* sv.po: Update.
[official-gcc.git] / gcc / cp / search.c
blob49f3bc5ed8085837441ad2741f959f09dfa4f0ae
1 /* Breadth-first and depth-first routines for
2 searching multiple-inheritance lattice for GNU C++.
3 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* High-level class interface. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "cp-tree.h"
28 #include "intl.h"
29 #include "toplev.h"
30 #include "spellcheck.h"
32 static int is_subobject_of_p (tree, tree);
33 static tree dfs_lookup_base (tree, void *);
34 static tree dfs_dcast_hint_pre (tree, void *);
35 static tree dfs_dcast_hint_post (tree, void *);
36 static tree dfs_debug_mark (tree, void *);
37 static int check_hidden_convs (tree, int, int, tree, tree, tree);
38 static tree split_conversions (tree, tree, tree, tree);
39 static int lookup_conversions_r (tree, int, int,
40 tree, tree, tree, tree, tree *, tree *);
41 static int look_for_overrides_r (tree, tree);
42 static tree lookup_field_r (tree, void *);
43 static tree dfs_accessible_post (tree, void *);
44 static tree dfs_walk_once_accessible (tree, bool,
45 tree (*pre_fn) (tree, void *),
46 tree (*post_fn) (tree, void *),
47 void *data);
48 static tree dfs_access_in_type (tree, void *);
49 static access_kind access_in_type (tree, tree);
50 static tree dfs_get_pure_virtuals (tree, void *);
53 /* Variables for gathering statistics. */
54 static int n_fields_searched;
55 static int n_calls_lookup_field, n_calls_lookup_field_1;
56 static int n_calls_lookup_fnfields, n_calls_lookup_fnfields_1;
57 static int n_calls_get_base_type;
58 static int n_outer_fields_searched;
59 static int n_contexts_saved;
62 /* Data for lookup_base and its workers. */
64 struct lookup_base_data_s
66 tree t; /* type being searched. */
67 tree base; /* The base type we're looking for. */
68 tree binfo; /* Found binfo. */
69 bool via_virtual; /* Found via a virtual path. */
70 bool ambiguous; /* Found multiply ambiguous */
71 bool repeated_base; /* Whether there are repeated bases in the
72 hierarchy. */
73 bool want_any; /* Whether we want any matching binfo. */
76 /* Worker function for lookup_base. See if we've found the desired
77 base and update DATA_ (a pointer to LOOKUP_BASE_DATA_S). */
79 static tree
80 dfs_lookup_base (tree binfo, void *data_)
82 struct lookup_base_data_s *data = (struct lookup_base_data_s *) data_;
84 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->base))
86 if (!data->binfo)
88 data->binfo = binfo;
89 data->via_virtual
90 = binfo_via_virtual (data->binfo, data->t) != NULL_TREE;
92 if (!data->repeated_base)
93 /* If there are no repeated bases, we can stop now. */
94 return binfo;
96 if (data->want_any && !data->via_virtual)
97 /* If this is a non-virtual base, then we can't do
98 better. */
99 return binfo;
101 return dfs_skip_bases;
103 else
105 gcc_assert (binfo != data->binfo);
107 /* We've found more than one matching binfo. */
108 if (!data->want_any)
110 /* This is immediately ambiguous. */
111 data->binfo = NULL_TREE;
112 data->ambiguous = true;
113 return error_mark_node;
116 /* Prefer one via a non-virtual path. */
117 if (!binfo_via_virtual (binfo, data->t))
119 data->binfo = binfo;
120 data->via_virtual = false;
121 return binfo;
124 /* There must be repeated bases, otherwise we'd have stopped
125 on the first base we found. */
126 return dfs_skip_bases;
130 return NULL_TREE;
133 /* Returns true if type BASE is accessible in T. (BASE is known to be
134 a (possibly non-proper) base class of T.) If CONSIDER_LOCAL_P is
135 true, consider any special access of the current scope, or access
136 bestowed by friendship. */
138 bool
139 accessible_base_p (tree t, tree base, bool consider_local_p)
141 tree decl;
143 /* [class.access.base]
145 A base class is said to be accessible if an invented public
146 member of the base class is accessible.
148 If BASE is a non-proper base, this condition is trivially
149 true. */
150 if (same_type_p (t, base))
151 return true;
152 /* Rather than inventing a public member, we use the implicit
153 public typedef created in the scope of every class. */
154 decl = TYPE_FIELDS (base);
155 while (!DECL_SELF_REFERENCE_P (decl))
156 decl = DECL_CHAIN (decl);
157 while (ANON_AGGR_TYPE_P (t))
158 t = TYPE_CONTEXT (t);
159 return accessible_p (t, decl, consider_local_p);
162 /* Lookup BASE in the hierarchy dominated by T. Do access checking as
163 ACCESS specifies. Return the binfo we discover. If KIND_PTR is
164 non-NULL, fill with information about what kind of base we
165 discovered.
167 If the base is inaccessible, or ambiguous, then error_mark_node is
168 returned. If the tf_error bit of COMPLAIN is not set, no error
169 is issued. */
171 tree
172 lookup_base (tree t, tree base, base_access access,
173 base_kind *kind_ptr, tsubst_flags_t complain)
175 tree binfo;
176 tree t_binfo;
177 base_kind bk;
179 /* "Nothing" is definitely not derived from Base. */
180 if (t == NULL_TREE)
182 if (kind_ptr)
183 *kind_ptr = bk_not_base;
184 return NULL_TREE;
187 if (t == error_mark_node || base == error_mark_node)
189 if (kind_ptr)
190 *kind_ptr = bk_not_base;
191 return error_mark_node;
193 gcc_assert (TYPE_P (base));
195 if (!TYPE_P (t))
197 t_binfo = t;
198 t = BINFO_TYPE (t);
200 else
202 t = complete_type (TYPE_MAIN_VARIANT (t));
203 t_binfo = TYPE_BINFO (t);
206 base = TYPE_MAIN_VARIANT (base);
208 /* If BASE is incomplete, it can't be a base of T--and instantiating it
209 might cause an error. */
210 if (t_binfo && CLASS_TYPE_P (base) && COMPLETE_OR_OPEN_TYPE_P (base))
212 struct lookup_base_data_s data;
214 data.t = t;
215 data.base = base;
216 data.binfo = NULL_TREE;
217 data.ambiguous = data.via_virtual = false;
218 data.repeated_base = CLASSTYPE_REPEATED_BASE_P (t);
219 data.want_any = access == ba_any;
221 dfs_walk_once (t_binfo, dfs_lookup_base, NULL, &data);
222 binfo = data.binfo;
224 if (!binfo)
225 bk = data.ambiguous ? bk_ambig : bk_not_base;
226 else if (binfo == t_binfo)
227 bk = bk_same_type;
228 else if (data.via_virtual)
229 bk = bk_via_virtual;
230 else
231 bk = bk_proper_base;
233 else
235 binfo = NULL_TREE;
236 bk = bk_not_base;
239 /* Check that the base is unambiguous and accessible. */
240 if (access != ba_any)
241 switch (bk)
243 case bk_not_base:
244 break;
246 case bk_ambig:
247 if (complain & tf_error)
248 error ("%qT is an ambiguous base of %qT", base, t);
249 binfo = error_mark_node;
250 break;
252 default:
253 if ((access & ba_check_bit)
254 /* If BASE is incomplete, then BASE and TYPE are probably
255 the same, in which case BASE is accessible. If they
256 are not the same, then TYPE is invalid. In that case,
257 there's no need to issue another error here, and
258 there's no implicit typedef to use in the code that
259 follows, so we skip the check. */
260 && COMPLETE_TYPE_P (base)
261 && !accessible_base_p (t, base, !(access & ba_ignore_scope)))
263 if (complain & tf_error)
264 error ("%qT is an inaccessible base of %qT", base, t);
265 binfo = error_mark_node;
266 bk = bk_inaccessible;
268 break;
271 if (kind_ptr)
272 *kind_ptr = bk;
274 return binfo;
277 /* Data for dcast_base_hint walker. */
279 struct dcast_data_s
281 tree subtype; /* The base type we're looking for. */
282 int virt_depth; /* Number of virtual bases encountered from most
283 derived. */
284 tree offset; /* Best hint offset discovered so far. */
285 bool repeated_base; /* Whether there are repeated bases in the
286 hierarchy. */
289 /* Worker for dcast_base_hint. Search for the base type being cast
290 from. */
292 static tree
293 dfs_dcast_hint_pre (tree binfo, void *data_)
295 struct dcast_data_s *data = (struct dcast_data_s *) data_;
297 if (BINFO_VIRTUAL_P (binfo))
298 data->virt_depth++;
300 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->subtype))
302 if (data->virt_depth)
304 data->offset = ssize_int (-1);
305 return data->offset;
307 if (data->offset)
308 data->offset = ssize_int (-3);
309 else
310 data->offset = BINFO_OFFSET (binfo);
312 return data->repeated_base ? dfs_skip_bases : data->offset;
315 return NULL_TREE;
318 /* Worker for dcast_base_hint. Track the virtual depth. */
320 static tree
321 dfs_dcast_hint_post (tree binfo, void *data_)
323 struct dcast_data_s *data = (struct dcast_data_s *) data_;
325 if (BINFO_VIRTUAL_P (binfo))
326 data->virt_depth--;
328 return NULL_TREE;
331 /* The dynamic cast runtime needs a hint about how the static SUBTYPE type
332 started from is related to the required TARGET type, in order to optimize
333 the inheritance graph search. This information is independent of the
334 current context, and ignores private paths, hence get_base_distance is
335 inappropriate. Return a TREE specifying the base offset, BOFF.
336 BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF,
337 and there are no public virtual SUBTYPE bases.
338 BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases.
339 BOFF == -2, SUBTYPE is not a public base.
340 BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases. */
342 tree
343 dcast_base_hint (tree subtype, tree target)
345 struct dcast_data_s data;
347 data.subtype = subtype;
348 data.virt_depth = 0;
349 data.offset = NULL_TREE;
350 data.repeated_base = CLASSTYPE_REPEATED_BASE_P (target);
352 dfs_walk_once_accessible (TYPE_BINFO (target), /*friends=*/false,
353 dfs_dcast_hint_pre, dfs_dcast_hint_post, &data);
354 return data.offset ? data.offset : ssize_int (-2);
357 /* Search for a member with name NAME in a multiple inheritance
358 lattice specified by TYPE. If it does not exist, return NULL_TREE.
359 If the member is ambiguously referenced, return `error_mark_node'.
360 Otherwise, return a DECL with the indicated name. If WANT_TYPE is
361 true, type declarations are preferred. */
363 /* Do a 1-level search for NAME as a member of TYPE. The caller must
364 figure out whether it can access this field. (Since it is only one
365 level, this is reasonable.) */
367 tree
368 lookup_field_1 (tree type, tree name, bool want_type)
370 tree field;
372 gcc_assert (identifier_p (name));
374 if (TREE_CODE (type) == TEMPLATE_TYPE_PARM
375 || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM
376 || TREE_CODE (type) == TYPENAME_TYPE)
377 /* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and
378 BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all;
379 instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX. (Miraculously,
380 the code often worked even when we treated the index as a list
381 of fields!)
382 The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME. */
383 return NULL_TREE;
385 if (CLASSTYPE_SORTED_FIELDS (type))
387 tree *fields = &CLASSTYPE_SORTED_FIELDS (type)->elts[0];
388 int lo = 0, hi = CLASSTYPE_SORTED_FIELDS (type)->len;
389 int i;
391 while (lo < hi)
393 i = (lo + hi) / 2;
395 if (GATHER_STATISTICS)
396 n_fields_searched++;
398 if (DECL_NAME (fields[i]) > name)
399 hi = i;
400 else if (DECL_NAME (fields[i]) < name)
401 lo = i + 1;
402 else
404 field = NULL_TREE;
406 /* We might have a nested class and a field with the
407 same name; we sorted them appropriately via
408 field_decl_cmp, so just look for the first or last
409 field with this name. */
410 if (want_type)
413 field = fields[i--];
414 while (i >= lo && DECL_NAME (fields[i]) == name);
415 if (!DECL_DECLARES_TYPE_P (field))
416 field = NULL_TREE;
418 else
421 field = fields[i++];
422 while (i < hi && DECL_NAME (fields[i]) == name);
425 if (field)
427 field = strip_using_decl (field);
428 if (is_overloaded_fn (field))
429 field = NULL_TREE;
432 return field;
435 return NULL_TREE;
438 field = TYPE_FIELDS (type);
440 if (GATHER_STATISTICS)
441 n_calls_lookup_field_1++;
443 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
445 tree decl = field;
447 if (GATHER_STATISTICS)
448 n_fields_searched++;
450 gcc_assert (DECL_P (field));
451 if (DECL_NAME (field) == NULL_TREE
452 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
454 tree temp = lookup_field_1 (TREE_TYPE (field), name, want_type);
455 if (temp)
456 return temp;
459 if (TREE_CODE (decl) == USING_DECL
460 && DECL_NAME (decl) == name)
462 decl = strip_using_decl (decl);
463 if (is_overloaded_fn (decl))
464 continue;
467 if (DECL_NAME (decl) == name
468 && (!want_type || DECL_DECLARES_TYPE_P (decl)))
469 return decl;
471 /* Not found. */
472 if (name == vptr_identifier)
474 /* Give the user what s/he thinks s/he wants. */
475 if (TYPE_POLYMORPHIC_P (type))
476 return TYPE_VFIELD (type);
478 return NULL_TREE;
481 /* Return the FUNCTION_DECL, RECORD_TYPE, UNION_TYPE, or
482 NAMESPACE_DECL corresponding to the innermost non-block scope. */
484 tree
485 current_scope (void)
487 /* There are a number of cases we need to be aware of here:
488 current_class_type current_function_decl
489 global NULL NULL
490 fn-local NULL SET
491 class-local SET NULL
492 class->fn SET SET
493 fn->class SET SET
495 Those last two make life interesting. If we're in a function which is
496 itself inside a class, we need decls to go into the fn's decls (our
497 second case below). But if we're in a class and the class itself is
498 inside a function, we need decls to go into the decls for the class. To
499 achieve this last goal, we must see if, when both current_class_ptr and
500 current_function_decl are set, the class was declared inside that
501 function. If so, we know to put the decls into the class's scope. */
502 if (current_function_decl && current_class_type
503 && ((DECL_FUNCTION_MEMBER_P (current_function_decl)
504 && same_type_p (DECL_CONTEXT (current_function_decl),
505 current_class_type))
506 || (DECL_FRIEND_CONTEXT (current_function_decl)
507 && same_type_p (DECL_FRIEND_CONTEXT (current_function_decl),
508 current_class_type))))
509 return current_function_decl;
510 if (current_class_type)
511 return current_class_type;
512 if (current_function_decl)
513 return current_function_decl;
514 return current_namespace;
517 /* Returns nonzero if we are currently in a function scope. Note
518 that this function returns zero if we are within a local class, but
519 not within a member function body of the local class. */
522 at_function_scope_p (void)
524 tree cs = current_scope ();
525 /* Also check cfun to make sure that we're really compiling
526 this function (as opposed to having set current_function_decl
527 for access checking or some such). */
528 return (cs && TREE_CODE (cs) == FUNCTION_DECL
529 && cfun && cfun->decl == current_function_decl);
532 /* Returns true if the innermost active scope is a class scope. */
534 bool
535 at_class_scope_p (void)
537 tree cs = current_scope ();
538 return cs && TYPE_P (cs);
541 /* Returns true if the innermost active scope is a namespace scope. */
543 bool
544 at_namespace_scope_p (void)
546 tree cs = current_scope ();
547 return cs && TREE_CODE (cs) == NAMESPACE_DECL;
550 /* Return the scope of DECL, as appropriate when doing name-lookup. */
552 tree
553 context_for_name_lookup (tree decl)
555 /* [class.union]
557 For the purposes of name lookup, after the anonymous union
558 definition, the members of the anonymous union are considered to
559 have been defined in the scope in which the anonymous union is
560 declared. */
561 tree context = DECL_CONTEXT (decl);
563 while (context && TYPE_P (context)
564 && (ANON_AGGR_TYPE_P (context) || UNSCOPED_ENUM_P (context)))
565 context = TYPE_CONTEXT (context);
566 if (!context)
567 context = global_namespace;
569 return context;
572 /* Returns true iff DECL is declared in TYPE. */
574 static bool
575 member_declared_in_type (tree decl, tree type)
577 /* A normal declaration obviously counts. */
578 if (context_for_name_lookup (decl) == type)
579 return true;
580 /* So does a using or access declaration. */
581 if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl)
582 && purpose_member (type, DECL_ACCESS (decl)))
583 return true;
584 return false;
587 /* The accessibility routines use BINFO_ACCESS for scratch space
588 during the computation of the accessibility of some declaration. */
590 /* Avoid walking up past a declaration of the member. */
592 static tree
593 dfs_access_in_type_pre (tree binfo, void *data)
595 tree decl = (tree) data;
596 tree type = BINFO_TYPE (binfo);
597 if (member_declared_in_type (decl, type))
598 return dfs_skip_bases;
599 return NULL_TREE;
602 #define BINFO_ACCESS(NODE) \
603 ((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE)))
605 /* Set the access associated with NODE to ACCESS. */
607 #define SET_BINFO_ACCESS(NODE, ACCESS) \
608 ((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0), \
609 (TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0))
611 /* Called from access_in_type via dfs_walk. Calculate the access to
612 DATA (which is really a DECL) in BINFO. */
614 static tree
615 dfs_access_in_type (tree binfo, void *data)
617 tree decl = (tree) data;
618 tree type = BINFO_TYPE (binfo);
619 access_kind access = ak_none;
621 if (context_for_name_lookup (decl) == type)
623 /* If we have descended to the scope of DECL, just note the
624 appropriate access. */
625 if (TREE_PRIVATE (decl))
626 access = ak_private;
627 else if (TREE_PROTECTED (decl))
628 access = ak_protected;
629 else
630 access = ak_public;
632 else
634 /* First, check for an access-declaration that gives us more
635 access to the DECL. */
636 if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl))
638 tree decl_access = purpose_member (type, DECL_ACCESS (decl));
640 if (decl_access)
642 decl_access = TREE_VALUE (decl_access);
644 if (decl_access == access_public_node)
645 access = ak_public;
646 else if (decl_access == access_protected_node)
647 access = ak_protected;
648 else if (decl_access == access_private_node)
649 access = ak_private;
650 else
651 gcc_unreachable ();
655 if (!access)
657 int i;
658 tree base_binfo;
659 vec<tree, va_gc> *accesses;
661 /* Otherwise, scan our baseclasses, and pick the most favorable
662 access. */
663 accesses = BINFO_BASE_ACCESSES (binfo);
664 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
666 tree base_access = (*accesses)[i];
667 access_kind base_access_now = BINFO_ACCESS (base_binfo);
669 if (base_access_now == ak_none || base_access_now == ak_private)
670 /* If it was not accessible in the base, or only
671 accessible as a private member, we can't access it
672 all. */
673 base_access_now = ak_none;
674 else if (base_access == access_protected_node)
675 /* Public and protected members in the base become
676 protected here. */
677 base_access_now = ak_protected;
678 else if (base_access == access_private_node)
679 /* Public and protected members in the base become
680 private here. */
681 base_access_now = ak_private;
683 /* See if the new access, via this base, gives more
684 access than our previous best access. */
685 if (base_access_now != ak_none
686 && (access == ak_none || base_access_now < access))
688 access = base_access_now;
690 /* If the new access is public, we can't do better. */
691 if (access == ak_public)
692 break;
698 /* Note the access to DECL in TYPE. */
699 SET_BINFO_ACCESS (binfo, access);
701 return NULL_TREE;
704 /* Return the access to DECL in TYPE. */
706 static access_kind
707 access_in_type (tree type, tree decl)
709 tree binfo = TYPE_BINFO (type);
711 /* We must take into account
713 [class.paths]
715 If a name can be reached by several paths through a multiple
716 inheritance graph, the access is that of the path that gives
717 most access.
719 The algorithm we use is to make a post-order depth-first traversal
720 of the base-class hierarchy. As we come up the tree, we annotate
721 each node with the most lenient access. */
722 dfs_walk_once (binfo, dfs_access_in_type_pre, dfs_access_in_type, decl);
724 return BINFO_ACCESS (binfo);
727 /* Returns nonzero if it is OK to access DECL named in TYPE through an object
728 of OTYPE in the context of DERIVED. */
730 static int
731 protected_accessible_p (tree decl, tree derived, tree type, tree otype)
733 /* We're checking this clause from [class.access.base]
735 m as a member of N is protected, and the reference occurs in a
736 member or friend of class N, or in a member or friend of a
737 class P derived from N, where m as a member of P is public, private
738 or protected.
740 Here DERIVED is a possible P, DECL is m and TYPE is N. */
742 /* If DERIVED isn't derived from N, then it can't be a P. */
743 if (!DERIVED_FROM_P (type, derived))
744 return 0;
746 /* [class.protected]
748 When a friend or a member function of a derived class references
749 a protected nonstatic member of a base class, an access check
750 applies in addition to those described earlier in clause
751 _class.access_) Except when forming a pointer to member
752 (_expr.unary.op_), the access must be through a pointer to,
753 reference to, or object of the derived class itself (or any class
754 derived from that class) (_expr.ref_). If the access is to form
755 a pointer to member, the nested-name-specifier shall name the
756 derived class (or any class derived from that class). */
757 if (DECL_NONSTATIC_MEMBER_P (decl)
758 && !DERIVED_FROM_P (derived, otype))
759 return 0;
761 return 1;
764 /* Returns nonzero if SCOPE is a type or a friend of a type which would be able
765 to access DECL through TYPE. OTYPE is the type of the object. */
767 static int
768 friend_accessible_p (tree scope, tree decl, tree type, tree otype)
770 /* We're checking this clause from [class.access.base]
772 m as a member of N is protected, and the reference occurs in a
773 member or friend of class N, or in a member or friend of a
774 class P derived from N, where m as a member of P is public, private
775 or protected.
777 Here DECL is m and TYPE is N. SCOPE is the current context,
778 and we check all its possible Ps. */
779 tree befriending_classes;
780 tree t;
782 if (!scope)
783 return 0;
785 /* Is SCOPE itself a suitable P? */
786 if (TYPE_P (scope) && protected_accessible_p (decl, scope, type, otype))
787 return 1;
789 if (DECL_DECLARES_FUNCTION_P (scope))
790 befriending_classes = DECL_BEFRIENDING_CLASSES (scope);
791 else if (TYPE_P (scope))
792 befriending_classes = CLASSTYPE_BEFRIENDING_CLASSES (scope);
793 else
794 return 0;
796 for (t = befriending_classes; t; t = TREE_CHAIN (t))
797 if (protected_accessible_p (decl, TREE_VALUE (t), type, otype))
798 return 1;
800 /* Nested classes have the same access as their enclosing types, as
801 per DR 45 (this is a change from C++98). */
802 if (TYPE_P (scope))
803 if (friend_accessible_p (TYPE_CONTEXT (scope), decl, type, otype))
804 return 1;
806 if (DECL_DECLARES_FUNCTION_P (scope))
808 /* Perhaps this SCOPE is a member of a class which is a
809 friend. */
810 if (DECL_CLASS_SCOPE_P (scope)
811 && friend_accessible_p (DECL_CONTEXT (scope), decl, type, otype))
812 return 1;
815 /* Maybe scope's template is a friend. */
816 if (tree tinfo = get_template_info (scope))
818 tree tmpl = TI_TEMPLATE (tinfo);
819 if (DECL_CLASS_TEMPLATE_P (tmpl))
820 tmpl = TREE_TYPE (tmpl);
821 else
822 tmpl = DECL_TEMPLATE_RESULT (tmpl);
823 if (tmpl != scope)
825 /* Increment processing_template_decl to make sure that
826 dependent_type_p works correctly. */
827 ++processing_template_decl;
828 int ret = friend_accessible_p (tmpl, decl, type, otype);
829 --processing_template_decl;
830 if (ret)
831 return 1;
835 /* If is_friend is true, we should have found a befriending class. */
836 gcc_checking_assert (!is_friend (type, scope));
838 return 0;
841 struct dfs_accessible_data
843 tree decl;
844 tree object_type;
847 /* Avoid walking up past a declaration of the member. */
849 static tree
850 dfs_accessible_pre (tree binfo, void *data)
852 dfs_accessible_data *d = (dfs_accessible_data *)data;
853 tree type = BINFO_TYPE (binfo);
854 if (member_declared_in_type (d->decl, type))
855 return dfs_skip_bases;
856 return NULL_TREE;
859 /* Called via dfs_walk_once_accessible from accessible_p */
861 static tree
862 dfs_accessible_post (tree binfo, void *data)
864 /* access_in_type already set BINFO_ACCESS for us. */
865 access_kind access = BINFO_ACCESS (binfo);
866 tree N = BINFO_TYPE (binfo);
867 dfs_accessible_data *d = (dfs_accessible_data *)data;
868 tree decl = d->decl;
869 tree scope = current_nonlambda_scope ();
871 /* A member m is accessible at the point R when named in class N if */
872 switch (access)
874 case ak_none:
875 return NULL_TREE;
877 case ak_public:
878 /* m as a member of N is public, or */
879 return binfo;
881 case ak_private:
883 /* m as a member of N is private, and R occurs in a member or friend of
884 class N, or */
885 if (scope && TREE_CODE (scope) != NAMESPACE_DECL
886 && is_friend (N, scope))
887 return binfo;
888 return NULL_TREE;
891 case ak_protected:
893 /* m as a member of N is protected, and R occurs in a member or friend
894 of class N, or in a member or friend of a class P derived from N,
895 where m as a member of P is public, private, or protected */
896 if (friend_accessible_p (scope, decl, N, d->object_type))
897 return binfo;
898 return NULL_TREE;
901 default:
902 gcc_unreachable ();
906 /* Like accessible_p below, but within a template returns true iff DECL is
907 accessible in TYPE to all possible instantiations of the template. */
910 accessible_in_template_p (tree type, tree decl)
912 int save_ptd = processing_template_decl;
913 processing_template_decl = 0;
914 int val = accessible_p (type, decl, false);
915 processing_template_decl = save_ptd;
916 return val;
919 /* DECL is a declaration from a base class of TYPE, which was the
920 class used to name DECL. Return nonzero if, in the current
921 context, DECL is accessible. If TYPE is actually a BINFO node,
922 then we can tell in what context the access is occurring by looking
923 at the most derived class along the path indicated by BINFO. If
924 CONSIDER_LOCAL is true, do consider special access the current
925 scope or friendship thereof we might have. */
928 accessible_p (tree type, tree decl, bool consider_local_p)
930 tree binfo;
931 access_kind access;
933 /* If this declaration is in a block or namespace scope, there's no
934 access control. */
935 if (!TYPE_P (context_for_name_lookup (decl)))
936 return 1;
938 /* There is no need to perform access checks inside a thunk. */
939 if (current_function_decl && DECL_THUNK_P (current_function_decl))
940 return 1;
942 /* In a template declaration, we cannot be sure whether the
943 particular specialization that is instantiated will be a friend
944 or not. Therefore, all access checks are deferred until
945 instantiation. However, PROCESSING_TEMPLATE_DECL is set in the
946 parameter list for a template (because we may see dependent types
947 in default arguments for template parameters), and access
948 checking should be performed in the outermost parameter list. */
949 if (processing_template_decl
950 && (!processing_template_parmlist || processing_template_decl > 1))
951 return 1;
953 tree otype = NULL_TREE;
954 if (!TYPE_P (type))
956 /* When accessing a non-static member, the most derived type in the
957 binfo chain is the type of the object; remember that type for
958 protected_accessible_p. */
959 for (tree b = type; b; b = BINFO_INHERITANCE_CHAIN (b))
960 otype = BINFO_TYPE (b);
961 type = BINFO_TYPE (type);
963 else
964 otype = type;
966 /* [class.access.base]
968 A member m is accessible when named in class N if
970 --m as a member of N is public, or
972 --m as a member of N is private, and the reference occurs in a
973 member or friend of class N, or
975 --m as a member of N is protected, and the reference occurs in a
976 member or friend of class N, or in a member or friend of a
977 class P derived from N, where m as a member of P is public, private or
978 protected, or
980 --there exists a base class B of N that is accessible at the point
981 of reference, and m is accessible when named in class B.
983 We walk the base class hierarchy, checking these conditions. */
985 /* We walk using TYPE_BINFO (type) because access_in_type will set
986 BINFO_ACCESS on it and its bases. */
987 binfo = TYPE_BINFO (type);
989 /* Compute the accessibility of DECL in the class hierarchy
990 dominated by type. */
991 access = access_in_type (type, decl);
992 if (access == ak_public)
993 return 1;
995 /* If we aren't considering the point of reference, only the first bullet
996 applies. */
997 if (!consider_local_p)
998 return 0;
1000 dfs_accessible_data d = { decl, otype };
1002 /* Walk the hierarchy again, looking for a base class that allows
1003 access. */
1004 return dfs_walk_once_accessible (binfo, /*friends=*/true,
1005 dfs_accessible_pre,
1006 dfs_accessible_post, &d)
1007 != NULL_TREE;
1010 struct lookup_field_info {
1011 /* The type in which we're looking. */
1012 tree type;
1013 /* The name of the field for which we're looking. */
1014 tree name;
1015 /* If non-NULL, the current result of the lookup. */
1016 tree rval;
1017 /* The path to RVAL. */
1018 tree rval_binfo;
1019 /* If non-NULL, the lookup was ambiguous, and this is a list of the
1020 candidates. */
1021 tree ambiguous;
1022 /* If nonzero, we are looking for types, not data members. */
1023 int want_type;
1024 /* If something went wrong, a message indicating what. */
1025 const char *errstr;
1028 /* Nonzero for a class member means that it is shared between all objects
1029 of that class.
1031 [class.member.lookup]:If the resulting set of declarations are not all
1032 from sub-objects of the same type, or the set has a nonstatic member
1033 and includes members from distinct sub-objects, there is an ambiguity
1034 and the program is ill-formed.
1036 This function checks that T contains no nonstatic members. */
1039 shared_member_p (tree t)
1041 if (VAR_P (t) || TREE_CODE (t) == TYPE_DECL \
1042 || TREE_CODE (t) == CONST_DECL)
1043 return 1;
1044 if (is_overloaded_fn (t))
1046 t = get_fns (t);
1047 for (; t; t = OVL_NEXT (t))
1049 tree fn = OVL_CURRENT (t);
1050 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
1051 return 0;
1053 return 1;
1055 return 0;
1058 /* Routine to see if the sub-object denoted by the binfo PARENT can be
1059 found as a base class and sub-object of the object denoted by
1060 BINFO. */
1062 static int
1063 is_subobject_of_p (tree parent, tree binfo)
1065 tree probe;
1067 for (probe = parent; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
1069 if (probe == binfo)
1070 return 1;
1071 if (BINFO_VIRTUAL_P (probe))
1072 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (binfo))
1073 != NULL_TREE);
1075 return 0;
1078 /* DATA is really a struct lookup_field_info. Look for a field with
1079 the name indicated there in BINFO. If this function returns a
1080 non-NULL value it is the result of the lookup. Called from
1081 lookup_field via breadth_first_search. */
1083 static tree
1084 lookup_field_r (tree binfo, void *data)
1086 struct lookup_field_info *lfi = (struct lookup_field_info *) data;
1087 tree type = BINFO_TYPE (binfo);
1088 tree nval = NULL_TREE;
1090 /* If this is a dependent base, don't look in it. */
1091 if (BINFO_DEPENDENT_BASE_P (binfo))
1092 return NULL_TREE;
1094 /* If this base class is hidden by the best-known value so far, we
1095 don't need to look. */
1096 if (lfi->rval_binfo && BINFO_INHERITANCE_CHAIN (binfo) == lfi->rval_binfo
1097 && !BINFO_VIRTUAL_P (binfo))
1098 return dfs_skip_bases;
1100 /* First, look for a function. There can't be a function and a data
1101 member with the same name, and if there's a function and a type
1102 with the same name, the type is hidden by the function. */
1103 if (!lfi->want_type)
1104 nval = lookup_fnfields_slot (type, lfi->name);
1106 if (!nval)
1107 /* Look for a data member or type. */
1108 nval = lookup_field_1 (type, lfi->name, lfi->want_type);
1110 /* If there is no declaration with the indicated name in this type,
1111 then there's nothing to do. */
1112 if (!nval)
1113 goto done;
1115 /* If we're looking up a type (as with an elaborated type specifier)
1116 we ignore all non-types we find. */
1117 if (lfi->want_type && !DECL_DECLARES_TYPE_P (nval))
1119 if (lfi->name == TYPE_IDENTIFIER (type))
1121 /* If the aggregate has no user defined constructors, we allow
1122 it to have fields with the same name as the enclosing type.
1123 If we are looking for that name, find the corresponding
1124 TYPE_DECL. */
1125 for (nval = TREE_CHAIN (nval); nval; nval = TREE_CHAIN (nval))
1126 if (DECL_NAME (nval) == lfi->name
1127 && TREE_CODE (nval) == TYPE_DECL)
1128 break;
1130 else
1131 nval = NULL_TREE;
1132 if (!nval && CLASSTYPE_NESTED_UTDS (type) != NULL)
1134 binding_entry e = binding_table_find (CLASSTYPE_NESTED_UTDS (type),
1135 lfi->name);
1136 if (e != NULL)
1137 nval = TYPE_MAIN_DECL (e->type);
1138 else
1139 goto done;
1143 /* If the lookup already found a match, and the new value doesn't
1144 hide the old one, we might have an ambiguity. */
1145 if (lfi->rval_binfo
1146 && !is_subobject_of_p (lfi->rval_binfo, binfo))
1149 if (nval == lfi->rval && shared_member_p (nval))
1150 /* The two things are really the same. */
1152 else if (is_subobject_of_p (binfo, lfi->rval_binfo))
1153 /* The previous value hides the new one. */
1155 else
1157 /* We have a real ambiguity. We keep a chain of all the
1158 candidates. */
1159 if (!lfi->ambiguous && lfi->rval)
1161 /* This is the first time we noticed an ambiguity. Add
1162 what we previously thought was a reasonable candidate
1163 to the list. */
1164 lfi->ambiguous = tree_cons (NULL_TREE, lfi->rval, NULL_TREE);
1165 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1168 /* Add the new value. */
1169 lfi->ambiguous = tree_cons (NULL_TREE, nval, lfi->ambiguous);
1170 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1171 lfi->errstr = G_("request for member %qD is ambiguous");
1174 else
1176 lfi->rval = nval;
1177 lfi->rval_binfo = binfo;
1180 done:
1181 /* Don't look for constructors or destructors in base classes. */
1182 if (IDENTIFIER_CTOR_OR_DTOR_P (lfi->name))
1183 return dfs_skip_bases;
1184 return NULL_TREE;
1187 /* Return a "baselink" with BASELINK_BINFO, BASELINK_ACCESS_BINFO,
1188 BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO,
1189 FUNCTIONS, and OPTYPE respectively. */
1191 tree
1192 build_baselink (tree binfo, tree access_binfo, tree functions, tree optype)
1194 tree baselink;
1196 gcc_assert (TREE_CODE (functions) == FUNCTION_DECL
1197 || TREE_CODE (functions) == TEMPLATE_DECL
1198 || TREE_CODE (functions) == TEMPLATE_ID_EXPR
1199 || TREE_CODE (functions) == OVERLOAD);
1200 gcc_assert (!optype || TYPE_P (optype));
1201 gcc_assert (TREE_TYPE (functions));
1203 baselink = make_node (BASELINK);
1204 TREE_TYPE (baselink) = TREE_TYPE (functions);
1205 BASELINK_BINFO (baselink) = binfo;
1206 BASELINK_ACCESS_BINFO (baselink) = access_binfo;
1207 BASELINK_FUNCTIONS (baselink) = functions;
1208 BASELINK_OPTYPE (baselink) = optype;
1210 return baselink;
1213 /* Look for a member named NAME in an inheritance lattice dominated by
1214 XBASETYPE. If PROTECT is 0 or two, we do not check access. If it
1215 is 1, we enforce accessibility. If PROTECT is zero, then, for an
1216 ambiguous lookup, we return NULL. If PROTECT is 1, we issue error
1217 messages about inaccessible or ambiguous lookup. If PROTECT is 2,
1218 we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose
1219 TREE_VALUEs are the list of ambiguous candidates.
1221 WANT_TYPE is 1 when we should only return TYPE_DECLs.
1223 If nothing can be found return NULL_TREE and do not issue an error. */
1225 tree
1226 lookup_member (tree xbasetype, tree name, int protect, bool want_type,
1227 tsubst_flags_t complain)
1229 tree rval, rval_binfo = NULL_TREE;
1230 tree type = NULL_TREE, basetype_path = NULL_TREE;
1231 struct lookup_field_info lfi;
1233 /* rval_binfo is the binfo associated with the found member, note,
1234 this can be set with useful information, even when rval is not
1235 set, because it must deal with ALL members, not just non-function
1236 members. It is used for ambiguity checking and the hidden
1237 checks. Whereas rval is only set if a proper (not hidden)
1238 non-function member is found. */
1240 const char *errstr = 0;
1242 if (name == error_mark_node
1243 || xbasetype == NULL_TREE
1244 || xbasetype == error_mark_node)
1245 return NULL_TREE;
1247 gcc_assert (identifier_p (name));
1249 if (TREE_CODE (xbasetype) == TREE_BINFO)
1251 type = BINFO_TYPE (xbasetype);
1252 basetype_path = xbasetype;
1254 else
1256 if (!RECORD_OR_UNION_CODE_P (TREE_CODE (xbasetype)))
1257 return NULL_TREE;
1258 type = xbasetype;
1259 xbasetype = NULL_TREE;
1262 type = complete_type (type);
1264 /* Make sure we're looking for a member of the current instantiation in the
1265 right partial specialization. */
1266 if (flag_concepts && dependent_type_p (type))
1267 if (tree t = currently_open_class (type))
1268 type = t;
1270 if (!basetype_path)
1271 basetype_path = TYPE_BINFO (type);
1273 if (!basetype_path)
1274 return NULL_TREE;
1276 if (GATHER_STATISTICS)
1277 n_calls_lookup_field++;
1279 memset (&lfi, 0, sizeof (lfi));
1280 lfi.type = type;
1281 lfi.name = name;
1282 lfi.want_type = want_type;
1283 dfs_walk_all (basetype_path, &lookup_field_r, NULL, &lfi);
1284 rval = lfi.rval;
1285 rval_binfo = lfi.rval_binfo;
1286 if (rval_binfo)
1287 type = BINFO_TYPE (rval_binfo);
1288 errstr = lfi.errstr;
1290 /* If we are not interested in ambiguities, don't report them;
1291 just return NULL_TREE. */
1292 if (!protect && lfi.ambiguous)
1293 return NULL_TREE;
1295 if (protect == 2)
1297 if (lfi.ambiguous)
1298 return lfi.ambiguous;
1299 else
1300 protect = 0;
1303 /* [class.access]
1305 In the case of overloaded function names, access control is
1306 applied to the function selected by overloaded resolution.
1308 We cannot check here, even if RVAL is only a single non-static
1309 member function, since we do not know what the "this" pointer
1310 will be. For:
1312 class A { protected: void f(); };
1313 class B : public A {
1314 void g(A *p) {
1315 f(); // OK
1316 p->f(); // Not OK.
1320 only the first call to "f" is valid. However, if the function is
1321 static, we can check. */
1322 if (rval && protect
1323 && !really_overloaded_fn (rval))
1325 tree decl = is_overloaded_fn (rval) ? get_first_fn (rval) : rval;
1326 if (!DECL_NONSTATIC_MEMBER_FUNCTION_P (decl)
1327 && !perform_or_defer_access_check (basetype_path, decl, decl,
1328 complain))
1329 rval = error_mark_node;
1332 if (errstr && protect)
1334 if (complain & tf_error)
1336 error (errstr, name, type);
1337 if (lfi.ambiguous)
1338 print_candidates (lfi.ambiguous);
1340 rval = error_mark_node;
1343 if (rval && is_overloaded_fn (rval))
1344 rval = build_baselink (rval_binfo, basetype_path, rval,
1345 (IDENTIFIER_TYPENAME_P (name)
1346 ? TREE_TYPE (name): NULL_TREE));
1347 return rval;
1350 /* Helper class for lookup_member_fuzzy. */
1352 class lookup_field_fuzzy_info
1354 public:
1355 lookup_field_fuzzy_info (bool want_type_p) :
1356 m_want_type_p (want_type_p), m_candidates () {}
1358 void fuzzy_lookup_fnfields (tree type);
1359 void fuzzy_lookup_field (tree type);
1361 /* If true, we are looking for types, not data members. */
1362 bool m_want_type_p;
1363 /* The result: a vec of identifiers. */
1364 auto_vec<tree> m_candidates;
1367 /* Locate all methods within TYPE, append them to m_candidates. */
1369 void
1370 lookup_field_fuzzy_info::fuzzy_lookup_fnfields (tree type)
1372 vec<tree, va_gc> *method_vec;
1373 tree fn;
1374 size_t i;
1376 if (!CLASS_TYPE_P (type))
1377 return;
1379 method_vec = CLASSTYPE_METHOD_VEC (type);
1380 if (!method_vec)
1381 return;
1383 for (i = 0; vec_safe_iterate (method_vec, i, &fn); ++i)
1384 if (fn)
1385 m_candidates.safe_push (DECL_NAME (OVL_CURRENT (fn)));
1388 /* Locate all fields within TYPE, append them to m_candidates. */
1390 void
1391 lookup_field_fuzzy_info::fuzzy_lookup_field (tree type)
1393 if (TREE_CODE (type) == TEMPLATE_TYPE_PARM
1394 || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM
1395 || TREE_CODE (type) == TYPENAME_TYPE)
1396 /* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and
1397 BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all;
1398 instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX.
1399 The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME. */
1400 return;
1402 for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1404 if (!m_want_type_p || DECL_DECLARES_TYPE_P (field))
1405 if (DECL_NAME (field))
1406 m_candidates.safe_push (DECL_NAME (field));
1411 /* Helper function for lookup_member_fuzzy, called via dfs_walk_all
1412 DATA is really a lookup_field_fuzzy_info. Look for a field with
1413 the name indicated there in BINFO. Gathers pertinent identifiers into
1414 m_candidates. */
1416 static tree
1417 lookup_field_fuzzy_r (tree binfo, void *data)
1419 lookup_field_fuzzy_info *lffi = (lookup_field_fuzzy_info *) data;
1420 tree type = BINFO_TYPE (binfo);
1422 /* First, look for functions. */
1423 if (!lffi->m_want_type_p)
1424 lffi->fuzzy_lookup_fnfields (type);
1426 /* Look for data member and types. */
1427 lffi->fuzzy_lookup_field (type);
1429 return NULL_TREE;
1432 /* Like lookup_member, but try to find the closest match for NAME,
1433 rather than an exact match, and return an identifier (or NULL_TREE).
1434 Do not complain. */
1436 tree
1437 lookup_member_fuzzy (tree xbasetype, tree name, bool want_type_p)
1439 tree type = NULL_TREE, basetype_path = NULL_TREE;
1440 struct lookup_field_fuzzy_info lffi (want_type_p);
1442 /* rval_binfo is the binfo associated with the found member, note,
1443 this can be set with useful information, even when rval is not
1444 set, because it must deal with ALL members, not just non-function
1445 members. It is used for ambiguity checking and the hidden
1446 checks. Whereas rval is only set if a proper (not hidden)
1447 non-function member is found. */
1449 if (name == error_mark_node
1450 || xbasetype == NULL_TREE
1451 || xbasetype == error_mark_node)
1452 return NULL_TREE;
1454 gcc_assert (identifier_p (name));
1456 if (TREE_CODE (xbasetype) == TREE_BINFO)
1458 type = BINFO_TYPE (xbasetype);
1459 basetype_path = xbasetype;
1461 else
1463 if (!RECORD_OR_UNION_CODE_P (TREE_CODE (xbasetype)))
1464 return NULL_TREE;
1465 type = xbasetype;
1466 xbasetype = NULL_TREE;
1469 type = complete_type (type);
1471 /* Make sure we're looking for a member of the current instantiation in the
1472 right partial specialization. */
1473 if (flag_concepts && dependent_type_p (type))
1474 type = currently_open_class (type);
1476 if (!basetype_path)
1477 basetype_path = TYPE_BINFO (type);
1479 if (!basetype_path)
1480 return NULL_TREE;
1482 /* Populate lffi.m_candidates. */
1483 dfs_walk_all (basetype_path, &lookup_field_fuzzy_r, NULL, &lffi);
1485 return find_closest_identifier (name, &lffi.m_candidates);
1488 /* Like lookup_member, except that if we find a function member we
1489 return NULL_TREE. */
1491 tree
1492 lookup_field (tree xbasetype, tree name, int protect, bool want_type)
1494 tree rval = lookup_member (xbasetype, name, protect, want_type,
1495 tf_warning_or_error);
1497 /* Ignore functions, but propagate the ambiguity list. */
1498 if (!error_operand_p (rval)
1499 && (rval && BASELINK_P (rval)))
1500 return NULL_TREE;
1502 return rval;
1505 /* Like lookup_member, except that if we find a non-function member we
1506 return NULL_TREE. */
1508 tree
1509 lookup_fnfields (tree xbasetype, tree name, int protect)
1511 tree rval = lookup_member (xbasetype, name, protect, /*want_type=*/false,
1512 tf_warning_or_error);
1514 /* Ignore non-functions, but propagate the ambiguity list. */
1515 if (!error_operand_p (rval)
1516 && (rval && !BASELINK_P (rval)))
1517 return NULL_TREE;
1519 return rval;
1522 /* Return the index in the CLASSTYPE_METHOD_VEC for CLASS_TYPE
1523 corresponding to "operator TYPE ()", or -1 if there is no such
1524 operator. Only CLASS_TYPE itself is searched; this routine does
1525 not scan the base classes of CLASS_TYPE. */
1527 static int
1528 lookup_conversion_operator (tree class_type, tree type)
1530 int tpl_slot = -1;
1532 if (TYPE_HAS_CONVERSION (class_type))
1534 int i;
1535 tree fn;
1536 vec<tree, va_gc> *methods = CLASSTYPE_METHOD_VEC (class_type);
1538 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1539 vec_safe_iterate (methods, i, &fn); ++i)
1541 /* All the conversion operators come near the beginning of
1542 the class. Therefore, if FN is not a conversion
1543 operator, there is no matching conversion operator in
1544 CLASS_TYPE. */
1545 fn = OVL_CURRENT (fn);
1546 if (!DECL_CONV_FN_P (fn))
1547 break;
1549 if (TREE_CODE (fn) == TEMPLATE_DECL)
1550 /* All the templated conversion functions are on the same
1551 slot, so remember it. */
1552 tpl_slot = i;
1553 else if (same_type_p (DECL_CONV_FN_TYPE (fn), type))
1554 return i;
1558 return tpl_slot;
1561 /* TYPE is a class type. Return the index of the fields within
1562 the method vector with name NAME, or -1 if no such field exists.
1563 Does not lazily declare implicitly-declared member functions. */
1565 static int
1566 lookup_fnfields_idx_nolazy (tree type, tree name)
1568 vec<tree, va_gc> *method_vec;
1569 tree fn;
1570 tree tmp;
1571 size_t i;
1573 if (!CLASS_TYPE_P (type))
1574 return -1;
1576 method_vec = CLASSTYPE_METHOD_VEC (type);
1577 if (!method_vec)
1578 return -1;
1580 if (GATHER_STATISTICS)
1581 n_calls_lookup_fnfields_1++;
1583 /* Constructors are first... */
1584 if (name == ctor_identifier)
1586 fn = CLASSTYPE_CONSTRUCTORS (type);
1587 return fn ? CLASSTYPE_CONSTRUCTOR_SLOT : -1;
1589 /* and destructors are second. */
1590 if (name == dtor_identifier)
1592 fn = CLASSTYPE_DESTRUCTORS (type);
1593 return fn ? CLASSTYPE_DESTRUCTOR_SLOT : -1;
1595 if (IDENTIFIER_TYPENAME_P (name))
1596 return lookup_conversion_operator (type, TREE_TYPE (name));
1598 /* Skip the conversion operators. */
1599 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1600 vec_safe_iterate (method_vec, i, &fn);
1601 ++i)
1602 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1603 break;
1605 /* If the type is complete, use binary search. */
1606 if (COMPLETE_TYPE_P (type))
1608 int lo;
1609 int hi;
1611 lo = i;
1612 hi = method_vec->length ();
1613 while (lo < hi)
1615 i = (lo + hi) / 2;
1617 if (GATHER_STATISTICS)
1618 n_outer_fields_searched++;
1620 tmp = (*method_vec)[i];
1621 tmp = DECL_NAME (OVL_CURRENT (tmp));
1622 if (tmp > name)
1623 hi = i;
1624 else if (tmp < name)
1625 lo = i + 1;
1626 else
1627 return i;
1630 else
1631 for (; vec_safe_iterate (method_vec, i, &fn); ++i)
1633 if (GATHER_STATISTICS)
1634 n_outer_fields_searched++;
1635 if (DECL_NAME (OVL_CURRENT (fn)) == name)
1636 return i;
1639 return -1;
1642 /* TYPE is a class type. Return the index of the fields within
1643 the method vector with name NAME, or -1 if no such field exists. */
1646 lookup_fnfields_1 (tree type, tree name)
1648 if (!CLASS_TYPE_P (type))
1649 return -1;
1651 if (COMPLETE_TYPE_P (type))
1653 if ((name == ctor_identifier
1654 || name == base_ctor_identifier
1655 || name == complete_ctor_identifier))
1657 if (CLASSTYPE_LAZY_DEFAULT_CTOR (type))
1658 lazily_declare_fn (sfk_constructor, type);
1659 if (CLASSTYPE_LAZY_COPY_CTOR (type))
1660 lazily_declare_fn (sfk_copy_constructor, type);
1661 if (CLASSTYPE_LAZY_MOVE_CTOR (type))
1662 lazily_declare_fn (sfk_move_constructor, type);
1664 else if (name == ansi_assopname (NOP_EXPR))
1666 if (CLASSTYPE_LAZY_COPY_ASSIGN (type))
1667 lazily_declare_fn (sfk_copy_assignment, type);
1668 if (CLASSTYPE_LAZY_MOVE_ASSIGN (type))
1669 lazily_declare_fn (sfk_move_assignment, type);
1671 else if ((name == dtor_identifier
1672 || name == base_dtor_identifier
1673 || name == complete_dtor_identifier
1674 || name == deleting_dtor_identifier)
1675 && CLASSTYPE_LAZY_DESTRUCTOR (type))
1676 lazily_declare_fn (sfk_destructor, type);
1679 return lookup_fnfields_idx_nolazy (type, name);
1682 /* TYPE is a class type. Return the field within the method vector with
1683 name NAME, or NULL_TREE if no such field exists. */
1685 tree
1686 lookup_fnfields_slot (tree type, tree name)
1688 int ix = lookup_fnfields_1 (complete_type (type), name);
1689 if (ix < 0)
1690 return NULL_TREE;
1691 return (*CLASSTYPE_METHOD_VEC (type))[ix];
1694 /* As above, but avoid lazily declaring functions. */
1696 tree
1697 lookup_fnfields_slot_nolazy (tree type, tree name)
1699 int ix = lookup_fnfields_idx_nolazy (complete_type (type), name);
1700 if (ix < 0)
1701 return NULL_TREE;
1702 return (*CLASSTYPE_METHOD_VEC (type))[ix];
1705 /* Like lookup_fnfields_1, except that the name is extracted from
1706 FUNCTION, which is a FUNCTION_DECL or a TEMPLATE_DECL. */
1709 class_method_index_for_fn (tree class_type, tree function)
1711 gcc_assert (DECL_DECLARES_FUNCTION_P (function));
1713 return lookup_fnfields_1 (class_type,
1714 DECL_CONSTRUCTOR_P (function) ? ctor_identifier :
1715 DECL_DESTRUCTOR_P (function) ? dtor_identifier :
1716 DECL_NAME (function));
1720 /* DECL is the result of a qualified name lookup. QUALIFYING_SCOPE is
1721 the class or namespace used to qualify the name. CONTEXT_CLASS is
1722 the class corresponding to the object in which DECL will be used.
1723 Return a possibly modified version of DECL that takes into account
1724 the CONTEXT_CLASS.
1726 In particular, consider an expression like `B::m' in the context of
1727 a derived class `D'. If `B::m' has been resolved to a BASELINK,
1728 then the most derived class indicated by the BASELINK_BINFO will be
1729 `B', not `D'. This function makes that adjustment. */
1731 tree
1732 adjust_result_of_qualified_name_lookup (tree decl,
1733 tree qualifying_scope,
1734 tree context_class)
1736 if (context_class && context_class != error_mark_node
1737 && CLASS_TYPE_P (context_class)
1738 && CLASS_TYPE_P (qualifying_scope)
1739 && DERIVED_FROM_P (qualifying_scope, context_class)
1740 && BASELINK_P (decl))
1742 tree base;
1744 /* Look for the QUALIFYING_SCOPE as a base of the CONTEXT_CLASS.
1745 Because we do not yet know which function will be chosen by
1746 overload resolution, we cannot yet check either accessibility
1747 or ambiguity -- in either case, the choice of a static member
1748 function might make the usage valid. */
1749 base = lookup_base (context_class, qualifying_scope,
1750 ba_unique, NULL, tf_none);
1751 if (base && base != error_mark_node)
1753 BASELINK_ACCESS_BINFO (decl) = base;
1754 BASELINK_BINFO (decl)
1755 = lookup_base (base, BINFO_TYPE (BASELINK_BINFO (decl)),
1756 ba_unique, NULL, tf_none);
1760 if (BASELINK_P (decl))
1761 BASELINK_QUALIFIED_P (decl) = true;
1763 return decl;
1767 /* Walk the class hierarchy within BINFO, in a depth-first traversal.
1768 PRE_FN is called in preorder, while POST_FN is called in postorder.
1769 If PRE_FN returns DFS_SKIP_BASES, child binfos will not be
1770 walked. If PRE_FN or POST_FN returns a different non-NULL value,
1771 that value is immediately returned and the walk is terminated. One
1772 of PRE_FN and POST_FN can be NULL. At each node, PRE_FN and
1773 POST_FN are passed the binfo to examine and the caller's DATA
1774 value. All paths are walked, thus virtual and morally virtual
1775 binfos can be multiply walked. */
1777 tree
1778 dfs_walk_all (tree binfo, tree (*pre_fn) (tree, void *),
1779 tree (*post_fn) (tree, void *), void *data)
1781 tree rval;
1782 unsigned ix;
1783 tree base_binfo;
1785 /* Call the pre-order walking function. */
1786 if (pre_fn)
1788 rval = pre_fn (binfo, data);
1789 if (rval)
1791 if (rval == dfs_skip_bases)
1792 goto skip_bases;
1793 return rval;
1797 /* Find the next child binfo to walk. */
1798 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1800 rval = dfs_walk_all (base_binfo, pre_fn, post_fn, data);
1801 if (rval)
1802 return rval;
1805 skip_bases:
1806 /* Call the post-order walking function. */
1807 if (post_fn)
1809 rval = post_fn (binfo, data);
1810 gcc_assert (rval != dfs_skip_bases);
1811 return rval;
1814 return NULL_TREE;
1817 /* Worker for dfs_walk_once. This behaves as dfs_walk_all, except
1818 that binfos are walked at most once. */
1820 static tree
1821 dfs_walk_once_r (tree binfo, tree (*pre_fn) (tree, void *),
1822 tree (*post_fn) (tree, void *), hash_set<tree> *pset,
1823 void *data)
1825 tree rval;
1826 unsigned ix;
1827 tree base_binfo;
1829 /* Call the pre-order walking function. */
1830 if (pre_fn)
1832 rval = pre_fn (binfo, data);
1833 if (rval)
1835 if (rval == dfs_skip_bases)
1836 goto skip_bases;
1838 return rval;
1842 /* Find the next child binfo to walk. */
1843 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1845 if (BINFO_VIRTUAL_P (base_binfo))
1846 if (pset->add (base_binfo))
1847 continue;
1849 rval = dfs_walk_once_r (base_binfo, pre_fn, post_fn, pset, data);
1850 if (rval)
1851 return rval;
1854 skip_bases:
1855 /* Call the post-order walking function. */
1856 if (post_fn)
1858 rval = post_fn (binfo, data);
1859 gcc_assert (rval != dfs_skip_bases);
1860 return rval;
1863 return NULL_TREE;
1866 /* Like dfs_walk_all, except that binfos are not multiply walked. For
1867 non-diamond shaped hierarchies this is the same as dfs_walk_all.
1868 For diamond shaped hierarchies we must mark the virtual bases, to
1869 avoid multiple walks. */
1871 tree
1872 dfs_walk_once (tree binfo, tree (*pre_fn) (tree, void *),
1873 tree (*post_fn) (tree, void *), void *data)
1875 static int active = 0; /* We must not be called recursively. */
1876 tree rval;
1878 gcc_assert (pre_fn || post_fn);
1879 gcc_assert (!active);
1880 active++;
1882 if (!CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo)))
1883 /* We are not diamond shaped, and therefore cannot encounter the
1884 same binfo twice. */
1885 rval = dfs_walk_all (binfo, pre_fn, post_fn, data);
1886 else
1888 hash_set<tree> pset;
1889 rval = dfs_walk_once_r (binfo, pre_fn, post_fn, &pset, data);
1892 active--;
1894 return rval;
1897 /* Worker function for dfs_walk_once_accessible. Behaves like
1898 dfs_walk_once_r, except (a) FRIENDS_P is true if special
1899 access given by the current context should be considered, (b) ONCE
1900 indicates whether bases should be marked during traversal. */
1902 static tree
1903 dfs_walk_once_accessible_r (tree binfo, bool friends_p, hash_set<tree> *pset,
1904 tree (*pre_fn) (tree, void *),
1905 tree (*post_fn) (tree, void *), void *data)
1907 tree rval = NULL_TREE;
1908 unsigned ix;
1909 tree base_binfo;
1911 /* Call the pre-order walking function. */
1912 if (pre_fn)
1914 rval = pre_fn (binfo, data);
1915 if (rval)
1917 if (rval == dfs_skip_bases)
1918 goto skip_bases;
1920 return rval;
1924 /* Find the next child binfo to walk. */
1925 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1927 bool mark = pset && BINFO_VIRTUAL_P (base_binfo);
1929 if (mark && pset->contains (base_binfo))
1930 continue;
1932 /* If the base is inherited via private or protected
1933 inheritance, then we can't see it, unless we are a friend of
1934 the current binfo. */
1935 if (BINFO_BASE_ACCESS (binfo, ix) != access_public_node)
1937 tree scope;
1938 if (!friends_p)
1939 continue;
1940 scope = current_scope ();
1941 if (!scope
1942 || TREE_CODE (scope) == NAMESPACE_DECL
1943 || !is_friend (BINFO_TYPE (binfo), scope))
1944 continue;
1947 if (mark)
1948 pset->add (base_binfo);
1950 rval = dfs_walk_once_accessible_r (base_binfo, friends_p, pset,
1951 pre_fn, post_fn, data);
1952 if (rval)
1953 return rval;
1956 skip_bases:
1957 /* Call the post-order walking function. */
1958 if (post_fn)
1960 rval = post_fn (binfo, data);
1961 gcc_assert (rval != dfs_skip_bases);
1962 return rval;
1965 return NULL_TREE;
1968 /* Like dfs_walk_once except that only accessible bases are walked.
1969 FRIENDS_P indicates whether friendship of the local context
1970 should be considered when determining accessibility. */
1972 static tree
1973 dfs_walk_once_accessible (tree binfo, bool friends_p,
1974 tree (*pre_fn) (tree, void *),
1975 tree (*post_fn) (tree, void *), void *data)
1977 hash_set<tree> *pset = NULL;
1978 if (CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo)))
1979 pset = new hash_set<tree>;
1980 tree rval = dfs_walk_once_accessible_r (binfo, friends_p, pset,
1981 pre_fn, post_fn, data);
1983 if (pset)
1984 delete pset;
1985 return rval;
1988 /* Check that virtual overrider OVERRIDER is acceptable for base function
1989 BASEFN. Issue diagnostic, and return zero, if unacceptable. */
1991 static int
1992 check_final_overrider (tree overrider, tree basefn)
1994 tree over_type = TREE_TYPE (overrider);
1995 tree base_type = TREE_TYPE (basefn);
1996 tree over_return = fndecl_declared_return_type (overrider);
1997 tree base_return = fndecl_declared_return_type (basefn);
1998 tree over_throw, base_throw;
2000 int fail = 0;
2002 if (DECL_INVALID_OVERRIDER_P (overrider))
2003 return 0;
2005 if (same_type_p (base_return, over_return))
2006 /* OK */;
2007 else if ((CLASS_TYPE_P (over_return) && CLASS_TYPE_P (base_return))
2008 || (TREE_CODE (base_return) == TREE_CODE (over_return)
2009 && POINTER_TYPE_P (base_return)))
2011 /* Potentially covariant. */
2012 unsigned base_quals, over_quals;
2014 fail = !POINTER_TYPE_P (base_return);
2015 if (!fail)
2017 fail = cp_type_quals (base_return) != cp_type_quals (over_return);
2019 base_return = TREE_TYPE (base_return);
2020 over_return = TREE_TYPE (over_return);
2022 base_quals = cp_type_quals (base_return);
2023 over_quals = cp_type_quals (over_return);
2025 if ((base_quals & over_quals) != over_quals)
2026 fail = 1;
2028 if (CLASS_TYPE_P (base_return) && CLASS_TYPE_P (over_return))
2030 /* Strictly speaking, the standard requires the return type to be
2031 complete even if it only differs in cv-quals, but that seems
2032 like a bug in the wording. */
2033 if (!same_type_ignoring_top_level_qualifiers_p (base_return,
2034 over_return))
2036 tree binfo = lookup_base (over_return, base_return,
2037 ba_check, NULL, tf_none);
2039 if (!binfo || binfo == error_mark_node)
2040 fail = 1;
2043 else if (can_convert_standard (TREE_TYPE (base_type),
2044 TREE_TYPE (over_type),
2045 tf_warning_or_error))
2046 /* GNU extension, allow trivial pointer conversions such as
2047 converting to void *, or qualification conversion. */
2049 if (pedwarn (DECL_SOURCE_LOCATION (overrider), 0,
2050 "invalid covariant return type for %q#D", overrider))
2051 inform (DECL_SOURCE_LOCATION (basefn),
2052 " overriding %q#D", basefn);
2054 else
2055 fail = 2;
2057 else
2058 fail = 2;
2059 if (!fail)
2060 /* OK */;
2061 else
2063 if (fail == 1)
2065 error ("invalid covariant return type for %q+#D", overrider);
2066 error (" overriding %q+#D", basefn);
2068 else
2070 error ("conflicting return type specified for %q+#D", overrider);
2071 error (" overriding %q+#D", basefn);
2073 DECL_INVALID_OVERRIDER_P (overrider) = 1;
2074 return 0;
2077 /* Check throw specifier is at least as strict. */
2078 maybe_instantiate_noexcept (basefn);
2079 maybe_instantiate_noexcept (overrider);
2080 base_throw = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (basefn));
2081 over_throw = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (overrider));
2083 if (!comp_except_specs (base_throw, over_throw, ce_derived))
2085 error ("looser throw specifier for %q+#F", overrider);
2086 error (" overriding %q+#F", basefn);
2087 DECL_INVALID_OVERRIDER_P (overrider) = 1;
2088 return 0;
2091 /* Check for conflicting type attributes. But leave transaction_safe for
2092 set_one_vmethod_tm_attributes. */
2093 if (!comp_type_attributes (over_type, base_type)
2094 && !tx_safe_fn_type_p (base_type)
2095 && !tx_safe_fn_type_p (over_type))
2097 error ("conflicting type attributes specified for %q+#D", overrider);
2098 error (" overriding %q+#D", basefn);
2099 DECL_INVALID_OVERRIDER_P (overrider) = 1;
2100 return 0;
2103 /* A function declared transaction_safe_dynamic that overrides a function
2104 declared transaction_safe (but not transaction_safe_dynamic) is
2105 ill-formed. */
2106 if (tx_safe_fn_type_p (base_type)
2107 && lookup_attribute ("transaction_safe_dynamic",
2108 DECL_ATTRIBUTES (overrider))
2109 && !lookup_attribute ("transaction_safe_dynamic",
2110 DECL_ATTRIBUTES (basefn)))
2112 error_at (DECL_SOURCE_LOCATION (overrider),
2113 "%qD declared %<transaction_safe_dynamic%>", overrider);
2114 inform (DECL_SOURCE_LOCATION (basefn),
2115 "overriding %qD declared %<transaction_safe%>", basefn);
2118 if (DECL_DELETED_FN (basefn) != DECL_DELETED_FN (overrider))
2120 if (DECL_DELETED_FN (overrider))
2122 error ("deleted function %q+D", overrider);
2123 error ("overriding non-deleted function %q+D", basefn);
2124 maybe_explain_implicit_delete (overrider);
2126 else
2128 error ("non-deleted function %q+D", overrider);
2129 error ("overriding deleted function %q+D", basefn);
2131 return 0;
2133 if (DECL_FINAL_P (basefn))
2135 error ("virtual function %q+D", overrider);
2136 error ("overriding final function %q+D", basefn);
2137 return 0;
2139 return 1;
2142 /* Given a class TYPE, and a function decl FNDECL, look for
2143 virtual functions in TYPE's hierarchy which FNDECL overrides.
2144 We do not look in TYPE itself, only its bases.
2146 Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we
2147 find that it overrides anything.
2149 We check that every function which is overridden, is correctly
2150 overridden. */
2153 look_for_overrides (tree type, tree fndecl)
2155 tree binfo = TYPE_BINFO (type);
2156 tree base_binfo;
2157 int ix;
2158 int found = 0;
2160 /* A constructor for a class T does not override a function T
2161 in a base class. */
2162 if (DECL_CONSTRUCTOR_P (fndecl))
2163 return 0;
2165 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
2167 tree basetype = BINFO_TYPE (base_binfo);
2169 if (TYPE_POLYMORPHIC_P (basetype))
2170 found += look_for_overrides_r (basetype, fndecl);
2172 return found;
2175 /* Look in TYPE for virtual functions with the same signature as
2176 FNDECL. */
2178 tree
2179 look_for_overrides_here (tree type, tree fndecl)
2181 int ix;
2183 /* If there are no methods in TYPE (meaning that only implicitly
2184 declared methods will ever be provided for TYPE), then there are
2185 no virtual functions. */
2186 if (!CLASSTYPE_METHOD_VEC (type))
2187 return NULL_TREE;
2189 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fndecl))
2190 ix = CLASSTYPE_DESTRUCTOR_SLOT;
2191 else
2192 ix = lookup_fnfields_1 (type, DECL_NAME (fndecl));
2193 if (ix >= 0)
2195 tree fns = (*CLASSTYPE_METHOD_VEC (type))[ix];
2197 for (; fns; fns = OVL_NEXT (fns))
2199 tree fn = OVL_CURRENT (fns);
2201 if (!DECL_VIRTUAL_P (fn))
2202 /* Not a virtual. */;
2203 else if (DECL_CONTEXT (fn) != type)
2204 /* Introduced with a using declaration. */;
2205 else if (DECL_STATIC_FUNCTION_P (fndecl))
2207 tree btypes = TYPE_ARG_TYPES (TREE_TYPE (fn));
2208 tree dtypes = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2209 if (compparms (TREE_CHAIN (btypes), dtypes))
2210 return fn;
2212 else if (same_signature_p (fndecl, fn))
2213 return fn;
2216 return NULL_TREE;
2219 /* Look in TYPE for virtual functions overridden by FNDECL. Check both
2220 TYPE itself and its bases. */
2222 static int
2223 look_for_overrides_r (tree type, tree fndecl)
2225 tree fn = look_for_overrides_here (type, fndecl);
2226 if (fn)
2228 if (DECL_STATIC_FUNCTION_P (fndecl))
2230 /* A static member function cannot match an inherited
2231 virtual member function. */
2232 error ("%q+#D cannot be declared", fndecl);
2233 error (" since %q+#D declared in base class", fn);
2235 else
2237 /* It's definitely virtual, even if not explicitly set. */
2238 DECL_VIRTUAL_P (fndecl) = 1;
2239 check_final_overrider (fndecl, fn);
2241 return 1;
2244 /* We failed to find one declared in this class. Look in its bases. */
2245 return look_for_overrides (type, fndecl);
2248 /* Called via dfs_walk from dfs_get_pure_virtuals. */
2250 static tree
2251 dfs_get_pure_virtuals (tree binfo, void *data)
2253 tree type = (tree) data;
2255 /* We're not interested in primary base classes; the derived class
2256 of which they are a primary base will contain the information we
2257 need. */
2258 if (!BINFO_PRIMARY_P (binfo))
2260 tree virtuals;
2262 for (virtuals = BINFO_VIRTUALS (binfo);
2263 virtuals;
2264 virtuals = TREE_CHAIN (virtuals))
2265 if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals)))
2266 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (type), BV_FN (virtuals));
2269 return NULL_TREE;
2272 /* Set CLASSTYPE_PURE_VIRTUALS for TYPE. */
2274 void
2275 get_pure_virtuals (tree type)
2277 /* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there
2278 is going to be overridden. */
2279 CLASSTYPE_PURE_VIRTUALS (type) = NULL;
2280 /* Now, run through all the bases which are not primary bases, and
2281 collect the pure virtual functions. We look at the vtable in
2282 each class to determine what pure virtual functions are present.
2283 (A primary base is not interesting because the derived class of
2284 which it is a primary base will contain vtable entries for the
2285 pure virtuals in the base class. */
2286 dfs_walk_once (TYPE_BINFO (type), NULL, dfs_get_pure_virtuals, type);
2289 /* Debug info for C++ classes can get very large; try to avoid
2290 emitting it everywhere.
2292 Note that this optimization wins even when the target supports
2293 BINCL (if only slightly), and reduces the amount of work for the
2294 linker. */
2296 void
2297 maybe_suppress_debug_info (tree t)
2299 if (write_symbols == NO_DEBUG)
2300 return;
2302 /* We might have set this earlier in cp_finish_decl. */
2303 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 0;
2305 /* Always emit the information for each class every time. */
2306 if (flag_emit_class_debug_always)
2307 return;
2309 /* If we already know how we're handling this class, handle debug info
2310 the same way. */
2311 if (CLASSTYPE_INTERFACE_KNOWN (t))
2313 if (CLASSTYPE_INTERFACE_ONLY (t))
2314 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2315 /* else don't set it. */
2317 /* If the class has a vtable, write out the debug info along with
2318 the vtable. */
2319 else if (TYPE_CONTAINS_VPTR_P (t))
2320 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2322 /* Otherwise, just emit the debug info normally. */
2325 /* Note that we want debugging information for a base class of a class
2326 whose vtable is being emitted. Normally, this would happen because
2327 calling the constructor for a derived class implies calling the
2328 constructors for all bases, which involve initializing the
2329 appropriate vptr with the vtable for the base class; but in the
2330 presence of optimization, this initialization may be optimized
2331 away, so we tell finish_vtable_vardecl that we want the debugging
2332 information anyway. */
2334 static tree
2335 dfs_debug_mark (tree binfo, void * /*data*/)
2337 tree t = BINFO_TYPE (binfo);
2339 if (CLASSTYPE_DEBUG_REQUESTED (t))
2340 return dfs_skip_bases;
2342 CLASSTYPE_DEBUG_REQUESTED (t) = 1;
2344 return NULL_TREE;
2347 /* Write out the debugging information for TYPE, whose vtable is being
2348 emitted. Also walk through our bases and note that we want to
2349 write out information for them. This avoids the problem of not
2350 writing any debug info for intermediate basetypes whose
2351 constructors, and thus the references to their vtables, and thus
2352 the vtables themselves, were optimized away. */
2354 void
2355 note_debug_info_needed (tree type)
2357 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)))
2359 TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)) = 0;
2360 rest_of_type_compilation (type, toplevel_bindings_p ());
2363 dfs_walk_all (TYPE_BINFO (type), dfs_debug_mark, NULL, 0);
2366 void
2367 print_search_statistics (void)
2369 if (! GATHER_STATISTICS)
2371 fprintf (stderr, "no search statistics\n");
2372 return;
2375 fprintf (stderr, "%d fields searched in %d[%d] calls to lookup_field[_1]\n",
2376 n_fields_searched, n_calls_lookup_field, n_calls_lookup_field_1);
2377 fprintf (stderr, "%d fnfields searched in %d calls to lookup_fnfields\n",
2378 n_outer_fields_searched, n_calls_lookup_fnfields);
2379 fprintf (stderr, "%d calls to get_base_type\n", n_calls_get_base_type);
2382 void
2383 reinit_search_statistics (void)
2385 n_fields_searched = 0;
2386 n_calls_lookup_field = 0, n_calls_lookup_field_1 = 0;
2387 n_calls_lookup_fnfields = 0, n_calls_lookup_fnfields_1 = 0;
2388 n_calls_get_base_type = 0;
2389 n_outer_fields_searched = 0;
2390 n_contexts_saved = 0;
2393 /* Helper for lookup_conversions_r. TO_TYPE is the type converted to
2394 by a conversion op in base BINFO. VIRTUAL_DEPTH is nonzero if
2395 BINFO is morally virtual, and VIRTUALNESS is nonzero if virtual
2396 bases have been encountered already in the tree walk. PARENT_CONVS
2397 is the list of lists of conversion functions that could hide CONV
2398 and OTHER_CONVS is the list of lists of conversion functions that
2399 could hide or be hidden by CONV, should virtualness be involved in
2400 the hierarchy. Merely checking the conversion op's name is not
2401 enough because two conversion operators to the same type can have
2402 different names. Return nonzero if we are visible. */
2404 static int
2405 check_hidden_convs (tree binfo, int virtual_depth, int virtualness,
2406 tree to_type, tree parent_convs, tree other_convs)
2408 tree level, probe;
2410 /* See if we are hidden by a parent conversion. */
2411 for (level = parent_convs; level; level = TREE_CHAIN (level))
2412 for (probe = TREE_VALUE (level); probe; probe = TREE_CHAIN (probe))
2413 if (same_type_p (to_type, TREE_TYPE (probe)))
2414 return 0;
2416 if (virtual_depth || virtualness)
2418 /* In a virtual hierarchy, we could be hidden, or could hide a
2419 conversion function on the other_convs list. */
2420 for (level = other_convs; level; level = TREE_CHAIN (level))
2422 int we_hide_them;
2423 int they_hide_us;
2424 tree *prev, other;
2426 if (!(virtual_depth || TREE_STATIC (level)))
2427 /* Neither is morally virtual, so cannot hide each other. */
2428 continue;
2430 if (!TREE_VALUE (level))
2431 /* They evaporated away already. */
2432 continue;
2434 they_hide_us = (virtual_depth
2435 && original_binfo (binfo, TREE_PURPOSE (level)));
2436 we_hide_them = (!they_hide_us && TREE_STATIC (level)
2437 && original_binfo (TREE_PURPOSE (level), binfo));
2439 if (!(we_hide_them || they_hide_us))
2440 /* Neither is within the other, so no hiding can occur. */
2441 continue;
2443 for (prev = &TREE_VALUE (level), other = *prev; other;)
2445 if (same_type_p (to_type, TREE_TYPE (other)))
2447 if (they_hide_us)
2448 /* We are hidden. */
2449 return 0;
2451 if (we_hide_them)
2453 /* We hide the other one. */
2454 other = TREE_CHAIN (other);
2455 *prev = other;
2456 continue;
2459 prev = &TREE_CHAIN (other);
2460 other = *prev;
2464 return 1;
2467 /* Helper for lookup_conversions_r. PARENT_CONVS is a list of lists
2468 of conversion functions, the first slot will be for the current
2469 binfo, if MY_CONVS is non-NULL. CHILD_CONVS is the list of lists
2470 of conversion functions from children of the current binfo,
2471 concatenated with conversions from elsewhere in the hierarchy --
2472 that list begins with OTHER_CONVS. Return a single list of lists
2473 containing only conversions from the current binfo and its
2474 children. */
2476 static tree
2477 split_conversions (tree my_convs, tree parent_convs,
2478 tree child_convs, tree other_convs)
2480 tree t;
2481 tree prev;
2483 /* Remove the original other_convs portion from child_convs. */
2484 for (prev = NULL, t = child_convs;
2485 t != other_convs; prev = t, t = TREE_CHAIN (t))
2486 continue;
2488 if (prev)
2489 TREE_CHAIN (prev) = NULL_TREE;
2490 else
2491 child_convs = NULL_TREE;
2493 /* Attach the child convs to any we had at this level. */
2494 if (my_convs)
2496 my_convs = parent_convs;
2497 TREE_CHAIN (my_convs) = child_convs;
2499 else
2500 my_convs = child_convs;
2502 return my_convs;
2505 /* Worker for lookup_conversions. Lookup conversion functions in
2506 BINFO and its children. VIRTUAL_DEPTH is nonzero, if BINFO is in
2507 a morally virtual base, and VIRTUALNESS is nonzero, if we've
2508 encountered virtual bases already in the tree walk. PARENT_CONVS &
2509 PARENT_TPL_CONVS are lists of list of conversions within parent
2510 binfos. OTHER_CONVS and OTHER_TPL_CONVS are conversions found
2511 elsewhere in the tree. Return the conversions found within this
2512 portion of the graph in CONVS and TPL_CONVS. Return nonzero is we
2513 encountered virtualness. We keep template and non-template
2514 conversions separate, to avoid unnecessary type comparisons.
2516 The located conversion functions are held in lists of lists. The
2517 TREE_VALUE of the outer list is the list of conversion functions
2518 found in a particular binfo. The TREE_PURPOSE of both the outer
2519 and inner lists is the binfo at which those conversions were
2520 found. TREE_STATIC is set for those lists within of morally
2521 virtual binfos. The TREE_VALUE of the inner list is the conversion
2522 function or overload itself. The TREE_TYPE of each inner list node
2523 is the converted-to type. */
2525 static int
2526 lookup_conversions_r (tree binfo,
2527 int virtual_depth, int virtualness,
2528 tree parent_convs, tree parent_tpl_convs,
2529 tree other_convs, tree other_tpl_convs,
2530 tree *convs, tree *tpl_convs)
2532 int my_virtualness = 0;
2533 tree my_convs = NULL_TREE;
2534 tree my_tpl_convs = NULL_TREE;
2535 tree child_convs = NULL_TREE;
2536 tree child_tpl_convs = NULL_TREE;
2537 unsigned i;
2538 tree base_binfo;
2539 vec<tree, va_gc> *method_vec = CLASSTYPE_METHOD_VEC (BINFO_TYPE (binfo));
2540 tree conv;
2542 /* If we have no conversion operators, then don't look. */
2543 if (!TYPE_HAS_CONVERSION (BINFO_TYPE (binfo)))
2545 *convs = *tpl_convs = NULL_TREE;
2547 return 0;
2550 if (BINFO_VIRTUAL_P (binfo))
2551 virtual_depth++;
2553 /* First, locate the unhidden ones at this level. */
2554 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2555 vec_safe_iterate (method_vec, i, &conv);
2556 ++i)
2558 tree cur = OVL_CURRENT (conv);
2560 if (!DECL_CONV_FN_P (cur))
2561 break;
2563 if (TREE_CODE (cur) == TEMPLATE_DECL)
2565 /* Only template conversions can be overloaded, and we must
2566 flatten them out and check each one individually. */
2567 tree tpls;
2569 for (tpls = conv; tpls; tpls = OVL_NEXT (tpls))
2571 tree tpl = OVL_CURRENT (tpls);
2572 tree type = DECL_CONV_FN_TYPE (tpl);
2574 if (check_hidden_convs (binfo, virtual_depth, virtualness,
2575 type, parent_tpl_convs, other_tpl_convs))
2577 my_tpl_convs = tree_cons (binfo, tpl, my_tpl_convs);
2578 TREE_TYPE (my_tpl_convs) = type;
2579 if (virtual_depth)
2581 TREE_STATIC (my_tpl_convs) = 1;
2582 my_virtualness = 1;
2587 else
2589 tree name = DECL_NAME (cur);
2591 if (!IDENTIFIER_MARKED (name))
2593 tree type = DECL_CONV_FN_TYPE (cur);
2594 if (type_uses_auto (type))
2596 mark_used (cur);
2597 type = DECL_CONV_FN_TYPE (cur);
2600 if (check_hidden_convs (binfo, virtual_depth, virtualness,
2601 type, parent_convs, other_convs))
2603 my_convs = tree_cons (binfo, conv, my_convs);
2604 TREE_TYPE (my_convs) = type;
2605 if (virtual_depth)
2607 TREE_STATIC (my_convs) = 1;
2608 my_virtualness = 1;
2610 IDENTIFIER_MARKED (name) = 1;
2616 if (my_convs)
2618 parent_convs = tree_cons (binfo, my_convs, parent_convs);
2619 if (virtual_depth)
2620 TREE_STATIC (parent_convs) = 1;
2623 if (my_tpl_convs)
2625 parent_tpl_convs = tree_cons (binfo, my_tpl_convs, parent_tpl_convs);
2626 if (virtual_depth)
2627 TREE_STATIC (parent_tpl_convs) = 1;
2630 child_convs = other_convs;
2631 child_tpl_convs = other_tpl_convs;
2633 /* Now iterate over each base, looking for more conversions. */
2634 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
2636 tree base_convs, base_tpl_convs;
2637 unsigned base_virtualness;
2639 base_virtualness = lookup_conversions_r (base_binfo,
2640 virtual_depth, virtualness,
2641 parent_convs, parent_tpl_convs,
2642 child_convs, child_tpl_convs,
2643 &base_convs, &base_tpl_convs);
2644 if (base_virtualness)
2645 my_virtualness = virtualness = 1;
2646 child_convs = chainon (base_convs, child_convs);
2647 child_tpl_convs = chainon (base_tpl_convs, child_tpl_convs);
2650 /* Unmark the conversions found at this level */
2651 for (conv = my_convs; conv; conv = TREE_CHAIN (conv))
2652 IDENTIFIER_MARKED (DECL_NAME (OVL_CURRENT (TREE_VALUE (conv)))) = 0;
2654 *convs = split_conversions (my_convs, parent_convs,
2655 child_convs, other_convs);
2656 *tpl_convs = split_conversions (my_tpl_convs, parent_tpl_convs,
2657 child_tpl_convs, other_tpl_convs);
2659 return my_virtualness;
2662 /* Return a TREE_LIST containing all the non-hidden user-defined
2663 conversion functions for TYPE (and its base-classes). The
2664 TREE_VALUE of each node is the FUNCTION_DECL of the conversion
2665 function. The TREE_PURPOSE is the BINFO from which the conversion
2666 functions in this node were selected. This function is effectively
2667 performing a set of member lookups as lookup_fnfield does, but
2668 using the type being converted to as the unique key, rather than the
2669 field name. */
2671 tree
2672 lookup_conversions (tree type)
2674 tree convs, tpl_convs;
2675 tree list = NULL_TREE;
2677 complete_type (type);
2678 if (!CLASS_TYPE_P (type) || !TYPE_BINFO (type))
2679 return NULL_TREE;
2681 lookup_conversions_r (TYPE_BINFO (type), 0, 0,
2682 NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE,
2683 &convs, &tpl_convs);
2685 /* Flatten the list-of-lists */
2686 for (; convs; convs = TREE_CHAIN (convs))
2688 tree probe, next;
2690 for (probe = TREE_VALUE (convs); probe; probe = next)
2692 next = TREE_CHAIN (probe);
2694 TREE_CHAIN (probe) = list;
2695 list = probe;
2699 for (; tpl_convs; tpl_convs = TREE_CHAIN (tpl_convs))
2701 tree probe, next;
2703 for (probe = TREE_VALUE (tpl_convs); probe; probe = next)
2705 next = TREE_CHAIN (probe);
2707 TREE_CHAIN (probe) = list;
2708 list = probe;
2712 return list;
2715 /* Returns the binfo of the first direct or indirect virtual base derived
2716 from BINFO, or NULL if binfo is not via virtual. */
2718 tree
2719 binfo_from_vbase (tree binfo)
2721 for (; binfo; binfo = BINFO_INHERITANCE_CHAIN (binfo))
2723 if (BINFO_VIRTUAL_P (binfo))
2724 return binfo;
2726 return NULL_TREE;
2729 /* Returns the binfo of the first direct or indirect virtual base derived
2730 from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not
2731 via virtual. */
2733 tree
2734 binfo_via_virtual (tree binfo, tree limit)
2736 if (limit && !CLASSTYPE_VBASECLASSES (limit))
2737 /* LIMIT has no virtual bases, so BINFO cannot be via one. */
2738 return NULL_TREE;
2740 for (; binfo && !SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), limit);
2741 binfo = BINFO_INHERITANCE_CHAIN (binfo))
2743 if (BINFO_VIRTUAL_P (binfo))
2744 return binfo;
2746 return NULL_TREE;
2749 /* BINFO is a base binfo in the complete type BINFO_TYPE (HERE).
2750 Find the equivalent binfo within whatever graph HERE is located.
2751 This is the inverse of original_binfo. */
2753 tree
2754 copied_binfo (tree binfo, tree here)
2756 tree result = NULL_TREE;
2758 if (BINFO_VIRTUAL_P (binfo))
2760 tree t;
2762 for (t = here; BINFO_INHERITANCE_CHAIN (t);
2763 t = BINFO_INHERITANCE_CHAIN (t))
2764 continue;
2766 result = binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (t));
2768 else if (BINFO_INHERITANCE_CHAIN (binfo))
2770 tree cbinfo;
2771 tree base_binfo;
2772 int ix;
2774 cbinfo = copied_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2775 for (ix = 0; BINFO_BASE_ITERATE (cbinfo, ix, base_binfo); ix++)
2776 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo), BINFO_TYPE (binfo)))
2778 result = base_binfo;
2779 break;
2782 else
2784 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (here), BINFO_TYPE (binfo)));
2785 result = here;
2788 gcc_assert (result);
2789 return result;
2792 tree
2793 binfo_for_vbase (tree base, tree t)
2795 unsigned ix;
2796 tree binfo;
2797 vec<tree, va_gc> *vbases;
2799 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
2800 vec_safe_iterate (vbases, ix, &binfo); ix++)
2801 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), base))
2802 return binfo;
2803 return NULL;
2806 /* BINFO is some base binfo of HERE, within some other
2807 hierarchy. Return the equivalent binfo, but in the hierarchy
2808 dominated by HERE. This is the inverse of copied_binfo. If BINFO
2809 is not a base binfo of HERE, returns NULL_TREE. */
2811 tree
2812 original_binfo (tree binfo, tree here)
2814 tree result = NULL;
2816 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (here)))
2817 result = here;
2818 else if (BINFO_VIRTUAL_P (binfo))
2819 result = (CLASSTYPE_VBASECLASSES (BINFO_TYPE (here))
2820 ? binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (here))
2821 : NULL_TREE);
2822 else if (BINFO_INHERITANCE_CHAIN (binfo))
2824 tree base_binfos;
2826 base_binfos = original_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2827 if (base_binfos)
2829 int ix;
2830 tree base_binfo;
2832 for (ix = 0; (base_binfo = BINFO_BASE_BINFO (base_binfos, ix)); ix++)
2833 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
2834 BINFO_TYPE (binfo)))
2836 result = base_binfo;
2837 break;
2842 return result;
2845 /* True iff TYPE has any dependent bases (and therefore we can't say
2846 definitively that another class is not a base of an instantiation of
2847 TYPE). */
2849 bool
2850 any_dependent_bases_p (tree type)
2852 if (!type || !CLASS_TYPE_P (type) || !processing_template_decl)
2853 return false;
2855 unsigned i;
2856 tree base_binfo;
2857 FOR_EACH_VEC_SAFE_ELT (BINFO_BASE_BINFOS (TYPE_BINFO (type)), i, base_binfo)
2858 if (BINFO_DEPENDENT_BASE_P (base_binfo))
2859 return true;
2861 return false;