Merge trunk version 206792 into gupc branch.
[official-gcc.git] / gcc / cfg.c
bloba281c0fb82320bc5cbf6af986efe0aae9ade6581
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains low level functions to manipulate the CFG and
21 analyze it. All other modules should not transform the data structure
22 directly and use abstraction instead. The file is supposed to be
23 ordered bottom-up and should not contain any code dependent on a
24 particular intermediate language (RTL or trees).
26 Available functionality:
27 - Initialization/deallocation
28 init_flow, clear_edges
29 - Low level basic block manipulation
30 alloc_block, expunge_block
31 - Edge manipulation
32 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
33 - Low level edge redirection (without updating instruction chain)
34 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
35 - Dumping and debugging
36 dump_flow_info, debug_flow_info, dump_edge_info
37 - Allocation of AUX fields for basic blocks
38 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
39 - clear_bb_flags
40 - Consistency checking
41 verify_flow_info
42 - Dumping and debugging
43 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
45 TODO: Document these "Available functionality" functions in the files
46 that implement them.
49 #include "config.h"
50 #include "system.h"
51 #include "coretypes.h"
52 #include "obstack.h"
53 #include "ggc.h"
54 #include "hash-table.h"
55 #include "alloc-pool.h"
56 #include "tree.h"
57 #include "basic-block.h"
58 #include "df.h"
59 #include "cfgloop.h" /* FIXME: For struct loop. */
60 #include "dumpfile.h"
63 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
65 /* Called once at initialization time. */
67 void
68 init_flow (struct function *the_fun)
70 if (!the_fun->cfg)
71 the_fun->cfg = ggc_alloc_cleared_control_flow_graph ();
72 n_edges_for_fn (the_fun) = 0;
73 ENTRY_BLOCK_PTR_FOR_FN (the_fun)
74 = ggc_alloc_cleared_basic_block_def ();
75 ENTRY_BLOCK_PTR_FOR_FN (the_fun)->index = ENTRY_BLOCK;
76 EXIT_BLOCK_PTR_FOR_FN (the_fun)
77 = ggc_alloc_cleared_basic_block_def ();
78 EXIT_BLOCK_PTR_FOR_FN (the_fun)->index = EXIT_BLOCK;
79 ENTRY_BLOCK_PTR_FOR_FN (the_fun)->next_bb
80 = EXIT_BLOCK_PTR_FOR_FN (the_fun);
81 EXIT_BLOCK_PTR_FOR_FN (the_fun)->prev_bb
82 = ENTRY_BLOCK_PTR_FOR_FN (the_fun);
85 /* Helper function for remove_edge and clear_edges. Frees edge structure
86 without actually removing it from the pred/succ arrays. */
88 static void
89 free_edge (edge e)
91 n_edges_for_fn (cfun)--;
92 ggc_free (e);
95 /* Free the memory associated with the edge structures. */
97 void
98 clear_edges (void)
100 basic_block bb;
101 edge e;
102 edge_iterator ei;
104 FOR_EACH_BB_FN (bb, cfun)
106 FOR_EACH_EDGE (e, ei, bb->succs)
107 free_edge (e);
108 vec_safe_truncate (bb->succs, 0);
109 vec_safe_truncate (bb->preds, 0);
112 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
113 free_edge (e);
114 vec_safe_truncate (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds, 0);
115 vec_safe_truncate (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs, 0);
117 gcc_assert (!n_edges_for_fn (cfun));
120 /* Allocate memory for basic_block. */
122 basic_block
123 alloc_block (void)
125 basic_block bb;
126 bb = ggc_alloc_cleared_basic_block_def ();
127 return bb;
130 /* Link block B to chain after AFTER. */
131 void
132 link_block (basic_block b, basic_block after)
134 b->next_bb = after->next_bb;
135 b->prev_bb = after;
136 after->next_bb = b;
137 b->next_bb->prev_bb = b;
140 /* Unlink block B from chain. */
141 void
142 unlink_block (basic_block b)
144 b->next_bb->prev_bb = b->prev_bb;
145 b->prev_bb->next_bb = b->next_bb;
146 b->prev_bb = NULL;
147 b->next_bb = NULL;
150 /* Sequentially order blocks and compact the arrays. */
151 void
152 compact_blocks (void)
154 int i;
156 SET_BASIC_BLOCK_FOR_FN (cfun, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (cfun));
157 SET_BASIC_BLOCK_FOR_FN (cfun, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (cfun));
159 if (df)
160 df_compact_blocks ();
161 else
163 basic_block bb;
165 i = NUM_FIXED_BLOCKS;
166 FOR_EACH_BB_FN (bb, cfun)
168 SET_BASIC_BLOCK_FOR_FN (cfun, i, bb);
169 bb->index = i;
170 i++;
172 gcc_assert (i == n_basic_blocks_for_fn (cfun));
174 for (; i < last_basic_block_for_fn (cfun); i++)
175 SET_BASIC_BLOCK_FOR_FN (cfun, i, NULL);
177 last_basic_block_for_fn (cfun) = n_basic_blocks_for_fn (cfun);
180 /* Remove block B from the basic block array. */
182 void
183 expunge_block (basic_block b)
185 unlink_block (b);
186 SET_BASIC_BLOCK_FOR_FN (cfun, b->index, NULL);
187 n_basic_blocks_for_fn (cfun)--;
188 /* We should be able to ggc_free here, but we are not.
189 The dead SSA_NAMES are left pointing to dead statements that are pointing
190 to dead basic blocks making garbage collector to die.
191 We should be able to release all dead SSA_NAMES and at the same time we should
192 clear out BB pointer of dead statements consistently. */
195 /* Connect E to E->src. */
197 static inline void
198 connect_src (edge e)
200 vec_safe_push (e->src->succs, e);
201 df_mark_solutions_dirty ();
204 /* Connect E to E->dest. */
206 static inline void
207 connect_dest (edge e)
209 basic_block dest = e->dest;
210 vec_safe_push (dest->preds, e);
211 e->dest_idx = EDGE_COUNT (dest->preds) - 1;
212 df_mark_solutions_dirty ();
215 /* Disconnect edge E from E->src. */
217 static inline void
218 disconnect_src (edge e)
220 basic_block src = e->src;
221 edge_iterator ei;
222 edge tmp;
224 for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); )
226 if (tmp == e)
228 src->succs->unordered_remove (ei.index);
229 df_mark_solutions_dirty ();
230 return;
232 else
233 ei_next (&ei);
236 gcc_unreachable ();
239 /* Disconnect edge E from E->dest. */
241 static inline void
242 disconnect_dest (edge e)
244 basic_block dest = e->dest;
245 unsigned int dest_idx = e->dest_idx;
247 dest->preds->unordered_remove (dest_idx);
249 /* If we removed an edge in the middle of the edge vector, we need
250 to update dest_idx of the edge that moved into the "hole". */
251 if (dest_idx < EDGE_COUNT (dest->preds))
252 EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx;
253 df_mark_solutions_dirty ();
256 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
257 created edge. Use this only if you are sure that this edge can't
258 possibly already exist. */
260 edge
261 unchecked_make_edge (basic_block src, basic_block dst, int flags)
263 edge e;
264 e = ggc_alloc_cleared_edge_def ();
265 n_edges_for_fn (cfun)++;
267 e->src = src;
268 e->dest = dst;
269 e->flags = flags;
271 connect_src (e);
272 connect_dest (e);
274 execute_on_growing_pred (e);
275 return e;
278 /* Create an edge connecting SRC and DST with FLAGS optionally using
279 edge cache CACHE. Return the new edge, NULL if already exist. */
281 edge
282 cached_make_edge (sbitmap edge_cache, basic_block src, basic_block dst, int flags)
284 if (edge_cache == NULL
285 || src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
286 || dst == EXIT_BLOCK_PTR_FOR_FN (cfun))
287 return make_edge (src, dst, flags);
289 /* Does the requested edge already exist? */
290 if (! bitmap_bit_p (edge_cache, dst->index))
292 /* The edge does not exist. Create one and update the
293 cache. */
294 bitmap_set_bit (edge_cache, dst->index);
295 return unchecked_make_edge (src, dst, flags);
298 /* At this point, we know that the requested edge exists. Adjust
299 flags if necessary. */
300 if (flags)
302 edge e = find_edge (src, dst);
303 e->flags |= flags;
306 return NULL;
309 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
310 created edge or NULL if already exist. */
312 edge
313 make_edge (basic_block src, basic_block dest, int flags)
315 edge e = find_edge (src, dest);
317 /* Make sure we don't add duplicate edges. */
318 if (e)
320 e->flags |= flags;
321 return NULL;
324 return unchecked_make_edge (src, dest, flags);
327 /* Create an edge connecting SRC to DEST and set probability by knowing
328 that it is the single edge leaving SRC. */
330 edge
331 make_single_succ_edge (basic_block src, basic_block dest, int flags)
333 edge e = make_edge (src, dest, flags);
335 e->probability = REG_BR_PROB_BASE;
336 e->count = src->count;
337 return e;
340 /* This function will remove an edge from the flow graph. */
342 void
343 remove_edge_raw (edge e)
345 remove_predictions_associated_with_edge (e);
346 execute_on_shrinking_pred (e);
348 disconnect_src (e);
349 disconnect_dest (e);
351 free_edge (e);
354 /* Redirect an edge's successor from one block to another. */
356 void
357 redirect_edge_succ (edge e, basic_block new_succ)
359 execute_on_shrinking_pred (e);
361 disconnect_dest (e);
363 e->dest = new_succ;
365 /* Reconnect the edge to the new successor block. */
366 connect_dest (e);
368 execute_on_growing_pred (e);
371 /* Redirect an edge's predecessor from one block to another. */
373 void
374 redirect_edge_pred (edge e, basic_block new_pred)
376 disconnect_src (e);
378 e->src = new_pred;
380 /* Reconnect the edge to the new predecessor block. */
381 connect_src (e);
384 /* Clear all basic block flags that do not have to be preserved. */
385 void
386 clear_bb_flags (void)
388 basic_block bb;
390 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
391 bb->flags &= BB_FLAGS_TO_PRESERVE;
394 /* Check the consistency of profile information. We can't do that
395 in verify_flow_info, as the counts may get invalid for incompletely
396 solved graphs, later eliminating of conditionals or roundoff errors.
397 It is still practical to have them reported for debugging of simple
398 testcases. */
399 static void
400 check_bb_profile (basic_block bb, FILE * file, int indent, int flags)
402 edge e;
403 int sum = 0;
404 gcov_type lsum;
405 edge_iterator ei;
406 struct function *fun = DECL_STRUCT_FUNCTION (current_function_decl);
407 char *s_indent = (char *) alloca ((size_t) indent + 1);
408 memset ((void *) s_indent, ' ', (size_t) indent);
409 s_indent[indent] = '\0';
411 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
412 return;
414 if (bb != EXIT_BLOCK_PTR_FOR_FN (fun))
416 FOR_EACH_EDGE (e, ei, bb->succs)
417 sum += e->probability;
418 if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100)
419 fprintf (file, "%s%sInvalid sum of outgoing probabilities %.1f%%\n",
420 (flags & TDF_COMMENT) ? ";; " : "", s_indent,
421 sum * 100.0 / REG_BR_PROB_BASE);
422 lsum = 0;
423 FOR_EACH_EDGE (e, ei, bb->succs)
424 lsum += e->count;
425 if (EDGE_COUNT (bb->succs)
426 && (lsum - bb->count > 100 || lsum - bb->count < -100))
427 fprintf (file, "%s%sInvalid sum of outgoing counts %i, should be %i\n",
428 (flags & TDF_COMMENT) ? ";; " : "", s_indent,
429 (int) lsum, (int) bb->count);
431 if (bb != ENTRY_BLOCK_PTR_FOR_FN (fun))
433 sum = 0;
434 FOR_EACH_EDGE (e, ei, bb->preds)
435 sum += EDGE_FREQUENCY (e);
436 if (abs (sum - bb->frequency) > 100)
437 fprintf (file,
438 "%s%sInvalid sum of incoming frequencies %i, should be %i\n",
439 (flags & TDF_COMMENT) ? ";; " : "", s_indent,
440 sum, bb->frequency);
441 lsum = 0;
442 FOR_EACH_EDGE (e, ei, bb->preds)
443 lsum += e->count;
444 if (lsum - bb->count > 100 || lsum - bb->count < -100)
445 fprintf (file, "%s%sInvalid sum of incoming counts %i, should be %i\n",
446 (flags & TDF_COMMENT) ? ";; " : "", s_indent,
447 (int) lsum, (int) bb->count);
449 if (BB_PARTITION (bb) == BB_COLD_PARTITION)
451 /* Warn about inconsistencies in the partitioning that are
452 currently caused by profile insanities created via optimization. */
453 if (!probably_never_executed_bb_p (fun, bb))
454 fprintf (file, "%s%sBlock in cold partition with hot count\n",
455 (flags & TDF_COMMENT) ? ";; " : "", s_indent);
456 FOR_EACH_EDGE (e, ei, bb->preds)
458 if (!probably_never_executed_edge_p (fun, e))
459 fprintf (file,
460 "%s%sBlock in cold partition with incoming hot edge\n",
461 (flags & TDF_COMMENT) ? ";; " : "", s_indent);
466 void
467 dump_edge_info (FILE *file, edge e, int flags, int do_succ)
469 basic_block side = (do_succ ? e->dest : e->src);
470 bool do_details = false;
472 if ((flags & TDF_DETAILS) != 0
473 && (flags & TDF_SLIM) == 0)
474 do_details = true;
476 if (side->index == ENTRY_BLOCK)
477 fputs (" ENTRY", file);
478 else if (side->index == EXIT_BLOCK)
479 fputs (" EXIT", file);
480 else
481 fprintf (file, " %d", side->index);
483 if (e->probability && do_details)
484 fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
486 if (e->count && do_details)
488 fputs (" count:", file);
489 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
492 if (e->flags && do_details)
494 static const char * const bitnames[] =
496 #define DEF_EDGE_FLAG(NAME,IDX) #NAME ,
497 #include "cfg-flags.def"
498 NULL
499 #undef DEF_EDGE_FLAG
501 bool comma = false;
502 int i, flags = e->flags;
504 gcc_assert (e->flags <= EDGE_ALL_FLAGS);
505 fputs (" (", file);
506 for (i = 0; flags; i++)
507 if (flags & (1 << i))
509 flags &= ~(1 << i);
511 if (comma)
512 fputc (',', file);
513 fputs (bitnames[i], file);
514 comma = true;
517 fputc (')', file);
521 DEBUG_FUNCTION void
522 debug (edge_def &ref)
524 /* FIXME (crowl): Is this desireable? */
525 dump_edge_info (stderr, &ref, 0, false);
526 dump_edge_info (stderr, &ref, 0, true);
529 DEBUG_FUNCTION void
530 debug (edge_def *ptr)
532 if (ptr)
533 debug (*ptr);
534 else
535 fprintf (stderr, "<nil>\n");
538 /* Simple routines to easily allocate AUX fields of basic blocks. */
540 static struct obstack block_aux_obstack;
541 static void *first_block_aux_obj = 0;
542 static struct obstack edge_aux_obstack;
543 static void *first_edge_aux_obj = 0;
545 /* Allocate a memory block of SIZE as BB->aux. The obstack must
546 be first initialized by alloc_aux_for_blocks. */
548 static void
549 alloc_aux_for_block (basic_block bb, int size)
551 /* Verify that aux field is clear. */
552 gcc_assert (!bb->aux && first_block_aux_obj);
553 bb->aux = obstack_alloc (&block_aux_obstack, size);
554 memset (bb->aux, 0, size);
557 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
558 alloc_aux_for_block for each basic block. */
560 void
561 alloc_aux_for_blocks (int size)
563 static int initialized;
565 if (!initialized)
567 gcc_obstack_init (&block_aux_obstack);
568 initialized = 1;
570 else
571 /* Check whether AUX data are still allocated. */
572 gcc_assert (!first_block_aux_obj);
574 first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
575 if (size)
577 basic_block bb;
579 FOR_ALL_BB_FN (bb, cfun)
580 alloc_aux_for_block (bb, size);
584 /* Clear AUX pointers of all blocks. */
586 void
587 clear_aux_for_blocks (void)
589 basic_block bb;
591 FOR_ALL_BB_FN (bb, cfun)
592 bb->aux = NULL;
595 /* Free data allocated in block_aux_obstack and clear AUX pointers
596 of all blocks. */
598 void
599 free_aux_for_blocks (void)
601 gcc_assert (first_block_aux_obj);
602 obstack_free (&block_aux_obstack, first_block_aux_obj);
603 first_block_aux_obj = NULL;
605 clear_aux_for_blocks ();
608 /* Allocate a memory edge of SIZE as E->aux. The obstack must
609 be first initialized by alloc_aux_for_edges. */
611 void
612 alloc_aux_for_edge (edge e, int size)
614 /* Verify that aux field is clear. */
615 gcc_assert (!e->aux && first_edge_aux_obj);
616 e->aux = obstack_alloc (&edge_aux_obstack, size);
617 memset (e->aux, 0, size);
620 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
621 alloc_aux_for_edge for each basic edge. */
623 void
624 alloc_aux_for_edges (int size)
626 static int initialized;
628 if (!initialized)
630 gcc_obstack_init (&edge_aux_obstack);
631 initialized = 1;
633 else
634 /* Check whether AUX data are still allocated. */
635 gcc_assert (!first_edge_aux_obj);
637 first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
638 if (size)
640 basic_block bb;
642 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
643 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
645 edge e;
646 edge_iterator ei;
648 FOR_EACH_EDGE (e, ei, bb->succs)
649 alloc_aux_for_edge (e, size);
654 /* Clear AUX pointers of all edges. */
656 void
657 clear_aux_for_edges (void)
659 basic_block bb;
660 edge e;
662 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
663 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
665 edge_iterator ei;
666 FOR_EACH_EDGE (e, ei, bb->succs)
667 e->aux = NULL;
671 /* Free data allocated in edge_aux_obstack and clear AUX pointers
672 of all edges. */
674 void
675 free_aux_for_edges (void)
677 gcc_assert (first_edge_aux_obj);
678 obstack_free (&edge_aux_obstack, first_edge_aux_obj);
679 first_edge_aux_obj = NULL;
681 clear_aux_for_edges ();
684 DEBUG_FUNCTION void
685 debug_bb (basic_block bb)
687 dump_bb (stderr, bb, 0, dump_flags);
690 DEBUG_FUNCTION basic_block
691 debug_bb_n (int n)
693 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, n);
694 debug_bb (bb);
695 return bb;
698 /* Dumps cfg related information about basic block BB to OUTF.
699 If HEADER is true, dump things that appear before the instructions
700 contained in BB. If FOOTER is true, dump things that appear after.
701 Flags are the TDF_* masks as documented in dumpfile.h.
702 NB: With TDF_DETAILS, it is assumed that cfun is available, so
703 that maybe_hot_bb_p and probably_never_executed_bb_p don't ICE. */
705 void
706 dump_bb_info (FILE *outf, basic_block bb, int indent, int flags,
707 bool do_header, bool do_footer)
709 edge_iterator ei;
710 edge e;
711 static const char * const bb_bitnames[] =
713 #define DEF_BASIC_BLOCK_FLAG(NAME,IDX) #NAME ,
714 #include "cfg-flags.def"
715 NULL
716 #undef DEF_BASIC_BLOCK_FLAG
718 const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
719 bool first;
720 char *s_indent = (char *) alloca ((size_t) indent + 1);
721 memset ((void *) s_indent, ' ', (size_t) indent);
722 s_indent[indent] = '\0';
724 gcc_assert (bb->flags <= BB_ALL_FLAGS);
726 if (do_header)
728 unsigned i;
730 if (flags & TDF_COMMENT)
731 fputs (";; ", outf);
732 fprintf (outf, "%sbasic block %d, loop depth %d",
733 s_indent, bb->index, bb_loop_depth (bb));
734 if (flags & TDF_DETAILS)
736 struct function *fun = DECL_STRUCT_FUNCTION (current_function_decl);
737 fprintf (outf, ", count " HOST_WIDEST_INT_PRINT_DEC,
738 (HOST_WIDEST_INT) bb->count);
739 fprintf (outf, ", freq %i", bb->frequency);
740 if (maybe_hot_bb_p (fun, bb))
741 fputs (", maybe hot", outf);
742 if (probably_never_executed_bb_p (fun, bb))
743 fputs (", probably never executed", outf);
745 fputc ('\n', outf);
746 if (TDF_DETAILS)
747 check_bb_profile (bb, outf, indent, flags);
749 if (flags & TDF_DETAILS)
751 if (flags & TDF_COMMENT)
752 fputs (";; ", outf);
753 fprintf (outf, "%s prev block ", s_indent);
754 if (bb->prev_bb)
755 fprintf (outf, "%d", bb->prev_bb->index);
756 else
757 fprintf (outf, "(nil)");
758 fprintf (outf, ", next block ");
759 if (bb->next_bb)
760 fprintf (outf, "%d", bb->next_bb->index);
761 else
762 fprintf (outf, "(nil)");
764 fputs (", flags:", outf);
765 first = true;
766 for (i = 0; i < n_bitnames; i++)
767 if (bb->flags & (1 << i))
769 if (first)
770 fputs (" (", outf);
771 else
772 fputs (", ", outf);
773 first = false;
774 fputs (bb_bitnames[i], outf);
776 if (!first)
777 fputc (')', outf);
778 fputc ('\n', outf);
781 if (flags & TDF_COMMENT)
782 fputs (";; ", outf);
783 fprintf (outf, "%s pred: ", s_indent);
784 first = true;
785 FOR_EACH_EDGE (e, ei, bb->preds)
787 if (! first)
789 if (flags & TDF_COMMENT)
790 fputs (";; ", outf);
791 fprintf (outf, "%s ", s_indent);
793 first = false;
794 dump_edge_info (outf, e, flags, 0);
795 fputc ('\n', outf);
797 if (first)
798 fputc ('\n', outf);
801 if (do_footer)
803 if (flags & TDF_COMMENT)
804 fputs (";; ", outf);
805 fprintf (outf, "%s succ: ", s_indent);
806 first = true;
807 FOR_EACH_EDGE (e, ei, bb->succs)
809 if (! first)
811 if (flags & TDF_COMMENT)
812 fputs (";; ", outf);
813 fprintf (outf, "%s ", s_indent);
815 first = false;
816 dump_edge_info (outf, e, flags, 1);
817 fputc ('\n', outf);
819 if (first)
820 fputc ('\n', outf);
824 /* Dumps a brief description of cfg to FILE. */
826 void
827 brief_dump_cfg (FILE *file, int flags)
829 basic_block bb;
831 FOR_EACH_BB_FN (bb, cfun)
833 dump_bb_info (file, bb, 0,
834 flags & (TDF_COMMENT | TDF_DETAILS),
835 true, true);
839 /* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
840 leave the block by TAKEN_EDGE. Update profile of BB such that edge E can be
841 redirected to destination of TAKEN_EDGE.
843 This function may leave the profile inconsistent in the case TAKEN_EDGE
844 frequency or count is believed to be lower than FREQUENCY or COUNT
845 respectively. */
846 void
847 update_bb_profile_for_threading (basic_block bb, int edge_frequency,
848 gcov_type count, edge taken_edge)
850 edge c;
851 int prob;
852 edge_iterator ei;
854 bb->count -= count;
855 if (bb->count < 0)
857 if (dump_file)
858 fprintf (dump_file, "bb %i count became negative after threading",
859 bb->index);
860 bb->count = 0;
863 /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
864 Watch for overflows. */
865 if (bb->frequency)
866 prob = GCOV_COMPUTE_SCALE (edge_frequency, bb->frequency);
867 else
868 prob = 0;
869 if (prob > taken_edge->probability)
871 if (dump_file)
872 fprintf (dump_file, "Jump threading proved probability of edge "
873 "%i->%i too small (it is %i, should be %i).\n",
874 taken_edge->src->index, taken_edge->dest->index,
875 taken_edge->probability, prob);
876 prob = taken_edge->probability;
879 /* Now rescale the probabilities. */
880 taken_edge->probability -= prob;
881 prob = REG_BR_PROB_BASE - prob;
882 bb->frequency -= edge_frequency;
883 if (bb->frequency < 0)
884 bb->frequency = 0;
885 if (prob <= 0)
887 if (dump_file)
888 fprintf (dump_file, "Edge frequencies of bb %i has been reset, "
889 "frequency of block should end up being 0, it is %i\n",
890 bb->index, bb->frequency);
891 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
892 ei = ei_start (bb->succs);
893 ei_next (&ei);
894 for (; (c = ei_safe_edge (ei)); ei_next (&ei))
895 c->probability = 0;
897 else if (prob != REG_BR_PROB_BASE)
899 int scale = RDIV (65536 * REG_BR_PROB_BASE, prob);
901 FOR_EACH_EDGE (c, ei, bb->succs)
903 /* Protect from overflow due to additional scaling. */
904 if (c->probability > prob)
905 c->probability = REG_BR_PROB_BASE;
906 else
908 c->probability = RDIV (c->probability * scale, 65536);
909 if (c->probability > REG_BR_PROB_BASE)
910 c->probability = REG_BR_PROB_BASE;
915 gcc_assert (bb == taken_edge->src);
916 taken_edge->count -= count;
917 if (taken_edge->count < 0)
919 if (dump_file)
920 fprintf (dump_file, "edge %i->%i count became negative after threading",
921 taken_edge->src->index, taken_edge->dest->index);
922 taken_edge->count = 0;
926 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
927 by NUM/DEN, in int arithmetic. May lose some accuracy. */
928 void
929 scale_bbs_frequencies_int (basic_block *bbs, int nbbs, int num, int den)
931 int i;
932 edge e;
933 if (num < 0)
934 num = 0;
936 /* Scale NUM and DEN to avoid overflows. Frequencies are in order of
937 10^4, if we make DEN <= 10^3, we can afford to upscale by 100
938 and still safely fit in int during calculations. */
939 if (den > 1000)
941 if (num > 1000000)
942 return;
944 num = RDIV (1000 * num, den);
945 den = 1000;
947 if (num > 100 * den)
948 return;
950 for (i = 0; i < nbbs; i++)
952 edge_iterator ei;
953 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
954 /* Make sure the frequencies do not grow over BB_FREQ_MAX. */
955 if (bbs[i]->frequency > BB_FREQ_MAX)
956 bbs[i]->frequency = BB_FREQ_MAX;
957 bbs[i]->count = RDIV (bbs[i]->count * num, den);
958 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
959 e->count = RDIV (e->count * num, den);
963 /* numbers smaller than this value are safe to multiply without getting
964 64bit overflow. */
965 #define MAX_SAFE_MULTIPLIER (1 << (sizeof (HOST_WIDEST_INT) * 4 - 1))
967 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
968 by NUM/DEN, in gcov_type arithmetic. More accurate than previous
969 function but considerably slower. */
970 void
971 scale_bbs_frequencies_gcov_type (basic_block *bbs, int nbbs, gcov_type num,
972 gcov_type den)
974 int i;
975 edge e;
976 gcov_type fraction = RDIV (num * 65536, den);
978 gcc_assert (fraction >= 0);
980 if (num < MAX_SAFE_MULTIPLIER)
981 for (i = 0; i < nbbs; i++)
983 edge_iterator ei;
984 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
985 if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
986 bbs[i]->count = RDIV (bbs[i]->count * num, den);
987 else
988 bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
989 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
990 if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
991 e->count = RDIV (e->count * num, den);
992 else
993 e->count = RDIV (e->count * fraction, 65536);
995 else
996 for (i = 0; i < nbbs; i++)
998 edge_iterator ei;
999 if (sizeof (gcov_type) > sizeof (int))
1000 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
1001 else
1002 bbs[i]->frequency = RDIV (bbs[i]->frequency * fraction, 65536);
1003 bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
1004 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
1005 e->count = RDIV (e->count * fraction, 65536);
1009 /* Helper types for hash tables. */
1011 struct htab_bb_copy_original_entry
1013 /* Block we are attaching info to. */
1014 int index1;
1015 /* Index of original or copy (depending on the hashtable) */
1016 int index2;
1019 struct bb_copy_hasher : typed_noop_remove <htab_bb_copy_original_entry>
1021 typedef htab_bb_copy_original_entry value_type;
1022 typedef htab_bb_copy_original_entry compare_type;
1023 static inline hashval_t hash (const value_type *);
1024 static inline bool equal (const value_type *existing,
1025 const compare_type * candidate);
1028 inline hashval_t
1029 bb_copy_hasher::hash (const value_type *data)
1031 return data->index1;
1034 inline bool
1035 bb_copy_hasher::equal (const value_type *data, const compare_type *data2)
1037 return data->index1 == data2->index1;
1040 /* Data structures used to maintain mapping between basic blocks and
1041 copies. */
1042 static hash_table <bb_copy_hasher> bb_original;
1043 static hash_table <bb_copy_hasher> bb_copy;
1045 /* And between loops and copies. */
1046 static hash_table <bb_copy_hasher> loop_copy;
1047 static alloc_pool original_copy_bb_pool;
1050 /* Initialize the data structures to maintain mapping between blocks
1051 and its copies. */
1052 void
1053 initialize_original_copy_tables (void)
1055 gcc_assert (!original_copy_bb_pool);
1056 original_copy_bb_pool
1057 = create_alloc_pool ("original_copy",
1058 sizeof (struct htab_bb_copy_original_entry), 10);
1059 bb_original.create (10);
1060 bb_copy.create (10);
1061 loop_copy.create (10);
1064 /* Free the data structures to maintain mapping between blocks and
1065 its copies. */
1066 void
1067 free_original_copy_tables (void)
1069 gcc_assert (original_copy_bb_pool);
1070 bb_copy.dispose ();
1071 bb_original.dispose ();
1072 loop_copy.dispose ();
1073 free_alloc_pool (original_copy_bb_pool);
1074 original_copy_bb_pool = NULL;
1077 /* Removes the value associated with OBJ from table TAB. */
1079 static void
1080 copy_original_table_clear (hash_table <bb_copy_hasher> tab, unsigned obj)
1082 htab_bb_copy_original_entry **slot;
1083 struct htab_bb_copy_original_entry key, *elt;
1085 if (!original_copy_bb_pool)
1086 return;
1088 key.index1 = obj;
1089 slot = tab.find_slot (&key, NO_INSERT);
1090 if (!slot)
1091 return;
1093 elt = *slot;
1094 tab.clear_slot (slot);
1095 pool_free (original_copy_bb_pool, elt);
1098 /* Sets the value associated with OBJ in table TAB to VAL.
1099 Do nothing when data structures are not initialized. */
1101 static void
1102 copy_original_table_set (hash_table <bb_copy_hasher> tab,
1103 unsigned obj, unsigned val)
1105 struct htab_bb_copy_original_entry **slot;
1106 struct htab_bb_copy_original_entry key;
1108 if (!original_copy_bb_pool)
1109 return;
1111 key.index1 = obj;
1112 slot = tab.find_slot (&key, INSERT);
1113 if (!*slot)
1115 *slot = (struct htab_bb_copy_original_entry *)
1116 pool_alloc (original_copy_bb_pool);
1117 (*slot)->index1 = obj;
1119 (*slot)->index2 = val;
1122 /* Set original for basic block. Do nothing when data structures are not
1123 initialized so passes not needing this don't need to care. */
1124 void
1125 set_bb_original (basic_block bb, basic_block original)
1127 copy_original_table_set (bb_original, bb->index, original->index);
1130 /* Get the original basic block. */
1131 basic_block
1132 get_bb_original (basic_block bb)
1134 struct htab_bb_copy_original_entry *entry;
1135 struct htab_bb_copy_original_entry key;
1137 gcc_assert (original_copy_bb_pool);
1139 key.index1 = bb->index;
1140 entry = bb_original.find (&key);
1141 if (entry)
1142 return BASIC_BLOCK_FOR_FN (cfun, entry->index2);
1143 else
1144 return NULL;
1147 /* Set copy for basic block. Do nothing when data structures are not
1148 initialized so passes not needing this don't need to care. */
1149 void
1150 set_bb_copy (basic_block bb, basic_block copy)
1152 copy_original_table_set (bb_copy, bb->index, copy->index);
1155 /* Get the copy of basic block. */
1156 basic_block
1157 get_bb_copy (basic_block bb)
1159 struct htab_bb_copy_original_entry *entry;
1160 struct htab_bb_copy_original_entry key;
1162 gcc_assert (original_copy_bb_pool);
1164 key.index1 = bb->index;
1165 entry = bb_copy.find (&key);
1166 if (entry)
1167 return BASIC_BLOCK_FOR_FN (cfun, entry->index2);
1168 else
1169 return NULL;
1172 /* Set copy for LOOP to COPY. Do nothing when data structures are not
1173 initialized so passes not needing this don't need to care. */
1175 void
1176 set_loop_copy (struct loop *loop, struct loop *copy)
1178 if (!copy)
1179 copy_original_table_clear (loop_copy, loop->num);
1180 else
1181 copy_original_table_set (loop_copy, loop->num, copy->num);
1184 /* Get the copy of LOOP. */
1186 struct loop *
1187 get_loop_copy (struct loop *loop)
1189 struct htab_bb_copy_original_entry *entry;
1190 struct htab_bb_copy_original_entry key;
1192 gcc_assert (original_copy_bb_pool);
1194 key.index1 = loop->num;
1195 entry = loop_copy.find (&key);
1196 if (entry)
1197 return get_loop (cfun, entry->index2);
1198 else
1199 return NULL;