1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
25 #include "coretypes.h"
35 #include "hard-reg-set.h"
36 #include "insn-config.h"
39 #include "langhooks.h"
41 static rtx break_out_memory_refs
PARAMS ((rtx
));
42 static void emit_stack_probe
PARAMS ((rtx
));
45 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
48 trunc_int_for_mode (c
, mode
)
50 enum machine_mode mode
;
52 int width
= GET_MODE_BITSIZE (mode
);
54 /* You want to truncate to a _what_? */
55 if (! SCALAR_INT_MODE_P (mode
))
58 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
60 return c
& 1 ? STORE_FLAG_VALUE
: 0;
62 /* Sign-extend for the requested mode. */
64 if (width
< HOST_BITS_PER_WIDE_INT
)
66 HOST_WIDE_INT sign
= 1;
76 /* Return an rtx for the sum of X and the integer C.
78 This function should be used via the `plus_constant' macro. */
81 plus_constant_wide (x
, c
)
87 enum machine_mode mode
;
103 return GEN_INT (INTVAL (x
) + c
);
107 unsigned HOST_WIDE_INT l1
= CONST_DOUBLE_LOW (x
);
108 HOST_WIDE_INT h1
= CONST_DOUBLE_HIGH (x
);
109 unsigned HOST_WIDE_INT l2
= c
;
110 HOST_WIDE_INT h2
= c
< 0 ? ~0 : 0;
111 unsigned HOST_WIDE_INT lv
;
114 add_double (l1
, h1
, l2
, h2
, &lv
, &hv
);
116 return immed_double_const (lv
, hv
, VOIDmode
);
120 /* If this is a reference to the constant pool, try replacing it with
121 a reference to a new constant. If the resulting address isn't
122 valid, don't return it because we have no way to validize it. */
123 if (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
124 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)))
127 = force_const_mem (GET_MODE (x
),
128 plus_constant (get_pool_constant (XEXP (x
, 0)),
130 if (memory_address_p (GET_MODE (tem
), XEXP (tem
, 0)))
136 /* If adding to something entirely constant, set a flag
137 so that we can add a CONST around the result. */
148 /* The interesting case is adding the integer to a sum.
149 Look for constant term in the sum and combine
150 with C. For an integer constant term, we make a combined
151 integer. For a constant term that is not an explicit integer,
152 we cannot really combine, but group them together anyway.
154 Restart or use a recursive call in case the remaining operand is
155 something that we handle specially, such as a SYMBOL_REF.
157 We may not immediately return from the recursive call here, lest
158 all_constant gets lost. */
160 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
162 c
+= INTVAL (XEXP (x
, 1));
164 if (GET_MODE (x
) != VOIDmode
)
165 c
= trunc_int_for_mode (c
, GET_MODE (x
));
170 else if (CONSTANT_P (XEXP (x
, 1)))
172 x
= gen_rtx_PLUS (mode
, XEXP (x
, 0), plus_constant (XEXP (x
, 1), c
));
175 else if (find_constant_term_loc (&y
))
177 /* We need to be careful since X may be shared and we can't
178 modify it in place. */
179 rtx copy
= copy_rtx (x
);
180 rtx
*const_loc
= find_constant_term_loc (©
);
182 *const_loc
= plus_constant (*const_loc
, c
);
193 x
= gen_rtx_PLUS (mode
, x
, GEN_INT (c
));
195 if (GET_CODE (x
) == SYMBOL_REF
|| GET_CODE (x
) == LABEL_REF
)
197 else if (all_constant
)
198 return gen_rtx_CONST (mode
, x
);
203 /* If X is a sum, return a new sum like X but lacking any constant terms.
204 Add all the removed constant terms into *CONSTPTR.
205 X itself is not altered. The result != X if and only if
206 it is not isomorphic to X. */
209 eliminate_constant_term (x
, constptr
)
216 if (GET_CODE (x
) != PLUS
)
219 /* First handle constants appearing at this level explicitly. */
220 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
221 && 0 != (tem
= simplify_binary_operation (PLUS
, GET_MODE (x
), *constptr
,
223 && GET_CODE (tem
) == CONST_INT
)
226 return eliminate_constant_term (XEXP (x
, 0), constptr
);
230 x0
= eliminate_constant_term (XEXP (x
, 0), &tem
);
231 x1
= eliminate_constant_term (XEXP (x
, 1), &tem
);
232 if ((x1
!= XEXP (x
, 1) || x0
!= XEXP (x
, 0))
233 && 0 != (tem
= simplify_binary_operation (PLUS
, GET_MODE (x
),
235 && GET_CODE (tem
) == CONST_INT
)
238 return gen_rtx_PLUS (GET_MODE (x
), x0
, x1
);
244 /* Returns the insn that next references REG after INSN, or 0
245 if REG is clobbered before next referenced or we cannot find
246 an insn that references REG in a straight-line piece of code. */
249 find_next_ref (reg
, insn
)
255 for (insn
= NEXT_INSN (insn
); insn
; insn
= next
)
257 next
= NEXT_INSN (insn
);
258 if (GET_CODE (insn
) == NOTE
)
260 if (GET_CODE (insn
) == CODE_LABEL
261 || GET_CODE (insn
) == BARRIER
)
263 if (GET_CODE (insn
) == INSN
264 || GET_CODE (insn
) == JUMP_INSN
265 || GET_CODE (insn
) == CALL_INSN
)
267 if (reg_set_p (reg
, insn
))
269 if (reg_mentioned_p (reg
, PATTERN (insn
)))
271 if (GET_CODE (insn
) == JUMP_INSN
)
273 if (any_uncondjump_p (insn
))
274 next
= JUMP_LABEL (insn
);
278 if (GET_CODE (insn
) == CALL_INSN
279 && REGNO (reg
) < FIRST_PSEUDO_REGISTER
280 && call_used_regs
[REGNO (reg
)])
289 /* Return an rtx for the size in bytes of the value of EXP. */
295 tree size
= (*lang_hooks
.expr_size
) (exp
);
297 if (TREE_CODE (size
) != INTEGER_CST
298 && contains_placeholder_p (size
))
299 size
= build (WITH_RECORD_EXPR
, sizetype
, size
, exp
);
301 return expand_expr (size
, NULL_RTX
, TYPE_MODE (sizetype
), 0);
304 /* Return a wide integer for the size in bytes of the value of EXP, or -1
305 if the size can vary or is larger than an integer. */
311 tree t
= (*lang_hooks
.expr_size
) (exp
);
314 || TREE_CODE (t
) != INTEGER_CST
316 || TREE_INT_CST_HIGH (t
) != 0
317 /* If the result would appear negative, it's too big to represent. */
318 || (HOST_WIDE_INT
) TREE_INT_CST_LOW (t
) < 0)
321 return TREE_INT_CST_LOW (t
);
324 /* Return a copy of X in which all memory references
325 and all constants that involve symbol refs
326 have been replaced with new temporary registers.
327 Also emit code to load the memory locations and constants
328 into those registers.
330 If X contains no such constants or memory references,
331 X itself (not a copy) is returned.
333 If a constant is found in the address that is not a legitimate constant
334 in an insn, it is left alone in the hope that it might be valid in the
337 X may contain no arithmetic except addition, subtraction and multiplication.
338 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
341 break_out_memory_refs (x
)
344 if (GET_CODE (x
) == MEM
345 || (CONSTANT_P (x
) && CONSTANT_ADDRESS_P (x
)
346 && GET_MODE (x
) != VOIDmode
))
347 x
= force_reg (GET_MODE (x
), x
);
348 else if (GET_CODE (x
) == PLUS
|| GET_CODE (x
) == MINUS
349 || GET_CODE (x
) == MULT
)
351 rtx op0
= break_out_memory_refs (XEXP (x
, 0));
352 rtx op1
= break_out_memory_refs (XEXP (x
, 1));
354 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
355 x
= gen_rtx_fmt_ee (GET_CODE (x
), Pmode
, op0
, op1
);
361 #ifdef POINTERS_EXTEND_UNSIGNED
363 /* Given X, a memory address in ptr_mode, convert it to an address
364 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
365 the fact that pointers are not allowed to overflow by commuting arithmetic
366 operations over conversions so that address arithmetic insns can be
370 convert_memory_address (to_mode
, x
)
371 enum machine_mode to_mode
;
374 enum machine_mode from_mode
= to_mode
== ptr_mode
? Pmode
: ptr_mode
;
378 /* Here we handle some special cases. If none of them apply, fall through
379 to the default case. */
380 switch (GET_CODE (x
))
384 if (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (from_mode
))
386 else if (POINTERS_EXTEND_UNSIGNED
< 0)
388 else if (POINTERS_EXTEND_UNSIGNED
> 0)
392 temp
= simplify_unary_operation (code
, to_mode
, x
, from_mode
);
398 if ((SUBREG_PROMOTED_VAR_P (x
) || REG_POINTER (SUBREG_REG (x
)))
399 && GET_MODE (SUBREG_REG (x
)) == to_mode
)
400 return SUBREG_REG (x
);
404 temp
= gen_rtx_LABEL_REF (to_mode
, XEXP (x
, 0));
405 LABEL_REF_NONLOCAL_P (temp
) = LABEL_REF_NONLOCAL_P (x
);
410 temp
= shallow_copy_rtx (x
);
411 PUT_MODE (temp
, to_mode
);
416 return gen_rtx_CONST (to_mode
,
417 convert_memory_address (to_mode
, XEXP (x
, 0)));
422 /* For addition we can safely permute the conversion and addition
423 operation if one operand is a constant and converting the constant
424 does not change it. We can always safely permute them if we are
425 making the address narrower. */
426 if (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (from_mode
)
427 || (GET_CODE (x
) == PLUS
428 && GET_CODE (XEXP (x
, 1)) == CONST_INT
429 && XEXP (x
, 1) == convert_memory_address (to_mode
, XEXP (x
, 1))))
430 return gen_rtx_fmt_ee (GET_CODE (x
), to_mode
,
431 convert_memory_address (to_mode
, XEXP (x
, 0)),
439 return convert_modes (to_mode
, from_mode
,
440 x
, POINTERS_EXTEND_UNSIGNED
);
444 /* Given a memory address or facsimile X, construct a new address,
445 currently equivalent, that is stable: future stores won't change it.
447 X must be composed of constants, register and memory references
448 combined with addition, subtraction and multiplication:
449 in other words, just what you can get from expand_expr if sum_ok is 1.
451 Works by making copies of all regs and memory locations used
452 by X and combining them the same way X does.
453 You could also stabilize the reference to this address
454 by copying the address to a register with copy_to_reg;
455 but then you wouldn't get indexed addressing in the reference. */
461 if (GET_CODE (x
) == REG
)
463 if (REGNO (x
) != FRAME_POINTER_REGNUM
464 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
465 && REGNO (x
) != HARD_FRAME_POINTER_REGNUM
470 else if (GET_CODE (x
) == MEM
)
472 else if (GET_CODE (x
) == PLUS
|| GET_CODE (x
) == MINUS
473 || GET_CODE (x
) == MULT
)
475 rtx op0
= copy_all_regs (XEXP (x
, 0));
476 rtx op1
= copy_all_regs (XEXP (x
, 1));
477 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
478 x
= gen_rtx_fmt_ee (GET_CODE (x
), Pmode
, op0
, op1
);
483 /* Return something equivalent to X but valid as a memory address
484 for something of mode MODE. When X is not itself valid, this
485 works by copying X or subexpressions of it into registers. */
488 memory_address (mode
, x
)
489 enum machine_mode mode
;
494 if (GET_CODE (x
) == ADDRESSOF
)
497 #ifdef POINTERS_EXTEND_UNSIGNED
498 if (GET_MODE (x
) != Pmode
)
499 x
= convert_memory_address (Pmode
, x
);
502 /* By passing constant addresses thru registers
503 we get a chance to cse them. */
504 if (! cse_not_expected
&& CONSTANT_P (x
) && CONSTANT_ADDRESS_P (x
))
505 x
= force_reg (Pmode
, x
);
507 /* Accept a QUEUED that refers to a REG
508 even though that isn't a valid address.
509 On attempting to put this in an insn we will call protect_from_queue
510 which will turn it into a REG, which is valid. */
511 else if (GET_CODE (x
) == QUEUED
512 && GET_CODE (QUEUED_VAR (x
)) == REG
)
515 /* We get better cse by rejecting indirect addressing at this stage.
516 Let the combiner create indirect addresses where appropriate.
517 For now, generate the code so that the subexpressions useful to share
518 are visible. But not if cse won't be done! */
521 if (! cse_not_expected
&& GET_CODE (x
) != REG
)
522 x
= break_out_memory_refs (x
);
524 /* At this point, any valid address is accepted. */
525 GO_IF_LEGITIMATE_ADDRESS (mode
, x
, win
);
527 /* If it was valid before but breaking out memory refs invalidated it,
528 use it the old way. */
529 if (memory_address_p (mode
, oldx
))
532 /* Perform machine-dependent transformations on X
533 in certain cases. This is not necessary since the code
534 below can handle all possible cases, but machine-dependent
535 transformations can make better code. */
536 LEGITIMIZE_ADDRESS (x
, oldx
, mode
, win
);
538 /* PLUS and MULT can appear in special ways
539 as the result of attempts to make an address usable for indexing.
540 Usually they are dealt with by calling force_operand, below.
541 But a sum containing constant terms is special
542 if removing them makes the sum a valid address:
543 then we generate that address in a register
544 and index off of it. We do this because it often makes
545 shorter code, and because the addresses thus generated
546 in registers often become common subexpressions. */
547 if (GET_CODE (x
) == PLUS
)
549 rtx constant_term
= const0_rtx
;
550 rtx y
= eliminate_constant_term (x
, &constant_term
);
551 if (constant_term
== const0_rtx
552 || ! memory_address_p (mode
, y
))
553 x
= force_operand (x
, NULL_RTX
);
556 y
= gen_rtx_PLUS (GET_MODE (x
), copy_to_reg (y
), constant_term
);
557 if (! memory_address_p (mode
, y
))
558 x
= force_operand (x
, NULL_RTX
);
564 else if (GET_CODE (x
) == MULT
|| GET_CODE (x
) == MINUS
)
565 x
= force_operand (x
, NULL_RTX
);
567 /* If we have a register that's an invalid address,
568 it must be a hard reg of the wrong class. Copy it to a pseudo. */
569 else if (GET_CODE (x
) == REG
)
572 /* Last resort: copy the value to a register, since
573 the register is a valid address. */
575 x
= force_reg (Pmode
, x
);
582 if (flag_force_addr
&& ! cse_not_expected
&& GET_CODE (x
) != REG
583 /* Don't copy an addr via a reg if it is one of our stack slots. */
584 && ! (GET_CODE (x
) == PLUS
585 && (XEXP (x
, 0) == virtual_stack_vars_rtx
586 || XEXP (x
, 0) == virtual_incoming_args_rtx
)))
588 if (general_operand (x
, Pmode
))
589 x
= force_reg (Pmode
, x
);
591 x
= force_operand (x
, NULL_RTX
);
597 /* If we didn't change the address, we are done. Otherwise, mark
598 a reg as a pointer if we have REG or REG + CONST_INT. */
601 else if (GET_CODE (x
) == REG
)
602 mark_reg_pointer (x
, BITS_PER_UNIT
);
603 else if (GET_CODE (x
) == PLUS
604 && GET_CODE (XEXP (x
, 0)) == REG
605 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
606 mark_reg_pointer (XEXP (x
, 0), BITS_PER_UNIT
);
608 /* OLDX may have been the address on a temporary. Update the address
609 to indicate that X is now used. */
610 update_temp_slot_address (oldx
, x
);
615 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
618 memory_address_noforce (mode
, x
)
619 enum machine_mode mode
;
622 int ambient_force_addr
= flag_force_addr
;
626 val
= memory_address (mode
, x
);
627 flag_force_addr
= ambient_force_addr
;
631 /* Convert a mem ref into one with a valid memory address.
632 Pass through anything else unchanged. */
638 if (GET_CODE (ref
) != MEM
)
640 if (! (flag_force_addr
&& CONSTANT_ADDRESS_P (XEXP (ref
, 0)))
641 && memory_address_p (GET_MODE (ref
), XEXP (ref
, 0)))
644 /* Don't alter REF itself, since that is probably a stack slot. */
645 return replace_equiv_address (ref
, XEXP (ref
, 0));
648 /* Given REF, either a MEM or a REG, and T, either the type of X or
649 the expression corresponding to REF, set RTX_UNCHANGING_P if
653 maybe_set_unchanging (ref
, t
)
657 /* We can set RTX_UNCHANGING_P from TREE_READONLY for decls whose
658 initialization is only executed once, or whose initializer always
659 has the same value. Currently we simplify this to PARM_DECLs in the
660 first case, and decls with TREE_CONSTANT initializers in the second.
662 We cannot do this for non-static aggregates, because of the double
663 writes that can be generated by store_constructor, depending on the
664 contents of the initializer. Yes, this does eliminate a good fraction
665 of the number of uses of RTX_UNCHANGING_P for a language like Ada.
666 It also eliminates a good quantity of bugs. Let this be incentive to
667 eliminate RTX_UNCHANGING_P entirely in favour of a more reliable
668 solution, perhaps based on alias sets. */
670 if ((TREE_READONLY (t
) && DECL_P (t
)
671 && (TREE_STATIC (t
) || ! AGGREGATE_TYPE_P (TREE_TYPE (t
)))
672 && (TREE_CODE (t
) == PARM_DECL
673 || (DECL_INITIAL (t
) && TREE_CONSTANT (DECL_INITIAL (t
)))))
674 || TREE_CODE_CLASS (TREE_CODE (t
)) == 'c')
675 RTX_UNCHANGING_P (ref
) = 1;
678 /* Return a modified copy of X with its memory address copied
679 into a temporary register to protect it from side effects.
680 If X is not a MEM, it is returned unchanged (and not copied).
681 Perhaps even if it is a MEM, if there is no need to change it. */
688 if (GET_CODE (x
) != MEM
689 || ! rtx_unstable_p (XEXP (x
, 0)))
693 replace_equiv_address (x
, force_reg (Pmode
, copy_all_regs (XEXP (x
, 0))));
696 /* Copy the value or contents of X to a new temp reg and return that reg. */
702 rtx temp
= gen_reg_rtx (GET_MODE (x
));
704 /* If not an operand, must be an address with PLUS and MULT so
705 do the computation. */
706 if (! general_operand (x
, VOIDmode
))
707 x
= force_operand (x
, temp
);
710 emit_move_insn (temp
, x
);
715 /* Like copy_to_reg but always give the new register mode Pmode
716 in case X is a constant. */
722 return copy_to_mode_reg (Pmode
, x
);
725 /* Like copy_to_reg but always give the new register mode MODE
726 in case X is a constant. */
729 copy_to_mode_reg (mode
, x
)
730 enum machine_mode mode
;
733 rtx temp
= gen_reg_rtx (mode
);
735 /* If not an operand, must be an address with PLUS and MULT so
736 do the computation. */
737 if (! general_operand (x
, VOIDmode
))
738 x
= force_operand (x
, temp
);
740 if (GET_MODE (x
) != mode
&& GET_MODE (x
) != VOIDmode
)
743 emit_move_insn (temp
, x
);
747 /* Load X into a register if it is not already one.
748 Use mode MODE for the register.
749 X should be valid for mode MODE, but it may be a constant which
750 is valid for all integer modes; that's why caller must specify MODE.
752 The caller must not alter the value in the register we return,
753 since we mark it as a "constant" register. */
757 enum machine_mode mode
;
762 if (GET_CODE (x
) == REG
)
765 if (general_operand (x
, mode
))
767 temp
= gen_reg_rtx (mode
);
768 insn
= emit_move_insn (temp
, x
);
772 temp
= force_operand (x
, NULL_RTX
);
773 if (GET_CODE (temp
) == REG
)
774 insn
= get_last_insn ();
777 rtx temp2
= gen_reg_rtx (mode
);
778 insn
= emit_move_insn (temp2
, temp
);
783 /* Let optimizers know that TEMP's value never changes
784 and that X can be substituted for it. Don't get confused
785 if INSN set something else (such as a SUBREG of TEMP). */
787 && (set
= single_set (insn
)) != 0
788 && SET_DEST (set
) == temp
789 && ! rtx_equal_p (x
, SET_SRC (set
)))
790 set_unique_reg_note (insn
, REG_EQUAL
, x
);
795 /* If X is a memory ref, copy its contents to a new temp reg and return
796 that reg. Otherwise, return X. */
804 if (GET_CODE (x
) != MEM
|| GET_MODE (x
) == BLKmode
)
807 temp
= gen_reg_rtx (GET_MODE (x
));
808 emit_move_insn (temp
, x
);
812 /* Copy X to TARGET (if it's nonzero and a reg)
813 or to a new temp reg and return that reg.
814 MODE is the mode to use for X in case it is a constant. */
817 copy_to_suggested_reg (x
, target
, mode
)
819 enum machine_mode mode
;
823 if (target
&& GET_CODE (target
) == REG
)
826 temp
= gen_reg_rtx (mode
);
828 emit_move_insn (temp
, x
);
832 /* Return the mode to use to store a scalar of TYPE and MODE.
833 PUNSIGNEDP points to the signedness of the type and may be adjusted
834 to show what signedness to use on extension operations.
836 FOR_CALL is nonzero if this call is promoting args for a call. */
839 promote_mode (type
, mode
, punsignedp
, for_call
)
841 enum machine_mode mode
;
843 int for_call ATTRIBUTE_UNUSED
;
845 enum tree_code code
= TREE_CODE (type
);
846 int unsignedp
= *punsignedp
;
848 #ifdef PROMOTE_FOR_CALL_ONLY
856 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
857 case CHAR_TYPE
: case REAL_TYPE
: case OFFSET_TYPE
:
858 PROMOTE_MODE (mode
, unsignedp
, type
);
862 #ifdef POINTERS_EXTEND_UNSIGNED
866 unsignedp
= POINTERS_EXTEND_UNSIGNED
;
874 *punsignedp
= unsignedp
;
878 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
879 This pops when ADJUST is positive. ADJUST need not be constant. */
882 adjust_stack (adjust
)
886 adjust
= protect_from_queue (adjust
, 0);
888 if (adjust
== const0_rtx
)
891 /* We expect all variable sized adjustments to be multiple of
892 PREFERRED_STACK_BOUNDARY. */
893 if (GET_CODE (adjust
) == CONST_INT
)
894 stack_pointer_delta
-= INTVAL (adjust
);
896 temp
= expand_binop (Pmode
,
897 #ifdef STACK_GROWS_DOWNWARD
902 stack_pointer_rtx
, adjust
, stack_pointer_rtx
, 0,
905 if (temp
!= stack_pointer_rtx
)
906 emit_move_insn (stack_pointer_rtx
, temp
);
909 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
910 This pushes when ADJUST is positive. ADJUST need not be constant. */
913 anti_adjust_stack (adjust
)
917 adjust
= protect_from_queue (adjust
, 0);
919 if (adjust
== const0_rtx
)
922 /* We expect all variable sized adjustments to be multiple of
923 PREFERRED_STACK_BOUNDARY. */
924 if (GET_CODE (adjust
) == CONST_INT
)
925 stack_pointer_delta
+= INTVAL (adjust
);
927 temp
= expand_binop (Pmode
,
928 #ifdef STACK_GROWS_DOWNWARD
933 stack_pointer_rtx
, adjust
, stack_pointer_rtx
, 0,
936 if (temp
!= stack_pointer_rtx
)
937 emit_move_insn (stack_pointer_rtx
, temp
);
940 /* Round the size of a block to be pushed up to the boundary required
941 by this machine. SIZE is the desired size, which need not be constant. */
947 int align
= PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
;
952 if (GET_CODE (size
) == CONST_INT
)
954 HOST_WIDE_INT
new = (INTVAL (size
) + align
- 1) / align
* align
;
956 if (INTVAL (size
) != new)
957 size
= GEN_INT (new);
961 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
962 but we know it can't. So add ourselves and then do
964 size
= expand_binop (Pmode
, add_optab
, size
, GEN_INT (align
- 1),
965 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
966 size
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, size
, GEN_INT (align
),
968 size
= expand_mult (Pmode
, size
, GEN_INT (align
), NULL_RTX
, 1);
974 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
975 to a previously-created save area. If no save area has been allocated,
976 this function will allocate one. If a save area is specified, it
977 must be of the proper mode.
979 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
980 are emitted at the current position. */
983 emit_stack_save (save_level
, psave
, after
)
984 enum save_level save_level
;
989 /* The default is that we use a move insn and save in a Pmode object. */
990 rtx (*fcn
) PARAMS ((rtx
, rtx
)) = gen_move_insn
;
991 enum machine_mode mode
= STACK_SAVEAREA_MODE (save_level
);
993 /* See if this machine has anything special to do for this kind of save. */
996 #ifdef HAVE_save_stack_block
998 if (HAVE_save_stack_block
)
999 fcn
= gen_save_stack_block
;
1002 #ifdef HAVE_save_stack_function
1004 if (HAVE_save_stack_function
)
1005 fcn
= gen_save_stack_function
;
1008 #ifdef HAVE_save_stack_nonlocal
1010 if (HAVE_save_stack_nonlocal
)
1011 fcn
= gen_save_stack_nonlocal
;
1018 /* If there is no save area and we have to allocate one, do so. Otherwise
1019 verify the save area is the proper mode. */
1023 if (mode
!= VOIDmode
)
1025 if (save_level
== SAVE_NONLOCAL
)
1026 *psave
= sa
= assign_stack_local (mode
, GET_MODE_SIZE (mode
), 0);
1028 *psave
= sa
= gen_reg_rtx (mode
);
1033 if (mode
== VOIDmode
|| GET_MODE (sa
) != mode
)
1042 /* We must validize inside the sequence, to ensure that any instructions
1043 created by the validize call also get moved to the right place. */
1045 sa
= validize_mem (sa
);
1046 emit_insn (fcn (sa
, stack_pointer_rtx
));
1049 emit_insn_after (seq
, after
);
1054 sa
= validize_mem (sa
);
1055 emit_insn (fcn (sa
, stack_pointer_rtx
));
1059 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1060 area made by emit_stack_save. If it is zero, we have nothing to do.
1062 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1063 current position. */
1066 emit_stack_restore (save_level
, sa
, after
)
1067 enum save_level save_level
;
1071 /* The default is that we use a move insn. */
1072 rtx (*fcn
) PARAMS ((rtx
, rtx
)) = gen_move_insn
;
1074 /* See if this machine has anything special to do for this kind of save. */
1077 #ifdef HAVE_restore_stack_block
1079 if (HAVE_restore_stack_block
)
1080 fcn
= gen_restore_stack_block
;
1083 #ifdef HAVE_restore_stack_function
1085 if (HAVE_restore_stack_function
)
1086 fcn
= gen_restore_stack_function
;
1089 #ifdef HAVE_restore_stack_nonlocal
1091 if (HAVE_restore_stack_nonlocal
)
1092 fcn
= gen_restore_stack_nonlocal
;
1101 sa
= validize_mem (sa
);
1102 /* These clobbers prevent the scheduler from moving
1103 references to variable arrays below the code
1104 that deletes (pops) the arrays. */
1105 emit_insn (gen_rtx_CLOBBER (VOIDmode
,
1106 gen_rtx_MEM (BLKmode
,
1107 gen_rtx_SCRATCH (VOIDmode
))));
1108 emit_insn (gen_rtx_CLOBBER (VOIDmode
,
1109 gen_rtx_MEM (BLKmode
, stack_pointer_rtx
)));
1117 emit_insn (fcn (stack_pointer_rtx
, sa
));
1120 emit_insn_after (seq
, after
);
1123 emit_insn (fcn (stack_pointer_rtx
, sa
));
1126 #ifdef SETJMP_VIA_SAVE_AREA
1127 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1128 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1129 platforms, the dynamic stack space used can corrupt the original
1130 frame, thus causing a crash if a longjmp unwinds to it. */
1133 optimize_save_area_alloca (insns
)
1138 for (insn
= insns
; insn
; insn
= NEXT_INSN(insn
))
1142 if (GET_CODE (insn
) != INSN
)
1145 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1147 if (REG_NOTE_KIND (note
) != REG_SAVE_AREA
)
1150 if (!current_function_calls_setjmp
)
1152 rtx pat
= PATTERN (insn
);
1154 /* If we do not see the note in a pattern matching
1155 these precise characteristics, we did something
1156 entirely wrong in allocate_dynamic_stack_space.
1158 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1159 was defined on a machine where stacks grow towards higher
1162 Right now only supported port with stack that grow upward
1163 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1164 if (GET_CODE (pat
) != SET
1165 || SET_DEST (pat
) != stack_pointer_rtx
1166 || GET_CODE (SET_SRC (pat
)) != MINUS
1167 || XEXP (SET_SRC (pat
), 0) != stack_pointer_rtx
)
1170 /* This will now be transformed into a (set REG REG)
1171 so we can just blow away all the other notes. */
1172 XEXP (SET_SRC (pat
), 1) = XEXP (note
, 0);
1173 REG_NOTES (insn
) = NULL_RTX
;
1177 /* setjmp was called, we must remove the REG_SAVE_AREA
1178 note so that later passes do not get confused by its
1180 if (note
== REG_NOTES (insn
))
1182 REG_NOTES (insn
) = XEXP (note
, 1);
1188 for (srch
= REG_NOTES (insn
); srch
; srch
= XEXP (srch
, 1))
1189 if (XEXP (srch
, 1) == note
)
1192 if (srch
== NULL_RTX
)
1195 XEXP (srch
, 1) = XEXP (note
, 1);
1198 /* Once we've seen the note of interest, we need not look at
1199 the rest of them. */
1204 #endif /* SETJMP_VIA_SAVE_AREA */
1206 /* Return an rtx representing the address of an area of memory dynamically
1207 pushed on the stack. This region of memory is always aligned to
1208 a multiple of BIGGEST_ALIGNMENT.
1210 Any required stack pointer alignment is preserved.
1212 SIZE is an rtx representing the size of the area.
1213 TARGET is a place in which the address can be placed.
1215 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1218 allocate_dynamic_stack_space (size
, target
, known_align
)
1223 #ifdef SETJMP_VIA_SAVE_AREA
1224 rtx setjmpless_size
= NULL_RTX
;
1227 /* If we're asking for zero bytes, it doesn't matter what we point
1228 to since we can't dereference it. But return a reasonable
1230 if (size
== const0_rtx
)
1231 return virtual_stack_dynamic_rtx
;
1233 /* Otherwise, show we're calling alloca or equivalent. */
1234 current_function_calls_alloca
= 1;
1236 /* Ensure the size is in the proper mode. */
1237 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1238 size
= convert_to_mode (Pmode
, size
, 1);
1240 /* We can't attempt to minimize alignment necessary, because we don't
1241 know the final value of preferred_stack_boundary yet while executing
1243 cfun
->preferred_stack_boundary
= PREFERRED_STACK_BOUNDARY
;
1245 /* We will need to ensure that the address we return is aligned to
1246 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1247 always know its final value at this point in the compilation (it
1248 might depend on the size of the outgoing parameter lists, for
1249 example), so we must align the value to be returned in that case.
1250 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1251 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1252 We must also do an alignment operation on the returned value if
1253 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1255 If we have to align, we must leave space in SIZE for the hole
1256 that might result from the alignment operation. */
1258 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1259 #define MUST_ALIGN 1
1261 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1266 = force_operand (plus_constant (size
,
1267 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
- 1),
1270 #ifdef SETJMP_VIA_SAVE_AREA
1271 /* If setjmp restores regs from a save area in the stack frame,
1272 avoid clobbering the reg save area. Note that the offset of
1273 virtual_incoming_args_rtx includes the preallocated stack args space.
1274 It would be no problem to clobber that, but it's on the wrong side
1275 of the old save area. */
1278 = expand_binop (Pmode
, sub_optab
, virtual_stack_dynamic_rtx
,
1279 stack_pointer_rtx
, NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1281 if (!current_function_calls_setjmp
)
1283 int align
= PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
;
1285 /* See optimize_save_area_alloca to understand what is being
1288 /* ??? Code below assumes that the save area needs maximal
1289 alignment. This constraint may be too strong. */
1290 if (PREFERRED_STACK_BOUNDARY
!= BIGGEST_ALIGNMENT
)
1293 if (GET_CODE (size
) == CONST_INT
)
1295 HOST_WIDE_INT
new = INTVAL (size
) / align
* align
;
1297 if (INTVAL (size
) != new)
1298 setjmpless_size
= GEN_INT (new);
1300 setjmpless_size
= size
;
1304 /* Since we know overflow is not possible, we avoid using
1305 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1306 setjmpless_size
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, size
,
1307 GEN_INT (align
), NULL_RTX
, 1);
1308 setjmpless_size
= expand_mult (Pmode
, setjmpless_size
,
1309 GEN_INT (align
), NULL_RTX
, 1);
1311 /* Our optimization works based upon being able to perform a simple
1312 transformation of this RTL into a (set REG REG) so make sure things
1313 did in fact end up in a REG. */
1314 if (!register_operand (setjmpless_size
, Pmode
))
1315 setjmpless_size
= force_reg (Pmode
, setjmpless_size
);
1318 size
= expand_binop (Pmode
, add_optab
, size
, dynamic_offset
,
1319 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1321 #endif /* SETJMP_VIA_SAVE_AREA */
1323 /* Round the size to a multiple of the required stack alignment.
1324 Since the stack if presumed to be rounded before this allocation,
1325 this will maintain the required alignment.
1327 If the stack grows downward, we could save an insn by subtracting
1328 SIZE from the stack pointer and then aligning the stack pointer.
1329 The problem with this is that the stack pointer may be unaligned
1330 between the execution of the subtraction and alignment insns and
1331 some machines do not allow this. Even on those that do, some
1332 signal handlers malfunction if a signal should occur between those
1333 insns. Since this is an extremely rare event, we have no reliable
1334 way of knowing which systems have this problem. So we avoid even
1335 momentarily mis-aligning the stack. */
1337 /* If we added a variable amount to SIZE,
1338 we can no longer assume it is aligned. */
1339 #if !defined (SETJMP_VIA_SAVE_AREA)
1340 if (MUST_ALIGN
|| known_align
% PREFERRED_STACK_BOUNDARY
!= 0)
1342 size
= round_push (size
);
1344 do_pending_stack_adjust ();
1346 /* We ought to be called always on the toplevel and stack ought to be aligned
1348 if (stack_pointer_delta
% (PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
))
1351 /* If needed, check that we have the required amount of stack. Take into
1352 account what has already been checked. */
1353 if (flag_stack_check
&& ! STACK_CHECK_BUILTIN
)
1354 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE
+ STACK_CHECK_PROTECT
, size
);
1356 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1357 if (target
== 0 || GET_CODE (target
) != REG
1358 || REGNO (target
) < FIRST_PSEUDO_REGISTER
1359 || GET_MODE (target
) != Pmode
)
1360 target
= gen_reg_rtx (Pmode
);
1362 mark_reg_pointer (target
, known_align
);
1364 /* Perform the required allocation from the stack. Some systems do
1365 this differently than simply incrementing/decrementing from the
1366 stack pointer, such as acquiring the space by calling malloc(). */
1367 #ifdef HAVE_allocate_stack
1368 if (HAVE_allocate_stack
)
1370 enum machine_mode mode
= STACK_SIZE_MODE
;
1371 insn_operand_predicate_fn pred
;
1373 /* We don't have to check against the predicate for operand 0 since
1374 TARGET is known to be a pseudo of the proper mode, which must
1375 be valid for the operand. For operand 1, convert to the
1376 proper mode and validate. */
1377 if (mode
== VOIDmode
)
1378 mode
= insn_data
[(int) CODE_FOR_allocate_stack
].operand
[1].mode
;
1380 pred
= insn_data
[(int) CODE_FOR_allocate_stack
].operand
[1].predicate
;
1381 if (pred
&& ! ((*pred
) (size
, mode
)))
1382 size
= copy_to_mode_reg (mode
, convert_to_mode (mode
, size
, 1));
1384 emit_insn (gen_allocate_stack (target
, size
));
1389 #ifndef STACK_GROWS_DOWNWARD
1390 emit_move_insn (target
, virtual_stack_dynamic_rtx
);
1393 /* Check stack bounds if necessary. */
1394 if (current_function_limit_stack
)
1397 rtx space_available
= gen_label_rtx ();
1398 #ifdef STACK_GROWS_DOWNWARD
1399 available
= expand_binop (Pmode
, sub_optab
,
1400 stack_pointer_rtx
, stack_limit_rtx
,
1401 NULL_RTX
, 1, OPTAB_WIDEN
);
1403 available
= expand_binop (Pmode
, sub_optab
,
1404 stack_limit_rtx
, stack_pointer_rtx
,
1405 NULL_RTX
, 1, OPTAB_WIDEN
);
1407 emit_cmp_and_jump_insns (available
, size
, GEU
, NULL_RTX
, Pmode
, 1,
1411 emit_insn (gen_trap ());
1414 error ("stack limits not supported on this target");
1416 emit_label (space_available
);
1419 anti_adjust_stack (size
);
1420 #ifdef SETJMP_VIA_SAVE_AREA
1421 if (setjmpless_size
!= NULL_RTX
)
1423 rtx note_target
= get_last_insn ();
1425 REG_NOTES (note_target
)
1426 = gen_rtx_EXPR_LIST (REG_SAVE_AREA
, setjmpless_size
,
1427 REG_NOTES (note_target
));
1429 #endif /* SETJMP_VIA_SAVE_AREA */
1431 #ifdef STACK_GROWS_DOWNWARD
1432 emit_move_insn (target
, virtual_stack_dynamic_rtx
);
1438 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1439 but we know it can't. So add ourselves and then do
1441 target
= expand_binop (Pmode
, add_optab
, target
,
1442 GEN_INT (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
- 1),
1443 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1444 target
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, target
,
1445 GEN_INT (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
),
1447 target
= expand_mult (Pmode
, target
,
1448 GEN_INT (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
),
1452 /* Some systems require a particular insn to refer to the stack
1453 to make the pages exist. */
1456 emit_insn (gen_probe ());
1459 /* Record the new stack level for nonlocal gotos. */
1460 if (nonlocal_goto_handler_slots
!= 0)
1461 emit_stack_save (SAVE_NONLOCAL
, &nonlocal_goto_stack_level
, NULL_RTX
);
1466 /* A front end may want to override GCC's stack checking by providing a
1467 run-time routine to call to check the stack, so provide a mechanism for
1468 calling that routine. */
1470 static GTY(()) rtx stack_check_libfunc
;
1473 set_stack_check_libfunc (libfunc
)
1476 stack_check_libfunc
= libfunc
;
1479 /* Emit one stack probe at ADDRESS, an address within the stack. */
1482 emit_stack_probe (address
)
1485 rtx memref
= gen_rtx_MEM (word_mode
, address
);
1487 MEM_VOLATILE_P (memref
) = 1;
1489 if (STACK_CHECK_PROBE_LOAD
)
1490 emit_move_insn (gen_reg_rtx (word_mode
), memref
);
1492 emit_move_insn (memref
, const0_rtx
);
1495 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1496 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1497 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1498 subtract from the stack. If SIZE is constant, this is done
1499 with a fixed number of probes. Otherwise, we must make a loop. */
1501 #ifdef STACK_GROWS_DOWNWARD
1502 #define STACK_GROW_OP MINUS
1504 #define STACK_GROW_OP PLUS
1508 probe_stack_range (first
, size
)
1509 HOST_WIDE_INT first
;
1512 /* First ensure SIZE is Pmode. */
1513 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1514 size
= convert_to_mode (Pmode
, size
, 1);
1516 /* Next see if the front end has set up a function for us to call to
1518 if (stack_check_libfunc
!= 0)
1520 rtx addr
= memory_address (QImode
,
1521 gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1523 plus_constant (size
, first
)));
1525 #ifdef POINTERS_EXTEND_UNSIGNED
1526 if (GET_MODE (addr
) != ptr_mode
)
1527 addr
= convert_memory_address (ptr_mode
, addr
);
1530 emit_library_call (stack_check_libfunc
, LCT_NORMAL
, VOIDmode
, 1, addr
,
1534 /* Next see if we have an insn to check the stack. Use it if so. */
1535 #ifdef HAVE_check_stack
1536 else if (HAVE_check_stack
)
1538 insn_operand_predicate_fn pred
;
1540 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1542 plus_constant (size
, first
)),
1545 pred
= insn_data
[(int) CODE_FOR_check_stack
].operand
[0].predicate
;
1546 if (pred
&& ! ((*pred
) (last_addr
, Pmode
)))
1547 last_addr
= copy_to_mode_reg (Pmode
, last_addr
);
1549 emit_insn (gen_check_stack (last_addr
));
1553 /* If we have to generate explicit probes, see if we have a constant
1554 small number of them to generate. If so, that's the easy case. */
1555 else if (GET_CODE (size
) == CONST_INT
1556 && INTVAL (size
) < 10 * STACK_CHECK_PROBE_INTERVAL
)
1558 HOST_WIDE_INT offset
;
1560 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1561 for values of N from 1 until it exceeds LAST. If only one
1562 probe is needed, this will not generate any code. Then probe
1564 for (offset
= first
+ STACK_CHECK_PROBE_INTERVAL
;
1565 offset
< INTVAL (size
);
1566 offset
= offset
+ STACK_CHECK_PROBE_INTERVAL
)
1567 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1571 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1573 plus_constant (size
, first
)));
1576 /* In the variable case, do the same as above, but in a loop. We emit loop
1577 notes so that loop optimization can be done. */
1581 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1583 GEN_INT (first
+ STACK_CHECK_PROBE_INTERVAL
)),
1586 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1588 plus_constant (size
, first
)),
1590 rtx incr
= GEN_INT (STACK_CHECK_PROBE_INTERVAL
);
1591 rtx loop_lab
= gen_label_rtx ();
1592 rtx test_lab
= gen_label_rtx ();
1593 rtx end_lab
= gen_label_rtx ();
1596 if (GET_CODE (test_addr
) != REG
1597 || REGNO (test_addr
) < FIRST_PSEUDO_REGISTER
)
1598 test_addr
= force_reg (Pmode
, test_addr
);
1600 emit_note (NULL
, NOTE_INSN_LOOP_BEG
);
1601 emit_jump (test_lab
);
1603 emit_label (loop_lab
);
1604 emit_stack_probe (test_addr
);
1606 emit_note (NULL
, NOTE_INSN_LOOP_CONT
);
1608 #ifdef STACK_GROWS_DOWNWARD
1609 #define CMP_OPCODE GTU
1610 temp
= expand_binop (Pmode
, sub_optab
, test_addr
, incr
, test_addr
,
1613 #define CMP_OPCODE LTU
1614 temp
= expand_binop (Pmode
, add_optab
, test_addr
, incr
, test_addr
,
1618 if (temp
!= test_addr
)
1621 emit_label (test_lab
);
1622 emit_cmp_and_jump_insns (test_addr
, last_addr
, CMP_OPCODE
,
1623 NULL_RTX
, Pmode
, 1, loop_lab
);
1624 emit_jump (end_lab
);
1625 emit_note (NULL
, NOTE_INSN_LOOP_END
);
1626 emit_label (end_lab
);
1628 emit_stack_probe (last_addr
);
1632 /* Return an rtx representing the register or memory location
1633 in which a scalar value of data type VALTYPE
1634 was returned by a function call to function FUNC.
1635 FUNC is a FUNCTION_DECL node if the precise function is known,
1637 OUTGOING is 1 if on a machine with register windows this function
1638 should return the register in which the function will put its result
1642 hard_function_value (valtype
, func
, outgoing
)
1644 tree func ATTRIBUTE_UNUSED
;
1645 int outgoing ATTRIBUTE_UNUSED
;
1649 #ifdef FUNCTION_OUTGOING_VALUE
1651 val
= FUNCTION_OUTGOING_VALUE (valtype
, func
);
1654 val
= FUNCTION_VALUE (valtype
, func
);
1656 if (GET_CODE (val
) == REG
1657 && GET_MODE (val
) == BLKmode
)
1659 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (valtype
);
1660 enum machine_mode tmpmode
;
1662 /* int_size_in_bytes can return -1. We don't need a check here
1663 since the value of bytes will be large enough that no mode
1664 will match and we will abort later in this function. */
1666 for (tmpmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1667 tmpmode
!= VOIDmode
;
1668 tmpmode
= GET_MODE_WIDER_MODE (tmpmode
))
1670 /* Have we found a large enough mode? */
1671 if (GET_MODE_SIZE (tmpmode
) >= bytes
)
1675 /* No suitable mode found. */
1676 if (tmpmode
== VOIDmode
)
1679 PUT_MODE (val
, tmpmode
);
1684 /* Return an rtx representing the register or memory location
1685 in which a scalar value of mode MODE was returned by a library call. */
1688 hard_libcall_value (mode
)
1689 enum machine_mode mode
;
1691 return LIBCALL_VALUE (mode
);
1694 /* Look up the tree code for a given rtx code
1695 to provide the arithmetic operation for REAL_ARITHMETIC.
1696 The function returns an int because the caller may not know
1697 what `enum tree_code' means. */
1700 rtx_to_tree_code (code
)
1703 enum tree_code tcode
;
1726 tcode
= LAST_AND_UNUSED_TREE_CODE
;
1729 return ((int) tcode
);
1732 #include "gt-explow.h"