2009-02-19 Richard Guenther <rguenther@suse.de>
[official-gcc.git] / gcc / tree-scalar-evolution.c
blobba15d52c68d7c56d9ed070c1ba875297262d0dc8
1 /* Scalar evolution detector.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 Free Software
3 Foundation, Inc.
4 Contributed by Sebastian Pop <s.pop@laposte.net>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /*
23 Description:
25 This pass analyzes the evolution of scalar variables in loop
26 structures. The algorithm is based on the SSA representation,
27 and on the loop hierarchy tree. This algorithm is not based on
28 the notion of versions of a variable, as it was the case for the
29 previous implementations of the scalar evolution algorithm, but
30 it assumes that each defined name is unique.
32 The notation used in this file is called "chains of recurrences",
33 and has been proposed by Eugene Zima, Robert Van Engelen, and
34 others for describing induction variables in programs. For example
35 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
36 when entering in the loop_1 and has a step 2 in this loop, in other
37 words "for (b = 0; b < N; b+=2);". Note that the coefficients of
38 this chain of recurrence (or chrec [shrek]) can contain the name of
39 other variables, in which case they are called parametric chrecs.
40 For example, "b -> {a, +, 2}_1" means that the initial value of "b"
41 is the value of "a". In most of the cases these parametric chrecs
42 are fully instantiated before their use because symbolic names can
43 hide some difficult cases such as self-references described later
44 (see the Fibonacci example).
46 A short sketch of the algorithm is:
48 Given a scalar variable to be analyzed, follow the SSA edge to
49 its definition:
51 - When the definition is a GIMPLE_ASSIGN: if the right hand side
52 (RHS) of the definition cannot be statically analyzed, the answer
53 of the analyzer is: "don't know".
54 Otherwise, for all the variables that are not yet analyzed in the
55 RHS, try to determine their evolution, and finally try to
56 evaluate the operation of the RHS that gives the evolution
57 function of the analyzed variable.
59 - When the definition is a condition-phi-node: determine the
60 evolution function for all the branches of the phi node, and
61 finally merge these evolutions (see chrec_merge).
63 - When the definition is a loop-phi-node: determine its initial
64 condition, that is the SSA edge defined in an outer loop, and
65 keep it symbolic. Then determine the SSA edges that are defined
66 in the body of the loop. Follow the inner edges until ending on
67 another loop-phi-node of the same analyzed loop. If the reached
68 loop-phi-node is not the starting loop-phi-node, then we keep
69 this definition under a symbolic form. If the reached
70 loop-phi-node is the same as the starting one, then we compute a
71 symbolic stride on the return path. The result is then the
72 symbolic chrec {initial_condition, +, symbolic_stride}_loop.
74 Examples:
76 Example 1: Illustration of the basic algorithm.
78 | a = 3
79 | loop_1
80 | b = phi (a, c)
81 | c = b + 1
82 | if (c > 10) exit_loop
83 | endloop
85 Suppose that we want to know the number of iterations of the
86 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
87 ask the scalar evolution analyzer two questions: what's the
88 scalar evolution (scev) of "c", and what's the scev of "10". For
89 "10" the answer is "10" since it is a scalar constant. For the
90 scalar variable "c", it follows the SSA edge to its definition,
91 "c = b + 1", and then asks again what's the scev of "b".
92 Following the SSA edge, we end on a loop-phi-node "b = phi (a,
93 c)", where the initial condition is "a", and the inner loop edge
94 is "c". The initial condition is kept under a symbolic form (it
95 may be the case that the copy constant propagation has done its
96 work and we end with the constant "3" as one of the edges of the
97 loop-phi-node). The update edge is followed to the end of the
98 loop, and until reaching again the starting loop-phi-node: b -> c
99 -> b. At this point we have drawn a path from "b" to "b" from
100 which we compute the stride in the loop: in this example it is
101 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
102 that the scev for "b" is known, it is possible to compute the
103 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
104 determine the number of iterations in the loop_1, we have to
105 instantiate_parameters (loop_1, {a + 1, +, 1}_1), that gives after some
106 more analysis the scev {4, +, 1}_1, or in other words, this is
107 the function "f (x) = x + 4", where x is the iteration count of
108 the loop_1. Now we have to solve the inequality "x + 4 > 10",
109 and take the smallest iteration number for which the loop is
110 exited: x = 7. This loop runs from x = 0 to x = 7, and in total
111 there are 8 iterations. In terms of loop normalization, we have
112 created a variable that is implicitly defined, "x" or just "_1",
113 and all the other analyzed scalars of the loop are defined in
114 function of this variable:
116 a -> 3
117 b -> {3, +, 1}_1
118 c -> {4, +, 1}_1
120 or in terms of a C program:
122 | a = 3
123 | for (x = 0; x <= 7; x++)
125 | b = x + 3
126 | c = x + 4
129 Example 2a: Illustration of the algorithm on nested loops.
131 | loop_1
132 | a = phi (1, b)
133 | c = a + 2
134 | loop_2 10 times
135 | b = phi (c, d)
136 | d = b + 3
137 | endloop
138 | endloop
140 For analyzing the scalar evolution of "a", the algorithm follows
141 the SSA edge into the loop's body: "a -> b". "b" is an inner
142 loop-phi-node, and its analysis as in Example 1, gives:
144 b -> {c, +, 3}_2
145 d -> {c + 3, +, 3}_2
147 Following the SSA edge for the initial condition, we end on "c = a
148 + 2", and then on the starting loop-phi-node "a". From this point,
149 the loop stride is computed: back on "c = a + 2" we get a "+2" in
150 the loop_1, then on the loop-phi-node "b" we compute the overall
151 effect of the inner loop that is "b = c + 30", and we get a "+30"
152 in the loop_1. That means that the overall stride in loop_1 is
153 equal to "+32", and the result is:
155 a -> {1, +, 32}_1
156 c -> {3, +, 32}_1
158 Example 2b: Multivariate chains of recurrences.
160 | loop_1
161 | k = phi (0, k + 1)
162 | loop_2 4 times
163 | j = phi (0, j + 1)
164 | loop_3 4 times
165 | i = phi (0, i + 1)
166 | A[j + k] = ...
167 | endloop
168 | endloop
169 | endloop
171 Analyzing the access function of array A with
172 instantiate_parameters (loop_1, "j + k"), we obtain the
173 instantiation and the analysis of the scalar variables "j" and "k"
174 in loop_1. This leads to the scalar evolution {4, +, 1}_1: the end
175 value of loop_2 for "j" is 4, and the evolution of "k" in loop_1 is
176 {0, +, 1}_1. To obtain the evolution function in loop_3 and
177 instantiate the scalar variables up to loop_1, one has to use:
178 instantiate_scev (block_before_loop (loop_1), loop_3, "j + k").
179 The result of this call is {{0, +, 1}_1, +, 1}_2.
181 Example 3: Higher degree polynomials.
183 | loop_1
184 | a = phi (2, b)
185 | c = phi (5, d)
186 | b = a + 1
187 | d = c + a
188 | endloop
190 a -> {2, +, 1}_1
191 b -> {3, +, 1}_1
192 c -> {5, +, a}_1
193 d -> {5 + a, +, a}_1
195 instantiate_parameters (loop_1, {5, +, a}_1) -> {5, +, 2, +, 1}_1
196 instantiate_parameters (loop_1, {5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
198 Example 4: Lucas, Fibonacci, or mixers in general.
200 | loop_1
201 | a = phi (1, b)
202 | c = phi (3, d)
203 | b = c
204 | d = c + a
205 | endloop
207 a -> (1, c)_1
208 c -> {3, +, a}_1
210 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
211 following semantics: during the first iteration of the loop_1, the
212 variable contains the value 1, and then it contains the value "c".
213 Note that this syntax is close to the syntax of the loop-phi-node:
214 "a -> (1, c)_1" vs. "a = phi (1, c)".
216 The symbolic chrec representation contains all the semantics of the
217 original code. What is more difficult is to use this information.
219 Example 5: Flip-flops, or exchangers.
221 | loop_1
222 | a = phi (1, b)
223 | c = phi (3, d)
224 | b = c
225 | d = a
226 | endloop
228 a -> (1, c)_1
229 c -> (3, a)_1
231 Based on these symbolic chrecs, it is possible to refine this
232 information into the more precise PERIODIC_CHRECs:
234 a -> |1, 3|_1
235 c -> |3, 1|_1
237 This transformation is not yet implemented.
239 Further readings:
241 You can find a more detailed description of the algorithm in:
242 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
243 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
244 this is a preliminary report and some of the details of the
245 algorithm have changed. I'm working on a research report that
246 updates the description of the algorithms to reflect the design
247 choices used in this implementation.
249 A set of slides show a high level overview of the algorithm and run
250 an example through the scalar evolution analyzer:
251 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
253 The slides that I have presented at the GCC Summit'04 are available
254 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
257 #include "config.h"
258 #include "system.h"
259 #include "coretypes.h"
260 #include "tm.h"
261 #include "ggc.h"
262 #include "tree.h"
263 #include "real.h"
265 /* These RTL headers are needed for basic-block.h. */
266 #include "rtl.h"
267 #include "basic-block.h"
268 #include "diagnostic.h"
269 #include "tree-flow.h"
270 #include "tree-dump.h"
271 #include "timevar.h"
272 #include "cfgloop.h"
273 #include "tree-chrec.h"
274 #include "tree-scalar-evolution.h"
275 #include "tree-pass.h"
276 #include "flags.h"
277 #include "params.h"
279 static tree analyze_scalar_evolution_1 (struct loop *, tree, tree);
281 /* The cached information about an SSA name VAR, claiming that below
282 basic block INSTANTIATED_BELOW, the value of VAR can be expressed
283 as CHREC. */
285 struct scev_info_str GTY(())
287 basic_block instantiated_below;
288 tree var;
289 tree chrec;
292 /* Counters for the scev database. */
293 static unsigned nb_set_scev = 0;
294 static unsigned nb_get_scev = 0;
296 /* The following trees are unique elements. Thus the comparison of
297 another element to these elements should be done on the pointer to
298 these trees, and not on their value. */
300 /* The SSA_NAMEs that are not yet analyzed are qualified with NULL_TREE. */
301 tree chrec_not_analyzed_yet;
303 /* Reserved to the cases where the analyzer has detected an
304 undecidable property at compile time. */
305 tree chrec_dont_know;
307 /* When the analyzer has detected that a property will never
308 happen, then it qualifies it with chrec_known. */
309 tree chrec_known;
311 static GTY ((param_is (struct scev_info_str))) htab_t scalar_evolution_info;
314 /* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */
316 static inline struct scev_info_str *
317 new_scev_info_str (basic_block instantiated_below, tree var)
319 struct scev_info_str *res;
321 res = GGC_NEW (struct scev_info_str);
322 res->var = var;
323 res->chrec = chrec_not_analyzed_yet;
324 res->instantiated_below = instantiated_below;
326 return res;
329 /* Computes a hash function for database element ELT. */
331 static hashval_t
332 hash_scev_info (const void *elt)
334 return SSA_NAME_VERSION (((const struct scev_info_str *) elt)->var);
337 /* Compares database elements E1 and E2. */
339 static int
340 eq_scev_info (const void *e1, const void *e2)
342 const struct scev_info_str *elt1 = (const struct scev_info_str *) e1;
343 const struct scev_info_str *elt2 = (const struct scev_info_str *) e2;
345 return (elt1->var == elt2->var
346 && elt1->instantiated_below == elt2->instantiated_below);
349 /* Deletes database element E. */
351 static void
352 del_scev_info (void *e)
354 ggc_free (e);
357 /* Get the scalar evolution of VAR for INSTANTIATED_BELOW basic block.
358 A first query on VAR returns chrec_not_analyzed_yet. */
360 static tree *
361 find_var_scev_info (basic_block instantiated_below, tree var)
363 struct scev_info_str *res;
364 struct scev_info_str tmp;
365 PTR *slot;
367 tmp.var = var;
368 tmp.instantiated_below = instantiated_below;
369 slot = htab_find_slot (scalar_evolution_info, &tmp, INSERT);
371 if (!*slot)
372 *slot = new_scev_info_str (instantiated_below, var);
373 res = (struct scev_info_str *) *slot;
375 return &res->chrec;
378 /* Return true when CHREC contains symbolic names defined in
379 LOOP_NB. */
381 bool
382 chrec_contains_symbols_defined_in_loop (const_tree chrec, unsigned loop_nb)
384 int i, n;
386 if (chrec == NULL_TREE)
387 return false;
389 if (is_gimple_min_invariant (chrec))
390 return false;
392 if (TREE_CODE (chrec) == VAR_DECL
393 || TREE_CODE (chrec) == PARM_DECL
394 || TREE_CODE (chrec) == FUNCTION_DECL
395 || TREE_CODE (chrec) == LABEL_DECL
396 || TREE_CODE (chrec) == RESULT_DECL
397 || TREE_CODE (chrec) == FIELD_DECL)
398 return true;
400 if (TREE_CODE (chrec) == SSA_NAME)
402 gimple def = SSA_NAME_DEF_STMT (chrec);
403 struct loop *def_loop = loop_containing_stmt (def);
404 struct loop *loop = get_loop (loop_nb);
406 if (def_loop == NULL)
407 return false;
409 if (loop == def_loop || flow_loop_nested_p (loop, def_loop))
410 return true;
412 return false;
415 n = TREE_OPERAND_LENGTH (chrec);
416 for (i = 0; i < n; i++)
417 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, i),
418 loop_nb))
419 return true;
420 return false;
423 /* Return true when PHI is a loop-phi-node. */
425 static bool
426 loop_phi_node_p (gimple phi)
428 /* The implementation of this function is based on the following
429 property: "all the loop-phi-nodes of a loop are contained in the
430 loop's header basic block". */
432 return loop_containing_stmt (phi)->header == gimple_bb (phi);
435 /* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
436 In general, in the case of multivariate evolutions we want to get
437 the evolution in different loops. LOOP specifies the level for
438 which to get the evolution.
440 Example:
442 | for (j = 0; j < 100; j++)
444 | for (k = 0; k < 100; k++)
446 | i = k + j; - Here the value of i is a function of j, k.
448 | ... = i - Here the value of i is a function of j.
450 | ... = i - Here the value of i is a scalar.
452 Example:
454 | i_0 = ...
455 | loop_1 10 times
456 | i_1 = phi (i_0, i_2)
457 | i_2 = i_1 + 2
458 | endloop
460 This loop has the same effect as:
461 LOOP_1 has the same effect as:
463 | i_1 = i_0 + 20
465 The overall effect of the loop, "i_0 + 20" in the previous example,
466 is obtained by passing in the parameters: LOOP = 1,
467 EVOLUTION_FN = {i_0, +, 2}_1.
470 static tree
471 compute_overall_effect_of_inner_loop (struct loop *loop, tree evolution_fn)
473 bool val = false;
475 if (evolution_fn == chrec_dont_know)
476 return chrec_dont_know;
478 else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC)
480 struct loop *inner_loop = get_chrec_loop (evolution_fn);
482 if (inner_loop == loop
483 || flow_loop_nested_p (loop, inner_loop))
485 tree nb_iter = number_of_latch_executions (inner_loop);
487 if (nb_iter == chrec_dont_know)
488 return chrec_dont_know;
489 else
491 tree res;
493 /* evolution_fn is the evolution function in LOOP. Get
494 its value in the nb_iter-th iteration. */
495 res = chrec_apply (inner_loop->num, evolution_fn, nb_iter);
497 /* Continue the computation until ending on a parent of LOOP. */
498 return compute_overall_effect_of_inner_loop (loop, res);
501 else
502 return evolution_fn;
505 /* If the evolution function is an invariant, there is nothing to do. */
506 else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val)
507 return evolution_fn;
509 else
510 return chrec_dont_know;
513 /* Determine whether the CHREC is always positive/negative. If the expression
514 cannot be statically analyzed, return false, otherwise set the answer into
515 VALUE. */
517 bool
518 chrec_is_positive (tree chrec, bool *value)
520 bool value0, value1, value2;
521 tree end_value, nb_iter;
523 switch (TREE_CODE (chrec))
525 case POLYNOMIAL_CHREC:
526 if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
527 || !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
528 return false;
530 /* FIXME -- overflows. */
531 if (value0 == value1)
533 *value = value0;
534 return true;
537 /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
538 and the proof consists in showing that the sign never
539 changes during the execution of the loop, from 0 to
540 loop->nb_iterations. */
541 if (!evolution_function_is_affine_p (chrec))
542 return false;
544 nb_iter = number_of_latch_executions (get_chrec_loop (chrec));
545 if (chrec_contains_undetermined (nb_iter))
546 return false;
548 #if 0
549 /* TODO -- If the test is after the exit, we may decrease the number of
550 iterations by one. */
551 if (after_exit)
552 nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
553 #endif
555 end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
557 if (!chrec_is_positive (end_value, &value2))
558 return false;
560 *value = value0;
561 return value0 == value1;
563 case INTEGER_CST:
564 *value = (tree_int_cst_sgn (chrec) == 1);
565 return true;
567 default:
568 return false;
572 /* Associate CHREC to SCALAR. */
574 static void
575 set_scalar_evolution (basic_block instantiated_below, tree scalar, tree chrec)
577 tree *scalar_info;
579 if (TREE_CODE (scalar) != SSA_NAME)
580 return;
582 scalar_info = find_var_scev_info (instantiated_below, scalar);
584 if (dump_file)
586 if (dump_flags & TDF_DETAILS)
588 fprintf (dump_file, "(set_scalar_evolution \n");
589 fprintf (dump_file, " instantiated_below = %d \n",
590 instantiated_below->index);
591 fprintf (dump_file, " (scalar = ");
592 print_generic_expr (dump_file, scalar, 0);
593 fprintf (dump_file, ")\n (scalar_evolution = ");
594 print_generic_expr (dump_file, chrec, 0);
595 fprintf (dump_file, "))\n");
597 if (dump_flags & TDF_STATS)
598 nb_set_scev++;
601 *scalar_info = chrec;
604 /* Retrieve the chrec associated to SCALAR instantiated below
605 INSTANTIATED_BELOW block. */
607 static tree
608 get_scalar_evolution (basic_block instantiated_below, tree scalar)
610 tree res;
612 if (dump_file)
614 if (dump_flags & TDF_DETAILS)
616 fprintf (dump_file, "(get_scalar_evolution \n");
617 fprintf (dump_file, " (scalar = ");
618 print_generic_expr (dump_file, scalar, 0);
619 fprintf (dump_file, ")\n");
621 if (dump_flags & TDF_STATS)
622 nb_get_scev++;
625 switch (TREE_CODE (scalar))
627 case SSA_NAME:
628 res = *find_var_scev_info (instantiated_below, scalar);
629 break;
631 case REAL_CST:
632 case FIXED_CST:
633 case INTEGER_CST:
634 res = scalar;
635 break;
637 default:
638 res = chrec_not_analyzed_yet;
639 break;
642 if (dump_file && (dump_flags & TDF_DETAILS))
644 fprintf (dump_file, " (scalar_evolution = ");
645 print_generic_expr (dump_file, res, 0);
646 fprintf (dump_file, "))\n");
649 return res;
652 /* Helper function for add_to_evolution. Returns the evolution
653 function for an assignment of the form "a = b + c", where "a" and
654 "b" are on the strongly connected component. CHREC_BEFORE is the
655 information that we already have collected up to this point.
656 TO_ADD is the evolution of "c".
658 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
659 evolution the expression TO_ADD, otherwise construct an evolution
660 part for this loop. */
662 static tree
663 add_to_evolution_1 (unsigned loop_nb, tree chrec_before, tree to_add,
664 gimple at_stmt)
666 tree type, left, right;
667 struct loop *loop = get_loop (loop_nb), *chloop;
669 switch (TREE_CODE (chrec_before))
671 case POLYNOMIAL_CHREC:
672 chloop = get_chrec_loop (chrec_before);
673 if (chloop == loop
674 || flow_loop_nested_p (chloop, loop))
676 unsigned var;
678 type = chrec_type (chrec_before);
680 /* When there is no evolution part in this loop, build it. */
681 if (chloop != loop)
683 var = loop_nb;
684 left = chrec_before;
685 right = SCALAR_FLOAT_TYPE_P (type)
686 ? build_real (type, dconst0)
687 : build_int_cst (type, 0);
689 else
691 var = CHREC_VARIABLE (chrec_before);
692 left = CHREC_LEFT (chrec_before);
693 right = CHREC_RIGHT (chrec_before);
696 to_add = chrec_convert (type, to_add, at_stmt);
697 right = chrec_convert_rhs (type, right, at_stmt);
698 right = chrec_fold_plus (chrec_type (right), right, to_add);
699 return build_polynomial_chrec (var, left, right);
701 else
703 gcc_assert (flow_loop_nested_p (loop, chloop));
705 /* Search the evolution in LOOP_NB. */
706 left = add_to_evolution_1 (loop_nb, CHREC_LEFT (chrec_before),
707 to_add, at_stmt);
708 right = CHREC_RIGHT (chrec_before);
709 right = chrec_convert_rhs (chrec_type (left), right, at_stmt);
710 return build_polynomial_chrec (CHREC_VARIABLE (chrec_before),
711 left, right);
714 default:
715 /* These nodes do not depend on a loop. */
716 if (chrec_before == chrec_dont_know)
717 return chrec_dont_know;
719 left = chrec_before;
720 right = chrec_convert_rhs (chrec_type (left), to_add, at_stmt);
721 return build_polynomial_chrec (loop_nb, left, right);
725 /* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
726 of LOOP_NB.
728 Description (provided for completeness, for those who read code in
729 a plane, and for my poor 62 bytes brain that would have forgotten
730 all this in the next two or three months):
732 The algorithm of translation of programs from the SSA representation
733 into the chrecs syntax is based on a pattern matching. After having
734 reconstructed the overall tree expression for a loop, there are only
735 two cases that can arise:
737 1. a = loop-phi (init, a + expr)
738 2. a = loop-phi (init, expr)
740 where EXPR is either a scalar constant with respect to the analyzed
741 loop (this is a degree 0 polynomial), or an expression containing
742 other loop-phi definitions (these are higher degree polynomials).
744 Examples:
747 | init = ...
748 | loop_1
749 | a = phi (init, a + 5)
750 | endloop
753 | inita = ...
754 | initb = ...
755 | loop_1
756 | a = phi (inita, 2 * b + 3)
757 | b = phi (initb, b + 1)
758 | endloop
760 For the first case, the semantics of the SSA representation is:
762 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
764 that is, there is a loop index "x" that determines the scalar value
765 of the variable during the loop execution. During the first
766 iteration, the value is that of the initial condition INIT, while
767 during the subsequent iterations, it is the sum of the initial
768 condition with the sum of all the values of EXPR from the initial
769 iteration to the before last considered iteration.
771 For the second case, the semantics of the SSA program is:
773 | a (x) = init, if x = 0;
774 | expr (x - 1), otherwise.
776 The second case corresponds to the PEELED_CHREC, whose syntax is
777 close to the syntax of a loop-phi-node:
779 | phi (init, expr) vs. (init, expr)_x
781 The proof of the translation algorithm for the first case is a
782 proof by structural induction based on the degree of EXPR.
784 Degree 0:
785 When EXPR is a constant with respect to the analyzed loop, or in
786 other words when EXPR is a polynomial of degree 0, the evolution of
787 the variable A in the loop is an affine function with an initial
788 condition INIT, and a step EXPR. In order to show this, we start
789 from the semantics of the SSA representation:
791 f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
793 and since "expr (j)" is a constant with respect to "j",
795 f (x) = init + x * expr
797 Finally, based on the semantics of the pure sum chrecs, by
798 identification we get the corresponding chrecs syntax:
800 f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
801 f (x) -> {init, +, expr}_x
803 Higher degree:
804 Suppose that EXPR is a polynomial of degree N with respect to the
805 analyzed loop_x for which we have already determined that it is
806 written under the chrecs syntax:
808 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
810 We start from the semantics of the SSA program:
812 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
814 | f (x) = init + \sum_{j = 0}^{x - 1}
815 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
817 | f (x) = init + \sum_{j = 0}^{x - 1}
818 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
820 | f (x) = init + \sum_{k = 0}^{n - 1}
821 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
823 | f (x) = init + \sum_{k = 0}^{n - 1}
824 | (b_k * \binom{x}{k + 1})
826 | f (x) = init + b_0 * \binom{x}{1} + ...
827 | + b_{n-1} * \binom{x}{n}
829 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
830 | + b_{n-1} * \binom{x}{n}
833 And finally from the definition of the chrecs syntax, we identify:
834 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
836 This shows the mechanism that stands behind the add_to_evolution
837 function. An important point is that the use of symbolic
838 parameters avoids the need of an analysis schedule.
840 Example:
842 | inita = ...
843 | initb = ...
844 | loop_1
845 | a = phi (inita, a + 2 + b)
846 | b = phi (initb, b + 1)
847 | endloop
849 When analyzing "a", the algorithm keeps "b" symbolically:
851 | a -> {inita, +, 2 + b}_1
853 Then, after instantiation, the analyzer ends on the evolution:
855 | a -> {inita, +, 2 + initb, +, 1}_1
859 static tree
860 add_to_evolution (unsigned loop_nb, tree chrec_before, enum tree_code code,
861 tree to_add, gimple at_stmt)
863 tree type = chrec_type (to_add);
864 tree res = NULL_TREE;
866 if (to_add == NULL_TREE)
867 return chrec_before;
869 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
870 instantiated at this point. */
871 if (TREE_CODE (to_add) == POLYNOMIAL_CHREC)
872 /* This should not happen. */
873 return chrec_dont_know;
875 if (dump_file && (dump_flags & TDF_DETAILS))
877 fprintf (dump_file, "(add_to_evolution \n");
878 fprintf (dump_file, " (loop_nb = %d)\n", loop_nb);
879 fprintf (dump_file, " (chrec_before = ");
880 print_generic_expr (dump_file, chrec_before, 0);
881 fprintf (dump_file, ")\n (to_add = ");
882 print_generic_expr (dump_file, to_add, 0);
883 fprintf (dump_file, ")\n");
886 if (code == MINUS_EXPR)
887 to_add = chrec_fold_multiply (type, to_add, SCALAR_FLOAT_TYPE_P (type)
888 ? build_real (type, dconstm1)
889 : build_int_cst_type (type, -1));
891 res = add_to_evolution_1 (loop_nb, chrec_before, to_add, at_stmt);
893 if (dump_file && (dump_flags & TDF_DETAILS))
895 fprintf (dump_file, " (res = ");
896 print_generic_expr (dump_file, res, 0);
897 fprintf (dump_file, "))\n");
900 return res;
903 /* Helper function. */
905 static inline tree
906 set_nb_iterations_in_loop (struct loop *loop,
907 tree res)
909 if (dump_file && (dump_flags & TDF_DETAILS))
911 fprintf (dump_file, " (set_nb_iterations_in_loop = ");
912 print_generic_expr (dump_file, res, 0);
913 fprintf (dump_file, "))\n");
916 loop->nb_iterations = res;
917 return res;
922 /* This section selects the loops that will be good candidates for the
923 scalar evolution analysis. For the moment, greedily select all the
924 loop nests we could analyze. */
926 /* For a loop with a single exit edge, return the COND_EXPR that
927 guards the exit edge. If the expression is too difficult to
928 analyze, then give up. */
930 gimple
931 get_loop_exit_condition (const struct loop *loop)
933 gimple res = NULL;
934 edge exit_edge = single_exit (loop);
936 if (dump_file && (dump_flags & TDF_DETAILS))
937 fprintf (dump_file, "(get_loop_exit_condition \n ");
939 if (exit_edge)
941 gimple stmt;
943 stmt = last_stmt (exit_edge->src);
944 if (gimple_code (stmt) == GIMPLE_COND)
945 res = stmt;
948 if (dump_file && (dump_flags & TDF_DETAILS))
950 print_gimple_stmt (dump_file, res, 0, 0);
951 fprintf (dump_file, ")\n");
954 return res;
957 /* Recursively determine and enqueue the exit conditions for a loop. */
959 static void
960 get_exit_conditions_rec (struct loop *loop,
961 VEC(gimple,heap) **exit_conditions)
963 if (!loop)
964 return;
966 /* Recurse on the inner loops, then on the next (sibling) loops. */
967 get_exit_conditions_rec (loop->inner, exit_conditions);
968 get_exit_conditions_rec (loop->next, exit_conditions);
970 if (single_exit (loop))
972 gimple loop_condition = get_loop_exit_condition (loop);
974 if (loop_condition)
975 VEC_safe_push (gimple, heap, *exit_conditions, loop_condition);
979 /* Select the candidate loop nests for the analysis. This function
980 initializes the EXIT_CONDITIONS array. */
982 static void
983 select_loops_exit_conditions (VEC(gimple,heap) **exit_conditions)
985 struct loop *function_body = current_loops->tree_root;
987 get_exit_conditions_rec (function_body->inner, exit_conditions);
991 /* Depth first search algorithm. */
993 typedef enum t_bool {
994 t_false,
995 t_true,
996 t_dont_know
997 } t_bool;
1000 static t_bool follow_ssa_edge (struct loop *loop, gimple, gimple, tree *, int);
1002 /* Follow the ssa edge into the binary expression RHS0 CODE RHS1.
1003 Return true if the strongly connected component has been found. */
1005 static t_bool
1006 follow_ssa_edge_binary (struct loop *loop, gimple at_stmt,
1007 tree type, tree rhs0, enum tree_code code, tree rhs1,
1008 gimple halting_phi, tree *evolution_of_loop, int limit)
1010 t_bool res = t_false;
1011 tree evol;
1013 switch (code)
1015 case POINTER_PLUS_EXPR:
1016 case PLUS_EXPR:
1017 if (TREE_CODE (rhs0) == SSA_NAME)
1019 if (TREE_CODE (rhs1) == SSA_NAME)
1021 /* Match an assignment under the form:
1022 "a = b + c". */
1024 /* We want only assignments of form "name + name" contribute to
1025 LIMIT, as the other cases do not necessarily contribute to
1026 the complexity of the expression. */
1027 limit++;
1029 evol = *evolution_of_loop;
1030 res = follow_ssa_edge
1031 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi, &evol, limit);
1033 if (res == t_true)
1034 *evolution_of_loop = add_to_evolution
1035 (loop->num,
1036 chrec_convert (type, evol, at_stmt),
1037 code, rhs1, at_stmt);
1039 else if (res == t_false)
1041 res = follow_ssa_edge
1042 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1043 evolution_of_loop, limit);
1045 if (res == t_true)
1046 *evolution_of_loop = add_to_evolution
1047 (loop->num,
1048 chrec_convert (type, *evolution_of_loop, at_stmt),
1049 code, rhs0, at_stmt);
1051 else if (res == t_dont_know)
1052 *evolution_of_loop = chrec_dont_know;
1055 else if (res == t_dont_know)
1056 *evolution_of_loop = chrec_dont_know;
1059 else
1061 /* Match an assignment under the form:
1062 "a = b + ...". */
1063 res = follow_ssa_edge
1064 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1065 evolution_of_loop, limit);
1066 if (res == t_true)
1067 *evolution_of_loop = add_to_evolution
1068 (loop->num, chrec_convert (type, *evolution_of_loop,
1069 at_stmt),
1070 code, rhs1, at_stmt);
1072 else if (res == t_dont_know)
1073 *evolution_of_loop = chrec_dont_know;
1077 else if (TREE_CODE (rhs1) == SSA_NAME)
1079 /* Match an assignment under the form:
1080 "a = ... + c". */
1081 res = follow_ssa_edge
1082 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1083 evolution_of_loop, limit);
1084 if (res == t_true)
1085 *evolution_of_loop = add_to_evolution
1086 (loop->num, chrec_convert (type, *evolution_of_loop,
1087 at_stmt),
1088 code, rhs0, at_stmt);
1090 else if (res == t_dont_know)
1091 *evolution_of_loop = chrec_dont_know;
1094 else
1095 /* Otherwise, match an assignment under the form:
1096 "a = ... + ...". */
1097 /* And there is nothing to do. */
1098 res = t_false;
1099 break;
1101 case MINUS_EXPR:
1102 /* This case is under the form "opnd0 = rhs0 - rhs1". */
1103 if (TREE_CODE (rhs0) == SSA_NAME)
1105 /* Match an assignment under the form:
1106 "a = b - ...". */
1108 /* We want only assignments of form "name - name" contribute to
1109 LIMIT, as the other cases do not necessarily contribute to
1110 the complexity of the expression. */
1111 if (TREE_CODE (rhs1) == SSA_NAME)
1112 limit++;
1114 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1115 evolution_of_loop, limit);
1116 if (res == t_true)
1117 *evolution_of_loop = add_to_evolution
1118 (loop->num, chrec_convert (type, *evolution_of_loop, at_stmt),
1119 MINUS_EXPR, rhs1, at_stmt);
1121 else if (res == t_dont_know)
1122 *evolution_of_loop = chrec_dont_know;
1124 else
1125 /* Otherwise, match an assignment under the form:
1126 "a = ... - ...". */
1127 /* And there is nothing to do. */
1128 res = t_false;
1129 break;
1131 default:
1132 res = t_false;
1135 return res;
1138 /* Follow the ssa edge into the expression EXPR.
1139 Return true if the strongly connected component has been found. */
1141 static t_bool
1142 follow_ssa_edge_expr (struct loop *loop, gimple at_stmt, tree expr,
1143 gimple halting_phi, tree *evolution_of_loop, int limit)
1145 t_bool res = t_false;
1146 tree rhs0, rhs1;
1147 tree type = TREE_TYPE (expr);
1148 enum tree_code code;
1150 /* The EXPR is one of the following cases:
1151 - an SSA_NAME,
1152 - an INTEGER_CST,
1153 - a PLUS_EXPR,
1154 - a POINTER_PLUS_EXPR,
1155 - a MINUS_EXPR,
1156 - an ASSERT_EXPR,
1157 - other cases are not yet handled. */
1158 code = TREE_CODE (expr);
1159 switch (code)
1161 case NOP_EXPR:
1162 /* This assignment is under the form "a_1 = (cast) rhs. */
1163 res = follow_ssa_edge_expr (loop, at_stmt, TREE_OPERAND (expr, 0),
1164 halting_phi, evolution_of_loop, limit);
1165 *evolution_of_loop = chrec_convert (type, *evolution_of_loop, at_stmt);
1166 break;
1168 case INTEGER_CST:
1169 /* This assignment is under the form "a_1 = 7". */
1170 res = t_false;
1171 break;
1173 case SSA_NAME:
1174 /* This assignment is under the form: "a_1 = b_2". */
1175 res = follow_ssa_edge
1176 (loop, SSA_NAME_DEF_STMT (expr), halting_phi, evolution_of_loop, limit);
1177 break;
1179 case POINTER_PLUS_EXPR:
1180 case PLUS_EXPR:
1181 case MINUS_EXPR:
1182 /* This case is under the form "rhs0 +- rhs1". */
1183 rhs0 = TREE_OPERAND (expr, 0);
1184 rhs1 = TREE_OPERAND (expr, 1);
1185 STRIP_TYPE_NOPS (rhs0);
1186 STRIP_TYPE_NOPS (rhs1);
1187 return follow_ssa_edge_binary (loop, at_stmt, type, rhs0, code, rhs1,
1188 halting_phi, evolution_of_loop, limit);
1190 case ASSERT_EXPR:
1192 /* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
1193 It must be handled as a copy assignment of the form a_1 = a_2. */
1194 tree op0 = ASSERT_EXPR_VAR (expr);
1195 if (TREE_CODE (op0) == SSA_NAME)
1196 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (op0),
1197 halting_phi, evolution_of_loop, limit);
1198 else
1199 res = t_false;
1200 break;
1204 default:
1205 res = t_false;
1206 break;
1209 return res;
1212 /* Follow the ssa edge into the right hand side of an assignment STMT.
1213 Return true if the strongly connected component has been found. */
1215 static t_bool
1216 follow_ssa_edge_in_rhs (struct loop *loop, gimple stmt,
1217 gimple halting_phi, tree *evolution_of_loop, int limit)
1219 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
1220 enum tree_code code = gimple_assign_rhs_code (stmt);
1222 switch (get_gimple_rhs_class (code))
1224 case GIMPLE_BINARY_RHS:
1225 return follow_ssa_edge_binary (loop, stmt, type,
1226 gimple_assign_rhs1 (stmt), code,
1227 gimple_assign_rhs2 (stmt),
1228 halting_phi, evolution_of_loop, limit);
1229 case GIMPLE_SINGLE_RHS:
1230 return follow_ssa_edge_expr (loop, stmt, gimple_assign_rhs1 (stmt),
1231 halting_phi, evolution_of_loop, limit);
1232 case GIMPLE_UNARY_RHS:
1233 if (code == NOP_EXPR)
1235 /* This assignment is under the form "a_1 = (cast) rhs. */
1236 t_bool res
1237 = follow_ssa_edge_expr (loop, stmt, gimple_assign_rhs1 (stmt),
1238 halting_phi, evolution_of_loop, limit);
1239 *evolution_of_loop = chrec_convert (type, *evolution_of_loop, stmt);
1240 return res;
1242 /* FALLTHRU */
1244 default:
1245 return t_false;
1249 /* Checks whether the I-th argument of a PHI comes from a backedge. */
1251 static bool
1252 backedge_phi_arg_p (gimple phi, int i)
1254 const_edge e = gimple_phi_arg_edge (phi, i);
1256 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
1257 about updating it anywhere, and this should work as well most of the
1258 time. */
1259 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1260 return true;
1262 return false;
1265 /* Helper function for one branch of the condition-phi-node. Return
1266 true if the strongly connected component has been found following
1267 this path. */
1269 static inline t_bool
1270 follow_ssa_edge_in_condition_phi_branch (int i,
1271 struct loop *loop,
1272 gimple condition_phi,
1273 gimple halting_phi,
1274 tree *evolution_of_branch,
1275 tree init_cond, int limit)
1277 tree branch = PHI_ARG_DEF (condition_phi, i);
1278 *evolution_of_branch = chrec_dont_know;
1280 /* Do not follow back edges (they must belong to an irreducible loop, which
1281 we really do not want to worry about). */
1282 if (backedge_phi_arg_p (condition_phi, i))
1283 return t_false;
1285 if (TREE_CODE (branch) == SSA_NAME)
1287 *evolution_of_branch = init_cond;
1288 return follow_ssa_edge (loop, SSA_NAME_DEF_STMT (branch), halting_phi,
1289 evolution_of_branch, limit);
1292 /* This case occurs when one of the condition branches sets
1293 the variable to a constant: i.e. a phi-node like
1294 "a_2 = PHI <a_7(5), 2(6)>;".
1296 FIXME: This case have to be refined correctly:
1297 in some cases it is possible to say something better than
1298 chrec_dont_know, for example using a wrap-around notation. */
1299 return t_false;
1302 /* This function merges the branches of a condition-phi-node in a
1303 loop. */
1305 static t_bool
1306 follow_ssa_edge_in_condition_phi (struct loop *loop,
1307 gimple condition_phi,
1308 gimple halting_phi,
1309 tree *evolution_of_loop, int limit)
1311 int i, n;
1312 tree init = *evolution_of_loop;
1313 tree evolution_of_branch;
1314 t_bool res = follow_ssa_edge_in_condition_phi_branch (0, loop, condition_phi,
1315 halting_phi,
1316 &evolution_of_branch,
1317 init, limit);
1318 if (res == t_false || res == t_dont_know)
1319 return res;
1321 *evolution_of_loop = evolution_of_branch;
1323 /* If the phi node is just a copy, do not increase the limit. */
1324 n = gimple_phi_num_args (condition_phi);
1325 if (n > 1)
1326 limit++;
1328 for (i = 1; i < n; i++)
1330 /* Quickly give up when the evolution of one of the branches is
1331 not known. */
1332 if (*evolution_of_loop == chrec_dont_know)
1333 return t_true;
1335 res = follow_ssa_edge_in_condition_phi_branch (i, loop, condition_phi,
1336 halting_phi,
1337 &evolution_of_branch,
1338 init, limit);
1339 if (res == t_false || res == t_dont_know)
1340 return res;
1342 *evolution_of_loop = chrec_merge (*evolution_of_loop,
1343 evolution_of_branch);
1346 return t_true;
1349 /* Follow an SSA edge in an inner loop. It computes the overall
1350 effect of the loop, and following the symbolic initial conditions,
1351 it follows the edges in the parent loop. The inner loop is
1352 considered as a single statement. */
1354 static t_bool
1355 follow_ssa_edge_inner_loop_phi (struct loop *outer_loop,
1356 gimple loop_phi_node,
1357 gimple halting_phi,
1358 tree *evolution_of_loop, int limit)
1360 struct loop *loop = loop_containing_stmt (loop_phi_node);
1361 tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node));
1363 /* Sometimes, the inner loop is too difficult to analyze, and the
1364 result of the analysis is a symbolic parameter. */
1365 if (ev == PHI_RESULT (loop_phi_node))
1367 t_bool res = t_false;
1368 int i, n = gimple_phi_num_args (loop_phi_node);
1370 for (i = 0; i < n; i++)
1372 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1373 basic_block bb;
1375 /* Follow the edges that exit the inner loop. */
1376 bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
1377 if (!flow_bb_inside_loop_p (loop, bb))
1378 res = follow_ssa_edge_expr (outer_loop, loop_phi_node,
1379 arg, halting_phi,
1380 evolution_of_loop, limit);
1381 if (res == t_true)
1382 break;
1385 /* If the path crosses this loop-phi, give up. */
1386 if (res == t_true)
1387 *evolution_of_loop = chrec_dont_know;
1389 return res;
1392 /* Otherwise, compute the overall effect of the inner loop. */
1393 ev = compute_overall_effect_of_inner_loop (loop, ev);
1394 return follow_ssa_edge_expr (outer_loop, loop_phi_node, ev, halting_phi,
1395 evolution_of_loop, limit);
1398 /* Follow an SSA edge from a loop-phi-node to itself, constructing a
1399 path that is analyzed on the return walk. */
1401 static t_bool
1402 follow_ssa_edge (struct loop *loop, gimple def, gimple halting_phi,
1403 tree *evolution_of_loop, int limit)
1405 struct loop *def_loop;
1407 if (gimple_nop_p (def))
1408 return t_false;
1410 /* Give up if the path is longer than the MAX that we allow. */
1411 if (limit > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
1412 return t_dont_know;
1414 def_loop = loop_containing_stmt (def);
1416 switch (gimple_code (def))
1418 case GIMPLE_PHI:
1419 if (!loop_phi_node_p (def))
1420 /* DEF is a condition-phi-node. Follow the branches, and
1421 record their evolutions. Finally, merge the collected
1422 information and set the approximation to the main
1423 variable. */
1424 return follow_ssa_edge_in_condition_phi
1425 (loop, def, halting_phi, evolution_of_loop, limit);
1427 /* When the analyzed phi is the halting_phi, the
1428 depth-first search is over: we have found a path from
1429 the halting_phi to itself in the loop. */
1430 if (def == halting_phi)
1431 return t_true;
1433 /* Otherwise, the evolution of the HALTING_PHI depends
1434 on the evolution of another loop-phi-node, i.e. the
1435 evolution function is a higher degree polynomial. */
1436 if (def_loop == loop)
1437 return t_false;
1439 /* Inner loop. */
1440 if (flow_loop_nested_p (loop, def_loop))
1441 return follow_ssa_edge_inner_loop_phi
1442 (loop, def, halting_phi, evolution_of_loop, limit + 1);
1444 /* Outer loop. */
1445 return t_false;
1447 case GIMPLE_ASSIGN:
1448 return follow_ssa_edge_in_rhs (loop, def, halting_phi,
1449 evolution_of_loop, limit);
1451 default:
1452 /* At this level of abstraction, the program is just a set
1453 of GIMPLE_ASSIGNs and PHI_NODEs. In principle there is no
1454 other node to be handled. */
1455 return t_false;
1461 /* Given a LOOP_PHI_NODE, this function determines the evolution
1462 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
1464 static tree
1465 analyze_evolution_in_loop (gimple loop_phi_node,
1466 tree init_cond)
1468 int i, n = gimple_phi_num_args (loop_phi_node);
1469 tree evolution_function = chrec_not_analyzed_yet;
1470 struct loop *loop = loop_containing_stmt (loop_phi_node);
1471 basic_block bb;
1473 if (dump_file && (dump_flags & TDF_DETAILS))
1475 fprintf (dump_file, "(analyze_evolution_in_loop \n");
1476 fprintf (dump_file, " (loop_phi_node = ");
1477 print_gimple_stmt (dump_file, loop_phi_node, 0, 0);
1478 fprintf (dump_file, ")\n");
1481 for (i = 0; i < n; i++)
1483 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1484 gimple ssa_chain;
1485 tree ev_fn;
1486 t_bool res;
1488 /* Select the edges that enter the loop body. */
1489 bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
1490 if (!flow_bb_inside_loop_p (loop, bb))
1491 continue;
1493 if (TREE_CODE (arg) == SSA_NAME)
1495 ssa_chain = SSA_NAME_DEF_STMT (arg);
1497 /* Pass in the initial condition to the follow edge function. */
1498 ev_fn = init_cond;
1499 res = follow_ssa_edge (loop, ssa_chain, loop_phi_node, &ev_fn, 0);
1501 else
1502 res = t_false;
1504 /* When it is impossible to go back on the same
1505 loop_phi_node by following the ssa edges, the
1506 evolution is represented by a peeled chrec, i.e. the
1507 first iteration, EV_FN has the value INIT_COND, then
1508 all the other iterations it has the value of ARG.
1509 For the moment, PEELED_CHREC nodes are not built. */
1510 if (res != t_true)
1511 ev_fn = chrec_dont_know;
1513 /* When there are multiple back edges of the loop (which in fact never
1514 happens currently, but nevertheless), merge their evolutions. */
1515 evolution_function = chrec_merge (evolution_function, ev_fn);
1518 if (dump_file && (dump_flags & TDF_DETAILS))
1520 fprintf (dump_file, " (evolution_function = ");
1521 print_generic_expr (dump_file, evolution_function, 0);
1522 fprintf (dump_file, "))\n");
1525 return evolution_function;
1528 /* Given a loop-phi-node, return the initial conditions of the
1529 variable on entry of the loop. When the CCP has propagated
1530 constants into the loop-phi-node, the initial condition is
1531 instantiated, otherwise the initial condition is kept symbolic.
1532 This analyzer does not analyze the evolution outside the current
1533 loop, and leaves this task to the on-demand tree reconstructor. */
1535 static tree
1536 analyze_initial_condition (gimple loop_phi_node)
1538 int i, n;
1539 tree init_cond = chrec_not_analyzed_yet;
1540 struct loop *loop = loop_containing_stmt (loop_phi_node);
1542 if (dump_file && (dump_flags & TDF_DETAILS))
1544 fprintf (dump_file, "(analyze_initial_condition \n");
1545 fprintf (dump_file, " (loop_phi_node = \n");
1546 print_gimple_stmt (dump_file, loop_phi_node, 0, 0);
1547 fprintf (dump_file, ")\n");
1550 n = gimple_phi_num_args (loop_phi_node);
1551 for (i = 0; i < n; i++)
1553 tree branch = PHI_ARG_DEF (loop_phi_node, i);
1554 basic_block bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
1556 /* When the branch is oriented to the loop's body, it does
1557 not contribute to the initial condition. */
1558 if (flow_bb_inside_loop_p (loop, bb))
1559 continue;
1561 if (init_cond == chrec_not_analyzed_yet)
1563 init_cond = branch;
1564 continue;
1567 if (TREE_CODE (branch) == SSA_NAME)
1569 init_cond = chrec_dont_know;
1570 break;
1573 init_cond = chrec_merge (init_cond, branch);
1576 /* Ooops -- a loop without an entry??? */
1577 if (init_cond == chrec_not_analyzed_yet)
1578 init_cond = chrec_dont_know;
1580 if (dump_file && (dump_flags & TDF_DETAILS))
1582 fprintf (dump_file, " (init_cond = ");
1583 print_generic_expr (dump_file, init_cond, 0);
1584 fprintf (dump_file, "))\n");
1587 return init_cond;
1590 /* Analyze the scalar evolution for LOOP_PHI_NODE. */
1592 static tree
1593 interpret_loop_phi (struct loop *loop, gimple loop_phi_node)
1595 tree res;
1596 struct loop *phi_loop = loop_containing_stmt (loop_phi_node);
1597 tree init_cond;
1599 if (phi_loop != loop)
1601 struct loop *subloop;
1602 tree evolution_fn = analyze_scalar_evolution
1603 (phi_loop, PHI_RESULT (loop_phi_node));
1605 /* Dive one level deeper. */
1606 subloop = superloop_at_depth (phi_loop, loop_depth (loop) + 1);
1608 /* Interpret the subloop. */
1609 res = compute_overall_effect_of_inner_loop (subloop, evolution_fn);
1610 return res;
1613 /* Otherwise really interpret the loop phi. */
1614 init_cond = analyze_initial_condition (loop_phi_node);
1615 res = analyze_evolution_in_loop (loop_phi_node, init_cond);
1617 return res;
1620 /* This function merges the branches of a condition-phi-node,
1621 contained in the outermost loop, and whose arguments are already
1622 analyzed. */
1624 static tree
1625 interpret_condition_phi (struct loop *loop, gimple condition_phi)
1627 int i, n = gimple_phi_num_args (condition_phi);
1628 tree res = chrec_not_analyzed_yet;
1630 for (i = 0; i < n; i++)
1632 tree branch_chrec;
1634 if (backedge_phi_arg_p (condition_phi, i))
1636 res = chrec_dont_know;
1637 break;
1640 branch_chrec = analyze_scalar_evolution
1641 (loop, PHI_ARG_DEF (condition_phi, i));
1643 res = chrec_merge (res, branch_chrec);
1646 return res;
1649 /* Interpret the operation RHS1 OP RHS2. If we didn't
1650 analyze this node before, follow the definitions until ending
1651 either on an analyzed GIMPLE_ASSIGN, or on a loop-phi-node. On the
1652 return path, this function propagates evolutions (ala constant copy
1653 propagation). OPND1 is not a GIMPLE expression because we could
1654 analyze the effect of an inner loop: see interpret_loop_phi. */
1656 static tree
1657 interpret_rhs_expr (struct loop *loop, gimple at_stmt,
1658 tree type, tree rhs1, enum tree_code code, tree rhs2)
1660 tree res, chrec1, chrec2;
1662 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1664 if (is_gimple_min_invariant (rhs1))
1665 return chrec_convert (type, rhs1, at_stmt);
1667 if (code == SSA_NAME)
1668 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
1669 at_stmt);
1671 if (code == ASSERT_EXPR)
1673 rhs1 = ASSERT_EXPR_VAR (rhs1);
1674 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
1675 at_stmt);
1678 return chrec_dont_know;
1681 switch (code)
1683 case POINTER_PLUS_EXPR:
1684 chrec1 = analyze_scalar_evolution (loop, rhs1);
1685 chrec2 = analyze_scalar_evolution (loop, rhs2);
1686 chrec1 = chrec_convert (type, chrec1, at_stmt);
1687 chrec2 = chrec_convert (sizetype, chrec2, at_stmt);
1688 res = chrec_fold_plus (type, chrec1, chrec2);
1689 break;
1691 case PLUS_EXPR:
1692 chrec1 = analyze_scalar_evolution (loop, rhs1);
1693 chrec2 = analyze_scalar_evolution (loop, rhs2);
1694 chrec1 = chrec_convert (type, chrec1, at_stmt);
1695 chrec2 = chrec_convert (type, chrec2, at_stmt);
1696 res = chrec_fold_plus (type, chrec1, chrec2);
1697 break;
1699 case MINUS_EXPR:
1700 chrec1 = analyze_scalar_evolution (loop, rhs1);
1701 chrec2 = analyze_scalar_evolution (loop, rhs2);
1702 chrec1 = chrec_convert (type, chrec1, at_stmt);
1703 chrec2 = chrec_convert (type, chrec2, at_stmt);
1704 res = chrec_fold_minus (type, chrec1, chrec2);
1705 break;
1707 case NEGATE_EXPR:
1708 chrec1 = analyze_scalar_evolution (loop, rhs1);
1709 chrec1 = chrec_convert (type, chrec1, at_stmt);
1710 /* TYPE may be integer, real or complex, so use fold_convert. */
1711 res = chrec_fold_multiply (type, chrec1,
1712 fold_convert (type, integer_minus_one_node));
1713 break;
1715 case BIT_NOT_EXPR:
1716 /* Handle ~X as -1 - X. */
1717 chrec1 = analyze_scalar_evolution (loop, rhs1);
1718 chrec1 = chrec_convert (type, chrec1, at_stmt);
1719 res = chrec_fold_minus (type,
1720 fold_convert (type, integer_minus_one_node),
1721 chrec1);
1722 break;
1724 case MULT_EXPR:
1725 chrec1 = analyze_scalar_evolution (loop, rhs1);
1726 chrec2 = analyze_scalar_evolution (loop, rhs2);
1727 chrec1 = chrec_convert (type, chrec1, at_stmt);
1728 chrec2 = chrec_convert (type, chrec2, at_stmt);
1729 res = chrec_fold_multiply (type, chrec1, chrec2);
1730 break;
1732 CASE_CONVERT:
1733 chrec1 = analyze_scalar_evolution (loop, rhs1);
1734 res = chrec_convert (type, chrec1, at_stmt);
1735 break;
1737 default:
1738 res = chrec_dont_know;
1739 break;
1742 return res;
1745 /* Interpret the expression EXPR. */
1747 static tree
1748 interpret_expr (struct loop *loop, gimple at_stmt, tree expr)
1750 enum tree_code code;
1751 tree type = TREE_TYPE (expr), op0, op1;
1753 if (automatically_generated_chrec_p (expr))
1754 return expr;
1756 if (TREE_CODE (expr) == POLYNOMIAL_CHREC)
1757 return chrec_dont_know;
1759 extract_ops_from_tree (expr, &code, &op0, &op1);
1761 return interpret_rhs_expr (loop, at_stmt, type,
1762 op0, code, op1);
1765 /* Interpret the rhs of the assignment STMT. */
1767 static tree
1768 interpret_gimple_assign (struct loop *loop, gimple stmt)
1770 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
1771 enum tree_code code = gimple_assign_rhs_code (stmt);
1773 return interpret_rhs_expr (loop, stmt, type,
1774 gimple_assign_rhs1 (stmt), code,
1775 gimple_assign_rhs2 (stmt));
1780 /* This section contains all the entry points:
1781 - number_of_iterations_in_loop,
1782 - analyze_scalar_evolution,
1783 - instantiate_parameters.
1786 /* Compute and return the evolution function in WRTO_LOOP, the nearest
1787 common ancestor of DEF_LOOP and USE_LOOP. */
1789 static tree
1790 compute_scalar_evolution_in_loop (struct loop *wrto_loop,
1791 struct loop *def_loop,
1792 tree ev)
1794 tree res;
1795 if (def_loop == wrto_loop)
1796 return ev;
1798 def_loop = superloop_at_depth (def_loop, loop_depth (wrto_loop) + 1);
1799 res = compute_overall_effect_of_inner_loop (def_loop, ev);
1801 return analyze_scalar_evolution_1 (wrto_loop, res, chrec_not_analyzed_yet);
1804 /* Helper recursive function. */
1806 static tree
1807 analyze_scalar_evolution_1 (struct loop *loop, tree var, tree res)
1809 tree type = TREE_TYPE (var);
1810 gimple def;
1811 basic_block bb;
1812 struct loop *def_loop;
1814 if (loop == NULL || TREE_CODE (type) == VECTOR_TYPE)
1815 return chrec_dont_know;
1817 if (TREE_CODE (var) != SSA_NAME)
1818 return interpret_expr (loop, NULL, var);
1820 def = SSA_NAME_DEF_STMT (var);
1821 bb = gimple_bb (def);
1822 def_loop = bb ? bb->loop_father : NULL;
1824 if (bb == NULL
1825 || !flow_bb_inside_loop_p (loop, bb))
1827 /* Keep the symbolic form. */
1828 res = var;
1829 goto set_and_end;
1832 if (res != chrec_not_analyzed_yet)
1834 if (loop != bb->loop_father)
1835 res = compute_scalar_evolution_in_loop
1836 (find_common_loop (loop, bb->loop_father), bb->loop_father, res);
1838 goto set_and_end;
1841 if (loop != def_loop)
1843 res = analyze_scalar_evolution_1 (def_loop, var, chrec_not_analyzed_yet);
1844 res = compute_scalar_evolution_in_loop (loop, def_loop, res);
1846 goto set_and_end;
1849 switch (gimple_code (def))
1851 case GIMPLE_ASSIGN:
1852 res = interpret_gimple_assign (loop, def);
1853 break;
1855 case GIMPLE_PHI:
1856 if (loop_phi_node_p (def))
1857 res = interpret_loop_phi (loop, def);
1858 else
1859 res = interpret_condition_phi (loop, def);
1860 break;
1862 default:
1863 res = chrec_dont_know;
1864 break;
1867 set_and_end:
1869 /* Keep the symbolic form. */
1870 if (res == chrec_dont_know)
1871 res = var;
1873 if (loop == def_loop)
1874 set_scalar_evolution (block_before_loop (loop), var, res);
1876 return res;
1879 /* Entry point for the scalar evolution analyzer.
1880 Analyzes and returns the scalar evolution of the ssa_name VAR.
1881 LOOP_NB is the identifier number of the loop in which the variable
1882 is used.
1884 Example of use: having a pointer VAR to a SSA_NAME node, STMT a
1885 pointer to the statement that uses this variable, in order to
1886 determine the evolution function of the variable, use the following
1887 calls:
1889 unsigned loop_nb = loop_containing_stmt (stmt)->num;
1890 tree chrec_with_symbols = analyze_scalar_evolution (loop_nb, var);
1891 tree chrec_instantiated = instantiate_parameters (loop, chrec_with_symbols);
1894 tree
1895 analyze_scalar_evolution (struct loop *loop, tree var)
1897 tree res;
1899 if (dump_file && (dump_flags & TDF_DETAILS))
1901 fprintf (dump_file, "(analyze_scalar_evolution \n");
1902 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
1903 fprintf (dump_file, " (scalar = ");
1904 print_generic_expr (dump_file, var, 0);
1905 fprintf (dump_file, ")\n");
1908 res = get_scalar_evolution (block_before_loop (loop), var);
1909 res = analyze_scalar_evolution_1 (loop, var, res);
1911 if (dump_file && (dump_flags & TDF_DETAILS))
1912 fprintf (dump_file, ")\n");
1914 return res;
1917 /* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
1918 WRTO_LOOP (which should be a superloop of both USE_LOOP and definition
1919 of VERSION).
1921 FOLDED_CASTS is set to true if resolve_mixers used
1922 chrec_convert_aggressive (TODO -- not really, we are way too conservative
1923 at the moment in order to keep things simple). */
1925 static tree
1926 analyze_scalar_evolution_in_loop (struct loop *wrto_loop, struct loop *use_loop,
1927 tree version, bool *folded_casts)
1929 bool val = false;
1930 tree ev = version, tmp;
1932 if (folded_casts)
1933 *folded_casts = false;
1934 while (1)
1936 tmp = analyze_scalar_evolution (use_loop, ev);
1937 ev = resolve_mixers (use_loop, tmp);
1939 if (folded_casts && tmp != ev)
1940 *folded_casts = true;
1942 if (use_loop == wrto_loop)
1943 return ev;
1945 /* If the value of the use changes in the inner loop, we cannot express
1946 its value in the outer loop (we might try to return interval chrec,
1947 but we do not have a user for it anyway) */
1948 if (!no_evolution_in_loop_p (ev, use_loop->num, &val)
1949 || !val)
1950 return chrec_dont_know;
1952 use_loop = loop_outer (use_loop);
1956 /* Returns from CACHE the value for VERSION instantiated below
1957 INSTANTIATED_BELOW block. */
1959 static tree
1960 get_instantiated_value (htab_t cache, basic_block instantiated_below,
1961 tree version)
1963 struct scev_info_str *info, pattern;
1965 pattern.var = version;
1966 pattern.instantiated_below = instantiated_below;
1967 info = (struct scev_info_str *) htab_find (cache, &pattern);
1969 if (info)
1970 return info->chrec;
1971 else
1972 return NULL_TREE;
1975 /* Sets in CACHE the value of VERSION instantiated below basic block
1976 INSTANTIATED_BELOW to VAL. */
1978 static void
1979 set_instantiated_value (htab_t cache, basic_block instantiated_below,
1980 tree version, tree val)
1982 struct scev_info_str *info, pattern;
1983 PTR *slot;
1985 pattern.var = version;
1986 pattern.instantiated_below = instantiated_below;
1987 slot = htab_find_slot (cache, &pattern, INSERT);
1989 if (!*slot)
1990 *slot = new_scev_info_str (instantiated_below, version);
1991 info = (struct scev_info_str *) *slot;
1992 info->chrec = val;
1995 /* Return the closed_loop_phi node for VAR. If there is none, return
1996 NULL_TREE. */
1998 static tree
1999 loop_closed_phi_def (tree var)
2001 struct loop *loop;
2002 edge exit;
2003 gimple phi;
2004 gimple_stmt_iterator psi;
2006 if (var == NULL_TREE
2007 || TREE_CODE (var) != SSA_NAME)
2008 return NULL_TREE;
2010 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (var));
2011 exit = single_exit (loop);
2012 if (!exit)
2013 return NULL_TREE;
2015 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); gsi_next (&psi))
2017 phi = gsi_stmt (psi);
2018 if (PHI_ARG_DEF_FROM_EDGE (phi, exit) == var)
2019 return PHI_RESULT (phi);
2022 return NULL_TREE;
2025 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2026 and EVOLUTION_LOOP, that were left under a symbolic form.
2028 CHREC is the scalar evolution to instantiate.
2030 CACHE is the cache of already instantiated values.
2032 FOLD_CONVERSIONS should be set to true when the conversions that
2033 may wrap in signed/pointer type are folded, as long as the value of
2034 the chrec is preserved.
2036 SIZE_EXPR is used for computing the size of the expression to be
2037 instantiated, and to stop if it exceeds some limit. */
2039 static tree
2040 instantiate_scev_1 (basic_block instantiate_below,
2041 struct loop *evolution_loop, tree chrec,
2042 bool fold_conversions, htab_t cache, int size_expr)
2044 tree res, op0, op1, op2;
2045 basic_block def_bb;
2046 struct loop *def_loop;
2047 tree type = chrec_type (chrec);
2049 /* Give up if the expression is larger than the MAX that we allow. */
2050 if (size_expr++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
2051 return chrec_dont_know;
2053 if (automatically_generated_chrec_p (chrec)
2054 || is_gimple_min_invariant (chrec))
2055 return chrec;
2057 switch (TREE_CODE (chrec))
2059 case SSA_NAME:
2060 def_bb = gimple_bb (SSA_NAME_DEF_STMT (chrec));
2062 /* A parameter (or loop invariant and we do not want to include
2063 evolutions in outer loops), nothing to do. */
2064 if (!def_bb
2065 || loop_depth (def_bb->loop_father) == 0
2066 || dominated_by_p (CDI_DOMINATORS, instantiate_below, def_bb))
2067 return chrec;
2069 /* We cache the value of instantiated variable to avoid exponential
2070 time complexity due to reevaluations. We also store the convenient
2071 value in the cache in order to prevent infinite recursion -- we do
2072 not want to instantiate the SSA_NAME if it is in a mixer
2073 structure. This is used for avoiding the instantiation of
2074 recursively defined functions, such as:
2076 | a_2 -> {0, +, 1, +, a_2}_1 */
2078 res = get_instantiated_value (cache, instantiate_below, chrec);
2079 if (res)
2080 return res;
2082 res = chrec_dont_know;
2083 set_instantiated_value (cache, instantiate_below, chrec, res);
2085 def_loop = find_common_loop (evolution_loop, def_bb->loop_father);
2087 /* If the analysis yields a parametric chrec, instantiate the
2088 result again. */
2089 res = analyze_scalar_evolution (def_loop, chrec);
2091 /* Don't instantiate loop-closed-ssa phi nodes. */
2092 if (TREE_CODE (res) == SSA_NAME
2093 && (loop_containing_stmt (SSA_NAME_DEF_STMT (res)) == NULL
2094 || (loop_depth (loop_containing_stmt (SSA_NAME_DEF_STMT (res)))
2095 > loop_depth (def_loop))))
2097 if (res == chrec)
2098 res = loop_closed_phi_def (chrec);
2099 else
2100 res = chrec;
2102 if (res == NULL_TREE)
2103 res = chrec_dont_know;
2106 else if (res != chrec_dont_know)
2107 res = instantiate_scev_1 (instantiate_below, evolution_loop, res,
2108 fold_conversions, cache, size_expr);
2110 /* Store the correct value to the cache. */
2111 set_instantiated_value (cache, instantiate_below, chrec, res);
2112 return res;
2114 case POLYNOMIAL_CHREC:
2115 op0 = instantiate_scev_1 (instantiate_below, evolution_loop,
2116 CHREC_LEFT (chrec), fold_conversions, cache,
2117 size_expr);
2118 if (op0 == chrec_dont_know)
2119 return chrec_dont_know;
2121 op1 = instantiate_scev_1 (instantiate_below, evolution_loop,
2122 CHREC_RIGHT (chrec), fold_conversions, cache,
2123 size_expr);
2124 if (op1 == chrec_dont_know)
2125 return chrec_dont_know;
2127 if (CHREC_LEFT (chrec) != op0
2128 || CHREC_RIGHT (chrec) != op1)
2130 op1 = chrec_convert_rhs (chrec_type (op0), op1, NULL);
2131 chrec = build_polynomial_chrec (CHREC_VARIABLE (chrec), op0, op1);
2133 return chrec;
2135 case POINTER_PLUS_EXPR:
2136 case PLUS_EXPR:
2137 op0 = instantiate_scev_1 (instantiate_below, evolution_loop,
2138 TREE_OPERAND (chrec, 0), fold_conversions, cache,
2139 size_expr);
2140 if (op0 == chrec_dont_know)
2141 return chrec_dont_know;
2143 op1 = instantiate_scev_1 (instantiate_below, evolution_loop,
2144 TREE_OPERAND (chrec, 1), fold_conversions, cache,
2145 size_expr);
2146 if (op1 == chrec_dont_know)
2147 return chrec_dont_know;
2149 if (TREE_OPERAND (chrec, 0) != op0
2150 || TREE_OPERAND (chrec, 1) != op1)
2152 op0 = chrec_convert (type, op0, NULL);
2153 op1 = chrec_convert_rhs (type, op1, NULL);
2154 chrec = chrec_fold_plus (type, op0, op1);
2156 return chrec;
2158 case MINUS_EXPR:
2159 op0 = instantiate_scev_1 (instantiate_below, evolution_loop,
2160 TREE_OPERAND (chrec, 0), fold_conversions, cache,
2161 size_expr);
2162 if (op0 == chrec_dont_know)
2163 return chrec_dont_know;
2165 op1 = instantiate_scev_1 (instantiate_below, evolution_loop,
2166 TREE_OPERAND (chrec, 1),
2167 fold_conversions, cache, size_expr);
2168 if (op1 == chrec_dont_know)
2169 return chrec_dont_know;
2171 if (TREE_OPERAND (chrec, 0) != op0
2172 || TREE_OPERAND (chrec, 1) != op1)
2174 op0 = chrec_convert (type, op0, NULL);
2175 op1 = chrec_convert (type, op1, NULL);
2176 chrec = chrec_fold_minus (type, op0, op1);
2178 return chrec;
2180 case MULT_EXPR:
2181 op0 = instantiate_scev_1 (instantiate_below, evolution_loop,
2182 TREE_OPERAND (chrec, 0),
2183 fold_conversions, cache, size_expr);
2184 if (op0 == chrec_dont_know)
2185 return chrec_dont_know;
2187 op1 = instantiate_scev_1 (instantiate_below, evolution_loop,
2188 TREE_OPERAND (chrec, 1),
2189 fold_conversions, cache, size_expr);
2190 if (op1 == chrec_dont_know)
2191 return chrec_dont_know;
2193 if (TREE_OPERAND (chrec, 0) != op0
2194 || TREE_OPERAND (chrec, 1) != op1)
2196 op0 = chrec_convert (type, op0, NULL);
2197 op1 = chrec_convert (type, op1, NULL);
2198 chrec = chrec_fold_multiply (type, op0, op1);
2200 return chrec;
2202 CASE_CONVERT:
2203 op0 = instantiate_scev_1 (instantiate_below, evolution_loop,
2204 TREE_OPERAND (chrec, 0),
2205 fold_conversions, cache, size_expr);
2206 if (op0 == chrec_dont_know)
2207 return chrec_dont_know;
2209 if (fold_conversions)
2211 tree tmp = chrec_convert_aggressive (TREE_TYPE (chrec), op0);
2212 if (tmp)
2213 return tmp;
2216 if (op0 == TREE_OPERAND (chrec, 0))
2217 return chrec;
2219 /* If we used chrec_convert_aggressive, we can no longer assume that
2220 signed chrecs do not overflow, as chrec_convert does, so avoid
2221 calling it in that case. */
2222 if (fold_conversions)
2223 return fold_convert (TREE_TYPE (chrec), op0);
2225 return chrec_convert (TREE_TYPE (chrec), op0, NULL);
2227 case BIT_NOT_EXPR:
2228 /* Handle ~X as -1 - X. */
2229 op0 = instantiate_scev_1 (instantiate_below, evolution_loop,
2230 TREE_OPERAND (chrec, 0),
2231 fold_conversions, cache, size_expr);
2232 if (op0 == chrec_dont_know)
2233 return chrec_dont_know;
2235 if (TREE_OPERAND (chrec, 0) != op0)
2237 op0 = chrec_convert (type, op0, NULL);
2238 chrec = chrec_fold_minus (type,
2239 fold_convert (type,
2240 integer_minus_one_node),
2241 op0);
2243 return chrec;
2245 case SCEV_NOT_KNOWN:
2246 return chrec_dont_know;
2248 case SCEV_KNOWN:
2249 return chrec_known;
2251 default:
2252 break;
2255 if (VL_EXP_CLASS_P (chrec))
2256 return chrec_dont_know;
2258 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
2260 case 3:
2261 op0 = instantiate_scev_1 (instantiate_below, evolution_loop,
2262 TREE_OPERAND (chrec, 0),
2263 fold_conversions, cache, size_expr);
2264 if (op0 == chrec_dont_know)
2265 return chrec_dont_know;
2267 op1 = instantiate_scev_1 (instantiate_below, evolution_loop,
2268 TREE_OPERAND (chrec, 1),
2269 fold_conversions, cache, size_expr);
2270 if (op1 == chrec_dont_know)
2271 return chrec_dont_know;
2273 op2 = instantiate_scev_1 (instantiate_below, evolution_loop,
2274 TREE_OPERAND (chrec, 2),
2275 fold_conversions, cache, size_expr);
2276 if (op2 == chrec_dont_know)
2277 return chrec_dont_know;
2279 if (op0 == TREE_OPERAND (chrec, 0)
2280 && op1 == TREE_OPERAND (chrec, 1)
2281 && op2 == TREE_OPERAND (chrec, 2))
2282 return chrec;
2284 return fold_build3 (TREE_CODE (chrec),
2285 TREE_TYPE (chrec), op0, op1, op2);
2287 case 2:
2288 op0 = instantiate_scev_1 (instantiate_below, evolution_loop,
2289 TREE_OPERAND (chrec, 0),
2290 fold_conversions, cache, size_expr);
2291 if (op0 == chrec_dont_know)
2292 return chrec_dont_know;
2294 op1 = instantiate_scev_1 (instantiate_below, evolution_loop,
2295 TREE_OPERAND (chrec, 1),
2296 fold_conversions, cache, size_expr);
2297 if (op1 == chrec_dont_know)
2298 return chrec_dont_know;
2300 if (op0 == TREE_OPERAND (chrec, 0)
2301 && op1 == TREE_OPERAND (chrec, 1))
2302 return chrec;
2303 return fold_build2 (TREE_CODE (chrec), TREE_TYPE (chrec), op0, op1);
2305 case 1:
2306 op0 = instantiate_scev_1 (instantiate_below, evolution_loop,
2307 TREE_OPERAND (chrec, 0),
2308 fold_conversions, cache, size_expr);
2309 if (op0 == chrec_dont_know)
2310 return chrec_dont_know;
2311 if (op0 == TREE_OPERAND (chrec, 0))
2312 return chrec;
2313 return fold_build1 (TREE_CODE (chrec), TREE_TYPE (chrec), op0);
2315 case 0:
2316 return chrec;
2318 default:
2319 break;
2322 /* Too complicated to handle. */
2323 return chrec_dont_know;
2326 /* Analyze all the parameters of the chrec that were left under a
2327 symbolic form. INSTANTIATE_BELOW is the basic block that stops the
2328 recursive instantiation of parameters: a parameter is a variable
2329 that is defined in a basic block that dominates INSTANTIATE_BELOW or
2330 a function parameter. */
2332 tree
2333 instantiate_scev (basic_block instantiate_below, struct loop *evolution_loop,
2334 tree chrec)
2336 tree res;
2337 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
2339 if (dump_file && (dump_flags & TDF_DETAILS))
2341 fprintf (dump_file, "(instantiate_scev \n");
2342 fprintf (dump_file, " (instantiate_below = %d)\n", instantiate_below->index);
2343 fprintf (dump_file, " (evolution_loop = %d)\n", evolution_loop->num);
2344 fprintf (dump_file, " (chrec = ");
2345 print_generic_expr (dump_file, chrec, 0);
2346 fprintf (dump_file, ")\n");
2349 res = instantiate_scev_1 (instantiate_below, evolution_loop, chrec, false,
2350 cache, 0);
2352 if (dump_file && (dump_flags & TDF_DETAILS))
2354 fprintf (dump_file, " (res = ");
2355 print_generic_expr (dump_file, res, 0);
2356 fprintf (dump_file, "))\n");
2359 htab_delete (cache);
2361 return res;
2364 /* Similar to instantiate_parameters, but does not introduce the
2365 evolutions in outer loops for LOOP invariants in CHREC, and does not
2366 care about causing overflows, as long as they do not affect value
2367 of an expression. */
2369 tree
2370 resolve_mixers (struct loop *loop, tree chrec)
2372 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
2373 tree ret = instantiate_scev_1 (block_before_loop (loop), loop, chrec, true,
2374 cache, 0);
2375 htab_delete (cache);
2376 return ret;
2379 /* Entry point for the analysis of the number of iterations pass.
2380 This function tries to safely approximate the number of iterations
2381 the loop will run. When this property is not decidable at compile
2382 time, the result is chrec_dont_know. Otherwise the result is
2383 a scalar or a symbolic parameter.
2385 Example of analysis: suppose that the loop has an exit condition:
2387 "if (b > 49) goto end_loop;"
2389 and that in a previous analysis we have determined that the
2390 variable 'b' has an evolution function:
2392 "EF = {23, +, 5}_2".
2394 When we evaluate the function at the point 5, i.e. the value of the
2395 variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
2396 and EF (6) = 53. In this case the value of 'b' on exit is '53' and
2397 the loop body has been executed 6 times. */
2399 tree
2400 number_of_latch_executions (struct loop *loop)
2402 tree res, type;
2403 edge exit;
2404 struct tree_niter_desc niter_desc;
2406 /* Determine whether the number_of_iterations_in_loop has already
2407 been computed. */
2408 res = loop->nb_iterations;
2409 if (res)
2410 return res;
2411 res = chrec_dont_know;
2413 if (dump_file && (dump_flags & TDF_DETAILS))
2414 fprintf (dump_file, "(number_of_iterations_in_loop\n");
2416 exit = single_exit (loop);
2417 if (!exit)
2418 goto end;
2420 if (!number_of_iterations_exit (loop, exit, &niter_desc, false))
2421 goto end;
2423 type = TREE_TYPE (niter_desc.niter);
2424 if (integer_nonzerop (niter_desc.may_be_zero))
2425 res = build_int_cst (type, 0);
2426 else if (integer_zerop (niter_desc.may_be_zero))
2427 res = niter_desc.niter;
2428 else
2429 res = chrec_dont_know;
2431 end:
2432 return set_nb_iterations_in_loop (loop, res);
2435 /* Returns the number of executions of the exit condition of LOOP,
2436 i.e., the number by one higher than number_of_latch_executions.
2437 Note that unlike number_of_latch_executions, this number does
2438 not necessarily fit in the unsigned variant of the type of
2439 the control variable -- if the number of iterations is a constant,
2440 we return chrec_dont_know if adding one to number_of_latch_executions
2441 overflows; however, in case the number of iterations is symbolic
2442 expression, the caller is responsible for dealing with this
2443 the possible overflow. */
2445 tree
2446 number_of_exit_cond_executions (struct loop *loop)
2448 tree ret = number_of_latch_executions (loop);
2449 tree type = chrec_type (ret);
2451 if (chrec_contains_undetermined (ret))
2452 return ret;
2454 ret = chrec_fold_plus (type, ret, build_int_cst (type, 1));
2455 if (TREE_CODE (ret) == INTEGER_CST
2456 && TREE_OVERFLOW (ret))
2457 return chrec_dont_know;
2459 return ret;
2462 /* One of the drivers for testing the scalar evolutions analysis.
2463 This function computes the number of iterations for all the loops
2464 from the EXIT_CONDITIONS array. */
2466 static void
2467 number_of_iterations_for_all_loops (VEC(gimple,heap) **exit_conditions)
2469 unsigned int i;
2470 unsigned nb_chrec_dont_know_loops = 0;
2471 unsigned nb_static_loops = 0;
2472 gimple cond;
2474 for (i = 0; VEC_iterate (gimple, *exit_conditions, i, cond); i++)
2476 tree res = number_of_latch_executions (loop_containing_stmt (cond));
2477 if (chrec_contains_undetermined (res))
2478 nb_chrec_dont_know_loops++;
2479 else
2480 nb_static_loops++;
2483 if (dump_file)
2485 fprintf (dump_file, "\n(\n");
2486 fprintf (dump_file, "-----------------------------------------\n");
2487 fprintf (dump_file, "%d\tnb_chrec_dont_know_loops\n", nb_chrec_dont_know_loops);
2488 fprintf (dump_file, "%d\tnb_static_loops\n", nb_static_loops);
2489 fprintf (dump_file, "%d\tnb_total_loops\n", number_of_loops ());
2490 fprintf (dump_file, "-----------------------------------------\n");
2491 fprintf (dump_file, ")\n\n");
2493 print_loops (dump_file, 3);
2499 /* Counters for the stats. */
2501 struct chrec_stats
2503 unsigned nb_chrecs;
2504 unsigned nb_affine;
2505 unsigned nb_affine_multivar;
2506 unsigned nb_higher_poly;
2507 unsigned nb_chrec_dont_know;
2508 unsigned nb_undetermined;
2511 /* Reset the counters. */
2513 static inline void
2514 reset_chrecs_counters (struct chrec_stats *stats)
2516 stats->nb_chrecs = 0;
2517 stats->nb_affine = 0;
2518 stats->nb_affine_multivar = 0;
2519 stats->nb_higher_poly = 0;
2520 stats->nb_chrec_dont_know = 0;
2521 stats->nb_undetermined = 0;
2524 /* Dump the contents of a CHREC_STATS structure. */
2526 static void
2527 dump_chrecs_stats (FILE *file, struct chrec_stats *stats)
2529 fprintf (file, "\n(\n");
2530 fprintf (file, "-----------------------------------------\n");
2531 fprintf (file, "%d\taffine univariate chrecs\n", stats->nb_affine);
2532 fprintf (file, "%d\taffine multivariate chrecs\n", stats->nb_affine_multivar);
2533 fprintf (file, "%d\tdegree greater than 2 polynomials\n",
2534 stats->nb_higher_poly);
2535 fprintf (file, "%d\tchrec_dont_know chrecs\n", stats->nb_chrec_dont_know);
2536 fprintf (file, "-----------------------------------------\n");
2537 fprintf (file, "%d\ttotal chrecs\n", stats->nb_chrecs);
2538 fprintf (file, "%d\twith undetermined coefficients\n",
2539 stats->nb_undetermined);
2540 fprintf (file, "-----------------------------------------\n");
2541 fprintf (file, "%d\tchrecs in the scev database\n",
2542 (int) htab_elements (scalar_evolution_info));
2543 fprintf (file, "%d\tsets in the scev database\n", nb_set_scev);
2544 fprintf (file, "%d\tgets in the scev database\n", nb_get_scev);
2545 fprintf (file, "-----------------------------------------\n");
2546 fprintf (file, ")\n\n");
2549 /* Gather statistics about CHREC. */
2551 static void
2552 gather_chrec_stats (tree chrec, struct chrec_stats *stats)
2554 if (dump_file && (dump_flags & TDF_STATS))
2556 fprintf (dump_file, "(classify_chrec ");
2557 print_generic_expr (dump_file, chrec, 0);
2558 fprintf (dump_file, "\n");
2561 stats->nb_chrecs++;
2563 if (chrec == NULL_TREE)
2565 stats->nb_undetermined++;
2566 return;
2569 switch (TREE_CODE (chrec))
2571 case POLYNOMIAL_CHREC:
2572 if (evolution_function_is_affine_p (chrec))
2574 if (dump_file && (dump_flags & TDF_STATS))
2575 fprintf (dump_file, " affine_univariate\n");
2576 stats->nb_affine++;
2578 else if (evolution_function_is_affine_multivariate_p (chrec, 0))
2580 if (dump_file && (dump_flags & TDF_STATS))
2581 fprintf (dump_file, " affine_multivariate\n");
2582 stats->nb_affine_multivar++;
2584 else
2586 if (dump_file && (dump_flags & TDF_STATS))
2587 fprintf (dump_file, " higher_degree_polynomial\n");
2588 stats->nb_higher_poly++;
2591 break;
2593 default:
2594 break;
2597 if (chrec_contains_undetermined (chrec))
2599 if (dump_file && (dump_flags & TDF_STATS))
2600 fprintf (dump_file, " undetermined\n");
2601 stats->nb_undetermined++;
2604 if (dump_file && (dump_flags & TDF_STATS))
2605 fprintf (dump_file, ")\n");
2608 /* One of the drivers for testing the scalar evolutions analysis.
2609 This function analyzes the scalar evolution of all the scalars
2610 defined as loop phi nodes in one of the loops from the
2611 EXIT_CONDITIONS array.
2613 TODO Optimization: A loop is in canonical form if it contains only
2614 a single scalar loop phi node. All the other scalars that have an
2615 evolution in the loop are rewritten in function of this single
2616 index. This allows the parallelization of the loop. */
2618 static void
2619 analyze_scalar_evolution_for_all_loop_phi_nodes (VEC(gimple,heap) **exit_conditions)
2621 unsigned int i;
2622 struct chrec_stats stats;
2623 gimple cond, phi;
2624 gimple_stmt_iterator psi;
2626 reset_chrecs_counters (&stats);
2628 for (i = 0; VEC_iterate (gimple, *exit_conditions, i, cond); i++)
2630 struct loop *loop;
2631 basic_block bb;
2632 tree chrec;
2634 loop = loop_containing_stmt (cond);
2635 bb = loop->header;
2637 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
2639 phi = gsi_stmt (psi);
2640 if (is_gimple_reg (PHI_RESULT (phi)))
2642 chrec = instantiate_parameters
2643 (loop,
2644 analyze_scalar_evolution (loop, PHI_RESULT (phi)));
2646 if (dump_file && (dump_flags & TDF_STATS))
2647 gather_chrec_stats (chrec, &stats);
2652 if (dump_file && (dump_flags & TDF_STATS))
2653 dump_chrecs_stats (dump_file, &stats);
2656 /* Callback for htab_traverse, gathers information on chrecs in the
2657 hashtable. */
2659 static int
2660 gather_stats_on_scev_database_1 (void **slot, void *stats)
2662 struct scev_info_str *entry = (struct scev_info_str *) *slot;
2664 gather_chrec_stats (entry->chrec, (struct chrec_stats *) stats);
2666 return 1;
2669 /* Classify the chrecs of the whole database. */
2671 void
2672 gather_stats_on_scev_database (void)
2674 struct chrec_stats stats;
2676 if (!dump_file)
2677 return;
2679 reset_chrecs_counters (&stats);
2681 htab_traverse (scalar_evolution_info, gather_stats_on_scev_database_1,
2682 &stats);
2684 dump_chrecs_stats (dump_file, &stats);
2689 /* Initializer. */
2691 static void
2692 initialize_scalar_evolutions_analyzer (void)
2694 /* The elements below are unique. */
2695 if (chrec_dont_know == NULL_TREE)
2697 chrec_not_analyzed_yet = NULL_TREE;
2698 chrec_dont_know = make_node (SCEV_NOT_KNOWN);
2699 chrec_known = make_node (SCEV_KNOWN);
2700 TREE_TYPE (chrec_dont_know) = void_type_node;
2701 TREE_TYPE (chrec_known) = void_type_node;
2705 /* Initialize the analysis of scalar evolutions for LOOPS. */
2707 void
2708 scev_initialize (void)
2710 loop_iterator li;
2711 struct loop *loop;
2713 scalar_evolution_info = htab_create_alloc (100,
2714 hash_scev_info,
2715 eq_scev_info,
2716 del_scev_info,
2717 ggc_calloc,
2718 ggc_free);
2720 initialize_scalar_evolutions_analyzer ();
2722 FOR_EACH_LOOP (li, loop, 0)
2724 loop->nb_iterations = NULL_TREE;
2728 /* Cleans up the information cached by the scalar evolutions analysis. */
2730 void
2731 scev_reset (void)
2733 loop_iterator li;
2734 struct loop *loop;
2736 if (!scalar_evolution_info || !current_loops)
2737 return;
2739 htab_empty (scalar_evolution_info);
2740 FOR_EACH_LOOP (li, loop, 0)
2742 loop->nb_iterations = NULL_TREE;
2746 /* Checks whether OP behaves as a simple affine iv of LOOP in STMT and returns
2747 its base and step in IV if possible. If ALLOW_NONCONSTANT_STEP is true, we
2748 want step to be invariant in LOOP. Otherwise we require it to be an
2749 integer constant. IV->no_overflow is set to true if we are sure the iv cannot
2750 overflow (e.g. because it is computed in signed arithmetics). */
2752 bool
2753 simple_iv (struct loop *loop, gimple stmt, tree op, affine_iv *iv,
2754 bool allow_nonconstant_step)
2756 basic_block bb = gimple_bb (stmt);
2757 tree type, ev;
2758 bool folded_casts;
2760 iv->base = NULL_TREE;
2761 iv->step = NULL_TREE;
2762 iv->no_overflow = false;
2764 type = TREE_TYPE (op);
2765 if (TREE_CODE (type) != INTEGER_TYPE
2766 && TREE_CODE (type) != POINTER_TYPE)
2767 return false;
2769 ev = analyze_scalar_evolution_in_loop (loop, bb->loop_father, op,
2770 &folded_casts);
2771 if (chrec_contains_undetermined (ev))
2772 return false;
2774 if (tree_does_not_contain_chrecs (ev)
2775 && !chrec_contains_symbols_defined_in_loop (ev, loop->num))
2777 iv->base = ev;
2778 iv->step = build_int_cst (TREE_TYPE (ev), 0);
2779 iv->no_overflow = true;
2780 return true;
2783 if (TREE_CODE (ev) != POLYNOMIAL_CHREC
2784 || CHREC_VARIABLE (ev) != (unsigned) loop->num)
2785 return false;
2787 iv->step = CHREC_RIGHT (ev);
2788 if (allow_nonconstant_step)
2790 if (tree_contains_chrecs (iv->step, NULL)
2791 || chrec_contains_symbols_defined_in_loop (iv->step, loop->num))
2792 return false;
2794 else if (TREE_CODE (iv->step) != INTEGER_CST)
2795 return false;
2797 iv->base = CHREC_LEFT (ev);
2798 if (tree_contains_chrecs (iv->base, NULL)
2799 || chrec_contains_symbols_defined_in_loop (iv->base, loop->num))
2800 return false;
2802 iv->no_overflow = !folded_casts && TYPE_OVERFLOW_UNDEFINED (type);
2804 return true;
2807 /* Runs the analysis of scalar evolutions. */
2809 void
2810 scev_analysis (void)
2812 VEC(gimple,heap) *exit_conditions;
2814 exit_conditions = VEC_alloc (gimple, heap, 37);
2815 select_loops_exit_conditions (&exit_conditions);
2817 if (dump_file && (dump_flags & TDF_STATS))
2818 analyze_scalar_evolution_for_all_loop_phi_nodes (&exit_conditions);
2820 number_of_iterations_for_all_loops (&exit_conditions);
2821 VEC_free (gimple, heap, exit_conditions);
2824 /* Finalize the scalar evolution analysis. */
2826 void
2827 scev_finalize (void)
2829 if (!scalar_evolution_info)
2830 return;
2831 htab_delete (scalar_evolution_info);
2832 scalar_evolution_info = NULL;
2835 /* Returns true if the expression EXPR is considered to be too expensive
2836 for scev_const_prop. */
2838 bool
2839 expression_expensive_p (tree expr)
2841 enum tree_code code;
2843 if (is_gimple_val (expr))
2844 return false;
2846 code = TREE_CODE (expr);
2847 if (code == TRUNC_DIV_EXPR
2848 || code == CEIL_DIV_EXPR
2849 || code == FLOOR_DIV_EXPR
2850 || code == ROUND_DIV_EXPR
2851 || code == TRUNC_MOD_EXPR
2852 || code == CEIL_MOD_EXPR
2853 || code == FLOOR_MOD_EXPR
2854 || code == ROUND_MOD_EXPR
2855 || code == EXACT_DIV_EXPR)
2857 /* Division by power of two is usually cheap, so we allow it.
2858 Forbid anything else. */
2859 if (!integer_pow2p (TREE_OPERAND (expr, 1)))
2860 return true;
2863 switch (TREE_CODE_CLASS (code))
2865 case tcc_binary:
2866 case tcc_comparison:
2867 if (expression_expensive_p (TREE_OPERAND (expr, 1)))
2868 return true;
2870 /* Fallthru. */
2871 case tcc_unary:
2872 return expression_expensive_p (TREE_OPERAND (expr, 0));
2874 default:
2875 return true;
2879 /* Replace ssa names for that scev can prove they are constant by the
2880 appropriate constants. Also perform final value replacement in loops,
2881 in case the replacement expressions are cheap.
2883 We only consider SSA names defined by phi nodes; rest is left to the
2884 ordinary constant propagation pass. */
2886 unsigned int
2887 scev_const_prop (void)
2889 basic_block bb;
2890 tree name, type, ev;
2891 gimple phi, ass;
2892 struct loop *loop, *ex_loop;
2893 bitmap ssa_names_to_remove = NULL;
2894 unsigned i;
2895 loop_iterator li;
2896 gimple_stmt_iterator psi;
2898 if (number_of_loops () <= 1)
2899 return 0;
2901 FOR_EACH_BB (bb)
2903 loop = bb->loop_father;
2905 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
2907 phi = gsi_stmt (psi);
2908 name = PHI_RESULT (phi);
2910 if (!is_gimple_reg (name))
2911 continue;
2913 type = TREE_TYPE (name);
2915 if (!POINTER_TYPE_P (type)
2916 && !INTEGRAL_TYPE_P (type))
2917 continue;
2919 ev = resolve_mixers (loop, analyze_scalar_evolution (loop, name));
2920 if (!is_gimple_min_invariant (ev)
2921 || !may_propagate_copy (name, ev))
2922 continue;
2924 /* Replace the uses of the name. */
2925 if (name != ev)
2926 replace_uses_by (name, ev);
2928 if (!ssa_names_to_remove)
2929 ssa_names_to_remove = BITMAP_ALLOC (NULL);
2930 bitmap_set_bit (ssa_names_to_remove, SSA_NAME_VERSION (name));
2934 /* Remove the ssa names that were replaced by constants. We do not
2935 remove them directly in the previous cycle, since this
2936 invalidates scev cache. */
2937 if (ssa_names_to_remove)
2939 bitmap_iterator bi;
2941 EXECUTE_IF_SET_IN_BITMAP (ssa_names_to_remove, 0, i, bi)
2943 gimple_stmt_iterator psi;
2944 name = ssa_name (i);
2945 phi = SSA_NAME_DEF_STMT (name);
2947 gcc_assert (gimple_code (phi) == GIMPLE_PHI);
2948 psi = gsi_for_stmt (phi);
2949 remove_phi_node (&psi, true);
2952 BITMAP_FREE (ssa_names_to_remove);
2953 scev_reset ();
2956 /* Now the regular final value replacement. */
2957 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
2959 edge exit;
2960 tree def, rslt, niter;
2961 gimple_stmt_iterator bsi;
2963 /* If we do not know exact number of iterations of the loop, we cannot
2964 replace the final value. */
2965 exit = single_exit (loop);
2966 if (!exit)
2967 continue;
2969 niter = number_of_latch_executions (loop);
2970 if (niter == chrec_dont_know)
2971 continue;
2973 /* Ensure that it is possible to insert new statements somewhere. */
2974 if (!single_pred_p (exit->dest))
2975 split_loop_exit_edge (exit);
2976 bsi = gsi_after_labels (exit->dest);
2978 ex_loop = superloop_at_depth (loop,
2979 loop_depth (exit->dest->loop_father) + 1);
2981 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); )
2983 phi = gsi_stmt (psi);
2984 rslt = PHI_RESULT (phi);
2985 def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2986 if (!is_gimple_reg (def))
2988 gsi_next (&psi);
2989 continue;
2992 if (!POINTER_TYPE_P (TREE_TYPE (def))
2993 && !INTEGRAL_TYPE_P (TREE_TYPE (def)))
2995 gsi_next (&psi);
2996 continue;
2999 def = analyze_scalar_evolution_in_loop (ex_loop, loop, def, NULL);
3000 def = compute_overall_effect_of_inner_loop (ex_loop, def);
3001 if (!tree_does_not_contain_chrecs (def)
3002 || chrec_contains_symbols_defined_in_loop (def, ex_loop->num)
3003 /* Moving the computation from the loop may prolong life range
3004 of some ssa names, which may cause problems if they appear
3005 on abnormal edges. */
3006 || contains_abnormal_ssa_name_p (def)
3007 /* Do not emit expensive expressions. The rationale is that
3008 when someone writes a code like
3010 while (n > 45) n -= 45;
3012 he probably knows that n is not large, and does not want it
3013 to be turned into n %= 45. */
3014 || expression_expensive_p (def))
3016 gsi_next (&psi);
3017 continue;
3020 /* Eliminate the PHI node and replace it by a computation outside
3021 the loop. */
3022 def = unshare_expr (def);
3023 remove_phi_node (&psi, false);
3025 def = force_gimple_operand_gsi (&bsi, def, false, NULL_TREE,
3026 true, GSI_SAME_STMT);
3027 ass = gimple_build_assign (rslt, def);
3028 gsi_insert_before (&bsi, ass, GSI_SAME_STMT);
3031 return 0;
3034 #include "gt-tree-scalar-evolution.h"