* dependency.c (gfc_check_dependency) <EXPR_ARRAY>: Implement
[official-gcc.git] / gcc / tree-flow-inline.h
blob64be7685b638f7c7dad325e0ee8ff38b9dc450b2
1 /* Inline functions for tree-flow.h
2 Copyright (C) 2001, 2003, 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 #ifndef _TREE_FLOW_INLINE_H
23 #define _TREE_FLOW_INLINE_H 1
25 /* Inline functions for manipulating various data structures defined in
26 tree-flow.h. See tree-flow.h for documentation. */
28 /* Return true when gimple SSA form was built.
29 gimple_in_ssa_p is queried by gimplifier in various early stages before SSA
30 infrastructure is initialized. Check for presence of the datastructures
31 at first place. */
32 static inline bool
33 gimple_in_ssa_p (struct function *fun)
35 return fun && fun->gimple_df && fun->gimple_df->in_ssa_p;
38 /* 'true' after aliases have been computed (see compute_may_aliases). */
39 static inline bool
40 gimple_aliases_computed_p (struct function *fun)
42 gcc_assert (fun && fun->gimple_df);
43 return fun->gimple_df->aliases_computed_p;
46 /* Addressable variables in the function. If bit I is set, then
47 REFERENCED_VARS (I) has had its address taken. Note that
48 CALL_CLOBBERED_VARS and ADDRESSABLE_VARS are not related. An
49 addressable variable is not necessarily call-clobbered (e.g., a
50 local addressable whose address does not escape) and not all
51 call-clobbered variables are addressable (e.g., a local static
52 variable). */
53 static inline bitmap
54 gimple_addressable_vars (struct function *fun)
56 gcc_assert (fun && fun->gimple_df);
57 return fun->gimple_df->addressable_vars;
60 /* Call clobbered variables in the function. If bit I is set, then
61 REFERENCED_VARS (I) is call-clobbered. */
62 static inline bitmap
63 gimple_call_clobbered_vars (struct function *fun)
65 gcc_assert (fun && fun->gimple_df);
66 return fun->gimple_df->call_clobbered_vars;
69 /* Array of all variables referenced in the function. */
70 static inline htab_t
71 gimple_referenced_vars (struct function *fun)
73 if (!fun->gimple_df)
74 return NULL;
75 return fun->gimple_df->referenced_vars;
78 /* Artificial variable used to model the effects of function calls. */
79 static inline tree
80 gimple_global_var (struct function *fun)
82 gcc_assert (fun && fun->gimple_df);
83 return fun->gimple_df->global_var;
86 /* Artificial variable used to model the effects of nonlocal
87 variables. */
88 static inline tree
89 gimple_nonlocal_all (struct function *fun)
91 gcc_assert (fun && fun->gimple_df);
92 return fun->gimple_df->nonlocal_all;
95 /* Hashtable of variables annotations. Used for static variables only;
96 local variables have direct pointer in the tree node. */
97 static inline htab_t
98 gimple_var_anns (struct function *fun)
100 return fun->gimple_df->var_anns;
103 /* Initialize the hashtable iterator HTI to point to hashtable TABLE */
105 static inline void *
106 first_htab_element (htab_iterator *hti, htab_t table)
108 hti->htab = table;
109 hti->slot = table->entries;
110 hti->limit = hti->slot + htab_size (table);
113 PTR x = *(hti->slot);
114 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
115 break;
116 } while (++(hti->slot) < hti->limit);
118 if (hti->slot < hti->limit)
119 return *(hti->slot);
120 return NULL;
123 /* Return current non-empty/deleted slot of the hashtable pointed to by HTI,
124 or NULL if we have reached the end. */
126 static inline bool
127 end_htab_p (htab_iterator *hti)
129 if (hti->slot >= hti->limit)
130 return true;
131 return false;
134 /* Advance the hashtable iterator pointed to by HTI to the next element of the
135 hashtable. */
137 static inline void *
138 next_htab_element (htab_iterator *hti)
140 while (++(hti->slot) < hti->limit)
142 PTR x = *(hti->slot);
143 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
144 return x;
146 return NULL;
149 /* Initialize ITER to point to the first referenced variable in the
150 referenced_vars hashtable, and return that variable. */
152 static inline tree
153 first_referenced_var (referenced_var_iterator *iter)
155 struct int_tree_map *itm;
156 itm = (struct int_tree_map *) first_htab_element (&iter->hti,
157 gimple_referenced_vars
158 (cfun));
159 if (!itm)
160 return NULL;
161 return itm->to;
164 /* Return true if we have hit the end of the referenced variables ITER is
165 iterating through. */
167 static inline bool
168 end_referenced_vars_p (referenced_var_iterator *iter)
170 return end_htab_p (&iter->hti);
173 /* Make ITER point to the next referenced_var in the referenced_var hashtable,
174 and return that variable. */
176 static inline tree
177 next_referenced_var (referenced_var_iterator *iter)
179 struct int_tree_map *itm;
180 itm = (struct int_tree_map *) next_htab_element (&iter->hti);
181 if (!itm)
182 return NULL;
183 return itm->to;
186 /* Fill up VEC with the variables in the referenced vars hashtable. */
188 static inline void
189 fill_referenced_var_vec (VEC (tree, heap) **vec)
191 referenced_var_iterator rvi;
192 tree var;
193 *vec = NULL;
194 FOR_EACH_REFERENCED_VAR (var, rvi)
195 VEC_safe_push (tree, heap, *vec, var);
198 /* Return the variable annotation for T, which must be a _DECL node.
199 Return NULL if the variable annotation doesn't already exist. */
200 static inline var_ann_t
201 var_ann (tree t)
203 gcc_assert (t);
204 gcc_assert (DECL_P (t));
205 gcc_assert (TREE_CODE (t) != FUNCTION_DECL);
206 if (!MTAG_P (t) && (TREE_STATIC (t) || DECL_EXTERNAL (t)))
208 struct static_var_ann_d *sann
209 = ((struct static_var_ann_d *)
210 htab_find_with_hash (gimple_var_anns (cfun), t, DECL_UID (t)));
211 if (!sann)
212 return NULL;
213 gcc_assert (sann->ann.common.type = VAR_ANN);
214 return &sann->ann;
216 gcc_assert (!t->base.ann
217 || t->base.ann->common.type == VAR_ANN);
219 return (var_ann_t) t->base.ann;
222 /* Return the variable annotation for T, which must be a _DECL node.
223 Create the variable annotation if it doesn't exist. */
224 static inline var_ann_t
225 get_var_ann (tree var)
227 var_ann_t ann = var_ann (var);
228 return (ann) ? ann : create_var_ann (var);
231 /* Return the function annotation for T, which must be a FUNCTION_DECL node.
232 Return NULL if the function annotation doesn't already exist. */
233 static inline function_ann_t
234 function_ann (tree t)
236 gcc_assert (t);
237 gcc_assert (TREE_CODE (t) == FUNCTION_DECL);
238 gcc_assert (!t->base.ann
239 || t->base.ann->common.type == FUNCTION_ANN);
241 return (function_ann_t) t->base.ann;
244 /* Return the function annotation for T, which must be a FUNCTION_DECL node.
245 Create the function annotation if it doesn't exist. */
246 static inline function_ann_t
247 get_function_ann (tree var)
249 function_ann_t ann = function_ann (var);
250 gcc_assert (!var->base.ann || var->base.ann->common.type == FUNCTION_ANN);
251 return (ann) ? ann : create_function_ann (var);
254 /* Return true if T has a statement annotation attached to it. */
256 static inline bool
257 has_stmt_ann (tree t)
259 #ifdef ENABLE_CHECKING
260 gcc_assert (is_gimple_stmt (t));
261 #endif
262 return t->base.ann && t->base.ann->common.type == STMT_ANN;
265 /* Return the statement annotation for T, which must be a statement
266 node. Return NULL if the statement annotation doesn't exist. */
267 static inline stmt_ann_t
268 stmt_ann (tree t)
270 #ifdef ENABLE_CHECKING
271 gcc_assert (is_gimple_stmt (t));
272 #endif
273 gcc_assert (!t->base.ann || t->base.ann->common.type == STMT_ANN);
274 return (stmt_ann_t) t->base.ann;
277 /* Return the statement annotation for T, which must be a statement
278 node. Create the statement annotation if it doesn't exist. */
279 static inline stmt_ann_t
280 get_stmt_ann (tree stmt)
282 stmt_ann_t ann = stmt_ann (stmt);
283 return (ann) ? ann : create_stmt_ann (stmt);
286 /* Return the annotation type for annotation ANN. */
287 static inline enum tree_ann_type
288 ann_type (tree_ann_t ann)
290 return ann->common.type;
293 /* Return the basic block for statement T. */
294 static inline basic_block
295 bb_for_stmt (tree t)
297 stmt_ann_t ann;
299 if (TREE_CODE (t) == PHI_NODE)
300 return PHI_BB (t);
302 ann = stmt_ann (t);
303 return ann ? ann->bb : NULL;
306 /* Return the may_aliases bitmap for variable VAR, or NULL if it has
307 no may aliases. */
308 static inline bitmap
309 may_aliases (tree var)
311 return MTAG_ALIASES (var);
314 /* Return the line number for EXPR, or return -1 if we have no line
315 number information for it. */
316 static inline int
317 get_lineno (tree expr)
319 if (expr == NULL_TREE)
320 return -1;
322 if (TREE_CODE (expr) == COMPOUND_EXPR)
323 expr = TREE_OPERAND (expr, 0);
325 if (! EXPR_HAS_LOCATION (expr))
326 return -1;
328 return EXPR_LINENO (expr);
331 /* Return the file name for EXPR, or return "???" if we have no
332 filename information. */
333 static inline const char *
334 get_filename (tree expr)
336 const char *filename;
337 if (expr == NULL_TREE)
338 return "???";
340 if (TREE_CODE (expr) == COMPOUND_EXPR)
341 expr = TREE_OPERAND (expr, 0);
343 if (EXPR_HAS_LOCATION (expr) && (filename = EXPR_FILENAME (expr)))
344 return filename;
345 else
346 return "???";
349 /* Return true if T is a noreturn call. */
350 static inline bool
351 noreturn_call_p (tree t)
353 tree call = get_call_expr_in (t);
354 return call != 0 && (call_expr_flags (call) & ECF_NORETURN) != 0;
357 /* Mark statement T as modified. */
358 static inline void
359 mark_stmt_modified (tree t)
361 stmt_ann_t ann;
362 if (TREE_CODE (t) == PHI_NODE)
363 return;
365 ann = stmt_ann (t);
366 if (ann == NULL)
367 ann = create_stmt_ann (t);
368 else if (noreturn_call_p (t) && cfun->gimple_df)
369 VEC_safe_push (tree, gc, MODIFIED_NORETURN_CALLS (cfun), t);
370 ann->modified = 1;
373 /* Mark statement T as modified, and update it. */
374 static inline void
375 update_stmt (tree t)
377 if (TREE_CODE (t) == PHI_NODE)
378 return;
379 mark_stmt_modified (t);
380 update_stmt_operands (t);
383 static inline void
384 update_stmt_if_modified (tree t)
386 if (stmt_modified_p (t))
387 update_stmt_operands (t);
390 /* Return true if T is marked as modified, false otherwise. */
391 static inline bool
392 stmt_modified_p (tree t)
394 stmt_ann_t ann = stmt_ann (t);
396 /* Note that if the statement doesn't yet have an annotation, we consider it
397 modified. This will force the next call to update_stmt_operands to scan
398 the statement. */
399 return ann ? ann->modified : true;
402 /* Delink an immediate_uses node from its chain. */
403 static inline void
404 delink_imm_use (ssa_use_operand_t *linknode)
406 /* Return if this node is not in a list. */
407 if (linknode->prev == NULL)
408 return;
410 linknode->prev->next = linknode->next;
411 linknode->next->prev = linknode->prev;
412 linknode->prev = NULL;
413 linknode->next = NULL;
416 /* Link ssa_imm_use node LINKNODE into the chain for LIST. */
417 static inline void
418 link_imm_use_to_list (ssa_use_operand_t *linknode, ssa_use_operand_t *list)
420 /* Link the new node at the head of the list. If we are in the process of
421 traversing the list, we won't visit any new nodes added to it. */
422 linknode->prev = list;
423 linknode->next = list->next;
424 list->next->prev = linknode;
425 list->next = linknode;
428 /* Link ssa_imm_use node LINKNODE into the chain for DEF. */
429 static inline void
430 link_imm_use (ssa_use_operand_t *linknode, tree def)
432 ssa_use_operand_t *root;
434 if (!def || TREE_CODE (def) != SSA_NAME)
435 linknode->prev = NULL;
436 else
438 root = &(SSA_NAME_IMM_USE_NODE (def));
439 #ifdef ENABLE_CHECKING
440 if (linknode->use)
441 gcc_assert (*(linknode->use) == def);
442 #endif
443 link_imm_use_to_list (linknode, root);
447 /* Set the value of a use pointed to by USE to VAL. */
448 static inline void
449 set_ssa_use_from_ptr (use_operand_p use, tree val)
451 delink_imm_use (use);
452 *(use->use) = val;
453 link_imm_use (use, val);
456 /* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring
457 in STMT. */
458 static inline void
459 link_imm_use_stmt (ssa_use_operand_t *linknode, tree def, tree stmt)
461 if (stmt)
462 link_imm_use (linknode, def);
463 else
464 link_imm_use (linknode, NULL);
465 linknode->stmt = stmt;
468 /* Relink a new node in place of an old node in the list. */
469 static inline void
470 relink_imm_use (ssa_use_operand_t *node, ssa_use_operand_t *old)
472 /* The node one had better be in the same list. */
473 gcc_assert (*(old->use) == *(node->use));
474 node->prev = old->prev;
475 node->next = old->next;
476 if (old->prev)
478 old->prev->next = node;
479 old->next->prev = node;
480 /* Remove the old node from the list. */
481 old->prev = NULL;
485 /* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring
486 in STMT. */
487 static inline void
488 relink_imm_use_stmt (ssa_use_operand_t *linknode, ssa_use_operand_t *old, tree stmt)
490 if (stmt)
491 relink_imm_use (linknode, old);
492 else
493 link_imm_use (linknode, NULL);
494 linknode->stmt = stmt;
498 /* Return true is IMM has reached the end of the immediate use list. */
499 static inline bool
500 end_readonly_imm_use_p (imm_use_iterator *imm)
502 return (imm->imm_use == imm->end_p);
505 /* Initialize iterator IMM to process the list for VAR. */
506 static inline use_operand_p
507 first_readonly_imm_use (imm_use_iterator *imm, tree var)
509 gcc_assert (TREE_CODE (var) == SSA_NAME);
511 imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
512 imm->imm_use = imm->end_p->next;
513 #ifdef ENABLE_CHECKING
514 imm->iter_node.next = imm->imm_use->next;
515 #endif
516 if (end_readonly_imm_use_p (imm))
517 return NULL_USE_OPERAND_P;
518 return imm->imm_use;
521 /* Bump IMM to the next use in the list. */
522 static inline use_operand_p
523 next_readonly_imm_use (imm_use_iterator *imm)
525 use_operand_p old = imm->imm_use;
527 #ifdef ENABLE_CHECKING
528 /* If this assertion fails, it indicates the 'next' pointer has changed
529 since we the last bump. This indicates that the list is being modified
530 via stmt changes, or SET_USE, or somesuch thing, and you need to be
531 using the SAFE version of the iterator. */
532 gcc_assert (imm->iter_node.next == old->next);
533 imm->iter_node.next = old->next->next;
534 #endif
536 imm->imm_use = old->next;
537 if (end_readonly_imm_use_p (imm))
538 return old;
539 return imm->imm_use;
542 /* Return true if VAR has no uses. */
543 static inline bool
544 has_zero_uses (tree var)
546 ssa_use_operand_t *ptr;
547 ptr = &(SSA_NAME_IMM_USE_NODE (var));
548 /* A single use means there is no items in the list. */
549 return (ptr == ptr->next);
552 /* Return true if VAR has a single use. */
553 static inline bool
554 has_single_use (tree var)
556 ssa_use_operand_t *ptr;
557 ptr = &(SSA_NAME_IMM_USE_NODE (var));
558 /* A single use means there is one item in the list. */
559 return (ptr != ptr->next && ptr == ptr->next->next);
563 /* If VAR has only a single immediate use, return true. */
564 static inline bool
565 single_imm_use_p (tree var)
567 ssa_use_operand_t *ptr;
569 ptr = &(SSA_NAME_IMM_USE_NODE (var));
570 return (ptr != ptr->next && ptr == ptr->next->next);
574 /* If VAR has only a single immediate use, return true, and set USE_P and STMT
575 to the use pointer and stmt of occurrence. */
576 static inline bool
577 single_imm_use (tree var, use_operand_p *use_p, tree *stmt)
579 ssa_use_operand_t *ptr;
581 ptr = &(SSA_NAME_IMM_USE_NODE (var));
582 if (ptr != ptr->next && ptr == ptr->next->next)
584 *use_p = ptr->next;
585 *stmt = ptr->next->stmt;
586 return true;
588 *use_p = NULL_USE_OPERAND_P;
589 *stmt = NULL_TREE;
590 return false;
593 /* Return the number of immediate uses of VAR. */
594 static inline unsigned int
595 num_imm_uses (tree var)
597 ssa_use_operand_t *ptr, *start;
598 unsigned int num;
600 start = &(SSA_NAME_IMM_USE_NODE (var));
601 num = 0;
602 for (ptr = start->next; ptr != start; ptr = ptr->next)
603 num++;
605 return num;
608 /* Return true if VAR has no immediate uses. */
609 static inline bool
610 zero_imm_uses_p (tree var)
612 ssa_use_operand_t *ptr = &(SSA_NAME_IMM_USE_NODE (var));
613 return (ptr == ptr->next);
616 /* Return the tree pointer to by USE. */
617 static inline tree
618 get_use_from_ptr (use_operand_p use)
620 return *(use->use);
623 /* Return the tree pointer to by DEF. */
624 static inline tree
625 get_def_from_ptr (def_operand_p def)
627 return *def;
630 /* Return a def_operand_p pointer for the result of PHI. */
631 static inline def_operand_p
632 get_phi_result_ptr (tree phi)
634 return &(PHI_RESULT_TREE (phi));
637 /* Return a use_operand_p pointer for argument I of phinode PHI. */
638 static inline use_operand_p
639 get_phi_arg_def_ptr (tree phi, int i)
641 return &(PHI_ARG_IMM_USE_NODE (phi,i));
645 /* Return the bitmap of addresses taken by STMT, or NULL if it takes
646 no addresses. */
647 static inline bitmap
648 addresses_taken (tree stmt)
650 stmt_ann_t ann = stmt_ann (stmt);
651 return ann ? ann->addresses_taken : NULL;
654 /* Return the PHI nodes for basic block BB, or NULL if there are no
655 PHI nodes. */
656 static inline tree
657 phi_nodes (basic_block bb)
659 return bb->phi_nodes;
662 /* Set list of phi nodes of a basic block BB to L. */
664 static inline void
665 set_phi_nodes (basic_block bb, tree l)
667 tree phi;
669 bb->phi_nodes = l;
670 for (phi = l; phi; phi = PHI_CHAIN (phi))
671 set_bb_for_stmt (phi, bb);
674 /* Return the phi argument which contains the specified use. */
676 static inline int
677 phi_arg_index_from_use (use_operand_p use)
679 struct phi_arg_d *element, *root;
680 int index;
681 tree phi;
683 /* Since the use is the first thing in a PHI argument element, we can
684 calculate its index based on casting it to an argument, and performing
685 pointer arithmetic. */
687 phi = USE_STMT (use);
688 gcc_assert (TREE_CODE (phi) == PHI_NODE);
690 element = (struct phi_arg_d *)use;
691 root = &(PHI_ARG_ELT (phi, 0));
692 index = element - root;
694 #ifdef ENABLE_CHECKING
695 /* Make sure the calculation doesn't have any leftover bytes. If it does,
696 then imm_use is likely not the first element in phi_arg_d. */
697 gcc_assert (
698 (((char *)element - (char *)root) % sizeof (struct phi_arg_d)) == 0);
699 gcc_assert (index >= 0 && index < PHI_ARG_CAPACITY (phi));
700 #endif
702 return index;
705 /* Mark VAR as used, so that it'll be preserved during rtl expansion. */
707 static inline void
708 set_is_used (tree var)
710 var_ann_t ann = get_var_ann (var);
711 ann->used = 1;
714 /* Return true if T is an executable statement. */
715 static inline bool
716 is_exec_stmt (tree t)
718 return (t && !IS_EMPTY_STMT (t) && t != error_mark_node);
722 /* Return true if this stmt can be the target of a control transfer stmt such
723 as a goto. */
724 static inline bool
725 is_label_stmt (tree t)
727 if (t)
728 switch (TREE_CODE (t))
730 case LABEL_DECL:
731 case LABEL_EXPR:
732 case CASE_LABEL_EXPR:
733 return true;
734 default:
735 return false;
737 return false;
740 /* PHI nodes should contain only ssa_names and invariants. A test
741 for ssa_name is definitely simpler; don't let invalid contents
742 slip in in the meantime. */
744 static inline bool
745 phi_ssa_name_p (tree t)
747 if (TREE_CODE (t) == SSA_NAME)
748 return true;
749 #ifdef ENABLE_CHECKING
750 gcc_assert (is_gimple_min_invariant (t));
751 #endif
752 return false;
755 /* ----------------------------------------------------------------------- */
757 /* Return a block_stmt_iterator that points to beginning of basic
758 block BB. */
759 static inline block_stmt_iterator
760 bsi_start (basic_block bb)
762 block_stmt_iterator bsi;
763 if (bb->stmt_list)
764 bsi.tsi = tsi_start (bb->stmt_list);
765 else
767 gcc_assert (bb->index < NUM_FIXED_BLOCKS);
768 bsi.tsi.ptr = NULL;
769 bsi.tsi.container = NULL;
771 bsi.bb = bb;
772 return bsi;
775 /* Return a block statement iterator that points to the first non-label
776 statement in block BB. */
778 static inline block_stmt_iterator
779 bsi_after_labels (basic_block bb)
781 block_stmt_iterator bsi = bsi_start (bb);
783 while (!bsi_end_p (bsi) && TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR)
784 bsi_next (&bsi);
786 return bsi;
789 /* Return a block statement iterator that points to the end of basic
790 block BB. */
791 static inline block_stmt_iterator
792 bsi_last (basic_block bb)
794 block_stmt_iterator bsi;
795 if (bb->stmt_list)
796 bsi.tsi = tsi_last (bb->stmt_list);
797 else
799 gcc_assert (bb->index < NUM_FIXED_BLOCKS);
800 bsi.tsi.ptr = NULL;
801 bsi.tsi.container = NULL;
803 bsi.bb = bb;
804 return bsi;
807 /* Return true if block statement iterator I has reached the end of
808 the basic block. */
809 static inline bool
810 bsi_end_p (block_stmt_iterator i)
812 return tsi_end_p (i.tsi);
815 /* Modify block statement iterator I so that it is at the next
816 statement in the basic block. */
817 static inline void
818 bsi_next (block_stmt_iterator *i)
820 tsi_next (&i->tsi);
823 /* Modify block statement iterator I so that it is at the previous
824 statement in the basic block. */
825 static inline void
826 bsi_prev (block_stmt_iterator *i)
828 tsi_prev (&i->tsi);
831 /* Return the statement that block statement iterator I is currently
832 at. */
833 static inline tree
834 bsi_stmt (block_stmt_iterator i)
836 return tsi_stmt (i.tsi);
839 /* Return a pointer to the statement that block statement iterator I
840 is currently at. */
841 static inline tree *
842 bsi_stmt_ptr (block_stmt_iterator i)
844 return tsi_stmt_ptr (i.tsi);
847 /* Returns the loop of the statement STMT. */
849 static inline struct loop *
850 loop_containing_stmt (tree stmt)
852 basic_block bb = bb_for_stmt (stmt);
853 if (!bb)
854 return NULL;
856 return bb->loop_father;
860 /* Return the memory partition tag associated with symbol SYM. */
862 static inline tree
863 memory_partition (tree sym)
865 tree tag;
867 /* MPTs belong to their own partition. */
868 if (TREE_CODE (sym) == MEMORY_PARTITION_TAG)
869 return sym;
871 gcc_assert (!is_gimple_reg (sym));
872 tag = get_var_ann (sym)->mpt;
874 #if defined ENABLE_CHECKING
875 if (tag)
876 gcc_assert (TREE_CODE (tag) == MEMORY_PARTITION_TAG);
877 #endif
879 return tag;
883 /* Set MPT to be the memory partition associated with symbol SYM. */
885 static inline void
886 set_memory_partition (tree sym, tree mpt)
888 #if defined ENABLE_CHECKING
889 if (mpt)
890 gcc_assert (TREE_CODE (mpt) == MEMORY_PARTITION_TAG
891 && !is_gimple_reg (sym));
892 #endif
893 var_ann (sym)->mpt = mpt;
894 if (mpt)
896 bitmap_set_bit (MPT_SYMBOLS (mpt), DECL_UID (sym));
898 /* MPT inherits the call-clobbering attributes from SYM. */
899 if (is_call_clobbered (sym))
901 MTAG_GLOBAL (mpt) = 1;
902 mark_call_clobbered (mpt, ESCAPE_IS_GLOBAL);
907 /* Return true if NAME is a memory factoring SSA name (i.e., an SSA
908 name for a memory partition. */
910 static inline bool
911 factoring_name_p (tree name)
913 return TREE_CODE (SSA_NAME_VAR (name)) == MEMORY_PARTITION_TAG;
916 /* Return true if VAR is a clobbered by function calls. */
917 static inline bool
918 is_call_clobbered (tree var)
920 if (!MTAG_P (var))
921 return var_ann (var)->call_clobbered;
922 else
923 return bitmap_bit_p (gimple_call_clobbered_vars (cfun), DECL_UID (var));
926 /* Mark variable VAR as being clobbered by function calls. */
927 static inline void
928 mark_call_clobbered (tree var, unsigned int escape_type)
930 var_ann (var)->escape_mask |= escape_type;
931 if (!MTAG_P (var))
932 var_ann (var)->call_clobbered = true;
933 bitmap_set_bit (gimple_call_clobbered_vars (cfun), DECL_UID (var));
936 /* Clear the call-clobbered attribute from variable VAR. */
937 static inline void
938 clear_call_clobbered (tree var)
940 var_ann_t ann = var_ann (var);
941 ann->escape_mask = 0;
942 if (MTAG_P (var) && TREE_CODE (var) != STRUCT_FIELD_TAG)
943 MTAG_GLOBAL (var) = 0;
944 if (!MTAG_P (var))
945 var_ann (var)->call_clobbered = false;
946 bitmap_clear_bit (gimple_call_clobbered_vars (cfun), DECL_UID (var));
949 /* Return the common annotation for T. Return NULL if the annotation
950 doesn't already exist. */
951 static inline tree_ann_common_t
952 tree_common_ann (tree t)
954 /* Watch out static variables with unshared annotations. */
955 if (DECL_P (t) && TREE_CODE (t) == VAR_DECL)
956 return &var_ann (t)->common;
957 return &t->base.ann->common;
960 /* Return a common annotation for T. Create the constant annotation if it
961 doesn't exist. */
962 static inline tree_ann_common_t
963 get_tree_common_ann (tree t)
965 tree_ann_common_t ann = tree_common_ann (t);
966 return (ann) ? ann : create_tree_common_ann (t);
969 /* ----------------------------------------------------------------------- */
971 /* The following set of routines are used to iterator over various type of
972 SSA operands. */
974 /* Return true if PTR is finished iterating. */
975 static inline bool
976 op_iter_done (ssa_op_iter *ptr)
978 return ptr->done;
981 /* Get the next iterator use value for PTR. */
982 static inline use_operand_p
983 op_iter_next_use (ssa_op_iter *ptr)
985 use_operand_p use_p;
986 #ifdef ENABLE_CHECKING
987 gcc_assert (ptr->iter_type == ssa_op_iter_use);
988 #endif
989 if (ptr->uses)
991 use_p = USE_OP_PTR (ptr->uses);
992 ptr->uses = ptr->uses->next;
993 return use_p;
995 if (ptr->vuses)
997 use_p = VUSE_OP_PTR (ptr->vuses, ptr->vuse_index);
998 if (++(ptr->vuse_index) >= VUSE_NUM (ptr->vuses))
1000 ptr->vuse_index = 0;
1001 ptr->vuses = ptr->vuses->next;
1003 return use_p;
1005 if (ptr->mayuses)
1007 use_p = VDEF_OP_PTR (ptr->mayuses, ptr->mayuse_index);
1008 if (++(ptr->mayuse_index) >= VDEF_NUM (ptr->mayuses))
1010 ptr->mayuse_index = 0;
1011 ptr->mayuses = ptr->mayuses->next;
1013 return use_p;
1015 if (ptr->phi_i < ptr->num_phi)
1017 return PHI_ARG_DEF_PTR (ptr->phi_stmt, (ptr->phi_i)++);
1019 ptr->done = true;
1020 return NULL_USE_OPERAND_P;
1023 /* Get the next iterator def value for PTR. */
1024 static inline def_operand_p
1025 op_iter_next_def (ssa_op_iter *ptr)
1027 def_operand_p def_p;
1028 #ifdef ENABLE_CHECKING
1029 gcc_assert (ptr->iter_type == ssa_op_iter_def);
1030 #endif
1031 if (ptr->defs)
1033 def_p = DEF_OP_PTR (ptr->defs);
1034 ptr->defs = ptr->defs->next;
1035 return def_p;
1037 if (ptr->vdefs)
1039 def_p = VDEF_RESULT_PTR (ptr->vdefs);
1040 ptr->vdefs = ptr->vdefs->next;
1041 return def_p;
1043 ptr->done = true;
1044 return NULL_DEF_OPERAND_P;
1047 /* Get the next iterator tree value for PTR. */
1048 static inline tree
1049 op_iter_next_tree (ssa_op_iter *ptr)
1051 tree val;
1052 #ifdef ENABLE_CHECKING
1053 gcc_assert (ptr->iter_type == ssa_op_iter_tree);
1054 #endif
1055 if (ptr->uses)
1057 val = USE_OP (ptr->uses);
1058 ptr->uses = ptr->uses->next;
1059 return val;
1061 if (ptr->vuses)
1063 val = VUSE_OP (ptr->vuses, ptr->vuse_index);
1064 if (++(ptr->vuse_index) >= VUSE_NUM (ptr->vuses))
1066 ptr->vuse_index = 0;
1067 ptr->vuses = ptr->vuses->next;
1069 return val;
1071 if (ptr->mayuses)
1073 val = VDEF_OP (ptr->mayuses, ptr->mayuse_index);
1074 if (++(ptr->mayuse_index) >= VDEF_NUM (ptr->mayuses))
1076 ptr->mayuse_index = 0;
1077 ptr->mayuses = ptr->mayuses->next;
1079 return val;
1081 if (ptr->defs)
1083 val = DEF_OP (ptr->defs);
1084 ptr->defs = ptr->defs->next;
1085 return val;
1087 if (ptr->vdefs)
1089 val = VDEF_RESULT (ptr->vdefs);
1090 ptr->vdefs = ptr->vdefs->next;
1091 return val;
1094 ptr->done = true;
1095 return NULL_TREE;
1100 /* This functions clears the iterator PTR, and marks it done. This is normally
1101 used to prevent warnings in the compile about might be uninitialized
1102 components. */
1104 static inline void
1105 clear_and_done_ssa_iter (ssa_op_iter *ptr)
1107 ptr->defs = NULL;
1108 ptr->uses = NULL;
1109 ptr->vuses = NULL;
1110 ptr->vdefs = NULL;
1111 ptr->mayuses = NULL;
1112 ptr->iter_type = ssa_op_iter_none;
1113 ptr->phi_i = 0;
1114 ptr->num_phi = 0;
1115 ptr->phi_stmt = NULL_TREE;
1116 ptr->done = true;
1117 ptr->vuse_index = 0;
1118 ptr->mayuse_index = 0;
1121 /* Initialize the iterator PTR to the virtual defs in STMT. */
1122 static inline void
1123 op_iter_init (ssa_op_iter *ptr, tree stmt, int flags)
1125 #ifdef ENABLE_CHECKING
1126 gcc_assert (stmt_ann (stmt));
1127 #endif
1129 ptr->defs = (flags & SSA_OP_DEF) ? DEF_OPS (stmt) : NULL;
1130 ptr->uses = (flags & SSA_OP_USE) ? USE_OPS (stmt) : NULL;
1131 ptr->vuses = (flags & SSA_OP_VUSE) ? VUSE_OPS (stmt) : NULL;
1132 ptr->vdefs = (flags & SSA_OP_VDEF) ? VDEF_OPS (stmt) : NULL;
1133 ptr->mayuses = (flags & SSA_OP_VMAYUSE) ? VDEF_OPS (stmt) : NULL;
1134 ptr->done = false;
1136 ptr->phi_i = 0;
1137 ptr->num_phi = 0;
1138 ptr->phi_stmt = NULL_TREE;
1139 ptr->vuse_index = 0;
1140 ptr->mayuse_index = 0;
1143 /* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return
1144 the first use. */
1145 static inline use_operand_p
1146 op_iter_init_use (ssa_op_iter *ptr, tree stmt, int flags)
1148 gcc_assert ((flags & SSA_OP_ALL_DEFS) == 0);
1149 op_iter_init (ptr, stmt, flags);
1150 ptr->iter_type = ssa_op_iter_use;
1151 return op_iter_next_use (ptr);
1154 /* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return
1155 the first def. */
1156 static inline def_operand_p
1157 op_iter_init_def (ssa_op_iter *ptr, tree stmt, int flags)
1159 gcc_assert ((flags & SSA_OP_ALL_USES) == 0);
1160 op_iter_init (ptr, stmt, flags);
1161 ptr->iter_type = ssa_op_iter_def;
1162 return op_iter_next_def (ptr);
1165 /* Initialize iterator PTR to the operands in STMT based on FLAGS. Return
1166 the first operand as a tree. */
1167 static inline tree
1168 op_iter_init_tree (ssa_op_iter *ptr, tree stmt, int flags)
1170 op_iter_init (ptr, stmt, flags);
1171 ptr->iter_type = ssa_op_iter_tree;
1172 return op_iter_next_tree (ptr);
1175 /* Get the next iterator mustdef value for PTR, returning the mustdef values in
1176 KILL and DEF. */
1177 static inline void
1178 op_iter_next_vdef (vuse_vec_p *use, def_operand_p *def,
1179 ssa_op_iter *ptr)
1181 #ifdef ENABLE_CHECKING
1182 gcc_assert (ptr->iter_type == ssa_op_iter_vdef);
1183 #endif
1184 if (ptr->mayuses)
1186 *def = VDEF_RESULT_PTR (ptr->mayuses);
1187 *use = VDEF_VECT (ptr->mayuses);
1188 ptr->mayuses = ptr->mayuses->next;
1189 return;
1192 *def = NULL_DEF_OPERAND_P;
1193 *use = NULL;
1194 ptr->done = true;
1195 return;
1199 static inline void
1200 op_iter_next_mustdef (use_operand_p *use, def_operand_p *def,
1201 ssa_op_iter *ptr)
1203 vuse_vec_p vp;
1204 op_iter_next_vdef (&vp, def, ptr);
1205 if (vp != NULL)
1207 gcc_assert (VUSE_VECT_NUM_ELEM (*vp) == 1);
1208 *use = VUSE_ELEMENT_PTR (*vp, 0);
1210 else
1211 *use = NULL_USE_OPERAND_P;
1214 /* Initialize iterator PTR to the operands in STMT. Return the first operands
1215 in USE and DEF. */
1216 static inline void
1217 op_iter_init_vdef (ssa_op_iter *ptr, tree stmt, vuse_vec_p *use,
1218 def_operand_p *def)
1220 gcc_assert (TREE_CODE (stmt) != PHI_NODE);
1222 op_iter_init (ptr, stmt, SSA_OP_VMAYUSE);
1223 ptr->iter_type = ssa_op_iter_vdef;
1224 op_iter_next_vdef (use, def, ptr);
1228 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1229 return NULL. */
1230 static inline tree
1231 single_ssa_tree_operand (tree stmt, int flags)
1233 tree var;
1234 ssa_op_iter iter;
1236 var = op_iter_init_tree (&iter, stmt, flags);
1237 if (op_iter_done (&iter))
1238 return NULL_TREE;
1239 op_iter_next_tree (&iter);
1240 if (op_iter_done (&iter))
1241 return var;
1242 return NULL_TREE;
1246 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1247 return NULL. */
1248 static inline use_operand_p
1249 single_ssa_use_operand (tree stmt, int flags)
1251 use_operand_p var;
1252 ssa_op_iter iter;
1254 var = op_iter_init_use (&iter, stmt, flags);
1255 if (op_iter_done (&iter))
1256 return NULL_USE_OPERAND_P;
1257 op_iter_next_use (&iter);
1258 if (op_iter_done (&iter))
1259 return var;
1260 return NULL_USE_OPERAND_P;
1265 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1266 return NULL. */
1267 static inline def_operand_p
1268 single_ssa_def_operand (tree stmt, int flags)
1270 def_operand_p var;
1271 ssa_op_iter iter;
1273 var = op_iter_init_def (&iter, stmt, flags);
1274 if (op_iter_done (&iter))
1275 return NULL_DEF_OPERAND_P;
1276 op_iter_next_def (&iter);
1277 if (op_iter_done (&iter))
1278 return var;
1279 return NULL_DEF_OPERAND_P;
1283 /* Return true if there are zero operands in STMT matching the type
1284 given in FLAGS. */
1285 static inline bool
1286 zero_ssa_operands (tree stmt, int flags)
1288 ssa_op_iter iter;
1290 op_iter_init_tree (&iter, stmt, flags);
1291 return op_iter_done (&iter);
1295 /* Return the number of operands matching FLAGS in STMT. */
1296 static inline int
1297 num_ssa_operands (tree stmt, int flags)
1299 ssa_op_iter iter;
1300 tree t;
1301 int num = 0;
1303 FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, flags)
1304 num++;
1305 return num;
1309 /* Delink all immediate_use information for STMT. */
1310 static inline void
1311 delink_stmt_imm_use (tree stmt)
1313 ssa_op_iter iter;
1314 use_operand_p use_p;
1316 if (ssa_operands_active ())
1317 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1318 delink_imm_use (use_p);
1322 /* This routine will compare all the operands matching FLAGS in STMT1 to those
1323 in STMT2. TRUE is returned if they are the same. STMTs can be NULL. */
1324 static inline bool
1325 compare_ssa_operands_equal (tree stmt1, tree stmt2, int flags)
1327 ssa_op_iter iter1, iter2;
1328 tree op1 = NULL_TREE;
1329 tree op2 = NULL_TREE;
1330 bool look1, look2;
1332 if (stmt1 == stmt2)
1333 return true;
1335 look1 = stmt1 && stmt_ann (stmt1);
1336 look2 = stmt2 && stmt_ann (stmt2);
1338 if (look1)
1340 op1 = op_iter_init_tree (&iter1, stmt1, flags);
1341 if (!look2)
1342 return op_iter_done (&iter1);
1344 else
1345 clear_and_done_ssa_iter (&iter1);
1347 if (look2)
1349 op2 = op_iter_init_tree (&iter2, stmt2, flags);
1350 if (!look1)
1351 return op_iter_done (&iter2);
1353 else
1354 clear_and_done_ssa_iter (&iter2);
1356 while (!op_iter_done (&iter1) && !op_iter_done (&iter2))
1358 if (op1 != op2)
1359 return false;
1360 op1 = op_iter_next_tree (&iter1);
1361 op2 = op_iter_next_tree (&iter2);
1364 return (op_iter_done (&iter1) && op_iter_done (&iter2));
1368 /* If there is a single DEF in the PHI node which matches FLAG, return it.
1369 Otherwise return NULL_DEF_OPERAND_P. */
1370 static inline tree
1371 single_phi_def (tree stmt, int flags)
1373 tree def = PHI_RESULT (stmt);
1374 if ((flags & SSA_OP_DEF) && is_gimple_reg (def))
1375 return def;
1376 if ((flags & SSA_OP_VIRTUAL_DEFS) && !is_gimple_reg (def))
1377 return def;
1378 return NULL_TREE;
1381 /* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should
1382 be either SSA_OP_USES or SSA_OP_VIRTUAL_USES. */
1383 static inline use_operand_p
1384 op_iter_init_phiuse (ssa_op_iter *ptr, tree phi, int flags)
1386 tree phi_def = PHI_RESULT (phi);
1387 int comp;
1389 clear_and_done_ssa_iter (ptr);
1390 ptr->done = false;
1392 gcc_assert ((flags & (SSA_OP_USE | SSA_OP_VIRTUAL_USES)) != 0);
1394 comp = (is_gimple_reg (phi_def) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
1396 /* If the PHI node doesn't the operand type we care about, we're done. */
1397 if ((flags & comp) == 0)
1399 ptr->done = true;
1400 return NULL_USE_OPERAND_P;
1403 ptr->phi_stmt = phi;
1404 ptr->num_phi = PHI_NUM_ARGS (phi);
1405 ptr->iter_type = ssa_op_iter_use;
1406 return op_iter_next_use (ptr);
1410 /* Start an iterator for a PHI definition. */
1412 static inline def_operand_p
1413 op_iter_init_phidef (ssa_op_iter *ptr, tree phi, int flags)
1415 tree phi_def = PHI_RESULT (phi);
1416 int comp;
1418 clear_and_done_ssa_iter (ptr);
1419 ptr->done = false;
1421 gcc_assert ((flags & (SSA_OP_DEF | SSA_OP_VIRTUAL_DEFS)) != 0);
1423 comp = (is_gimple_reg (phi_def) ? SSA_OP_DEF : SSA_OP_VIRTUAL_DEFS);
1425 /* If the PHI node doesn't the operand type we care about, we're done. */
1426 if ((flags & comp) == 0)
1428 ptr->done = true;
1429 return NULL_USE_OPERAND_P;
1432 ptr->iter_type = ssa_op_iter_def;
1433 /* The first call to op_iter_next_def will terminate the iterator since
1434 all the fields are NULL. Simply return the result here as the first and
1435 therefore only result. */
1436 return PHI_RESULT_PTR (phi);
1439 /* Return true is IMM has reached the end of the immediate use stmt list. */
1441 static inline bool
1442 end_imm_use_stmt_p (imm_use_iterator *imm)
1444 return (imm->imm_use == imm->end_p);
1447 /* Finished the traverse of an immediate use stmt list IMM by removing the
1448 placeholder node from the list. */
1450 static inline void
1451 end_imm_use_stmt_traverse (imm_use_iterator *imm)
1453 delink_imm_use (&(imm->iter_node));
1456 /* Immediate use traversal of uses within a stmt require that all the
1457 uses on a stmt be sequentially listed. This routine is used to build up
1458 this sequential list by adding USE_P to the end of the current list
1459 currently delimited by HEAD and LAST_P. The new LAST_P value is
1460 returned. */
1462 static inline use_operand_p
1463 move_use_after_head (use_operand_p use_p, use_operand_p head,
1464 use_operand_p last_p)
1466 gcc_assert (USE_FROM_PTR (use_p) == USE_FROM_PTR (head));
1467 /* Skip head when we find it. */
1468 if (use_p != head)
1470 /* If use_p is already linked in after last_p, continue. */
1471 if (last_p->next == use_p)
1472 last_p = use_p;
1473 else
1475 /* Delink from current location, and link in at last_p. */
1476 delink_imm_use (use_p);
1477 link_imm_use_to_list (use_p, last_p);
1478 last_p = use_p;
1481 return last_p;
1485 /* This routine will relink all uses with the same stmt as HEAD into the list
1486 immediately following HEAD for iterator IMM. */
1488 static inline void
1489 link_use_stmts_after (use_operand_p head, imm_use_iterator *imm)
1491 use_operand_p use_p;
1492 use_operand_p last_p = head;
1493 tree head_stmt = USE_STMT (head);
1494 tree use = USE_FROM_PTR (head);
1495 ssa_op_iter op_iter;
1496 int flag;
1498 /* Only look at virtual or real uses, depending on the type of HEAD. */
1499 flag = (is_gimple_reg (use) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
1501 if (TREE_CODE (head_stmt) == PHI_NODE)
1503 FOR_EACH_PHI_ARG (use_p, head_stmt, op_iter, flag)
1504 if (USE_FROM_PTR (use_p) == use)
1505 last_p = move_use_after_head (use_p, head, last_p);
1507 else
1509 FOR_EACH_SSA_USE_OPERAND (use_p, head_stmt, op_iter, flag)
1510 if (USE_FROM_PTR (use_p) == use)
1511 last_p = move_use_after_head (use_p, head, last_p);
1513 /* LInk iter node in after last_p. */
1514 if (imm->iter_node.prev != NULL)
1515 delink_imm_use (&imm->iter_node);
1516 link_imm_use_to_list (&(imm->iter_node), last_p);
1519 /* Initialize IMM to traverse over uses of VAR. Return the first statement. */
1520 static inline tree
1521 first_imm_use_stmt (imm_use_iterator *imm, tree var)
1523 gcc_assert (TREE_CODE (var) == SSA_NAME);
1525 imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
1526 imm->imm_use = imm->end_p->next;
1527 imm->next_imm_name = NULL_USE_OPERAND_P;
1529 /* iter_node is used as a marker within the immediate use list to indicate
1530 where the end of the current stmt's uses are. Initialize it to NULL
1531 stmt and use, which indicates a marker node. */
1532 imm->iter_node.prev = NULL_USE_OPERAND_P;
1533 imm->iter_node.next = NULL_USE_OPERAND_P;
1534 imm->iter_node.stmt = NULL_TREE;
1535 imm->iter_node.use = NULL_USE_OPERAND_P;
1537 if (end_imm_use_stmt_p (imm))
1538 return NULL_TREE;
1540 link_use_stmts_after (imm->imm_use, imm);
1542 return USE_STMT (imm->imm_use);
1545 /* Bump IMM to the next stmt which has a use of var. */
1547 static inline tree
1548 next_imm_use_stmt (imm_use_iterator *imm)
1550 imm->imm_use = imm->iter_node.next;
1551 if (end_imm_use_stmt_p (imm))
1553 if (imm->iter_node.prev != NULL)
1554 delink_imm_use (&imm->iter_node);
1555 return NULL_TREE;
1558 link_use_stmts_after (imm->imm_use, imm);
1559 return USE_STMT (imm->imm_use);
1563 /* This routine will return the first use on the stmt IMM currently refers
1564 to. */
1566 static inline use_operand_p
1567 first_imm_use_on_stmt (imm_use_iterator *imm)
1569 imm->next_imm_name = imm->imm_use->next;
1570 return imm->imm_use;
1573 /* Return TRUE if the last use on the stmt IMM refers to has been visited. */
1575 static inline bool
1576 end_imm_use_on_stmt_p (imm_use_iterator *imm)
1578 return (imm->imm_use == &(imm->iter_node));
1581 /* Bump to the next use on the stmt IMM refers to, return NULL if done. */
1583 static inline use_operand_p
1584 next_imm_use_on_stmt (imm_use_iterator *imm)
1586 imm->imm_use = imm->next_imm_name;
1587 if (end_imm_use_on_stmt_p (imm))
1588 return NULL_USE_OPERAND_P;
1589 else
1591 imm->next_imm_name = imm->imm_use->next;
1592 return imm->imm_use;
1596 /* Return true if VAR cannot be modified by the program. */
1598 static inline bool
1599 unmodifiable_var_p (tree var)
1601 if (TREE_CODE (var) == SSA_NAME)
1602 var = SSA_NAME_VAR (var);
1604 if (MTAG_P (var))
1605 return TREE_READONLY (var) && (TREE_STATIC (var) || MTAG_GLOBAL (var));
1607 return TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var));
1610 /* Return true if REF, an ARRAY_REF, has an INDIRECT_REF somewhere in it. */
1612 static inline bool
1613 array_ref_contains_indirect_ref (tree ref)
1615 gcc_assert (TREE_CODE (ref) == ARRAY_REF);
1617 do {
1618 ref = TREE_OPERAND (ref, 0);
1619 } while (handled_component_p (ref));
1621 return TREE_CODE (ref) == INDIRECT_REF;
1624 /* Return true if REF, a handled component reference, has an ARRAY_REF
1625 somewhere in it. */
1627 static inline bool
1628 ref_contains_array_ref (tree ref)
1630 gcc_assert (handled_component_p (ref));
1632 do {
1633 if (TREE_CODE (ref) == ARRAY_REF)
1634 return true;
1635 ref = TREE_OPERAND (ref, 0);
1636 } while (handled_component_p (ref));
1638 return false;
1641 /* Given a variable VAR, lookup and return a pointer to the list of
1642 subvariables for it. */
1644 static inline subvar_t *
1645 lookup_subvars_for_var (tree var)
1647 var_ann_t ann = var_ann (var);
1648 gcc_assert (ann);
1649 return &ann->subvars;
1652 /* Given a variable VAR, return a linked list of subvariables for VAR, or
1653 NULL, if there are no subvariables. */
1655 static inline subvar_t
1656 get_subvars_for_var (tree var)
1658 subvar_t subvars;
1660 gcc_assert (SSA_VAR_P (var));
1662 if (TREE_CODE (var) == SSA_NAME)
1663 subvars = *(lookup_subvars_for_var (SSA_NAME_VAR (var)));
1664 else
1665 subvars = *(lookup_subvars_for_var (var));
1666 return subvars;
1669 /* Return the subvariable of VAR at offset OFFSET. */
1671 static inline tree
1672 get_subvar_at (tree var, unsigned HOST_WIDE_INT offset)
1674 subvar_t sv;
1676 for (sv = get_subvars_for_var (var); sv; sv = sv->next)
1677 if (SFT_OFFSET (sv->var) == offset)
1678 return sv->var;
1680 return NULL_TREE;
1683 /* Return true if V is a tree that we can have subvars for.
1684 Normally, this is any aggregate type. Also complex
1685 types which are not gimple registers can have subvars. */
1687 static inline bool
1688 var_can_have_subvars (tree v)
1690 /* Volatile variables should never have subvars. */
1691 if (TREE_THIS_VOLATILE (v))
1692 return false;
1694 /* Non decls or memory tags can never have subvars. */
1695 if (!DECL_P (v) || MTAG_P (v))
1696 return false;
1698 /* Aggregates can have subvars. */
1699 if (AGGREGATE_TYPE_P (TREE_TYPE (v)))
1700 return true;
1702 /* Complex types variables which are not also a gimple register can
1703 have subvars. */
1704 if (TREE_CODE (TREE_TYPE (v)) == COMPLEX_TYPE
1705 && !DECL_GIMPLE_REG_P (v))
1706 return true;
1708 return false;
1712 /* Return true if OFFSET and SIZE define a range that overlaps with some
1713 portion of the range of SV, a subvar. If there was an exact overlap,
1714 *EXACT will be set to true upon return. */
1716 static inline bool
1717 overlap_subvar (unsigned HOST_WIDE_INT offset, unsigned HOST_WIDE_INT size,
1718 tree sv, bool *exact)
1720 /* There are three possible cases of overlap.
1721 1. We can have an exact overlap, like so:
1722 |offset, offset + size |
1723 |sv->offset, sv->offset + sv->size |
1725 2. We can have offset starting after sv->offset, like so:
1727 |offset, offset + size |
1728 |sv->offset, sv->offset + sv->size |
1730 3. We can have offset starting before sv->offset, like so:
1732 |offset, offset + size |
1733 |sv->offset, sv->offset + sv->size|
1736 if (exact)
1737 *exact = false;
1738 if (offset == SFT_OFFSET (sv) && size == SFT_SIZE (sv))
1740 if (exact)
1741 *exact = true;
1742 return true;
1744 else if (offset >= SFT_OFFSET (sv)
1745 && offset < (SFT_OFFSET (sv) + SFT_SIZE (sv)))
1747 return true;
1749 else if (offset < SFT_OFFSET (sv)
1750 && (size > SFT_OFFSET (sv) - offset))
1752 return true;
1754 return false;
1758 /* Return the memory tag associated with symbol SYM. */
1760 static inline tree
1761 symbol_mem_tag (tree sym)
1763 tree tag = get_var_ann (sym)->symbol_mem_tag;
1765 #if defined ENABLE_CHECKING
1766 if (tag)
1767 gcc_assert (TREE_CODE (tag) == SYMBOL_MEMORY_TAG);
1768 #endif
1770 return tag;
1774 /* Set the memory tag associated with symbol SYM. */
1776 static inline void
1777 set_symbol_mem_tag (tree sym, tree tag)
1779 #if defined ENABLE_CHECKING
1780 if (tag)
1781 gcc_assert (TREE_CODE (tag) == SYMBOL_MEMORY_TAG);
1782 #endif
1784 get_var_ann (sym)->symbol_mem_tag = tag;
1787 /* Get the value handle of EXPR. This is the only correct way to get
1788 the value handle for a "thing". If EXPR does not have a value
1789 handle associated, it returns NULL_TREE.
1790 NB: If EXPR is min_invariant, this function is *required* to return
1791 EXPR. */
1793 static inline tree
1794 get_value_handle (tree expr)
1796 if (TREE_CODE (expr) == SSA_NAME)
1797 return SSA_NAME_VALUE (expr);
1798 else if (DECL_P (expr) || TREE_CODE (expr) == TREE_LIST
1799 || TREE_CODE (expr) == CONSTRUCTOR)
1801 tree_ann_common_t ann = tree_common_ann (expr);
1802 return ((ann) ? ann->value_handle : NULL_TREE);
1804 else if (is_gimple_min_invariant (expr))
1805 return expr;
1806 else if (EXPR_P (expr))
1808 tree_ann_common_t ann = tree_common_ann (expr);
1809 return ((ann) ? ann->value_handle : NULL_TREE);
1811 else
1812 gcc_unreachable ();
1815 /* Accessor to tree-ssa-operands.c caches. */
1816 static inline struct ssa_operands *
1817 gimple_ssa_operands (struct function *fun)
1819 return &fun->gimple_df->ssa_operands;
1821 #endif /* _TREE_FLOW_INLINE_H */