1 /* Natural loop analysis code for GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 #include "coretypes.h"
26 #include "hard-reg-set.h"
28 #include "basic-block.h"
33 /* Checks whether BB is executed exactly once in each LOOP iteration. */
36 just_once_each_iteration_p (const struct loop
*loop
, basic_block bb
)
38 /* It must be executed at least once each iteration. */
39 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, bb
))
43 if (bb
->loop_father
!= loop
)
46 /* But this was not enough. We might have some irreducible loop here. */
47 if (bb
->flags
& BB_IRREDUCIBLE_LOOP
)
53 /* Structure representing edge of a graph. */
57 int src
, dest
; /* Source and destination. */
58 struct edge
*pred_next
, *succ_next
;
59 /* Next edge in predecessor and successor lists. */
60 void *data
; /* Data attached to the edge. */
63 /* Structure representing vertex of a graph. */
67 struct edge
*pred
, *succ
;
68 /* Lists of predecessors and successors. */
69 int component
; /* Number of dfs restarts before reaching the
71 int post
; /* Postorder number. */
74 /* Structure representing a graph. */
78 int n_vertices
; /* Number of vertices. */
79 struct vertex
*vertices
;
83 /* Dumps graph G into F. */
85 extern void dump_graph (FILE *, struct graph
*);
88 dump_graph (FILE *f
, struct graph
*g
)
93 for (i
= 0; i
< g
->n_vertices
; i
++)
95 if (!g
->vertices
[i
].pred
96 && !g
->vertices
[i
].succ
)
99 fprintf (f
, "%d (%d)\t<-", i
, g
->vertices
[i
].component
);
100 for (e
= g
->vertices
[i
].pred
; e
; e
= e
->pred_next
)
101 fprintf (f
, " %d", e
->src
);
105 for (e
= g
->vertices
[i
].succ
; e
; e
= e
->succ_next
)
106 fprintf (f
, " %d", e
->dest
);
111 /* Creates a new graph with N_VERTICES vertices. */
113 static struct graph
*
114 new_graph (int n_vertices
)
116 struct graph
*g
= XNEW (struct graph
);
118 g
->n_vertices
= n_vertices
;
119 g
->vertices
= XCNEWVEC (struct vertex
, n_vertices
);
124 /* Adds an edge from F to T to graph G, with DATA attached. */
127 add_edge (struct graph
*g
, int f
, int t
, void *data
)
129 struct edge
*e
= xmalloc (sizeof (struct edge
));
135 e
->pred_next
= g
->vertices
[t
].pred
;
136 g
->vertices
[t
].pred
= e
;
138 e
->succ_next
= g
->vertices
[f
].succ
;
139 g
->vertices
[f
].succ
= e
;
142 /* Runs dfs search over vertices of G, from NQ vertices in queue QS.
143 The vertices in postorder are stored into QT. If FORWARD is false,
144 backward dfs is run. */
147 dfs (struct graph
*g
, int *qs
, int nq
, int *qt
, bool forward
)
149 int i
, tick
= 0, v
, comp
= 0, top
;
151 struct edge
**stack
= xmalloc (sizeof (struct edge
*) * g
->n_vertices
);
153 for (i
= 0; i
< g
->n_vertices
; i
++)
155 g
->vertices
[i
].component
= -1;
156 g
->vertices
[i
].post
= -1;
159 #define FST_EDGE(V) (forward ? g->vertices[(V)].succ : g->vertices[(V)].pred)
160 #define NEXT_EDGE(E) (forward ? (E)->succ_next : (E)->pred_next)
161 #define EDGE_SRC(E) (forward ? (E)->src : (E)->dest)
162 #define EDGE_DEST(E) (forward ? (E)->dest : (E)->src)
164 for (i
= 0; i
< nq
; i
++)
167 if (g
->vertices
[v
].post
!= -1)
170 g
->vertices
[v
].component
= comp
++;
176 while (e
&& g
->vertices
[EDGE_DEST (e
)].component
!= -1)
183 g
->vertices
[v
].post
= tick
++;
197 g
->vertices
[v
].component
= comp
- 1;
204 /* Marks the edge E in graph G irreducible if it connects two vertices in the
208 check_irred (struct graph
*g
, struct edge
*e
)
212 /* All edges should lead from a component with higher number to the
213 one with lower one. */
214 gcc_assert (g
->vertices
[e
->src
].component
>= g
->vertices
[e
->dest
].component
);
216 if (g
->vertices
[e
->src
].component
!= g
->vertices
[e
->dest
].component
)
219 real
->flags
|= EDGE_IRREDUCIBLE_LOOP
;
220 if (flow_bb_inside_loop_p (real
->src
->loop_father
, real
->dest
))
221 real
->src
->flags
|= BB_IRREDUCIBLE_LOOP
;
224 /* Runs CALLBACK for all edges in G. */
227 for_each_edge (struct graph
*g
,
228 void (callback
) (struct graph
*, struct edge
*))
233 for (i
= 0; i
< g
->n_vertices
; i
++)
234 for (e
= g
->vertices
[i
].succ
; e
; e
= e
->succ_next
)
238 /* Releases the memory occupied by G. */
241 free_graph (struct graph
*g
)
246 for (i
= 0; i
< g
->n_vertices
; i
++)
247 for (e
= g
->vertices
[i
].succ
; e
; e
= n
)
256 /* Marks blocks and edges that are part of non-recognized loops; i.e. we
257 throw away all latch edges and mark blocks inside any remaining cycle.
258 Everything is a bit complicated due to fact we do not want to do this
259 for parts of cycles that only "pass" through some loop -- i.e. for
260 each cycle, we want to mark blocks that belong directly to innermost
261 loop containing the whole cycle.
263 LOOPS is the loop tree. */
265 #define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block)
266 #define BB_REPR(BB) ((BB)->index + 1)
269 mark_irreducible_loops (void)
276 int num
= current_loops
? number_of_loops () : 1;
277 int *queue1
= XNEWVEC (int, last_basic_block
+ num
);
278 int *queue2
= XNEWVEC (int, last_basic_block
+ num
);
280 struct loop
*cloop
, *loop
;
283 /* Reset the flags. */
284 FOR_BB_BETWEEN (act
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
286 act
->flags
&= ~BB_IRREDUCIBLE_LOOP
;
287 FOR_EACH_EDGE (e
, ei
, act
->succs
)
288 e
->flags
&= ~EDGE_IRREDUCIBLE_LOOP
;
291 /* Create the edge lists. */
292 g
= new_graph (last_basic_block
+ num
);
294 FOR_BB_BETWEEN (act
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
295 FOR_EACH_EDGE (e
, ei
, act
->succs
)
297 /* Ignore edges to exit. */
298 if (e
->dest
== EXIT_BLOCK_PTR
)
302 dest
= BB_REPR (e
->dest
);
306 /* Ignore latch edges. */
307 if (e
->dest
->loop_father
->header
== e
->dest
308 && e
->dest
->loop_father
->latch
== act
)
311 /* Edges inside a single loop should be left where they are. Edges
312 to subloop headers should lead to representative of the subloop,
313 but from the same place.
315 Edges exiting loops should lead from representative
316 of the son of nearest common ancestor of the loops in that
319 if (e
->dest
->loop_father
->header
== e
->dest
)
320 dest
= LOOP_REPR (e
->dest
->loop_father
);
322 if (!flow_bb_inside_loop_p (act
->loop_father
, e
->dest
))
324 depth
= find_common_loop (act
->loop_father
,
325 e
->dest
->loop_father
)->depth
+ 1;
326 if (depth
== act
->loop_father
->depth
)
327 cloop
= act
->loop_father
;
329 cloop
= act
->loop_father
->pred
[depth
];
331 src
= LOOP_REPR (cloop
);
335 add_edge (g
, src
, dest
, e
);
338 /* Find the strongly connected components. Use the algorithm of Tarjan --
339 first determine the postorder dfs numbering in reversed graph, then
340 run the dfs on the original graph in the order given by decreasing
341 numbers assigned by the previous pass. */
343 FOR_BB_BETWEEN (act
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
345 queue1
[nq
++] = BB_REPR (act
);
350 FOR_EACH_LOOP (li
, loop
, 0)
352 queue1
[nq
++] = LOOP_REPR (loop
);
355 dfs (g
, queue1
, nq
, queue2
, false);
356 for (i
= 0; i
< nq
; i
++)
357 queue1
[i
] = queue2
[nq
- i
- 1];
358 dfs (g
, queue1
, nq
, NULL
, true);
360 /* Mark the irreducible loops. */
361 for_each_edge (g
, check_irred
);
368 current_loops
->state
|= LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS
;
371 /* Counts number of insns inside LOOP. */
373 num_loop_insns (struct loop
*loop
)
375 basic_block
*bbs
, bb
;
376 unsigned i
, ninsns
= 0;
379 bbs
= get_loop_body (loop
);
380 for (i
= 0; i
< loop
->num_nodes
; i
++)
384 for (insn
= BB_HEAD (bb
); insn
!= BB_END (bb
); insn
= NEXT_INSN (insn
))
393 /* Counts number of insns executed on average per iteration LOOP. */
395 average_num_loop_insns (struct loop
*loop
)
397 basic_block
*bbs
, bb
;
398 unsigned i
, binsns
, ninsns
, ratio
;
402 bbs
= get_loop_body (loop
);
403 for (i
= 0; i
< loop
->num_nodes
; i
++)
408 for (insn
= BB_HEAD (bb
); insn
!= BB_END (bb
); insn
= NEXT_INSN (insn
))
412 ratio
= loop
->header
->frequency
== 0
414 : (bb
->frequency
* BB_FREQ_MAX
) / loop
->header
->frequency
;
415 ninsns
+= binsns
* ratio
;
419 ninsns
/= BB_FREQ_MAX
;
421 ninsns
= 1; /* To avoid division by zero. */
426 /* Returns expected number of LOOP iterations.
427 Compute upper bound on number of iterations in case they do not fit integer
428 to help loop peeling heuristics. Use exact counts if at all possible. */
430 expected_loop_iterations (const struct loop
*loop
)
435 if (loop
->latch
->count
|| loop
->header
->count
)
437 gcov_type count_in
, count_latch
, expected
;
442 FOR_EACH_EDGE (e
, ei
, loop
->header
->preds
)
443 if (e
->src
== loop
->latch
)
444 count_latch
= e
->count
;
446 count_in
+= e
->count
;
449 expected
= count_latch
* 2;
451 expected
= (count_latch
+ count_in
- 1) / count_in
;
453 /* Avoid overflows. */
454 return (expected
> REG_BR_PROB_BASE
? REG_BR_PROB_BASE
: expected
);
458 int freq_in
, freq_latch
;
463 FOR_EACH_EDGE (e
, ei
, loop
->header
->preds
)
464 if (e
->src
== loop
->latch
)
465 freq_latch
= EDGE_FREQUENCY (e
);
467 freq_in
+= EDGE_FREQUENCY (e
);
470 return freq_latch
* 2;
472 return (freq_latch
+ freq_in
- 1) / freq_in
;
476 /* Returns the maximum level of nesting of subloops of LOOP. */
479 get_loop_level (const struct loop
*loop
)
481 const struct loop
*ploop
;
484 for (ploop
= loop
->inner
; ploop
; ploop
= ploop
->next
)
486 l
= get_loop_level (ploop
);
493 /* Returns estimate on cost of computing SEQ. */
501 for (; seq
; seq
= NEXT_INSN (seq
))
503 set
= single_set (seq
);
505 cost
+= rtx_cost (set
, SET
);
513 /* The properties of the target. */
515 unsigned target_avail_regs
; /* Number of available registers. */
516 unsigned target_res_regs
; /* Number of reserved registers. */
517 unsigned target_small_cost
; /* The cost for register when there is a free one. */
518 unsigned target_pres_cost
; /* The cost for register when there are not too many
520 unsigned target_spill_cost
; /* The cost for register when we need to spill. */
522 /* Initialize the constants for computing set costs. */
525 init_set_costs (void)
528 rtx reg1
= gen_raw_REG (SImode
, FIRST_PSEUDO_REGISTER
);
529 rtx reg2
= gen_raw_REG (SImode
, FIRST_PSEUDO_REGISTER
+ 1);
530 rtx addr
= gen_raw_REG (Pmode
, FIRST_PSEUDO_REGISTER
+ 2);
531 rtx mem
= validize_mem (gen_rtx_MEM (SImode
, addr
));
534 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
535 if (TEST_HARD_REG_BIT (reg_class_contents
[GENERAL_REGS
], i
)
541 /* These are really just heuristic values. */
544 emit_move_insn (reg1
, reg2
);
547 target_small_cost
= seq_cost (seq
);
548 target_pres_cost
= 2 * target_small_cost
;
551 emit_move_insn (mem
, reg1
);
552 emit_move_insn (reg2
, mem
);
555 target_spill_cost
= seq_cost (seq
);
558 /* Calculates cost for having SIZE new loop global variables. REGS_USED is the
559 number of global registers used in loop. N_USES is the number of relevant
563 global_cost_for_size (unsigned size
, unsigned regs_used
, unsigned n_uses
)
565 unsigned regs_needed
= regs_used
+ size
;
568 if (regs_needed
+ target_res_regs
<= target_avail_regs
)
569 cost
+= target_small_cost
* size
;
570 else if (regs_needed
<= target_avail_regs
)
571 cost
+= target_pres_cost
* size
;
574 cost
+= target_pres_cost
* size
;
575 cost
+= target_spill_cost
* n_uses
* (regs_needed
- target_avail_regs
) / regs_needed
;
581 /* Sets EDGE_LOOP_EXIT flag for all loop exits. */
584 mark_loop_exit_edges (void)
596 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
598 if (bb
->loop_father
->outer
599 && loop_exit_edge_p (bb
->loop_father
, e
))
600 e
->flags
|= EDGE_LOOP_EXIT
;
602 e
->flags
&= ~EDGE_LOOP_EXIT
;