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp
, 1)), 0);
6957 /* Returns true if REF is an array reference to an array at the end of
6958 a structure. If this is the case, the array may be allocated larger
6959 than its upper bound implies. */
6962 array_at_struct_end_p (tree ref
)
6964 if (TREE_CODE (ref
) != ARRAY_REF
6965 && TREE_CODE (ref
) != ARRAY_RANGE_REF
)
6968 while (handled_component_p (ref
))
6970 /* If the reference chain contains a component reference to a
6971 non-union type and there follows another field the reference
6972 is not at the end of a structure. */
6973 if (TREE_CODE (ref
) == COMPONENT_REF
6974 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref
, 0))) == RECORD_TYPE
)
6976 tree nextf
= DECL_CHAIN (TREE_OPERAND (ref
, 1));
6977 while (nextf
&& TREE_CODE (nextf
) != FIELD_DECL
)
6978 nextf
= DECL_CHAIN (nextf
);
6983 ref
= TREE_OPERAND (ref
, 0);
6986 /* If the reference is based on a declared entity, the size of the array
6987 is constrained by its given domain. */
6994 /* Return a tree representing the upper bound of the array mentioned in
6995 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6998 array_ref_up_bound (tree exp
)
7000 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
7002 /* If there is a domain type and it has an upper bound, use it, substituting
7003 for a PLACEHOLDER_EXPR as needed. */
7004 if (domain_type
&& TYPE_MAX_VALUE (domain_type
))
7005 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type
), exp
);
7007 /* Otherwise fail. */
7011 /* Return a tree representing the offset, in bytes, of the field referenced
7012 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
7015 component_ref_field_offset (tree exp
)
7017 tree aligned_offset
= TREE_OPERAND (exp
, 2);
7018 tree field
= TREE_OPERAND (exp
, 1);
7019 location_t loc
= EXPR_LOCATION (exp
);
7021 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
7022 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
7026 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
7027 sizetype from another type of the same width and signedness. */
7028 if (TREE_TYPE (aligned_offset
) != sizetype
)
7029 aligned_offset
= fold_convert_loc (loc
, sizetype
, aligned_offset
);
7030 return size_binop_loc (loc
, MULT_EXPR
, aligned_offset
,
7031 size_int (DECL_OFFSET_ALIGN (field
)
7035 /* Otherwise, take the offset from that of the field. Substitute
7036 any PLACEHOLDER_EXPR that we have. */
7038 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field
), exp
);
7041 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
7043 static unsigned HOST_WIDE_INT
7044 target_align (const_tree target
)
7046 /* We might have a chain of nested references with intermediate misaligning
7047 bitfields components, so need to recurse to find out. */
7049 unsigned HOST_WIDE_INT this_align
, outer_align
;
7051 switch (TREE_CODE (target
))
7057 this_align
= DECL_ALIGN (TREE_OPERAND (target
, 1));
7058 outer_align
= target_align (TREE_OPERAND (target
, 0));
7059 return MIN (this_align
, outer_align
);
7062 case ARRAY_RANGE_REF
:
7063 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
7064 outer_align
= target_align (TREE_OPERAND (target
, 0));
7065 return MIN (this_align
, outer_align
);
7068 case NON_LVALUE_EXPR
:
7069 case VIEW_CONVERT_EXPR
:
7070 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
7071 outer_align
= target_align (TREE_OPERAND (target
, 0));
7072 return MAX (this_align
, outer_align
);
7075 return TYPE_ALIGN (TREE_TYPE (target
));
7080 /* Given an rtx VALUE that may contain additions and multiplications, return
7081 an equivalent value that just refers to a register, memory, or constant.
7082 This is done by generating instructions to perform the arithmetic and
7083 returning a pseudo-register containing the value.
7085 The returned value may be a REG, SUBREG, MEM or constant. */
7088 force_operand (rtx value
, rtx target
)
7091 /* Use subtarget as the target for operand 0 of a binary operation. */
7092 rtx subtarget
= get_subtarget (target
);
7093 enum rtx_code code
= GET_CODE (value
);
7095 /* Check for subreg applied to an expression produced by loop optimizer. */
7097 && !REG_P (SUBREG_REG (value
))
7098 && !MEM_P (SUBREG_REG (value
)))
7101 = simplify_gen_subreg (GET_MODE (value
),
7102 force_reg (GET_MODE (SUBREG_REG (value
)),
7103 force_operand (SUBREG_REG (value
),
7105 GET_MODE (SUBREG_REG (value
)),
7106 SUBREG_BYTE (value
));
7107 code
= GET_CODE (value
);
7110 /* Check for a PIC address load. */
7111 if ((code
== PLUS
|| code
== MINUS
)
7112 && XEXP (value
, 0) == pic_offset_table_rtx
7113 && (GET_CODE (XEXP (value
, 1)) == SYMBOL_REF
7114 || GET_CODE (XEXP (value
, 1)) == LABEL_REF
7115 || GET_CODE (XEXP (value
, 1)) == CONST
))
7118 subtarget
= gen_reg_rtx (GET_MODE (value
));
7119 emit_move_insn (subtarget
, value
);
7123 if (ARITHMETIC_P (value
))
7125 op2
= XEXP (value
, 1);
7126 if (!CONSTANT_P (op2
) && !(REG_P (op2
) && op2
!= subtarget
))
7128 if (code
== MINUS
&& CONST_INT_P (op2
))
7131 op2
= negate_rtx (GET_MODE (value
), op2
);
7134 /* Check for an addition with OP2 a constant integer and our first
7135 operand a PLUS of a virtual register and something else. In that
7136 case, we want to emit the sum of the virtual register and the
7137 constant first and then add the other value. This allows virtual
7138 register instantiation to simply modify the constant rather than
7139 creating another one around this addition. */
7140 if (code
== PLUS
&& CONST_INT_P (op2
)
7141 && GET_CODE (XEXP (value
, 0)) == PLUS
7142 && REG_P (XEXP (XEXP (value
, 0), 0))
7143 && REGNO (XEXP (XEXP (value
, 0), 0)) >= FIRST_VIRTUAL_REGISTER
7144 && REGNO (XEXP (XEXP (value
, 0), 0)) <= LAST_VIRTUAL_REGISTER
)
7146 rtx temp
= expand_simple_binop (GET_MODE (value
), code
,
7147 XEXP (XEXP (value
, 0), 0), op2
,
7148 subtarget
, 0, OPTAB_LIB_WIDEN
);
7149 return expand_simple_binop (GET_MODE (value
), code
, temp
,
7150 force_operand (XEXP (XEXP (value
,
7152 target
, 0, OPTAB_LIB_WIDEN
);
7155 op1
= force_operand (XEXP (value
, 0), subtarget
);
7156 op2
= force_operand (op2
, NULL_RTX
);
7160 return expand_mult (GET_MODE (value
), op1
, op2
, target
, 1);
7162 if (!INTEGRAL_MODE_P (GET_MODE (value
)))
7163 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7164 target
, 1, OPTAB_LIB_WIDEN
);
7166 return expand_divmod (0,
7167 FLOAT_MODE_P (GET_MODE (value
))
7168 ? RDIV_EXPR
: TRUNC_DIV_EXPR
,
7169 GET_MODE (value
), op1
, op2
, target
, 0);
7171 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
7174 return expand_divmod (0, TRUNC_DIV_EXPR
, GET_MODE (value
), op1
, op2
,
7177 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
7180 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7181 target
, 0, OPTAB_LIB_WIDEN
);
7183 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7184 target
, 1, OPTAB_LIB_WIDEN
);
7187 if (UNARY_P (value
))
7190 target
= gen_reg_rtx (GET_MODE (value
));
7191 op1
= force_operand (XEXP (value
, 0), NULL_RTX
);
7198 case FLOAT_TRUNCATE
:
7199 convert_move (target
, op1
, code
== ZERO_EXTEND
);
7204 expand_fix (target
, op1
, code
== UNSIGNED_FIX
);
7208 case UNSIGNED_FLOAT
:
7209 expand_float (target
, op1
, code
== UNSIGNED_FLOAT
);
7213 return expand_simple_unop (GET_MODE (value
), code
, op1
, target
, 0);
7217 #ifdef INSN_SCHEDULING
7218 /* On machines that have insn scheduling, we want all memory reference to be
7219 explicit, so we need to deal with such paradoxical SUBREGs. */
7220 if (paradoxical_subreg_p (value
) && MEM_P (SUBREG_REG (value
)))
7222 = simplify_gen_subreg (GET_MODE (value
),
7223 force_reg (GET_MODE (SUBREG_REG (value
)),
7224 force_operand (SUBREG_REG (value
),
7226 GET_MODE (SUBREG_REG (value
)),
7227 SUBREG_BYTE (value
));
7233 /* Subroutine of expand_expr: return nonzero iff there is no way that
7234 EXP can reference X, which is being modified. TOP_P is nonzero if this
7235 call is going to be used to determine whether we need a temporary
7236 for EXP, as opposed to a recursive call to this function.
7238 It is always safe for this routine to return zero since it merely
7239 searches for optimization opportunities. */
7242 safe_from_p (const_rtx x
, tree exp
, int top_p
)
7248 /* If EXP has varying size, we MUST use a target since we currently
7249 have no way of allocating temporaries of variable size
7250 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7251 So we assume here that something at a higher level has prevented a
7252 clash. This is somewhat bogus, but the best we can do. Only
7253 do this when X is BLKmode and when we are at the top level. */
7254 || (top_p
&& TREE_TYPE (exp
) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp
))
7255 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) != INTEGER_CST
7256 && (TREE_CODE (TREE_TYPE (exp
)) != ARRAY_TYPE
7257 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)) == NULL_TREE
7258 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)))
7260 && GET_MODE (x
) == BLKmode
)
7261 /* If X is in the outgoing argument area, it is always safe. */
7263 && (XEXP (x
, 0) == virtual_outgoing_args_rtx
7264 || (GET_CODE (XEXP (x
, 0)) == PLUS
7265 && XEXP (XEXP (x
, 0), 0) == virtual_outgoing_args_rtx
))))
7268 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7269 find the underlying pseudo. */
7270 if (GET_CODE (x
) == SUBREG
)
7273 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
7277 /* Now look at our tree code and possibly recurse. */
7278 switch (TREE_CODE_CLASS (TREE_CODE (exp
)))
7280 case tcc_declaration
:
7281 exp_rtl
= DECL_RTL_IF_SET (exp
);
7287 case tcc_exceptional
:
7288 if (TREE_CODE (exp
) == TREE_LIST
)
7292 if (TREE_VALUE (exp
) && !safe_from_p (x
, TREE_VALUE (exp
), 0))
7294 exp
= TREE_CHAIN (exp
);
7297 if (TREE_CODE (exp
) != TREE_LIST
)
7298 return safe_from_p (x
, exp
, 0);
7301 else if (TREE_CODE (exp
) == CONSTRUCTOR
)
7303 constructor_elt
*ce
;
7304 unsigned HOST_WIDE_INT idx
;
7306 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp
), idx
, ce
)
7307 if ((ce
->index
!= NULL_TREE
&& !safe_from_p (x
, ce
->index
, 0))
7308 || !safe_from_p (x
, ce
->value
, 0))
7312 else if (TREE_CODE (exp
) == ERROR_MARK
)
7313 return 1; /* An already-visited SAVE_EXPR? */
7318 /* The only case we look at here is the DECL_INITIAL inside a
7320 return (TREE_CODE (exp
) != DECL_EXPR
7321 || TREE_CODE (DECL_EXPR_DECL (exp
)) != VAR_DECL
7322 || !DECL_INITIAL (DECL_EXPR_DECL (exp
))
7323 || safe_from_p (x
, DECL_INITIAL (DECL_EXPR_DECL (exp
)), 0));
7326 case tcc_comparison
:
7327 if (!safe_from_p (x
, TREE_OPERAND (exp
, 1), 0))
7332 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
7334 case tcc_expression
:
7337 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7338 the expression. If it is set, we conflict iff we are that rtx or
7339 both are in memory. Otherwise, we check all operands of the
7340 expression recursively. */
7342 switch (TREE_CODE (exp
))
7345 /* If the operand is static or we are static, we can't conflict.
7346 Likewise if we don't conflict with the operand at all. */
7347 if (staticp (TREE_OPERAND (exp
, 0))
7348 || TREE_STATIC (exp
)
7349 || safe_from_p (x
, TREE_OPERAND (exp
, 0), 0))
7352 /* Otherwise, the only way this can conflict is if we are taking
7353 the address of a DECL a that address if part of X, which is
7355 exp
= TREE_OPERAND (exp
, 0);
7358 if (!DECL_RTL_SET_P (exp
)
7359 || !MEM_P (DECL_RTL (exp
)))
7362 exp_rtl
= XEXP (DECL_RTL (exp
), 0);
7368 && alias_sets_conflict_p (MEM_ALIAS_SET (x
),
7369 get_alias_set (exp
)))
7374 /* Assume that the call will clobber all hard registers and
7376 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
7381 case WITH_CLEANUP_EXPR
:
7382 case CLEANUP_POINT_EXPR
:
7383 /* Lowered by gimplify.c. */
7387 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
7393 /* If we have an rtx, we do not need to scan our operands. */
7397 nops
= TREE_OPERAND_LENGTH (exp
);
7398 for (i
= 0; i
< nops
; i
++)
7399 if (TREE_OPERAND (exp
, i
) != 0
7400 && ! safe_from_p (x
, TREE_OPERAND (exp
, i
), 0))
7406 /* Should never get a type here. */
7410 /* If we have an rtl, find any enclosed object. Then see if we conflict
7414 if (GET_CODE (exp_rtl
) == SUBREG
)
7416 exp_rtl
= SUBREG_REG (exp_rtl
);
7418 && REGNO (exp_rtl
) < FIRST_PSEUDO_REGISTER
)
7422 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7423 are memory and they conflict. */
7424 return ! (rtx_equal_p (x
, exp_rtl
)
7425 || (MEM_P (x
) && MEM_P (exp_rtl
)
7426 && true_dependence (exp_rtl
, VOIDmode
, x
)));
7429 /* If we reach here, it is safe. */
7434 /* Return the highest power of two that EXP is known to be a multiple of.
7435 This is used in updating alignment of MEMs in array references. */
7437 unsigned HOST_WIDE_INT
7438 highest_pow2_factor (const_tree exp
)
7440 unsigned HOST_WIDE_INT ret
;
7441 int trailing_zeros
= tree_ctz (exp
);
7442 if (trailing_zeros
>= HOST_BITS_PER_WIDE_INT
)
7443 return BIGGEST_ALIGNMENT
;
7444 ret
= (unsigned HOST_WIDE_INT
) 1 << trailing_zeros
;
7445 if (ret
> BIGGEST_ALIGNMENT
)
7446 return BIGGEST_ALIGNMENT
;
7450 /* Similar, except that the alignment requirements of TARGET are
7451 taken into account. Assume it is at least as aligned as its
7452 type, unless it is a COMPONENT_REF in which case the layout of
7453 the structure gives the alignment. */
7455 static unsigned HOST_WIDE_INT
7456 highest_pow2_factor_for_target (const_tree target
, const_tree exp
)
7458 unsigned HOST_WIDE_INT talign
= target_align (target
) / BITS_PER_UNIT
;
7459 unsigned HOST_WIDE_INT factor
= highest_pow2_factor (exp
);
7461 return MAX (factor
, talign
);
7464 #ifdef HAVE_conditional_move
7465 /* Convert the tree comparison code TCODE to the rtl one where the
7466 signedness is UNSIGNEDP. */
7468 static enum rtx_code
7469 convert_tree_comp_to_rtx (enum tree_code tcode
, int unsignedp
)
7481 code
= unsignedp
? LTU
: LT
;
7484 code
= unsignedp
? LEU
: LE
;
7487 code
= unsignedp
? GTU
: GT
;
7490 code
= unsignedp
? GEU
: GE
;
7492 case UNORDERED_EXPR
:
7524 /* Subroutine of expand_expr. Expand the two operands of a binary
7525 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7526 The value may be stored in TARGET if TARGET is nonzero. The
7527 MODIFIER argument is as documented by expand_expr. */
7530 expand_operands (tree exp0
, tree exp1
, rtx target
, rtx
*op0
, rtx
*op1
,
7531 enum expand_modifier modifier
)
7533 if (! safe_from_p (target
, exp1
, 1))
7535 if (operand_equal_p (exp0
, exp1
, 0))
7537 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
7538 *op1
= copy_rtx (*op0
);
7542 /* If we need to preserve evaluation order, copy exp0 into its own
7543 temporary variable so that it can't be clobbered by exp1. */
7544 if (flag_evaluation_order
&& TREE_SIDE_EFFECTS (exp1
))
7545 exp0
= save_expr (exp0
);
7546 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
7547 *op1
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, modifier
);
7552 /* Return a MEM that contains constant EXP. DEFER is as for
7553 output_constant_def and MODIFIER is as for expand_expr. */
7556 expand_expr_constant (tree exp
, int defer
, enum expand_modifier modifier
)
7560 mem
= output_constant_def (exp
, defer
);
7561 if (modifier
!= EXPAND_INITIALIZER
)
7562 mem
= use_anchored_address (mem
);
7566 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7567 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7570 expand_expr_addr_expr_1 (tree exp
, rtx target
, enum machine_mode tmode
,
7571 enum expand_modifier modifier
, addr_space_t as
)
7573 rtx result
, subtarget
;
7575 HOST_WIDE_INT bitsize
, bitpos
;
7576 int volatilep
, unsignedp
;
7577 enum machine_mode mode1
;
7579 /* If we are taking the address of a constant and are at the top level,
7580 we have to use output_constant_def since we can't call force_const_mem
7582 /* ??? This should be considered a front-end bug. We should not be
7583 generating ADDR_EXPR of something that isn't an LVALUE. The only
7584 exception here is STRING_CST. */
7585 if (CONSTANT_CLASS_P (exp
))
7587 result
= XEXP (expand_expr_constant (exp
, 0, modifier
), 0);
7588 if (modifier
< EXPAND_SUM
)
7589 result
= force_operand (result
, target
);
7593 /* Everything must be something allowed by is_gimple_addressable. */
7594 switch (TREE_CODE (exp
))
7597 /* This case will happen via recursion for &a->b. */
7598 return expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
, modifier
);
7602 tree tem
= TREE_OPERAND (exp
, 0);
7603 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
7604 tem
= fold_build_pointer_plus (tem
, TREE_OPERAND (exp
, 1));
7605 return expand_expr (tem
, target
, tmode
, modifier
);
7609 /* Expand the initializer like constants above. */
7610 result
= XEXP (expand_expr_constant (DECL_INITIAL (exp
),
7612 if (modifier
< EXPAND_SUM
)
7613 result
= force_operand (result
, target
);
7617 /* The real part of the complex number is always first, therefore
7618 the address is the same as the address of the parent object. */
7621 inner
= TREE_OPERAND (exp
, 0);
7625 /* The imaginary part of the complex number is always second.
7626 The expression is therefore always offset by the size of the
7629 bitpos
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp
)));
7630 inner
= TREE_OPERAND (exp
, 0);
7633 case COMPOUND_LITERAL_EXPR
:
7634 /* Allow COMPOUND_LITERAL_EXPR in initializers, if e.g.
7635 rtl_for_decl_init is called on DECL_INITIAL with
7636 COMPOUNT_LITERAL_EXPRs in it, they aren't gimplified. */
7637 if (modifier
== EXPAND_INITIALIZER
7638 && COMPOUND_LITERAL_EXPR_DECL (exp
))
7639 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp
),
7640 target
, tmode
, modifier
, as
);
7643 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7644 expand_expr, as that can have various side effects; LABEL_DECLs for
7645 example, may not have their DECL_RTL set yet. Expand the rtl of
7646 CONSTRUCTORs too, which should yield a memory reference for the
7647 constructor's contents. Assume language specific tree nodes can
7648 be expanded in some interesting way. */
7649 gcc_assert (TREE_CODE (exp
) < LAST_AND_UNUSED_TREE_CODE
);
7651 || TREE_CODE (exp
) == CONSTRUCTOR
7652 || TREE_CODE (exp
) == COMPOUND_LITERAL_EXPR
)
7654 result
= expand_expr (exp
, target
, tmode
,
7655 modifier
== EXPAND_INITIALIZER
7656 ? EXPAND_INITIALIZER
: EXPAND_CONST_ADDRESS
);
7658 /* If the DECL isn't in memory, then the DECL wasn't properly
7659 marked TREE_ADDRESSABLE, which will be either a front-end
7660 or a tree optimizer bug. */
7662 if (TREE_ADDRESSABLE (exp
)
7664 && ! targetm
.calls
.allocate_stack_slots_for_args ())
7666 error ("local frame unavailable (naked function?)");
7670 gcc_assert (MEM_P (result
));
7671 result
= XEXP (result
, 0);
7673 /* ??? Is this needed anymore? */
7675 TREE_USED (exp
) = 1;
7677 if (modifier
!= EXPAND_INITIALIZER
7678 && modifier
!= EXPAND_CONST_ADDRESS
7679 && modifier
!= EXPAND_SUM
)
7680 result
= force_operand (result
, target
);
7684 /* Pass FALSE as the last argument to get_inner_reference although
7685 we are expanding to RTL. The rationale is that we know how to
7686 handle "aligning nodes" here: we can just bypass them because
7687 they won't change the final object whose address will be returned
7688 (they actually exist only for that purpose). */
7689 inner
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
7690 &mode1
, &unsignedp
, &volatilep
, false);
7694 /* We must have made progress. */
7695 gcc_assert (inner
!= exp
);
7697 subtarget
= offset
|| bitpos
? NULL_RTX
: target
;
7698 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7699 inner alignment, force the inner to be sufficiently aligned. */
7700 if (CONSTANT_CLASS_P (inner
)
7701 && TYPE_ALIGN (TREE_TYPE (inner
)) < TYPE_ALIGN (TREE_TYPE (exp
)))
7703 inner
= copy_node (inner
);
7704 TREE_TYPE (inner
) = copy_node (TREE_TYPE (inner
));
7705 TYPE_ALIGN (TREE_TYPE (inner
)) = TYPE_ALIGN (TREE_TYPE (exp
));
7706 TYPE_USER_ALIGN (TREE_TYPE (inner
)) = 1;
7708 result
= expand_expr_addr_expr_1 (inner
, subtarget
, tmode
, modifier
, as
);
7714 if (modifier
!= EXPAND_NORMAL
)
7715 result
= force_operand (result
, NULL
);
7716 tmp
= expand_expr (offset
, NULL_RTX
, tmode
,
7717 modifier
== EXPAND_INITIALIZER
7718 ? EXPAND_INITIALIZER
: EXPAND_NORMAL
);
7720 /* expand_expr is allowed to return an object in a mode other
7721 than TMODE. If it did, we need to convert. */
7722 if (GET_MODE (tmp
) != VOIDmode
&& tmode
!= GET_MODE (tmp
))
7723 tmp
= convert_modes (tmode
, GET_MODE (tmp
),
7724 tmp
, TYPE_UNSIGNED (TREE_TYPE (offset
)));
7725 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7726 tmp
= convert_memory_address_addr_space (tmode
, tmp
, as
);
7728 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
7729 result
= simplify_gen_binary (PLUS
, tmode
, result
, tmp
);
7732 subtarget
= bitpos
? NULL_RTX
: target
;
7733 result
= expand_simple_binop (tmode
, PLUS
, result
, tmp
, subtarget
,
7734 1, OPTAB_LIB_WIDEN
);
7740 /* Someone beforehand should have rejected taking the address
7741 of such an object. */
7742 gcc_assert ((bitpos
% BITS_PER_UNIT
) == 0);
7744 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7745 result
= plus_constant (tmode
, result
, bitpos
/ BITS_PER_UNIT
);
7746 if (modifier
< EXPAND_SUM
)
7747 result
= force_operand (result
, target
);
7753 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7754 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7757 expand_expr_addr_expr (tree exp
, rtx target
, enum machine_mode tmode
,
7758 enum expand_modifier modifier
)
7760 addr_space_t as
= ADDR_SPACE_GENERIC
;
7761 enum machine_mode address_mode
= Pmode
;
7762 enum machine_mode pointer_mode
= ptr_mode
;
7763 enum machine_mode rmode
;
7766 /* Target mode of VOIDmode says "whatever's natural". */
7767 if (tmode
== VOIDmode
)
7768 tmode
= TYPE_MODE (TREE_TYPE (exp
));
7770 if (POINTER_TYPE_P (TREE_TYPE (exp
)))
7772 as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp
)));
7773 address_mode
= targetm
.addr_space
.address_mode (as
);
7774 pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
7777 /* We can get called with some Weird Things if the user does silliness
7778 like "(short) &a". In that case, convert_memory_address won't do
7779 the right thing, so ignore the given target mode. */
7780 if (tmode
!= address_mode
&& tmode
!= pointer_mode
)
7781 tmode
= address_mode
;
7783 result
= expand_expr_addr_expr_1 (TREE_OPERAND (exp
, 0), target
,
7784 tmode
, modifier
, as
);
7786 /* Despite expand_expr claims concerning ignoring TMODE when not
7787 strictly convenient, stuff breaks if we don't honor it. Note
7788 that combined with the above, we only do this for pointer modes. */
7789 rmode
= GET_MODE (result
);
7790 if (rmode
== VOIDmode
)
7793 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7798 /* Generate code for computing CONSTRUCTOR EXP.
7799 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7800 is TRUE, instead of creating a temporary variable in memory
7801 NULL is returned and the caller needs to handle it differently. */
7804 expand_constructor (tree exp
, rtx target
, enum expand_modifier modifier
,
7805 bool avoid_temp_mem
)
7807 tree type
= TREE_TYPE (exp
);
7808 enum machine_mode mode
= TYPE_MODE (type
);
7810 /* Try to avoid creating a temporary at all. This is possible
7811 if all of the initializer is zero.
7812 FIXME: try to handle all [0..255] initializers we can handle
7814 if (TREE_STATIC (exp
)
7815 && !TREE_ADDRESSABLE (exp
)
7816 && target
!= 0 && mode
== BLKmode
7817 && all_zeros_p (exp
))
7819 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
7823 /* All elts simple constants => refer to a constant in memory. But
7824 if this is a non-BLKmode mode, let it store a field at a time
7825 since that should make a CONST_INT or CONST_DOUBLE when we
7826 fold. Likewise, if we have a target we can use, it is best to
7827 store directly into the target unless the type is large enough
7828 that memcpy will be used. If we are making an initializer and
7829 all operands are constant, put it in memory as well.
7831 FIXME: Avoid trying to fill vector constructors piece-meal.
7832 Output them with output_constant_def below unless we're sure
7833 they're zeros. This should go away when vector initializers
7834 are treated like VECTOR_CST instead of arrays. */
7835 if ((TREE_STATIC (exp
)
7836 && ((mode
== BLKmode
7837 && ! (target
!= 0 && safe_from_p (target
, exp
, 1)))
7838 || TREE_ADDRESSABLE (exp
)
7839 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type
))
7840 && (! MOVE_BY_PIECES_P
7841 (tree_to_uhwi (TYPE_SIZE_UNIT (type
)),
7843 && ! mostly_zeros_p (exp
))))
7844 || ((modifier
== EXPAND_INITIALIZER
|| modifier
== EXPAND_CONST_ADDRESS
)
7845 && TREE_CONSTANT (exp
)))
7852 constructor
= expand_expr_constant (exp
, 1, modifier
);
7854 if (modifier
!= EXPAND_CONST_ADDRESS
7855 && modifier
!= EXPAND_INITIALIZER
7856 && modifier
!= EXPAND_SUM
)
7857 constructor
= validize_mem (constructor
);
7862 /* Handle calls that pass values in multiple non-contiguous
7863 locations. The Irix 6 ABI has examples of this. */
7864 if (target
== 0 || ! safe_from_p (target
, exp
, 1)
7865 || GET_CODE (target
) == PARALLEL
|| modifier
== EXPAND_STACK_PARM
)
7871 = assign_temp (build_qualified_type (type
, (TYPE_QUALS (type
)
7872 | (TREE_READONLY (exp
)
7873 * TYPE_QUAL_CONST
))),
7874 TREE_ADDRESSABLE (exp
), 1);
7877 store_constructor (exp
, target
, 0, int_expr_size (exp
));
7882 /* expand_expr: generate code for computing expression EXP.
7883 An rtx for the computed value is returned. The value is never null.
7884 In the case of a void EXP, const0_rtx is returned.
7886 The value may be stored in TARGET if TARGET is nonzero.
7887 TARGET is just a suggestion; callers must assume that
7888 the rtx returned may not be the same as TARGET.
7890 If TARGET is CONST0_RTX, it means that the value will be ignored.
7892 If TMODE is not VOIDmode, it suggests generating the
7893 result in mode TMODE. But this is done only when convenient.
7894 Otherwise, TMODE is ignored and the value generated in its natural mode.
7895 TMODE is just a suggestion; callers must assume that
7896 the rtx returned may not have mode TMODE.
7898 Note that TARGET may have neither TMODE nor MODE. In that case, it
7899 probably will not be used.
7901 If MODIFIER is EXPAND_SUM then when EXP is an addition
7902 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7903 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7904 products as above, or REG or MEM, or constant.
7905 Ordinarily in such cases we would output mul or add instructions
7906 and then return a pseudo reg containing the sum.
7908 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7909 it also marks a label as absolutely required (it can't be dead).
7910 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7911 This is used for outputting expressions used in initializers.
7913 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7914 with a constant address even if that address is not normally legitimate.
7915 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7917 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7918 a call parameter. Such targets require special care as we haven't yet
7919 marked TARGET so that it's safe from being trashed by libcalls. We
7920 don't want to use TARGET for anything but the final result;
7921 Intermediate values must go elsewhere. Additionally, calls to
7922 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7924 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7925 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7926 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7927 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7930 If INNER_REFERENCE_P is true, we are expanding an inner reference.
7931 In this case, we don't adjust a returned MEM rtx that wouldn't be
7932 sufficiently aligned for its mode; instead, it's up to the caller
7933 to deal with it afterwards. This is used to make sure that unaligned
7934 base objects for which out-of-bounds accesses are supported, for
7935 example record types with trailing arrays, aren't realigned behind
7936 the back of the caller.
7937 The normal operating mode is to pass FALSE for this parameter. */
7940 expand_expr_real (tree exp
, rtx target
, enum machine_mode tmode
,
7941 enum expand_modifier modifier
, rtx
*alt_rtl
,
7942 bool inner_reference_p
)
7946 /* Handle ERROR_MARK before anybody tries to access its type. */
7947 if (TREE_CODE (exp
) == ERROR_MARK
7948 || (TREE_CODE (TREE_TYPE (exp
)) == ERROR_MARK
))
7950 ret
= CONST0_RTX (tmode
);
7951 return ret
? ret
: const0_rtx
;
7954 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
,
7959 /* Try to expand the conditional expression which is represented by
7960 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If succeseds
7961 return the rtl reg which repsents the result. Otherwise return
7965 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED
,
7966 tree treeop1 ATTRIBUTE_UNUSED
,
7967 tree treeop2 ATTRIBUTE_UNUSED
)
7969 #ifdef HAVE_conditional_move
7971 rtx op00
, op01
, op1
, op2
;
7972 enum rtx_code comparison_code
;
7973 enum machine_mode comparison_mode
;
7976 tree type
= TREE_TYPE (treeop1
);
7977 int unsignedp
= TYPE_UNSIGNED (type
);
7978 enum machine_mode mode
= TYPE_MODE (type
);
7979 enum machine_mode orig_mode
= mode
;
7981 /* If we cannot do a conditional move on the mode, try doing it
7982 with the promoted mode. */
7983 if (!can_conditionally_move_p (mode
))
7985 mode
= promote_mode (type
, mode
, &unsignedp
);
7986 if (!can_conditionally_move_p (mode
))
7988 temp
= assign_temp (type
, 0, 0); /* Use promoted mode for temp. */
7991 temp
= assign_temp (type
, 0, 1);
7994 expand_operands (treeop1
, treeop2
,
7995 temp
, &op1
, &op2
, EXPAND_NORMAL
);
7997 if (TREE_CODE (treeop0
) == SSA_NAME
7998 && (srcstmt
= get_def_for_expr_class (treeop0
, tcc_comparison
)))
8000 tree type
= TREE_TYPE (gimple_assign_rhs1 (srcstmt
));
8001 enum tree_code cmpcode
= gimple_assign_rhs_code (srcstmt
);
8002 op00
= expand_normal (gimple_assign_rhs1 (srcstmt
));
8003 op01
= expand_normal (gimple_assign_rhs2 (srcstmt
));
8004 comparison_mode
= TYPE_MODE (type
);
8005 unsignedp
= TYPE_UNSIGNED (type
);
8006 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
8008 else if (TREE_CODE_CLASS (TREE_CODE (treeop0
)) == tcc_comparison
)
8010 tree type
= TREE_TYPE (TREE_OPERAND (treeop0
, 0));
8011 enum tree_code cmpcode
= TREE_CODE (treeop0
);
8012 op00
= expand_normal (TREE_OPERAND (treeop0
, 0));
8013 op01
= expand_normal (TREE_OPERAND (treeop0
, 1));
8014 unsignedp
= TYPE_UNSIGNED (type
);
8015 comparison_mode
= TYPE_MODE (type
);
8016 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
8020 op00
= expand_normal (treeop0
);
8022 comparison_code
= NE
;
8023 comparison_mode
= TYPE_MODE (TREE_TYPE (treeop0
));
8026 if (GET_MODE (op1
) != mode
)
8027 op1
= gen_lowpart (mode
, op1
);
8029 if (GET_MODE (op2
) != mode
)
8030 op2
= gen_lowpart (mode
, op2
);
8032 /* Try to emit the conditional move. */
8033 insn
= emit_conditional_move (temp
, comparison_code
,
8034 op00
, op01
, comparison_mode
,
8038 /* If we could do the conditional move, emit the sequence,
8042 rtx seq
= get_insns ();
8045 return convert_modes (orig_mode
, mode
, temp
, 0);
8048 /* Otherwise discard the sequence and fall back to code with
8056 expand_expr_real_2 (sepops ops
, rtx target
, enum machine_mode tmode
,
8057 enum expand_modifier modifier
)
8059 rtx op0
, op1
, op2
, temp
;
8062 enum machine_mode mode
;
8063 enum tree_code code
= ops
->code
;
8065 rtx subtarget
, original_target
;
8067 bool reduce_bit_field
;
8068 location_t loc
= ops
->location
;
8069 tree treeop0
, treeop1
, treeop2
;
8070 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
8071 ? reduce_to_bit_field_precision ((expr), \
8077 mode
= TYPE_MODE (type
);
8078 unsignedp
= TYPE_UNSIGNED (type
);
8084 /* We should be called only on simple (binary or unary) expressions,
8085 exactly those that are valid in gimple expressions that aren't
8086 GIMPLE_SINGLE_RHS (or invalid). */
8087 gcc_assert (get_gimple_rhs_class (code
) == GIMPLE_UNARY_RHS
8088 || get_gimple_rhs_class (code
) == GIMPLE_BINARY_RHS
8089 || get_gimple_rhs_class (code
) == GIMPLE_TERNARY_RHS
);
8091 ignore
= (target
== const0_rtx
8092 || ((CONVERT_EXPR_CODE_P (code
)
8093 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
8094 && TREE_CODE (type
) == VOID_TYPE
));
8096 /* We should be called only if we need the result. */
8097 gcc_assert (!ignore
);
8099 /* An operation in what may be a bit-field type needs the
8100 result to be reduced to the precision of the bit-field type,
8101 which is narrower than that of the type's mode. */
8102 reduce_bit_field
= (INTEGRAL_TYPE_P (type
)
8103 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
));
8105 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
8108 /* Use subtarget as the target for operand 0 of a binary operation. */
8109 subtarget
= get_subtarget (target
);
8110 original_target
= target
;
8114 case NON_LVALUE_EXPR
:
8117 if (treeop0
== error_mark_node
)
8120 if (TREE_CODE (type
) == UNION_TYPE
)
8122 tree valtype
= TREE_TYPE (treeop0
);
8124 /* If both input and output are BLKmode, this conversion isn't doing
8125 anything except possibly changing memory attribute. */
8126 if (mode
== BLKmode
&& TYPE_MODE (valtype
) == BLKmode
)
8128 rtx result
= expand_expr (treeop0
, target
, tmode
,
8131 result
= copy_rtx (result
);
8132 set_mem_attributes (result
, type
, 0);
8138 if (TYPE_MODE (type
) != BLKmode
)
8139 target
= gen_reg_rtx (TYPE_MODE (type
));
8141 target
= assign_temp (type
, 1, 1);
8145 /* Store data into beginning of memory target. */
8146 store_expr (treeop0
,
8147 adjust_address (target
, TYPE_MODE (valtype
), 0),
8148 modifier
== EXPAND_STACK_PARM
,
8153 gcc_assert (REG_P (target
));
8155 /* Store this field into a union of the proper type. */
8156 store_field (target
,
8157 MIN ((int_size_in_bytes (TREE_TYPE
8160 (HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
)),
8161 0, 0, 0, TYPE_MODE (valtype
), treeop0
, 0, false);
8164 /* Return the entire union. */
8168 if (mode
== TYPE_MODE (TREE_TYPE (treeop0
)))
8170 op0
= expand_expr (treeop0
, target
, VOIDmode
,
8173 /* If the signedness of the conversion differs and OP0 is
8174 a promoted SUBREG, clear that indication since we now
8175 have to do the proper extension. */
8176 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)) != unsignedp
8177 && GET_CODE (op0
) == SUBREG
)
8178 SUBREG_PROMOTED_VAR_P (op0
) = 0;
8180 return REDUCE_BIT_FIELD (op0
);
8183 op0
= expand_expr (treeop0
, NULL_RTX
, mode
,
8184 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
);
8185 if (GET_MODE (op0
) == mode
)
8188 /* If OP0 is a constant, just convert it into the proper mode. */
8189 else if (CONSTANT_P (op0
))
8191 tree inner_type
= TREE_TYPE (treeop0
);
8192 enum machine_mode inner_mode
= GET_MODE (op0
);
8194 if (inner_mode
== VOIDmode
)
8195 inner_mode
= TYPE_MODE (inner_type
);
8197 if (modifier
== EXPAND_INITIALIZER
)
8198 op0
= simplify_gen_subreg (mode
, op0
, inner_mode
,
8199 subreg_lowpart_offset (mode
,
8202 op0
= convert_modes (mode
, inner_mode
, op0
,
8203 TYPE_UNSIGNED (inner_type
));
8206 else if (modifier
== EXPAND_INITIALIZER
)
8207 op0
= gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
, mode
, op0
);
8209 else if (target
== 0)
8210 op0
= convert_to_mode (mode
, op0
,
8211 TYPE_UNSIGNED (TREE_TYPE
8215 convert_move (target
, op0
,
8216 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
8220 return REDUCE_BIT_FIELD (op0
);
8222 case ADDR_SPACE_CONVERT_EXPR
:
8224 tree treeop0_type
= TREE_TYPE (treeop0
);
8226 addr_space_t as_from
;
8228 gcc_assert (POINTER_TYPE_P (type
));
8229 gcc_assert (POINTER_TYPE_P (treeop0_type
));
8231 as_to
= TYPE_ADDR_SPACE (TREE_TYPE (type
));
8232 as_from
= TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type
));
8234 /* Conversions between pointers to the same address space should
8235 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8236 gcc_assert (as_to
!= as_from
);
8238 /* Ask target code to handle conversion between pointers
8239 to overlapping address spaces. */
8240 if (targetm
.addr_space
.subset_p (as_to
, as_from
)
8241 || targetm
.addr_space
.subset_p (as_from
, as_to
))
8243 op0
= expand_expr (treeop0
, NULL_RTX
, VOIDmode
, modifier
);
8244 op0
= targetm
.addr_space
.convert (op0
, treeop0_type
, type
);
8249 /* For disjoint address spaces, converting anything but
8250 a null pointer invokes undefined behaviour. We simply
8251 always return a null pointer here. */
8252 return CONST0_RTX (mode
);
8255 case POINTER_PLUS_EXPR
:
8256 /* Even though the sizetype mode and the pointer's mode can be different
8257 expand is able to handle this correctly and get the correct result out
8258 of the PLUS_EXPR code. */
8259 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8260 if sizetype precision is smaller than pointer precision. */
8261 if (TYPE_PRECISION (sizetype
) < TYPE_PRECISION (type
))
8262 treeop1
= fold_convert_loc (loc
, type
,
8263 fold_convert_loc (loc
, ssizetype
,
8265 /* If sizetype precision is larger than pointer precision, truncate the
8266 offset to have matching modes. */
8267 else if (TYPE_PRECISION (sizetype
) > TYPE_PRECISION (type
))
8268 treeop1
= fold_convert_loc (loc
, type
, treeop1
);
8271 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8272 something else, make sure we add the register to the constant and
8273 then to the other thing. This case can occur during strength
8274 reduction and doing it this way will produce better code if the
8275 frame pointer or argument pointer is eliminated.
8277 fold-const.c will ensure that the constant is always in the inner
8278 PLUS_EXPR, so the only case we need to do anything about is if
8279 sp, ap, or fp is our second argument, in which case we must swap
8280 the innermost first argument and our second argument. */
8282 if (TREE_CODE (treeop0
) == PLUS_EXPR
8283 && TREE_CODE (TREE_OPERAND (treeop0
, 1)) == INTEGER_CST
8284 && TREE_CODE (treeop1
) == VAR_DECL
8285 && (DECL_RTL (treeop1
) == frame_pointer_rtx
8286 || DECL_RTL (treeop1
) == stack_pointer_rtx
8287 || DECL_RTL (treeop1
) == arg_pointer_rtx
))
8292 /* If the result is to be ptr_mode and we are adding an integer to
8293 something, we might be forming a constant. So try to use
8294 plus_constant. If it produces a sum and we can't accept it,
8295 use force_operand. This allows P = &ARR[const] to generate
8296 efficient code on machines where a SYMBOL_REF is not a valid
8299 If this is an EXPAND_SUM call, always return the sum. */
8300 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
8301 || (mode
== ptr_mode
&& (unsignedp
|| ! flag_trapv
)))
8303 if (modifier
== EXPAND_STACK_PARM
)
8305 if (TREE_CODE (treeop0
) == INTEGER_CST
8306 && GET_MODE_PRECISION (mode
) <= HOST_BITS_PER_WIDE_INT
8307 && TREE_CONSTANT (treeop1
))
8311 op1
= expand_expr (treeop1
, subtarget
, VOIDmode
,
8313 /* Use immed_double_const to ensure that the constant is
8314 truncated according to the mode of OP1, then sign extended
8315 to a HOST_WIDE_INT. Using the constant directly can result
8316 in non-canonical RTL in a 64x32 cross compile. */
8318 = immed_double_const (TREE_INT_CST_LOW (treeop0
),
8320 TYPE_MODE (TREE_TYPE (treeop1
)));
8321 op1
= plus_constant (mode
, op1
, INTVAL (constant_part
));
8322 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8323 op1
= force_operand (op1
, target
);
8324 return REDUCE_BIT_FIELD (op1
);
8327 else if (TREE_CODE (treeop1
) == INTEGER_CST
8328 && GET_MODE_PRECISION (mode
) <= HOST_BITS_PER_WIDE_INT
8329 && TREE_CONSTANT (treeop0
))
8333 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
8334 (modifier
== EXPAND_INITIALIZER
8335 ? EXPAND_INITIALIZER
: EXPAND_SUM
));
8336 if (! CONSTANT_P (op0
))
8338 op1
= expand_expr (treeop1
, NULL_RTX
,
8339 VOIDmode
, modifier
);
8340 /* Return a PLUS if modifier says it's OK. */
8341 if (modifier
== EXPAND_SUM
8342 || modifier
== EXPAND_INITIALIZER
)
8343 return simplify_gen_binary (PLUS
, mode
, op0
, op1
);
8346 /* Use immed_double_const to ensure that the constant is
8347 truncated according to the mode of OP1, then sign extended
8348 to a HOST_WIDE_INT. Using the constant directly can result
8349 in non-canonical RTL in a 64x32 cross compile. */
8351 = immed_double_const (TREE_INT_CST_LOW (treeop1
),
8353 TYPE_MODE (TREE_TYPE (treeop0
)));
8354 op0
= plus_constant (mode
, op0
, INTVAL (constant_part
));
8355 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8356 op0
= force_operand (op0
, target
);
8357 return REDUCE_BIT_FIELD (op0
);
8361 /* Use TER to expand pointer addition of a negated value
8362 as pointer subtraction. */
8363 if ((POINTER_TYPE_P (TREE_TYPE (treeop0
))
8364 || (TREE_CODE (TREE_TYPE (treeop0
)) == VECTOR_TYPE
8365 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0
)))))
8366 && TREE_CODE (treeop1
) == SSA_NAME
8367 && TYPE_MODE (TREE_TYPE (treeop0
))
8368 == TYPE_MODE (TREE_TYPE (treeop1
)))
8370 gimple def
= get_def_for_expr (treeop1
, NEGATE_EXPR
);
8373 treeop1
= gimple_assign_rhs1 (def
);
8379 /* No sense saving up arithmetic to be done
8380 if it's all in the wrong mode to form part of an address.
8381 And force_operand won't know whether to sign-extend or
8383 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8384 || mode
!= ptr_mode
)
8386 expand_operands (treeop0
, treeop1
,
8387 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8388 if (op0
== const0_rtx
)
8390 if (op1
== const0_rtx
)
8395 expand_operands (treeop0
, treeop1
,
8396 subtarget
, &op0
, &op1
, modifier
);
8397 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8401 /* For initializers, we are allowed to return a MINUS of two
8402 symbolic constants. Here we handle all cases when both operands
8404 /* Handle difference of two symbolic constants,
8405 for the sake of an initializer. */
8406 if ((modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
8407 && really_constant_p (treeop0
)
8408 && really_constant_p (treeop1
))
8410 expand_operands (treeop0
, treeop1
,
8411 NULL_RTX
, &op0
, &op1
, modifier
);
8413 /* If the last operand is a CONST_INT, use plus_constant of
8414 the negated constant. Else make the MINUS. */
8415 if (CONST_INT_P (op1
))
8416 return REDUCE_BIT_FIELD (plus_constant (mode
, op0
,
8419 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode
, op0
, op1
));
8422 /* No sense saving up arithmetic to be done
8423 if it's all in the wrong mode to form part of an address.
8424 And force_operand won't know whether to sign-extend or
8426 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8427 || mode
!= ptr_mode
)
8430 expand_operands (treeop0
, treeop1
,
8431 subtarget
, &op0
, &op1
, modifier
);
8433 /* Convert A - const to A + (-const). */
8434 if (CONST_INT_P (op1
))
8436 op1
= negate_rtx (mode
, op1
);
8437 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8442 case WIDEN_MULT_PLUS_EXPR
:
8443 case WIDEN_MULT_MINUS_EXPR
:
8444 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8445 op2
= expand_normal (treeop2
);
8446 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
8450 case WIDEN_MULT_EXPR
:
8451 /* If first operand is constant, swap them.
8452 Thus the following special case checks need only
8453 check the second operand. */
8454 if (TREE_CODE (treeop0
) == INTEGER_CST
)
8461 /* First, check if we have a multiplication of one signed and one
8462 unsigned operand. */
8463 if (TREE_CODE (treeop1
) != INTEGER_CST
8464 && (TYPE_UNSIGNED (TREE_TYPE (treeop0
))
8465 != TYPE_UNSIGNED (TREE_TYPE (treeop1
))))
8467 enum machine_mode innermode
= TYPE_MODE (TREE_TYPE (treeop0
));
8468 this_optab
= usmul_widen_optab
;
8469 if (find_widening_optab_handler (this_optab
, mode
, innermode
, 0)
8470 != CODE_FOR_nothing
)
8472 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
8473 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
8476 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op1
, &op0
,
8478 /* op0 and op1 might still be constant, despite the above
8479 != INTEGER_CST check. Handle it. */
8480 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8482 op0
= convert_modes (innermode
, mode
, op0
, true);
8483 op1
= convert_modes (innermode
, mode
, op1
, false);
8484 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
,
8485 target
, unsignedp
));
8490 /* Check for a multiplication with matching signedness. */
8491 else if ((TREE_CODE (treeop1
) == INTEGER_CST
8492 && int_fits_type_p (treeop1
, TREE_TYPE (treeop0
)))
8493 || (TYPE_UNSIGNED (TREE_TYPE (treeop1
))
8494 == TYPE_UNSIGNED (TREE_TYPE (treeop0
))))
8496 tree op0type
= TREE_TYPE (treeop0
);
8497 enum machine_mode innermode
= TYPE_MODE (op0type
);
8498 bool zextend_p
= TYPE_UNSIGNED (op0type
);
8499 optab other_optab
= zextend_p
? smul_widen_optab
: umul_widen_optab
;
8500 this_optab
= zextend_p
? umul_widen_optab
: smul_widen_optab
;
8502 if (TREE_CODE (treeop0
) != INTEGER_CST
)
8504 if (find_widening_optab_handler (this_optab
, mode
, innermode
, 0)
8505 != CODE_FOR_nothing
)
8507 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
8509 /* op0 and op1 might still be constant, despite the above
8510 != INTEGER_CST check. Handle it. */
8511 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8514 op0
= convert_modes (innermode
, mode
, op0
, zextend_p
);
8516 = convert_modes (innermode
, mode
, op1
,
8517 TYPE_UNSIGNED (TREE_TYPE (treeop1
)));
8518 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
,
8522 temp
= expand_widening_mult (mode
, op0
, op1
, target
,
8523 unsignedp
, this_optab
);
8524 return REDUCE_BIT_FIELD (temp
);
8526 if (find_widening_optab_handler (other_optab
, mode
, innermode
, 0)
8528 && innermode
== word_mode
)
8531 op0
= expand_normal (treeop0
);
8532 if (TREE_CODE (treeop1
) == INTEGER_CST
)
8533 op1
= convert_modes (innermode
, mode
,
8534 expand_normal (treeop1
),
8535 TYPE_UNSIGNED (TREE_TYPE (treeop1
)));
8537 op1
= expand_normal (treeop1
);
8538 /* op0 and op1 might still be constant, despite the above
8539 != INTEGER_CST check. Handle it. */
8540 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8541 goto widen_mult_const
;
8542 temp
= expand_binop (mode
, other_optab
, op0
, op1
, target
,
8543 unsignedp
, OPTAB_LIB_WIDEN
);
8544 hipart
= gen_highpart (innermode
, temp
);
8545 htem
= expand_mult_highpart_adjust (innermode
, hipart
,
8549 emit_move_insn (hipart
, htem
);
8550 return REDUCE_BIT_FIELD (temp
);
8554 treeop0
= fold_build1 (CONVERT_EXPR
, type
, treeop0
);
8555 treeop1
= fold_build1 (CONVERT_EXPR
, type
, treeop1
);
8556 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8557 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
8561 optab opt
= fma_optab
;
8564 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
8566 if (optab_handler (fma_optab
, mode
) == CODE_FOR_nothing
)
8568 tree fn
= mathfn_built_in (TREE_TYPE (treeop0
), BUILT_IN_FMA
);
8571 gcc_assert (fn
!= NULL_TREE
);
8572 call_expr
= build_call_expr (fn
, 3, treeop0
, treeop1
, treeop2
);
8573 return expand_builtin (call_expr
, target
, subtarget
, mode
, false);
8576 def0
= get_def_for_expr (treeop0
, NEGATE_EXPR
);
8577 def2
= get_def_for_expr (treeop2
, NEGATE_EXPR
);
8582 && optab_handler (fnms_optab
, mode
) != CODE_FOR_nothing
)
8585 op0
= expand_normal (gimple_assign_rhs1 (def0
));
8586 op2
= expand_normal (gimple_assign_rhs1 (def2
));
8589 && optab_handler (fnma_optab
, mode
) != CODE_FOR_nothing
)
8592 op0
= expand_normal (gimple_assign_rhs1 (def0
));
8595 && optab_handler (fms_optab
, mode
) != CODE_FOR_nothing
)
8598 op2
= expand_normal (gimple_assign_rhs1 (def2
));
8602 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
, EXPAND_NORMAL
);
8604 op2
= expand_normal (treeop2
);
8605 op1
= expand_normal (treeop1
);
8607 return expand_ternary_op (TYPE_MODE (type
), opt
,
8608 op0
, op1
, op2
, target
, 0);
8612 /* If this is a fixed-point operation, then we cannot use the code
8613 below because "expand_mult" doesn't support sat/no-sat fixed-point
8615 if (ALL_FIXED_POINT_MODE_P (mode
))
8618 /* If first operand is constant, swap them.
8619 Thus the following special case checks need only
8620 check the second operand. */
8621 if (TREE_CODE (treeop0
) == INTEGER_CST
)
8628 /* Attempt to return something suitable for generating an
8629 indexed address, for machines that support that. */
8631 if (modifier
== EXPAND_SUM
&& mode
== ptr_mode
8632 && tree_fits_shwi_p (treeop1
))
8634 tree exp1
= treeop1
;
8636 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
8640 op0
= force_operand (op0
, NULL_RTX
);
8642 op0
= copy_to_mode_reg (mode
, op0
);
8644 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode
, op0
,
8645 gen_int_mode (tree_to_shwi (exp1
),
8646 TYPE_MODE (TREE_TYPE (exp1
)))));
8649 if (modifier
== EXPAND_STACK_PARM
)
8652 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8653 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
8655 case TRUNC_DIV_EXPR
:
8656 case FLOOR_DIV_EXPR
:
8658 case ROUND_DIV_EXPR
:
8659 case EXACT_DIV_EXPR
:
8660 /* If this is a fixed-point operation, then we cannot use the code
8661 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8663 if (ALL_FIXED_POINT_MODE_P (mode
))
8666 if (modifier
== EXPAND_STACK_PARM
)
8668 /* Possible optimization: compute the dividend with EXPAND_SUM
8669 then if the divisor is constant can optimize the case
8670 where some terms of the dividend have coeffs divisible by it. */
8671 expand_operands (treeop0
, treeop1
,
8672 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8673 return expand_divmod (0, code
, mode
, op0
, op1
, target
, unsignedp
);
8678 case MULT_HIGHPART_EXPR
:
8679 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8680 temp
= expand_mult_highpart (mode
, op0
, op1
, target
, unsignedp
);
8684 case TRUNC_MOD_EXPR
:
8685 case FLOOR_MOD_EXPR
:
8687 case ROUND_MOD_EXPR
:
8688 if (modifier
== EXPAND_STACK_PARM
)
8690 expand_operands (treeop0
, treeop1
,
8691 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8692 return expand_divmod (1, code
, mode
, op0
, op1
, target
, unsignedp
);
8694 case FIXED_CONVERT_EXPR
:
8695 op0
= expand_normal (treeop0
);
8696 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8697 target
= gen_reg_rtx (mode
);
8699 if ((TREE_CODE (TREE_TYPE (treeop0
)) == INTEGER_TYPE
8700 && TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
8701 || (TREE_CODE (type
) == INTEGER_TYPE
&& TYPE_UNSIGNED (type
)))
8702 expand_fixed_convert (target
, op0
, 1, TYPE_SATURATING (type
));
8704 expand_fixed_convert (target
, op0
, 0, TYPE_SATURATING (type
));
8707 case FIX_TRUNC_EXPR
:
8708 op0
= expand_normal (treeop0
);
8709 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8710 target
= gen_reg_rtx (mode
);
8711 expand_fix (target
, op0
, unsignedp
);
8715 op0
= expand_normal (treeop0
);
8716 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8717 target
= gen_reg_rtx (mode
);
8718 /* expand_float can't figure out what to do if FROM has VOIDmode.
8719 So give it the correct mode. With -O, cse will optimize this. */
8720 if (GET_MODE (op0
) == VOIDmode
)
8721 op0
= copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0
)),
8723 expand_float (target
, op0
,
8724 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
8728 op0
= expand_expr (treeop0
, subtarget
,
8729 VOIDmode
, EXPAND_NORMAL
);
8730 if (modifier
== EXPAND_STACK_PARM
)
8732 temp
= expand_unop (mode
,
8733 optab_for_tree_code (NEGATE_EXPR
, type
,
8737 return REDUCE_BIT_FIELD (temp
);
8740 op0
= expand_expr (treeop0
, subtarget
,
8741 VOIDmode
, EXPAND_NORMAL
);
8742 if (modifier
== EXPAND_STACK_PARM
)
8745 /* ABS_EXPR is not valid for complex arguments. */
8746 gcc_assert (GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
8747 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
);
8749 /* Unsigned abs is simply the operand. Testing here means we don't
8750 risk generating incorrect code below. */
8751 if (TYPE_UNSIGNED (type
))
8754 return expand_abs (mode
, op0
, target
, unsignedp
,
8755 safe_from_p (target
, treeop0
, 1));
8759 target
= original_target
;
8761 || modifier
== EXPAND_STACK_PARM
8762 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
8763 || GET_MODE (target
) != mode
8765 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
8766 target
= gen_reg_rtx (mode
);
8767 expand_operands (treeop0
, treeop1
,
8768 target
, &op0
, &op1
, EXPAND_NORMAL
);
8770 /* First try to do it with a special MIN or MAX instruction.
8771 If that does not win, use a conditional jump to select the proper
8773 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
8774 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
8779 /* At this point, a MEM target is no longer useful; we will get better
8782 if (! REG_P (target
))
8783 target
= gen_reg_rtx (mode
);
8785 /* If op1 was placed in target, swap op0 and op1. */
8786 if (target
!= op0
&& target
== op1
)
8793 /* We generate better code and avoid problems with op1 mentioning
8794 target by forcing op1 into a pseudo if it isn't a constant. */
8795 if (! CONSTANT_P (op1
))
8796 op1
= force_reg (mode
, op1
);
8799 enum rtx_code comparison_code
;
8802 if (code
== MAX_EXPR
)
8803 comparison_code
= unsignedp
? GEU
: GE
;
8805 comparison_code
= unsignedp
? LEU
: LE
;
8807 /* Canonicalize to comparisons against 0. */
8808 if (op1
== const1_rtx
)
8810 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8811 or (a != 0 ? a : 1) for unsigned.
8812 For MIN we are safe converting (a <= 1 ? a : 1)
8813 into (a <= 0 ? a : 1) */
8814 cmpop1
= const0_rtx
;
8815 if (code
== MAX_EXPR
)
8816 comparison_code
= unsignedp
? NE
: GT
;
8818 if (op1
== constm1_rtx
&& !unsignedp
)
8820 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8821 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8822 cmpop1
= const0_rtx
;
8823 if (code
== MIN_EXPR
)
8824 comparison_code
= LT
;
8826 #ifdef HAVE_conditional_move
8827 /* Use a conditional move if possible. */
8828 if (can_conditionally_move_p (mode
))
8834 /* Try to emit the conditional move. */
8835 insn
= emit_conditional_move (target
, comparison_code
,
8840 /* If we could do the conditional move, emit the sequence,
8844 rtx seq
= get_insns ();
8850 /* Otherwise discard the sequence and fall back to code with
8856 emit_move_insn (target
, op0
);
8858 temp
= gen_label_rtx ();
8859 do_compare_rtx_and_jump (target
, cmpop1
, comparison_code
,
8860 unsignedp
, mode
, NULL_RTX
, NULL_RTX
, temp
,
8863 emit_move_insn (target
, op1
);
8868 op0
= expand_expr (treeop0
, subtarget
,
8869 VOIDmode
, EXPAND_NORMAL
);
8870 if (modifier
== EXPAND_STACK_PARM
)
8872 /* In case we have to reduce the result to bitfield precision
8873 for unsigned bitfield expand this as XOR with a proper constant
8875 if (reduce_bit_field
&& TYPE_UNSIGNED (type
))
8876 temp
= expand_binop (mode
, xor_optab
, op0
,
8877 immed_double_int_const
8878 (double_int::mask (TYPE_PRECISION (type
)), mode
),
8879 target
, 1, OPTAB_LIB_WIDEN
);
8881 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, target
, 1);
8885 /* ??? Can optimize bitwise operations with one arg constant.
8886 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8887 and (a bitwise1 b) bitwise2 b (etc)
8888 but that is probably not worth while. */
8897 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type
))
8898 || (GET_MODE_PRECISION (TYPE_MODE (type
))
8899 == TYPE_PRECISION (type
)));
8904 /* If this is a fixed-point operation, then we cannot use the code
8905 below because "expand_shift" doesn't support sat/no-sat fixed-point
8907 if (ALL_FIXED_POINT_MODE_P (mode
))
8910 if (! safe_from_p (subtarget
, treeop1
, 1))
8912 if (modifier
== EXPAND_STACK_PARM
)
8914 op0
= expand_expr (treeop0
, subtarget
,
8915 VOIDmode
, EXPAND_NORMAL
);
8916 temp
= expand_variable_shift (code
, mode
, op0
, treeop1
, target
,
8918 if (code
== LSHIFT_EXPR
)
8919 temp
= REDUCE_BIT_FIELD (temp
);
8922 /* Could determine the answer when only additive constants differ. Also,
8923 the addition of one can be handled by changing the condition. */
8930 case UNORDERED_EXPR
:
8938 temp
= do_store_flag (ops
,
8939 modifier
!= EXPAND_STACK_PARM
? target
: NULL_RTX
,
8940 tmode
!= VOIDmode
? tmode
: mode
);
8944 /* Use a compare and a jump for BLKmode comparisons, or for function
8945 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
8948 || modifier
== EXPAND_STACK_PARM
8949 || ! safe_from_p (target
, treeop0
, 1)
8950 || ! safe_from_p (target
, treeop1
, 1)
8951 /* Make sure we don't have a hard reg (such as function's return
8952 value) live across basic blocks, if not optimizing. */
8953 || (!optimize
&& REG_P (target
)
8954 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)))
8955 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
8957 emit_move_insn (target
, const0_rtx
);
8959 op1
= gen_label_rtx ();
8960 jumpifnot_1 (code
, treeop0
, treeop1
, op1
, -1);
8962 if (TYPE_PRECISION (type
) == 1 && !TYPE_UNSIGNED (type
))
8963 emit_move_insn (target
, constm1_rtx
);
8965 emit_move_insn (target
, const1_rtx
);
8971 /* Get the rtx code of the operands. */
8972 op0
= expand_normal (treeop0
);
8973 op1
= expand_normal (treeop1
);
8976 target
= gen_reg_rtx (TYPE_MODE (type
));
8978 /* If target overlaps with op1, then either we need to force
8979 op1 into a pseudo (if target also overlaps with op0),
8980 or write the complex parts in reverse order. */
8981 switch (GET_CODE (target
))
8984 if (reg_overlap_mentioned_p (XEXP (target
, 0), op1
))
8986 if (reg_overlap_mentioned_p (XEXP (target
, 1), op0
))
8988 complex_expr_force_op1
:
8989 temp
= gen_reg_rtx (GET_MODE_INNER (GET_MODE (target
)));
8990 emit_move_insn (temp
, op1
);
8994 complex_expr_swap_order
:
8995 /* Move the imaginary (op1) and real (op0) parts to their
8997 write_complex_part (target
, op1
, true);
8998 write_complex_part (target
, op0
, false);
9004 temp
= adjust_address_nv (target
,
9005 GET_MODE_INNER (GET_MODE (target
)), 0);
9006 if (reg_overlap_mentioned_p (temp
, op1
))
9008 enum machine_mode imode
= GET_MODE_INNER (GET_MODE (target
));
9009 temp
= adjust_address_nv (target
, imode
,
9010 GET_MODE_SIZE (imode
));
9011 if (reg_overlap_mentioned_p (temp
, op0
))
9012 goto complex_expr_force_op1
;
9013 goto complex_expr_swap_order
;
9017 if (reg_overlap_mentioned_p (target
, op1
))
9019 if (reg_overlap_mentioned_p (target
, op0
))
9020 goto complex_expr_force_op1
;
9021 goto complex_expr_swap_order
;
9026 /* Move the real (op0) and imaginary (op1) parts to their location. */
9027 write_complex_part (target
, op0
, false);
9028 write_complex_part (target
, op1
, true);
9032 case WIDEN_SUM_EXPR
:
9034 tree oprnd0
= treeop0
;
9035 tree oprnd1
= treeop1
;
9037 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9038 target
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, op1
,
9043 case REDUC_MAX_EXPR
:
9044 case REDUC_MIN_EXPR
:
9045 case REDUC_PLUS_EXPR
:
9047 op0
= expand_normal (treeop0
);
9048 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9049 temp
= expand_unop (mode
, this_optab
, op0
, target
, unsignedp
);
9054 case VEC_LSHIFT_EXPR
:
9055 case VEC_RSHIFT_EXPR
:
9057 target
= expand_vec_shift_expr (ops
, target
);
9061 case VEC_UNPACK_HI_EXPR
:
9062 case VEC_UNPACK_LO_EXPR
:
9064 op0
= expand_normal (treeop0
);
9065 temp
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, NULL_RTX
,
9071 case VEC_UNPACK_FLOAT_HI_EXPR
:
9072 case VEC_UNPACK_FLOAT_LO_EXPR
:
9074 op0
= expand_normal (treeop0
);
9075 /* The signedness is determined from input operand. */
9076 temp
= expand_widen_pattern_expr
9077 (ops
, op0
, NULL_RTX
, NULL_RTX
,
9078 target
, TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
9084 case VEC_WIDEN_MULT_HI_EXPR
:
9085 case VEC_WIDEN_MULT_LO_EXPR
:
9086 case VEC_WIDEN_MULT_EVEN_EXPR
:
9087 case VEC_WIDEN_MULT_ODD_EXPR
:
9088 case VEC_WIDEN_LSHIFT_HI_EXPR
:
9089 case VEC_WIDEN_LSHIFT_LO_EXPR
:
9090 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9091 target
= expand_widen_pattern_expr (ops
, op0
, op1
, NULL_RTX
,
9093 gcc_assert (target
);
9096 case VEC_PACK_TRUNC_EXPR
:
9097 case VEC_PACK_SAT_EXPR
:
9098 case VEC_PACK_FIX_TRUNC_EXPR
:
9099 mode
= TYPE_MODE (TREE_TYPE (treeop0
));
9103 expand_operands (treeop0
, treeop1
, target
, &op0
, &op1
, EXPAND_NORMAL
);
9104 op2
= expand_normal (treeop2
);
9106 /* Careful here: if the target doesn't support integral vector modes,
9107 a constant selection vector could wind up smooshed into a normal
9108 integral constant. */
9109 if (CONSTANT_P (op2
) && GET_CODE (op2
) != CONST_VECTOR
)
9111 tree sel_type
= TREE_TYPE (treeop2
);
9112 enum machine_mode vmode
9113 = mode_for_vector (TYPE_MODE (TREE_TYPE (sel_type
)),
9114 TYPE_VECTOR_SUBPARTS (sel_type
));
9115 gcc_assert (GET_MODE_CLASS (vmode
) == MODE_VECTOR_INT
);
9116 op2
= simplify_subreg (vmode
, op2
, TYPE_MODE (sel_type
), 0);
9117 gcc_assert (op2
&& GET_CODE (op2
) == CONST_VECTOR
);
9120 gcc_assert (GET_MODE_CLASS (GET_MODE (op2
)) == MODE_VECTOR_INT
);
9122 temp
= expand_vec_perm (mode
, op0
, op1
, op2
, target
);
9128 tree oprnd0
= treeop0
;
9129 tree oprnd1
= treeop1
;
9130 tree oprnd2
= treeop2
;
9133 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9134 op2
= expand_normal (oprnd2
);
9135 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
9140 case REALIGN_LOAD_EXPR
:
9142 tree oprnd0
= treeop0
;
9143 tree oprnd1
= treeop1
;
9144 tree oprnd2
= treeop2
;
9147 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9148 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9149 op2
= expand_normal (oprnd2
);
9150 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
9157 /* A COND_EXPR with its type being VOID_TYPE represents a
9158 conditional jump and is handled in
9159 expand_gimple_cond_expr. */
9160 gcc_assert (!VOID_TYPE_P (type
));
9162 /* Note that COND_EXPRs whose type is a structure or union
9163 are required to be constructed to contain assignments of
9164 a temporary variable, so that we can evaluate them here
9165 for side effect only. If type is void, we must do likewise. */
9167 gcc_assert (!TREE_ADDRESSABLE (type
)
9169 && TREE_TYPE (treeop1
) != void_type_node
9170 && TREE_TYPE (treeop2
) != void_type_node
);
9172 temp
= expand_cond_expr_using_cmove (treeop0
, treeop1
, treeop2
);
9176 /* If we are not to produce a result, we have no target. Otherwise,
9177 if a target was specified use it; it will not be used as an
9178 intermediate target unless it is safe. If no target, use a
9181 if (modifier
!= EXPAND_STACK_PARM
9183 && safe_from_p (original_target
, treeop0
, 1)
9184 && GET_MODE (original_target
) == mode
9185 && !MEM_P (original_target
))
9186 temp
= original_target
;
9188 temp
= assign_temp (type
, 0, 1);
9190 do_pending_stack_adjust ();
9192 op0
= gen_label_rtx ();
9193 op1
= gen_label_rtx ();
9194 jumpifnot (treeop0
, op0
, -1);
9195 store_expr (treeop1
, temp
,
9196 modifier
== EXPAND_STACK_PARM
,
9199 emit_jump_insn (gen_jump (op1
));
9202 store_expr (treeop2
, temp
,
9203 modifier
== EXPAND_STACK_PARM
,
9211 target
= expand_vec_cond_expr (type
, treeop0
, treeop1
, treeop2
, target
);
9218 /* Here to do an ordinary binary operator. */
9220 expand_operands (treeop0
, treeop1
,
9221 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
9223 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9225 if (modifier
== EXPAND_STACK_PARM
)
9227 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
,
9228 unsignedp
, OPTAB_LIB_WIDEN
);
9230 /* Bitwise operations do not need bitfield reduction as we expect their
9231 operands being properly truncated. */
9232 if (code
== BIT_XOR_EXPR
9233 || code
== BIT_AND_EXPR
9234 || code
== BIT_IOR_EXPR
)
9236 return REDUCE_BIT_FIELD (temp
);
9238 #undef REDUCE_BIT_FIELD
9241 /* Return TRUE if expression STMT is suitable for replacement.
9242 Never consider memory loads as replaceable, because those don't ever lead
9243 into constant expressions. */
9246 stmt_is_replaceable_p (gimple stmt
)
9248 if (ssa_is_replaceable_p (stmt
))
9250 /* Don't move around loads. */
9251 if (!gimple_assign_single_p (stmt
)
9252 || is_gimple_val (gimple_assign_rhs1 (stmt
)))
9259 expand_expr_real_1 (tree exp
, rtx target
, enum machine_mode tmode
,
9260 enum expand_modifier modifier
, rtx
*alt_rtl
,
9261 bool inner_reference_p
)
9263 rtx op0
, op1
, temp
, decl_rtl
;
9266 enum machine_mode mode
;
9267 enum tree_code code
= TREE_CODE (exp
);
9268 rtx subtarget
, original_target
;
9271 bool reduce_bit_field
;
9272 location_t loc
= EXPR_LOCATION (exp
);
9273 struct separate_ops ops
;
9274 tree treeop0
, treeop1
, treeop2
;
9275 tree ssa_name
= NULL_TREE
;
9278 type
= TREE_TYPE (exp
);
9279 mode
= TYPE_MODE (type
);
9280 unsignedp
= TYPE_UNSIGNED (type
);
9282 treeop0
= treeop1
= treeop2
= NULL_TREE
;
9283 if (!VL_EXP_CLASS_P (exp
))
9284 switch (TREE_CODE_LENGTH (code
))
9287 case 3: treeop2
= TREE_OPERAND (exp
, 2);
9288 case 2: treeop1
= TREE_OPERAND (exp
, 1);
9289 case 1: treeop0
= TREE_OPERAND (exp
, 0);
9299 ignore
= (target
== const0_rtx
9300 || ((CONVERT_EXPR_CODE_P (code
)
9301 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
9302 && TREE_CODE (type
) == VOID_TYPE
));
9304 /* An operation in what may be a bit-field type needs the
9305 result to be reduced to the precision of the bit-field type,
9306 which is narrower than that of the type's mode. */
9307 reduce_bit_field
= (!ignore
9308 && INTEGRAL_TYPE_P (type
)
9309 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
));
9311 /* If we are going to ignore this result, we need only do something
9312 if there is a side-effect somewhere in the expression. If there
9313 is, short-circuit the most common cases here. Note that we must
9314 not call expand_expr with anything but const0_rtx in case this
9315 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9319 if (! TREE_SIDE_EFFECTS (exp
))
9322 /* Ensure we reference a volatile object even if value is ignored, but
9323 don't do this if all we are doing is taking its address. */
9324 if (TREE_THIS_VOLATILE (exp
)
9325 && TREE_CODE (exp
) != FUNCTION_DECL
9326 && mode
!= VOIDmode
&& mode
!= BLKmode
9327 && modifier
!= EXPAND_CONST_ADDRESS
)
9329 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, modifier
);
9335 if (TREE_CODE_CLASS (code
) == tcc_unary
9336 || code
== BIT_FIELD_REF
9337 || code
== COMPONENT_REF
9338 || code
== INDIRECT_REF
)
9339 return expand_expr (treeop0
, const0_rtx
, VOIDmode
,
9342 else if (TREE_CODE_CLASS (code
) == tcc_binary
9343 || TREE_CODE_CLASS (code
) == tcc_comparison
9344 || code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
)
9346 expand_expr (treeop0
, const0_rtx
, VOIDmode
, modifier
);
9347 expand_expr (treeop1
, const0_rtx
, VOIDmode
, modifier
);
9354 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
9357 /* Use subtarget as the target for operand 0 of a binary operation. */
9358 subtarget
= get_subtarget (target
);
9359 original_target
= target
;
9365 tree function
= decl_function_context (exp
);
9367 temp
= label_rtx (exp
);
9368 temp
= gen_rtx_LABEL_REF (Pmode
, temp
);
9370 if (function
!= current_function_decl
9372 LABEL_REF_NONLOCAL_P (temp
) = 1;
9374 temp
= gen_rtx_MEM (FUNCTION_MODE
, temp
);
9379 /* ??? ivopts calls expander, without any preparation from
9380 out-of-ssa. So fake instructions as if this was an access to the
9381 base variable. This unnecessarily allocates a pseudo, see how we can
9382 reuse it, if partition base vars have it set already. */
9383 if (!currently_expanding_to_rtl
)
9385 tree var
= SSA_NAME_VAR (exp
);
9386 if (var
&& DECL_RTL_SET_P (var
))
9387 return DECL_RTL (var
);
9388 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp
)),
9389 LAST_VIRTUAL_REGISTER
+ 1);
9392 g
= get_gimple_for_ssa_name (exp
);
9393 /* For EXPAND_INITIALIZER try harder to get something simpler. */
9395 && modifier
== EXPAND_INITIALIZER
9396 && !SSA_NAME_IS_DEFAULT_DEF (exp
)
9397 && (optimize
|| DECL_IGNORED_P (SSA_NAME_VAR (exp
)))
9398 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp
)))
9399 g
= SSA_NAME_DEF_STMT (exp
);
9403 location_t saved_loc
= curr_insn_location ();
9405 set_curr_insn_location (gimple_location (g
));
9406 r
= expand_expr_real (gimple_assign_rhs_to_tree (g
), target
,
9407 tmode
, modifier
, NULL
, inner_reference_p
);
9408 set_curr_insn_location (saved_loc
);
9409 if (REG_P (r
) && !REG_EXPR (r
))
9410 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp
), r
);
9415 decl_rtl
= get_rtx_for_ssa_name (ssa_name
);
9416 exp
= SSA_NAME_VAR (ssa_name
);
9417 goto expand_decl_rtl
;
9421 /* If a static var's type was incomplete when the decl was written,
9422 but the type is complete now, lay out the decl now. */
9423 if (DECL_SIZE (exp
) == 0
9424 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp
))
9425 && (TREE_STATIC (exp
) || DECL_EXTERNAL (exp
)))
9426 layout_decl (exp
, 0);
9428 /* ... fall through ... */
9432 decl_rtl
= DECL_RTL (exp
);
9434 gcc_assert (decl_rtl
);
9435 decl_rtl
= copy_rtx (decl_rtl
);
9436 /* Record writes to register variables. */
9437 if (modifier
== EXPAND_WRITE
9439 && HARD_REGISTER_P (decl_rtl
))
9440 add_to_hard_reg_set (&crtl
->asm_clobbers
,
9441 GET_MODE (decl_rtl
), REGNO (decl_rtl
));
9443 /* Ensure variable marked as used even if it doesn't go through
9444 a parser. If it hasn't be used yet, write out an external
9446 TREE_USED (exp
) = 1;
9448 /* Show we haven't gotten RTL for this yet. */
9451 /* Variables inherited from containing functions should have
9452 been lowered by this point. */
9453 context
= decl_function_context (exp
);
9454 gcc_assert (SCOPE_FILE_SCOPE_P (context
)
9455 || context
== current_function_decl
9456 || TREE_STATIC (exp
)
9457 || DECL_EXTERNAL (exp
)
9458 /* ??? C++ creates functions that are not TREE_STATIC. */
9459 || TREE_CODE (exp
) == FUNCTION_DECL
);
9461 /* This is the case of an array whose size is to be determined
9462 from its initializer, while the initializer is still being parsed.
9463 ??? We aren't parsing while expanding anymore. */
9465 if (MEM_P (decl_rtl
) && REG_P (XEXP (decl_rtl
, 0)))
9466 temp
= validize_mem (decl_rtl
);
9468 /* If DECL_RTL is memory, we are in the normal case and the
9469 address is not valid, get the address into a register. */
9471 else if (MEM_P (decl_rtl
) && modifier
!= EXPAND_INITIALIZER
)
9474 *alt_rtl
= decl_rtl
;
9475 decl_rtl
= use_anchored_address (decl_rtl
);
9476 if (modifier
!= EXPAND_CONST_ADDRESS
9477 && modifier
!= EXPAND_SUM
9478 && !memory_address_addr_space_p (DECL_MODE (exp
),
9480 MEM_ADDR_SPACE (decl_rtl
)))
9481 temp
= replace_equiv_address (decl_rtl
,
9482 copy_rtx (XEXP (decl_rtl
, 0)));
9485 /* If we got something, return it. But first, set the alignment
9486 if the address is a register. */
9489 if (MEM_P (temp
) && REG_P (XEXP (temp
, 0)))
9490 mark_reg_pointer (XEXP (temp
, 0), DECL_ALIGN (exp
));
9495 /* If the mode of DECL_RTL does not match that of the decl,
9496 there are two cases: we are dealing with a BLKmode value
9497 that is returned in a register, or we are dealing with
9498 a promoted value. In the latter case, return a SUBREG
9499 of the wanted mode, but mark it so that we know that it
9500 was already extended. */
9501 if (REG_P (decl_rtl
)
9502 && DECL_MODE (exp
) != BLKmode
9503 && GET_MODE (decl_rtl
) != DECL_MODE (exp
))
9505 enum machine_mode pmode
;
9507 /* Get the signedness to be used for this variable. Ensure we get
9508 the same mode we got when the variable was declared. */
9509 if (code
== SSA_NAME
9510 && (g
= SSA_NAME_DEF_STMT (ssa_name
))
9511 && gimple_code (g
) == GIMPLE_CALL
9512 && !gimple_call_internal_p (g
))
9513 pmode
= promote_function_mode (type
, mode
, &unsignedp
,
9514 gimple_call_fntype (g
),
9517 pmode
= promote_decl_mode (exp
, &unsignedp
);
9518 gcc_assert (GET_MODE (decl_rtl
) == pmode
);
9520 temp
= gen_lowpart_SUBREG (mode
, decl_rtl
);
9521 SUBREG_PROMOTED_VAR_P (temp
) = 1;
9522 SUBREG_PROMOTED_UNSIGNED_SET (temp
, unsignedp
);
9529 temp
= immed_double_const (TREE_INT_CST_LOW (exp
),
9530 TREE_INT_CST_HIGH (exp
), mode
);
9536 tree tmp
= NULL_TREE
;
9537 if (GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
9538 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
9539 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FRACT
9540 || GET_MODE_CLASS (mode
) == MODE_VECTOR_UFRACT
9541 || GET_MODE_CLASS (mode
) == MODE_VECTOR_ACCUM
9542 || GET_MODE_CLASS (mode
) == MODE_VECTOR_UACCUM
)
9543 return const_vector_from_tree (exp
);
9544 if (GET_MODE_CLASS (mode
) == MODE_INT
)
9546 tree type_for_mode
= lang_hooks
.types
.type_for_mode (mode
, 1);
9548 tmp
= fold_unary_loc (loc
, VIEW_CONVERT_EXPR
, type_for_mode
, exp
);
9552 vec
<constructor_elt
, va_gc
> *v
;
9554 vec_alloc (v
, VECTOR_CST_NELTS (exp
));
9555 for (i
= 0; i
< VECTOR_CST_NELTS (exp
); ++i
)
9556 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, VECTOR_CST_ELT (exp
, i
));
9557 tmp
= build_constructor (type
, v
);
9559 return expand_expr (tmp
, ignore
? const0_rtx
: target
,
9564 return expand_expr (DECL_INITIAL (exp
), target
, VOIDmode
, modifier
);
9567 /* If optimized, generate immediate CONST_DOUBLE
9568 which will be turned into memory by reload if necessary.
9570 We used to force a register so that loop.c could see it. But
9571 this does not allow gen_* patterns to perform optimizations with
9572 the constants. It also produces two insns in cases like "x = 1.0;".
9573 On most machines, floating-point constants are not permitted in
9574 many insns, so we'd end up copying it to a register in any case.
9576 Now, we do the copying in expand_binop, if appropriate. */
9577 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp
),
9578 TYPE_MODE (TREE_TYPE (exp
)));
9581 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp
),
9582 TYPE_MODE (TREE_TYPE (exp
)));
9585 /* Handle evaluating a complex constant in a CONCAT target. */
9586 if (original_target
&& GET_CODE (original_target
) == CONCAT
)
9588 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (exp
)));
9591 rtarg
= XEXP (original_target
, 0);
9592 itarg
= XEXP (original_target
, 1);
9594 /* Move the real and imaginary parts separately. */
9595 op0
= expand_expr (TREE_REALPART (exp
), rtarg
, mode
, EXPAND_NORMAL
);
9596 op1
= expand_expr (TREE_IMAGPART (exp
), itarg
, mode
, EXPAND_NORMAL
);
9599 emit_move_insn (rtarg
, op0
);
9601 emit_move_insn (itarg
, op1
);
9603 return original_target
;
9606 /* ... fall through ... */
9609 temp
= expand_expr_constant (exp
, 1, modifier
);
9611 /* temp contains a constant address.
9612 On RISC machines where a constant address isn't valid,
9613 make some insns to get that address into a register. */
9614 if (modifier
!= EXPAND_CONST_ADDRESS
9615 && modifier
!= EXPAND_INITIALIZER
9616 && modifier
!= EXPAND_SUM
9617 && ! memory_address_addr_space_p (mode
, XEXP (temp
, 0),
9618 MEM_ADDR_SPACE (temp
)))
9619 return replace_equiv_address (temp
,
9620 copy_rtx (XEXP (temp
, 0)));
9626 rtx ret
= expand_expr_real_1 (val
, target
, tmode
, modifier
, alt_rtl
,
9629 if (!SAVE_EXPR_RESOLVED_P (exp
))
9631 /* We can indeed still hit this case, typically via builtin
9632 expanders calling save_expr immediately before expanding
9633 something. Assume this means that we only have to deal
9634 with non-BLKmode values. */
9635 gcc_assert (GET_MODE (ret
) != BLKmode
);
9637 val
= build_decl (curr_insn_location (),
9638 VAR_DECL
, NULL
, TREE_TYPE (exp
));
9639 DECL_ARTIFICIAL (val
) = 1;
9640 DECL_IGNORED_P (val
) = 1;
9642 TREE_OPERAND (exp
, 0) = treeop0
;
9643 SAVE_EXPR_RESOLVED_P (exp
) = 1;
9645 if (!CONSTANT_P (ret
))
9646 ret
= copy_to_reg (ret
);
9647 SET_DECL_RTL (val
, ret
);
9655 /* If we don't need the result, just ensure we evaluate any
9659 unsigned HOST_WIDE_INT idx
;
9662 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
9663 expand_expr (value
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
9668 return expand_constructor (exp
, target
, modifier
, false);
9670 case TARGET_MEM_REF
:
9673 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
9674 enum insn_code icode
;
9677 op0
= addr_for_mem_ref (exp
, as
, true);
9678 op0
= memory_address_addr_space (mode
, op0
, as
);
9679 temp
= gen_rtx_MEM (mode
, op0
);
9680 set_mem_attributes (temp
, exp
, 0);
9681 set_mem_addr_space (temp
, as
);
9682 align
= get_object_alignment (exp
);
9683 if (modifier
!= EXPAND_WRITE
9684 && modifier
!= EXPAND_MEMORY
9686 && align
< GET_MODE_ALIGNMENT (mode
)
9687 /* If the target does not have special handling for unaligned
9688 loads of mode then it can use regular moves for them. */
9689 && ((icode
= optab_handler (movmisalign_optab
, mode
))
9690 != CODE_FOR_nothing
))
9692 struct expand_operand ops
[2];
9694 /* We've already validated the memory, and we're creating a
9695 new pseudo destination. The predicates really can't fail,
9696 nor can the generator. */
9697 create_output_operand (&ops
[0], NULL_RTX
, mode
);
9698 create_fixed_operand (&ops
[1], temp
);
9699 expand_insn (icode
, 2, ops
);
9700 temp
= ops
[0].value
;
9708 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
9709 enum machine_mode address_mode
;
9710 tree base
= TREE_OPERAND (exp
, 0);
9712 enum insn_code icode
;
9714 /* Handle expansion of non-aliased memory with non-BLKmode. That
9715 might end up in a register. */
9716 if (mem_ref_refers_to_non_mem_p (exp
))
9718 HOST_WIDE_INT offset
= mem_ref_offset (exp
).low
;
9719 base
= TREE_OPERAND (base
, 0);
9721 && tree_fits_uhwi_p (TYPE_SIZE (type
))
9722 && (GET_MODE_BITSIZE (DECL_MODE (base
))
9723 == tree_to_uhwi (TYPE_SIZE (type
))))
9724 return expand_expr (build1 (VIEW_CONVERT_EXPR
, type
, base
),
9725 target
, tmode
, modifier
);
9726 if (TYPE_MODE (type
) == BLKmode
)
9728 temp
= assign_stack_temp (DECL_MODE (base
),
9729 GET_MODE_SIZE (DECL_MODE (base
)));
9730 store_expr (base
, temp
, 0, false);
9731 temp
= adjust_address (temp
, BLKmode
, offset
);
9732 set_mem_size (temp
, int_size_in_bytes (type
));
9735 exp
= build3 (BIT_FIELD_REF
, type
, base
, TYPE_SIZE (type
),
9736 bitsize_int (offset
* BITS_PER_UNIT
));
9737 return expand_expr (exp
, target
, tmode
, modifier
);
9739 address_mode
= targetm
.addr_space
.address_mode (as
);
9740 base
= TREE_OPERAND (exp
, 0);
9741 if ((def_stmt
= get_def_for_expr (base
, BIT_AND_EXPR
)))
9743 tree mask
= gimple_assign_rhs2 (def_stmt
);
9744 base
= build2 (BIT_AND_EXPR
, TREE_TYPE (base
),
9745 gimple_assign_rhs1 (def_stmt
), mask
);
9746 TREE_OPERAND (exp
, 0) = base
;
9748 align
= get_object_alignment (exp
);
9749 op0
= expand_expr (base
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
9750 op0
= memory_address_addr_space (mode
, op0
, as
);
9751 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
9754 = immed_double_int_const (mem_ref_offset (exp
), address_mode
);
9755 op0
= simplify_gen_binary (PLUS
, address_mode
, op0
, off
);
9756 op0
= memory_address_addr_space (mode
, op0
, as
);
9758 temp
= gen_rtx_MEM (mode
, op0
);
9759 set_mem_attributes (temp
, exp
, 0);
9760 set_mem_addr_space (temp
, as
);
9761 if (TREE_THIS_VOLATILE (exp
))
9762 MEM_VOLATILE_P (temp
) = 1;
9763 if (modifier
!= EXPAND_WRITE
9764 && modifier
!= EXPAND_MEMORY
9765 && !inner_reference_p
9767 && align
< GET_MODE_ALIGNMENT (mode
))
9769 if ((icode
= optab_handler (movmisalign_optab
, mode
))
9770 != CODE_FOR_nothing
)
9772 struct expand_operand ops
[2];
9774 /* We've already validated the memory, and we're creating a
9775 new pseudo destination. The predicates really can't fail,
9776 nor can the generator. */
9777 create_output_operand (&ops
[0], NULL_RTX
, mode
);
9778 create_fixed_operand (&ops
[1], temp
);
9779 expand_insn (icode
, 2, ops
);
9780 temp
= ops
[0].value
;
9782 else if (SLOW_UNALIGNED_ACCESS (mode
, align
))
9783 temp
= extract_bit_field (temp
, GET_MODE_BITSIZE (mode
),
9784 0, TYPE_UNSIGNED (TREE_TYPE (exp
)),
9785 (modifier
== EXPAND_STACK_PARM
9786 ? NULL_RTX
: target
),
9795 tree array
= treeop0
;
9796 tree index
= treeop1
;
9799 /* Fold an expression like: "foo"[2].
9800 This is not done in fold so it won't happen inside &.
9801 Don't fold if this is for wide characters since it's too
9802 difficult to do correctly and this is a very rare case. */
9804 if (modifier
!= EXPAND_CONST_ADDRESS
9805 && modifier
!= EXPAND_INITIALIZER
9806 && modifier
!= EXPAND_MEMORY
)
9808 tree t
= fold_read_from_constant_string (exp
);
9811 return expand_expr (t
, target
, tmode
, modifier
);
9814 /* If this is a constant index into a constant array,
9815 just get the value from the array. Handle both the cases when
9816 we have an explicit constructor and when our operand is a variable
9817 that was declared const. */
9819 if (modifier
!= EXPAND_CONST_ADDRESS
9820 && modifier
!= EXPAND_INITIALIZER
9821 && modifier
!= EXPAND_MEMORY
9822 && TREE_CODE (array
) == CONSTRUCTOR
9823 && ! TREE_SIDE_EFFECTS (array
)
9824 && TREE_CODE (index
) == INTEGER_CST
)
9826 unsigned HOST_WIDE_INT ix
;
9829 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array
), ix
,
9831 if (tree_int_cst_equal (field
, index
))
9833 if (!TREE_SIDE_EFFECTS (value
))
9834 return expand_expr (fold (value
), target
, tmode
, modifier
);
9839 else if (optimize
>= 1
9840 && modifier
!= EXPAND_CONST_ADDRESS
9841 && modifier
!= EXPAND_INITIALIZER
9842 && modifier
!= EXPAND_MEMORY
9843 && TREE_READONLY (array
) && ! TREE_SIDE_EFFECTS (array
)
9844 && TREE_CODE (index
) == INTEGER_CST
9845 && (TREE_CODE (array
) == VAR_DECL
9846 || TREE_CODE (array
) == CONST_DECL
)
9847 && (init
= ctor_for_folding (array
)) != error_mark_node
)
9849 if (init
== NULL_TREE
)
9851 tree value
= build_zero_cst (type
);
9852 if (TREE_CODE (value
) == CONSTRUCTOR
)
9854 /* If VALUE is a CONSTRUCTOR, this optimization is only
9855 useful if this doesn't store the CONSTRUCTOR into
9856 memory. If it does, it is more efficient to just
9857 load the data from the array directly. */
9858 rtx ret
= expand_constructor (value
, target
,
9860 if (ret
== NULL_RTX
)
9865 return expand_expr (value
, target
, tmode
, modifier
);
9867 else if (TREE_CODE (init
) == CONSTRUCTOR
)
9869 unsigned HOST_WIDE_INT ix
;
9872 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init
), ix
,
9874 if (tree_int_cst_equal (field
, index
))
9876 if (TREE_SIDE_EFFECTS (value
))
9879 if (TREE_CODE (value
) == CONSTRUCTOR
)
9881 /* If VALUE is a CONSTRUCTOR, this
9882 optimization is only useful if
9883 this doesn't store the CONSTRUCTOR
9884 into memory. If it does, it is more
9885 efficient to just load the data from
9886 the array directly. */
9887 rtx ret
= expand_constructor (value
, target
,
9889 if (ret
== NULL_RTX
)
9894 expand_expr (fold (value
), target
, tmode
, modifier
);
9897 else if (TREE_CODE (init
) == STRING_CST
)
9899 tree low_bound
= array_ref_low_bound (exp
);
9900 tree index1
= fold_convert_loc (loc
, sizetype
, treeop1
);
9902 /* Optimize the special case of a zero lower bound.
9904 We convert the lower bound to sizetype to avoid problems
9905 with constant folding. E.g. suppose the lower bound is
9906 1 and its mode is QI. Without the conversion
9907 (ARRAY + (INDEX - (unsigned char)1))
9909 (ARRAY + (-(unsigned char)1) + INDEX)
9911 (ARRAY + 255 + INDEX). Oops! */
9912 if (!integer_zerop (low_bound
))
9913 index1
= size_diffop_loc (loc
, index1
,
9914 fold_convert_loc (loc
, sizetype
,
9917 if (compare_tree_int (index1
, TREE_STRING_LENGTH (init
)) < 0)
9919 tree type
= TREE_TYPE (TREE_TYPE (init
));
9920 enum machine_mode mode
= TYPE_MODE (type
);
9922 if (GET_MODE_CLASS (mode
) == MODE_INT
9923 && GET_MODE_SIZE (mode
) == 1)
9924 return gen_int_mode (TREE_STRING_POINTER (init
)
9925 [TREE_INT_CST_LOW (index1
)],
9931 goto normal_inner_ref
;
9934 /* If the operand is a CONSTRUCTOR, we can just extract the
9935 appropriate field if it is present. */
9936 if (TREE_CODE (treeop0
) == CONSTRUCTOR
)
9938 unsigned HOST_WIDE_INT idx
;
9941 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0
),
9943 if (field
== treeop1
9944 /* We can normally use the value of the field in the
9945 CONSTRUCTOR. However, if this is a bitfield in
9946 an integral mode that we can fit in a HOST_WIDE_INT,
9947 we must mask only the number of bits in the bitfield,
9948 since this is done implicitly by the constructor. If
9949 the bitfield does not meet either of those conditions,
9950 we can't do this optimization. */
9951 && (! DECL_BIT_FIELD (field
)
9952 || ((GET_MODE_CLASS (DECL_MODE (field
)) == MODE_INT
)
9953 && (GET_MODE_PRECISION (DECL_MODE (field
))
9954 <= HOST_BITS_PER_WIDE_INT
))))
9956 if (DECL_BIT_FIELD (field
)
9957 && modifier
== EXPAND_STACK_PARM
)
9959 op0
= expand_expr (value
, target
, tmode
, modifier
);
9960 if (DECL_BIT_FIELD (field
))
9962 HOST_WIDE_INT bitsize
= TREE_INT_CST_LOW (DECL_SIZE (field
));
9963 enum machine_mode imode
= TYPE_MODE (TREE_TYPE (field
));
9965 if (TYPE_UNSIGNED (TREE_TYPE (field
)))
9967 op1
= gen_int_mode (((HOST_WIDE_INT
) 1 << bitsize
) - 1,
9969 op0
= expand_and (imode
, op0
, op1
, target
);
9973 int count
= GET_MODE_PRECISION (imode
) - bitsize
;
9975 op0
= expand_shift (LSHIFT_EXPR
, imode
, op0
, count
,
9977 op0
= expand_shift (RSHIFT_EXPR
, imode
, op0
, count
,
9985 goto normal_inner_ref
;
9988 case ARRAY_RANGE_REF
:
9991 enum machine_mode mode1
, mode2
;
9992 HOST_WIDE_INT bitsize
, bitpos
;
9994 int volatilep
= 0, must_force_mem
;
9995 tree tem
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
9996 &mode1
, &unsignedp
, &volatilep
, true);
9997 rtx orig_op0
, memloc
;
9998 bool mem_attrs_from_type
= false;
10000 /* If we got back the original object, something is wrong. Perhaps
10001 we are evaluating an expression too early. In any event, don't
10002 infinitely recurse. */
10003 gcc_assert (tem
!= exp
);
10005 /* If TEM's type is a union of variable size, pass TARGET to the inner
10006 computation, since it will need a temporary and TARGET is known
10007 to have to do. This occurs in unchecked conversion in Ada. */
10009 = expand_expr_real (tem
,
10010 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
10011 && COMPLETE_TYPE_P (TREE_TYPE (tem
))
10012 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
10014 && modifier
!= EXPAND_STACK_PARM
10015 ? target
: NULL_RTX
),
10017 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
,
10020 /* If the field has a mode, we want to access it in the
10021 field's mode, not the computed mode.
10022 If a MEM has VOIDmode (external with incomplete type),
10023 use BLKmode for it instead. */
10026 if (mode1
!= VOIDmode
)
10027 op0
= adjust_address (op0
, mode1
, 0);
10028 else if (GET_MODE (op0
) == VOIDmode
)
10029 op0
= adjust_address (op0
, BLKmode
, 0);
10033 = CONSTANT_P (op0
) ? TYPE_MODE (TREE_TYPE (tem
)) : GET_MODE (op0
);
10035 /* If we have either an offset, a BLKmode result, or a reference
10036 outside the underlying object, we must force it to memory.
10037 Such a case can occur in Ada if we have unchecked conversion
10038 of an expression from a scalar type to an aggregate type or
10039 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
10040 passed a partially uninitialized object or a view-conversion
10041 to a larger size. */
10042 must_force_mem
= (offset
10043 || mode1
== BLKmode
10044 || bitpos
+ bitsize
> GET_MODE_BITSIZE (mode2
));
10046 /* Handle CONCAT first. */
10047 if (GET_CODE (op0
) == CONCAT
&& !must_force_mem
)
10050 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)))
10053 && bitsize
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
10056 op0
= XEXP (op0
, 0);
10057 mode2
= GET_MODE (op0
);
10059 else if (bitpos
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
10060 && bitsize
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 1)))
10064 op0
= XEXP (op0
, 1);
10066 mode2
= GET_MODE (op0
);
10069 /* Otherwise force into memory. */
10070 must_force_mem
= 1;
10073 /* If this is a constant, put it in a register if it is a legitimate
10074 constant and we don't need a memory reference. */
10075 if (CONSTANT_P (op0
)
10076 && mode2
!= BLKmode
10077 && targetm
.legitimate_constant_p (mode2
, op0
)
10078 && !must_force_mem
)
10079 op0
= force_reg (mode2
, op0
);
10081 /* Otherwise, if this is a constant, try to force it to the constant
10082 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
10083 is a legitimate constant. */
10084 else if (CONSTANT_P (op0
) && (memloc
= force_const_mem (mode2
, op0
)))
10085 op0
= validize_mem (memloc
);
10087 /* Otherwise, if this is a constant or the object is not in memory
10088 and need be, put it there. */
10089 else if (CONSTANT_P (op0
) || (!MEM_P (op0
) && must_force_mem
))
10091 tree nt
= build_qualified_type (TREE_TYPE (tem
),
10092 (TYPE_QUALS (TREE_TYPE (tem
))
10093 | TYPE_QUAL_CONST
));
10094 memloc
= assign_temp (nt
, 1, 1);
10095 emit_move_insn (memloc
, op0
);
10097 mem_attrs_from_type
= true;
10102 enum machine_mode address_mode
;
10103 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
,
10106 gcc_assert (MEM_P (op0
));
10108 address_mode
= get_address_mode (op0
);
10109 if (GET_MODE (offset_rtx
) != address_mode
)
10110 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
10112 if (GET_MODE (op0
) == BLKmode
10113 /* The check for a constant address in OP0 not having VOIDmode
10114 is probably no longer necessary. */
10115 && GET_MODE (XEXP (op0
, 0)) != VOIDmode
10117 && (bitpos
% bitsize
) == 0
10118 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
10119 && MEM_ALIGN (op0
) == GET_MODE_ALIGNMENT (mode1
))
10121 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
10125 op0
= offset_address (op0
, offset_rtx
,
10126 highest_pow2_factor (offset
));
10129 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
10130 record its alignment as BIGGEST_ALIGNMENT. */
10131 if (MEM_P (op0
) && bitpos
== 0 && offset
!= 0
10132 && is_aligning_offset (offset
, tem
))
10133 set_mem_align (op0
, BIGGEST_ALIGNMENT
);
10135 /* Don't forget about volatility even if this is a bitfield. */
10136 if (MEM_P (op0
) && volatilep
&& ! MEM_VOLATILE_P (op0
))
10138 if (op0
== orig_op0
)
10139 op0
= copy_rtx (op0
);
10141 MEM_VOLATILE_P (op0
) = 1;
10144 /* In cases where an aligned union has an unaligned object
10145 as a field, we might be extracting a BLKmode value from
10146 an integer-mode (e.g., SImode) object. Handle this case
10147 by doing the extract into an object as wide as the field
10148 (which we know to be the width of a basic mode), then
10149 storing into memory, and changing the mode to BLKmode. */
10150 if (mode1
== VOIDmode
10151 || REG_P (op0
) || GET_CODE (op0
) == SUBREG
10152 || (mode1
!= BLKmode
&& ! direct_load
[(int) mode1
]
10153 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
10154 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
10155 && modifier
!= EXPAND_CONST_ADDRESS
10156 && modifier
!= EXPAND_INITIALIZER
10157 && modifier
!= EXPAND_MEMORY
)
10158 /* If the bitfield is volatile and the bitsize
10159 is narrower than the access size of the bitfield,
10160 we need to extract bitfields from the access. */
10161 || (volatilep
&& TREE_CODE (exp
) == COMPONENT_REF
10162 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp
, 1))
10163 && mode1
!= BLKmode
10164 && bitsize
< GET_MODE_SIZE (mode1
) * BITS_PER_UNIT
)
10165 /* If the field isn't aligned enough to fetch as a memref,
10166 fetch it as a bit field. */
10167 || (mode1
!= BLKmode
10168 && (((TYPE_ALIGN (TREE_TYPE (tem
)) < GET_MODE_ALIGNMENT (mode
)
10169 || (bitpos
% GET_MODE_ALIGNMENT (mode
) != 0)
10171 && (MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode1
)
10172 || (bitpos
% GET_MODE_ALIGNMENT (mode1
) != 0))))
10173 && modifier
!= EXPAND_MEMORY
10174 && ((modifier
== EXPAND_CONST_ADDRESS
10175 || modifier
== EXPAND_INITIALIZER
)
10177 : SLOW_UNALIGNED_ACCESS (mode1
, MEM_ALIGN (op0
))))
10178 || (bitpos
% BITS_PER_UNIT
!= 0)))
10179 /* If the type and the field are a constant size and the
10180 size of the type isn't the same size as the bitfield,
10181 we must use bitfield operations. */
10183 && TYPE_SIZE (TREE_TYPE (exp
))
10184 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
10185 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)),
10188 enum machine_mode ext_mode
= mode
;
10190 if (ext_mode
== BLKmode
10191 && ! (target
!= 0 && MEM_P (op0
)
10193 && bitpos
% BITS_PER_UNIT
== 0))
10194 ext_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
10196 if (ext_mode
== BLKmode
)
10199 target
= assign_temp (type
, 1, 1);
10201 /* ??? Unlike the similar test a few lines below, this one is
10202 very likely obsolete. */
10206 /* In this case, BITPOS must start at a byte boundary and
10207 TARGET, if specified, must be a MEM. */
10208 gcc_assert (MEM_P (op0
)
10209 && (!target
|| MEM_P (target
))
10210 && !(bitpos
% BITS_PER_UNIT
));
10212 emit_block_move (target
,
10213 adjust_address (op0
, VOIDmode
,
10214 bitpos
/ BITS_PER_UNIT
),
10215 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
10217 (modifier
== EXPAND_STACK_PARM
10218 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
10223 /* If we have nothing to extract, the result will be 0 for targets
10224 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
10225 return 0 for the sake of consistency, as reading a zero-sized
10226 bitfield is valid in Ada and the value is fully specified. */
10230 op0
= validize_mem (op0
);
10232 if (MEM_P (op0
) && REG_P (XEXP (op0
, 0)))
10233 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10235 op0
= extract_bit_field (op0
, bitsize
, bitpos
, unsignedp
,
10236 (modifier
== EXPAND_STACK_PARM
10237 ? NULL_RTX
: target
),
10238 ext_mode
, ext_mode
);
10240 /* If the result is a record type and BITSIZE is narrower than
10241 the mode of OP0, an integral mode, and this is a big endian
10242 machine, we must put the field into the high-order bits. */
10243 if (TREE_CODE (type
) == RECORD_TYPE
&& BYTES_BIG_ENDIAN
10244 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
10245 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (op0
)))
10246 op0
= expand_shift (LSHIFT_EXPR
, GET_MODE (op0
), op0
,
10247 GET_MODE_BITSIZE (GET_MODE (op0
))
10248 - bitsize
, op0
, 1);
10250 /* If the result type is BLKmode, store the data into a temporary
10251 of the appropriate type, but with the mode corresponding to the
10252 mode for the data we have (op0's mode). It's tempting to make
10253 this a constant type, since we know it's only being stored once,
10254 but that can cause problems if we are taking the address of this
10255 COMPONENT_REF because the MEM of any reference via that address
10256 will have flags corresponding to the type, which will not
10257 necessarily be constant. */
10258 if (mode
== BLKmode
)
10262 new_rtx
= assign_stack_temp_for_type (ext_mode
,
10263 GET_MODE_BITSIZE (ext_mode
),
10265 emit_move_insn (new_rtx
, op0
);
10266 op0
= copy_rtx (new_rtx
);
10267 PUT_MODE (op0
, BLKmode
);
10273 /* If the result is BLKmode, use that to access the object
10275 if (mode
== BLKmode
)
10278 /* Get a reference to just this component. */
10279 if (modifier
== EXPAND_CONST_ADDRESS
10280 || modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
10281 op0
= adjust_address_nv (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
10283 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
10285 if (op0
== orig_op0
)
10286 op0
= copy_rtx (op0
);
10288 /* If op0 is a temporary because of forcing to memory, pass only the
10289 type to set_mem_attributes so that the original expression is never
10290 marked as ADDRESSABLE through MEM_EXPR of the temporary. */
10291 if (mem_attrs_from_type
)
10292 set_mem_attributes (op0
, type
, 0);
10294 set_mem_attributes (op0
, exp
, 0);
10296 if (REG_P (XEXP (op0
, 0)))
10297 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10299 MEM_VOLATILE_P (op0
) |= volatilep
;
10300 if (mode
== mode1
|| mode1
== BLKmode
|| mode1
== tmode
10301 || modifier
== EXPAND_CONST_ADDRESS
10302 || modifier
== EXPAND_INITIALIZER
)
10306 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
10308 convert_move (target
, op0
, unsignedp
);
10313 return expand_expr (OBJ_TYPE_REF_EXPR (exp
), target
, tmode
, modifier
);
10316 /* All valid uses of __builtin_va_arg_pack () are removed during
10318 if (CALL_EXPR_VA_ARG_PACK (exp
))
10319 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp
);
10321 tree fndecl
= get_callee_fndecl (exp
), attr
;
10324 && (attr
= lookup_attribute ("error",
10325 DECL_ATTRIBUTES (fndecl
))) != NULL
)
10326 error ("%Kcall to %qs declared with attribute error: %s",
10327 exp
, identifier_to_locale (lang_hooks
.decl_printable_name (fndecl
, 1)),
10328 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
10330 && (attr
= lookup_attribute ("warning",
10331 DECL_ATTRIBUTES (fndecl
))) != NULL
)
10332 warning_at (tree_nonartificial_location (exp
),
10333 0, "%Kcall to %qs declared with attribute warning: %s",
10334 exp
, identifier_to_locale (lang_hooks
.decl_printable_name (fndecl
, 1)),
10335 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
10337 /* Check for a built-in function. */
10338 if (fndecl
&& DECL_BUILT_IN (fndecl
))
10340 gcc_assert (DECL_BUILT_IN_CLASS (fndecl
) != BUILT_IN_FRONTEND
);
10341 return expand_builtin (exp
, target
, subtarget
, tmode
, ignore
);
10344 return expand_call (exp
, target
, ignore
);
10346 case VIEW_CONVERT_EXPR
:
10349 /* If we are converting to BLKmode, try to avoid an intermediate
10350 temporary by fetching an inner memory reference. */
10351 if (mode
== BLKmode
10352 && TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
10353 && TYPE_MODE (TREE_TYPE (treeop0
)) != BLKmode
10354 && handled_component_p (treeop0
))
10356 enum machine_mode mode1
;
10357 HOST_WIDE_INT bitsize
, bitpos
;
10362 = get_inner_reference (treeop0
, &bitsize
, &bitpos
,
10363 &offset
, &mode1
, &unsignedp
, &volatilep
,
10367 /* ??? We should work harder and deal with non-zero offsets. */
10369 && (bitpos
% BITS_PER_UNIT
) == 0
10371 && compare_tree_int (TYPE_SIZE (type
), bitsize
) == 0)
10373 /* See the normal_inner_ref case for the rationale. */
10375 = expand_expr_real (tem
,
10376 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
10377 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
10379 && modifier
!= EXPAND_STACK_PARM
10380 ? target
: NULL_RTX
),
10382 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
,
10385 if (MEM_P (orig_op0
))
10389 /* Get a reference to just this component. */
10390 if (modifier
== EXPAND_CONST_ADDRESS
10391 || modifier
== EXPAND_SUM
10392 || modifier
== EXPAND_INITIALIZER
)
10393 op0
= adjust_address_nv (op0
, mode
, bitpos
/ BITS_PER_UNIT
);
10395 op0
= adjust_address (op0
, mode
, bitpos
/ BITS_PER_UNIT
);
10397 if (op0
== orig_op0
)
10398 op0
= copy_rtx (op0
);
10400 set_mem_attributes (op0
, treeop0
, 0);
10401 if (REG_P (XEXP (op0
, 0)))
10402 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10404 MEM_VOLATILE_P (op0
) |= volatilep
;
10410 op0
= expand_expr_real (treeop0
, NULL_RTX
, VOIDmode
, modifier
,
10411 NULL
, inner_reference_p
);
10413 /* If the input and output modes are both the same, we are done. */
10414 if (mode
== GET_MODE (op0
))
10416 /* If neither mode is BLKmode, and both modes are the same size
10417 then we can use gen_lowpart. */
10418 else if (mode
!= BLKmode
&& GET_MODE (op0
) != BLKmode
10419 && (GET_MODE_PRECISION (mode
)
10420 == GET_MODE_PRECISION (GET_MODE (op0
)))
10421 && !COMPLEX_MODE_P (GET_MODE (op0
)))
10423 if (GET_CODE (op0
) == SUBREG
)
10424 op0
= force_reg (GET_MODE (op0
), op0
);
10425 temp
= gen_lowpart_common (mode
, op0
);
10430 if (!REG_P (op0
) && !MEM_P (op0
))
10431 op0
= force_reg (GET_MODE (op0
), op0
);
10432 op0
= gen_lowpart (mode
, op0
);
10435 /* If both types are integral, convert from one mode to the other. */
10436 else if (INTEGRAL_TYPE_P (type
) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0
)))
10437 op0
= convert_modes (mode
, GET_MODE (op0
), op0
,
10438 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
10439 /* If the output type is a bit-field type, do an extraction. */
10440 else if (reduce_bit_field
)
10441 return extract_bit_field (op0
, TYPE_PRECISION (type
), 0,
10442 TYPE_UNSIGNED (type
), NULL_RTX
,
10444 /* As a last resort, spill op0 to memory, and reload it in a
10446 else if (!MEM_P (op0
))
10448 /* If the operand is not a MEM, force it into memory. Since we
10449 are going to be changing the mode of the MEM, don't call
10450 force_const_mem for constants because we don't allow pool
10451 constants to change mode. */
10452 tree inner_type
= TREE_TYPE (treeop0
);
10454 gcc_assert (!TREE_ADDRESSABLE (exp
));
10456 if (target
== 0 || GET_MODE (target
) != TYPE_MODE (inner_type
))
10458 = assign_stack_temp_for_type
10459 (TYPE_MODE (inner_type
),
10460 GET_MODE_SIZE (TYPE_MODE (inner_type
)), inner_type
);
10462 emit_move_insn (target
, op0
);
10466 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
10467 output type is such that the operand is known to be aligned, indicate
10468 that it is. Otherwise, we need only be concerned about alignment for
10469 non-BLKmode results. */
10472 enum insn_code icode
;
10474 if (TYPE_ALIGN_OK (type
))
10476 /* ??? Copying the MEM without substantially changing it might
10477 run afoul of the code handling volatile memory references in
10478 store_expr, which assumes that TARGET is returned unmodified
10479 if it has been used. */
10480 op0
= copy_rtx (op0
);
10481 set_mem_align (op0
, MAX (MEM_ALIGN (op0
), TYPE_ALIGN (type
)));
10483 else if (modifier
!= EXPAND_WRITE
10484 && modifier
!= EXPAND_MEMORY
10485 && !inner_reference_p
10487 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode
))
10489 /* If the target does have special handling for unaligned
10490 loads of mode then use them. */
10491 if ((icode
= optab_handler (movmisalign_optab
, mode
))
10492 != CODE_FOR_nothing
)
10496 op0
= adjust_address (op0
, mode
, 0);
10497 /* We've already validated the memory, and we're creating a
10498 new pseudo destination. The predicates really can't
10500 reg
= gen_reg_rtx (mode
);
10502 /* Nor can the insn generator. */
10503 insn
= GEN_FCN (icode
) (reg
, op0
);
10507 else if (STRICT_ALIGNMENT
)
10509 tree inner_type
= TREE_TYPE (treeop0
);
10510 HOST_WIDE_INT temp_size
10511 = MAX (int_size_in_bytes (inner_type
),
10512 (HOST_WIDE_INT
) GET_MODE_SIZE (mode
));
10514 = assign_stack_temp_for_type (mode
, temp_size
, type
);
10515 rtx new_with_op0_mode
10516 = adjust_address (new_rtx
, GET_MODE (op0
), 0);
10518 gcc_assert (!TREE_ADDRESSABLE (exp
));
10520 if (GET_MODE (op0
) == BLKmode
)
10521 emit_block_move (new_with_op0_mode
, op0
,
10522 GEN_INT (GET_MODE_SIZE (mode
)),
10523 (modifier
== EXPAND_STACK_PARM
10524 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
10526 emit_move_insn (new_with_op0_mode
, op0
);
10532 op0
= adjust_address (op0
, mode
, 0);
10539 tree lhs
= treeop0
;
10540 tree rhs
= treeop1
;
10541 gcc_assert (ignore
);
10543 /* Check for |= or &= of a bitfield of size one into another bitfield
10544 of size 1. In this case, (unless we need the result of the
10545 assignment) we can do this more efficiently with a
10546 test followed by an assignment, if necessary.
10548 ??? At this point, we can't get a BIT_FIELD_REF here. But if
10549 things change so we do, this code should be enhanced to
10551 if (TREE_CODE (lhs
) == COMPONENT_REF
10552 && (TREE_CODE (rhs
) == BIT_IOR_EXPR
10553 || TREE_CODE (rhs
) == BIT_AND_EXPR
)
10554 && TREE_OPERAND (rhs
, 0) == lhs
10555 && TREE_CODE (TREE_OPERAND (rhs
, 1)) == COMPONENT_REF
10556 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs
, 1)))
10557 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs
, 1), 1))))
10559 rtx label
= gen_label_rtx ();
10560 int value
= TREE_CODE (rhs
) == BIT_IOR_EXPR
;
10561 do_jump (TREE_OPERAND (rhs
, 1),
10563 value
? 0 : label
, -1);
10564 expand_assignment (lhs
, build_int_cst (TREE_TYPE (rhs
), value
),
10566 do_pending_stack_adjust ();
10567 emit_label (label
);
10571 expand_assignment (lhs
, rhs
, false);
10576 return expand_expr_addr_expr (exp
, target
, tmode
, modifier
);
10578 case REALPART_EXPR
:
10579 op0
= expand_normal (treeop0
);
10580 return read_complex_part (op0
, false);
10582 case IMAGPART_EXPR
:
10583 op0
= expand_normal (treeop0
);
10584 return read_complex_part (op0
, true);
10591 /* Expanded in cfgexpand.c. */
10592 gcc_unreachable ();
10594 case TRY_CATCH_EXPR
:
10596 case EH_FILTER_EXPR
:
10597 case TRY_FINALLY_EXPR
:
10598 /* Lowered by tree-eh.c. */
10599 gcc_unreachable ();
10601 case WITH_CLEANUP_EXPR
:
10602 case CLEANUP_POINT_EXPR
:
10604 case CASE_LABEL_EXPR
:
10609 case COMPOUND_EXPR
:
10610 case PREINCREMENT_EXPR
:
10611 case PREDECREMENT_EXPR
:
10612 case POSTINCREMENT_EXPR
:
10613 case POSTDECREMENT_EXPR
:
10616 case COMPOUND_LITERAL_EXPR
:
10617 /* Lowered by gimplify.c. */
10618 gcc_unreachable ();
10621 /* Function descriptors are not valid except for as
10622 initialization constants, and should not be expanded. */
10623 gcc_unreachable ();
10625 case WITH_SIZE_EXPR
:
10626 /* WITH_SIZE_EXPR expands to its first argument. The caller should
10627 have pulled out the size to use in whatever context it needed. */
10628 return expand_expr_real (treeop0
, original_target
, tmode
,
10629 modifier
, alt_rtl
, inner_reference_p
);
10632 return expand_expr_real_2 (&ops
, target
, tmode
, modifier
);
10636 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
10637 signedness of TYPE), possibly returning the result in TARGET. */
10639 reduce_to_bit_field_precision (rtx exp
, rtx target
, tree type
)
10641 HOST_WIDE_INT prec
= TYPE_PRECISION (type
);
10642 if (target
&& GET_MODE (target
) != GET_MODE (exp
))
10644 /* For constant values, reduce using build_int_cst_type. */
10645 if (CONST_INT_P (exp
))
10647 HOST_WIDE_INT value
= INTVAL (exp
);
10648 tree t
= build_int_cst_type (type
, value
);
10649 return expand_expr (t
, target
, VOIDmode
, EXPAND_NORMAL
);
10651 else if (TYPE_UNSIGNED (type
))
10653 rtx mask
= immed_double_int_const (double_int::mask (prec
),
10655 return expand_and (GET_MODE (exp
), exp
, mask
, target
);
10659 int count
= GET_MODE_PRECISION (GET_MODE (exp
)) - prec
;
10660 exp
= expand_shift (LSHIFT_EXPR
, GET_MODE (exp
),
10661 exp
, count
, target
, 0);
10662 return expand_shift (RSHIFT_EXPR
, GET_MODE (exp
),
10663 exp
, count
, target
, 0);
10667 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
10668 when applied to the address of EXP produces an address known to be
10669 aligned more than BIGGEST_ALIGNMENT. */
10672 is_aligning_offset (const_tree offset
, const_tree exp
)
10674 /* Strip off any conversions. */
10675 while (CONVERT_EXPR_P (offset
))
10676 offset
= TREE_OPERAND (offset
, 0);
10678 /* We must now have a BIT_AND_EXPR with a constant that is one less than
10679 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
10680 if (TREE_CODE (offset
) != BIT_AND_EXPR
10681 || !tree_fits_uhwi_p (TREE_OPERAND (offset
, 1))
10682 || compare_tree_int (TREE_OPERAND (offset
, 1),
10683 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
) <= 0
10684 || !exact_log2 (tree_to_uhwi (TREE_OPERAND (offset
, 1)) + 1) < 0)
10687 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
10688 It must be NEGATE_EXPR. Then strip any more conversions. */
10689 offset
= TREE_OPERAND (offset
, 0);
10690 while (CONVERT_EXPR_P (offset
))
10691 offset
= TREE_OPERAND (offset
, 0);
10693 if (TREE_CODE (offset
) != NEGATE_EXPR
)
10696 offset
= TREE_OPERAND (offset
, 0);
10697 while (CONVERT_EXPR_P (offset
))
10698 offset
= TREE_OPERAND (offset
, 0);
10700 /* This must now be the address of EXP. */
10701 return TREE_CODE (offset
) == ADDR_EXPR
&& TREE_OPERAND (offset
, 0) == exp
;
10704 /* Return the tree node if an ARG corresponds to a string constant or zero
10705 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
10706 in bytes within the string that ARG is accessing. The type of the
10707 offset will be `sizetype'. */
10710 string_constant (tree arg
, tree
*ptr_offset
)
10712 tree array
, offset
, lower_bound
;
10715 if (TREE_CODE (arg
) == ADDR_EXPR
)
10717 if (TREE_CODE (TREE_OPERAND (arg
, 0)) == STRING_CST
)
10719 *ptr_offset
= size_zero_node
;
10720 return TREE_OPERAND (arg
, 0);
10722 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == VAR_DECL
)
10724 array
= TREE_OPERAND (arg
, 0);
10725 offset
= size_zero_node
;
10727 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == ARRAY_REF
)
10729 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
10730 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
10731 if (TREE_CODE (array
) != STRING_CST
10732 && TREE_CODE (array
) != VAR_DECL
)
10735 /* Check if the array has a nonzero lower bound. */
10736 lower_bound
= array_ref_low_bound (TREE_OPERAND (arg
, 0));
10737 if (!integer_zerop (lower_bound
))
10739 /* If the offset and base aren't both constants, return 0. */
10740 if (TREE_CODE (lower_bound
) != INTEGER_CST
)
10742 if (TREE_CODE (offset
) != INTEGER_CST
)
10744 /* Adjust offset by the lower bound. */
10745 offset
= size_diffop (fold_convert (sizetype
, offset
),
10746 fold_convert (sizetype
, lower_bound
));
10749 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == MEM_REF
)
10751 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
10752 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
10753 if (TREE_CODE (array
) != ADDR_EXPR
)
10755 array
= TREE_OPERAND (array
, 0);
10756 if (TREE_CODE (array
) != STRING_CST
10757 && TREE_CODE (array
) != VAR_DECL
)
10763 else if (TREE_CODE (arg
) == PLUS_EXPR
|| TREE_CODE (arg
) == POINTER_PLUS_EXPR
)
10765 tree arg0
= TREE_OPERAND (arg
, 0);
10766 tree arg1
= TREE_OPERAND (arg
, 1);
10771 if (TREE_CODE (arg0
) == ADDR_EXPR
10772 && (TREE_CODE (TREE_OPERAND (arg0
, 0)) == STRING_CST
10773 || TREE_CODE (TREE_OPERAND (arg0
, 0)) == VAR_DECL
))
10775 array
= TREE_OPERAND (arg0
, 0);
10778 else if (TREE_CODE (arg1
) == ADDR_EXPR
10779 && (TREE_CODE (TREE_OPERAND (arg1
, 0)) == STRING_CST
10780 || TREE_CODE (TREE_OPERAND (arg1
, 0)) == VAR_DECL
))
10782 array
= TREE_OPERAND (arg1
, 0);
10791 if (TREE_CODE (array
) == STRING_CST
)
10793 *ptr_offset
= fold_convert (sizetype
, offset
);
10796 else if (TREE_CODE (array
) == VAR_DECL
10797 || TREE_CODE (array
) == CONST_DECL
)
10800 tree init
= ctor_for_folding (array
);
10802 /* Variables initialized to string literals can be handled too. */
10803 if (init
== error_mark_node
10805 || TREE_CODE (init
) != STRING_CST
)
10808 /* Avoid const char foo[4] = "abcde"; */
10809 if (DECL_SIZE_UNIT (array
) == NULL_TREE
10810 || TREE_CODE (DECL_SIZE_UNIT (array
)) != INTEGER_CST
10811 || (length
= TREE_STRING_LENGTH (init
)) <= 0
10812 || compare_tree_int (DECL_SIZE_UNIT (array
), length
) < 0)
10815 /* If variable is bigger than the string literal, OFFSET must be constant
10816 and inside of the bounds of the string literal. */
10817 offset
= fold_convert (sizetype
, offset
);
10818 if (compare_tree_int (DECL_SIZE_UNIT (array
), length
) > 0
10819 && (! tree_fits_uhwi_p (offset
)
10820 || compare_tree_int (offset
, length
) >= 0))
10823 *ptr_offset
= offset
;
10830 /* Generate code to calculate OPS, and exploded expression
10831 using a store-flag instruction and return an rtx for the result.
10832 OPS reflects a comparison.
10834 If TARGET is nonzero, store the result there if convenient.
10836 Return zero if there is no suitable set-flag instruction
10837 available on this machine.
10839 Once expand_expr has been called on the arguments of the comparison,
10840 we are committed to doing the store flag, since it is not safe to
10841 re-evaluate the expression. We emit the store-flag insn by calling
10842 emit_store_flag, but only expand the arguments if we have a reason
10843 to believe that emit_store_flag will be successful. If we think that
10844 it will, but it isn't, we have to simulate the store-flag with a
10845 set/jump/set sequence. */
10848 do_store_flag (sepops ops
, rtx target
, enum machine_mode mode
)
10850 enum rtx_code code
;
10851 tree arg0
, arg1
, type
;
10853 enum machine_mode operand_mode
;
10856 rtx subtarget
= target
;
10857 location_t loc
= ops
->location
;
10862 /* Don't crash if the comparison was erroneous. */
10863 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
10866 type
= TREE_TYPE (arg0
);
10867 operand_mode
= TYPE_MODE (type
);
10868 unsignedp
= TYPE_UNSIGNED (type
);
10870 /* We won't bother with BLKmode store-flag operations because it would mean
10871 passing a lot of information to emit_store_flag. */
10872 if (operand_mode
== BLKmode
)
10875 /* We won't bother with store-flag operations involving function pointers
10876 when function pointers must be canonicalized before comparisons. */
10877 #ifdef HAVE_canonicalize_funcptr_for_compare
10878 if (HAVE_canonicalize_funcptr_for_compare
10879 && ((TREE_CODE (TREE_TYPE (arg0
)) == POINTER_TYPE
10880 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0
)))
10882 || (TREE_CODE (TREE_TYPE (arg1
)) == POINTER_TYPE
10883 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1
)))
10884 == FUNCTION_TYPE
))))
10891 /* For vector typed comparisons emit code to generate the desired
10892 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
10893 expander for this. */
10894 if (TREE_CODE (ops
->type
) == VECTOR_TYPE
)
10896 tree ifexp
= build2 (ops
->code
, ops
->type
, arg0
, arg1
);
10897 tree if_true
= constant_boolean_node (true, ops
->type
);
10898 tree if_false
= constant_boolean_node (false, ops
->type
);
10899 return expand_vec_cond_expr (ops
->type
, ifexp
, if_true
, if_false
, target
);
10902 /* Get the rtx comparison code to use. We know that EXP is a comparison
10903 operation of some type. Some comparisons against 1 and -1 can be
10904 converted to comparisons with zero. Do so here so that the tests
10905 below will be aware that we have a comparison with zero. These
10906 tests will not catch constants in the first operand, but constants
10907 are rarely passed as the first operand. */
10918 if (integer_onep (arg1
))
10919 arg1
= integer_zero_node
, code
= unsignedp
? LEU
: LE
;
10921 code
= unsignedp
? LTU
: LT
;
10924 if (! unsignedp
&& integer_all_onesp (arg1
))
10925 arg1
= integer_zero_node
, code
= LT
;
10927 code
= unsignedp
? LEU
: LE
;
10930 if (! unsignedp
&& integer_all_onesp (arg1
))
10931 arg1
= integer_zero_node
, code
= GE
;
10933 code
= unsignedp
? GTU
: GT
;
10936 if (integer_onep (arg1
))
10937 arg1
= integer_zero_node
, code
= unsignedp
? GTU
: GT
;
10939 code
= unsignedp
? GEU
: GE
;
10942 case UNORDERED_EXPR
:
10968 gcc_unreachable ();
10971 /* Put a constant second. */
10972 if (TREE_CODE (arg0
) == REAL_CST
|| TREE_CODE (arg0
) == INTEGER_CST
10973 || TREE_CODE (arg0
) == FIXED_CST
)
10975 tem
= arg0
; arg0
= arg1
; arg1
= tem
;
10976 code
= swap_condition (code
);
10979 /* If this is an equality or inequality test of a single bit, we can
10980 do this by shifting the bit being tested to the low-order bit and
10981 masking the result with the constant 1. If the condition was EQ,
10982 we xor it with 1. This does not require an scc insn and is faster
10983 than an scc insn even if we have it.
10985 The code to make this transformation was moved into fold_single_bit_test,
10986 so we just call into the folder and expand its result. */
10988 if ((code
== NE
|| code
== EQ
)
10989 && integer_zerop (arg1
)
10990 && (TYPE_PRECISION (ops
->type
) != 1 || TYPE_UNSIGNED (ops
->type
)))
10992 gimple srcstmt
= get_def_for_expr (arg0
, BIT_AND_EXPR
);
10994 && integer_pow2p (gimple_assign_rhs2 (srcstmt
)))
10996 enum tree_code tcode
= code
== NE
? NE_EXPR
: EQ_EXPR
;
10997 tree type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
10998 tree temp
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg1
),
10999 gimple_assign_rhs1 (srcstmt
),
11000 gimple_assign_rhs2 (srcstmt
));
11001 temp
= fold_single_bit_test (loc
, tcode
, temp
, arg1
, type
);
11003 return expand_expr (temp
, target
, VOIDmode
, EXPAND_NORMAL
);
11007 if (! get_subtarget (target
)
11008 || GET_MODE (subtarget
) != operand_mode
)
11011 expand_operands (arg0
, arg1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
11014 target
= gen_reg_rtx (mode
);
11016 /* Try a cstore if possible. */
11017 return emit_store_flag_force (target
, code
, op0
, op1
,
11018 operand_mode
, unsignedp
,
11019 (TYPE_PRECISION (ops
->type
) == 1
11020 && !TYPE_UNSIGNED (ops
->type
)) ? -1 : 1);
11024 /* Stubs in case we haven't got a casesi insn. */
11025 #ifndef HAVE_casesi
11026 # define HAVE_casesi 0
11027 # define gen_casesi(a, b, c, d, e) (0)
11028 # define CODE_FOR_casesi CODE_FOR_nothing
11031 /* Attempt to generate a casesi instruction. Returns 1 if successful,
11032 0 otherwise (i.e. if there is no casesi instruction).
11034 DEFAULT_PROBABILITY is the probability of jumping to the default
11037 try_casesi (tree index_type
, tree index_expr
, tree minval
, tree range
,
11038 rtx table_label
, rtx default_label
, rtx fallback_label
,
11039 int default_probability
)
11041 struct expand_operand ops
[5];
11042 enum machine_mode index_mode
= SImode
;
11043 rtx op1
, op2
, index
;
11048 /* Convert the index to SImode. */
11049 if (GET_MODE_BITSIZE (TYPE_MODE (index_type
)) > GET_MODE_BITSIZE (index_mode
))
11051 enum machine_mode omode
= TYPE_MODE (index_type
);
11052 rtx rangertx
= expand_normal (range
);
11054 /* We must handle the endpoints in the original mode. */
11055 index_expr
= build2 (MINUS_EXPR
, index_type
,
11056 index_expr
, minval
);
11057 minval
= integer_zero_node
;
11058 index
= expand_normal (index_expr
);
11060 emit_cmp_and_jump_insns (rangertx
, index
, LTU
, NULL_RTX
,
11061 omode
, 1, default_label
,
11062 default_probability
);
11063 /* Now we can safely truncate. */
11064 index
= convert_to_mode (index_mode
, index
, 0);
11068 if (TYPE_MODE (index_type
) != index_mode
)
11070 index_type
= lang_hooks
.types
.type_for_mode (index_mode
, 0);
11071 index_expr
= fold_convert (index_type
, index_expr
);
11074 index
= expand_normal (index_expr
);
11077 do_pending_stack_adjust ();
11079 op1
= expand_normal (minval
);
11080 op2
= expand_normal (range
);
11082 create_input_operand (&ops
[0], index
, index_mode
);
11083 create_convert_operand_from_type (&ops
[1], op1
, TREE_TYPE (minval
));
11084 create_convert_operand_from_type (&ops
[2], op2
, TREE_TYPE (range
));
11085 create_fixed_operand (&ops
[3], table_label
);
11086 create_fixed_operand (&ops
[4], (default_label
11088 : fallback_label
));
11089 expand_jump_insn (CODE_FOR_casesi
, 5, ops
);
11093 /* Attempt to generate a tablejump instruction; same concept. */
11094 #ifndef HAVE_tablejump
11095 #define HAVE_tablejump 0
11096 #define gen_tablejump(x, y) (0)
11099 /* Subroutine of the next function.
11101 INDEX is the value being switched on, with the lowest value
11102 in the table already subtracted.
11103 MODE is its expected mode (needed if INDEX is constant).
11104 RANGE is the length of the jump table.
11105 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
11107 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
11108 index value is out of range.
11109 DEFAULT_PROBABILITY is the probability of jumping to
11110 the default label. */
11113 do_tablejump (rtx index
, enum machine_mode mode
, rtx range
, rtx table_label
,
11114 rtx default_label
, int default_probability
)
11118 if (INTVAL (range
) > cfun
->cfg
->max_jumptable_ents
)
11119 cfun
->cfg
->max_jumptable_ents
= INTVAL (range
);
11121 /* Do an unsigned comparison (in the proper mode) between the index
11122 expression and the value which represents the length of the range.
11123 Since we just finished subtracting the lower bound of the range
11124 from the index expression, this comparison allows us to simultaneously
11125 check that the original index expression value is both greater than
11126 or equal to the minimum value of the range and less than or equal to
11127 the maximum value of the range. */
11130 emit_cmp_and_jump_insns (index
, range
, GTU
, NULL_RTX
, mode
, 1,
11131 default_label
, default_probability
);
11134 /* If index is in range, it must fit in Pmode.
11135 Convert to Pmode so we can index with it. */
11137 index
= convert_to_mode (Pmode
, index
, 1);
11139 /* Don't let a MEM slip through, because then INDEX that comes
11140 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
11141 and break_out_memory_refs will go to work on it and mess it up. */
11142 #ifdef PIC_CASE_VECTOR_ADDRESS
11143 if (flag_pic
&& !REG_P (index
))
11144 index
= copy_to_mode_reg (Pmode
, index
);
11147 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
11148 GET_MODE_SIZE, because this indicates how large insns are. The other
11149 uses should all be Pmode, because they are addresses. This code
11150 could fail if addresses and insns are not the same size. */
11151 index
= gen_rtx_PLUS
11153 gen_rtx_MULT (Pmode
, index
,
11154 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE
), Pmode
)),
11155 gen_rtx_LABEL_REF (Pmode
, table_label
));
11156 #ifdef PIC_CASE_VECTOR_ADDRESS
11158 index
= PIC_CASE_VECTOR_ADDRESS (index
);
11161 index
= memory_address (CASE_VECTOR_MODE
, index
);
11162 temp
= gen_reg_rtx (CASE_VECTOR_MODE
);
11163 vector
= gen_const_mem (CASE_VECTOR_MODE
, index
);
11164 convert_move (temp
, vector
, 0);
11166 emit_jump_insn (gen_tablejump (temp
, table_label
));
11168 /* If we are generating PIC code or if the table is PC-relative, the
11169 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
11170 if (! CASE_VECTOR_PC_RELATIVE
&& ! flag_pic
)
11175 try_tablejump (tree index_type
, tree index_expr
, tree minval
, tree range
,
11176 rtx table_label
, rtx default_label
, int default_probability
)
11180 if (! HAVE_tablejump
)
11183 index_expr
= fold_build2 (MINUS_EXPR
, index_type
,
11184 fold_convert (index_type
, index_expr
),
11185 fold_convert (index_type
, minval
));
11186 index
= expand_normal (index_expr
);
11187 do_pending_stack_adjust ();
11189 do_tablejump (index
, TYPE_MODE (index_type
),
11190 convert_modes (TYPE_MODE (index_type
),
11191 TYPE_MODE (TREE_TYPE (range
)),
11192 expand_normal (range
),
11193 TYPE_UNSIGNED (TREE_TYPE (range
))),
11194 table_label
, default_label
, default_probability
);
11198 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
11200 const_vector_from_tree (tree exp
)
11206 enum machine_mode inner
, mode
;
11208 mode
= TYPE_MODE (TREE_TYPE (exp
));
11210 if (initializer_zerop (exp
))
11211 return CONST0_RTX (mode
);
11213 units
= GET_MODE_NUNITS (mode
);
11214 inner
= GET_MODE_INNER (mode
);
11216 v
= rtvec_alloc (units
);
11218 for (i
= 0; i
< VECTOR_CST_NELTS (exp
); ++i
)
11220 elt
= VECTOR_CST_ELT (exp
, i
);
11222 if (TREE_CODE (elt
) == REAL_CST
)
11223 RTVEC_ELT (v
, i
) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt
),
11225 else if (TREE_CODE (elt
) == FIXED_CST
)
11226 RTVEC_ELT (v
, i
) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt
),
11229 RTVEC_ELT (v
, i
) = immed_double_int_const (tree_to_double_int (elt
),
11233 return gen_rtx_CONST_VECTOR (mode
, v
);
11236 /* Build a decl for a personality function given a language prefix. */
11239 build_personality_function (const char *lang
)
11241 const char *unwind_and_version
;
11245 switch (targetm_common
.except_unwind_info (&global_options
))
11250 unwind_and_version
= "_sj0";
11254 unwind_and_version
= "_v0";
11257 unwind_and_version
= "_seh0";
11260 gcc_unreachable ();
11263 name
= ACONCAT (("__", lang
, "_personality", unwind_and_version
, NULL
));
11265 type
= build_function_type_list (integer_type_node
, integer_type_node
,
11266 long_long_unsigned_type_node
,
11267 ptr_type_node
, ptr_type_node
, NULL_TREE
);
11268 decl
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
,
11269 get_identifier (name
), type
);
11270 DECL_ARTIFICIAL (decl
) = 1;
11271 DECL_EXTERNAL (decl
) = 1;
11272 TREE_PUBLIC (decl
) = 1;
11274 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
11275 are the flags assigned by targetm.encode_section_info. */
11276 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl
), 0), NULL
);
11281 /* Extracts the personality function of DECL and returns the corresponding
11285 get_personality_function (tree decl
)
11287 tree personality
= DECL_FUNCTION_PERSONALITY (decl
);
11288 enum eh_personality_kind pk
;
11290 pk
= function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl
));
11291 if (pk
== eh_personality_none
)
11295 && pk
== eh_personality_any
)
11296 personality
= lang_hooks
.eh_personality ();
11298 if (pk
== eh_personality_lang
)
11299 gcc_assert (personality
!= NULL_TREE
);
11301 return XEXP (DECL_RTL (personality
), 0);
11304 #include "gt-expr.h"