2017-08-06 Andrew Pinski <apinski@cavium.com>
[official-gcc.git] / gcc / fortran / expr.c
blob64af02cc29b9e1b630468a7d4e12cf2b8a0c350b
1 /* Routines for manipulation of expression nodes.
2 Copyright (C) 2000-2017 Free Software Foundation, Inc.
3 Contributed by Andy Vaught
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "options.h"
25 #include "gfortran.h"
26 #include "arith.h"
27 #include "match.h"
28 #include "target-memory.h" /* for gfc_convert_boz */
29 #include "constructor.h"
32 /* The following set of functions provide access to gfc_expr* of
33 various types - actual all but EXPR_FUNCTION and EXPR_VARIABLE.
35 There are two functions available elsewhere that provide
36 slightly different flavours of variables. Namely:
37 expr.c (gfc_get_variable_expr)
38 symbol.c (gfc_lval_expr_from_sym)
39 TODO: Merge these functions, if possible. */
41 /* Get a new expression node. */
43 gfc_expr *
44 gfc_get_expr (void)
46 gfc_expr *e;
48 e = XCNEW (gfc_expr);
49 gfc_clear_ts (&e->ts);
50 e->shape = NULL;
51 e->ref = NULL;
52 e->symtree = NULL;
53 return e;
57 /* Get a new expression node that is an array constructor
58 of given type and kind. */
60 gfc_expr *
61 gfc_get_array_expr (bt type, int kind, locus *where)
63 gfc_expr *e;
65 e = gfc_get_expr ();
66 e->expr_type = EXPR_ARRAY;
67 e->value.constructor = NULL;
68 e->rank = 1;
69 e->shape = NULL;
71 e->ts.type = type;
72 e->ts.kind = kind;
73 if (where)
74 e->where = *where;
76 return e;
80 /* Get a new expression node that is the NULL expression. */
82 gfc_expr *
83 gfc_get_null_expr (locus *where)
85 gfc_expr *e;
87 e = gfc_get_expr ();
88 e->expr_type = EXPR_NULL;
89 e->ts.type = BT_UNKNOWN;
91 if (where)
92 e->where = *where;
94 return e;
98 /* Get a new expression node that is an operator expression node. */
100 gfc_expr *
101 gfc_get_operator_expr (locus *where, gfc_intrinsic_op op,
102 gfc_expr *op1, gfc_expr *op2)
104 gfc_expr *e;
106 e = gfc_get_expr ();
107 e->expr_type = EXPR_OP;
108 e->value.op.op = op;
109 e->value.op.op1 = op1;
110 e->value.op.op2 = op2;
112 if (where)
113 e->where = *where;
115 return e;
119 /* Get a new expression node that is an structure constructor
120 of given type and kind. */
122 gfc_expr *
123 gfc_get_structure_constructor_expr (bt type, int kind, locus *where)
125 gfc_expr *e;
127 e = gfc_get_expr ();
128 e->expr_type = EXPR_STRUCTURE;
129 e->value.constructor = NULL;
131 e->ts.type = type;
132 e->ts.kind = kind;
133 if (where)
134 e->where = *where;
136 return e;
140 /* Get a new expression node that is an constant of given type and kind. */
142 gfc_expr *
143 gfc_get_constant_expr (bt type, int kind, locus *where)
145 gfc_expr *e;
147 if (!where)
148 gfc_internal_error ("gfc_get_constant_expr(): locus %<where%> cannot be "
149 "NULL");
151 e = gfc_get_expr ();
153 e->expr_type = EXPR_CONSTANT;
154 e->ts.type = type;
155 e->ts.kind = kind;
156 e->where = *where;
158 switch (type)
160 case BT_INTEGER:
161 mpz_init (e->value.integer);
162 break;
164 case BT_REAL:
165 gfc_set_model_kind (kind);
166 mpfr_init (e->value.real);
167 break;
169 case BT_COMPLEX:
170 gfc_set_model_kind (kind);
171 mpc_init2 (e->value.complex, mpfr_get_default_prec());
172 break;
174 default:
175 break;
178 return e;
182 /* Get a new expression node that is an string constant.
183 If no string is passed, a string of len is allocated,
184 blanked and null-terminated. */
186 gfc_expr *
187 gfc_get_character_expr (int kind, locus *where, const char *src, int len)
189 gfc_expr *e;
190 gfc_char_t *dest;
192 if (!src)
194 dest = gfc_get_wide_string (len + 1);
195 gfc_wide_memset (dest, ' ', len);
196 dest[len] = '\0';
198 else
199 dest = gfc_char_to_widechar (src);
201 e = gfc_get_constant_expr (BT_CHARACTER, kind,
202 where ? where : &gfc_current_locus);
203 e->value.character.string = dest;
204 e->value.character.length = len;
206 return e;
210 /* Get a new expression node that is an integer constant. */
212 gfc_expr *
213 gfc_get_int_expr (int kind, locus *where, int value)
215 gfc_expr *p;
216 p = gfc_get_constant_expr (BT_INTEGER, kind,
217 where ? where : &gfc_current_locus);
219 mpz_set_si (p->value.integer, value);
221 return p;
225 /* Get a new expression node that is a logical constant. */
227 gfc_expr *
228 gfc_get_logical_expr (int kind, locus *where, bool value)
230 gfc_expr *p;
231 p = gfc_get_constant_expr (BT_LOGICAL, kind,
232 where ? where : &gfc_current_locus);
234 p->value.logical = value;
236 return p;
240 gfc_expr *
241 gfc_get_iokind_expr (locus *where, io_kind k)
243 gfc_expr *e;
245 /* Set the types to something compatible with iokind. This is needed to
246 get through gfc_free_expr later since iokind really has no Basic Type,
247 BT, of its own. */
249 e = gfc_get_expr ();
250 e->expr_type = EXPR_CONSTANT;
251 e->ts.type = BT_LOGICAL;
252 e->value.iokind = k;
253 e->where = *where;
255 return e;
259 /* Given an expression pointer, return a copy of the expression. This
260 subroutine is recursive. */
262 gfc_expr *
263 gfc_copy_expr (gfc_expr *p)
265 gfc_expr *q;
266 gfc_char_t *s;
267 char *c;
269 if (p == NULL)
270 return NULL;
272 q = gfc_get_expr ();
273 *q = *p;
275 switch (q->expr_type)
277 case EXPR_SUBSTRING:
278 s = gfc_get_wide_string (p->value.character.length + 1);
279 q->value.character.string = s;
280 memcpy (s, p->value.character.string,
281 (p->value.character.length + 1) * sizeof (gfc_char_t));
282 break;
284 case EXPR_CONSTANT:
285 /* Copy target representation, if it exists. */
286 if (p->representation.string)
288 c = XCNEWVEC (char, p->representation.length + 1);
289 q->representation.string = c;
290 memcpy (c, p->representation.string, (p->representation.length + 1));
293 /* Copy the values of any pointer components of p->value. */
294 switch (q->ts.type)
296 case BT_INTEGER:
297 mpz_init_set (q->value.integer, p->value.integer);
298 break;
300 case BT_REAL:
301 gfc_set_model_kind (q->ts.kind);
302 mpfr_init (q->value.real);
303 mpfr_set (q->value.real, p->value.real, GFC_RND_MODE);
304 break;
306 case BT_COMPLEX:
307 gfc_set_model_kind (q->ts.kind);
308 mpc_init2 (q->value.complex, mpfr_get_default_prec());
309 mpc_set (q->value.complex, p->value.complex, GFC_MPC_RND_MODE);
310 break;
312 case BT_CHARACTER:
313 if (p->representation.string)
314 q->value.character.string
315 = gfc_char_to_widechar (q->representation.string);
316 else
318 s = gfc_get_wide_string (p->value.character.length + 1);
319 q->value.character.string = s;
321 /* This is the case for the C_NULL_CHAR named constant. */
322 if (p->value.character.length == 0
323 && (p->ts.is_c_interop || p->ts.is_iso_c))
325 *s = '\0';
326 /* Need to set the length to 1 to make sure the NUL
327 terminator is copied. */
328 q->value.character.length = 1;
330 else
331 memcpy (s, p->value.character.string,
332 (p->value.character.length + 1) * sizeof (gfc_char_t));
334 break;
336 case BT_HOLLERITH:
337 case BT_LOGICAL:
338 case_bt_struct:
339 case BT_CLASS:
340 case BT_ASSUMED:
341 break; /* Already done. */
343 case BT_PROCEDURE:
344 case BT_VOID:
345 /* Should never be reached. */
346 case BT_UNKNOWN:
347 gfc_internal_error ("gfc_copy_expr(): Bad expr node");
348 /* Not reached. */
351 break;
353 case EXPR_OP:
354 switch (q->value.op.op)
356 case INTRINSIC_NOT:
357 case INTRINSIC_PARENTHESES:
358 case INTRINSIC_UPLUS:
359 case INTRINSIC_UMINUS:
360 q->value.op.op1 = gfc_copy_expr (p->value.op.op1);
361 break;
363 default: /* Binary operators. */
364 q->value.op.op1 = gfc_copy_expr (p->value.op.op1);
365 q->value.op.op2 = gfc_copy_expr (p->value.op.op2);
366 break;
369 break;
371 case EXPR_FUNCTION:
372 q->value.function.actual =
373 gfc_copy_actual_arglist (p->value.function.actual);
374 break;
376 case EXPR_COMPCALL:
377 case EXPR_PPC:
378 q->value.compcall.actual =
379 gfc_copy_actual_arglist (p->value.compcall.actual);
380 q->value.compcall.tbp = p->value.compcall.tbp;
381 break;
383 case EXPR_STRUCTURE:
384 case EXPR_ARRAY:
385 q->value.constructor = gfc_constructor_copy (p->value.constructor);
386 break;
388 case EXPR_VARIABLE:
389 case EXPR_NULL:
390 break;
393 q->shape = gfc_copy_shape (p->shape, p->rank);
395 q->ref = gfc_copy_ref (p->ref);
397 return q;
401 void
402 gfc_clear_shape (mpz_t *shape, int rank)
404 int i;
406 for (i = 0; i < rank; i++)
407 mpz_clear (shape[i]);
411 void
412 gfc_free_shape (mpz_t **shape, int rank)
414 if (*shape == NULL)
415 return;
417 gfc_clear_shape (*shape, rank);
418 free (*shape);
419 *shape = NULL;
423 /* Workhorse function for gfc_free_expr() that frees everything
424 beneath an expression node, but not the node itself. This is
425 useful when we want to simplify a node and replace it with
426 something else or the expression node belongs to another structure. */
428 static void
429 free_expr0 (gfc_expr *e)
431 switch (e->expr_type)
433 case EXPR_CONSTANT:
434 /* Free any parts of the value that need freeing. */
435 switch (e->ts.type)
437 case BT_INTEGER:
438 mpz_clear (e->value.integer);
439 break;
441 case BT_REAL:
442 mpfr_clear (e->value.real);
443 break;
445 case BT_CHARACTER:
446 free (e->value.character.string);
447 break;
449 case BT_COMPLEX:
450 mpc_clear (e->value.complex);
451 break;
453 default:
454 break;
457 /* Free the representation. */
458 free (e->representation.string);
460 break;
462 case EXPR_OP:
463 if (e->value.op.op1 != NULL)
464 gfc_free_expr (e->value.op.op1);
465 if (e->value.op.op2 != NULL)
466 gfc_free_expr (e->value.op.op2);
467 break;
469 case EXPR_FUNCTION:
470 gfc_free_actual_arglist (e->value.function.actual);
471 break;
473 case EXPR_COMPCALL:
474 case EXPR_PPC:
475 gfc_free_actual_arglist (e->value.compcall.actual);
476 break;
478 case EXPR_VARIABLE:
479 break;
481 case EXPR_ARRAY:
482 case EXPR_STRUCTURE:
483 gfc_constructor_free (e->value.constructor);
484 break;
486 case EXPR_SUBSTRING:
487 free (e->value.character.string);
488 break;
490 case EXPR_NULL:
491 break;
493 default:
494 gfc_internal_error ("free_expr0(): Bad expr type");
497 /* Free a shape array. */
498 gfc_free_shape (&e->shape, e->rank);
500 gfc_free_ref_list (e->ref);
502 memset (e, '\0', sizeof (gfc_expr));
506 /* Free an expression node and everything beneath it. */
508 void
509 gfc_free_expr (gfc_expr *e)
511 if (e == NULL)
512 return;
513 free_expr0 (e);
514 free (e);
518 /* Free an argument list and everything below it. */
520 void
521 gfc_free_actual_arglist (gfc_actual_arglist *a1)
523 gfc_actual_arglist *a2;
525 while (a1)
527 a2 = a1->next;
528 gfc_free_expr (a1->expr);
529 free (a1);
530 a1 = a2;
535 /* Copy an arglist structure and all of the arguments. */
537 gfc_actual_arglist *
538 gfc_copy_actual_arglist (gfc_actual_arglist *p)
540 gfc_actual_arglist *head, *tail, *new_arg;
542 head = tail = NULL;
544 for (; p; p = p->next)
546 new_arg = gfc_get_actual_arglist ();
547 *new_arg = *p;
549 new_arg->expr = gfc_copy_expr (p->expr);
550 new_arg->next = NULL;
552 if (head == NULL)
553 head = new_arg;
554 else
555 tail->next = new_arg;
557 tail = new_arg;
560 return head;
564 /* Free a list of reference structures. */
566 void
567 gfc_free_ref_list (gfc_ref *p)
569 gfc_ref *q;
570 int i;
572 for (; p; p = q)
574 q = p->next;
576 switch (p->type)
578 case REF_ARRAY:
579 for (i = 0; i < GFC_MAX_DIMENSIONS; i++)
581 gfc_free_expr (p->u.ar.start[i]);
582 gfc_free_expr (p->u.ar.end[i]);
583 gfc_free_expr (p->u.ar.stride[i]);
586 break;
588 case REF_SUBSTRING:
589 gfc_free_expr (p->u.ss.start);
590 gfc_free_expr (p->u.ss.end);
591 break;
593 case REF_COMPONENT:
594 break;
597 free (p);
602 /* Graft the *src expression onto the *dest subexpression. */
604 void
605 gfc_replace_expr (gfc_expr *dest, gfc_expr *src)
607 free_expr0 (dest);
608 *dest = *src;
609 free (src);
613 /* Try to extract an integer constant from the passed expression node.
614 Return true if some error occurred, false on success. If REPORT_ERROR
615 is non-zero, emit error, for positive REPORT_ERROR using gfc_error,
616 for negative using gfc_error_now. */
618 bool
619 gfc_extract_int (gfc_expr *expr, int *result, int report_error)
621 if (expr->expr_type != EXPR_CONSTANT)
623 if (report_error > 0)
624 gfc_error ("Constant expression required at %C");
625 else if (report_error < 0)
626 gfc_error_now ("Constant expression required at %C");
627 return true;
630 if (expr->ts.type != BT_INTEGER)
632 if (report_error > 0)
633 gfc_error ("Integer expression required at %C");
634 else if (report_error < 0)
635 gfc_error_now ("Integer expression required at %C");
636 return true;
639 if ((mpz_cmp_si (expr->value.integer, INT_MAX) > 0)
640 || (mpz_cmp_si (expr->value.integer, INT_MIN) < 0))
642 if (report_error > 0)
643 gfc_error ("Integer value too large in expression at %C");
644 else if (report_error < 0)
645 gfc_error_now ("Integer value too large in expression at %C");
646 return true;
649 *result = (int) mpz_get_si (expr->value.integer);
651 return false;
655 /* Recursively copy a list of reference structures. */
657 gfc_ref *
658 gfc_copy_ref (gfc_ref *src)
660 gfc_array_ref *ar;
661 gfc_ref *dest;
663 if (src == NULL)
664 return NULL;
666 dest = gfc_get_ref ();
667 dest->type = src->type;
669 switch (src->type)
671 case REF_ARRAY:
672 ar = gfc_copy_array_ref (&src->u.ar);
673 dest->u.ar = *ar;
674 free (ar);
675 break;
677 case REF_COMPONENT:
678 dest->u.c = src->u.c;
679 break;
681 case REF_SUBSTRING:
682 dest->u.ss = src->u.ss;
683 dest->u.ss.start = gfc_copy_expr (src->u.ss.start);
684 dest->u.ss.end = gfc_copy_expr (src->u.ss.end);
685 break;
688 dest->next = gfc_copy_ref (src->next);
690 return dest;
694 /* Detect whether an expression has any vector index array references. */
697 gfc_has_vector_index (gfc_expr *e)
699 gfc_ref *ref;
700 int i;
701 for (ref = e->ref; ref; ref = ref->next)
702 if (ref->type == REF_ARRAY)
703 for (i = 0; i < ref->u.ar.dimen; i++)
704 if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
705 return 1;
706 return 0;
710 /* Copy a shape array. */
712 mpz_t *
713 gfc_copy_shape (mpz_t *shape, int rank)
715 mpz_t *new_shape;
716 int n;
718 if (shape == NULL)
719 return NULL;
721 new_shape = gfc_get_shape (rank);
723 for (n = 0; n < rank; n++)
724 mpz_init_set (new_shape[n], shape[n]);
726 return new_shape;
730 /* Copy a shape array excluding dimension N, where N is an integer
731 constant expression. Dimensions are numbered in Fortran style --
732 starting with ONE.
734 So, if the original shape array contains R elements
735 { s1 ... sN-1 sN sN+1 ... sR-1 sR}
736 the result contains R-1 elements:
737 { s1 ... sN-1 sN+1 ... sR-1}
739 If anything goes wrong -- N is not a constant, its value is out
740 of range -- or anything else, just returns NULL. */
742 mpz_t *
743 gfc_copy_shape_excluding (mpz_t *shape, int rank, gfc_expr *dim)
745 mpz_t *new_shape, *s;
746 int i, n;
748 if (shape == NULL
749 || rank <= 1
750 || dim == NULL
751 || dim->expr_type != EXPR_CONSTANT
752 || dim->ts.type != BT_INTEGER)
753 return NULL;
755 n = mpz_get_si (dim->value.integer);
756 n--; /* Convert to zero based index. */
757 if (n < 0 || n >= rank)
758 return NULL;
760 s = new_shape = gfc_get_shape (rank - 1);
762 for (i = 0; i < rank; i++)
764 if (i == n)
765 continue;
766 mpz_init_set (*s, shape[i]);
767 s++;
770 return new_shape;
774 /* Return the maximum kind of two expressions. In general, higher
775 kind numbers mean more precision for numeric types. */
778 gfc_kind_max (gfc_expr *e1, gfc_expr *e2)
780 return (e1->ts.kind > e2->ts.kind) ? e1->ts.kind : e2->ts.kind;
784 /* Returns nonzero if the type is numeric, zero otherwise. */
786 static int
787 numeric_type (bt type)
789 return type == BT_COMPLEX || type == BT_REAL || type == BT_INTEGER;
793 /* Returns nonzero if the typespec is a numeric type, zero otherwise. */
796 gfc_numeric_ts (gfc_typespec *ts)
798 return numeric_type (ts->type);
802 /* Return an expression node with an optional argument list attached.
803 A variable number of gfc_expr pointers are strung together in an
804 argument list with a NULL pointer terminating the list. */
806 gfc_expr *
807 gfc_build_conversion (gfc_expr *e)
809 gfc_expr *p;
811 p = gfc_get_expr ();
812 p->expr_type = EXPR_FUNCTION;
813 p->symtree = NULL;
814 p->value.function.actual = gfc_get_actual_arglist ();
815 p->value.function.actual->expr = e;
817 return p;
821 /* Given an expression node with some sort of numeric binary
822 expression, insert type conversions required to make the operands
823 have the same type. Conversion warnings are disabled if wconversion
824 is set to 0.
826 The exception is that the operands of an exponential don't have to
827 have the same type. If possible, the base is promoted to the type
828 of the exponent. For example, 1**2.3 becomes 1.0**2.3, but
829 1.0**2 stays as it is. */
831 void
832 gfc_type_convert_binary (gfc_expr *e, int wconversion)
834 gfc_expr *op1, *op2;
836 op1 = e->value.op.op1;
837 op2 = e->value.op.op2;
839 if (op1->ts.type == BT_UNKNOWN || op2->ts.type == BT_UNKNOWN)
841 gfc_clear_ts (&e->ts);
842 return;
845 /* Kind conversions of same type. */
846 if (op1->ts.type == op2->ts.type)
848 if (op1->ts.kind == op2->ts.kind)
850 /* No type conversions. */
851 e->ts = op1->ts;
852 goto done;
855 if (op1->ts.kind > op2->ts.kind)
856 gfc_convert_type_warn (op2, &op1->ts, 2, wconversion);
857 else
858 gfc_convert_type_warn (op1, &op2->ts, 2, wconversion);
860 e->ts = op1->ts;
861 goto done;
864 /* Integer combined with real or complex. */
865 if (op2->ts.type == BT_INTEGER)
867 e->ts = op1->ts;
869 /* Special case for ** operator. */
870 if (e->value.op.op == INTRINSIC_POWER)
871 goto done;
873 gfc_convert_type_warn (e->value.op.op2, &e->ts, 2, wconversion);
874 goto done;
877 if (op1->ts.type == BT_INTEGER)
879 e->ts = op2->ts;
880 gfc_convert_type_warn (e->value.op.op1, &e->ts, 2, wconversion);
881 goto done;
884 /* Real combined with complex. */
885 e->ts.type = BT_COMPLEX;
886 if (op1->ts.kind > op2->ts.kind)
887 e->ts.kind = op1->ts.kind;
888 else
889 e->ts.kind = op2->ts.kind;
890 if (op1->ts.type != BT_COMPLEX || op1->ts.kind != e->ts.kind)
891 gfc_convert_type_warn (e->value.op.op1, &e->ts, 2, wconversion);
892 if (op2->ts.type != BT_COMPLEX || op2->ts.kind != e->ts.kind)
893 gfc_convert_type_warn (e->value.op.op2, &e->ts, 2, wconversion);
895 done:
896 return;
900 /* Determine if an expression is constant in the sense of F08:7.1.12.
901 * This function expects that the expression has already been simplified. */
903 bool
904 gfc_is_constant_expr (gfc_expr *e)
906 gfc_constructor *c;
907 gfc_actual_arglist *arg;
909 if (e == NULL)
910 return true;
912 switch (e->expr_type)
914 case EXPR_OP:
915 return (gfc_is_constant_expr (e->value.op.op1)
916 && (e->value.op.op2 == NULL
917 || gfc_is_constant_expr (e->value.op.op2)));
919 case EXPR_VARIABLE:
920 return false;
922 case EXPR_FUNCTION:
923 case EXPR_PPC:
924 case EXPR_COMPCALL:
925 gcc_assert (e->symtree || e->value.function.esym
926 || e->value.function.isym);
928 /* Call to intrinsic with at least one argument. */
929 if (e->value.function.isym && e->value.function.actual)
931 for (arg = e->value.function.actual; arg; arg = arg->next)
932 if (!gfc_is_constant_expr (arg->expr))
933 return false;
936 if (e->value.function.isym
937 && (e->value.function.isym->elemental
938 || e->value.function.isym->pure
939 || e->value.function.isym->inquiry
940 || e->value.function.isym->transformational))
941 return true;
943 return false;
945 case EXPR_CONSTANT:
946 case EXPR_NULL:
947 return true;
949 case EXPR_SUBSTRING:
950 return e->ref == NULL || (gfc_is_constant_expr (e->ref->u.ss.start)
951 && gfc_is_constant_expr (e->ref->u.ss.end));
953 case EXPR_ARRAY:
954 case EXPR_STRUCTURE:
955 c = gfc_constructor_first (e->value.constructor);
956 if ((e->expr_type == EXPR_ARRAY) && c && c->iterator)
957 return gfc_constant_ac (e);
959 for (; c; c = gfc_constructor_next (c))
960 if (!gfc_is_constant_expr (c->expr))
961 return false;
963 return true;
966 default:
967 gfc_internal_error ("gfc_is_constant_expr(): Unknown expression type");
968 return false;
973 /* Is true if an array reference is followed by a component or substring
974 reference. */
975 bool
976 is_subref_array (gfc_expr * e)
978 gfc_ref * ref;
979 bool seen_array;
981 if (e->expr_type != EXPR_VARIABLE)
982 return false;
984 if (e->symtree->n.sym->attr.subref_array_pointer)
985 return true;
987 seen_array = false;
988 for (ref = e->ref; ref; ref = ref->next)
990 if (ref->type == REF_ARRAY
991 && ref->u.ar.type != AR_ELEMENT)
992 seen_array = true;
994 if (seen_array
995 && ref->type != REF_ARRAY)
996 return seen_array;
998 return false;
1002 /* Try to collapse intrinsic expressions. */
1004 static bool
1005 simplify_intrinsic_op (gfc_expr *p, int type)
1007 gfc_intrinsic_op op;
1008 gfc_expr *op1, *op2, *result;
1010 if (p->value.op.op == INTRINSIC_USER)
1011 return true;
1013 op1 = p->value.op.op1;
1014 op2 = p->value.op.op2;
1015 op = p->value.op.op;
1017 if (!gfc_simplify_expr (op1, type))
1018 return false;
1019 if (!gfc_simplify_expr (op2, type))
1020 return false;
1022 if (!gfc_is_constant_expr (op1)
1023 || (op2 != NULL && !gfc_is_constant_expr (op2)))
1024 return true;
1026 /* Rip p apart. */
1027 p->value.op.op1 = NULL;
1028 p->value.op.op2 = NULL;
1030 switch (op)
1032 case INTRINSIC_PARENTHESES:
1033 result = gfc_parentheses (op1);
1034 break;
1036 case INTRINSIC_UPLUS:
1037 result = gfc_uplus (op1);
1038 break;
1040 case INTRINSIC_UMINUS:
1041 result = gfc_uminus (op1);
1042 break;
1044 case INTRINSIC_PLUS:
1045 result = gfc_add (op1, op2);
1046 break;
1048 case INTRINSIC_MINUS:
1049 result = gfc_subtract (op1, op2);
1050 break;
1052 case INTRINSIC_TIMES:
1053 result = gfc_multiply (op1, op2);
1054 break;
1056 case INTRINSIC_DIVIDE:
1057 result = gfc_divide (op1, op2);
1058 break;
1060 case INTRINSIC_POWER:
1061 result = gfc_power (op1, op2);
1062 break;
1064 case INTRINSIC_CONCAT:
1065 result = gfc_concat (op1, op2);
1066 break;
1068 case INTRINSIC_EQ:
1069 case INTRINSIC_EQ_OS:
1070 result = gfc_eq (op1, op2, op);
1071 break;
1073 case INTRINSIC_NE:
1074 case INTRINSIC_NE_OS:
1075 result = gfc_ne (op1, op2, op);
1076 break;
1078 case INTRINSIC_GT:
1079 case INTRINSIC_GT_OS:
1080 result = gfc_gt (op1, op2, op);
1081 break;
1083 case INTRINSIC_GE:
1084 case INTRINSIC_GE_OS:
1085 result = gfc_ge (op1, op2, op);
1086 break;
1088 case INTRINSIC_LT:
1089 case INTRINSIC_LT_OS:
1090 result = gfc_lt (op1, op2, op);
1091 break;
1093 case INTRINSIC_LE:
1094 case INTRINSIC_LE_OS:
1095 result = gfc_le (op1, op2, op);
1096 break;
1098 case INTRINSIC_NOT:
1099 result = gfc_not (op1);
1100 break;
1102 case INTRINSIC_AND:
1103 result = gfc_and (op1, op2);
1104 break;
1106 case INTRINSIC_OR:
1107 result = gfc_or (op1, op2);
1108 break;
1110 case INTRINSIC_EQV:
1111 result = gfc_eqv (op1, op2);
1112 break;
1114 case INTRINSIC_NEQV:
1115 result = gfc_neqv (op1, op2);
1116 break;
1118 default:
1119 gfc_internal_error ("simplify_intrinsic_op(): Bad operator");
1122 if (result == NULL)
1124 gfc_free_expr (op1);
1125 gfc_free_expr (op2);
1126 return false;
1129 result->rank = p->rank;
1130 result->where = p->where;
1131 gfc_replace_expr (p, result);
1133 return true;
1137 /* Subroutine to simplify constructor expressions. Mutually recursive
1138 with gfc_simplify_expr(). */
1140 static bool
1141 simplify_constructor (gfc_constructor_base base, int type)
1143 gfc_constructor *c;
1144 gfc_expr *p;
1146 for (c = gfc_constructor_first (base); c; c = gfc_constructor_next (c))
1148 if (c->iterator
1149 && (!gfc_simplify_expr(c->iterator->start, type)
1150 || !gfc_simplify_expr (c->iterator->end, type)
1151 || !gfc_simplify_expr (c->iterator->step, type)))
1152 return false;
1154 if (c->expr)
1156 /* Try and simplify a copy. Replace the original if successful
1157 but keep going through the constructor at all costs. Not
1158 doing so can make a dog's dinner of complicated things. */
1159 p = gfc_copy_expr (c->expr);
1161 if (!gfc_simplify_expr (p, type))
1163 gfc_free_expr (p);
1164 continue;
1167 gfc_replace_expr (c->expr, p);
1171 return true;
1175 /* Pull a single array element out of an array constructor. */
1177 static bool
1178 find_array_element (gfc_constructor_base base, gfc_array_ref *ar,
1179 gfc_constructor **rval)
1181 unsigned long nelemen;
1182 int i;
1183 mpz_t delta;
1184 mpz_t offset;
1185 mpz_t span;
1186 mpz_t tmp;
1187 gfc_constructor *cons;
1188 gfc_expr *e;
1189 bool t;
1191 t = true;
1192 e = NULL;
1194 mpz_init_set_ui (offset, 0);
1195 mpz_init (delta);
1196 mpz_init (tmp);
1197 mpz_init_set_ui (span, 1);
1198 for (i = 0; i < ar->dimen; i++)
1200 if (!gfc_reduce_init_expr (ar->as->lower[i])
1201 || !gfc_reduce_init_expr (ar->as->upper[i]))
1203 t = false;
1204 cons = NULL;
1205 goto depart;
1208 e = ar->start[i];
1209 if (e->expr_type != EXPR_CONSTANT)
1211 cons = NULL;
1212 goto depart;
1215 gcc_assert (ar->as->upper[i]->expr_type == EXPR_CONSTANT
1216 && ar->as->lower[i]->expr_type == EXPR_CONSTANT);
1218 /* Check the bounds. */
1219 if ((ar->as->upper[i]
1220 && mpz_cmp (e->value.integer,
1221 ar->as->upper[i]->value.integer) > 0)
1222 || (mpz_cmp (e->value.integer,
1223 ar->as->lower[i]->value.integer) < 0))
1225 gfc_error ("Index in dimension %d is out of bounds "
1226 "at %L", i + 1, &ar->c_where[i]);
1227 cons = NULL;
1228 t = false;
1229 goto depart;
1232 mpz_sub (delta, e->value.integer, ar->as->lower[i]->value.integer);
1233 mpz_mul (delta, delta, span);
1234 mpz_add (offset, offset, delta);
1236 mpz_set_ui (tmp, 1);
1237 mpz_add (tmp, tmp, ar->as->upper[i]->value.integer);
1238 mpz_sub (tmp, tmp, ar->as->lower[i]->value.integer);
1239 mpz_mul (span, span, tmp);
1242 for (cons = gfc_constructor_first (base), nelemen = mpz_get_ui (offset);
1243 cons && nelemen > 0; cons = gfc_constructor_next (cons), nelemen--)
1245 if (cons->iterator)
1247 cons = NULL;
1248 goto depart;
1252 depart:
1253 mpz_clear (delta);
1254 mpz_clear (offset);
1255 mpz_clear (span);
1256 mpz_clear (tmp);
1257 *rval = cons;
1258 return t;
1262 /* Find a component of a structure constructor. */
1264 static gfc_constructor *
1265 find_component_ref (gfc_constructor_base base, gfc_ref *ref)
1267 gfc_component *pick = ref->u.c.component;
1268 gfc_constructor *c = gfc_constructor_first (base);
1270 gfc_symbol *dt = ref->u.c.sym;
1271 int ext = dt->attr.extension;
1273 /* For extended types, check if the desired component is in one of the
1274 * parent types. */
1275 while (ext > 0 && gfc_find_component (dt->components->ts.u.derived,
1276 pick->name, true, true, NULL))
1278 dt = dt->components->ts.u.derived;
1279 c = gfc_constructor_first (c->expr->value.constructor);
1280 ext--;
1283 gfc_component *comp = dt->components;
1284 while (comp != pick)
1286 comp = comp->next;
1287 c = gfc_constructor_next (c);
1290 return c;
1294 /* Replace an expression with the contents of a constructor, removing
1295 the subobject reference in the process. */
1297 static void
1298 remove_subobject_ref (gfc_expr *p, gfc_constructor *cons)
1300 gfc_expr *e;
1302 if (cons)
1304 e = cons->expr;
1305 cons->expr = NULL;
1307 else
1308 e = gfc_copy_expr (p);
1309 e->ref = p->ref->next;
1310 p->ref->next = NULL;
1311 gfc_replace_expr (p, e);
1315 /* Pull an array section out of an array constructor. */
1317 static bool
1318 find_array_section (gfc_expr *expr, gfc_ref *ref)
1320 int idx;
1321 int rank;
1322 int d;
1323 int shape_i;
1324 int limit;
1325 long unsigned one = 1;
1326 bool incr_ctr;
1327 mpz_t start[GFC_MAX_DIMENSIONS];
1328 mpz_t end[GFC_MAX_DIMENSIONS];
1329 mpz_t stride[GFC_MAX_DIMENSIONS];
1330 mpz_t delta[GFC_MAX_DIMENSIONS];
1331 mpz_t ctr[GFC_MAX_DIMENSIONS];
1332 mpz_t delta_mpz;
1333 mpz_t tmp_mpz;
1334 mpz_t nelts;
1335 mpz_t ptr;
1336 gfc_constructor_base base;
1337 gfc_constructor *cons, *vecsub[GFC_MAX_DIMENSIONS];
1338 gfc_expr *begin;
1339 gfc_expr *finish;
1340 gfc_expr *step;
1341 gfc_expr *upper;
1342 gfc_expr *lower;
1343 bool t;
1345 t = true;
1347 base = expr->value.constructor;
1348 expr->value.constructor = NULL;
1350 rank = ref->u.ar.as->rank;
1352 if (expr->shape == NULL)
1353 expr->shape = gfc_get_shape (rank);
1355 mpz_init_set_ui (delta_mpz, one);
1356 mpz_init_set_ui (nelts, one);
1357 mpz_init (tmp_mpz);
1359 /* Do the initialization now, so that we can cleanup without
1360 keeping track of where we were. */
1361 for (d = 0; d < rank; d++)
1363 mpz_init (delta[d]);
1364 mpz_init (start[d]);
1365 mpz_init (end[d]);
1366 mpz_init (ctr[d]);
1367 mpz_init (stride[d]);
1368 vecsub[d] = NULL;
1371 /* Build the counters to clock through the array reference. */
1372 shape_i = 0;
1373 for (d = 0; d < rank; d++)
1375 /* Make this stretch of code easier on the eye! */
1376 begin = ref->u.ar.start[d];
1377 finish = ref->u.ar.end[d];
1378 step = ref->u.ar.stride[d];
1379 lower = ref->u.ar.as->lower[d];
1380 upper = ref->u.ar.as->upper[d];
1382 if (ref->u.ar.dimen_type[d] == DIMEN_VECTOR) /* Vector subscript. */
1384 gfc_constructor *ci;
1385 gcc_assert (begin);
1387 if (begin->expr_type != EXPR_ARRAY || !gfc_is_constant_expr (begin))
1389 t = false;
1390 goto cleanup;
1393 gcc_assert (begin->rank == 1);
1394 /* Zero-sized arrays have no shape and no elements, stop early. */
1395 if (!begin->shape)
1397 mpz_init_set_ui (nelts, 0);
1398 break;
1401 vecsub[d] = gfc_constructor_first (begin->value.constructor);
1402 mpz_set (ctr[d], vecsub[d]->expr->value.integer);
1403 mpz_mul (nelts, nelts, begin->shape[0]);
1404 mpz_set (expr->shape[shape_i++], begin->shape[0]);
1406 /* Check bounds. */
1407 for (ci = vecsub[d]; ci; ci = gfc_constructor_next (ci))
1409 if (mpz_cmp (ci->expr->value.integer, upper->value.integer) > 0
1410 || mpz_cmp (ci->expr->value.integer,
1411 lower->value.integer) < 0)
1413 gfc_error ("index in dimension %d is out of bounds "
1414 "at %L", d + 1, &ref->u.ar.c_where[d]);
1415 t = false;
1416 goto cleanup;
1420 else
1422 if ((begin && begin->expr_type != EXPR_CONSTANT)
1423 || (finish && finish->expr_type != EXPR_CONSTANT)
1424 || (step && step->expr_type != EXPR_CONSTANT))
1426 t = false;
1427 goto cleanup;
1430 /* Obtain the stride. */
1431 if (step)
1432 mpz_set (stride[d], step->value.integer);
1433 else
1434 mpz_set_ui (stride[d], one);
1436 if (mpz_cmp_ui (stride[d], 0) == 0)
1437 mpz_set_ui (stride[d], one);
1439 /* Obtain the start value for the index. */
1440 if (begin)
1441 mpz_set (start[d], begin->value.integer);
1442 else
1443 mpz_set (start[d], lower->value.integer);
1445 mpz_set (ctr[d], start[d]);
1447 /* Obtain the end value for the index. */
1448 if (finish)
1449 mpz_set (end[d], finish->value.integer);
1450 else
1451 mpz_set (end[d], upper->value.integer);
1453 /* Separate 'if' because elements sometimes arrive with
1454 non-null end. */
1455 if (ref->u.ar.dimen_type[d] == DIMEN_ELEMENT)
1456 mpz_set (end [d], begin->value.integer);
1458 /* Check the bounds. */
1459 if (mpz_cmp (ctr[d], upper->value.integer) > 0
1460 || mpz_cmp (end[d], upper->value.integer) > 0
1461 || mpz_cmp (ctr[d], lower->value.integer) < 0
1462 || mpz_cmp (end[d], lower->value.integer) < 0)
1464 gfc_error ("index in dimension %d is out of bounds "
1465 "at %L", d + 1, &ref->u.ar.c_where[d]);
1466 t = false;
1467 goto cleanup;
1470 /* Calculate the number of elements and the shape. */
1471 mpz_set (tmp_mpz, stride[d]);
1472 mpz_add (tmp_mpz, end[d], tmp_mpz);
1473 mpz_sub (tmp_mpz, tmp_mpz, ctr[d]);
1474 mpz_div (tmp_mpz, tmp_mpz, stride[d]);
1475 mpz_mul (nelts, nelts, tmp_mpz);
1477 /* An element reference reduces the rank of the expression; don't
1478 add anything to the shape array. */
1479 if (ref->u.ar.dimen_type[d] != DIMEN_ELEMENT)
1480 mpz_set (expr->shape[shape_i++], tmp_mpz);
1483 /* Calculate the 'stride' (=delta) for conversion of the
1484 counter values into the index along the constructor. */
1485 mpz_set (delta[d], delta_mpz);
1486 mpz_sub (tmp_mpz, upper->value.integer, lower->value.integer);
1487 mpz_add_ui (tmp_mpz, tmp_mpz, one);
1488 mpz_mul (delta_mpz, delta_mpz, tmp_mpz);
1491 mpz_init (ptr);
1492 cons = gfc_constructor_first (base);
1494 /* Now clock through the array reference, calculating the index in
1495 the source constructor and transferring the elements to the new
1496 constructor. */
1497 for (idx = 0; idx < (int) mpz_get_si (nelts); idx++)
1499 mpz_init_set_ui (ptr, 0);
1501 incr_ctr = true;
1502 for (d = 0; d < rank; d++)
1504 mpz_set (tmp_mpz, ctr[d]);
1505 mpz_sub (tmp_mpz, tmp_mpz, ref->u.ar.as->lower[d]->value.integer);
1506 mpz_mul (tmp_mpz, tmp_mpz, delta[d]);
1507 mpz_add (ptr, ptr, tmp_mpz);
1509 if (!incr_ctr) continue;
1511 if (ref->u.ar.dimen_type[d] == DIMEN_VECTOR) /* Vector subscript. */
1513 gcc_assert(vecsub[d]);
1515 if (!gfc_constructor_next (vecsub[d]))
1516 vecsub[d] = gfc_constructor_first (ref->u.ar.start[d]->value.constructor);
1517 else
1519 vecsub[d] = gfc_constructor_next (vecsub[d]);
1520 incr_ctr = false;
1522 mpz_set (ctr[d], vecsub[d]->expr->value.integer);
1524 else
1526 mpz_add (ctr[d], ctr[d], stride[d]);
1528 if (mpz_cmp_ui (stride[d], 0) > 0
1529 ? mpz_cmp (ctr[d], end[d]) > 0
1530 : mpz_cmp (ctr[d], end[d]) < 0)
1531 mpz_set (ctr[d], start[d]);
1532 else
1533 incr_ctr = false;
1537 limit = mpz_get_ui (ptr);
1538 if (limit >= flag_max_array_constructor)
1540 gfc_error ("The number of elements in the array constructor "
1541 "at %L requires an increase of the allowed %d "
1542 "upper limit. See -fmax-array-constructor "
1543 "option", &expr->where, flag_max_array_constructor);
1544 return false;
1547 cons = gfc_constructor_lookup (base, limit);
1548 gcc_assert (cons);
1549 gfc_constructor_append_expr (&expr->value.constructor,
1550 gfc_copy_expr (cons->expr), NULL);
1553 mpz_clear (ptr);
1555 cleanup:
1557 mpz_clear (delta_mpz);
1558 mpz_clear (tmp_mpz);
1559 mpz_clear (nelts);
1560 for (d = 0; d < rank; d++)
1562 mpz_clear (delta[d]);
1563 mpz_clear (start[d]);
1564 mpz_clear (end[d]);
1565 mpz_clear (ctr[d]);
1566 mpz_clear (stride[d]);
1568 gfc_constructor_free (base);
1569 return t;
1572 /* Pull a substring out of an expression. */
1574 static bool
1575 find_substring_ref (gfc_expr *p, gfc_expr **newp)
1577 int end;
1578 int start;
1579 int length;
1580 gfc_char_t *chr;
1582 if (p->ref->u.ss.start->expr_type != EXPR_CONSTANT
1583 || p->ref->u.ss.end->expr_type != EXPR_CONSTANT)
1584 return false;
1586 *newp = gfc_copy_expr (p);
1587 free ((*newp)->value.character.string);
1589 end = (int) mpz_get_ui (p->ref->u.ss.end->value.integer);
1590 start = (int) mpz_get_ui (p->ref->u.ss.start->value.integer);
1591 length = end - start + 1;
1593 chr = (*newp)->value.character.string = gfc_get_wide_string (length + 1);
1594 (*newp)->value.character.length = length;
1595 memcpy (chr, &p->value.character.string[start - 1],
1596 length * sizeof (gfc_char_t));
1597 chr[length] = '\0';
1598 return true;
1603 /* Simplify a subobject reference of a constructor. This occurs when
1604 parameter variable values are substituted. */
1606 static bool
1607 simplify_const_ref (gfc_expr *p)
1609 gfc_constructor *cons, *c;
1610 gfc_expr *newp;
1611 gfc_ref *last_ref;
1613 while (p->ref)
1615 switch (p->ref->type)
1617 case REF_ARRAY:
1618 switch (p->ref->u.ar.type)
1620 case AR_ELEMENT:
1621 /* <type/kind spec>, parameter :: x(<int>) = scalar_expr
1622 will generate this. */
1623 if (p->expr_type != EXPR_ARRAY)
1625 remove_subobject_ref (p, NULL);
1626 break;
1628 if (!find_array_element (p->value.constructor, &p->ref->u.ar, &cons))
1629 return false;
1631 if (!cons)
1632 return true;
1634 remove_subobject_ref (p, cons);
1635 break;
1637 case AR_SECTION:
1638 if (!find_array_section (p, p->ref))
1639 return false;
1640 p->ref->u.ar.type = AR_FULL;
1642 /* Fall through. */
1644 case AR_FULL:
1645 if (p->ref->next != NULL
1646 && (p->ts.type == BT_CHARACTER || gfc_bt_struct (p->ts.type)))
1648 for (c = gfc_constructor_first (p->value.constructor);
1649 c; c = gfc_constructor_next (c))
1651 c->expr->ref = gfc_copy_ref (p->ref->next);
1652 if (!simplify_const_ref (c->expr))
1653 return false;
1656 if (gfc_bt_struct (p->ts.type)
1657 && p->ref->next
1658 && (c = gfc_constructor_first (p->value.constructor)))
1660 /* There may have been component references. */
1661 p->ts = c->expr->ts;
1664 last_ref = p->ref;
1665 for (; last_ref->next; last_ref = last_ref->next) {};
1667 if (p->ts.type == BT_CHARACTER
1668 && last_ref->type == REF_SUBSTRING)
1670 /* If this is a CHARACTER array and we possibly took
1671 a substring out of it, update the type-spec's
1672 character length according to the first element
1673 (as all should have the same length). */
1674 int string_len;
1675 if ((c = gfc_constructor_first (p->value.constructor)))
1677 const gfc_expr* first = c->expr;
1678 gcc_assert (first->expr_type == EXPR_CONSTANT);
1679 gcc_assert (first->ts.type == BT_CHARACTER);
1680 string_len = first->value.character.length;
1682 else
1683 string_len = 0;
1685 if (!p->ts.u.cl)
1686 p->ts.u.cl = gfc_new_charlen (p->symtree->n.sym->ns,
1687 NULL);
1688 else
1689 gfc_free_expr (p->ts.u.cl->length);
1691 p->ts.u.cl->length
1692 = gfc_get_int_expr (gfc_default_integer_kind,
1693 NULL, string_len);
1696 gfc_free_ref_list (p->ref);
1697 p->ref = NULL;
1698 break;
1700 default:
1701 return true;
1704 break;
1706 case REF_COMPONENT:
1707 cons = find_component_ref (p->value.constructor, p->ref);
1708 remove_subobject_ref (p, cons);
1709 break;
1711 case REF_SUBSTRING:
1712 if (!find_substring_ref (p, &newp))
1713 return false;
1715 gfc_replace_expr (p, newp);
1716 gfc_free_ref_list (p->ref);
1717 p->ref = NULL;
1718 break;
1722 return true;
1726 /* Simplify a chain of references. */
1728 static bool
1729 simplify_ref_chain (gfc_ref *ref, int type)
1731 int n;
1733 for (; ref; ref = ref->next)
1735 switch (ref->type)
1737 case REF_ARRAY:
1738 for (n = 0; n < ref->u.ar.dimen; n++)
1740 if (!gfc_simplify_expr (ref->u.ar.start[n], type))
1741 return false;
1742 if (!gfc_simplify_expr (ref->u.ar.end[n], type))
1743 return false;
1744 if (!gfc_simplify_expr (ref->u.ar.stride[n], type))
1745 return false;
1747 break;
1749 case REF_SUBSTRING:
1750 if (!gfc_simplify_expr (ref->u.ss.start, type))
1751 return false;
1752 if (!gfc_simplify_expr (ref->u.ss.end, type))
1753 return false;
1754 break;
1756 default:
1757 break;
1760 return true;
1764 /* Try to substitute the value of a parameter variable. */
1766 static bool
1767 simplify_parameter_variable (gfc_expr *p, int type)
1769 gfc_expr *e;
1770 bool t;
1772 e = gfc_copy_expr (p->symtree->n.sym->value);
1773 if (e == NULL)
1774 return false;
1776 e->rank = p->rank;
1778 /* Do not copy subobject refs for constant. */
1779 if (e->expr_type != EXPR_CONSTANT && p->ref != NULL)
1780 e->ref = gfc_copy_ref (p->ref);
1781 t = gfc_simplify_expr (e, type);
1783 /* Only use the simplification if it eliminated all subobject references. */
1784 if (t && !e->ref)
1785 gfc_replace_expr (p, e);
1786 else
1787 gfc_free_expr (e);
1789 return t;
1792 /* Given an expression, simplify it by collapsing constant
1793 expressions. Most simplification takes place when the expression
1794 tree is being constructed. If an intrinsic function is simplified
1795 at some point, we get called again to collapse the result against
1796 other constants.
1798 We work by recursively simplifying expression nodes, simplifying
1799 intrinsic functions where possible, which can lead to further
1800 constant collapsing. If an operator has constant operand(s), we
1801 rip the expression apart, and rebuild it, hoping that it becomes
1802 something simpler.
1804 The expression type is defined for:
1805 0 Basic expression parsing
1806 1 Simplifying array constructors -- will substitute
1807 iterator values.
1808 Returns false on error, true otherwise.
1809 NOTE: Will return true even if the expression can not be simplified. */
1811 bool
1812 gfc_simplify_expr (gfc_expr *p, int type)
1814 gfc_actual_arglist *ap;
1816 if (p == NULL)
1817 return true;
1819 switch (p->expr_type)
1821 case EXPR_CONSTANT:
1822 case EXPR_NULL:
1823 break;
1825 case EXPR_FUNCTION:
1826 for (ap = p->value.function.actual; ap; ap = ap->next)
1827 if (!gfc_simplify_expr (ap->expr, type))
1828 return false;
1830 if (p->value.function.isym != NULL
1831 && gfc_intrinsic_func_interface (p, 1) == MATCH_ERROR)
1832 return false;
1834 break;
1836 case EXPR_SUBSTRING:
1837 if (!simplify_ref_chain (p->ref, type))
1838 return false;
1840 if (gfc_is_constant_expr (p))
1842 gfc_char_t *s;
1843 int start, end;
1845 start = 0;
1846 if (p->ref && p->ref->u.ss.start)
1848 gfc_extract_int (p->ref->u.ss.start, &start);
1849 start--; /* Convert from one-based to zero-based. */
1852 end = p->value.character.length;
1853 if (p->ref && p->ref->u.ss.end)
1854 gfc_extract_int (p->ref->u.ss.end, &end);
1856 if (end < start)
1857 end = start;
1859 s = gfc_get_wide_string (end - start + 2);
1860 memcpy (s, p->value.character.string + start,
1861 (end - start) * sizeof (gfc_char_t));
1862 s[end - start + 1] = '\0'; /* TODO: C-style string. */
1863 free (p->value.character.string);
1864 p->value.character.string = s;
1865 p->value.character.length = end - start;
1866 p->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
1867 p->ts.u.cl->length = gfc_get_int_expr (gfc_default_integer_kind,
1868 NULL,
1869 p->value.character.length);
1870 gfc_free_ref_list (p->ref);
1871 p->ref = NULL;
1872 p->expr_type = EXPR_CONSTANT;
1874 break;
1876 case EXPR_OP:
1877 if (!simplify_intrinsic_op (p, type))
1878 return false;
1879 break;
1881 case EXPR_VARIABLE:
1882 /* Only substitute array parameter variables if we are in an
1883 initialization expression, or we want a subsection. */
1884 if (p->symtree->n.sym->attr.flavor == FL_PARAMETER
1885 && (gfc_init_expr_flag || p->ref
1886 || p->symtree->n.sym->value->expr_type != EXPR_ARRAY))
1888 if (!simplify_parameter_variable (p, type))
1889 return false;
1890 break;
1893 if (type == 1)
1895 gfc_simplify_iterator_var (p);
1898 /* Simplify subcomponent references. */
1899 if (!simplify_ref_chain (p->ref, type))
1900 return false;
1902 break;
1904 case EXPR_STRUCTURE:
1905 case EXPR_ARRAY:
1906 if (!simplify_ref_chain (p->ref, type))
1907 return false;
1909 if (!simplify_constructor (p->value.constructor, type))
1910 return false;
1912 if (p->expr_type == EXPR_ARRAY && p->ref && p->ref->type == REF_ARRAY
1913 && p->ref->u.ar.type == AR_FULL)
1914 gfc_expand_constructor (p, false);
1916 if (!simplify_const_ref (p))
1917 return false;
1919 break;
1921 case EXPR_COMPCALL:
1922 case EXPR_PPC:
1923 break;
1926 return true;
1930 /* Returns the type of an expression with the exception that iterator
1931 variables are automatically integers no matter what else they may
1932 be declared as. */
1934 static bt
1935 et0 (gfc_expr *e)
1937 if (e->expr_type == EXPR_VARIABLE && gfc_check_iter_variable (e))
1938 return BT_INTEGER;
1940 return e->ts.type;
1944 /* Scalarize an expression for an elemental intrinsic call. */
1946 static bool
1947 scalarize_intrinsic_call (gfc_expr *e)
1949 gfc_actual_arglist *a, *b;
1950 gfc_constructor_base ctor;
1951 gfc_constructor *args[5] = {}; /* Avoid uninitialized warnings. */
1952 gfc_constructor *ci, *new_ctor;
1953 gfc_expr *expr, *old;
1954 int n, i, rank[5], array_arg;
1956 /* Find which, if any, arguments are arrays. Assume that the old
1957 expression carries the type information and that the first arg
1958 that is an array expression carries all the shape information.*/
1959 n = array_arg = 0;
1960 a = e->value.function.actual;
1961 for (; a; a = a->next)
1963 n++;
1964 if (!a->expr || a->expr->expr_type != EXPR_ARRAY)
1965 continue;
1966 array_arg = n;
1967 expr = gfc_copy_expr (a->expr);
1968 break;
1971 if (!array_arg)
1972 return false;
1974 old = gfc_copy_expr (e);
1976 gfc_constructor_free (expr->value.constructor);
1977 expr->value.constructor = NULL;
1978 expr->ts = old->ts;
1979 expr->where = old->where;
1980 expr->expr_type = EXPR_ARRAY;
1982 /* Copy the array argument constructors into an array, with nulls
1983 for the scalars. */
1984 n = 0;
1985 a = old->value.function.actual;
1986 for (; a; a = a->next)
1988 /* Check that this is OK for an initialization expression. */
1989 if (a->expr && !gfc_check_init_expr (a->expr))
1990 goto cleanup;
1992 rank[n] = 0;
1993 if (a->expr && a->expr->rank && a->expr->expr_type == EXPR_VARIABLE)
1995 rank[n] = a->expr->rank;
1996 ctor = a->expr->symtree->n.sym->value->value.constructor;
1997 args[n] = gfc_constructor_first (ctor);
1999 else if (a->expr && a->expr->expr_type == EXPR_ARRAY)
2001 if (a->expr->rank)
2002 rank[n] = a->expr->rank;
2003 else
2004 rank[n] = 1;
2005 ctor = gfc_constructor_copy (a->expr->value.constructor);
2006 args[n] = gfc_constructor_first (ctor);
2008 else
2009 args[n] = NULL;
2011 n++;
2015 /* Using the array argument as the master, step through the array
2016 calling the function for each element and advancing the array
2017 constructors together. */
2018 for (ci = args[array_arg - 1]; ci; ci = gfc_constructor_next (ci))
2020 new_ctor = gfc_constructor_append_expr (&expr->value.constructor,
2021 gfc_copy_expr (old), NULL);
2023 gfc_free_actual_arglist (new_ctor->expr->value.function.actual);
2024 a = NULL;
2025 b = old->value.function.actual;
2026 for (i = 0; i < n; i++)
2028 if (a == NULL)
2029 new_ctor->expr->value.function.actual
2030 = a = gfc_get_actual_arglist ();
2031 else
2033 a->next = gfc_get_actual_arglist ();
2034 a = a->next;
2037 if (args[i])
2038 a->expr = gfc_copy_expr (args[i]->expr);
2039 else
2040 a->expr = gfc_copy_expr (b->expr);
2042 b = b->next;
2045 /* Simplify the function calls. If the simplification fails, the
2046 error will be flagged up down-stream or the library will deal
2047 with it. */
2048 gfc_simplify_expr (new_ctor->expr, 0);
2050 for (i = 0; i < n; i++)
2051 if (args[i])
2052 args[i] = gfc_constructor_next (args[i]);
2054 for (i = 1; i < n; i++)
2055 if (rank[i] && ((args[i] != NULL && args[array_arg - 1] == NULL)
2056 || (args[i] == NULL && args[array_arg - 1] != NULL)))
2057 goto compliance;
2060 free_expr0 (e);
2061 *e = *expr;
2062 /* Free "expr" but not the pointers it contains. */
2063 free (expr);
2064 gfc_free_expr (old);
2065 return true;
2067 compliance:
2068 gfc_error_now ("elemental function arguments at %C are not compliant");
2070 cleanup:
2071 gfc_free_expr (expr);
2072 gfc_free_expr (old);
2073 return false;
2077 static bool
2078 check_intrinsic_op (gfc_expr *e, bool (*check_function) (gfc_expr *))
2080 gfc_expr *op1 = e->value.op.op1;
2081 gfc_expr *op2 = e->value.op.op2;
2083 if (!(*check_function)(op1))
2084 return false;
2086 switch (e->value.op.op)
2088 case INTRINSIC_UPLUS:
2089 case INTRINSIC_UMINUS:
2090 if (!numeric_type (et0 (op1)))
2091 goto not_numeric;
2092 break;
2094 case INTRINSIC_EQ:
2095 case INTRINSIC_EQ_OS:
2096 case INTRINSIC_NE:
2097 case INTRINSIC_NE_OS:
2098 case INTRINSIC_GT:
2099 case INTRINSIC_GT_OS:
2100 case INTRINSIC_GE:
2101 case INTRINSIC_GE_OS:
2102 case INTRINSIC_LT:
2103 case INTRINSIC_LT_OS:
2104 case INTRINSIC_LE:
2105 case INTRINSIC_LE_OS:
2106 if (!(*check_function)(op2))
2107 return false;
2109 if (!(et0 (op1) == BT_CHARACTER && et0 (op2) == BT_CHARACTER)
2110 && !(numeric_type (et0 (op1)) && numeric_type (et0 (op2))))
2112 gfc_error ("Numeric or CHARACTER operands are required in "
2113 "expression at %L", &e->where);
2114 return false;
2116 break;
2118 case INTRINSIC_PLUS:
2119 case INTRINSIC_MINUS:
2120 case INTRINSIC_TIMES:
2121 case INTRINSIC_DIVIDE:
2122 case INTRINSIC_POWER:
2123 if (!(*check_function)(op2))
2124 return false;
2126 if (!numeric_type (et0 (op1)) || !numeric_type (et0 (op2)))
2127 goto not_numeric;
2129 break;
2131 case INTRINSIC_CONCAT:
2132 if (!(*check_function)(op2))
2133 return false;
2135 if (et0 (op1) != BT_CHARACTER || et0 (op2) != BT_CHARACTER)
2137 gfc_error ("Concatenation operator in expression at %L "
2138 "must have two CHARACTER operands", &op1->where);
2139 return false;
2142 if (op1->ts.kind != op2->ts.kind)
2144 gfc_error ("Concat operator at %L must concatenate strings of the "
2145 "same kind", &e->where);
2146 return false;
2149 break;
2151 case INTRINSIC_NOT:
2152 if (et0 (op1) != BT_LOGICAL)
2154 gfc_error (".NOT. operator in expression at %L must have a LOGICAL "
2155 "operand", &op1->where);
2156 return false;
2159 break;
2161 case INTRINSIC_AND:
2162 case INTRINSIC_OR:
2163 case INTRINSIC_EQV:
2164 case INTRINSIC_NEQV:
2165 if (!(*check_function)(op2))
2166 return false;
2168 if (et0 (op1) != BT_LOGICAL || et0 (op2) != BT_LOGICAL)
2170 gfc_error ("LOGICAL operands are required in expression at %L",
2171 &e->where);
2172 return false;
2175 break;
2177 case INTRINSIC_PARENTHESES:
2178 break;
2180 default:
2181 gfc_error ("Only intrinsic operators can be used in expression at %L",
2182 &e->where);
2183 return false;
2186 return true;
2188 not_numeric:
2189 gfc_error ("Numeric operands are required in expression at %L", &e->where);
2191 return false;
2194 /* F2003, 7.1.7 (3): In init expression, allocatable components
2195 must not be data-initialized. */
2196 static bool
2197 check_alloc_comp_init (gfc_expr *e)
2199 gfc_component *comp;
2200 gfc_constructor *ctor;
2202 gcc_assert (e->expr_type == EXPR_STRUCTURE);
2203 gcc_assert (e->ts.type == BT_DERIVED || e->ts.type == BT_CLASS);
2205 for (comp = e->ts.u.derived->components,
2206 ctor = gfc_constructor_first (e->value.constructor);
2207 comp; comp = comp->next, ctor = gfc_constructor_next (ctor))
2209 if (comp->attr.allocatable && ctor->expr
2210 && ctor->expr->expr_type != EXPR_NULL)
2212 gfc_error ("Invalid initialization expression for ALLOCATABLE "
2213 "component %qs in structure constructor at %L",
2214 comp->name, &ctor->expr->where);
2215 return false;
2219 return true;
2222 static match
2223 check_init_expr_arguments (gfc_expr *e)
2225 gfc_actual_arglist *ap;
2227 for (ap = e->value.function.actual; ap; ap = ap->next)
2228 if (!gfc_check_init_expr (ap->expr))
2229 return MATCH_ERROR;
2231 return MATCH_YES;
2234 static bool check_restricted (gfc_expr *);
2236 /* F95, 7.1.6.1, Initialization expressions, (7)
2237 F2003, 7.1.7 Initialization expression, (8) */
2239 static match
2240 check_inquiry (gfc_expr *e, int not_restricted)
2242 const char *name;
2243 const char *const *functions;
2245 static const char *const inquiry_func_f95[] = {
2246 "lbound", "shape", "size", "ubound",
2247 "bit_size", "len", "kind",
2248 "digits", "epsilon", "huge", "maxexponent", "minexponent",
2249 "precision", "radix", "range", "tiny",
2250 NULL
2253 static const char *const inquiry_func_f2003[] = {
2254 "lbound", "shape", "size", "ubound",
2255 "bit_size", "len", "kind",
2256 "digits", "epsilon", "huge", "maxexponent", "minexponent",
2257 "precision", "radix", "range", "tiny",
2258 "new_line", NULL
2261 int i = 0;
2262 gfc_actual_arglist *ap;
2264 if (!e->value.function.isym
2265 || !e->value.function.isym->inquiry)
2266 return MATCH_NO;
2268 /* An undeclared parameter will get us here (PR25018). */
2269 if (e->symtree == NULL)
2270 return MATCH_NO;
2272 if (e->symtree->n.sym->from_intmod)
2274 if (e->symtree->n.sym->from_intmod == INTMOD_ISO_FORTRAN_ENV
2275 && e->symtree->n.sym->intmod_sym_id != ISOFORTRAN_COMPILER_OPTIONS
2276 && e->symtree->n.sym->intmod_sym_id != ISOFORTRAN_COMPILER_VERSION)
2277 return MATCH_NO;
2279 if (e->symtree->n.sym->from_intmod == INTMOD_ISO_C_BINDING
2280 && e->symtree->n.sym->intmod_sym_id != ISOCBINDING_C_SIZEOF)
2281 return MATCH_NO;
2283 else
2285 name = e->symtree->n.sym->name;
2287 functions = (gfc_option.warn_std & GFC_STD_F2003)
2288 ? inquiry_func_f2003 : inquiry_func_f95;
2290 for (i = 0; functions[i]; i++)
2291 if (strcmp (functions[i], name) == 0)
2292 break;
2294 if (functions[i] == NULL)
2295 return MATCH_ERROR;
2298 /* At this point we have an inquiry function with a variable argument. The
2299 type of the variable might be undefined, but we need it now, because the
2300 arguments of these functions are not allowed to be undefined. */
2302 for (ap = e->value.function.actual; ap; ap = ap->next)
2304 if (!ap->expr)
2305 continue;
2307 if (ap->expr->ts.type == BT_UNKNOWN)
2309 if (ap->expr->symtree->n.sym->ts.type == BT_UNKNOWN
2310 && !gfc_set_default_type (ap->expr->symtree->n.sym, 0, gfc_current_ns))
2311 return MATCH_NO;
2313 ap->expr->ts = ap->expr->symtree->n.sym->ts;
2316 /* Assumed character length will not reduce to a constant expression
2317 with LEN, as required by the standard. */
2318 if (i == 5 && not_restricted
2319 && ap->expr->symtree->n.sym->ts.type == BT_CHARACTER
2320 && (ap->expr->symtree->n.sym->ts.u.cl->length == NULL
2321 || ap->expr->symtree->n.sym->ts.deferred))
2323 gfc_error ("Assumed or deferred character length variable %qs "
2324 "in constant expression at %L",
2325 ap->expr->symtree->n.sym->name,
2326 &ap->expr->where);
2327 return MATCH_ERROR;
2329 else if (not_restricted && !gfc_check_init_expr (ap->expr))
2330 return MATCH_ERROR;
2332 if (not_restricted == 0
2333 && ap->expr->expr_type != EXPR_VARIABLE
2334 && !check_restricted (ap->expr))
2335 return MATCH_ERROR;
2337 if (not_restricted == 0
2338 && ap->expr->expr_type == EXPR_VARIABLE
2339 && ap->expr->symtree->n.sym->attr.dummy
2340 && ap->expr->symtree->n.sym->attr.optional)
2341 return MATCH_NO;
2344 return MATCH_YES;
2348 /* F95, 7.1.6.1, Initialization expressions, (5)
2349 F2003, 7.1.7 Initialization expression, (5) */
2351 static match
2352 check_transformational (gfc_expr *e)
2354 static const char * const trans_func_f95[] = {
2355 "repeat", "reshape", "selected_int_kind",
2356 "selected_real_kind", "transfer", "trim", NULL
2359 static const char * const trans_func_f2003[] = {
2360 "all", "any", "count", "dot_product", "matmul", "null", "pack",
2361 "product", "repeat", "reshape", "selected_char_kind", "selected_int_kind",
2362 "selected_real_kind", "spread", "sum", "transfer", "transpose",
2363 "trim", "unpack", NULL
2366 int i;
2367 const char *name;
2368 const char *const *functions;
2370 if (!e->value.function.isym
2371 || !e->value.function.isym->transformational)
2372 return MATCH_NO;
2374 name = e->symtree->n.sym->name;
2376 functions = (gfc_option.allow_std & GFC_STD_F2003)
2377 ? trans_func_f2003 : trans_func_f95;
2379 /* NULL() is dealt with below. */
2380 if (strcmp ("null", name) == 0)
2381 return MATCH_NO;
2383 for (i = 0; functions[i]; i++)
2384 if (strcmp (functions[i], name) == 0)
2385 break;
2387 if (functions[i] == NULL)
2389 gfc_error ("transformational intrinsic %qs at %L is not permitted "
2390 "in an initialization expression", name, &e->where);
2391 return MATCH_ERROR;
2394 return check_init_expr_arguments (e);
2398 /* F95, 7.1.6.1, Initialization expressions, (6)
2399 F2003, 7.1.7 Initialization expression, (6) */
2401 static match
2402 check_null (gfc_expr *e)
2404 if (strcmp ("null", e->symtree->n.sym->name) != 0)
2405 return MATCH_NO;
2407 return check_init_expr_arguments (e);
2411 static match
2412 check_elemental (gfc_expr *e)
2414 if (!e->value.function.isym
2415 || !e->value.function.isym->elemental)
2416 return MATCH_NO;
2418 if (e->ts.type != BT_INTEGER
2419 && e->ts.type != BT_CHARACTER
2420 && !gfc_notify_std (GFC_STD_F2003, "Evaluation of nonstandard "
2421 "initialization expression at %L", &e->where))
2422 return MATCH_ERROR;
2424 return check_init_expr_arguments (e);
2428 static match
2429 check_conversion (gfc_expr *e)
2431 if (!e->value.function.isym
2432 || !e->value.function.isym->conversion)
2433 return MATCH_NO;
2435 return check_init_expr_arguments (e);
2439 /* Verify that an expression is an initialization expression. A side
2440 effect is that the expression tree is reduced to a single constant
2441 node if all goes well. This would normally happen when the
2442 expression is constructed but function references are assumed to be
2443 intrinsics in the context of initialization expressions. If
2444 false is returned an error message has been generated. */
2446 bool
2447 gfc_check_init_expr (gfc_expr *e)
2449 match m;
2450 bool t;
2452 if (e == NULL)
2453 return true;
2455 switch (e->expr_type)
2457 case EXPR_OP:
2458 t = check_intrinsic_op (e, gfc_check_init_expr);
2459 if (t)
2460 t = gfc_simplify_expr (e, 0);
2462 break;
2464 case EXPR_FUNCTION:
2465 t = false;
2468 bool conversion;
2469 gfc_intrinsic_sym* isym = NULL;
2470 gfc_symbol* sym = e->symtree->n.sym;
2472 /* Simplify here the intrinsics from the IEEE_ARITHMETIC and
2473 IEEE_EXCEPTIONS modules. */
2474 int mod = sym->from_intmod;
2475 if (mod == INTMOD_NONE && sym->generic)
2476 mod = sym->generic->sym->from_intmod;
2477 if (mod == INTMOD_IEEE_ARITHMETIC || mod == INTMOD_IEEE_EXCEPTIONS)
2479 gfc_expr *new_expr = gfc_simplify_ieee_functions (e);
2480 if (new_expr)
2482 gfc_replace_expr (e, new_expr);
2483 t = true;
2484 break;
2488 /* If a conversion function, e.g., __convert_i8_i4, was inserted
2489 into an array constructor, we need to skip the error check here.
2490 Conversion errors are caught below in scalarize_intrinsic_call. */
2491 conversion = e->value.function.isym
2492 && (e->value.function.isym->conversion == 1);
2494 if (!conversion && (!gfc_is_intrinsic (sym, 0, e->where)
2495 || (m = gfc_intrinsic_func_interface (e, 0)) != MATCH_YES))
2497 gfc_error ("Function %qs in initialization expression at %L "
2498 "must be an intrinsic function",
2499 e->symtree->n.sym->name, &e->where);
2500 break;
2503 if ((m = check_conversion (e)) == MATCH_NO
2504 && (m = check_inquiry (e, 1)) == MATCH_NO
2505 && (m = check_null (e)) == MATCH_NO
2506 && (m = check_transformational (e)) == MATCH_NO
2507 && (m = check_elemental (e)) == MATCH_NO)
2509 gfc_error ("Intrinsic function %qs at %L is not permitted "
2510 "in an initialization expression",
2511 e->symtree->n.sym->name, &e->where);
2512 m = MATCH_ERROR;
2515 if (m == MATCH_ERROR)
2516 return false;
2518 /* Try to scalarize an elemental intrinsic function that has an
2519 array argument. */
2520 isym = gfc_find_function (e->symtree->n.sym->name);
2521 if (isym && isym->elemental
2522 && (t = scalarize_intrinsic_call (e)))
2523 break;
2526 if (m == MATCH_YES)
2527 t = gfc_simplify_expr (e, 0);
2529 break;
2531 case EXPR_VARIABLE:
2532 t = true;
2534 if (gfc_check_iter_variable (e))
2535 break;
2537 if (e->symtree->n.sym->attr.flavor == FL_PARAMETER)
2539 /* A PARAMETER shall not be used to define itself, i.e.
2540 REAL, PARAMETER :: x = transfer(0, x)
2541 is invalid. */
2542 if (!e->symtree->n.sym->value)
2544 gfc_error ("PARAMETER %qs is used at %L before its definition "
2545 "is complete", e->symtree->n.sym->name, &e->where);
2546 t = false;
2548 else
2549 t = simplify_parameter_variable (e, 0);
2551 break;
2554 if (gfc_in_match_data ())
2555 break;
2557 t = false;
2559 if (e->symtree->n.sym->as)
2561 switch (e->symtree->n.sym->as->type)
2563 case AS_ASSUMED_SIZE:
2564 gfc_error ("Assumed size array %qs at %L is not permitted "
2565 "in an initialization expression",
2566 e->symtree->n.sym->name, &e->where);
2567 break;
2569 case AS_ASSUMED_SHAPE:
2570 gfc_error ("Assumed shape array %qs at %L is not permitted "
2571 "in an initialization expression",
2572 e->symtree->n.sym->name, &e->where);
2573 break;
2575 case AS_DEFERRED:
2576 gfc_error ("Deferred array %qs at %L is not permitted "
2577 "in an initialization expression",
2578 e->symtree->n.sym->name, &e->where);
2579 break;
2581 case AS_EXPLICIT:
2582 gfc_error ("Array %qs at %L is a variable, which does "
2583 "not reduce to a constant expression",
2584 e->symtree->n.sym->name, &e->where);
2585 break;
2587 default:
2588 gcc_unreachable();
2591 else
2592 gfc_error ("Parameter %qs at %L has not been declared or is "
2593 "a variable, which does not reduce to a constant "
2594 "expression", e->symtree->name, &e->where);
2596 break;
2598 case EXPR_CONSTANT:
2599 case EXPR_NULL:
2600 t = true;
2601 break;
2603 case EXPR_SUBSTRING:
2604 if (e->ref)
2606 t = gfc_check_init_expr (e->ref->u.ss.start);
2607 if (!t)
2608 break;
2610 t = gfc_check_init_expr (e->ref->u.ss.end);
2611 if (t)
2612 t = gfc_simplify_expr (e, 0);
2614 else
2615 t = false;
2616 break;
2618 case EXPR_STRUCTURE:
2619 t = e->ts.is_iso_c ? true : false;
2620 if (t)
2621 break;
2623 t = check_alloc_comp_init (e);
2624 if (!t)
2625 break;
2627 t = gfc_check_constructor (e, gfc_check_init_expr);
2628 if (!t)
2629 break;
2631 break;
2633 case EXPR_ARRAY:
2634 t = gfc_check_constructor (e, gfc_check_init_expr);
2635 if (!t)
2636 break;
2638 t = gfc_expand_constructor (e, true);
2639 if (!t)
2640 break;
2642 t = gfc_check_constructor_type (e);
2643 break;
2645 default:
2646 gfc_internal_error ("check_init_expr(): Unknown expression type");
2649 return t;
2652 /* Reduces a general expression to an initialization expression (a constant).
2653 This used to be part of gfc_match_init_expr.
2654 Note that this function doesn't free the given expression on false. */
2656 bool
2657 gfc_reduce_init_expr (gfc_expr *expr)
2659 bool t;
2661 gfc_init_expr_flag = true;
2662 t = gfc_resolve_expr (expr);
2663 if (t)
2664 t = gfc_check_init_expr (expr);
2665 gfc_init_expr_flag = false;
2667 if (!t)
2668 return false;
2670 if (expr->expr_type == EXPR_ARRAY)
2672 if (!gfc_check_constructor_type (expr))
2673 return false;
2674 if (!gfc_expand_constructor (expr, true))
2675 return false;
2678 return true;
2682 /* Match an initialization expression. We work by first matching an
2683 expression, then reducing it to a constant. */
2685 match
2686 gfc_match_init_expr (gfc_expr **result)
2688 gfc_expr *expr;
2689 match m;
2690 bool t;
2692 expr = NULL;
2694 gfc_init_expr_flag = true;
2696 m = gfc_match_expr (&expr);
2697 if (m != MATCH_YES)
2699 gfc_init_expr_flag = false;
2700 return m;
2703 t = gfc_reduce_init_expr (expr);
2704 if (!t)
2706 gfc_free_expr (expr);
2707 gfc_init_expr_flag = false;
2708 return MATCH_ERROR;
2711 *result = expr;
2712 gfc_init_expr_flag = false;
2714 return MATCH_YES;
2718 /* Given an actual argument list, test to see that each argument is a
2719 restricted expression and optionally if the expression type is
2720 integer or character. */
2722 static bool
2723 restricted_args (gfc_actual_arglist *a)
2725 for (; a; a = a->next)
2727 if (!check_restricted (a->expr))
2728 return false;
2731 return true;
2735 /************* Restricted/specification expressions *************/
2738 /* Make sure a non-intrinsic function is a specification function,
2739 * see F08:7.1.11.5. */
2741 static bool
2742 external_spec_function (gfc_expr *e)
2744 gfc_symbol *f;
2746 f = e->value.function.esym;
2748 /* IEEE functions allowed are "a reference to a transformational function
2749 from the intrinsic module IEEE_ARITHMETIC or IEEE_EXCEPTIONS", and
2750 "inquiry function from the intrinsic modules IEEE_ARITHMETIC and
2751 IEEE_EXCEPTIONS". */
2752 if (f->from_intmod == INTMOD_IEEE_ARITHMETIC
2753 || f->from_intmod == INTMOD_IEEE_EXCEPTIONS)
2755 if (!strcmp (f->name, "ieee_selected_real_kind")
2756 || !strcmp (f->name, "ieee_support_rounding")
2757 || !strcmp (f->name, "ieee_support_flag")
2758 || !strcmp (f->name, "ieee_support_halting")
2759 || !strcmp (f->name, "ieee_support_datatype")
2760 || !strcmp (f->name, "ieee_support_denormal")
2761 || !strcmp (f->name, "ieee_support_divide")
2762 || !strcmp (f->name, "ieee_support_inf")
2763 || !strcmp (f->name, "ieee_support_io")
2764 || !strcmp (f->name, "ieee_support_nan")
2765 || !strcmp (f->name, "ieee_support_sqrt")
2766 || !strcmp (f->name, "ieee_support_standard")
2767 || !strcmp (f->name, "ieee_support_underflow_control"))
2768 goto function_allowed;
2771 if (f->attr.proc == PROC_ST_FUNCTION)
2773 gfc_error ("Specification function %qs at %L cannot be a statement "
2774 "function", f->name, &e->where);
2775 return false;
2778 if (f->attr.proc == PROC_INTERNAL)
2780 gfc_error ("Specification function %qs at %L cannot be an internal "
2781 "function", f->name, &e->where);
2782 return false;
2785 if (!f->attr.pure && !f->attr.elemental)
2787 gfc_error ("Specification function %qs at %L must be PURE", f->name,
2788 &e->where);
2789 return false;
2792 /* F08:7.1.11.6. */
2793 if (f->attr.recursive
2794 && !gfc_notify_std (GFC_STD_F2003,
2795 "Specification function %qs "
2796 "at %L cannot be RECURSIVE", f->name, &e->where))
2797 return false;
2799 function_allowed:
2800 return restricted_args (e->value.function.actual);
2804 /* Check to see that a function reference to an intrinsic is a
2805 restricted expression. */
2807 static bool
2808 restricted_intrinsic (gfc_expr *e)
2810 /* TODO: Check constraints on inquiry functions. 7.1.6.2 (7). */
2811 if (check_inquiry (e, 0) == MATCH_YES)
2812 return true;
2814 return restricted_args (e->value.function.actual);
2818 /* Check the expressions of an actual arglist. Used by check_restricted. */
2820 static bool
2821 check_arglist (gfc_actual_arglist* arg, bool (*checker) (gfc_expr*))
2823 for (; arg; arg = arg->next)
2824 if (!checker (arg->expr))
2825 return false;
2827 return true;
2831 /* Check the subscription expressions of a reference chain with a checking
2832 function; used by check_restricted. */
2834 static bool
2835 check_references (gfc_ref* ref, bool (*checker) (gfc_expr*))
2837 int dim;
2839 if (!ref)
2840 return true;
2842 switch (ref->type)
2844 case REF_ARRAY:
2845 for (dim = 0; dim != ref->u.ar.dimen; ++dim)
2847 if (!checker (ref->u.ar.start[dim]))
2848 return false;
2849 if (!checker (ref->u.ar.end[dim]))
2850 return false;
2851 if (!checker (ref->u.ar.stride[dim]))
2852 return false;
2854 break;
2856 case REF_COMPONENT:
2857 /* Nothing needed, just proceed to next reference. */
2858 break;
2860 case REF_SUBSTRING:
2861 if (!checker (ref->u.ss.start))
2862 return false;
2863 if (!checker (ref->u.ss.end))
2864 return false;
2865 break;
2867 default:
2868 gcc_unreachable ();
2869 break;
2872 return check_references (ref->next, checker);
2875 /* Return true if ns is a parent of the current ns. */
2877 static bool
2878 is_parent_of_current_ns (gfc_namespace *ns)
2880 gfc_namespace *p;
2881 for (p = gfc_current_ns->parent; p; p = p->parent)
2882 if (ns == p)
2883 return true;
2885 return false;
2888 /* Verify that an expression is a restricted expression. Like its
2889 cousin check_init_expr(), an error message is generated if we
2890 return false. */
2892 static bool
2893 check_restricted (gfc_expr *e)
2895 gfc_symbol* sym;
2896 bool t;
2898 if (e == NULL)
2899 return true;
2901 switch (e->expr_type)
2903 case EXPR_OP:
2904 t = check_intrinsic_op (e, check_restricted);
2905 if (t)
2906 t = gfc_simplify_expr (e, 0);
2908 break;
2910 case EXPR_FUNCTION:
2911 if (e->value.function.esym)
2913 t = check_arglist (e->value.function.actual, &check_restricted);
2914 if (t)
2915 t = external_spec_function (e);
2917 else
2919 if (e->value.function.isym && e->value.function.isym->inquiry)
2920 t = true;
2921 else
2922 t = check_arglist (e->value.function.actual, &check_restricted);
2924 if (t)
2925 t = restricted_intrinsic (e);
2927 break;
2929 case EXPR_VARIABLE:
2930 sym = e->symtree->n.sym;
2931 t = false;
2933 /* If a dummy argument appears in a context that is valid for a
2934 restricted expression in an elemental procedure, it will have
2935 already been simplified away once we get here. Therefore we
2936 don't need to jump through hoops to distinguish valid from
2937 invalid cases. */
2938 if (sym->attr.dummy && sym->ns == gfc_current_ns
2939 && sym->ns->proc_name && sym->ns->proc_name->attr.elemental)
2941 gfc_error ("Dummy argument %qs not allowed in expression at %L",
2942 sym->name, &e->where);
2943 break;
2946 if (sym->attr.optional)
2948 gfc_error ("Dummy argument %qs at %L cannot be OPTIONAL",
2949 sym->name, &e->where);
2950 break;
2953 if (sym->attr.intent == INTENT_OUT)
2955 gfc_error ("Dummy argument %qs at %L cannot be INTENT(OUT)",
2956 sym->name, &e->where);
2957 break;
2960 /* Check reference chain if any. */
2961 if (!check_references (e->ref, &check_restricted))
2962 break;
2964 /* gfc_is_formal_arg broadcasts that a formal argument list is being
2965 processed in resolve.c(resolve_formal_arglist). This is done so
2966 that host associated dummy array indices are accepted (PR23446).
2967 This mechanism also does the same for the specification expressions
2968 of array-valued functions. */
2969 if (e->error
2970 || sym->attr.in_common
2971 || sym->attr.use_assoc
2972 || sym->attr.dummy
2973 || sym->attr.implied_index
2974 || sym->attr.flavor == FL_PARAMETER
2975 || is_parent_of_current_ns (sym->ns)
2976 || (sym->ns->proc_name != NULL
2977 && sym->ns->proc_name->attr.flavor == FL_MODULE)
2978 || (gfc_is_formal_arg () && (sym->ns == gfc_current_ns)))
2980 t = true;
2981 break;
2984 gfc_error ("Variable %qs cannot appear in the expression at %L",
2985 sym->name, &e->where);
2986 /* Prevent a repetition of the error. */
2987 e->error = 1;
2988 break;
2990 case EXPR_NULL:
2991 case EXPR_CONSTANT:
2992 t = true;
2993 break;
2995 case EXPR_SUBSTRING:
2996 t = gfc_specification_expr (e->ref->u.ss.start);
2997 if (!t)
2998 break;
3000 t = gfc_specification_expr (e->ref->u.ss.end);
3001 if (t)
3002 t = gfc_simplify_expr (e, 0);
3004 break;
3006 case EXPR_STRUCTURE:
3007 t = gfc_check_constructor (e, check_restricted);
3008 break;
3010 case EXPR_ARRAY:
3011 t = gfc_check_constructor (e, check_restricted);
3012 break;
3014 default:
3015 gfc_internal_error ("check_restricted(): Unknown expression type");
3018 return t;
3022 /* Check to see that an expression is a specification expression. If
3023 we return false, an error has been generated. */
3025 bool
3026 gfc_specification_expr (gfc_expr *e)
3028 gfc_component *comp;
3030 if (e == NULL)
3031 return true;
3033 if (e->ts.type != BT_INTEGER)
3035 gfc_error ("Expression at %L must be of INTEGER type, found %s",
3036 &e->where, gfc_basic_typename (e->ts.type));
3037 return false;
3040 comp = gfc_get_proc_ptr_comp (e);
3041 if (e->expr_type == EXPR_FUNCTION
3042 && !e->value.function.isym
3043 && !e->value.function.esym
3044 && !gfc_pure (e->symtree->n.sym)
3045 && (!comp || !comp->attr.pure))
3047 gfc_error ("Function %qs at %L must be PURE",
3048 e->symtree->n.sym->name, &e->where);
3049 /* Prevent repeat error messages. */
3050 e->symtree->n.sym->attr.pure = 1;
3051 return false;
3054 if (e->rank != 0)
3056 gfc_error ("Expression at %L must be scalar", &e->where);
3057 return false;
3060 if (!gfc_simplify_expr (e, 0))
3061 return false;
3063 return check_restricted (e);
3067 /************** Expression conformance checks. *************/
3069 /* Given two expressions, make sure that the arrays are conformable. */
3071 bool
3072 gfc_check_conformance (gfc_expr *op1, gfc_expr *op2, const char *optype_msgid, ...)
3074 int op1_flag, op2_flag, d;
3075 mpz_t op1_size, op2_size;
3076 bool t;
3078 va_list argp;
3079 char buffer[240];
3081 if (op1->rank == 0 || op2->rank == 0)
3082 return true;
3084 va_start (argp, optype_msgid);
3085 vsnprintf (buffer, 240, optype_msgid, argp);
3086 va_end (argp);
3088 if (op1->rank != op2->rank)
3090 gfc_error ("Incompatible ranks in %s (%d and %d) at %L", _(buffer),
3091 op1->rank, op2->rank, &op1->where);
3092 return false;
3095 t = true;
3097 for (d = 0; d < op1->rank; d++)
3099 op1_flag = gfc_array_dimen_size(op1, d, &op1_size);
3100 op2_flag = gfc_array_dimen_size(op2, d, &op2_size);
3102 if (op1_flag && op2_flag && mpz_cmp (op1_size, op2_size) != 0)
3104 gfc_error ("Different shape for %s at %L on dimension %d "
3105 "(%d and %d)", _(buffer), &op1->where, d + 1,
3106 (int) mpz_get_si (op1_size),
3107 (int) mpz_get_si (op2_size));
3109 t = false;
3112 if (op1_flag)
3113 mpz_clear (op1_size);
3114 if (op2_flag)
3115 mpz_clear (op2_size);
3117 if (!t)
3118 return false;
3121 return true;
3125 /* Given an assignable expression and an arbitrary expression, make
3126 sure that the assignment can take place. Only add a call to the intrinsic
3127 conversion routines, when allow_convert is set. When this assign is a
3128 coarray call, then the convert is done by the coarray routine implictly and
3129 adding the intrinsic conversion would do harm in most cases. */
3131 bool
3132 gfc_check_assign (gfc_expr *lvalue, gfc_expr *rvalue, int conform,
3133 bool allow_convert)
3135 gfc_symbol *sym;
3136 gfc_ref *ref;
3137 int has_pointer;
3139 sym = lvalue->symtree->n.sym;
3141 /* See if this is the component or subcomponent of a pointer. */
3142 has_pointer = sym->attr.pointer;
3143 for (ref = lvalue->ref; ref; ref = ref->next)
3144 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.pointer)
3146 has_pointer = 1;
3147 break;
3150 /* 12.5.2.2, Note 12.26: The result variable is very similar to any other
3151 variable local to a function subprogram. Its existence begins when
3152 execution of the function is initiated and ends when execution of the
3153 function is terminated...
3154 Therefore, the left hand side is no longer a variable, when it is: */
3155 if (sym->attr.flavor == FL_PROCEDURE && sym->attr.proc != PROC_ST_FUNCTION
3156 && !sym->attr.external)
3158 bool bad_proc;
3159 bad_proc = false;
3161 /* (i) Use associated; */
3162 if (sym->attr.use_assoc)
3163 bad_proc = true;
3165 /* (ii) The assignment is in the main program; or */
3166 if (gfc_current_ns->proc_name
3167 && gfc_current_ns->proc_name->attr.is_main_program)
3168 bad_proc = true;
3170 /* (iii) A module or internal procedure... */
3171 if (gfc_current_ns->proc_name
3172 && (gfc_current_ns->proc_name->attr.proc == PROC_INTERNAL
3173 || gfc_current_ns->proc_name->attr.proc == PROC_MODULE)
3174 && gfc_current_ns->parent
3175 && (!(gfc_current_ns->parent->proc_name->attr.function
3176 || gfc_current_ns->parent->proc_name->attr.subroutine)
3177 || gfc_current_ns->parent->proc_name->attr.is_main_program))
3179 /* ... that is not a function... */
3180 if (gfc_current_ns->proc_name
3181 && !gfc_current_ns->proc_name->attr.function)
3182 bad_proc = true;
3184 /* ... or is not an entry and has a different name. */
3185 if (!sym->attr.entry && sym->name != gfc_current_ns->proc_name->name)
3186 bad_proc = true;
3189 /* (iv) Host associated and not the function symbol or the
3190 parent result. This picks up sibling references, which
3191 cannot be entries. */
3192 if (!sym->attr.entry
3193 && sym->ns == gfc_current_ns->parent
3194 && sym != gfc_current_ns->proc_name
3195 && sym != gfc_current_ns->parent->proc_name->result)
3196 bad_proc = true;
3198 if (bad_proc)
3200 gfc_error ("%qs at %L is not a VALUE", sym->name, &lvalue->where);
3201 return false;
3205 if (rvalue->rank != 0 && lvalue->rank != rvalue->rank)
3207 gfc_error ("Incompatible ranks %d and %d in assignment at %L",
3208 lvalue->rank, rvalue->rank, &lvalue->where);
3209 return false;
3212 if (lvalue->ts.type == BT_UNKNOWN)
3214 gfc_error ("Variable type is UNKNOWN in assignment at %L",
3215 &lvalue->where);
3216 return false;
3219 if (rvalue->expr_type == EXPR_NULL)
3221 if (has_pointer && (ref == NULL || ref->next == NULL)
3222 && lvalue->symtree->n.sym->attr.data)
3223 return true;
3224 else
3226 gfc_error ("NULL appears on right-hand side in assignment at %L",
3227 &rvalue->where);
3228 return false;
3232 /* This is possibly a typo: x = f() instead of x => f(). */
3233 if (warn_surprising
3234 && rvalue->expr_type == EXPR_FUNCTION && gfc_expr_attr (rvalue).pointer)
3235 gfc_warning (OPT_Wsurprising,
3236 "POINTER-valued function appears on right-hand side of "
3237 "assignment at %L", &rvalue->where);
3239 /* Check size of array assignments. */
3240 if (lvalue->rank != 0 && rvalue->rank != 0
3241 && !gfc_check_conformance (lvalue, rvalue, "array assignment"))
3242 return false;
3244 if (rvalue->is_boz && lvalue->ts.type != BT_INTEGER
3245 && lvalue->symtree->n.sym->attr.data
3246 && !gfc_notify_std (GFC_STD_GNU, "BOZ literal at %L used to "
3247 "initialize non-integer variable %qs",
3248 &rvalue->where, lvalue->symtree->n.sym->name))
3249 return false;
3250 else if (rvalue->is_boz && !lvalue->symtree->n.sym->attr.data
3251 && !gfc_notify_std (GFC_STD_GNU, "BOZ literal at %L outside "
3252 "a DATA statement and outside INT/REAL/DBLE/CMPLX",
3253 &rvalue->where))
3254 return false;
3256 /* Handle the case of a BOZ literal on the RHS. */
3257 if (rvalue->is_boz && lvalue->ts.type != BT_INTEGER)
3259 int rc;
3260 if (warn_surprising)
3261 gfc_warning (OPT_Wsurprising,
3262 "BOZ literal at %L is bitwise transferred "
3263 "non-integer symbol %qs", &rvalue->where,
3264 lvalue->symtree->n.sym->name);
3265 if (!gfc_convert_boz (rvalue, &lvalue->ts))
3266 return false;
3267 if ((rc = gfc_range_check (rvalue)) != ARITH_OK)
3269 if (rc == ARITH_UNDERFLOW)
3270 gfc_error ("Arithmetic underflow of bit-wise transferred BOZ at %L"
3271 ". This check can be disabled with the option "
3272 "%<-fno-range-check%>", &rvalue->where);
3273 else if (rc == ARITH_OVERFLOW)
3274 gfc_error ("Arithmetic overflow of bit-wise transferred BOZ at %L"
3275 ". This check can be disabled with the option "
3276 "%<-fno-range-check%>", &rvalue->where);
3277 else if (rc == ARITH_NAN)
3278 gfc_error ("Arithmetic NaN of bit-wise transferred BOZ at %L"
3279 ". This check can be disabled with the option "
3280 "%<-fno-range-check%>", &rvalue->where);
3281 return false;
3285 if (gfc_compare_types (&lvalue->ts, &rvalue->ts))
3286 return true;
3288 /* Only DATA Statements come here. */
3289 if (!conform)
3291 /* Numeric can be converted to any other numeric. And Hollerith can be
3292 converted to any other type. */
3293 if ((gfc_numeric_ts (&lvalue->ts) && gfc_numeric_ts (&rvalue->ts))
3294 || rvalue->ts.type == BT_HOLLERITH)
3295 return true;
3297 if (lvalue->ts.type == BT_LOGICAL && rvalue->ts.type == BT_LOGICAL)
3298 return true;
3300 gfc_error ("Incompatible types in DATA statement at %L; attempted "
3301 "conversion of %s to %s", &lvalue->where,
3302 gfc_typename (&rvalue->ts), gfc_typename (&lvalue->ts));
3304 return false;
3307 /* Assignment is the only case where character variables of different
3308 kind values can be converted into one another. */
3309 if (lvalue->ts.type == BT_CHARACTER && rvalue->ts.type == BT_CHARACTER)
3311 if (lvalue->ts.kind != rvalue->ts.kind && allow_convert)
3312 return gfc_convert_chartype (rvalue, &lvalue->ts);
3313 else
3314 return true;
3317 if (!allow_convert)
3318 return true;
3320 return gfc_convert_type (rvalue, &lvalue->ts, 1);
3324 /* Check that a pointer assignment is OK. We first check lvalue, and
3325 we only check rvalue if it's not an assignment to NULL() or a
3326 NULLIFY statement. */
3328 bool
3329 gfc_check_pointer_assign (gfc_expr *lvalue, gfc_expr *rvalue)
3331 symbol_attribute attr, lhs_attr;
3332 gfc_ref *ref;
3333 bool is_pure, is_implicit_pure, rank_remap;
3334 int proc_pointer;
3336 lhs_attr = gfc_expr_attr (lvalue);
3337 if (lvalue->ts.type == BT_UNKNOWN && !lhs_attr.proc_pointer)
3339 gfc_error ("Pointer assignment target is not a POINTER at %L",
3340 &lvalue->where);
3341 return false;
3344 if (lhs_attr.flavor == FL_PROCEDURE && lhs_attr.use_assoc
3345 && !lhs_attr.proc_pointer)
3347 gfc_error ("%qs in the pointer assignment at %L cannot be an "
3348 "l-value since it is a procedure",
3349 lvalue->symtree->n.sym->name, &lvalue->where);
3350 return false;
3353 proc_pointer = lvalue->symtree->n.sym->attr.proc_pointer;
3355 rank_remap = false;
3356 for (ref = lvalue->ref; ref; ref = ref->next)
3358 if (ref->type == REF_COMPONENT)
3359 proc_pointer = ref->u.c.component->attr.proc_pointer;
3361 if (ref->type == REF_ARRAY && ref->next == NULL)
3363 int dim;
3365 if (ref->u.ar.type == AR_FULL)
3366 break;
3368 if (ref->u.ar.type != AR_SECTION)
3370 gfc_error ("Expected bounds specification for %qs at %L",
3371 lvalue->symtree->n.sym->name, &lvalue->where);
3372 return false;
3375 if (!gfc_notify_std (GFC_STD_F2003, "Bounds specification "
3376 "for %qs in pointer assignment at %L",
3377 lvalue->symtree->n.sym->name, &lvalue->where))
3378 return false;
3380 /* When bounds are given, all lbounds are necessary and either all
3381 or none of the upper bounds; no strides are allowed. If the
3382 upper bounds are present, we may do rank remapping. */
3383 for (dim = 0; dim < ref->u.ar.dimen; ++dim)
3385 if (!ref->u.ar.start[dim]
3386 || ref->u.ar.dimen_type[dim] != DIMEN_RANGE)
3388 gfc_error ("Lower bound has to be present at %L",
3389 &lvalue->where);
3390 return false;
3392 if (ref->u.ar.stride[dim])
3394 gfc_error ("Stride must not be present at %L",
3395 &lvalue->where);
3396 return false;
3399 if (dim == 0)
3400 rank_remap = (ref->u.ar.end[dim] != NULL);
3401 else
3403 if ((rank_remap && !ref->u.ar.end[dim])
3404 || (!rank_remap && ref->u.ar.end[dim]))
3406 gfc_error ("Either all or none of the upper bounds"
3407 " must be specified at %L", &lvalue->where);
3408 return false;
3415 is_pure = gfc_pure (NULL);
3416 is_implicit_pure = gfc_implicit_pure (NULL);
3418 /* If rvalue is a NULL() or NULLIFY, we're done. Otherwise the type,
3419 kind, etc for lvalue and rvalue must match, and rvalue must be a
3420 pure variable if we're in a pure function. */
3421 if (rvalue->expr_type == EXPR_NULL && rvalue->ts.type == BT_UNKNOWN)
3422 return true;
3424 /* F2008, C723 (pointer) and C726 (proc-pointer); for PURE also C1283. */
3425 if (lvalue->expr_type == EXPR_VARIABLE
3426 && gfc_is_coindexed (lvalue))
3428 gfc_ref *ref;
3429 for (ref = lvalue->ref; ref; ref = ref->next)
3430 if (ref->type == REF_ARRAY && ref->u.ar.codimen)
3432 gfc_error ("Pointer object at %L shall not have a coindex",
3433 &lvalue->where);
3434 return false;
3438 /* Checks on rvalue for procedure pointer assignments. */
3439 if (proc_pointer)
3441 char err[200];
3442 gfc_symbol *s1,*s2;
3443 gfc_component *comp1, *comp2;
3444 const char *name;
3446 attr = gfc_expr_attr (rvalue);
3447 if (!((rvalue->expr_type == EXPR_NULL)
3448 || (rvalue->expr_type == EXPR_FUNCTION && attr.proc_pointer)
3449 || (rvalue->expr_type == EXPR_VARIABLE && attr.proc_pointer)
3450 || (rvalue->expr_type == EXPR_VARIABLE
3451 && attr.flavor == FL_PROCEDURE)))
3453 gfc_error ("Invalid procedure pointer assignment at %L",
3454 &rvalue->where);
3455 return false;
3457 if (rvalue->expr_type == EXPR_VARIABLE && !attr.proc_pointer)
3459 /* Check for intrinsics. */
3460 gfc_symbol *sym = rvalue->symtree->n.sym;
3461 if (!sym->attr.intrinsic
3462 && (gfc_is_intrinsic (sym, 0, sym->declared_at)
3463 || gfc_is_intrinsic (sym, 1, sym->declared_at)))
3465 sym->attr.intrinsic = 1;
3466 gfc_resolve_intrinsic (sym, &rvalue->where);
3467 attr = gfc_expr_attr (rvalue);
3469 /* Check for result of embracing function. */
3470 if (sym->attr.function && sym->result == sym)
3472 gfc_namespace *ns;
3474 for (ns = gfc_current_ns; ns; ns = ns->parent)
3475 if (sym == ns->proc_name)
3477 gfc_error ("Function result %qs is invalid as proc-target "
3478 "in procedure pointer assignment at %L",
3479 sym->name, &rvalue->where);
3480 return false;
3484 if (attr.abstract)
3486 gfc_error ("Abstract interface %qs is invalid "
3487 "in procedure pointer assignment at %L",
3488 rvalue->symtree->name, &rvalue->where);
3489 return false;
3491 /* Check for F08:C729. */
3492 if (attr.flavor == FL_PROCEDURE)
3494 if (attr.proc == PROC_ST_FUNCTION)
3496 gfc_error ("Statement function %qs is invalid "
3497 "in procedure pointer assignment at %L",
3498 rvalue->symtree->name, &rvalue->where);
3499 return false;
3501 if (attr.proc == PROC_INTERNAL &&
3502 !gfc_notify_std(GFC_STD_F2008, "Internal procedure %qs "
3503 "is invalid in procedure pointer assignment "
3504 "at %L", rvalue->symtree->name, &rvalue->where))
3505 return false;
3506 if (attr.intrinsic && gfc_intrinsic_actual_ok (rvalue->symtree->name,
3507 attr.subroutine) == 0)
3509 gfc_error ("Intrinsic %qs at %L is invalid in procedure pointer "
3510 "assignment", rvalue->symtree->name, &rvalue->where);
3511 return false;
3514 /* Check for F08:C730. */
3515 if (attr.elemental && !attr.intrinsic)
3517 gfc_error ("Nonintrinsic elemental procedure %qs is invalid "
3518 "in procedure pointer assignment at %L",
3519 rvalue->symtree->name, &rvalue->where);
3520 return false;
3523 /* Ensure that the calling convention is the same. As other attributes
3524 such as DLLEXPORT may differ, one explicitly only tests for the
3525 calling conventions. */
3526 if (rvalue->expr_type == EXPR_VARIABLE
3527 && lvalue->symtree->n.sym->attr.ext_attr
3528 != rvalue->symtree->n.sym->attr.ext_attr)
3530 symbol_attribute calls;
3532 calls.ext_attr = 0;
3533 gfc_add_ext_attribute (&calls, EXT_ATTR_CDECL, NULL);
3534 gfc_add_ext_attribute (&calls, EXT_ATTR_STDCALL, NULL);
3535 gfc_add_ext_attribute (&calls, EXT_ATTR_FASTCALL, NULL);
3537 if ((calls.ext_attr & lvalue->symtree->n.sym->attr.ext_attr)
3538 != (calls.ext_attr & rvalue->symtree->n.sym->attr.ext_attr))
3540 gfc_error ("Mismatch in the procedure pointer assignment "
3541 "at %L: mismatch in the calling convention",
3542 &rvalue->where);
3543 return false;
3547 comp1 = gfc_get_proc_ptr_comp (lvalue);
3548 if (comp1)
3549 s1 = comp1->ts.interface;
3550 else
3552 s1 = lvalue->symtree->n.sym;
3553 if (s1->ts.interface)
3554 s1 = s1->ts.interface;
3557 comp2 = gfc_get_proc_ptr_comp (rvalue);
3558 if (comp2)
3560 if (rvalue->expr_type == EXPR_FUNCTION)
3562 s2 = comp2->ts.interface->result;
3563 name = s2->name;
3565 else
3567 s2 = comp2->ts.interface;
3568 name = comp2->name;
3571 else if (rvalue->expr_type == EXPR_FUNCTION)
3573 if (rvalue->value.function.esym)
3574 s2 = rvalue->value.function.esym->result;
3575 else
3576 s2 = rvalue->symtree->n.sym->result;
3578 name = s2->name;
3580 else
3582 s2 = rvalue->symtree->n.sym;
3583 name = s2->name;
3586 if (s2 && s2->attr.proc_pointer && s2->ts.interface)
3587 s2 = s2->ts.interface;
3589 /* Special check for the case of absent interface on the lvalue.
3590 * All other interface checks are done below. */
3591 if (!s1 && comp1 && comp1->attr.subroutine && s2 && s2->attr.function)
3593 gfc_error ("Interface mismatch in procedure pointer assignment "
3594 "at %L: %qs is not a subroutine", &rvalue->where, name);
3595 return false;
3598 /* F08:7.2.2.4 (4) */
3599 if (s2 && gfc_explicit_interface_required (s2, err, sizeof(err)))
3601 if (comp1 && !s1)
3603 gfc_error ("Explicit interface required for component %qs at %L: %s",
3604 comp1->name, &lvalue->where, err);
3605 return false;
3607 else if (s1->attr.if_source == IFSRC_UNKNOWN)
3609 gfc_error ("Explicit interface required for %qs at %L: %s",
3610 s1->name, &lvalue->where, err);
3611 return false;
3614 if (s1 && gfc_explicit_interface_required (s1, err, sizeof(err)))
3616 if (comp2 && !s2)
3618 gfc_error ("Explicit interface required for component %qs at %L: %s",
3619 comp2->name, &rvalue->where, err);
3620 return false;
3622 else if (s2->attr.if_source == IFSRC_UNKNOWN)
3624 gfc_error ("Explicit interface required for %qs at %L: %s",
3625 s2->name, &rvalue->where, err);
3626 return false;
3630 if (s1 == s2 || !s1 || !s2)
3631 return true;
3633 if (!gfc_compare_interfaces (s1, s2, name, 0, 1,
3634 err, sizeof(err), NULL, NULL))
3636 gfc_error ("Interface mismatch in procedure pointer assignment "
3637 "at %L: %s", &rvalue->where, err);
3638 return false;
3641 /* Check F2008Cor2, C729. */
3642 if (!s2->attr.intrinsic && s2->attr.if_source == IFSRC_UNKNOWN
3643 && !s2->attr.external && !s2->attr.subroutine && !s2->attr.function)
3645 gfc_error ("Procedure pointer target %qs at %L must be either an "
3646 "intrinsic, host or use associated, referenced or have "
3647 "the EXTERNAL attribute", s2->name, &rvalue->where);
3648 return false;
3651 return true;
3654 if (!gfc_compare_types (&lvalue->ts, &rvalue->ts))
3656 /* Check for F03:C717. */
3657 if (UNLIMITED_POLY (rvalue)
3658 && !(UNLIMITED_POLY (lvalue)
3659 || (lvalue->ts.type == BT_DERIVED
3660 && (lvalue->ts.u.derived->attr.is_bind_c
3661 || lvalue->ts.u.derived->attr.sequence))))
3662 gfc_error ("Data-pointer-object at %L must be unlimited "
3663 "polymorphic, or of a type with the BIND or SEQUENCE "
3664 "attribute, to be compatible with an unlimited "
3665 "polymorphic target", &lvalue->where);
3666 else
3667 gfc_error ("Different types in pointer assignment at %L; "
3668 "attempted assignment of %s to %s", &lvalue->where,
3669 gfc_typename (&rvalue->ts),
3670 gfc_typename (&lvalue->ts));
3671 return false;
3674 if (lvalue->ts.type != BT_CLASS && lvalue->ts.kind != rvalue->ts.kind)
3676 gfc_error ("Different kind type parameters in pointer "
3677 "assignment at %L", &lvalue->where);
3678 return false;
3681 if (lvalue->rank != rvalue->rank && !rank_remap)
3683 gfc_error ("Different ranks in pointer assignment at %L", &lvalue->where);
3684 return false;
3687 /* Make sure the vtab is present. */
3688 if (lvalue->ts.type == BT_CLASS && !UNLIMITED_POLY (rvalue))
3689 gfc_find_vtab (&rvalue->ts);
3691 /* Check rank remapping. */
3692 if (rank_remap)
3694 mpz_t lsize, rsize;
3696 /* If this can be determined, check that the target must be at least as
3697 large as the pointer assigned to it is. */
3698 if (gfc_array_size (lvalue, &lsize)
3699 && gfc_array_size (rvalue, &rsize)
3700 && mpz_cmp (rsize, lsize) < 0)
3702 gfc_error ("Rank remapping target is smaller than size of the"
3703 " pointer (%ld < %ld) at %L",
3704 mpz_get_si (rsize), mpz_get_si (lsize),
3705 &lvalue->where);
3706 return false;
3709 /* The target must be either rank one or it must be simply contiguous
3710 and F2008 must be allowed. */
3711 if (rvalue->rank != 1)
3713 if (!gfc_is_simply_contiguous (rvalue, true, false))
3715 gfc_error ("Rank remapping target must be rank 1 or"
3716 " simply contiguous at %L", &rvalue->where);
3717 return false;
3719 if (!gfc_notify_std (GFC_STD_F2008, "Rank remapping target is not "
3720 "rank 1 at %L", &rvalue->where))
3721 return false;
3725 /* Now punt if we are dealing with a NULLIFY(X) or X = NULL(X). */
3726 if (rvalue->expr_type == EXPR_NULL)
3727 return true;
3729 if (lvalue->ts.type == BT_CHARACTER)
3731 bool t = gfc_check_same_strlen (lvalue, rvalue, "pointer assignment");
3732 if (!t)
3733 return false;
3736 if (rvalue->expr_type == EXPR_VARIABLE && is_subref_array (rvalue))
3737 lvalue->symtree->n.sym->attr.subref_array_pointer = 1;
3739 attr = gfc_expr_attr (rvalue);
3741 if (rvalue->expr_type == EXPR_FUNCTION && !attr.pointer)
3743 /* F2008, C725. For PURE also C1283. Sometimes rvalue is a function call
3744 to caf_get. Map this to the same error message as below when it is
3745 still a variable expression. */
3746 if (rvalue->value.function.isym
3747 && rvalue->value.function.isym->id == GFC_ISYM_CAF_GET)
3748 /* The test above might need to be extend when F08, Note 5.4 has to be
3749 interpreted in the way that target and pointer with the same coindex
3750 are allowed. */
3751 gfc_error ("Data target at %L shall not have a coindex",
3752 &rvalue->where);
3753 else
3754 gfc_error ("Target expression in pointer assignment "
3755 "at %L must deliver a pointer result",
3756 &rvalue->where);
3757 return false;
3760 if (!attr.target && !attr.pointer)
3762 gfc_error ("Pointer assignment target is neither TARGET "
3763 "nor POINTER at %L", &rvalue->where);
3764 return false;
3767 if (is_pure && gfc_impure_variable (rvalue->symtree->n.sym))
3769 gfc_error ("Bad target in pointer assignment in PURE "
3770 "procedure at %L", &rvalue->where);
3773 if (is_implicit_pure && gfc_impure_variable (rvalue->symtree->n.sym))
3774 gfc_unset_implicit_pure (gfc_current_ns->proc_name);
3776 if (gfc_has_vector_index (rvalue))
3778 gfc_error ("Pointer assignment with vector subscript "
3779 "on rhs at %L", &rvalue->where);
3780 return false;
3783 if (attr.is_protected && attr.use_assoc
3784 && !(attr.pointer || attr.proc_pointer))
3786 gfc_error ("Pointer assignment target has PROTECTED "
3787 "attribute at %L", &rvalue->where);
3788 return false;
3791 /* F2008, C725. For PURE also C1283. */
3792 if (rvalue->expr_type == EXPR_VARIABLE
3793 && gfc_is_coindexed (rvalue))
3795 gfc_ref *ref;
3796 for (ref = rvalue->ref; ref; ref = ref->next)
3797 if (ref->type == REF_ARRAY && ref->u.ar.codimen)
3799 gfc_error ("Data target at %L shall not have a coindex",
3800 &rvalue->where);
3801 return false;
3805 /* Warn if it is the LHS pointer may lives longer than the RHS target. */
3806 if (warn_target_lifetime
3807 && rvalue->expr_type == EXPR_VARIABLE
3808 && !rvalue->symtree->n.sym->attr.save
3809 && !attr.pointer && !rvalue->symtree->n.sym->attr.host_assoc
3810 && !rvalue->symtree->n.sym->attr.in_common
3811 && !rvalue->symtree->n.sym->attr.use_assoc
3812 && !rvalue->symtree->n.sym->attr.dummy)
3814 bool warn;
3815 gfc_namespace *ns;
3817 warn = lvalue->symtree->n.sym->attr.dummy
3818 || lvalue->symtree->n.sym->attr.result
3819 || lvalue->symtree->n.sym->attr.function
3820 || (lvalue->symtree->n.sym->attr.host_assoc
3821 && lvalue->symtree->n.sym->ns
3822 != rvalue->symtree->n.sym->ns)
3823 || lvalue->symtree->n.sym->attr.use_assoc
3824 || lvalue->symtree->n.sym->attr.in_common;
3826 if (rvalue->symtree->n.sym->ns->proc_name
3827 && rvalue->symtree->n.sym->ns->proc_name->attr.flavor != FL_PROCEDURE
3828 && rvalue->symtree->n.sym->ns->proc_name->attr.flavor != FL_PROGRAM)
3829 for (ns = rvalue->symtree->n.sym->ns;
3830 ns && ns->proc_name && ns->proc_name->attr.flavor != FL_PROCEDURE;
3831 ns = ns->parent)
3832 if (ns->parent == lvalue->symtree->n.sym->ns)
3834 warn = true;
3835 break;
3838 if (warn)
3839 gfc_warning (OPT_Wtarget_lifetime,
3840 "Pointer at %L in pointer assignment might outlive the "
3841 "pointer target", &lvalue->where);
3844 return true;
3848 /* Relative of gfc_check_assign() except that the lvalue is a single
3849 symbol. Used for initialization assignments. */
3851 bool
3852 gfc_check_assign_symbol (gfc_symbol *sym, gfc_component *comp, gfc_expr *rvalue)
3854 gfc_expr lvalue;
3855 bool r;
3856 bool pointer, proc_pointer;
3858 memset (&lvalue, '\0', sizeof (gfc_expr));
3860 lvalue.expr_type = EXPR_VARIABLE;
3861 lvalue.ts = sym->ts;
3862 if (sym->as)
3863 lvalue.rank = sym->as->rank;
3864 lvalue.symtree = XCNEW (gfc_symtree);
3865 lvalue.symtree->n.sym = sym;
3866 lvalue.where = sym->declared_at;
3868 if (comp)
3870 lvalue.ref = gfc_get_ref ();
3871 lvalue.ref->type = REF_COMPONENT;
3872 lvalue.ref->u.c.component = comp;
3873 lvalue.ref->u.c.sym = sym;
3874 lvalue.ts = comp->ts;
3875 lvalue.rank = comp->as ? comp->as->rank : 0;
3876 lvalue.where = comp->loc;
3877 pointer = comp->ts.type == BT_CLASS && CLASS_DATA (comp)
3878 ? CLASS_DATA (comp)->attr.class_pointer : comp->attr.pointer;
3879 proc_pointer = comp->attr.proc_pointer;
3881 else
3883 pointer = sym->ts.type == BT_CLASS && CLASS_DATA (sym)
3884 ? CLASS_DATA (sym)->attr.class_pointer : sym->attr.pointer;
3885 proc_pointer = sym->attr.proc_pointer;
3888 if (pointer || proc_pointer)
3889 r = gfc_check_pointer_assign (&lvalue, rvalue);
3890 else
3892 /* If a conversion function, e.g., __convert_i8_i4, was inserted
3893 into an array constructor, we should check if it can be reduced
3894 as an initialization expression. */
3895 if (rvalue->expr_type == EXPR_FUNCTION
3896 && rvalue->value.function.isym
3897 && (rvalue->value.function.isym->conversion == 1))
3898 gfc_check_init_expr (rvalue);
3900 r = gfc_check_assign (&lvalue, rvalue, 1);
3903 free (lvalue.symtree);
3904 free (lvalue.ref);
3906 if (!r)
3907 return r;
3909 if (pointer && rvalue->expr_type != EXPR_NULL)
3911 /* F08:C461. Additional checks for pointer initialization. */
3912 symbol_attribute attr;
3913 attr = gfc_expr_attr (rvalue);
3914 if (attr.allocatable)
3916 gfc_error ("Pointer initialization target at %L "
3917 "must not be ALLOCATABLE", &rvalue->where);
3918 return false;
3920 if (!attr.target || attr.pointer)
3922 gfc_error ("Pointer initialization target at %L "
3923 "must have the TARGET attribute", &rvalue->where);
3924 return false;
3927 if (!attr.save && rvalue->expr_type == EXPR_VARIABLE
3928 && rvalue->symtree->n.sym->ns->proc_name
3929 && rvalue->symtree->n.sym->ns->proc_name->attr.is_main_program)
3931 rvalue->symtree->n.sym->ns->proc_name->attr.save = SAVE_IMPLICIT;
3932 attr.save = SAVE_IMPLICIT;
3935 if (!attr.save)
3937 gfc_error ("Pointer initialization target at %L "
3938 "must have the SAVE attribute", &rvalue->where);
3939 return false;
3943 if (proc_pointer && rvalue->expr_type != EXPR_NULL)
3945 /* F08:C1220. Additional checks for procedure pointer initialization. */
3946 symbol_attribute attr = gfc_expr_attr (rvalue);
3947 if (attr.proc_pointer)
3949 gfc_error ("Procedure pointer initialization target at %L "
3950 "may not be a procedure pointer", &rvalue->where);
3951 return false;
3955 return true;
3959 /* Build an initializer for a local integer, real, complex, logical, or
3960 character variable, based on the command line flags finit-local-zero,
3961 finit-integer=, finit-real=, finit-logical=, and finit-character=. */
3963 gfc_expr *
3964 gfc_build_default_init_expr (gfc_typespec *ts, locus *where)
3966 int char_len;
3967 gfc_expr *init_expr;
3968 int i;
3970 /* Try to build an initializer expression. */
3971 init_expr = gfc_get_constant_expr (ts->type, ts->kind, where);
3973 /* We will only initialize integers, reals, complex, logicals, and
3974 characters, and only if the corresponding command-line flags
3975 were set. Otherwise, we free init_expr and return null. */
3976 switch (ts->type)
3978 case BT_INTEGER:
3979 if (gfc_option.flag_init_integer != GFC_INIT_INTEGER_OFF)
3980 mpz_set_si (init_expr->value.integer,
3981 gfc_option.flag_init_integer_value);
3982 else
3984 gfc_free_expr (init_expr);
3985 init_expr = NULL;
3987 break;
3989 case BT_REAL:
3990 switch (flag_init_real)
3992 case GFC_INIT_REAL_SNAN:
3993 init_expr->is_snan = 1;
3994 /* Fall through. */
3995 case GFC_INIT_REAL_NAN:
3996 mpfr_set_nan (init_expr->value.real);
3997 break;
3999 case GFC_INIT_REAL_INF:
4000 mpfr_set_inf (init_expr->value.real, 1);
4001 break;
4003 case GFC_INIT_REAL_NEG_INF:
4004 mpfr_set_inf (init_expr->value.real, -1);
4005 break;
4007 case GFC_INIT_REAL_ZERO:
4008 mpfr_set_ui (init_expr->value.real, 0.0, GFC_RND_MODE);
4009 break;
4011 default:
4012 gfc_free_expr (init_expr);
4013 init_expr = NULL;
4014 break;
4016 break;
4018 case BT_COMPLEX:
4019 switch (flag_init_real)
4021 case GFC_INIT_REAL_SNAN:
4022 init_expr->is_snan = 1;
4023 /* Fall through. */
4024 case GFC_INIT_REAL_NAN:
4025 mpfr_set_nan (mpc_realref (init_expr->value.complex));
4026 mpfr_set_nan (mpc_imagref (init_expr->value.complex));
4027 break;
4029 case GFC_INIT_REAL_INF:
4030 mpfr_set_inf (mpc_realref (init_expr->value.complex), 1);
4031 mpfr_set_inf (mpc_imagref (init_expr->value.complex), 1);
4032 break;
4034 case GFC_INIT_REAL_NEG_INF:
4035 mpfr_set_inf (mpc_realref (init_expr->value.complex), -1);
4036 mpfr_set_inf (mpc_imagref (init_expr->value.complex), -1);
4037 break;
4039 case GFC_INIT_REAL_ZERO:
4040 mpc_set_ui (init_expr->value.complex, 0, GFC_MPC_RND_MODE);
4041 break;
4043 default:
4044 gfc_free_expr (init_expr);
4045 init_expr = NULL;
4046 break;
4048 break;
4050 case BT_LOGICAL:
4051 if (gfc_option.flag_init_logical == GFC_INIT_LOGICAL_FALSE)
4052 init_expr->value.logical = 0;
4053 else if (gfc_option.flag_init_logical == GFC_INIT_LOGICAL_TRUE)
4054 init_expr->value.logical = 1;
4055 else
4057 gfc_free_expr (init_expr);
4058 init_expr = NULL;
4060 break;
4062 case BT_CHARACTER:
4063 /* For characters, the length must be constant in order to
4064 create a default initializer. */
4065 if (gfc_option.flag_init_character == GFC_INIT_CHARACTER_ON
4066 && ts->u.cl->length
4067 && ts->u.cl->length->expr_type == EXPR_CONSTANT)
4069 char_len = mpz_get_si (ts->u.cl->length->value.integer);
4070 init_expr->value.character.length = char_len;
4071 init_expr->value.character.string = gfc_get_wide_string (char_len+1);
4072 for (i = 0; i < char_len; i++)
4073 init_expr->value.character.string[i]
4074 = (unsigned char) gfc_option.flag_init_character_value;
4076 else
4078 gfc_free_expr (init_expr);
4079 init_expr = NULL;
4081 if (!init_expr && gfc_option.flag_init_character == GFC_INIT_CHARACTER_ON
4082 && ts->u.cl->length && flag_max_stack_var_size != 0)
4084 gfc_actual_arglist *arg;
4085 init_expr = gfc_get_expr ();
4086 init_expr->where = *where;
4087 init_expr->ts = *ts;
4088 init_expr->expr_type = EXPR_FUNCTION;
4089 init_expr->value.function.isym =
4090 gfc_intrinsic_function_by_id (GFC_ISYM_REPEAT);
4091 init_expr->value.function.name = "repeat";
4092 arg = gfc_get_actual_arglist ();
4093 arg->expr = gfc_get_character_expr (ts->kind, where, NULL, 1);
4094 arg->expr->value.character.string[0] =
4095 gfc_option.flag_init_character_value;
4096 arg->next = gfc_get_actual_arglist ();
4097 arg->next->expr = gfc_copy_expr (ts->u.cl->length);
4098 init_expr->value.function.actual = arg;
4100 break;
4102 default:
4103 gfc_free_expr (init_expr);
4104 init_expr = NULL;
4107 return init_expr;
4110 /* Apply an initialization expression to a typespec. Can be used for symbols or
4111 components. Similar to add_init_expr_to_sym in decl.c; could probably be
4112 combined with some effort. */
4114 void
4115 gfc_apply_init (gfc_typespec *ts, symbol_attribute *attr, gfc_expr *init)
4117 if (ts->type == BT_CHARACTER && !attr->pointer && init
4118 && ts->u.cl
4119 && ts->u.cl->length && ts->u.cl->length->expr_type == EXPR_CONSTANT)
4121 int len;
4123 gcc_assert (ts->u.cl && ts->u.cl->length);
4124 gcc_assert (ts->u.cl->length->expr_type == EXPR_CONSTANT);
4125 gcc_assert (ts->u.cl->length->ts.type == BT_INTEGER);
4127 len = mpz_get_si (ts->u.cl->length->value.integer);
4129 if (init->expr_type == EXPR_CONSTANT)
4130 gfc_set_constant_character_len (len, init, -1);
4131 else if (init
4132 && init->ts.u.cl
4133 && mpz_cmp (ts->u.cl->length->value.integer,
4134 init->ts.u.cl->length->value.integer))
4136 gfc_constructor *ctor;
4137 ctor = gfc_constructor_first (init->value.constructor);
4139 if (ctor)
4141 int first_len;
4142 bool has_ts = (init->ts.u.cl
4143 && init->ts.u.cl->length_from_typespec);
4145 /* Remember the length of the first element for checking
4146 that all elements *in the constructor* have the same
4147 length. This need not be the length of the LHS! */
4148 gcc_assert (ctor->expr->expr_type == EXPR_CONSTANT);
4149 gcc_assert (ctor->expr->ts.type == BT_CHARACTER);
4150 first_len = ctor->expr->value.character.length;
4152 for ( ; ctor; ctor = gfc_constructor_next (ctor))
4153 if (ctor->expr->expr_type == EXPR_CONSTANT)
4155 gfc_set_constant_character_len (len, ctor->expr,
4156 has_ts ? -1 : first_len);
4157 if (!ctor->expr->ts.u.cl)
4158 ctor->expr->ts.u.cl
4159 = gfc_new_charlen (gfc_current_ns, ts->u.cl);
4160 else
4161 ctor->expr->ts.u.cl->length
4162 = gfc_copy_expr (ts->u.cl->length);
4170 /* Check whether an expression is a structure constructor and whether it has
4171 other values than NULL. */
4173 bool
4174 is_non_empty_structure_constructor (gfc_expr * e)
4176 if (e->expr_type != EXPR_STRUCTURE)
4177 return false;
4179 gfc_constructor *cons = gfc_constructor_first (e->value.constructor);
4180 while (cons)
4182 if (!cons->expr || cons->expr->expr_type != EXPR_NULL)
4183 return true;
4184 cons = gfc_constructor_next (cons);
4186 return false;
4190 /* Check for default initializer; sym->value is not enough
4191 as it is also set for EXPR_NULL of allocatables. */
4193 bool
4194 gfc_has_default_initializer (gfc_symbol *der)
4196 gfc_component *c;
4198 gcc_assert (gfc_fl_struct (der->attr.flavor));
4199 for (c = der->components; c; c = c->next)
4200 if (gfc_bt_struct (c->ts.type))
4202 if (!c->attr.pointer && !c->attr.proc_pointer
4203 && !(c->attr.allocatable && der == c->ts.u.derived)
4204 && ((c->initializer
4205 && is_non_empty_structure_constructor (c->initializer))
4206 || gfc_has_default_initializer (c->ts.u.derived)))
4207 return true;
4208 if (c->attr.pointer && c->initializer)
4209 return true;
4211 else
4213 if (c->initializer)
4214 return true;
4217 return false;
4222 Generate an initializer expression which initializes the entirety of a union.
4223 A normal structure constructor is insufficient without undue effort, because
4224 components of maps may be oddly aligned/overlapped. (For example if a
4225 character is initialized from one map overtop a real from the other, only one
4226 byte of the real is actually initialized.) Unfortunately we don't know the
4227 size of the union right now, so we can't generate a proper initializer, but
4228 we use a NULL expr as a placeholder and do the right thing later in
4229 gfc_trans_subcomponent_assign.
4231 static gfc_expr *
4232 generate_union_initializer (gfc_component *un)
4234 if (un == NULL || un->ts.type != BT_UNION)
4235 return NULL;
4237 gfc_expr *placeholder = gfc_get_null_expr (&un->loc);
4238 placeholder->ts = un->ts;
4239 return placeholder;
4243 /* Get the user-specified initializer for a union, if any. This means the user
4244 has said to initialize component(s) of a map. For simplicity's sake we
4245 only allow the user to initialize the first map. We don't have to worry
4246 about overlapping initializers as they are released early in resolution (see
4247 resolve_fl_struct). */
4249 static gfc_expr *
4250 get_union_initializer (gfc_symbol *union_type, gfc_component **map_p)
4252 gfc_component *map;
4253 gfc_expr *init=NULL;
4255 if (!union_type || union_type->attr.flavor != FL_UNION)
4256 return NULL;
4258 for (map = union_type->components; map; map = map->next)
4260 if (gfc_has_default_initializer (map->ts.u.derived))
4262 init = gfc_default_initializer (&map->ts);
4263 if (map_p)
4264 *map_p = map;
4265 break;
4269 if (map_p && !init)
4270 *map_p = NULL;
4272 return init;
4275 /* Fetch or generate an initializer for the given component.
4276 Only generate an initializer if generate is true. */
4278 static gfc_expr *
4279 component_initializer (gfc_typespec *ts, gfc_component *c, bool generate)
4281 gfc_expr *init = NULL;
4283 /* See if we can find the initializer immediately.
4284 Some components should never get initializers. */
4285 if (c->initializer || !generate
4286 || (ts->type == BT_CLASS && !c->attr.allocatable)
4287 || c->attr.pointer
4288 || c->attr.class_pointer
4289 || c->attr.proc_pointer)
4290 return c->initializer;
4292 /* Recursively handle derived type components. */
4293 if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
4294 init = gfc_generate_initializer (&c->ts, true);
4296 else if (c->ts.type == BT_UNION && c->ts.u.derived->components)
4298 gfc_component *map = NULL;
4299 gfc_constructor *ctor;
4300 gfc_expr *user_init;
4302 /* If we don't have a user initializer and we aren't generating one, this
4303 union has no initializer. */
4304 user_init = get_union_initializer (c->ts.u.derived, &map);
4305 if (!user_init && !generate)
4306 return NULL;
4308 /* Otherwise use a structure constructor. */
4309 init = gfc_get_structure_constructor_expr (c->ts.type, c->ts.kind,
4310 &c->loc);
4311 init->ts = c->ts;
4313 /* If we are to generate an initializer for the union, add a constructor
4314 which initializes the whole union first. */
4315 if (generate)
4317 ctor = gfc_constructor_get ();
4318 ctor->expr = generate_union_initializer (c);
4319 gfc_constructor_append (&init->value.constructor, ctor);
4322 /* If we found an initializer in one of our maps, apply it. Note this
4323 is applied _after_ the entire-union initializer above if any. */
4324 if (user_init)
4326 ctor = gfc_constructor_get ();
4327 ctor->expr = user_init;
4328 ctor->n.component = map;
4329 gfc_constructor_append (&init->value.constructor, ctor);
4333 /* Treat simple components like locals. */
4334 else
4336 init = gfc_build_default_init_expr (&c->ts, &c->loc);
4337 gfc_apply_init (&c->ts, &c->attr, init);
4340 return init;
4344 /* Get an expression for a default initializer of a derived type. */
4346 gfc_expr *
4347 gfc_default_initializer (gfc_typespec *ts)
4349 return gfc_generate_initializer (ts, false);
4353 /* Get or generate an expression for a default initializer of a derived type.
4354 If -finit-derived is specified, generate default initialization expressions
4355 for components that lack them when generate is set. */
4357 gfc_expr *
4358 gfc_generate_initializer (gfc_typespec *ts, bool generate)
4360 gfc_expr *init, *tmp;
4361 gfc_component *comp;
4362 generate = flag_init_derived && generate;
4364 /* See if we have a default initializer in this, but not in nested
4365 types (otherwise we could use gfc_has_default_initializer()).
4366 We don't need to check if we are going to generate them. */
4367 comp = ts->u.derived->components;
4368 if (!generate)
4370 for (; comp; comp = comp->next)
4371 if (comp->initializer || comp->attr.allocatable
4372 || (comp->ts.type == BT_CLASS && CLASS_DATA (comp)
4373 && CLASS_DATA (comp)->attr.allocatable))
4374 break;
4377 if (!comp)
4378 return NULL;
4380 init = gfc_get_structure_constructor_expr (ts->type, ts->kind,
4381 &ts->u.derived->declared_at);
4382 init->ts = *ts;
4384 for (comp = ts->u.derived->components; comp; comp = comp->next)
4386 gfc_constructor *ctor = gfc_constructor_get();
4388 /* Fetch or generate an initializer for the component. */
4389 tmp = component_initializer (ts, comp, generate);
4390 if (tmp)
4392 /* Save the component ref for STRUCTUREs and UNIONs. */
4393 if (ts->u.derived->attr.flavor == FL_STRUCT
4394 || ts->u.derived->attr.flavor == FL_UNION)
4395 ctor->n.component = comp;
4397 /* If the initializer was not generated, we need a copy. */
4398 ctor->expr = comp->initializer ? gfc_copy_expr (tmp) : tmp;
4399 if ((comp->ts.type != tmp->ts.type
4400 || comp->ts.kind != tmp->ts.kind)
4401 && !comp->attr.pointer && !comp->attr.proc_pointer)
4403 bool val;
4404 val = gfc_convert_type_warn (ctor->expr, &comp->ts, 1, false);
4405 if (val == false)
4406 return NULL;
4410 if (comp->attr.allocatable
4411 || (comp->ts.type == BT_CLASS && CLASS_DATA (comp)->attr.allocatable))
4413 ctor->expr = gfc_get_expr ();
4414 ctor->expr->expr_type = EXPR_NULL;
4415 ctor->expr->where = init->where;
4416 ctor->expr->ts = comp->ts;
4419 gfc_constructor_append (&init->value.constructor, ctor);
4422 return init;
4426 /* Given a symbol, create an expression node with that symbol as a
4427 variable. If the symbol is array valued, setup a reference of the
4428 whole array. */
4430 gfc_expr *
4431 gfc_get_variable_expr (gfc_symtree *var)
4433 gfc_expr *e;
4435 e = gfc_get_expr ();
4436 e->expr_type = EXPR_VARIABLE;
4437 e->symtree = var;
4438 e->ts = var->n.sym->ts;
4440 if (var->n.sym->attr.flavor != FL_PROCEDURE
4441 && ((var->n.sym->as != NULL && var->n.sym->ts.type != BT_CLASS)
4442 || (var->n.sym->ts.type == BT_CLASS && CLASS_DATA (var->n.sym)
4443 && CLASS_DATA (var->n.sym)->as)))
4445 e->rank = var->n.sym->ts.type == BT_CLASS
4446 ? CLASS_DATA (var->n.sym)->as->rank : var->n.sym->as->rank;
4447 e->ref = gfc_get_ref ();
4448 e->ref->type = REF_ARRAY;
4449 e->ref->u.ar.type = AR_FULL;
4450 e->ref->u.ar.as = gfc_copy_array_spec (var->n.sym->ts.type == BT_CLASS
4451 ? CLASS_DATA (var->n.sym)->as
4452 : var->n.sym->as);
4455 return e;
4459 /* Adds a full array reference to an expression, as needed. */
4461 void
4462 gfc_add_full_array_ref (gfc_expr *e, gfc_array_spec *as)
4464 gfc_ref *ref;
4465 for (ref = e->ref; ref; ref = ref->next)
4466 if (!ref->next)
4467 break;
4468 if (ref)
4470 ref->next = gfc_get_ref ();
4471 ref = ref->next;
4473 else
4475 e->ref = gfc_get_ref ();
4476 ref = e->ref;
4478 ref->type = REF_ARRAY;
4479 ref->u.ar.type = AR_FULL;
4480 ref->u.ar.dimen = e->rank;
4481 ref->u.ar.where = e->where;
4482 ref->u.ar.as = as;
4486 gfc_expr *
4487 gfc_lval_expr_from_sym (gfc_symbol *sym)
4489 gfc_expr *lval;
4490 gfc_array_spec *as;
4491 lval = gfc_get_expr ();
4492 lval->expr_type = EXPR_VARIABLE;
4493 lval->where = sym->declared_at;
4494 lval->ts = sym->ts;
4495 lval->symtree = gfc_find_symtree (sym->ns->sym_root, sym->name);
4497 /* It will always be a full array. */
4498 as = IS_CLASS_ARRAY (sym) ? CLASS_DATA (sym)->as : sym->as;
4499 lval->rank = as ? as->rank : 0;
4500 if (lval->rank)
4501 gfc_add_full_array_ref (lval, as);
4502 return lval;
4506 /* Returns the array_spec of a full array expression. A NULL is
4507 returned otherwise. */
4508 gfc_array_spec *
4509 gfc_get_full_arrayspec_from_expr (gfc_expr *expr)
4511 gfc_array_spec *as;
4512 gfc_ref *ref;
4514 if (expr->rank == 0)
4515 return NULL;
4517 /* Follow any component references. */
4518 if (expr->expr_type == EXPR_VARIABLE
4519 || expr->expr_type == EXPR_CONSTANT)
4521 as = expr->symtree->n.sym->as;
4522 for (ref = expr->ref; ref; ref = ref->next)
4524 switch (ref->type)
4526 case REF_COMPONENT:
4527 as = ref->u.c.component->as;
4528 continue;
4530 case REF_SUBSTRING:
4531 continue;
4533 case REF_ARRAY:
4535 switch (ref->u.ar.type)
4537 case AR_ELEMENT:
4538 case AR_SECTION:
4539 case AR_UNKNOWN:
4540 as = NULL;
4541 continue;
4543 case AR_FULL:
4544 break;
4546 break;
4551 else
4552 as = NULL;
4554 return as;
4558 /* General expression traversal function. */
4560 bool
4561 gfc_traverse_expr (gfc_expr *expr, gfc_symbol *sym,
4562 bool (*func)(gfc_expr *, gfc_symbol *, int*),
4563 int f)
4565 gfc_array_ref ar;
4566 gfc_ref *ref;
4567 gfc_actual_arglist *args;
4568 gfc_constructor *c;
4569 int i;
4571 if (!expr)
4572 return false;
4574 if ((*func) (expr, sym, &f))
4575 return true;
4577 if (expr->ts.type == BT_CHARACTER
4578 && expr->ts.u.cl
4579 && expr->ts.u.cl->length
4580 && expr->ts.u.cl->length->expr_type != EXPR_CONSTANT
4581 && gfc_traverse_expr (expr->ts.u.cl->length, sym, func, f))
4582 return true;
4584 switch (expr->expr_type)
4586 case EXPR_PPC:
4587 case EXPR_COMPCALL:
4588 case EXPR_FUNCTION:
4589 for (args = expr->value.function.actual; args; args = args->next)
4591 if (gfc_traverse_expr (args->expr, sym, func, f))
4592 return true;
4594 break;
4596 case EXPR_VARIABLE:
4597 case EXPR_CONSTANT:
4598 case EXPR_NULL:
4599 case EXPR_SUBSTRING:
4600 break;
4602 case EXPR_STRUCTURE:
4603 case EXPR_ARRAY:
4604 for (c = gfc_constructor_first (expr->value.constructor);
4605 c; c = gfc_constructor_next (c))
4607 if (gfc_traverse_expr (c->expr, sym, func, f))
4608 return true;
4609 if (c->iterator)
4611 if (gfc_traverse_expr (c->iterator->var, sym, func, f))
4612 return true;
4613 if (gfc_traverse_expr (c->iterator->start, sym, func, f))
4614 return true;
4615 if (gfc_traverse_expr (c->iterator->end, sym, func, f))
4616 return true;
4617 if (gfc_traverse_expr (c->iterator->step, sym, func, f))
4618 return true;
4621 break;
4623 case EXPR_OP:
4624 if (gfc_traverse_expr (expr->value.op.op1, sym, func, f))
4625 return true;
4626 if (gfc_traverse_expr (expr->value.op.op2, sym, func, f))
4627 return true;
4628 break;
4630 default:
4631 gcc_unreachable ();
4632 break;
4635 ref = expr->ref;
4636 while (ref != NULL)
4638 switch (ref->type)
4640 case REF_ARRAY:
4641 ar = ref->u.ar;
4642 for (i = 0; i < GFC_MAX_DIMENSIONS; i++)
4644 if (gfc_traverse_expr (ar.start[i], sym, func, f))
4645 return true;
4646 if (gfc_traverse_expr (ar.end[i], sym, func, f))
4647 return true;
4648 if (gfc_traverse_expr (ar.stride[i], sym, func, f))
4649 return true;
4651 break;
4653 case REF_SUBSTRING:
4654 if (gfc_traverse_expr (ref->u.ss.start, sym, func, f))
4655 return true;
4656 if (gfc_traverse_expr (ref->u.ss.end, sym, func, f))
4657 return true;
4658 break;
4660 case REF_COMPONENT:
4661 if (ref->u.c.component->ts.type == BT_CHARACTER
4662 && ref->u.c.component->ts.u.cl
4663 && ref->u.c.component->ts.u.cl->length
4664 && ref->u.c.component->ts.u.cl->length->expr_type
4665 != EXPR_CONSTANT
4666 && gfc_traverse_expr (ref->u.c.component->ts.u.cl->length,
4667 sym, func, f))
4668 return true;
4670 if (ref->u.c.component->as)
4671 for (i = 0; i < ref->u.c.component->as->rank
4672 + ref->u.c.component->as->corank; i++)
4674 if (gfc_traverse_expr (ref->u.c.component->as->lower[i],
4675 sym, func, f))
4676 return true;
4677 if (gfc_traverse_expr (ref->u.c.component->as->upper[i],
4678 sym, func, f))
4679 return true;
4681 break;
4683 default:
4684 gcc_unreachable ();
4686 ref = ref->next;
4688 return false;
4691 /* Traverse expr, marking all EXPR_VARIABLE symbols referenced. */
4693 static bool
4694 expr_set_symbols_referenced (gfc_expr *expr,
4695 gfc_symbol *sym ATTRIBUTE_UNUSED,
4696 int *f ATTRIBUTE_UNUSED)
4698 if (expr->expr_type != EXPR_VARIABLE)
4699 return false;
4700 gfc_set_sym_referenced (expr->symtree->n.sym);
4701 return false;
4704 void
4705 gfc_expr_set_symbols_referenced (gfc_expr *expr)
4707 gfc_traverse_expr (expr, NULL, expr_set_symbols_referenced, 0);
4711 /* Determine if an expression is a procedure pointer component and return
4712 the component in that case. Otherwise return NULL. */
4714 gfc_component *
4715 gfc_get_proc_ptr_comp (gfc_expr *expr)
4717 gfc_ref *ref;
4719 if (!expr || !expr->ref)
4720 return NULL;
4722 ref = expr->ref;
4723 while (ref->next)
4724 ref = ref->next;
4726 if (ref->type == REF_COMPONENT
4727 && ref->u.c.component->attr.proc_pointer)
4728 return ref->u.c.component;
4730 return NULL;
4734 /* Determine if an expression is a procedure pointer component. */
4736 bool
4737 gfc_is_proc_ptr_comp (gfc_expr *expr)
4739 return (gfc_get_proc_ptr_comp (expr) != NULL);
4743 /* Determine if an expression is a function with an allocatable class scalar
4744 result. */
4745 bool
4746 gfc_is_alloc_class_scalar_function (gfc_expr *expr)
4748 if (expr->expr_type == EXPR_FUNCTION
4749 && expr->value.function.esym
4750 && expr->value.function.esym->result
4751 && expr->value.function.esym->result->ts.type == BT_CLASS
4752 && !CLASS_DATA (expr->value.function.esym->result)->attr.dimension
4753 && CLASS_DATA (expr->value.function.esym->result)->attr.allocatable)
4754 return true;
4756 return false;
4760 /* Determine if an expression is a function with an allocatable class array
4761 result. */
4762 bool
4763 gfc_is_alloc_class_array_function (gfc_expr *expr)
4765 if (expr->expr_type == EXPR_FUNCTION
4766 && expr->value.function.esym
4767 && expr->value.function.esym->result
4768 && expr->value.function.esym->result->ts.type == BT_CLASS
4769 && CLASS_DATA (expr->value.function.esym->result)->attr.dimension
4770 && CLASS_DATA (expr->value.function.esym->result)->attr.allocatable)
4771 return true;
4773 return false;
4777 /* Walk an expression tree and check each variable encountered for being typed.
4778 If strict is not set, a top-level variable is tolerated untyped in -std=gnu
4779 mode as is a basic arithmetic expression using those; this is for things in
4780 legacy-code like:
4782 INTEGER :: arr(n), n
4783 INTEGER :: arr(n + 1), n
4785 The namespace is needed for IMPLICIT typing. */
4787 static gfc_namespace* check_typed_ns;
4789 static bool
4790 expr_check_typed_help (gfc_expr* e, gfc_symbol* sym ATTRIBUTE_UNUSED,
4791 int* f ATTRIBUTE_UNUSED)
4793 bool t;
4795 if (e->expr_type != EXPR_VARIABLE)
4796 return false;
4798 gcc_assert (e->symtree);
4799 t = gfc_check_symbol_typed (e->symtree->n.sym, check_typed_ns,
4800 true, e->where);
4802 return (!t);
4805 bool
4806 gfc_expr_check_typed (gfc_expr* e, gfc_namespace* ns, bool strict)
4808 bool error_found;
4810 /* If this is a top-level variable or EXPR_OP, do the check with strict given
4811 to us. */
4812 if (!strict)
4814 if (e->expr_type == EXPR_VARIABLE && !e->ref)
4815 return gfc_check_symbol_typed (e->symtree->n.sym, ns, strict, e->where);
4817 if (e->expr_type == EXPR_OP)
4819 bool t = true;
4821 gcc_assert (e->value.op.op1);
4822 t = gfc_expr_check_typed (e->value.op.op1, ns, strict);
4824 if (t && e->value.op.op2)
4825 t = gfc_expr_check_typed (e->value.op.op2, ns, strict);
4827 return t;
4831 /* Otherwise, walk the expression and do it strictly. */
4832 check_typed_ns = ns;
4833 error_found = gfc_traverse_expr (e, NULL, &expr_check_typed_help, 0);
4835 return error_found ? false : true;
4839 bool
4840 gfc_ref_this_image (gfc_ref *ref)
4842 int n;
4844 gcc_assert (ref->type == REF_ARRAY && ref->u.ar.codimen > 0);
4846 for (n = ref->u.ar.dimen; n < ref->u.ar.dimen + ref->u.ar.codimen; n++)
4847 if (ref->u.ar.dimen_type[n] != DIMEN_THIS_IMAGE)
4848 return false;
4850 return true;
4853 gfc_expr *
4854 gfc_find_stat_co(gfc_expr *e)
4856 gfc_ref *ref;
4858 for (ref = e->ref; ref; ref = ref->next)
4859 if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
4860 return ref->u.ar.stat;
4862 if (e->value.function.actual->expr)
4863 for (ref = e->value.function.actual->expr->ref; ref;
4864 ref = ref->next)
4865 if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
4866 return ref->u.ar.stat;
4868 return NULL;
4871 bool
4872 gfc_is_coindexed (gfc_expr *e)
4874 gfc_ref *ref;
4876 for (ref = e->ref; ref; ref = ref->next)
4877 if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
4878 return !gfc_ref_this_image (ref);
4880 return false;
4884 /* Coarrays are variables with a corank but not being coindexed. However, also
4885 the following is a coarray: A subobject of a coarray is a coarray if it does
4886 not have any cosubscripts, vector subscripts, allocatable component
4887 selection, or pointer component selection. (F2008, 2.4.7) */
4889 bool
4890 gfc_is_coarray (gfc_expr *e)
4892 gfc_ref *ref;
4893 gfc_symbol *sym;
4894 gfc_component *comp;
4895 bool coindexed;
4896 bool coarray;
4897 int i;
4899 if (e->expr_type != EXPR_VARIABLE)
4900 return false;
4902 coindexed = false;
4903 sym = e->symtree->n.sym;
4905 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
4906 coarray = CLASS_DATA (sym)->attr.codimension;
4907 else
4908 coarray = sym->attr.codimension;
4910 for (ref = e->ref; ref; ref = ref->next)
4911 switch (ref->type)
4913 case REF_COMPONENT:
4914 comp = ref->u.c.component;
4915 if (comp->ts.type == BT_CLASS && comp->attr.class_ok
4916 && (CLASS_DATA (comp)->attr.class_pointer
4917 || CLASS_DATA (comp)->attr.allocatable))
4919 coindexed = false;
4920 coarray = CLASS_DATA (comp)->attr.codimension;
4922 else if (comp->attr.pointer || comp->attr.allocatable)
4924 coindexed = false;
4925 coarray = comp->attr.codimension;
4927 break;
4929 case REF_ARRAY:
4930 if (!coarray)
4931 break;
4933 if (ref->u.ar.codimen > 0 && !gfc_ref_this_image (ref))
4935 coindexed = true;
4936 break;
4939 for (i = 0; i < ref->u.ar.dimen; i++)
4940 if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
4942 coarray = false;
4943 break;
4945 break;
4947 case REF_SUBSTRING:
4948 break;
4951 return coarray && !coindexed;
4956 gfc_get_corank (gfc_expr *e)
4958 int corank;
4959 gfc_ref *ref;
4961 if (!gfc_is_coarray (e))
4962 return 0;
4964 if (e->ts.type == BT_CLASS && e->ts.u.derived->components)
4965 corank = e->ts.u.derived->components->as
4966 ? e->ts.u.derived->components->as->corank : 0;
4967 else
4968 corank = e->symtree->n.sym->as ? e->symtree->n.sym->as->corank : 0;
4970 for (ref = e->ref; ref; ref = ref->next)
4972 if (ref->type == REF_ARRAY)
4973 corank = ref->u.ar.as->corank;
4974 gcc_assert (ref->type != REF_SUBSTRING);
4977 return corank;
4981 /* Check whether the expression has an ultimate allocatable component.
4982 Being itself allocatable does not count. */
4983 bool
4984 gfc_has_ultimate_allocatable (gfc_expr *e)
4986 gfc_ref *ref, *last = NULL;
4988 if (e->expr_type != EXPR_VARIABLE)
4989 return false;
4991 for (ref = e->ref; ref; ref = ref->next)
4992 if (ref->type == REF_COMPONENT)
4993 last = ref;
4995 if (last && last->u.c.component->ts.type == BT_CLASS)
4996 return CLASS_DATA (last->u.c.component)->attr.alloc_comp;
4997 else if (last && last->u.c.component->ts.type == BT_DERIVED)
4998 return last->u.c.component->ts.u.derived->attr.alloc_comp;
4999 else if (last)
5000 return false;
5002 if (e->ts.type == BT_CLASS)
5003 return CLASS_DATA (e)->attr.alloc_comp;
5004 else if (e->ts.type == BT_DERIVED)
5005 return e->ts.u.derived->attr.alloc_comp;
5006 else
5007 return false;
5011 /* Check whether the expression has an pointer component.
5012 Being itself a pointer does not count. */
5013 bool
5014 gfc_has_ultimate_pointer (gfc_expr *e)
5016 gfc_ref *ref, *last = NULL;
5018 if (e->expr_type != EXPR_VARIABLE)
5019 return false;
5021 for (ref = e->ref; ref; ref = ref->next)
5022 if (ref->type == REF_COMPONENT)
5023 last = ref;
5025 if (last && last->u.c.component->ts.type == BT_CLASS)
5026 return CLASS_DATA (last->u.c.component)->attr.pointer_comp;
5027 else if (last && last->u.c.component->ts.type == BT_DERIVED)
5028 return last->u.c.component->ts.u.derived->attr.pointer_comp;
5029 else if (last)
5030 return false;
5032 if (e->ts.type == BT_CLASS)
5033 return CLASS_DATA (e)->attr.pointer_comp;
5034 else if (e->ts.type == BT_DERIVED)
5035 return e->ts.u.derived->attr.pointer_comp;
5036 else
5037 return false;
5041 /* Check whether an expression is "simply contiguous", cf. F2008, 6.5.4.
5042 Note: A scalar is not regarded as "simply contiguous" by the standard.
5043 if bool is not strict, some further checks are done - for instance,
5044 a "(::1)" is accepted. */
5046 bool
5047 gfc_is_simply_contiguous (gfc_expr *expr, bool strict, bool permit_element)
5049 bool colon;
5050 int i;
5051 gfc_array_ref *ar = NULL;
5052 gfc_ref *ref, *part_ref = NULL;
5053 gfc_symbol *sym;
5055 if (expr->expr_type == EXPR_FUNCTION)
5056 return expr->value.function.esym
5057 ? expr->value.function.esym->result->attr.contiguous : false;
5058 else if (expr->expr_type != EXPR_VARIABLE)
5059 return false;
5061 if (!permit_element && expr->rank == 0)
5062 return false;
5064 for (ref = expr->ref; ref; ref = ref->next)
5066 if (ar)
5067 return false; /* Array shall be last part-ref. */
5069 if (ref->type == REF_COMPONENT)
5070 part_ref = ref;
5071 else if (ref->type == REF_SUBSTRING)
5072 return false;
5073 else if (ref->u.ar.type != AR_ELEMENT)
5074 ar = &ref->u.ar;
5077 sym = expr->symtree->n.sym;
5078 if (expr->ts.type != BT_CLASS
5079 && ((part_ref
5080 && !part_ref->u.c.component->attr.contiguous
5081 && part_ref->u.c.component->attr.pointer)
5082 || (!part_ref
5083 && !sym->attr.contiguous
5084 && (sym->attr.pointer
5085 || sym->as->type == AS_ASSUMED_RANK
5086 || sym->as->type == AS_ASSUMED_SHAPE))))
5087 return false;
5089 if (!ar || ar->type == AR_FULL)
5090 return true;
5092 gcc_assert (ar->type == AR_SECTION);
5094 /* Check for simply contiguous array */
5095 colon = true;
5096 for (i = 0; i < ar->dimen; i++)
5098 if (ar->dimen_type[i] == DIMEN_VECTOR)
5099 return false;
5101 if (ar->dimen_type[i] == DIMEN_ELEMENT)
5103 colon = false;
5104 continue;
5107 gcc_assert (ar->dimen_type[i] == DIMEN_RANGE);
5110 /* If the previous section was not contiguous, that's an error,
5111 unless we have effective only one element and checking is not
5112 strict. */
5113 if (!colon && (strict || !ar->start[i] || !ar->end[i]
5114 || ar->start[i]->expr_type != EXPR_CONSTANT
5115 || ar->end[i]->expr_type != EXPR_CONSTANT
5116 || mpz_cmp (ar->start[i]->value.integer,
5117 ar->end[i]->value.integer) != 0))
5118 return false;
5120 /* Following the standard, "(::1)" or - if known at compile time -
5121 "(lbound:ubound)" are not simply contiguous; if strict
5122 is false, they are regarded as simply contiguous. */
5123 if (ar->stride[i] && (strict || ar->stride[i]->expr_type != EXPR_CONSTANT
5124 || ar->stride[i]->ts.type != BT_INTEGER
5125 || mpz_cmp_si (ar->stride[i]->value.integer, 1) != 0))
5126 return false;
5128 if (ar->start[i]
5129 && (strict || ar->start[i]->expr_type != EXPR_CONSTANT
5130 || !ar->as->lower[i]
5131 || ar->as->lower[i]->expr_type != EXPR_CONSTANT
5132 || mpz_cmp (ar->start[i]->value.integer,
5133 ar->as->lower[i]->value.integer) != 0))
5134 colon = false;
5136 if (ar->end[i]
5137 && (strict || ar->end[i]->expr_type != EXPR_CONSTANT
5138 || !ar->as->upper[i]
5139 || ar->as->upper[i]->expr_type != EXPR_CONSTANT
5140 || mpz_cmp (ar->end[i]->value.integer,
5141 ar->as->upper[i]->value.integer) != 0))
5142 colon = false;
5145 return true;
5149 /* Build call to an intrinsic procedure. The number of arguments has to be
5150 passed (rather than ending the list with a NULL value) because we may
5151 want to add arguments but with a NULL-expression. */
5153 gfc_expr*
5154 gfc_build_intrinsic_call (gfc_namespace *ns, gfc_isym_id id, const char* name,
5155 locus where, unsigned numarg, ...)
5157 gfc_expr* result;
5158 gfc_actual_arglist* atail;
5159 gfc_intrinsic_sym* isym;
5160 va_list ap;
5161 unsigned i;
5162 const char *mangled_name = gfc_get_string (GFC_PREFIX ("%s"), name);
5164 isym = gfc_intrinsic_function_by_id (id);
5165 gcc_assert (isym);
5167 result = gfc_get_expr ();
5168 result->expr_type = EXPR_FUNCTION;
5169 result->ts = isym->ts;
5170 result->where = where;
5171 result->value.function.name = mangled_name;
5172 result->value.function.isym = isym;
5174 gfc_get_sym_tree (mangled_name, ns, &result->symtree, false);
5175 gfc_commit_symbol (result->symtree->n.sym);
5176 gcc_assert (result->symtree
5177 && (result->symtree->n.sym->attr.flavor == FL_PROCEDURE
5178 || result->symtree->n.sym->attr.flavor == FL_UNKNOWN));
5179 result->symtree->n.sym->intmod_sym_id = id;
5180 result->symtree->n.sym->attr.flavor = FL_PROCEDURE;
5181 result->symtree->n.sym->attr.intrinsic = 1;
5182 result->symtree->n.sym->attr.artificial = 1;
5184 va_start (ap, numarg);
5185 atail = NULL;
5186 for (i = 0; i < numarg; ++i)
5188 if (atail)
5190 atail->next = gfc_get_actual_arglist ();
5191 atail = atail->next;
5193 else
5194 atail = result->value.function.actual = gfc_get_actual_arglist ();
5196 atail->expr = va_arg (ap, gfc_expr*);
5198 va_end (ap);
5200 return result;
5204 /* Check if an expression may appear in a variable definition context
5205 (F2008, 16.6.7) or pointer association context (F2008, 16.6.8).
5206 This is called from the various places when resolving
5207 the pieces that make up such a context.
5208 If own_scope is true (applies to, e.g., ac-implied-do/data-implied-do
5209 variables), some checks are not performed.
5211 Optionally, a possible error message can be suppressed if context is NULL
5212 and just the return status (true / false) be requested. */
5214 bool
5215 gfc_check_vardef_context (gfc_expr* e, bool pointer, bool alloc_obj,
5216 bool own_scope, const char* context)
5218 gfc_symbol* sym = NULL;
5219 bool is_pointer;
5220 bool check_intentin;
5221 bool ptr_component;
5222 symbol_attribute attr;
5223 gfc_ref* ref;
5224 int i;
5226 if (e->expr_type == EXPR_VARIABLE)
5228 gcc_assert (e->symtree);
5229 sym = e->symtree->n.sym;
5231 else if (e->expr_type == EXPR_FUNCTION)
5233 gcc_assert (e->symtree);
5234 sym = e->value.function.esym ? e->value.function.esym : e->symtree->n.sym;
5237 attr = gfc_expr_attr (e);
5238 if (!pointer && e->expr_type == EXPR_FUNCTION && attr.pointer)
5240 if (!(gfc_option.allow_std & GFC_STD_F2008))
5242 if (context)
5243 gfc_error ("Fortran 2008: Pointer functions in variable definition"
5244 " context (%s) at %L", context, &e->where);
5245 return false;
5248 else if (e->expr_type != EXPR_VARIABLE)
5250 if (context)
5251 gfc_error ("Non-variable expression in variable definition context (%s)"
5252 " at %L", context, &e->where);
5253 return false;
5256 if (!pointer && sym->attr.flavor == FL_PARAMETER)
5258 if (context)
5259 gfc_error ("Named constant %qs in variable definition context (%s)"
5260 " at %L", sym->name, context, &e->where);
5261 return false;
5263 if (!pointer && sym->attr.flavor != FL_VARIABLE
5264 && !(sym->attr.flavor == FL_PROCEDURE && sym == sym->result)
5265 && !(sym->attr.flavor == FL_PROCEDURE && sym->attr.proc_pointer))
5267 if (context)
5268 gfc_error ("%qs in variable definition context (%s) at %L is not"
5269 " a variable", sym->name, context, &e->where);
5270 return false;
5273 /* Find out whether the expr is a pointer; this also means following
5274 component references to the last one. */
5275 is_pointer = (attr.pointer || attr.proc_pointer);
5276 if (pointer && !is_pointer)
5278 if (context)
5279 gfc_error ("Non-POINTER in pointer association context (%s)"
5280 " at %L", context, &e->where);
5281 return false;
5284 if (e->ts.type == BT_DERIVED
5285 && e->ts.u.derived == NULL)
5287 if (context)
5288 gfc_error ("Type inaccessible in variable definition context (%s) "
5289 "at %L", context, &e->where);
5290 return false;
5293 /* F2008, C1303. */
5294 if (!alloc_obj
5295 && (attr.lock_comp
5296 || (e->ts.type == BT_DERIVED
5297 && e->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
5298 && e->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)))
5300 if (context)
5301 gfc_error ("LOCK_TYPE in variable definition context (%s) at %L",
5302 context, &e->where);
5303 return false;
5306 /* TS18508, C702/C203. */
5307 if (!alloc_obj
5308 && (attr.lock_comp
5309 || (e->ts.type == BT_DERIVED
5310 && e->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
5311 && e->ts.u.derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE)))
5313 if (context)
5314 gfc_error ("LOCK_EVENT in variable definition context (%s) at %L",
5315 context, &e->where);
5316 return false;
5319 /* INTENT(IN) dummy argument. Check this, unless the object itself is the
5320 component of sub-component of a pointer; we need to distinguish
5321 assignment to a pointer component from pointer-assignment to a pointer
5322 component. Note that (normal) assignment to procedure pointers is not
5323 possible. */
5324 check_intentin = !own_scope;
5325 ptr_component = (sym->ts.type == BT_CLASS && sym->ts.u.derived
5326 && CLASS_DATA (sym))
5327 ? CLASS_DATA (sym)->attr.class_pointer : sym->attr.pointer;
5328 for (ref = e->ref; ref && check_intentin; ref = ref->next)
5330 if (ptr_component && ref->type == REF_COMPONENT)
5331 check_intentin = false;
5332 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.pointer)
5334 ptr_component = true;
5335 if (!pointer)
5336 check_intentin = false;
5339 if (check_intentin && sym->attr.intent == INTENT_IN)
5341 if (pointer && is_pointer)
5343 if (context)
5344 gfc_error ("Dummy argument %qs with INTENT(IN) in pointer"
5345 " association context (%s) at %L",
5346 sym->name, context, &e->where);
5347 return false;
5349 if (!pointer && !is_pointer && !sym->attr.pointer)
5351 if (context)
5352 gfc_error ("Dummy argument %qs with INTENT(IN) in variable"
5353 " definition context (%s) at %L",
5354 sym->name, context, &e->where);
5355 return false;
5359 /* PROTECTED and use-associated. */
5360 if (sym->attr.is_protected && sym->attr.use_assoc && check_intentin)
5362 if (pointer && is_pointer)
5364 if (context)
5365 gfc_error ("Variable %qs is PROTECTED and can not appear in a"
5366 " pointer association context (%s) at %L",
5367 sym->name, context, &e->where);
5368 return false;
5370 if (!pointer && !is_pointer)
5372 if (context)
5373 gfc_error ("Variable %qs is PROTECTED and can not appear in a"
5374 " variable definition context (%s) at %L",
5375 sym->name, context, &e->where);
5376 return false;
5380 /* Variable not assignable from a PURE procedure but appears in
5381 variable definition context. */
5382 if (!pointer && !own_scope && gfc_pure (NULL) && gfc_impure_variable (sym))
5384 if (context)
5385 gfc_error ("Variable %qs can not appear in a variable definition"
5386 " context (%s) at %L in PURE procedure",
5387 sym->name, context, &e->where);
5388 return false;
5391 if (!pointer && context && gfc_implicit_pure (NULL)
5392 && gfc_impure_variable (sym))
5394 gfc_namespace *ns;
5395 gfc_symbol *sym;
5397 for (ns = gfc_current_ns; ns; ns = ns->parent)
5399 sym = ns->proc_name;
5400 if (sym == NULL)
5401 break;
5402 if (sym->attr.flavor == FL_PROCEDURE)
5404 sym->attr.implicit_pure = 0;
5405 break;
5409 /* Check variable definition context for associate-names. */
5410 if (!pointer && sym->assoc)
5412 const char* name;
5413 gfc_association_list* assoc;
5415 gcc_assert (sym->assoc->target);
5417 /* If this is a SELECT TYPE temporary (the association is used internally
5418 for SELECT TYPE), silently go over to the target. */
5419 if (sym->attr.select_type_temporary)
5421 gfc_expr* t = sym->assoc->target;
5423 gcc_assert (t->expr_type == EXPR_VARIABLE);
5424 name = t->symtree->name;
5426 if (t->symtree->n.sym->assoc)
5427 assoc = t->symtree->n.sym->assoc;
5428 else
5429 assoc = sym->assoc;
5431 else
5433 name = sym->name;
5434 assoc = sym->assoc;
5436 gcc_assert (name && assoc);
5438 /* Is association to a valid variable? */
5439 if (!assoc->variable)
5441 if (context)
5443 if (assoc->target->expr_type == EXPR_VARIABLE)
5444 gfc_error ("%qs at %L associated to vector-indexed target can"
5445 " not be used in a variable definition context (%s)",
5446 name, &e->where, context);
5447 else
5448 gfc_error ("%qs at %L associated to expression can"
5449 " not be used in a variable definition context (%s)",
5450 name, &e->where, context);
5452 return false;
5455 /* Target must be allowed to appear in a variable definition context. */
5456 if (!gfc_check_vardef_context (assoc->target, pointer, false, false, NULL))
5458 if (context)
5459 gfc_error ("Associate-name %qs can not appear in a variable"
5460 " definition context (%s) at %L because its target"
5461 " at %L can not, either",
5462 name, context, &e->where,
5463 &assoc->target->where);
5464 return false;
5468 /* Check for same value in vector expression subscript. */
5470 if (e->rank > 0)
5471 for (ref = e->ref; ref != NULL; ref = ref->next)
5472 if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION)
5473 for (i = 0; i < GFC_MAX_DIMENSIONS
5474 && ref->u.ar.dimen_type[i] != 0; i++)
5475 if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
5477 gfc_expr *arr = ref->u.ar.start[i];
5478 if (arr->expr_type == EXPR_ARRAY)
5480 gfc_constructor *c, *n;
5481 gfc_expr *ec, *en;
5483 for (c = gfc_constructor_first (arr->value.constructor);
5484 c != NULL; c = gfc_constructor_next (c))
5486 if (c == NULL || c->iterator != NULL)
5487 continue;
5489 ec = c->expr;
5491 for (n = gfc_constructor_next (c); n != NULL;
5492 n = gfc_constructor_next (n))
5494 if (n->iterator != NULL)
5495 continue;
5497 en = n->expr;
5498 if (gfc_dep_compare_expr (ec, en) == 0)
5500 if (context)
5501 gfc_error_now ("Elements with the same value "
5502 "at %L and %L in vector "
5503 "subscript in a variable "
5504 "definition context (%s)",
5505 &(ec->where), &(en->where),
5506 context);
5507 return false;
5514 return true;