Require target lra in gcc.dg/pr108095.c
[official-gcc.git] / gcc / go / gofrontend / gogo.cc
blobfa3cd6ebe9fbaa01005bf9aa33af71fa0072961b
1 // gogo.cc -- Go frontend parsed representation.
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
7 #include "go-system.h"
9 #include <fstream>
11 #include "filenames.h"
13 #include "go-c.h"
14 #include "go-diagnostics.h"
15 #include "go-encode-id.h"
16 #include "go-dump.h"
17 #include "go-optimize.h"
18 #include "lex.h"
19 #include "types.h"
20 #include "statements.h"
21 #include "expressions.h"
22 #include "runtime.h"
23 #include "import.h"
24 #include "export.h"
25 #include "backend.h"
26 #include "gogo.h"
28 // Class Gogo.
30 Gogo::Gogo(Backend* backend, Linemap* linemap, int, int pointer_size)
31 : backend_(backend),
32 linemap_(linemap),
33 package_(NULL),
34 functions_(),
35 globals_(new Bindings(NULL)),
36 file_block_names_(),
37 imports_(),
38 imported_unsafe_(false),
39 current_file_imported_unsafe_(false),
40 current_file_imported_embed_(false),
41 packages_(),
42 init_functions_(),
43 var_deps_(),
44 need_init_fn_(false),
45 init_fn_name_(),
46 imported_init_fns_(),
47 pkgpath_(),
48 pkgpath_symbol_(),
49 prefix_(),
50 pkgpath_set_(false),
51 pkgpath_from_option_(false),
52 prefix_from_option_(false),
53 relative_import_path_(),
54 c_header_(),
55 import_map_(),
56 package_file_(),
57 embed_patterns_(),
58 embed_files_(),
59 check_divide_by_zero_(true),
60 check_divide_overflow_(true),
61 compiling_runtime_(false),
62 debug_escape_level_(0),
63 debug_optimization_(false),
64 nil_check_size_threshold_(4096),
65 need_eqtype_(false),
66 verify_types_(),
67 interface_types_(),
68 specific_type_functions_(),
69 specific_type_functions_are_written_(false),
70 named_types_are_converted_(false),
71 analysis_sets_(),
72 gc_roots_(),
73 type_descriptors_(),
74 imported_inlinable_functions_(),
75 imported_inline_functions_()
77 const Location loc = Linemap::predeclared_location();
79 Named_type* uint8_type = Type::make_integer_type("uint8", true, 8,
80 RUNTIME_TYPE_KIND_UINT8);
81 this->add_named_type(uint8_type);
82 this->add_named_type(Type::make_integer_type("uint16", true, 16,
83 RUNTIME_TYPE_KIND_UINT16));
84 this->add_named_type(Type::make_integer_type("uint32", true, 32,
85 RUNTIME_TYPE_KIND_UINT32));
86 this->add_named_type(Type::make_integer_type("uint64", true, 64,
87 RUNTIME_TYPE_KIND_UINT64));
89 this->add_named_type(Type::make_integer_type("int8", false, 8,
90 RUNTIME_TYPE_KIND_INT8));
91 this->add_named_type(Type::make_integer_type("int16", false, 16,
92 RUNTIME_TYPE_KIND_INT16));
93 Named_type* int32_type = Type::make_integer_type("int32", false, 32,
94 RUNTIME_TYPE_KIND_INT32);
95 this->add_named_type(int32_type);
96 this->add_named_type(Type::make_integer_type("int64", false, 64,
97 RUNTIME_TYPE_KIND_INT64));
99 this->add_named_type(Type::make_float_type("float32", 32,
100 RUNTIME_TYPE_KIND_FLOAT32));
101 this->add_named_type(Type::make_float_type("float64", 64,
102 RUNTIME_TYPE_KIND_FLOAT64));
104 this->add_named_type(Type::make_complex_type("complex64", 64,
105 RUNTIME_TYPE_KIND_COMPLEX64));
106 this->add_named_type(Type::make_complex_type("complex128", 128,
107 RUNTIME_TYPE_KIND_COMPLEX128));
109 int int_type_size = pointer_size;
110 if (int_type_size < 32)
111 int_type_size = 32;
112 this->add_named_type(Type::make_integer_type("uint", true,
113 int_type_size,
114 RUNTIME_TYPE_KIND_UINT));
115 Named_type* int_type = Type::make_integer_type("int", false, int_type_size,
116 RUNTIME_TYPE_KIND_INT);
117 this->add_named_type(int_type);
119 this->add_named_type(Type::make_integer_type("uintptr", true,
120 pointer_size,
121 RUNTIME_TYPE_KIND_UINTPTR));
123 // "byte" is an alias for "uint8".
124 uint8_type->integer_type()->set_is_byte();
125 this->add_named_type(Type::make_integer_type_alias("byte", uint8_type));
127 // "rune" is an alias for "int32".
128 int32_type->integer_type()->set_is_rune();
129 this->add_named_type(Type::make_integer_type_alias("rune", int32_type));
131 this->add_named_type(Type::make_named_bool_type());
133 this->add_named_type(Type::make_named_string_type());
135 // "error" is interface { Error() string }.
137 Typed_identifier_list *methods = new Typed_identifier_list;
138 Typed_identifier_list *results = new Typed_identifier_list;
139 results->push_back(Typed_identifier("", Type::lookup_string_type(), loc));
140 Type *method_type = Type::make_function_type(NULL, NULL, results, loc);
141 methods->push_back(Typed_identifier("Error", method_type, loc));
142 Interface_type *error_iface = Type::make_interface_type(methods, loc);
143 error_iface->finalize_methods();
144 Named_type *error_type = Named_object::make_type("error", NULL, error_iface, loc)->type_value();
145 this->add_named_type(error_type);
148 // "any" is an alias for the empty interface type.
150 Type* empty = Type::make_empty_interface_type(loc);
151 Named_object* no = Named_object::make_type("any", NULL, empty, loc);
152 Named_type* nt = no->type_value();
153 nt->set_is_alias();
154 this->add_named_type(nt);
157 this->globals_->add_constant(Typed_identifier("true",
158 Type::make_boolean_type(),
159 loc),
160 NULL,
161 Expression::make_boolean(true, loc),
163 this->globals_->add_constant(Typed_identifier("false",
164 Type::make_boolean_type(),
165 loc),
166 NULL,
167 Expression::make_boolean(false, loc),
170 this->globals_->add_constant(Typed_identifier("nil", Type::make_nil_type(),
171 loc),
172 NULL,
173 Expression::make_nil(loc),
176 Type* abstract_int_type = Type::make_abstract_integer_type();
177 this->globals_->add_constant(Typed_identifier("iota", abstract_int_type,
178 loc),
179 NULL,
180 Expression::make_iota(),
183 Function_type* new_type = Type::make_function_type(NULL, NULL, NULL, loc);
184 new_type->set_is_varargs();
185 new_type->set_is_builtin();
186 this->globals_->add_function_declaration("new", NULL, new_type, loc);
188 Function_type* make_type = Type::make_function_type(NULL, NULL, NULL, loc);
189 make_type->set_is_varargs();
190 make_type->set_is_builtin();
191 this->globals_->add_function_declaration("make", NULL, make_type, loc);
193 Typed_identifier_list* len_result = new Typed_identifier_list();
194 len_result->push_back(Typed_identifier("", int_type, loc));
195 Function_type* len_type = Type::make_function_type(NULL, NULL, len_result,
196 loc);
197 len_type->set_is_builtin();
198 this->globals_->add_function_declaration("len", NULL, len_type, loc);
200 Typed_identifier_list* cap_result = new Typed_identifier_list();
201 cap_result->push_back(Typed_identifier("", int_type, loc));
202 Function_type* cap_type = Type::make_function_type(NULL, NULL, len_result,
203 loc);
204 cap_type->set_is_builtin();
205 this->globals_->add_function_declaration("cap", NULL, cap_type, loc);
207 Function_type* print_type = Type::make_function_type(NULL, NULL, NULL, loc);
208 print_type->set_is_varargs();
209 print_type->set_is_builtin();
210 this->globals_->add_function_declaration("print", NULL, print_type, loc);
212 print_type = Type::make_function_type(NULL, NULL, NULL, loc);
213 print_type->set_is_varargs();
214 print_type->set_is_builtin();
215 this->globals_->add_function_declaration("println", NULL, print_type, loc);
217 Type *empty = Type::make_empty_interface_type(loc);
218 Typed_identifier_list* panic_parms = new Typed_identifier_list();
219 panic_parms->push_back(Typed_identifier("e", empty, loc));
220 Function_type *panic_type = Type::make_function_type(NULL, panic_parms,
221 NULL, loc);
222 panic_type->set_is_builtin();
223 this->globals_->add_function_declaration("panic", NULL, panic_type, loc);
225 Typed_identifier_list* recover_result = new Typed_identifier_list();
226 recover_result->push_back(Typed_identifier("", empty, loc));
227 Function_type* recover_type = Type::make_function_type(NULL, NULL,
228 recover_result,
229 loc);
230 recover_type->set_is_builtin();
231 this->globals_->add_function_declaration("recover", NULL, recover_type, loc);
233 Function_type* close_type = Type::make_function_type(NULL, NULL, NULL, loc);
234 close_type->set_is_varargs();
235 close_type->set_is_builtin();
236 this->globals_->add_function_declaration("close", NULL, close_type, loc);
238 Typed_identifier_list* copy_result = new Typed_identifier_list();
239 copy_result->push_back(Typed_identifier("", int_type, loc));
240 Function_type* copy_type = Type::make_function_type(NULL, NULL,
241 copy_result, loc);
242 copy_type->set_is_varargs();
243 copy_type->set_is_builtin();
244 this->globals_->add_function_declaration("copy", NULL, copy_type, loc);
246 Function_type* append_type = Type::make_function_type(NULL, NULL, NULL, loc);
247 append_type->set_is_varargs();
248 append_type->set_is_builtin();
249 this->globals_->add_function_declaration("append", NULL, append_type, loc);
251 Function_type* complex_type = Type::make_function_type(NULL, NULL, NULL, loc);
252 complex_type->set_is_varargs();
253 complex_type->set_is_builtin();
254 this->globals_->add_function_declaration("complex", NULL, complex_type, loc);
256 Function_type* real_type = Type::make_function_type(NULL, NULL, NULL, loc);
257 real_type->set_is_varargs();
258 real_type->set_is_builtin();
259 this->globals_->add_function_declaration("real", NULL, real_type, loc);
261 Function_type* imag_type = Type::make_function_type(NULL, NULL, NULL, loc);
262 imag_type->set_is_varargs();
263 imag_type->set_is_builtin();
264 this->globals_->add_function_declaration("imag", NULL, imag_type, loc);
266 Function_type* delete_type = Type::make_function_type(NULL, NULL, NULL, loc);
267 delete_type->set_is_varargs();
268 delete_type->set_is_builtin();
269 this->globals_->add_function_declaration("delete", NULL, delete_type, loc);
272 std::string
273 Gogo::pkgpath_for_symbol(const std::string& pkgpath)
275 go_assert(!pkgpath.empty());
276 return go_encode_id(pkgpath);
279 // Return a hash code for a string, given a starting hash.
281 unsigned int
282 Gogo::hash_string(const std::string& s, unsigned int h)
284 const char* p = s.data();
285 size_t len = s.length();
286 for (; len > 0; --len)
288 h ^= *p++;
289 h*= 16777619;
291 return h;
294 // Get the package path to use for type reflection data. This should
295 // ideally be unique across the entire link.
297 const std::string&
298 Gogo::pkgpath() const
300 go_assert(this->pkgpath_set_);
301 return this->pkgpath_;
304 // Set the package path from the -fgo-pkgpath command line option.
306 void
307 Gogo::set_pkgpath(const std::string& arg)
309 go_assert(!this->pkgpath_set_);
310 this->pkgpath_ = arg;
311 this->pkgpath_set_ = true;
312 this->pkgpath_from_option_ = true;
315 // Get the package path to use for symbol names.
317 const std::string&
318 Gogo::pkgpath_symbol() const
320 go_assert(this->pkgpath_set_);
321 return this->pkgpath_symbol_;
324 // Set the unique prefix to use to determine the package path, from
325 // the -fgo-prefix command line option.
327 void
328 Gogo::set_prefix(const std::string& arg)
330 go_assert(!this->prefix_from_option_);
331 this->prefix_ = arg;
332 this->prefix_from_option_ = true;
335 // Munge name for use in an error message.
337 std::string
338 Gogo::message_name(const std::string& name)
340 return go_localize_identifier(Gogo::unpack_hidden_name(name).c_str());
343 // Get the package name.
345 const std::string&
346 Gogo::package_name() const
348 go_assert(this->package_ != NULL);
349 return this->package_->package_name();
352 // Set the package name.
354 void
355 Gogo::set_package_name(const std::string& package_name,
356 Location location)
358 if (this->package_ != NULL)
360 if (this->package_->package_name() != package_name)
361 go_error_at(location, "expected package %<%s%>",
362 Gogo::message_name(this->package_->package_name()).c_str());
363 return;
366 // Now that we know the name of the package we are compiling, set
367 // the package path to use for reflect.Type.PkgPath and global
368 // symbol names.
369 if (this->pkgpath_set_)
370 this->pkgpath_symbol_ = Gogo::pkgpath_for_symbol(this->pkgpath_);
371 else
373 if (!this->prefix_from_option_ && package_name == "main")
375 this->pkgpath_ = package_name;
376 this->pkgpath_symbol_ = Gogo::pkgpath_for_symbol(package_name);
378 else
380 if (!this->prefix_from_option_)
381 this->prefix_ = "go";
382 this->pkgpath_ = this->prefix_ + '.' + package_name;
383 this->pkgpath_symbol_ = (Gogo::pkgpath_for_symbol(this->prefix_) + '.'
384 + Gogo::pkgpath_for_symbol(package_name));
386 this->pkgpath_set_ = true;
389 this->package_ = this->register_package(this->pkgpath_,
390 this->pkgpath_symbol_, location);
391 this->package_->set_package_name(package_name, location);
393 if (this->is_main_package())
395 // Declare "main" as a function which takes no parameters and
396 // returns no value.
397 Location uloc = Linemap::unknown_location();
398 this->declare_function(Gogo::pack_hidden_name("main", false),
399 Type::make_function_type (NULL, NULL, NULL, uloc),
400 uloc);
404 // Return whether this is the "main" package. This is not true if
405 // -fgo-pkgpath or -fgo-prefix was used.
407 bool
408 Gogo::is_main_package() const
410 return (this->package_name() == "main"
411 && !this->pkgpath_from_option_
412 && !this->prefix_from_option_);
415 // Import a package.
417 void
418 Gogo::import_package(const std::string& filename,
419 const std::string& local_name,
420 bool is_local_name_exported,
421 bool must_exist,
422 Location location)
424 if (filename.empty())
426 go_error_at(location, "import path is empty");
427 return;
430 const char *pf = filename.data();
431 const char *pend = pf + filename.length();
432 while (pf < pend)
434 unsigned int c;
435 int adv = Lex::fetch_char(pf, &c);
436 if (adv == 0)
438 go_error_at(location, "import path contains invalid UTF-8 sequence");
439 return;
441 if (c == '\0')
443 go_error_at(location, "import path contains NUL");
444 return;
446 if (c < 0x20 || c == 0x7f)
448 go_error_at(location, "import path contains control character");
449 return;
451 if (c == '\\')
453 go_error_at(location, "import path contains backslash; use slash");
454 return;
456 if (Lex::is_unicode_space(c))
458 go_error_at(location, "import path contains space character");
459 return;
461 if (c < 0x7f && strchr("!\"#$%&'()*,:;<=>?[]^`{|}", c) != NULL)
463 go_error_at(location,
464 "import path contains invalid character '%c'", c);
465 return;
467 pf += adv;
470 if (IS_ABSOLUTE_PATH(filename.c_str()))
472 go_error_at(location, "import path cannot be absolute path");
473 return;
476 if (local_name == "init")
477 go_error_at(location, "cannot import package as init");
479 if (filename == "unsafe")
481 this->import_unsafe(local_name, is_local_name_exported, location);
482 this->current_file_imported_unsafe_ = true;
483 return;
486 if (filename == "embed")
487 this->current_file_imported_embed_ = true;
489 Imports::const_iterator p = this->imports_.find(filename);
490 if (p != this->imports_.end())
492 Package* package = p->second;
493 package->set_location(location);
494 std::string ln = local_name;
495 bool is_ln_exported = is_local_name_exported;
496 if (ln.empty())
498 ln = package->package_name();
499 go_assert(!ln.empty());
500 is_ln_exported = Lex::is_exported_name(ln);
502 if (ln == "_")
504 else if (ln == ".")
506 Bindings* bindings = package->bindings();
507 for (Bindings::const_declarations_iterator pd =
508 bindings->begin_declarations();
509 pd != bindings->end_declarations();
510 ++pd)
511 this->add_dot_import_object(pd->second);
512 std::string dot_alias = "." + package->package_name();
513 package->add_alias(dot_alias, location);
515 else
517 package->add_alias(ln, location);
518 ln = this->pack_hidden_name(ln, is_ln_exported);
519 this->package_->bindings()->add_package(ln, package);
521 return;
524 // If we are using an importcfg file we have to check two mappings.
525 // IMPORT_MAP_ is a mapping from package path to real package path,
526 // for vendoring. PACKAGE_FILE_ is a mapping from package path to
527 // file name, to find the file in the build cache.
528 std::string path = filename;
529 Unordered_map(std::string, std::string)::const_iterator pi;
530 pi = this->import_map_.find(filename);
531 if (pi != this->import_map_.end())
532 path = pi->second;
533 pi = this->package_file_.find(path);
534 if (pi != this->package_file_.end())
535 path = pi->second;
537 Import::Stream* stream = Import::open_package(path, location,
538 this->relative_import_path_);
539 if (stream == NULL)
541 if (must_exist)
542 go_error_at(location, "import file %qs not found", filename.c_str());
543 return;
546 Import* imp = new Import(stream, location);
547 imp->register_builtin_types(this);
548 Package* package = imp->import(this, local_name, is_local_name_exported);
549 if (package != NULL)
551 if (package->pkgpath() == this->pkgpath())
552 go_error_at(location,
553 ("imported package uses same package path as package "
554 "being compiled (see %<-fgo-pkgpath%> option)"));
556 this->imports_.insert(std::make_pair(filename, package));
559 imp->clear_stream();
560 delete stream;
562 // FIXME: we never delete imp; we may need it for inlinable functions.
565 Import_init *
566 Gogo::lookup_init(const std::string& init_name)
568 Import_init tmp("", init_name, -1);
569 Import_init_set::iterator it = this->imported_init_fns_.find(&tmp);
570 return (it != this->imported_init_fns_.end()) ? *it : NULL;
573 // Add an import control function for an imported package to the list.
575 void
576 Gogo::add_import_init_fn(const std::string& package_name,
577 const std::string& init_name, int prio)
579 for (Import_init_set::iterator p =
580 this->imported_init_fns_.begin();
581 p != this->imported_init_fns_.end();
582 ++p)
584 Import_init *ii = (*p);
585 if (ii->init_name() == init_name)
587 // If a test of package P1, built as part of package P1,
588 // imports package P2, and P2 imports P1 (perhaps
589 // indirectly), then we will see the same import name with
590 // different import priorities. That is OK, so don't give
591 // an error about it.
592 if (ii->package_name() != package_name)
594 go_error_at(Linemap::unknown_location(),
595 "duplicate package initialization name %qs",
596 Gogo::message_name(init_name).c_str());
597 go_inform(Linemap::unknown_location(), "used by package %qs",
598 Gogo::message_name(ii->package_name()).c_str());
599 go_inform(Linemap::unknown_location(), " and by package %qs",
600 Gogo::message_name(package_name).c_str());
602 ii->set_priority(prio);
603 return;
607 Import_init* nii = new Import_init(package_name, init_name, prio);
608 this->imported_init_fns_.insert(nii);
611 // Return whether we are at the global binding level.
613 bool
614 Gogo::in_global_scope() const
616 return this->functions_.empty();
619 // Return the current binding contour.
621 Bindings*
622 Gogo::current_bindings()
624 if (!this->functions_.empty())
625 return this->functions_.back().blocks.back()->bindings();
626 else if (this->package_ != NULL)
627 return this->package_->bindings();
628 else
629 return this->globals_;
632 const Bindings*
633 Gogo::current_bindings() const
635 if (!this->functions_.empty())
636 return this->functions_.back().blocks.back()->bindings();
637 else if (this->package_ != NULL)
638 return this->package_->bindings();
639 else
640 return this->globals_;
643 void
644 Gogo::update_init_priority(Import_init* ii,
645 std::set<const Import_init *>* visited)
647 visited->insert(ii);
648 int succ_prior = -1;
650 for (std::set<std::string>::const_iterator pci =
651 ii->precursors().begin();
652 pci != ii->precursors().end();
653 ++pci)
655 Import_init* succ = this->lookup_init(*pci);
656 if (visited->find(succ) == visited->end())
657 update_init_priority(succ, visited);
658 succ_prior = std::max(succ_prior, succ->priority());
660 if (ii->priority() <= succ_prior)
661 ii->set_priority(succ_prior + 1);
664 void
665 Gogo::recompute_init_priorities()
667 std::set<Import_init *> nonroots;
669 for (Import_init_set::const_iterator p =
670 this->imported_init_fns_.begin();
671 p != this->imported_init_fns_.end();
672 ++p)
674 const Import_init *ii = *p;
675 for (std::set<std::string>::const_iterator pci =
676 ii->precursors().begin();
677 pci != ii->precursors().end();
678 ++pci)
680 Import_init* ii_init = this->lookup_init(*pci);
681 nonroots.insert(ii_init);
685 // Recursively update priorities starting at roots.
686 std::set<const Import_init*> visited;
687 for (Import_init_set::iterator p =
688 this->imported_init_fns_.begin();
689 p != this->imported_init_fns_.end();
690 ++p)
692 Import_init* ii = *p;
693 if (nonroots.find(ii) != nonroots.end())
694 continue;
695 update_init_priority(ii, &visited);
699 // Add statements to INIT_STMTS which run the initialization
700 // functions for imported packages. This is only used for the "main"
701 // package.
703 void
704 Gogo::init_imports(std::vector<Bstatement*>& init_stmts, Bfunction *bfunction)
706 go_assert(this->is_main_package());
708 if (this->imported_init_fns_.empty())
709 return;
711 Location unknown_loc = Linemap::unknown_location();
712 Function_type* func_type =
713 Type::make_function_type(NULL, NULL, NULL, unknown_loc);
714 Btype* fntype = func_type->get_backend_fntype(this);
716 // Recompute init priorities based on a walk of the init graph.
717 recompute_init_priorities();
719 // We must call them in increasing priority order.
720 std::vector<const Import_init*> v;
721 for (Import_init_set::const_iterator p =
722 this->imported_init_fns_.begin();
723 p != this->imported_init_fns_.end();
724 ++p)
726 // Don't include dummy inits. They are not real functions.
727 if ((*p)->is_dummy())
728 continue;
729 if ((*p)->priority() < 0)
730 go_error_at(Linemap::unknown_location(),
731 "internal error: failed to set init priority for %s",
732 (*p)->package_name().c_str());
733 v.push_back(*p);
735 std::sort(v.begin(), v.end(), priority_compare);
737 // We build calls to the init functions, which take no arguments.
738 std::vector<Bexpression*> empty_args;
739 for (std::vector<const Import_init*>::const_iterator p = v.begin();
740 p != v.end();
741 ++p)
743 const Import_init* ii = *p;
744 std::string user_name = ii->package_name() + ".init";
745 const std::string& init_name(ii->init_name());
746 const unsigned int flags =
747 (Backend::function_is_visible
748 | Backend::function_is_declaration
749 | Backend::function_is_inlinable);
750 Bfunction* pfunc = this->backend()->function(fntype, user_name, init_name,
751 flags, unknown_loc);
752 Bexpression* pfunc_code =
753 this->backend()->function_code_expression(pfunc, unknown_loc);
754 Bexpression* pfunc_call =
755 this->backend()->call_expression(bfunction, pfunc_code, empty_args,
756 NULL, unknown_loc);
757 init_stmts.push_back(this->backend()->expression_statement(bfunction,
758 pfunc_call));
762 // Register global variables with the garbage collector. We need to
763 // register all variables which can hold a pointer value. They become
764 // roots during the mark phase. We build a struct that is easy to
765 // hook into a list of roots.
767 // type gcRoot struct {
768 // decl unsafe.Pointer // Pointer to variable.
769 // size uintptr // Total size of variable.
770 // ptrdata uintptr // Length of variable's gcdata.
771 // gcdata *byte // Pointer mask.
772 // }
774 // type gcRootList struct {
775 // next *gcRootList
776 // count int
777 // roots [...]gcRoot
778 // }
780 // The last entry in the roots array has a NULL decl field.
782 void
783 Gogo::register_gc_vars(const std::vector<Named_object*>& var_gc,
784 std::vector<Bstatement*>& init_stmts,
785 Bfunction* init_bfn)
787 if (var_gc.empty() && this->gc_roots_.empty())
788 return;
790 Type* pvt = Type::make_pointer_type(Type::make_void_type());
791 Type* uintptr_type = Type::lookup_integer_type("uintptr");
792 Type* byte_type = Type::lookup_integer_type("byte");
793 Type* pointer_byte_type = Type::make_pointer_type(byte_type);
794 Struct_type* root_type =
795 Type::make_builtin_struct_type(4,
796 "decl", pvt,
797 "size", uintptr_type,
798 "ptrdata", uintptr_type,
799 "gcdata", pointer_byte_type);
801 Location builtin_loc = Linemap::predeclared_location();
802 unsigned long roots_len = var_gc.size() + this->gc_roots_.size();
803 Expression* length = Expression::make_integer_ul(roots_len, NULL,
804 builtin_loc);
805 Array_type* root_array_type = Type::make_array_type(root_type, length);
806 root_array_type->set_is_array_incomparable();
808 Type* int_type = Type::lookup_integer_type("int");
809 Struct_type* root_list_type =
810 Type::make_builtin_struct_type(3,
811 "next", pvt,
812 "count", int_type,
813 "roots", root_array_type);
815 // Build an initializer for the roots array.
817 Expression_list* roots_init = new Expression_list();
819 for (std::vector<Named_object*>::const_iterator p = var_gc.begin();
820 p != var_gc.end();
821 ++p)
823 Expression_list* init = new Expression_list();
825 Location no_loc = (*p)->location();
826 Expression* decl = Expression::make_var_reference(*p, no_loc);
827 Expression* decl_addr =
828 Expression::make_unary(OPERATOR_AND, decl, no_loc);
829 decl_addr->unary_expression()->set_does_not_escape();
830 decl_addr = Expression::make_cast(pvt, decl_addr, no_loc);
831 init->push_back(decl_addr);
833 Expression* size =
834 Expression::make_type_info(decl->type(),
835 Expression::TYPE_INFO_SIZE);
836 init->push_back(size);
838 Expression* ptrdata =
839 Expression::make_type_info(decl->type(),
840 Expression::TYPE_INFO_BACKEND_PTRDATA);
841 init->push_back(ptrdata);
843 Expression* gcdata = Expression::make_ptrmask_symbol(decl->type());
844 init->push_back(gcdata);
846 Expression* root_ctor =
847 Expression::make_struct_composite_literal(root_type, init, no_loc);
848 roots_init->push_back(root_ctor);
851 for (std::vector<Expression*>::const_iterator p = this->gc_roots_.begin();
852 p != this->gc_roots_.end();
853 ++p)
855 Expression_list *init = new Expression_list();
857 Expression* expr = *p;
858 Location eloc = expr->location();
859 init->push_back(Expression::make_cast(pvt, expr, eloc));
861 Type* type = expr->type()->points_to();
862 go_assert(type != NULL);
864 Expression* size =
865 Expression::make_type_info(type,
866 Expression::TYPE_INFO_SIZE);
867 init->push_back(size);
869 Expression* ptrdata =
870 Expression::make_type_info(type,
871 Expression::TYPE_INFO_BACKEND_PTRDATA);
872 init->push_back(ptrdata);
874 Expression* gcdata = Expression::make_ptrmask_symbol(type);
875 init->push_back(gcdata);
877 Expression* root_ctor =
878 Expression::make_struct_composite_literal(root_type, init, eloc);
879 roots_init->push_back(root_ctor);
882 // Build a constructor for the struct.
884 Expression_list* root_list_init = new Expression_list();
885 root_list_init->push_back(Expression::make_nil(builtin_loc));
886 root_list_init->push_back(Expression::make_integer_ul(roots_len, int_type,
887 builtin_loc));
889 Expression* roots_ctor =
890 Expression::make_array_composite_literal(root_array_type, roots_init,
891 builtin_loc);
892 root_list_init->push_back(roots_ctor);
894 Expression* root_list_ctor =
895 Expression::make_struct_composite_literal(root_list_type, root_list_init,
896 builtin_loc);
898 Expression* root_addr = Expression::make_unary(OPERATOR_AND, root_list_ctor,
899 builtin_loc);
900 root_addr->unary_expression()->set_is_gc_root();
901 Expression* register_roots = Runtime::make_call(Runtime::REGISTER_GC_ROOTS,
902 builtin_loc, 1, root_addr);
904 Translate_context context(this, NULL, NULL, NULL);
905 Bexpression* bcall = register_roots->get_backend(&context);
906 init_stmts.push_back(this->backend()->expression_statement(init_bfn, bcall));
909 // Build the list of type descriptors defined in this package. This is to help
910 // the reflect package to find compiler-generated types.
912 // type typeDescriptorList struct {
913 // count int
914 // types [...]unsafe.Pointer
915 // }
917 static Struct_type*
918 type_descriptor_list_type(unsigned long len)
920 Location builtin_loc = Linemap::predeclared_location();
921 Type* int_type = Type::lookup_integer_type("int");
922 Type* ptr_type = Type::make_pointer_type(Type::make_void_type());
923 // Avoid creating zero-length type.
924 unsigned long nelems = (len != 0 ? len : 1);
925 Expression* len_expr = Expression::make_integer_ul(nelems, NULL,
926 builtin_loc);
927 Array_type* array_type = Type::make_array_type(ptr_type, len_expr);
928 array_type->set_is_array_incomparable();
929 Struct_type* list_type =
930 Type::make_builtin_struct_type(2, "count", int_type,
931 "types", array_type);
932 return list_type;
935 void
936 Gogo::build_type_descriptor_list()
938 // Create the list type
939 Location builtin_loc = Linemap::predeclared_location();
940 unsigned long len = this->type_descriptors_.size();
941 Struct_type* list_type = type_descriptor_list_type(len);
942 Btype* bt = list_type->get_backend(this);
943 Btype* bat = list_type->field(1)->type()->get_backend(this);
945 // Create the variable
946 std::string name = this->type_descriptor_list_symbol(this->pkgpath_symbol());
947 unsigned int flags = Backend::variable_is_constant;
948 Bvariable* bv = this->backend()->implicit_variable(name, name, bt, flags, 0);
950 // Build the initializer
951 std::vector<unsigned long> indexes;
952 std::vector<Bexpression*> vals;
953 std::vector<Type*>::iterator p = this->type_descriptors_.begin();
954 for (unsigned long i = 0; i < len; ++i, ++p)
956 Bexpression* bexpr = (*p)->type_descriptor_pointer(this,
957 builtin_loc);
958 indexes.push_back(i);
959 vals.push_back(bexpr);
961 Bexpression* barray =
962 this->backend()->array_constructor_expression(bat, indexes, vals,
963 builtin_loc);
965 Translate_context context(this, NULL, NULL, NULL);
966 std::vector<Bexpression*> fields;
967 Expression* len_expr = Expression::make_integer_ul(len, NULL,
968 builtin_loc);
969 fields.push_back(len_expr->get_backend(&context));
970 fields.push_back(barray);
971 Bexpression* binit =
972 this->backend()->constructor_expression(bt, fields, builtin_loc);
974 this->backend()->implicit_variable_set_init(bv, name, bt, flags, binit);
977 // Register the type descriptors with the runtime. This is to help
978 // the reflect package to find compiler-generated types.
980 void
981 Gogo::register_type_descriptors(std::vector<Bstatement*>& init_stmts,
982 Bfunction* init_bfn)
984 // Create the list type
985 Location builtin_loc = Linemap::predeclared_location();
986 Struct_type* list_type = type_descriptor_list_type(1);
987 Btype* bt = list_type->get_backend(this);
989 // Collect type lists from transitive imports.
990 std::vector<std::string> list_names;
991 for (Import_init_set::iterator it = this->imported_init_fns_.begin();
992 it != this->imported_init_fns_.end();
993 ++it)
995 std::string pkgpath_symbol =
996 this->pkgpath_symbol_from_init_fn_name((*it)->init_name());
997 list_names.push_back(this->type_descriptor_list_symbol(pkgpath_symbol));
999 // Add the main package itself.
1000 list_names.push_back(this->type_descriptor_list_symbol("main"));
1002 // Build a list of lists.
1003 std::vector<unsigned long> indexes;
1004 std::vector<Bexpression*> vals;
1005 unsigned long i = 0;
1006 for (std::vector<std::string>::iterator p = list_names.begin();
1007 p != list_names.end();
1008 ++p)
1010 Bvariable* bv =
1011 this->backend()->implicit_variable_reference(*p, *p, bt);
1012 Bexpression* bexpr = this->backend()->var_expression(bv, builtin_loc);
1013 bexpr = this->backend()->address_expression(bexpr, builtin_loc);
1015 indexes.push_back(i);
1016 vals.push_back(bexpr);
1017 i++;
1019 Expression* len_expr = Expression::make_integer_ul(i, NULL, builtin_loc);
1020 Type* list_ptr_type = Type::make_pointer_type(list_type);
1021 Type* list_array_type = Type::make_array_type(list_ptr_type, len_expr);
1022 Btype* bat = list_array_type->get_backend(this);
1023 Bexpression* barray =
1024 this->backend()->array_constructor_expression(bat, indexes, vals,
1025 builtin_loc);
1027 // Create a variable holding the list.
1028 std::string name = this->typelists_symbol();
1029 unsigned int flags = (Backend::variable_is_hidden
1030 | Backend::variable_is_constant);
1031 Bvariable* bv = this->backend()->implicit_variable(name, name, bat, flags,
1033 this->backend()->implicit_variable_set_init(bv, name, bat, flags, barray);
1035 // Build the call in main package's init function.
1036 Translate_context context(this, NULL, NULL, NULL);
1037 Bexpression* bexpr = this->backend()->var_expression(bv, builtin_loc);
1038 bexpr = this->backend()->address_expression(bexpr, builtin_loc);
1039 Type* array_ptr_type = Type::make_pointer_type(list_array_type);
1040 Expression* expr = Expression::make_backend(bexpr, array_ptr_type,
1041 builtin_loc);
1042 expr = Runtime::make_call(Runtime::REGISTER_TYPE_DESCRIPTORS,
1043 builtin_loc, 2, len_expr->copy(), expr);
1044 Bexpression* bcall = expr->get_backend(&context);
1045 init_stmts.push_back(this->backend()->expression_statement(init_bfn,
1046 bcall));
1049 // Build the decl for the initialization function.
1051 Named_object*
1052 Gogo::initialization_function_decl()
1054 std::string name = this->get_init_fn_name();
1055 Location loc = this->package_->location();
1057 Function_type* fntype = Type::make_function_type(NULL, NULL, NULL, loc);
1058 Function* initfn = new Function(fntype, NULL, NULL, loc);
1059 return Named_object::make_function(name, NULL, initfn);
1062 // Create the magic initialization function. CODE_STMT is the
1063 // code that it needs to run.
1065 Named_object*
1066 Gogo::create_initialization_function(Named_object* initfn,
1067 Bstatement* code_stmt)
1069 // Make sure that we thought we needed an initialization function,
1070 // as otherwise we will not have reported it in the export data.
1071 go_assert(this->is_main_package() || this->need_init_fn_);
1073 if (initfn == NULL)
1074 initfn = this->initialization_function_decl();
1076 // Bind the initialization function code to a block.
1077 Bfunction* fndecl = initfn->func_value()->get_or_make_decl(this, initfn);
1078 Location pkg_loc = this->package_->location();
1079 std::vector<Bvariable*> vars;
1080 this->backend()->block(fndecl, NULL, vars, pkg_loc, pkg_loc);
1082 if (!this->backend()->function_set_body(fndecl, code_stmt))
1084 go_assert(saw_errors());
1085 return NULL;
1087 return initfn;
1090 // Given an expression, collect all the global variables defined in
1091 // this package that it references.
1093 class Find_vars : public Traverse
1095 private:
1096 // The list of variables we accumulate.
1097 typedef Unordered_set(Named_object*) Vars;
1099 // A hash table we use to avoid looping. The index is a
1100 // Named_object* or a Temporary_statement*. We only look through
1101 // objects defined in this package.
1102 typedef Unordered_set(const void*) Seen_objects;
1104 public:
1105 Find_vars()
1106 : Traverse(traverse_expressions | traverse_statements),
1107 vars_(), seen_objects_(), lhs_is_ref_(false)
1110 // An iterator through the variables found, after the traversal.
1111 typedef Vars::const_iterator const_iterator;
1113 const_iterator
1114 begin() const
1115 { return this->vars_.begin(); }
1117 const_iterator
1118 end() const
1119 { return this->vars_.end(); }
1122 expression(Expression**);
1125 statement(Block*, size_t* index, Statement*);
1127 private:
1128 // Accumulated variables.
1129 Vars vars_;
1130 // Objects we have already seen.
1131 Seen_objects seen_objects_;
1132 // Whether an assignment to a variable counts as a reference.
1133 bool lhs_is_ref_;
1136 // Collect global variables referenced by EXPR. Look through function
1137 // calls and variable initializations.
1140 Find_vars::expression(Expression** pexpr)
1142 Expression* e = *pexpr;
1144 Var_expression* ve = e->var_expression();
1145 if (ve != NULL)
1147 Named_object* v = ve->named_object();
1148 if (!v->is_variable() || v->package() != NULL)
1150 // This is a result parameter or a variable defined in a
1151 // different package. Either way we don't care about it.
1152 return TRAVERSE_CONTINUE;
1155 std::pair<Seen_objects::iterator, bool> ins =
1156 this->seen_objects_.insert(v);
1157 if (!ins.second)
1159 // We've seen this variable before.
1160 return TRAVERSE_CONTINUE;
1163 if (v->var_value()->is_global())
1164 this->vars_.insert(v);
1166 Expression* init = v->var_value()->init();
1167 if (init != NULL)
1169 if (Expression::traverse(&init, this) == TRAVERSE_EXIT)
1170 return TRAVERSE_EXIT;
1174 // We traverse the code of any function or bound method we see. Note that
1175 // this means that we will traverse the code of a function or bound method
1176 // whose address is taken even if it is not called.
1177 Func_expression* fe = e->func_expression();
1178 Bound_method_expression* bme = e->bound_method_expression();
1179 if (fe != NULL || bme != NULL)
1181 const Named_object* f = fe != NULL ? fe->named_object() : bme->function();
1182 if (f->is_function() && f->package() == NULL)
1184 std::pair<Seen_objects::iterator, bool> ins =
1185 this->seen_objects_.insert(f);
1186 if (ins.second)
1188 // This is the first time we have seen this name.
1189 bool hold = this->lhs_is_ref_;
1190 this->lhs_is_ref_ = true;
1191 int r = f->func_value()->block()->traverse(this);
1192 this->lhs_is_ref_ = hold;
1193 if (r == TRAVERSE_EXIT)
1194 return TRAVERSE_EXIT;
1199 Temporary_reference_expression* tre = e->temporary_reference_expression();
1200 if (tre != NULL)
1202 Temporary_statement* ts = tre->statement();
1203 Expression* init = ts->init();
1204 if (init != NULL)
1206 std::pair<Seen_objects::iterator, bool> ins =
1207 this->seen_objects_.insert(ts);
1208 if (ins.second)
1210 // This is the first time we have seen this temporary
1211 // statement.
1212 if (Expression::traverse(&init, this) == TRAVERSE_EXIT)
1213 return TRAVERSE_EXIT;
1218 return TRAVERSE_CONTINUE;
1221 // Check a statement while searching for variables. This is where we
1222 // skip variables on the left hand side of assigments if appropriate.
1225 Find_vars::statement(Block*, size_t*, Statement* s)
1227 if (this->lhs_is_ref_)
1228 return TRAVERSE_CONTINUE;
1229 Assignment_statement* as = s->assignment_statement();
1230 if (as == NULL)
1231 return TRAVERSE_CONTINUE;
1233 // Only traverse subexpressions of the LHS.
1234 if (as->lhs()->traverse_subexpressions(this) == TRAVERSE_EXIT)
1235 return TRAVERSE_EXIT;
1237 Expression* rhs = as->rhs();
1238 if (Expression::traverse(&rhs, this) == TRAVERSE_EXIT)
1239 return TRAVERSE_EXIT;
1241 return TRAVERSE_SKIP_COMPONENTS;
1244 // Return true if EXPR, PREINIT, or DEP refers to VAR.
1246 static bool
1247 expression_requires(Expression* expr, Block* preinit, Named_object* dep,
1248 Named_object* var)
1250 Find_vars find_vars;
1251 if (expr != NULL)
1252 Expression::traverse(&expr, &find_vars);
1253 if (preinit != NULL)
1254 preinit->traverse(&find_vars);
1255 if (dep != NULL)
1257 Expression* init = dep->var_value()->init();
1258 if (init != NULL)
1259 Expression::traverse(&init, &find_vars);
1260 if (dep->var_value()->has_pre_init())
1261 dep->var_value()->preinit()->traverse(&find_vars);
1264 for (Find_vars::const_iterator p = find_vars.begin();
1265 p != find_vars.end();
1266 ++p)
1268 if (*p == var)
1269 return true;
1271 return false;
1274 // Sort variable initializations. If the initialization expression
1275 // for variable A refers directly or indirectly to the initialization
1276 // expression for variable B, then we must initialize B before A.
1278 class Var_init
1280 public:
1281 Var_init()
1282 : var_(NULL), init_(NULL), dep_count_(0)
1285 Var_init(Named_object* var, Bstatement* init)
1286 : var_(var), init_(init), dep_count_(0)
1289 // Return the variable.
1290 Named_object*
1291 var() const
1292 { return this->var_; }
1294 // Return the initialization expression.
1295 Bstatement*
1296 init() const
1297 { return this->init_; }
1299 // Return the number of remaining dependencies.
1300 size_t
1301 dep_count() const
1302 { return this->dep_count_; }
1304 // Increment the number of dependencies.
1305 void
1306 add_dependency()
1307 { ++this->dep_count_; }
1309 // Decrement the number of dependencies.
1310 void
1311 remove_dependency()
1312 { --this->dep_count_; }
1314 private:
1315 // The variable being initialized.
1316 Named_object* var_;
1317 // The backend initialization statement.
1318 Bstatement* init_;
1319 // The number of initializations this is dependent on. A variable
1320 // initialization should not be emitted if any of its dependencies
1321 // have not yet been resolved.
1322 size_t dep_count_;
1325 // For comparing Var_init keys in a map.
1327 inline bool
1328 operator<(const Var_init& v1, const Var_init& v2)
1329 { return v1.var()->name() < v2.var()->name(); }
1331 typedef std::list<Var_init> Var_inits;
1333 // Sort the variable initializations. The rule we follow is that we
1334 // emit them in the order they appear in the array, except that if the
1335 // initialization expression for a variable V1 depends upon another
1336 // variable V2 then we initialize V1 after V2.
1338 static void
1339 sort_var_inits(Var_inits* var_inits)
1341 if (var_inits->empty())
1342 return;
1344 std::map<Named_object*, Var_init*> var_to_init;
1346 // A mapping from a variable initialization to a set of
1347 // variable initializations that depend on it.
1348 typedef std::map<Var_init, std::set<Var_init*> > Init_deps;
1349 Init_deps init_deps;
1350 bool init_loop = false;
1352 // Map from variable to Var_init.
1353 for (Var_inits::iterator pvar = var_inits->begin();
1354 pvar != var_inits->end();
1355 ++pvar)
1357 Named_object* var = pvar->var();
1358 var_to_init[var] = &*pvar;
1361 // Add dependencies to init_deps, and check for cycles.
1362 for (Var_inits::iterator pvar = var_inits->begin();
1363 pvar != var_inits->end();
1364 ++pvar)
1366 Named_object* var = pvar->var();
1368 const std::vector<Named_object*>* refs =
1369 pvar->var()->var_value()->init_refs();
1370 if (refs == NULL)
1371 continue;
1372 for (std::vector<Named_object*>::const_iterator pdep = refs->begin();
1373 pdep != refs->end();
1374 ++pdep)
1376 Named_object* dep = *pdep;
1377 if (var == dep)
1379 // This is a reference from a variable to itself.
1380 go_error_at(var->location(),
1381 ("initialization expression for %qs "
1382 "depends upon itself"),
1383 var->message_name().c_str());
1384 continue;
1387 Var_init* dep_init = var_to_init[dep];
1388 if (dep_init == NULL)
1390 // This is a dependency on some variable that doesn't
1391 // have an initializer, so for purposes of
1392 // initialization ordering this is irrelevant.
1393 continue;
1396 init_deps[*dep_init].insert(&(*pvar));
1397 pvar->add_dependency();
1399 // Check for cycles.
1400 const std::vector<Named_object*>* deprefs =
1401 dep_init->var()->var_value()->init_refs();
1402 if (deprefs == NULL)
1403 continue;
1404 for (std::vector<Named_object*>::const_iterator pdepdep =
1405 deprefs->begin();
1406 pdepdep != deprefs->end();
1407 ++pdepdep)
1409 if (*pdepdep == var)
1411 go_error_at(var->location(),
1412 ("initialization expressions for %qs and "
1413 "%qs depend upon each other"),
1414 var->message_name().c_str(),
1415 dep->message_name().c_str());
1416 go_inform(dep->location(), "%qs defined here",
1417 dep->message_name().c_str());
1418 init_loop = true;
1419 break;
1425 var_to_init.clear();
1427 // If there are no dependencies then the declaration order is sorted.
1428 if (!init_deps.empty() && !init_loop)
1430 // Otherwise, sort variable initializations by emitting all variables with
1431 // no dependencies in declaration order. VAR_INITS is already in
1432 // declaration order.
1433 Var_inits ready;
1434 while (!var_inits->empty())
1436 Var_inits::iterator v1;;
1437 for (v1 = var_inits->begin(); v1 != var_inits->end(); ++v1)
1439 if (v1->dep_count() == 0)
1440 break;
1442 go_assert(v1 != var_inits->end());
1444 // V1 either has no dependencies or its dependencies have already
1445 // been emitted, add it to READY next. When V1 is emitted, remove
1446 // a dependency from each V that depends on V1.
1447 ready.splice(ready.end(), *var_inits, v1);
1449 Init_deps::iterator p1 = init_deps.find(*v1);
1450 if (p1 != init_deps.end())
1452 std::set<Var_init*> resolved = p1->second;
1453 for (std::set<Var_init*>::iterator pv = resolved.begin();
1454 pv != resolved.end();
1455 ++pv)
1456 (*pv)->remove_dependency();
1457 init_deps.erase(p1);
1460 var_inits->swap(ready);
1461 go_assert(init_deps.empty());
1465 // Give an error if the initialization expression for VAR depends on
1466 // itself. We only check if INIT is not NULL and there is no
1467 // dependency; when INIT is NULL, it means that PREINIT sets VAR,
1468 // which we will interpret as a loop.
1470 void
1471 Gogo::check_self_dep(Named_object* var)
1473 Expression* init = var->var_value()->init();
1474 Block* preinit = var->var_value()->preinit();
1475 Named_object* dep = this->var_depends_on(var->var_value());
1476 if (init != NULL
1477 && dep == NULL
1478 && expression_requires(init, preinit, NULL, var))
1479 go_error_at(var->location(),
1480 "initialization expression for %qs depends upon itself",
1481 var->message_name().c_str());
1484 // Write out the global definitions.
1486 void
1487 Gogo::write_globals()
1489 this->build_interface_method_tables();
1491 Bindings* bindings = this->current_bindings();
1493 for (Bindings::const_declarations_iterator p = bindings->begin_declarations();
1494 p != bindings->end_declarations();
1495 ++p)
1497 // If any function declarations needed a descriptor, make sure
1498 // we build it.
1499 Named_object* no = p->second;
1500 if (no->is_function_declaration())
1501 no->func_declaration_value()->build_backend_descriptor(this);
1504 // Lists of globally declared types, variables, constants, and functions
1505 // that must be defined.
1506 std::vector<Btype*> type_decls;
1507 std::vector<Bvariable*> var_decls;
1508 std::vector<Bexpression*> const_decls;
1509 std::vector<Bfunction*> func_decls;
1511 // The init function declaration and associated Bfunction, if necessary.
1512 Named_object* init_fndecl = NULL;
1513 Bfunction* init_bfn = NULL;
1515 std::vector<Bstatement*> init_stmts;
1516 std::vector<Bstatement*> var_init_stmts;
1518 if (this->is_main_package())
1520 init_fndecl = this->initialization_function_decl();
1521 init_bfn = init_fndecl->func_value()->get_or_make_decl(this, init_fndecl);
1524 // A list of variable initializations.
1525 Var_inits var_inits;
1527 // A list of variables which need to be registered with the garbage
1528 // collector.
1529 size_t count_definitions = bindings->size_definitions();
1530 std::vector<Named_object*> var_gc;
1531 var_gc.reserve(count_definitions);
1533 for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
1534 p != bindings->end_definitions();
1535 ++p)
1537 Named_object* no = *p;
1538 go_assert(!no->is_type_declaration() && !no->is_function_declaration());
1540 // There is nothing to do for a package.
1541 if (no->is_package())
1542 continue;
1544 // There is nothing to do for an object which was imported from
1545 // a different package into the global scope.
1546 if (no->package() != NULL)
1547 continue;
1549 // Skip blank named functions and constants.
1550 if ((no->is_function() && no->func_value()->is_sink())
1551 || (no->is_const() && no->const_value()->is_sink()))
1552 continue;
1554 // Skip global sink variables with static initializers. With
1555 // non-static initializers we have to evaluate for side effects,
1556 // and we wind up initializing a dummy variable. That is not
1557 // ideal but it works and it's a rare case.
1558 if (no->is_variable()
1559 && no->var_value()->is_global_sink()
1560 && !no->var_value()->has_pre_init()
1561 && (no->var_value()->init() == NULL
1562 || no->var_value()->init()->is_static_initializer()))
1563 continue;
1565 // There is nothing useful we can output for constants which
1566 // have ideal or non-integral type.
1567 if (no->is_const())
1569 Type* type = no->const_value()->type();
1570 if (type == NULL)
1571 type = no->const_value()->expr()->type();
1572 if (type->is_abstract() || !type->is_numeric_type())
1573 continue;
1576 if (!no->is_variable())
1577 no->get_backend(this, const_decls, type_decls, func_decls);
1578 else
1580 Variable* var = no->var_value();
1581 Bvariable* bvar = no->get_backend_variable(this, NULL);
1582 var_decls.push_back(bvar);
1584 // Check for a sink variable, which may be used to run an
1585 // initializer purely for its side effects.
1586 bool is_sink = no->name()[0] == '_' && no->name()[1] == '.';
1588 Bstatement* var_init_stmt = NULL;
1589 if (!var->has_pre_init())
1591 // If the backend representation of the variable initializer is
1592 // constant, we can just set the initial value using
1593 // global_var_set_init instead of during the init() function.
1594 // The initializer is constant if it is the zero-value of the
1595 // variable's type or if the initial value is an immutable value
1596 // that is not copied to the heap.
1597 bool is_static_initializer = false;
1598 if (var->init() == NULL)
1599 is_static_initializer = true;
1600 else
1602 Type* var_type = var->type();
1603 Expression* init = var->init();
1604 Expression* init_cast =
1605 Expression::make_cast(var_type, init, var->location());
1606 is_static_initializer = init_cast->is_static_initializer();
1609 // Non-constant variable initializations might need to create
1610 // temporary variables, which will need the initialization
1611 // function as context.
1612 Named_object* var_init_fn;
1613 if (is_static_initializer)
1614 var_init_fn = NULL;
1615 else
1617 if (init_fndecl == NULL)
1619 init_fndecl = this->initialization_function_decl();
1620 Function* func = init_fndecl->func_value();
1621 init_bfn = func->get_or_make_decl(this, init_fndecl);
1623 var_init_fn = init_fndecl;
1625 Bexpression* var_binit = var->get_init(this, var_init_fn);
1627 if (var_binit == NULL)
1629 else if (is_static_initializer)
1631 if (expression_requires(var->init(), NULL,
1632 this->var_depends_on(var), no))
1633 go_error_at(no->location(),
1634 "initialization expression for %qs depends "
1635 "upon itself",
1636 no->message_name().c_str());
1637 this->backend()->global_variable_set_init(bvar, var_binit);
1639 else if (is_sink)
1640 var_init_stmt =
1641 this->backend()->expression_statement(init_bfn, var_binit);
1642 else
1644 Location loc = var->location();
1645 Bexpression* var_expr =
1646 this->backend()->var_expression(bvar, loc);
1647 var_init_stmt =
1648 this->backend()->assignment_statement(init_bfn, var_expr,
1649 var_binit, loc);
1652 else
1654 // We are going to create temporary variables which
1655 // means that we need an fndecl.
1656 if (init_fndecl == NULL)
1657 init_fndecl = this->initialization_function_decl();
1659 Bvariable* var_decl = is_sink ? NULL : bvar;
1660 var_init_stmt = var->get_init_block(this, init_fndecl, var_decl);
1663 if (var_init_stmt != NULL)
1665 if (var->init() == NULL && !var->has_pre_init())
1666 var_init_stmts.push_back(var_init_stmt);
1667 else
1668 var_inits.push_back(Var_init(no, var_init_stmt));
1670 else if (this->var_depends_on(var) != NULL)
1672 // This variable is initialized from something that is
1673 // not in its init or preinit. This variable needs to
1674 // participate in dependency analysis sorting, in case
1675 // some other variable depends on this one.
1676 Btype* btype = no->var_value()->type()->get_backend(this);
1677 Bexpression* zero = this->backend()->zero_expression(btype);
1678 Bstatement* zero_stmt =
1679 this->backend()->expression_statement(init_bfn, zero);
1680 var_inits.push_back(Var_init(no, zero_stmt));
1683 // Collect a list of all global variables with pointers,
1684 // to register them for the garbage collector.
1685 if (!is_sink && var->type()->has_pointer())
1687 // Avoid putting runtime.gcRoots itself on the list.
1688 if (this->compiling_runtime()
1689 && this->package_name() == "runtime"
1690 && (Gogo::unpack_hidden_name(no->name()) == "gcRoots"
1691 || Gogo::unpack_hidden_name(no->name()) == "gcRootsIndex"))
1693 else
1694 var_gc.push_back(no);
1699 // Output inline functions, which are in different packages.
1700 for (std::vector<Named_object*>::const_iterator p =
1701 this->imported_inline_functions_.begin();
1702 p != this->imported_inline_functions_.end();
1703 ++p)
1704 (*p)->get_backend(this, const_decls, type_decls, func_decls);
1706 // Build the list of type descriptors.
1707 this->build_type_descriptor_list();
1709 if (this->is_main_package())
1711 // Register the type descriptor lists, so that at run time
1712 // the reflect package can find compiler-created types, and
1713 // deduplicate if the same type is created with reflection.
1714 // This needs to be done before calling any package's init
1715 // function, as it may create type through reflection.
1716 this->register_type_descriptors(init_stmts, init_bfn);
1718 // Initialize imported packages.
1719 this->init_imports(init_stmts, init_bfn);
1722 // Register global variables with the garbage collector.
1723 this->register_gc_vars(var_gc, init_stmts, init_bfn);
1725 // Simple variable initializations, after all variables are
1726 // registered.
1727 init_stmts.push_back(this->backend()->statement_list(var_init_stmts));
1729 // Complete variable initializations, first sorting them into a
1730 // workable order.
1731 if (!var_inits.empty())
1733 sort_var_inits(&var_inits);
1734 for (Var_inits::const_iterator p = var_inits.begin();
1735 p != var_inits.end();
1736 ++p)
1737 init_stmts.push_back(p->init());
1740 // After all the variables are initialized, call the init
1741 // functions if there are any. Init functions take no arguments, so
1742 // we pass in EMPTY_ARGS to call them.
1743 std::vector<Bexpression*> empty_args;
1744 for (std::vector<Named_object*>::const_iterator p =
1745 this->init_functions_.begin();
1746 p != this->init_functions_.end();
1747 ++p)
1749 Location func_loc = (*p)->location();
1750 Function* func = (*p)->func_value();
1751 Bfunction* initfn = func->get_or_make_decl(this, *p);
1752 Bexpression* func_code =
1753 this->backend()->function_code_expression(initfn, func_loc);
1754 Bexpression* call = this->backend()->call_expression(init_bfn, func_code,
1755 empty_args,
1756 NULL, func_loc);
1757 Bstatement* ist = this->backend()->expression_statement(init_bfn, call);
1758 init_stmts.push_back(ist);
1761 // Set up a magic function to do all the initialization actions.
1762 // This will be called if this package is imported.
1763 Bstatement* init_fncode = this->backend()->statement_list(init_stmts);
1764 if (this->need_init_fn_ || this->is_main_package())
1766 init_fndecl =
1767 this->create_initialization_function(init_fndecl, init_fncode);
1768 if (init_fndecl != NULL)
1769 func_decls.push_back(init_fndecl->func_value()->get_decl());
1772 // We should not have seen any new bindings created during the conversion.
1773 go_assert(count_definitions == this->current_bindings()->size_definitions());
1775 // Define all globally declared values.
1776 if (!saw_errors())
1777 this->backend()->write_global_definitions(type_decls, const_decls,
1778 func_decls, var_decls);
1781 // Return the current block.
1783 Block*
1784 Gogo::current_block()
1786 if (this->functions_.empty())
1787 return NULL;
1788 else
1789 return this->functions_.back().blocks.back();
1792 // Look up a name in the current binding contour. If PFUNCTION is not
1793 // NULL, set it to the function in which the name is defined, or NULL
1794 // if the name is defined in global scope.
1796 Named_object*
1797 Gogo::lookup(const std::string& name, Named_object** pfunction) const
1799 if (pfunction != NULL)
1800 *pfunction = NULL;
1802 if (Gogo::is_sink_name(name))
1803 return Named_object::make_sink();
1805 for (Open_functions::const_reverse_iterator p = this->functions_.rbegin();
1806 p != this->functions_.rend();
1807 ++p)
1809 Named_object* ret = p->blocks.back()->bindings()->lookup(name);
1810 if (ret != NULL)
1812 if (pfunction != NULL)
1813 *pfunction = p->function;
1814 return ret;
1818 if (this->package_ != NULL)
1820 Named_object* ret = this->package_->bindings()->lookup(name);
1821 if (ret != NULL)
1823 if (ret->package() != NULL)
1825 std::string dot_alias = "." + ret->package()->package_name();
1826 ret->package()->note_usage(dot_alias);
1828 return ret;
1832 // We do not look in the global namespace. If we did, the global
1833 // namespace would effectively hide names which were defined in
1834 // package scope which we have not yet seen. Instead,
1835 // define_global_names is called after parsing is over to connect
1836 // undefined names at package scope with names defined at global
1837 // scope.
1839 return NULL;
1842 // Look up a name in the current block, without searching enclosing
1843 // blocks.
1845 Named_object*
1846 Gogo::lookup_in_block(const std::string& name) const
1848 go_assert(!this->functions_.empty());
1849 go_assert(!this->functions_.back().blocks.empty());
1850 return this->functions_.back().blocks.back()->bindings()->lookup_local(name);
1853 // Look up a name in the global namespace.
1855 Named_object*
1856 Gogo::lookup_global(const char* name) const
1858 return this->globals_->lookup(name);
1861 // Add an imported package.
1863 Package*
1864 Gogo::add_imported_package(const std::string& real_name,
1865 const std::string& alias_arg,
1866 bool is_alias_exported,
1867 const std::string& pkgpath,
1868 const std::string& pkgpath_symbol,
1869 Location location,
1870 bool* padd_to_globals)
1872 Package* ret = this->register_package(pkgpath, pkgpath_symbol, location);
1873 ret->set_package_name(real_name, location);
1875 *padd_to_globals = false;
1877 if (alias_arg == "_")
1879 else if (alias_arg == ".")
1881 *padd_to_globals = true;
1882 std::string dot_alias = "." + real_name;
1883 ret->add_alias(dot_alias, location);
1885 else
1887 std::string alias = alias_arg;
1888 if (alias.empty())
1890 alias = real_name;
1891 is_alias_exported = Lex::is_exported_name(alias);
1893 ret->add_alias(alias, location);
1894 alias = this->pack_hidden_name(alias, is_alias_exported);
1895 Named_object* no = this->package_->bindings()->add_package(alias, ret);
1896 if (!no->is_package())
1897 return NULL;
1900 return ret;
1903 // Register a package. This package may or may not be imported. This
1904 // returns the Package structure for the package, creating if it
1905 // necessary. LOCATION is the location of the import statement that
1906 // led us to see this package. PKGPATH_SYMBOL is the symbol to use
1907 // for names in the package; it may be the empty string, in which case
1908 // we either get it later or make a guess when we need it.
1910 Package*
1911 Gogo::register_package(const std::string& pkgpath,
1912 const std::string& pkgpath_symbol, Location location)
1914 Package* package = NULL;
1915 std::pair<Packages::iterator, bool> ins =
1916 this->packages_.insert(std::make_pair(pkgpath, package));
1917 if (!ins.second)
1919 // We have seen this package name before.
1920 package = ins.first->second;
1921 go_assert(package != NULL && package->pkgpath() == pkgpath);
1922 if (!pkgpath_symbol.empty())
1923 package->set_pkgpath_symbol(pkgpath_symbol);
1924 if (Linemap::is_unknown_location(package->location()))
1925 package->set_location(location);
1927 else
1929 // First time we have seen this package name.
1930 package = new Package(pkgpath, pkgpath_symbol, location);
1931 go_assert(ins.first->second == NULL);
1932 ins.first->second = package;
1935 return package;
1938 // Return the pkgpath symbol for a package, given the pkgpath.
1940 std::string
1941 Gogo::pkgpath_symbol_for_package(const std::string& pkgpath)
1943 Packages::iterator p = this->packages_.find(pkgpath);
1944 go_assert(p != this->packages_.end());
1945 return p->second->pkgpath_symbol();
1948 // Start compiling a function.
1950 Named_object*
1951 Gogo::start_function(const std::string& name, Function_type* type,
1952 bool add_method_to_type, Location location)
1954 bool at_top_level = this->functions_.empty();
1956 Block* block = new Block(NULL, location);
1958 Named_object* enclosing = (at_top_level
1959 ? NULL
1960 : this->functions_.back().function);
1962 Function* function = new Function(type, enclosing, block, location);
1964 if (type->is_method())
1966 const Typed_identifier* receiver = type->receiver();
1967 Variable* this_param = new Variable(receiver->type(), NULL, false,
1968 true, true, location);
1969 std::string rname = receiver->name();
1970 unsigned rcounter = 0;
1972 // We need to give a nameless receiver parameter a synthesized name to
1973 // avoid having it clash with some other nameless param. FIXME.
1974 Gogo::rename_if_empty(&rname, "r", &rcounter);
1976 block->bindings()->add_variable(rname, NULL, this_param);
1979 const Typed_identifier_list* parameters = type->parameters();
1980 bool is_varargs = type->is_varargs();
1981 unsigned pcounter = 0;
1982 if (parameters != NULL)
1984 for (Typed_identifier_list::const_iterator p = parameters->begin();
1985 p != parameters->end();
1986 ++p)
1988 Variable* param = new Variable(p->type(), NULL, false, true, false,
1989 p->location());
1990 if (is_varargs && p + 1 == parameters->end())
1991 param->set_is_varargs_parameter();
1993 std::string pname = p->name();
1995 // We need to give each nameless parameter a non-empty name to avoid
1996 // having it clash with some other nameless param. FIXME.
1997 Gogo::rename_if_empty(&pname, "p", &pcounter);
1999 block->bindings()->add_variable(pname, NULL, param);
2003 function->create_result_variables(this);
2005 const std::string* pname;
2006 std::string nested_name;
2007 bool is_init = false;
2008 if (Gogo::unpack_hidden_name(name) == "init" && !type->is_method())
2010 if ((type->parameters() != NULL && !type->parameters()->empty())
2011 || (type->results() != NULL && !type->results()->empty()))
2012 go_error_at(location,
2013 "func init must have no arguments and no return values");
2014 // There can be multiple "init" functions, so give them each a
2015 // different name.
2016 nested_name = this->init_function_name();
2017 pname = &nested_name;
2018 is_init = true;
2020 else if (!name.empty())
2021 pname = &name;
2022 else
2024 // Invent a name for a nested function.
2025 nested_name = this->nested_function_name(enclosing);
2026 pname = &nested_name;
2029 Named_object* ret;
2030 if (Gogo::is_sink_name(*pname))
2032 std::string sname(this->sink_function_name());
2033 ret = Named_object::make_function(sname, NULL, function);
2034 ret->func_value()->set_is_sink();
2036 if (!type->is_method())
2037 ret = this->package_->bindings()->add_named_object(ret);
2038 else if (add_method_to_type)
2040 // We should report errors even for sink methods.
2041 Type* rtype = type->receiver()->type();
2042 // Avoid points_to and deref to avoid getting an error if
2043 // the type is not yet defined.
2044 if (rtype->classification() == Type::TYPE_POINTER)
2045 rtype = rtype->points_to();
2046 while (rtype->named_type() != NULL
2047 && rtype->named_type()->is_alias())
2048 rtype = rtype->named_type()->real_type()->forwarded();
2049 if (rtype->is_error_type())
2051 else if (rtype->named_type() != NULL)
2053 if (rtype->named_type()->named_object()->package() != NULL)
2054 go_error_at(type->receiver()->location(),
2055 "may not define methods on non-local type");
2057 else if (rtype->forward_declaration_type() != NULL)
2059 // Go ahead and add the method in case we need to report
2060 // an error when we see the definition.
2061 rtype->forward_declaration_type()->add_existing_method(ret);
2063 else
2064 go_error_at(type->receiver()->location(),
2065 ("invalid receiver type "
2066 "(receiver must be a named type)"));
2069 else if (!type->is_method())
2071 ret = this->package_->bindings()->add_function(*pname, NULL, function);
2072 if (!ret->is_function() || ret->func_value() != function)
2074 // Redefinition error. Invent a name to avoid knockon
2075 // errors.
2076 std::string rname(this->redefined_function_name());
2077 ret = this->package_->bindings()->add_function(rname, NULL, function);
2080 else
2082 if (!add_method_to_type)
2083 ret = Named_object::make_function(name, NULL, function);
2084 else
2086 go_assert(at_top_level);
2087 Type* rtype = type->receiver()->type();
2089 while (rtype->named_type() != NULL
2090 && rtype->named_type()->is_alias())
2091 rtype = rtype->named_type()->real_type()->forwarded();
2093 // We want to look through the pointer created by the
2094 // parser, without getting an error if the type is not yet
2095 // defined.
2096 if (rtype->classification() == Type::TYPE_POINTER)
2097 rtype = rtype->points_to();
2099 while (rtype->named_type() != NULL
2100 && rtype->named_type()->is_alias())
2101 rtype = rtype->named_type()->real_type()->forwarded();
2103 if (rtype->is_error_type())
2104 ret = Named_object::make_function(name, NULL, function);
2105 else if (rtype->named_type() != NULL)
2107 if (rtype->named_type()->named_object()->package() != NULL)
2109 go_error_at(type->receiver()->location(),
2110 "may not define methods on non-local type");
2111 ret = Named_object::make_function(name, NULL, function);
2113 else
2115 ret = rtype->named_type()->add_method(name, function);
2116 if (!ret->is_function())
2118 // Redefinition error.
2119 ret = Named_object::make_function(name, NULL, function);
2123 else if (rtype->forward_declaration_type() != NULL)
2125 Named_object* type_no =
2126 rtype->forward_declaration_type()->named_object();
2127 if (type_no->is_unknown())
2129 // If we are seeing methods it really must be a
2130 // type. Declare it as such. An alternative would
2131 // be to support lists of methods for unknown
2132 // expressions. Either way the error messages if
2133 // this is not a type are going to get confusing.
2134 Named_object* declared =
2135 this->declare_package_type(type_no->name(),
2136 type_no->location());
2137 go_assert(declared
2138 == type_no->unknown_value()->real_named_object());
2140 ret = rtype->forward_declaration_type()->add_method(name,
2141 function);
2143 else
2145 go_error_at(type->receiver()->location(),
2146 ("invalid receiver type (receiver must "
2147 "be a named type)"));
2148 ret = Named_object::make_function(name, NULL, function);
2151 this->package_->bindings()->add_method(ret);
2154 this->functions_.resize(this->functions_.size() + 1);
2155 Open_function& of(this->functions_.back());
2156 of.function = ret;
2157 of.blocks.push_back(block);
2159 if (is_init)
2161 this->init_functions_.push_back(ret);
2162 this->need_init_fn_ = true;
2165 return ret;
2168 // Finish compiling a function.
2170 void
2171 Gogo::finish_function(Location location)
2173 this->finish_block(location);
2174 go_assert(this->functions_.back().blocks.empty());
2175 this->functions_.pop_back();
2178 // Return the current function.
2180 Named_object*
2181 Gogo::current_function() const
2183 go_assert(!this->functions_.empty());
2184 return this->functions_.back().function;
2187 // Start a new block.
2189 void
2190 Gogo::start_block(Location location)
2192 go_assert(!this->functions_.empty());
2193 Block* block = new Block(this->current_block(), location);
2194 this->functions_.back().blocks.push_back(block);
2197 // Finish a block.
2199 Block*
2200 Gogo::finish_block(Location location)
2202 go_assert(!this->functions_.empty());
2203 go_assert(!this->functions_.back().blocks.empty());
2204 Block* block = this->functions_.back().blocks.back();
2205 this->functions_.back().blocks.pop_back();
2206 block->set_end_location(location);
2207 return block;
2210 // Add an erroneous name.
2212 Named_object*
2213 Gogo::add_erroneous_name(const std::string& name)
2215 return this->package_->bindings()->add_erroneous_name(name);
2218 // Add an unknown name.
2220 Named_object*
2221 Gogo::add_unknown_name(const std::string& name, Location location)
2223 return this->package_->bindings()->add_unknown_name(name, location);
2226 // Declare a function.
2228 Named_object*
2229 Gogo::declare_function(const std::string& name, Function_type* type,
2230 Location location)
2232 if (!type->is_method())
2233 return this->current_bindings()->add_function_declaration(name, NULL, type,
2234 location);
2235 else
2237 // We don't bother to add this to the list of global
2238 // declarations.
2239 Type* rtype = type->receiver()->type();
2241 while (rtype->named_type() != NULL
2242 && rtype->named_type()->is_alias())
2243 rtype = rtype->named_type()->real_type()->forwarded();
2245 // We want to look through the pointer created by the
2246 // parser, without getting an error if the type is not yet
2247 // defined.
2248 if (rtype->classification() == Type::TYPE_POINTER)
2249 rtype = rtype->points_to();
2251 while (rtype->named_type() != NULL
2252 && rtype->named_type()->is_alias())
2253 rtype = rtype->named_type()->real_type()->forwarded();
2255 if (rtype->is_error_type())
2256 return NULL;
2257 else if (rtype->named_type() != NULL)
2258 return rtype->named_type()->add_method_declaration(name, NULL, type,
2259 location);
2260 else if (rtype->forward_declaration_type() != NULL)
2262 Forward_declaration_type* ftype = rtype->forward_declaration_type();
2263 return ftype->add_method_declaration(name, NULL, type, location);
2265 else
2267 go_error_at(type->receiver()->location(),
2268 "invalid receiver type (receiver must be a named type)");
2269 return Named_object::make_erroneous_name(name);
2274 // Add a label definition.
2276 Label*
2277 Gogo::add_label_definition(const std::string& label_name,
2278 Location location)
2280 go_assert(!this->functions_.empty());
2281 Function* func = this->functions_.back().function->func_value();
2282 Label* label = func->add_label_definition(this, label_name, location);
2283 this->add_statement(Statement::make_label_statement(label, location));
2284 return label;
2287 // Add a label reference.
2289 Label*
2290 Gogo::add_label_reference(const std::string& label_name,
2291 Location location, bool issue_goto_errors)
2293 go_assert(!this->functions_.empty());
2294 Function* func = this->functions_.back().function->func_value();
2295 return func->add_label_reference(this, label_name, location,
2296 issue_goto_errors);
2299 // Return the current binding state.
2301 Bindings_snapshot*
2302 Gogo::bindings_snapshot(Location location)
2304 return new Bindings_snapshot(this->current_block(), location);
2307 // Add a statement.
2309 void
2310 Gogo::add_statement(Statement* statement)
2312 go_assert(!this->functions_.empty()
2313 && !this->functions_.back().blocks.empty());
2314 this->functions_.back().blocks.back()->add_statement(statement);
2317 // Add a block.
2319 void
2320 Gogo::add_block(Block* block, Location location)
2322 go_assert(!this->functions_.empty()
2323 && !this->functions_.back().blocks.empty());
2324 Statement* statement = Statement::make_block_statement(block, location);
2325 this->functions_.back().blocks.back()->add_statement(statement);
2328 // Add a constant.
2330 Named_object*
2331 Gogo::add_constant(const Typed_identifier& tid, Expression* expr,
2332 int iota_value)
2334 return this->current_bindings()->add_constant(tid, NULL, expr, iota_value);
2337 // Add a type.
2339 void
2340 Gogo::add_type(const std::string& name, Type* type, Location location)
2342 Named_object* no = this->current_bindings()->add_type(name, NULL, type,
2343 location);
2344 if (!this->in_global_scope() && no->is_type())
2346 Named_object* f = this->functions_.back().function;
2347 unsigned int index;
2348 if (f->is_function())
2349 index = f->func_value()->new_local_type_index();
2350 else
2351 index = 0;
2352 no->type_value()->set_in_function(f, index);
2356 // Add a named type.
2358 void
2359 Gogo::add_named_type(Named_type* type)
2361 go_assert(this->in_global_scope());
2362 this->current_bindings()->add_named_type(type);
2365 // Declare a type.
2367 Named_object*
2368 Gogo::declare_type(const std::string& name, Location location)
2370 Bindings* bindings = this->current_bindings();
2371 Named_object* no = bindings->add_type_declaration(name, NULL, location);
2372 if (!this->in_global_scope() && no->is_type_declaration())
2374 Named_object* f = this->functions_.back().function;
2375 unsigned int index;
2376 if (f->is_function())
2377 index = f->func_value()->new_local_type_index();
2378 else
2379 index = 0;
2380 no->type_declaration_value()->set_in_function(f, index);
2382 return no;
2385 // Declare a type at the package level.
2387 Named_object*
2388 Gogo::declare_package_type(const std::string& name, Location location)
2390 return this->package_->bindings()->add_type_declaration(name, NULL, location);
2393 // Declare a function at the package level.
2395 Named_object*
2396 Gogo::declare_package_function(const std::string& name, Function_type* type,
2397 Location location)
2399 return this->package_->bindings()->add_function_declaration(name, NULL, type,
2400 location);
2403 // Add a function declaration to the list of functions we may want to
2404 // inline.
2406 void
2407 Gogo::add_imported_inlinable_function(Named_object* no)
2409 go_assert(no->is_function_declaration());
2410 Function_declaration* fd = no->func_declaration_value();
2411 if (fd->is_on_inlinable_list())
2412 return;
2413 this->imported_inlinable_functions_.push_back(no);
2414 fd->set_is_on_inlinable_list();
2417 // Define a type which was already declared.
2419 void
2420 Gogo::define_type(Named_object* no, Named_type* type)
2422 this->current_bindings()->define_type(no, type);
2425 // Add a variable.
2427 Named_object*
2428 Gogo::add_variable(const std::string& name, Variable* variable)
2430 Named_object* no = this->current_bindings()->add_variable(name, NULL,
2431 variable);
2433 // In a function the middle-end wants to see a DECL_EXPR node.
2434 if (no != NULL
2435 && no->is_variable()
2436 && !no->var_value()->is_parameter()
2437 && !this->functions_.empty())
2438 this->add_statement(Statement::make_variable_declaration(no));
2440 return no;
2443 void
2444 Gogo::rename_if_empty(std::string* pname, const char* tag, unsigned* count)
2446 if (pname->empty() || Gogo::is_sink_name(*pname))
2448 char buf[50];
2449 go_assert(strlen(tag) < 10);
2450 snprintf(buf, sizeof buf, "%s.%u", tag, *count);
2451 ++(*count);
2452 *pname = buf;
2457 // Add a sink--a reference to the blank identifier _.
2459 Named_object*
2460 Gogo::add_sink()
2462 return Named_object::make_sink();
2465 // Add a named object for a dot import.
2467 void
2468 Gogo::add_dot_import_object(Named_object* no)
2470 // If the name already exists, then it was defined in some file seen
2471 // earlier. If the earlier name is just a declaration, don't add
2472 // this name, because that will cause the previous declaration to
2473 // merge to this imported name, which should not happen. Just add
2474 // this name to the list of file block names to get appropriate
2475 // errors if we see a later definition.
2476 Named_object* e = this->package_->bindings()->lookup(no->name());
2477 if (e != NULL && e->package() == NULL)
2479 if (e->is_unknown())
2480 e = e->resolve();
2481 if (e->package() == NULL
2482 && (e->is_type_declaration()
2483 || e->is_function_declaration()
2484 || e->is_unknown()))
2486 this->add_file_block_name(no->name(), no->location());
2487 return;
2491 this->current_bindings()->add_named_object(no);
2494 // Add a linkname. This implements the go:linkname compiler directive.
2495 // We only support this for functions and function declarations.
2497 void
2498 Gogo::add_linkname(const std::string& go_name, bool is_exported,
2499 const std::string& ext_name, Location loc)
2501 Named_object* no =
2502 this->package_->bindings()->lookup(this->pack_hidden_name(go_name,
2503 is_exported));
2504 if (no == NULL)
2505 go_error_at(loc, "%s is not defined", go_name.c_str());
2506 else if (no->is_function())
2508 if (ext_name.empty())
2509 no->func_value()->set_is_exported_by_linkname();
2510 else
2511 no->func_value()->set_asm_name(ext_name);
2513 else if (no->is_function_declaration())
2515 if (ext_name.empty())
2516 go_error_at(loc,
2517 ("%<//go:linkname%> missing external name "
2518 "for declaration of %s"),
2519 go_name.c_str());
2520 else
2521 no->func_declaration_value()->set_asm_name(ext_name);
2523 else
2524 go_error_at(loc,
2525 ("%s is not a function; "
2526 "%<//go:linkname%> is only supported for functions"),
2527 go_name.c_str());
2530 // Mark all local variables used. This is used when some types of
2531 // parse error occur.
2533 void
2534 Gogo::mark_locals_used()
2536 for (Open_functions::iterator pf = this->functions_.begin();
2537 pf != this->functions_.end();
2538 ++pf)
2540 for (std::vector<Block*>::iterator pb = pf->blocks.begin();
2541 pb != pf->blocks.end();
2542 ++pb)
2543 (*pb)->bindings()->mark_locals_used();
2547 // Record that we've seen an interface type.
2549 void
2550 Gogo::record_interface_type(Interface_type* itype)
2552 this->interface_types_.push_back(itype);
2555 // Define the global names. We do this only after parsing all the
2556 // input files, because the program might define the global names
2557 // itself.
2559 void
2560 Gogo::define_global_names()
2562 if (this->is_main_package())
2564 // Every Go program has to import the runtime package, so that
2565 // it is properly initialized. We can't use
2566 // predeclared_location here as it will cause runtime functions
2567 // to appear to be builtin functions.
2568 this->import_package("runtime", "_", false, false,
2569 this->package_->location());
2572 for (Bindings::const_declarations_iterator p =
2573 this->globals_->begin_declarations();
2574 p != this->globals_->end_declarations();
2575 ++p)
2577 Named_object* global_no = p->second;
2578 std::string name(Gogo::pack_hidden_name(global_no->name(), false));
2579 Named_object* no = this->package_->bindings()->lookup(name);
2580 if (no == NULL)
2581 continue;
2582 no = no->resolve();
2583 if (no->is_type_declaration())
2585 if (global_no->is_type())
2587 if (no->type_declaration_value()->has_methods())
2589 for (std::vector<Named_object*>::const_iterator pm =
2590 no->type_declaration_value()->methods()->begin();
2591 pm != no->type_declaration_value()->methods()->end();
2592 pm++)
2593 go_error_at((*pm)->location(),
2594 "may not define methods on non-local type");
2596 no->set_type_value(global_no->type_value());
2598 else
2600 go_error_at(no->location(), "expected type");
2601 Type* errtype = Type::make_error_type();
2602 Named_object* err =
2603 Named_object::make_type("erroneous_type", NULL, errtype,
2604 Linemap::predeclared_location());
2605 no->set_type_value(err->type_value());
2608 else if (no->is_unknown())
2609 no->unknown_value()->set_real_named_object(global_no);
2612 // Give an error if any name is defined in both the package block
2613 // and the file block. For example, this can happen if one file
2614 // imports "fmt" and another file defines a global variable fmt.
2615 for (Bindings::const_declarations_iterator p =
2616 this->package_->bindings()->begin_declarations();
2617 p != this->package_->bindings()->end_declarations();
2618 ++p)
2620 if (p->second->is_unknown()
2621 && p->second->unknown_value()->real_named_object() == NULL)
2623 // No point in warning about an undefined name, as we will
2624 // get other errors later anyhow.
2625 continue;
2627 File_block_names::const_iterator pf =
2628 this->file_block_names_.find(p->second->name());
2629 if (pf != this->file_block_names_.end())
2631 std::string n = p->second->message_name();
2632 go_error_at(p->second->location(),
2633 "%qs defined as both imported name and global name",
2634 n.c_str());
2635 go_inform(pf->second, "%qs imported here", n.c_str());
2638 // No package scope identifier may be named "init".
2639 if (!p->second->is_function()
2640 && Gogo::unpack_hidden_name(p->second->name()) == "init")
2642 go_error_at(p->second->location(),
2643 "cannot declare init - must be func");
2648 // Clear out names in file scope.
2650 void
2651 Gogo::clear_file_scope()
2653 this->package_->bindings()->clear_file_scope(this);
2655 // Warn about packages which were imported but not used.
2656 bool quiet = saw_errors();
2657 for (Packages::iterator p = this->packages_.begin();
2658 p != this->packages_.end();
2659 ++p)
2661 Package* package = p->second;
2662 if (package != this->package_ && !quiet)
2664 for (Package::Aliases::const_iterator p1 = package->aliases().begin();
2665 p1 != package->aliases().end();
2666 ++p1)
2668 if (!p1->second->used())
2670 // Give a more refined error message if the alias name is known.
2671 std::string pkg_name = package->package_name();
2672 if (p1->first != pkg_name && p1->first[0] != '.')
2674 go_error_at(p1->second->location(),
2675 "imported and not used: %s as %s",
2676 Gogo::message_name(pkg_name).c_str(),
2677 Gogo::message_name(p1->first).c_str());
2679 else
2680 go_error_at(p1->second->location(),
2681 "imported and not used: %s",
2682 Gogo::message_name(pkg_name).c_str());
2686 package->clear_used();
2689 this->current_file_imported_unsafe_ = false;
2690 this->current_file_imported_embed_ = false;
2693 // Queue up a type-specific hash function for later writing. These
2694 // are written out in write_specific_type_functions, called after the
2695 // parse tree is lowered.
2697 void
2698 Gogo::queue_hash_function(Type* type, int64_t size, Backend_name* bname,
2699 Function_type* hash_fntype)
2701 go_assert(!this->specific_type_functions_are_written_);
2702 go_assert(!this->in_global_scope());
2703 Specific_type_function::Specific_type_function_kind kind =
2704 Specific_type_function::SPECIFIC_HASH;
2705 Specific_type_function* tsf = new Specific_type_function(type, NULL, size,
2706 kind, bname,
2707 hash_fntype);
2708 this->specific_type_functions_.push_back(tsf);
2711 // Queue up a type-specific equal function for later writing. These
2712 // are written out in write_specific_type_functions, called after the
2713 // parse tree is lowered.
2715 void
2716 Gogo::queue_equal_function(Type* type, Named_type* name, int64_t size,
2717 Backend_name* bname, Function_type* equal_fntype)
2719 go_assert(!this->specific_type_functions_are_written_);
2720 go_assert(!this->in_global_scope());
2721 Specific_type_function::Specific_type_function_kind kind =
2722 Specific_type_function::SPECIFIC_EQUAL;
2723 Specific_type_function* tsf = new Specific_type_function(type, name, size,
2724 kind, bname,
2725 equal_fntype);
2726 this->specific_type_functions_.push_back(tsf);
2729 // Look for types which need specific hash or equality functions.
2731 class Specific_type_functions : public Traverse
2733 public:
2734 Specific_type_functions(Gogo* gogo)
2735 : Traverse(traverse_types),
2736 gogo_(gogo)
2740 type(Type*);
2742 private:
2743 Gogo* gogo_;
2747 Specific_type_functions::type(Type* t)
2749 switch (t->classification())
2751 case Type::TYPE_NAMED:
2753 Named_type* nt = t->named_type();
2754 if (nt->is_alias())
2755 return TRAVERSE_CONTINUE;
2756 if (t->needs_specific_type_functions(this->gogo_))
2757 t->equal_function(this->gogo_, nt, NULL);
2759 // If this is a struct type, we don't want to make functions
2760 // for the unnamed struct.
2761 Type* rt = nt->real_type();
2762 if (rt->struct_type() == NULL)
2764 if (Type::traverse(rt, this) == TRAVERSE_EXIT)
2765 return TRAVERSE_EXIT;
2767 else
2769 // If this type is defined in another package, then we don't
2770 // need to worry about the unexported fields.
2771 bool is_defined_elsewhere = nt->named_object()->package() != NULL;
2772 const Struct_field_list* fields = rt->struct_type()->fields();
2773 for (Struct_field_list::const_iterator p = fields->begin();
2774 p != fields->end();
2775 ++p)
2777 if (is_defined_elsewhere
2778 && Gogo::is_hidden_name(p->field_name()))
2779 continue;
2780 if (Type::traverse(p->type(), this) == TRAVERSE_EXIT)
2781 return TRAVERSE_EXIT;
2785 return TRAVERSE_SKIP_COMPONENTS;
2788 case Type::TYPE_STRUCT:
2789 case Type::TYPE_ARRAY:
2790 if (t->needs_specific_type_functions(this->gogo_))
2791 t->equal_function(this->gogo_, NULL, NULL);
2792 break;
2794 case Type::TYPE_MAP:
2796 Type* key_type = t->map_type()->key_type()->unalias();
2797 if (key_type->needs_specific_type_functions(this->gogo_))
2798 key_type->hash_function(this->gogo_, NULL);
2800 break;
2802 default:
2803 break;
2806 return TRAVERSE_CONTINUE;
2809 // Write out type specific functions.
2811 void
2812 Gogo::write_specific_type_functions()
2814 Specific_type_functions stf(this);
2815 this->traverse(&stf);
2817 while (!this->specific_type_functions_.empty())
2819 Specific_type_function* tsf = this->specific_type_functions_.back();
2820 this->specific_type_functions_.pop_back();
2821 if (tsf->kind == Specific_type_function::SPECIFIC_HASH)
2822 tsf->type->write_hash_function(this, tsf->size, &tsf->bname,
2823 tsf->fntype);
2824 else
2825 tsf->type->write_equal_function(this, tsf->name, tsf->size,
2826 &tsf->bname, tsf->fntype);
2827 delete tsf;
2829 this->specific_type_functions_are_written_ = true;
2832 // Traverse the tree.
2834 void
2835 Gogo::traverse(Traverse* traverse)
2837 // Traverse the current package first for consistency. The other
2838 // packages will only contain imported types, constants, and
2839 // declarations.
2840 if (this->package_->bindings()->traverse(traverse, true) == TRAVERSE_EXIT)
2841 return;
2842 for (Packages::const_iterator p = this->packages_.begin();
2843 p != this->packages_.end();
2844 ++p)
2846 if (p->second != this->package_)
2848 if (p->second->bindings()->traverse(traverse, true) == TRAVERSE_EXIT)
2849 break;
2854 // Add a type to verify. This is used for types of sink variables, in
2855 // order to give appropriate error messages.
2857 void
2858 Gogo::add_type_to_verify(Type* type)
2860 this->verify_types_.push_back(type);
2863 // Traversal class used to verify types.
2865 class Verify_types : public Traverse
2867 public:
2868 Verify_types()
2869 : Traverse(traverse_types)
2873 type(Type*);
2876 // Verify that a type is correct.
2879 Verify_types::type(Type* t)
2881 if (!t->verify())
2882 return TRAVERSE_SKIP_COMPONENTS;
2883 return TRAVERSE_CONTINUE;
2886 // Verify that all types are correct.
2888 void
2889 Gogo::verify_types()
2891 Verify_types traverse;
2892 this->traverse(&traverse);
2894 for (std::vector<Type*>::iterator p = this->verify_types_.begin();
2895 p != this->verify_types_.end();
2896 ++p)
2897 (*p)->verify();
2898 this->verify_types_.clear();
2901 // Traversal class used to lower parse tree.
2903 class Lower_parse_tree : public Traverse
2905 public:
2906 Lower_parse_tree(Gogo* gogo, Named_object* function)
2907 : Traverse(traverse_variables
2908 | traverse_constants
2909 | traverse_functions
2910 | traverse_statements
2911 | traverse_expressions),
2912 gogo_(gogo), function_(function), iota_value_(-1), inserter_()
2915 void
2916 set_inserter(const Statement_inserter* inserter)
2917 { this->inserter_ = *inserter; }
2920 variable(Named_object*);
2923 constant(Named_object*, bool);
2926 function(Named_object*);
2929 statement(Block*, size_t* pindex, Statement*);
2932 expression(Expression**);
2934 private:
2935 // General IR.
2936 Gogo* gogo_;
2937 // The function we are traversing.
2938 Named_object* function_;
2939 // Value to use for the predeclared constant iota.
2940 int iota_value_;
2941 // Current statement inserter for use by expressions.
2942 Statement_inserter inserter_;
2945 // Lower variables.
2948 Lower_parse_tree::variable(Named_object* no)
2950 if (!no->is_variable())
2951 return TRAVERSE_CONTINUE;
2953 if (no->is_variable() && no->var_value()->is_global())
2955 // Global variables can have loops in their initialization
2956 // expressions. This is handled in lower_init_expression.
2957 no->var_value()->lower_init_expression(this->gogo_, this->function_,
2958 &this->inserter_);
2959 return TRAVERSE_CONTINUE;
2962 // This is a local variable. We are going to return
2963 // TRAVERSE_SKIP_COMPONENTS here because we want to traverse the
2964 // initialization expression when we reach the variable declaration
2965 // statement. However, that means that we need to traverse the type
2966 // ourselves.
2967 if (no->var_value()->has_type())
2969 Type* type = no->var_value()->type();
2970 if (type != NULL)
2972 if (Type::traverse(type, this) == TRAVERSE_EXIT)
2973 return TRAVERSE_EXIT;
2976 go_assert(!no->var_value()->has_pre_init());
2978 return TRAVERSE_SKIP_COMPONENTS;
2981 // Lower constants. We handle constants specially so that we can set
2982 // the right value for the predeclared constant iota. This works in
2983 // conjunction with the way we lower Const_expression objects.
2986 Lower_parse_tree::constant(Named_object* no, bool)
2988 Named_constant* nc = no->const_value();
2990 // Don't get into trouble if the constant's initializer expression
2991 // refers to the constant itself.
2992 if (nc->lowering())
2993 return TRAVERSE_CONTINUE;
2994 nc->set_lowering();
2996 go_assert(this->iota_value_ == -1);
2997 this->iota_value_ = nc->iota_value();
2998 nc->traverse_expression(this);
2999 this->iota_value_ = -1;
3001 nc->clear_lowering();
3003 // We will traverse the expression a second time, but that will be
3004 // fast.
3006 return TRAVERSE_CONTINUE;
3009 // Lower the body of a function, and set the closure type. Record the
3010 // function while lowering it, so that we can pass it down when
3011 // lowering an expression.
3014 Lower_parse_tree::function(Named_object* no)
3016 no->func_value()->set_closure_type();
3018 go_assert(this->function_ == NULL);
3019 this->function_ = no;
3020 int t = no->func_value()->traverse(this);
3021 this->function_ = NULL;
3023 if (t == TRAVERSE_EXIT)
3024 return t;
3025 return TRAVERSE_SKIP_COMPONENTS;
3028 // Lower statement parse trees.
3031 Lower_parse_tree::statement(Block* block, size_t* pindex, Statement* sorig)
3033 // Because we explicitly traverse the statement's contents
3034 // ourselves, we want to skip block statements here. There is
3035 // nothing to lower in a block statement.
3036 if (sorig->is_block_statement())
3037 return TRAVERSE_CONTINUE;
3039 Statement_inserter hold_inserter(this->inserter_);
3040 this->inserter_ = Statement_inserter(block, pindex);
3042 // Lower the expressions first.
3043 int t = sorig->traverse_contents(this);
3044 if (t == TRAVERSE_EXIT)
3046 this->inserter_ = hold_inserter;
3047 return t;
3050 // Keep lowering until nothing changes.
3051 Statement* s = sorig;
3052 while (true)
3054 Statement* snew = s->lower(this->gogo_, this->function_, block,
3055 &this->inserter_);
3056 if (snew == s)
3057 break;
3058 s = snew;
3059 t = s->traverse_contents(this);
3060 if (t == TRAVERSE_EXIT)
3062 this->inserter_ = hold_inserter;
3063 return t;
3067 if (s != sorig)
3068 block->replace_statement(*pindex, s);
3070 this->inserter_ = hold_inserter;
3071 return TRAVERSE_SKIP_COMPONENTS;
3074 // Lower expression parse trees.
3077 Lower_parse_tree::expression(Expression** pexpr)
3079 // We have to lower all subexpressions first, so that we can get
3080 // their type if necessary. This is awkward, because we don't have
3081 // a postorder traversal pass.
3082 if ((*pexpr)->traverse_subexpressions(this) == TRAVERSE_EXIT)
3083 return TRAVERSE_EXIT;
3084 // Keep lowering until nothing changes.
3085 while (true)
3087 Expression* e = *pexpr;
3088 Expression* enew = e->lower(this->gogo_, this->function_,
3089 &this->inserter_, this->iota_value_);
3090 if (enew == e)
3091 break;
3092 if (enew->traverse_subexpressions(this) == TRAVERSE_EXIT)
3093 return TRAVERSE_EXIT;
3094 *pexpr = enew;
3097 // Lower the type of this expression before the parent looks at it,
3098 // in case the type contains an array that has expressions in its
3099 // length. Skip an Unknown_expression, as at this point that means
3100 // a composite literal key that does not have a type.
3101 if ((*pexpr)->unknown_expression() == NULL)
3102 Type::traverse((*pexpr)->type(), this);
3104 return TRAVERSE_SKIP_COMPONENTS;
3107 // Lower the parse tree. This is called after the parse is complete,
3108 // when all names should be resolved.
3110 void
3111 Gogo::lower_parse_tree()
3113 Lower_parse_tree lower_parse_tree(this, NULL);
3114 this->traverse(&lower_parse_tree);
3116 // If we found any functions defined in other packages that are
3117 // inlinables, import their bodies and turn them into functions.
3119 // Note that as we import inlinable functions we may find more
3120 // inlinable functions, so don't use an iterator.
3121 for (size_t i = 0; i < this->imported_inlinable_functions_.size(); i++)
3123 Named_object* no = this->imported_inlinable_functions_[i];
3124 no->func_declaration_value()->import_function_body(this, no);
3127 // There might be type definitions that involve expressions such as the
3128 // array length. Make sure to lower these expressions as well. Otherwise,
3129 // errors hidden within a type can introduce unexpected errors into later
3130 // passes.
3131 for (std::vector<Type*>::iterator p = this->verify_types_.begin();
3132 p != this->verify_types_.end();
3133 ++p)
3134 Type::traverse(*p, &lower_parse_tree);
3137 // Lower a block.
3139 void
3140 Gogo::lower_block(Named_object* function, Block* block)
3142 Lower_parse_tree lower_parse_tree(this, function);
3143 block->traverse(&lower_parse_tree);
3146 // Lower an expression. INSERTER may be NULL, in which case the
3147 // expression had better not need to create any temporaries.
3149 void
3150 Gogo::lower_expression(Named_object* function, Statement_inserter* inserter,
3151 Expression** pexpr)
3153 Lower_parse_tree lower_parse_tree(this, function);
3154 if (inserter != NULL)
3155 lower_parse_tree.set_inserter(inserter);
3156 lower_parse_tree.expression(pexpr);
3159 // Lower a constant. This is called when lowering a reference to a
3160 // constant. We have to make sure that the constant has already been
3161 // lowered.
3163 void
3164 Gogo::lower_constant(Named_object* no)
3166 go_assert(no->is_const());
3167 Lower_parse_tree lower(this, NULL);
3168 lower.constant(no, false);
3171 // Make implicit type conversions explicit. Currently only does for
3172 // interface conversions, so the escape analysis can see them and
3173 // optimize.
3175 class Add_conversions : public Traverse
3177 public:
3178 Add_conversions()
3179 : Traverse(traverse_statements
3180 | traverse_expressions)
3184 statement(Block*, size_t* pindex, Statement*);
3187 expression(Expression**);
3190 // Add explicit conversions in a statement.
3193 Add_conversions::statement(Block*, size_t*, Statement* sorig)
3195 sorig->add_conversions();
3196 return TRAVERSE_CONTINUE;
3199 // Add explicit conversions in an expression.
3202 Add_conversions::expression(Expression** pexpr)
3204 (*pexpr)->add_conversions();
3205 return TRAVERSE_CONTINUE;
3208 void
3209 Gogo::add_conversions()
3211 Add_conversions add_conversions;
3212 this->traverse(&add_conversions);
3215 void
3216 Gogo::add_conversions_in_block(Block *b)
3218 Add_conversions add_conversions;
3219 b->traverse(&add_conversions);
3222 // Traversal class for simple deadcode elimination.
3224 class Remove_deadcode : public Traverse
3226 public:
3227 Remove_deadcode()
3228 : Traverse(traverse_statements
3229 | traverse_expressions)
3233 statement(Block*, size_t* pindex, Statement*);
3236 expression(Expression**);
3239 // Remove deadcode in a statement.
3242 Remove_deadcode::statement(Block* block, size_t* pindex, Statement* sorig)
3244 Location loc = sorig->location();
3245 If_statement* ifs = sorig->if_statement();
3246 if (ifs != NULL)
3248 // Remove the dead branch of an if statement.
3249 bool bval;
3250 if (ifs->condition()->boolean_constant_value(&bval))
3252 Statement* s;
3253 if (bval)
3254 s = Statement::make_block_statement(ifs->then_block(),
3255 loc);
3256 else
3257 if (ifs->else_block() != NULL)
3258 s = Statement::make_block_statement(ifs->else_block(),
3259 loc);
3260 else
3261 // Make a dummy statement.
3262 s = Statement::make_statement(Expression::make_boolean(false, loc),
3263 true);
3265 block->replace_statement(*pindex, s);
3268 return TRAVERSE_CONTINUE;
3271 // Remove deadcode in an expression.
3274 Remove_deadcode::expression(Expression** pexpr)
3276 // Discard the right arm of a shortcut expression of constant value.
3277 Binary_expression* be = (*pexpr)->binary_expression();
3278 bool bval;
3279 if (be != NULL
3280 && be->boolean_constant_value(&bval)
3281 && (be->op() == OPERATOR_ANDAND
3282 || be->op() == OPERATOR_OROR))
3284 *pexpr = Expression::make_boolean(bval, be->location());
3285 Type_context context(NULL, false);
3286 (*pexpr)->determine_type(&context);
3288 return TRAVERSE_CONTINUE;
3291 // Remove deadcode.
3293 void
3294 Gogo::remove_deadcode()
3296 Remove_deadcode remove_deadcode;
3297 this->traverse(&remove_deadcode);
3300 // Traverse the tree to create function descriptors as needed.
3302 class Create_function_descriptors : public Traverse
3304 public:
3305 Create_function_descriptors(Gogo* gogo)
3306 : Traverse(traverse_functions | traverse_expressions),
3307 gogo_(gogo)
3311 function(Named_object*);
3314 expression(Expression**);
3316 static bool
3317 skip_descriptor(Gogo* gogo, const Named_object*);
3319 private:
3320 Gogo* gogo_;
3323 // Create a descriptor for every top-level exported function and every
3324 // function referenced by an inline function.
3327 Create_function_descriptors::function(Named_object* no)
3329 if (Create_function_descriptors::skip_descriptor(this->gogo_, no))
3330 return TRAVERSE_CONTINUE;
3332 if (no->is_function()
3333 && no->func_value()->enclosing() == NULL
3334 && !no->func_value()->is_method()
3335 && ((!Gogo::is_hidden_name(no->name())
3336 && !Gogo::is_thunk(no))
3337 || no->func_value()->is_referenced_by_inline()))
3338 no->func_value()->descriptor(this->gogo_, no);
3340 return TRAVERSE_CONTINUE;
3343 // If we see a function referenced in any way other than calling it,
3344 // create a descriptor for it.
3347 Create_function_descriptors::expression(Expression** pexpr)
3349 Expression* expr = *pexpr;
3351 Func_expression* fe = expr->func_expression();
3352 if (fe != NULL)
3354 // We would not get here for a call to this function, so this is
3355 // a reference to a function other than calling it. We need a
3356 // descriptor.
3357 if (fe->closure() != NULL)
3358 return TRAVERSE_CONTINUE;
3359 Named_object* no = fe->named_object();
3360 if (no->is_function() && !no->func_value()->is_method())
3361 no->func_value()->descriptor(this->gogo_, no);
3362 else if (no->is_function_declaration()
3363 && !no->func_declaration_value()->type()->is_method()
3364 && !Linemap::is_predeclared_location(no->location()))
3365 no->func_declaration_value()->descriptor(this->gogo_, no);
3366 return TRAVERSE_CONTINUE;
3369 Bound_method_expression* bme = expr->bound_method_expression();
3370 if (bme != NULL)
3372 // We would not get here for a call to this method, so this is a
3373 // method value. We need to create a thunk.
3374 Bound_method_expression::create_thunk(this->gogo_, bme->method(),
3375 bme->function());
3376 return TRAVERSE_CONTINUE;
3379 Interface_field_reference_expression* ifre =
3380 expr->interface_field_reference_expression();
3381 if (ifre != NULL)
3383 // We would not get here for a call to this interface method, so
3384 // this is a method value. We need to create a thunk.
3385 Interface_type* type = ifre->expr()->type()->interface_type();
3386 if (type != NULL)
3387 Interface_field_reference_expression::create_thunk(this->gogo_, type,
3388 ifre->name());
3389 return TRAVERSE_CONTINUE;
3392 Call_expression* ce = expr->call_expression();
3393 if (ce != NULL)
3395 Expression* fn = ce->fn();
3396 if (fn->func_expression() != NULL
3397 || fn->bound_method_expression() != NULL
3398 || fn->interface_field_reference_expression() != NULL)
3400 // Traverse the arguments but not the function.
3401 Expression_list* args = ce->args();
3402 if (args != NULL)
3404 if (args->traverse(this) == TRAVERSE_EXIT)
3405 return TRAVERSE_EXIT;
3408 // Traverse the subexpressions of the function, if any.
3409 if (fn->traverse_subexpressions(this) == TRAVERSE_EXIT)
3410 return TRAVERSE_EXIT;
3412 return TRAVERSE_SKIP_COMPONENTS;
3416 return TRAVERSE_CONTINUE;
3419 // The gc compiler has some special cases that it always compiles as
3420 // intrinsics. For those we don't want to generate a function
3421 // descriptor, as there will be no code for it to refer to.
3423 bool
3424 Create_function_descriptors::skip_descriptor(Gogo* gogo,
3425 const Named_object* no)
3427 const std::string& pkgpath(no->package() == NULL
3428 ? gogo->pkgpath()
3429 : no->package()->pkgpath());
3431 // internal/abi is the standard library package,
3432 // bootstrap/internal/abi is the name used when bootstrapping the gc
3433 // compiler.
3435 return ((pkgpath == "internal/abi"
3436 || pkgpath == "bootstrap/internal/abi")
3437 && (no->name() == "FuncPCABI0"
3438 || no->name() == "FuncPCABIInternal"));
3441 // Create function descriptors as needed. We need a function
3442 // descriptor for all exported functions and for all functions that
3443 // are referenced without being called.
3445 void
3446 Gogo::create_function_descriptors()
3448 // Create a function descriptor for any exported function that is
3449 // declared in this package. This is so that we have a descriptor
3450 // for functions written in assembly. Gather the descriptors first
3451 // so that we don't add declarations while looping over them.
3452 std::vector<Named_object*> fndecls;
3453 Bindings* b = this->package_->bindings();
3454 for (Bindings::const_declarations_iterator p = b->begin_declarations();
3455 p != b->end_declarations();
3456 ++p)
3458 Named_object* no = p->second;
3459 if (no->is_function_declaration()
3460 && !no->func_declaration_value()->type()->is_method()
3461 && !Linemap::is_predeclared_location(no->location())
3462 && !Gogo::is_hidden_name(no->name())
3463 && !Create_function_descriptors::skip_descriptor(this, no))
3464 fndecls.push_back(no);
3466 for (std::vector<Named_object*>::const_iterator p = fndecls.begin();
3467 p != fndecls.end();
3468 ++p)
3469 (*p)->func_declaration_value()->descriptor(this, *p);
3470 fndecls.clear();
3472 Create_function_descriptors cfd(this);
3473 this->traverse(&cfd);
3476 // Finalize the methods of an interface type.
3479 Finalize_methods::type(Type* t)
3481 // Check the classification so that we don't finalize the methods
3482 // twice for a named interface type.
3483 switch (t->classification())
3485 case Type::TYPE_INTERFACE:
3486 t->interface_type()->finalize_methods();
3487 break;
3489 case Type::TYPE_NAMED:
3491 Named_type* nt = t->named_type();
3493 if (nt->is_alias())
3494 return TRAVERSE_CONTINUE;
3496 Type* rt = nt->real_type();
3497 if (rt->classification() != Type::TYPE_STRUCT)
3499 // Finalize the methods of the real type first.
3500 if (Type::traverse(rt, this) == TRAVERSE_EXIT)
3501 return TRAVERSE_EXIT;
3503 // Finalize the methods of this type.
3504 nt->finalize_methods(this->gogo_);
3506 else
3508 // We don't want to finalize the methods of a named struct
3509 // type, as the methods should be attached to the named
3510 // type, not the struct type. We just want to finalize
3511 // the field types.
3513 // It is possible that a field type refers indirectly to
3514 // this type, such as via a field with function type with
3515 // an argument or result whose type is this type. To
3516 // avoid the cycle, first finalize the methods of any
3517 // embedded types, which are the only types we need to
3518 // know to finalize the methods of this type.
3519 const Struct_field_list* fields = rt->struct_type()->fields();
3520 if (fields != NULL)
3522 for (Struct_field_list::const_iterator pf = fields->begin();
3523 pf != fields->end();
3524 ++pf)
3526 if (pf->is_anonymous())
3528 if (Type::traverse(pf->type(), this) == TRAVERSE_EXIT)
3529 return TRAVERSE_EXIT;
3534 // Finalize the methods of this type.
3535 nt->finalize_methods(this->gogo_);
3537 // Finalize all the struct fields.
3538 if (rt->struct_type()->traverse_field_types(this) == TRAVERSE_EXIT)
3539 return TRAVERSE_EXIT;
3542 // If this type is defined in a different package, then finalize the
3543 // types of all the methods, since we won't see them otherwise.
3544 if (nt->named_object()->package() != NULL && nt->has_any_methods())
3546 const Methods* methods = nt->methods();
3547 for (Methods::const_iterator p = methods->begin();
3548 p != methods->end();
3549 ++p)
3551 if (Type::traverse(p->second->type(), this) == TRAVERSE_EXIT)
3552 return TRAVERSE_EXIT;
3556 // Finalize the types of all methods that are declared but not
3557 // defined, since we won't see the declarations otherwise.
3558 if (nt->named_object()->package() == NULL
3559 && nt->local_methods() != NULL)
3561 const Bindings* methods = nt->local_methods();
3562 for (Bindings::const_declarations_iterator p =
3563 methods->begin_declarations();
3564 p != methods->end_declarations();
3565 p++)
3567 if (p->second->is_function_declaration())
3569 Type* mt = p->second->func_declaration_value()->type();
3570 if (Type::traverse(mt, this) == TRAVERSE_EXIT)
3571 return TRAVERSE_EXIT;
3576 return TRAVERSE_SKIP_COMPONENTS;
3579 case Type::TYPE_STRUCT:
3580 // Traverse the field types first in case there is an embedded
3581 // field with methods that the struct should inherit.
3582 if (t->struct_type()->traverse_field_types(this) == TRAVERSE_EXIT)
3583 return TRAVERSE_EXIT;
3584 t->struct_type()->finalize_methods(this->gogo_);
3585 return TRAVERSE_SKIP_COMPONENTS;
3587 default:
3588 break;
3591 return TRAVERSE_CONTINUE;
3594 // Finalize method lists and build stub methods for types.
3596 void
3597 Gogo::finalize_methods()
3599 Finalize_methods finalize(this);
3600 this->traverse(&finalize);
3603 // Finalize the method list for a type. This is called when a type is
3604 // parsed for an inlined function body, which happens after the
3605 // finalize_methods pass.
3607 void
3608 Gogo::finalize_methods_for_type(Type* type)
3610 Finalize_methods finalize(this);
3611 Type::traverse(type, &finalize);
3614 // Set types for unspecified variables and constants.
3616 void
3617 Gogo::determine_types()
3619 Bindings* bindings = this->current_bindings();
3620 for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
3621 p != bindings->end_definitions();
3622 ++p)
3624 if ((*p)->is_function())
3625 (*p)->func_value()->determine_types();
3626 else if ((*p)->is_variable())
3627 (*p)->var_value()->determine_type();
3628 else if ((*p)->is_const())
3629 (*p)->const_value()->determine_type();
3631 // See if a variable requires us to build an initialization
3632 // function. We know that we will see all global variables
3633 // here.
3634 if (!this->need_init_fn_ && (*p)->is_variable())
3636 Variable* variable = (*p)->var_value();
3638 // If this is a global variable which requires runtime
3639 // initialization, we need an initialization function.
3640 if (!variable->is_global())
3642 else if (variable->init() == NULL)
3644 else if (variable->type()->interface_type() != NULL)
3645 this->need_init_fn_ = true;
3646 else if (variable->init()->is_constant())
3648 else if (!variable->init()->is_composite_literal())
3649 this->need_init_fn_ = true;
3650 else if (variable->init()->is_nonconstant_composite_literal())
3651 this->need_init_fn_ = true;
3653 // If this is a global variable which holds a pointer value,
3654 // then we need an initialization function to register it as a
3655 // GC root.
3656 if (variable->is_global() && variable->type()->has_pointer())
3657 this->need_init_fn_ = true;
3661 // Determine the types of constants in packages.
3662 for (Packages::const_iterator p = this->packages_.begin();
3663 p != this->packages_.end();
3664 ++p)
3665 p->second->determine_types();
3668 // Traversal class used for type checking.
3670 class Check_types_traverse : public Traverse
3672 public:
3673 Check_types_traverse(Gogo* gogo)
3674 : Traverse(traverse_variables
3675 | traverse_constants
3676 | traverse_functions
3677 | traverse_statements
3678 | traverse_expressions),
3679 gogo_(gogo)
3683 variable(Named_object*);
3686 constant(Named_object*, bool);
3689 function(Named_object*);
3692 statement(Block*, size_t* pindex, Statement*);
3695 expression(Expression**);
3697 private:
3698 // General IR.
3699 Gogo* gogo_;
3702 // Check that a variable initializer has the right type.
3705 Check_types_traverse::variable(Named_object* named_object)
3707 if (named_object->is_variable())
3709 Variable* var = named_object->var_value();
3711 // Give error if variable type is not defined.
3712 var->type()->base();
3714 Expression* init = var->init();
3715 std::string reason;
3716 if (init != NULL
3717 && !Type::are_assignable(var->type(), init->type(), &reason))
3719 if (reason.empty())
3720 go_error_at(var->location(), "incompatible type in initialization");
3721 else
3722 go_error_at(var->location(),
3723 "incompatible type in initialization (%s)",
3724 reason.c_str());
3725 init = Expression::make_error(named_object->location());
3726 var->clear_init();
3728 else if (init != NULL
3729 && init->func_expression() != NULL)
3731 Named_object* no = init->func_expression()->named_object();
3732 Function_type* fntype;
3733 if (no->is_function())
3734 fntype = no->func_value()->type();
3735 else if (no->is_function_declaration())
3736 fntype = no->func_declaration_value()->type();
3737 else
3738 go_unreachable();
3740 // Builtin functions cannot be used as function values for variable
3741 // initialization.
3742 if (fntype->is_builtin())
3744 go_error_at(init->location(),
3745 "invalid use of special built-in function %qs; "
3746 "must be called",
3747 no->message_name().c_str());
3750 if (!var->is_used()
3751 && !var->is_global()
3752 && !var->is_parameter()
3753 && !var->is_receiver()
3754 && !var->type()->is_error()
3755 && (init == NULL || !init->is_error_expression())
3756 && !Lex::is_invalid_identifier(named_object->name()))
3757 go_error_at(var->location(), "%qs declared but not used",
3758 named_object->message_name().c_str());
3760 return TRAVERSE_CONTINUE;
3763 // Check that a constant initializer has the right type.
3766 Check_types_traverse::constant(Named_object* named_object, bool)
3768 Named_constant* constant = named_object->const_value();
3769 Type* ctype = constant->type();
3770 if (ctype->integer_type() == NULL
3771 && ctype->float_type() == NULL
3772 && ctype->complex_type() == NULL
3773 && !ctype->is_boolean_type()
3774 && !ctype->is_string_type())
3776 if (ctype->is_nil_type())
3777 go_error_at(constant->location(), "const initializer cannot be nil");
3778 else if (!ctype->is_error())
3779 go_error_at(constant->location(), "invalid constant type");
3780 constant->set_error();
3782 else if (!constant->expr()->is_constant())
3784 go_error_at(constant->expr()->location(), "expression is not constant");
3785 constant->set_error();
3787 else if (!Type::are_assignable(constant->type(), constant->expr()->type(),
3788 NULL))
3790 go_error_at(constant->location(),
3791 "initialization expression has wrong type");
3792 constant->set_error();
3794 return TRAVERSE_CONTINUE;
3797 // There are no types to check in a function, but this is where we
3798 // issue warnings about labels which are defined but not referenced.
3801 Check_types_traverse::function(Named_object* no)
3803 no->func_value()->check_labels();
3804 return TRAVERSE_CONTINUE;
3807 // Check that types are valid in a statement.
3810 Check_types_traverse::statement(Block*, size_t*, Statement* s)
3812 s->check_types(this->gogo_);
3813 return TRAVERSE_CONTINUE;
3816 // Check that types are valid in an expression.
3819 Check_types_traverse::expression(Expression** expr)
3821 (*expr)->check_types(this->gogo_);
3822 return TRAVERSE_CONTINUE;
3825 // Check that types are valid.
3827 void
3828 Gogo::check_types()
3830 Check_types_traverse traverse(this);
3831 this->traverse(&traverse);
3833 Bindings* bindings = this->current_bindings();
3834 for (Bindings::const_declarations_iterator p = bindings->begin_declarations();
3835 p != bindings->end_declarations();
3836 ++p)
3838 // Also check the types in a function declaration's signature.
3839 Named_object* no = p->second;
3840 if (no->is_function_declaration())
3841 no->func_declaration_value()->check_types();
3845 // Check the types in a single block.
3847 void
3848 Gogo::check_types_in_block(Block* block)
3850 Check_types_traverse traverse(this);
3851 block->traverse(&traverse);
3854 // For each global variable defined in the current package, record the
3855 // set of variables that its initializer depends on. We do this after
3856 // lowering so that all unknown names are resolved to their final
3857 // locations. We do this before write barrier insertion because that
3858 // makes it harder to distinguish references from assignments in
3859 // preinit blocks.
3861 void
3862 Gogo::record_global_init_refs()
3864 Bindings* bindings = this->package_->bindings();
3865 for (Bindings::const_definitions_iterator pb = bindings->begin_definitions();
3866 pb != bindings->end_definitions();
3867 pb++)
3869 Named_object* no = *pb;
3870 if (!no->is_variable())
3871 continue;
3873 Variable* var = no->var_value();
3874 go_assert(var->is_global());
3876 Find_vars find_vars;
3877 Expression* init = var->init();
3878 if (init != NULL)
3879 Expression::traverse(&init, &find_vars);
3880 if (var->has_pre_init())
3881 var->preinit()->traverse(&find_vars);
3882 Named_object* dep = this->var_depends_on(var);
3883 if (dep != NULL)
3885 Expression* dinit = dep->var_value()->init();
3886 if (dinit != NULL)
3887 Expression::traverse(&dinit, &find_vars);
3888 if (dep->var_value()->has_pre_init())
3889 dep->var_value()->preinit()->traverse(&find_vars);
3892 for (Find_vars::const_iterator pv = find_vars.begin();
3893 pv != find_vars.end();
3894 ++pv)
3895 var->add_init_ref(*pv);
3899 // A traversal class which finds all the expressions which must be
3900 // evaluated in order within a statement or larger expression. This
3901 // is used to implement the rules about order of evaluation.
3903 class Find_eval_ordering : public Traverse
3905 private:
3906 typedef std::vector<Expression**> Expression_pointers;
3908 public:
3909 Find_eval_ordering()
3910 : Traverse(traverse_blocks
3911 | traverse_statements
3912 | traverse_expressions),
3913 exprs_()
3916 size_t
3917 size() const
3918 { return this->exprs_.size(); }
3920 typedef Expression_pointers::const_iterator const_iterator;
3922 const_iterator
3923 begin() const
3924 { return this->exprs_.begin(); }
3926 const_iterator
3927 end() const
3928 { return this->exprs_.end(); }
3930 protected:
3932 block(Block*)
3933 { return TRAVERSE_SKIP_COMPONENTS; }
3936 statement(Block*, size_t*, Statement*)
3937 { return TRAVERSE_SKIP_COMPONENTS; }
3940 expression(Expression**);
3942 private:
3943 // A list of pointers to expressions with side-effects.
3944 Expression_pointers exprs_;
3947 // If an expression must be evaluated in order, put it on the list.
3950 Find_eval_ordering::expression(Expression** expression_pointer)
3952 Binary_expression* binexp = (*expression_pointer)->binary_expression();
3953 if (binexp != NULL
3954 && (binexp->op() == OPERATOR_ANDAND || binexp->op() == OPERATOR_OROR))
3956 // Shortcut expressions may potentially have side effects which need
3957 // to be ordered, so add them to the list.
3958 // We don't order its subexpressions here since they may be evaluated
3959 // conditionally. This is handled in remove_shortcuts.
3960 this->exprs_.push_back(expression_pointer);
3961 return TRAVERSE_SKIP_COMPONENTS;
3964 // We have to look at subexpressions before this one.
3965 if ((*expression_pointer)->traverse_subexpressions(this) == TRAVERSE_EXIT)
3966 return TRAVERSE_EXIT;
3967 if ((*expression_pointer)->must_eval_in_order())
3968 this->exprs_.push_back(expression_pointer);
3969 return TRAVERSE_SKIP_COMPONENTS;
3972 // A traversal class for ordering evaluations.
3974 class Order_eval : public Traverse
3976 public:
3977 Order_eval(Gogo* gogo)
3978 : Traverse(traverse_variables
3979 | traverse_statements),
3980 gogo_(gogo)
3984 variable(Named_object*);
3987 statement(Block*, size_t*, Statement*);
3989 private:
3990 // The IR.
3991 Gogo* gogo_;
3994 // Implement the order of evaluation rules for a statement.
3997 Order_eval::statement(Block* block, size_t* pindex, Statement* stmt)
3999 // FIXME: This approach doesn't work for switch statements, because
4000 // we add the new statements before the whole switch when we need to
4001 // instead add them just before the switch expression. The right
4002 // fix is probably to lower switch statements with nonconstant cases
4003 // to a series of conditionals.
4004 if (stmt->switch_statement() != NULL)
4005 return TRAVERSE_CONTINUE;
4007 Find_eval_ordering find_eval_ordering;
4009 // If S is a variable declaration, then ordinary traversal won't do
4010 // anything. We want to explicitly traverse the initialization
4011 // expression if there is one.
4012 Variable_declaration_statement* vds = stmt->variable_declaration_statement();
4013 Expression* init = NULL;
4014 Expression* orig_init = NULL;
4015 if (vds == NULL)
4016 stmt->traverse_contents(&find_eval_ordering);
4017 else
4019 init = vds->var()->var_value()->init();
4020 if (init == NULL)
4021 return TRAVERSE_CONTINUE;
4022 orig_init = init;
4024 // It might seem that this could be
4025 // init->traverse_subexpressions. Unfortunately that can fail
4026 // in a case like
4027 // var err os.Error
4028 // newvar, err := call(arg())
4029 // Here newvar will have an init of call result 0 of
4030 // call(arg()). If we only traverse subexpressions, we will
4031 // only find arg(), and we won't bother to move anything out.
4032 // Then we get to the assignment to err, we will traverse the
4033 // whole statement, and this time we will find both call() and
4034 // arg(), and so we will move them out. This will cause them to
4035 // be put into temporary variables before the assignment to err
4036 // but after the declaration of newvar. To avoid that problem,
4037 // we traverse the entire expression here.
4038 Expression::traverse(&init, &find_eval_ordering);
4041 size_t c = find_eval_ordering.size();
4042 if (c == 0)
4043 return TRAVERSE_CONTINUE;
4045 // If there is only one expression with a side-effect, we can
4046 // usually leave it in place.
4047 if (c == 1)
4049 switch (stmt->classification())
4051 case Statement::STATEMENT_ASSIGNMENT:
4052 // For an assignment statement, we need to evaluate an
4053 // expression on the right hand side before we evaluate any
4054 // index expression on the left hand side, so for that case
4055 // we always move the expression. Otherwise we mishandle
4056 // m[0] = len(m) where m is a map.
4057 break;
4059 case Statement::STATEMENT_EXPRESSION:
4061 // If this is a call statement that doesn't return any
4062 // values, it will not have been counted as a value to
4063 // move. We need to move any subexpressions in case they
4064 // are themselves call statements that require passing a
4065 // closure.
4066 Expression* expr = stmt->expression_statement()->expr();
4067 if (expr->call_expression() != NULL
4068 && expr->call_expression()->result_count() == 0)
4069 break;
4070 return TRAVERSE_CONTINUE;
4073 default:
4074 // We can leave the expression in place.
4075 return TRAVERSE_CONTINUE;
4079 bool is_thunk = stmt->thunk_statement() != NULL;
4080 Expression_statement* es = stmt->expression_statement();
4081 for (Find_eval_ordering::const_iterator p = find_eval_ordering.begin();
4082 p != find_eval_ordering.end();
4083 ++p)
4085 Expression** pexpr = *p;
4087 // The last expression in a thunk will be the call passed to go
4088 // or defer, which we must not evaluate early.
4089 if (is_thunk && p + 1 == find_eval_ordering.end())
4090 break;
4092 Location loc = (*pexpr)->location();
4093 Statement* s;
4094 if ((*pexpr)->call_expression() == NULL
4095 || (*pexpr)->call_expression()->result_count() < 2)
4097 Temporary_statement* ts = Statement::make_temporary(NULL, *pexpr,
4098 loc);
4099 s = ts;
4100 *pexpr = Expression::make_temporary_reference(ts, loc);
4102 else
4104 // A call expression which returns multiple results needs to
4105 // be handled specially. We can't create a temporary
4106 // because there is no type to give it. Any actual uses of
4107 // the values will be done via Call_result_expressions.
4109 // Since a given call expression can be shared by multiple
4110 // Call_result_expressions, avoid hoisting the call the
4111 // second time we see it here. In addition, don't try to
4112 // hoist the top-level multi-return call in the statement,
4113 // since doing this would result a tree with more than one copy
4114 // of the call.
4115 if (this->remember_expression(*pexpr))
4116 s = NULL;
4117 else if (es != NULL && *pexpr == es->expr())
4118 s = NULL;
4119 else
4120 s = Statement::make_statement(*pexpr, true);
4123 if (s != NULL)
4125 block->insert_statement_before(*pindex, s);
4126 ++*pindex;
4130 if (init != orig_init)
4131 vds->var()->var_value()->set_init(init);
4133 return TRAVERSE_CONTINUE;
4136 // Implement the order of evaluation rules for the initializer of a
4137 // global variable.
4140 Order_eval::variable(Named_object* no)
4142 if (no->is_result_variable())
4143 return TRAVERSE_CONTINUE;
4144 Variable* var = no->var_value();
4145 Expression* init = var->init();
4146 if (!var->is_global() || init == NULL)
4147 return TRAVERSE_CONTINUE;
4149 Find_eval_ordering find_eval_ordering;
4150 Expression::traverse(&init, &find_eval_ordering);
4152 if (find_eval_ordering.size() <= 1)
4154 // If there is only one expression with a side-effect, we can
4155 // leave it in place.
4156 return TRAVERSE_SKIP_COMPONENTS;
4159 Expression* orig_init = init;
4161 for (Find_eval_ordering::const_iterator p = find_eval_ordering.begin();
4162 p != find_eval_ordering.end();
4163 ++p)
4165 Expression** pexpr = *p;
4166 Location loc = (*pexpr)->location();
4167 Statement* s;
4168 if ((*pexpr)->call_expression() == NULL
4169 || (*pexpr)->call_expression()->result_count() < 2)
4171 Temporary_statement* ts = Statement::make_temporary(NULL, *pexpr,
4172 loc);
4173 s = ts;
4174 *pexpr = Expression::make_temporary_reference(ts, loc);
4176 else
4178 // A call expression which returns multiple results needs to
4179 // be handled specially.
4180 s = Statement::make_statement(*pexpr, true);
4182 var->add_preinit_statement(this->gogo_, s);
4185 if (init != orig_init)
4186 var->set_init(init);
4188 return TRAVERSE_SKIP_COMPONENTS;
4191 // Use temporary variables to implement the order of evaluation rules.
4193 void
4194 Gogo::order_evaluations()
4196 Order_eval order_eval(this);
4197 this->traverse(&order_eval);
4200 // Order evaluations in a block.
4202 void
4203 Gogo::order_block(Block* block)
4205 Order_eval order_eval(this);
4206 block->traverse(&order_eval);
4209 // A traversal class used to find a single shortcut operator within an
4210 // expression.
4212 class Find_shortcut : public Traverse
4214 public:
4215 Find_shortcut()
4216 : Traverse(traverse_blocks
4217 | traverse_statements
4218 | traverse_expressions),
4219 found_(NULL)
4222 // A pointer to the expression which was found, or NULL if none was
4223 // found.
4224 Expression**
4225 found() const
4226 { return this->found_; }
4228 protected:
4230 block(Block*)
4231 { return TRAVERSE_SKIP_COMPONENTS; }
4234 statement(Block*, size_t*, Statement*)
4235 { return TRAVERSE_SKIP_COMPONENTS; }
4238 expression(Expression**);
4240 private:
4241 Expression** found_;
4244 // Find a shortcut expression.
4247 Find_shortcut::expression(Expression** pexpr)
4249 Expression* expr = *pexpr;
4250 Binary_expression* be = expr->binary_expression();
4251 if (be == NULL)
4252 return TRAVERSE_CONTINUE;
4253 Operator op = be->op();
4254 if (op != OPERATOR_OROR && op != OPERATOR_ANDAND)
4255 return TRAVERSE_CONTINUE;
4256 go_assert(this->found_ == NULL);
4257 this->found_ = pexpr;
4258 return TRAVERSE_EXIT;
4261 // A traversal class used to turn shortcut operators into explicit if
4262 // statements.
4264 class Shortcuts : public Traverse
4266 public:
4267 Shortcuts(Gogo* gogo)
4268 : Traverse(traverse_variables
4269 | traverse_statements),
4270 gogo_(gogo)
4273 protected:
4275 variable(Named_object*);
4278 statement(Block*, size_t*, Statement*);
4280 private:
4281 // Convert a shortcut operator.
4282 Statement*
4283 convert_shortcut(Block* enclosing, Expression** pshortcut);
4285 // The IR.
4286 Gogo* gogo_;
4289 // Remove shortcut operators in a single statement.
4292 Shortcuts::statement(Block* block, size_t* pindex, Statement* s)
4294 // FIXME: This approach doesn't work for switch statements, because
4295 // we add the new statements before the whole switch when we need to
4296 // instead add them just before the switch expression. The right
4297 // fix is probably to lower switch statements with nonconstant cases
4298 // to a series of conditionals.
4299 if (s->switch_statement() != NULL)
4300 return TRAVERSE_CONTINUE;
4302 while (true)
4304 Find_shortcut find_shortcut;
4306 // If S is a variable declaration, then ordinary traversal won't
4307 // do anything. We want to explicitly traverse the
4308 // initialization expression if there is one.
4309 Variable_declaration_statement* vds = s->variable_declaration_statement();
4310 Expression* init = NULL;
4311 if (vds == NULL)
4312 s->traverse_contents(&find_shortcut);
4313 else
4315 init = vds->var()->var_value()->init();
4316 if (init == NULL)
4317 return TRAVERSE_CONTINUE;
4318 init->traverse(&init, &find_shortcut);
4320 Expression** pshortcut = find_shortcut.found();
4321 if (pshortcut == NULL)
4322 return TRAVERSE_CONTINUE;
4324 Statement* snew = this->convert_shortcut(block, pshortcut);
4325 block->insert_statement_before(*pindex, snew);
4326 ++*pindex;
4328 if (pshortcut == &init)
4329 vds->var()->var_value()->set_init(init);
4333 // Remove shortcut operators in the initializer of a global variable.
4336 Shortcuts::variable(Named_object* no)
4338 if (no->is_result_variable())
4339 return TRAVERSE_CONTINUE;
4340 Variable* var = no->var_value();
4341 Expression* init = var->init();
4342 if (!var->is_global() || init == NULL)
4343 return TRAVERSE_CONTINUE;
4345 while (true)
4347 Find_shortcut find_shortcut;
4348 init->traverse(&init, &find_shortcut);
4349 Expression** pshortcut = find_shortcut.found();
4350 if (pshortcut == NULL)
4351 return TRAVERSE_CONTINUE;
4353 Statement* snew = this->convert_shortcut(NULL, pshortcut);
4354 var->add_preinit_statement(this->gogo_, snew);
4355 if (pshortcut == &init)
4356 var->set_init(init);
4360 // Given an expression which uses a shortcut operator, return a
4361 // statement which implements it, and update *PSHORTCUT accordingly.
4363 Statement*
4364 Shortcuts::convert_shortcut(Block* enclosing, Expression** pshortcut)
4366 Binary_expression* shortcut = (*pshortcut)->binary_expression();
4367 Expression* left = shortcut->left();
4368 Expression* right = shortcut->right();
4369 Location loc = shortcut->location();
4371 Block* retblock = new Block(enclosing, loc);
4372 retblock->set_end_location(loc);
4374 Temporary_statement* ts = Statement::make_temporary(shortcut->type(),
4375 left, loc);
4376 retblock->add_statement(ts);
4378 Block* block = new Block(retblock, loc);
4379 block->set_end_location(loc);
4380 Expression* tmpref = Expression::make_temporary_reference(ts, loc);
4381 Statement* assign = Statement::make_assignment(tmpref, right, loc);
4382 block->add_statement(assign);
4384 Expression* cond = Expression::make_temporary_reference(ts, loc);
4385 if (shortcut->binary_expression()->op() == OPERATOR_OROR)
4386 cond = Expression::make_unary(OPERATOR_NOT, cond, loc);
4388 Statement* if_statement = Statement::make_if_statement(cond, block, NULL,
4389 loc);
4390 retblock->add_statement(if_statement);
4392 *pshortcut = Expression::make_temporary_reference(ts, loc);
4394 delete shortcut;
4396 // Now convert any shortcut operators in LEFT and RIGHT.
4397 // LEFT and RIGHT were skipped in the top level
4398 // Gogo::order_evaluations. We need to order their
4399 // components first.
4400 Order_eval order_eval(this->gogo_);
4401 retblock->traverse(&order_eval);
4402 Shortcuts shortcuts(this->gogo_);
4403 retblock->traverse(&shortcuts);
4405 return Statement::make_block_statement(retblock, loc);
4408 // Turn shortcut operators into explicit if statements. Doing this
4409 // considerably simplifies the order of evaluation rules.
4411 void
4412 Gogo::remove_shortcuts()
4414 Shortcuts shortcuts(this);
4415 this->traverse(&shortcuts);
4418 // Turn shortcut operators into explicit if statements in a block.
4420 void
4421 Gogo::remove_shortcuts_in_block(Block* block)
4423 Shortcuts shortcuts(this);
4424 block->traverse(&shortcuts);
4427 // Traversal to flatten parse tree after order of evaluation rules are applied.
4429 class Flatten : public Traverse
4431 public:
4432 Flatten(Gogo* gogo, Named_object* function)
4433 : Traverse(traverse_variables
4434 | traverse_functions
4435 | traverse_statements
4436 | traverse_expressions),
4437 gogo_(gogo), function_(function), inserter_()
4440 void
4441 set_inserter(const Statement_inserter* inserter)
4442 { this->inserter_ = *inserter; }
4445 variable(Named_object*);
4448 function(Named_object*);
4451 statement(Block*, size_t* pindex, Statement*);
4454 expression(Expression**);
4456 private:
4457 // General IR.
4458 Gogo* gogo_;
4459 // The function we are traversing.
4460 Named_object* function_;
4461 // Current statement inserter for use by expressions.
4462 Statement_inserter inserter_;
4465 // Flatten variables.
4468 Flatten::variable(Named_object* no)
4470 if (!no->is_variable())
4471 return TRAVERSE_CONTINUE;
4473 if (no->is_variable() && no->var_value()->is_global())
4475 // Global variables can have loops in their initialization
4476 // expressions. This is handled in flatten_init_expression.
4477 no->var_value()->flatten_init_expression(this->gogo_, this->function_,
4478 &this->inserter_);
4479 return TRAVERSE_CONTINUE;
4482 if (!no->var_value()->is_parameter()
4483 && !no->var_value()->is_receiver()
4484 && !no->var_value()->is_closure()
4485 && no->var_value()->is_non_escaping_address_taken()
4486 && !no->var_value()->is_in_heap()
4487 && no->var_value()->toplevel_decl() == NULL)
4489 // Local variable that has address taken but not escape.
4490 // It needs to be live beyond its lexical scope. So we
4491 // create a top-level declaration for it.
4492 // No need to do it if it is already in the top level.
4493 Block* top_block = function_->func_value()->block();
4494 if (top_block->bindings()->lookup_local(no->name()) != no)
4496 Variable* var = no->var_value();
4497 Temporary_statement* ts =
4498 Statement::make_temporary(var->type(), NULL, var->location());
4499 ts->set_is_address_taken();
4500 top_block->add_statement_at_front(ts);
4501 var->set_toplevel_decl(ts);
4505 go_assert(!no->var_value()->has_pre_init());
4507 return TRAVERSE_SKIP_COMPONENTS;
4510 // Flatten the body of a function. Record the function while flattening it,
4511 // so that we can pass it down when flattening an expression.
4514 Flatten::function(Named_object* no)
4516 go_assert(this->function_ == NULL);
4517 this->function_ = no;
4518 int t = no->func_value()->traverse(this);
4519 this->function_ = NULL;
4521 if (t == TRAVERSE_EXIT)
4522 return t;
4523 return TRAVERSE_SKIP_COMPONENTS;
4526 // Flatten statement parse trees.
4529 Flatten::statement(Block* block, size_t* pindex, Statement* sorig)
4531 // Because we explicitly traverse the statement's contents
4532 // ourselves, we want to skip block statements here. There is
4533 // nothing to flatten in a block statement.
4534 if (sorig->is_block_statement())
4535 return TRAVERSE_CONTINUE;
4537 Statement_inserter hold_inserter(this->inserter_);
4538 this->inserter_ = Statement_inserter(block, pindex);
4540 // Flatten the expressions first.
4541 int t = sorig->traverse_contents(this);
4542 if (t == TRAVERSE_EXIT)
4544 this->inserter_ = hold_inserter;
4545 return t;
4548 // Keep flattening until nothing changes.
4549 Statement* s = sorig;
4550 while (true)
4552 Statement* snew = s->flatten(this->gogo_, this->function_, block,
4553 &this->inserter_);
4554 if (snew == s)
4555 break;
4556 s = snew;
4557 t = s->traverse_contents(this);
4558 if (t == TRAVERSE_EXIT)
4560 this->inserter_ = hold_inserter;
4561 return t;
4565 if (s != sorig)
4566 block->replace_statement(*pindex, s);
4568 this->inserter_ = hold_inserter;
4569 return TRAVERSE_SKIP_COMPONENTS;
4572 // Flatten expression parse trees.
4575 Flatten::expression(Expression** pexpr)
4577 // Keep flattening until nothing changes.
4578 while (true)
4580 Expression* e = *pexpr;
4581 if (e->traverse_subexpressions(this) == TRAVERSE_EXIT)
4582 return TRAVERSE_EXIT;
4584 Expression* enew = e->flatten(this->gogo_, this->function_,
4585 &this->inserter_);
4586 if (enew == e)
4587 break;
4588 *pexpr = enew;
4590 return TRAVERSE_SKIP_COMPONENTS;
4593 // Flatten a block.
4595 void
4596 Gogo::flatten_block(Named_object* function, Block* block)
4598 Flatten flatten(this, function);
4599 block->traverse(&flatten);
4602 // Flatten an expression. INSERTER may be NULL, in which case the
4603 // expression had better not need to create any temporaries.
4605 void
4606 Gogo::flatten_expression(Named_object* function, Statement_inserter* inserter,
4607 Expression** pexpr)
4609 Flatten flatten(this, function);
4610 if (inserter != NULL)
4611 flatten.set_inserter(inserter);
4612 flatten.expression(pexpr);
4615 void
4616 Gogo::flatten()
4618 Flatten flatten(this, NULL);
4619 this->traverse(&flatten);
4622 // Traversal to convert calls to the predeclared recover function to
4623 // pass in an argument indicating whether it can recover from a panic
4624 // or not.
4626 class Convert_recover : public Traverse
4628 public:
4629 Convert_recover(Named_object* arg)
4630 : Traverse(traverse_expressions),
4631 arg_(arg)
4634 protected:
4636 expression(Expression**);
4638 private:
4639 // The argument to pass to the function.
4640 Named_object* arg_;
4643 // Convert calls to recover.
4646 Convert_recover::expression(Expression** pp)
4648 Call_expression* ce = (*pp)->call_expression();
4649 if (ce != NULL && ce->is_recover_call())
4650 ce->set_recover_arg(Expression::make_var_reference(this->arg_,
4651 ce->location()));
4652 return TRAVERSE_CONTINUE;
4655 // Traversal for build_recover_thunks.
4657 class Build_recover_thunks : public Traverse
4659 public:
4660 Build_recover_thunks(Gogo* gogo)
4661 : Traverse(traverse_functions),
4662 gogo_(gogo)
4666 function(Named_object*);
4668 private:
4669 Expression*
4670 can_recover_arg(Location);
4672 // General IR.
4673 Gogo* gogo_;
4676 // If this function calls recover, turn it into a thunk.
4679 Build_recover_thunks::function(Named_object* orig_no)
4681 Function* orig_func = orig_no->func_value();
4682 if (!orig_func->calls_recover()
4683 || orig_func->is_recover_thunk()
4684 || orig_func->has_recover_thunk())
4685 return TRAVERSE_CONTINUE;
4687 Gogo* gogo = this->gogo_;
4688 Location location = orig_func->location();
4690 static int count;
4691 char buf[50];
4693 Function_type* orig_fntype = orig_func->type();
4694 Typed_identifier_list* new_params = new Typed_identifier_list();
4695 std::string receiver_name;
4696 if (orig_fntype->is_method())
4698 const Typed_identifier* receiver = orig_fntype->receiver();
4699 snprintf(buf, sizeof buf, "rt.%u", count);
4700 ++count;
4701 receiver_name = buf;
4702 new_params->push_back(Typed_identifier(receiver_name, receiver->type(),
4703 receiver->location()));
4705 const Typed_identifier_list* orig_params = orig_fntype->parameters();
4706 if (orig_params != NULL && !orig_params->empty())
4708 for (Typed_identifier_list::const_iterator p = orig_params->begin();
4709 p != orig_params->end();
4710 ++p)
4712 snprintf(buf, sizeof buf, "pt.%u", count);
4713 ++count;
4714 new_params->push_back(Typed_identifier(buf, p->type(),
4715 p->location()));
4718 snprintf(buf, sizeof buf, "pr.%u", count);
4719 ++count;
4720 std::string can_recover_name = buf;
4721 new_params->push_back(Typed_identifier(can_recover_name,
4722 Type::lookup_bool_type(),
4723 orig_fntype->location()));
4725 const Typed_identifier_list* orig_results = orig_fntype->results();
4726 Typed_identifier_list* new_results;
4727 if (orig_results == NULL || orig_results->empty())
4728 new_results = NULL;
4729 else
4731 new_results = new Typed_identifier_list();
4732 for (Typed_identifier_list::const_iterator p = orig_results->begin();
4733 p != orig_results->end();
4734 ++p)
4735 new_results->push_back(Typed_identifier("", p->type(), p->location()));
4738 Function_type *new_fntype = Type::make_function_type(NULL, new_params,
4739 new_results,
4740 orig_fntype->location());
4741 if (orig_fntype->is_varargs())
4742 new_fntype->set_is_varargs();
4744 Type* rtype = NULL;
4745 if (orig_fntype->is_method())
4746 rtype = orig_fntype->receiver()->type();
4747 std::string name(gogo->recover_thunk_name(orig_no->name(), rtype));
4748 Named_object *new_no = gogo->start_function(name, new_fntype, false,
4749 location);
4750 Function *new_func = new_no->func_value();
4751 if (orig_func->enclosing() != NULL)
4752 new_func->set_enclosing(orig_func->enclosing());
4754 // We build the code for the original function attached to the new
4755 // function, and then swap the original and new function bodies.
4756 // This means that existing references to the original function will
4757 // then refer to the new function. That makes this code a little
4758 // confusing, in that the reference to NEW_NO really refers to the
4759 // other function, not the one we are building.
4761 Expression* closure = NULL;
4762 if (orig_func->needs_closure())
4764 // For the new function we are creating, declare a new parameter
4765 // variable NEW_CLOSURE_NO and set it to be the closure variable
4766 // of the function. This will be set to the closure value
4767 // passed in by the caller. Then pass a reference to this
4768 // variable as the closure value when calling the original
4769 // function. In other words, simply pass the closure value
4770 // through the thunk we are creating.
4771 Named_object* orig_closure_no = orig_func->closure_var();
4772 Variable* orig_closure_var = orig_closure_no->var_value();
4773 Variable* new_var = new Variable(orig_closure_var->type(), NULL, false,
4774 false, false, location);
4775 new_var->set_is_closure();
4776 snprintf(buf, sizeof buf, "closure.%u", count);
4777 ++count;
4778 Named_object* new_closure_no = Named_object::make_variable(buf, NULL,
4779 new_var);
4780 new_func->set_closure_var(new_closure_no);
4781 closure = Expression::make_var_reference(new_closure_no, location);
4784 Expression* fn = Expression::make_func_reference(new_no, closure, location);
4786 Expression_list* args = new Expression_list();
4787 if (new_params != NULL)
4789 // Note that we skip the last parameter, which is the boolean
4790 // indicating whether recover can succed.
4791 for (Typed_identifier_list::const_iterator p = new_params->begin();
4792 p + 1 != new_params->end();
4793 ++p)
4795 Named_object* p_no = gogo->lookup(p->name(), NULL);
4796 go_assert(p_no != NULL
4797 && p_no->is_variable()
4798 && p_no->var_value()->is_parameter());
4799 args->push_back(Expression::make_var_reference(p_no, location));
4802 args->push_back(this->can_recover_arg(location));
4804 gogo->start_block(location);
4806 Call_expression* call = Expression::make_call(fn, args, false, location);
4808 // Any varargs call has already been lowered.
4809 call->set_varargs_are_lowered();
4811 Statement* s = Statement::make_return_from_call(call, location);
4812 s->determine_types();
4813 gogo->add_statement(s);
4815 Block* b = gogo->finish_block(location);
4817 gogo->add_block(b, location);
4819 // Lower the call in case it returns multiple results.
4820 gogo->lower_block(new_no, b);
4822 gogo->finish_function(location);
4824 // Swap the function bodies and types.
4825 new_func->swap_for_recover(orig_func);
4826 orig_func->set_is_recover_thunk();
4827 new_func->set_calls_recover();
4828 new_func->set_has_recover_thunk();
4830 Bindings* orig_bindings = orig_func->block()->bindings();
4831 Bindings* new_bindings = new_func->block()->bindings();
4832 if (orig_fntype->is_method())
4834 // We changed the receiver to be a regular parameter. We have
4835 // to update the binding accordingly in both functions.
4836 Named_object* orig_rec_no = orig_bindings->lookup_local(receiver_name);
4837 go_assert(orig_rec_no != NULL
4838 && orig_rec_no->is_variable()
4839 && !orig_rec_no->var_value()->is_receiver());
4840 orig_rec_no->var_value()->set_is_receiver();
4842 std::string new_receiver_name(orig_fntype->receiver()->name());
4843 if (new_receiver_name.empty())
4845 // Find the receiver. It was named "r.NNN" in
4846 // Gogo::start_function.
4847 for (Bindings::const_definitions_iterator p =
4848 new_bindings->begin_definitions();
4849 p != new_bindings->end_definitions();
4850 ++p)
4852 const std::string& pname((*p)->name());
4853 if (pname[0] == 'r' && pname[1] == '.')
4855 new_receiver_name = pname;
4856 break;
4859 go_assert(!new_receiver_name.empty());
4861 Named_object* new_rec_no = new_bindings->lookup_local(new_receiver_name);
4862 if (new_rec_no == NULL)
4863 go_assert(saw_errors());
4864 else
4866 go_assert(new_rec_no->is_variable()
4867 && new_rec_no->var_value()->is_receiver());
4868 new_rec_no->var_value()->set_is_not_receiver();
4872 // Because we flipped blocks but not types, the can_recover
4873 // parameter appears in the (now) old bindings as a parameter.
4874 // Change it to a local variable, whereupon it will be discarded.
4875 Named_object* can_recover_no = orig_bindings->lookup_local(can_recover_name);
4876 go_assert(can_recover_no != NULL
4877 && can_recover_no->is_variable()
4878 && can_recover_no->var_value()->is_parameter());
4879 orig_bindings->remove_binding(can_recover_no);
4881 // Add the can_recover argument to the (now) new bindings, and
4882 // attach it to any recover statements.
4883 Variable* can_recover_var = new Variable(Type::lookup_bool_type(), NULL,
4884 false, true, false, location);
4885 can_recover_no = new_bindings->add_variable(can_recover_name, NULL,
4886 can_recover_var);
4887 Convert_recover convert_recover(can_recover_no);
4888 new_func->traverse(&convert_recover);
4890 // Update the function pointers in any named results.
4891 new_func->update_result_variables();
4892 orig_func->update_result_variables();
4894 return TRAVERSE_CONTINUE;
4897 // Return the expression to pass for the .can_recover parameter to the
4898 // new function. This indicates whether a call to recover may return
4899 // non-nil. The expression is runtime.canrecover(__builtin_return_address()).
4901 Expression*
4902 Build_recover_thunks::can_recover_arg(Location location)
4904 Type* uintptr_type = Type::lookup_integer_type("uintptr");
4905 static Named_object* can_recover;
4906 if (can_recover == NULL)
4908 const Location bloc = Linemap::predeclared_location();
4909 Typed_identifier_list* param_types = new Typed_identifier_list();
4910 param_types->push_back(Typed_identifier("a", uintptr_type, bloc));
4911 Type* boolean_type = Type::lookup_bool_type();
4912 Typed_identifier_list* results = new Typed_identifier_list();
4913 results->push_back(Typed_identifier("", boolean_type, bloc));
4914 Function_type* fntype = Type::make_function_type(NULL, param_types,
4915 results, bloc);
4916 can_recover =
4917 Named_object::make_function_declaration("runtime_canrecover",
4918 NULL, fntype, bloc);
4919 can_recover->func_declaration_value()->set_asm_name("runtime.canrecover");
4922 Expression* zexpr = Expression::make_integer_ul(0, NULL, location);
4923 Expression* call = Runtime::make_call(Runtime::BUILTIN_RETURN_ADDRESS,
4924 location, 1, zexpr);
4925 call = Expression::make_unsafe_cast(uintptr_type, call, location);
4927 Expression_list* args = new Expression_list();
4928 args->push_back(call);
4930 Expression* fn = Expression::make_func_reference(can_recover, NULL, location);
4931 return Expression::make_call(fn, args, false, location);
4934 // Build thunks for functions which call recover. We build a new
4935 // function with an extra parameter, which is whether a call to
4936 // recover can succeed. We then move the body of this function to
4937 // that one. We then turn this function into a thunk which calls the
4938 // new one, passing the value of runtime.canrecover(__builtin_return_address()).
4939 // The function will be marked as not splitting the stack. This will
4940 // cooperate with the implementation of defer to make recover do the
4941 // right thing.
4943 void
4944 Gogo::build_recover_thunks()
4946 Build_recover_thunks build_recover_thunks(this);
4947 this->traverse(&build_recover_thunks);
4950 // Look for named types to see whether we need to create an interface
4951 // method table.
4953 class Build_method_tables : public Traverse
4955 public:
4956 Build_method_tables(Gogo* gogo,
4957 const std::vector<Interface_type*>& interfaces)
4958 : Traverse(traverse_types),
4959 gogo_(gogo), interfaces_(interfaces)
4963 type(Type*);
4965 private:
4966 // The IR.
4967 Gogo* gogo_;
4968 // A list of locally defined interfaces which have hidden methods.
4969 const std::vector<Interface_type*>& interfaces_;
4972 // Build all required interface method tables for types. We need to
4973 // ensure that we have an interface method table for every interface
4974 // which has a hidden method, for every named type which implements
4975 // that interface. Normally we can just build interface method tables
4976 // as we need them. However, in some cases we can require an
4977 // interface method table for an interface defined in a different
4978 // package for a type defined in that package. If that interface and
4979 // type both use a hidden method, that is OK. However, we will not be
4980 // able to build that interface method table when we need it, because
4981 // the type's hidden method will be static. So we have to build it
4982 // here, and just refer it from other packages as needed.
4984 void
4985 Gogo::build_interface_method_tables()
4987 if (saw_errors())
4988 return;
4990 std::vector<Interface_type*> hidden_interfaces;
4991 hidden_interfaces.reserve(this->interface_types_.size());
4992 for (std::vector<Interface_type*>::const_iterator pi =
4993 this->interface_types_.begin();
4994 pi != this->interface_types_.end();
4995 ++pi)
4997 const Typed_identifier_list* methods = (*pi)->methods();
4998 if (methods == NULL)
4999 continue;
5000 for (Typed_identifier_list::const_iterator pm = methods->begin();
5001 pm != methods->end();
5002 ++pm)
5004 if (Gogo::is_hidden_name(pm->name()))
5006 hidden_interfaces.push_back(*pi);
5007 break;
5012 if (!hidden_interfaces.empty())
5014 // Now traverse the tree looking for all named types.
5015 Build_method_tables bmt(this, hidden_interfaces);
5016 this->traverse(&bmt);
5019 // We no longer need the list of interfaces.
5021 this->interface_types_.clear();
5024 // This is called for each type. For a named type, for each of the
5025 // interfaces with hidden methods that it implements, create the
5026 // method table.
5029 Build_method_tables::type(Type* type)
5031 Named_type* nt = type->named_type();
5032 Struct_type* st = type->struct_type();
5033 if (nt != NULL || st != NULL)
5035 Translate_context context(this->gogo_, NULL, NULL, NULL);
5036 for (std::vector<Interface_type*>::const_iterator p =
5037 this->interfaces_.begin();
5038 p != this->interfaces_.end();
5039 ++p)
5041 // We ask whether a pointer to the named type implements the
5042 // interface, because a pointer can implement more methods
5043 // than a value.
5044 if (nt != NULL)
5046 if ((*p)->implements_interface(Type::make_pointer_type(nt),
5047 NULL))
5049 nt->interface_method_table(*p, false)->get_backend(&context);
5050 nt->interface_method_table(*p, true)->get_backend(&context);
5053 else
5055 if ((*p)->implements_interface(Type::make_pointer_type(st),
5056 NULL))
5058 st->interface_method_table(*p, false)->get_backend(&context);
5059 st->interface_method_table(*p, true)->get_backend(&context);
5064 return TRAVERSE_CONTINUE;
5067 // Return an expression which allocates memory to hold values of type TYPE.
5069 Expression*
5070 Gogo::allocate_memory(Type* type, Location location)
5072 Expression* td = Expression::make_type_descriptor(type, location);
5073 return Runtime::make_call(Runtime::NEW, location, 1, td);
5076 // Traversal class used to check for return statements.
5078 class Check_return_statements_traverse : public Traverse
5080 public:
5081 Check_return_statements_traverse()
5082 : Traverse(traverse_functions)
5086 function(Named_object*);
5089 // Check that a function has a return statement if it needs one.
5092 Check_return_statements_traverse::function(Named_object* no)
5094 Function* func = no->func_value();
5095 const Function_type* fntype = func->type();
5096 const Typed_identifier_list* results = fntype->results();
5098 // We only need a return statement if there is a return value.
5099 if (results == NULL || results->empty())
5100 return TRAVERSE_CONTINUE;
5102 if (func->block()->may_fall_through())
5103 go_error_at(func->block()->end_location(),
5104 "missing return at end of function");
5106 return TRAVERSE_CONTINUE;
5109 // Check return statements.
5111 void
5112 Gogo::check_return_statements()
5114 Check_return_statements_traverse traverse;
5115 this->traverse(&traverse);
5118 // Traversal class to decide whether a function body is less than the
5119 // inlining budget. This adjusts *available as it goes, and stops the
5120 // traversal if it goes negative.
5122 class Inline_within_budget : public Traverse
5124 public:
5125 Inline_within_budget(int* available)
5126 : Traverse(traverse_statements
5127 | traverse_expressions),
5128 available_(available)
5132 statement(Block*, size_t*, Statement*);
5135 expression(Expression**);
5137 private:
5138 // Pointer to remaining budget.
5139 int* available_;
5142 // Adjust the budget for the inlining cost of a statement.
5145 Inline_within_budget::statement(Block*, size_t*, Statement* s)
5147 if (*this->available_ < 0)
5148 return TRAVERSE_EXIT;
5149 *this->available_ -= s->inlining_cost();
5150 return TRAVERSE_CONTINUE;
5153 // Adjust the budget for the inlining cost of an expression.
5156 Inline_within_budget::expression(Expression** pexpr)
5158 if (*this->available_ < 0)
5159 return TRAVERSE_EXIT;
5160 *this->available_ -= (*pexpr)->inlining_cost();
5161 return TRAVERSE_CONTINUE;
5164 // Traversal class to find functions whose body should be exported for
5165 // inlining by other packages.
5167 class Mark_inline_candidates : public Traverse
5169 public:
5170 Mark_inline_candidates(Unordered_set(Named_object*)* marked)
5171 : Traverse(traverse_functions
5172 | traverse_types),
5173 marked_functions_(marked)
5177 function(Named_object*);
5180 type(Type*);
5182 private:
5183 // We traverse the function body trying to determine how expensive
5184 // it is for inlining. We start with a budget, and decrease that
5185 // budget for each statement and expression. If the budget goes
5186 // negative, we do not export the function body. The value of this
5187 // budget is a heuristic. In the usual GCC spirit, we could
5188 // consider setting this via a command line option.
5189 const int budget_heuristic = 80;
5191 // Set of named objects that are marked as inline candidates.
5192 Unordered_set(Named_object*)* marked_functions_;
5195 // Mark a function if it is an inline candidate.
5198 Mark_inline_candidates::function(Named_object* no)
5200 Function* func = no->func_value();
5201 if ((func->pragmas() & GOPRAGMA_NOINLINE) != 0)
5202 return TRAVERSE_CONTINUE;
5203 int budget = budget_heuristic;
5204 Inline_within_budget iwb(&budget);
5205 func->block()->traverse(&iwb);
5206 if (budget >= 0)
5208 func->set_export_for_inlining();
5209 this->marked_functions_->insert(no);
5211 return TRAVERSE_CONTINUE;
5214 // Mark methods if they are inline candidates.
5217 Mark_inline_candidates::type(Type* t)
5219 Named_type* nt = t->named_type();
5220 if (nt == NULL || nt->is_alias())
5221 return TRAVERSE_CONTINUE;
5222 const Bindings* methods = nt->local_methods();
5223 if (methods == NULL)
5224 return TRAVERSE_CONTINUE;
5225 for (Bindings::const_definitions_iterator p = methods->begin_definitions();
5226 p != methods->end_definitions();
5227 ++p)
5229 Named_object* no = *p;
5230 go_assert(no->is_function());
5231 Function *func = no->func_value();
5232 if ((func->pragmas() & GOPRAGMA_NOINLINE) != 0)
5233 continue;
5234 int budget = budget_heuristic;
5235 Inline_within_budget iwb(&budget);
5236 func->block()->traverse(&iwb);
5237 if (budget >= 0)
5239 func->set_export_for_inlining();
5240 this->marked_functions_->insert(no);
5243 return TRAVERSE_CONTINUE;
5246 // Export identifiers as requested.
5248 void
5249 Gogo::do_exports()
5251 if (saw_errors())
5252 return;
5254 // Mark any functions whose body should be exported for inlining by
5255 // other packages.
5256 Unordered_set(Named_object*) marked_functions;
5257 Mark_inline_candidates mic(&marked_functions);
5258 this->traverse(&mic);
5260 // For now we always stream to a section. Later we may want to
5261 // support streaming to a separate file.
5262 Stream_to_section stream(this->backend());
5264 // Write out either the prefix or pkgpath depending on how we were
5265 // invoked.
5266 std::string prefix;
5267 std::string pkgpath;
5268 if (this->pkgpath_from_option_)
5269 pkgpath = this->pkgpath_;
5270 else if (this->prefix_from_option_)
5271 prefix = this->prefix_;
5272 else if (this->is_main_package())
5273 pkgpath = "main";
5274 else
5275 prefix = "go";
5277 std::string init_fn_name;
5278 if (this->is_main_package())
5279 init_fn_name = "";
5280 else if (this->need_init_fn_)
5281 init_fn_name = this->get_init_fn_name();
5282 else
5283 init_fn_name = this->dummy_init_fn_name();
5285 Export exp(&stream);
5286 exp.register_builtin_types(this);
5287 exp.export_globals(this->package_name(),
5288 prefix,
5289 pkgpath,
5290 this->packages_,
5291 this->imports_,
5292 init_fn_name,
5293 this->imported_init_fns_,
5294 this->package_->bindings(),
5295 &marked_functions);
5297 if (!this->c_header_.empty() && !saw_errors())
5298 this->write_c_header();
5301 // Write the top level named struct types in C format to a C header
5302 // file. This is used when building the runtime package, to share
5303 // struct definitions between C and Go.
5305 void
5306 Gogo::write_c_header()
5308 std::ofstream out;
5309 out.open(this->c_header_.c_str());
5310 if (out.fail())
5312 go_error_at(Linemap::unknown_location(),
5313 "cannot open %s: %m", this->c_header_.c_str());
5314 return;
5317 std::list<Named_object*> types;
5318 Bindings* top = this->package_->bindings();
5319 for (Bindings::const_definitions_iterator p = top->begin_definitions();
5320 p != top->end_definitions();
5321 ++p)
5323 Named_object* no = *p;
5325 // Skip names that start with underscore followed by something
5326 // other than an uppercase letter, as when compiling the runtime
5327 // package they are mostly types defined by mkrsysinfo.sh based
5328 // on the C system header files. We don't need to translate
5329 // types to C and back to Go. But do accept the special cases
5330 // _defer, _panic, and _type.
5331 std::string name = Gogo::unpack_hidden_name(no->name());
5332 if (name[0] == '_'
5333 && (name[1] < 'A' || name[1] > 'Z')
5334 && (name != "_defer" && name != "_panic" && name != "_type"))
5335 continue;
5337 if (no->is_type() && no->type_value()->struct_type() != NULL)
5338 types.push_back(no);
5339 if (no->is_const()
5340 && no->const_value()->type()->integer_type() != NULL
5341 && !no->const_value()->is_sink())
5343 Numeric_constant nc;
5344 unsigned long val;
5345 if (no->const_value()->expr()->numeric_constant_value(&nc)
5346 && nc.to_unsigned_long(&val) == Numeric_constant::NC_UL_VALID)
5348 out << "#define " << no->message_name() << ' ' << val
5349 << std::endl;
5354 std::vector<const Named_object*> written;
5355 int loop = 0;
5356 while (!types.empty())
5358 Named_object* no = types.front();
5359 types.pop_front();
5361 std::vector<const Named_object*> needs;
5362 std::vector<const Named_object*> declare;
5363 if (!no->type_value()->struct_type()->can_write_to_c_header(&needs,
5364 &declare))
5365 continue;
5367 bool ok = true;
5368 for (std::vector<const Named_object*>::const_iterator pr
5369 = needs.begin();
5370 pr != needs.end() && ok;
5371 ++pr)
5373 for (std::list<Named_object*>::const_iterator pt = types.begin();
5374 pt != types.end() && ok;
5375 ++pt)
5376 if (*pr == *pt)
5377 ok = false;
5379 if (!ok)
5381 ++loop;
5382 if (loop > 10000)
5384 // This should be impossible since the code parsed and
5385 // type checked.
5386 go_unreachable();
5389 types.push_back(no);
5390 continue;
5393 for (std::vector<const Named_object*>::const_iterator pd
5394 = declare.begin();
5395 pd != declare.end();
5396 ++pd)
5398 if (*pd == no)
5399 continue;
5401 std::vector<const Named_object*> dneeds;
5402 std::vector<const Named_object*> ddeclare;
5403 if (!(*pd)->type_value()->struct_type()->
5404 can_write_to_c_header(&dneeds, &ddeclare))
5405 continue;
5407 bool done = false;
5408 for (std::vector<const Named_object*>::const_iterator pw
5409 = written.begin();
5410 pw != written.end();
5411 ++pw)
5413 if (*pw == *pd)
5415 done = true;
5416 break;
5419 if (!done)
5421 out << std::endl;
5422 out << "struct " << (*pd)->message_name() << ";" << std::endl;
5423 written.push_back(*pd);
5427 out << std::endl;
5428 out << "struct " << no->message_name() << " {" << std::endl;
5429 no->type_value()->struct_type()->write_to_c_header(out);
5430 out << "};" << std::endl;
5431 written.push_back(no);
5434 out.close();
5435 if (out.fail())
5436 go_error_at(Linemap::unknown_location(),
5437 "error writing to %s: %m", this->c_header_.c_str());
5440 // Find the blocks in order to convert named types defined in blocks.
5442 class Convert_named_types : public Traverse
5444 public:
5445 Convert_named_types(Gogo* gogo)
5446 : Traverse(traverse_blocks),
5447 gogo_(gogo)
5450 protected:
5452 block(Block* block);
5454 private:
5455 Gogo* gogo_;
5459 Convert_named_types::block(Block* block)
5461 this->gogo_->convert_named_types_in_bindings(block->bindings());
5462 return TRAVERSE_CONTINUE;
5465 // Convert all named types to the backend representation. Since named
5466 // types can refer to other types, this needs to be done in the right
5467 // sequence, which is handled by Named_type::convert. Here we arrange
5468 // to call that for each named type.
5470 void
5471 Gogo::convert_named_types()
5473 this->convert_named_types_in_bindings(this->globals_);
5474 for (Packages::iterator p = this->packages_.begin();
5475 p != this->packages_.end();
5476 ++p)
5478 Package* package = p->second;
5479 this->convert_named_types_in_bindings(package->bindings());
5482 Convert_named_types cnt(this);
5483 this->traverse(&cnt);
5485 // Make all the builtin named types used for type descriptors, and
5486 // then convert them. They will only be written out if they are
5487 // needed.
5488 Type::make_type_descriptor_type();
5489 Type::make_type_descriptor_ptr_type();
5490 Function_type::make_function_type_descriptor_type();
5491 Pointer_type::make_pointer_type_descriptor_type();
5492 Struct_type::make_struct_type_descriptor_type();
5493 Array_type::make_array_type_descriptor_type();
5494 Array_type::make_slice_type_descriptor_type();
5495 Map_type::make_map_type_descriptor_type();
5496 Channel_type::make_chan_type_descriptor_type();
5497 Interface_type::make_interface_type_descriptor_type();
5498 Expression::make_func_descriptor_type();
5499 Type::convert_builtin_named_types(this);
5501 Runtime::convert_types(this);
5503 this->named_types_are_converted_ = true;
5505 Type::finish_pointer_types(this);
5508 // Convert all names types in a set of bindings.
5510 void
5511 Gogo::convert_named_types_in_bindings(Bindings* bindings)
5513 for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
5514 p != bindings->end_definitions();
5515 ++p)
5517 if ((*p)->is_type())
5518 (*p)->type_value()->convert(this);
5522 void
5523 debug_go_gogo(Gogo* gogo)
5525 if (gogo != NULL)
5526 gogo->debug_dump();
5529 void
5530 Gogo::debug_dump()
5532 std::cerr << "Packages:\n";
5533 for (Packages::const_iterator p = this->packages_.begin();
5534 p != this->packages_.end();
5535 ++p)
5537 const char *tag = " ";
5538 if (p->second == this->package_)
5539 tag = "* ";
5540 std::cerr << tag << "'" << p->first << "' "
5541 << p->second->pkgpath() << " " << ((void*)p->second) << "\n";
5545 // Class Function.
5547 Function::Function(Function_type* type, Named_object* enclosing, Block* block,
5548 Location location)
5549 : type_(type), enclosing_(enclosing), results_(NULL),
5550 closure_var_(NULL), block_(block), location_(location), labels_(),
5551 local_type_count_(0), descriptor_(NULL), fndecl_(NULL), defer_stack_(NULL),
5552 pragmas_(0), nested_functions_(0), is_sink_(false),
5553 results_are_named_(false), is_unnamed_type_stub_method_(false),
5554 calls_recover_(false), is_recover_thunk_(false), has_recover_thunk_(false),
5555 calls_defer_retaddr_(false), is_type_specific_function_(false),
5556 in_unique_section_(false), export_for_inlining_(false),
5557 is_inline_only_(false), is_referenced_by_inline_(false),
5558 is_exported_by_linkname_(false)
5562 // Create the named result variables.
5564 void
5565 Function::create_result_variables(Gogo* gogo)
5567 const Typed_identifier_list* results = this->type_->results();
5568 if (results == NULL || results->empty())
5569 return;
5571 if (!results->front().name().empty())
5572 this->results_are_named_ = true;
5574 this->results_ = new Results();
5575 this->results_->reserve(results->size());
5577 Block* block = this->block_;
5578 int index = 0;
5579 for (Typed_identifier_list::const_iterator p = results->begin();
5580 p != results->end();
5581 ++p, ++index)
5583 std::string name = p->name();
5584 if (name.empty() || Gogo::is_sink_name(name))
5586 static int result_counter;
5587 char buf[100];
5588 snprintf(buf, sizeof buf, "$ret%d", result_counter);
5589 ++result_counter;
5590 name = gogo->pack_hidden_name(buf, false);
5592 Result_variable* result = new Result_variable(p->type(), this, index,
5593 p->location());
5594 Named_object* no = block->bindings()->add_result_variable(name, result);
5595 if (no->is_result_variable())
5596 this->results_->push_back(no);
5597 else
5599 static int dummy_result_count;
5600 char buf[100];
5601 snprintf(buf, sizeof buf, "$dret%d", dummy_result_count);
5602 ++dummy_result_count;
5603 name = gogo->pack_hidden_name(buf, false);
5604 no = block->bindings()->add_result_variable(name, result);
5605 go_assert(no->is_result_variable());
5606 this->results_->push_back(no);
5611 // Update the named result variables when cloning a function which
5612 // calls recover.
5614 void
5615 Function::update_result_variables()
5617 if (this->results_ == NULL)
5618 return;
5620 for (Results::iterator p = this->results_->begin();
5621 p != this->results_->end();
5622 ++p)
5623 (*p)->result_var_value()->set_function(this);
5626 // Whether this method should not be included in the type descriptor.
5628 bool
5629 Function::nointerface() const
5631 go_assert(this->is_method());
5632 return (this->pragmas_ & GOPRAGMA_NOINTERFACE) != 0;
5635 // Record that this method should not be included in the type
5636 // descriptor.
5638 void
5639 Function::set_nointerface()
5641 this->pragmas_ |= GOPRAGMA_NOINTERFACE;
5644 // Return the closure variable, creating it if necessary.
5646 Named_object*
5647 Function::closure_var()
5649 if (this->closure_var_ == NULL)
5651 go_assert(this->descriptor_ == NULL);
5652 // We don't know the type of the variable yet. We add fields as
5653 // we find them.
5654 Location loc = this->type_->location();
5655 Struct_field_list* sfl = new Struct_field_list;
5656 Struct_type* struct_type = Type::make_struct_type(sfl, loc);
5657 struct_type->set_is_struct_incomparable();
5658 Variable* var = new Variable(Type::make_pointer_type(struct_type),
5659 NULL, false, false, false, loc);
5660 var->set_is_used();
5661 var->set_is_closure();
5662 this->closure_var_ = Named_object::make_variable("$closure", NULL, var);
5663 // Note that the new variable is not in any binding contour.
5665 return this->closure_var_;
5668 // Set the type of the closure variable.
5670 void
5671 Function::set_closure_type()
5673 if (this->closure_var_ == NULL)
5674 return;
5675 Named_object* closure = this->closure_var_;
5676 Struct_type* st = closure->var_value()->type()->deref()->struct_type();
5678 // The first field of a closure is always a pointer to the function
5679 // code.
5680 Type* voidptr_type = Type::make_pointer_type(Type::make_void_type());
5681 st->push_field(Struct_field(Typed_identifier(".f", voidptr_type,
5682 this->location_)));
5684 unsigned int index = 1;
5685 for (Closure_fields::const_iterator p = this->closure_fields_.begin();
5686 p != this->closure_fields_.end();
5687 ++p, ++index)
5689 Named_object* no = p->first;
5690 char buf[20];
5691 snprintf(buf, sizeof buf, "%u", index);
5692 std::string n = no->name() + buf;
5693 Type* var_type;
5694 if (no->is_variable())
5695 var_type = no->var_value()->type();
5696 else
5697 var_type = no->result_var_value()->type();
5698 Type* field_type = Type::make_pointer_type(var_type);
5699 st->push_field(Struct_field(Typed_identifier(n, field_type, p->second)));
5703 // Return whether this function is a method.
5705 bool
5706 Function::is_method() const
5708 return this->type_->is_method();
5711 // Add a label definition.
5713 Label*
5714 Function::add_label_definition(Gogo* gogo, const std::string& label_name,
5715 Location location)
5717 Label* lnull = NULL;
5718 std::pair<Labels::iterator, bool> ins =
5719 this->labels_.insert(std::make_pair(label_name, lnull));
5720 Label* label;
5721 if (label_name == "_")
5723 label = Label::create_dummy_label();
5724 if (ins.second)
5725 ins.first->second = label;
5727 else if (ins.second)
5729 // This is a new label.
5730 label = new Label(label_name);
5731 ins.first->second = label;
5733 else
5735 // The label was already in the hash table.
5736 label = ins.first->second;
5737 if (label->is_defined())
5739 go_error_at(location, "label %qs already defined",
5740 Gogo::message_name(label_name).c_str());
5741 go_inform(label->location(), "previous definition of %qs was here",
5742 Gogo::message_name(label_name).c_str());
5743 return new Label(label_name);
5747 label->define(location, gogo->bindings_snapshot(location));
5749 // Issue any errors appropriate for any previous goto's to this
5750 // label.
5751 const std::vector<Bindings_snapshot*>& refs(label->refs());
5752 for (std::vector<Bindings_snapshot*>::const_iterator p = refs.begin();
5753 p != refs.end();
5754 ++p)
5755 (*p)->check_goto_to(gogo->current_block());
5756 label->clear_refs();
5758 return label;
5761 // Add a reference to a label.
5763 Label*
5764 Function::add_label_reference(Gogo* gogo, const std::string& label_name,
5765 Location location, bool issue_goto_errors)
5767 Label* lnull = NULL;
5768 std::pair<Labels::iterator, bool> ins =
5769 this->labels_.insert(std::make_pair(label_name, lnull));
5770 Label* label;
5771 if (!ins.second)
5773 // The label was already in the hash table.
5774 label = ins.first->second;
5776 else
5778 go_assert(ins.first->second == NULL);
5779 label = new Label(label_name);
5780 ins.first->second = label;
5783 label->set_is_used();
5785 if (issue_goto_errors)
5787 Bindings_snapshot* snapshot = label->snapshot();
5788 if (snapshot != NULL)
5789 snapshot->check_goto_from(gogo->current_block(), location);
5790 else
5791 label->add_snapshot_ref(gogo->bindings_snapshot(location));
5794 return label;
5797 // Warn about labels that are defined but not used.
5799 void
5800 Function::check_labels() const
5802 for (Labels::const_iterator p = this->labels_.begin();
5803 p != this->labels_.end();
5804 p++)
5806 Label* label = p->second;
5807 if (!label->is_used())
5808 go_error_at(label->location(), "label %qs defined and not used",
5809 Gogo::message_name(label->name()).c_str());
5813 // Set the receiver type. This is used to remove aliases.
5815 void
5816 Function::set_receiver_type(Type* rtype)
5818 Function_type* oft = this->type_;
5819 Typed_identifier* rec = new Typed_identifier(oft->receiver()->name(),
5820 rtype,
5821 oft->receiver()->location());
5822 Typed_identifier_list* parameters = NULL;
5823 if (oft->parameters() != NULL)
5824 parameters = oft->parameters()->copy();
5825 Typed_identifier_list* results = NULL;
5826 if (oft->results() != NULL)
5827 results = oft->results()->copy();
5828 Function_type* nft = Type::make_function_type(rec, parameters, results,
5829 oft->location());
5830 this->type_ = nft;
5833 // Swap one function with another. This is used when building the
5834 // thunk we use to call a function which calls recover. It may not
5835 // work for any other case.
5837 void
5838 Function::swap_for_recover(Function *x)
5840 go_assert(this->enclosing_ == x->enclosing_);
5841 std::swap(this->results_, x->results_);
5842 std::swap(this->closure_var_, x->closure_var_);
5843 std::swap(this->block_, x->block_);
5844 go_assert(this->location_ == x->location_);
5845 go_assert(this->fndecl_ == NULL && x->fndecl_ == NULL);
5846 go_assert(this->defer_stack_ == NULL && x->defer_stack_ == NULL);
5849 // Traverse the tree.
5852 Function::traverse(Traverse* traverse)
5854 unsigned int traverse_mask = traverse->traverse_mask();
5856 if ((traverse_mask
5857 & (Traverse::traverse_types | Traverse::traverse_expressions))
5858 != 0)
5860 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
5861 return TRAVERSE_EXIT;
5864 // FIXME: We should check traverse_functions here if nested
5865 // functions are stored in block bindings.
5866 if (this->block_ != NULL
5867 && (traverse_mask
5868 & (Traverse::traverse_variables
5869 | Traverse::traverse_constants
5870 | Traverse::traverse_blocks
5871 | Traverse::traverse_statements
5872 | Traverse::traverse_expressions
5873 | Traverse::traverse_types)) != 0)
5875 if (this->block_->traverse(traverse) == TRAVERSE_EXIT)
5876 return TRAVERSE_EXIT;
5879 return TRAVERSE_CONTINUE;
5882 // Work out types for unspecified variables and constants.
5884 void
5885 Function::determine_types()
5887 if (this->block_ != NULL)
5888 this->block_->determine_types();
5891 // Return the function descriptor, the value you get when you refer to
5892 // the function in Go code without calling it.
5894 Expression*
5895 Function::descriptor(Gogo*, Named_object* no)
5897 go_assert(!this->is_method());
5898 go_assert(this->closure_var_ == NULL);
5899 if (this->descriptor_ == NULL)
5900 this->descriptor_ = Expression::make_func_descriptor(no);
5901 return this->descriptor_;
5904 // Get a pointer to the variable representing the defer stack for this
5905 // function, making it if necessary. The value of the variable is set
5906 // by the runtime routines to true if the function is returning,
5907 // rather than panicing through. A pointer to this variable is used
5908 // as a marker for the functions on the defer stack associated with
5909 // this function. A function-specific variable permits inlining a
5910 // function which uses defer.
5912 Expression*
5913 Function::defer_stack(Location location)
5915 if (this->defer_stack_ == NULL)
5917 Type* t = Type::lookup_bool_type();
5918 Expression* n = Expression::make_boolean(false, location);
5919 this->defer_stack_ = Statement::make_temporary(t, n, location);
5920 this->defer_stack_->set_is_address_taken();
5922 Expression* ref = Expression::make_temporary_reference(this->defer_stack_,
5923 location);
5924 return Expression::make_unary(OPERATOR_AND, ref, location);
5927 // Export the function.
5929 void
5930 Function::export_func(Export* exp, const Named_object* no) const
5932 Block* block = NULL;
5933 if (this->export_for_inlining())
5934 block = this->block_;
5935 Function::export_func_with_type(exp, no, this->type_, this->results_,
5936 this->is_method() && this->nointerface(),
5937 this->asm_name(), block, this->location_);
5940 // Export a function with a type.
5942 void
5943 Function::export_func_with_type(Export* exp, const Named_object* no,
5944 const Function_type* fntype,
5945 Function::Results* result_vars,
5946 bool nointerface, const std::string& asm_name,
5947 Block* block, Location loc)
5949 exp->write_c_string("func ");
5951 if (nointerface)
5953 go_assert(fntype->is_method());
5954 exp->write_c_string("/*nointerface*/ ");
5957 if (!asm_name.empty())
5959 exp->write_c_string("/*asm ");
5960 exp->write_string(asm_name);
5961 exp->write_c_string(" */ ");
5964 if (fntype->is_method())
5966 exp->write_c_string("(");
5967 const Typed_identifier* receiver = fntype->receiver();
5968 exp->write_name(receiver->name());
5969 exp->write_escape(receiver->note());
5970 exp->write_c_string(" ");
5971 exp->write_type(receiver->type()->unalias());
5972 exp->write_c_string(") ");
5975 if (no->package() != NULL && !fntype->is_method())
5977 char buf[50];
5978 snprintf(buf, sizeof buf, "<p%d>", exp->package_index(no->package()));
5979 exp->write_c_string(buf);
5982 const std::string& name(no->name());
5983 if (!Gogo::is_hidden_name(name))
5984 exp->write_string(name);
5985 else
5987 exp->write_c_string(".");
5988 exp->write_string(Gogo::unpack_hidden_name(name));
5991 exp->write_c_string(" (");
5992 const Typed_identifier_list* parameters = fntype->parameters();
5993 if (parameters != NULL)
5995 size_t i = 0;
5996 bool is_varargs = fntype->is_varargs();
5997 bool first = true;
5998 for (Typed_identifier_list::const_iterator p = parameters->begin();
5999 p != parameters->end();
6000 ++p, ++i)
6002 if (first)
6003 first = false;
6004 else
6005 exp->write_c_string(", ");
6006 exp->write_name(p->name());
6007 exp->write_escape(p->note());
6008 exp->write_c_string(" ");
6009 if (!is_varargs || p + 1 != parameters->end())
6010 exp->write_type(p->type());
6011 else
6013 exp->write_c_string("...");
6014 exp->write_type(p->type()->array_type()->element_type());
6018 exp->write_c_string(")");
6020 const Typed_identifier_list* result_decls = fntype->results();
6021 if (result_decls != NULL)
6023 if (result_decls->size() == 1
6024 && result_decls->begin()->name().empty()
6025 && block == NULL)
6027 exp->write_c_string(" ");
6028 exp->write_type(result_decls->begin()->type());
6030 else
6032 exp->write_c_string(" (");
6033 bool first = true;
6034 Results::const_iterator pr;
6035 if (result_vars != NULL)
6036 pr = result_vars->begin();
6037 for (Typed_identifier_list::const_iterator pd = result_decls->begin();
6038 pd != result_decls->end();
6039 ++pd)
6041 if (first)
6042 first = false;
6043 else
6044 exp->write_c_string(", ");
6045 // We only use pr->name, which may be artificial, if
6046 // need it for inlining.
6047 if (block == NULL || result_vars == NULL)
6048 exp->write_name(pd->name());
6049 else
6050 exp->write_name((*pr)->name());
6051 exp->write_escape(pd->note());
6052 exp->write_c_string(" ");
6053 exp->write_type(pd->type());
6054 if (result_vars != NULL)
6055 ++pr;
6057 if (result_vars != NULL)
6058 go_assert(pr == result_vars->end());
6059 exp->write_c_string(")");
6063 if (block == NULL)
6064 exp->write_c_string("\n");
6065 else
6067 int indent = 1;
6068 if (fntype->is_method())
6069 indent++;
6071 Export_function_body efb(exp, indent);
6073 efb.indent();
6074 efb.write_c_string("// ");
6075 efb.write_string(Linemap::location_to_file(block->start_location()));
6076 efb.write_char(':');
6077 char buf[100];
6078 snprintf(buf, sizeof buf, "%d", Linemap::location_to_line(loc));
6079 efb.write_c_string(buf);
6080 efb.write_char('\n');
6081 block->export_block(&efb);
6083 const std::string& body(efb.body());
6085 snprintf(buf, sizeof buf, " <inl:%lu>\n",
6086 static_cast<unsigned long>(body.length()));
6087 exp->write_c_string(buf);
6089 exp->write_string(body);
6093 // Import a function.
6095 bool
6096 Function::import_func(Import* imp, std::string* pname,
6097 Package** ppkg, bool* pis_exported,
6098 Typed_identifier** preceiver,
6099 Typed_identifier_list** pparameters,
6100 Typed_identifier_list** presults,
6101 bool* is_varargs,
6102 bool* nointerface,
6103 std::string* asm_name,
6104 std::string* body)
6106 imp->require_c_string("func ");
6108 *nointerface = false;
6109 while (imp->match_c_string("/*"))
6111 imp->advance(2);
6112 if (imp->match_c_string("nointerface"))
6114 imp->require_c_string("nointerface*/ ");
6115 *nointerface = true;
6117 else if (imp->match_c_string("asm"))
6119 imp->require_c_string("asm ");
6120 *asm_name = imp->read_identifier();
6121 imp->require_c_string(" */ ");
6123 else
6125 go_error_at(imp->location(),
6126 "import error at %d: unrecognized function comment",
6127 imp->pos());
6128 return false;
6132 if (*nointerface)
6134 // Only a method can be nointerface.
6135 go_assert(imp->peek_char() == '(');
6138 *preceiver = NULL;
6139 if (imp->peek_char() == '(')
6141 imp->require_c_string("(");
6142 std::string name = imp->read_name();
6143 std::string escape_note = imp->read_escape();
6144 imp->require_c_string(" ");
6145 Type* rtype = imp->read_type();
6146 *preceiver = new Typed_identifier(name, rtype, imp->location());
6147 (*preceiver)->set_note(escape_note);
6148 imp->require_c_string(") ");
6151 if (!Import::read_qualified_identifier(imp, pname, ppkg, pis_exported))
6153 go_error_at(imp->location(),
6154 "import error at %d: bad function name in export data",
6155 imp->pos());
6156 return false;
6159 Typed_identifier_list* parameters;
6160 *is_varargs = false;
6161 imp->require_c_string(" (");
6162 if (imp->peek_char() == ')')
6163 parameters = NULL;
6164 else
6166 parameters = new Typed_identifier_list();
6167 while (true)
6169 std::string name = imp->read_name();
6170 std::string escape_note = imp->read_escape();
6171 imp->require_c_string(" ");
6173 if (imp->match_c_string("..."))
6175 imp->advance(3);
6176 *is_varargs = true;
6179 Type* ptype = imp->read_type();
6180 if (*is_varargs)
6181 ptype = Type::make_array_type(ptype, NULL);
6182 Typed_identifier t = Typed_identifier(name, ptype, imp->location());
6183 t.set_note(escape_note);
6184 parameters->push_back(t);
6185 if (imp->peek_char() != ',')
6186 break;
6187 go_assert(!*is_varargs);
6188 imp->require_c_string(", ");
6191 imp->require_c_string(")");
6192 *pparameters = parameters;
6194 Typed_identifier_list* results;
6195 if (imp->peek_char() != ' ' || imp->match_c_string(" <inl"))
6196 results = NULL;
6197 else
6199 results = new Typed_identifier_list();
6200 imp->require_c_string(" ");
6201 if (imp->peek_char() != '(')
6203 Type* rtype = imp->read_type();
6204 results->push_back(Typed_identifier("", rtype, imp->location()));
6206 else
6208 imp->require_c_string("(");
6209 while (true)
6211 std::string name = imp->read_name();
6212 std::string note = imp->read_escape();
6213 imp->require_c_string(" ");
6214 Type* rtype = imp->read_type();
6215 Typed_identifier t = Typed_identifier(name, rtype,
6216 imp->location());
6217 t.set_note(note);
6218 results->push_back(t);
6219 if (imp->peek_char() != ',')
6220 break;
6221 imp->require_c_string(", ");
6223 imp->require_c_string(")");
6226 *presults = results;
6228 if (!imp->match_c_string(" <inl:"))
6230 imp->require_semicolon_if_old_version();
6231 imp->require_c_string("\n");
6232 body->clear();
6234 else
6236 imp->require_c_string(" <inl:");
6237 std::string lenstr;
6238 int c;
6239 while (true)
6241 c = imp->peek_char();
6242 if (c < '0' || c > '9')
6243 break;
6244 lenstr += c;
6245 imp->get_char();
6247 imp->require_c_string(">\n");
6249 errno = 0;
6250 char* end;
6251 long llen = strtol(lenstr.c_str(), &end, 10);
6252 if (*end != '\0'
6253 || llen < 0
6254 || (llen == LONG_MAX && errno == ERANGE))
6256 go_error_at(imp->location(), "invalid inline function length %s",
6257 lenstr.c_str());
6258 return false;
6261 imp->read(static_cast<size_t>(llen), body);
6264 return true;
6267 // Get the backend name.
6269 void
6270 Function::backend_name(Gogo* gogo, Named_object* no, Backend_name *bname)
6272 if (!this->asm_name_.empty())
6273 bname->set_asm_name(this->asm_name_);
6274 else if (no->package() == NULL && no->name() == gogo->get_init_fn_name())
6276 // These names appear in the export data and are used
6277 // directly in the assembler code. If we change this here
6278 // we need to change Gogo::init_imports.
6279 bname->set_asm_name(no->name());
6281 else if (this->enclosing_ != NULL)
6283 // Rewrite the nested name to use the enclosing function name.
6284 // We don't do this earlier because we just store simple names
6285 // in a Named_object, not Backend_names.
6287 // The name was set by nested_function_name, which always
6288 // appends ..funcNNN. We want that to be our suffix.
6289 size_t pos = no->name().find("..func");
6290 go_assert(pos != std::string::npos);
6292 Named_object* enclosing = this->enclosing_;
6293 while (true)
6295 Named_object* parent = enclosing->func_value()->enclosing();
6296 if (parent == NULL)
6297 break;
6298 enclosing = parent;
6301 Type* rtype = NULL;
6302 if (enclosing->func_value()->type()->is_method())
6303 rtype = enclosing->func_value()->type()->receiver()->type();
6304 gogo->function_backend_name(enclosing->name(), enclosing->package(),
6305 rtype, bname);
6306 bname->append_suffix(no->name().substr(pos));
6308 else
6310 Type* rtype = NULL;
6311 if (this->type_->is_method())
6312 rtype = this->type_->receiver()->type();
6313 gogo->function_backend_name(no->name(), no->package(), rtype, bname);
6317 // Get the backend representation.
6319 Bfunction*
6320 Function::get_or_make_decl(Gogo* gogo, Named_object* no)
6322 if (this->fndecl_ == NULL)
6324 unsigned int flags = 0;
6325 if (no->package() != NULL)
6327 // Functions defined in other packages must be visible.
6328 flags |= Backend::function_is_visible;
6330 else if (this->enclosing_ != NULL || Gogo::is_thunk(no))
6332 else if (Gogo::unpack_hidden_name(no->name()) == "init"
6333 && !this->type_->is_method())
6335 else if (no->name() == gogo->get_init_fn_name())
6336 flags |= Backend::function_is_visible;
6337 else if (Gogo::unpack_hidden_name(no->name()) == "main"
6338 && gogo->is_main_package())
6339 flags |= Backend::function_is_visible;
6340 // Methods have to be public even if they are hidden because
6341 // they can be pulled into type descriptors when using
6342 // anonymous fields.
6343 else if (!Gogo::is_hidden_name(no->name())
6344 || this->type_->is_method())
6346 if (!this->is_unnamed_type_stub_method_)
6347 flags |= Backend::function_is_visible;
6350 if (!this->asm_name_.empty())
6352 // If an assembler name is explicitly specified, there must
6353 // be some reason to refer to the symbol from a different
6354 // object file.
6355 flags |= Backend::function_is_visible;
6358 // If an inline body refers to this function, then it
6359 // needs to be visible in the symbol table.
6360 if (this->is_referenced_by_inline_)
6361 flags |= Backend::function_is_visible;
6363 // A go:linkname directive can be used to force a function to be
6364 // visible.
6365 if (this->is_exported_by_linkname_)
6366 flags |= Backend::function_is_visible;
6368 // If a function calls the predeclared recover function, we
6369 // can't inline it, because recover behaves differently in a
6370 // function passed directly to defer. If this is a recover
6371 // thunk that we built to test whether a function can be
6372 // recovered, we can't inline it, because that will mess up
6373 // our return address comparison.
6374 bool is_inlinable = !(this->calls_recover_ || this->is_recover_thunk_);
6376 // If a function calls __go_set_defer_retaddr, then mark it as
6377 // uninlinable. This prevents the GCC backend from splitting
6378 // the function; splitting the function is a bad idea because we
6379 // want the return address label to be in the same function as
6380 // the call.
6381 if (this->calls_defer_retaddr_)
6382 is_inlinable = false;
6384 // Check the //go:noinline compiler directive.
6385 if ((this->pragmas_ & GOPRAGMA_NOINLINE) != 0)
6386 is_inlinable = false;
6388 if (is_inlinable)
6389 flags |= Backend::function_is_inlinable;
6391 // If this is a thunk created to call a function which calls
6392 // the predeclared recover function, we need to disable
6393 // stack splitting for the thunk.
6394 bool disable_split_stack = this->is_recover_thunk_;
6396 // Check the //go:nosplit compiler directive.
6397 if ((this->pragmas_ & GOPRAGMA_NOSPLIT) != 0)
6398 disable_split_stack = true;
6400 if (disable_split_stack)
6401 flags |= Backend::function_no_split_stack;
6403 // This should go into a unique section if that has been
6404 // requested elsewhere, or if this is a nointerface function.
6405 // We want to put a nointerface function into a unique section
6406 // because there is a good chance that the linker garbage
6407 // collection can discard it.
6408 if (this->in_unique_section_
6409 || (this->is_method() && this->nointerface()))
6410 flags |= Backend::function_in_unique_section;
6412 if (this->is_inline_only_)
6413 flags |= Backend::function_only_inline;
6415 Btype* functype = this->type_->get_backend_fntype(gogo);
6417 Backend_name bname;
6418 this->backend_name(gogo, no, &bname);
6420 this->fndecl_ = gogo->backend()->function(functype,
6421 bname.name(),
6422 bname.optional_asm_name(),
6423 flags,
6424 this->location());
6426 return this->fndecl_;
6429 // Get the backend name.
6431 void
6432 Function_declaration::backend_name(Gogo* gogo, Named_object* no,
6433 Backend_name* bname)
6435 if (!this->asm_name_.empty())
6436 bname->set_asm_name(this->asm_name_);
6437 else
6439 Type* rtype = NULL;
6440 if (this->fntype_->is_method())
6441 rtype = this->fntype_->receiver()->type();
6442 gogo->function_backend_name(no->name(), no->package(), rtype, bname);
6446 // Get the backend representation.
6448 Bfunction*
6449 Function_declaration::get_or_make_decl(Gogo* gogo, Named_object* no)
6451 if (this->fndecl_ == NULL)
6453 unsigned int flags =
6454 (Backend::function_is_visible
6455 | Backend::function_is_declaration
6456 | Backend::function_is_inlinable);
6458 // Let Go code use an asm declaration to pick up a builtin
6459 // function.
6460 if (!this->asm_name_.empty())
6462 Bfunction* builtin_decl =
6463 gogo->backend()->lookup_builtin(this->asm_name_);
6464 if (builtin_decl != NULL)
6466 this->fndecl_ = builtin_decl;
6467 return this->fndecl_;
6470 if (this->asm_name_ == "runtime.gopanic"
6471 || this->asm_name_.compare(0, 13, "runtime.panic") == 0
6472 || this->asm_name_.compare(0, 15, "runtime.goPanic") == 0
6473 || this->asm_name_ == "runtime.block")
6474 flags |= Backend::function_does_not_return;
6477 Btype* functype = this->fntype_->get_backend_fntype(gogo);
6479 Backend_name bname;
6480 this->backend_name(gogo, no, &bname);
6482 this->fndecl_ = gogo->backend()->function(functype,
6483 bname.name(),
6484 bname.optional_asm_name(),
6485 flags,
6486 this->location());
6489 return this->fndecl_;
6492 // Build the descriptor for a function declaration. This won't
6493 // necessarily happen if the package has just a declaration for the
6494 // function and no other reference to it, but we may still need the
6495 // descriptor for references from other packages.
6496 void
6497 Function_declaration::build_backend_descriptor(Gogo* gogo)
6499 if (this->descriptor_ != NULL)
6501 Translate_context context(gogo, NULL, NULL, NULL);
6502 this->descriptor_->get_backend(&context);
6506 // Check that the types used in this declaration's signature are defined.
6507 // Reports errors for any undefined type.
6509 void
6510 Function_declaration::check_types() const
6512 // Calling Type::base will give errors for any undefined types.
6513 Function_type* fntype = this->type();
6514 if (fntype->receiver() != NULL)
6515 fntype->receiver()->type()->base();
6516 if (fntype->parameters() != NULL)
6518 const Typed_identifier_list* params = fntype->parameters();
6519 for (Typed_identifier_list::const_iterator p = params->begin();
6520 p != params->end();
6521 ++p)
6522 p->type()->base();
6526 // Return the function's decl after it has been built.
6528 Bfunction*
6529 Function::get_decl() const
6531 go_assert(this->fndecl_ != NULL);
6532 return this->fndecl_;
6535 // Build the backend representation for the function code.
6537 void
6538 Function::build(Gogo* gogo, Named_object* named_function)
6540 Translate_context context(gogo, named_function, NULL, NULL);
6542 // A list of parameter variables for this function.
6543 std::vector<Bvariable*> param_vars;
6545 // Variables that need to be declared for this function and their
6546 // initial values.
6547 std::vector<Bvariable*> vars;
6548 std::vector<Expression*> var_inits;
6549 std::vector<Statement*> var_decls_stmts;
6550 for (Bindings::const_definitions_iterator p =
6551 this->block_->bindings()->begin_definitions();
6552 p != this->block_->bindings()->end_definitions();
6553 ++p)
6555 Location loc = (*p)->location();
6556 if ((*p)->is_variable() && (*p)->var_value()->is_parameter())
6558 Bvariable* bvar = (*p)->get_backend_variable(gogo, named_function);
6559 Bvariable* parm_bvar = bvar;
6561 // We always pass the receiver to a method as a pointer. If
6562 // the receiver is declared as a non-pointer type, then we
6563 // copy the value into a local variable. For direct interface
6564 // type we pack the pointer into the type.
6565 if ((*p)->var_value()->is_receiver()
6566 && (*p)->var_value()->type()->points_to() == NULL)
6568 std::string name = (*p)->name() + ".pointer";
6569 Type* var_type = (*p)->var_value()->type();
6570 Variable* parm_var =
6571 new Variable(Type::make_pointer_type(var_type), NULL, false,
6572 true, false, loc);
6573 Named_object* parm_no =
6574 Named_object::make_variable(name, NULL, parm_var);
6575 parm_bvar = parm_no->get_backend_variable(gogo, named_function);
6577 vars.push_back(bvar);
6579 Expression* parm_ref =
6580 Expression::make_var_reference(parm_no, loc);
6581 Type* recv_type = (*p)->var_value()->type();
6582 if (recv_type->is_direct_iface_type())
6583 parm_ref = Expression::pack_direct_iface(recv_type, parm_ref, loc);
6584 else
6585 parm_ref =
6586 Expression::make_dereference(parm_ref,
6587 Expression::NIL_CHECK_NEEDED,
6588 loc);
6589 if ((*p)->var_value()->is_in_heap())
6590 parm_ref = Expression::make_heap_expression(parm_ref, loc);
6591 var_inits.push_back(parm_ref);
6593 else if ((*p)->var_value()->is_in_heap())
6595 // If we take the address of a parameter, then we need
6596 // to copy it into the heap.
6597 std::string parm_name = (*p)->name() + ".param";
6598 Variable* parm_var = new Variable((*p)->var_value()->type(), NULL,
6599 false, true, false, loc);
6600 Named_object* parm_no =
6601 Named_object::make_variable(parm_name, NULL, parm_var);
6602 parm_bvar = parm_no->get_backend_variable(gogo, named_function);
6604 vars.push_back(bvar);
6605 Expression* var_ref =
6606 Expression::make_var_reference(parm_no, loc);
6607 var_ref = Expression::make_heap_expression(var_ref, loc);
6608 var_inits.push_back(var_ref);
6610 param_vars.push_back(parm_bvar);
6612 else if ((*p)->is_result_variable())
6614 Bvariable* bvar = (*p)->get_backend_variable(gogo, named_function);
6616 Type* type = (*p)->result_var_value()->type();
6617 Expression* init;
6618 if (!(*p)->result_var_value()->is_in_heap())
6620 Btype* btype = type->get_backend(gogo);
6621 Bexpression* binit = gogo->backend()->zero_expression(btype);
6622 init = Expression::make_backend(binit, type, loc);
6624 else
6625 init = Expression::make_allocation(type, loc);
6627 vars.push_back(bvar);
6628 var_inits.push_back(init);
6630 else if (this->defer_stack_ != NULL
6631 && (*p)->is_variable()
6632 && (*p)->var_value()->is_non_escaping_address_taken()
6633 && !(*p)->var_value()->is_in_heap())
6635 // Local variable captured by deferred closure needs to be live
6636 // until the end of the function. We create a top-level
6637 // declaration for it.
6638 // TODO: we don't need to do this if the variable is not captured
6639 // by the defer closure. There is no easy way to check it here,
6640 // so we do this for all address-taken variables for now.
6641 Variable* var = (*p)->var_value();
6642 Temporary_statement* ts =
6643 Statement::make_temporary(var->type(), NULL, var->location());
6644 ts->set_is_address_taken();
6645 var->set_toplevel_decl(ts);
6646 var_decls_stmts.push_back(ts);
6649 if (!gogo->backend()->function_set_parameters(this->fndecl_, param_vars))
6651 go_assert(saw_errors());
6652 return;
6655 // If we need a closure variable, make sure to create it.
6656 // It gets installed in the function as a side effect of creation.
6657 if (this->closure_var_ != NULL)
6659 go_assert(this->closure_var_->var_value()->is_closure());
6660 this->closure_var_->get_backend_variable(gogo, named_function);
6663 if (this->block_ != NULL)
6665 // Declare variables if necessary.
6666 Bblock* var_decls = NULL;
6667 std::vector<Bstatement*> var_decls_bstmt_list;
6668 Bstatement* defer_init = NULL;
6669 if (!vars.empty() || this->defer_stack_ != NULL)
6671 var_decls =
6672 gogo->backend()->block(this->fndecl_, NULL, vars,
6673 this->block_->start_location(),
6674 this->block_->end_location());
6676 if (this->defer_stack_ != NULL)
6678 Translate_context dcontext(gogo, named_function, this->block_,
6679 var_decls);
6680 defer_init = this->defer_stack_->get_backend(&dcontext);
6681 var_decls_bstmt_list.push_back(defer_init);
6682 for (std::vector<Statement*>::iterator p = var_decls_stmts.begin();
6683 p != var_decls_stmts.end();
6684 ++p)
6686 Bstatement* bstmt = (*p)->get_backend(&dcontext);
6687 var_decls_bstmt_list.push_back(bstmt);
6692 // Build the backend representation for all the statements in the
6693 // function.
6694 Translate_context bcontext(gogo, named_function, NULL, NULL);
6695 Bblock* code_block = this->block_->get_backend(&bcontext);
6697 // Initialize variables if necessary.
6698 Translate_context icontext(gogo, named_function, this->block_,
6699 var_decls);
6700 std::vector<Bstatement*> init;
6701 go_assert(vars.size() == var_inits.size());
6702 for (size_t i = 0; i < vars.size(); ++i)
6704 Bexpression* binit = var_inits[i]->get_backend(&icontext);
6705 Bstatement* init_stmt =
6706 gogo->backend()->init_statement(this->fndecl_, vars[i],
6707 binit);
6708 init.push_back(init_stmt);
6710 Bstatement* var_init = gogo->backend()->statement_list(init);
6712 // Initialize all variables before executing this code block.
6713 Bstatement* code_stmt = gogo->backend()->block_statement(code_block);
6714 code_stmt = gogo->backend()->compound_statement(var_init, code_stmt);
6716 // If we have a defer stack, initialize it at the start of a
6717 // function.
6718 Bstatement* except = NULL;
6719 Bstatement* fini = NULL;
6720 if (defer_init != NULL)
6722 // Clean up the defer stack when we leave the function.
6723 this->build_defer_wrapper(gogo, named_function, &except, &fini);
6725 // Wrap the code for this function in an exception handler to handle
6726 // defer calls.
6727 code_stmt =
6728 gogo->backend()->exception_handler_statement(code_stmt,
6729 except, fini,
6730 this->location_);
6733 // Stick the code into the block we built for the receiver, if
6734 // we built one.
6735 if (var_decls != NULL)
6737 var_decls_bstmt_list.push_back(code_stmt);
6738 gogo->backend()->block_add_statements(var_decls, var_decls_bstmt_list);
6739 code_stmt = gogo->backend()->block_statement(var_decls);
6742 if (!gogo->backend()->function_set_body(this->fndecl_, code_stmt))
6744 go_assert(saw_errors());
6745 return;
6749 // If we created a descriptor for the function, make sure we emit it.
6750 if (this->descriptor_ != NULL)
6752 Translate_context dcontext(gogo, NULL, NULL, NULL);
6753 this->descriptor_->get_backend(&dcontext);
6757 // Build the wrappers around function code needed if the function has
6758 // any defer statements. This sets *EXCEPT to an exception handler
6759 // and *FINI to a finally handler.
6761 void
6762 Function::build_defer_wrapper(Gogo* gogo, Named_object* named_function,
6763 Bstatement** except, Bstatement** fini)
6765 Location end_loc = this->block_->end_location();
6767 // Add an exception handler. This is used if a panic occurs. Its
6768 // purpose is to stop the stack unwinding if a deferred function
6769 // calls recover. There are more details in
6770 // libgo/runtime/go-unwind.c.
6772 std::vector<Bstatement*> stmts;
6773 Expression* call = Runtime::make_call(Runtime::CHECKDEFER, end_loc, 1,
6774 this->defer_stack(end_loc));
6775 Translate_context context(gogo, named_function, NULL, NULL);
6776 Bexpression* defer = call->get_backend(&context);
6777 stmts.push_back(gogo->backend()->expression_statement(this->fndecl_, defer));
6779 Bstatement* ret_bstmt = this->return_value(gogo, named_function, end_loc);
6780 if (ret_bstmt != NULL)
6781 stmts.push_back(ret_bstmt);
6783 go_assert(*except == NULL);
6784 *except = gogo->backend()->statement_list(stmts);
6786 call = Runtime::make_call(Runtime::CHECKDEFER, end_loc, 1,
6787 this->defer_stack(end_loc));
6788 defer = call->get_backend(&context);
6790 call = Runtime::make_call(Runtime::DEFERRETURN, end_loc, 1,
6791 this->defer_stack(end_loc));
6792 Bexpression* undefer = call->get_backend(&context);
6793 Bstatement* function_defer =
6794 gogo->backend()->function_defer_statement(this->fndecl_, undefer, defer,
6795 end_loc);
6796 stmts = std::vector<Bstatement*>(1, function_defer);
6797 if (this->type_->results() != NULL
6798 && !this->type_->results()->empty()
6799 && !this->type_->results()->front().name().empty())
6801 // If the result variables are named, and we are returning from
6802 // this function rather than panicing through it, we need to
6803 // return them again, because they might have been changed by a
6804 // defer function. The runtime routines set the defer_stack
6805 // variable to true if we are returning from this function.
6807 ret_bstmt = this->return_value(gogo, named_function, end_loc);
6808 Bexpression* nil = Expression::make_nil(end_loc)->get_backend(&context);
6809 Bexpression* ret =
6810 gogo->backend()->compound_expression(ret_bstmt, nil, end_loc);
6811 Expression* ref =
6812 Expression::make_temporary_reference(this->defer_stack_, end_loc);
6813 Bexpression* bref = ref->get_backend(&context);
6814 ret = gogo->backend()->conditional_expression(this->fndecl_,
6815 NULL, bref, ret, NULL,
6816 end_loc);
6817 stmts.push_back(gogo->backend()->expression_statement(this->fndecl_, ret));
6820 go_assert(*fini == NULL);
6821 *fini = gogo->backend()->statement_list(stmts);
6824 // Return the statement that assigns values to this function's result struct.
6826 Bstatement*
6827 Function::return_value(Gogo* gogo, Named_object* named_function,
6828 Location location) const
6830 const Typed_identifier_list* results = this->type_->results();
6831 if (results == NULL || results->empty())
6832 return NULL;
6834 go_assert(this->results_ != NULL);
6835 if (this->results_->size() != results->size())
6837 go_assert(saw_errors());
6838 return gogo->backend()->error_statement();
6841 std::vector<Bexpression*> vals(results->size());
6842 for (size_t i = 0; i < vals.size(); ++i)
6844 Named_object* no = (*this->results_)[i];
6845 Bvariable* bvar = no->get_backend_variable(gogo, named_function);
6846 Bexpression* val = gogo->backend()->var_expression(bvar, location);
6847 if (no->result_var_value()->is_in_heap())
6849 Btype* bt = no->result_var_value()->type()->get_backend(gogo);
6850 val = gogo->backend()->indirect_expression(bt, val, true, location);
6852 vals[i] = val;
6854 return gogo->backend()->return_statement(this->fndecl_, vals, location);
6857 // Class Block.
6859 Block::Block(Block* enclosing, Location location)
6860 : enclosing_(enclosing), statements_(),
6861 bindings_(new Bindings(enclosing == NULL
6862 ? NULL
6863 : enclosing->bindings())),
6864 start_location_(location),
6865 end_location_(Linemap::unknown_location())
6869 // Add a statement to a block.
6871 void
6872 Block::add_statement(Statement* statement)
6874 this->statements_.push_back(statement);
6877 // Add a statement to the front of a block. This is slow but is only
6878 // used for reference counts of parameters.
6880 void
6881 Block::add_statement_at_front(Statement* statement)
6883 this->statements_.insert(this->statements_.begin(), statement);
6886 // Replace a statement in a block.
6888 void
6889 Block::replace_statement(size_t index, Statement* s)
6891 go_assert(index < this->statements_.size());
6892 this->statements_[index] = s;
6895 // Add a statement before another statement.
6897 void
6898 Block::insert_statement_before(size_t index, Statement* s)
6900 go_assert(index < this->statements_.size());
6901 this->statements_.insert(this->statements_.begin() + index, s);
6904 // Add a statement after another statement.
6906 void
6907 Block::insert_statement_after(size_t index, Statement* s)
6909 go_assert(index < this->statements_.size());
6910 this->statements_.insert(this->statements_.begin() + index + 1, s);
6913 // Traverse the tree.
6916 Block::traverse(Traverse* traverse)
6918 unsigned int traverse_mask = traverse->traverse_mask();
6920 if ((traverse_mask & Traverse::traverse_blocks) != 0)
6922 int t = traverse->block(this);
6923 if (t == TRAVERSE_EXIT)
6924 return TRAVERSE_EXIT;
6925 else if (t == TRAVERSE_SKIP_COMPONENTS)
6926 return TRAVERSE_CONTINUE;
6929 if ((traverse_mask
6930 & (Traverse::traverse_variables
6931 | Traverse::traverse_constants
6932 | Traverse::traverse_expressions
6933 | Traverse::traverse_types)) != 0)
6935 for (Bindings::const_definitions_iterator pb =
6936 this->bindings_->begin_definitions();
6937 pb != this->bindings_->end_definitions();
6938 ++pb)
6940 if ((*pb)->traverse(traverse, false) == TRAVERSE_EXIT)
6941 return TRAVERSE_EXIT;
6945 // No point in checking traverse_mask here--if we got here we always
6946 // want to walk the statements. The traversal can insert new
6947 // statements before or after the current statement. Inserting
6948 // statements before the current statement requires updating I via
6949 // the pointer; those statements will not be traversed. Any new
6950 // statements inserted after the current statement will be traversed
6951 // in their turn.
6952 for (size_t i = 0; i < this->statements_.size(); ++i)
6954 if (this->statements_[i]->traverse(this, &i, traverse) == TRAVERSE_EXIT)
6955 return TRAVERSE_EXIT;
6958 return TRAVERSE_CONTINUE;
6961 // Work out types for unspecified variables and constants.
6963 void
6964 Block::determine_types()
6966 for (Bindings::const_definitions_iterator pb =
6967 this->bindings_->begin_definitions();
6968 pb != this->bindings_->end_definitions();
6969 ++pb)
6971 if ((*pb)->is_variable())
6972 (*pb)->var_value()->determine_type();
6973 else if ((*pb)->is_const())
6974 (*pb)->const_value()->determine_type();
6977 for (std::vector<Statement*>::const_iterator ps = this->statements_.begin();
6978 ps != this->statements_.end();
6979 ++ps)
6980 (*ps)->determine_types();
6983 // Return true if the statements in this block may fall through.
6985 bool
6986 Block::may_fall_through() const
6988 if (this->statements_.empty())
6989 return true;
6990 return this->statements_.back()->may_fall_through();
6993 // Write export data for a block.
6995 void
6996 Block::export_block(Export_function_body* efb)
6998 for (Block::iterator p = this->begin();
6999 p != this->end();
7000 ++p)
7002 efb->indent();
7004 efb->increment_indent();
7005 (*p)->export_statement(efb);
7006 efb->decrement_indent();
7008 Location loc = (*p)->location();
7009 if ((*p)->is_block_statement())
7011 // For a block we put the start location on the first brace
7012 // in Block_statement::do_export_statement. Here we put the
7013 // end location on the final brace.
7014 loc = (*p)->block_statement()->block()->end_location();
7016 char buf[50];
7017 snprintf(buf, sizeof buf, " //%d\n", Linemap::location_to_line(loc));
7018 efb->write_c_string(buf);
7022 // Add exported block data to SET, reading from BODY starting at OFF.
7023 // Returns whether the import succeeded.
7025 bool
7026 Block::import_block(Block* set, Import_function_body *ifb, Location loc)
7028 Location eloc = ifb->location();
7029 Location sloc = loc;
7030 const std::string& body(ifb->body());
7031 size_t off = ifb->off();
7032 while (off < body.length())
7034 int indent = ifb->indent();
7035 if (off + indent >= body.length())
7037 go_error_at(eloc,
7038 "invalid export data for %qs: insufficient indentation",
7039 ifb->name().c_str());
7040 return false;
7042 for (int i = 0; i < indent - 1; i++)
7044 if (body[off + i] != ' ')
7046 go_error_at(eloc,
7047 "invalid export data for %qs: bad indentation",
7048 ifb->name().c_str());
7049 return false;
7053 bool at_end = false;
7054 if (body[off + indent - 1] == '}')
7055 at_end = true;
7056 else if (body[off + indent - 1] != ' ')
7058 go_error_at(eloc,
7059 "invalid export data for %qs: bad indentation",
7060 ifb->name().c_str());
7061 return false;
7064 off += indent;
7066 size_t nl = body.find('\n', off);
7067 if (nl == std::string::npos)
7069 go_error_at(eloc, "invalid export data for %qs: missing newline",
7070 ifb->name().c_str());
7071 return false;
7074 size_t lineno_pos = body.find(" //", off);
7075 if (lineno_pos == std::string::npos || lineno_pos >= nl)
7077 go_error_at(eloc, "invalid export data for %qs: missing line number",
7078 ifb->name().c_str());
7079 return false;
7082 unsigned int lineno = 0;
7083 for (size_t i = lineno_pos + 3; i < nl; ++i)
7085 char c = body[i];
7086 if (c < '0' || c > '9')
7088 go_error_at(loc,
7089 "invalid export data for %qs: invalid line number",
7090 ifb->name().c_str());
7091 return false;
7093 lineno = lineno * 10 + c - '0';
7096 ifb->gogo()->linemap()->start_line(lineno, 1);
7097 sloc = ifb->gogo()->linemap()->get_location(0);
7099 if (at_end)
7101 // An if statement can have an "else" following the "}", in
7102 // which case we want to leave the offset where it is, just
7103 // after the "}". We don't get the block ending location
7104 // quite right for if statements.
7105 if (body.compare(off, 6, " else ") != 0)
7106 off = nl + 1;
7107 break;
7110 ifb->set_off(off);
7111 Statement* s = Statement::import_statement(ifb, sloc);
7112 if (s == NULL)
7113 return false;
7115 set->add_statement(s);
7117 size_t at = ifb->off();
7118 if (at < nl + 1)
7119 off = nl + 1;
7120 else
7121 off = at;
7124 ifb->set_off(off);
7125 set->set_end_location(sloc);
7126 return true;
7129 // Convert a block to the backend representation.
7131 Bblock*
7132 Block::get_backend(Translate_context* context)
7134 Gogo* gogo = context->gogo();
7135 Named_object* function = context->function();
7136 std::vector<Bvariable*> vars;
7137 vars.reserve(this->bindings_->size_definitions());
7138 for (Bindings::const_definitions_iterator pv =
7139 this->bindings_->begin_definitions();
7140 pv != this->bindings_->end_definitions();
7141 ++pv)
7143 if ((*pv)->is_variable() && !(*pv)->var_value()->is_parameter())
7144 vars.push_back((*pv)->get_backend_variable(gogo, function));
7147 go_assert(function != NULL);
7148 Bfunction* bfunction =
7149 function->func_value()->get_or_make_decl(gogo, function);
7150 Bblock* ret = context->backend()->block(bfunction, context->bblock(),
7151 vars, this->start_location_,
7152 this->end_location_);
7154 Translate_context subcontext(gogo, function, this, ret);
7155 std::vector<Bstatement*> bstatements;
7156 bstatements.reserve(this->statements_.size());
7157 for (std::vector<Statement*>::const_iterator p = this->statements_.begin();
7158 p != this->statements_.end();
7159 ++p)
7160 bstatements.push_back((*p)->get_backend(&subcontext));
7162 context->backend()->block_add_statements(ret, bstatements);
7164 return ret;
7167 // Class Bindings_snapshot.
7169 Bindings_snapshot::Bindings_snapshot(const Block* b, Location location)
7170 : block_(b), counts_(), location_(location)
7172 while (b != NULL)
7174 this->counts_.push_back(b->bindings()->size_definitions());
7175 b = b->enclosing();
7179 // Report errors appropriate for a goto from B to this.
7181 void
7182 Bindings_snapshot::check_goto_from(const Block* b, Location loc)
7184 size_t dummy;
7185 if (!this->check_goto_block(loc, b, this->block_, &dummy))
7186 return;
7187 this->check_goto_defs(loc, this->block_,
7188 this->block_->bindings()->size_definitions(),
7189 this->counts_[0]);
7192 // Report errors appropriate for a goto from this to B.
7194 void
7195 Bindings_snapshot::check_goto_to(const Block* b)
7197 size_t index;
7198 if (!this->check_goto_block(this->location_, this->block_, b, &index))
7199 return;
7200 this->check_goto_defs(this->location_, b, this->counts_[index],
7201 b->bindings()->size_definitions());
7204 // Report errors appropriate for a goto at LOC from BFROM to BTO.
7205 // Return true if all is well, false if we reported an error. If this
7206 // returns true, it sets *PINDEX to the number of blocks BTO is above
7207 // BFROM.
7209 bool
7210 Bindings_snapshot::check_goto_block(Location loc, const Block* bfrom,
7211 const Block* bto, size_t* pindex)
7213 // It is an error if BTO is not either BFROM or above BFROM.
7214 size_t index = 0;
7215 for (const Block* pb = bfrom; pb != bto; pb = pb->enclosing(), ++index)
7217 if (pb == NULL)
7219 go_error_at(loc, "goto jumps into block");
7220 go_inform(bto->start_location(), "goto target block starts here");
7221 return false;
7224 *pindex = index;
7225 return true;
7228 // Report errors appropriate for a goto at LOC ending at BLOCK, where
7229 // CFROM is the number of names defined at the point of the goto and
7230 // CTO is the number of names defined at the point of the label.
7232 void
7233 Bindings_snapshot::check_goto_defs(Location loc, const Block* block,
7234 size_t cfrom, size_t cto)
7236 if (cfrom < cto)
7238 Bindings::const_definitions_iterator p =
7239 block->bindings()->begin_definitions();
7240 for (size_t i = 0; i < cfrom; ++i)
7242 go_assert(p != block->bindings()->end_definitions());
7243 ++p;
7245 go_assert(p != block->bindings()->end_definitions());
7247 for (; p != block->bindings()->end_definitions(); ++p)
7249 if ((*p)->is_variable())
7251 std::string n = (*p)->message_name();
7252 go_error_at(loc, "goto jumps over declaration of %qs", n.c_str());
7253 go_inform((*p)->location(), "%qs defined here", n.c_str());
7259 // Class Function_declaration.
7261 // Whether this declares a method.
7263 bool
7264 Function_declaration::is_method() const
7266 return this->fntype_->is_method();
7269 // Whether this method should not be included in the type descriptor.
7271 bool
7272 Function_declaration::nointerface() const
7274 go_assert(this->is_method());
7275 return (this->pragmas_ & GOPRAGMA_NOINTERFACE) != 0;
7278 // Record that this method should not be included in the type
7279 // descriptor.
7281 void
7282 Function_declaration::set_nointerface()
7284 this->pragmas_ |= GOPRAGMA_NOINTERFACE;
7287 // Set the receiver type. This is used to remove aliases.
7289 void
7290 Function_declaration::set_receiver_type(Type* rtype)
7292 Function_type* oft = this->fntype_;
7293 Typed_identifier* rec = new Typed_identifier(oft->receiver()->name(),
7294 rtype,
7295 oft->receiver()->location());
7296 Typed_identifier_list* parameters = NULL;
7297 if (oft->parameters() != NULL)
7298 parameters = oft->parameters()->copy();
7299 Typed_identifier_list* results = NULL;
7300 if (oft->results() != NULL)
7301 results = oft->results()->copy();
7302 Function_type* nft = Type::make_function_type(rec, parameters, results,
7303 oft->location());
7304 this->fntype_ = nft;
7307 // Import an inlinable function. This is used for an inlinable
7308 // function whose body is recorded in the export data. Parse the
7309 // export data into a Block and create a regular function using that
7310 // Block as its body. Redeclare this function declaration as the
7311 // function.
7313 void
7314 Function_declaration::import_function_body(Gogo* gogo, Named_object* no)
7316 go_assert(no->func_declaration_value() == this);
7317 go_assert(no->package() != NULL);
7318 const std::string& body(this->imported_body_);
7319 go_assert(!body.empty());
7321 // Read the "//FILE:LINE" comment starts the export data.
7323 size_t indent = 1;
7324 if (this->is_method())
7325 indent = 2;
7326 size_t i = 0;
7327 for (; i < indent; i++)
7329 if (body.at(i) != ' ')
7331 go_error_at(this->location_,
7332 "invalid export body for %qs: bad initial indentation",
7333 no->message_name().c_str());
7334 return;
7338 if (body.substr(i, 2) != "//")
7340 go_error_at(this->location_,
7341 "invalid export body for %qs: missing file comment",
7342 no->message_name().c_str());
7343 return;
7346 size_t colon = body.find(':', i + 2);
7347 size_t nl = body.find('\n', i + 2);
7348 if (nl == std::string::npos)
7350 go_error_at(this->location_,
7351 "invalid export body for %qs: missing file name",
7352 no->message_name().c_str());
7353 return;
7355 if (colon == std::string::npos || nl < colon)
7357 go_error_at(this->location_,
7358 "invalid export body for %qs: missing initial line number",
7359 no->message_name().c_str());
7360 return;
7363 std::string file = body.substr(i + 2, colon - (i + 2));
7364 std::string linestr = body.substr(colon + 1, nl - (colon + 1));
7365 char* end;
7366 long linenol = strtol(linestr.c_str(), &end, 10);
7367 if (*end != '\0')
7369 go_error_at(this->location_,
7370 "invalid export body for %qs: invalid initial line number",
7371 no->message_name().c_str());
7372 return;
7374 unsigned int lineno = static_cast<unsigned int>(linenol);
7376 // Turn the file/line into a location.
7378 char* alc = new char[file.length() + 1];
7379 memcpy(alc, file.data(), file.length());
7380 alc[file.length()] = '\0';
7381 gogo->linemap()->start_file(alc, lineno);
7382 gogo->linemap()->start_line(lineno, 1);
7383 Location start_loc = gogo->linemap()->get_location(0);
7385 // Define the function with an outer block that declares the
7386 // parameters.
7388 Function_type* fntype = this->fntype_;
7390 Block* outer = new Block(NULL, start_loc);
7392 Function* fn = new Function(fntype, NULL, outer, start_loc);
7393 fn->set_is_inline_only();
7395 if (fntype->is_method())
7397 if (this->nointerface())
7398 fn->set_nointerface();
7399 const Typed_identifier* receiver = fntype->receiver();
7400 Variable* recv_param = new Variable(receiver->type(), NULL, false,
7401 true, true, start_loc);
7403 std::string rname = receiver->name();
7404 unsigned rcounter = 0;
7406 // We need to give a nameless receiver a name to avoid having it
7407 // clash with some other nameless param. FIXME.
7408 Gogo::rename_if_empty(&rname, "r", &rcounter);
7410 outer->bindings()->add_variable(rname, NULL, recv_param);
7413 const Typed_identifier_list* params = fntype->parameters();
7414 bool is_varargs = fntype->is_varargs();
7415 unsigned pcounter = 0;
7416 if (params != NULL)
7418 for (Typed_identifier_list::const_iterator p = params->begin();
7419 p != params->end();
7420 ++p)
7422 Variable* param = new Variable(p->type(), NULL, false, true, false,
7423 start_loc);
7424 if (is_varargs && p + 1 == params->end())
7425 param->set_is_varargs_parameter();
7427 std::string pname = p->name();
7429 // We need to give each nameless parameter a non-empty name to avoid
7430 // having it clash with some other nameless param. FIXME.
7431 Gogo::rename_if_empty(&pname, "p", &pcounter);
7433 outer->bindings()->add_variable(pname, NULL, param);
7437 fn->create_result_variables(gogo);
7439 if (!fntype->is_method())
7441 const Package* package = no->package();
7442 no = package->bindings()->add_function(no->name(), package, fn);
7444 else
7446 Named_type* rtype = fntype->receiver()->type()->deref()->named_type();
7447 go_assert(rtype != NULL);
7448 no = rtype->add_method(no->name(), fn);
7449 const Package* package = rtype->named_object()->package();
7450 package->bindings()->add_method(no);
7453 Import_function_body ifb(gogo, this->imp_, no, body, nl + 1, outer, indent);
7455 if (!Block::import_block(outer, &ifb, start_loc))
7456 return;
7458 gogo->lower_block(no, outer);
7459 outer->determine_types();
7461 gogo->add_imported_inline_function(no);
7464 // Return the function descriptor.
7466 Expression*
7467 Function_declaration::descriptor(Gogo*, Named_object* no)
7469 go_assert(!this->fntype_->is_method());
7470 if (this->descriptor_ == NULL)
7471 this->descriptor_ = Expression::make_func_descriptor(no);
7472 return this->descriptor_;
7475 // Class Variable.
7477 Variable::Variable(Type* type, Expression* init, bool is_global,
7478 bool is_parameter, bool is_receiver,
7479 Location location)
7480 : type_(type), init_(init), preinit_(NULL), location_(location),
7481 toplevel_decl_(NULL), init_refs_(NULL), embeds_(NULL), backend_(NULL),
7482 is_global_(is_global), is_parameter_(is_parameter), is_closure_(false),
7483 is_receiver_(is_receiver), is_varargs_parameter_(false),
7484 is_global_sink_(false), is_used_(false), is_address_taken_(false),
7485 is_non_escaping_address_taken_(false), seen_(false),
7486 init_is_lowered_(false), init_is_flattened_(false),
7487 type_from_init_tuple_(false), type_from_range_index_(false),
7488 type_from_range_value_(false), type_from_chan_element_(false),
7489 is_type_switch_var_(false), determined_type_(false),
7490 in_unique_section_(false), is_referenced_by_inline_(false)
7492 go_assert(type != NULL || init != NULL);
7493 go_assert(!is_parameter || init == NULL);
7496 // Traverse the initializer expression.
7499 Variable::traverse_expression(Traverse* traverse, unsigned int traverse_mask)
7501 if (this->preinit_ != NULL)
7503 if (this->preinit_->traverse(traverse) == TRAVERSE_EXIT)
7504 return TRAVERSE_EXIT;
7506 if (this->init_ != NULL
7507 && ((traverse_mask
7508 & (Traverse::traverse_expressions | Traverse::traverse_types))
7509 != 0))
7511 if (Expression::traverse(&this->init_, traverse) == TRAVERSE_EXIT)
7512 return TRAVERSE_EXIT;
7514 return TRAVERSE_CONTINUE;
7517 // Lower the initialization expression after parsing is complete.
7519 void
7520 Variable::lower_init_expression(Gogo* gogo, Named_object* function,
7521 Statement_inserter* inserter)
7523 Named_object* dep = gogo->var_depends_on(this);
7524 if (dep != NULL && dep->is_variable())
7525 dep->var_value()->lower_init_expression(gogo, function, inserter);
7527 if (this->embeds_ != NULL)
7529 // Now that we have seen any possible type aliases, convert the
7530 // go:embed directives into an initializer.
7531 go_assert(this->init_ == NULL && this->type_ != NULL);
7532 this->init_ = gogo->initializer_for_embeds(this->type_, this->embeds_,
7533 this->location_);
7534 delete this->embeds_;
7535 this->embeds_ = NULL;
7538 if (this->init_ != NULL && !this->init_is_lowered_)
7540 if (this->seen_)
7542 // We will give an error elsewhere, this is just to prevent
7543 // an infinite loop.
7544 return;
7546 this->seen_ = true;
7548 Statement_inserter global_inserter;
7549 if (this->is_global_)
7551 global_inserter = Statement_inserter(gogo, this);
7552 inserter = &global_inserter;
7555 gogo->lower_expression(function, inserter, &this->init_);
7557 this->seen_ = false;
7559 this->init_is_lowered_ = true;
7563 // Flatten the initialization expression after ordering evaluations.
7565 void
7566 Variable::flatten_init_expression(Gogo* gogo, Named_object* function,
7567 Statement_inserter* inserter)
7569 Named_object* dep = gogo->var_depends_on(this);
7570 if (dep != NULL && dep->is_variable())
7571 dep->var_value()->flatten_init_expression(gogo, function, inserter);
7573 if (this->init_ != NULL && !this->init_is_flattened_)
7575 if (this->seen_)
7577 // We will give an error elsewhere, this is just to prevent
7578 // an infinite loop.
7579 return;
7581 this->seen_ = true;
7583 Statement_inserter global_inserter;
7584 if (this->is_global_)
7586 global_inserter = Statement_inserter(gogo, this);
7587 inserter = &global_inserter;
7590 gogo->flatten_expression(function, inserter, &this->init_);
7592 // If an interface conversion is needed, we need a temporary
7593 // variable.
7594 if (this->type_ != NULL
7595 && !Type::are_identical(this->type_, this->init_->type(),
7596 Type::COMPARE_ERRORS | Type::COMPARE_TAGS,
7597 NULL)
7598 && this->init_->type()->interface_type() != NULL
7599 && !this->init_->is_multi_eval_safe())
7601 Temporary_statement* temp =
7602 Statement::make_temporary(NULL, this->init_, this->location_);
7603 inserter->insert(temp);
7604 this->init_ = Expression::make_temporary_reference(temp,
7605 this->location_);
7608 this->seen_ = false;
7609 this->init_is_flattened_ = true;
7613 // Get the preinit block.
7615 Block*
7616 Variable::preinit_block(Gogo* gogo)
7618 go_assert(this->is_global_);
7619 if (this->preinit_ == NULL)
7620 this->preinit_ = new Block(NULL, this->location());
7622 // If a global variable has a preinitialization statement, then we
7623 // need to have an initialization function.
7624 gogo->set_need_init_fn();
7626 return this->preinit_;
7629 // Add a statement to be run before the initialization expression.
7631 void
7632 Variable::add_preinit_statement(Gogo* gogo, Statement* s)
7634 Block* b = this->preinit_block(gogo);
7635 b->add_statement(s);
7636 b->set_end_location(s->location());
7639 // Whether this variable has a type.
7641 bool
7642 Variable::has_type() const
7644 if (this->type_ == NULL)
7645 return false;
7647 // A variable created in a type switch case nil does not actually
7648 // have a type yet. It will be changed to use the initializer's
7649 // type in determine_type.
7650 if (this->is_type_switch_var_
7651 && this->type_->is_nil_constant_as_type())
7652 return false;
7654 return true;
7657 // In an assignment which sets a variable to a tuple of EXPR, return
7658 // the type of the first element of the tuple.
7660 Type*
7661 Variable::type_from_tuple(Expression* expr, bool report_error) const
7663 if (expr->map_index_expression() != NULL)
7665 Map_type* mt = expr->map_index_expression()->get_map_type();
7666 if (mt == NULL)
7667 return Type::make_error_type();
7668 return mt->val_type();
7670 else if (expr->receive_expression() != NULL)
7672 Expression* channel = expr->receive_expression()->channel();
7673 Type* channel_type = channel->type();
7674 if (channel_type->channel_type() == NULL)
7675 return Type::make_error_type();
7676 return channel_type->channel_type()->element_type();
7678 else
7680 if (report_error)
7681 go_error_at(this->location(), "invalid tuple definition");
7682 return Type::make_error_type();
7686 // Given EXPR used in a range clause, return either the index type or
7687 // the value type of the range, depending upon GET_INDEX_TYPE.
7689 Type*
7690 Variable::type_from_range(Expression* expr, bool get_index_type,
7691 bool report_error) const
7693 Type* t = expr->type();
7694 if (t->array_type() != NULL
7695 || (t->points_to() != NULL
7696 && t->points_to()->array_type() != NULL
7697 && !t->points_to()->is_slice_type()))
7699 if (get_index_type)
7700 return Type::lookup_integer_type("int");
7701 else
7702 return t->deref()->array_type()->element_type();
7704 else if (t->is_string_type())
7706 if (get_index_type)
7707 return Type::lookup_integer_type("int");
7708 else
7709 return Type::lookup_integer_type("int32");
7711 else if (t->map_type() != NULL)
7713 if (get_index_type)
7714 return t->map_type()->key_type();
7715 else
7716 return t->map_type()->val_type();
7718 else if (t->channel_type() != NULL)
7720 if (get_index_type)
7721 return t->channel_type()->element_type();
7722 else
7724 if (report_error)
7725 go_error_at(this->location(),
7726 ("invalid definition of value variable "
7727 "for channel range"));
7728 return Type::make_error_type();
7731 else
7733 if (report_error)
7734 go_error_at(this->location(), "invalid type for range clause");
7735 return Type::make_error_type();
7739 // EXPR should be a channel. Return the channel's element type.
7741 Type*
7742 Variable::type_from_chan_element(Expression* expr, bool report_error) const
7744 Type* t = expr->type();
7745 if (t->channel_type() != NULL)
7746 return t->channel_type()->element_type();
7747 else
7749 if (report_error)
7750 go_error_at(this->location(), "expected channel");
7751 return Type::make_error_type();
7755 // Return the type of the Variable. This may be called before
7756 // Variable::determine_type is called, which means that we may need to
7757 // get the type from the initializer. FIXME: If we combine lowering
7758 // with type determination, then this should be unnecessary.
7760 Type*
7761 Variable::type()
7763 // A variable in a type switch with a nil case will have the wrong
7764 // type here. This gets fixed up in determine_type, below.
7765 Type* type = this->type_;
7766 Expression* init = this->init_;
7767 if (this->is_type_switch_var_
7768 && type != NULL
7769 && this->type_->is_nil_constant_as_type())
7771 Type_guard_expression* tge = this->init_->type_guard_expression();
7772 go_assert(tge != NULL);
7773 init = tge->expr();
7774 type = NULL;
7777 if (this->seen_)
7779 if (this->type_ == NULL || !this->type_->is_error_type())
7781 go_error_at(this->location_, "variable initializer refers to itself");
7782 this->type_ = Type::make_error_type();
7784 return this->type_;
7787 this->seen_ = true;
7789 if (type != NULL)
7791 else if (this->type_from_init_tuple_)
7792 type = this->type_from_tuple(init, false);
7793 else if (this->type_from_range_index_ || this->type_from_range_value_)
7794 type = this->type_from_range(init, this->type_from_range_index_, false);
7795 else if (this->type_from_chan_element_)
7796 type = this->type_from_chan_element(init, false);
7797 else
7799 go_assert(init != NULL);
7800 type = init->type();
7801 go_assert(type != NULL);
7803 // Variables should not have abstract types.
7804 if (type->is_abstract())
7805 type = type->make_non_abstract_type();
7807 if (type->is_void_type())
7808 type = Type::make_error_type();
7811 this->seen_ = false;
7813 return type;
7816 // Fetch the type from a const pointer, in which case it should have
7817 // been set already.
7819 Type*
7820 Variable::type() const
7822 go_assert(this->type_ != NULL);
7823 return this->type_;
7826 // Set the type if necessary.
7828 void
7829 Variable::determine_type()
7831 if (this->determined_type_)
7832 return;
7833 this->determined_type_ = true;
7835 if (this->preinit_ != NULL)
7836 this->preinit_->determine_types();
7838 // A variable in a type switch with a nil case will have the wrong
7839 // type here. It will have an initializer which is a type guard.
7840 // We want to initialize it to the value without the type guard, and
7841 // use the type of that value as well.
7842 if (this->is_type_switch_var_
7843 && this->type_ != NULL
7844 && this->type_->is_nil_constant_as_type())
7846 Type_guard_expression* tge = this->init_->type_guard_expression();
7847 go_assert(tge != NULL);
7848 this->type_ = NULL;
7849 this->init_ = tge->expr();
7852 if (this->init_ == NULL)
7853 go_assert(this->type_ != NULL && !this->type_->is_abstract());
7854 else if (this->type_from_init_tuple_)
7856 Expression *init = this->init_;
7857 init->determine_type_no_context();
7858 this->type_ = this->type_from_tuple(init, true);
7859 this->init_ = NULL;
7861 else if (this->type_from_range_index_ || this->type_from_range_value_)
7863 Expression* init = this->init_;
7864 init->determine_type_no_context();
7865 this->type_ = this->type_from_range(init, this->type_from_range_index_,
7866 true);
7867 this->init_ = NULL;
7869 else if (this->type_from_chan_element_)
7871 Expression* init = this->init_;
7872 init->determine_type_no_context();
7873 this->type_ = this->type_from_chan_element(init, true);
7874 this->init_ = NULL;
7876 else
7878 Type_context context(this->type_, false);
7879 this->init_->determine_type(&context);
7880 if (this->type_ == NULL)
7882 Type* type = this->init_->type();
7883 go_assert(type != NULL);
7884 if (type->is_abstract())
7885 type = type->make_non_abstract_type();
7887 if (type->is_void_type())
7889 go_error_at(this->location_, "variable has no type");
7890 type = Type::make_error_type();
7892 else if (type->is_nil_type())
7894 go_error_at(this->location_, "variable defined to nil type");
7895 type = Type::make_error_type();
7897 else if (type->is_call_multiple_result_type())
7899 go_error_at(this->location_,
7900 "single variable set to multiple-value function call");
7901 type = Type::make_error_type();
7904 this->type_ = type;
7909 // Get the initial value of a variable. This does not
7910 // consider whether the variable is in the heap--it returns the
7911 // initial value as though it were always stored in the stack.
7913 Bexpression*
7914 Variable::get_init(Gogo* gogo, Named_object* function)
7916 go_assert(this->preinit_ == NULL);
7917 Location loc = this->location();
7918 if (this->init_ == NULL)
7920 go_assert(!this->is_parameter_);
7921 if (this->is_global_ || this->is_in_heap())
7922 return NULL;
7923 Btype* btype = this->type()->get_backend(gogo);
7924 return gogo->backend()->zero_expression(btype);
7926 else
7928 Translate_context context(gogo, function, NULL, NULL);
7929 Expression* init = Expression::make_cast(this->type(), this->init_, loc);
7930 return init->get_backend(&context);
7934 // Get the initial value of a variable when a block is required.
7935 // VAR_DECL is the decl to set; it may be NULL for a sink variable.
7937 Bstatement*
7938 Variable::get_init_block(Gogo* gogo, Named_object* function,
7939 Bvariable* var_decl)
7941 go_assert(this->preinit_ != NULL);
7943 // We want to add the variable assignment to the end of the preinit
7944 // block.
7946 Translate_context context(gogo, function, NULL, NULL);
7947 Bblock* bblock = this->preinit_->get_backend(&context);
7948 Bfunction* bfunction =
7949 function->func_value()->get_or_make_decl(gogo, function);
7951 // It's possible to have pre-init statements without an initializer
7952 // if the pre-init statements set the variable.
7953 Bstatement* decl_init = NULL;
7954 if (this->init_ != NULL)
7956 if (var_decl == NULL)
7958 Bexpression* init_bexpr = this->init_->get_backend(&context);
7959 decl_init = gogo->backend()->expression_statement(bfunction,
7960 init_bexpr);
7962 else
7964 Location loc = this->location();
7965 Expression* val_expr =
7966 Expression::make_cast(this->type(), this->init_, loc);
7967 Bexpression* val = val_expr->get_backend(&context);
7968 Bexpression* var_ref =
7969 gogo->backend()->var_expression(var_decl, loc);
7970 decl_init = gogo->backend()->assignment_statement(bfunction, var_ref,
7971 val, loc);
7974 Bstatement* block_stmt = gogo->backend()->block_statement(bblock);
7975 if (decl_init != NULL)
7976 block_stmt = gogo->backend()->compound_statement(block_stmt, decl_init);
7977 return block_stmt;
7980 // Add an initializer reference.
7982 void
7983 Variable::add_init_ref(Named_object* var)
7985 if (this->init_refs_ == NULL)
7986 this->init_refs_ = new std::vector<Named_object*>;
7987 this->init_refs_->push_back(var);
7990 // Export the variable
7992 void
7993 Variable::export_var(Export* exp, const Named_object* no) const
7995 go_assert(this->is_global_);
7996 exp->write_c_string("var ");
7997 if (no->package() != NULL)
7999 char buf[50];
8000 snprintf(buf, sizeof buf, "<p%d>", exp->package_index(no->package()));
8001 exp->write_c_string(buf);
8004 if (!Gogo::is_hidden_name(no->name()))
8005 exp->write_string(no->name());
8006 else
8008 exp->write_c_string(".");
8009 exp->write_string(Gogo::unpack_hidden_name(no->name()));
8012 exp->write_c_string(" ");
8013 exp->write_type(this->type());
8014 exp->write_c_string("\n");
8017 // Import a variable.
8019 bool
8020 Variable::import_var(Import* imp, std::string* pname, Package** ppkg,
8021 bool* pis_exported, Type** ptype)
8023 imp->require_c_string("var ");
8024 if (!Import::read_qualified_identifier(imp, pname, ppkg, pis_exported))
8026 go_error_at(imp->location(),
8027 "import error at %d: bad variable name in export data",
8028 imp->pos());
8029 return false;
8031 imp->require_c_string(" ");
8032 *ptype = imp->read_type();
8033 imp->require_semicolon_if_old_version();
8034 imp->require_c_string("\n");
8035 return true;
8038 // Convert a variable to the backend representation.
8040 Bvariable*
8041 Variable::get_backend_variable(Gogo* gogo, Named_object* function,
8042 const Package* package, const std::string& name)
8044 if (this->backend_ == NULL)
8046 Backend* backend = gogo->backend();
8047 Type* type = this->type_;
8048 if (type->is_error_type()
8049 || (type->is_undefined()
8050 && (!this->is_global_ || package == NULL)))
8051 this->backend_ = backend->error_variable();
8052 else
8054 bool is_parameter = this->is_parameter_;
8055 if (this->is_receiver_ && type->points_to() == NULL)
8056 is_parameter = false;
8057 if (this->is_in_heap())
8059 is_parameter = false;
8060 type = Type::make_pointer_type(type);
8063 Btype* btype = type->get_backend(gogo);
8065 Bvariable* bvar;
8066 if (Map_type::is_zero_value(this))
8067 bvar = Map_type::backend_zero_value(gogo);
8068 else if (this->is_global_)
8070 Backend_name bname;
8071 gogo->global_var_backend_name(name, package, &bname);
8073 bool is_hidden = Gogo::is_hidden_name(name);
8074 // Hack to export runtime.writeBarrier. FIXME.
8075 // This is because go:linkname doesn't work on variables.
8076 if (gogo->compiling_runtime()
8077 && bname.name() == "runtime.writeBarrier")
8078 is_hidden = false;
8080 // If an inline body refers to this variable, then it
8081 // needs to be visible in the symbol table.
8082 if (this->is_referenced_by_inline_)
8083 is_hidden = false;
8085 // If this variable is in a different package, then it
8086 // can't be treated as a hidden symbol. This case can
8087 // arise when an inlined function refers to a
8088 // package-scope unexported variable.
8089 if (package != NULL)
8090 is_hidden = false;
8092 unsigned int flags = 0;
8093 if (this->is_address_taken_
8094 || this->is_non_escaping_address_taken_)
8095 flags |= Backend::variable_address_is_taken;
8096 if (package != NULL)
8097 flags |= Backend::variable_is_external;
8098 if (is_hidden)
8099 flags |= Backend::variable_is_hidden;
8100 if (this->in_unique_section_)
8101 flags |= Backend::variable_in_unique_section;
8103 // For some reason asm_name can't be the empty string
8104 // for global_variable, so we call asm_name rather than
8105 // optional_asm_name here. FIXME.
8107 bvar = backend->global_variable(bname.name(),
8108 bname.asm_name(),
8109 btype, flags,
8110 this->location_);
8112 else if (function == NULL)
8114 go_assert(saw_errors());
8115 bvar = backend->error_variable();
8117 else
8119 const std::string n = Gogo::unpack_hidden_name(name);
8120 Bfunction* bfunction = function->func_value()->get_decl();
8121 unsigned int flags = 0;
8122 if (this->is_non_escaping_address_taken_
8123 && !this->is_in_heap())
8124 flags |= Backend::variable_address_is_taken;
8125 if (this->is_closure())
8126 bvar = backend->static_chain_variable(bfunction, n, btype,
8127 flags, this->location_);
8128 else if (is_parameter)
8129 bvar = backend->parameter_variable(bfunction, n, btype,
8130 flags, this->location_);
8131 else
8133 Bvariable* bvar_decl = NULL;
8134 if (this->toplevel_decl_ != NULL)
8136 Translate_context context(gogo, NULL, NULL, NULL);
8137 bvar_decl = this->toplevel_decl_->temporary_statement()
8138 ->get_backend_variable(&context);
8140 bvar = backend->local_variable(bfunction, n, btype,
8141 bvar_decl, flags,
8142 this->location_);
8145 this->backend_ = bvar;
8148 return this->backend_;
8151 // Class Result_variable.
8153 // Convert a result variable to the backend representation.
8155 Bvariable*
8156 Result_variable::get_backend_variable(Gogo* gogo, Named_object* function,
8157 const std::string& name)
8159 if (this->backend_ == NULL)
8161 Backend* backend = gogo->backend();
8162 Type* type = this->type_;
8163 if (type->is_error())
8164 this->backend_ = backend->error_variable();
8165 else
8167 if (this->is_in_heap())
8168 type = Type::make_pointer_type(type);
8169 Btype* btype = type->get_backend(gogo);
8170 Bfunction* bfunction = function->func_value()->get_decl();
8171 std::string n = Gogo::unpack_hidden_name(name);
8172 unsigned int flags = 0;
8173 if (this->is_non_escaping_address_taken_
8174 && !this->is_in_heap())
8175 flags |= Backend::variable_address_is_taken;
8176 this->backend_ = backend->local_variable(bfunction, n, btype,
8177 NULL, flags,
8178 this->location_);
8181 return this->backend_;
8184 // Class Named_constant.
8186 // Set the type of a named constant. This is only used to set the
8187 // type to an error type.
8189 void
8190 Named_constant::set_type(Type* t)
8192 go_assert(this->type_ == NULL || t->is_error_type());
8193 this->type_ = t;
8196 // Traverse the initializer expression.
8199 Named_constant::traverse_expression(Traverse* traverse)
8201 return Expression::traverse(&this->expr_, traverse);
8204 // Determine the type of the constant.
8206 void
8207 Named_constant::determine_type()
8209 if (this->type_ != NULL)
8211 Type_context context(this->type_, false);
8212 this->expr_->determine_type(&context);
8214 else
8216 // A constant may have an abstract type.
8217 Type_context context(NULL, true);
8218 this->expr_->determine_type(&context);
8219 this->type_ = this->expr_->type();
8220 go_assert(this->type_ != NULL);
8224 // Indicate that we found and reported an error for this constant.
8226 void
8227 Named_constant::set_error()
8229 this->type_ = Type::make_error_type();
8230 this->expr_ = Expression::make_error(this->location_);
8233 // Export a constant.
8235 void
8236 Named_constant::export_const(Export* exp, const std::string& name) const
8238 exp->write_c_string("const ");
8239 exp->write_string(name);
8240 exp->write_c_string(" ");
8241 if (!this->type_->is_abstract())
8243 exp->write_type(this->type_);
8244 exp->write_c_string(" ");
8246 exp->write_c_string("= ");
8248 Export_function_body efb(exp, 0);
8249 if (!this->type_->is_abstract())
8250 efb.set_type_context(this->type_);
8251 this->expr()->export_expression(&efb);
8252 exp->write_string(efb.body());
8254 exp->write_c_string("\n");
8257 // Import a constant.
8259 void
8260 Named_constant::import_const(Import* imp, std::string* pname, Type** ptype,
8261 Expression** pexpr)
8263 imp->require_c_string("const ");
8264 *pname = imp->read_identifier();
8265 imp->require_c_string(" ");
8266 if (imp->peek_char() == '=')
8267 *ptype = NULL;
8268 else
8270 *ptype = imp->read_type();
8271 imp->require_c_string(" ");
8273 imp->require_c_string("= ");
8274 *pexpr = Expression::import_expression(imp, imp->location());
8275 imp->require_semicolon_if_old_version();
8276 imp->require_c_string("\n");
8279 // Get the backend representation.
8281 Bexpression*
8282 Named_constant::get_backend(Gogo* gogo, Named_object* const_no)
8284 if (this->bconst_ == NULL)
8286 Translate_context subcontext(gogo, NULL, NULL, NULL);
8287 Type* type = this->type();
8288 Location loc = this->location();
8290 Expression* const_ref = Expression::make_const_reference(const_no, loc);
8291 Bexpression* const_decl = const_ref->get_backend(&subcontext);
8292 if (type != NULL && type->is_numeric_type())
8294 Btype* btype = type->get_backend(gogo);
8295 std::string name;
8296 if (const_no->package() == NULL)
8297 name = gogo->pkgpath();
8298 else
8299 name = const_no->package()->pkgpath();
8300 name.push_back('.');
8301 name.append(Gogo::unpack_hidden_name(const_no->name()));
8302 const_decl =
8303 gogo->backend()->named_constant_expression(btype, name,
8304 const_decl, loc);
8306 this->bconst_ = const_decl;
8308 return this->bconst_;
8311 // Add a method.
8313 Named_object*
8314 Type_declaration::add_method(const std::string& name, Function* function)
8316 Named_object* ret = Named_object::make_function(name, NULL, function);
8317 this->methods_.push_back(ret);
8318 return ret;
8321 // Add a method declaration.
8323 Named_object*
8324 Type_declaration::add_method_declaration(const std::string& name,
8325 Package* package,
8326 Function_type* type,
8327 Location location)
8329 Named_object* ret = Named_object::make_function_declaration(name, package,
8330 type, location);
8331 this->methods_.push_back(ret);
8332 return ret;
8335 // Return whether any methods are defined.
8337 bool
8338 Type_declaration::has_methods() const
8340 return !this->methods_.empty();
8343 // Define methods for the real type.
8345 void
8346 Type_declaration::define_methods(Named_type* nt)
8348 if (this->methods_.empty())
8349 return;
8351 while (nt->is_alias())
8353 Type *t = nt->real_type()->forwarded();
8354 if (t->named_type() != NULL)
8355 nt = t->named_type();
8356 else if (t->forward_declaration_type() != NULL)
8358 Named_object* no = t->forward_declaration_type()->named_object();
8359 Type_declaration* td = no->type_declaration_value();
8360 td->methods_.insert(td->methods_.end(), this->methods_.begin(),
8361 this->methods_.end());
8362 this->methods_.clear();
8363 return;
8365 else
8367 for (std::vector<Named_object*>::const_iterator p =
8368 this->methods_.begin();
8369 p != this->methods_.end();
8370 ++p)
8371 go_error_at((*p)->location(),
8372 ("invalid receiver type "
8373 "(receiver must be a named type)"));
8374 return;
8378 for (std::vector<Named_object*>::const_iterator p = this->methods_.begin();
8379 p != this->methods_.end();
8380 ++p)
8382 if ((*p)->is_function_declaration()
8383 || !(*p)->func_value()->is_sink())
8384 nt->add_existing_method(*p);
8388 // We are using the type. Return true if we should issue a warning.
8390 bool
8391 Type_declaration::using_type()
8393 bool ret = !this->issued_warning_;
8394 this->issued_warning_ = true;
8395 return ret;
8398 // Class Unknown_name.
8400 // Set the real named object.
8402 void
8403 Unknown_name::set_real_named_object(Named_object* no)
8405 go_assert(this->real_named_object_ == NULL);
8406 go_assert(!no->is_unknown());
8407 this->real_named_object_ = no;
8410 // Class Named_object.
8412 Named_object::Named_object(const std::string& name,
8413 const Package* package,
8414 Classification classification)
8415 : name_(name), package_(package), classification_(classification),
8416 is_redefinition_(false)
8418 if (Gogo::is_sink_name(name))
8419 go_assert(classification == NAMED_OBJECT_SINK);
8422 // Make an unknown name. This is used by the parser. The name must
8423 // be resolved later. Unknown names are only added in the current
8424 // package.
8426 Named_object*
8427 Named_object::make_unknown_name(const std::string& name,
8428 Location location)
8430 Named_object* named_object = new Named_object(name, NULL,
8431 NAMED_OBJECT_UNKNOWN);
8432 Unknown_name* value = new Unknown_name(location);
8433 named_object->u_.unknown_value = value;
8434 return named_object;
8437 // Make a constant.
8439 Named_object*
8440 Named_object::make_constant(const Typed_identifier& tid,
8441 const Package* package, Expression* expr,
8442 int iota_value)
8444 Named_object* named_object = new Named_object(tid.name(), package,
8445 NAMED_OBJECT_CONST);
8446 Named_constant* named_constant = new Named_constant(tid.type(), expr,
8447 iota_value,
8448 tid.location());
8449 named_object->u_.const_value = named_constant;
8450 return named_object;
8453 // Make a named type.
8455 Named_object*
8456 Named_object::make_type(const std::string& name, const Package* package,
8457 Type* type, Location location)
8459 Named_object* named_object = new Named_object(name, package,
8460 NAMED_OBJECT_TYPE);
8461 Named_type* named_type = Type::make_named_type(named_object, type, location);
8462 named_object->u_.type_value = named_type;
8463 return named_object;
8466 // Make a type declaration.
8468 Named_object*
8469 Named_object::make_type_declaration(const std::string& name,
8470 const Package* package,
8471 Location location)
8473 Named_object* named_object = new Named_object(name, package,
8474 NAMED_OBJECT_TYPE_DECLARATION);
8475 Type_declaration* type_declaration = new Type_declaration(location);
8476 named_object->u_.type_declaration = type_declaration;
8477 return named_object;
8480 // Make a variable.
8482 Named_object*
8483 Named_object::make_variable(const std::string& name, const Package* package,
8484 Variable* variable)
8486 Named_object* named_object = new Named_object(name, package,
8487 NAMED_OBJECT_VAR);
8488 named_object->u_.var_value = variable;
8489 return named_object;
8492 // Make a result variable.
8494 Named_object*
8495 Named_object::make_result_variable(const std::string& name,
8496 Result_variable* result)
8498 Named_object* named_object = new Named_object(name, NULL,
8499 NAMED_OBJECT_RESULT_VAR);
8500 named_object->u_.result_var_value = result;
8501 return named_object;
8504 // Make a sink. This is used for the special blank identifier _.
8506 Named_object*
8507 Named_object::make_sink()
8509 return new Named_object("_", NULL, NAMED_OBJECT_SINK);
8512 // Make a named function.
8514 Named_object*
8515 Named_object::make_function(const std::string& name, const Package* package,
8516 Function* function)
8518 Named_object* named_object = new Named_object(name, package,
8519 NAMED_OBJECT_FUNC);
8520 named_object->u_.func_value = function;
8521 return named_object;
8524 // Make a function declaration.
8526 Named_object*
8527 Named_object::make_function_declaration(const std::string& name,
8528 const Package* package,
8529 Function_type* fntype,
8530 Location location)
8532 Named_object* named_object = new Named_object(name, package,
8533 NAMED_OBJECT_FUNC_DECLARATION);
8534 Function_declaration *func_decl = new Function_declaration(fntype, location);
8535 named_object->u_.func_declaration_value = func_decl;
8536 return named_object;
8539 // Make a package.
8541 Named_object*
8542 Named_object::make_package(const std::string& alias, Package* package)
8544 Named_object* named_object = new Named_object(alias, NULL,
8545 NAMED_OBJECT_PACKAGE);
8546 named_object->u_.package_value = package;
8547 return named_object;
8550 // Return the name to use in an error message.
8552 std::string
8553 Named_object::message_name() const
8555 if (this->package_ == NULL)
8556 return Gogo::message_name(this->name_);
8557 std::string ret;
8558 if (this->package_->has_package_name())
8559 ret = this->package_->package_name();
8560 else
8561 ret = this->package_->pkgpath();
8562 ret = Gogo::message_name(ret);
8563 ret += '.';
8564 ret += Gogo::message_name(this->name_);
8565 return ret;
8568 // Set the type when a declaration is defined.
8570 void
8571 Named_object::set_type_value(Named_type* named_type)
8573 go_assert(this->classification_ == NAMED_OBJECT_TYPE_DECLARATION);
8574 Type_declaration* td = this->u_.type_declaration;
8575 td->define_methods(named_type);
8576 unsigned int index;
8577 Named_object* in_function = td->in_function(&index);
8578 if (in_function != NULL)
8579 named_type->set_in_function(in_function, index);
8580 delete td;
8581 this->classification_ = NAMED_OBJECT_TYPE;
8582 this->u_.type_value = named_type;
8585 // Define a function which was previously declared.
8587 void
8588 Named_object::set_function_value(Function* function)
8590 go_assert(this->classification_ == NAMED_OBJECT_FUNC_DECLARATION);
8591 if (this->func_declaration_value()->has_descriptor())
8593 Expression* descriptor =
8594 this->func_declaration_value()->descriptor(NULL, NULL);
8595 function->set_descriptor(descriptor);
8597 this->classification_ = NAMED_OBJECT_FUNC;
8598 // FIXME: We should free the old value.
8599 this->u_.func_value = function;
8602 // Declare an unknown object as a type declaration.
8604 void
8605 Named_object::declare_as_type()
8607 go_assert(this->classification_ == NAMED_OBJECT_UNKNOWN);
8608 Unknown_name* unk = this->u_.unknown_value;
8609 this->classification_ = NAMED_OBJECT_TYPE_DECLARATION;
8610 this->u_.type_declaration = new Type_declaration(unk->location());
8611 delete unk;
8614 // Return the location of a named object.
8616 Location
8617 Named_object::location() const
8619 switch (this->classification_)
8621 default:
8622 case NAMED_OBJECT_UNINITIALIZED:
8623 go_unreachable();
8625 case NAMED_OBJECT_ERRONEOUS:
8626 return Linemap::unknown_location();
8628 case NAMED_OBJECT_UNKNOWN:
8629 return this->unknown_value()->location();
8631 case NAMED_OBJECT_CONST:
8632 return this->const_value()->location();
8634 case NAMED_OBJECT_TYPE:
8635 return this->type_value()->location();
8637 case NAMED_OBJECT_TYPE_DECLARATION:
8638 return this->type_declaration_value()->location();
8640 case NAMED_OBJECT_VAR:
8641 return this->var_value()->location();
8643 case NAMED_OBJECT_RESULT_VAR:
8644 return this->result_var_value()->location();
8646 case NAMED_OBJECT_SINK:
8647 go_unreachable();
8649 case NAMED_OBJECT_FUNC:
8650 return this->func_value()->location();
8652 case NAMED_OBJECT_FUNC_DECLARATION:
8653 return this->func_declaration_value()->location();
8655 case NAMED_OBJECT_PACKAGE:
8656 return this->package_value()->location();
8660 // Traverse a Named_object.
8663 Named_object::traverse(Traverse* traverse, bool is_global)
8665 const unsigned int traverse_mask = traverse->traverse_mask();
8666 const unsigned int e_or_t = (Traverse::traverse_expressions
8667 | Traverse::traverse_types);
8668 const unsigned int e_or_t_or_s = (e_or_t
8669 | Traverse::traverse_statements);
8671 int t = TRAVERSE_CONTINUE;
8672 switch (this->classification_)
8674 case Named_object::NAMED_OBJECT_CONST:
8675 if ((traverse_mask & Traverse::traverse_constants) != 0)
8676 t = traverse->constant(this, is_global);
8677 if (t == TRAVERSE_CONTINUE
8678 && (traverse_mask & e_or_t) != 0)
8680 Type* tc = this->const_value()->type();
8681 if (tc != NULL)
8683 if (Type::traverse(tc, traverse) == TRAVERSE_EXIT)
8684 return TRAVERSE_EXIT;
8686 t = this->const_value()->traverse_expression(traverse);
8688 break;
8690 case Named_object::NAMED_OBJECT_VAR:
8691 case Named_object::NAMED_OBJECT_RESULT_VAR:
8692 if ((traverse_mask & Traverse::traverse_variables) != 0)
8693 t = traverse->variable(this);
8694 if (t == TRAVERSE_CONTINUE
8695 && (traverse_mask & e_or_t) != 0)
8697 if (this->is_result_variable() || this->var_value()->has_type())
8699 Type* tv = (this->is_variable()
8700 ? this->var_value()->type()
8701 : this->result_var_value()->type());
8702 if (tv != NULL)
8704 if (Type::traverse(tv, traverse) == TRAVERSE_EXIT)
8705 return TRAVERSE_EXIT;
8709 if (t == TRAVERSE_CONTINUE
8710 && (traverse_mask & e_or_t_or_s) != 0
8711 && this->is_variable())
8712 t = this->var_value()->traverse_expression(traverse,
8713 traverse_mask);
8714 break;
8716 case Named_object::NAMED_OBJECT_FUNC:
8717 if ((traverse_mask & Traverse::traverse_functions) != 0)
8718 t = traverse->function(this);
8719 if (t == TRAVERSE_CONTINUE
8720 && (traverse_mask
8721 & (Traverse::traverse_variables
8722 | Traverse::traverse_constants
8723 | Traverse::traverse_functions
8724 | Traverse::traverse_blocks
8725 | Traverse::traverse_statements
8726 | Traverse::traverse_expressions
8727 | Traverse::traverse_types)) != 0)
8728 t = this->func_value()->traverse(traverse);
8729 break;
8731 case Named_object::NAMED_OBJECT_TYPE:
8732 if ((traverse_mask & e_or_t) != 0)
8733 t = Type::traverse(this->type_value(), traverse);
8734 break;
8736 case Named_object::NAMED_OBJECT_PACKAGE:
8737 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
8738 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
8739 case Named_object::NAMED_OBJECT_UNKNOWN:
8740 case Named_object::NAMED_OBJECT_ERRONEOUS:
8741 break;
8743 case Named_object::NAMED_OBJECT_SINK:
8744 go_unreachable();
8746 default:
8747 go_unreachable();
8750 return t;
8753 // Export a named object.
8755 void
8756 Named_object::export_named_object(Export* exp) const
8758 switch (this->classification_)
8760 default:
8761 case NAMED_OBJECT_UNINITIALIZED:
8762 case NAMED_OBJECT_UNKNOWN:
8763 go_unreachable();
8765 case NAMED_OBJECT_ERRONEOUS:
8766 break;
8768 case NAMED_OBJECT_CONST:
8769 this->const_value()->export_const(exp, this->name_);
8770 break;
8772 case NAMED_OBJECT_TYPE:
8773 // Types are handled by export::write_types.
8774 go_unreachable();
8776 case NAMED_OBJECT_TYPE_DECLARATION:
8777 go_error_at(this->type_declaration_value()->location(),
8778 "attempt to export %<%s%> which was declared but not defined",
8779 this->message_name().c_str());
8780 break;
8782 case NAMED_OBJECT_FUNC_DECLARATION:
8783 this->func_declaration_value()->export_func(exp, this);
8784 break;
8786 case NAMED_OBJECT_VAR:
8787 this->var_value()->export_var(exp, this);
8788 break;
8790 case NAMED_OBJECT_RESULT_VAR:
8791 case NAMED_OBJECT_SINK:
8792 go_unreachable();
8794 case NAMED_OBJECT_FUNC:
8795 this->func_value()->export_func(exp, this);
8796 break;
8800 // Convert a variable to the backend representation.
8802 Bvariable*
8803 Named_object::get_backend_variable(Gogo* gogo, Named_object* function)
8805 if (this->classification_ == NAMED_OBJECT_VAR)
8806 return this->var_value()->get_backend_variable(gogo, function,
8807 this->package_, this->name_);
8808 else if (this->classification_ == NAMED_OBJECT_RESULT_VAR)
8809 return this->result_var_value()->get_backend_variable(gogo, function,
8810 this->name_);
8811 else
8812 go_unreachable();
8815 void
8816 debug_go_named_object(Named_object* no)
8818 if (no == NULL)
8820 std::cerr << "<null>";
8821 return;
8823 std::cerr << "'" << no->name() << "': ";
8824 const char *tag;
8825 switch (no->classification())
8827 case Named_object::NAMED_OBJECT_UNINITIALIZED:
8828 tag = "uninitialized";
8829 break;
8830 case Named_object::NAMED_OBJECT_ERRONEOUS:
8831 tag = "<error>";
8832 break;
8833 case Named_object::NAMED_OBJECT_UNKNOWN:
8834 tag = "<unknown>";
8835 break;
8836 case Named_object::NAMED_OBJECT_CONST:
8837 tag = "constant";
8838 break;
8839 case Named_object::NAMED_OBJECT_TYPE:
8840 tag = "type";
8841 break;
8842 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
8843 tag = "type_decl";
8844 break;
8845 case Named_object::NAMED_OBJECT_VAR:
8846 tag = "var";
8847 break;
8848 case Named_object::NAMED_OBJECT_RESULT_VAR:
8849 tag = "result_var";
8850 break;
8851 case Named_object::NAMED_OBJECT_SINK:
8852 tag = "<sink>";
8853 break;
8854 case Named_object::NAMED_OBJECT_FUNC:
8855 tag = "func";
8856 break;
8857 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
8858 tag = "func_decl";
8859 break;
8860 case Named_object::NAMED_OBJECT_PACKAGE:
8861 tag = "package";
8862 break;
8863 default:
8864 tag = "<unknown named object classification>";
8865 break;
8867 std::cerr << tag << "\n";
8870 // Get the backend representation for this named object.
8872 void
8873 Named_object::get_backend(Gogo* gogo, std::vector<Bexpression*>& const_decls,
8874 std::vector<Btype*>& type_decls,
8875 std::vector<Bfunction*>& func_decls)
8877 // If this is a definition, avoid trying to get the backend
8878 // representation, as that can crash.
8879 if (this->is_redefinition_)
8881 go_assert(saw_errors());
8882 return;
8885 switch (this->classification_)
8887 case NAMED_OBJECT_CONST:
8888 if (!Gogo::is_erroneous_name(this->name_))
8889 const_decls.push_back(this->u_.const_value->get_backend(gogo, this));
8890 break;
8892 case NAMED_OBJECT_TYPE:
8894 Named_type* named_type = this->u_.type_value;
8896 // No need to do anything for aliases-- whatever has to be done
8897 // can be done for the alias target.
8898 if (named_type->is_alias())
8899 break;
8901 if (!Gogo::is_erroneous_name(this->name_))
8902 type_decls.push_back(named_type->get_backend(gogo));
8904 // We need to produce a type descriptor for every named
8905 // type, and for a pointer to every named type, since
8906 // other files or packages might refer to them. We need
8907 // to do this even for hidden types, because they might
8908 // still be returned by some function. Simply calling the
8909 // type_descriptor method is enough to create the type
8910 // descriptor, even though we don't do anything with it.
8911 if (this->package_ == NULL && !saw_errors())
8913 named_type->
8914 type_descriptor_pointer(gogo, Linemap::predeclared_location());
8915 Type* pn = Type::make_pointer_type(named_type);
8916 pn->type_descriptor_pointer(gogo, Linemap::predeclared_location());
8917 if (named_type->in_heap())
8919 named_type->gc_symbol_pointer(gogo);
8920 pn->gc_symbol_pointer(gogo);
8924 break;
8926 case NAMED_OBJECT_TYPE_DECLARATION:
8927 go_error_at(Linemap::unknown_location(),
8928 "reference to undefined type %qs",
8929 this->message_name().c_str());
8930 return;
8932 case NAMED_OBJECT_VAR:
8933 case NAMED_OBJECT_RESULT_VAR:
8934 case NAMED_OBJECT_SINK:
8935 go_unreachable();
8937 case NAMED_OBJECT_FUNC:
8939 Function* func = this->u_.func_value;
8940 if (!Gogo::is_erroneous_name(this->name_))
8941 func_decls.push_back(func->get_or_make_decl(gogo, this));
8943 if (func->block() != NULL)
8944 func->build(gogo, this);
8946 break;
8948 case NAMED_OBJECT_ERRONEOUS:
8949 break;
8951 default:
8952 go_unreachable();
8956 // Class Bindings.
8958 Bindings::Bindings(Bindings* enclosing)
8959 : enclosing_(enclosing), named_objects_(), bindings_()
8963 // Clear imports.
8965 void
8966 Bindings::clear_file_scope(Gogo* gogo)
8968 Contour::iterator p = this->bindings_.begin();
8969 while (p != this->bindings_.end())
8971 bool keep;
8972 if (p->second->package() != NULL)
8973 keep = false;
8974 else if (p->second->is_package())
8975 keep = false;
8976 else if (p->second->is_function()
8977 && !p->second->func_value()->type()->is_method()
8978 && Gogo::unpack_hidden_name(p->second->name()) == "init")
8979 keep = false;
8980 else
8981 keep = true;
8983 if (keep)
8984 ++p;
8985 else
8987 gogo->add_file_block_name(p->second->name(), p->second->location());
8988 p = this->bindings_.erase(p);
8993 // Look up a symbol.
8995 Named_object*
8996 Bindings::lookup(const std::string& name) const
8998 Contour::const_iterator p = this->bindings_.find(name);
8999 if (p != this->bindings_.end())
9000 return p->second->resolve();
9001 else if (this->enclosing_ != NULL)
9002 return this->enclosing_->lookup(name);
9003 else
9004 return NULL;
9007 // Look up a symbol locally.
9009 Named_object*
9010 Bindings::lookup_local(const std::string& name) const
9012 Contour::const_iterator p = this->bindings_.find(name);
9013 if (p == this->bindings_.end())
9014 return NULL;
9015 return p->second;
9018 // Remove an object from a set of bindings. This is used for a
9019 // special case in thunks for functions which call recover.
9021 void
9022 Bindings::remove_binding(Named_object* no)
9024 Contour::iterator pb = this->bindings_.find(no->name());
9025 go_assert(pb != this->bindings_.end());
9026 this->bindings_.erase(pb);
9027 for (std::vector<Named_object*>::iterator pn = this->named_objects_.begin();
9028 pn != this->named_objects_.end();
9029 ++pn)
9031 if (*pn == no)
9033 this->named_objects_.erase(pn);
9034 return;
9037 go_unreachable();
9040 // Add a method to the list of objects. This is not added to the
9041 // lookup table. This is so that we have a single list of objects
9042 // declared at the top level, which we walk through when it's time to
9043 // convert to trees.
9045 void
9046 Bindings::add_method(Named_object* method)
9048 this->named_objects_.push_back(method);
9051 // Add a generic Named_object to a Contour.
9053 Named_object*
9054 Bindings::add_named_object_to_contour(Contour* contour,
9055 Named_object* named_object)
9057 go_assert(named_object == named_object->resolve());
9058 const std::string& name(named_object->name());
9059 go_assert(!Gogo::is_sink_name(name));
9061 std::pair<Contour::iterator, bool> ins =
9062 contour->insert(std::make_pair(name, named_object));
9063 if (!ins.second)
9065 // The name was already there.
9066 if (named_object->package() != NULL
9067 && ins.first->second->package() == named_object->package()
9068 && (ins.first->second->classification()
9069 == named_object->classification()))
9071 // This is a second import of the same object.
9072 return ins.first->second;
9074 ins.first->second = this->new_definition(ins.first->second,
9075 named_object);
9076 return ins.first->second;
9078 else
9080 // Don't push declarations on the list. We push them on when
9081 // and if we find the definitions. That way we genericize the
9082 // functions in order.
9083 if (!named_object->is_type_declaration()
9084 && !named_object->is_function_declaration()
9085 && !named_object->is_unknown())
9086 this->named_objects_.push_back(named_object);
9087 return named_object;
9091 // We had an existing named object OLD_OBJECT, and we've seen a new
9092 // one NEW_OBJECT with the same name. FIXME: This does not free the
9093 // new object when we don't need it.
9095 Named_object*
9096 Bindings::new_definition(Named_object* old_object, Named_object* new_object)
9098 if (new_object->is_erroneous() && !old_object->is_erroneous())
9099 return new_object;
9101 std::string reason;
9102 switch (old_object->classification())
9104 default:
9105 case Named_object::NAMED_OBJECT_UNINITIALIZED:
9106 go_unreachable();
9108 case Named_object::NAMED_OBJECT_ERRONEOUS:
9109 return old_object;
9111 case Named_object::NAMED_OBJECT_UNKNOWN:
9113 Named_object* real = old_object->unknown_value()->real_named_object();
9114 if (real != NULL)
9115 return this->new_definition(real, new_object);
9116 go_assert(!new_object->is_unknown());
9117 old_object->unknown_value()->set_real_named_object(new_object);
9118 if (!new_object->is_type_declaration()
9119 && !new_object->is_function_declaration())
9120 this->named_objects_.push_back(new_object);
9121 return new_object;
9124 case Named_object::NAMED_OBJECT_CONST:
9125 break;
9127 case Named_object::NAMED_OBJECT_TYPE:
9128 if (new_object->is_type_declaration())
9129 return old_object;
9130 break;
9132 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
9133 if (new_object->is_type_declaration())
9134 return old_object;
9135 if (new_object->is_type())
9137 old_object->set_type_value(new_object->type_value());
9138 new_object->type_value()->set_named_object(old_object);
9139 this->named_objects_.push_back(old_object);
9140 return old_object;
9142 break;
9144 case Named_object::NAMED_OBJECT_VAR:
9145 case Named_object::NAMED_OBJECT_RESULT_VAR:
9146 // We have already given an error in the parser for cases where
9147 // one parameter or result variable redeclares another one.
9148 if ((new_object->is_variable()
9149 && new_object->var_value()->is_parameter())
9150 || new_object->is_result_variable())
9151 return old_object;
9152 break;
9154 case Named_object::NAMED_OBJECT_SINK:
9155 go_unreachable();
9157 case Named_object::NAMED_OBJECT_FUNC:
9158 break;
9160 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
9162 // We declare the hash and equality functions before defining
9163 // them, because we sometimes see that we need the declaration
9164 // while we are in the middle of a different function.
9166 // We declare the main function before the user defines it, to
9167 // give better error messages.
9169 // We declare inline functions before we define them, as we
9170 // only define them if we need them.
9171 if (new_object->is_function()
9172 && ((Linemap::is_predeclared_location(old_object->location())
9173 && Linemap::is_predeclared_location(new_object->location()))
9174 || (Gogo::unpack_hidden_name(old_object->name()) == "main"
9175 && Linemap::is_unknown_location(old_object->location()))
9176 || (new_object->package() != NULL
9177 && old_object->func_declaration_value()->has_imported_body()
9178 && new_object->func_value()->is_inline_only())))
9180 Function_type* old_type =
9181 old_object->func_declaration_value()->type();
9182 Function_type* new_type = new_object->func_value()->type();
9183 if (old_type->is_valid_redeclaration(new_type, &reason))
9185 Function_declaration* fd =
9186 old_object->func_declaration_value();
9187 go_assert(fd->asm_name().empty());
9188 old_object->set_function_value(new_object->func_value());
9189 this->named_objects_.push_back(old_object);
9190 return old_object;
9194 break;
9196 case Named_object::NAMED_OBJECT_PACKAGE:
9197 break;
9200 std::string n = old_object->message_name();
9201 if (reason.empty())
9202 go_error_at(new_object->location(), "redefinition of %qs", n.c_str());
9203 else
9204 go_error_at(new_object->location(), "redefinition of %qs: %s", n.c_str(),
9205 reason.c_str());
9206 old_object->set_is_redefinition();
9207 new_object->set_is_redefinition();
9209 if (!Linemap::is_unknown_location(old_object->location())
9210 && !Linemap::is_predeclared_location(old_object->location()))
9211 go_inform(old_object->location(), "previous definition of %qs was here",
9212 n.c_str());
9214 return old_object;
9217 // Add a named type.
9219 Named_object*
9220 Bindings::add_named_type(Named_type* named_type)
9222 return this->add_named_object(named_type->named_object());
9225 // Add a function.
9227 Named_object*
9228 Bindings::add_function(const std::string& name, const Package* package,
9229 Function* function)
9231 return this->add_named_object(Named_object::make_function(name, package,
9232 function));
9235 // Add a function declaration.
9237 Named_object*
9238 Bindings::add_function_declaration(const std::string& name,
9239 const Package* package,
9240 Function_type* type,
9241 Location location)
9243 Named_object* no = Named_object::make_function_declaration(name, package,
9244 type, location);
9245 return this->add_named_object(no);
9248 // Define a type which was previously declared.
9250 void
9251 Bindings::define_type(Named_object* no, Named_type* type)
9253 no->set_type_value(type);
9254 this->named_objects_.push_back(no);
9257 // Mark all local variables as used. This is used for some types of
9258 // parse error.
9260 void
9261 Bindings::mark_locals_used()
9263 for (std::vector<Named_object*>::iterator p = this->named_objects_.begin();
9264 p != this->named_objects_.end();
9265 ++p)
9266 if ((*p)->is_variable())
9267 (*p)->var_value()->set_is_used();
9270 // Traverse bindings.
9273 Bindings::traverse(Traverse* traverse, bool is_global)
9275 unsigned int traverse_mask = traverse->traverse_mask();
9277 // We don't use an iterator because we permit the traversal to add
9278 // new global objects.
9279 const unsigned int e_or_t = (Traverse::traverse_expressions
9280 | Traverse::traverse_types);
9281 for (size_t i = 0; i < this->named_objects_.size(); ++i)
9283 Named_object* p = this->named_objects_[i];
9284 if (p->traverse(traverse, is_global) == TRAVERSE_EXIT)
9285 return TRAVERSE_EXIT;
9288 // If we need to traverse types, check the function declarations,
9289 // which have types. Also check any methods of a type declaration.
9290 if ((traverse_mask & e_or_t) != 0)
9292 for (Bindings::const_declarations_iterator p =
9293 this->begin_declarations();
9294 p != this->end_declarations();
9295 ++p)
9297 if (p->second->is_function_declaration())
9299 if (Type::traverse(p->second->func_declaration_value()->type(),
9300 traverse)
9301 == TRAVERSE_EXIT)
9302 return TRAVERSE_EXIT;
9304 else if (p->second->is_type_declaration())
9306 const std::vector<Named_object*>* methods =
9307 p->second->type_declaration_value()->methods();
9308 for (std::vector<Named_object*>::const_iterator pm =
9309 methods->begin();
9310 pm != methods->end();
9311 pm++)
9313 Named_object* no = *pm;
9314 Type *t;
9315 if (no->is_function())
9316 t = no->func_value()->type();
9317 else if (no->is_function_declaration())
9318 t = no->func_declaration_value()->type();
9319 else
9320 continue;
9321 if (Type::traverse(t, traverse) == TRAVERSE_EXIT)
9322 return TRAVERSE_EXIT;
9328 // Traverse function declarations when needed.
9329 if ((traverse_mask & Traverse::traverse_func_declarations) != 0)
9331 for (Bindings::const_declarations_iterator p = this->begin_declarations();
9332 p != this->end_declarations();
9333 ++p)
9335 if (p->second->is_function_declaration())
9337 if (traverse->function_declaration(p->second) == TRAVERSE_EXIT)
9338 return TRAVERSE_EXIT;
9343 return TRAVERSE_CONTINUE;
9346 void
9347 Bindings::debug_dump()
9349 std::set<Named_object*> defs;
9350 for (size_t i = 0; i < this->named_objects_.size(); ++i)
9351 defs.insert(this->named_objects_[i]);
9352 for (Contour::iterator p = this->bindings_.begin();
9353 p != this->bindings_.end();
9354 ++p)
9356 const char* tag = " ";
9357 if (defs.find(p->second) != defs.end())
9358 tag = "* ";
9359 std::cerr << tag;
9360 debug_go_named_object(p->second);
9364 void
9365 debug_go_bindings(Bindings* bindings)
9367 if (bindings != NULL)
9368 bindings->debug_dump();
9371 // Class Label.
9373 // Clear any references to this label.
9375 void
9376 Label::clear_refs()
9378 for (std::vector<Bindings_snapshot*>::iterator p = this->refs_.begin();
9379 p != this->refs_.end();
9380 ++p)
9381 delete *p;
9382 this->refs_.clear();
9385 // Get the backend representation for a label.
9387 Blabel*
9388 Label::get_backend_label(Translate_context* context)
9390 if (this->blabel_ == NULL)
9392 Function* function = context->function()->func_value();
9393 Bfunction* bfunction = function->get_decl();
9394 this->blabel_ = context->backend()->label(bfunction, this->name_,
9395 this->location_);
9397 return this->blabel_;
9400 // Return an expression for the address of this label.
9402 Bexpression*
9403 Label::get_addr(Translate_context* context, Location location)
9405 Blabel* label = this->get_backend_label(context);
9406 return context->backend()->label_address(label, location);
9409 // Return the dummy label that represents any instance of the blank label.
9411 Label*
9412 Label::create_dummy_label()
9414 static Label* dummy_label;
9415 if (dummy_label == NULL)
9417 dummy_label = new Label("_");
9418 dummy_label->set_is_used();
9420 return dummy_label;
9423 // Class Unnamed_label.
9425 // Get the backend representation for an unnamed label.
9427 Blabel*
9428 Unnamed_label::get_blabel(Translate_context* context)
9430 if (this->blabel_ == NULL)
9432 Function* function = context->function()->func_value();
9433 Bfunction* bfunction = function->get_decl();
9434 this->blabel_ = context->backend()->label(bfunction, "",
9435 this->location_);
9437 return this->blabel_;
9440 // Return a statement which defines this unnamed label.
9442 Bstatement*
9443 Unnamed_label::get_definition(Translate_context* context)
9445 Blabel* blabel = this->get_blabel(context);
9446 return context->backend()->label_definition_statement(blabel);
9449 // Return a goto statement to this unnamed label.
9451 Bstatement*
9452 Unnamed_label::get_goto(Translate_context* context, Location location)
9454 Blabel* blabel = this->get_blabel(context);
9455 return context->backend()->goto_statement(blabel, location);
9458 // Class Package.
9460 Package::Package(const std::string& pkgpath,
9461 const std::string& pkgpath_symbol, Location location)
9462 : pkgpath_(pkgpath), pkgpath_symbol_(pkgpath_symbol),
9463 package_name_(), bindings_(new Bindings(NULL)),
9464 location_(location)
9466 go_assert(!pkgpath.empty());
9469 // Set the package name.
9471 void
9472 Package::set_package_name(const std::string& package_name, Location location)
9474 go_assert(!package_name.empty());
9475 if (this->package_name_.empty())
9476 this->package_name_ = package_name;
9477 else if (this->package_name_ != package_name)
9478 go_error_at(location,
9479 ("saw two different packages with "
9480 "the same package path %s: %s, %s"),
9481 this->pkgpath_.c_str(), this->package_name_.c_str(),
9482 package_name.c_str());
9485 // Return the pkgpath symbol, which is a prefix for symbols defined in
9486 // this package.
9488 std::string
9489 Package::pkgpath_symbol() const
9491 if (this->pkgpath_symbol_.empty())
9492 return Gogo::pkgpath_for_symbol(this->pkgpath_);
9493 return this->pkgpath_symbol_;
9496 // Set the package path symbol.
9498 void
9499 Package::set_pkgpath_symbol(const std::string& pkgpath_symbol)
9501 go_assert(!pkgpath_symbol.empty());
9502 if (this->pkgpath_symbol_.empty())
9503 this->pkgpath_symbol_ = pkgpath_symbol;
9504 else
9505 go_assert(this->pkgpath_symbol_ == pkgpath_symbol);
9508 // Note that symbol from this package was and qualified by ALIAS.
9510 void
9511 Package::note_usage(const std::string& alias) const
9513 Aliases::const_iterator p = this->aliases_.find(alias);
9514 go_assert(p != this->aliases_.end());
9515 p->second->note_usage();
9518 // Forget a given usage. If forgetting this usage means this package becomes
9519 // unused, report that error.
9521 void
9522 Package::forget_usage(Expression* usage) const
9524 if (this->fake_uses_.empty())
9525 return;
9527 std::set<Expression*>::iterator p = this->fake_uses_.find(usage);
9528 go_assert(p != this->fake_uses_.end());
9529 this->fake_uses_.erase(p);
9531 if (this->fake_uses_.empty())
9532 go_error_at(this->location(), "imported and not used: %s",
9533 Gogo::message_name(this->package_name()).c_str());
9536 // Clear the used field for the next file. If the only usages of this package
9537 // are possibly fake, keep the fake usages for lowering.
9539 void
9540 Package::clear_used()
9542 std::string dot_alias = "." + this->package_name();
9543 Aliases::const_iterator p = this->aliases_.find(dot_alias);
9544 if (p != this->aliases_.end() && p->second->used() > this->fake_uses_.size())
9545 this->fake_uses_.clear();
9547 this->aliases_.clear();
9550 Package_alias*
9551 Package::add_alias(const std::string& alias, Location location)
9553 Aliases::const_iterator p = this->aliases_.find(alias);
9554 if (p == this->aliases_.end())
9556 std::pair<Aliases::iterator, bool> ret;
9557 ret = this->aliases_.insert(std::make_pair(alias,
9558 new Package_alias(location)));
9559 p = ret.first;
9561 return p->second;
9564 // Determine types of constants. Everything else in a package
9565 // (variables, function declarations) should already have a fixed
9566 // type. Constants may have abstract types.
9568 void
9569 Package::determine_types()
9571 Bindings* bindings = this->bindings_;
9572 for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
9573 p != bindings->end_definitions();
9574 ++p)
9576 if ((*p)->is_const())
9577 (*p)->const_value()->determine_type();
9581 // Class Traverse.
9583 // Destructor.
9585 Traverse::~Traverse()
9587 if (this->types_seen_ != NULL)
9588 delete this->types_seen_;
9589 if (this->expressions_seen_ != NULL)
9590 delete this->expressions_seen_;
9593 // Record that we are looking at a type, and return true if we have
9594 // already seen it.
9596 bool
9597 Traverse::remember_type(const Type* type)
9599 if (type->is_error_type())
9600 return true;
9601 go_assert((this->traverse_mask() & traverse_types) != 0
9602 || (this->traverse_mask() & traverse_expressions) != 0);
9603 // We mostly only have to remember named types. But it turns out
9604 // that an interface type can refer to itself without using a name
9605 // by relying on interface inheritance, as in
9607 // type I interface { F() interface{I} }
9609 // Similarly it is possible for array types to refer to themselves
9610 // without a name, e.g.
9612 // var x [uintptr(unsafe.Sizeof(&x))]byte
9614 if (type->classification() != Type::TYPE_NAMED
9615 && type->classification() != Type::TYPE_ARRAY
9616 && type->classification() != Type::TYPE_INTERFACE)
9617 return false;
9618 if (this->types_seen_ == NULL)
9619 this->types_seen_ = new Types_seen();
9620 std::pair<Types_seen::iterator, bool> ins = this->types_seen_->insert(type);
9621 return !ins.second;
9624 // Record that we are looking at an expression, and return true if we
9625 // have already seen it. NB: this routine used to assert if the traverse
9626 // mask did not include expressions/types -- this is no longer the case,
9627 // since it can be useful to remember specific expressions during
9628 // walks that only cover statements.
9630 bool
9631 Traverse::remember_expression(const Expression* expression)
9633 if (this->expressions_seen_ == NULL)
9634 this->expressions_seen_ = new Expressions_seen();
9635 std::pair<Expressions_seen::iterator, bool> ins =
9636 this->expressions_seen_->insert(expression);
9637 return !ins.second;
9640 // The default versions of these functions should never be called: the
9641 // traversal mask indicates which functions may be called.
9644 Traverse::variable(Named_object*)
9646 go_unreachable();
9650 Traverse::constant(Named_object*, bool)
9652 go_unreachable();
9656 Traverse::function(Named_object*)
9658 go_unreachable();
9662 Traverse::block(Block*)
9664 go_unreachable();
9668 Traverse::statement(Block*, size_t*, Statement*)
9670 go_unreachable();
9674 Traverse::expression(Expression**)
9676 go_unreachable();
9680 Traverse::type(Type*)
9682 go_unreachable();
9686 Traverse::function_declaration(Named_object*)
9688 go_unreachable();
9691 // Class Statement_inserter.
9693 void
9694 Statement_inserter::insert(Statement* s)
9696 if (this->statements_added_ != NULL)
9697 this->statements_added_->insert(s);
9699 if (this->block_ != NULL)
9701 go_assert(this->pindex_ != NULL);
9702 this->block_->insert_statement_before(*this->pindex_, s);
9703 ++*this->pindex_;
9705 else if (this->var_ != NULL)
9706 this->var_->add_preinit_statement(this->gogo_, s);
9707 else
9708 go_assert(saw_errors());