1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 /* This is the final pass of the compiler.
24 It looks at the rtl code for a function and outputs assembler code.
26 Call `final_start_function' to output the assembler code for function entry,
27 `final' to output assembler code for some RTL code,
28 `final_end_function' to output assembler code for function exit.
29 If a function is compiled in several pieces, each piece is
30 output separately with `final'.
32 Some optimizations are also done at this level.
33 Move instructions that were made unnecessary by good register allocation
34 are detected and omitted from the output. (Though most of these
35 are removed by the last jump pass.)
37 Instructions to set the condition codes are omitted when it can be
38 seen that the condition codes already had the desired values.
40 In some cases it is sufficient if the inherited condition codes
41 have related values, but this may require the following insn
42 (the one that tests the condition codes) to be modified.
44 The code for the function prologue and epilogue are generated
45 directly in assembler by the target functions function_prologue and
46 function_epilogue. Those instructions never exist as rtl. */
50 #include "coretypes.h"
57 #include "insn-config.h"
58 #include "insn-attr.h"
60 #include "conditions.h"
63 #include "hard-reg-set.h"
70 #include "basic-block.h"
74 #include "cfglayout.h"
75 #include "tree-pass.h"
82 #ifdef XCOFF_DEBUGGING_INFO
83 #include "xcoffout.h" /* Needed for external data
84 declarations for e.g. AIX 4.x. */
87 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
88 #include "dwarf2out.h"
91 #ifdef DBX_DEBUGGING_INFO
95 #ifdef SDB_DEBUGGING_INFO
99 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
100 null default for it to save conditionalization later. */
101 #ifndef CC_STATUS_INIT
102 #define CC_STATUS_INIT
105 /* How to start an assembler comment. */
106 #ifndef ASM_COMMENT_START
107 #define ASM_COMMENT_START ";#"
110 /* Is the given character a logical line separator for the assembler? */
111 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
112 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
115 #ifndef JUMP_TABLES_IN_TEXT_SECTION
116 #define JUMP_TABLES_IN_TEXT_SECTION 0
119 /* Bitflags used by final_scan_insn. */
122 #define SEEN_EMITTED 4
124 /* Last insn processed by final_scan_insn. */
125 static rtx debug_insn
;
126 rtx current_output_insn
;
128 /* Line number of last NOTE. */
129 static int last_linenum
;
131 /* Highest line number in current block. */
132 static int high_block_linenum
;
134 /* Likewise for function. */
135 static int high_function_linenum
;
137 /* Filename of last NOTE. */
138 static const char *last_filename
;
140 /* Whether to force emission of a line note before the next insn. */
141 static bool force_source_line
= false;
143 extern const int length_unit_log
; /* This is defined in insn-attrtab.c. */
145 /* Nonzero while outputting an `asm' with operands.
146 This means that inconsistencies are the user's fault, so don't die.
147 The precise value is the insn being output, to pass to error_for_asm. */
148 rtx this_is_asm_operands
;
150 /* Number of operands of this insn, for an `asm' with operands. */
151 static unsigned int insn_noperands
;
153 /* Compare optimization flag. */
155 static rtx last_ignored_compare
= 0;
157 /* Assign a unique number to each insn that is output.
158 This can be used to generate unique local labels. */
160 static int insn_counter
= 0;
163 /* This variable contains machine-dependent flags (defined in tm.h)
164 set and examined by output routines
165 that describe how to interpret the condition codes properly. */
169 /* During output of an insn, this contains a copy of cc_status
170 from before the insn. */
172 CC_STATUS cc_prev_status
;
175 /* Nonzero means current function must be given a frame pointer.
176 Initialized in function.c to 0. Set only in reload1.c as per
177 the needs of the function. */
179 int frame_pointer_needed
;
181 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
183 static int block_depth
;
185 /* Nonzero if have enabled APP processing of our assembler output. */
189 /* If we are outputting an insn sequence, this contains the sequence rtx.
194 #ifdef ASSEMBLER_DIALECT
196 /* Number of the assembler dialect to use, starting at 0. */
197 static int dialect_number
;
200 #ifdef HAVE_conditional_execution
201 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
202 rtx current_insn_predicate
;
205 #ifdef HAVE_ATTR_length
206 static int asm_insn_count (rtx
);
208 static void profile_function (FILE *);
209 static void profile_after_prologue (FILE *);
210 static bool notice_source_line (rtx
);
211 static rtx
walk_alter_subreg (rtx
*, bool *);
212 static void output_asm_name (void);
213 static void output_alternate_entry_point (FILE *, rtx
);
214 static tree
get_mem_expr_from_op (rtx
, int *);
215 static void output_asm_operand_names (rtx
*, int *, int);
216 static void output_operand (rtx
, int);
217 #ifdef LEAF_REGISTERS
218 static void leaf_renumber_regs (rtx
);
221 static int alter_cond (rtx
);
223 #ifndef ADDR_VEC_ALIGN
224 static int final_addr_vec_align (rtx
);
226 #ifdef HAVE_ATTR_length
227 static int align_fuzz (rtx
, rtx
, int, unsigned);
230 /* Initialize data in final at the beginning of a compilation. */
233 init_final (const char *filename ATTRIBUTE_UNUSED
)
238 #ifdef ASSEMBLER_DIALECT
239 dialect_number
= ASSEMBLER_DIALECT
;
243 /* Default target function prologue and epilogue assembler output.
245 If not overridden for epilogue code, then the function body itself
246 contains return instructions wherever needed. */
248 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED
,
249 HOST_WIDE_INT size ATTRIBUTE_UNUSED
)
253 /* Default target hook that outputs nothing to a stream. */
255 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED
)
259 /* Enable APP processing of subsequent output.
260 Used before the output from an `asm' statement. */
267 fputs (ASM_APP_ON
, asm_out_file
);
272 /* Disable APP processing of subsequent output.
273 Called from varasm.c before most kinds of output. */
280 fputs (ASM_APP_OFF
, asm_out_file
);
285 /* Return the number of slots filled in the current
286 delayed branch sequence (we don't count the insn needing the
287 delay slot). Zero if not in a delayed branch sequence. */
291 dbr_sequence_length (void)
293 if (final_sequence
!= 0)
294 return XVECLEN (final_sequence
, 0) - 1;
300 /* The next two pages contain routines used to compute the length of an insn
301 and to shorten branches. */
303 /* Arrays for insn lengths, and addresses. The latter is referenced by
304 `insn_current_length'. */
306 static int *insn_lengths
;
308 VEC(int,heap
) *insn_addresses_
;
310 /* Max uid for which the above arrays are valid. */
311 static int insn_lengths_max_uid
;
313 /* Address of insn being processed. Used by `insn_current_length'. */
314 int insn_current_address
;
316 /* Address of insn being processed in previous iteration. */
317 int insn_last_address
;
319 /* known invariant alignment of insn being processed. */
320 int insn_current_align
;
322 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
323 gives the next following alignment insn that increases the known
324 alignment, or NULL_RTX if there is no such insn.
325 For any alignment obtained this way, we can again index uid_align with
326 its uid to obtain the next following align that in turn increases the
327 alignment, till we reach NULL_RTX; the sequence obtained this way
328 for each insn we'll call the alignment chain of this insn in the following
331 struct label_alignment
337 static rtx
*uid_align
;
338 static int *uid_shuid
;
339 static struct label_alignment
*label_align
;
341 /* Indicate that branch shortening hasn't yet been done. */
344 init_insn_lengths (void)
355 insn_lengths_max_uid
= 0;
357 #ifdef HAVE_ATTR_length
358 INSN_ADDRESSES_FREE ();
367 /* Obtain the current length of an insn. If branch shortening has been done,
368 get its actual length. Otherwise, use FALLBACK_FN to calculate the
371 get_attr_length_1 (rtx insn ATTRIBUTE_UNUSED
,
372 int (*fallback_fn
) (rtx
) ATTRIBUTE_UNUSED
)
374 #ifdef HAVE_ATTR_length
379 if (insn_lengths_max_uid
> INSN_UID (insn
))
380 return insn_lengths
[INSN_UID (insn
)];
382 switch (GET_CODE (insn
))
390 length
= fallback_fn (insn
);
394 body
= PATTERN (insn
);
395 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
397 /* Alignment is machine-dependent and should be handled by
401 length
= fallback_fn (insn
);
405 body
= PATTERN (insn
);
406 if (GET_CODE (body
) == USE
|| GET_CODE (body
) == CLOBBER
)
409 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
410 length
= asm_insn_count (body
) * fallback_fn (insn
);
411 else if (GET_CODE (body
) == SEQUENCE
)
412 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
413 length
+= get_attr_length (XVECEXP (body
, 0, i
));
415 length
= fallback_fn (insn
);
422 #ifdef ADJUST_INSN_LENGTH
423 ADJUST_INSN_LENGTH (insn
, length
);
426 #else /* not HAVE_ATTR_length */
428 #define insn_default_length 0
429 #define insn_min_length 0
430 #endif /* not HAVE_ATTR_length */
433 /* Obtain the current length of an insn. If branch shortening has been done,
434 get its actual length. Otherwise, get its maximum length. */
436 get_attr_length (rtx insn
)
438 return get_attr_length_1 (insn
, insn_default_length
);
441 /* Obtain the current length of an insn. If branch shortening has been done,
442 get its actual length. Otherwise, get its minimum length. */
444 get_attr_min_length (rtx insn
)
446 return get_attr_length_1 (insn
, insn_min_length
);
449 /* Code to handle alignment inside shorten_branches. */
451 /* Here is an explanation how the algorithm in align_fuzz can give
454 Call a sequence of instructions beginning with alignment point X
455 and continuing until the next alignment point `block X'. When `X'
456 is used in an expression, it means the alignment value of the
459 Call the distance between the start of the first insn of block X, and
460 the end of the last insn of block X `IX', for the `inner size of X'.
461 This is clearly the sum of the instruction lengths.
463 Likewise with the next alignment-delimited block following X, which we
466 Call the distance between the start of the first insn of block X, and
467 the start of the first insn of block Y `OX', for the `outer size of X'.
469 The estimated padding is then OX - IX.
471 OX can be safely estimated as
476 OX = round_up(IX, X) + Y - X
478 Clearly est(IX) >= real(IX), because that only depends on the
479 instruction lengths, and those being overestimated is a given.
481 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
482 we needn't worry about that when thinking about OX.
484 When X >= Y, the alignment provided by Y adds no uncertainty factor
485 for branch ranges starting before X, so we can just round what we have.
486 But when X < Y, we don't know anything about the, so to speak,
487 `middle bits', so we have to assume the worst when aligning up from an
488 address mod X to one mod Y, which is Y - X. */
491 #define LABEL_ALIGN(LABEL) align_labels_log
494 #ifndef LABEL_ALIGN_MAX_SKIP
495 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
499 #define LOOP_ALIGN(LABEL) align_loops_log
502 #ifndef LOOP_ALIGN_MAX_SKIP
503 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
506 #ifndef LABEL_ALIGN_AFTER_BARRIER
507 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
510 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
511 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
515 #define JUMP_ALIGN(LABEL) align_jumps_log
518 #ifndef JUMP_ALIGN_MAX_SKIP
519 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
522 #ifndef ADDR_VEC_ALIGN
524 final_addr_vec_align (rtx addr_vec
)
526 int align
= GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec
)));
528 if (align
> BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
)
529 align
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
530 return exact_log2 (align
);
534 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
537 #ifndef INSN_LENGTH_ALIGNMENT
538 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
541 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
543 static int min_labelno
, max_labelno
;
545 #define LABEL_TO_ALIGNMENT(LABEL) \
546 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
548 #define LABEL_TO_MAX_SKIP(LABEL) \
549 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
551 /* For the benefit of port specific code do this also as a function. */
554 label_to_alignment (rtx label
)
556 return LABEL_TO_ALIGNMENT (label
);
559 #ifdef HAVE_ATTR_length
560 /* The differences in addresses
561 between a branch and its target might grow or shrink depending on
562 the alignment the start insn of the range (the branch for a forward
563 branch or the label for a backward branch) starts out on; if these
564 differences are used naively, they can even oscillate infinitely.
565 We therefore want to compute a 'worst case' address difference that
566 is independent of the alignment the start insn of the range end
567 up on, and that is at least as large as the actual difference.
568 The function align_fuzz calculates the amount we have to add to the
569 naively computed difference, by traversing the part of the alignment
570 chain of the start insn of the range that is in front of the end insn
571 of the range, and considering for each alignment the maximum amount
572 that it might contribute to a size increase.
574 For casesi tables, we also want to know worst case minimum amounts of
575 address difference, in case a machine description wants to introduce
576 some common offset that is added to all offsets in a table.
577 For this purpose, align_fuzz with a growth argument of 0 computes the
578 appropriate adjustment. */
580 /* Compute the maximum delta by which the difference of the addresses of
581 START and END might grow / shrink due to a different address for start
582 which changes the size of alignment insns between START and END.
583 KNOWN_ALIGN_LOG is the alignment known for START.
584 GROWTH should be ~0 if the objective is to compute potential code size
585 increase, and 0 if the objective is to compute potential shrink.
586 The return value is undefined for any other value of GROWTH. */
589 align_fuzz (rtx start
, rtx end
, int known_align_log
, unsigned int growth
)
591 int uid
= INSN_UID (start
);
593 int known_align
= 1 << known_align_log
;
594 int end_shuid
= INSN_SHUID (end
);
597 for (align_label
= uid_align
[uid
]; align_label
; align_label
= uid_align
[uid
])
599 int align_addr
, new_align
;
601 uid
= INSN_UID (align_label
);
602 align_addr
= INSN_ADDRESSES (uid
) - insn_lengths
[uid
];
603 if (uid_shuid
[uid
] > end_shuid
)
605 known_align_log
= LABEL_TO_ALIGNMENT (align_label
);
606 new_align
= 1 << known_align_log
;
607 if (new_align
< known_align
)
609 fuzz
+= (-align_addr
^ growth
) & (new_align
- known_align
);
610 known_align
= new_align
;
615 /* Compute a worst-case reference address of a branch so that it
616 can be safely used in the presence of aligned labels. Since the
617 size of the branch itself is unknown, the size of the branch is
618 not included in the range. I.e. for a forward branch, the reference
619 address is the end address of the branch as known from the previous
620 branch shortening pass, minus a value to account for possible size
621 increase due to alignment. For a backward branch, it is the start
622 address of the branch as known from the current pass, plus a value
623 to account for possible size increase due to alignment.
624 NB.: Therefore, the maximum offset allowed for backward branches needs
625 to exclude the branch size. */
628 insn_current_reference_address (rtx branch
)
633 if (! INSN_ADDRESSES_SET_P ())
636 seq
= NEXT_INSN (PREV_INSN (branch
));
637 seq_uid
= INSN_UID (seq
);
638 if (!JUMP_P (branch
))
639 /* This can happen for example on the PA; the objective is to know the
640 offset to address something in front of the start of the function.
641 Thus, we can treat it like a backward branch.
642 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
643 any alignment we'd encounter, so we skip the call to align_fuzz. */
644 return insn_current_address
;
645 dest
= JUMP_LABEL (branch
);
647 /* BRANCH has no proper alignment chain set, so use SEQ.
648 BRANCH also has no INSN_SHUID. */
649 if (INSN_SHUID (seq
) < INSN_SHUID (dest
))
651 /* Forward branch. */
652 return (insn_last_address
+ insn_lengths
[seq_uid
]
653 - align_fuzz (seq
, dest
, length_unit_log
, ~0));
657 /* Backward branch. */
658 return (insn_current_address
659 + align_fuzz (dest
, seq
, length_unit_log
, ~0));
662 #endif /* HAVE_ATTR_length */
664 /* Compute branch alignments based on frequency information in the
668 compute_alignments (void)
670 int log
, max_skip
, max_log
;
679 max_labelno
= max_label_num ();
680 min_labelno
= get_first_label_num ();
681 label_align
= XCNEWVEC (struct label_alignment
, max_labelno
- min_labelno
+ 1);
683 /* If not optimizing or optimizing for size, don't assign any alignments. */
684 if (! optimize
|| optimize_size
)
689 rtx label
= BB_HEAD (bb
);
690 int fallthru_frequency
= 0, branch_frequency
= 0, has_fallthru
= 0;
695 || probably_never_executed_bb_p (bb
))
697 max_log
= LABEL_ALIGN (label
);
698 max_skip
= LABEL_ALIGN_MAX_SKIP
;
700 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
702 if (e
->flags
& EDGE_FALLTHRU
)
703 has_fallthru
= 1, fallthru_frequency
+= EDGE_FREQUENCY (e
);
705 branch_frequency
+= EDGE_FREQUENCY (e
);
708 /* There are two purposes to align block with no fallthru incoming edge:
709 1) to avoid fetch stalls when branch destination is near cache boundary
710 2) to improve cache efficiency in case the previous block is not executed
711 (so it does not need to be in the cache).
713 We to catch first case, we align frequently executed blocks.
714 To catch the second, we align blocks that are executed more frequently
715 than the predecessor and the predecessor is likely to not be executed
716 when function is called. */
719 && (branch_frequency
> BB_FREQ_MAX
/ 10
720 || (bb
->frequency
> bb
->prev_bb
->frequency
* 10
721 && (bb
->prev_bb
->frequency
722 <= ENTRY_BLOCK_PTR
->frequency
/ 2))))
724 log
= JUMP_ALIGN (label
);
728 max_skip
= JUMP_ALIGN_MAX_SKIP
;
731 /* In case block is frequent and reached mostly by non-fallthru edge,
732 align it. It is most likely a first block of loop. */
734 && maybe_hot_bb_p (bb
)
735 && branch_frequency
+ fallthru_frequency
> BB_FREQ_MAX
/ 10
736 && branch_frequency
> fallthru_frequency
* 2)
738 log
= LOOP_ALIGN (label
);
742 max_skip
= LOOP_ALIGN_MAX_SKIP
;
745 LABEL_TO_ALIGNMENT (label
) = max_log
;
746 LABEL_TO_MAX_SKIP (label
) = max_skip
;
751 struct tree_opt_pass pass_compute_alignments
=
755 compute_alignments
, /* execute */
758 0, /* static_pass_number */
760 0, /* properties_required */
761 0, /* properties_provided */
762 0, /* properties_destroyed */
763 0, /* todo_flags_start */
764 0, /* todo_flags_finish */
769 /* Make a pass over all insns and compute their actual lengths by shortening
770 any branches of variable length if possible. */
772 /* shorten_branches might be called multiple times: for example, the SH
773 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
774 In order to do this, it needs proper length information, which it obtains
775 by calling shorten_branches. This cannot be collapsed with
776 shorten_branches itself into a single pass unless we also want to integrate
777 reorg.c, since the branch splitting exposes new instructions with delay
781 shorten_branches (rtx first ATTRIBUTE_UNUSED
)
788 #ifdef HAVE_ATTR_length
789 #define MAX_CODE_ALIGN 16
791 int something_changed
= 1;
792 char *varying_length
;
795 rtx align_tab
[MAX_CODE_ALIGN
];
799 /* Compute maximum UID and allocate label_align / uid_shuid. */
800 max_uid
= get_max_uid ();
802 /* Free uid_shuid before reallocating it. */
805 uid_shuid
= XNEWVEC (int, max_uid
);
807 if (max_labelno
!= max_label_num ())
809 int old
= max_labelno
;
813 max_labelno
= max_label_num ();
815 n_labels
= max_labelno
- min_labelno
+ 1;
816 n_old_labels
= old
- min_labelno
+ 1;
818 label_align
= xrealloc (label_align
,
819 n_labels
* sizeof (struct label_alignment
));
821 /* Range of labels grows monotonically in the function. Failing here
822 means that the initialization of array got lost. */
823 gcc_assert (n_old_labels
<= n_labels
);
825 memset (label_align
+ n_old_labels
, 0,
826 (n_labels
- n_old_labels
) * sizeof (struct label_alignment
));
829 /* Initialize label_align and set up uid_shuid to be strictly
830 monotonically rising with insn order. */
831 /* We use max_log here to keep track of the maximum alignment we want to
832 impose on the next CODE_LABEL (or the current one if we are processing
833 the CODE_LABEL itself). */
838 for (insn
= get_insns (), i
= 1; insn
; insn
= NEXT_INSN (insn
))
842 INSN_SHUID (insn
) = i
++;
850 /* Merge in alignments computed by compute_alignments. */
851 log
= LABEL_TO_ALIGNMENT (insn
);
855 max_skip
= LABEL_TO_MAX_SKIP (insn
);
858 log
= LABEL_ALIGN (insn
);
862 max_skip
= LABEL_ALIGN_MAX_SKIP
;
864 next
= next_nonnote_insn (insn
);
865 /* ADDR_VECs only take room if read-only data goes into the text
867 if (JUMP_TABLES_IN_TEXT_SECTION
868 || readonly_data_section
== text_section
)
869 if (next
&& JUMP_P (next
))
871 rtx nextbody
= PATTERN (next
);
872 if (GET_CODE (nextbody
) == ADDR_VEC
873 || GET_CODE (nextbody
) == ADDR_DIFF_VEC
)
875 log
= ADDR_VEC_ALIGN (next
);
879 max_skip
= LABEL_ALIGN_MAX_SKIP
;
883 LABEL_TO_ALIGNMENT (insn
) = max_log
;
884 LABEL_TO_MAX_SKIP (insn
) = max_skip
;
888 else if (BARRIER_P (insn
))
892 for (label
= insn
; label
&& ! INSN_P (label
);
893 label
= NEXT_INSN (label
))
896 log
= LABEL_ALIGN_AFTER_BARRIER (insn
);
900 max_skip
= LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
;
906 #ifdef HAVE_ATTR_length
908 /* Allocate the rest of the arrays. */
909 insn_lengths
= XNEWVEC (int, max_uid
);
910 insn_lengths_max_uid
= max_uid
;
911 /* Syntax errors can lead to labels being outside of the main insn stream.
912 Initialize insn_addresses, so that we get reproducible results. */
913 INSN_ADDRESSES_ALLOC (max_uid
);
915 varying_length
= XCNEWVEC (char, max_uid
);
917 /* Initialize uid_align. We scan instructions
918 from end to start, and keep in align_tab[n] the last seen insn
919 that does an alignment of at least n+1, i.e. the successor
920 in the alignment chain for an insn that does / has a known
922 uid_align
= XCNEWVEC (rtx
, max_uid
);
924 for (i
= MAX_CODE_ALIGN
; --i
>= 0;)
925 align_tab
[i
] = NULL_RTX
;
926 seq
= get_last_insn ();
927 for (; seq
; seq
= PREV_INSN (seq
))
929 int uid
= INSN_UID (seq
);
931 log
= (LABEL_P (seq
) ? LABEL_TO_ALIGNMENT (seq
) : 0);
932 uid_align
[uid
] = align_tab
[0];
935 /* Found an alignment label. */
936 uid_align
[uid
] = align_tab
[log
];
937 for (i
= log
- 1; i
>= 0; i
--)
941 #ifdef CASE_VECTOR_SHORTEN_MODE
944 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
947 int min_shuid
= INSN_SHUID (get_insns ()) - 1;
948 int max_shuid
= INSN_SHUID (get_last_insn ()) + 1;
951 for (insn
= first
; insn
!= 0; insn
= NEXT_INSN (insn
))
953 rtx min_lab
= NULL_RTX
, max_lab
= NULL_RTX
, pat
;
954 int len
, i
, min
, max
, insn_shuid
;
956 addr_diff_vec_flags flags
;
959 || GET_CODE (PATTERN (insn
)) != ADDR_DIFF_VEC
)
961 pat
= PATTERN (insn
);
962 len
= XVECLEN (pat
, 1);
963 gcc_assert (len
> 0);
964 min_align
= MAX_CODE_ALIGN
;
965 for (min
= max_shuid
, max
= min_shuid
, i
= len
- 1; i
>= 0; i
--)
967 rtx lab
= XEXP (XVECEXP (pat
, 1, i
), 0);
968 int shuid
= INSN_SHUID (lab
);
979 if (min_align
> LABEL_TO_ALIGNMENT (lab
))
980 min_align
= LABEL_TO_ALIGNMENT (lab
);
982 XEXP (pat
, 2) = gen_rtx_LABEL_REF (Pmode
, min_lab
);
983 XEXP (pat
, 3) = gen_rtx_LABEL_REF (Pmode
, max_lab
);
984 insn_shuid
= INSN_SHUID (insn
);
985 rel
= INSN_SHUID (XEXP (XEXP (pat
, 0), 0));
986 memset (&flags
, 0, sizeof (flags
));
987 flags
.min_align
= min_align
;
988 flags
.base_after_vec
= rel
> insn_shuid
;
989 flags
.min_after_vec
= min
> insn_shuid
;
990 flags
.max_after_vec
= max
> insn_shuid
;
991 flags
.min_after_base
= min
> rel
;
992 flags
.max_after_base
= max
> rel
;
993 ADDR_DIFF_VEC_FLAGS (pat
) = flags
;
996 #endif /* CASE_VECTOR_SHORTEN_MODE */
998 /* Compute initial lengths, addresses, and varying flags for each insn. */
999 for (insn_current_address
= 0, insn
= first
;
1001 insn_current_address
+= insn_lengths
[uid
], insn
= NEXT_INSN (insn
))
1003 uid
= INSN_UID (insn
);
1005 insn_lengths
[uid
] = 0;
1009 int log
= LABEL_TO_ALIGNMENT (insn
);
1012 int align
= 1 << log
;
1013 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1014 insn_lengths
[uid
] = new_address
- insn_current_address
;
1018 INSN_ADDRESSES (uid
) = insn_current_address
+ insn_lengths
[uid
];
1020 if (NOTE_P (insn
) || BARRIER_P (insn
)
1023 if (INSN_DELETED_P (insn
))
1026 body
= PATTERN (insn
);
1027 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
1029 /* This only takes room if read-only data goes into the text
1031 if (JUMP_TABLES_IN_TEXT_SECTION
1032 || readonly_data_section
== text_section
)
1033 insn_lengths
[uid
] = (XVECLEN (body
,
1034 GET_CODE (body
) == ADDR_DIFF_VEC
)
1035 * GET_MODE_SIZE (GET_MODE (body
)));
1036 /* Alignment is handled by ADDR_VEC_ALIGN. */
1038 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
1039 insn_lengths
[uid
] = asm_insn_count (body
) * insn_default_length (insn
);
1040 else if (GET_CODE (body
) == SEQUENCE
)
1043 int const_delay_slots
;
1045 const_delay_slots
= const_num_delay_slots (XVECEXP (body
, 0, 0));
1047 const_delay_slots
= 0;
1049 /* Inside a delay slot sequence, we do not do any branch shortening
1050 if the shortening could change the number of delay slots
1052 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1054 rtx inner_insn
= XVECEXP (body
, 0, i
);
1055 int inner_uid
= INSN_UID (inner_insn
);
1058 if (GET_CODE (body
) == ASM_INPUT
1059 || asm_noperands (PATTERN (XVECEXP (body
, 0, i
))) >= 0)
1060 inner_length
= (asm_insn_count (PATTERN (inner_insn
))
1061 * insn_default_length (inner_insn
));
1063 inner_length
= insn_default_length (inner_insn
);
1065 insn_lengths
[inner_uid
] = inner_length
;
1066 if (const_delay_slots
)
1068 if ((varying_length
[inner_uid
]
1069 = insn_variable_length_p (inner_insn
)) != 0)
1070 varying_length
[uid
] = 1;
1071 INSN_ADDRESSES (inner_uid
) = (insn_current_address
1072 + insn_lengths
[uid
]);
1075 varying_length
[inner_uid
] = 0;
1076 insn_lengths
[uid
] += inner_length
;
1079 else if (GET_CODE (body
) != USE
&& GET_CODE (body
) != CLOBBER
)
1081 insn_lengths
[uid
] = insn_default_length (insn
);
1082 varying_length
[uid
] = insn_variable_length_p (insn
);
1085 /* If needed, do any adjustment. */
1086 #ifdef ADJUST_INSN_LENGTH
1087 ADJUST_INSN_LENGTH (insn
, insn_lengths
[uid
]);
1088 if (insn_lengths
[uid
] < 0)
1089 fatal_insn ("negative insn length", insn
);
1093 /* Now loop over all the insns finding varying length insns. For each,
1094 get the current insn length. If it has changed, reflect the change.
1095 When nothing changes for a full pass, we are done. */
1097 while (something_changed
)
1099 something_changed
= 0;
1100 insn_current_align
= MAX_CODE_ALIGN
- 1;
1101 for (insn_current_address
= 0, insn
= first
;
1103 insn
= NEXT_INSN (insn
))
1106 #ifdef ADJUST_INSN_LENGTH
1111 uid
= INSN_UID (insn
);
1115 int log
= LABEL_TO_ALIGNMENT (insn
);
1116 if (log
> insn_current_align
)
1118 int align
= 1 << log
;
1119 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1120 insn_lengths
[uid
] = new_address
- insn_current_address
;
1121 insn_current_align
= log
;
1122 insn_current_address
= new_address
;
1125 insn_lengths
[uid
] = 0;
1126 INSN_ADDRESSES (uid
) = insn_current_address
;
1130 length_align
= INSN_LENGTH_ALIGNMENT (insn
);
1131 if (length_align
< insn_current_align
)
1132 insn_current_align
= length_align
;
1134 insn_last_address
= INSN_ADDRESSES (uid
);
1135 INSN_ADDRESSES (uid
) = insn_current_address
;
1137 #ifdef CASE_VECTOR_SHORTEN_MODE
1138 if (optimize
&& JUMP_P (insn
)
1139 && GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
1141 rtx body
= PATTERN (insn
);
1142 int old_length
= insn_lengths
[uid
];
1143 rtx rel_lab
= XEXP (XEXP (body
, 0), 0);
1144 rtx min_lab
= XEXP (XEXP (body
, 2), 0);
1145 rtx max_lab
= XEXP (XEXP (body
, 3), 0);
1146 int rel_addr
= INSN_ADDRESSES (INSN_UID (rel_lab
));
1147 int min_addr
= INSN_ADDRESSES (INSN_UID (min_lab
));
1148 int max_addr
= INSN_ADDRESSES (INSN_UID (max_lab
));
1151 addr_diff_vec_flags flags
;
1153 /* Avoid automatic aggregate initialization. */
1154 flags
= ADDR_DIFF_VEC_FLAGS (body
);
1156 /* Try to find a known alignment for rel_lab. */
1157 for (prev
= rel_lab
;
1159 && ! insn_lengths
[INSN_UID (prev
)]
1160 && ! (varying_length
[INSN_UID (prev
)] & 1);
1161 prev
= PREV_INSN (prev
))
1162 if (varying_length
[INSN_UID (prev
)] & 2)
1164 rel_align
= LABEL_TO_ALIGNMENT (prev
);
1168 /* See the comment on addr_diff_vec_flags in rtl.h for the
1169 meaning of the flags values. base: REL_LAB vec: INSN */
1170 /* Anything after INSN has still addresses from the last
1171 pass; adjust these so that they reflect our current
1172 estimate for this pass. */
1173 if (flags
.base_after_vec
)
1174 rel_addr
+= insn_current_address
- insn_last_address
;
1175 if (flags
.min_after_vec
)
1176 min_addr
+= insn_current_address
- insn_last_address
;
1177 if (flags
.max_after_vec
)
1178 max_addr
+= insn_current_address
- insn_last_address
;
1179 /* We want to know the worst case, i.e. lowest possible value
1180 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1181 its offset is positive, and we have to be wary of code shrink;
1182 otherwise, it is negative, and we have to be vary of code
1184 if (flags
.min_after_base
)
1186 /* If INSN is between REL_LAB and MIN_LAB, the size
1187 changes we are about to make can change the alignment
1188 within the observed offset, therefore we have to break
1189 it up into two parts that are independent. */
1190 if (! flags
.base_after_vec
&& flags
.min_after_vec
)
1192 min_addr
-= align_fuzz (rel_lab
, insn
, rel_align
, 0);
1193 min_addr
-= align_fuzz (insn
, min_lab
, 0, 0);
1196 min_addr
-= align_fuzz (rel_lab
, min_lab
, rel_align
, 0);
1200 if (flags
.base_after_vec
&& ! flags
.min_after_vec
)
1202 min_addr
-= align_fuzz (min_lab
, insn
, 0, ~0);
1203 min_addr
-= align_fuzz (insn
, rel_lab
, 0, ~0);
1206 min_addr
-= align_fuzz (min_lab
, rel_lab
, 0, ~0);
1208 /* Likewise, determine the highest lowest possible value
1209 for the offset of MAX_LAB. */
1210 if (flags
.max_after_base
)
1212 if (! flags
.base_after_vec
&& flags
.max_after_vec
)
1214 max_addr
+= align_fuzz (rel_lab
, insn
, rel_align
, ~0);
1215 max_addr
+= align_fuzz (insn
, max_lab
, 0, ~0);
1218 max_addr
+= align_fuzz (rel_lab
, max_lab
, rel_align
, ~0);
1222 if (flags
.base_after_vec
&& ! flags
.max_after_vec
)
1224 max_addr
+= align_fuzz (max_lab
, insn
, 0, 0);
1225 max_addr
+= align_fuzz (insn
, rel_lab
, 0, 0);
1228 max_addr
+= align_fuzz (max_lab
, rel_lab
, 0, 0);
1230 PUT_MODE (body
, CASE_VECTOR_SHORTEN_MODE (min_addr
- rel_addr
,
1231 max_addr
- rel_addr
,
1233 if (JUMP_TABLES_IN_TEXT_SECTION
1234 || readonly_data_section
== text_section
)
1237 = (XVECLEN (body
, 1) * GET_MODE_SIZE (GET_MODE (body
)));
1238 insn_current_address
+= insn_lengths
[uid
];
1239 if (insn_lengths
[uid
] != old_length
)
1240 something_changed
= 1;
1245 #endif /* CASE_VECTOR_SHORTEN_MODE */
1247 if (! (varying_length
[uid
]))
1249 if (NONJUMP_INSN_P (insn
)
1250 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1254 body
= PATTERN (insn
);
1255 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1257 rtx inner_insn
= XVECEXP (body
, 0, i
);
1258 int inner_uid
= INSN_UID (inner_insn
);
1260 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1262 insn_current_address
+= insn_lengths
[inner_uid
];
1266 insn_current_address
+= insn_lengths
[uid
];
1271 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1275 body
= PATTERN (insn
);
1277 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1279 rtx inner_insn
= XVECEXP (body
, 0, i
);
1280 int inner_uid
= INSN_UID (inner_insn
);
1283 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1285 /* insn_current_length returns 0 for insns with a
1286 non-varying length. */
1287 if (! varying_length
[inner_uid
])
1288 inner_length
= insn_lengths
[inner_uid
];
1290 inner_length
= insn_current_length (inner_insn
);
1292 if (inner_length
!= insn_lengths
[inner_uid
])
1294 insn_lengths
[inner_uid
] = inner_length
;
1295 something_changed
= 1;
1297 insn_current_address
+= insn_lengths
[inner_uid
];
1298 new_length
+= inner_length
;
1303 new_length
= insn_current_length (insn
);
1304 insn_current_address
+= new_length
;
1307 #ifdef ADJUST_INSN_LENGTH
1308 /* If needed, do any adjustment. */
1309 tmp_length
= new_length
;
1310 ADJUST_INSN_LENGTH (insn
, new_length
);
1311 insn_current_address
+= (new_length
- tmp_length
);
1314 if (new_length
!= insn_lengths
[uid
])
1316 insn_lengths
[uid
] = new_length
;
1317 something_changed
= 1;
1320 /* For a non-optimizing compile, do only a single pass. */
1325 free (varying_length
);
1327 #endif /* HAVE_ATTR_length */
1330 #ifdef HAVE_ATTR_length
1331 /* Given the body of an INSN known to be generated by an ASM statement, return
1332 the number of machine instructions likely to be generated for this insn.
1333 This is used to compute its length. */
1336 asm_insn_count (rtx body
)
1338 const char *template;
1341 if (GET_CODE (body
) == ASM_INPUT
)
1342 template = XSTR (body
, 0);
1344 template = decode_asm_operands (body
, NULL
, NULL
, NULL
, NULL
, NULL
);
1346 for (; *template; template++)
1347 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1354 /* Output assembler code for the start of a function,
1355 and initialize some of the variables in this file
1356 for the new function. The label for the function and associated
1357 assembler pseudo-ops have already been output in `assemble_start_function'.
1359 FIRST is the first insn of the rtl for the function being compiled.
1360 FILE is the file to write assembler code to.
1361 OPTIMIZE is nonzero if we should eliminate redundant
1362 test and compare insns. */
1365 final_start_function (rtx first ATTRIBUTE_UNUSED
, FILE *file
,
1366 int optimize ATTRIBUTE_UNUSED
)
1370 this_is_asm_operands
= 0;
1372 last_filename
= locator_file (prologue_locator
);
1373 last_linenum
= locator_line (prologue_locator
);
1375 high_block_linenum
= high_function_linenum
= last_linenum
;
1377 (*debug_hooks
->begin_prologue
) (last_linenum
, last_filename
);
1379 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1380 if (write_symbols
!= DWARF2_DEBUG
&& write_symbols
!= VMS_AND_DWARF2_DEBUG
)
1381 dwarf2out_begin_prologue (0, NULL
);
1384 #ifdef LEAF_REG_REMAP
1385 if (current_function_uses_only_leaf_regs
)
1386 leaf_renumber_regs (first
);
1389 /* The Sun386i and perhaps other machines don't work right
1390 if the profiling code comes after the prologue. */
1391 #ifdef PROFILE_BEFORE_PROLOGUE
1392 if (current_function_profile
)
1393 profile_function (file
);
1394 #endif /* PROFILE_BEFORE_PROLOGUE */
1396 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1397 if (dwarf2out_do_frame ())
1398 dwarf2out_frame_debug (NULL_RTX
, false);
1401 /* If debugging, assign block numbers to all of the blocks in this
1405 reemit_insn_block_notes ();
1406 number_blocks (current_function_decl
);
1407 /* We never actually put out begin/end notes for the top-level
1408 block in the function. But, conceptually, that block is
1410 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl
)) = 1;
1413 /* First output the function prologue: code to set up the stack frame. */
1414 targetm
.asm_out
.function_prologue (file
, get_frame_size ());
1416 /* If the machine represents the prologue as RTL, the profiling code must
1417 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1418 #ifdef HAVE_prologue
1419 if (! HAVE_prologue
)
1421 profile_after_prologue (file
);
1425 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED
)
1427 #ifndef PROFILE_BEFORE_PROLOGUE
1428 if (current_function_profile
)
1429 profile_function (file
);
1430 #endif /* not PROFILE_BEFORE_PROLOGUE */
1434 profile_function (FILE *file ATTRIBUTE_UNUSED
)
1436 #ifndef NO_PROFILE_COUNTERS
1437 # define NO_PROFILE_COUNTERS 0
1439 #if defined(ASM_OUTPUT_REG_PUSH)
1440 int sval
= current_function_returns_struct
;
1441 rtx svrtx
= targetm
.calls
.struct_value_rtx (TREE_TYPE (current_function_decl
), 1);
1442 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1443 int cxt
= cfun
->static_chain_decl
!= NULL
;
1445 #endif /* ASM_OUTPUT_REG_PUSH */
1447 if (! NO_PROFILE_COUNTERS
)
1449 int align
= MIN (BIGGEST_ALIGNMENT
, LONG_TYPE_SIZE
);
1450 switch_to_section (data_section
);
1451 ASM_OUTPUT_ALIGN (file
, floor_log2 (align
/ BITS_PER_UNIT
));
1452 targetm
.asm_out
.internal_label (file
, "LP", current_function_funcdef_no
);
1453 assemble_integer (const0_rtx
, LONG_TYPE_SIZE
/ BITS_PER_UNIT
, align
, 1);
1456 switch_to_section (current_function_section ());
1458 #if defined(ASM_OUTPUT_REG_PUSH)
1459 if (sval
&& svrtx
!= NULL_RTX
&& REG_P (svrtx
))
1460 ASM_OUTPUT_REG_PUSH (file
, REGNO (svrtx
));
1463 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1465 ASM_OUTPUT_REG_PUSH (file
, STATIC_CHAIN_INCOMING_REGNUM
);
1467 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1470 ASM_OUTPUT_REG_PUSH (file
, STATIC_CHAIN_REGNUM
);
1475 FUNCTION_PROFILER (file
, current_function_funcdef_no
);
1477 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1479 ASM_OUTPUT_REG_POP (file
, STATIC_CHAIN_INCOMING_REGNUM
);
1481 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1484 ASM_OUTPUT_REG_POP (file
, STATIC_CHAIN_REGNUM
);
1489 #if defined(ASM_OUTPUT_REG_PUSH)
1490 if (sval
&& svrtx
!= NULL_RTX
&& REG_P (svrtx
))
1491 ASM_OUTPUT_REG_POP (file
, REGNO (svrtx
));
1495 /* Output assembler code for the end of a function.
1496 For clarity, args are same as those of `final_start_function'
1497 even though not all of them are needed. */
1500 final_end_function (void)
1504 (*debug_hooks
->end_function
) (high_function_linenum
);
1506 /* Finally, output the function epilogue:
1507 code to restore the stack frame and return to the caller. */
1508 targetm
.asm_out
.function_epilogue (asm_out_file
, get_frame_size ());
1510 /* And debug output. */
1511 (*debug_hooks
->end_epilogue
) (last_linenum
, last_filename
);
1513 #if defined (DWARF2_UNWIND_INFO)
1514 if (write_symbols
!= DWARF2_DEBUG
&& write_symbols
!= VMS_AND_DWARF2_DEBUG
1515 && dwarf2out_do_frame ())
1516 dwarf2out_end_epilogue (last_linenum
, last_filename
);
1520 /* Output assembler code for some insns: all or part of a function.
1521 For description of args, see `final_start_function', above. */
1524 final (rtx first
, FILE *file
, int optimize
)
1530 last_ignored_compare
= 0;
1532 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1534 if (INSN_UID (insn
) > max_uid
) /* Find largest UID. */
1535 max_uid
= INSN_UID (insn
);
1537 /* If CC tracking across branches is enabled, record the insn which
1538 jumps to each branch only reached from one place. */
1539 if (optimize
&& JUMP_P (insn
))
1541 rtx lab
= JUMP_LABEL (insn
);
1542 if (lab
&& LABEL_NUSES (lab
) == 1)
1544 LABEL_REFS (lab
) = insn
;
1554 /* Output the insns. */
1555 for (insn
= first
; insn
;)
1557 #ifdef HAVE_ATTR_length
1558 if ((unsigned) INSN_UID (insn
) >= INSN_ADDRESSES_SIZE ())
1560 /* This can be triggered by bugs elsewhere in the compiler if
1561 new insns are created after init_insn_lengths is called. */
1562 gcc_assert (NOTE_P (insn
));
1563 insn_current_address
= -1;
1566 insn_current_address
= INSN_ADDRESSES (INSN_UID (insn
));
1567 #endif /* HAVE_ATTR_length */
1569 insn
= final_scan_insn (insn
, file
, optimize
, 0, &seen
);
1574 get_insn_template (int code
, rtx insn
)
1576 switch (insn_data
[code
].output_format
)
1578 case INSN_OUTPUT_FORMAT_SINGLE
:
1579 return insn_data
[code
].output
.single
;
1580 case INSN_OUTPUT_FORMAT_MULTI
:
1581 return insn_data
[code
].output
.multi
[which_alternative
];
1582 case INSN_OUTPUT_FORMAT_FUNCTION
:
1584 return (*insn_data
[code
].output
.function
) (recog_data
.operand
, insn
);
1591 /* Emit the appropriate declaration for an alternate-entry-point
1592 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1593 LABEL_KIND != LABEL_NORMAL.
1595 The case fall-through in this function is intentional. */
1597 output_alternate_entry_point (FILE *file
, rtx insn
)
1599 const char *name
= LABEL_NAME (insn
);
1601 switch (LABEL_KIND (insn
))
1603 case LABEL_WEAK_ENTRY
:
1604 #ifdef ASM_WEAKEN_LABEL
1605 ASM_WEAKEN_LABEL (file
, name
);
1607 case LABEL_GLOBAL_ENTRY
:
1608 targetm
.asm_out
.globalize_label (file
, name
);
1609 case LABEL_STATIC_ENTRY
:
1610 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1611 ASM_OUTPUT_TYPE_DIRECTIVE (file
, name
, "function");
1613 ASM_OUTPUT_LABEL (file
, name
);
1622 /* The final scan for one insn, INSN.
1623 Args are same as in `final', except that INSN
1624 is the insn being scanned.
1625 Value returned is the next insn to be scanned.
1627 NOPEEPHOLES is the flag to disallow peephole processing (currently
1628 used for within delayed branch sequence output).
1630 SEEN is used to track the end of the prologue, for emitting
1631 debug information. We force the emission of a line note after
1632 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1633 at the beginning of the second basic block, whichever comes
1637 final_scan_insn (rtx insn
, FILE *file
, int optimize ATTRIBUTE_UNUSED
,
1638 int nopeepholes ATTRIBUTE_UNUSED
, int *seen
)
1647 /* Ignore deleted insns. These can occur when we split insns (due to a
1648 template of "#") while not optimizing. */
1649 if (INSN_DELETED_P (insn
))
1650 return NEXT_INSN (insn
);
1652 switch (GET_CODE (insn
))
1655 switch (NOTE_KIND (insn
))
1657 case NOTE_INSN_DELETED
:
1660 case NOTE_INSN_SWITCH_TEXT_SECTIONS
:
1661 in_cold_section_p
= !in_cold_section_p
;
1662 (*debug_hooks
->switch_text_section
) ();
1663 switch_to_section (current_function_section ());
1666 case NOTE_INSN_BASIC_BLOCK
:
1667 #ifdef TARGET_UNWIND_INFO
1668 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
1672 fprintf (asm_out_file
, "\t%s basic block %d\n",
1673 ASM_COMMENT_START
, NOTE_BASIC_BLOCK (insn
)->index
);
1675 if ((*seen
& (SEEN_EMITTED
| SEEN_BB
)) == SEEN_BB
)
1677 *seen
|= SEEN_EMITTED
;
1678 force_source_line
= true;
1685 case NOTE_INSN_EH_REGION_BEG
:
1686 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHB",
1687 NOTE_EH_HANDLER (insn
));
1690 case NOTE_INSN_EH_REGION_END
:
1691 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHE",
1692 NOTE_EH_HANDLER (insn
));
1695 case NOTE_INSN_PROLOGUE_END
:
1696 targetm
.asm_out
.function_end_prologue (file
);
1697 profile_after_prologue (file
);
1699 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
1701 *seen
|= SEEN_EMITTED
;
1702 force_source_line
= true;
1709 case NOTE_INSN_EPILOGUE_BEG
:
1710 targetm
.asm_out
.function_begin_epilogue (file
);
1713 case NOTE_INSN_FUNCTION_BEG
:
1715 (*debug_hooks
->end_prologue
) (last_linenum
, last_filename
);
1717 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
1719 *seen
|= SEEN_EMITTED
;
1720 force_source_line
= true;
1727 case NOTE_INSN_BLOCK_BEG
:
1728 if (debug_info_level
== DINFO_LEVEL_NORMAL
1729 || debug_info_level
== DINFO_LEVEL_VERBOSE
1730 || write_symbols
== DWARF2_DEBUG
1731 || write_symbols
== VMS_AND_DWARF2_DEBUG
1732 || write_symbols
== VMS_DEBUG
)
1734 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
1738 high_block_linenum
= last_linenum
;
1740 /* Output debugging info about the symbol-block beginning. */
1741 (*debug_hooks
->begin_block
) (last_linenum
, n
);
1743 /* Mark this block as output. */
1744 TREE_ASM_WRITTEN (NOTE_BLOCK (insn
)) = 1;
1748 case NOTE_INSN_BLOCK_END
:
1749 if (debug_info_level
== DINFO_LEVEL_NORMAL
1750 || debug_info_level
== DINFO_LEVEL_VERBOSE
1751 || write_symbols
== DWARF2_DEBUG
1752 || write_symbols
== VMS_AND_DWARF2_DEBUG
1753 || write_symbols
== VMS_DEBUG
)
1755 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
1759 /* End of a symbol-block. */
1761 gcc_assert (block_depth
>= 0);
1763 (*debug_hooks
->end_block
) (high_block_linenum
, n
);
1767 case NOTE_INSN_DELETED_LABEL
:
1768 /* Emit the label. We may have deleted the CODE_LABEL because
1769 the label could be proved to be unreachable, though still
1770 referenced (in the form of having its address taken. */
1771 ASM_OUTPUT_DEBUG_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
));
1774 case NOTE_INSN_VAR_LOCATION
:
1775 (*debug_hooks
->var_location
) (insn
);
1785 #if defined (DWARF2_UNWIND_INFO)
1786 if (dwarf2out_do_frame ())
1787 dwarf2out_frame_debug (insn
, false);
1792 /* The target port might emit labels in the output function for
1793 some insn, e.g. sh.c output_branchy_insn. */
1794 if (CODE_LABEL_NUMBER (insn
) <= max_labelno
)
1796 int align
= LABEL_TO_ALIGNMENT (insn
);
1797 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1798 int max_skip
= LABEL_TO_MAX_SKIP (insn
);
1801 if (align
&& NEXT_INSN (insn
))
1803 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1804 ASM_OUTPUT_MAX_SKIP_ALIGN (file
, align
, max_skip
);
1806 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1807 ASM_OUTPUT_ALIGN_WITH_NOP (file
, align
);
1809 ASM_OUTPUT_ALIGN (file
, align
);
1816 /* If this label is reached from only one place, set the condition
1817 codes from the instruction just before the branch. */
1819 /* Disabled because some insns set cc_status in the C output code
1820 and NOTICE_UPDATE_CC alone can set incorrect status. */
1821 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1823 rtx jump
= LABEL_REFS (insn
);
1824 rtx barrier
= prev_nonnote_insn (insn
);
1826 /* If the LABEL_REFS field of this label has been set to point
1827 at a branch, the predecessor of the branch is a regular
1828 insn, and that branch is the only way to reach this label,
1829 set the condition codes based on the branch and its
1831 if (barrier
&& BARRIER_P (barrier
)
1832 && jump
&& JUMP_P (jump
)
1833 && (prev
= prev_nonnote_insn (jump
))
1834 && NONJUMP_INSN_P (prev
))
1836 NOTICE_UPDATE_CC (PATTERN (prev
), prev
);
1837 NOTICE_UPDATE_CC (PATTERN (jump
), jump
);
1842 if (LABEL_NAME (insn
))
1843 (*debug_hooks
->label
) (insn
);
1847 fputs (ASM_APP_OFF
, file
);
1851 next
= next_nonnote_insn (insn
);
1852 if (next
!= 0 && JUMP_P (next
))
1854 rtx nextbody
= PATTERN (next
);
1856 /* If this label is followed by a jump-table,
1857 make sure we put the label in the read-only section. Also
1858 possibly write the label and jump table together. */
1860 if (GET_CODE (nextbody
) == ADDR_VEC
1861 || GET_CODE (nextbody
) == ADDR_DIFF_VEC
)
1863 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1864 /* In this case, the case vector is being moved by the
1865 target, so don't output the label at all. Leave that
1866 to the back end macros. */
1868 if (! JUMP_TABLES_IN_TEXT_SECTION
)
1872 switch_to_section (targetm
.asm_out
.function_rodata_section
1873 (current_function_decl
));
1875 #ifdef ADDR_VEC_ALIGN
1876 log_align
= ADDR_VEC_ALIGN (next
);
1878 log_align
= exact_log2 (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
);
1880 ASM_OUTPUT_ALIGN (file
, log_align
);
1883 switch_to_section (current_function_section ());
1885 #ifdef ASM_OUTPUT_CASE_LABEL
1886 ASM_OUTPUT_CASE_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
),
1889 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
1895 if (LABEL_ALT_ENTRY_P (insn
))
1896 output_alternate_entry_point (file
, insn
);
1898 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
1903 rtx body
= PATTERN (insn
);
1904 int insn_code_number
;
1905 const char *template;
1907 #ifdef HAVE_conditional_execution
1908 /* Reset this early so it is correct for ASM statements. */
1909 current_insn_predicate
= NULL_RTX
;
1911 /* An INSN, JUMP_INSN or CALL_INSN.
1912 First check for special kinds that recog doesn't recognize. */
1914 if (GET_CODE (body
) == USE
/* These are just declarations. */
1915 || GET_CODE (body
) == CLOBBER
)
1920 /* If there is a REG_CC_SETTER note on this insn, it means that
1921 the setting of the condition code was done in the delay slot
1922 of the insn that branched here. So recover the cc status
1923 from the insn that set it. */
1925 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
1928 NOTICE_UPDATE_CC (PATTERN (XEXP (note
, 0)), XEXP (note
, 0));
1929 cc_prev_status
= cc_status
;
1934 /* Detect insns that are really jump-tables
1935 and output them as such. */
1937 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
1939 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
1943 if (! JUMP_TABLES_IN_TEXT_SECTION
)
1944 switch_to_section (targetm
.asm_out
.function_rodata_section
1945 (current_function_decl
));
1947 switch_to_section (current_function_section ());
1951 fputs (ASM_APP_OFF
, file
);
1955 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1956 if (GET_CODE (body
) == ADDR_VEC
)
1958 #ifdef ASM_OUTPUT_ADDR_VEC
1959 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn
), body
);
1966 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
1967 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn
), body
);
1973 vlen
= XVECLEN (body
, GET_CODE (body
) == ADDR_DIFF_VEC
);
1974 for (idx
= 0; idx
< vlen
; idx
++)
1976 if (GET_CODE (body
) == ADDR_VEC
)
1978 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
1979 ASM_OUTPUT_ADDR_VEC_ELT
1980 (file
, CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 0, idx
), 0)));
1987 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
1988 ASM_OUTPUT_ADDR_DIFF_ELT
1991 CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 1, idx
), 0)),
1992 CODE_LABEL_NUMBER (XEXP (XEXP (body
, 0), 0)));
1998 #ifdef ASM_OUTPUT_CASE_END
1999 ASM_OUTPUT_CASE_END (file
,
2000 CODE_LABEL_NUMBER (PREV_INSN (insn
)),
2005 switch_to_section (current_function_section ());
2009 /* Output this line note if it is the first or the last line
2011 if (notice_source_line (insn
))
2013 (*debug_hooks
->source_line
) (last_linenum
, last_filename
);
2016 if (GET_CODE (body
) == ASM_INPUT
)
2018 const char *string
= XSTR (body
, 0);
2020 /* There's no telling what that did to the condition codes. */
2029 fputs (ASM_APP_ON
, file
);
2032 #ifdef USE_MAPPED_LOCATION
2033 loc
= ASM_INPUT_SOURCE_LOCATION (body
);
2035 loc
.file
= ASM_INPUT_SOURCE_FILE (body
);
2036 loc
.line
= ASM_INPUT_SOURCE_LINE (body
);
2038 if (*loc
.file
&& loc
.line
)
2039 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2040 ASM_COMMENT_START
, loc
.line
, loc
.file
);
2041 fprintf (asm_out_file
, "\t%s\n", string
);
2042 #if HAVE_AS_LINE_ZERO
2043 if (*loc
.file
&& loc
.line
)
2044 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2050 /* Detect `asm' construct with operands. */
2051 if (asm_noperands (body
) >= 0)
2053 unsigned int noperands
= asm_noperands (body
);
2054 rtx
*ops
= alloca (noperands
* sizeof (rtx
));
2058 /* There's no telling what that did to the condition codes. */
2061 /* Get out the operand values. */
2062 string
= decode_asm_operands (body
, ops
, NULL
, NULL
, NULL
, &loc
);
2063 /* Inhibit dieing on what would otherwise be compiler bugs. */
2064 insn_noperands
= noperands
;
2065 this_is_asm_operands
= insn
;
2067 #ifdef FINAL_PRESCAN_INSN
2068 FINAL_PRESCAN_INSN (insn
, ops
, insn_noperands
);
2071 /* Output the insn using them. */
2076 fputs (ASM_APP_ON
, file
);
2079 if (loc
.file
&& loc
.line
)
2080 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2081 ASM_COMMENT_START
, loc
.line
, loc
.file
);
2082 output_asm_insn (string
, ops
);
2083 #if HAVE_AS_LINE_ZERO
2084 if (loc
.file
&& loc
.line
)
2085 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2089 this_is_asm_operands
= 0;
2095 fputs (ASM_APP_OFF
, file
);
2099 if (GET_CODE (body
) == SEQUENCE
)
2101 /* A delayed-branch sequence */
2104 final_sequence
= body
;
2106 /* Record the delay slots' frame information before the branch.
2107 This is needed for delayed calls: see execute_cfa_program(). */
2108 #if defined (DWARF2_UNWIND_INFO)
2109 if (dwarf2out_do_frame ())
2110 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
2111 dwarf2out_frame_debug (XVECEXP (body
, 0, i
), false);
2114 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2115 force the restoration of a comparison that was previously
2116 thought unnecessary. If that happens, cancel this sequence
2117 and cause that insn to be restored. */
2119 next
= final_scan_insn (XVECEXP (body
, 0, 0), file
, 0, 1, seen
);
2120 if (next
!= XVECEXP (body
, 0, 1))
2126 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
2128 rtx insn
= XVECEXP (body
, 0, i
);
2129 rtx next
= NEXT_INSN (insn
);
2130 /* We loop in case any instruction in a delay slot gets
2133 insn
= final_scan_insn (insn
, file
, 0, 1, seen
);
2134 while (insn
!= next
);
2136 #ifdef DBR_OUTPUT_SEQEND
2137 DBR_OUTPUT_SEQEND (file
);
2141 /* If the insn requiring the delay slot was a CALL_INSN, the
2142 insns in the delay slot are actually executed before the
2143 called function. Hence we don't preserve any CC-setting
2144 actions in these insns and the CC must be marked as being
2145 clobbered by the function. */
2146 if (CALL_P (XVECEXP (body
, 0, 0)))
2153 /* We have a real machine instruction as rtl. */
2155 body
= PATTERN (insn
);
2158 set
= single_set (insn
);
2160 /* Check for redundant test and compare instructions
2161 (when the condition codes are already set up as desired).
2162 This is done only when optimizing; if not optimizing,
2163 it should be possible for the user to alter a variable
2164 with the debugger in between statements
2165 and the next statement should reexamine the variable
2166 to compute the condition codes. */
2171 && GET_CODE (SET_DEST (set
)) == CC0
2172 && insn
!= last_ignored_compare
)
2174 if (GET_CODE (SET_SRC (set
)) == SUBREG
)
2175 SET_SRC (set
) = alter_subreg (&SET_SRC (set
));
2176 else if (GET_CODE (SET_SRC (set
)) == COMPARE
)
2178 if (GET_CODE (XEXP (SET_SRC (set
), 0)) == SUBREG
)
2179 XEXP (SET_SRC (set
), 0)
2180 = alter_subreg (&XEXP (SET_SRC (set
), 0));
2181 if (GET_CODE (XEXP (SET_SRC (set
), 1)) == SUBREG
)
2182 XEXP (SET_SRC (set
), 1)
2183 = alter_subreg (&XEXP (SET_SRC (set
), 1));
2185 if ((cc_status
.value1
!= 0
2186 && rtx_equal_p (SET_SRC (set
), cc_status
.value1
))
2187 || (cc_status
.value2
!= 0
2188 && rtx_equal_p (SET_SRC (set
), cc_status
.value2
)))
2190 /* Don't delete insn if it has an addressing side-effect. */
2191 if (! FIND_REG_INC_NOTE (insn
, NULL_RTX
)
2192 /* or if anything in it is volatile. */
2193 && ! volatile_refs_p (PATTERN (insn
)))
2195 /* We don't really delete the insn; just ignore it. */
2196 last_ignored_compare
= insn
;
2205 /* If this is a conditional branch, maybe modify it
2206 if the cc's are in a nonstandard state
2207 so that it accomplishes the same thing that it would
2208 do straightforwardly if the cc's were set up normally. */
2210 if (cc_status
.flags
!= 0
2212 && GET_CODE (body
) == SET
2213 && SET_DEST (body
) == pc_rtx
2214 && GET_CODE (SET_SRC (body
)) == IF_THEN_ELSE
2215 && COMPARISON_P (XEXP (SET_SRC (body
), 0))
2216 && XEXP (XEXP (SET_SRC (body
), 0), 0) == cc0_rtx
)
2218 /* This function may alter the contents of its argument
2219 and clear some of the cc_status.flags bits.
2220 It may also return 1 meaning condition now always true
2221 or -1 meaning condition now always false
2222 or 2 meaning condition nontrivial but altered. */
2223 int result
= alter_cond (XEXP (SET_SRC (body
), 0));
2224 /* If condition now has fixed value, replace the IF_THEN_ELSE
2225 with its then-operand or its else-operand. */
2227 SET_SRC (body
) = XEXP (SET_SRC (body
), 1);
2229 SET_SRC (body
) = XEXP (SET_SRC (body
), 2);
2231 /* The jump is now either unconditional or a no-op.
2232 If it has become a no-op, don't try to output it.
2233 (It would not be recognized.) */
2234 if (SET_SRC (body
) == pc_rtx
)
2239 else if (GET_CODE (SET_SRC (body
)) == RETURN
)
2240 /* Replace (set (pc) (return)) with (return). */
2241 PATTERN (insn
) = body
= SET_SRC (body
);
2243 /* Rerecognize the instruction if it has changed. */
2245 INSN_CODE (insn
) = -1;
2248 /* If this is a conditional trap, maybe modify it if the cc's
2249 are in a nonstandard state so that it accomplishes the same
2250 thing that it would do straightforwardly if the cc's were
2252 if (cc_status
.flags
!= 0
2253 && NONJUMP_INSN_P (insn
)
2254 && GET_CODE (body
) == TRAP_IF
2255 && COMPARISON_P (TRAP_CONDITION (body
))
2256 && XEXP (TRAP_CONDITION (body
), 0) == cc0_rtx
)
2258 /* This function may alter the contents of its argument
2259 and clear some of the cc_status.flags bits.
2260 It may also return 1 meaning condition now always true
2261 or -1 meaning condition now always false
2262 or 2 meaning condition nontrivial but altered. */
2263 int result
= alter_cond (TRAP_CONDITION (body
));
2265 /* If TRAP_CONDITION has become always false, delete the
2273 /* If TRAP_CONDITION has become always true, replace
2274 TRAP_CONDITION with const_true_rtx. */
2276 TRAP_CONDITION (body
) = const_true_rtx
;
2278 /* Rerecognize the instruction if it has changed. */
2280 INSN_CODE (insn
) = -1;
2283 /* If this is a conditional trap, maybe modify it if the cc's
2284 are in a nonstandard state so that it accomplishes the same
2285 thing that it would do straightforwardly if the cc's were
2287 if (cc_status
.flags
!= 0
2288 && NONJUMP_INSN_P (insn
)
2289 && GET_CODE (body
) == TRAP_IF
2290 && COMPARISON_P (TRAP_CONDITION (body
))
2291 && XEXP (TRAP_CONDITION (body
), 0) == cc0_rtx
)
2293 /* This function may alter the contents of its argument
2294 and clear some of the cc_status.flags bits.
2295 It may also return 1 meaning condition now always true
2296 or -1 meaning condition now always false
2297 or 2 meaning condition nontrivial but altered. */
2298 int result
= alter_cond (TRAP_CONDITION (body
));
2300 /* If TRAP_CONDITION has become always false, delete the
2308 /* If TRAP_CONDITION has become always true, replace
2309 TRAP_CONDITION with const_true_rtx. */
2311 TRAP_CONDITION (body
) = const_true_rtx
;
2313 /* Rerecognize the instruction if it has changed. */
2315 INSN_CODE (insn
) = -1;
2318 /* Make same adjustments to instructions that examine the
2319 condition codes without jumping and instructions that
2320 handle conditional moves (if this machine has either one). */
2322 if (cc_status
.flags
!= 0
2325 rtx cond_rtx
, then_rtx
, else_rtx
;
2328 && GET_CODE (SET_SRC (set
)) == IF_THEN_ELSE
)
2330 cond_rtx
= XEXP (SET_SRC (set
), 0);
2331 then_rtx
= XEXP (SET_SRC (set
), 1);
2332 else_rtx
= XEXP (SET_SRC (set
), 2);
2336 cond_rtx
= SET_SRC (set
);
2337 then_rtx
= const_true_rtx
;
2338 else_rtx
= const0_rtx
;
2341 switch (GET_CODE (cond_rtx
))
2355 if (XEXP (cond_rtx
, 0) != cc0_rtx
)
2357 result
= alter_cond (cond_rtx
);
2359 validate_change (insn
, &SET_SRC (set
), then_rtx
, 0);
2360 else if (result
== -1)
2361 validate_change (insn
, &SET_SRC (set
), else_rtx
, 0);
2362 else if (result
== 2)
2363 INSN_CODE (insn
) = -1;
2364 if (SET_DEST (set
) == SET_SRC (set
))
2376 #ifdef HAVE_peephole
2377 /* Do machine-specific peephole optimizations if desired. */
2379 if (optimize
&& !flag_no_peephole
&& !nopeepholes
)
2381 rtx next
= peephole (insn
);
2382 /* When peepholing, if there were notes within the peephole,
2383 emit them before the peephole. */
2384 if (next
!= 0 && next
!= NEXT_INSN (insn
))
2386 rtx note
, prev
= PREV_INSN (insn
);
2388 for (note
= NEXT_INSN (insn
); note
!= next
;
2389 note
= NEXT_INSN (note
))
2390 final_scan_insn (note
, file
, optimize
, nopeepholes
, seen
);
2392 /* Put the notes in the proper position for a later
2393 rescan. For example, the SH target can do this
2394 when generating a far jump in a delayed branch
2396 note
= NEXT_INSN (insn
);
2397 PREV_INSN (note
) = prev
;
2398 NEXT_INSN (prev
) = note
;
2399 NEXT_INSN (PREV_INSN (next
)) = insn
;
2400 PREV_INSN (insn
) = PREV_INSN (next
);
2401 NEXT_INSN (insn
) = next
;
2402 PREV_INSN (next
) = insn
;
2405 /* PEEPHOLE might have changed this. */
2406 body
= PATTERN (insn
);
2410 /* Try to recognize the instruction.
2411 If successful, verify that the operands satisfy the
2412 constraints for the instruction. Crash if they don't,
2413 since `reload' should have changed them so that they do. */
2415 insn_code_number
= recog_memoized (insn
);
2416 cleanup_subreg_operands (insn
);
2418 /* Dump the insn in the assembly for debugging. */
2419 if (flag_dump_rtl_in_asm
)
2421 print_rtx_head
= ASM_COMMENT_START
;
2422 print_rtl_single (asm_out_file
, insn
);
2423 print_rtx_head
= "";
2426 if (! constrain_operands_cached (1))
2427 fatal_insn_not_found (insn
);
2429 /* Some target machines need to prescan each insn before
2432 #ifdef FINAL_PRESCAN_INSN
2433 FINAL_PRESCAN_INSN (insn
, recog_data
.operand
, recog_data
.n_operands
);
2436 #ifdef HAVE_conditional_execution
2437 if (GET_CODE (PATTERN (insn
)) == COND_EXEC
)
2438 current_insn_predicate
= COND_EXEC_TEST (PATTERN (insn
));
2442 cc_prev_status
= cc_status
;
2444 /* Update `cc_status' for this instruction.
2445 The instruction's output routine may change it further.
2446 If the output routine for a jump insn needs to depend
2447 on the cc status, it should look at cc_prev_status. */
2449 NOTICE_UPDATE_CC (body
, insn
);
2452 current_output_insn
= debug_insn
= insn
;
2454 #if defined (DWARF2_UNWIND_INFO)
2455 if (CALL_P (insn
) && dwarf2out_do_frame ())
2456 dwarf2out_frame_debug (insn
, false);
2459 /* Find the proper template for this insn. */
2460 template = get_insn_template (insn_code_number
, insn
);
2462 /* If the C code returns 0, it means that it is a jump insn
2463 which follows a deleted test insn, and that test insn
2464 needs to be reinserted. */
2469 gcc_assert (prev_nonnote_insn (insn
) == last_ignored_compare
);
2471 /* We have already processed the notes between the setter and
2472 the user. Make sure we don't process them again, this is
2473 particularly important if one of the notes is a block
2474 scope note or an EH note. */
2476 prev
!= last_ignored_compare
;
2477 prev
= PREV_INSN (prev
))
2480 delete_insn (prev
); /* Use delete_note. */
2486 /* If the template is the string "#", it means that this insn must
2488 if (template[0] == '#' && template[1] == '\0')
2490 rtx
new = try_split (body
, insn
, 0);
2492 /* If we didn't split the insn, go away. */
2493 if (new == insn
&& PATTERN (new) == body
)
2494 fatal_insn ("could not split insn", insn
);
2496 #ifdef HAVE_ATTR_length
2497 /* This instruction should have been split in shorten_branches,
2498 to ensure that we would have valid length info for the
2506 #ifdef TARGET_UNWIND_INFO
2507 /* ??? This will put the directives in the wrong place if
2508 get_insn_template outputs assembly directly. However calling it
2509 before get_insn_template breaks if the insns is split. */
2510 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2513 /* Output assembler code from the template. */
2514 output_asm_insn (template, recog_data
.operand
);
2516 /* If necessary, report the effect that the instruction has on
2517 the unwind info. We've already done this for delay slots
2518 and call instructions. */
2519 #if defined (DWARF2_UNWIND_INFO)
2520 if (final_sequence
== 0
2521 #if !defined (HAVE_prologue)
2522 && !ACCUMULATE_OUTGOING_ARGS
2524 && dwarf2out_do_frame ())
2525 dwarf2out_frame_debug (insn
, true);
2528 current_output_insn
= debug_insn
= 0;
2531 return NEXT_INSN (insn
);
2534 /* Return whether a source line note needs to be emitted before INSN. */
2537 notice_source_line (rtx insn
)
2539 const char *filename
= insn_file (insn
);
2540 int linenum
= insn_line (insn
);
2543 && (force_source_line
2544 || filename
!= last_filename
2545 || last_linenum
!= linenum
))
2547 force_source_line
= false;
2548 last_filename
= filename
;
2549 last_linenum
= linenum
;
2550 high_block_linenum
= MAX (last_linenum
, high_block_linenum
);
2551 high_function_linenum
= MAX (last_linenum
, high_function_linenum
);
2557 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2558 directly to the desired hard register. */
2561 cleanup_subreg_operands (rtx insn
)
2564 bool changed
= false;
2565 extract_insn_cached (insn
);
2566 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2568 /* The following test cannot use recog_data.operand when testing
2569 for a SUBREG: the underlying object might have been changed
2570 already if we are inside a match_operator expression that
2571 matches the else clause. Instead we test the underlying
2572 expression directly. */
2573 if (GET_CODE (*recog_data
.operand_loc
[i
]) == SUBREG
)
2575 recog_data
.operand
[i
] = alter_subreg (recog_data
.operand_loc
[i
]);
2578 else if (GET_CODE (recog_data
.operand
[i
]) == PLUS
2579 || GET_CODE (recog_data
.operand
[i
]) == MULT
2580 || MEM_P (recog_data
.operand
[i
]))
2581 recog_data
.operand
[i
] = walk_alter_subreg (recog_data
.operand_loc
[i
], &changed
);
2584 for (i
= 0; i
< recog_data
.n_dups
; i
++)
2586 if (GET_CODE (*recog_data
.dup_loc
[i
]) == SUBREG
)
2588 *recog_data
.dup_loc
[i
] = alter_subreg (recog_data
.dup_loc
[i
]);
2591 else if (GET_CODE (*recog_data
.dup_loc
[i
]) == PLUS
2592 || GET_CODE (*recog_data
.dup_loc
[i
]) == MULT
2593 || MEM_P (*recog_data
.dup_loc
[i
]))
2594 *recog_data
.dup_loc
[i
] = walk_alter_subreg (recog_data
.dup_loc
[i
], &changed
);
2597 df_insn_rescan (insn
);
2600 /* If X is a SUBREG, replace it with a REG or a MEM,
2601 based on the thing it is a subreg of. */
2604 alter_subreg (rtx
*xp
)
2607 rtx y
= SUBREG_REG (x
);
2609 /* simplify_subreg does not remove subreg from volatile references.
2610 We are required to. */
2613 int offset
= SUBREG_BYTE (x
);
2615 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
2616 contains 0 instead of the proper offset. See simplify_subreg. */
2618 && GET_MODE_SIZE (GET_MODE (y
)) < GET_MODE_SIZE (GET_MODE (x
)))
2620 int difference
= GET_MODE_SIZE (GET_MODE (y
))
2621 - GET_MODE_SIZE (GET_MODE (x
));
2622 if (WORDS_BIG_ENDIAN
)
2623 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
2624 if (BYTES_BIG_ENDIAN
)
2625 offset
+= difference
% UNITS_PER_WORD
;
2628 *xp
= adjust_address (y
, GET_MODE (x
), offset
);
2632 rtx
new = simplify_subreg (GET_MODE (x
), y
, GET_MODE (y
),
2639 /* Simplify_subreg can't handle some REG cases, but we have to. */
2640 unsigned int regno
= subreg_regno (x
);
2641 *xp
= gen_rtx_REG_offset (y
, GET_MODE (x
), regno
, SUBREG_BYTE (x
));
2648 /* Do alter_subreg on all the SUBREGs contained in X. */
2651 walk_alter_subreg (rtx
*xp
, bool *changed
)
2654 switch (GET_CODE (x
))
2659 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
2660 XEXP (x
, 1) = walk_alter_subreg (&XEXP (x
, 1), changed
);
2665 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
2670 return alter_subreg (xp
);
2681 /* Given BODY, the body of a jump instruction, alter the jump condition
2682 as required by the bits that are set in cc_status.flags.
2683 Not all of the bits there can be handled at this level in all cases.
2685 The value is normally 0.
2686 1 means that the condition has become always true.
2687 -1 means that the condition has become always false.
2688 2 means that COND has been altered. */
2691 alter_cond (rtx cond
)
2695 if (cc_status
.flags
& CC_REVERSED
)
2698 PUT_CODE (cond
, swap_condition (GET_CODE (cond
)));
2701 if (cc_status
.flags
& CC_INVERTED
)
2704 PUT_CODE (cond
, reverse_condition (GET_CODE (cond
)));
2707 if (cc_status
.flags
& CC_NOT_POSITIVE
)
2708 switch (GET_CODE (cond
))
2713 /* Jump becomes unconditional. */
2719 /* Jump becomes no-op. */
2723 PUT_CODE (cond
, EQ
);
2728 PUT_CODE (cond
, NE
);
2736 if (cc_status
.flags
& CC_NOT_NEGATIVE
)
2737 switch (GET_CODE (cond
))
2741 /* Jump becomes unconditional. */
2746 /* Jump becomes no-op. */
2751 PUT_CODE (cond
, EQ
);
2757 PUT_CODE (cond
, NE
);
2765 if (cc_status
.flags
& CC_NO_OVERFLOW
)
2766 switch (GET_CODE (cond
))
2769 /* Jump becomes unconditional. */
2773 PUT_CODE (cond
, EQ
);
2778 PUT_CODE (cond
, NE
);
2783 /* Jump becomes no-op. */
2790 if (cc_status
.flags
& (CC_Z_IN_NOT_N
| CC_Z_IN_N
))
2791 switch (GET_CODE (cond
))
2797 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? GE
: LT
);
2802 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? LT
: GE
);
2807 if (cc_status
.flags
& CC_NOT_SIGNED
)
2808 /* The flags are valid if signed condition operators are converted
2810 switch (GET_CODE (cond
))
2813 PUT_CODE (cond
, LEU
);
2818 PUT_CODE (cond
, LTU
);
2823 PUT_CODE (cond
, GTU
);
2828 PUT_CODE (cond
, GEU
);
2840 /* Report inconsistency between the assembler template and the operands.
2841 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2844 output_operand_lossage (const char *cmsgid
, ...)
2848 const char *pfx_str
;
2851 va_start (ap
, cmsgid
);
2853 pfx_str
= this_is_asm_operands
? _("invalid 'asm': ") : "output_operand: ";
2854 asprintf (&fmt_string
, "%s%s", pfx_str
, _(cmsgid
));
2855 vasprintf (&new_message
, fmt_string
, ap
);
2857 if (this_is_asm_operands
)
2858 error_for_asm (this_is_asm_operands
, "%s", new_message
);
2860 internal_error ("%s", new_message
);
2867 /* Output of assembler code from a template, and its subroutines. */
2869 /* Annotate the assembly with a comment describing the pattern and
2870 alternative used. */
2873 output_asm_name (void)
2877 int num
= INSN_CODE (debug_insn
);
2878 fprintf (asm_out_file
, "\t%s %d\t%s",
2879 ASM_COMMENT_START
, INSN_UID (debug_insn
),
2880 insn_data
[num
].name
);
2881 if (insn_data
[num
].n_alternatives
> 1)
2882 fprintf (asm_out_file
, "/%d", which_alternative
+ 1);
2883 #ifdef HAVE_ATTR_length
2884 fprintf (asm_out_file
, "\t[length = %d]",
2885 get_attr_length (debug_insn
));
2887 /* Clear this so only the first assembler insn
2888 of any rtl insn will get the special comment for -dp. */
2893 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2894 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2895 corresponds to the address of the object and 0 if to the object. */
2898 get_mem_expr_from_op (rtx op
, int *paddressp
)
2906 return REG_EXPR (op
);
2907 else if (!MEM_P (op
))
2910 if (MEM_EXPR (op
) != 0)
2911 return MEM_EXPR (op
);
2913 /* Otherwise we have an address, so indicate it and look at the address. */
2917 /* First check if we have a decl for the address, then look at the right side
2918 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2919 But don't allow the address to itself be indirect. */
2920 if ((expr
= get_mem_expr_from_op (op
, &inner_addressp
)) && ! inner_addressp
)
2922 else if (GET_CODE (op
) == PLUS
2923 && (expr
= get_mem_expr_from_op (XEXP (op
, 1), &inner_addressp
)))
2926 while (GET_RTX_CLASS (GET_CODE (op
)) == RTX_UNARY
2927 || GET_RTX_CLASS (GET_CODE (op
)) == RTX_BIN_ARITH
)
2930 expr
= get_mem_expr_from_op (op
, &inner_addressp
);
2931 return inner_addressp
? 0 : expr
;
2934 /* Output operand names for assembler instructions. OPERANDS is the
2935 operand vector, OPORDER is the order to write the operands, and NOPS
2936 is the number of operands to write. */
2939 output_asm_operand_names (rtx
*operands
, int *oporder
, int nops
)
2944 for (i
= 0; i
< nops
; i
++)
2947 rtx op
= operands
[oporder
[i
]];
2948 tree expr
= get_mem_expr_from_op (op
, &addressp
);
2950 fprintf (asm_out_file
, "%c%s",
2951 wrote
? ',' : '\t', wrote
? "" : ASM_COMMENT_START
);
2955 fprintf (asm_out_file
, "%s",
2956 addressp
? "*" : "");
2957 print_mem_expr (asm_out_file
, expr
);
2960 else if (REG_P (op
) && ORIGINAL_REGNO (op
)
2961 && ORIGINAL_REGNO (op
) != REGNO (op
))
2962 fprintf (asm_out_file
, " tmp%i", ORIGINAL_REGNO (op
));
2966 /* Output text from TEMPLATE to the assembler output file,
2967 obeying %-directions to substitute operands taken from
2968 the vector OPERANDS.
2970 %N (for N a digit) means print operand N in usual manner.
2971 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2972 and print the label name with no punctuation.
2973 %cN means require operand N to be a constant
2974 and print the constant expression with no punctuation.
2975 %aN means expect operand N to be a memory address
2976 (not a memory reference!) and print a reference
2978 %nN means expect operand N to be a constant
2979 and print a constant expression for minus the value
2980 of the operand, with no other punctuation. */
2983 output_asm_insn (const char *template, rtx
*operands
)
2987 #ifdef ASSEMBLER_DIALECT
2990 int oporder
[MAX_RECOG_OPERANDS
];
2991 char opoutput
[MAX_RECOG_OPERANDS
];
2994 /* An insn may return a null string template
2995 in a case where no assembler code is needed. */
2999 memset (opoutput
, 0, sizeof opoutput
);
3001 putc ('\t', asm_out_file
);
3003 #ifdef ASM_OUTPUT_OPCODE
3004 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3011 if (flag_verbose_asm
)
3012 output_asm_operand_names (operands
, oporder
, ops
);
3013 if (flag_print_asm_name
)
3017 memset (opoutput
, 0, sizeof opoutput
);
3019 putc (c
, asm_out_file
);
3020 #ifdef ASM_OUTPUT_OPCODE
3021 while ((c
= *p
) == '\t')
3023 putc (c
, asm_out_file
);
3026 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3030 #ifdef ASSEMBLER_DIALECT
3036 output_operand_lossage ("nested assembly dialect alternatives");
3040 /* If we want the first dialect, do nothing. Otherwise, skip
3041 DIALECT_NUMBER of strings ending with '|'. */
3042 for (i
= 0; i
< dialect_number
; i
++)
3044 while (*p
&& *p
!= '}' && *p
++ != '|')
3053 output_operand_lossage ("unterminated assembly dialect alternative");
3060 /* Skip to close brace. */
3065 output_operand_lossage ("unterminated assembly dialect alternative");
3069 while (*p
++ != '}');
3073 putc (c
, asm_out_file
);
3078 putc (c
, asm_out_file
);
3084 /* %% outputs a single %. */
3088 putc (c
, asm_out_file
);
3090 /* %= outputs a number which is unique to each insn in the entire
3091 compilation. This is useful for making local labels that are
3092 referred to more than once in a given insn. */
3096 fprintf (asm_out_file
, "%d", insn_counter
);
3098 /* % followed by a letter and some digits
3099 outputs an operand in a special way depending on the letter.
3100 Letters `acln' are implemented directly.
3101 Other letters are passed to `output_operand' so that
3102 the PRINT_OPERAND macro can define them. */
3103 else if (ISALPHA (*p
))
3106 unsigned long opnum
;
3109 opnum
= strtoul (p
, &endptr
, 10);
3112 output_operand_lossage ("operand number missing "
3114 else if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3115 output_operand_lossage ("operand number out of range");
3116 else if (letter
== 'l')
3117 output_asm_label (operands
[opnum
]);
3118 else if (letter
== 'a')
3119 output_address (operands
[opnum
]);
3120 else if (letter
== 'c')
3122 if (CONSTANT_ADDRESS_P (operands
[opnum
]))
3123 output_addr_const (asm_out_file
, operands
[opnum
]);
3125 output_operand (operands
[opnum
], 'c');
3127 else if (letter
== 'n')
3129 if (GET_CODE (operands
[opnum
]) == CONST_INT
)
3130 fprintf (asm_out_file
, HOST_WIDE_INT_PRINT_DEC
,
3131 - INTVAL (operands
[opnum
]));
3134 putc ('-', asm_out_file
);
3135 output_addr_const (asm_out_file
, operands
[opnum
]);
3139 output_operand (operands
[opnum
], letter
);
3141 if (!opoutput
[opnum
])
3142 oporder
[ops
++] = opnum
;
3143 opoutput
[opnum
] = 1;
3148 /* % followed by a digit outputs an operand the default way. */
3149 else if (ISDIGIT (*p
))
3151 unsigned long opnum
;
3154 opnum
= strtoul (p
, &endptr
, 10);
3155 if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3156 output_operand_lossage ("operand number out of range");
3158 output_operand (operands
[opnum
], 0);
3160 if (!opoutput
[opnum
])
3161 oporder
[ops
++] = opnum
;
3162 opoutput
[opnum
] = 1;
3167 /* % followed by punctuation: output something for that
3168 punctuation character alone, with no operand.
3169 The PRINT_OPERAND macro decides what is actually done. */
3170 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3171 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p
))
3172 output_operand (NULL_RTX
, *p
++);
3175 output_operand_lossage ("invalid %%-code");
3179 putc (c
, asm_out_file
);
3182 /* Write out the variable names for operands, if we know them. */
3183 if (flag_verbose_asm
)
3184 output_asm_operand_names (operands
, oporder
, ops
);
3185 if (flag_print_asm_name
)
3188 putc ('\n', asm_out_file
);
3191 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3194 output_asm_label (rtx x
)
3198 if (GET_CODE (x
) == LABEL_REF
)
3202 && NOTE_KIND (x
) == NOTE_INSN_DELETED_LABEL
))
3203 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3205 output_operand_lossage ("'%%l' operand isn't a label");
3207 assemble_name (asm_out_file
, buf
);
3210 /* Print operand X using machine-dependent assembler syntax.
3211 The macro PRINT_OPERAND is defined just to control this function.
3212 CODE is a non-digit that preceded the operand-number in the % spec,
3213 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3214 between the % and the digits.
3215 When CODE is a non-letter, X is 0.
3217 The meanings of the letters are machine-dependent and controlled
3218 by PRINT_OPERAND. */
3221 output_operand (rtx x
, int code ATTRIBUTE_UNUSED
)
3223 if (x
&& GET_CODE (x
) == SUBREG
)
3224 x
= alter_subreg (&x
);
3226 /* X must not be a pseudo reg. */
3227 gcc_assert (!x
|| !REG_P (x
) || REGNO (x
) < FIRST_PSEUDO_REGISTER
);
3229 PRINT_OPERAND (asm_out_file
, x
, code
);
3232 /* Print a memory reference operand for address X
3233 using machine-dependent assembler syntax.
3234 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3237 output_address (rtx x
)
3239 bool changed
= false;
3240 walk_alter_subreg (&x
, &changed
);
3241 PRINT_OPERAND_ADDRESS (asm_out_file
, x
);
3244 /* Print an integer constant expression in assembler syntax.
3245 Addition and subtraction are the only arithmetic
3246 that may appear in these expressions. */
3249 output_addr_const (FILE *file
, rtx x
)
3254 switch (GET_CODE (x
))
3261 if (SYMBOL_REF_DECL (x
))
3262 mark_decl_referenced (SYMBOL_REF_DECL (x
));
3263 #ifdef ASM_OUTPUT_SYMBOL_REF
3264 ASM_OUTPUT_SYMBOL_REF (file
, x
);
3266 assemble_name (file
, XSTR (x
, 0));
3274 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3275 #ifdef ASM_OUTPUT_LABEL_REF
3276 ASM_OUTPUT_LABEL_REF (file
, buf
);
3278 assemble_name (file
, buf
);
3283 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (x
));
3287 /* This used to output parentheses around the expression,
3288 but that does not work on the 386 (either ATT or BSD assembler). */
3289 output_addr_const (file
, XEXP (x
, 0));
3293 if (GET_MODE (x
) == VOIDmode
)
3295 /* We can use %d if the number is one word and positive. */
3296 if (CONST_DOUBLE_HIGH (x
))
3297 fprintf (file
, HOST_WIDE_INT_PRINT_DOUBLE_HEX
,
3298 CONST_DOUBLE_HIGH (x
), CONST_DOUBLE_LOW (x
));
3299 else if (CONST_DOUBLE_LOW (x
) < 0)
3300 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
, CONST_DOUBLE_LOW (x
));
3302 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_DOUBLE_LOW (x
));
3305 /* We can't handle floating point constants;
3306 PRINT_OPERAND must handle them. */
3307 output_operand_lossage ("floating constant misused");
3311 /* Some assemblers need integer constants to appear last (eg masm). */
3312 if (GET_CODE (XEXP (x
, 0)) == CONST_INT
)
3314 output_addr_const (file
, XEXP (x
, 1));
3315 if (INTVAL (XEXP (x
, 0)) >= 0)
3316 fprintf (file
, "+");
3317 output_addr_const (file
, XEXP (x
, 0));
3321 output_addr_const (file
, XEXP (x
, 0));
3322 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
3323 || INTVAL (XEXP (x
, 1)) >= 0)
3324 fprintf (file
, "+");
3325 output_addr_const (file
, XEXP (x
, 1));
3330 /* Avoid outputting things like x-x or x+5-x,
3331 since some assemblers can't handle that. */
3332 x
= simplify_subtraction (x
);
3333 if (GET_CODE (x
) != MINUS
)
3336 output_addr_const (file
, XEXP (x
, 0));
3337 fprintf (file
, "-");
3338 if ((GET_CODE (XEXP (x
, 1)) == CONST_INT
&& INTVAL (XEXP (x
, 1)) >= 0)
3339 || GET_CODE (XEXP (x
, 1)) == PC
3340 || GET_CODE (XEXP (x
, 1)) == SYMBOL_REF
)
3341 output_addr_const (file
, XEXP (x
, 1));
3344 fputs (targetm
.asm_out
.open_paren
, file
);
3345 output_addr_const (file
, XEXP (x
, 1));
3346 fputs (targetm
.asm_out
.close_paren
, file
);
3353 output_addr_const (file
, XEXP (x
, 0));
3357 #ifdef OUTPUT_ADDR_CONST_EXTRA
3358 OUTPUT_ADDR_CONST_EXTRA (file
, x
, fail
);
3363 output_operand_lossage ("invalid expression as operand");
3367 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3368 %R prints the value of REGISTER_PREFIX.
3369 %L prints the value of LOCAL_LABEL_PREFIX.
3370 %U prints the value of USER_LABEL_PREFIX.
3371 %I prints the value of IMMEDIATE_PREFIX.
3372 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3373 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3375 We handle alternate assembler dialects here, just like output_asm_insn. */
3378 asm_fprintf (FILE *file
, const char *p
, ...)
3384 va_start (argptr
, p
);
3391 #ifdef ASSEMBLER_DIALECT
3396 /* If we want the first dialect, do nothing. Otherwise, skip
3397 DIALECT_NUMBER of strings ending with '|'. */
3398 for (i
= 0; i
< dialect_number
; i
++)
3400 while (*p
&& *p
++ != '|')
3410 /* Skip to close brace. */
3411 while (*p
&& *p
++ != '}')
3422 while (strchr ("-+ #0", c
))
3427 while (ISDIGIT (c
) || c
== '.')
3438 case 'd': case 'i': case 'u':
3439 case 'x': case 'X': case 'o':
3443 fprintf (file
, buf
, va_arg (argptr
, int));
3447 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3448 'o' cases, but we do not check for those cases. It
3449 means that the value is a HOST_WIDE_INT, which may be
3450 either `long' or `long long'. */
3451 memcpy (q
, HOST_WIDE_INT_PRINT
, strlen (HOST_WIDE_INT_PRINT
));
3452 q
+= strlen (HOST_WIDE_INT_PRINT
);
3455 fprintf (file
, buf
, va_arg (argptr
, HOST_WIDE_INT
));
3460 #ifdef HAVE_LONG_LONG
3466 fprintf (file
, buf
, va_arg (argptr
, long long));
3473 fprintf (file
, buf
, va_arg (argptr
, long));
3481 fprintf (file
, buf
, va_arg (argptr
, char *));
3485 #ifdef ASM_OUTPUT_OPCODE
3486 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3491 #ifdef REGISTER_PREFIX
3492 fprintf (file
, "%s", REGISTER_PREFIX
);
3497 #ifdef IMMEDIATE_PREFIX
3498 fprintf (file
, "%s", IMMEDIATE_PREFIX
);
3503 #ifdef LOCAL_LABEL_PREFIX
3504 fprintf (file
, "%s", LOCAL_LABEL_PREFIX
);
3509 fputs (user_label_prefix
, file
);
3512 #ifdef ASM_FPRINTF_EXTENSIONS
3513 /* Uppercase letters are reserved for general use by asm_fprintf
3514 and so are not available to target specific code. In order to
3515 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3516 they are defined here. As they get turned into real extensions
3517 to asm_fprintf they should be removed from this list. */
3518 case 'A': case 'B': case 'C': case 'D': case 'E':
3519 case 'F': case 'G': case 'H': case 'J': case 'K':
3520 case 'M': case 'N': case 'P': case 'Q': case 'S':
3521 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3524 ASM_FPRINTF_EXTENSIONS (file
, argptr
, p
)
3537 /* Split up a CONST_DOUBLE or integer constant rtx
3538 into two rtx's for single words,
3539 storing in *FIRST the word that comes first in memory in the target
3540 and in *SECOND the other. */
3543 split_double (rtx value
, rtx
*first
, rtx
*second
)
3545 if (GET_CODE (value
) == CONST_INT
)
3547 if (HOST_BITS_PER_WIDE_INT
>= (2 * BITS_PER_WORD
))
3549 /* In this case the CONST_INT holds both target words.
3550 Extract the bits from it into two word-sized pieces.
3551 Sign extend each half to HOST_WIDE_INT. */
3552 unsigned HOST_WIDE_INT low
, high
;
3553 unsigned HOST_WIDE_INT mask
, sign_bit
, sign_extend
;
3555 /* Set sign_bit to the most significant bit of a word. */
3557 sign_bit
<<= BITS_PER_WORD
- 1;
3559 /* Set mask so that all bits of the word are set. We could
3560 have used 1 << BITS_PER_WORD instead of basing the
3561 calculation on sign_bit. However, on machines where
3562 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3563 compiler warning, even though the code would never be
3565 mask
= sign_bit
<< 1;
3568 /* Set sign_extend as any remaining bits. */
3569 sign_extend
= ~mask
;
3571 /* Pick the lower word and sign-extend it. */
3572 low
= INTVAL (value
);
3577 /* Pick the higher word, shifted to the least significant
3578 bits, and sign-extend it. */
3579 high
= INTVAL (value
);
3580 high
>>= BITS_PER_WORD
- 1;
3583 if (high
& sign_bit
)
3584 high
|= sign_extend
;
3586 /* Store the words in the target machine order. */
3587 if (WORDS_BIG_ENDIAN
)
3589 *first
= GEN_INT (high
);
3590 *second
= GEN_INT (low
);
3594 *first
= GEN_INT (low
);
3595 *second
= GEN_INT (high
);
3600 /* The rule for using CONST_INT for a wider mode
3601 is that we regard the value as signed.
3602 So sign-extend it. */
3603 rtx high
= (INTVAL (value
) < 0 ? constm1_rtx
: const0_rtx
);
3604 if (WORDS_BIG_ENDIAN
)
3616 else if (GET_CODE (value
) != CONST_DOUBLE
)
3618 if (WORDS_BIG_ENDIAN
)
3620 *first
= const0_rtx
;
3626 *second
= const0_rtx
;
3629 else if (GET_MODE (value
) == VOIDmode
3630 /* This is the old way we did CONST_DOUBLE integers. */
3631 || GET_MODE_CLASS (GET_MODE (value
)) == MODE_INT
)
3633 /* In an integer, the words are defined as most and least significant.
3634 So order them by the target's convention. */
3635 if (WORDS_BIG_ENDIAN
)
3637 *first
= GEN_INT (CONST_DOUBLE_HIGH (value
));
3638 *second
= GEN_INT (CONST_DOUBLE_LOW (value
));
3642 *first
= GEN_INT (CONST_DOUBLE_LOW (value
));
3643 *second
= GEN_INT (CONST_DOUBLE_HIGH (value
));
3650 REAL_VALUE_FROM_CONST_DOUBLE (r
, value
);
3652 /* Note, this converts the REAL_VALUE_TYPE to the target's
3653 format, splits up the floating point double and outputs
3654 exactly 32 bits of it into each of l[0] and l[1] --
3655 not necessarily BITS_PER_WORD bits. */
3656 REAL_VALUE_TO_TARGET_DOUBLE (r
, l
);
3658 /* If 32 bits is an entire word for the target, but not for the host,
3659 then sign-extend on the host so that the number will look the same
3660 way on the host that it would on the target. See for instance
3661 simplify_unary_operation. The #if is needed to avoid compiler
3664 #if HOST_BITS_PER_LONG > 32
3665 if (BITS_PER_WORD
< HOST_BITS_PER_LONG
&& BITS_PER_WORD
== 32)
3667 if (l
[0] & ((long) 1 << 31))
3668 l
[0] |= ((long) (-1) << 32);
3669 if (l
[1] & ((long) 1 << 31))
3670 l
[1] |= ((long) (-1) << 32);
3674 *first
= GEN_INT (l
[0]);
3675 *second
= GEN_INT (l
[1]);
3679 /* Return nonzero if this function has no function calls. */
3682 leaf_function_p (void)
3687 if (current_function_profile
|| profile_arc_flag
)
3690 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
3693 && ! SIBLING_CALL_P (insn
))
3695 if (NONJUMP_INSN_P (insn
)
3696 && GET_CODE (PATTERN (insn
)) == SEQUENCE
3697 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))
3698 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
3701 for (link
= current_function_epilogue_delay_list
;
3703 link
= XEXP (link
, 1))
3705 insn
= XEXP (link
, 0);
3708 && ! SIBLING_CALL_P (insn
))
3710 if (NONJUMP_INSN_P (insn
)
3711 && GET_CODE (PATTERN (insn
)) == SEQUENCE
3712 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))
3713 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
3720 /* Return 1 if branch is a forward branch.
3721 Uses insn_shuid array, so it works only in the final pass. May be used by
3722 output templates to customary add branch prediction hints.
3725 final_forward_branch_p (rtx insn
)
3727 int insn_id
, label_id
;
3729 gcc_assert (uid_shuid
);
3730 insn_id
= INSN_SHUID (insn
);
3731 label_id
= INSN_SHUID (JUMP_LABEL (insn
));
3732 /* We've hit some insns that does not have id information available. */
3733 gcc_assert (insn_id
&& label_id
);
3734 return insn_id
< label_id
;
3737 /* On some machines, a function with no call insns
3738 can run faster if it doesn't create its own register window.
3739 When output, the leaf function should use only the "output"
3740 registers. Ordinarily, the function would be compiled to use
3741 the "input" registers to find its arguments; it is a candidate
3742 for leaf treatment if it uses only the "input" registers.
3743 Leaf function treatment means renumbering so the function
3744 uses the "output" registers instead. */
3746 #ifdef LEAF_REGISTERS
3748 /* Return 1 if this function uses only the registers that can be
3749 safely renumbered. */
3752 only_leaf_regs_used (void)
3755 const char *const permitted_reg_in_leaf_functions
= LEAF_REGISTERS
;
3757 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3758 if ((df_regs_ever_live_p (i
) || global_regs
[i
])
3759 && ! permitted_reg_in_leaf_functions
[i
])
3762 if (current_function_uses_pic_offset_table
3763 && pic_offset_table_rtx
!= 0
3764 && REG_P (pic_offset_table_rtx
)
3765 && ! permitted_reg_in_leaf_functions
[REGNO (pic_offset_table_rtx
)])
3771 /* Scan all instructions and renumber all registers into those
3772 available in leaf functions. */
3775 leaf_renumber_regs (rtx first
)
3779 /* Renumber only the actual patterns.
3780 The reg-notes can contain frame pointer refs,
3781 and renumbering them could crash, and should not be needed. */
3782 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3784 leaf_renumber_regs_insn (PATTERN (insn
));
3785 for (insn
= current_function_epilogue_delay_list
;
3787 insn
= XEXP (insn
, 1))
3788 if (INSN_P (XEXP (insn
, 0)))
3789 leaf_renumber_regs_insn (PATTERN (XEXP (insn
, 0)));
3792 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3793 available in leaf functions. */
3796 leaf_renumber_regs_insn (rtx in_rtx
)
3799 const char *format_ptr
;
3804 /* Renumber all input-registers into output-registers.
3805 renumbered_regs would be 1 for an output-register;
3812 /* Don't renumber the same reg twice. */
3816 newreg
= REGNO (in_rtx
);
3817 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3818 to reach here as part of a REG_NOTE. */
3819 if (newreg
>= FIRST_PSEUDO_REGISTER
)
3824 newreg
= LEAF_REG_REMAP (newreg
);
3825 gcc_assert (newreg
>= 0);
3826 df_set_regs_ever_live (REGNO (in_rtx
), false);
3827 df_set_regs_ever_live (newreg
, true);
3828 SET_REGNO (in_rtx
, newreg
);
3832 if (INSN_P (in_rtx
))
3834 /* Inside a SEQUENCE, we find insns.
3835 Renumber just the patterns of these insns,
3836 just as we do for the top-level insns. */
3837 leaf_renumber_regs_insn (PATTERN (in_rtx
));
3841 format_ptr
= GET_RTX_FORMAT (GET_CODE (in_rtx
));
3843 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (in_rtx
)); i
++)
3844 switch (*format_ptr
++)
3847 leaf_renumber_regs_insn (XEXP (in_rtx
, i
));
3851 if (NULL
!= XVEC (in_rtx
, i
))
3853 for (j
= 0; j
< XVECLEN (in_rtx
, i
); j
++)
3854 leaf_renumber_regs_insn (XVECEXP (in_rtx
, i
, j
));
3874 /* When -gused is used, emit debug info for only used symbols. But in
3875 addition to the standard intercepted debug_hooks there are some direct
3876 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3877 Those routines may also be called from a higher level intercepted routine. So
3878 to prevent recording data for an inner call to one of these for an intercept,
3879 we maintain an intercept nesting counter (debug_nesting). We only save the
3880 intercepted arguments if the nesting is 1. */
3881 int debug_nesting
= 0;
3883 static tree
*symbol_queue
;
3884 int symbol_queue_index
= 0;
3885 static int symbol_queue_size
= 0;
3887 /* Generate the symbols for any queued up type symbols we encountered
3888 while generating the type info for some originally used symbol.
3889 This might generate additional entries in the queue. Only when
3890 the nesting depth goes to 0 is this routine called. */
3893 debug_flush_symbol_queue (void)
3897 /* Make sure that additionally queued items are not flushed
3902 for (i
= 0; i
< symbol_queue_index
; ++i
)
3904 /* If we pushed queued symbols then such symbols must be
3905 output no matter what anyone else says. Specifically,
3906 we need to make sure dbxout_symbol() thinks the symbol was
3907 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3908 which may be set for outside reasons. */
3909 int saved_tree_used
= TREE_USED (symbol_queue
[i
]);
3910 int saved_suppress_debug
= TYPE_DECL_SUPPRESS_DEBUG (symbol_queue
[i
]);
3911 TREE_USED (symbol_queue
[i
]) = 1;
3912 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue
[i
]) = 0;
3914 #ifdef DBX_DEBUGGING_INFO
3915 dbxout_symbol (symbol_queue
[i
], 0);
3918 TREE_USED (symbol_queue
[i
]) = saved_tree_used
;
3919 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue
[i
]) = saved_suppress_debug
;
3922 symbol_queue_index
= 0;
3926 /* Queue a type symbol needed as part of the definition of a decl
3927 symbol. These symbols are generated when debug_flush_symbol_queue()
3931 debug_queue_symbol (tree decl
)
3933 if (symbol_queue_index
>= symbol_queue_size
)
3935 symbol_queue_size
+= 10;
3936 symbol_queue
= xrealloc (symbol_queue
,
3937 symbol_queue_size
* sizeof (tree
));
3940 symbol_queue
[symbol_queue_index
++] = decl
;
3943 /* Free symbol queue. */
3945 debug_free_queue (void)
3949 free (symbol_queue
);
3950 symbol_queue
= NULL
;
3951 symbol_queue_size
= 0;
3955 /* Turn the RTL into assembly. */
3957 rest_of_handle_final (void)
3962 /* Get the function's name, as described by its RTL. This may be
3963 different from the DECL_NAME name used in the source file. */
3965 x
= DECL_RTL (current_function_decl
);
3966 gcc_assert (MEM_P (x
));
3968 gcc_assert (GET_CODE (x
) == SYMBOL_REF
);
3969 fnname
= XSTR (x
, 0);
3971 assemble_start_function (current_function_decl
, fnname
);
3972 final_start_function (get_insns (), asm_out_file
, optimize
);
3973 final (get_insns (), asm_out_file
, optimize
);
3974 final_end_function ();
3976 #ifdef TARGET_UNWIND_INFO
3977 /* ??? The IA-64 ".handlerdata" directive must be issued before
3978 the ".endp" directive that closes the procedure descriptor. */
3979 output_function_exception_table (fnname
);
3982 assemble_end_function (current_function_decl
, fnname
);
3984 #ifndef TARGET_UNWIND_INFO
3985 /* Otherwise, it feels unclean to switch sections in the middle. */
3986 output_function_exception_table (fnname
);
3989 user_defined_section_attribute
= false;
3991 /* Free up reg info memory. */
3995 fflush (asm_out_file
);
3997 /* Write DBX symbols if requested. */
3999 /* Note that for those inline functions where we don't initially
4000 know for certain that we will be generating an out-of-line copy,
4001 the first invocation of this routine (rest_of_compilation) will
4002 skip over this code by doing a `goto exit_rest_of_compilation;'.
4003 Later on, wrapup_global_declarations will (indirectly) call
4004 rest_of_compilation again for those inline functions that need
4005 to have out-of-line copies generated. During that call, we
4006 *will* be routed past here. */
4008 timevar_push (TV_SYMOUT
);
4009 (*debug_hooks
->function_decl
) (current_function_decl
);
4010 timevar_pop (TV_SYMOUT
);
4011 if (DECL_STATIC_CONSTRUCTOR (current_function_decl
)
4012 && targetm
.have_ctors_dtors
)
4013 targetm
.asm_out
.constructor (XEXP (DECL_RTL (current_function_decl
), 0),
4014 decl_init_priority_lookup
4015 (current_function_decl
));
4016 if (DECL_STATIC_DESTRUCTOR (current_function_decl
)
4017 && targetm
.have_ctors_dtors
)
4018 targetm
.asm_out
.destructor (XEXP (DECL_RTL (current_function_decl
), 0),
4019 decl_fini_priority_lookup
4020 (current_function_decl
));
4024 struct tree_opt_pass pass_final
=
4028 rest_of_handle_final
, /* execute */
4031 0, /* static_pass_number */
4032 TV_FINAL
, /* tv_id */
4033 0, /* properties_required */
4034 0, /* properties_provided */
4035 0, /* properties_destroyed */
4036 0, /* todo_flags_start */
4037 TODO_ggc_collect
, /* todo_flags_finish */
4043 rest_of_handle_shorten_branches (void)
4045 /* Shorten branches. */
4046 shorten_branches (get_insns ());
4050 struct tree_opt_pass pass_shorten_branches
=
4052 "shorten", /* name */
4054 rest_of_handle_shorten_branches
, /* execute */
4057 0, /* static_pass_number */
4058 TV_FINAL
, /* tv_id */
4059 0, /* properties_required */
4060 0, /* properties_provided */
4061 0, /* properties_destroyed */
4062 0, /* todo_flags_start */
4063 TODO_dump_func
, /* todo_flags_finish */
4069 rest_of_clean_state (void)
4073 /* It is very important to decompose the RTL instruction chain here:
4074 debug information keeps pointing into CODE_LABEL insns inside the function
4075 body. If these remain pointing to the other insns, we end up preserving
4076 whole RTL chain and attached detailed debug info in memory. */
4077 for (insn
= get_insns (); insn
; insn
= next
)
4079 next
= NEXT_INSN (insn
);
4080 NEXT_INSN (insn
) = NULL
;
4081 PREV_INSN (insn
) = NULL
;
4084 /* In case the function was not output,
4085 don't leave any temporary anonymous types
4086 queued up for sdb output. */
4087 #ifdef SDB_DEBUGGING_INFO
4088 if (write_symbols
== SDB_DEBUG
)
4089 sdbout_types (NULL_TREE
);
4092 reload_completed
= 0;
4093 epilogue_completed
= 0;
4096 regstack_completed
= 0;
4099 /* Clear out the insn_length contents now that they are no
4101 init_insn_lengths ();
4103 /* Show no temporary slots allocated. */
4106 free_bb_for_insn ();
4108 if (targetm
.binds_local_p (current_function_decl
))
4110 int pref
= cfun
->preferred_stack_boundary
;
4111 if (cfun
->stack_alignment_needed
> cfun
->preferred_stack_boundary
)
4112 pref
= cfun
->stack_alignment_needed
;
4113 cgraph_rtl_info (current_function_decl
)->preferred_incoming_stack_boundary
4117 /* Make sure volatile mem refs aren't considered valid operands for
4118 arithmetic insns. We must call this here if this is a nested inline
4119 function, since the above code leaves us in the init_recog state,
4120 and the function context push/pop code does not save/restore volatile_ok.
4122 ??? Maybe it isn't necessary for expand_start_function to call this
4123 anymore if we do it here? */
4125 init_recog_no_volatile ();
4127 /* We're done with this function. Free up memory if we can. */
4128 free_after_parsing (cfun
);
4129 free_after_compilation (cfun
);
4133 struct tree_opt_pass pass_clean_state
=
4137 rest_of_clean_state
, /* execute */
4140 0, /* static_pass_number */
4141 TV_FINAL
, /* tv_id */
4142 0, /* properties_required */
4143 0, /* properties_provided */
4144 PROP_rtl
, /* properties_destroyed */
4145 0, /* todo_flags_start */
4146 0, /* todo_flags_finish */
4150 /* Set no_new_pseudos. */
4152 rest_of_no_new_pseudos (void)
4158 struct tree_opt_pass pass_no_new_pseudos
=
4162 rest_of_no_new_pseudos
, /* execute */
4165 0, /* static_pass_number */
4167 0, /* properties_required */
4168 0, /* properties_provided */
4169 0, /* properties_destroyed */
4170 0, /* todo_flags_start */
4171 0, /* todo_flags_finish */