1 /* Dataflow support routines.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by Michael P. Hayes (m.hayes@elec.canterbury.ac.nz,
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
26 This file provides some dataflow routines for computing reaching defs,
27 upward exposed uses, live variables, def-use chains, and use-def
28 chains. The global dataflow is performed using simple iterative
29 methods with a worklist and could be sped up by ordering the blocks
30 with a depth first search order.
32 A `struct ref' data structure (ref) is allocated for every register
33 reference (def or use) and this records the insn and bb the ref is
34 found within. The refs are linked together in chains of uses and defs
35 for each insn and for each register. Each ref also has a chain field
36 that links all the use refs for a def or all the def refs for a use.
37 This is used to create use-def or def-use chains.
42 Here's an example of using the dataflow routines.
48 df_analyse (df, 0, DF_ALL);
50 df_dump (df, DF_ALL, stderr);
55 df_init simply creates a poor man's object (df) that needs to be
56 passed to all the dataflow routines. df_finish destroys this
57 object and frees up any allocated memory. DF_ALL says to analyse
60 df_analyse performs the following:
62 1. Records defs and uses by scanning the insns in each basic block
63 or by scanning the insns queued by df_insn_modify.
64 2. Links defs and uses into insn-def and insn-use chains.
65 3. Links defs and uses into reg-def and reg-use chains.
66 4. Assigns LUIDs to each insn (for modified blocks).
67 5. Calculates local reaching definitions.
68 6. Calculates global reaching definitions.
69 7. Creates use-def chains.
70 8. Calculates local reaching uses (upwards exposed uses).
71 9. Calculates global reaching uses.
72 10. Creates def-use chains.
73 11. Calculates local live registers.
74 12. Calculates global live registers.
75 13. Calculates register lifetimes and determines local registers.
80 Note that the dataflow information is not updated for every newly
81 deleted or created insn. If the dataflow information requires
82 updating then all the changed, new, or deleted insns needs to be
83 marked with df_insn_modify (or df_insns_modify) either directly or
84 indirectly (say through calling df_insn_delete). df_insn_modify
85 marks all the modified insns to get processed the next time df_analyse
88 Beware that tinkering with insns may invalidate the dataflow information.
89 The philosophy behind these routines is that once the dataflow
90 information has been gathered, the user should store what they require
91 before they tinker with any insn. Once a reg is replaced, for example,
92 then the reg-def/reg-use chains will point to the wrong place. Once a
93 whole lot of changes have been made, df_analyse can be called again
94 to update the dataflow information. Currently, this is not very smart
95 with regard to propagating changes to the dataflow so it should not
101 The basic object is a REF (reference) and this may either be a DEF
102 (definition) or a USE of a register.
104 These are linked into a variety of lists; namely reg-def, reg-use,
105 insn-def, insn-use, def-use, and use-def lists. For example,
106 the reg-def lists contain all the refs that define a given register
107 while the insn-use lists contain all the refs used by an insn.
109 Note that the reg-def and reg-use chains are generally short (except for the
110 hard registers) and thus it is much faster to search these chains
111 rather than searching the def or use bitmaps.
113 If the insns are in SSA form then the reg-def and use-def lists
114 should only contain the single defining ref.
119 1) Incremental dataflow analysis.
121 Note that if a loop invariant insn is hoisted (or sunk), we do not
122 need to change the def-use or use-def chains. All we have to do is to
123 change the bb field for all the associated defs and uses and to
124 renumber the LUIDs for the original and new basic blocks of the insn.
126 When shadowing loop mems we create new uses and defs for new pseudos
127 so we do not affect the existing dataflow information.
129 My current strategy is to queue up all modified, created, or deleted
130 insns so when df_analyse is called we can easily determine all the new
131 or deleted refs. Currently the global dataflow information is
132 recomputed from scratch but this could be propagated more efficiently.
134 2) Reduced memory requirements.
136 We could operate a pool of ref structures. When a ref is deleted it
137 gets returned to the pool (say by linking on to a chain of free refs).
138 This will require a pair of bitmaps for defs and uses so that we can
139 tell which ones have been changed. Alternatively, we could
140 periodically squeeze the def and use tables and associated bitmaps and
141 renumber the def and use ids.
143 3) Ordering of reg-def and reg-use lists.
145 Should the first entry in the def list be the first def (within a BB)?
146 Similarly, should the first entry in the use list be the last use
149 4) Working with a sub-CFG.
151 Often the whole CFG does not need to be analyzed, for example,
152 when optimising a loop, only certain registers are of interest.
153 Perhaps there should be a bitmap argument to df_analyse to specify
154 which registers should be analyzed?
159 Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
160 both a use and a def. These are both marked read/write to show that they
161 are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
162 will generate a use of reg 42 followed by a def of reg 42 (both marked
163 read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
164 generates a use of reg 41 then a def of reg 41 (both marked read/write),
165 even though reg 41 is decremented before it is used for the memory
166 address in this second example.
168 A set to a REG inside a ZERO_EXTRACT, SIGN_EXTRACT, or SUBREG invokes
169 a read-modify write operation. We generate both a use and a def
170 and again mark them read/write.
175 #include "coretypes.h"
179 #include "insn-config.h"
181 #include "function.h"
183 #include "alloc-pool.h"
184 #include "hard-reg-set.h"
185 #include "basic-block.h"
191 #define FOR_EACH_BB_IN_BITMAP(BITMAP, MIN, BB, CODE) \
194 unsigned int node_; \
195 EXECUTE_IF_SET_IN_BITMAP (BITMAP, MIN, node_, \
196 {(BB) = BASIC_BLOCK (node_); CODE;}); \
200 static alloc_pool df_ref_pool
;
201 static alloc_pool df_link_pool
;
202 static struct df
*ddf
;
204 static void df_reg_table_realloc
PARAMS((struct df
*, int));
205 static void df_insn_table_realloc
PARAMS((struct df
*, unsigned int));
206 static void df_bitmaps_alloc
PARAMS((struct df
*, int));
207 static void df_bitmaps_free
PARAMS((struct df
*, int));
208 static void df_free
PARAMS((struct df
*));
209 static void df_alloc
PARAMS((struct df
*, int));
211 static rtx df_reg_clobber_gen
PARAMS((unsigned int));
212 static rtx df_reg_use_gen
PARAMS((unsigned int));
214 static inline struct df_link
*df_link_create
PARAMS((struct ref
*,
216 static struct df_link
*df_ref_unlink
PARAMS((struct df_link
**, struct ref
*));
217 static void df_def_unlink
PARAMS((struct df
*, struct ref
*));
218 static void df_use_unlink
PARAMS((struct df
*, struct ref
*));
219 static void df_insn_refs_unlink
PARAMS ((struct df
*, basic_block
, rtx
));
221 static void df_bb_refs_unlink
PARAMS ((struct df
*, basic_block
));
222 static void df_refs_unlink
PARAMS ((struct df
*, bitmap
));
225 static struct ref
*df_ref_create
PARAMS((struct df
*,
227 enum df_ref_type
, enum df_ref_flags
));
228 static void df_ref_record_1
PARAMS((struct df
*, rtx
, rtx
*,
229 rtx
, enum df_ref_type
,
231 static void df_ref_record
PARAMS((struct df
*, rtx
, rtx
*,
232 rtx
, enum df_ref_type
,
234 static void df_def_record_1
PARAMS((struct df
*, rtx
, basic_block
, rtx
));
235 static void df_defs_record
PARAMS((struct df
*, rtx
, basic_block
, rtx
));
236 static void df_uses_record
PARAMS((struct df
*, rtx
*,
237 enum df_ref_type
, basic_block
, rtx
,
239 static void df_insn_refs_record
PARAMS((struct df
*, basic_block
, rtx
));
240 static void df_bb_refs_record
PARAMS((struct df
*, basic_block
));
241 static void df_refs_record
PARAMS((struct df
*, bitmap
));
243 static void df_bb_reg_def_chain_create
PARAMS((struct df
*, basic_block
));
244 static void df_reg_def_chain_create
PARAMS((struct df
*, bitmap
));
245 static void df_bb_reg_use_chain_create
PARAMS((struct df
*, basic_block
));
246 static void df_reg_use_chain_create
PARAMS((struct df
*, bitmap
));
247 static void df_bb_du_chain_create
PARAMS((struct df
*, basic_block
, bitmap
));
248 static void df_du_chain_create
PARAMS((struct df
*, bitmap
));
249 static void df_bb_ud_chain_create
PARAMS((struct df
*, basic_block
));
250 static void df_ud_chain_create
PARAMS((struct df
*, bitmap
));
251 static void df_bb_rd_local_compute
PARAMS((struct df
*, basic_block
));
252 static void df_rd_local_compute
PARAMS((struct df
*, bitmap
));
253 static void df_bb_ru_local_compute
PARAMS((struct df
*, basic_block
));
254 static void df_ru_local_compute
PARAMS((struct df
*, bitmap
));
255 static void df_bb_lr_local_compute
PARAMS((struct df
*, basic_block
));
256 static void df_lr_local_compute
PARAMS((struct df
*, bitmap
));
257 static void df_bb_reg_info_compute
PARAMS((struct df
*, basic_block
, bitmap
));
258 static void df_reg_info_compute
PARAMS((struct df
*, bitmap
));
260 static int df_bb_luids_set
PARAMS((struct df
*df
, basic_block
));
261 static int df_luids_set
PARAMS((struct df
*df
, bitmap
));
263 static int df_modified_p
PARAMS ((struct df
*, bitmap
));
264 static int df_refs_queue
PARAMS ((struct df
*));
265 static int df_refs_process
PARAMS ((struct df
*));
266 static int df_bb_refs_update
PARAMS ((struct df
*, basic_block
));
267 static int df_refs_update
PARAMS ((struct df
*));
268 static void df_analyse_1
PARAMS((struct df
*, bitmap
, int, int));
270 static void df_insns_modify
PARAMS((struct df
*, basic_block
,
272 static int df_rtx_mem_replace
PARAMS ((rtx
*, void *));
273 static int df_rtx_reg_replace
PARAMS ((rtx
*, void *));
274 void df_refs_reg_replace
PARAMS ((struct df
*, bitmap
,
275 struct df_link
*, rtx
, rtx
));
277 static int df_def_dominates_all_uses_p
PARAMS((struct df
*, struct ref
*def
));
278 static int df_def_dominates_uses_p
PARAMS((struct df
*,
279 struct ref
*def
, bitmap
));
280 static struct ref
*df_bb_regno_last_use_find
PARAMS((struct df
*, basic_block
,
282 static struct ref
*df_bb_regno_first_def_find
PARAMS((struct df
*, basic_block
,
284 static struct ref
*df_bb_insn_regno_last_use_find
PARAMS((struct df
*,
287 static struct ref
*df_bb_insn_regno_first_def_find
PARAMS((struct df
*,
291 static void df_chain_dump
PARAMS((struct df_link
*, FILE *file
));
292 static void df_chain_dump_regno
PARAMS((struct df_link
*, FILE *file
));
293 static void df_regno_debug
PARAMS ((struct df
*, unsigned int, FILE *));
294 static void df_ref_debug
PARAMS ((struct df
*, struct ref
*, FILE *));
295 static void df_rd_transfer_function
PARAMS ((int, int *, bitmap
, bitmap
,
296 bitmap
, bitmap
, void *));
297 static void df_ru_transfer_function
PARAMS ((int, int *, bitmap
, bitmap
,
298 bitmap
, bitmap
, void *));
299 static void df_lr_transfer_function
PARAMS ((int, int *, bitmap
, bitmap
,
300 bitmap
, bitmap
, void *));
301 static void hybrid_search_bitmap
PARAMS ((basic_block
, bitmap
*, bitmap
*,
302 bitmap
*, bitmap
*, enum df_flow_dir
,
303 enum df_confluence_op
,
304 transfer_function_bitmap
,
305 sbitmap
, sbitmap
, void *));
306 static void hybrid_search_sbitmap
PARAMS ((basic_block
, sbitmap
*, sbitmap
*,
307 sbitmap
*, sbitmap
*, enum df_flow_dir
,
308 enum df_confluence_op
,
309 transfer_function_sbitmap
,
310 sbitmap
, sbitmap
, void *));
313 /* Local memory allocation/deallocation routines. */
316 /* Increase the insn info table to have space for at least SIZE + 1
319 df_insn_table_realloc (df
, size
)
324 if (size
<= df
->insn_size
)
327 /* Make the table a little larger than requested, so we do not need
328 to enlarge it so often. */
329 size
+= df
->insn_size
/ 4;
331 df
->insns
= (struct insn_info
*)
332 xrealloc (df
->insns
, size
* sizeof (struct insn_info
));
334 memset (df
->insns
+ df
->insn_size
, 0,
335 (size
- df
->insn_size
) * sizeof (struct insn_info
));
337 df
->insn_size
= size
;
339 if (! df
->insns_modified
)
341 df
->insns_modified
= BITMAP_XMALLOC ();
342 bitmap_zero (df
->insns_modified
);
347 /* Increase the reg info table by SIZE more elements. */
349 df_reg_table_realloc (df
, size
)
353 /* Make table 25 percent larger by default. */
355 size
= df
->reg_size
/ 4;
357 size
+= df
->reg_size
;
358 if (size
< max_reg_num ())
359 size
= max_reg_num ();
361 df
->regs
= (struct reg_info
*)
362 xrealloc (df
->regs
, size
* sizeof (struct reg_info
));
364 /* Zero the new entries. */
365 memset (df
->regs
+ df
->reg_size
, 0,
366 (size
- df
->reg_size
) * sizeof (struct reg_info
));
372 /* Allocate bitmaps for each basic block. */
374 df_bitmaps_alloc (df
, flags
)
381 /* Free the bitmaps if they need resizing. */
382 if ((flags
& DF_LR
) && df
->n_regs
< (unsigned int) max_reg_num ())
383 dflags
|= DF_LR
| DF_RU
;
384 if ((flags
& DF_RU
) && df
->n_uses
< df
->use_id
)
386 if ((flags
& DF_RD
) && df
->n_defs
< df
->def_id
)
390 df_bitmaps_free (df
, dflags
);
392 df
->n_defs
= df
->def_id
;
393 df
->n_uses
= df
->use_id
;
397 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
399 if (flags
& DF_RD
&& ! bb_info
->rd_in
)
401 /* Allocate bitmaps for reaching definitions. */
402 bb_info
->rd_kill
= BITMAP_XMALLOC ();
403 bitmap_zero (bb_info
->rd_kill
);
404 bb_info
->rd_gen
= BITMAP_XMALLOC ();
405 bitmap_zero (bb_info
->rd_gen
);
406 bb_info
->rd_in
= BITMAP_XMALLOC ();
407 bb_info
->rd_out
= BITMAP_XMALLOC ();
408 bb_info
->rd_valid
= 0;
411 if (flags
& DF_RU
&& ! bb_info
->ru_in
)
413 /* Allocate bitmaps for upward exposed uses. */
414 bb_info
->ru_kill
= BITMAP_XMALLOC ();
415 bitmap_zero (bb_info
->ru_kill
);
416 /* Note the lack of symmetry. */
417 bb_info
->ru_gen
= BITMAP_XMALLOC ();
418 bitmap_zero (bb_info
->ru_gen
);
419 bb_info
->ru_in
= BITMAP_XMALLOC ();
420 bb_info
->ru_out
= BITMAP_XMALLOC ();
421 bb_info
->ru_valid
= 0;
424 if (flags
& DF_LR
&& ! bb_info
->lr_in
)
426 /* Allocate bitmaps for live variables. */
427 bb_info
->lr_def
= BITMAP_XMALLOC ();
428 bitmap_zero (bb_info
->lr_def
);
429 bb_info
->lr_use
= BITMAP_XMALLOC ();
430 bitmap_zero (bb_info
->lr_use
);
431 bb_info
->lr_in
= BITMAP_XMALLOC ();
432 bb_info
->lr_out
= BITMAP_XMALLOC ();
433 bb_info
->lr_valid
= 0;
439 /* Free bitmaps for each basic block. */
441 df_bitmaps_free (df
, flags
)
442 struct df
*df ATTRIBUTE_UNUSED
;
449 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
454 if ((flags
& DF_RD
) && bb_info
->rd_in
)
456 /* Free bitmaps for reaching definitions. */
457 BITMAP_XFREE (bb_info
->rd_kill
);
458 bb_info
->rd_kill
= NULL
;
459 BITMAP_XFREE (bb_info
->rd_gen
);
460 bb_info
->rd_gen
= NULL
;
461 BITMAP_XFREE (bb_info
->rd_in
);
462 bb_info
->rd_in
= NULL
;
463 BITMAP_XFREE (bb_info
->rd_out
);
464 bb_info
->rd_out
= NULL
;
467 if ((flags
& DF_RU
) && bb_info
->ru_in
)
469 /* Free bitmaps for upward exposed uses. */
470 BITMAP_XFREE (bb_info
->ru_kill
);
471 bb_info
->ru_kill
= NULL
;
472 BITMAP_XFREE (bb_info
->ru_gen
);
473 bb_info
->ru_gen
= NULL
;
474 BITMAP_XFREE (bb_info
->ru_in
);
475 bb_info
->ru_in
= NULL
;
476 BITMAP_XFREE (bb_info
->ru_out
);
477 bb_info
->ru_out
= NULL
;
480 if ((flags
& DF_LR
) && bb_info
->lr_in
)
482 /* Free bitmaps for live variables. */
483 BITMAP_XFREE (bb_info
->lr_def
);
484 bb_info
->lr_def
= NULL
;
485 BITMAP_XFREE (bb_info
->lr_use
);
486 bb_info
->lr_use
= NULL
;
487 BITMAP_XFREE (bb_info
->lr_in
);
488 bb_info
->lr_in
= NULL
;
489 BITMAP_XFREE (bb_info
->lr_out
);
490 bb_info
->lr_out
= NULL
;
493 df
->flags
&= ~(flags
& (DF_RD
| DF_RU
| DF_LR
));
497 /* Allocate and initialize dataflow memory. */
499 df_alloc (df
, n_regs
)
506 df_link_pool
= create_alloc_pool ("df_link pool", sizeof (struct df_link
),
508 df_ref_pool
= create_alloc_pool ("df_ref pool", sizeof (struct ref
), 100);
510 /* Perhaps we should use LUIDs to save memory for the insn_refs
511 table. This is only a small saving; a few pointers. */
512 n_insns
= get_max_uid () + 1;
516 /* Approximate number of defs by number of insns. */
517 df
->def_size
= n_insns
;
518 df
->defs
= xmalloc (df
->def_size
* sizeof (*df
->defs
));
522 /* Approximate number of uses by twice number of insns. */
523 df
->use_size
= n_insns
* 2;
524 df
->uses
= xmalloc (df
->use_size
* sizeof (*df
->uses
));
527 df
->n_bbs
= last_basic_block
;
529 /* Allocate temporary working array used during local dataflow analysis. */
530 df
->reg_def_last
= xmalloc (df
->n_regs
* sizeof (struct ref
*));
532 df_insn_table_realloc (df
, n_insns
);
534 df_reg_table_realloc (df
, df
->n_regs
);
536 df
->bbs_modified
= BITMAP_XMALLOC ();
537 bitmap_zero (df
->bbs_modified
);
541 df
->bbs
= xcalloc (last_basic_block
, sizeof (struct bb_info
));
543 df
->all_blocks
= BITMAP_XMALLOC ();
545 bitmap_set_bit (df
->all_blocks
, bb
->index
);
549 /* Free all the dataflow info. */
554 df_bitmaps_free (df
, DF_ALL
);
582 if (df
->bbs_modified
)
583 BITMAP_XFREE (df
->bbs_modified
);
584 df
->bbs_modified
= 0;
586 if (df
->insns_modified
)
587 BITMAP_XFREE (df
->insns_modified
);
588 df
->insns_modified
= 0;
590 BITMAP_XFREE (df
->all_blocks
);
593 free_alloc_pool (df_ref_pool
);
594 free_alloc_pool (df_link_pool
);
598 /* Local miscellaneous routines. */
600 /* Return a USE for register REGNO. */
601 static rtx
df_reg_use_gen (regno
)
607 reg
= regno_reg_rtx
[regno
];
609 use
= gen_rtx_USE (GET_MODE (reg
), reg
);
614 /* Return a CLOBBER for register REGNO. */
615 static rtx
df_reg_clobber_gen (regno
)
621 reg
= regno_reg_rtx
[regno
];
623 use
= gen_rtx_CLOBBER (GET_MODE (reg
), reg
);
627 /* Local chain manipulation routines. */
629 /* Create a link in a def-use or use-def chain. */
630 static inline struct df_link
*
631 df_link_create (ref
, next
)
633 struct df_link
*next
;
635 struct df_link
*link
;
637 link
= pool_alloc (df_link_pool
);
644 /* Add REF to chain head pointed to by PHEAD. */
645 static struct df_link
*
646 df_ref_unlink (phead
, ref
)
647 struct df_link
**phead
;
650 struct df_link
*link
= *phead
;
656 /* Only a single ref. It must be the one we want.
657 If not, the def-use and use-def chains are likely to
659 if (link
->ref
!= ref
)
661 /* Now have an empty chain. */
666 /* Multiple refs. One of them must be us. */
667 if (link
->ref
== ref
)
672 for (; link
->next
; link
= link
->next
)
674 if (link
->next
->ref
== ref
)
676 /* Unlink from list. */
677 link
->next
= link
->next
->next
;
688 /* Unlink REF from all def-use/use-def chains, etc. */
690 df_ref_remove (df
, ref
)
694 if (DF_REF_REG_DEF_P (ref
))
696 df_def_unlink (df
, ref
);
697 df_ref_unlink (&df
->insns
[DF_REF_INSN_UID (ref
)].defs
, ref
);
701 df_use_unlink (df
, ref
);
702 df_ref_unlink (&df
->insns
[DF_REF_INSN_UID (ref
)].uses
, ref
);
708 /* Unlink DEF from use-def and reg-def chains. */
710 df_def_unlink (df
, def
)
711 struct df
*df ATTRIBUTE_UNUSED
;
714 struct df_link
*du_link
;
715 unsigned int dregno
= DF_REF_REGNO (def
);
717 /* Follow def-use chain to find all the uses of this def. */
718 for (du_link
= DF_REF_CHAIN (def
); du_link
; du_link
= du_link
->next
)
720 struct ref
*use
= du_link
->ref
;
722 /* Unlink this def from the use-def chain. */
723 df_ref_unlink (&DF_REF_CHAIN (use
), def
);
725 DF_REF_CHAIN (def
) = 0;
727 /* Unlink def from reg-def chain. */
728 df_ref_unlink (&df
->regs
[dregno
].defs
, def
);
730 df
->defs
[DF_REF_ID (def
)] = 0;
734 /* Unlink use from def-use and reg-use chains. */
736 df_use_unlink (df
, use
)
737 struct df
*df ATTRIBUTE_UNUSED
;
740 struct df_link
*ud_link
;
741 unsigned int uregno
= DF_REF_REGNO (use
);
743 /* Follow use-def chain to find all the defs of this use. */
744 for (ud_link
= DF_REF_CHAIN (use
); ud_link
; ud_link
= ud_link
->next
)
746 struct ref
*def
= ud_link
->ref
;
748 /* Unlink this use from the def-use chain. */
749 df_ref_unlink (&DF_REF_CHAIN (def
), use
);
751 DF_REF_CHAIN (use
) = 0;
753 /* Unlink use from reg-use chain. */
754 df_ref_unlink (&df
->regs
[uregno
].uses
, use
);
756 df
->uses
[DF_REF_ID (use
)] = 0;
759 /* Local routines for recording refs. */
762 /* Create a new ref of type DF_REF_TYPE for register REG at address
763 LOC within INSN of BB. */
765 df_ref_create (df
, reg
, loc
, insn
, ref_type
, ref_flags
)
770 enum df_ref_type ref_type
;
771 enum df_ref_flags ref_flags
;
773 struct ref
*this_ref
;
775 this_ref
= pool_alloc (df_ref_pool
);
776 DF_REF_REG (this_ref
) = reg
;
777 DF_REF_LOC (this_ref
) = loc
;
778 DF_REF_INSN (this_ref
) = insn
;
779 DF_REF_CHAIN (this_ref
) = 0;
780 DF_REF_TYPE (this_ref
) = ref_type
;
781 DF_REF_FLAGS (this_ref
) = ref_flags
;
783 if (ref_type
== DF_REF_REG_DEF
)
785 if (df
->def_id
>= df
->def_size
)
787 /* Make table 25 percent larger. */
788 df
->def_size
+= (df
->def_size
/ 4);
789 df
->defs
= xrealloc (df
->defs
,
790 df
->def_size
* sizeof (*df
->defs
));
792 DF_REF_ID (this_ref
) = df
->def_id
;
793 df
->defs
[df
->def_id
++] = this_ref
;
797 if (df
->use_id
>= df
->use_size
)
799 /* Make table 25 percent larger. */
800 df
->use_size
+= (df
->use_size
/ 4);
801 df
->uses
= xrealloc (df
->uses
,
802 df
->use_size
* sizeof (*df
->uses
));
804 DF_REF_ID (this_ref
) = df
->use_id
;
805 df
->uses
[df
->use_id
++] = this_ref
;
811 /* Create a new reference of type DF_REF_TYPE for a single register REG,
812 used inside the LOC rtx of INSN. */
814 df_ref_record_1 (df
, reg
, loc
, insn
, ref_type
, ref_flags
)
819 enum df_ref_type ref_type
;
820 enum df_ref_flags ref_flags
;
822 df_ref_create (df
, reg
, loc
, insn
, ref_type
, ref_flags
);
826 /* Create new references of type DF_REF_TYPE for each part of register REG
827 at address LOC within INSN of BB. */
829 df_ref_record (df
, reg
, loc
, insn
, ref_type
, ref_flags
)
834 enum df_ref_type ref_type
;
835 enum df_ref_flags ref_flags
;
839 if (GET_CODE (reg
) != REG
&& GET_CODE (reg
) != SUBREG
)
842 /* For the reg allocator we are interested in some SUBREG rtx's, but not
843 all. Notably only those representing a word extraction from a multi-word
844 reg. As written in the docu those should have the form
845 (subreg:SI (reg:M A) N), with size(SImode) > size(Mmode).
846 XXX Is that true? We could also use the global word_mode variable. */
847 if (GET_CODE (reg
) == SUBREG
848 && (GET_MODE_SIZE (GET_MODE (reg
)) < GET_MODE_SIZE (word_mode
)
849 || GET_MODE_SIZE (GET_MODE (reg
))
850 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (reg
)))))
852 loc
= &SUBREG_REG (reg
);
854 ref_flags
|= DF_REF_STRIPPED
;
857 regno
= REGNO (GET_CODE (reg
) == SUBREG
? SUBREG_REG (reg
) : reg
);
858 if (regno
< FIRST_PSEUDO_REGISTER
)
863 if (! (df
->flags
& DF_HARD_REGS
))
866 /* GET_MODE (reg) is correct here. We do not want to go into a SUBREG
867 for the mode, because we only want to add references to regs, which
868 are really referenced. E.g., a (subreg:SI (reg:DI 0) 0) does _not_
869 reference the whole reg 0 in DI mode (which would also include
870 reg 1, at least, if 0 and 1 are SImode registers). */
871 endregno
= HARD_REGNO_NREGS (regno
, GET_MODE (reg
));
872 if (GET_CODE (reg
) == SUBREG
)
873 regno
+= subreg_regno_offset (regno
, GET_MODE (SUBREG_REG (reg
)),
874 SUBREG_BYTE (reg
), GET_MODE (reg
));
877 for (i
= regno
; i
< endregno
; i
++)
878 df_ref_record_1 (df
, regno_reg_rtx
[i
],
879 loc
, insn
, ref_type
, ref_flags
);
883 df_ref_record_1 (df
, reg
, loc
, insn
, ref_type
, ref_flags
);
888 /* Return non-zero if writes to paradoxical SUBREGs, or SUBREGs which
889 are too narrow, are read-modify-write. */
891 read_modify_subreg_p (x
)
894 unsigned int isize
, osize
;
895 if (GET_CODE (x
) != SUBREG
)
897 isize
= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
)));
898 osize
= GET_MODE_SIZE (GET_MODE (x
));
899 /* Paradoxical subreg writes don't leave a trace of the old content. */
900 return (isize
> osize
&& isize
> UNITS_PER_WORD
);
904 /* Process all the registers defined in the rtx, X. */
906 df_def_record_1 (df
, x
, bb
, insn
)
914 enum df_ref_flags flags
= 0;
916 /* We may recursivly call ourselves on EXPR_LIST when dealing with PARALLEL
918 if (GET_CODE (x
) == EXPR_LIST
|| GET_CODE (x
) == CLOBBER
)
924 /* Some targets place small structures in registers for
925 return values of functions. */
926 if (GET_CODE (dst
) == PARALLEL
&& GET_MODE (dst
) == BLKmode
)
930 for (i
= XVECLEN (dst
, 0) - 1; i
>= 0; i
--)
932 rtx temp
= XVECEXP (dst
, 0, i
);
933 if (GET_CODE (temp
) == EXPR_LIST
|| GET_CODE (temp
) == CLOBBER
934 || GET_CODE (temp
) == SET
)
935 df_def_record_1 (df
, temp
, bb
, insn
);
940 #ifdef CLASS_CANNOT_CHANGE_MODE
941 if (GET_CODE (dst
) == SUBREG
942 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (dst
),
943 GET_MODE (SUBREG_REG (dst
))))
944 flags
|= DF_REF_MODE_CHANGE
;
947 /* Maybe, we should flag the use of STRICT_LOW_PART somehow. It might
948 be handy for the reg allocator. */
949 while (GET_CODE (dst
) == STRICT_LOW_PART
950 || GET_CODE (dst
) == ZERO_EXTRACT
951 || GET_CODE (dst
) == SIGN_EXTRACT
952 || ((df
->flags
& DF_FOR_REGALLOC
) == 0
953 && read_modify_subreg_p (dst
)))
955 /* Strict low part always contains SUBREG, but we do not want to make
956 it appear outside, as whole register is always considered. */
957 if (GET_CODE (dst
) == STRICT_LOW_PART
)
959 loc
= &XEXP (dst
, 0);
962 #ifdef CLASS_CANNOT_CHANGE_MODE
963 if (GET_CODE (dst
) == SUBREG
964 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (dst
),
965 GET_MODE (SUBREG_REG (dst
))))
966 flags
|= DF_REF_MODE_CHANGE
;
968 loc
= &XEXP (dst
, 0);
970 flags
|= DF_REF_READ_WRITE
;
973 if (GET_CODE (dst
) == REG
974 || (GET_CODE (dst
) == SUBREG
&& GET_CODE (SUBREG_REG (dst
)) == REG
))
975 df_ref_record (df
, dst
, loc
, insn
, DF_REF_REG_DEF
, flags
);
979 /* Process all the registers defined in the pattern rtx, X. */
981 df_defs_record (df
, x
, bb
, insn
)
987 RTX_CODE code
= GET_CODE (x
);
989 if (code
== SET
|| code
== CLOBBER
)
991 /* Mark the single def within the pattern. */
992 df_def_record_1 (df
, x
, bb
, insn
);
994 else if (code
== PARALLEL
)
998 /* Mark the multiple defs within the pattern. */
999 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1001 code
= GET_CODE (XVECEXP (x
, 0, i
));
1002 if (code
== SET
|| code
== CLOBBER
)
1003 df_def_record_1 (df
, XVECEXP (x
, 0, i
), bb
, insn
);
1009 /* Process all the registers used in the rtx at address LOC. */
1011 df_uses_record (df
, loc
, ref_type
, bb
, insn
, flags
)
1014 enum df_ref_type ref_type
;
1017 enum df_ref_flags flags
;
1025 code
= GET_CODE (x
);
1041 /* If we are clobbering a MEM, mark any registers inside the address
1043 if (GET_CODE (XEXP (x
, 0)) == MEM
)
1044 df_uses_record (df
, &XEXP (XEXP (x
, 0), 0),
1045 DF_REF_REG_MEM_STORE
, bb
, insn
, flags
);
1047 /* If we're clobbering a REG then we have a def so ignore. */
1051 df_uses_record (df
, &XEXP (x
, 0), DF_REF_REG_MEM_LOAD
, bb
, insn
, flags
);
1055 /* While we're here, optimize this case. */
1057 /* In case the SUBREG is not of a REG, do not optimize. */
1058 if (GET_CODE (SUBREG_REG (x
)) != REG
)
1060 loc
= &SUBREG_REG (x
);
1061 df_uses_record (df
, loc
, ref_type
, bb
, insn
, flags
);
1064 #ifdef CLASS_CANNOT_CHANGE_MODE
1065 if (CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (x
),
1066 GET_MODE (SUBREG_REG (x
))))
1067 flags
|= DF_REF_MODE_CHANGE
;
1070 /* ... Fall through ... */
1073 /* See a REG (or SUBREG) other than being set. */
1074 df_ref_record (df
, x
, loc
, insn
, ref_type
, flags
);
1079 rtx dst
= SET_DEST (x
);
1081 df_uses_record (df
, &SET_SRC (x
), DF_REF_REG_USE
, bb
, insn
, 0);
1083 switch (GET_CODE (dst
))
1085 enum df_ref_flags use_flags
;
1087 if ((df
->flags
& DF_FOR_REGALLOC
) == 0
1088 && read_modify_subreg_p (dst
))
1090 use_flags
= DF_REF_READ_WRITE
;
1091 #ifdef CLASS_CANNOT_CHANGE_MODE
1092 if (CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (dst
),
1093 GET_MODE (SUBREG_REG (dst
))))
1094 use_flags
|= DF_REF_MODE_CHANGE
;
1096 df_uses_record (df
, &SUBREG_REG (dst
), DF_REF_REG_USE
, bb
,
1100 /* ... FALLTHRU ... */
1107 df_uses_record (df
, &XEXP (dst
, 0),
1108 DF_REF_REG_MEM_STORE
,
1111 case STRICT_LOW_PART
:
1112 /* A strict_low_part uses the whole REG and not just the SUBREG. */
1113 dst
= XEXP (dst
, 0);
1114 if (GET_CODE (dst
) != SUBREG
)
1116 use_flags
= DF_REF_READ_WRITE
;
1117 #ifdef CLASS_CANNOT_CHANGE_MODE
1118 if (CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (dst
),
1119 GET_MODE (SUBREG_REG (dst
))))
1120 use_flags
|= DF_REF_MODE_CHANGE
;
1122 df_uses_record (df
, &SUBREG_REG (dst
), DF_REF_REG_USE
, bb
,
1127 df_uses_record (df
, &XEXP (dst
, 0), DF_REF_REG_USE
, bb
, insn
,
1129 df_uses_record (df
, &XEXP (dst
, 1), DF_REF_REG_USE
, bb
, insn
, 0);
1130 df_uses_record (df
, &XEXP (dst
, 2), DF_REF_REG_USE
, bb
, insn
, 0);
1131 dst
= XEXP (dst
, 0);
1143 case UNSPEC_VOLATILE
:
1147 /* Traditional and volatile asm instructions must be considered to use
1148 and clobber all hard registers, all pseudo-registers and all of
1149 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
1151 Consider for instance a volatile asm that changes the fpu rounding
1152 mode. An insn should not be moved across this even if it only uses
1153 pseudo-regs because it might give an incorrectly rounded result.
1155 For now, just mark any regs we can find in ASM_OPERANDS as
1158 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
1159 We can not just fall through here since then we would be confused
1160 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
1161 traditional asms unlike their normal usage. */
1162 if (code
== ASM_OPERANDS
)
1166 for (j
= 0; j
< ASM_OPERANDS_INPUT_LENGTH (x
); j
++)
1167 df_uses_record (df
, &ASM_OPERANDS_INPUT (x
, j
),
1168 DF_REF_REG_USE
, bb
, insn
, 0);
1180 /* Catch the def of the register being modified. */
1181 df_ref_record (df
, XEXP (x
, 0), &XEXP (x
, 0), insn
, DF_REF_REG_DEF
, DF_REF_READ_WRITE
);
1183 /* ... Fall through to handle uses ... */
1189 /* Recursively scan the operands of this expression. */
1191 const char *fmt
= GET_RTX_FORMAT (code
);
1194 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1198 /* Tail recursive case: save a function call level. */
1204 df_uses_record (df
, &XEXP (x
, i
), ref_type
, bb
, insn
, flags
);
1206 else if (fmt
[i
] == 'E')
1209 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1210 df_uses_record (df
, &XVECEXP (x
, i
, j
), ref_type
,
1218 /* Record all the df within INSN of basic block BB. */
1220 df_insn_refs_record (df
, bb
, insn
)
1231 /* Record register defs */
1232 df_defs_record (df
, PATTERN (insn
), bb
, insn
);
1234 if (df
->flags
& DF_EQUIV_NOTES
)
1235 for (note
= REG_NOTES (insn
); note
;
1236 note
= XEXP (note
, 1))
1238 switch (REG_NOTE_KIND (note
))
1242 df_uses_record (df
, &XEXP (note
, 0), DF_REF_REG_USE
,
1249 if (GET_CODE (insn
) == CALL_INSN
)
1254 /* Record the registers used to pass arguments. */
1255 for (note
= CALL_INSN_FUNCTION_USAGE (insn
); note
;
1256 note
= XEXP (note
, 1))
1258 if (GET_CODE (XEXP (note
, 0)) == USE
)
1259 df_uses_record (df
, &XEXP (XEXP (note
, 0), 0), DF_REF_REG_USE
,
1263 /* The stack ptr is used (honorarily) by a CALL insn. */
1264 x
= df_reg_use_gen (STACK_POINTER_REGNUM
);
1265 df_uses_record (df
, &XEXP (x
, 0), DF_REF_REG_USE
, bb
, insn
, 0);
1267 if (df
->flags
& DF_HARD_REGS
)
1269 /* Calls may also reference any of the global registers,
1270 so they are recorded as used. */
1271 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1274 x
= df_reg_use_gen (i
);
1275 df_uses_record (df
, &SET_DEST (x
),
1276 DF_REF_REG_USE
, bb
, insn
, 0);
1281 /* Record the register uses. */
1282 df_uses_record (df
, &PATTERN (insn
),
1283 DF_REF_REG_USE
, bb
, insn
, 0);
1285 if (GET_CODE (insn
) == CALL_INSN
)
1289 if (df
->flags
& DF_HARD_REGS
)
1291 /* Kill all registers invalidated by a call. */
1292 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1293 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, i
))
1295 rtx reg_clob
= df_reg_clobber_gen (i
);
1296 df_defs_record (df
, reg_clob
, bb
, insn
);
1300 /* There may be extra registers to be clobbered. */
1301 for (note
= CALL_INSN_FUNCTION_USAGE (insn
);
1303 note
= XEXP (note
, 1))
1304 if (GET_CODE (XEXP (note
, 0)) == CLOBBER
)
1305 df_defs_record (df
, XEXP (note
, 0), bb
, insn
);
1311 /* Record all the refs within the basic block BB. */
1313 df_bb_refs_record (df
, bb
)
1319 /* Scan the block an insn at a time from beginning to end. */
1320 for (insn
= bb
->head
; ; insn
= NEXT_INSN (insn
))
1324 /* Record defs within INSN. */
1325 df_insn_refs_record (df
, bb
, insn
);
1327 if (insn
== bb
->end
)
1333 /* Record all the refs in the basic blocks specified by BLOCKS. */
1335 df_refs_record (df
, blocks
)
1341 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1343 df_bb_refs_record (df
, bb
);
1347 /* Dataflow analysis routines. */
1350 /* Create reg-def chains for basic block BB. These are a list of
1351 definitions for each register. */
1353 df_bb_reg_def_chain_create (df
, bb
)
1359 /* Perhaps the defs should be sorted using a depth first search
1360 of the CFG (or possibly a breadth first search). We currently
1361 scan the basic blocks in reverse order so that the first defs
1362 appear at the start of the chain. */
1364 for (insn
= bb
->end
; insn
&& insn
!= PREV_INSN (bb
->head
);
1365 insn
= PREV_INSN (insn
))
1367 struct df_link
*link
;
1368 unsigned int uid
= INSN_UID (insn
);
1370 if (! INSN_P (insn
))
1373 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
1375 struct ref
*def
= link
->ref
;
1376 unsigned int dregno
= DF_REF_REGNO (def
);
1378 /* Do not add ref's to the chain twice, i.e., only add new
1379 refs. XXX the same could be done by testing if the
1380 current insn is a modified (or a new) one. This would be
1382 if (DF_REF_ID (def
) < df
->def_id_save
)
1385 df
->regs
[dregno
].defs
1386 = df_link_create (def
, df
->regs
[dregno
].defs
);
1392 /* Create reg-def chains for each basic block within BLOCKS. These
1393 are a list of definitions for each register. */
1395 df_reg_def_chain_create (df
, blocks
)
1401 FOR_EACH_BB_IN_BITMAP
/*_REV*/ (blocks
, 0, bb
,
1403 df_bb_reg_def_chain_create (df
, bb
);
1408 /* Create reg-use chains for basic block BB. These are a list of uses
1409 for each register. */
1411 df_bb_reg_use_chain_create (df
, bb
)
1417 /* Scan in forward order so that the last uses appear at the start
1420 for (insn
= bb
->head
; insn
&& insn
!= NEXT_INSN (bb
->end
);
1421 insn
= NEXT_INSN (insn
))
1423 struct df_link
*link
;
1424 unsigned int uid
= INSN_UID (insn
);
1426 if (! INSN_P (insn
))
1429 for (link
= df
->insns
[uid
].uses
; link
; link
= link
->next
)
1431 struct ref
*use
= link
->ref
;
1432 unsigned int uregno
= DF_REF_REGNO (use
);
1434 /* Do not add ref's to the chain twice, i.e., only add new
1435 refs. XXX the same could be done by testing if the
1436 current insn is a modified (or a new) one. This would be
1438 if (DF_REF_ID (use
) < df
->use_id_save
)
1441 df
->regs
[uregno
].uses
1442 = df_link_create (use
, df
->regs
[uregno
].uses
);
1448 /* Create reg-use chains for each basic block within BLOCKS. These
1449 are a list of uses for each register. */
1451 df_reg_use_chain_create (df
, blocks
)
1457 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1459 df_bb_reg_use_chain_create (df
, bb
);
1464 /* Create def-use chains from reaching use bitmaps for basic block BB. */
1466 df_bb_du_chain_create (df
, bb
, ru
)
1471 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
1474 bitmap_copy (ru
, bb_info
->ru_out
);
1476 /* For each def in BB create a linked list (chain) of uses
1477 reached from the def. */
1478 for (insn
= bb
->end
; insn
&& insn
!= PREV_INSN (bb
->head
);
1479 insn
= PREV_INSN (insn
))
1481 struct df_link
*def_link
;
1482 struct df_link
*use_link
;
1483 unsigned int uid
= INSN_UID (insn
);
1485 if (! INSN_P (insn
))
1488 /* For each def in insn... */
1489 for (def_link
= df
->insns
[uid
].defs
; def_link
; def_link
= def_link
->next
)
1491 struct ref
*def
= def_link
->ref
;
1492 unsigned int dregno
= DF_REF_REGNO (def
);
1494 DF_REF_CHAIN (def
) = 0;
1496 /* While the reg-use chains are not essential, it
1497 is _much_ faster to search these short lists rather
1498 than all the reaching uses, especially for large functions. */
1499 for (use_link
= df
->regs
[dregno
].uses
; use_link
;
1500 use_link
= use_link
->next
)
1502 struct ref
*use
= use_link
->ref
;
1504 if (bitmap_bit_p (ru
, DF_REF_ID (use
)))
1507 = df_link_create (use
, DF_REF_CHAIN (def
));
1509 bitmap_clear_bit (ru
, DF_REF_ID (use
));
1514 /* For each use in insn... */
1515 for (use_link
= df
->insns
[uid
].uses
; use_link
; use_link
= use_link
->next
)
1517 struct ref
*use
= use_link
->ref
;
1518 bitmap_set_bit (ru
, DF_REF_ID (use
));
1524 /* Create def-use chains from reaching use bitmaps for basic blocks
1527 df_du_chain_create (df
, blocks
)
1534 ru
= BITMAP_XMALLOC ();
1536 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1538 df_bb_du_chain_create (df
, bb
, ru
);
1545 /* Create use-def chains from reaching def bitmaps for basic block BB. */
1547 df_bb_ud_chain_create (df
, bb
)
1551 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
1552 struct ref
**reg_def_last
= df
->reg_def_last
;
1555 memset (reg_def_last
, 0, df
->n_regs
* sizeof (struct ref
*));
1557 /* For each use in BB create a linked list (chain) of defs
1558 that reach the use. */
1559 for (insn
= bb
->head
; insn
&& insn
!= NEXT_INSN (bb
->end
);
1560 insn
= NEXT_INSN (insn
))
1562 unsigned int uid
= INSN_UID (insn
);
1563 struct df_link
*use_link
;
1564 struct df_link
*def_link
;
1566 if (! INSN_P (insn
))
1569 /* For each use in insn... */
1570 for (use_link
= df
->insns
[uid
].uses
; use_link
; use_link
= use_link
->next
)
1572 struct ref
*use
= use_link
->ref
;
1573 unsigned int regno
= DF_REF_REGNO (use
);
1575 DF_REF_CHAIN (use
) = 0;
1577 /* Has regno been defined in this BB yet? If so, use
1578 the last def as the single entry for the use-def
1579 chain for this use. Otherwise, we need to add all
1580 the defs using this regno that reach the start of
1582 if (reg_def_last
[regno
])
1585 = df_link_create (reg_def_last
[regno
], 0);
1589 /* While the reg-def chains are not essential, it is
1590 _much_ faster to search these short lists rather than
1591 all the reaching defs, especially for large
1593 for (def_link
= df
->regs
[regno
].defs
; def_link
;
1594 def_link
= def_link
->next
)
1596 struct ref
*def
= def_link
->ref
;
1598 if (bitmap_bit_p (bb_info
->rd_in
, DF_REF_ID (def
)))
1601 = df_link_create (def
, DF_REF_CHAIN (use
));
1608 /* For each def in insn... record the last def of each reg. */
1609 for (def_link
= df
->insns
[uid
].defs
; def_link
; def_link
= def_link
->next
)
1611 struct ref
*def
= def_link
->ref
;
1612 int dregno
= DF_REF_REGNO (def
);
1614 reg_def_last
[dregno
] = def
;
1620 /* Create use-def chains from reaching def bitmaps for basic blocks
1623 df_ud_chain_create (df
, blocks
)
1629 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1631 df_bb_ud_chain_create (df
, bb
);
1638 df_rd_transfer_function (bb
, changed
, in
, out
, gen
, kill
, data
)
1639 int bb ATTRIBUTE_UNUSED
;
1641 bitmap in
, out
, gen
, kill
;
1642 void *data ATTRIBUTE_UNUSED
;
1644 *changed
= bitmap_union_of_diff (out
, gen
, in
, kill
);
1649 df_ru_transfer_function (bb
, changed
, in
, out
, gen
, kill
, data
)
1650 int bb ATTRIBUTE_UNUSED
;
1652 bitmap in
, out
, gen
, kill
;
1653 void *data ATTRIBUTE_UNUSED
;
1655 *changed
= bitmap_union_of_diff (in
, gen
, out
, kill
);
1660 df_lr_transfer_function (bb
, changed
, in
, out
, use
, def
, data
)
1661 int bb ATTRIBUTE_UNUSED
;
1663 bitmap in
, out
, use
, def
;
1664 void *data ATTRIBUTE_UNUSED
;
1666 *changed
= bitmap_union_of_diff (in
, use
, out
, def
);
1670 /* Compute local reaching def info for basic block BB. */
1672 df_bb_rd_local_compute (df
, bb
)
1676 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
1679 for (insn
= bb
->head
; insn
&& insn
!= NEXT_INSN (bb
->end
);
1680 insn
= NEXT_INSN (insn
))
1682 unsigned int uid
= INSN_UID (insn
);
1683 struct df_link
*def_link
;
1685 if (! INSN_P (insn
))
1688 for (def_link
= df
->insns
[uid
].defs
; def_link
; def_link
= def_link
->next
)
1690 struct ref
*def
= def_link
->ref
;
1691 unsigned int regno
= DF_REF_REGNO (def
);
1692 struct df_link
*def2_link
;
1694 for (def2_link
= df
->regs
[regno
].defs
; def2_link
;
1695 def2_link
= def2_link
->next
)
1697 struct ref
*def2
= def2_link
->ref
;
1699 /* Add all defs of this reg to the set of kills. This
1700 is greedy since many of these defs will not actually
1701 be killed by this BB but it keeps things a lot
1703 bitmap_set_bit (bb_info
->rd_kill
, DF_REF_ID (def2
));
1705 /* Zap from the set of gens for this BB. */
1706 bitmap_clear_bit (bb_info
->rd_gen
, DF_REF_ID (def2
));
1709 bitmap_set_bit (bb_info
->rd_gen
, DF_REF_ID (def
));
1713 bb_info
->rd_valid
= 1;
1717 /* Compute local reaching def info for each basic block within BLOCKS. */
1719 df_rd_local_compute (df
, blocks
)
1725 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1727 df_bb_rd_local_compute (df
, bb
);
1732 /* Compute local reaching use (upward exposed use) info for basic
1735 df_bb_ru_local_compute (df
, bb
)
1739 /* This is much more tricky than computing reaching defs. With
1740 reaching defs, defs get killed by other defs. With upwards
1741 exposed uses, these get killed by defs with the same regno. */
1743 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
1747 for (insn
= bb
->end
; insn
&& insn
!= PREV_INSN (bb
->head
);
1748 insn
= PREV_INSN (insn
))
1750 unsigned int uid
= INSN_UID (insn
);
1751 struct df_link
*def_link
;
1752 struct df_link
*use_link
;
1754 if (! INSN_P (insn
))
1757 for (def_link
= df
->insns
[uid
].defs
; def_link
; def_link
= def_link
->next
)
1759 struct ref
*def
= def_link
->ref
;
1760 unsigned int dregno
= DF_REF_REGNO (def
);
1762 for (use_link
= df
->regs
[dregno
].uses
; use_link
;
1763 use_link
= use_link
->next
)
1765 struct ref
*use
= use_link
->ref
;
1767 /* Add all uses of this reg to the set of kills. This
1768 is greedy since many of these uses will not actually
1769 be killed by this BB but it keeps things a lot
1771 bitmap_set_bit (bb_info
->ru_kill
, DF_REF_ID (use
));
1773 /* Zap from the set of gens for this BB. */
1774 bitmap_clear_bit (bb_info
->ru_gen
, DF_REF_ID (use
));
1778 for (use_link
= df
->insns
[uid
].uses
; use_link
; use_link
= use_link
->next
)
1780 struct ref
*use
= use_link
->ref
;
1781 /* Add use to set of gens in this BB. */
1782 bitmap_set_bit (bb_info
->ru_gen
, DF_REF_ID (use
));
1785 bb_info
->ru_valid
= 1;
1789 /* Compute local reaching use (upward exposed use) info for each basic
1790 block within BLOCKS. */
1792 df_ru_local_compute (df
, blocks
)
1798 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1800 df_bb_ru_local_compute (df
, bb
);
1805 /* Compute local live variable info for basic block BB. */
1807 df_bb_lr_local_compute (df
, bb
)
1811 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
1814 for (insn
= bb
->end
; insn
&& insn
!= PREV_INSN (bb
->head
);
1815 insn
= PREV_INSN (insn
))
1817 unsigned int uid
= INSN_UID (insn
);
1818 struct df_link
*link
;
1820 if (! INSN_P (insn
))
1823 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
1825 struct ref
*def
= link
->ref
;
1826 unsigned int dregno
= DF_REF_REGNO (def
);
1828 /* Add def to set of defs in this BB. */
1829 bitmap_set_bit (bb_info
->lr_def
, dregno
);
1831 bitmap_clear_bit (bb_info
->lr_use
, dregno
);
1834 for (link
= df
->insns
[uid
].uses
; link
; link
= link
->next
)
1836 struct ref
*use
= link
->ref
;
1837 /* Add use to set of uses in this BB. */
1838 bitmap_set_bit (bb_info
->lr_use
, DF_REF_REGNO (use
));
1841 bb_info
->lr_valid
= 1;
1845 /* Compute local live variable info for each basic block within BLOCKS. */
1847 df_lr_local_compute (df
, blocks
)
1853 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1855 df_bb_lr_local_compute (df
, bb
);
1860 /* Compute register info: lifetime, bb, and number of defs and uses
1861 for basic block BB. */
1863 df_bb_reg_info_compute (df
, bb
, live
)
1868 struct reg_info
*reg_info
= df
->regs
;
1869 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
1872 bitmap_copy (live
, bb_info
->lr_out
);
1874 for (insn
= bb
->end
; insn
&& insn
!= PREV_INSN (bb
->head
);
1875 insn
= PREV_INSN (insn
))
1877 unsigned int uid
= INSN_UID (insn
);
1879 struct df_link
*link
;
1881 if (! INSN_P (insn
))
1884 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
1886 struct ref
*def
= link
->ref
;
1887 unsigned int dregno
= DF_REF_REGNO (def
);
1889 /* Kill this register. */
1890 bitmap_clear_bit (live
, dregno
);
1891 reg_info
[dregno
].n_defs
++;
1894 for (link
= df
->insns
[uid
].uses
; link
; link
= link
->next
)
1896 struct ref
*use
= link
->ref
;
1897 unsigned int uregno
= DF_REF_REGNO (use
);
1899 /* This register is now live. */
1900 bitmap_set_bit (live
, uregno
);
1901 reg_info
[uregno
].n_uses
++;
1904 /* Increment lifetimes of all live registers. */
1905 EXECUTE_IF_SET_IN_BITMAP (live
, 0, regno
,
1907 reg_info
[regno
].lifetime
++;
1913 /* Compute register info: lifetime, bb, and number of defs and uses. */
1915 df_reg_info_compute (df
, blocks
)
1922 live
= BITMAP_XMALLOC ();
1924 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1926 df_bb_reg_info_compute (df
, bb
, live
);
1929 BITMAP_XFREE (live
);
1933 /* Assign LUIDs for BB. */
1935 df_bb_luids_set (df
, bb
)
1942 /* The LUIDs are monotonically increasing for each basic block. */
1944 for (insn
= bb
->head
; ; insn
= NEXT_INSN (insn
))
1947 DF_INSN_LUID (df
, insn
) = luid
++;
1948 DF_INSN_LUID (df
, insn
) = luid
;
1950 if (insn
== bb
->end
)
1957 /* Assign LUIDs for each basic block within BLOCKS. */
1959 df_luids_set (df
, blocks
)
1966 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1968 total
+= df_bb_luids_set (df
, bb
);
1974 /* Perform dataflow analysis using existing DF structure for blocks
1975 within BLOCKS. If BLOCKS is zero, use all basic blocks in the CFG. */
1977 df_analyse_1 (df
, blocks
, flags
, update
)
1990 if (flags
& DF_UD_CHAIN
)
1991 aflags
|= DF_RD
| DF_RD_CHAIN
;
1993 if (flags
& DF_DU_CHAIN
)
1997 aflags
|= DF_RU_CHAIN
;
1999 if (flags
& DF_REG_INFO
)
2003 blocks
= df
->all_blocks
;
2008 df_refs_update (df
);
2009 /* More fine grained incremental dataflow analysis would be
2010 nice. For now recompute the whole shebang for the
2013 df_refs_unlink (df
, blocks
);
2015 /* All the def-use, use-def chains can be potentially
2016 modified by changes in one block. The size of the
2017 bitmaps can also change. */
2021 /* Scan the function for all register defs and uses. */
2023 df_refs_record (df
, blocks
);
2025 /* Link all the new defs and uses to the insns. */
2026 df_refs_process (df
);
2029 /* Allocate the bitmaps now the total number of defs and uses are
2030 known. If the number of defs or uses have changed, then
2031 these bitmaps need to be reallocated. */
2032 df_bitmaps_alloc (df
, aflags
);
2034 /* Set the LUIDs for each specified basic block. */
2035 df_luids_set (df
, blocks
);
2037 /* Recreate reg-def and reg-use chains from scratch so that first
2038 def is at the head of the reg-def chain and the last use is at
2039 the head of the reg-use chain. This is only important for
2040 regs local to a basic block as it speeds up searching. */
2041 if (aflags
& DF_RD_CHAIN
)
2043 df_reg_def_chain_create (df
, blocks
);
2046 if (aflags
& DF_RU_CHAIN
)
2048 df_reg_use_chain_create (df
, blocks
);
2051 df
->dfs_order
= xmalloc (sizeof (int) * n_basic_blocks
);
2052 df
->rc_order
= xmalloc (sizeof (int) * n_basic_blocks
);
2053 df
->rts_order
= xmalloc (sizeof (int) * n_basic_blocks
);
2054 df
->inverse_dfs_map
= xmalloc (sizeof (int) * last_basic_block
);
2055 df
->inverse_rc_map
= xmalloc (sizeof (int) * last_basic_block
);
2056 df
->inverse_rts_map
= xmalloc (sizeof (int) * last_basic_block
);
2058 flow_depth_first_order_compute (df
->dfs_order
, df
->rc_order
);
2059 flow_reverse_top_sort_order_compute (df
->rts_order
);
2060 for (i
= 0; i
< n_basic_blocks
; i
++)
2062 df
->inverse_dfs_map
[df
->dfs_order
[i
]] = i
;
2063 df
->inverse_rc_map
[df
->rc_order
[i
]] = i
;
2064 df
->inverse_rts_map
[df
->rts_order
[i
]] = i
;
2068 /* Compute the sets of gens and kills for the defs of each bb. */
2069 df_rd_local_compute (df
, df
->flags
& DF_RD
? blocks
: df
->all_blocks
);
2071 bitmap
*in
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2072 bitmap
*out
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2073 bitmap
*gen
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2074 bitmap
*kill
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2077 in
[bb
->index
] = DF_BB_INFO (df
, bb
)->rd_in
;
2078 out
[bb
->index
] = DF_BB_INFO (df
, bb
)->rd_out
;
2079 gen
[bb
->index
] = DF_BB_INFO (df
, bb
)->rd_gen
;
2080 kill
[bb
->index
] = DF_BB_INFO (df
, bb
)->rd_kill
;
2082 iterative_dataflow_bitmap (in
, out
, gen
, kill
, df
->all_blocks
,
2083 DF_FORWARD
, DF_UNION
, df_rd_transfer_function
,
2084 df
->inverse_rc_map
, NULL
);
2092 if (aflags
& DF_UD_CHAIN
)
2094 /* Create use-def chains. */
2095 df_ud_chain_create (df
, df
->all_blocks
);
2097 if (! (flags
& DF_RD
))
2103 /* Compute the sets of gens and kills for the upwards exposed
2105 df_ru_local_compute (df
, df
->flags
& DF_RU
? blocks
: df
->all_blocks
);
2107 bitmap
*in
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2108 bitmap
*out
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2109 bitmap
*gen
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2110 bitmap
*kill
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2113 in
[bb
->index
] = DF_BB_INFO (df
, bb
)->ru_in
;
2114 out
[bb
->index
] = DF_BB_INFO (df
, bb
)->ru_out
;
2115 gen
[bb
->index
] = DF_BB_INFO (df
, bb
)->ru_gen
;
2116 kill
[bb
->index
] = DF_BB_INFO (df
, bb
)->ru_kill
;
2118 iterative_dataflow_bitmap (in
, out
, gen
, kill
, df
->all_blocks
,
2119 DF_BACKWARD
, DF_UNION
, df_ru_transfer_function
,
2120 df
->inverse_rts_map
, NULL
);
2128 if (aflags
& DF_DU_CHAIN
)
2130 /* Create def-use chains. */
2131 df_du_chain_create (df
, df
->all_blocks
);
2133 if (! (flags
& DF_RU
))
2137 /* Free up bitmaps that are no longer required. */
2139 df_bitmaps_free (df
, dflags
);
2143 /* Compute the sets of defs and uses of live variables. */
2144 df_lr_local_compute (df
, df
->flags
& DF_LR
? blocks
: df
->all_blocks
);
2146 bitmap
*in
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2147 bitmap
*out
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2148 bitmap
*use
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2149 bitmap
*def
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2152 in
[bb
->index
] = DF_BB_INFO (df
, bb
)->lr_in
;
2153 out
[bb
->index
] = DF_BB_INFO (df
, bb
)->lr_out
;
2154 use
[bb
->index
] = DF_BB_INFO (df
, bb
)->lr_use
;
2155 def
[bb
->index
] = DF_BB_INFO (df
, bb
)->lr_def
;
2157 iterative_dataflow_bitmap (in
, out
, use
, def
, df
->all_blocks
,
2158 DF_BACKWARD
, DF_UNION
, df_lr_transfer_function
,
2159 df
->inverse_rts_map
, NULL
);
2167 if (aflags
& DF_REG_INFO
)
2169 df_reg_info_compute (df
, df
->all_blocks
);
2172 free (df
->dfs_order
);
2173 free (df
->rc_order
);
2174 free (df
->rts_order
);
2175 free (df
->inverse_rc_map
);
2176 free (df
->inverse_dfs_map
);
2177 free (df
->inverse_rts_map
);
2181 /* Initialize dataflow analysis. */
2187 df
= xcalloc (1, sizeof (struct df
));
2189 /* Squirrel away a global for debugging. */
2196 /* Start queuing refs. */
2201 df
->def_id_save
= df
->def_id
;
2202 df
->use_id_save
= df
->use_id
;
2203 /* ???? Perhaps we should save current obstack state so that we can
2209 /* Process queued refs. */
2211 df_refs_process (df
)
2216 /* Build new insn-def chains. */
2217 for (i
= df
->def_id_save
; i
!= df
->def_id
; i
++)
2219 struct ref
*def
= df
->defs
[i
];
2220 unsigned int uid
= DF_REF_INSN_UID (def
);
2222 /* Add def to head of def list for INSN. */
2224 = df_link_create (def
, df
->insns
[uid
].defs
);
2227 /* Build new insn-use chains. */
2228 for (i
= df
->use_id_save
; i
!= df
->use_id
; i
++)
2230 struct ref
*use
= df
->uses
[i
];
2231 unsigned int uid
= DF_REF_INSN_UID (use
);
2233 /* Add use to head of use list for INSN. */
2235 = df_link_create (use
, df
->insns
[uid
].uses
);
2241 /* Update refs for basic block BB. */
2243 df_bb_refs_update (df
, bb
)
2250 /* While we have to scan the chain of insns for this BB, we do not
2251 need to allocate and queue a long chain of BB/INSN pairs. Using
2252 a bitmap for insns_modified saves memory and avoids queuing
2255 for (insn
= bb
->head
; ; insn
= NEXT_INSN (insn
))
2259 uid
= INSN_UID (insn
);
2261 if (bitmap_bit_p (df
->insns_modified
, uid
))
2263 /* Delete any allocated refs of this insn. MPH, FIXME. */
2264 df_insn_refs_unlink (df
, bb
, insn
);
2266 /* Scan the insn for refs. */
2267 df_insn_refs_record (df
, bb
, insn
);
2271 if (insn
== bb
->end
)
2278 /* Process all the modified/deleted insns that were queued. */
2286 if ((unsigned int) max_reg_num () >= df
->reg_size
)
2287 df_reg_table_realloc (df
, 0);
2291 FOR_EACH_BB_IN_BITMAP (df
->bbs_modified
, 0, bb
,
2293 count
+= df_bb_refs_update (df
, bb
);
2296 df_refs_process (df
);
2301 /* Return nonzero if any of the requested blocks in the bitmap
2302 BLOCKS have been modified. */
2304 df_modified_p (df
, blocks
)
2315 if (bitmap_bit_p (df
->bbs_modified
, bb
->index
)
2316 && (! blocks
|| (blocks
== (bitmap
) -1) || bitmap_bit_p (blocks
, bb
->index
)))
2326 /* Analyze dataflow info for the basic blocks specified by the bitmap
2327 BLOCKS, or for the whole CFG if BLOCKS is zero, or just for the
2328 modified blocks if BLOCKS is -1. */
2330 df_analyse (df
, blocks
, flags
)
2337 /* We could deal with additional basic blocks being created by
2338 rescanning everything again. */
2339 if (df
->n_bbs
&& df
->n_bbs
!= (unsigned int) last_basic_block
)
2342 update
= df_modified_p (df
, blocks
);
2343 if (update
|| (flags
!= df
->flags
))
2349 /* Recompute everything from scratch. */
2352 /* Allocate and initialize data structures. */
2353 df_alloc (df
, max_reg_num ());
2354 df_analyse_1 (df
, 0, flags
, 0);
2359 if (blocks
== (bitmap
) -1)
2360 blocks
= df
->bbs_modified
;
2365 df_analyse_1 (df
, blocks
, flags
, 1);
2366 bitmap_zero (df
->bbs_modified
);
2367 bitmap_zero (df
->insns_modified
);
2374 /* Free all the dataflow info and the DF structure. */
2384 /* Unlink INSN from its reference information. */
2386 df_insn_refs_unlink (df
, bb
, insn
)
2388 basic_block bb ATTRIBUTE_UNUSED
;
2391 struct df_link
*link
;
2394 uid
= INSN_UID (insn
);
2396 /* Unlink all refs defined by this insn. */
2397 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
2398 df_def_unlink (df
, link
->ref
);
2400 /* Unlink all refs used by this insn. */
2401 for (link
= df
->insns
[uid
].uses
; link
; link
= link
->next
)
2402 df_use_unlink (df
, link
->ref
);
2404 df
->insns
[uid
].defs
= 0;
2405 df
->insns
[uid
].uses
= 0;
2410 /* Unlink all the insns within BB from their reference information. */
2412 df_bb_refs_unlink (df
, bb
)
2418 /* Scan the block an insn at a time from beginning to end. */
2419 for (insn
= bb
->head
; ; insn
= NEXT_INSN (insn
))
2423 /* Unlink refs for INSN. */
2424 df_insn_refs_unlink (df
, bb
, insn
);
2426 if (insn
== bb
->end
)
2432 /* Unlink all the refs in the basic blocks specified by BLOCKS.
2433 Not currently used. */
2435 df_refs_unlink (df
, blocks
)
2443 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
2445 df_bb_refs_unlink (df
, bb
);
2451 df_bb_refs_unlink (df
, bb
);
2456 /* Functions to modify insns. */
2459 /* Delete INSN and all its reference information. */
2461 df_insn_delete (df
, bb
, insn
)
2463 basic_block bb ATTRIBUTE_UNUSED
;
2466 /* If the insn is a jump, we should perhaps call delete_insn to
2467 handle the JUMP_LABEL? */
2469 /* We should not be deleting the NOTE_INSN_BASIC_BLOCK or label. */
2470 if (insn
== bb
->head
)
2473 /* Delete the insn. */
2476 df_insn_modify (df
, bb
, insn
);
2478 return NEXT_INSN (insn
);
2482 /* Mark that INSN within BB may have changed (created/modified/deleted).
2483 This may be called multiple times for the same insn. There is no
2484 harm calling this function if the insn wasn't changed; it will just
2485 slow down the rescanning of refs. */
2487 df_insn_modify (df
, bb
, insn
)
2494 uid
= INSN_UID (insn
);
2495 if (uid
>= df
->insn_size
)
2496 df_insn_table_realloc (df
, uid
);
2498 bitmap_set_bit (df
->bbs_modified
, bb
->index
);
2499 bitmap_set_bit (df
->insns_modified
, uid
);
2501 /* For incremental updating on the fly, perhaps we could make a copy
2502 of all the refs of the original insn and turn them into
2503 anti-refs. When df_refs_update finds these anti-refs, it annihilates
2504 the original refs. If validate_change fails then these anti-refs
2505 will just get ignored. */
2509 typedef struct replace_args
2518 /* Replace mem pointed to by PX with its associated pseudo register.
2519 DATA is actually a pointer to a structure describing the
2520 instruction currently being scanned and the MEM we are currently
2523 df_rtx_mem_replace (px
, data
)
2527 replace_args
*args
= (replace_args
*) data
;
2530 if (mem
== NULL_RTX
)
2533 switch (GET_CODE (mem
))
2539 /* We're not interested in the MEM associated with a
2540 CONST_DOUBLE, so there's no need to traverse into one. */
2544 /* This is not a MEM. */
2548 if (!rtx_equal_p (args
->match
, mem
))
2549 /* This is not the MEM we are currently replacing. */
2552 /* Actually replace the MEM. */
2553 validate_change (args
->insn
, px
, args
->replacement
, 1);
2561 df_insn_mem_replace (df
, bb
, insn
, mem
, reg
)
2572 args
.replacement
= reg
;
2575 /* Search and replace all matching mems within insn. */
2576 for_each_rtx (&insn
, df_rtx_mem_replace
, &args
);
2579 df_insn_modify (df
, bb
, insn
);
2581 /* ???? FIXME. We may have a new def or one or more new uses of REG
2582 in INSN. REG should be a new pseudo so it won't affect the
2583 dataflow information that we currently have. We should add
2584 the new uses and defs to INSN and then recreate the chains
2585 when df_analyse is called. */
2586 return args
.modified
;
2590 /* Replace one register with another. Called through for_each_rtx; PX
2591 points to the rtx being scanned. DATA is actually a pointer to a
2592 structure of arguments. */
2594 df_rtx_reg_replace (px
, data
)
2599 replace_args
*args
= (replace_args
*) data
;
2604 if (x
== args
->match
)
2606 validate_change (args
->insn
, px
, args
->replacement
, 1);
2614 /* Replace the reg within every ref on CHAIN that is within the set
2615 BLOCKS of basic blocks with NEWREG. Also update the regs within
2618 df_refs_reg_replace (df
, blocks
, chain
, oldreg
, newreg
)
2621 struct df_link
*chain
;
2625 struct df_link
*link
;
2629 blocks
= df
->all_blocks
;
2631 args
.match
= oldreg
;
2632 args
.replacement
= newreg
;
2635 for (link
= chain
; link
; link
= link
->next
)
2637 struct ref
*ref
= link
->ref
;
2638 rtx insn
= DF_REF_INSN (ref
);
2640 if (! INSN_P (insn
))
2643 if (bitmap_bit_p (blocks
, DF_REF_BBNO (ref
)))
2645 df_ref_reg_replace (df
, ref
, oldreg
, newreg
);
2647 /* Replace occurrences of the reg within the REG_NOTES. */
2648 if ((! link
->next
|| DF_REF_INSN (ref
)
2649 != DF_REF_INSN (link
->next
->ref
))
2650 && REG_NOTES (insn
))
2653 for_each_rtx (®_NOTES (insn
), df_rtx_reg_replace
, &args
);
2658 /* Temporary check to ensure that we have a grip on which
2659 regs should be replaced. */
2666 /* Replace all occurrences of register OLDREG with register NEWREG in
2667 blocks defined by bitmap BLOCKS. This also replaces occurrences of
2668 OLDREG in the REG_NOTES but only for insns containing OLDREG. This
2669 routine expects the reg-use and reg-def chains to be valid. */
2671 df_reg_replace (df
, blocks
, oldreg
, newreg
)
2677 unsigned int oldregno
= REGNO (oldreg
);
2679 df_refs_reg_replace (df
, blocks
, df
->regs
[oldregno
].defs
, oldreg
, newreg
);
2680 df_refs_reg_replace (df
, blocks
, df
->regs
[oldregno
].uses
, oldreg
, newreg
);
2685 /* Try replacing the reg within REF with NEWREG. Do not modify
2686 def-use/use-def chains. */
2688 df_ref_reg_replace (df
, ref
, oldreg
, newreg
)
2694 /* Check that insn was deleted by being converted into a NOTE. If
2695 so ignore this insn. */
2696 if (! INSN_P (DF_REF_INSN (ref
)))
2699 if (oldreg
&& oldreg
!= DF_REF_REG (ref
))
2702 if (! validate_change (DF_REF_INSN (ref
), DF_REF_LOC (ref
), newreg
, 1))
2705 df_insn_modify (df
, DF_REF_BB (ref
), DF_REF_INSN (ref
));
2711 df_bb_def_use_swap (df
, bb
, def_insn
, use_insn
, regno
)
2722 struct df_link
*link
;
2724 def
= df_bb_insn_regno_first_def_find (df
, bb
, def_insn
, regno
);
2728 use
= df_bb_insn_regno_last_use_find (df
, bb
, use_insn
, regno
);
2732 /* The USE no longer exists. */
2733 use_uid
= INSN_UID (use_insn
);
2734 df_use_unlink (df
, use
);
2735 df_ref_unlink (&df
->insns
[use_uid
].uses
, use
);
2737 /* The DEF requires shifting so remove it from DEF_INSN
2738 and add it to USE_INSN by reusing LINK. */
2739 def_uid
= INSN_UID (def_insn
);
2740 link
= df_ref_unlink (&df
->insns
[def_uid
].defs
, def
);
2742 link
->next
= df
->insns
[use_uid
].defs
;
2743 df
->insns
[use_uid
].defs
= link
;
2746 link
= df_ref_unlink (&df
->regs
[regno
].defs
, def
);
2748 link
->next
= df
->regs
[regno
].defs
;
2749 df
->insns
[regno
].defs
= link
;
2752 DF_REF_INSN (def
) = use_insn
;
2757 /* Record df between FIRST_INSN and LAST_INSN inclusive. All new
2758 insns must be processed by this routine. */
2760 df_insns_modify (df
, bb
, first_insn
, last_insn
)
2768 for (insn
= first_insn
; ; insn
= NEXT_INSN (insn
))
2772 /* A non-const call should not have slipped through the net. If
2773 it does, we need to create a new basic block. Ouch. The
2774 same applies for a label. */
2775 if ((GET_CODE (insn
) == CALL_INSN
2776 && ! CONST_OR_PURE_CALL_P (insn
))
2777 || GET_CODE (insn
) == CODE_LABEL
)
2780 uid
= INSN_UID (insn
);
2782 if (uid
>= df
->insn_size
)
2783 df_insn_table_realloc (df
, uid
);
2785 df_insn_modify (df
, bb
, insn
);
2787 if (insn
== last_insn
)
2793 /* Emit PATTERN before INSN within BB. */
2795 df_pattern_emit_before (df
, pattern
, bb
, insn
)
2796 struct df
*df ATTRIBUTE_UNUSED
;
2802 rtx prev_insn
= PREV_INSN (insn
);
2804 /* We should not be inserting before the start of the block. */
2805 if (insn
== bb
->head
)
2807 ret_insn
= emit_insn_before (pattern
, insn
);
2808 if (ret_insn
== insn
)
2811 df_insns_modify (df
, bb
, NEXT_INSN (prev_insn
), ret_insn
);
2816 /* Emit PATTERN after INSN within BB. */
2818 df_pattern_emit_after (df
, pattern
, bb
, insn
)
2826 ret_insn
= emit_insn_after (pattern
, insn
);
2827 if (ret_insn
== insn
)
2830 df_insns_modify (df
, bb
, NEXT_INSN (insn
), ret_insn
);
2835 /* Emit jump PATTERN after INSN within BB. */
2837 df_jump_pattern_emit_after (df
, pattern
, bb
, insn
)
2845 ret_insn
= emit_jump_insn_after (pattern
, insn
);
2846 if (ret_insn
== insn
)
2849 df_insns_modify (df
, bb
, NEXT_INSN (insn
), ret_insn
);
2854 /* Move INSN within BB before BEFORE_INSN within BEFORE_BB.
2856 This function should only be used to move loop invariant insns
2857 out of a loop where it has been proven that the def-use info
2858 will still be valid. */
2860 df_insn_move_before (df
, bb
, insn
, before_bb
, before_insn
)
2864 basic_block before_bb
;
2867 struct df_link
*link
;
2871 return df_pattern_emit_before (df
, insn
, before_bb
, before_insn
);
2873 uid
= INSN_UID (insn
);
2875 /* Change bb for all df defined and used by this insn. */
2876 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
2877 DF_REF_BB (link
->ref
) = before_bb
;
2878 for (link
= df
->insns
[uid
].uses
; link
; link
= link
->next
)
2879 DF_REF_BB (link
->ref
) = before_bb
;
2881 /* The lifetimes of the registers used in this insn will be reduced
2882 while the lifetimes of the registers defined in this insn
2883 are likely to be increased. */
2885 /* ???? Perhaps all the insns moved should be stored on a list
2886 which df_analyse removes when it recalculates data flow. */
2888 return emit_insn_before (insn
, before_insn
);
2891 /* Functions to query dataflow information. */
2895 df_insn_regno_def_p (df
, bb
, insn
, regno
)
2897 basic_block bb ATTRIBUTE_UNUSED
;
2902 struct df_link
*link
;
2904 uid
= INSN_UID (insn
);
2906 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
2908 struct ref
*def
= link
->ref
;
2910 if (DF_REF_REGNO (def
) == regno
)
2919 df_def_dominates_all_uses_p (df
, def
)
2920 struct df
*df ATTRIBUTE_UNUSED
;
2923 struct df_link
*du_link
;
2925 /* Follow def-use chain to find all the uses of this def. */
2926 for (du_link
= DF_REF_CHAIN (def
); du_link
; du_link
= du_link
->next
)
2928 struct ref
*use
= du_link
->ref
;
2929 struct df_link
*ud_link
;
2931 /* Follow use-def chain to check all the defs for this use. */
2932 for (ud_link
= DF_REF_CHAIN (use
); ud_link
; ud_link
= ud_link
->next
)
2933 if (ud_link
->ref
!= def
)
2941 df_insn_dominates_all_uses_p (df
, bb
, insn
)
2943 basic_block bb ATTRIBUTE_UNUSED
;
2947 struct df_link
*link
;
2949 uid
= INSN_UID (insn
);
2951 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
2953 struct ref
*def
= link
->ref
;
2955 if (! df_def_dominates_all_uses_p (df
, def
))
2963 /* Return nonzero if all DF dominates all the uses within the bitmap
2966 df_def_dominates_uses_p (df
, def
, blocks
)
2967 struct df
*df ATTRIBUTE_UNUSED
;
2971 struct df_link
*du_link
;
2973 /* Follow def-use chain to find all the uses of this def. */
2974 for (du_link
= DF_REF_CHAIN (def
); du_link
; du_link
= du_link
->next
)
2976 struct ref
*use
= du_link
->ref
;
2977 struct df_link
*ud_link
;
2979 /* Only worry about the uses within BLOCKS. For example,
2980 consider a register defined within a loop that is live at the
2982 if (bitmap_bit_p (blocks
, DF_REF_BBNO (use
)))
2984 /* Follow use-def chain to check all the defs for this use. */
2985 for (ud_link
= DF_REF_CHAIN (use
); ud_link
; ud_link
= ud_link
->next
)
2986 if (ud_link
->ref
!= def
)
2994 /* Return nonzero if all the defs of INSN within BB dominates
2995 all the corresponding uses. */
2997 df_insn_dominates_uses_p (df
, bb
, insn
, blocks
)
2999 basic_block bb ATTRIBUTE_UNUSED
;
3004 struct df_link
*link
;
3006 uid
= INSN_UID (insn
);
3008 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
3010 struct ref
*def
= link
->ref
;
3012 /* Only consider the defs within BLOCKS. */
3013 if (bitmap_bit_p (blocks
, DF_REF_BBNO (def
))
3014 && ! df_def_dominates_uses_p (df
, def
, blocks
))
3021 /* Return the basic block that REG referenced in or NULL if referenced
3022 in multiple basic blocks. */
3024 df_regno_bb (df
, regno
)
3028 struct df_link
*defs
= df
->regs
[regno
].defs
;
3029 struct df_link
*uses
= df
->regs
[regno
].uses
;
3030 struct ref
*def
= defs
? defs
->ref
: 0;
3031 struct ref
*use
= uses
? uses
->ref
: 0;
3032 basic_block bb_def
= def
? DF_REF_BB (def
) : 0;
3033 basic_block bb_use
= use
? DF_REF_BB (use
) : 0;
3035 /* Compare blocks of first def and last use. ???? FIXME. What if
3036 the reg-def and reg-use lists are not correctly ordered. */
3037 return bb_def
== bb_use
? bb_def
: 0;
3041 /* Return nonzero if REG used in multiple basic blocks. */
3043 df_reg_global_p (df
, reg
)
3047 return df_regno_bb (df
, REGNO (reg
)) != 0;
3051 /* Return total lifetime (in insns) of REG. */
3053 df_reg_lifetime (df
, reg
)
3057 return df
->regs
[REGNO (reg
)].lifetime
;
3061 /* Return nonzero if REG live at start of BB. */
3063 df_bb_reg_live_start_p (df
, bb
, reg
)
3064 struct df
*df ATTRIBUTE_UNUSED
;
3068 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
3070 #ifdef ENABLE_CHECKING
3071 if (! bb_info
->lr_in
)
3075 return bitmap_bit_p (bb_info
->lr_in
, REGNO (reg
));
3079 /* Return nonzero if REG live at end of BB. */
3081 df_bb_reg_live_end_p (df
, bb
, reg
)
3082 struct df
*df ATTRIBUTE_UNUSED
;
3086 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
3088 #ifdef ENABLE_CHECKING
3089 if (! bb_info
->lr_in
)
3093 return bitmap_bit_p (bb_info
->lr_out
, REGNO (reg
));
3097 /* Return -1 if life of REG1 before life of REG2, 1 if life of REG1
3098 after life of REG2, or 0, if the lives overlap. */
3100 df_bb_regs_lives_compare (df
, bb
, reg1
, reg2
)
3106 unsigned int regno1
= REGNO (reg1
);
3107 unsigned int regno2
= REGNO (reg2
);
3114 /* The regs must be local to BB. */
3115 if (df_regno_bb (df
, regno1
) != bb
3116 || df_regno_bb (df
, regno2
) != bb
)
3119 def2
= df_bb_regno_first_def_find (df
, bb
, regno2
);
3120 use1
= df_bb_regno_last_use_find (df
, bb
, regno1
);
3122 if (DF_INSN_LUID (df
, DF_REF_INSN (def2
))
3123 > DF_INSN_LUID (df
, DF_REF_INSN (use1
)))
3126 def1
= df_bb_regno_first_def_find (df
, bb
, regno1
);
3127 use2
= df_bb_regno_last_use_find (df
, bb
, regno2
);
3129 if (DF_INSN_LUID (df
, DF_REF_INSN (def1
))
3130 > DF_INSN_LUID (df
, DF_REF_INSN (use2
)))
3137 /* Return last use of REGNO within BB. */
3139 df_bb_regno_last_use_find (df
, bb
, regno
)
3141 basic_block bb ATTRIBUTE_UNUSED
;
3144 struct df_link
*link
;
3146 /* This assumes that the reg-use list is ordered such that for any
3147 BB, the last use is found first. However, since the BBs are not
3148 ordered, the first use in the chain is not necessarily the last
3149 use in the function. */
3150 for (link
= df
->regs
[regno
].uses
; link
; link
= link
->next
)
3152 struct ref
*use
= link
->ref
;
3154 if (DF_REF_BB (use
) == bb
)
3161 /* Return first def of REGNO within BB. */
3163 df_bb_regno_first_def_find (df
, bb
, regno
)
3165 basic_block bb ATTRIBUTE_UNUSED
;
3168 struct df_link
*link
;
3170 /* This assumes that the reg-def list is ordered such that for any
3171 BB, the first def is found first. However, since the BBs are not
3172 ordered, the first def in the chain is not necessarily the first
3173 def in the function. */
3174 for (link
= df
->regs
[regno
].defs
; link
; link
= link
->next
)
3176 struct ref
*def
= link
->ref
;
3178 if (DF_REF_BB (def
) == bb
)
3185 /* Return first use of REGNO inside INSN within BB. */
3187 df_bb_insn_regno_last_use_find (df
, bb
, insn
, regno
)
3189 basic_block bb ATTRIBUTE_UNUSED
;
3194 struct df_link
*link
;
3196 uid
= INSN_UID (insn
);
3198 for (link
= df
->insns
[uid
].uses
; link
; link
= link
->next
)
3200 struct ref
*use
= link
->ref
;
3202 if (DF_REF_REGNO (use
) == regno
)
3210 /* Return first def of REGNO inside INSN within BB. */
3212 df_bb_insn_regno_first_def_find (df
, bb
, insn
, regno
)
3214 basic_block bb ATTRIBUTE_UNUSED
;
3219 struct df_link
*link
;
3221 uid
= INSN_UID (insn
);
3223 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
3225 struct ref
*def
= link
->ref
;
3227 if (DF_REF_REGNO (def
) == regno
)
3235 /* Return insn using REG if the BB contains only a single
3236 use and def of REG. */
3238 df_bb_single_def_use_insn_find (df
, bb
, insn
, reg
)
3246 struct df_link
*du_link
;
3248 def
= df_bb_insn_regno_first_def_find (df
, bb
, insn
, REGNO (reg
));
3253 du_link
= DF_REF_CHAIN (def
);
3260 /* Check if def is dead. */
3264 /* Check for multiple uses. */
3268 return DF_REF_INSN (use
);
3271 /* Functions for debugging/dumping dataflow information. */
3274 /* Dump a def-use or use-def chain for REF to FILE. */
3276 df_chain_dump (link
, file
)
3277 struct df_link
*link
;
3280 fprintf (file
, "{ ");
3281 for (; link
; link
= link
->next
)
3283 fprintf (file
, "%c%d ",
3284 DF_REF_REG_DEF_P (link
->ref
) ? 'd' : 'u',
3285 DF_REF_ID (link
->ref
));
3287 fprintf (file
, "}");
3291 /* Dump a chain of refs with the associated regno. */
3293 df_chain_dump_regno (link
, file
)
3294 struct df_link
*link
;
3297 fprintf (file
, "{ ");
3298 for (; link
; link
= link
->next
)
3300 fprintf (file
, "%c%d(%d) ",
3301 DF_REF_REG_DEF_P (link
->ref
) ? 'd' : 'u',
3302 DF_REF_ID (link
->ref
),
3303 DF_REF_REGNO (link
->ref
));
3305 fprintf (file
, "}");
3309 /* Dump dataflow info. */
3311 df_dump (df
, flags
, file
)
3322 fprintf (file
, "\nDataflow summary:\n");
3323 fprintf (file
, "n_regs = %d, n_defs = %d, n_uses = %d, n_bbs = %d\n",
3324 df
->n_regs
, df
->n_defs
, df
->n_uses
, df
->n_bbs
);
3330 fprintf (file
, "Reaching defs:\n");
3333 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
3335 if (! bb_info
->rd_in
)
3338 fprintf (file
, "bb %d in \t", bb
->index
);
3339 dump_bitmap (file
, bb_info
->rd_in
);
3340 fprintf (file
, "bb %d gen \t", bb
->index
);
3341 dump_bitmap (file
, bb_info
->rd_gen
);
3342 fprintf (file
, "bb %d kill\t", bb
->index
);
3343 dump_bitmap (file
, bb_info
->rd_kill
);
3344 fprintf (file
, "bb %d out \t", bb
->index
);
3345 dump_bitmap (file
, bb_info
->rd_out
);
3349 if (flags
& DF_UD_CHAIN
)
3351 fprintf (file
, "Use-def chains:\n");
3352 for (j
= 0; j
< df
->n_defs
; j
++)
3356 fprintf (file
, "d%d bb %d luid %d insn %d reg %d ",
3357 j
, DF_REF_BBNO (df
->defs
[j
]),
3358 DF_INSN_LUID (df
, DF_REF_INSN (df
->defs
[j
])),
3359 DF_REF_INSN_UID (df
->defs
[j
]),
3360 DF_REF_REGNO (df
->defs
[j
]));
3361 if (df
->defs
[j
]->flags
& DF_REF_READ_WRITE
)
3362 fprintf (file
, "read/write ");
3363 df_chain_dump (DF_REF_CHAIN (df
->defs
[j
]), file
);
3364 fprintf (file
, "\n");
3371 fprintf (file
, "Reaching uses:\n");
3374 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
3376 if (! bb_info
->ru_in
)
3379 fprintf (file
, "bb %d in \t", bb
->index
);
3380 dump_bitmap (file
, bb_info
->ru_in
);
3381 fprintf (file
, "bb %d gen \t", bb
->index
);
3382 dump_bitmap (file
, bb_info
->ru_gen
);
3383 fprintf (file
, "bb %d kill\t", bb
->index
);
3384 dump_bitmap (file
, bb_info
->ru_kill
);
3385 fprintf (file
, "bb %d out \t", bb
->index
);
3386 dump_bitmap (file
, bb_info
->ru_out
);
3390 if (flags
& DF_DU_CHAIN
)
3392 fprintf (file
, "Def-use chains:\n");
3393 for (j
= 0; j
< df
->n_uses
; j
++)
3397 fprintf (file
, "u%d bb %d luid %d insn %d reg %d ",
3398 j
, DF_REF_BBNO (df
->uses
[j
]),
3399 DF_INSN_LUID (df
, DF_REF_INSN (df
->uses
[j
])),
3400 DF_REF_INSN_UID (df
->uses
[j
]),
3401 DF_REF_REGNO (df
->uses
[j
]));
3402 if (df
->uses
[j
]->flags
& DF_REF_READ_WRITE
)
3403 fprintf (file
, "read/write ");
3404 df_chain_dump (DF_REF_CHAIN (df
->uses
[j
]), file
);
3405 fprintf (file
, "\n");
3412 fprintf (file
, "Live regs:\n");
3415 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
3417 if (! bb_info
->lr_in
)
3420 fprintf (file
, "bb %d in \t", bb
->index
);
3421 dump_bitmap (file
, bb_info
->lr_in
);
3422 fprintf (file
, "bb %d use \t", bb
->index
);
3423 dump_bitmap (file
, bb_info
->lr_use
);
3424 fprintf (file
, "bb %d def \t", bb
->index
);
3425 dump_bitmap (file
, bb_info
->lr_def
);
3426 fprintf (file
, "bb %d out \t", bb
->index
);
3427 dump_bitmap (file
, bb_info
->lr_out
);
3431 if (flags
& (DF_REG_INFO
| DF_RD_CHAIN
| DF_RU_CHAIN
))
3433 struct reg_info
*reg_info
= df
->regs
;
3435 fprintf (file
, "Register info:\n");
3436 for (j
= 0; j
< df
->n_regs
; j
++)
3438 if (((flags
& DF_REG_INFO
)
3439 && (reg_info
[j
].n_uses
|| reg_info
[j
].n_defs
))
3440 || ((flags
& DF_RD_CHAIN
) && reg_info
[j
].defs
)
3441 || ((flags
& DF_RU_CHAIN
) && reg_info
[j
].uses
))
3443 fprintf (file
, "reg %d", j
);
3444 if ((flags
& DF_RD_CHAIN
) && (flags
& DF_RU_CHAIN
))
3446 basic_block bb
= df_regno_bb (df
, j
);
3449 fprintf (file
, " bb %d", bb
->index
);
3451 fprintf (file
, " bb ?");
3453 if (flags
& DF_REG_INFO
)
3455 fprintf (file
, " life %d", reg_info
[j
].lifetime
);
3458 if ((flags
& DF_REG_INFO
) || (flags
& DF_RD_CHAIN
))
3460 fprintf (file
, " defs ");
3461 if (flags
& DF_REG_INFO
)
3462 fprintf (file
, "%d ", reg_info
[j
].n_defs
);
3463 if (flags
& DF_RD_CHAIN
)
3464 df_chain_dump (reg_info
[j
].defs
, file
);
3467 if ((flags
& DF_REG_INFO
) || (flags
& DF_RU_CHAIN
))
3469 fprintf (file
, " uses ");
3470 if (flags
& DF_REG_INFO
)
3471 fprintf (file
, "%d ", reg_info
[j
].n_uses
);
3472 if (flags
& DF_RU_CHAIN
)
3473 df_chain_dump (reg_info
[j
].uses
, file
);
3476 fprintf (file
, "\n");
3480 fprintf (file
, "\n");
3485 df_insn_debug (df
, insn
, file
)
3493 uid
= INSN_UID (insn
);
3494 if (uid
>= df
->insn_size
)
3497 if (df
->insns
[uid
].defs
)
3498 bbi
= DF_REF_BBNO (df
->insns
[uid
].defs
->ref
);
3499 else if (df
->insns
[uid
].uses
)
3500 bbi
= DF_REF_BBNO (df
->insns
[uid
].uses
->ref
);
3504 fprintf (file
, "insn %d bb %d luid %d defs ",
3505 uid
, bbi
, DF_INSN_LUID (df
, insn
));
3506 df_chain_dump (df
->insns
[uid
].defs
, file
);
3507 fprintf (file
, " uses ");
3508 df_chain_dump (df
->insns
[uid
].uses
, file
);
3509 fprintf (file
, "\n");
3514 df_insn_debug_regno (df
, insn
, file
)
3522 uid
= INSN_UID (insn
);
3523 if (uid
>= df
->insn_size
)
3526 if (df
->insns
[uid
].defs
)
3527 bbi
= DF_REF_BBNO (df
->insns
[uid
].defs
->ref
);
3528 else if (df
->insns
[uid
].uses
)
3529 bbi
= DF_REF_BBNO (df
->insns
[uid
].uses
->ref
);
3533 fprintf (file
, "insn %d bb %d luid %d defs ",
3534 uid
, bbi
, DF_INSN_LUID (df
, insn
));
3535 df_chain_dump_regno (df
->insns
[uid
].defs
, file
);
3536 fprintf (file
, " uses ");
3537 df_chain_dump_regno (df
->insns
[uid
].uses
, file
);
3538 fprintf (file
, "\n");
3543 df_regno_debug (df
, regno
, file
)
3548 if (regno
>= df
->reg_size
)
3551 fprintf (file
, "reg %d life %d defs ",
3552 regno
, df
->regs
[regno
].lifetime
);
3553 df_chain_dump (df
->regs
[regno
].defs
, file
);
3554 fprintf (file
, " uses ");
3555 df_chain_dump (df
->regs
[regno
].uses
, file
);
3556 fprintf (file
, "\n");
3561 df_ref_debug (df
, ref
, file
)
3566 fprintf (file
, "%c%d ",
3567 DF_REF_REG_DEF_P (ref
) ? 'd' : 'u',
3569 fprintf (file
, "reg %d bb %d luid %d insn %d chain ",
3572 DF_INSN_LUID (df
, DF_REF_INSN (ref
)),
3573 INSN_UID (DF_REF_INSN (ref
)));
3574 df_chain_dump (DF_REF_CHAIN (ref
), file
);
3575 fprintf (file
, "\n");
3578 /* Functions for debugging from GDB. */
3581 debug_df_insn (insn
)
3584 df_insn_debug (ddf
, insn
, stderr
);
3593 df_regno_debug (ddf
, REGNO (reg
), stderr
);
3598 debug_df_regno (regno
)
3601 df_regno_debug (ddf
, regno
, stderr
);
3609 df_ref_debug (ddf
, ref
, stderr
);
3614 debug_df_defno (defno
)
3617 df_ref_debug (ddf
, ddf
->defs
[defno
], stderr
);
3622 debug_df_useno (defno
)
3625 df_ref_debug (ddf
, ddf
->uses
[defno
], stderr
);
3630 debug_df_chain (link
)
3631 struct df_link
*link
;
3633 df_chain_dump (link
, stderr
);
3634 fputc ('\n', stderr
);
3638 /* Hybrid search algorithm from "Implementation Techniques for
3639 Efficient Data-Flow Analysis of Large Programs". */
3641 hybrid_search_bitmap (block
, in
, out
, gen
, kill
, dir
,
3642 conf_op
, transfun
, visited
, pending
,
3645 bitmap
*in
, *out
, *gen
, *kill
;
3646 enum df_flow_dir dir
;
3647 enum df_confluence_op conf_op
;
3648 transfer_function_bitmap transfun
;
3654 int i
= block
->index
;
3656 basic_block bb
= block
;
3658 SET_BIT (visited
, block
->index
);
3659 if (TEST_BIT (pending
, block
->index
))
3661 if (dir
== DF_FORWARD
)
3663 /* Calculate <conf_op> of predecessor_outs. */
3664 bitmap_zero (in
[i
]);
3665 for (e
= bb
->pred
; e
!= 0; e
= e
->pred_next
)
3667 if (e
->src
== ENTRY_BLOCK_PTR
)
3672 bitmap_a_or_b (in
[i
], in
[i
], out
[e
->src
->index
]);
3674 case DF_INTERSECTION
:
3675 bitmap_a_and_b (in
[i
], in
[i
], out
[e
->src
->index
]);
3682 /* Calculate <conf_op> of successor ins. */
3683 bitmap_zero (out
[i
]);
3684 for (e
= bb
->succ
; e
!= 0; e
= e
->succ_next
)
3686 if (e
->dest
== EXIT_BLOCK_PTR
)
3691 bitmap_a_or_b (out
[i
], out
[i
], in
[e
->dest
->index
]);
3693 case DF_INTERSECTION
:
3694 bitmap_a_and_b (out
[i
], out
[i
], in
[e
->dest
->index
]);
3700 (*transfun
)(i
, &changed
, in
[i
], out
[i
], gen
[i
], kill
[i
], data
);
3701 RESET_BIT (pending
, i
);
3704 if (dir
== DF_FORWARD
)
3706 for (e
= bb
->succ
; e
!= 0; e
= e
->succ_next
)
3708 if (e
->dest
== EXIT_BLOCK_PTR
|| e
->dest
->index
== i
)
3710 SET_BIT (pending
, e
->dest
->index
);
3715 for (e
= bb
->pred
; e
!= 0; e
= e
->pred_next
)
3717 if (e
->src
== ENTRY_BLOCK_PTR
|| e
->dest
->index
== i
)
3719 SET_BIT (pending
, e
->src
->index
);
3724 if (dir
== DF_FORWARD
)
3726 for (e
= bb
->succ
; e
!= 0; e
= e
->succ_next
)
3728 if (e
->dest
== EXIT_BLOCK_PTR
|| e
->dest
->index
== i
)
3730 if (!TEST_BIT (visited
, e
->dest
->index
))
3731 hybrid_search_bitmap (e
->dest
, in
, out
, gen
, kill
, dir
,
3732 conf_op
, transfun
, visited
, pending
,
3738 for (e
= bb
->pred
; e
!= 0; e
= e
->pred_next
)
3740 if (e
->src
== ENTRY_BLOCK_PTR
|| e
->src
->index
== i
)
3742 if (!TEST_BIT (visited
, e
->src
->index
))
3743 hybrid_search_bitmap (e
->src
, in
, out
, gen
, kill
, dir
,
3744 conf_op
, transfun
, visited
, pending
,
3751 /* Hybrid search for sbitmaps, rather than bitmaps. */
3753 hybrid_search_sbitmap (block
, in
, out
, gen
, kill
, dir
,
3754 conf_op
, transfun
, visited
, pending
,
3757 sbitmap
*in
, *out
, *gen
, *kill
;
3758 enum df_flow_dir dir
;
3759 enum df_confluence_op conf_op
;
3760 transfer_function_sbitmap transfun
;
3766 int i
= block
->index
;
3768 basic_block bb
= block
;
3770 SET_BIT (visited
, block
->index
);
3771 if (TEST_BIT (pending
, block
->index
))
3773 if (dir
== DF_FORWARD
)
3775 /* Calculate <conf_op> of predecessor_outs. */
3776 sbitmap_zero (in
[i
]);
3777 for (e
= bb
->pred
; e
!= 0; e
= e
->pred_next
)
3779 if (e
->src
== ENTRY_BLOCK_PTR
)
3784 sbitmap_a_or_b (in
[i
], in
[i
], out
[e
->src
->index
]);
3786 case DF_INTERSECTION
:
3787 sbitmap_a_and_b (in
[i
], in
[i
], out
[e
->src
->index
]);
3794 /* Calculate <conf_op> of successor ins. */
3795 sbitmap_zero (out
[i
]);
3796 for (e
= bb
->succ
; e
!= 0; e
= e
->succ_next
)
3798 if (e
->dest
== EXIT_BLOCK_PTR
)
3803 sbitmap_a_or_b (out
[i
], out
[i
], in
[e
->dest
->index
]);
3805 case DF_INTERSECTION
:
3806 sbitmap_a_and_b (out
[i
], out
[i
], in
[e
->dest
->index
]);
3812 (*transfun
)(i
, &changed
, in
[i
], out
[i
], gen
[i
], kill
[i
], data
);
3813 RESET_BIT (pending
, i
);
3816 if (dir
== DF_FORWARD
)
3818 for (e
= bb
->succ
; e
!= 0; e
= e
->succ_next
)
3820 if (e
->dest
== EXIT_BLOCK_PTR
|| e
->dest
->index
== i
)
3822 SET_BIT (pending
, e
->dest
->index
);
3827 for (e
= bb
->pred
; e
!= 0; e
= e
->pred_next
)
3829 if (e
->src
== ENTRY_BLOCK_PTR
|| e
->dest
->index
== i
)
3831 SET_BIT (pending
, e
->src
->index
);
3836 if (dir
== DF_FORWARD
)
3838 for (e
= bb
->succ
; e
!= 0; e
= e
->succ_next
)
3840 if (e
->dest
== EXIT_BLOCK_PTR
|| e
->dest
->index
== i
)
3842 if (!TEST_BIT (visited
, e
->dest
->index
))
3843 hybrid_search_sbitmap (e
->dest
, in
, out
, gen
, kill
, dir
,
3844 conf_op
, transfun
, visited
, pending
,
3850 for (e
= bb
->pred
; e
!= 0; e
= e
->pred_next
)
3852 if (e
->src
== ENTRY_BLOCK_PTR
|| e
->src
->index
== i
)
3854 if (!TEST_BIT (visited
, e
->src
->index
))
3855 hybrid_search_sbitmap (e
->src
, in
, out
, gen
, kill
, dir
,
3856 conf_op
, transfun
, visited
, pending
,
3865 in, out = Filled in by function.
3866 blocks = Blocks to analyze.
3867 dir = Dataflow direction.
3868 conf_op = Confluence operation.
3869 transfun = Transfer function.
3870 order = Order to iterate in. (Should map block numbers -> order)
3871 data = Whatever you want. It's passed to the transfer function.
3873 This function will perform iterative bitvector dataflow, producing
3874 the in and out sets. Even if you only want to perform it for a
3875 small number of blocks, the vectors for in and out must be large
3876 enough for *all* blocks, because changing one block might affect
3877 others. However, it'll only put what you say to analyze on the
3880 For forward problems, you probably want to pass in a mapping of
3881 block number to rc_order (like df->inverse_rc_map).
3884 iterative_dataflow_sbitmap (in
, out
, gen
, kill
, blocks
,
3885 dir
, conf_op
, transfun
, order
, data
)
3886 sbitmap
*in
, *out
, *gen
, *kill
;
3888 enum df_flow_dir dir
;
3889 enum df_confluence_op conf_op
;
3890 transfer_function_sbitmap transfun
;
3897 sbitmap visited
, pending
;
3899 pending
= sbitmap_alloc (last_basic_block
);
3900 visited
= sbitmap_alloc (last_basic_block
);
3901 sbitmap_zero (pending
);
3902 sbitmap_zero (visited
);
3903 worklist
= fibheap_new ();
3905 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
,
3907 fibheap_insert (worklist
, order
[i
], (void *) (size_t) i
);
3908 SET_BIT (pending
, i
);
3909 if (dir
== DF_FORWARD
)
3910 sbitmap_copy (out
[i
], gen
[i
]);
3912 sbitmap_copy (in
[i
], gen
[i
]);
3915 while (sbitmap_first_set_bit (pending
) != -1)
3917 while (!fibheap_empty (worklist
))
3919 i
= (size_t) fibheap_extract_min (worklist
);
3920 bb
= BASIC_BLOCK (i
);
3921 if (!TEST_BIT (visited
, bb
->index
))
3922 hybrid_search_sbitmap (bb
, in
, out
, gen
, kill
, dir
,
3923 conf_op
, transfun
, visited
, pending
, data
);
3926 if (sbitmap_first_set_bit (pending
) != -1)
3928 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
,
3930 fibheap_insert (worklist
, order
[i
], (void *) (size_t) i
);
3932 sbitmap_zero (visited
);
3940 sbitmap_free (pending
);
3941 sbitmap_free (visited
);
3942 fibheap_delete (worklist
);
3946 /* Exactly the same as iterative_dataflow_sbitmap, except it works on
3949 iterative_dataflow_bitmap (in
, out
, gen
, kill
, blocks
,
3950 dir
, conf_op
, transfun
, order
, data
)
3951 bitmap
*in
, *out
, *gen
, *kill
;
3953 enum df_flow_dir dir
;
3954 enum df_confluence_op conf_op
;
3955 transfer_function_bitmap transfun
;
3962 sbitmap visited
, pending
;
3964 pending
= sbitmap_alloc (last_basic_block
);
3965 visited
= sbitmap_alloc (last_basic_block
);
3966 sbitmap_zero (pending
);
3967 sbitmap_zero (visited
);
3968 worklist
= fibheap_new ();
3970 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
,
3972 fibheap_insert (worklist
, order
[i
], (void *) (size_t) i
);
3973 SET_BIT (pending
, i
);
3974 if (dir
== DF_FORWARD
)
3975 bitmap_copy (out
[i
], gen
[i
]);
3977 bitmap_copy (in
[i
], gen
[i
]);
3980 while (sbitmap_first_set_bit (pending
) != -1)
3982 while (!fibheap_empty (worklist
))
3984 i
= (size_t) fibheap_extract_min (worklist
);
3985 bb
= BASIC_BLOCK (i
);
3986 if (!TEST_BIT (visited
, bb
->index
))
3987 hybrid_search_bitmap (bb
, in
, out
, gen
, kill
, dir
,
3988 conf_op
, transfun
, visited
, pending
, data
);
3991 if (sbitmap_first_set_bit (pending
) != -1)
3993 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
,
3995 fibheap_insert (worklist
, order
[i
], (void *) (size_t) i
);
3997 sbitmap_zero (visited
);
4004 sbitmap_free (pending
);
4005 sbitmap_free (visited
);
4006 fibheap_delete (worklist
);