aix.h (FP_SAVE_INLINE, [...]): Delete.
[official-gcc.git] / gcc / tree-vrp.c
blob4dc942cc388a99a9fcbc89b7c8953758dec5831c
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "diagnostic-core.h"
37 #include "intl.h"
38 #include "cfgloop.h"
39 #include "tree-scalar-evolution.h"
40 #include "tree-ssa-propagate.h"
41 #include "tree-chrec.h"
42 #include "gimple-fold.h"
43 #include "expr.h"
44 #include "optabs.h"
47 /* Type of value ranges. See value_range_d for a description of these
48 types. */
49 enum value_range_type { VR_UNDEFINED, VR_RANGE, VR_ANTI_RANGE, VR_VARYING };
51 /* Range of values that can be associated with an SSA_NAME after VRP
52 has executed. */
53 struct value_range_d
55 /* Lattice value represented by this range. */
56 enum value_range_type type;
58 /* Minimum and maximum values represented by this range. These
59 values should be interpreted as follows:
61 - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
62 be NULL.
64 - If TYPE == VR_RANGE then MIN holds the minimum value and
65 MAX holds the maximum value of the range [MIN, MAX].
67 - If TYPE == ANTI_RANGE the variable is known to NOT
68 take any values in the range [MIN, MAX]. */
69 tree min;
70 tree max;
72 /* Set of SSA names whose value ranges are equivalent to this one.
73 This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
74 bitmap equiv;
77 typedef struct value_range_d value_range_t;
79 /* Set of SSA names found live during the RPO traversal of the function
80 for still active basic-blocks. */
81 static sbitmap *live;
83 /* Return true if the SSA name NAME is live on the edge E. */
85 static bool
86 live_on_edge (edge e, tree name)
88 return (live[e->dest->index]
89 && TEST_BIT (live[e->dest->index], SSA_NAME_VERSION (name)));
92 /* Local functions. */
93 static int compare_values (tree val1, tree val2);
94 static int compare_values_warnv (tree val1, tree val2, bool *);
95 static void vrp_meet (value_range_t *, value_range_t *);
96 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
97 tree, tree, bool, bool *,
98 bool *);
100 /* Location information for ASSERT_EXPRs. Each instance of this
101 structure describes an ASSERT_EXPR for an SSA name. Since a single
102 SSA name may have more than one assertion associated with it, these
103 locations are kept in a linked list attached to the corresponding
104 SSA name. */
105 struct assert_locus_d
107 /* Basic block where the assertion would be inserted. */
108 basic_block bb;
110 /* Some assertions need to be inserted on an edge (e.g., assertions
111 generated by COND_EXPRs). In those cases, BB will be NULL. */
112 edge e;
114 /* Pointer to the statement that generated this assertion. */
115 gimple_stmt_iterator si;
117 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
118 enum tree_code comp_code;
120 /* Value being compared against. */
121 tree val;
123 /* Expression to compare. */
124 tree expr;
126 /* Next node in the linked list. */
127 struct assert_locus_d *next;
130 typedef struct assert_locus_d *assert_locus_t;
132 /* If bit I is present, it means that SSA name N_i has a list of
133 assertions that should be inserted in the IL. */
134 static bitmap need_assert_for;
136 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
137 holds a list of ASSERT_LOCUS_T nodes that describe where
138 ASSERT_EXPRs for SSA name N_I should be inserted. */
139 static assert_locus_t *asserts_for;
141 /* Value range array. After propagation, VR_VALUE[I] holds the range
142 of values that SSA name N_I may take. */
143 static unsigned num_vr_values;
144 static value_range_t **vr_value;
145 static bool values_propagated;
147 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
148 number of executable edges we saw the last time we visited the
149 node. */
150 static int *vr_phi_edge_counts;
152 typedef struct {
153 gimple stmt;
154 tree vec;
155 } switch_update;
157 static VEC (edge, heap) *to_remove_edges;
158 DEF_VEC_O(switch_update);
159 DEF_VEC_ALLOC_O(switch_update, heap);
160 static VEC (switch_update, heap) *to_update_switch_stmts;
163 /* Return the maximum value for TYPE. */
165 static inline tree
166 vrp_val_max (const_tree type)
168 if (!INTEGRAL_TYPE_P (type))
169 return NULL_TREE;
171 return TYPE_MAX_VALUE (type);
174 /* Return the minimum value for TYPE. */
176 static inline tree
177 vrp_val_min (const_tree type)
179 if (!INTEGRAL_TYPE_P (type))
180 return NULL_TREE;
182 return TYPE_MIN_VALUE (type);
185 /* Return whether VAL is equal to the maximum value of its type. This
186 will be true for a positive overflow infinity. We can't do a
187 simple equality comparison with TYPE_MAX_VALUE because C typedefs
188 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
189 to the integer constant with the same value in the type. */
191 static inline bool
192 vrp_val_is_max (const_tree val)
194 tree type_max = vrp_val_max (TREE_TYPE (val));
195 return (val == type_max
196 || (type_max != NULL_TREE
197 && operand_equal_p (val, type_max, 0)));
200 /* Return whether VAL is equal to the minimum value of its type. This
201 will be true for a negative overflow infinity. */
203 static inline bool
204 vrp_val_is_min (const_tree val)
206 tree type_min = vrp_val_min (TREE_TYPE (val));
207 return (val == type_min
208 || (type_min != NULL_TREE
209 && operand_equal_p (val, type_min, 0)));
213 /* Return whether TYPE should use an overflow infinity distinct from
214 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
215 represent a signed overflow during VRP computations. An infinity
216 is distinct from a half-range, which will go from some number to
217 TYPE_{MIN,MAX}_VALUE. */
219 static inline bool
220 needs_overflow_infinity (const_tree type)
222 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
225 /* Return whether TYPE can support our overflow infinity
226 representation: we use the TREE_OVERFLOW flag, which only exists
227 for constants. If TYPE doesn't support this, we don't optimize
228 cases which would require signed overflow--we drop them to
229 VARYING. */
231 static inline bool
232 supports_overflow_infinity (const_tree type)
234 tree min = vrp_val_min (type), max = vrp_val_max (type);
235 #ifdef ENABLE_CHECKING
236 gcc_assert (needs_overflow_infinity (type));
237 #endif
238 return (min != NULL_TREE
239 && CONSTANT_CLASS_P (min)
240 && max != NULL_TREE
241 && CONSTANT_CLASS_P (max));
244 /* VAL is the maximum or minimum value of a type. Return a
245 corresponding overflow infinity. */
247 static inline tree
248 make_overflow_infinity (tree val)
250 gcc_checking_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
251 val = copy_node (val);
252 TREE_OVERFLOW (val) = 1;
253 return val;
256 /* Return a negative overflow infinity for TYPE. */
258 static inline tree
259 negative_overflow_infinity (tree type)
261 gcc_checking_assert (supports_overflow_infinity (type));
262 return make_overflow_infinity (vrp_val_min (type));
265 /* Return a positive overflow infinity for TYPE. */
267 static inline tree
268 positive_overflow_infinity (tree type)
270 gcc_checking_assert (supports_overflow_infinity (type));
271 return make_overflow_infinity (vrp_val_max (type));
274 /* Return whether VAL is a negative overflow infinity. */
276 static inline bool
277 is_negative_overflow_infinity (const_tree val)
279 return (needs_overflow_infinity (TREE_TYPE (val))
280 && CONSTANT_CLASS_P (val)
281 && TREE_OVERFLOW (val)
282 && vrp_val_is_min (val));
285 /* Return whether VAL is a positive overflow infinity. */
287 static inline bool
288 is_positive_overflow_infinity (const_tree val)
290 return (needs_overflow_infinity (TREE_TYPE (val))
291 && CONSTANT_CLASS_P (val)
292 && TREE_OVERFLOW (val)
293 && vrp_val_is_max (val));
296 /* Return whether VAL is a positive or negative overflow infinity. */
298 static inline bool
299 is_overflow_infinity (const_tree val)
301 return (needs_overflow_infinity (TREE_TYPE (val))
302 && CONSTANT_CLASS_P (val)
303 && TREE_OVERFLOW (val)
304 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
307 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
309 static inline bool
310 stmt_overflow_infinity (gimple stmt)
312 if (is_gimple_assign (stmt)
313 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
314 GIMPLE_SINGLE_RHS)
315 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
316 return false;
319 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
320 the same value with TREE_OVERFLOW clear. This can be used to avoid
321 confusing a regular value with an overflow value. */
323 static inline tree
324 avoid_overflow_infinity (tree val)
326 if (!is_overflow_infinity (val))
327 return val;
329 if (vrp_val_is_max (val))
330 return vrp_val_max (TREE_TYPE (val));
331 else
333 gcc_checking_assert (vrp_val_is_min (val));
334 return vrp_val_min (TREE_TYPE (val));
339 /* Return true if ARG is marked with the nonnull attribute in the
340 current function signature. */
342 static bool
343 nonnull_arg_p (const_tree arg)
345 tree t, attrs, fntype;
346 unsigned HOST_WIDE_INT arg_num;
348 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
350 /* The static chain decl is always non null. */
351 if (arg == cfun->static_chain_decl)
352 return true;
354 fntype = TREE_TYPE (current_function_decl);
355 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
357 /* If "nonnull" wasn't specified, we know nothing about the argument. */
358 if (attrs == NULL_TREE)
359 return false;
361 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
362 if (TREE_VALUE (attrs) == NULL_TREE)
363 return true;
365 /* Get the position number for ARG in the function signature. */
366 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
368 t = DECL_CHAIN (t), arg_num++)
370 if (t == arg)
371 break;
374 gcc_assert (t == arg);
376 /* Now see if ARG_NUM is mentioned in the nonnull list. */
377 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
379 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
380 return true;
383 return false;
387 /* Set value range VR to VR_VARYING. */
389 static inline void
390 set_value_range_to_varying (value_range_t *vr)
392 vr->type = VR_VARYING;
393 vr->min = vr->max = NULL_TREE;
394 if (vr->equiv)
395 bitmap_clear (vr->equiv);
399 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
401 static void
402 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
403 tree max, bitmap equiv)
405 #if defined ENABLE_CHECKING
406 /* Check the validity of the range. */
407 if (t == VR_RANGE || t == VR_ANTI_RANGE)
409 int cmp;
411 gcc_assert (min && max);
413 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
414 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
416 cmp = compare_values (min, max);
417 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
419 if (needs_overflow_infinity (TREE_TYPE (min)))
420 gcc_assert (!is_overflow_infinity (min)
421 || !is_overflow_infinity (max));
424 if (t == VR_UNDEFINED || t == VR_VARYING)
425 gcc_assert (min == NULL_TREE && max == NULL_TREE);
427 if (t == VR_UNDEFINED || t == VR_VARYING)
428 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
429 #endif
431 vr->type = t;
432 vr->min = min;
433 vr->max = max;
435 /* Since updating the equivalence set involves deep copying the
436 bitmaps, only do it if absolutely necessary. */
437 if (vr->equiv == NULL
438 && equiv != NULL)
439 vr->equiv = BITMAP_ALLOC (NULL);
441 if (equiv != vr->equiv)
443 if (equiv && !bitmap_empty_p (equiv))
444 bitmap_copy (vr->equiv, equiv);
445 else
446 bitmap_clear (vr->equiv);
451 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
452 This means adjusting T, MIN and MAX representing the case of a
453 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
454 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
455 In corner cases where MAX+1 or MIN-1 wraps this will fall back
456 to varying.
457 This routine exists to ease canonicalization in the case where we
458 extract ranges from var + CST op limit. */
460 static void
461 set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
462 tree min, tree max, bitmap equiv)
464 /* Nothing to canonicalize for symbolic or unknown or varying ranges. */
465 if ((t != VR_RANGE
466 && t != VR_ANTI_RANGE)
467 || TREE_CODE (min) != INTEGER_CST
468 || TREE_CODE (max) != INTEGER_CST)
470 set_value_range (vr, t, min, max, equiv);
471 return;
474 /* Wrong order for min and max, to swap them and the VR type we need
475 to adjust them. */
476 if (tree_int_cst_lt (max, min))
478 tree one = build_int_cst (TREE_TYPE (min), 1);
479 tree tmp = int_const_binop (PLUS_EXPR, max, one);
480 max = int_const_binop (MINUS_EXPR, min, one);
481 min = tmp;
483 /* There's one corner case, if we had [C+1, C] before we now have
484 that again. But this represents an empty value range, so drop
485 to varying in this case. */
486 if (tree_int_cst_lt (max, min))
488 set_value_range_to_varying (vr);
489 return;
492 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
495 /* Anti-ranges that can be represented as ranges should be so. */
496 if (t == VR_ANTI_RANGE)
498 bool is_min = vrp_val_is_min (min);
499 bool is_max = vrp_val_is_max (max);
501 if (is_min && is_max)
503 /* We cannot deal with empty ranges, drop to varying. */
504 set_value_range_to_varying (vr);
505 return;
507 else if (is_min
508 /* As a special exception preserve non-null ranges. */
509 && !(TYPE_UNSIGNED (TREE_TYPE (min))
510 && integer_zerop (max)))
512 tree one = build_int_cst (TREE_TYPE (max), 1);
513 min = int_const_binop (PLUS_EXPR, max, one);
514 max = vrp_val_max (TREE_TYPE (max));
515 t = VR_RANGE;
517 else if (is_max)
519 tree one = build_int_cst (TREE_TYPE (min), 1);
520 max = int_const_binop (MINUS_EXPR, min, one);
521 min = vrp_val_min (TREE_TYPE (min));
522 t = VR_RANGE;
526 set_value_range (vr, t, min, max, equiv);
529 /* Copy value range FROM into value range TO. */
531 static inline void
532 copy_value_range (value_range_t *to, value_range_t *from)
534 set_value_range (to, from->type, from->min, from->max, from->equiv);
537 /* Set value range VR to a single value. This function is only called
538 with values we get from statements, and exists to clear the
539 TREE_OVERFLOW flag so that we don't think we have an overflow
540 infinity when we shouldn't. */
542 static inline void
543 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
545 gcc_assert (is_gimple_min_invariant (val));
546 val = avoid_overflow_infinity (val);
547 set_value_range (vr, VR_RANGE, val, val, equiv);
550 /* Set value range VR to a non-negative range of type TYPE.
551 OVERFLOW_INFINITY indicates whether to use an overflow infinity
552 rather than TYPE_MAX_VALUE; this should be true if we determine
553 that the range is nonnegative based on the assumption that signed
554 overflow does not occur. */
556 static inline void
557 set_value_range_to_nonnegative (value_range_t *vr, tree type,
558 bool overflow_infinity)
560 tree zero;
562 if (overflow_infinity && !supports_overflow_infinity (type))
564 set_value_range_to_varying (vr);
565 return;
568 zero = build_int_cst (type, 0);
569 set_value_range (vr, VR_RANGE, zero,
570 (overflow_infinity
571 ? positive_overflow_infinity (type)
572 : TYPE_MAX_VALUE (type)),
573 vr->equiv);
576 /* Set value range VR to a non-NULL range of type TYPE. */
578 static inline void
579 set_value_range_to_nonnull (value_range_t *vr, tree type)
581 tree zero = build_int_cst (type, 0);
582 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
586 /* Set value range VR to a NULL range of type TYPE. */
588 static inline void
589 set_value_range_to_null (value_range_t *vr, tree type)
591 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
595 /* Set value range VR to a range of a truthvalue of type TYPE. */
597 static inline void
598 set_value_range_to_truthvalue (value_range_t *vr, tree type)
600 if (TYPE_PRECISION (type) == 1)
601 set_value_range_to_varying (vr);
602 else
603 set_value_range (vr, VR_RANGE,
604 build_int_cst (type, 0), build_int_cst (type, 1),
605 vr->equiv);
609 /* Set value range VR to VR_UNDEFINED. */
611 static inline void
612 set_value_range_to_undefined (value_range_t *vr)
614 vr->type = VR_UNDEFINED;
615 vr->min = vr->max = NULL_TREE;
616 if (vr->equiv)
617 bitmap_clear (vr->equiv);
621 /* If abs (min) < abs (max), set VR to [-max, max], if
622 abs (min) >= abs (max), set VR to [-min, min]. */
624 static void
625 abs_extent_range (value_range_t *vr, tree min, tree max)
627 int cmp;
629 gcc_assert (TREE_CODE (min) == INTEGER_CST);
630 gcc_assert (TREE_CODE (max) == INTEGER_CST);
631 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
632 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
633 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
634 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
635 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
637 set_value_range_to_varying (vr);
638 return;
640 cmp = compare_values (min, max);
641 if (cmp == -1)
642 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
643 else if (cmp == 0 || cmp == 1)
645 max = min;
646 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
648 else
650 set_value_range_to_varying (vr);
651 return;
653 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
657 /* Return value range information for VAR.
659 If we have no values ranges recorded (ie, VRP is not running), then
660 return NULL. Otherwise create an empty range if none existed for VAR. */
662 static value_range_t *
663 get_value_range (const_tree var)
665 static const struct value_range_d vr_const_varying
666 = { VR_VARYING, NULL_TREE, NULL_TREE, NULL };
667 value_range_t *vr;
668 tree sym;
669 unsigned ver = SSA_NAME_VERSION (var);
671 /* If we have no recorded ranges, then return NULL. */
672 if (! vr_value)
673 return NULL;
675 /* If we query the range for a new SSA name return an unmodifiable VARYING.
676 We should get here at most from the substitute-and-fold stage which
677 will never try to change values. */
678 if (ver >= num_vr_values)
679 return CONST_CAST (value_range_t *, &vr_const_varying);
681 vr = vr_value[ver];
682 if (vr)
683 return vr;
685 /* After propagation finished do not allocate new value-ranges. */
686 if (values_propagated)
687 return CONST_CAST (value_range_t *, &vr_const_varying);
689 /* Create a default value range. */
690 vr_value[ver] = vr = XCNEW (value_range_t);
692 /* Defer allocating the equivalence set. */
693 vr->equiv = NULL;
695 /* If VAR is a default definition of a parameter, the variable can
696 take any value in VAR's type. */
697 sym = SSA_NAME_VAR (var);
698 if (SSA_NAME_IS_DEFAULT_DEF (var))
700 if (TREE_CODE (sym) == PARM_DECL)
702 /* Try to use the "nonnull" attribute to create ~[0, 0]
703 anti-ranges for pointers. Note that this is only valid with
704 default definitions of PARM_DECLs. */
705 if (POINTER_TYPE_P (TREE_TYPE (sym))
706 && nonnull_arg_p (sym))
707 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
708 else
709 set_value_range_to_varying (vr);
711 else if (TREE_CODE (sym) == RESULT_DECL
712 && DECL_BY_REFERENCE (sym))
713 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
716 return vr;
719 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
721 static inline bool
722 vrp_operand_equal_p (const_tree val1, const_tree val2)
724 if (val1 == val2)
725 return true;
726 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
727 return false;
728 if (is_overflow_infinity (val1))
729 return is_overflow_infinity (val2);
730 return true;
733 /* Return true, if the bitmaps B1 and B2 are equal. */
735 static inline bool
736 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
738 return (b1 == b2
739 || ((!b1 || bitmap_empty_p (b1))
740 && (!b2 || bitmap_empty_p (b2)))
741 || (b1 && b2
742 && bitmap_equal_p (b1, b2)));
745 /* Update the value range and equivalence set for variable VAR to
746 NEW_VR. Return true if NEW_VR is different from VAR's previous
747 value.
749 NOTE: This function assumes that NEW_VR is a temporary value range
750 object created for the sole purpose of updating VAR's range. The
751 storage used by the equivalence set from NEW_VR will be freed by
752 this function. Do not call update_value_range when NEW_VR
753 is the range object associated with another SSA name. */
755 static inline bool
756 update_value_range (const_tree var, value_range_t *new_vr)
758 value_range_t *old_vr;
759 bool is_new;
761 /* Update the value range, if necessary. */
762 old_vr = get_value_range (var);
763 is_new = old_vr->type != new_vr->type
764 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
765 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
766 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
768 if (is_new)
769 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
770 new_vr->equiv);
772 BITMAP_FREE (new_vr->equiv);
774 return is_new;
778 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
779 point where equivalence processing can be turned on/off. */
781 static void
782 add_equivalence (bitmap *equiv, const_tree var)
784 unsigned ver = SSA_NAME_VERSION (var);
785 value_range_t *vr = vr_value[ver];
787 if (*equiv == NULL)
788 *equiv = BITMAP_ALLOC (NULL);
789 bitmap_set_bit (*equiv, ver);
790 if (vr && vr->equiv)
791 bitmap_ior_into (*equiv, vr->equiv);
795 /* Return true if VR is ~[0, 0]. */
797 static inline bool
798 range_is_nonnull (value_range_t *vr)
800 return vr->type == VR_ANTI_RANGE
801 && integer_zerop (vr->min)
802 && integer_zerop (vr->max);
806 /* Return true if VR is [0, 0]. */
808 static inline bool
809 range_is_null (value_range_t *vr)
811 return vr->type == VR_RANGE
812 && integer_zerop (vr->min)
813 && integer_zerop (vr->max);
816 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
817 a singleton. */
819 static inline bool
820 range_int_cst_p (value_range_t *vr)
822 return (vr->type == VR_RANGE
823 && TREE_CODE (vr->max) == INTEGER_CST
824 && TREE_CODE (vr->min) == INTEGER_CST
825 && !TREE_OVERFLOW (vr->max)
826 && !TREE_OVERFLOW (vr->min));
829 /* Return true if VR is a INTEGER_CST singleton. */
831 static inline bool
832 range_int_cst_singleton_p (value_range_t *vr)
834 return (range_int_cst_p (vr)
835 && tree_int_cst_equal (vr->min, vr->max));
838 /* Return true if value range VR involves at least one symbol. */
840 static inline bool
841 symbolic_range_p (value_range_t *vr)
843 return (!is_gimple_min_invariant (vr->min)
844 || !is_gimple_min_invariant (vr->max));
847 /* Return true if value range VR uses an overflow infinity. */
849 static inline bool
850 overflow_infinity_range_p (value_range_t *vr)
852 return (vr->type == VR_RANGE
853 && (is_overflow_infinity (vr->min)
854 || is_overflow_infinity (vr->max)));
857 /* Return false if we can not make a valid comparison based on VR;
858 this will be the case if it uses an overflow infinity and overflow
859 is not undefined (i.e., -fno-strict-overflow is in effect).
860 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
861 uses an overflow infinity. */
863 static bool
864 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
866 gcc_assert (vr->type == VR_RANGE);
867 if (is_overflow_infinity (vr->min))
869 *strict_overflow_p = true;
870 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
871 return false;
873 if (is_overflow_infinity (vr->max))
875 *strict_overflow_p = true;
876 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
877 return false;
879 return true;
883 /* Return true if the result of assignment STMT is know to be non-negative.
884 If the return value is based on the assumption that signed overflow is
885 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
886 *STRICT_OVERFLOW_P.*/
888 static bool
889 gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
891 enum tree_code code = gimple_assign_rhs_code (stmt);
892 switch (get_gimple_rhs_class (code))
894 case GIMPLE_UNARY_RHS:
895 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
896 gimple_expr_type (stmt),
897 gimple_assign_rhs1 (stmt),
898 strict_overflow_p);
899 case GIMPLE_BINARY_RHS:
900 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
901 gimple_expr_type (stmt),
902 gimple_assign_rhs1 (stmt),
903 gimple_assign_rhs2 (stmt),
904 strict_overflow_p);
905 case GIMPLE_TERNARY_RHS:
906 return false;
907 case GIMPLE_SINGLE_RHS:
908 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
909 strict_overflow_p);
910 case GIMPLE_INVALID_RHS:
911 gcc_unreachable ();
912 default:
913 gcc_unreachable ();
917 /* Return true if return value of call STMT is know to be non-negative.
918 If the return value is based on the assumption that signed overflow is
919 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
920 *STRICT_OVERFLOW_P.*/
922 static bool
923 gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
925 tree arg0 = gimple_call_num_args (stmt) > 0 ?
926 gimple_call_arg (stmt, 0) : NULL_TREE;
927 tree arg1 = gimple_call_num_args (stmt) > 1 ?
928 gimple_call_arg (stmt, 1) : NULL_TREE;
930 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
931 gimple_call_fndecl (stmt),
932 arg0,
933 arg1,
934 strict_overflow_p);
937 /* Return true if STMT is know to to compute a non-negative value.
938 If the return value is based on the assumption that signed overflow is
939 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
940 *STRICT_OVERFLOW_P.*/
942 static bool
943 gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
945 switch (gimple_code (stmt))
947 case GIMPLE_ASSIGN:
948 return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
949 case GIMPLE_CALL:
950 return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
951 default:
952 gcc_unreachable ();
956 /* Return true if the result of assignment STMT is know to be non-zero.
957 If the return value is based on the assumption that signed overflow is
958 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
959 *STRICT_OVERFLOW_P.*/
961 static bool
962 gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
964 enum tree_code code = gimple_assign_rhs_code (stmt);
965 switch (get_gimple_rhs_class (code))
967 case GIMPLE_UNARY_RHS:
968 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
969 gimple_expr_type (stmt),
970 gimple_assign_rhs1 (stmt),
971 strict_overflow_p);
972 case GIMPLE_BINARY_RHS:
973 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
974 gimple_expr_type (stmt),
975 gimple_assign_rhs1 (stmt),
976 gimple_assign_rhs2 (stmt),
977 strict_overflow_p);
978 case GIMPLE_TERNARY_RHS:
979 return false;
980 case GIMPLE_SINGLE_RHS:
981 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
982 strict_overflow_p);
983 case GIMPLE_INVALID_RHS:
984 gcc_unreachable ();
985 default:
986 gcc_unreachable ();
990 /* Return true if STMT is know to to compute a non-zero value.
991 If the return value is based on the assumption that signed overflow is
992 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
993 *STRICT_OVERFLOW_P.*/
995 static bool
996 gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
998 switch (gimple_code (stmt))
1000 case GIMPLE_ASSIGN:
1001 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
1002 case GIMPLE_CALL:
1003 return gimple_alloca_call_p (stmt);
1004 default:
1005 gcc_unreachable ();
1009 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1010 obtained so far. */
1012 static bool
1013 vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
1015 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
1016 return true;
1018 /* If we have an expression of the form &X->a, then the expression
1019 is nonnull if X is nonnull. */
1020 if (is_gimple_assign (stmt)
1021 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
1023 tree expr = gimple_assign_rhs1 (stmt);
1024 tree base = get_base_address (TREE_OPERAND (expr, 0));
1026 if (base != NULL_TREE
1027 && TREE_CODE (base) == MEM_REF
1028 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
1030 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
1031 if (range_is_nonnull (vr))
1032 return true;
1036 return false;
1039 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1040 a gimple invariant, or SSA_NAME +- CST. */
1042 static bool
1043 valid_value_p (tree expr)
1045 if (TREE_CODE (expr) == SSA_NAME)
1046 return true;
1048 if (TREE_CODE (expr) == PLUS_EXPR
1049 || TREE_CODE (expr) == MINUS_EXPR)
1050 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
1051 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
1053 return is_gimple_min_invariant (expr);
1056 /* Return
1057 1 if VAL < VAL2
1058 0 if !(VAL < VAL2)
1059 -2 if those are incomparable. */
1060 static inline int
1061 operand_less_p (tree val, tree val2)
1063 /* LT is folded faster than GE and others. Inline the common case. */
1064 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1066 if (TYPE_UNSIGNED (TREE_TYPE (val)))
1067 return INT_CST_LT_UNSIGNED (val, val2);
1068 else
1070 if (INT_CST_LT (val, val2))
1071 return 1;
1074 else
1076 tree tcmp;
1078 fold_defer_overflow_warnings ();
1080 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
1082 fold_undefer_and_ignore_overflow_warnings ();
1084 if (!tcmp
1085 || TREE_CODE (tcmp) != INTEGER_CST)
1086 return -2;
1088 if (!integer_zerop (tcmp))
1089 return 1;
1092 /* val >= val2, not considering overflow infinity. */
1093 if (is_negative_overflow_infinity (val))
1094 return is_negative_overflow_infinity (val2) ? 0 : 1;
1095 else if (is_positive_overflow_infinity (val2))
1096 return is_positive_overflow_infinity (val) ? 0 : 1;
1098 return 0;
1101 /* Compare two values VAL1 and VAL2. Return
1103 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1104 -1 if VAL1 < VAL2,
1105 0 if VAL1 == VAL2,
1106 +1 if VAL1 > VAL2, and
1107 +2 if VAL1 != VAL2
1109 This is similar to tree_int_cst_compare but supports pointer values
1110 and values that cannot be compared at compile time.
1112 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1113 true if the return value is only valid if we assume that signed
1114 overflow is undefined. */
1116 static int
1117 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1119 if (val1 == val2)
1120 return 0;
1122 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1123 both integers. */
1124 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1125 == POINTER_TYPE_P (TREE_TYPE (val2)));
1126 /* Convert the two values into the same type. This is needed because
1127 sizetype causes sign extension even for unsigned types. */
1128 val2 = fold_convert (TREE_TYPE (val1), val2);
1129 STRIP_USELESS_TYPE_CONVERSION (val2);
1131 if ((TREE_CODE (val1) == SSA_NAME
1132 || TREE_CODE (val1) == PLUS_EXPR
1133 || TREE_CODE (val1) == MINUS_EXPR)
1134 && (TREE_CODE (val2) == SSA_NAME
1135 || TREE_CODE (val2) == PLUS_EXPR
1136 || TREE_CODE (val2) == MINUS_EXPR))
1138 tree n1, c1, n2, c2;
1139 enum tree_code code1, code2;
1141 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1142 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1143 same name, return -2. */
1144 if (TREE_CODE (val1) == SSA_NAME)
1146 code1 = SSA_NAME;
1147 n1 = val1;
1148 c1 = NULL_TREE;
1150 else
1152 code1 = TREE_CODE (val1);
1153 n1 = TREE_OPERAND (val1, 0);
1154 c1 = TREE_OPERAND (val1, 1);
1155 if (tree_int_cst_sgn (c1) == -1)
1157 if (is_negative_overflow_infinity (c1))
1158 return -2;
1159 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
1160 if (!c1)
1161 return -2;
1162 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1166 if (TREE_CODE (val2) == SSA_NAME)
1168 code2 = SSA_NAME;
1169 n2 = val2;
1170 c2 = NULL_TREE;
1172 else
1174 code2 = TREE_CODE (val2);
1175 n2 = TREE_OPERAND (val2, 0);
1176 c2 = TREE_OPERAND (val2, 1);
1177 if (tree_int_cst_sgn (c2) == -1)
1179 if (is_negative_overflow_infinity (c2))
1180 return -2;
1181 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
1182 if (!c2)
1183 return -2;
1184 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1188 /* Both values must use the same name. */
1189 if (n1 != n2)
1190 return -2;
1192 if (code1 == SSA_NAME
1193 && code2 == SSA_NAME)
1194 /* NAME == NAME */
1195 return 0;
1197 /* If overflow is defined we cannot simplify more. */
1198 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
1199 return -2;
1201 if (strict_overflow_p != NULL
1202 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
1203 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
1204 *strict_overflow_p = true;
1206 if (code1 == SSA_NAME)
1208 if (code2 == PLUS_EXPR)
1209 /* NAME < NAME + CST */
1210 return -1;
1211 else if (code2 == MINUS_EXPR)
1212 /* NAME > NAME - CST */
1213 return 1;
1215 else if (code1 == PLUS_EXPR)
1217 if (code2 == SSA_NAME)
1218 /* NAME + CST > NAME */
1219 return 1;
1220 else if (code2 == PLUS_EXPR)
1221 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1222 return compare_values_warnv (c1, c2, strict_overflow_p);
1223 else if (code2 == MINUS_EXPR)
1224 /* NAME + CST1 > NAME - CST2 */
1225 return 1;
1227 else if (code1 == MINUS_EXPR)
1229 if (code2 == SSA_NAME)
1230 /* NAME - CST < NAME */
1231 return -1;
1232 else if (code2 == PLUS_EXPR)
1233 /* NAME - CST1 < NAME + CST2 */
1234 return -1;
1235 else if (code2 == MINUS_EXPR)
1236 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1237 C1 and C2 are swapped in the call to compare_values. */
1238 return compare_values_warnv (c2, c1, strict_overflow_p);
1241 gcc_unreachable ();
1244 /* We cannot compare non-constants. */
1245 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1246 return -2;
1248 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1250 /* We cannot compare overflowed values, except for overflow
1251 infinities. */
1252 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1254 if (strict_overflow_p != NULL)
1255 *strict_overflow_p = true;
1256 if (is_negative_overflow_infinity (val1))
1257 return is_negative_overflow_infinity (val2) ? 0 : -1;
1258 else if (is_negative_overflow_infinity (val2))
1259 return 1;
1260 else if (is_positive_overflow_infinity (val1))
1261 return is_positive_overflow_infinity (val2) ? 0 : 1;
1262 else if (is_positive_overflow_infinity (val2))
1263 return -1;
1264 return -2;
1267 return tree_int_cst_compare (val1, val2);
1269 else
1271 tree t;
1273 /* First see if VAL1 and VAL2 are not the same. */
1274 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1275 return 0;
1277 /* If VAL1 is a lower address than VAL2, return -1. */
1278 if (operand_less_p (val1, val2) == 1)
1279 return -1;
1281 /* If VAL1 is a higher address than VAL2, return +1. */
1282 if (operand_less_p (val2, val1) == 1)
1283 return 1;
1285 /* If VAL1 is different than VAL2, return +2.
1286 For integer constants we either have already returned -1 or 1
1287 or they are equivalent. We still might succeed in proving
1288 something about non-trivial operands. */
1289 if (TREE_CODE (val1) != INTEGER_CST
1290 || TREE_CODE (val2) != INTEGER_CST)
1292 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1293 if (t && integer_onep (t))
1294 return 2;
1297 return -2;
1301 /* Compare values like compare_values_warnv, but treat comparisons of
1302 nonconstants which rely on undefined overflow as incomparable. */
1304 static int
1305 compare_values (tree val1, tree val2)
1307 bool sop;
1308 int ret;
1310 sop = false;
1311 ret = compare_values_warnv (val1, val2, &sop);
1312 if (sop
1313 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1314 ret = -2;
1315 return ret;
1319 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
1320 0 if VAL is not inside VR,
1321 -2 if we cannot tell either way.
1323 FIXME, the current semantics of this functions are a bit quirky
1324 when taken in the context of VRP. In here we do not care
1325 about VR's type. If VR is the anti-range ~[3, 5] the call
1326 value_inside_range (4, VR) will return 1.
1328 This is counter-intuitive in a strict sense, but the callers
1329 currently expect this. They are calling the function
1330 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
1331 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
1332 themselves.
1334 This also applies to value_ranges_intersect_p and
1335 range_includes_zero_p. The semantics of VR_RANGE and
1336 VR_ANTI_RANGE should be encoded here, but that also means
1337 adapting the users of these functions to the new semantics.
1339 Benchmark compile/20001226-1.c compilation time after changing this
1340 function. */
1342 static inline int
1343 value_inside_range (tree val, value_range_t * vr)
1345 int cmp1, cmp2;
1347 cmp1 = operand_less_p (val, vr->min);
1348 if (cmp1 == -2)
1349 return -2;
1350 if (cmp1 == 1)
1351 return 0;
1353 cmp2 = operand_less_p (vr->max, val);
1354 if (cmp2 == -2)
1355 return -2;
1357 return !cmp2;
1361 /* Return true if value ranges VR0 and VR1 have a non-empty
1362 intersection.
1364 Benchmark compile/20001226-1.c compilation time after changing this
1365 function.
1368 static inline bool
1369 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1371 /* The value ranges do not intersect if the maximum of the first range is
1372 less than the minimum of the second range or vice versa.
1373 When those relations are unknown, we can't do any better. */
1374 if (operand_less_p (vr0->max, vr1->min) != 0)
1375 return false;
1376 if (operand_less_p (vr1->max, vr0->min) != 0)
1377 return false;
1378 return true;
1382 /* Return true if VR includes the value zero, false otherwise. FIXME,
1383 currently this will return false for an anti-range like ~[-4, 3].
1384 This will be wrong when the semantics of value_inside_range are
1385 modified (currently the users of this function expect these
1386 semantics). */
1388 static inline bool
1389 range_includes_zero_p (value_range_t *vr)
1391 tree zero;
1393 gcc_assert (vr->type != VR_UNDEFINED
1394 && vr->type != VR_VARYING
1395 && !symbolic_range_p (vr));
1397 zero = build_int_cst (TREE_TYPE (vr->min), 0);
1398 return (value_inside_range (zero, vr) == 1);
1401 /* Return true if *VR is know to only contain nonnegative values. */
1403 static inline bool
1404 value_range_nonnegative_p (value_range_t *vr)
1406 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1407 which would return a useful value should be encoded as a
1408 VR_RANGE. */
1409 if (vr->type == VR_RANGE)
1411 int result = compare_values (vr->min, integer_zero_node);
1412 return (result == 0 || result == 1);
1415 return false;
1418 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1419 false otherwise or if no value range information is available. */
1421 bool
1422 ssa_name_nonnegative_p (const_tree t)
1424 value_range_t *vr = get_value_range (t);
1426 if (INTEGRAL_TYPE_P (t)
1427 && TYPE_UNSIGNED (t))
1428 return true;
1430 if (!vr)
1431 return false;
1433 return value_range_nonnegative_p (vr);
1436 /* If *VR has a value rante that is a single constant value return that,
1437 otherwise return NULL_TREE. */
1439 static tree
1440 value_range_constant_singleton (value_range_t *vr)
1442 if (vr->type == VR_RANGE
1443 && operand_equal_p (vr->min, vr->max, 0)
1444 && is_gimple_min_invariant (vr->min))
1445 return vr->min;
1447 return NULL_TREE;
1450 /* If OP has a value range with a single constant value return that,
1451 otherwise return NULL_TREE. This returns OP itself if OP is a
1452 constant. */
1454 static tree
1455 op_with_constant_singleton_value_range (tree op)
1457 if (is_gimple_min_invariant (op))
1458 return op;
1460 if (TREE_CODE (op) != SSA_NAME)
1461 return NULL_TREE;
1463 return value_range_constant_singleton (get_value_range (op));
1466 /* Return true if op is in a boolean [0, 1] value-range. */
1468 static bool
1469 op_with_boolean_value_range_p (tree op)
1471 value_range_t *vr;
1473 if (TYPE_PRECISION (TREE_TYPE (op)) == 1)
1474 return true;
1476 if (integer_zerop (op)
1477 || integer_onep (op))
1478 return true;
1480 if (TREE_CODE (op) != SSA_NAME)
1481 return false;
1483 vr = get_value_range (op);
1484 return (vr->type == VR_RANGE
1485 && integer_zerop (vr->min)
1486 && integer_onep (vr->max));
1489 /* Extract value range information from an ASSERT_EXPR EXPR and store
1490 it in *VR_P. */
1492 static void
1493 extract_range_from_assert (value_range_t *vr_p, tree expr)
1495 tree var, cond, limit, min, max, type;
1496 value_range_t *var_vr, *limit_vr;
1497 enum tree_code cond_code;
1499 var = ASSERT_EXPR_VAR (expr);
1500 cond = ASSERT_EXPR_COND (expr);
1502 gcc_assert (COMPARISON_CLASS_P (cond));
1504 /* Find VAR in the ASSERT_EXPR conditional. */
1505 if (var == TREE_OPERAND (cond, 0)
1506 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1507 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1509 /* If the predicate is of the form VAR COMP LIMIT, then we just
1510 take LIMIT from the RHS and use the same comparison code. */
1511 cond_code = TREE_CODE (cond);
1512 limit = TREE_OPERAND (cond, 1);
1513 cond = TREE_OPERAND (cond, 0);
1515 else
1517 /* If the predicate is of the form LIMIT COMP VAR, then we need
1518 to flip around the comparison code to create the proper range
1519 for VAR. */
1520 cond_code = swap_tree_comparison (TREE_CODE (cond));
1521 limit = TREE_OPERAND (cond, 0);
1522 cond = TREE_OPERAND (cond, 1);
1525 limit = avoid_overflow_infinity (limit);
1527 type = TREE_TYPE (var);
1528 gcc_assert (limit != var);
1530 /* For pointer arithmetic, we only keep track of pointer equality
1531 and inequality. */
1532 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1534 set_value_range_to_varying (vr_p);
1535 return;
1538 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1539 try to use LIMIT's range to avoid creating symbolic ranges
1540 unnecessarily. */
1541 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1543 /* LIMIT's range is only interesting if it has any useful information. */
1544 if (limit_vr
1545 && (limit_vr->type == VR_UNDEFINED
1546 || limit_vr->type == VR_VARYING
1547 || symbolic_range_p (limit_vr)))
1548 limit_vr = NULL;
1550 /* Initially, the new range has the same set of equivalences of
1551 VAR's range. This will be revised before returning the final
1552 value. Since assertions may be chained via mutually exclusive
1553 predicates, we will need to trim the set of equivalences before
1554 we are done. */
1555 gcc_assert (vr_p->equiv == NULL);
1556 add_equivalence (&vr_p->equiv, var);
1558 /* Extract a new range based on the asserted comparison for VAR and
1559 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1560 will only use it for equality comparisons (EQ_EXPR). For any
1561 other kind of assertion, we cannot derive a range from LIMIT's
1562 anti-range that can be used to describe the new range. For
1563 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1564 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1565 no single range for x_2 that could describe LE_EXPR, so we might
1566 as well build the range [b_4, +INF] for it.
1567 One special case we handle is extracting a range from a
1568 range test encoded as (unsigned)var + CST <= limit. */
1569 if (TREE_CODE (cond) == NOP_EXPR
1570 || TREE_CODE (cond) == PLUS_EXPR)
1572 if (TREE_CODE (cond) == PLUS_EXPR)
1574 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1575 TREE_OPERAND (cond, 1));
1576 max = int_const_binop (PLUS_EXPR, limit, min);
1577 cond = TREE_OPERAND (cond, 0);
1579 else
1581 min = build_int_cst (TREE_TYPE (var), 0);
1582 max = limit;
1585 /* Make sure to not set TREE_OVERFLOW on the final type
1586 conversion. We are willingly interpreting large positive
1587 unsigned values as negative singed values here. */
1588 min = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (min),
1589 0, false);
1590 max = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (max),
1591 0, false);
1593 /* We can transform a max, min range to an anti-range or
1594 vice-versa. Use set_and_canonicalize_value_range which does
1595 this for us. */
1596 if (cond_code == LE_EXPR)
1597 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1598 min, max, vr_p->equiv);
1599 else if (cond_code == GT_EXPR)
1600 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1601 min, max, vr_p->equiv);
1602 else
1603 gcc_unreachable ();
1605 else if (cond_code == EQ_EXPR)
1607 enum value_range_type range_type;
1609 if (limit_vr)
1611 range_type = limit_vr->type;
1612 min = limit_vr->min;
1613 max = limit_vr->max;
1615 else
1617 range_type = VR_RANGE;
1618 min = limit;
1619 max = limit;
1622 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1624 /* When asserting the equality VAR == LIMIT and LIMIT is another
1625 SSA name, the new range will also inherit the equivalence set
1626 from LIMIT. */
1627 if (TREE_CODE (limit) == SSA_NAME)
1628 add_equivalence (&vr_p->equiv, limit);
1630 else if (cond_code == NE_EXPR)
1632 /* As described above, when LIMIT's range is an anti-range and
1633 this assertion is an inequality (NE_EXPR), then we cannot
1634 derive anything from the anti-range. For instance, if
1635 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1636 not imply that VAR's range is [0, 0]. So, in the case of
1637 anti-ranges, we just assert the inequality using LIMIT and
1638 not its anti-range.
1640 If LIMIT_VR is a range, we can only use it to build a new
1641 anti-range if LIMIT_VR is a single-valued range. For
1642 instance, if LIMIT_VR is [0, 1], the predicate
1643 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1644 Rather, it means that for value 0 VAR should be ~[0, 0]
1645 and for value 1, VAR should be ~[1, 1]. We cannot
1646 represent these ranges.
1648 The only situation in which we can build a valid
1649 anti-range is when LIMIT_VR is a single-valued range
1650 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1651 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1652 if (limit_vr
1653 && limit_vr->type == VR_RANGE
1654 && compare_values (limit_vr->min, limit_vr->max) == 0)
1656 min = limit_vr->min;
1657 max = limit_vr->max;
1659 else
1661 /* In any other case, we cannot use LIMIT's range to build a
1662 valid anti-range. */
1663 min = max = limit;
1666 /* If MIN and MAX cover the whole range for their type, then
1667 just use the original LIMIT. */
1668 if (INTEGRAL_TYPE_P (type)
1669 && vrp_val_is_min (min)
1670 && vrp_val_is_max (max))
1671 min = max = limit;
1673 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1675 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1677 min = TYPE_MIN_VALUE (type);
1679 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1680 max = limit;
1681 else
1683 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1684 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1685 LT_EXPR. */
1686 max = limit_vr->max;
1689 /* If the maximum value forces us to be out of bounds, simply punt.
1690 It would be pointless to try and do anything more since this
1691 all should be optimized away above us. */
1692 if ((cond_code == LT_EXPR
1693 && compare_values (max, min) == 0)
1694 || (CONSTANT_CLASS_P (max) && TREE_OVERFLOW (max)))
1695 set_value_range_to_varying (vr_p);
1696 else
1698 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1699 if (cond_code == LT_EXPR)
1701 if (TYPE_PRECISION (TREE_TYPE (max)) == 1
1702 && !TYPE_UNSIGNED (TREE_TYPE (max)))
1703 max = fold_build2 (PLUS_EXPR, TREE_TYPE (max), max,
1704 build_int_cst (TREE_TYPE (max), -1));
1705 else
1706 max = fold_build2 (MINUS_EXPR, TREE_TYPE (max), max,
1707 build_int_cst (TREE_TYPE (max), 1));
1708 if (EXPR_P (max))
1709 TREE_NO_WARNING (max) = 1;
1712 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1715 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1717 max = TYPE_MAX_VALUE (type);
1719 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1720 min = limit;
1721 else
1723 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1724 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1725 GT_EXPR. */
1726 min = limit_vr->min;
1729 /* If the minimum value forces us to be out of bounds, simply punt.
1730 It would be pointless to try and do anything more since this
1731 all should be optimized away above us. */
1732 if ((cond_code == GT_EXPR
1733 && compare_values (min, max) == 0)
1734 || (CONSTANT_CLASS_P (min) && TREE_OVERFLOW (min)))
1735 set_value_range_to_varying (vr_p);
1736 else
1738 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1739 if (cond_code == GT_EXPR)
1741 if (TYPE_PRECISION (TREE_TYPE (min)) == 1
1742 && !TYPE_UNSIGNED (TREE_TYPE (min)))
1743 min = fold_build2 (MINUS_EXPR, TREE_TYPE (min), min,
1744 build_int_cst (TREE_TYPE (min), -1));
1745 else
1746 min = fold_build2 (PLUS_EXPR, TREE_TYPE (min), min,
1747 build_int_cst (TREE_TYPE (min), 1));
1748 if (EXPR_P (min))
1749 TREE_NO_WARNING (min) = 1;
1752 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1755 else
1756 gcc_unreachable ();
1758 /* If VAR already had a known range, it may happen that the new
1759 range we have computed and VAR's range are not compatible. For
1760 instance,
1762 if (p_5 == NULL)
1763 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1764 x_7 = p_6->fld;
1765 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1767 While the above comes from a faulty program, it will cause an ICE
1768 later because p_8 and p_6 will have incompatible ranges and at
1769 the same time will be considered equivalent. A similar situation
1770 would arise from
1772 if (i_5 > 10)
1773 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1774 if (i_5 < 5)
1775 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1777 Again i_6 and i_7 will have incompatible ranges. It would be
1778 pointless to try and do anything with i_7's range because
1779 anything dominated by 'if (i_5 < 5)' will be optimized away.
1780 Note, due to the wa in which simulation proceeds, the statement
1781 i_7 = ASSERT_EXPR <...> we would never be visited because the
1782 conditional 'if (i_5 < 5)' always evaluates to false. However,
1783 this extra check does not hurt and may protect against future
1784 changes to VRP that may get into a situation similar to the
1785 NULL pointer dereference example.
1787 Note that these compatibility tests are only needed when dealing
1788 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1789 are both anti-ranges, they will always be compatible, because two
1790 anti-ranges will always have a non-empty intersection. */
1792 var_vr = get_value_range (var);
1794 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1795 ranges or anti-ranges. */
1796 if (vr_p->type == VR_VARYING
1797 || vr_p->type == VR_UNDEFINED
1798 || var_vr->type == VR_VARYING
1799 || var_vr->type == VR_UNDEFINED
1800 || symbolic_range_p (vr_p)
1801 || symbolic_range_p (var_vr))
1802 return;
1804 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1806 /* If the two ranges have a non-empty intersection, we can
1807 refine the resulting range. Since the assert expression
1808 creates an equivalency and at the same time it asserts a
1809 predicate, we can take the intersection of the two ranges to
1810 get better precision. */
1811 if (value_ranges_intersect_p (var_vr, vr_p))
1813 /* Use the larger of the two minimums. */
1814 if (compare_values (vr_p->min, var_vr->min) == -1)
1815 min = var_vr->min;
1816 else
1817 min = vr_p->min;
1819 /* Use the smaller of the two maximums. */
1820 if (compare_values (vr_p->max, var_vr->max) == 1)
1821 max = var_vr->max;
1822 else
1823 max = vr_p->max;
1825 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1827 else
1829 /* The two ranges do not intersect, set the new range to
1830 VARYING, because we will not be able to do anything
1831 meaningful with it. */
1832 set_value_range_to_varying (vr_p);
1835 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1836 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1838 /* A range and an anti-range will cancel each other only if
1839 their ends are the same. For instance, in the example above,
1840 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1841 so VR_P should be set to VR_VARYING. */
1842 if (compare_values (var_vr->min, vr_p->min) == 0
1843 && compare_values (var_vr->max, vr_p->max) == 0)
1844 set_value_range_to_varying (vr_p);
1845 else
1847 tree min, max, anti_min, anti_max, real_min, real_max;
1848 int cmp;
1850 /* We want to compute the logical AND of the two ranges;
1851 there are three cases to consider.
1854 1. The VR_ANTI_RANGE range is completely within the
1855 VR_RANGE and the endpoints of the ranges are
1856 different. In that case the resulting range
1857 should be whichever range is more precise.
1858 Typically that will be the VR_RANGE.
1860 2. The VR_ANTI_RANGE is completely disjoint from
1861 the VR_RANGE. In this case the resulting range
1862 should be the VR_RANGE.
1864 3. There is some overlap between the VR_ANTI_RANGE
1865 and the VR_RANGE.
1867 3a. If the high limit of the VR_ANTI_RANGE resides
1868 within the VR_RANGE, then the result is a new
1869 VR_RANGE starting at the high limit of the
1870 VR_ANTI_RANGE + 1 and extending to the
1871 high limit of the original VR_RANGE.
1873 3b. If the low limit of the VR_ANTI_RANGE resides
1874 within the VR_RANGE, then the result is a new
1875 VR_RANGE starting at the low limit of the original
1876 VR_RANGE and extending to the low limit of the
1877 VR_ANTI_RANGE - 1. */
1878 if (vr_p->type == VR_ANTI_RANGE)
1880 anti_min = vr_p->min;
1881 anti_max = vr_p->max;
1882 real_min = var_vr->min;
1883 real_max = var_vr->max;
1885 else
1887 anti_min = var_vr->min;
1888 anti_max = var_vr->max;
1889 real_min = vr_p->min;
1890 real_max = vr_p->max;
1894 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1895 not including any endpoints. */
1896 if (compare_values (anti_max, real_max) == -1
1897 && compare_values (anti_min, real_min) == 1)
1899 /* If the range is covering the whole valid range of
1900 the type keep the anti-range. */
1901 if (!vrp_val_is_min (real_min)
1902 || !vrp_val_is_max (real_max))
1903 set_value_range (vr_p, VR_RANGE, real_min,
1904 real_max, vr_p->equiv);
1906 /* Case 2, VR_ANTI_RANGE completely disjoint from
1907 VR_RANGE. */
1908 else if (compare_values (anti_min, real_max) == 1
1909 || compare_values (anti_max, real_min) == -1)
1911 set_value_range (vr_p, VR_RANGE, real_min,
1912 real_max, vr_p->equiv);
1914 /* Case 3a, the anti-range extends into the low
1915 part of the real range. Thus creating a new
1916 low for the real range. */
1917 else if (((cmp = compare_values (anti_max, real_min)) == 1
1918 || cmp == 0)
1919 && compare_values (anti_max, real_max) == -1)
1921 gcc_assert (!is_positive_overflow_infinity (anti_max));
1922 if (needs_overflow_infinity (TREE_TYPE (anti_max))
1923 && vrp_val_is_max (anti_max))
1925 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1927 set_value_range_to_varying (vr_p);
1928 return;
1930 min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1932 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1934 if (TYPE_PRECISION (TREE_TYPE (var_vr->min)) == 1
1935 && !TYPE_UNSIGNED (TREE_TYPE (var_vr->min)))
1936 min = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1937 anti_max,
1938 build_int_cst (TREE_TYPE (var_vr->min),
1939 -1));
1940 else
1941 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1942 anti_max,
1943 build_int_cst (TREE_TYPE (var_vr->min),
1944 1));
1946 else
1947 min = fold_build_pointer_plus_hwi (anti_max, 1);
1948 max = real_max;
1949 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1951 /* Case 3b, the anti-range extends into the high
1952 part of the real range. Thus creating a new
1953 higher for the real range. */
1954 else if (compare_values (anti_min, real_min) == 1
1955 && ((cmp = compare_values (anti_min, real_max)) == -1
1956 || cmp == 0))
1958 gcc_assert (!is_negative_overflow_infinity (anti_min));
1959 if (needs_overflow_infinity (TREE_TYPE (anti_min))
1960 && vrp_val_is_min (anti_min))
1962 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1964 set_value_range_to_varying (vr_p);
1965 return;
1967 max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1969 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1971 if (TYPE_PRECISION (TREE_TYPE (var_vr->min)) == 1
1972 && !TYPE_UNSIGNED (TREE_TYPE (var_vr->min)))
1973 max = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1974 anti_min,
1975 build_int_cst (TREE_TYPE (var_vr->min),
1976 -1));
1977 else
1978 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1979 anti_min,
1980 build_int_cst (TREE_TYPE (var_vr->min),
1981 1));
1983 else
1984 max = fold_build_pointer_plus_hwi (anti_min, -1);
1985 min = real_min;
1986 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1993 /* Extract range information from SSA name VAR and store it in VR. If
1994 VAR has an interesting range, use it. Otherwise, create the
1995 range [VAR, VAR] and return it. This is useful in situations where
1996 we may have conditionals testing values of VARYING names. For
1997 instance,
1999 x_3 = y_5;
2000 if (x_3 > y_5)
2003 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
2004 always false. */
2006 static void
2007 extract_range_from_ssa_name (value_range_t *vr, tree var)
2009 value_range_t *var_vr = get_value_range (var);
2011 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
2012 copy_value_range (vr, var_vr);
2013 else
2014 set_value_range (vr, VR_RANGE, var, var, NULL);
2016 add_equivalence (&vr->equiv, var);
2020 /* Wrapper around int_const_binop. If the operation overflows and we
2021 are not using wrapping arithmetic, then adjust the result to be
2022 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
2023 NULL_TREE if we need to use an overflow infinity representation but
2024 the type does not support it. */
2026 static tree
2027 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
2029 tree res;
2031 res = int_const_binop (code, val1, val2);
2033 /* If we are using unsigned arithmetic, operate symbolically
2034 on -INF and +INF as int_const_binop only handles signed overflow. */
2035 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
2037 int checkz = compare_values (res, val1);
2038 bool overflow = false;
2040 /* Ensure that res = val1 [+*] val2 >= val1
2041 or that res = val1 - val2 <= val1. */
2042 if ((code == PLUS_EXPR
2043 && !(checkz == 1 || checkz == 0))
2044 || (code == MINUS_EXPR
2045 && !(checkz == 0 || checkz == -1)))
2047 overflow = true;
2049 /* Checking for multiplication overflow is done by dividing the
2050 output of the multiplication by the first input of the
2051 multiplication. If the result of that division operation is
2052 not equal to the second input of the multiplication, then the
2053 multiplication overflowed. */
2054 else if (code == MULT_EXPR && !integer_zerop (val1))
2056 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
2057 res,
2058 val1);
2059 int check = compare_values (tmp, val2);
2061 if (check != 0)
2062 overflow = true;
2065 if (overflow)
2067 res = copy_node (res);
2068 TREE_OVERFLOW (res) = 1;
2072 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
2073 /* If the singed operation wraps then int_const_binop has done
2074 everything we want. */
2076 else if ((TREE_OVERFLOW (res)
2077 && !TREE_OVERFLOW (val1)
2078 && !TREE_OVERFLOW (val2))
2079 || is_overflow_infinity (val1)
2080 || is_overflow_infinity (val2))
2082 /* If the operation overflowed but neither VAL1 nor VAL2 are
2083 overflown, return -INF or +INF depending on the operation
2084 and the combination of signs of the operands. */
2085 int sgn1 = tree_int_cst_sgn (val1);
2086 int sgn2 = tree_int_cst_sgn (val2);
2088 if (needs_overflow_infinity (TREE_TYPE (res))
2089 && !supports_overflow_infinity (TREE_TYPE (res)))
2090 return NULL_TREE;
2092 /* We have to punt on adding infinities of different signs,
2093 since we can't tell what the sign of the result should be.
2094 Likewise for subtracting infinities of the same sign. */
2095 if (((code == PLUS_EXPR && sgn1 != sgn2)
2096 || (code == MINUS_EXPR && sgn1 == sgn2))
2097 && is_overflow_infinity (val1)
2098 && is_overflow_infinity (val2))
2099 return NULL_TREE;
2101 /* Don't try to handle division or shifting of infinities. */
2102 if ((code == TRUNC_DIV_EXPR
2103 || code == FLOOR_DIV_EXPR
2104 || code == CEIL_DIV_EXPR
2105 || code == EXACT_DIV_EXPR
2106 || code == ROUND_DIV_EXPR
2107 || code == RSHIFT_EXPR)
2108 && (is_overflow_infinity (val1)
2109 || is_overflow_infinity (val2)))
2110 return NULL_TREE;
2112 /* Notice that we only need to handle the restricted set of
2113 operations handled by extract_range_from_binary_expr.
2114 Among them, only multiplication, addition and subtraction
2115 can yield overflow without overflown operands because we
2116 are working with integral types only... except in the
2117 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
2118 for division too. */
2120 /* For multiplication, the sign of the overflow is given
2121 by the comparison of the signs of the operands. */
2122 if ((code == MULT_EXPR && sgn1 == sgn2)
2123 /* For addition, the operands must be of the same sign
2124 to yield an overflow. Its sign is therefore that
2125 of one of the operands, for example the first. For
2126 infinite operands X + -INF is negative, not positive. */
2127 || (code == PLUS_EXPR
2128 && (sgn1 >= 0
2129 ? !is_negative_overflow_infinity (val2)
2130 : is_positive_overflow_infinity (val2)))
2131 /* For subtraction, non-infinite operands must be of
2132 different signs to yield an overflow. Its sign is
2133 therefore that of the first operand or the opposite of
2134 that of the second operand. A first operand of 0 counts
2135 as positive here, for the corner case 0 - (-INF), which
2136 overflows, but must yield +INF. For infinite operands 0
2137 - INF is negative, not positive. */
2138 || (code == MINUS_EXPR
2139 && (sgn1 >= 0
2140 ? !is_positive_overflow_infinity (val2)
2141 : is_negative_overflow_infinity (val2)))
2142 /* We only get in here with positive shift count, so the
2143 overflow direction is the same as the sign of val1.
2144 Actually rshift does not overflow at all, but we only
2145 handle the case of shifting overflowed -INF and +INF. */
2146 || (code == RSHIFT_EXPR
2147 && sgn1 >= 0)
2148 /* For division, the only case is -INF / -1 = +INF. */
2149 || code == TRUNC_DIV_EXPR
2150 || code == FLOOR_DIV_EXPR
2151 || code == CEIL_DIV_EXPR
2152 || code == EXACT_DIV_EXPR
2153 || code == ROUND_DIV_EXPR)
2154 return (needs_overflow_infinity (TREE_TYPE (res))
2155 ? positive_overflow_infinity (TREE_TYPE (res))
2156 : TYPE_MAX_VALUE (TREE_TYPE (res)));
2157 else
2158 return (needs_overflow_infinity (TREE_TYPE (res))
2159 ? negative_overflow_infinity (TREE_TYPE (res))
2160 : TYPE_MIN_VALUE (TREE_TYPE (res)));
2163 return res;
2167 /* For range VR compute two double_int bitmasks. In *MAY_BE_NONZERO
2168 bitmask if some bit is unset, it means for all numbers in the range
2169 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
2170 bitmask if some bit is set, it means for all numbers in the range
2171 the bit is 1, otherwise it might be 0 or 1. */
2173 static bool
2174 zero_nonzero_bits_from_vr (value_range_t *vr,
2175 double_int *may_be_nonzero,
2176 double_int *must_be_nonzero)
2178 *may_be_nonzero = double_int_minus_one;
2179 *must_be_nonzero = double_int_zero;
2180 if (!range_int_cst_p (vr))
2181 return false;
2183 if (range_int_cst_singleton_p (vr))
2185 *may_be_nonzero = tree_to_double_int (vr->min);
2186 *must_be_nonzero = *may_be_nonzero;
2188 else if (tree_int_cst_sgn (vr->min) >= 0
2189 || tree_int_cst_sgn (vr->max) < 0)
2191 double_int dmin = tree_to_double_int (vr->min);
2192 double_int dmax = tree_to_double_int (vr->max);
2193 double_int xor_mask = double_int_xor (dmin, dmax);
2194 *may_be_nonzero = double_int_ior (dmin, dmax);
2195 *must_be_nonzero = double_int_and (dmin, dmax);
2196 if (xor_mask.high != 0)
2198 unsigned HOST_WIDE_INT mask
2199 = ((unsigned HOST_WIDE_INT) 1
2200 << floor_log2 (xor_mask.high)) - 1;
2201 may_be_nonzero->low = ALL_ONES;
2202 may_be_nonzero->high |= mask;
2203 must_be_nonzero->low = 0;
2204 must_be_nonzero->high &= ~mask;
2206 else if (xor_mask.low != 0)
2208 unsigned HOST_WIDE_INT mask
2209 = ((unsigned HOST_WIDE_INT) 1
2210 << floor_log2 (xor_mask.low)) - 1;
2211 may_be_nonzero->low |= mask;
2212 must_be_nonzero->low &= ~mask;
2216 return true;
2219 /* Helper to extract a value-range *VR for a multiplicative operation
2220 *VR0 CODE *VR1. */
2222 static void
2223 extract_range_from_multiplicative_op_1 (value_range_t *vr,
2224 enum tree_code code,
2225 value_range_t *vr0, value_range_t *vr1)
2227 enum value_range_type type;
2228 tree val[4];
2229 size_t i;
2230 tree min, max;
2231 bool sop;
2232 int cmp;
2234 /* Multiplications, divisions and shifts are a bit tricky to handle,
2235 depending on the mix of signs we have in the two ranges, we
2236 need to operate on different values to get the minimum and
2237 maximum values for the new range. One approach is to figure
2238 out all the variations of range combinations and do the
2239 operations.
2241 However, this involves several calls to compare_values and it
2242 is pretty convoluted. It's simpler to do the 4 operations
2243 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2244 MAX1) and then figure the smallest and largest values to form
2245 the new range. */
2246 gcc_assert (code == MULT_EXPR
2247 || code == TRUNC_DIV_EXPR
2248 || code == FLOOR_DIV_EXPR
2249 || code == CEIL_DIV_EXPR
2250 || code == EXACT_DIV_EXPR
2251 || code == ROUND_DIV_EXPR
2252 || code == RSHIFT_EXPR);
2253 gcc_assert ((vr0->type == VR_RANGE
2254 || (code == MULT_EXPR && vr0->type == VR_ANTI_RANGE))
2255 && vr0->type == vr1->type);
2257 type = vr0->type;
2259 /* Compute the 4 cross operations. */
2260 sop = false;
2261 val[0] = vrp_int_const_binop (code, vr0->min, vr1->min);
2262 if (val[0] == NULL_TREE)
2263 sop = true;
2265 if (vr1->max == vr1->min)
2266 val[1] = NULL_TREE;
2267 else
2269 val[1] = vrp_int_const_binop (code, vr0->min, vr1->max);
2270 if (val[1] == NULL_TREE)
2271 sop = true;
2274 if (vr0->max == vr0->min)
2275 val[2] = NULL_TREE;
2276 else
2278 val[2] = vrp_int_const_binop (code, vr0->max, vr1->min);
2279 if (val[2] == NULL_TREE)
2280 sop = true;
2283 if (vr0->min == vr0->max || vr1->min == vr1->max)
2284 val[3] = NULL_TREE;
2285 else
2287 val[3] = vrp_int_const_binop (code, vr0->max, vr1->max);
2288 if (val[3] == NULL_TREE)
2289 sop = true;
2292 if (sop)
2294 set_value_range_to_varying (vr);
2295 return;
2298 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2299 of VAL[i]. */
2300 min = val[0];
2301 max = val[0];
2302 for (i = 1; i < 4; i++)
2304 if (!is_gimple_min_invariant (min)
2305 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2306 || !is_gimple_min_invariant (max)
2307 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2308 break;
2310 if (val[i])
2312 if (!is_gimple_min_invariant (val[i])
2313 || (TREE_OVERFLOW (val[i])
2314 && !is_overflow_infinity (val[i])))
2316 /* If we found an overflowed value, set MIN and MAX
2317 to it so that we set the resulting range to
2318 VARYING. */
2319 min = max = val[i];
2320 break;
2323 if (compare_values (val[i], min) == -1)
2324 min = val[i];
2326 if (compare_values (val[i], max) == 1)
2327 max = val[i];
2331 /* If either MIN or MAX overflowed, then set the resulting range to
2332 VARYING. But we do accept an overflow infinity
2333 representation. */
2334 if (min == NULL_TREE
2335 || !is_gimple_min_invariant (min)
2336 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2337 || max == NULL_TREE
2338 || !is_gimple_min_invariant (max)
2339 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2341 set_value_range_to_varying (vr);
2342 return;
2345 /* We punt if:
2346 1) [-INF, +INF]
2347 2) [-INF, +-INF(OVF)]
2348 3) [+-INF(OVF), +INF]
2349 4) [+-INF(OVF), +-INF(OVF)]
2350 We learn nothing when we have INF and INF(OVF) on both sides.
2351 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2352 overflow. */
2353 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2354 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2356 set_value_range_to_varying (vr);
2357 return;
2360 cmp = compare_values (min, max);
2361 if (cmp == -2 || cmp == 1)
2363 /* If the new range has its limits swapped around (MIN > MAX),
2364 then the operation caused one of them to wrap around, mark
2365 the new range VARYING. */
2366 set_value_range_to_varying (vr);
2368 else
2369 set_value_range (vr, type, min, max, NULL);
2372 /* Extract range information from a binary operation CODE based on
2373 the ranges of each of its operands, *VR0 and *VR1 with resulting
2374 type EXPR_TYPE. The resulting range is stored in *VR. */
2376 static void
2377 extract_range_from_binary_expr_1 (value_range_t *vr,
2378 enum tree_code code, tree expr_type,
2379 value_range_t *vr0_, value_range_t *vr1_)
2381 value_range_t vr0 = *vr0_, vr1 = *vr1_;
2382 enum value_range_type type;
2383 tree min = NULL_TREE, max = NULL_TREE;
2384 int cmp;
2386 if (!INTEGRAL_TYPE_P (expr_type)
2387 && !POINTER_TYPE_P (expr_type))
2389 set_value_range_to_varying (vr);
2390 return;
2393 /* Not all binary expressions can be applied to ranges in a
2394 meaningful way. Handle only arithmetic operations. */
2395 if (code != PLUS_EXPR
2396 && code != MINUS_EXPR
2397 && code != POINTER_PLUS_EXPR
2398 && code != MULT_EXPR
2399 && code != TRUNC_DIV_EXPR
2400 && code != FLOOR_DIV_EXPR
2401 && code != CEIL_DIV_EXPR
2402 && code != EXACT_DIV_EXPR
2403 && code != ROUND_DIV_EXPR
2404 && code != TRUNC_MOD_EXPR
2405 && code != RSHIFT_EXPR
2406 && code != LSHIFT_EXPR
2407 && code != MIN_EXPR
2408 && code != MAX_EXPR
2409 && code != BIT_AND_EXPR
2410 && code != BIT_IOR_EXPR
2411 && code != BIT_XOR_EXPR)
2413 set_value_range_to_varying (vr);
2414 return;
2417 /* If both ranges are UNDEFINED, so is the result. */
2418 if (vr0.type == VR_UNDEFINED && vr1.type == VR_UNDEFINED)
2420 set_value_range_to_undefined (vr);
2421 return;
2423 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2424 code. At some point we may want to special-case operations that
2425 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2426 operand. */
2427 else if (vr0.type == VR_UNDEFINED)
2428 set_value_range_to_varying (&vr0);
2429 else if (vr1.type == VR_UNDEFINED)
2430 set_value_range_to_varying (&vr1);
2432 /* The type of the resulting value range defaults to VR0.TYPE. */
2433 type = vr0.type;
2435 /* Refuse to operate on VARYING ranges, ranges of different kinds
2436 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2437 because we may be able to derive a useful range even if one of
2438 the operands is VR_VARYING or symbolic range. Similarly for
2439 divisions. TODO, we may be able to derive anti-ranges in
2440 some cases. */
2441 if (code != BIT_AND_EXPR
2442 && code != BIT_IOR_EXPR
2443 && code != TRUNC_DIV_EXPR
2444 && code != FLOOR_DIV_EXPR
2445 && code != CEIL_DIV_EXPR
2446 && code != EXACT_DIV_EXPR
2447 && code != ROUND_DIV_EXPR
2448 && code != TRUNC_MOD_EXPR
2449 && (vr0.type == VR_VARYING
2450 || vr1.type == VR_VARYING
2451 || vr0.type != vr1.type
2452 || symbolic_range_p (&vr0)
2453 || symbolic_range_p (&vr1)))
2455 set_value_range_to_varying (vr);
2456 return;
2459 /* Now evaluate the expression to determine the new range. */
2460 if (POINTER_TYPE_P (expr_type))
2462 if (code == MIN_EXPR || code == MAX_EXPR)
2464 /* For MIN/MAX expressions with pointers, we only care about
2465 nullness, if both are non null, then the result is nonnull.
2466 If both are null, then the result is null. Otherwise they
2467 are varying. */
2468 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2469 set_value_range_to_nonnull (vr, expr_type);
2470 else if (range_is_null (&vr0) && range_is_null (&vr1))
2471 set_value_range_to_null (vr, expr_type);
2472 else
2473 set_value_range_to_varying (vr);
2475 else if (code == POINTER_PLUS_EXPR)
2477 /* For pointer types, we are really only interested in asserting
2478 whether the expression evaluates to non-NULL. */
2479 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2480 set_value_range_to_nonnull (vr, expr_type);
2481 else if (range_is_null (&vr0) && range_is_null (&vr1))
2482 set_value_range_to_null (vr, expr_type);
2483 else
2484 set_value_range_to_varying (vr);
2486 else if (code == BIT_AND_EXPR)
2488 /* For pointer types, we are really only interested in asserting
2489 whether the expression evaluates to non-NULL. */
2490 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2491 set_value_range_to_nonnull (vr, expr_type);
2492 else if (range_is_null (&vr0) || range_is_null (&vr1))
2493 set_value_range_to_null (vr, expr_type);
2494 else
2495 set_value_range_to_varying (vr);
2497 else
2498 set_value_range_to_varying (vr);
2500 return;
2503 /* For integer ranges, apply the operation to each end of the
2504 range and see what we end up with. */
2505 if (code == PLUS_EXPR)
2507 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
2508 VR_VARYING. It would take more effort to compute a precise
2509 range for such a case. For example, if we have op0 == 1 and
2510 op1 == -1 with their ranges both being ~[0,0], we would have
2511 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
2512 Note that we are guaranteed to have vr0.type == vr1.type at
2513 this point. */
2514 if (vr0.type == VR_ANTI_RANGE)
2516 set_value_range_to_varying (vr);
2517 return;
2520 /* For operations that make the resulting range directly
2521 proportional to the original ranges, apply the operation to
2522 the same end of each range. */
2523 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2524 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2526 /* If both additions overflowed the range kind is still correct.
2527 This happens regularly with subtracting something in unsigned
2528 arithmetic.
2529 ??? See PR30318 for all the cases we do not handle. */
2530 if ((TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2531 && (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2533 min = build_int_cst_wide (TREE_TYPE (min),
2534 TREE_INT_CST_LOW (min),
2535 TREE_INT_CST_HIGH (min));
2536 max = build_int_cst_wide (TREE_TYPE (max),
2537 TREE_INT_CST_LOW (max),
2538 TREE_INT_CST_HIGH (max));
2541 else if (code == MIN_EXPR
2542 || code == MAX_EXPR)
2544 if (vr0.type == VR_ANTI_RANGE)
2546 /* For MIN_EXPR and MAX_EXPR with two VR_ANTI_RANGEs,
2547 the resulting VR_ANTI_RANGE is the same - intersection
2548 of the two ranges. */
2549 min = vrp_int_const_binop (MAX_EXPR, vr0.min, vr1.min);
2550 max = vrp_int_const_binop (MIN_EXPR, vr0.max, vr1.max);
2552 else
2554 /* For operations that make the resulting range directly
2555 proportional to the original ranges, apply the operation to
2556 the same end of each range. */
2557 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2558 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2561 else if (code == MULT_EXPR)
2563 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2564 drop to VR_VARYING. It would take more effort to compute a
2565 precise range for such a case. For example, if we have
2566 op0 == 65536 and op1 == 65536 with their ranges both being
2567 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2568 we cannot claim that the product is in ~[0,0]. Note that we
2569 are guaranteed to have vr0.type == vr1.type at this
2570 point. */
2571 if (vr0.type == VR_ANTI_RANGE
2572 && !TYPE_OVERFLOW_UNDEFINED (expr_type))
2574 set_value_range_to_varying (vr);
2575 return;
2578 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2579 return;
2581 else if (code == RSHIFT_EXPR)
2583 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2584 then drop to VR_VARYING. Outside of this range we get undefined
2585 behavior from the shift operation. We cannot even trust
2586 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2587 shifts, and the operation at the tree level may be widened. */
2588 if (vr1.type != VR_RANGE
2589 || !value_range_nonnegative_p (&vr1)
2590 || TREE_CODE (vr1.max) != INTEGER_CST
2591 || compare_tree_int (vr1.max, TYPE_PRECISION (expr_type) - 1) == 1)
2593 set_value_range_to_varying (vr);
2594 return;
2597 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2598 return;
2600 else if (code == LSHIFT_EXPR)
2602 /* If we have a LSHIFT_EXPR with any shift values outside [0..prec-1],
2603 then drop to VR_VARYING. Outside of this range we get undefined
2604 behavior from the shift operation. We cannot even trust
2605 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2606 shifts, and the operation at the tree level may be widened. */
2607 if (vr1.type != VR_RANGE
2608 || !value_range_nonnegative_p (&vr1)
2609 || TREE_CODE (vr1.max) != INTEGER_CST
2610 || compare_tree_int (vr1.max, TYPE_PRECISION (expr_type) - 1) == 1)
2612 set_value_range_to_varying (vr);
2613 return;
2616 /* We can map shifts by constants to MULT_EXPR handling. */
2617 if (range_int_cst_singleton_p (&vr1))
2619 value_range_t vr1p = { VR_RANGE, NULL_TREE, NULL_TREE, NULL };
2620 vr1p.min
2621 = double_int_to_tree (expr_type,
2622 double_int_lshift (double_int_one,
2623 TREE_INT_CST_LOW (vr1.min),
2624 TYPE_PRECISION (expr_type),
2625 false));
2626 vr1p.max = vr1p.min;
2627 extract_range_from_multiplicative_op_1 (vr, MULT_EXPR, &vr0, &vr1p);
2628 return;
2631 set_value_range_to_varying (vr);
2632 return;
2634 else if (code == TRUNC_DIV_EXPR
2635 || code == FLOOR_DIV_EXPR
2636 || code == CEIL_DIV_EXPR
2637 || code == EXACT_DIV_EXPR
2638 || code == ROUND_DIV_EXPR)
2640 if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
2642 /* For division, if op1 has VR_RANGE but op0 does not, something
2643 can be deduced just from that range. Say [min, max] / [4, max]
2644 gives [min / 4, max / 4] range. */
2645 if (vr1.type == VR_RANGE
2646 && !symbolic_range_p (&vr1)
2647 && !range_includes_zero_p (&vr1))
2649 vr0.type = type = VR_RANGE;
2650 vr0.min = vrp_val_min (expr_type);
2651 vr0.max = vrp_val_max (expr_type);
2653 else
2655 set_value_range_to_varying (vr);
2656 return;
2660 /* For divisions, if flag_non_call_exceptions is true, we must
2661 not eliminate a division by zero. */
2662 if (cfun->can_throw_non_call_exceptions
2663 && (vr1.type != VR_RANGE
2664 || symbolic_range_p (&vr1)
2665 || range_includes_zero_p (&vr1)))
2667 set_value_range_to_varying (vr);
2668 return;
2671 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2672 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2673 include 0. */
2674 if (vr0.type == VR_RANGE
2675 && (vr1.type != VR_RANGE
2676 || symbolic_range_p (&vr1)
2677 || range_includes_zero_p (&vr1)))
2679 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
2680 int cmp;
2682 min = NULL_TREE;
2683 max = NULL_TREE;
2684 if (TYPE_UNSIGNED (expr_type)
2685 || value_range_nonnegative_p (&vr1))
2687 /* For unsigned division or when divisor is known
2688 to be non-negative, the range has to cover
2689 all numbers from 0 to max for positive max
2690 and all numbers from min to 0 for negative min. */
2691 cmp = compare_values (vr0.max, zero);
2692 if (cmp == -1)
2693 max = zero;
2694 else if (cmp == 0 || cmp == 1)
2695 max = vr0.max;
2696 else
2697 type = VR_VARYING;
2698 cmp = compare_values (vr0.min, zero);
2699 if (cmp == 1)
2700 min = zero;
2701 else if (cmp == 0 || cmp == -1)
2702 min = vr0.min;
2703 else
2704 type = VR_VARYING;
2706 else
2708 /* Otherwise the range is -max .. max or min .. -min
2709 depending on which bound is bigger in absolute value,
2710 as the division can change the sign. */
2711 abs_extent_range (vr, vr0.min, vr0.max);
2712 return;
2714 if (type == VR_VARYING)
2716 set_value_range_to_varying (vr);
2717 return;
2720 else
2722 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2723 return;
2726 else if (code == TRUNC_MOD_EXPR)
2728 if (vr1.type != VR_RANGE
2729 || symbolic_range_p (&vr1)
2730 || range_includes_zero_p (&vr1)
2731 || vrp_val_is_min (vr1.min))
2733 set_value_range_to_varying (vr);
2734 return;
2736 type = VR_RANGE;
2737 /* Compute MAX <|vr1.min|, |vr1.max|> - 1. */
2738 max = fold_unary_to_constant (ABS_EXPR, expr_type, vr1.min);
2739 if (tree_int_cst_lt (max, vr1.max))
2740 max = vr1.max;
2741 max = int_const_binop (MINUS_EXPR, max, integer_one_node);
2742 /* If the dividend is non-negative the modulus will be
2743 non-negative as well. */
2744 if (TYPE_UNSIGNED (expr_type)
2745 || value_range_nonnegative_p (&vr0))
2746 min = build_int_cst (TREE_TYPE (max), 0);
2747 else
2748 min = fold_unary_to_constant (NEGATE_EXPR, expr_type, max);
2750 else if (code == MINUS_EXPR)
2752 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
2753 VR_VARYING. It would take more effort to compute a precise
2754 range for such a case. For example, if we have op0 == 1 and
2755 op1 == 1 with their ranges both being ~[0,0], we would have
2756 op0 - op1 == 0, so we cannot claim that the difference is in
2757 ~[0,0]. Note that we are guaranteed to have
2758 vr0.type == vr1.type at this point. */
2759 if (vr0.type == VR_ANTI_RANGE)
2761 set_value_range_to_varying (vr);
2762 return;
2765 /* For MINUS_EXPR, apply the operation to the opposite ends of
2766 each range. */
2767 min = vrp_int_const_binop (code, vr0.min, vr1.max);
2768 max = vrp_int_const_binop (code, vr0.max, vr1.min);
2770 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
2772 bool int_cst_range0, int_cst_range1;
2773 double_int may_be_nonzero0, may_be_nonzero1;
2774 double_int must_be_nonzero0, must_be_nonzero1;
2776 int_cst_range0 = zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0,
2777 &must_be_nonzero0);
2778 int_cst_range1 = zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1,
2779 &must_be_nonzero1);
2781 type = VR_RANGE;
2782 if (code == BIT_AND_EXPR)
2784 double_int dmax;
2785 min = double_int_to_tree (expr_type,
2786 double_int_and (must_be_nonzero0,
2787 must_be_nonzero1));
2788 dmax = double_int_and (may_be_nonzero0, may_be_nonzero1);
2789 /* If both input ranges contain only negative values we can
2790 truncate the result range maximum to the minimum of the
2791 input range maxima. */
2792 if (int_cst_range0 && int_cst_range1
2793 && tree_int_cst_sgn (vr0.max) < 0
2794 && tree_int_cst_sgn (vr1.max) < 0)
2796 dmax = double_int_min (dmax, tree_to_double_int (vr0.max),
2797 TYPE_UNSIGNED (expr_type));
2798 dmax = double_int_min (dmax, tree_to_double_int (vr1.max),
2799 TYPE_UNSIGNED (expr_type));
2801 /* If either input range contains only non-negative values
2802 we can truncate the result range maximum to the respective
2803 maximum of the input range. */
2804 if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
2805 dmax = double_int_min (dmax, tree_to_double_int (vr0.max),
2806 TYPE_UNSIGNED (expr_type));
2807 if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
2808 dmax = double_int_min (dmax, tree_to_double_int (vr1.max),
2809 TYPE_UNSIGNED (expr_type));
2810 max = double_int_to_tree (expr_type, dmax);
2812 else if (code == BIT_IOR_EXPR)
2814 double_int dmin;
2815 max = double_int_to_tree (expr_type,
2816 double_int_ior (may_be_nonzero0,
2817 may_be_nonzero1));
2818 dmin = double_int_ior (must_be_nonzero0, must_be_nonzero1);
2819 /* If the input ranges contain only positive values we can
2820 truncate the minimum of the result range to the maximum
2821 of the input range minima. */
2822 if (int_cst_range0 && int_cst_range1
2823 && tree_int_cst_sgn (vr0.min) >= 0
2824 && tree_int_cst_sgn (vr1.min) >= 0)
2826 dmin = double_int_max (dmin, tree_to_double_int (vr0.min),
2827 TYPE_UNSIGNED (expr_type));
2828 dmin = double_int_max (dmin, tree_to_double_int (vr1.min),
2829 TYPE_UNSIGNED (expr_type));
2831 /* If either input range contains only negative values
2832 we can truncate the minimum of the result range to the
2833 respective minimum range. */
2834 if (int_cst_range0 && tree_int_cst_sgn (vr0.max) < 0)
2835 dmin = double_int_max (dmin, tree_to_double_int (vr0.min),
2836 TYPE_UNSIGNED (expr_type));
2837 if (int_cst_range1 && tree_int_cst_sgn (vr1.max) < 0)
2838 dmin = double_int_max (dmin, tree_to_double_int (vr1.min),
2839 TYPE_UNSIGNED (expr_type));
2840 min = double_int_to_tree (expr_type, dmin);
2842 else if (code == BIT_XOR_EXPR)
2844 double_int result_zero_bits, result_one_bits;
2845 result_zero_bits
2846 = double_int_ior (double_int_and (must_be_nonzero0,
2847 must_be_nonzero1),
2848 double_int_not
2849 (double_int_ior (may_be_nonzero0,
2850 may_be_nonzero1)));
2851 result_one_bits
2852 = double_int_ior (double_int_and
2853 (must_be_nonzero0,
2854 double_int_not (may_be_nonzero1)),
2855 double_int_and
2856 (must_be_nonzero1,
2857 double_int_not (may_be_nonzero0)));
2858 max = double_int_to_tree (expr_type,
2859 double_int_not (result_zero_bits));
2860 min = double_int_to_tree (expr_type, result_one_bits);
2861 /* If the range has all positive or all negative values the
2862 result is better than VARYING. */
2863 if (tree_int_cst_sgn (min) < 0
2864 || tree_int_cst_sgn (max) >= 0)
2866 else
2867 max = min = NULL_TREE;
2870 else
2871 gcc_unreachable ();
2873 /* If either MIN or MAX overflowed, then set the resulting range to
2874 VARYING. But we do accept an overflow infinity
2875 representation. */
2876 if (min == NULL_TREE
2877 || !is_gimple_min_invariant (min)
2878 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2879 || max == NULL_TREE
2880 || !is_gimple_min_invariant (max)
2881 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2883 set_value_range_to_varying (vr);
2884 return;
2887 /* We punt if:
2888 1) [-INF, +INF]
2889 2) [-INF, +-INF(OVF)]
2890 3) [+-INF(OVF), +INF]
2891 4) [+-INF(OVF), +-INF(OVF)]
2892 We learn nothing when we have INF and INF(OVF) on both sides.
2893 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2894 overflow. */
2895 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2896 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2898 set_value_range_to_varying (vr);
2899 return;
2902 cmp = compare_values (min, max);
2903 if (cmp == -2 || cmp == 1)
2905 /* If the new range has its limits swapped around (MIN > MAX),
2906 then the operation caused one of them to wrap around, mark
2907 the new range VARYING. */
2908 set_value_range_to_varying (vr);
2910 else
2911 set_value_range (vr, type, min, max, NULL);
2914 /* Extract range information from a binary expression OP0 CODE OP1 based on
2915 the ranges of each of its operands with resulting type EXPR_TYPE.
2916 The resulting range is stored in *VR. */
2918 static void
2919 extract_range_from_binary_expr (value_range_t *vr,
2920 enum tree_code code,
2921 tree expr_type, tree op0, tree op1)
2923 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2924 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2926 /* Get value ranges for each operand. For constant operands, create
2927 a new value range with the operand to simplify processing. */
2928 if (TREE_CODE (op0) == SSA_NAME)
2929 vr0 = *(get_value_range (op0));
2930 else if (is_gimple_min_invariant (op0))
2931 set_value_range_to_value (&vr0, op0, NULL);
2932 else
2933 set_value_range_to_varying (&vr0);
2935 if (TREE_CODE (op1) == SSA_NAME)
2936 vr1 = *(get_value_range (op1));
2937 else if (is_gimple_min_invariant (op1))
2938 set_value_range_to_value (&vr1, op1, NULL);
2939 else
2940 set_value_range_to_varying (&vr1);
2942 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &vr1);
2945 /* Extract range information from a unary operation CODE based on
2946 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
2947 The The resulting range is stored in *VR. */
2949 static void
2950 extract_range_from_unary_expr_1 (value_range_t *vr,
2951 enum tree_code code, tree type,
2952 value_range_t *vr0_, tree op0_type)
2954 value_range_t vr0 = *vr0_;
2956 /* VRP only operates on integral and pointer types. */
2957 if (!(INTEGRAL_TYPE_P (op0_type)
2958 || POINTER_TYPE_P (op0_type))
2959 || !(INTEGRAL_TYPE_P (type)
2960 || POINTER_TYPE_P (type)))
2962 set_value_range_to_varying (vr);
2963 return;
2966 /* If VR0 is UNDEFINED, so is the result. */
2967 if (vr0.type == VR_UNDEFINED)
2969 set_value_range_to_undefined (vr);
2970 return;
2973 if (CONVERT_EXPR_CODE_P (code))
2975 tree inner_type = op0_type;
2976 tree outer_type = type;
2978 /* If the expression evaluates to a pointer, we are only interested in
2979 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2980 if (POINTER_TYPE_P (type))
2982 if (range_is_nonnull (&vr0))
2983 set_value_range_to_nonnull (vr, type);
2984 else if (range_is_null (&vr0))
2985 set_value_range_to_null (vr, type);
2986 else
2987 set_value_range_to_varying (vr);
2988 return;
2991 /* If VR0 is varying and we increase the type precision, assume
2992 a full range for the following transformation. */
2993 if (vr0.type == VR_VARYING
2994 && INTEGRAL_TYPE_P (inner_type)
2995 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
2997 vr0.type = VR_RANGE;
2998 vr0.min = TYPE_MIN_VALUE (inner_type);
2999 vr0.max = TYPE_MAX_VALUE (inner_type);
3002 /* If VR0 is a constant range or anti-range and the conversion is
3003 not truncating we can convert the min and max values and
3004 canonicalize the resulting range. Otherwise we can do the
3005 conversion if the size of the range is less than what the
3006 precision of the target type can represent and the range is
3007 not an anti-range. */
3008 if ((vr0.type == VR_RANGE
3009 || vr0.type == VR_ANTI_RANGE)
3010 && TREE_CODE (vr0.min) == INTEGER_CST
3011 && TREE_CODE (vr0.max) == INTEGER_CST
3012 && (!is_overflow_infinity (vr0.min)
3013 || (vr0.type == VR_RANGE
3014 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3015 && needs_overflow_infinity (outer_type)
3016 && supports_overflow_infinity (outer_type)))
3017 && (!is_overflow_infinity (vr0.max)
3018 || (vr0.type == VR_RANGE
3019 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3020 && needs_overflow_infinity (outer_type)
3021 && supports_overflow_infinity (outer_type)))
3022 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
3023 || (vr0.type == VR_RANGE
3024 && integer_zerop (int_const_binop (RSHIFT_EXPR,
3025 int_const_binop (MINUS_EXPR, vr0.max, vr0.min),
3026 size_int (TYPE_PRECISION (outer_type)))))))
3028 tree new_min, new_max;
3029 if (is_overflow_infinity (vr0.min))
3030 new_min = negative_overflow_infinity (outer_type);
3031 else
3032 new_min = force_fit_type_double (outer_type,
3033 tree_to_double_int (vr0.min),
3034 0, false);
3035 if (is_overflow_infinity (vr0.max))
3036 new_max = positive_overflow_infinity (outer_type);
3037 else
3038 new_max = force_fit_type_double (outer_type,
3039 tree_to_double_int (vr0.max),
3040 0, false);
3041 set_and_canonicalize_value_range (vr, vr0.type,
3042 new_min, new_max, NULL);
3043 return;
3046 set_value_range_to_varying (vr);
3047 return;
3049 else if (code == NEGATE_EXPR)
3051 /* -X is simply 0 - X, so re-use existing code that also handles
3052 anti-ranges fine. */
3053 value_range_t zero = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3054 set_value_range_to_value (&zero, build_int_cst (type, 0), NULL);
3055 extract_range_from_binary_expr_1 (vr, MINUS_EXPR, type, &zero, &vr0);
3056 return;
3058 else if (code == ABS_EXPR)
3060 tree min, max;
3061 int cmp;
3063 /* Pass through vr0 in the easy cases. */
3064 if (TYPE_UNSIGNED (type)
3065 || value_range_nonnegative_p (&vr0))
3067 copy_value_range (vr, &vr0);
3068 return;
3071 /* For the remaining varying or symbolic ranges we can't do anything
3072 useful. */
3073 if (vr0.type == VR_VARYING
3074 || symbolic_range_p (&vr0))
3076 set_value_range_to_varying (vr);
3077 return;
3080 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3081 useful range. */
3082 if (!TYPE_OVERFLOW_UNDEFINED (type)
3083 && ((vr0.type == VR_RANGE
3084 && vrp_val_is_min (vr0.min))
3085 || (vr0.type == VR_ANTI_RANGE
3086 && !vrp_val_is_min (vr0.min))))
3088 set_value_range_to_varying (vr);
3089 return;
3092 /* ABS_EXPR may flip the range around, if the original range
3093 included negative values. */
3094 if (is_overflow_infinity (vr0.min))
3095 min = positive_overflow_infinity (type);
3096 else if (!vrp_val_is_min (vr0.min))
3097 min = fold_unary_to_constant (code, type, vr0.min);
3098 else if (!needs_overflow_infinity (type))
3099 min = TYPE_MAX_VALUE (type);
3100 else if (supports_overflow_infinity (type))
3101 min = positive_overflow_infinity (type);
3102 else
3104 set_value_range_to_varying (vr);
3105 return;
3108 if (is_overflow_infinity (vr0.max))
3109 max = positive_overflow_infinity (type);
3110 else if (!vrp_val_is_min (vr0.max))
3111 max = fold_unary_to_constant (code, type, vr0.max);
3112 else if (!needs_overflow_infinity (type))
3113 max = TYPE_MAX_VALUE (type);
3114 else if (supports_overflow_infinity (type)
3115 /* We shouldn't generate [+INF, +INF] as set_value_range
3116 doesn't like this and ICEs. */
3117 && !is_positive_overflow_infinity (min))
3118 max = positive_overflow_infinity (type);
3119 else
3121 set_value_range_to_varying (vr);
3122 return;
3125 cmp = compare_values (min, max);
3127 /* If a VR_ANTI_RANGEs contains zero, then we have
3128 ~[-INF, min(MIN, MAX)]. */
3129 if (vr0.type == VR_ANTI_RANGE)
3131 if (range_includes_zero_p (&vr0))
3133 /* Take the lower of the two values. */
3134 if (cmp != 1)
3135 max = min;
3137 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3138 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3139 flag_wrapv is set and the original anti-range doesn't include
3140 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3141 if (TYPE_OVERFLOW_WRAPS (type))
3143 tree type_min_value = TYPE_MIN_VALUE (type);
3145 min = (vr0.min != type_min_value
3146 ? int_const_binop (PLUS_EXPR, type_min_value,
3147 integer_one_node)
3148 : type_min_value);
3150 else
3152 if (overflow_infinity_range_p (&vr0))
3153 min = negative_overflow_infinity (type);
3154 else
3155 min = TYPE_MIN_VALUE (type);
3158 else
3160 /* All else has failed, so create the range [0, INF], even for
3161 flag_wrapv since TYPE_MIN_VALUE is in the original
3162 anti-range. */
3163 vr0.type = VR_RANGE;
3164 min = build_int_cst (type, 0);
3165 if (needs_overflow_infinity (type))
3167 if (supports_overflow_infinity (type))
3168 max = positive_overflow_infinity (type);
3169 else
3171 set_value_range_to_varying (vr);
3172 return;
3175 else
3176 max = TYPE_MAX_VALUE (type);
3180 /* If the range contains zero then we know that the minimum value in the
3181 range will be zero. */
3182 else if (range_includes_zero_p (&vr0))
3184 if (cmp == 1)
3185 max = min;
3186 min = build_int_cst (type, 0);
3188 else
3190 /* If the range was reversed, swap MIN and MAX. */
3191 if (cmp == 1)
3193 tree t = min;
3194 min = max;
3195 max = t;
3199 cmp = compare_values (min, max);
3200 if (cmp == -2 || cmp == 1)
3202 /* If the new range has its limits swapped around (MIN > MAX),
3203 then the operation caused one of them to wrap around, mark
3204 the new range VARYING. */
3205 set_value_range_to_varying (vr);
3207 else
3208 set_value_range (vr, vr0.type, min, max, NULL);
3209 return;
3211 else if (code == BIT_NOT_EXPR)
3213 /* ~X is simply -1 - X, so re-use existing code that also handles
3214 anti-ranges fine. */
3215 value_range_t minusone = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3216 set_value_range_to_value (&minusone, build_int_cst (type, -1), NULL);
3217 extract_range_from_binary_expr_1 (vr, MINUS_EXPR,
3218 type, &minusone, &vr0);
3219 return;
3221 else if (code == PAREN_EXPR)
3223 copy_value_range (vr, &vr0);
3224 return;
3227 /* For unhandled operations fall back to varying. */
3228 set_value_range_to_varying (vr);
3229 return;
3233 /* Extract range information from a unary expression CODE OP0 based on
3234 the range of its operand with resulting type TYPE.
3235 The resulting range is stored in *VR. */
3237 static void
3238 extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
3239 tree type, tree op0)
3241 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3243 /* Get value ranges for the operand. For constant operands, create
3244 a new value range with the operand to simplify processing. */
3245 if (TREE_CODE (op0) == SSA_NAME)
3246 vr0 = *(get_value_range (op0));
3247 else if (is_gimple_min_invariant (op0))
3248 set_value_range_to_value (&vr0, op0, NULL);
3249 else
3250 set_value_range_to_varying (&vr0);
3252 extract_range_from_unary_expr_1 (vr, code, type, &vr0, TREE_TYPE (op0));
3256 /* Extract range information from a conditional expression STMT based on
3257 the ranges of each of its operands and the expression code. */
3259 static void
3260 extract_range_from_cond_expr (value_range_t *vr, gimple stmt)
3262 tree op0, op1;
3263 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3264 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3266 /* Get value ranges for each operand. For constant operands, create
3267 a new value range with the operand to simplify processing. */
3268 op0 = gimple_assign_rhs2 (stmt);
3269 if (TREE_CODE (op0) == SSA_NAME)
3270 vr0 = *(get_value_range (op0));
3271 else if (is_gimple_min_invariant (op0))
3272 set_value_range_to_value (&vr0, op0, NULL);
3273 else
3274 set_value_range_to_varying (&vr0);
3276 op1 = gimple_assign_rhs3 (stmt);
3277 if (TREE_CODE (op1) == SSA_NAME)
3278 vr1 = *(get_value_range (op1));
3279 else if (is_gimple_min_invariant (op1))
3280 set_value_range_to_value (&vr1, op1, NULL);
3281 else
3282 set_value_range_to_varying (&vr1);
3284 /* The resulting value range is the union of the operand ranges */
3285 vrp_meet (&vr0, &vr1);
3286 copy_value_range (vr, &vr0);
3290 /* Extract range information from a comparison expression EXPR based
3291 on the range of its operand and the expression code. */
3293 static void
3294 extract_range_from_comparison (value_range_t *vr, enum tree_code code,
3295 tree type, tree op0, tree op1)
3297 bool sop = false;
3298 tree val;
3300 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3301 NULL);
3303 /* A disadvantage of using a special infinity as an overflow
3304 representation is that we lose the ability to record overflow
3305 when we don't have an infinity. So we have to ignore a result
3306 which relies on overflow. */
3308 if (val && !is_overflow_infinity (val) && !sop)
3310 /* Since this expression was found on the RHS of an assignment,
3311 its type may be different from _Bool. Convert VAL to EXPR's
3312 type. */
3313 val = fold_convert (type, val);
3314 if (is_gimple_min_invariant (val))
3315 set_value_range_to_value (vr, val, vr->equiv);
3316 else
3317 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3319 else
3320 /* The result of a comparison is always true or false. */
3321 set_value_range_to_truthvalue (vr, type);
3324 /* Try to derive a nonnegative or nonzero range out of STMT relying
3325 primarily on generic routines in fold in conjunction with range data.
3326 Store the result in *VR */
3328 static void
3329 extract_range_basic (value_range_t *vr, gimple stmt)
3331 bool sop = false;
3332 tree type = gimple_expr_type (stmt);
3334 if (INTEGRAL_TYPE_P (type)
3335 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
3336 set_value_range_to_nonnegative (vr, type,
3337 sop || stmt_overflow_infinity (stmt));
3338 else if (vrp_stmt_computes_nonzero (stmt, &sop)
3339 && !sop)
3340 set_value_range_to_nonnull (vr, type);
3341 else
3342 set_value_range_to_varying (vr);
3346 /* Try to compute a useful range out of assignment STMT and store it
3347 in *VR. */
3349 static void
3350 extract_range_from_assignment (value_range_t *vr, gimple stmt)
3352 enum tree_code code = gimple_assign_rhs_code (stmt);
3354 if (code == ASSERT_EXPR)
3355 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
3356 else if (code == SSA_NAME)
3357 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
3358 else if (TREE_CODE_CLASS (code) == tcc_binary)
3359 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
3360 gimple_expr_type (stmt),
3361 gimple_assign_rhs1 (stmt),
3362 gimple_assign_rhs2 (stmt));
3363 else if (TREE_CODE_CLASS (code) == tcc_unary)
3364 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
3365 gimple_expr_type (stmt),
3366 gimple_assign_rhs1 (stmt));
3367 else if (code == COND_EXPR)
3368 extract_range_from_cond_expr (vr, stmt);
3369 else if (TREE_CODE_CLASS (code) == tcc_comparison)
3370 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
3371 gimple_expr_type (stmt),
3372 gimple_assign_rhs1 (stmt),
3373 gimple_assign_rhs2 (stmt));
3374 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
3375 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
3376 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
3377 else
3378 set_value_range_to_varying (vr);
3380 if (vr->type == VR_VARYING)
3381 extract_range_basic (vr, stmt);
3384 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3385 would be profitable to adjust VR using scalar evolution information
3386 for VAR. If so, update VR with the new limits. */
3388 static void
3389 adjust_range_with_scev (value_range_t *vr, struct loop *loop,
3390 gimple stmt, tree var)
3392 tree init, step, chrec, tmin, tmax, min, max, type, tem;
3393 enum ev_direction dir;
3395 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3396 better opportunities than a regular range, but I'm not sure. */
3397 if (vr->type == VR_ANTI_RANGE)
3398 return;
3400 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
3402 /* Like in PR19590, scev can return a constant function. */
3403 if (is_gimple_min_invariant (chrec))
3405 set_value_range_to_value (vr, chrec, vr->equiv);
3406 return;
3409 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3410 return;
3412 init = initial_condition_in_loop_num (chrec, loop->num);
3413 tem = op_with_constant_singleton_value_range (init);
3414 if (tem)
3415 init = tem;
3416 step = evolution_part_in_loop_num (chrec, loop->num);
3417 tem = op_with_constant_singleton_value_range (step);
3418 if (tem)
3419 step = tem;
3421 /* If STEP is symbolic, we can't know whether INIT will be the
3422 minimum or maximum value in the range. Also, unless INIT is
3423 a simple expression, compare_values and possibly other functions
3424 in tree-vrp won't be able to handle it. */
3425 if (step == NULL_TREE
3426 || !is_gimple_min_invariant (step)
3427 || !valid_value_p (init))
3428 return;
3430 dir = scev_direction (chrec);
3431 if (/* Do not adjust ranges if we do not know whether the iv increases
3432 or decreases, ... */
3433 dir == EV_DIR_UNKNOWN
3434 /* ... or if it may wrap. */
3435 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3436 true))
3437 return;
3439 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3440 negative_overflow_infinity and positive_overflow_infinity,
3441 because we have concluded that the loop probably does not
3442 wrap. */
3444 type = TREE_TYPE (var);
3445 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
3446 tmin = lower_bound_in_type (type, type);
3447 else
3448 tmin = TYPE_MIN_VALUE (type);
3449 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
3450 tmax = upper_bound_in_type (type, type);
3451 else
3452 tmax = TYPE_MAX_VALUE (type);
3454 /* Try to use estimated number of iterations for the loop to constrain the
3455 final value in the evolution. */
3456 if (TREE_CODE (step) == INTEGER_CST
3457 && is_gimple_val (init)
3458 && (TREE_CODE (init) != SSA_NAME
3459 || get_value_range (init)->type == VR_RANGE))
3461 double_int nit;
3463 /* We are only entering here for loop header PHI nodes, so using
3464 the number of latch executions is the correct thing to use. */
3465 if (max_loop_iterations (loop, &nit))
3467 value_range_t maxvr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3468 double_int dtmp;
3469 bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (step));
3470 int overflow = 0;
3472 dtmp = double_int_mul_with_sign (tree_to_double_int (step), nit,
3473 unsigned_p, &overflow);
3474 /* If the multiplication overflowed we can't do a meaningful
3475 adjustment. Likewise if the result doesn't fit in the type
3476 of the induction variable. For a signed type we have to
3477 check whether the result has the expected signedness which
3478 is that of the step as number of iterations is unsigned. */
3479 if (!overflow
3480 && double_int_fits_to_tree_p (TREE_TYPE (init), dtmp)
3481 && (unsigned_p
3482 || ((dtmp.high ^ TREE_INT_CST_HIGH (step)) >= 0)))
3484 tem = double_int_to_tree (TREE_TYPE (init), dtmp);
3485 extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
3486 TREE_TYPE (init), init, tem);
3487 /* Likewise if the addition did. */
3488 if (maxvr.type == VR_RANGE)
3490 tmin = maxvr.min;
3491 tmax = maxvr.max;
3497 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3499 min = tmin;
3500 max = tmax;
3502 /* For VARYING or UNDEFINED ranges, just about anything we get
3503 from scalar evolutions should be better. */
3505 if (dir == EV_DIR_DECREASES)
3506 max = init;
3507 else
3508 min = init;
3510 /* If we would create an invalid range, then just assume we
3511 know absolutely nothing. This may be over-conservative,
3512 but it's clearly safe, and should happen only in unreachable
3513 parts of code, or for invalid programs. */
3514 if (compare_values (min, max) == 1)
3515 return;
3517 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3519 else if (vr->type == VR_RANGE)
3521 min = vr->min;
3522 max = vr->max;
3524 if (dir == EV_DIR_DECREASES)
3526 /* INIT is the maximum value. If INIT is lower than VR->MAX
3527 but no smaller than VR->MIN, set VR->MAX to INIT. */
3528 if (compare_values (init, max) == -1)
3529 max = init;
3531 /* According to the loop information, the variable does not
3532 overflow. If we think it does, probably because of an
3533 overflow due to arithmetic on a different INF value,
3534 reset now. */
3535 if (is_negative_overflow_infinity (min)
3536 || compare_values (min, tmin) == -1)
3537 min = tmin;
3540 else
3542 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
3543 if (compare_values (init, min) == 1)
3544 min = init;
3546 if (is_positive_overflow_infinity (max)
3547 || compare_values (tmax, max) == -1)
3548 max = tmax;
3551 /* If we just created an invalid range with the minimum
3552 greater than the maximum, we fail conservatively.
3553 This should happen only in unreachable
3554 parts of code, or for invalid programs. */
3555 if (compare_values (min, max) == 1)
3556 return;
3558 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3562 /* Return true if VAR may overflow at STMT. This checks any available
3563 loop information to see if we can determine that VAR does not
3564 overflow. */
3566 static bool
3567 vrp_var_may_overflow (tree var, gimple stmt)
3569 struct loop *l;
3570 tree chrec, init, step;
3572 if (current_loops == NULL)
3573 return true;
3575 l = loop_containing_stmt (stmt);
3576 if (l == NULL
3577 || !loop_outer (l))
3578 return true;
3580 chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
3581 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3582 return true;
3584 init = initial_condition_in_loop_num (chrec, l->num);
3585 step = evolution_part_in_loop_num (chrec, l->num);
3587 if (step == NULL_TREE
3588 || !is_gimple_min_invariant (step)
3589 || !valid_value_p (init))
3590 return true;
3592 /* If we get here, we know something useful about VAR based on the
3593 loop information. If it wraps, it may overflow. */
3595 if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3596 true))
3597 return true;
3599 if (dump_file && (dump_flags & TDF_DETAILS) != 0)
3601 print_generic_expr (dump_file, var, 0);
3602 fprintf (dump_file, ": loop information indicates does not overflow\n");
3605 return false;
3609 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
3611 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
3612 all the values in the ranges.
3614 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
3616 - Return NULL_TREE if it is not always possible to determine the
3617 value of the comparison.
3619 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
3620 overflow infinity was used in the test. */
3623 static tree
3624 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
3625 bool *strict_overflow_p)
3627 /* VARYING or UNDEFINED ranges cannot be compared. */
3628 if (vr0->type == VR_VARYING
3629 || vr0->type == VR_UNDEFINED
3630 || vr1->type == VR_VARYING
3631 || vr1->type == VR_UNDEFINED)
3632 return NULL_TREE;
3634 /* Anti-ranges need to be handled separately. */
3635 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3637 /* If both are anti-ranges, then we cannot compute any
3638 comparison. */
3639 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3640 return NULL_TREE;
3642 /* These comparisons are never statically computable. */
3643 if (comp == GT_EXPR
3644 || comp == GE_EXPR
3645 || comp == LT_EXPR
3646 || comp == LE_EXPR)
3647 return NULL_TREE;
3649 /* Equality can be computed only between a range and an
3650 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
3651 if (vr0->type == VR_RANGE)
3653 /* To simplify processing, make VR0 the anti-range. */
3654 value_range_t *tmp = vr0;
3655 vr0 = vr1;
3656 vr1 = tmp;
3659 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
3661 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
3662 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
3663 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3665 return NULL_TREE;
3668 if (!usable_range_p (vr0, strict_overflow_p)
3669 || !usable_range_p (vr1, strict_overflow_p))
3670 return NULL_TREE;
3672 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
3673 operands around and change the comparison code. */
3674 if (comp == GT_EXPR || comp == GE_EXPR)
3676 value_range_t *tmp;
3677 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
3678 tmp = vr0;
3679 vr0 = vr1;
3680 vr1 = tmp;
3683 if (comp == EQ_EXPR)
3685 /* Equality may only be computed if both ranges represent
3686 exactly one value. */
3687 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
3688 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
3690 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
3691 strict_overflow_p);
3692 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
3693 strict_overflow_p);
3694 if (cmp_min == 0 && cmp_max == 0)
3695 return boolean_true_node;
3696 else if (cmp_min != -2 && cmp_max != -2)
3697 return boolean_false_node;
3699 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
3700 else if (compare_values_warnv (vr0->min, vr1->max,
3701 strict_overflow_p) == 1
3702 || compare_values_warnv (vr1->min, vr0->max,
3703 strict_overflow_p) == 1)
3704 return boolean_false_node;
3706 return NULL_TREE;
3708 else if (comp == NE_EXPR)
3710 int cmp1, cmp2;
3712 /* If VR0 is completely to the left or completely to the right
3713 of VR1, they are always different. Notice that we need to
3714 make sure that both comparisons yield similar results to
3715 avoid comparing values that cannot be compared at
3716 compile-time. */
3717 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3718 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3719 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
3720 return boolean_true_node;
3722 /* If VR0 and VR1 represent a single value and are identical,
3723 return false. */
3724 else if (compare_values_warnv (vr0->min, vr0->max,
3725 strict_overflow_p) == 0
3726 && compare_values_warnv (vr1->min, vr1->max,
3727 strict_overflow_p) == 0
3728 && compare_values_warnv (vr0->min, vr1->min,
3729 strict_overflow_p) == 0
3730 && compare_values_warnv (vr0->max, vr1->max,
3731 strict_overflow_p) == 0)
3732 return boolean_false_node;
3734 /* Otherwise, they may or may not be different. */
3735 else
3736 return NULL_TREE;
3738 else if (comp == LT_EXPR || comp == LE_EXPR)
3740 int tst;
3742 /* If VR0 is to the left of VR1, return true. */
3743 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3744 if ((comp == LT_EXPR && tst == -1)
3745 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3747 if (overflow_infinity_range_p (vr0)
3748 || overflow_infinity_range_p (vr1))
3749 *strict_overflow_p = true;
3750 return boolean_true_node;
3753 /* If VR0 is to the right of VR1, return false. */
3754 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3755 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3756 || (comp == LE_EXPR && tst == 1))
3758 if (overflow_infinity_range_p (vr0)
3759 || overflow_infinity_range_p (vr1))
3760 *strict_overflow_p = true;
3761 return boolean_false_node;
3764 /* Otherwise, we don't know. */
3765 return NULL_TREE;
3768 gcc_unreachable ();
3772 /* Given a value range VR, a value VAL and a comparison code COMP, return
3773 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
3774 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
3775 always returns false. Return NULL_TREE if it is not always
3776 possible to determine the value of the comparison. Also set
3777 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
3778 infinity was used in the test. */
3780 static tree
3781 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
3782 bool *strict_overflow_p)
3784 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3785 return NULL_TREE;
3787 /* Anti-ranges need to be handled separately. */
3788 if (vr->type == VR_ANTI_RANGE)
3790 /* For anti-ranges, the only predicates that we can compute at
3791 compile time are equality and inequality. */
3792 if (comp == GT_EXPR
3793 || comp == GE_EXPR
3794 || comp == LT_EXPR
3795 || comp == LE_EXPR)
3796 return NULL_TREE;
3798 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
3799 if (value_inside_range (val, vr) == 1)
3800 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3802 return NULL_TREE;
3805 if (!usable_range_p (vr, strict_overflow_p))
3806 return NULL_TREE;
3808 if (comp == EQ_EXPR)
3810 /* EQ_EXPR may only be computed if VR represents exactly
3811 one value. */
3812 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
3814 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
3815 if (cmp == 0)
3816 return boolean_true_node;
3817 else if (cmp == -1 || cmp == 1 || cmp == 2)
3818 return boolean_false_node;
3820 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
3821 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
3822 return boolean_false_node;
3824 return NULL_TREE;
3826 else if (comp == NE_EXPR)
3828 /* If VAL is not inside VR, then they are always different. */
3829 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
3830 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
3831 return boolean_true_node;
3833 /* If VR represents exactly one value equal to VAL, then return
3834 false. */
3835 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
3836 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
3837 return boolean_false_node;
3839 /* Otherwise, they may or may not be different. */
3840 return NULL_TREE;
3842 else if (comp == LT_EXPR || comp == LE_EXPR)
3844 int tst;
3846 /* If VR is to the left of VAL, return true. */
3847 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3848 if ((comp == LT_EXPR && tst == -1)
3849 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3851 if (overflow_infinity_range_p (vr))
3852 *strict_overflow_p = true;
3853 return boolean_true_node;
3856 /* If VR is to the right of VAL, return false. */
3857 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3858 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3859 || (comp == LE_EXPR && tst == 1))
3861 if (overflow_infinity_range_p (vr))
3862 *strict_overflow_p = true;
3863 return boolean_false_node;
3866 /* Otherwise, we don't know. */
3867 return NULL_TREE;
3869 else if (comp == GT_EXPR || comp == GE_EXPR)
3871 int tst;
3873 /* If VR is to the right of VAL, return true. */
3874 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3875 if ((comp == GT_EXPR && tst == 1)
3876 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
3878 if (overflow_infinity_range_p (vr))
3879 *strict_overflow_p = true;
3880 return boolean_true_node;
3883 /* If VR is to the left of VAL, return false. */
3884 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3885 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
3886 || (comp == GE_EXPR && tst == -1))
3888 if (overflow_infinity_range_p (vr))
3889 *strict_overflow_p = true;
3890 return boolean_false_node;
3893 /* Otherwise, we don't know. */
3894 return NULL_TREE;
3897 gcc_unreachable ();
3901 /* Debugging dumps. */
3903 void dump_value_range (FILE *, value_range_t *);
3904 void debug_value_range (value_range_t *);
3905 void dump_all_value_ranges (FILE *);
3906 void debug_all_value_ranges (void);
3907 void dump_vr_equiv (FILE *, bitmap);
3908 void debug_vr_equiv (bitmap);
3911 /* Dump value range VR to FILE. */
3913 void
3914 dump_value_range (FILE *file, value_range_t *vr)
3916 if (vr == NULL)
3917 fprintf (file, "[]");
3918 else if (vr->type == VR_UNDEFINED)
3919 fprintf (file, "UNDEFINED");
3920 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
3922 tree type = TREE_TYPE (vr->min);
3924 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
3926 if (is_negative_overflow_infinity (vr->min))
3927 fprintf (file, "-INF(OVF)");
3928 else if (INTEGRAL_TYPE_P (type)
3929 && !TYPE_UNSIGNED (type)
3930 && vrp_val_is_min (vr->min))
3931 fprintf (file, "-INF");
3932 else
3933 print_generic_expr (file, vr->min, 0);
3935 fprintf (file, ", ");
3937 if (is_positive_overflow_infinity (vr->max))
3938 fprintf (file, "+INF(OVF)");
3939 else if (INTEGRAL_TYPE_P (type)
3940 && vrp_val_is_max (vr->max))
3941 fprintf (file, "+INF");
3942 else
3943 print_generic_expr (file, vr->max, 0);
3945 fprintf (file, "]");
3947 if (vr->equiv)
3949 bitmap_iterator bi;
3950 unsigned i, c = 0;
3952 fprintf (file, " EQUIVALENCES: { ");
3954 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
3956 print_generic_expr (file, ssa_name (i), 0);
3957 fprintf (file, " ");
3958 c++;
3961 fprintf (file, "} (%u elements)", c);
3964 else if (vr->type == VR_VARYING)
3965 fprintf (file, "VARYING");
3966 else
3967 fprintf (file, "INVALID RANGE");
3971 /* Dump value range VR to stderr. */
3973 DEBUG_FUNCTION void
3974 debug_value_range (value_range_t *vr)
3976 dump_value_range (stderr, vr);
3977 fprintf (stderr, "\n");
3981 /* Dump value ranges of all SSA_NAMEs to FILE. */
3983 void
3984 dump_all_value_ranges (FILE *file)
3986 size_t i;
3988 for (i = 0; i < num_vr_values; i++)
3990 if (vr_value[i])
3992 print_generic_expr (file, ssa_name (i), 0);
3993 fprintf (file, ": ");
3994 dump_value_range (file, vr_value[i]);
3995 fprintf (file, "\n");
3999 fprintf (file, "\n");
4003 /* Dump all value ranges to stderr. */
4005 DEBUG_FUNCTION void
4006 debug_all_value_ranges (void)
4008 dump_all_value_ranges (stderr);
4012 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
4013 create a new SSA name N and return the assertion assignment
4014 'V = ASSERT_EXPR <V, V OP W>'. */
4016 static gimple
4017 build_assert_expr_for (tree cond, tree v)
4019 tree n;
4020 gimple assertion;
4022 gcc_assert (TREE_CODE (v) == SSA_NAME);
4023 n = duplicate_ssa_name (v, NULL);
4025 if (COMPARISON_CLASS_P (cond))
4027 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
4028 assertion = gimple_build_assign (n, a);
4030 else if (TREE_CODE (cond) == SSA_NAME)
4032 /* Given V, build the assignment N = true. */
4033 gcc_assert (v == cond);
4034 assertion = gimple_build_assign (n, boolean_true_node);
4036 else
4037 gcc_unreachable ();
4039 SSA_NAME_DEF_STMT (n) = assertion;
4041 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
4042 operand of the ASSERT_EXPR. Register the new name and the old one
4043 in the replacement table so that we can fix the SSA web after
4044 adding all the ASSERT_EXPRs. */
4045 register_new_name_mapping (n, v);
4047 return assertion;
4051 /* Return false if EXPR is a predicate expression involving floating
4052 point values. */
4054 static inline bool
4055 fp_predicate (gimple stmt)
4057 GIMPLE_CHECK (stmt, GIMPLE_COND);
4059 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
4063 /* If the range of values taken by OP can be inferred after STMT executes,
4064 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4065 describes the inferred range. Return true if a range could be
4066 inferred. */
4068 static bool
4069 infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
4071 *val_p = NULL_TREE;
4072 *comp_code_p = ERROR_MARK;
4074 /* Do not attempt to infer anything in names that flow through
4075 abnormal edges. */
4076 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
4077 return false;
4079 /* Similarly, don't infer anything from statements that may throw
4080 exceptions. */
4081 if (stmt_could_throw_p (stmt))
4082 return false;
4084 /* If STMT is the last statement of a basic block with no
4085 successors, there is no point inferring anything about any of its
4086 operands. We would not be able to find a proper insertion point
4087 for the assertion, anyway. */
4088 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (gimple_bb (stmt)->succs) == 0)
4089 return false;
4091 /* We can only assume that a pointer dereference will yield
4092 non-NULL if -fdelete-null-pointer-checks is enabled. */
4093 if (flag_delete_null_pointer_checks
4094 && POINTER_TYPE_P (TREE_TYPE (op))
4095 && gimple_code (stmt) != GIMPLE_ASM)
4097 unsigned num_uses, num_loads, num_stores;
4099 count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
4100 if (num_loads + num_stores > 0)
4102 *val_p = build_int_cst (TREE_TYPE (op), 0);
4103 *comp_code_p = NE_EXPR;
4104 return true;
4108 return false;
4112 void dump_asserts_for (FILE *, tree);
4113 void debug_asserts_for (tree);
4114 void dump_all_asserts (FILE *);
4115 void debug_all_asserts (void);
4117 /* Dump all the registered assertions for NAME to FILE. */
4119 void
4120 dump_asserts_for (FILE *file, tree name)
4122 assert_locus_t loc;
4124 fprintf (file, "Assertions to be inserted for ");
4125 print_generic_expr (file, name, 0);
4126 fprintf (file, "\n");
4128 loc = asserts_for[SSA_NAME_VERSION (name)];
4129 while (loc)
4131 fprintf (file, "\t");
4132 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
4133 fprintf (file, "\n\tBB #%d", loc->bb->index);
4134 if (loc->e)
4136 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
4137 loc->e->dest->index);
4138 dump_edge_info (file, loc->e, 0);
4140 fprintf (file, "\n\tPREDICATE: ");
4141 print_generic_expr (file, name, 0);
4142 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
4143 print_generic_expr (file, loc->val, 0);
4144 fprintf (file, "\n\n");
4145 loc = loc->next;
4148 fprintf (file, "\n");
4152 /* Dump all the registered assertions for NAME to stderr. */
4154 DEBUG_FUNCTION void
4155 debug_asserts_for (tree name)
4157 dump_asserts_for (stderr, name);
4161 /* Dump all the registered assertions for all the names to FILE. */
4163 void
4164 dump_all_asserts (FILE *file)
4166 unsigned i;
4167 bitmap_iterator bi;
4169 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
4170 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4171 dump_asserts_for (file, ssa_name (i));
4172 fprintf (file, "\n");
4176 /* Dump all the registered assertions for all the names to stderr. */
4178 DEBUG_FUNCTION void
4179 debug_all_asserts (void)
4181 dump_all_asserts (stderr);
4185 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4186 'EXPR COMP_CODE VAL' at a location that dominates block BB or
4187 E->DEST, then register this location as a possible insertion point
4188 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
4190 BB, E and SI provide the exact insertion point for the new
4191 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
4192 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4193 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4194 must not be NULL. */
4196 static void
4197 register_new_assert_for (tree name, tree expr,
4198 enum tree_code comp_code,
4199 tree val,
4200 basic_block bb,
4201 edge e,
4202 gimple_stmt_iterator si)
4204 assert_locus_t n, loc, last_loc;
4205 basic_block dest_bb;
4207 gcc_checking_assert (bb == NULL || e == NULL);
4209 if (e == NULL)
4210 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
4211 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
4213 /* Never build an assert comparing against an integer constant with
4214 TREE_OVERFLOW set. This confuses our undefined overflow warning
4215 machinery. */
4216 if (TREE_CODE (val) == INTEGER_CST
4217 && TREE_OVERFLOW (val))
4218 val = build_int_cst_wide (TREE_TYPE (val),
4219 TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val));
4221 /* The new assertion A will be inserted at BB or E. We need to
4222 determine if the new location is dominated by a previously
4223 registered location for A. If we are doing an edge insertion,
4224 assume that A will be inserted at E->DEST. Note that this is not
4225 necessarily true.
4227 If E is a critical edge, it will be split. But even if E is
4228 split, the new block will dominate the same set of blocks that
4229 E->DEST dominates.
4231 The reverse, however, is not true, blocks dominated by E->DEST
4232 will not be dominated by the new block created to split E. So,
4233 if the insertion location is on a critical edge, we will not use
4234 the new location to move another assertion previously registered
4235 at a block dominated by E->DEST. */
4236 dest_bb = (bb) ? bb : e->dest;
4238 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
4239 VAL at a block dominating DEST_BB, then we don't need to insert a new
4240 one. Similarly, if the same assertion already exists at a block
4241 dominated by DEST_BB and the new location is not on a critical
4242 edge, then update the existing location for the assertion (i.e.,
4243 move the assertion up in the dominance tree).
4245 Note, this is implemented as a simple linked list because there
4246 should not be more than a handful of assertions registered per
4247 name. If this becomes a performance problem, a table hashed by
4248 COMP_CODE and VAL could be implemented. */
4249 loc = asserts_for[SSA_NAME_VERSION (name)];
4250 last_loc = loc;
4251 while (loc)
4253 if (loc->comp_code == comp_code
4254 && (loc->val == val
4255 || operand_equal_p (loc->val, val, 0))
4256 && (loc->expr == expr
4257 || operand_equal_p (loc->expr, expr, 0)))
4259 /* If the assertion NAME COMP_CODE VAL has already been
4260 registered at a basic block that dominates DEST_BB, then
4261 we don't need to insert the same assertion again. Note
4262 that we don't check strict dominance here to avoid
4263 replicating the same assertion inside the same basic
4264 block more than once (e.g., when a pointer is
4265 dereferenced several times inside a block).
4267 An exception to this rule are edge insertions. If the
4268 new assertion is to be inserted on edge E, then it will
4269 dominate all the other insertions that we may want to
4270 insert in DEST_BB. So, if we are doing an edge
4271 insertion, don't do this dominance check. */
4272 if (e == NULL
4273 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
4274 return;
4276 /* Otherwise, if E is not a critical edge and DEST_BB
4277 dominates the existing location for the assertion, move
4278 the assertion up in the dominance tree by updating its
4279 location information. */
4280 if ((e == NULL || !EDGE_CRITICAL_P (e))
4281 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
4283 loc->bb = dest_bb;
4284 loc->e = e;
4285 loc->si = si;
4286 return;
4290 /* Update the last node of the list and move to the next one. */
4291 last_loc = loc;
4292 loc = loc->next;
4295 /* If we didn't find an assertion already registered for
4296 NAME COMP_CODE VAL, add a new one at the end of the list of
4297 assertions associated with NAME. */
4298 n = XNEW (struct assert_locus_d);
4299 n->bb = dest_bb;
4300 n->e = e;
4301 n->si = si;
4302 n->comp_code = comp_code;
4303 n->val = val;
4304 n->expr = expr;
4305 n->next = NULL;
4307 if (last_loc)
4308 last_loc->next = n;
4309 else
4310 asserts_for[SSA_NAME_VERSION (name)] = n;
4312 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
4315 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4316 Extract a suitable test code and value and store them into *CODE_P and
4317 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4319 If no extraction was possible, return FALSE, otherwise return TRUE.
4321 If INVERT is true, then we invert the result stored into *CODE_P. */
4323 static bool
4324 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
4325 tree cond_op0, tree cond_op1,
4326 bool invert, enum tree_code *code_p,
4327 tree *val_p)
4329 enum tree_code comp_code;
4330 tree val;
4332 /* Otherwise, we have a comparison of the form NAME COMP VAL
4333 or VAL COMP NAME. */
4334 if (name == cond_op1)
4336 /* If the predicate is of the form VAL COMP NAME, flip
4337 COMP around because we need to register NAME as the
4338 first operand in the predicate. */
4339 comp_code = swap_tree_comparison (cond_code);
4340 val = cond_op0;
4342 else
4344 /* The comparison is of the form NAME COMP VAL, so the
4345 comparison code remains unchanged. */
4346 comp_code = cond_code;
4347 val = cond_op1;
4350 /* Invert the comparison code as necessary. */
4351 if (invert)
4352 comp_code = invert_tree_comparison (comp_code, 0);
4354 /* VRP does not handle float types. */
4355 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
4356 return false;
4358 /* Do not register always-false predicates.
4359 FIXME: this works around a limitation in fold() when dealing with
4360 enumerations. Given 'enum { N1, N2 } x;', fold will not
4361 fold 'if (x > N2)' to 'if (0)'. */
4362 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
4363 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
4365 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
4366 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
4368 if (comp_code == GT_EXPR
4369 && (!max
4370 || compare_values (val, max) == 0))
4371 return false;
4373 if (comp_code == LT_EXPR
4374 && (!min
4375 || compare_values (val, min) == 0))
4376 return false;
4378 *code_p = comp_code;
4379 *val_p = val;
4380 return true;
4383 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
4384 (otherwise return VAL). VAL and MASK must be zero-extended for
4385 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
4386 (to transform signed values into unsigned) and at the end xor
4387 SGNBIT back. */
4389 static double_int
4390 masked_increment (double_int val, double_int mask, double_int sgnbit,
4391 unsigned int prec)
4393 double_int bit = double_int_one, res;
4394 unsigned int i;
4396 val = double_int_xor (val, sgnbit);
4397 for (i = 0; i < prec; i++, bit = double_int_add (bit, bit))
4399 res = mask;
4400 if (double_int_zero_p (double_int_and (res, bit)))
4401 continue;
4402 res = double_int_sub (bit, double_int_one);
4403 res = double_int_and_not (double_int_add (val, bit), res);
4404 res = double_int_and (res, mask);
4405 if (double_int_ucmp (res, val) > 0)
4406 return double_int_xor (res, sgnbit);
4408 return double_int_xor (val, sgnbit);
4411 /* Try to register an edge assertion for SSA name NAME on edge E for
4412 the condition COND contributing to the conditional jump pointed to by BSI.
4413 Invert the condition COND if INVERT is true.
4414 Return true if an assertion for NAME could be registered. */
4416 static bool
4417 register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
4418 enum tree_code cond_code,
4419 tree cond_op0, tree cond_op1, bool invert)
4421 tree val;
4422 enum tree_code comp_code;
4423 bool retval = false;
4425 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4426 cond_op0,
4427 cond_op1,
4428 invert, &comp_code, &val))
4429 return false;
4431 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4432 reachable from E. */
4433 if (live_on_edge (e, name)
4434 && !has_single_use (name))
4436 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
4437 retval = true;
4440 /* In the case of NAME <= CST and NAME being defined as
4441 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4442 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4443 This catches range and anti-range tests. */
4444 if ((comp_code == LE_EXPR
4445 || comp_code == GT_EXPR)
4446 && TREE_CODE (val) == INTEGER_CST
4447 && TYPE_UNSIGNED (TREE_TYPE (val)))
4449 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4450 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
4452 /* Extract CST2 from the (optional) addition. */
4453 if (is_gimple_assign (def_stmt)
4454 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
4456 name2 = gimple_assign_rhs1 (def_stmt);
4457 cst2 = gimple_assign_rhs2 (def_stmt);
4458 if (TREE_CODE (name2) == SSA_NAME
4459 && TREE_CODE (cst2) == INTEGER_CST)
4460 def_stmt = SSA_NAME_DEF_STMT (name2);
4463 /* Extract NAME2 from the (optional) sign-changing cast. */
4464 if (gimple_assign_cast_p (def_stmt))
4466 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
4467 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
4468 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
4469 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
4470 name3 = gimple_assign_rhs1 (def_stmt);
4473 /* If name3 is used later, create an ASSERT_EXPR for it. */
4474 if (name3 != NULL_TREE
4475 && TREE_CODE (name3) == SSA_NAME
4476 && (cst2 == NULL_TREE
4477 || TREE_CODE (cst2) == INTEGER_CST)
4478 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
4479 && live_on_edge (e, name3)
4480 && !has_single_use (name3))
4482 tree tmp;
4484 /* Build an expression for the range test. */
4485 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
4486 if (cst2 != NULL_TREE)
4487 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4489 if (dump_file)
4491 fprintf (dump_file, "Adding assert for ");
4492 print_generic_expr (dump_file, name3, 0);
4493 fprintf (dump_file, " from ");
4494 print_generic_expr (dump_file, tmp, 0);
4495 fprintf (dump_file, "\n");
4498 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
4500 retval = true;
4503 /* If name2 is used later, create an ASSERT_EXPR for it. */
4504 if (name2 != NULL_TREE
4505 && TREE_CODE (name2) == SSA_NAME
4506 && TREE_CODE (cst2) == INTEGER_CST
4507 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4508 && live_on_edge (e, name2)
4509 && !has_single_use (name2))
4511 tree tmp;
4513 /* Build an expression for the range test. */
4514 tmp = name2;
4515 if (TREE_TYPE (name) != TREE_TYPE (name2))
4516 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
4517 if (cst2 != NULL_TREE)
4518 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4520 if (dump_file)
4522 fprintf (dump_file, "Adding assert for ");
4523 print_generic_expr (dump_file, name2, 0);
4524 fprintf (dump_file, " from ");
4525 print_generic_expr (dump_file, tmp, 0);
4526 fprintf (dump_file, "\n");
4529 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
4531 retval = true;
4535 if (TREE_CODE_CLASS (comp_code) == tcc_comparison
4536 && TREE_CODE (val) == INTEGER_CST)
4538 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4539 tree name2 = NULL_TREE, names[2], cst2 = NULL_TREE;
4540 tree val2 = NULL_TREE;
4541 double_int mask = double_int_zero;
4542 unsigned int prec = TYPE_PRECISION (TREE_TYPE (val));
4544 /* Add asserts for NAME cmp CST and NAME being defined
4545 as NAME = (int) NAME2. */
4546 if (!TYPE_UNSIGNED (TREE_TYPE (val))
4547 && (comp_code == LE_EXPR || comp_code == LT_EXPR
4548 || comp_code == GT_EXPR || comp_code == GE_EXPR)
4549 && gimple_assign_cast_p (def_stmt))
4551 name2 = gimple_assign_rhs1 (def_stmt);
4552 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
4553 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4554 && TYPE_UNSIGNED (TREE_TYPE (name2))
4555 && prec == TYPE_PRECISION (TREE_TYPE (name2))
4556 && (comp_code == LE_EXPR || comp_code == GT_EXPR
4557 || !tree_int_cst_equal (val,
4558 TYPE_MIN_VALUE (TREE_TYPE (val))))
4559 && live_on_edge (e, name2)
4560 && !has_single_use (name2))
4562 tree tmp, cst;
4563 enum tree_code new_comp_code = comp_code;
4565 cst = fold_convert (TREE_TYPE (name2),
4566 TYPE_MIN_VALUE (TREE_TYPE (val)));
4567 /* Build an expression for the range test. */
4568 tmp = build2 (PLUS_EXPR, TREE_TYPE (name2), name2, cst);
4569 cst = fold_build2 (PLUS_EXPR, TREE_TYPE (name2), cst,
4570 fold_convert (TREE_TYPE (name2), val));
4571 if (comp_code == LT_EXPR || comp_code == GE_EXPR)
4573 new_comp_code = comp_code == LT_EXPR ? LE_EXPR : GT_EXPR;
4574 cst = fold_build2 (MINUS_EXPR, TREE_TYPE (name2), cst,
4575 build_int_cst (TREE_TYPE (name2), 1));
4578 if (dump_file)
4580 fprintf (dump_file, "Adding assert for ");
4581 print_generic_expr (dump_file, name2, 0);
4582 fprintf (dump_file, " from ");
4583 print_generic_expr (dump_file, tmp, 0);
4584 fprintf (dump_file, "\n");
4587 register_new_assert_for (name2, tmp, new_comp_code, cst, NULL,
4588 e, bsi);
4590 retval = true;
4594 /* Add asserts for NAME cmp CST and NAME being defined as
4595 NAME = NAME2 >> CST2.
4597 Extract CST2 from the right shift. */
4598 if (is_gimple_assign (def_stmt)
4599 && gimple_assign_rhs_code (def_stmt) == RSHIFT_EXPR)
4601 name2 = gimple_assign_rhs1 (def_stmt);
4602 cst2 = gimple_assign_rhs2 (def_stmt);
4603 if (TREE_CODE (name2) == SSA_NAME
4604 && host_integerp (cst2, 1)
4605 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4606 && IN_RANGE (tree_low_cst (cst2, 1), 1, prec - 1)
4607 && prec <= 2 * HOST_BITS_PER_WIDE_INT
4608 && prec == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (val)))
4609 && live_on_edge (e, name2)
4610 && !has_single_use (name2))
4612 mask = double_int_mask (tree_low_cst (cst2, 1));
4613 val2 = fold_binary (LSHIFT_EXPR, TREE_TYPE (val), val, cst2);
4616 if (val2 != NULL_TREE
4617 && TREE_CODE (val2) == INTEGER_CST
4618 && simple_cst_equal (fold_build2 (RSHIFT_EXPR,
4619 TREE_TYPE (val),
4620 val2, cst2), val))
4622 enum tree_code new_comp_code = comp_code;
4623 tree tmp, new_val;
4625 tmp = name2;
4626 if (comp_code == EQ_EXPR || comp_code == NE_EXPR)
4628 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
4630 tree type = build_nonstandard_integer_type (prec, 1);
4631 tmp = build1 (NOP_EXPR, type, name2);
4632 val2 = fold_convert (type, val2);
4634 tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp, val2);
4635 new_val = double_int_to_tree (TREE_TYPE (tmp), mask);
4636 new_comp_code = comp_code == EQ_EXPR ? LE_EXPR : GT_EXPR;
4638 else if (comp_code == LT_EXPR || comp_code == GE_EXPR)
4639 new_val = val2;
4640 else
4642 double_int maxval
4643 = double_int_max_value (prec, TYPE_UNSIGNED (TREE_TYPE (val)));
4644 mask = double_int_ior (tree_to_double_int (val2), mask);
4645 if (double_int_equal_p (mask, maxval))
4646 new_val = NULL_TREE;
4647 else
4648 new_val = double_int_to_tree (TREE_TYPE (val2), mask);
4651 if (new_val)
4653 if (dump_file)
4655 fprintf (dump_file, "Adding assert for ");
4656 print_generic_expr (dump_file, name2, 0);
4657 fprintf (dump_file, " from ");
4658 print_generic_expr (dump_file, tmp, 0);
4659 fprintf (dump_file, "\n");
4662 register_new_assert_for (name2, tmp, new_comp_code, new_val,
4663 NULL, e, bsi);
4664 retval = true;
4668 /* Add asserts for NAME cmp CST and NAME being defined as
4669 NAME = NAME2 & CST2.
4671 Extract CST2 from the and. */
4672 names[0] = NULL_TREE;
4673 names[1] = NULL_TREE;
4674 cst2 = NULL_TREE;
4675 if (is_gimple_assign (def_stmt)
4676 && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
4678 name2 = gimple_assign_rhs1 (def_stmt);
4679 cst2 = gimple_assign_rhs2 (def_stmt);
4680 if (TREE_CODE (name2) == SSA_NAME
4681 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4682 && TREE_CODE (cst2) == INTEGER_CST
4683 && !integer_zerop (cst2)
4684 && prec <= 2 * HOST_BITS_PER_WIDE_INT
4685 && (prec > 1
4686 || TYPE_UNSIGNED (TREE_TYPE (val))))
4688 gimple def_stmt2 = SSA_NAME_DEF_STMT (name2);
4689 if (gimple_assign_cast_p (def_stmt2))
4691 names[1] = gimple_assign_rhs1 (def_stmt2);
4692 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2))
4693 || !INTEGRAL_TYPE_P (TREE_TYPE (names[1]))
4694 || (TYPE_PRECISION (TREE_TYPE (name2))
4695 != TYPE_PRECISION (TREE_TYPE (names[1])))
4696 || !live_on_edge (e, names[1])
4697 || has_single_use (names[1]))
4698 names[1] = NULL_TREE;
4700 if (live_on_edge (e, name2)
4701 && !has_single_use (name2))
4702 names[0] = name2;
4705 if (names[0] || names[1])
4707 double_int minv, maxv = double_int_zero, valv, cst2v;
4708 double_int tem, sgnbit;
4709 bool valid_p = false, valn = false, cst2n = false;
4710 enum tree_code ccode = comp_code;
4712 valv = double_int_zext (tree_to_double_int (val), prec);
4713 cst2v = double_int_zext (tree_to_double_int (cst2), prec);
4714 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
4716 valn = double_int_negative_p (double_int_sext (valv, prec));
4717 cst2n = double_int_negative_p (double_int_sext (cst2v, prec));
4719 /* If CST2 doesn't have most significant bit set,
4720 but VAL is negative, we have comparison like
4721 if ((x & 0x123) > -4) (always true). Just give up. */
4722 if (!cst2n && valn)
4723 ccode = ERROR_MARK;
4724 if (cst2n)
4725 sgnbit = double_int_zext (double_int_lshift (double_int_one,
4726 prec - 1, prec,
4727 false), prec);
4728 else
4729 sgnbit = double_int_zero;
4730 minv = double_int_and (valv, cst2v);
4731 switch (ccode)
4733 case EQ_EXPR:
4734 /* Minimum unsigned value for equality is VAL & CST2
4735 (should be equal to VAL, otherwise we probably should
4736 have folded the comparison into false) and
4737 maximum unsigned value is VAL | ~CST2. */
4738 maxv = double_int_ior (valv, double_int_not (cst2v));
4739 maxv = double_int_zext (maxv, prec);
4740 valid_p = true;
4741 break;
4742 case NE_EXPR:
4743 tem = double_int_ior (valv, double_int_not (cst2v));
4744 tem = double_int_zext (tem, prec);
4745 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
4746 if (double_int_zero_p (valv))
4748 cst2n = false;
4749 sgnbit = double_int_zero;
4750 goto gt_expr;
4752 /* If (VAL | ~CST2) is all ones, handle it as
4753 (X & CST2) < VAL. */
4754 if (double_int_equal_p (tem, double_int_mask (prec)))
4756 cst2n = false;
4757 valn = false;
4758 sgnbit = double_int_zero;
4759 goto lt_expr;
4761 if (!cst2n
4762 && double_int_negative_p (double_int_sext (cst2v, prec)))
4763 sgnbit = double_int_zext (double_int_lshift (double_int_one,
4764 prec - 1, prec,
4765 false), prec);
4766 if (!double_int_zero_p (sgnbit))
4768 if (double_int_equal_p (valv, sgnbit))
4770 cst2n = true;
4771 valn = true;
4772 goto gt_expr;
4774 if (double_int_equal_p (tem, double_int_mask (prec - 1)))
4776 cst2n = true;
4777 goto lt_expr;
4779 if (!cst2n)
4780 sgnbit = double_int_zero;
4782 break;
4783 case GE_EXPR:
4784 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
4785 is VAL and maximum unsigned value is ~0. For signed
4786 comparison, if CST2 doesn't have most significant bit
4787 set, handle it similarly. If CST2 has MSB set,
4788 the minimum is the same, and maximum is ~0U/2. */
4789 if (!double_int_equal_p (minv, valv))
4791 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
4792 VAL. */
4793 minv = masked_increment (valv, cst2v, sgnbit, prec);
4794 if (double_int_equal_p (minv, valv))
4795 break;
4797 maxv = double_int_mask (prec - (cst2n ? 1 : 0));
4798 valid_p = true;
4799 break;
4800 case GT_EXPR:
4801 gt_expr:
4802 /* Find out smallest MINV where MINV > VAL
4803 && (MINV & CST2) == MINV, if any. If VAL is signed and
4804 CST2 has MSB set, compute it biased by 1 << (prec - 1). */
4805 minv = masked_increment (valv, cst2v, sgnbit, prec);
4806 if (double_int_equal_p (minv, valv))
4807 break;
4808 maxv = double_int_mask (prec - (cst2n ? 1 : 0));
4809 valid_p = true;
4810 break;
4811 case LE_EXPR:
4812 /* Minimum unsigned value for <= is 0 and maximum
4813 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
4814 Otherwise, find smallest VAL2 where VAL2 > VAL
4815 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
4816 as maximum.
4817 For signed comparison, if CST2 doesn't have most
4818 significant bit set, handle it similarly. If CST2 has
4819 MSB set, the maximum is the same and minimum is INT_MIN. */
4820 if (double_int_equal_p (minv, valv))
4821 maxv = valv;
4822 else
4824 maxv = masked_increment (valv, cst2v, sgnbit, prec);
4825 if (double_int_equal_p (maxv, valv))
4826 break;
4827 maxv = double_int_sub (maxv, double_int_one);
4829 maxv = double_int_ior (maxv, double_int_not (cst2v));
4830 maxv = double_int_zext (maxv, prec);
4831 minv = sgnbit;
4832 valid_p = true;
4833 break;
4834 case LT_EXPR:
4835 lt_expr:
4836 /* Minimum unsigned value for < is 0 and maximum
4837 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
4838 Otherwise, find smallest VAL2 where VAL2 > VAL
4839 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
4840 as maximum.
4841 For signed comparison, if CST2 doesn't have most
4842 significant bit set, handle it similarly. If CST2 has
4843 MSB set, the maximum is the same and minimum is INT_MIN. */
4844 if (double_int_equal_p (minv, valv))
4846 if (double_int_equal_p (valv, sgnbit))
4847 break;
4848 maxv = valv;
4850 else
4852 maxv = masked_increment (valv, cst2v, sgnbit, prec);
4853 if (double_int_equal_p (maxv, valv))
4854 break;
4856 maxv = double_int_sub (maxv, double_int_one);
4857 maxv = double_int_ior (maxv, double_int_not (cst2v));
4858 maxv = double_int_zext (maxv, prec);
4859 minv = sgnbit;
4860 valid_p = true;
4861 break;
4862 default:
4863 break;
4865 if (valid_p
4866 && !double_int_equal_p (double_int_zext (double_int_sub (maxv,
4867 minv),
4868 prec),
4869 double_int_mask (prec)))
4871 tree tmp, new_val, type;
4872 int i;
4874 for (i = 0; i < 2; i++)
4875 if (names[i])
4877 double_int maxv2 = maxv;
4878 tmp = names[i];
4879 type = TREE_TYPE (names[i]);
4880 if (!TYPE_UNSIGNED (type))
4882 type = build_nonstandard_integer_type (prec, 1);
4883 tmp = build1 (NOP_EXPR, type, names[i]);
4885 if (!double_int_zero_p (minv))
4887 tmp = build2 (PLUS_EXPR, type, tmp,
4888 double_int_to_tree (type,
4889 double_int_neg (minv)));
4890 maxv2 = double_int_sub (maxv, minv);
4892 new_val = double_int_to_tree (type, maxv2);
4894 if (dump_file)
4896 fprintf (dump_file, "Adding assert for ");
4897 print_generic_expr (dump_file, names[i], 0);
4898 fprintf (dump_file, " from ");
4899 print_generic_expr (dump_file, tmp, 0);
4900 fprintf (dump_file, "\n");
4903 register_new_assert_for (names[i], tmp, LE_EXPR,
4904 new_val, NULL, e, bsi);
4905 retval = true;
4911 return retval;
4914 /* OP is an operand of a truth value expression which is known to have
4915 a particular value. Register any asserts for OP and for any
4916 operands in OP's defining statement.
4918 If CODE is EQ_EXPR, then we want to register OP is zero (false),
4919 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
4921 static bool
4922 register_edge_assert_for_1 (tree op, enum tree_code code,
4923 edge e, gimple_stmt_iterator bsi)
4925 bool retval = false;
4926 gimple op_def;
4927 tree val;
4928 enum tree_code rhs_code;
4930 /* We only care about SSA_NAMEs. */
4931 if (TREE_CODE (op) != SSA_NAME)
4932 return false;
4934 /* We know that OP will have a zero or nonzero value. If OP is used
4935 more than once go ahead and register an assert for OP.
4937 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
4938 it will always be set for OP (because OP is used in a COND_EXPR in
4939 the subgraph). */
4940 if (!has_single_use (op))
4942 val = build_int_cst (TREE_TYPE (op), 0);
4943 register_new_assert_for (op, op, code, val, NULL, e, bsi);
4944 retval = true;
4947 /* Now look at how OP is set. If it's set from a comparison,
4948 a truth operation or some bit operations, then we may be able
4949 to register information about the operands of that assignment. */
4950 op_def = SSA_NAME_DEF_STMT (op);
4951 if (gimple_code (op_def) != GIMPLE_ASSIGN)
4952 return retval;
4954 rhs_code = gimple_assign_rhs_code (op_def);
4956 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
4958 bool invert = (code == EQ_EXPR ? true : false);
4959 tree op0 = gimple_assign_rhs1 (op_def);
4960 tree op1 = gimple_assign_rhs2 (op_def);
4962 if (TREE_CODE (op0) == SSA_NAME)
4963 retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
4964 invert);
4965 if (TREE_CODE (op1) == SSA_NAME)
4966 retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
4967 invert);
4969 else if ((code == NE_EXPR
4970 && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
4971 || (code == EQ_EXPR
4972 && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
4974 /* Recurse on each operand. */
4975 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4976 code, e, bsi);
4977 retval |= register_edge_assert_for_1 (gimple_assign_rhs2 (op_def),
4978 code, e, bsi);
4980 else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
4981 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
4983 /* Recurse, flipping CODE. */
4984 code = invert_tree_comparison (code, false);
4985 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4986 code, e, bsi);
4988 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
4990 /* Recurse through the copy. */
4991 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4992 code, e, bsi);
4994 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
4996 /* Recurse through the type conversion. */
4997 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4998 code, e, bsi);
5001 return retval;
5004 /* Try to register an edge assertion for SSA name NAME on edge E for
5005 the condition COND contributing to the conditional jump pointed to by SI.
5006 Return true if an assertion for NAME could be registered. */
5008 static bool
5009 register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
5010 enum tree_code cond_code, tree cond_op0,
5011 tree cond_op1)
5013 tree val;
5014 enum tree_code comp_code;
5015 bool retval = false;
5016 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
5018 /* Do not attempt to infer anything in names that flow through
5019 abnormal edges. */
5020 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
5021 return false;
5023 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
5024 cond_op0, cond_op1,
5025 is_else_edge,
5026 &comp_code, &val))
5027 return false;
5029 /* Register ASSERT_EXPRs for name. */
5030 retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
5031 cond_op1, is_else_edge);
5034 /* If COND is effectively an equality test of an SSA_NAME against
5035 the value zero or one, then we may be able to assert values
5036 for SSA_NAMEs which flow into COND. */
5038 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
5039 statement of NAME we can assert both operands of the BIT_AND_EXPR
5040 have nonzero value. */
5041 if (((comp_code == EQ_EXPR && integer_onep (val))
5042 || (comp_code == NE_EXPR && integer_zerop (val))))
5044 gimple def_stmt = SSA_NAME_DEF_STMT (name);
5046 if (is_gimple_assign (def_stmt)
5047 && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
5049 tree op0 = gimple_assign_rhs1 (def_stmt);
5050 tree op1 = gimple_assign_rhs2 (def_stmt);
5051 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
5052 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
5056 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
5057 statement of NAME we can assert both operands of the BIT_IOR_EXPR
5058 have zero value. */
5059 if (((comp_code == EQ_EXPR && integer_zerop (val))
5060 || (comp_code == NE_EXPR && integer_onep (val))))
5062 gimple def_stmt = SSA_NAME_DEF_STMT (name);
5064 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
5065 necessarily zero value, or if type-precision is one. */
5066 if (is_gimple_assign (def_stmt)
5067 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
5068 && (TYPE_PRECISION (TREE_TYPE (name)) == 1
5069 || comp_code == EQ_EXPR)))
5071 tree op0 = gimple_assign_rhs1 (def_stmt);
5072 tree op1 = gimple_assign_rhs2 (def_stmt);
5073 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
5074 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
5078 return retval;
5082 /* Determine whether the outgoing edges of BB should receive an
5083 ASSERT_EXPR for each of the operands of BB's LAST statement.
5084 The last statement of BB must be a COND_EXPR.
5086 If any of the sub-graphs rooted at BB have an interesting use of
5087 the predicate operands, an assert location node is added to the
5088 list of assertions for the corresponding operands. */
5090 static bool
5091 find_conditional_asserts (basic_block bb, gimple last)
5093 bool need_assert;
5094 gimple_stmt_iterator bsi;
5095 tree op;
5096 edge_iterator ei;
5097 edge e;
5098 ssa_op_iter iter;
5100 need_assert = false;
5101 bsi = gsi_for_stmt (last);
5103 /* Look for uses of the operands in each of the sub-graphs
5104 rooted at BB. We need to check each of the outgoing edges
5105 separately, so that we know what kind of ASSERT_EXPR to
5106 insert. */
5107 FOR_EACH_EDGE (e, ei, bb->succs)
5109 if (e->dest == bb)
5110 continue;
5112 /* Register the necessary assertions for each operand in the
5113 conditional predicate. */
5114 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
5116 need_assert |= register_edge_assert_for (op, e, bsi,
5117 gimple_cond_code (last),
5118 gimple_cond_lhs (last),
5119 gimple_cond_rhs (last));
5123 return need_assert;
5126 struct case_info
5128 tree expr;
5129 basic_block bb;
5132 /* Compare two case labels sorting first by the destination bb index
5133 and then by the case value. */
5135 static int
5136 compare_case_labels (const void *p1, const void *p2)
5138 const struct case_info *ci1 = (const struct case_info *) p1;
5139 const struct case_info *ci2 = (const struct case_info *) p2;
5140 int idx1 = ci1->bb->index;
5141 int idx2 = ci2->bb->index;
5143 if (idx1 < idx2)
5144 return -1;
5145 else if (idx1 == idx2)
5147 /* Make sure the default label is first in a group. */
5148 if (!CASE_LOW (ci1->expr))
5149 return -1;
5150 else if (!CASE_LOW (ci2->expr))
5151 return 1;
5152 else
5153 return tree_int_cst_compare (CASE_LOW (ci1->expr),
5154 CASE_LOW (ci2->expr));
5156 else
5157 return 1;
5160 /* Determine whether the outgoing edges of BB should receive an
5161 ASSERT_EXPR for each of the operands of BB's LAST statement.
5162 The last statement of BB must be a SWITCH_EXPR.
5164 If any of the sub-graphs rooted at BB have an interesting use of
5165 the predicate operands, an assert location node is added to the
5166 list of assertions for the corresponding operands. */
5168 static bool
5169 find_switch_asserts (basic_block bb, gimple last)
5171 bool need_assert;
5172 gimple_stmt_iterator bsi;
5173 tree op;
5174 edge e;
5175 struct case_info *ci;
5176 size_t n = gimple_switch_num_labels (last);
5177 #if GCC_VERSION >= 4000
5178 unsigned int idx;
5179 #else
5180 /* Work around GCC 3.4 bug (PR 37086). */
5181 volatile unsigned int idx;
5182 #endif
5184 need_assert = false;
5185 bsi = gsi_for_stmt (last);
5186 op = gimple_switch_index (last);
5187 if (TREE_CODE (op) != SSA_NAME)
5188 return false;
5190 /* Build a vector of case labels sorted by destination label. */
5191 ci = XNEWVEC (struct case_info, n);
5192 for (idx = 0; idx < n; ++idx)
5194 ci[idx].expr = gimple_switch_label (last, idx);
5195 ci[idx].bb = label_to_block (CASE_LABEL (ci[idx].expr));
5197 qsort (ci, n, sizeof (struct case_info), compare_case_labels);
5199 for (idx = 0; idx < n; ++idx)
5201 tree min, max;
5202 tree cl = ci[idx].expr;
5203 basic_block cbb = ci[idx].bb;
5205 min = CASE_LOW (cl);
5206 max = CASE_HIGH (cl);
5208 /* If there are multiple case labels with the same destination
5209 we need to combine them to a single value range for the edge. */
5210 if (idx + 1 < n && cbb == ci[idx + 1].bb)
5212 /* Skip labels until the last of the group. */
5213 do {
5214 ++idx;
5215 } while (idx < n && cbb == ci[idx].bb);
5216 --idx;
5218 /* Pick up the maximum of the case label range. */
5219 if (CASE_HIGH (ci[idx].expr))
5220 max = CASE_HIGH (ci[idx].expr);
5221 else
5222 max = CASE_LOW (ci[idx].expr);
5225 /* Nothing to do if the range includes the default label until we
5226 can register anti-ranges. */
5227 if (min == NULL_TREE)
5228 continue;
5230 /* Find the edge to register the assert expr on. */
5231 e = find_edge (bb, cbb);
5233 /* Register the necessary assertions for the operand in the
5234 SWITCH_EXPR. */
5235 need_assert |= register_edge_assert_for (op, e, bsi,
5236 max ? GE_EXPR : EQ_EXPR,
5238 fold_convert (TREE_TYPE (op),
5239 min));
5240 if (max)
5242 need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
5244 fold_convert (TREE_TYPE (op),
5245 max));
5249 XDELETEVEC (ci);
5250 return need_assert;
5254 /* Traverse all the statements in block BB looking for statements that
5255 may generate useful assertions for the SSA names in their operand.
5256 If a statement produces a useful assertion A for name N_i, then the
5257 list of assertions already generated for N_i is scanned to
5258 determine if A is actually needed.
5260 If N_i already had the assertion A at a location dominating the
5261 current location, then nothing needs to be done. Otherwise, the
5262 new location for A is recorded instead.
5264 1- For every statement S in BB, all the variables used by S are
5265 added to bitmap FOUND_IN_SUBGRAPH.
5267 2- If statement S uses an operand N in a way that exposes a known
5268 value range for N, then if N was not already generated by an
5269 ASSERT_EXPR, create a new assert location for N. For instance,
5270 if N is a pointer and the statement dereferences it, we can
5271 assume that N is not NULL.
5273 3- COND_EXPRs are a special case of #2. We can derive range
5274 information from the predicate but need to insert different
5275 ASSERT_EXPRs for each of the sub-graphs rooted at the
5276 conditional block. If the last statement of BB is a conditional
5277 expression of the form 'X op Y', then
5279 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
5281 b) If the conditional is the only entry point to the sub-graph
5282 corresponding to the THEN_CLAUSE, recurse into it. On
5283 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
5284 an ASSERT_EXPR is added for the corresponding variable.
5286 c) Repeat step (b) on the ELSE_CLAUSE.
5288 d) Mark X and Y in FOUND_IN_SUBGRAPH.
5290 For instance,
5292 if (a == 9)
5293 b = a;
5294 else
5295 b = c + 1;
5297 In this case, an assertion on the THEN clause is useful to
5298 determine that 'a' is always 9 on that edge. However, an assertion
5299 on the ELSE clause would be unnecessary.
5301 4- If BB does not end in a conditional expression, then we recurse
5302 into BB's dominator children.
5304 At the end of the recursive traversal, every SSA name will have a
5305 list of locations where ASSERT_EXPRs should be added. When a new
5306 location for name N is found, it is registered by calling
5307 register_new_assert_for. That function keeps track of all the
5308 registered assertions to prevent adding unnecessary assertions.
5309 For instance, if a pointer P_4 is dereferenced more than once in a
5310 dominator tree, only the location dominating all the dereference of
5311 P_4 will receive an ASSERT_EXPR.
5313 If this function returns true, then it means that there are names
5314 for which we need to generate ASSERT_EXPRs. Those assertions are
5315 inserted by process_assert_insertions. */
5317 static bool
5318 find_assert_locations_1 (basic_block bb, sbitmap live)
5320 gimple_stmt_iterator si;
5321 gimple last;
5322 gimple phi;
5323 bool need_assert;
5325 need_assert = false;
5326 last = last_stmt (bb);
5328 /* If BB's last statement is a conditional statement involving integer
5329 operands, determine if we need to add ASSERT_EXPRs. */
5330 if (last
5331 && gimple_code (last) == GIMPLE_COND
5332 && !fp_predicate (last)
5333 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
5334 need_assert |= find_conditional_asserts (bb, last);
5336 /* If BB's last statement is a switch statement involving integer
5337 operands, determine if we need to add ASSERT_EXPRs. */
5338 if (last
5339 && gimple_code (last) == GIMPLE_SWITCH
5340 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
5341 need_assert |= find_switch_asserts (bb, last);
5343 /* Traverse all the statements in BB marking used names and looking
5344 for statements that may infer assertions for their used operands. */
5345 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5347 gimple stmt;
5348 tree op;
5349 ssa_op_iter i;
5351 stmt = gsi_stmt (si);
5353 if (is_gimple_debug (stmt))
5354 continue;
5356 /* See if we can derive an assertion for any of STMT's operands. */
5357 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
5359 tree value;
5360 enum tree_code comp_code;
5362 /* Mark OP in our live bitmap. */
5363 SET_BIT (live, SSA_NAME_VERSION (op));
5365 /* If OP is used in such a way that we can infer a value
5366 range for it, and we don't find a previous assertion for
5367 it, create a new assertion location node for OP. */
5368 if (infer_value_range (stmt, op, &comp_code, &value))
5370 /* If we are able to infer a nonzero value range for OP,
5371 then walk backwards through the use-def chain to see if OP
5372 was set via a typecast.
5374 If so, then we can also infer a nonzero value range
5375 for the operand of the NOP_EXPR. */
5376 if (comp_code == NE_EXPR && integer_zerop (value))
5378 tree t = op;
5379 gimple def_stmt = SSA_NAME_DEF_STMT (t);
5381 while (is_gimple_assign (def_stmt)
5382 && gimple_assign_rhs_code (def_stmt) == NOP_EXPR
5383 && TREE_CODE
5384 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
5385 && POINTER_TYPE_P
5386 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
5388 t = gimple_assign_rhs1 (def_stmt);
5389 def_stmt = SSA_NAME_DEF_STMT (t);
5391 /* Note we want to register the assert for the
5392 operand of the NOP_EXPR after SI, not after the
5393 conversion. */
5394 if (! has_single_use (t))
5396 register_new_assert_for (t, t, comp_code, value,
5397 bb, NULL, si);
5398 need_assert = true;
5403 /* If OP is used only once, namely in this STMT, don't
5404 bother creating an ASSERT_EXPR for it. Such an
5405 ASSERT_EXPR would do nothing but increase compile time. */
5406 if (!has_single_use (op))
5408 register_new_assert_for (op, op, comp_code, value,
5409 bb, NULL, si);
5410 need_assert = true;
5416 /* Traverse all PHI nodes in BB marking used operands. */
5417 for (si = gsi_start_phis (bb); !gsi_end_p(si); gsi_next (&si))
5419 use_operand_p arg_p;
5420 ssa_op_iter i;
5421 phi = gsi_stmt (si);
5423 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
5425 tree arg = USE_FROM_PTR (arg_p);
5426 if (TREE_CODE (arg) == SSA_NAME)
5427 SET_BIT (live, SSA_NAME_VERSION (arg));
5431 return need_assert;
5434 /* Do an RPO walk over the function computing SSA name liveness
5435 on-the-fly and deciding on assert expressions to insert.
5436 Returns true if there are assert expressions to be inserted. */
5438 static bool
5439 find_assert_locations (void)
5441 int *rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
5442 int *bb_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
5443 int *last_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
5444 int rpo_cnt, i;
5445 bool need_asserts;
5447 live = XCNEWVEC (sbitmap, last_basic_block + NUM_FIXED_BLOCKS);
5448 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
5449 for (i = 0; i < rpo_cnt; ++i)
5450 bb_rpo[rpo[i]] = i;
5452 need_asserts = false;
5453 for (i = rpo_cnt-1; i >= 0; --i)
5455 basic_block bb = BASIC_BLOCK (rpo[i]);
5456 edge e;
5457 edge_iterator ei;
5459 if (!live[rpo[i]])
5461 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
5462 sbitmap_zero (live[rpo[i]]);
5465 /* Process BB and update the live information with uses in
5466 this block. */
5467 need_asserts |= find_assert_locations_1 (bb, live[rpo[i]]);
5469 /* Merge liveness into the predecessor blocks and free it. */
5470 if (!sbitmap_empty_p (live[rpo[i]]))
5472 int pred_rpo = i;
5473 FOR_EACH_EDGE (e, ei, bb->preds)
5475 int pred = e->src->index;
5476 if (e->flags & EDGE_DFS_BACK)
5477 continue;
5479 if (!live[pred])
5481 live[pred] = sbitmap_alloc (num_ssa_names);
5482 sbitmap_zero (live[pred]);
5484 sbitmap_a_or_b (live[pred], live[pred], live[rpo[i]]);
5486 if (bb_rpo[pred] < pred_rpo)
5487 pred_rpo = bb_rpo[pred];
5490 /* Record the RPO number of the last visited block that needs
5491 live information from this block. */
5492 last_rpo[rpo[i]] = pred_rpo;
5494 else
5496 sbitmap_free (live[rpo[i]]);
5497 live[rpo[i]] = NULL;
5500 /* We can free all successors live bitmaps if all their
5501 predecessors have been visited already. */
5502 FOR_EACH_EDGE (e, ei, bb->succs)
5503 if (last_rpo[e->dest->index] == i
5504 && live[e->dest->index])
5506 sbitmap_free (live[e->dest->index]);
5507 live[e->dest->index] = NULL;
5511 XDELETEVEC (rpo);
5512 XDELETEVEC (bb_rpo);
5513 XDELETEVEC (last_rpo);
5514 for (i = 0; i < last_basic_block + NUM_FIXED_BLOCKS; ++i)
5515 if (live[i])
5516 sbitmap_free (live[i]);
5517 XDELETEVEC (live);
5519 return need_asserts;
5522 /* Create an ASSERT_EXPR for NAME and insert it in the location
5523 indicated by LOC. Return true if we made any edge insertions. */
5525 static bool
5526 process_assert_insertions_for (tree name, assert_locus_t loc)
5528 /* Build the comparison expression NAME_i COMP_CODE VAL. */
5529 gimple stmt;
5530 tree cond;
5531 gimple assert_stmt;
5532 edge_iterator ei;
5533 edge e;
5535 /* If we have X <=> X do not insert an assert expr for that. */
5536 if (loc->expr == loc->val)
5537 return false;
5539 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
5540 assert_stmt = build_assert_expr_for (cond, name);
5541 if (loc->e)
5543 /* We have been asked to insert the assertion on an edge. This
5544 is used only by COND_EXPR and SWITCH_EXPR assertions. */
5545 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
5546 || (gimple_code (gsi_stmt (loc->si))
5547 == GIMPLE_SWITCH));
5549 gsi_insert_on_edge (loc->e, assert_stmt);
5550 return true;
5553 /* Otherwise, we can insert right after LOC->SI iff the
5554 statement must not be the last statement in the block. */
5555 stmt = gsi_stmt (loc->si);
5556 if (!stmt_ends_bb_p (stmt))
5558 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
5559 return false;
5562 /* If STMT must be the last statement in BB, we can only insert new
5563 assertions on the non-abnormal edge out of BB. Note that since
5564 STMT is not control flow, there may only be one non-abnormal edge
5565 out of BB. */
5566 FOR_EACH_EDGE (e, ei, loc->bb->succs)
5567 if (!(e->flags & EDGE_ABNORMAL))
5569 gsi_insert_on_edge (e, assert_stmt);
5570 return true;
5573 gcc_unreachable ();
5577 /* Process all the insertions registered for every name N_i registered
5578 in NEED_ASSERT_FOR. The list of assertions to be inserted are
5579 found in ASSERTS_FOR[i]. */
5581 static void
5582 process_assert_insertions (void)
5584 unsigned i;
5585 bitmap_iterator bi;
5586 bool update_edges_p = false;
5587 int num_asserts = 0;
5589 if (dump_file && (dump_flags & TDF_DETAILS))
5590 dump_all_asserts (dump_file);
5592 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
5594 assert_locus_t loc = asserts_for[i];
5595 gcc_assert (loc);
5597 while (loc)
5599 assert_locus_t next = loc->next;
5600 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
5601 free (loc);
5602 loc = next;
5603 num_asserts++;
5607 if (update_edges_p)
5608 gsi_commit_edge_inserts ();
5610 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
5611 num_asserts);
5615 /* Traverse the flowgraph looking for conditional jumps to insert range
5616 expressions. These range expressions are meant to provide information
5617 to optimizations that need to reason in terms of value ranges. They
5618 will not be expanded into RTL. For instance, given:
5620 x = ...
5621 y = ...
5622 if (x < y)
5623 y = x - 2;
5624 else
5625 x = y + 3;
5627 this pass will transform the code into:
5629 x = ...
5630 y = ...
5631 if (x < y)
5633 x = ASSERT_EXPR <x, x < y>
5634 y = x - 2
5636 else
5638 y = ASSERT_EXPR <y, x <= y>
5639 x = y + 3
5642 The idea is that once copy and constant propagation have run, other
5643 optimizations will be able to determine what ranges of values can 'x'
5644 take in different paths of the code, simply by checking the reaching
5645 definition of 'x'. */
5647 static void
5648 insert_range_assertions (void)
5650 need_assert_for = BITMAP_ALLOC (NULL);
5651 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
5653 calculate_dominance_info (CDI_DOMINATORS);
5655 if (find_assert_locations ())
5657 process_assert_insertions ();
5658 update_ssa (TODO_update_ssa_no_phi);
5661 if (dump_file && (dump_flags & TDF_DETAILS))
5663 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
5664 dump_function_to_file (current_function_decl, dump_file, dump_flags);
5667 free (asserts_for);
5668 BITMAP_FREE (need_assert_for);
5671 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
5672 and "struct" hacks. If VRP can determine that the
5673 array subscript is a constant, check if it is outside valid
5674 range. If the array subscript is a RANGE, warn if it is
5675 non-overlapping with valid range.
5676 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
5678 static void
5679 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
5681 value_range_t* vr = NULL;
5682 tree low_sub, up_sub;
5683 tree low_bound, up_bound, up_bound_p1;
5684 tree base;
5686 if (TREE_NO_WARNING (ref))
5687 return;
5689 low_sub = up_sub = TREE_OPERAND (ref, 1);
5690 up_bound = array_ref_up_bound (ref);
5692 /* Can not check flexible arrays. */
5693 if (!up_bound
5694 || TREE_CODE (up_bound) != INTEGER_CST)
5695 return;
5697 /* Accesses to trailing arrays via pointers may access storage
5698 beyond the types array bounds. */
5699 base = get_base_address (ref);
5700 if (base && TREE_CODE (base) == MEM_REF)
5702 tree cref, next = NULL_TREE;
5704 if (TREE_CODE (TREE_OPERAND (ref, 0)) != COMPONENT_REF)
5705 return;
5707 cref = TREE_OPERAND (ref, 0);
5708 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref, 0))) == RECORD_TYPE)
5709 for (next = DECL_CHAIN (TREE_OPERAND (cref, 1));
5710 next && TREE_CODE (next) != FIELD_DECL;
5711 next = DECL_CHAIN (next))
5714 /* If this is the last field in a struct type or a field in a
5715 union type do not warn. */
5716 if (!next)
5717 return;
5720 low_bound = array_ref_low_bound (ref);
5721 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound, integer_one_node);
5723 if (TREE_CODE (low_sub) == SSA_NAME)
5725 vr = get_value_range (low_sub);
5726 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
5728 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
5729 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
5733 if (vr && vr->type == VR_ANTI_RANGE)
5735 if (TREE_CODE (up_sub) == INTEGER_CST
5736 && tree_int_cst_lt (up_bound, up_sub)
5737 && TREE_CODE (low_sub) == INTEGER_CST
5738 && tree_int_cst_lt (low_sub, low_bound))
5740 warning_at (location, OPT_Warray_bounds,
5741 "array subscript is outside array bounds");
5742 TREE_NO_WARNING (ref) = 1;
5745 else if (TREE_CODE (up_sub) == INTEGER_CST
5746 && (ignore_off_by_one
5747 ? (tree_int_cst_lt (up_bound, up_sub)
5748 && !tree_int_cst_equal (up_bound_p1, up_sub))
5749 : (tree_int_cst_lt (up_bound, up_sub)
5750 || tree_int_cst_equal (up_bound_p1, up_sub))))
5752 warning_at (location, OPT_Warray_bounds,
5753 "array subscript is above array bounds");
5754 TREE_NO_WARNING (ref) = 1;
5756 else if (TREE_CODE (low_sub) == INTEGER_CST
5757 && tree_int_cst_lt (low_sub, low_bound))
5759 warning_at (location, OPT_Warray_bounds,
5760 "array subscript is below array bounds");
5761 TREE_NO_WARNING (ref) = 1;
5765 /* Searches if the expr T, located at LOCATION computes
5766 address of an ARRAY_REF, and call check_array_ref on it. */
5768 static void
5769 search_for_addr_array (tree t, location_t location)
5771 while (TREE_CODE (t) == SSA_NAME)
5773 gimple g = SSA_NAME_DEF_STMT (t);
5775 if (gimple_code (g) != GIMPLE_ASSIGN)
5776 return;
5778 if (get_gimple_rhs_class (gimple_assign_rhs_code (g))
5779 != GIMPLE_SINGLE_RHS)
5780 return;
5782 t = gimple_assign_rhs1 (g);
5786 /* We are only interested in addresses of ARRAY_REF's. */
5787 if (TREE_CODE (t) != ADDR_EXPR)
5788 return;
5790 /* Check each ARRAY_REFs in the reference chain. */
5793 if (TREE_CODE (t) == ARRAY_REF)
5794 check_array_ref (location, t, true /*ignore_off_by_one*/);
5796 t = TREE_OPERAND (t, 0);
5798 while (handled_component_p (t));
5800 if (TREE_CODE (t) == MEM_REF
5801 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
5802 && !TREE_NO_WARNING (t))
5804 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
5805 tree low_bound, up_bound, el_sz;
5806 double_int idx;
5807 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
5808 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
5809 || !TYPE_DOMAIN (TREE_TYPE (tem)))
5810 return;
5812 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
5813 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
5814 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
5815 if (!low_bound
5816 || TREE_CODE (low_bound) != INTEGER_CST
5817 || !up_bound
5818 || TREE_CODE (up_bound) != INTEGER_CST
5819 || !el_sz
5820 || TREE_CODE (el_sz) != INTEGER_CST)
5821 return;
5823 idx = mem_ref_offset (t);
5824 idx = double_int_sdiv (idx, tree_to_double_int (el_sz), TRUNC_DIV_EXPR);
5825 if (double_int_scmp (idx, double_int_zero) < 0)
5827 warning_at (location, OPT_Warray_bounds,
5828 "array subscript is below array bounds");
5829 TREE_NO_WARNING (t) = 1;
5831 else if (double_int_scmp (idx,
5832 double_int_add
5833 (double_int_add
5834 (tree_to_double_int (up_bound),
5835 double_int_neg
5836 (tree_to_double_int (low_bound))),
5837 double_int_one)) > 0)
5839 warning_at (location, OPT_Warray_bounds,
5840 "array subscript is above array bounds");
5841 TREE_NO_WARNING (t) = 1;
5846 /* walk_tree() callback that checks if *TP is
5847 an ARRAY_REF inside an ADDR_EXPR (in which an array
5848 subscript one outside the valid range is allowed). Call
5849 check_array_ref for each ARRAY_REF found. The location is
5850 passed in DATA. */
5852 static tree
5853 check_array_bounds (tree *tp, int *walk_subtree, void *data)
5855 tree t = *tp;
5856 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5857 location_t location;
5859 if (EXPR_HAS_LOCATION (t))
5860 location = EXPR_LOCATION (t);
5861 else
5863 location_t *locp = (location_t *) wi->info;
5864 location = *locp;
5867 *walk_subtree = TRUE;
5869 if (TREE_CODE (t) == ARRAY_REF)
5870 check_array_ref (location, t, false /*ignore_off_by_one*/);
5872 if (TREE_CODE (t) == MEM_REF
5873 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
5874 search_for_addr_array (TREE_OPERAND (t, 0), location);
5876 if (TREE_CODE (t) == ADDR_EXPR)
5877 *walk_subtree = FALSE;
5879 return NULL_TREE;
5882 /* Walk over all statements of all reachable BBs and call check_array_bounds
5883 on them. */
5885 static void
5886 check_all_array_refs (void)
5888 basic_block bb;
5889 gimple_stmt_iterator si;
5891 FOR_EACH_BB (bb)
5893 edge_iterator ei;
5894 edge e;
5895 bool executable = false;
5897 /* Skip blocks that were found to be unreachable. */
5898 FOR_EACH_EDGE (e, ei, bb->preds)
5899 executable |= !!(e->flags & EDGE_EXECUTABLE);
5900 if (!executable)
5901 continue;
5903 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5905 gimple stmt = gsi_stmt (si);
5906 struct walk_stmt_info wi;
5907 if (!gimple_has_location (stmt))
5908 continue;
5910 if (is_gimple_call (stmt))
5912 size_t i;
5913 size_t n = gimple_call_num_args (stmt);
5914 for (i = 0; i < n; i++)
5916 tree arg = gimple_call_arg (stmt, i);
5917 search_for_addr_array (arg, gimple_location (stmt));
5920 else
5922 memset (&wi, 0, sizeof (wi));
5923 wi.info = CONST_CAST (void *, (const void *)
5924 gimple_location_ptr (stmt));
5926 walk_gimple_op (gsi_stmt (si),
5927 check_array_bounds,
5928 &wi);
5934 /* Convert range assertion expressions into the implied copies and
5935 copy propagate away the copies. Doing the trivial copy propagation
5936 here avoids the need to run the full copy propagation pass after
5937 VRP.
5939 FIXME, this will eventually lead to copy propagation removing the
5940 names that had useful range information attached to them. For
5941 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
5942 then N_i will have the range [3, +INF].
5944 However, by converting the assertion into the implied copy
5945 operation N_i = N_j, we will then copy-propagate N_j into the uses
5946 of N_i and lose the range information. We may want to hold on to
5947 ASSERT_EXPRs a little while longer as the ranges could be used in
5948 things like jump threading.
5950 The problem with keeping ASSERT_EXPRs around is that passes after
5951 VRP need to handle them appropriately.
5953 Another approach would be to make the range information a first
5954 class property of the SSA_NAME so that it can be queried from
5955 any pass. This is made somewhat more complex by the need for
5956 multiple ranges to be associated with one SSA_NAME. */
5958 static void
5959 remove_range_assertions (void)
5961 basic_block bb;
5962 gimple_stmt_iterator si;
5964 /* Note that the BSI iterator bump happens at the bottom of the
5965 loop and no bump is necessary if we're removing the statement
5966 referenced by the current BSI. */
5967 FOR_EACH_BB (bb)
5968 for (si = gsi_start_bb (bb); !gsi_end_p (si);)
5970 gimple stmt = gsi_stmt (si);
5971 gimple use_stmt;
5973 if (is_gimple_assign (stmt)
5974 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
5976 tree rhs = gimple_assign_rhs1 (stmt);
5977 tree var;
5978 tree cond = fold (ASSERT_EXPR_COND (rhs));
5979 use_operand_p use_p;
5980 imm_use_iterator iter;
5982 gcc_assert (cond != boolean_false_node);
5984 /* Propagate the RHS into every use of the LHS. */
5985 var = ASSERT_EXPR_VAR (rhs);
5986 FOR_EACH_IMM_USE_STMT (use_stmt, iter,
5987 gimple_assign_lhs (stmt))
5988 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
5990 SET_USE (use_p, var);
5991 gcc_assert (TREE_CODE (var) == SSA_NAME);
5994 /* And finally, remove the copy, it is not needed. */
5995 gsi_remove (&si, true);
5996 release_defs (stmt);
5998 else
5999 gsi_next (&si);
6004 /* Return true if STMT is interesting for VRP. */
6006 static bool
6007 stmt_interesting_for_vrp (gimple stmt)
6009 if (gimple_code (stmt) == GIMPLE_PHI
6010 && is_gimple_reg (gimple_phi_result (stmt))
6011 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))
6012 || POINTER_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))))
6013 return true;
6014 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
6016 tree lhs = gimple_get_lhs (stmt);
6018 /* In general, assignments with virtual operands are not useful
6019 for deriving ranges, with the obvious exception of calls to
6020 builtin functions. */
6021 if (lhs && TREE_CODE (lhs) == SSA_NAME
6022 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
6023 || POINTER_TYPE_P (TREE_TYPE (lhs)))
6024 && ((is_gimple_call (stmt)
6025 && gimple_call_fndecl (stmt) != NULL_TREE
6026 && DECL_BUILT_IN (gimple_call_fndecl (stmt)))
6027 || !gimple_vuse (stmt)))
6028 return true;
6030 else if (gimple_code (stmt) == GIMPLE_COND
6031 || gimple_code (stmt) == GIMPLE_SWITCH)
6032 return true;
6034 return false;
6038 /* Initialize local data structures for VRP. */
6040 static void
6041 vrp_initialize (void)
6043 basic_block bb;
6045 values_propagated = false;
6046 num_vr_values = num_ssa_names;
6047 vr_value = XCNEWVEC (value_range_t *, num_vr_values);
6048 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
6050 FOR_EACH_BB (bb)
6052 gimple_stmt_iterator si;
6054 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
6056 gimple phi = gsi_stmt (si);
6057 if (!stmt_interesting_for_vrp (phi))
6059 tree lhs = PHI_RESULT (phi);
6060 set_value_range_to_varying (get_value_range (lhs));
6061 prop_set_simulate_again (phi, false);
6063 else
6064 prop_set_simulate_again (phi, true);
6067 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6069 gimple stmt = gsi_stmt (si);
6071 /* If the statement is a control insn, then we do not
6072 want to avoid simulating the statement once. Failure
6073 to do so means that those edges will never get added. */
6074 if (stmt_ends_bb_p (stmt))
6075 prop_set_simulate_again (stmt, true);
6076 else if (!stmt_interesting_for_vrp (stmt))
6078 ssa_op_iter i;
6079 tree def;
6080 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
6081 set_value_range_to_varying (get_value_range (def));
6082 prop_set_simulate_again (stmt, false);
6084 else
6085 prop_set_simulate_again (stmt, true);
6090 /* Return the singleton value-range for NAME or NAME. */
6092 static inline tree
6093 vrp_valueize (tree name)
6095 if (TREE_CODE (name) == SSA_NAME)
6097 value_range_t *vr = get_value_range (name);
6098 if (vr->type == VR_RANGE
6099 && (vr->min == vr->max
6100 || operand_equal_p (vr->min, vr->max, 0)))
6101 return vr->min;
6103 return name;
6106 /* Visit assignment STMT. If it produces an interesting range, record
6107 the SSA name in *OUTPUT_P. */
6109 static enum ssa_prop_result
6110 vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
6112 tree def, lhs;
6113 ssa_op_iter iter;
6114 enum gimple_code code = gimple_code (stmt);
6115 lhs = gimple_get_lhs (stmt);
6117 /* We only keep track of ranges in integral and pointer types. */
6118 if (TREE_CODE (lhs) == SSA_NAME
6119 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
6120 /* It is valid to have NULL MIN/MAX values on a type. See
6121 build_range_type. */
6122 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
6123 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
6124 || POINTER_TYPE_P (TREE_TYPE (lhs))))
6126 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
6128 /* Try folding the statement to a constant first. */
6129 tree tem = gimple_fold_stmt_to_constant (stmt, vrp_valueize);
6130 if (tem && !is_overflow_infinity (tem))
6131 set_value_range (&new_vr, VR_RANGE, tem, tem, NULL);
6132 /* Then dispatch to value-range extracting functions. */
6133 else if (code == GIMPLE_CALL)
6134 extract_range_basic (&new_vr, stmt);
6135 else
6136 extract_range_from_assignment (&new_vr, stmt);
6138 if (update_value_range (lhs, &new_vr))
6140 *output_p = lhs;
6142 if (dump_file && (dump_flags & TDF_DETAILS))
6144 fprintf (dump_file, "Found new range for ");
6145 print_generic_expr (dump_file, lhs, 0);
6146 fprintf (dump_file, ": ");
6147 dump_value_range (dump_file, &new_vr);
6148 fprintf (dump_file, "\n\n");
6151 if (new_vr.type == VR_VARYING)
6152 return SSA_PROP_VARYING;
6154 return SSA_PROP_INTERESTING;
6157 return SSA_PROP_NOT_INTERESTING;
6160 /* Every other statement produces no useful ranges. */
6161 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
6162 set_value_range_to_varying (get_value_range (def));
6164 return SSA_PROP_VARYING;
6167 /* Helper that gets the value range of the SSA_NAME with version I
6168 or a symbolic range containing the SSA_NAME only if the value range
6169 is varying or undefined. */
6171 static inline value_range_t
6172 get_vr_for_comparison (int i)
6174 value_range_t vr = *get_value_range (ssa_name (i));
6176 /* If name N_i does not have a valid range, use N_i as its own
6177 range. This allows us to compare against names that may
6178 have N_i in their ranges. */
6179 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
6181 vr.type = VR_RANGE;
6182 vr.min = ssa_name (i);
6183 vr.max = ssa_name (i);
6186 return vr;
6189 /* Compare all the value ranges for names equivalent to VAR with VAL
6190 using comparison code COMP. Return the same value returned by
6191 compare_range_with_value, including the setting of
6192 *STRICT_OVERFLOW_P. */
6194 static tree
6195 compare_name_with_value (enum tree_code comp, tree var, tree val,
6196 bool *strict_overflow_p)
6198 bitmap_iterator bi;
6199 unsigned i;
6200 bitmap e;
6201 tree retval, t;
6202 int used_strict_overflow;
6203 bool sop;
6204 value_range_t equiv_vr;
6206 /* Get the set of equivalences for VAR. */
6207 e = get_value_range (var)->equiv;
6209 /* Start at -1. Set it to 0 if we do a comparison without relying
6210 on overflow, or 1 if all comparisons rely on overflow. */
6211 used_strict_overflow = -1;
6213 /* Compare vars' value range with val. */
6214 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
6215 sop = false;
6216 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
6217 if (retval)
6218 used_strict_overflow = sop ? 1 : 0;
6220 /* If the equiv set is empty we have done all work we need to do. */
6221 if (e == NULL)
6223 if (retval
6224 && used_strict_overflow > 0)
6225 *strict_overflow_p = true;
6226 return retval;
6229 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
6231 equiv_vr = get_vr_for_comparison (i);
6232 sop = false;
6233 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
6234 if (t)
6236 /* If we get different answers from different members
6237 of the equivalence set this check must be in a dead
6238 code region. Folding it to a trap representation
6239 would be correct here. For now just return don't-know. */
6240 if (retval != NULL
6241 && t != retval)
6243 retval = NULL_TREE;
6244 break;
6246 retval = t;
6248 if (!sop)
6249 used_strict_overflow = 0;
6250 else if (used_strict_overflow < 0)
6251 used_strict_overflow = 1;
6255 if (retval
6256 && used_strict_overflow > 0)
6257 *strict_overflow_p = true;
6259 return retval;
6263 /* Given a comparison code COMP and names N1 and N2, compare all the
6264 ranges equivalent to N1 against all the ranges equivalent to N2
6265 to determine the value of N1 COMP N2. Return the same value
6266 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
6267 whether we relied on an overflow infinity in the comparison. */
6270 static tree
6271 compare_names (enum tree_code comp, tree n1, tree n2,
6272 bool *strict_overflow_p)
6274 tree t, retval;
6275 bitmap e1, e2;
6276 bitmap_iterator bi1, bi2;
6277 unsigned i1, i2;
6278 int used_strict_overflow;
6279 static bitmap_obstack *s_obstack = NULL;
6280 static bitmap s_e1 = NULL, s_e2 = NULL;
6282 /* Compare the ranges of every name equivalent to N1 against the
6283 ranges of every name equivalent to N2. */
6284 e1 = get_value_range (n1)->equiv;
6285 e2 = get_value_range (n2)->equiv;
6287 /* Use the fake bitmaps if e1 or e2 are not available. */
6288 if (s_obstack == NULL)
6290 s_obstack = XNEW (bitmap_obstack);
6291 bitmap_obstack_initialize (s_obstack);
6292 s_e1 = BITMAP_ALLOC (s_obstack);
6293 s_e2 = BITMAP_ALLOC (s_obstack);
6295 if (e1 == NULL)
6296 e1 = s_e1;
6297 if (e2 == NULL)
6298 e2 = s_e2;
6300 /* Add N1 and N2 to their own set of equivalences to avoid
6301 duplicating the body of the loop just to check N1 and N2
6302 ranges. */
6303 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
6304 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
6306 /* If the equivalence sets have a common intersection, then the two
6307 names can be compared without checking their ranges. */
6308 if (bitmap_intersect_p (e1, e2))
6310 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
6311 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
6313 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
6314 ? boolean_true_node
6315 : boolean_false_node;
6318 /* Start at -1. Set it to 0 if we do a comparison without relying
6319 on overflow, or 1 if all comparisons rely on overflow. */
6320 used_strict_overflow = -1;
6322 /* Otherwise, compare all the equivalent ranges. First, add N1 and
6323 N2 to their own set of equivalences to avoid duplicating the body
6324 of the loop just to check N1 and N2 ranges. */
6325 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
6327 value_range_t vr1 = get_vr_for_comparison (i1);
6329 t = retval = NULL_TREE;
6330 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
6332 bool sop = false;
6334 value_range_t vr2 = get_vr_for_comparison (i2);
6336 t = compare_ranges (comp, &vr1, &vr2, &sop);
6337 if (t)
6339 /* If we get different answers from different members
6340 of the equivalence set this check must be in a dead
6341 code region. Folding it to a trap representation
6342 would be correct here. For now just return don't-know. */
6343 if (retval != NULL
6344 && t != retval)
6346 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
6347 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
6348 return NULL_TREE;
6350 retval = t;
6352 if (!sop)
6353 used_strict_overflow = 0;
6354 else if (used_strict_overflow < 0)
6355 used_strict_overflow = 1;
6359 if (retval)
6361 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
6362 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
6363 if (used_strict_overflow > 0)
6364 *strict_overflow_p = true;
6365 return retval;
6369 /* None of the equivalent ranges are useful in computing this
6370 comparison. */
6371 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
6372 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
6373 return NULL_TREE;
6376 /* Helper function for vrp_evaluate_conditional_warnv. */
6378 static tree
6379 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
6380 tree op0, tree op1,
6381 bool * strict_overflow_p)
6383 value_range_t *vr0, *vr1;
6385 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
6386 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
6388 if (vr0 && vr1)
6389 return compare_ranges (code, vr0, vr1, strict_overflow_p);
6390 else if (vr0 && vr1 == NULL)
6391 return compare_range_with_value (code, vr0, op1, strict_overflow_p);
6392 else if (vr0 == NULL && vr1)
6393 return (compare_range_with_value
6394 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
6395 return NULL;
6398 /* Helper function for vrp_evaluate_conditional_warnv. */
6400 static tree
6401 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
6402 tree op1, bool use_equiv_p,
6403 bool *strict_overflow_p, bool *only_ranges)
6405 tree ret;
6406 if (only_ranges)
6407 *only_ranges = true;
6409 /* We only deal with integral and pointer types. */
6410 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
6411 && !POINTER_TYPE_P (TREE_TYPE (op0)))
6412 return NULL_TREE;
6414 if (use_equiv_p)
6416 if (only_ranges
6417 && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
6418 (code, op0, op1, strict_overflow_p)))
6419 return ret;
6420 *only_ranges = false;
6421 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
6422 return compare_names (code, op0, op1, strict_overflow_p);
6423 else if (TREE_CODE (op0) == SSA_NAME)
6424 return compare_name_with_value (code, op0, op1, strict_overflow_p);
6425 else if (TREE_CODE (op1) == SSA_NAME)
6426 return (compare_name_with_value
6427 (swap_tree_comparison (code), op1, op0, strict_overflow_p));
6429 else
6430 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
6431 strict_overflow_p);
6432 return NULL_TREE;
6435 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
6436 information. Return NULL if the conditional can not be evaluated.
6437 The ranges of all the names equivalent with the operands in COND
6438 will be used when trying to compute the value. If the result is
6439 based on undefined signed overflow, issue a warning if
6440 appropriate. */
6442 static tree
6443 vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
6445 bool sop;
6446 tree ret;
6447 bool only_ranges;
6449 /* Some passes and foldings leak constants with overflow flag set
6450 into the IL. Avoid doing wrong things with these and bail out. */
6451 if ((TREE_CODE (op0) == INTEGER_CST
6452 && TREE_OVERFLOW (op0))
6453 || (TREE_CODE (op1) == INTEGER_CST
6454 && TREE_OVERFLOW (op1)))
6455 return NULL_TREE;
6457 sop = false;
6458 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
6459 &only_ranges);
6461 if (ret && sop)
6463 enum warn_strict_overflow_code wc;
6464 const char* warnmsg;
6466 if (is_gimple_min_invariant (ret))
6468 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
6469 warnmsg = G_("assuming signed overflow does not occur when "
6470 "simplifying conditional to constant");
6472 else
6474 wc = WARN_STRICT_OVERFLOW_COMPARISON;
6475 warnmsg = G_("assuming signed overflow does not occur when "
6476 "simplifying conditional");
6479 if (issue_strict_overflow_warning (wc))
6481 location_t location;
6483 if (!gimple_has_location (stmt))
6484 location = input_location;
6485 else
6486 location = gimple_location (stmt);
6487 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
6491 if (warn_type_limits
6492 && ret && only_ranges
6493 && TREE_CODE_CLASS (code) == tcc_comparison
6494 && TREE_CODE (op0) == SSA_NAME)
6496 /* If the comparison is being folded and the operand on the LHS
6497 is being compared against a constant value that is outside of
6498 the natural range of OP0's type, then the predicate will
6499 always fold regardless of the value of OP0. If -Wtype-limits
6500 was specified, emit a warning. */
6501 tree type = TREE_TYPE (op0);
6502 value_range_t *vr0 = get_value_range (op0);
6504 if (vr0->type != VR_VARYING
6505 && INTEGRAL_TYPE_P (type)
6506 && vrp_val_is_min (vr0->min)
6507 && vrp_val_is_max (vr0->max)
6508 && is_gimple_min_invariant (op1))
6510 location_t location;
6512 if (!gimple_has_location (stmt))
6513 location = input_location;
6514 else
6515 location = gimple_location (stmt);
6517 warning_at (location, OPT_Wtype_limits,
6518 integer_zerop (ret)
6519 ? G_("comparison always false "
6520 "due to limited range of data type")
6521 : G_("comparison always true "
6522 "due to limited range of data type"));
6526 return ret;
6530 /* Visit conditional statement STMT. If we can determine which edge
6531 will be taken out of STMT's basic block, record it in
6532 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
6533 SSA_PROP_VARYING. */
6535 static enum ssa_prop_result
6536 vrp_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
6538 tree val;
6539 bool sop;
6541 *taken_edge_p = NULL;
6543 if (dump_file && (dump_flags & TDF_DETAILS))
6545 tree use;
6546 ssa_op_iter i;
6548 fprintf (dump_file, "\nVisiting conditional with predicate: ");
6549 print_gimple_stmt (dump_file, stmt, 0, 0);
6550 fprintf (dump_file, "\nWith known ranges\n");
6552 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
6554 fprintf (dump_file, "\t");
6555 print_generic_expr (dump_file, use, 0);
6556 fprintf (dump_file, ": ");
6557 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
6560 fprintf (dump_file, "\n");
6563 /* Compute the value of the predicate COND by checking the known
6564 ranges of each of its operands.
6566 Note that we cannot evaluate all the equivalent ranges here
6567 because those ranges may not yet be final and with the current
6568 propagation strategy, we cannot determine when the value ranges
6569 of the names in the equivalence set have changed.
6571 For instance, given the following code fragment
6573 i_5 = PHI <8, i_13>
6575 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
6576 if (i_14 == 1)
6579 Assume that on the first visit to i_14, i_5 has the temporary
6580 range [8, 8] because the second argument to the PHI function is
6581 not yet executable. We derive the range ~[0, 0] for i_14 and the
6582 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
6583 the first time, since i_14 is equivalent to the range [8, 8], we
6584 determine that the predicate is always false.
6586 On the next round of propagation, i_13 is determined to be
6587 VARYING, which causes i_5 to drop down to VARYING. So, another
6588 visit to i_14 is scheduled. In this second visit, we compute the
6589 exact same range and equivalence set for i_14, namely ~[0, 0] and
6590 { i_5 }. But we did not have the previous range for i_5
6591 registered, so vrp_visit_assignment thinks that the range for
6592 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
6593 is not visited again, which stops propagation from visiting
6594 statements in the THEN clause of that if().
6596 To properly fix this we would need to keep the previous range
6597 value for the names in the equivalence set. This way we would've
6598 discovered that from one visit to the other i_5 changed from
6599 range [8, 8] to VR_VARYING.
6601 However, fixing this apparent limitation may not be worth the
6602 additional checking. Testing on several code bases (GCC, DLV,
6603 MICO, TRAMP3D and SPEC2000) showed that doing this results in
6604 4 more predicates folded in SPEC. */
6605 sop = false;
6607 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
6608 gimple_cond_lhs (stmt),
6609 gimple_cond_rhs (stmt),
6610 false, &sop, NULL);
6611 if (val)
6613 if (!sop)
6614 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
6615 else
6617 if (dump_file && (dump_flags & TDF_DETAILS))
6618 fprintf (dump_file,
6619 "\nIgnoring predicate evaluation because "
6620 "it assumes that signed overflow is undefined");
6621 val = NULL_TREE;
6625 if (dump_file && (dump_flags & TDF_DETAILS))
6627 fprintf (dump_file, "\nPredicate evaluates to: ");
6628 if (val == NULL_TREE)
6629 fprintf (dump_file, "DON'T KNOW\n");
6630 else
6631 print_generic_stmt (dump_file, val, 0);
6634 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
6637 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
6638 that includes the value VAL. The search is restricted to the range
6639 [START_IDX, n - 1] where n is the size of VEC.
6641 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
6642 returned.
6644 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
6645 it is placed in IDX and false is returned.
6647 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
6648 returned. */
6650 static bool
6651 find_case_label_index (gimple stmt, size_t start_idx, tree val, size_t *idx)
6653 size_t n = gimple_switch_num_labels (stmt);
6654 size_t low, high;
6656 /* Find case label for minimum of the value range or the next one.
6657 At each iteration we are searching in [low, high - 1]. */
6659 for (low = start_idx, high = n; high != low; )
6661 tree t;
6662 int cmp;
6663 /* Note that i != high, so we never ask for n. */
6664 size_t i = (high + low) / 2;
6665 t = gimple_switch_label (stmt, i);
6667 /* Cache the result of comparing CASE_LOW and val. */
6668 cmp = tree_int_cst_compare (CASE_LOW (t), val);
6670 if (cmp == 0)
6672 /* Ranges cannot be empty. */
6673 *idx = i;
6674 return true;
6676 else if (cmp > 0)
6677 high = i;
6678 else
6680 low = i + 1;
6681 if (CASE_HIGH (t) != NULL
6682 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
6684 *idx = i;
6685 return true;
6690 *idx = high;
6691 return false;
6694 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
6695 for values between MIN and MAX. The first index is placed in MIN_IDX. The
6696 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
6697 then MAX_IDX < MIN_IDX.
6698 Returns true if the default label is not needed. */
6700 static bool
6701 find_case_label_range (gimple stmt, tree min, tree max, size_t *min_idx,
6702 size_t *max_idx)
6704 size_t i, j;
6705 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
6706 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
6708 if (i == j
6709 && min_take_default
6710 && max_take_default)
6712 /* Only the default case label reached.
6713 Return an empty range. */
6714 *min_idx = 1;
6715 *max_idx = 0;
6716 return false;
6718 else
6720 bool take_default = min_take_default || max_take_default;
6721 tree low, high;
6722 size_t k;
6724 if (max_take_default)
6725 j--;
6727 /* If the case label range is continuous, we do not need
6728 the default case label. Verify that. */
6729 high = CASE_LOW (gimple_switch_label (stmt, i));
6730 if (CASE_HIGH (gimple_switch_label (stmt, i)))
6731 high = CASE_HIGH (gimple_switch_label (stmt, i));
6732 for (k = i + 1; k <= j; ++k)
6734 low = CASE_LOW (gimple_switch_label (stmt, k));
6735 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
6737 take_default = true;
6738 break;
6740 high = low;
6741 if (CASE_HIGH (gimple_switch_label (stmt, k)))
6742 high = CASE_HIGH (gimple_switch_label (stmt, k));
6745 *min_idx = i;
6746 *max_idx = j;
6747 return !take_default;
6751 /* Visit switch statement STMT. If we can determine which edge
6752 will be taken out of STMT's basic block, record it in
6753 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
6754 SSA_PROP_VARYING. */
6756 static enum ssa_prop_result
6757 vrp_visit_switch_stmt (gimple stmt, edge *taken_edge_p)
6759 tree op, val;
6760 value_range_t *vr;
6761 size_t i = 0, j = 0;
6762 bool take_default;
6764 *taken_edge_p = NULL;
6765 op = gimple_switch_index (stmt);
6766 if (TREE_CODE (op) != SSA_NAME)
6767 return SSA_PROP_VARYING;
6769 vr = get_value_range (op);
6770 if (dump_file && (dump_flags & TDF_DETAILS))
6772 fprintf (dump_file, "\nVisiting switch expression with operand ");
6773 print_generic_expr (dump_file, op, 0);
6774 fprintf (dump_file, " with known range ");
6775 dump_value_range (dump_file, vr);
6776 fprintf (dump_file, "\n");
6779 if (vr->type != VR_RANGE
6780 || symbolic_range_p (vr))
6781 return SSA_PROP_VARYING;
6783 /* Find the single edge that is taken from the switch expression. */
6784 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
6786 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
6787 label */
6788 if (j < i)
6790 gcc_assert (take_default);
6791 val = gimple_switch_default_label (stmt);
6793 else
6795 /* Check if labels with index i to j and maybe the default label
6796 are all reaching the same label. */
6798 val = gimple_switch_label (stmt, i);
6799 if (take_default
6800 && CASE_LABEL (gimple_switch_default_label (stmt))
6801 != CASE_LABEL (val))
6803 if (dump_file && (dump_flags & TDF_DETAILS))
6804 fprintf (dump_file, " not a single destination for this "
6805 "range\n");
6806 return SSA_PROP_VARYING;
6808 for (++i; i <= j; ++i)
6810 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
6812 if (dump_file && (dump_flags & TDF_DETAILS))
6813 fprintf (dump_file, " not a single destination for this "
6814 "range\n");
6815 return SSA_PROP_VARYING;
6820 *taken_edge_p = find_edge (gimple_bb (stmt),
6821 label_to_block (CASE_LABEL (val)));
6823 if (dump_file && (dump_flags & TDF_DETAILS))
6825 fprintf (dump_file, " will take edge to ");
6826 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
6829 return SSA_PROP_INTERESTING;
6833 /* Evaluate statement STMT. If the statement produces a useful range,
6834 return SSA_PROP_INTERESTING and record the SSA name with the
6835 interesting range into *OUTPUT_P.
6837 If STMT is a conditional branch and we can determine its truth
6838 value, the taken edge is recorded in *TAKEN_EDGE_P.
6840 If STMT produces a varying value, return SSA_PROP_VARYING. */
6842 static enum ssa_prop_result
6843 vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
6845 tree def;
6846 ssa_op_iter iter;
6848 if (dump_file && (dump_flags & TDF_DETAILS))
6850 fprintf (dump_file, "\nVisiting statement:\n");
6851 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
6852 fprintf (dump_file, "\n");
6855 if (!stmt_interesting_for_vrp (stmt))
6856 gcc_assert (stmt_ends_bb_p (stmt));
6857 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
6859 /* In general, assignments with virtual operands are not useful
6860 for deriving ranges, with the obvious exception of calls to
6861 builtin functions. */
6862 if ((is_gimple_call (stmt)
6863 && gimple_call_fndecl (stmt) != NULL_TREE
6864 && DECL_BUILT_IN (gimple_call_fndecl (stmt)))
6865 || !gimple_vuse (stmt))
6866 return vrp_visit_assignment_or_call (stmt, output_p);
6868 else if (gimple_code (stmt) == GIMPLE_COND)
6869 return vrp_visit_cond_stmt (stmt, taken_edge_p);
6870 else if (gimple_code (stmt) == GIMPLE_SWITCH)
6871 return vrp_visit_switch_stmt (stmt, taken_edge_p);
6873 /* All other statements produce nothing of interest for VRP, so mark
6874 their outputs varying and prevent further simulation. */
6875 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
6876 set_value_range_to_varying (get_value_range (def));
6878 return SSA_PROP_VARYING;
6882 /* Meet operation for value ranges. Given two value ranges VR0 and
6883 VR1, store in VR0 a range that contains both VR0 and VR1. This
6884 may not be the smallest possible such range. */
6886 static void
6887 vrp_meet (value_range_t *vr0, value_range_t *vr1)
6889 if (vr0->type == VR_UNDEFINED)
6891 copy_value_range (vr0, vr1);
6892 return;
6895 if (vr1->type == VR_UNDEFINED)
6897 /* Nothing to do. VR0 already has the resulting range. */
6898 return;
6901 if (vr0->type == VR_VARYING)
6903 /* Nothing to do. VR0 already has the resulting range. */
6904 return;
6907 if (vr1->type == VR_VARYING)
6909 set_value_range_to_varying (vr0);
6910 return;
6913 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
6915 int cmp;
6916 tree min, max;
6918 /* Compute the convex hull of the ranges. The lower limit of
6919 the new range is the minimum of the two ranges. If they
6920 cannot be compared, then give up. */
6921 cmp = compare_values (vr0->min, vr1->min);
6922 if (cmp == 0 || cmp == 1)
6923 min = vr1->min;
6924 else if (cmp == -1)
6925 min = vr0->min;
6926 else
6927 goto give_up;
6929 /* Similarly, the upper limit of the new range is the maximum
6930 of the two ranges. If they cannot be compared, then
6931 give up. */
6932 cmp = compare_values (vr0->max, vr1->max);
6933 if (cmp == 0 || cmp == -1)
6934 max = vr1->max;
6935 else if (cmp == 1)
6936 max = vr0->max;
6937 else
6938 goto give_up;
6940 /* Check for useless ranges. */
6941 if (INTEGRAL_TYPE_P (TREE_TYPE (min))
6942 && ((vrp_val_is_min (min) || is_overflow_infinity (min))
6943 && (vrp_val_is_max (max) || is_overflow_infinity (max))))
6944 goto give_up;
6946 /* The resulting set of equivalences is the intersection of
6947 the two sets. */
6948 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6949 bitmap_and_into (vr0->equiv, vr1->equiv);
6950 else if (vr0->equiv && !vr1->equiv)
6951 bitmap_clear (vr0->equiv);
6953 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
6955 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
6957 /* Two anti-ranges meet only if their complements intersect.
6958 Only handle the case of identical ranges. */
6959 if (compare_values (vr0->min, vr1->min) == 0
6960 && compare_values (vr0->max, vr1->max) == 0
6961 && compare_values (vr0->min, vr0->max) == 0)
6963 /* The resulting set of equivalences is the intersection of
6964 the two sets. */
6965 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6966 bitmap_and_into (vr0->equiv, vr1->equiv);
6967 else if (vr0->equiv && !vr1->equiv)
6968 bitmap_clear (vr0->equiv);
6970 else
6971 goto give_up;
6973 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
6975 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
6976 only handle the case where the ranges have an empty intersection.
6977 The result of the meet operation is the anti-range. */
6978 if (!symbolic_range_p (vr0)
6979 && !symbolic_range_p (vr1)
6980 && !value_ranges_intersect_p (vr0, vr1))
6982 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
6983 set. We need to compute the intersection of the two
6984 equivalence sets. */
6985 if (vr1->type == VR_ANTI_RANGE)
6986 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
6988 /* The resulting set of equivalences is the intersection of
6989 the two sets. */
6990 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6991 bitmap_and_into (vr0->equiv, vr1->equiv);
6992 else if (vr0->equiv && !vr1->equiv)
6993 bitmap_clear (vr0->equiv);
6995 else
6996 goto give_up;
6998 else
6999 gcc_unreachable ();
7001 return;
7003 give_up:
7004 /* Failed to find an efficient meet. Before giving up and setting
7005 the result to VARYING, see if we can at least derive a useful
7006 anti-range. FIXME, all this nonsense about distinguishing
7007 anti-ranges from ranges is necessary because of the odd
7008 semantics of range_includes_zero_p and friends. */
7009 if (!symbolic_range_p (vr0)
7010 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
7011 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
7012 && !symbolic_range_p (vr1)
7013 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
7014 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
7016 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
7018 /* Since this meet operation did not result from the meeting of
7019 two equivalent names, VR0 cannot have any equivalences. */
7020 if (vr0->equiv)
7021 bitmap_clear (vr0->equiv);
7023 else
7024 set_value_range_to_varying (vr0);
7028 /* Visit all arguments for PHI node PHI that flow through executable
7029 edges. If a valid value range can be derived from all the incoming
7030 value ranges, set a new range for the LHS of PHI. */
7032 static enum ssa_prop_result
7033 vrp_visit_phi_node (gimple phi)
7035 size_t i;
7036 tree lhs = PHI_RESULT (phi);
7037 value_range_t *lhs_vr = get_value_range (lhs);
7038 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
7039 int edges, old_edges;
7040 struct loop *l;
7042 if (dump_file && (dump_flags & TDF_DETAILS))
7044 fprintf (dump_file, "\nVisiting PHI node: ");
7045 print_gimple_stmt (dump_file, phi, 0, dump_flags);
7048 edges = 0;
7049 for (i = 0; i < gimple_phi_num_args (phi); i++)
7051 edge e = gimple_phi_arg_edge (phi, i);
7053 if (dump_file && (dump_flags & TDF_DETAILS))
7055 fprintf (dump_file,
7056 "\n Argument #%d (%d -> %d %sexecutable)\n",
7057 (int) i, e->src->index, e->dest->index,
7058 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
7061 if (e->flags & EDGE_EXECUTABLE)
7063 tree arg = PHI_ARG_DEF (phi, i);
7064 value_range_t vr_arg;
7066 ++edges;
7068 if (TREE_CODE (arg) == SSA_NAME)
7070 vr_arg = *(get_value_range (arg));
7072 else
7074 if (is_overflow_infinity (arg))
7076 arg = copy_node (arg);
7077 TREE_OVERFLOW (arg) = 0;
7080 vr_arg.type = VR_RANGE;
7081 vr_arg.min = arg;
7082 vr_arg.max = arg;
7083 vr_arg.equiv = NULL;
7086 if (dump_file && (dump_flags & TDF_DETAILS))
7088 fprintf (dump_file, "\t");
7089 print_generic_expr (dump_file, arg, dump_flags);
7090 fprintf (dump_file, "\n\tValue: ");
7091 dump_value_range (dump_file, &vr_arg);
7092 fprintf (dump_file, "\n");
7095 vrp_meet (&vr_result, &vr_arg);
7097 if (vr_result.type == VR_VARYING)
7098 break;
7102 if (vr_result.type == VR_VARYING)
7103 goto varying;
7104 else if (vr_result.type == VR_UNDEFINED)
7105 goto update_range;
7107 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
7108 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
7110 /* To prevent infinite iterations in the algorithm, derive ranges
7111 when the new value is slightly bigger or smaller than the
7112 previous one. We don't do this if we have seen a new executable
7113 edge; this helps us avoid an overflow infinity for conditionals
7114 which are not in a loop. */
7115 if (edges > 0
7116 && gimple_phi_num_args (phi) > 1
7117 && edges == old_edges)
7119 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
7120 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
7122 /* For non VR_RANGE or for pointers fall back to varying if
7123 the range changed. */
7124 if ((lhs_vr->type != VR_RANGE || vr_result.type != VR_RANGE
7125 || POINTER_TYPE_P (TREE_TYPE (lhs)))
7126 && (cmp_min != 0 || cmp_max != 0))
7127 goto varying;
7129 /* If the new minimum is smaller or larger than the previous
7130 one, go all the way to -INF. In the first case, to avoid
7131 iterating millions of times to reach -INF, and in the
7132 other case to avoid infinite bouncing between different
7133 minimums. */
7134 if (cmp_min > 0 || cmp_min < 0)
7136 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
7137 || !vrp_var_may_overflow (lhs, phi))
7138 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
7139 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
7140 vr_result.min =
7141 negative_overflow_infinity (TREE_TYPE (vr_result.min));
7144 /* Similarly, if the new maximum is smaller or larger than
7145 the previous one, go all the way to +INF. */
7146 if (cmp_max < 0 || cmp_max > 0)
7148 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
7149 || !vrp_var_may_overflow (lhs, phi))
7150 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
7151 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
7152 vr_result.max =
7153 positive_overflow_infinity (TREE_TYPE (vr_result.max));
7156 /* If we dropped either bound to +-INF then if this is a loop
7157 PHI node SCEV may known more about its value-range. */
7158 if ((cmp_min > 0 || cmp_min < 0
7159 || cmp_max < 0 || cmp_max > 0)
7160 && current_loops
7161 && (l = loop_containing_stmt (phi))
7162 && l->header == gimple_bb (phi))
7163 adjust_range_with_scev (&vr_result, l, phi, lhs);
7165 /* If we will end up with a (-INF, +INF) range, set it to
7166 VARYING. Same if the previous max value was invalid for
7167 the type and we end up with vr_result.min > vr_result.max. */
7168 if ((vrp_val_is_max (vr_result.max)
7169 && vrp_val_is_min (vr_result.min))
7170 || compare_values (vr_result.min,
7171 vr_result.max) > 0)
7172 goto varying;
7175 /* If the new range is different than the previous value, keep
7176 iterating. */
7177 update_range:
7178 if (update_value_range (lhs, &vr_result))
7180 if (dump_file && (dump_flags & TDF_DETAILS))
7182 fprintf (dump_file, "Found new range for ");
7183 print_generic_expr (dump_file, lhs, 0);
7184 fprintf (dump_file, ": ");
7185 dump_value_range (dump_file, &vr_result);
7186 fprintf (dump_file, "\n\n");
7189 return SSA_PROP_INTERESTING;
7192 /* Nothing changed, don't add outgoing edges. */
7193 return SSA_PROP_NOT_INTERESTING;
7195 /* No match found. Set the LHS to VARYING. */
7196 varying:
7197 set_value_range_to_varying (lhs_vr);
7198 return SSA_PROP_VARYING;
7201 /* Simplify boolean operations if the source is known
7202 to be already a boolean. */
7203 static bool
7204 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
7206 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
7207 tree lhs, op0, op1;
7208 bool need_conversion;
7210 /* We handle only !=/== case here. */
7211 gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR);
7213 op0 = gimple_assign_rhs1 (stmt);
7214 if (!op_with_boolean_value_range_p (op0))
7215 return false;
7217 op1 = gimple_assign_rhs2 (stmt);
7218 if (!op_with_boolean_value_range_p (op1))
7219 return false;
7221 /* Reduce number of cases to handle to NE_EXPR. As there is no
7222 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
7223 if (rhs_code == EQ_EXPR)
7225 if (TREE_CODE (op1) == INTEGER_CST)
7226 op1 = int_const_binop (BIT_XOR_EXPR, op1, integer_one_node);
7227 else
7228 return false;
7231 lhs = gimple_assign_lhs (stmt);
7232 need_conversion
7233 = !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0));
7235 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
7236 if (need_conversion
7237 && !TYPE_UNSIGNED (TREE_TYPE (op0))
7238 && TYPE_PRECISION (TREE_TYPE (op0)) == 1
7239 && TYPE_PRECISION (TREE_TYPE (lhs)) > 1)
7240 return false;
7242 /* For A != 0 we can substitute A itself. */
7243 if (integer_zerop (op1))
7244 gimple_assign_set_rhs_with_ops (gsi,
7245 need_conversion
7246 ? NOP_EXPR : TREE_CODE (op0),
7247 op0, NULL_TREE);
7248 /* For A != B we substitute A ^ B. Either with conversion. */
7249 else if (need_conversion)
7251 gimple newop;
7252 tree tem = create_tmp_reg (TREE_TYPE (op0), NULL);
7253 newop = gimple_build_assign_with_ops (BIT_XOR_EXPR, tem, op0, op1);
7254 tem = make_ssa_name (tem, newop);
7255 gimple_assign_set_lhs (newop, tem);
7256 gsi_insert_before (gsi, newop, GSI_SAME_STMT);
7257 update_stmt (newop);
7258 gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem, NULL_TREE);
7260 /* Or without. */
7261 else
7262 gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1);
7263 update_stmt (gsi_stmt (*gsi));
7265 return true;
7268 /* Simplify a division or modulo operator to a right shift or
7269 bitwise and if the first operand is unsigned or is greater
7270 than zero and the second operand is an exact power of two. */
7272 static bool
7273 simplify_div_or_mod_using_ranges (gimple stmt)
7275 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
7276 tree val = NULL;
7277 tree op0 = gimple_assign_rhs1 (stmt);
7278 tree op1 = gimple_assign_rhs2 (stmt);
7279 value_range_t *vr = get_value_range (gimple_assign_rhs1 (stmt));
7281 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
7283 val = integer_one_node;
7285 else
7287 bool sop = false;
7289 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
7291 if (val
7292 && sop
7293 && integer_onep (val)
7294 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
7296 location_t location;
7298 if (!gimple_has_location (stmt))
7299 location = input_location;
7300 else
7301 location = gimple_location (stmt);
7302 warning_at (location, OPT_Wstrict_overflow,
7303 "assuming signed overflow does not occur when "
7304 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
7308 if (val && integer_onep (val))
7310 tree t;
7312 if (rhs_code == TRUNC_DIV_EXPR)
7314 t = build_int_cst (integer_type_node, tree_log2 (op1));
7315 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
7316 gimple_assign_set_rhs1 (stmt, op0);
7317 gimple_assign_set_rhs2 (stmt, t);
7319 else
7321 t = build_int_cst (TREE_TYPE (op1), 1);
7322 t = int_const_binop (MINUS_EXPR, op1, t);
7323 t = fold_convert (TREE_TYPE (op0), t);
7325 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
7326 gimple_assign_set_rhs1 (stmt, op0);
7327 gimple_assign_set_rhs2 (stmt, t);
7330 update_stmt (stmt);
7331 return true;
7334 return false;
7337 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
7338 ABS_EXPR. If the operand is <= 0, then simplify the
7339 ABS_EXPR into a NEGATE_EXPR. */
7341 static bool
7342 simplify_abs_using_ranges (gimple stmt)
7344 tree val = NULL;
7345 tree op = gimple_assign_rhs1 (stmt);
7346 tree type = TREE_TYPE (op);
7347 value_range_t *vr = get_value_range (op);
7349 if (TYPE_UNSIGNED (type))
7351 val = integer_zero_node;
7353 else if (vr)
7355 bool sop = false;
7357 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
7358 if (!val)
7360 sop = false;
7361 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
7362 &sop);
7364 if (val)
7366 if (integer_zerop (val))
7367 val = integer_one_node;
7368 else if (integer_onep (val))
7369 val = integer_zero_node;
7373 if (val
7374 && (integer_onep (val) || integer_zerop (val)))
7376 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
7378 location_t location;
7380 if (!gimple_has_location (stmt))
7381 location = input_location;
7382 else
7383 location = gimple_location (stmt);
7384 warning_at (location, OPT_Wstrict_overflow,
7385 "assuming signed overflow does not occur when "
7386 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
7389 gimple_assign_set_rhs1 (stmt, op);
7390 if (integer_onep (val))
7391 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
7392 else
7393 gimple_assign_set_rhs_code (stmt, SSA_NAME);
7394 update_stmt (stmt);
7395 return true;
7399 return false;
7402 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
7403 If all the bits that are being cleared by & are already
7404 known to be zero from VR, or all the bits that are being
7405 set by | are already known to be one from VR, the bit
7406 operation is redundant. */
7408 static bool
7409 simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
7411 tree op0 = gimple_assign_rhs1 (stmt);
7412 tree op1 = gimple_assign_rhs2 (stmt);
7413 tree op = NULL_TREE;
7414 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
7415 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
7416 double_int may_be_nonzero0, may_be_nonzero1;
7417 double_int must_be_nonzero0, must_be_nonzero1;
7418 double_int mask;
7420 if (TREE_CODE (op0) == SSA_NAME)
7421 vr0 = *(get_value_range (op0));
7422 else if (is_gimple_min_invariant (op0))
7423 set_value_range_to_value (&vr0, op0, NULL);
7424 else
7425 return false;
7427 if (TREE_CODE (op1) == SSA_NAME)
7428 vr1 = *(get_value_range (op1));
7429 else if (is_gimple_min_invariant (op1))
7430 set_value_range_to_value (&vr1, op1, NULL);
7431 else
7432 return false;
7434 if (!zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0, &must_be_nonzero0))
7435 return false;
7436 if (!zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1, &must_be_nonzero1))
7437 return false;
7439 switch (gimple_assign_rhs_code (stmt))
7441 case BIT_AND_EXPR:
7442 mask = double_int_and_not (may_be_nonzero0, must_be_nonzero1);
7443 if (double_int_zero_p (mask))
7445 op = op0;
7446 break;
7448 mask = double_int_and_not (may_be_nonzero1, must_be_nonzero0);
7449 if (double_int_zero_p (mask))
7451 op = op1;
7452 break;
7454 break;
7455 case BIT_IOR_EXPR:
7456 mask = double_int_and_not (may_be_nonzero0, must_be_nonzero1);
7457 if (double_int_zero_p (mask))
7459 op = op1;
7460 break;
7462 mask = double_int_and_not (may_be_nonzero1, must_be_nonzero0);
7463 if (double_int_zero_p (mask))
7465 op = op0;
7466 break;
7468 break;
7469 default:
7470 gcc_unreachable ();
7473 if (op == NULL_TREE)
7474 return false;
7476 gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op, NULL);
7477 update_stmt (gsi_stmt (*gsi));
7478 return true;
7481 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
7482 a known value range VR.
7484 If there is one and only one value which will satisfy the
7485 conditional, then return that value. Else return NULL. */
7487 static tree
7488 test_for_singularity (enum tree_code cond_code, tree op0,
7489 tree op1, value_range_t *vr)
7491 tree min = NULL;
7492 tree max = NULL;
7494 /* Extract minimum/maximum values which satisfy the
7495 the conditional as it was written. */
7496 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
7498 /* This should not be negative infinity; there is no overflow
7499 here. */
7500 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
7502 max = op1;
7503 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
7505 tree one = build_int_cst (TREE_TYPE (op0), 1);
7506 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
7507 if (EXPR_P (max))
7508 TREE_NO_WARNING (max) = 1;
7511 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
7513 /* This should not be positive infinity; there is no overflow
7514 here. */
7515 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
7517 min = op1;
7518 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
7520 tree one = build_int_cst (TREE_TYPE (op0), 1);
7521 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
7522 if (EXPR_P (min))
7523 TREE_NO_WARNING (min) = 1;
7527 /* Now refine the minimum and maximum values using any
7528 value range information we have for op0. */
7529 if (min && max)
7531 if (compare_values (vr->min, min) == 1)
7532 min = vr->min;
7533 if (compare_values (vr->max, max) == -1)
7534 max = vr->max;
7536 /* If the new min/max values have converged to a single value,
7537 then there is only one value which can satisfy the condition,
7538 return that value. */
7539 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
7540 return min;
7542 return NULL;
7545 /* Simplify a conditional using a relational operator to an equality
7546 test if the range information indicates only one value can satisfy
7547 the original conditional. */
7549 static bool
7550 simplify_cond_using_ranges (gimple stmt)
7552 tree op0 = gimple_cond_lhs (stmt);
7553 tree op1 = gimple_cond_rhs (stmt);
7554 enum tree_code cond_code = gimple_cond_code (stmt);
7556 if (cond_code != NE_EXPR
7557 && cond_code != EQ_EXPR
7558 && TREE_CODE (op0) == SSA_NAME
7559 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7560 && is_gimple_min_invariant (op1))
7562 value_range_t *vr = get_value_range (op0);
7564 /* If we have range information for OP0, then we might be
7565 able to simplify this conditional. */
7566 if (vr->type == VR_RANGE)
7568 tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
7570 if (new_tree)
7572 if (dump_file)
7574 fprintf (dump_file, "Simplified relational ");
7575 print_gimple_stmt (dump_file, stmt, 0, 0);
7576 fprintf (dump_file, " into ");
7579 gimple_cond_set_code (stmt, EQ_EXPR);
7580 gimple_cond_set_lhs (stmt, op0);
7581 gimple_cond_set_rhs (stmt, new_tree);
7583 update_stmt (stmt);
7585 if (dump_file)
7587 print_gimple_stmt (dump_file, stmt, 0, 0);
7588 fprintf (dump_file, "\n");
7591 return true;
7594 /* Try again after inverting the condition. We only deal
7595 with integral types here, so no need to worry about
7596 issues with inverting FP comparisons. */
7597 cond_code = invert_tree_comparison (cond_code, false);
7598 new_tree = test_for_singularity (cond_code, op0, op1, vr);
7600 if (new_tree)
7602 if (dump_file)
7604 fprintf (dump_file, "Simplified relational ");
7605 print_gimple_stmt (dump_file, stmt, 0, 0);
7606 fprintf (dump_file, " into ");
7609 gimple_cond_set_code (stmt, NE_EXPR);
7610 gimple_cond_set_lhs (stmt, op0);
7611 gimple_cond_set_rhs (stmt, new_tree);
7613 update_stmt (stmt);
7615 if (dump_file)
7617 print_gimple_stmt (dump_file, stmt, 0, 0);
7618 fprintf (dump_file, "\n");
7621 return true;
7626 return false;
7629 /* Simplify a switch statement using the value range of the switch
7630 argument. */
7632 static bool
7633 simplify_switch_using_ranges (gimple stmt)
7635 tree op = gimple_switch_index (stmt);
7636 value_range_t *vr;
7637 bool take_default;
7638 edge e;
7639 edge_iterator ei;
7640 size_t i = 0, j = 0, n, n2;
7641 tree vec2;
7642 switch_update su;
7644 if (TREE_CODE (op) == SSA_NAME)
7646 vr = get_value_range (op);
7648 /* We can only handle integer ranges. */
7649 if (vr->type != VR_RANGE
7650 || symbolic_range_p (vr))
7651 return false;
7653 /* Find case label for min/max of the value range. */
7654 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
7656 else if (TREE_CODE (op) == INTEGER_CST)
7658 take_default = !find_case_label_index (stmt, 1, op, &i);
7659 if (take_default)
7661 i = 1;
7662 j = 0;
7664 else
7666 j = i;
7669 else
7670 return false;
7672 n = gimple_switch_num_labels (stmt);
7674 /* Bail out if this is just all edges taken. */
7675 if (i == 1
7676 && j == n - 1
7677 && take_default)
7678 return false;
7680 /* Build a new vector of taken case labels. */
7681 vec2 = make_tree_vec (j - i + 1 + (int)take_default);
7682 n2 = 0;
7684 /* Add the default edge, if necessary. */
7685 if (take_default)
7686 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
7688 for (; i <= j; ++i, ++n2)
7689 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
7691 /* Mark needed edges. */
7692 for (i = 0; i < n2; ++i)
7694 e = find_edge (gimple_bb (stmt),
7695 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
7696 e->aux = (void *)-1;
7699 /* Queue not needed edges for later removal. */
7700 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
7702 if (e->aux == (void *)-1)
7704 e->aux = NULL;
7705 continue;
7708 if (dump_file && (dump_flags & TDF_DETAILS))
7710 fprintf (dump_file, "removing unreachable case label\n");
7712 VEC_safe_push (edge, heap, to_remove_edges, e);
7713 e->flags &= ~EDGE_EXECUTABLE;
7716 /* And queue an update for the stmt. */
7717 su.stmt = stmt;
7718 su.vec = vec2;
7719 VEC_safe_push (switch_update, heap, to_update_switch_stmts, &su);
7720 return false;
7723 /* Simplify an integral conversion from an SSA name in STMT. */
7725 static bool
7726 simplify_conversion_using_ranges (gimple stmt)
7728 tree innerop, middleop, finaltype;
7729 gimple def_stmt;
7730 value_range_t *innervr;
7731 bool inner_unsigned_p, middle_unsigned_p, final_unsigned_p;
7732 unsigned inner_prec, middle_prec, final_prec;
7733 double_int innermin, innermed, innermax, middlemin, middlemed, middlemax;
7735 finaltype = TREE_TYPE (gimple_assign_lhs (stmt));
7736 if (!INTEGRAL_TYPE_P (finaltype))
7737 return false;
7738 middleop = gimple_assign_rhs1 (stmt);
7739 def_stmt = SSA_NAME_DEF_STMT (middleop);
7740 if (!is_gimple_assign (def_stmt)
7741 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
7742 return false;
7743 innerop = gimple_assign_rhs1 (def_stmt);
7744 if (TREE_CODE (innerop) != SSA_NAME)
7745 return false;
7747 /* Get the value-range of the inner operand. */
7748 innervr = get_value_range (innerop);
7749 if (innervr->type != VR_RANGE
7750 || TREE_CODE (innervr->min) != INTEGER_CST
7751 || TREE_CODE (innervr->max) != INTEGER_CST)
7752 return false;
7754 /* Simulate the conversion chain to check if the result is equal if
7755 the middle conversion is removed. */
7756 innermin = tree_to_double_int (innervr->min);
7757 innermax = tree_to_double_int (innervr->max);
7759 inner_prec = TYPE_PRECISION (TREE_TYPE (innerop));
7760 middle_prec = TYPE_PRECISION (TREE_TYPE (middleop));
7761 final_prec = TYPE_PRECISION (finaltype);
7763 /* If the first conversion is not injective, the second must not
7764 be widening. */
7765 if (double_int_cmp (double_int_sub (innermax, innermin),
7766 double_int_mask (middle_prec), true) > 0
7767 && middle_prec < final_prec)
7768 return false;
7769 /* We also want a medium value so that we can track the effect that
7770 narrowing conversions with sign change have. */
7771 inner_unsigned_p = TYPE_UNSIGNED (TREE_TYPE (innerop));
7772 if (inner_unsigned_p)
7773 innermed = double_int_rshift (double_int_mask (inner_prec),
7774 1, inner_prec, false);
7775 else
7776 innermed = double_int_zero;
7777 if (double_int_cmp (innermin, innermed, inner_unsigned_p) >= 0
7778 || double_int_cmp (innermed, innermax, inner_unsigned_p) >= 0)
7779 innermed = innermin;
7781 middle_unsigned_p = TYPE_UNSIGNED (TREE_TYPE (middleop));
7782 middlemin = double_int_ext (innermin, middle_prec, middle_unsigned_p);
7783 middlemed = double_int_ext (innermed, middle_prec, middle_unsigned_p);
7784 middlemax = double_int_ext (innermax, middle_prec, middle_unsigned_p);
7786 /* Require that the final conversion applied to both the original
7787 and the intermediate range produces the same result. */
7788 final_unsigned_p = TYPE_UNSIGNED (finaltype);
7789 if (!double_int_equal_p (double_int_ext (middlemin,
7790 final_prec, final_unsigned_p),
7791 double_int_ext (innermin,
7792 final_prec, final_unsigned_p))
7793 || !double_int_equal_p (double_int_ext (middlemed,
7794 final_prec, final_unsigned_p),
7795 double_int_ext (innermed,
7796 final_prec, final_unsigned_p))
7797 || !double_int_equal_p (double_int_ext (middlemax,
7798 final_prec, final_unsigned_p),
7799 double_int_ext (innermax,
7800 final_prec, final_unsigned_p)))
7801 return false;
7803 gimple_assign_set_rhs1 (stmt, innerop);
7804 update_stmt (stmt);
7805 return true;
7808 /* Return whether the value range *VR fits in an integer type specified
7809 by PRECISION and UNSIGNED_P. */
7811 static bool
7812 range_fits_type_p (value_range_t *vr, unsigned precision, bool unsigned_p)
7814 tree src_type;
7815 unsigned src_precision;
7816 double_int tem;
7818 /* We can only handle integral and pointer types. */
7819 src_type = TREE_TYPE (vr->min);
7820 if (!INTEGRAL_TYPE_P (src_type)
7821 && !POINTER_TYPE_P (src_type))
7822 return false;
7824 /* An extension is always fine, so is an identity transform. */
7825 src_precision = TYPE_PRECISION (TREE_TYPE (vr->min));
7826 if (src_precision < precision
7827 || (src_precision == precision
7828 && TYPE_UNSIGNED (src_type) == unsigned_p))
7829 return true;
7831 /* Now we can only handle ranges with constant bounds. */
7832 if (vr->type != VR_RANGE
7833 || TREE_CODE (vr->min) != INTEGER_CST
7834 || TREE_CODE (vr->max) != INTEGER_CST)
7835 return false;
7837 /* For precision-preserving sign-changes the MSB of the double-int
7838 has to be clear. */
7839 if (src_precision == precision
7840 && (TREE_INT_CST_HIGH (vr->min) | TREE_INT_CST_HIGH (vr->max)) < 0)
7841 return false;
7843 /* Then we can perform the conversion on both ends and compare
7844 the result for equality. */
7845 tem = double_int_ext (tree_to_double_int (vr->min), precision, unsigned_p);
7846 if (!double_int_equal_p (tree_to_double_int (vr->min), tem))
7847 return false;
7848 tem = double_int_ext (tree_to_double_int (vr->max), precision, unsigned_p);
7849 if (!double_int_equal_p (tree_to_double_int (vr->max), tem))
7850 return false;
7852 return true;
7855 /* Simplify a conversion from integral SSA name to float in STMT. */
7857 static bool
7858 simplify_float_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
7860 tree rhs1 = gimple_assign_rhs1 (stmt);
7861 value_range_t *vr = get_value_range (rhs1);
7862 enum machine_mode fltmode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)));
7863 enum machine_mode mode;
7864 tree tem;
7865 gimple conv;
7867 /* We can only handle constant ranges. */
7868 if (vr->type != VR_RANGE
7869 || TREE_CODE (vr->min) != INTEGER_CST
7870 || TREE_CODE (vr->max) != INTEGER_CST)
7871 return false;
7873 /* First check if we can use a signed type in place of an unsigned. */
7874 if (TYPE_UNSIGNED (TREE_TYPE (rhs1))
7875 && (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)), 0)
7876 != CODE_FOR_nothing)
7877 && range_fits_type_p (vr, GET_MODE_PRECISION
7878 (TYPE_MODE (TREE_TYPE (rhs1))), 0))
7879 mode = TYPE_MODE (TREE_TYPE (rhs1));
7880 /* If we can do the conversion in the current input mode do nothing. */
7881 else if (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)),
7882 TYPE_UNSIGNED (TREE_TYPE (rhs1))))
7883 return false;
7884 /* Otherwise search for a mode we can use, starting from the narrowest
7885 integer mode available. */
7886 else
7888 mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
7891 /* If we cannot do a signed conversion to float from mode
7892 or if the value-range does not fit in the signed type
7893 try with a wider mode. */
7894 if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing
7895 && range_fits_type_p (vr, GET_MODE_PRECISION (mode), 0))
7896 break;
7898 mode = GET_MODE_WIDER_MODE (mode);
7899 /* But do not widen the input. Instead leave that to the
7900 optabs expansion code. */
7901 if (GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1)))
7902 return false;
7904 while (mode != VOIDmode);
7905 if (mode == VOIDmode)
7906 return false;
7909 /* It works, insert a truncation or sign-change before the
7910 float conversion. */
7911 tem = create_tmp_var (build_nonstandard_integer_type
7912 (GET_MODE_PRECISION (mode), 0), NULL);
7913 conv = gimple_build_assign_with_ops (NOP_EXPR, tem, rhs1, NULL_TREE);
7914 tem = make_ssa_name (tem, conv);
7915 gimple_assign_set_lhs (conv, tem);
7916 gsi_insert_before (gsi, conv, GSI_SAME_STMT);
7917 gimple_assign_set_rhs1 (stmt, tem);
7918 update_stmt (stmt);
7920 return true;
7923 /* Simplify STMT using ranges if possible. */
7925 static bool
7926 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
7928 gimple stmt = gsi_stmt (*gsi);
7929 if (is_gimple_assign (stmt))
7931 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
7932 tree rhs1 = gimple_assign_rhs1 (stmt);
7934 switch (rhs_code)
7936 case EQ_EXPR:
7937 case NE_EXPR:
7938 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
7939 if the RHS is zero or one, and the LHS are known to be boolean
7940 values. */
7941 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
7942 return simplify_truth_ops_using_ranges (gsi, stmt);
7943 break;
7945 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
7946 and BIT_AND_EXPR respectively if the first operand is greater
7947 than zero and the second operand is an exact power of two. */
7948 case TRUNC_DIV_EXPR:
7949 case TRUNC_MOD_EXPR:
7950 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
7951 && integer_pow2p (gimple_assign_rhs2 (stmt)))
7952 return simplify_div_or_mod_using_ranges (stmt);
7953 break;
7955 /* Transform ABS (X) into X or -X as appropriate. */
7956 case ABS_EXPR:
7957 if (TREE_CODE (rhs1) == SSA_NAME
7958 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
7959 return simplify_abs_using_ranges (stmt);
7960 break;
7962 case BIT_AND_EXPR:
7963 case BIT_IOR_EXPR:
7964 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
7965 if all the bits being cleared are already cleared or
7966 all the bits being set are already set. */
7967 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
7968 return simplify_bit_ops_using_ranges (gsi, stmt);
7969 break;
7971 CASE_CONVERT:
7972 if (TREE_CODE (rhs1) == SSA_NAME
7973 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
7974 return simplify_conversion_using_ranges (stmt);
7975 break;
7977 case FLOAT_EXPR:
7978 if (TREE_CODE (rhs1) == SSA_NAME
7979 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
7980 return simplify_float_conversion_using_ranges (gsi, stmt);
7981 break;
7983 default:
7984 break;
7987 else if (gimple_code (stmt) == GIMPLE_COND)
7988 return simplify_cond_using_ranges (stmt);
7989 else if (gimple_code (stmt) == GIMPLE_SWITCH)
7990 return simplify_switch_using_ranges (stmt);
7992 return false;
7995 /* If the statement pointed by SI has a predicate whose value can be
7996 computed using the value range information computed by VRP, compute
7997 its value and return true. Otherwise, return false. */
7999 static bool
8000 fold_predicate_in (gimple_stmt_iterator *si)
8002 bool assignment_p = false;
8003 tree val;
8004 gimple stmt = gsi_stmt (*si);
8006 if (is_gimple_assign (stmt)
8007 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
8009 assignment_p = true;
8010 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
8011 gimple_assign_rhs1 (stmt),
8012 gimple_assign_rhs2 (stmt),
8013 stmt);
8015 else if (gimple_code (stmt) == GIMPLE_COND)
8016 val = vrp_evaluate_conditional (gimple_cond_code (stmt),
8017 gimple_cond_lhs (stmt),
8018 gimple_cond_rhs (stmt),
8019 stmt);
8020 else
8021 return false;
8023 if (val)
8025 if (assignment_p)
8026 val = fold_convert (gimple_expr_type (stmt), val);
8028 if (dump_file)
8030 fprintf (dump_file, "Folding predicate ");
8031 print_gimple_expr (dump_file, stmt, 0, 0);
8032 fprintf (dump_file, " to ");
8033 print_generic_expr (dump_file, val, 0);
8034 fprintf (dump_file, "\n");
8037 if (is_gimple_assign (stmt))
8038 gimple_assign_set_rhs_from_tree (si, val);
8039 else
8041 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
8042 if (integer_zerop (val))
8043 gimple_cond_make_false (stmt);
8044 else if (integer_onep (val))
8045 gimple_cond_make_true (stmt);
8046 else
8047 gcc_unreachable ();
8050 return true;
8053 return false;
8056 /* Callback for substitute_and_fold folding the stmt at *SI. */
8058 static bool
8059 vrp_fold_stmt (gimple_stmt_iterator *si)
8061 if (fold_predicate_in (si))
8062 return true;
8064 return simplify_stmt_using_ranges (si);
8067 /* Stack of dest,src equivalency pairs that need to be restored after
8068 each attempt to thread a block's incoming edge to an outgoing edge.
8070 A NULL entry is used to mark the end of pairs which need to be
8071 restored. */
8072 static VEC(tree,heap) *stack;
8074 /* A trivial wrapper so that we can present the generic jump threading
8075 code with a simple API for simplifying statements. STMT is the
8076 statement we want to simplify, WITHIN_STMT provides the location
8077 for any overflow warnings. */
8079 static tree
8080 simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
8082 /* We only use VRP information to simplify conditionals. This is
8083 overly conservative, but it's unclear if doing more would be
8084 worth the compile time cost. */
8085 if (gimple_code (stmt) != GIMPLE_COND)
8086 return NULL;
8088 return vrp_evaluate_conditional (gimple_cond_code (stmt),
8089 gimple_cond_lhs (stmt),
8090 gimple_cond_rhs (stmt), within_stmt);
8093 /* Blocks which have more than one predecessor and more than
8094 one successor present jump threading opportunities, i.e.,
8095 when the block is reached from a specific predecessor, we
8096 may be able to determine which of the outgoing edges will
8097 be traversed. When this optimization applies, we are able
8098 to avoid conditionals at runtime and we may expose secondary
8099 optimization opportunities.
8101 This routine is effectively a driver for the generic jump
8102 threading code. It basically just presents the generic code
8103 with edges that may be suitable for jump threading.
8105 Unlike DOM, we do not iterate VRP if jump threading was successful.
8106 While iterating may expose new opportunities for VRP, it is expected
8107 those opportunities would be very limited and the compile time cost
8108 to expose those opportunities would be significant.
8110 As jump threading opportunities are discovered, they are registered
8111 for later realization. */
8113 static void
8114 identify_jump_threads (void)
8116 basic_block bb;
8117 gimple dummy;
8118 int i;
8119 edge e;
8121 /* Ugh. When substituting values earlier in this pass we can
8122 wipe the dominance information. So rebuild the dominator
8123 information as we need it within the jump threading code. */
8124 calculate_dominance_info (CDI_DOMINATORS);
8126 /* We do not allow VRP information to be used for jump threading
8127 across a back edge in the CFG. Otherwise it becomes too
8128 difficult to avoid eliminating loop exit tests. Of course
8129 EDGE_DFS_BACK is not accurate at this time so we have to
8130 recompute it. */
8131 mark_dfs_back_edges ();
8133 /* Do not thread across edges we are about to remove. Just marking
8134 them as EDGE_DFS_BACK will do. */
8135 FOR_EACH_VEC_ELT (edge, to_remove_edges, i, e)
8136 e->flags |= EDGE_DFS_BACK;
8138 /* Allocate our unwinder stack to unwind any temporary equivalences
8139 that might be recorded. */
8140 stack = VEC_alloc (tree, heap, 20);
8142 /* To avoid lots of silly node creation, we create a single
8143 conditional and just modify it in-place when attempting to
8144 thread jumps. */
8145 dummy = gimple_build_cond (EQ_EXPR,
8146 integer_zero_node, integer_zero_node,
8147 NULL, NULL);
8149 /* Walk through all the blocks finding those which present a
8150 potential jump threading opportunity. We could set this up
8151 as a dominator walker and record data during the walk, but
8152 I doubt it's worth the effort for the classes of jump
8153 threading opportunities we are trying to identify at this
8154 point in compilation. */
8155 FOR_EACH_BB (bb)
8157 gimple last;
8159 /* If the generic jump threading code does not find this block
8160 interesting, then there is nothing to do. */
8161 if (! potentially_threadable_block (bb))
8162 continue;
8164 /* We only care about blocks ending in a COND_EXPR. While there
8165 may be some value in handling SWITCH_EXPR here, I doubt it's
8166 terribly important. */
8167 last = gsi_stmt (gsi_last_bb (bb));
8169 /* We're basically looking for a switch or any kind of conditional with
8170 integral or pointer type arguments. Note the type of the second
8171 argument will be the same as the first argument, so no need to
8172 check it explicitly. */
8173 if (gimple_code (last) == GIMPLE_SWITCH
8174 || (gimple_code (last) == GIMPLE_COND
8175 && TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
8176 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
8177 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last))))
8178 && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
8179 || is_gimple_min_invariant (gimple_cond_rhs (last)))))
8181 edge_iterator ei;
8183 /* We've got a block with multiple predecessors and multiple
8184 successors which also ends in a suitable conditional or
8185 switch statement. For each predecessor, see if we can thread
8186 it to a specific successor. */
8187 FOR_EACH_EDGE (e, ei, bb->preds)
8189 /* Do not thread across back edges or abnormal edges
8190 in the CFG. */
8191 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
8192 continue;
8194 thread_across_edge (dummy, e, true, &stack,
8195 simplify_stmt_for_jump_threading);
8200 /* We do not actually update the CFG or SSA graphs at this point as
8201 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
8202 handle ASSERT_EXPRs gracefully. */
8205 /* We identified all the jump threading opportunities earlier, but could
8206 not transform the CFG at that time. This routine transforms the
8207 CFG and arranges for the dominator tree to be rebuilt if necessary.
8209 Note the SSA graph update will occur during the normal TODO
8210 processing by the pass manager. */
8211 static void
8212 finalize_jump_threads (void)
8214 thread_through_all_blocks (false);
8215 VEC_free (tree, heap, stack);
8219 /* Traverse all the blocks folding conditionals with known ranges. */
8221 static void
8222 vrp_finalize (void)
8224 size_t i;
8226 values_propagated = true;
8228 if (dump_file)
8230 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
8231 dump_all_value_ranges (dump_file);
8232 fprintf (dump_file, "\n");
8235 substitute_and_fold (op_with_constant_singleton_value_range,
8236 vrp_fold_stmt, false);
8238 if (warn_array_bounds)
8239 check_all_array_refs ();
8241 /* We must identify jump threading opportunities before we release
8242 the datastructures built by VRP. */
8243 identify_jump_threads ();
8245 /* Free allocated memory. */
8246 for (i = 0; i < num_vr_values; i++)
8247 if (vr_value[i])
8249 BITMAP_FREE (vr_value[i]->equiv);
8250 free (vr_value[i]);
8253 free (vr_value);
8254 free (vr_phi_edge_counts);
8256 /* So that we can distinguish between VRP data being available
8257 and not available. */
8258 vr_value = NULL;
8259 vr_phi_edge_counts = NULL;
8263 /* Main entry point to VRP (Value Range Propagation). This pass is
8264 loosely based on J. R. C. Patterson, ``Accurate Static Branch
8265 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
8266 Programming Language Design and Implementation, pp. 67-78, 1995.
8267 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
8269 This is essentially an SSA-CCP pass modified to deal with ranges
8270 instead of constants.
8272 While propagating ranges, we may find that two or more SSA name
8273 have equivalent, though distinct ranges. For instance,
8275 1 x_9 = p_3->a;
8276 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
8277 3 if (p_4 == q_2)
8278 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
8279 5 endif
8280 6 if (q_2)
8282 In the code above, pointer p_5 has range [q_2, q_2], but from the
8283 code we can also determine that p_5 cannot be NULL and, if q_2 had
8284 a non-varying range, p_5's range should also be compatible with it.
8286 These equivalences are created by two expressions: ASSERT_EXPR and
8287 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
8288 result of another assertion, then we can use the fact that p_5 and
8289 p_4 are equivalent when evaluating p_5's range.
8291 Together with value ranges, we also propagate these equivalences
8292 between names so that we can take advantage of information from
8293 multiple ranges when doing final replacement. Note that this
8294 equivalency relation is transitive but not symmetric.
8296 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
8297 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
8298 in contexts where that assertion does not hold (e.g., in line 6).
8300 TODO, the main difference between this pass and Patterson's is that
8301 we do not propagate edge probabilities. We only compute whether
8302 edges can be taken or not. That is, instead of having a spectrum
8303 of jump probabilities between 0 and 1, we only deal with 0, 1 and
8304 DON'T KNOW. In the future, it may be worthwhile to propagate
8305 probabilities to aid branch prediction. */
8307 static unsigned int
8308 execute_vrp (void)
8310 int i;
8311 edge e;
8312 switch_update *su;
8314 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
8315 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
8316 scev_initialize ();
8318 insert_range_assertions ();
8320 to_remove_edges = VEC_alloc (edge, heap, 10);
8321 to_update_switch_stmts = VEC_alloc (switch_update, heap, 5);
8322 threadedge_initialize_values ();
8324 vrp_initialize ();
8325 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
8326 vrp_finalize ();
8328 free_numbers_of_iterations_estimates ();
8330 /* ASSERT_EXPRs must be removed before finalizing jump threads
8331 as finalizing jump threads calls the CFG cleanup code which
8332 does not properly handle ASSERT_EXPRs. */
8333 remove_range_assertions ();
8335 /* If we exposed any new variables, go ahead and put them into
8336 SSA form now, before we handle jump threading. This simplifies
8337 interactions between rewriting of _DECL nodes into SSA form
8338 and rewriting SSA_NAME nodes into SSA form after block
8339 duplication and CFG manipulation. */
8340 update_ssa (TODO_update_ssa);
8342 finalize_jump_threads ();
8344 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
8345 CFG in a broken state and requires a cfg_cleanup run. */
8346 FOR_EACH_VEC_ELT (edge, to_remove_edges, i, e)
8347 remove_edge (e);
8348 /* Update SWITCH_EXPR case label vector. */
8349 FOR_EACH_VEC_ELT (switch_update, to_update_switch_stmts, i, su)
8351 size_t j;
8352 size_t n = TREE_VEC_LENGTH (su->vec);
8353 tree label;
8354 gimple_switch_set_num_labels (su->stmt, n);
8355 for (j = 0; j < n; j++)
8356 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
8357 /* As we may have replaced the default label with a regular one
8358 make sure to make it a real default label again. This ensures
8359 optimal expansion. */
8360 label = gimple_switch_default_label (su->stmt);
8361 CASE_LOW (label) = NULL_TREE;
8362 CASE_HIGH (label) = NULL_TREE;
8365 if (VEC_length (edge, to_remove_edges) > 0)
8366 free_dominance_info (CDI_DOMINATORS);
8368 VEC_free (edge, heap, to_remove_edges);
8369 VEC_free (switch_update, heap, to_update_switch_stmts);
8370 threadedge_finalize_values ();
8372 scev_finalize ();
8373 loop_optimizer_finalize ();
8374 return 0;
8377 static bool
8378 gate_vrp (void)
8380 return flag_tree_vrp != 0;
8383 struct gimple_opt_pass pass_vrp =
8386 GIMPLE_PASS,
8387 "vrp", /* name */
8388 gate_vrp, /* gate */
8389 execute_vrp, /* execute */
8390 NULL, /* sub */
8391 NULL, /* next */
8392 0, /* static_pass_number */
8393 TV_TREE_VRP, /* tv_id */
8394 PROP_ssa, /* properties_required */
8395 0, /* properties_provided */
8396 0, /* properties_destroyed */
8397 0, /* todo_flags_start */
8398 TODO_cleanup_cfg
8399 | TODO_update_ssa
8400 | TODO_verify_ssa
8401 | TODO_verify_flow
8402 | TODO_ggc_collect /* todo_flags_finish */