PR c/67106
[official-gcc.git] / gcc / combine.c
blob71b1656ba33c52fafc7c5f302d94a7683425bea6
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "predict.h"
86 #include "df.h"
87 #include "tm_p.h"
88 #include "optabs.h"
89 #include "regs.h"
90 #include "emit-rtl.h"
91 #include "recog.h"
92 #include "cgraph.h"
93 #include "stor-layout.h"
94 #include "cfgrtl.h"
95 #include "cfgcleanup.h"
96 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
97 #include "explow.h"
98 #include "insn-attr.h"
99 #include "rtlhooks-def.h"
100 #include "params.h"
101 #include "tree-pass.h"
102 #include "valtrack.h"
103 #include "rtl-iter.h"
104 #include "print-rtl.h"
106 #ifndef LOAD_EXTEND_OP
107 #define LOAD_EXTEND_OP(M) UNKNOWN
108 #endif
110 /* Number of attempts to combine instructions in this function. */
112 static int combine_attempts;
114 /* Number of attempts that got as far as substitution in this function. */
116 static int combine_merges;
118 /* Number of instructions combined with added SETs in this function. */
120 static int combine_extras;
122 /* Number of instructions combined in this function. */
124 static int combine_successes;
126 /* Totals over entire compilation. */
128 static int total_attempts, total_merges, total_extras, total_successes;
130 /* combine_instructions may try to replace the right hand side of the
131 second instruction with the value of an associated REG_EQUAL note
132 before throwing it at try_combine. That is problematic when there
133 is a REG_DEAD note for a register used in the old right hand side
134 and can cause distribute_notes to do wrong things. This is the
135 second instruction if it has been so modified, null otherwise. */
137 static rtx_insn *i2mod;
139 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
141 static rtx i2mod_old_rhs;
143 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
145 static rtx i2mod_new_rhs;
147 struct reg_stat_type {
148 /* Record last point of death of (hard or pseudo) register n. */
149 rtx_insn *last_death;
151 /* Record last point of modification of (hard or pseudo) register n. */
152 rtx_insn *last_set;
154 /* The next group of fields allows the recording of the last value assigned
155 to (hard or pseudo) register n. We use this information to see if an
156 operation being processed is redundant given a prior operation performed
157 on the register. For example, an `and' with a constant is redundant if
158 all the zero bits are already known to be turned off.
160 We use an approach similar to that used by cse, but change it in the
161 following ways:
163 (1) We do not want to reinitialize at each label.
164 (2) It is useful, but not critical, to know the actual value assigned
165 to a register. Often just its form is helpful.
167 Therefore, we maintain the following fields:
169 last_set_value the last value assigned
170 last_set_label records the value of label_tick when the
171 register was assigned
172 last_set_table_tick records the value of label_tick when a
173 value using the register is assigned
174 last_set_invalid set to nonzero when it is not valid
175 to use the value of this register in some
176 register's value
178 To understand the usage of these tables, it is important to understand
179 the distinction between the value in last_set_value being valid and
180 the register being validly contained in some other expression in the
181 table.
183 (The next two parameters are out of date).
185 reg_stat[i].last_set_value is valid if it is nonzero, and either
186 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
188 Register I may validly appear in any expression returned for the value
189 of another register if reg_n_sets[i] is 1. It may also appear in the
190 value for register J if reg_stat[j].last_set_invalid is zero, or
191 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
193 If an expression is found in the table containing a register which may
194 not validly appear in an expression, the register is replaced by
195 something that won't match, (clobber (const_int 0)). */
197 /* Record last value assigned to (hard or pseudo) register n. */
199 rtx last_set_value;
201 /* Record the value of label_tick when an expression involving register n
202 is placed in last_set_value. */
204 int last_set_table_tick;
206 /* Record the value of label_tick when the value for register n is placed in
207 last_set_value. */
209 int last_set_label;
211 /* These fields are maintained in parallel with last_set_value and are
212 used to store the mode in which the register was last set, the bits
213 that were known to be zero when it was last set, and the number of
214 sign bits copies it was known to have when it was last set. */
216 unsigned HOST_WIDE_INT last_set_nonzero_bits;
217 char last_set_sign_bit_copies;
218 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
220 /* Set nonzero if references to register n in expressions should not be
221 used. last_set_invalid is set nonzero when this register is being
222 assigned to and last_set_table_tick == label_tick. */
224 char last_set_invalid;
226 /* Some registers that are set more than once and used in more than one
227 basic block are nevertheless always set in similar ways. For example,
228 a QImode register may be loaded from memory in two places on a machine
229 where byte loads zero extend.
231 We record in the following fields if a register has some leading bits
232 that are always equal to the sign bit, and what we know about the
233 nonzero bits of a register, specifically which bits are known to be
234 zero.
236 If an entry is zero, it means that we don't know anything special. */
238 unsigned char sign_bit_copies;
240 unsigned HOST_WIDE_INT nonzero_bits;
242 /* Record the value of the label_tick when the last truncation
243 happened. The field truncated_to_mode is only valid if
244 truncation_label == label_tick. */
246 int truncation_label;
248 /* Record the last truncation seen for this register. If truncation
249 is not a nop to this mode we might be able to save an explicit
250 truncation if we know that value already contains a truncated
251 value. */
253 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
257 static vec<reg_stat_type> reg_stat;
259 /* One plus the highest pseudo for which we track REG_N_SETS.
260 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
261 but during combine_split_insns new pseudos can be created. As we don't have
262 updated DF information in that case, it is hard to initialize the array
263 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
264 so instead of growing the arrays, just assume all newly created pseudos
265 during combine might be set multiple times. */
267 static unsigned int reg_n_sets_max;
269 /* Record the luid of the last insn that invalidated memory
270 (anything that writes memory, and subroutine calls, but not pushes). */
272 static int mem_last_set;
274 /* Record the luid of the last CALL_INSN
275 so we can tell whether a potential combination crosses any calls. */
277 static int last_call_luid;
279 /* When `subst' is called, this is the insn that is being modified
280 (by combining in a previous insn). The PATTERN of this insn
281 is still the old pattern partially modified and it should not be
282 looked at, but this may be used to examine the successors of the insn
283 to judge whether a simplification is valid. */
285 static rtx_insn *subst_insn;
287 /* This is the lowest LUID that `subst' is currently dealing with.
288 get_last_value will not return a value if the register was set at or
289 after this LUID. If not for this mechanism, we could get confused if
290 I2 or I1 in try_combine were an insn that used the old value of a register
291 to obtain a new value. In that case, we might erroneously get the
292 new value of the register when we wanted the old one. */
294 static int subst_low_luid;
296 /* This contains any hard registers that are used in newpat; reg_dead_at_p
297 must consider all these registers to be always live. */
299 static HARD_REG_SET newpat_used_regs;
301 /* This is an insn to which a LOG_LINKS entry has been added. If this
302 insn is the earlier than I2 or I3, combine should rescan starting at
303 that location. */
305 static rtx_insn *added_links_insn;
307 /* Basic block in which we are performing combines. */
308 static basic_block this_basic_block;
309 static bool optimize_this_for_speed_p;
312 /* Length of the currently allocated uid_insn_cost array. */
314 static int max_uid_known;
316 /* The following array records the insn_rtx_cost for every insn
317 in the instruction stream. */
319 static int *uid_insn_cost;
321 /* The following array records the LOG_LINKS for every insn in the
322 instruction stream as struct insn_link pointers. */
324 struct insn_link {
325 rtx_insn *insn;
326 unsigned int regno;
327 struct insn_link *next;
330 static struct insn_link **uid_log_links;
332 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
333 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
335 #define FOR_EACH_LOG_LINK(L, INSN) \
336 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
338 /* Links for LOG_LINKS are allocated from this obstack. */
340 static struct obstack insn_link_obstack;
342 /* Allocate a link. */
344 static inline struct insn_link *
345 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
347 struct insn_link *l
348 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
349 sizeof (struct insn_link));
350 l->insn = insn;
351 l->regno = regno;
352 l->next = next;
353 return l;
356 /* Incremented for each basic block. */
358 static int label_tick;
360 /* Reset to label_tick for each extended basic block in scanning order. */
362 static int label_tick_ebb_start;
364 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
365 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
367 static machine_mode nonzero_bits_mode;
369 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
370 be safely used. It is zero while computing them and after combine has
371 completed. This former test prevents propagating values based on
372 previously set values, which can be incorrect if a variable is modified
373 in a loop. */
375 static int nonzero_sign_valid;
378 /* Record one modification to rtl structure
379 to be undone by storing old_contents into *where. */
381 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
383 struct undo
385 struct undo *next;
386 enum undo_kind kind;
387 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
388 union { rtx *r; int *i; struct insn_link **l; } where;
391 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
392 num_undo says how many are currently recorded.
394 other_insn is nonzero if we have modified some other insn in the process
395 of working on subst_insn. It must be verified too. */
397 struct undobuf
399 struct undo *undos;
400 struct undo *frees;
401 rtx_insn *other_insn;
404 static struct undobuf undobuf;
406 /* Number of times the pseudo being substituted for
407 was found and replaced. */
409 static int n_occurrences;
411 static rtx reg_nonzero_bits_for_combine (const_rtx, machine_mode, const_rtx,
412 machine_mode,
413 unsigned HOST_WIDE_INT,
414 unsigned HOST_WIDE_INT *);
415 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, machine_mode, const_rtx,
416 machine_mode,
417 unsigned int, unsigned int *);
418 static void do_SUBST (rtx *, rtx);
419 static void do_SUBST_INT (int *, int);
420 static void init_reg_last (void);
421 static void setup_incoming_promotions (rtx_insn *);
422 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
423 static int cant_combine_insn_p (rtx_insn *);
424 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
425 rtx_insn *, rtx_insn *, rtx *, rtx *);
426 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
427 static int contains_muldiv (rtx);
428 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
429 int *, rtx_insn *);
430 static void undo_all (void);
431 static void undo_commit (void);
432 static rtx *find_split_point (rtx *, rtx_insn *, bool);
433 static rtx subst (rtx, rtx, rtx, int, int, int);
434 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
435 static rtx simplify_if_then_else (rtx);
436 static rtx simplify_set (rtx);
437 static rtx simplify_logical (rtx);
438 static rtx expand_compound_operation (rtx);
439 static const_rtx expand_field_assignment (const_rtx);
440 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
441 rtx, unsigned HOST_WIDE_INT, int, int, int);
442 static rtx extract_left_shift (rtx, int);
443 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
444 unsigned HOST_WIDE_INT *);
445 static rtx canon_reg_for_combine (rtx, rtx);
446 static rtx force_to_mode (rtx, machine_mode,
447 unsigned HOST_WIDE_INT, int);
448 static rtx if_then_else_cond (rtx, rtx *, rtx *);
449 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
450 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
451 static rtx make_field_assignment (rtx);
452 static rtx apply_distributive_law (rtx);
453 static rtx distribute_and_simplify_rtx (rtx, int);
454 static rtx simplify_and_const_int_1 (machine_mode, rtx,
455 unsigned HOST_WIDE_INT);
456 static rtx simplify_and_const_int (rtx, machine_mode, rtx,
457 unsigned HOST_WIDE_INT);
458 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
459 HOST_WIDE_INT, machine_mode, int *);
460 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
461 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
462 int);
463 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
464 static rtx gen_lowpart_for_combine (machine_mode, rtx);
465 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
466 rtx, rtx *);
467 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
468 static void update_table_tick (rtx);
469 static void record_value_for_reg (rtx, rtx_insn *, rtx);
470 static void check_promoted_subreg (rtx_insn *, rtx);
471 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
472 static void record_dead_and_set_regs (rtx_insn *);
473 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
474 static rtx get_last_value (const_rtx);
475 static int use_crosses_set_p (const_rtx, int);
476 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
477 static int reg_dead_at_p (rtx, rtx_insn *);
478 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
479 static int reg_bitfield_target_p (rtx, rtx);
480 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
481 static void distribute_links (struct insn_link *);
482 static void mark_used_regs_combine (rtx);
483 static void record_promoted_value (rtx_insn *, rtx);
484 static bool unmentioned_reg_p (rtx, rtx);
485 static void record_truncated_values (rtx *, void *);
486 static bool reg_truncated_to_mode (machine_mode, const_rtx);
487 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
490 /* It is not safe to use ordinary gen_lowpart in combine.
491 See comments in gen_lowpart_for_combine. */
492 #undef RTL_HOOKS_GEN_LOWPART
493 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
495 /* Our implementation of gen_lowpart never emits a new pseudo. */
496 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
497 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
499 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
500 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
502 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
503 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
505 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
506 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
508 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
511 /* Convenience wrapper for the canonicalize_comparison target hook.
512 Target hooks cannot use enum rtx_code. */
513 static inline void
514 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
515 bool op0_preserve_value)
517 int code_int = (int)*code;
518 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
519 *code = (enum rtx_code)code_int;
522 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
523 PATTERN can not be split. Otherwise, it returns an insn sequence.
524 This is a wrapper around split_insns which ensures that the
525 reg_stat vector is made larger if the splitter creates a new
526 register. */
528 static rtx_insn *
529 combine_split_insns (rtx pattern, rtx_insn *insn)
531 rtx_insn *ret;
532 unsigned int nregs;
534 ret = split_insns (pattern, insn);
535 nregs = max_reg_num ();
536 if (nregs > reg_stat.length ())
537 reg_stat.safe_grow_cleared (nregs);
538 return ret;
541 /* This is used by find_single_use to locate an rtx in LOC that
542 contains exactly one use of DEST, which is typically either a REG
543 or CC0. It returns a pointer to the innermost rtx expression
544 containing DEST. Appearances of DEST that are being used to
545 totally replace it are not counted. */
547 static rtx *
548 find_single_use_1 (rtx dest, rtx *loc)
550 rtx x = *loc;
551 enum rtx_code code = GET_CODE (x);
552 rtx *result = NULL;
553 rtx *this_result;
554 int i;
555 const char *fmt;
557 switch (code)
559 case CONST:
560 case LABEL_REF:
561 case SYMBOL_REF:
562 CASE_CONST_ANY:
563 case CLOBBER:
564 return 0;
566 case SET:
567 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
568 of a REG that occupies all of the REG, the insn uses DEST if
569 it is mentioned in the destination or the source. Otherwise, we
570 need just check the source. */
571 if (GET_CODE (SET_DEST (x)) != CC0
572 && GET_CODE (SET_DEST (x)) != PC
573 && !REG_P (SET_DEST (x))
574 && ! (GET_CODE (SET_DEST (x)) == SUBREG
575 && REG_P (SUBREG_REG (SET_DEST (x)))
576 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
577 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
578 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
579 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
580 break;
582 return find_single_use_1 (dest, &SET_SRC (x));
584 case MEM:
585 case SUBREG:
586 return find_single_use_1 (dest, &XEXP (x, 0));
588 default:
589 break;
592 /* If it wasn't one of the common cases above, check each expression and
593 vector of this code. Look for a unique usage of DEST. */
595 fmt = GET_RTX_FORMAT (code);
596 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
598 if (fmt[i] == 'e')
600 if (dest == XEXP (x, i)
601 || (REG_P (dest) && REG_P (XEXP (x, i))
602 && REGNO (dest) == REGNO (XEXP (x, i))))
603 this_result = loc;
604 else
605 this_result = find_single_use_1 (dest, &XEXP (x, i));
607 if (result == NULL)
608 result = this_result;
609 else if (this_result)
610 /* Duplicate usage. */
611 return NULL;
613 else if (fmt[i] == 'E')
615 int j;
617 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
619 if (XVECEXP (x, i, j) == dest
620 || (REG_P (dest)
621 && REG_P (XVECEXP (x, i, j))
622 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
623 this_result = loc;
624 else
625 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
627 if (result == NULL)
628 result = this_result;
629 else if (this_result)
630 return NULL;
635 return result;
639 /* See if DEST, produced in INSN, is used only a single time in the
640 sequel. If so, return a pointer to the innermost rtx expression in which
641 it is used.
643 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
645 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
646 care about REG_DEAD notes or LOG_LINKS.
648 Otherwise, we find the single use by finding an insn that has a
649 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
650 only referenced once in that insn, we know that it must be the first
651 and last insn referencing DEST. */
653 static rtx *
654 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
656 basic_block bb;
657 rtx_insn *next;
658 rtx *result;
659 struct insn_link *link;
661 if (dest == cc0_rtx)
663 next = NEXT_INSN (insn);
664 if (next == 0
665 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
666 return 0;
668 result = find_single_use_1 (dest, &PATTERN (next));
669 if (result && ploc)
670 *ploc = next;
671 return result;
674 if (!REG_P (dest))
675 return 0;
677 bb = BLOCK_FOR_INSN (insn);
678 for (next = NEXT_INSN (insn);
679 next && BLOCK_FOR_INSN (next) == bb;
680 next = NEXT_INSN (next))
681 if (INSN_P (next) && dead_or_set_p (next, dest))
683 FOR_EACH_LOG_LINK (link, next)
684 if (link->insn == insn && link->regno == REGNO (dest))
685 break;
687 if (link)
689 result = find_single_use_1 (dest, &PATTERN (next));
690 if (ploc)
691 *ploc = next;
692 return result;
696 return 0;
699 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
700 insn. The substitution can be undone by undo_all. If INTO is already
701 set to NEWVAL, do not record this change. Because computing NEWVAL might
702 also call SUBST, we have to compute it before we put anything into
703 the undo table. */
705 static void
706 do_SUBST (rtx *into, rtx newval)
708 struct undo *buf;
709 rtx oldval = *into;
711 if (oldval == newval)
712 return;
714 /* We'd like to catch as many invalid transformations here as
715 possible. Unfortunately, there are way too many mode changes
716 that are perfectly valid, so we'd waste too much effort for
717 little gain doing the checks here. Focus on catching invalid
718 transformations involving integer constants. */
719 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
720 && CONST_INT_P (newval))
722 /* Sanity check that we're replacing oldval with a CONST_INT
723 that is a valid sign-extension for the original mode. */
724 gcc_assert (INTVAL (newval)
725 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
727 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
728 CONST_INT is not valid, because after the replacement, the
729 original mode would be gone. Unfortunately, we can't tell
730 when do_SUBST is called to replace the operand thereof, so we
731 perform this test on oldval instead, checking whether an
732 invalid replacement took place before we got here. */
733 gcc_assert (!(GET_CODE (oldval) == SUBREG
734 && CONST_INT_P (SUBREG_REG (oldval))));
735 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
736 && CONST_INT_P (XEXP (oldval, 0))));
739 if (undobuf.frees)
740 buf = undobuf.frees, undobuf.frees = buf->next;
741 else
742 buf = XNEW (struct undo);
744 buf->kind = UNDO_RTX;
745 buf->where.r = into;
746 buf->old_contents.r = oldval;
747 *into = newval;
749 buf->next = undobuf.undos, undobuf.undos = buf;
752 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
754 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
755 for the value of a HOST_WIDE_INT value (including CONST_INT) is
756 not safe. */
758 static void
759 do_SUBST_INT (int *into, int newval)
761 struct undo *buf;
762 int oldval = *into;
764 if (oldval == newval)
765 return;
767 if (undobuf.frees)
768 buf = undobuf.frees, undobuf.frees = buf->next;
769 else
770 buf = XNEW (struct undo);
772 buf->kind = UNDO_INT;
773 buf->where.i = into;
774 buf->old_contents.i = oldval;
775 *into = newval;
777 buf->next = undobuf.undos, undobuf.undos = buf;
780 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
782 /* Similar to SUBST, but just substitute the mode. This is used when
783 changing the mode of a pseudo-register, so that any other
784 references to the entry in the regno_reg_rtx array will change as
785 well. */
787 static void
788 do_SUBST_MODE (rtx *into, machine_mode newval)
790 struct undo *buf;
791 machine_mode oldval = GET_MODE (*into);
793 if (oldval == newval)
794 return;
796 if (undobuf.frees)
797 buf = undobuf.frees, undobuf.frees = buf->next;
798 else
799 buf = XNEW (struct undo);
801 buf->kind = UNDO_MODE;
802 buf->where.r = into;
803 buf->old_contents.m = oldval;
804 adjust_reg_mode (*into, newval);
806 buf->next = undobuf.undos, undobuf.undos = buf;
809 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
811 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
813 static void
814 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
816 struct undo *buf;
817 struct insn_link * oldval = *into;
819 if (oldval == newval)
820 return;
822 if (undobuf.frees)
823 buf = undobuf.frees, undobuf.frees = buf->next;
824 else
825 buf = XNEW (struct undo);
827 buf->kind = UNDO_LINKS;
828 buf->where.l = into;
829 buf->old_contents.l = oldval;
830 *into = newval;
832 buf->next = undobuf.undos, undobuf.undos = buf;
835 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
837 /* Subroutine of try_combine. Determine whether the replacement patterns
838 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
839 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
840 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
841 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
842 of all the instructions can be estimated and the replacements are more
843 expensive than the original sequence. */
845 static bool
846 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
847 rtx newpat, rtx newi2pat, rtx newotherpat)
849 int i0_cost, i1_cost, i2_cost, i3_cost;
850 int new_i2_cost, new_i3_cost;
851 int old_cost, new_cost;
853 /* Lookup the original insn_rtx_costs. */
854 i2_cost = INSN_COST (i2);
855 i3_cost = INSN_COST (i3);
857 if (i1)
859 i1_cost = INSN_COST (i1);
860 if (i0)
862 i0_cost = INSN_COST (i0);
863 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
864 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
866 else
868 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
869 ? i1_cost + i2_cost + i3_cost : 0);
870 i0_cost = 0;
873 else
875 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
876 i1_cost = i0_cost = 0;
879 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
880 correct that. */
881 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
882 old_cost -= i1_cost;
885 /* Calculate the replacement insn_rtx_costs. */
886 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
887 if (newi2pat)
889 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
890 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
891 ? new_i2_cost + new_i3_cost : 0;
893 else
895 new_cost = new_i3_cost;
896 new_i2_cost = 0;
899 if (undobuf.other_insn)
901 int old_other_cost, new_other_cost;
903 old_other_cost = INSN_COST (undobuf.other_insn);
904 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
905 if (old_other_cost > 0 && new_other_cost > 0)
907 old_cost += old_other_cost;
908 new_cost += new_other_cost;
910 else
911 old_cost = 0;
914 /* Disallow this combination if both new_cost and old_cost are greater than
915 zero, and new_cost is greater than old cost. */
916 int reject = old_cost > 0 && new_cost > old_cost;
918 if (dump_file)
920 fprintf (dump_file, "%s combination of insns ",
921 reject ? "rejecting" : "allowing");
922 if (i0)
923 fprintf (dump_file, "%d, ", INSN_UID (i0));
924 if (i1 && INSN_UID (i1) != INSN_UID (i2))
925 fprintf (dump_file, "%d, ", INSN_UID (i1));
926 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
928 fprintf (dump_file, "original costs ");
929 if (i0)
930 fprintf (dump_file, "%d + ", i0_cost);
931 if (i1 && INSN_UID (i1) != INSN_UID (i2))
932 fprintf (dump_file, "%d + ", i1_cost);
933 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
935 if (newi2pat)
936 fprintf (dump_file, "replacement costs %d + %d = %d\n",
937 new_i2_cost, new_i3_cost, new_cost);
938 else
939 fprintf (dump_file, "replacement cost %d\n", new_cost);
942 if (reject)
943 return false;
945 /* Update the uid_insn_cost array with the replacement costs. */
946 INSN_COST (i2) = new_i2_cost;
947 INSN_COST (i3) = new_i3_cost;
948 if (i1)
950 INSN_COST (i1) = 0;
951 if (i0)
952 INSN_COST (i0) = 0;
955 return true;
959 /* Delete any insns that copy a register to itself. */
961 static void
962 delete_noop_moves (void)
964 rtx_insn *insn, *next;
965 basic_block bb;
967 FOR_EACH_BB_FN (bb, cfun)
969 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
971 next = NEXT_INSN (insn);
972 if (INSN_P (insn) && noop_move_p (insn))
974 if (dump_file)
975 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
977 delete_insn_and_edges (insn);
984 /* Return false if we do not want to (or cannot) combine DEF. */
985 static bool
986 can_combine_def_p (df_ref def)
988 /* Do not consider if it is pre/post modification in MEM. */
989 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
990 return false;
992 unsigned int regno = DF_REF_REGNO (def);
994 /* Do not combine frame pointer adjustments. */
995 if ((regno == FRAME_POINTER_REGNUM
996 && (!reload_completed || frame_pointer_needed))
997 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
998 && regno == HARD_FRAME_POINTER_REGNUM
999 && (!reload_completed || frame_pointer_needed))
1000 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1001 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1002 return false;
1004 return true;
1007 /* Return false if we do not want to (or cannot) combine USE. */
1008 static bool
1009 can_combine_use_p (df_ref use)
1011 /* Do not consider the usage of the stack pointer by function call. */
1012 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1013 return false;
1015 return true;
1018 /* Fill in log links field for all insns. */
1020 static void
1021 create_log_links (void)
1023 basic_block bb;
1024 rtx_insn **next_use;
1025 rtx_insn *insn;
1026 df_ref def, use;
1028 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1030 /* Pass through each block from the end, recording the uses of each
1031 register and establishing log links when def is encountered.
1032 Note that we do not clear next_use array in order to save time,
1033 so we have to test whether the use is in the same basic block as def.
1035 There are a few cases below when we do not consider the definition or
1036 usage -- these are taken from original flow.c did. Don't ask me why it is
1037 done this way; I don't know and if it works, I don't want to know. */
1039 FOR_EACH_BB_FN (bb, cfun)
1041 FOR_BB_INSNS_REVERSE (bb, insn)
1043 if (!NONDEBUG_INSN_P (insn))
1044 continue;
1046 /* Log links are created only once. */
1047 gcc_assert (!LOG_LINKS (insn));
1049 FOR_EACH_INSN_DEF (def, insn)
1051 unsigned int regno = DF_REF_REGNO (def);
1052 rtx_insn *use_insn;
1054 if (!next_use[regno])
1055 continue;
1057 if (!can_combine_def_p (def))
1058 continue;
1060 use_insn = next_use[regno];
1061 next_use[regno] = NULL;
1063 if (BLOCK_FOR_INSN (use_insn) != bb)
1064 continue;
1066 /* flow.c claimed:
1068 We don't build a LOG_LINK for hard registers contained
1069 in ASM_OPERANDs. If these registers get replaced,
1070 we might wind up changing the semantics of the insn,
1071 even if reload can make what appear to be valid
1072 assignments later. */
1073 if (regno < FIRST_PSEUDO_REGISTER
1074 && asm_noperands (PATTERN (use_insn)) >= 0)
1075 continue;
1077 /* Don't add duplicate links between instructions. */
1078 struct insn_link *links;
1079 FOR_EACH_LOG_LINK (links, use_insn)
1080 if (insn == links->insn && regno == links->regno)
1081 break;
1083 if (!links)
1084 LOG_LINKS (use_insn)
1085 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1088 FOR_EACH_INSN_USE (use, insn)
1089 if (can_combine_use_p (use))
1090 next_use[DF_REF_REGNO (use)] = insn;
1094 free (next_use);
1097 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1098 true if we found a LOG_LINK that proves that A feeds B. This only works
1099 if there are no instructions between A and B which could have a link
1100 depending on A, since in that case we would not record a link for B.
1101 We also check the implicit dependency created by a cc0 setter/user
1102 pair. */
1104 static bool
1105 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1107 struct insn_link *links;
1108 FOR_EACH_LOG_LINK (links, b)
1109 if (links->insn == a)
1110 return true;
1111 if (HAVE_cc0 && sets_cc0_p (a))
1112 return true;
1113 return false;
1116 /* Main entry point for combiner. F is the first insn of the function.
1117 NREGS is the first unused pseudo-reg number.
1119 Return nonzero if the combiner has turned an indirect jump
1120 instruction into a direct jump. */
1121 static int
1122 combine_instructions (rtx_insn *f, unsigned int nregs)
1124 rtx_insn *insn, *next;
1125 rtx_insn *prev;
1126 struct insn_link *links, *nextlinks;
1127 rtx_insn *first;
1128 basic_block last_bb;
1130 int new_direct_jump_p = 0;
1132 for (first = f; first && !INSN_P (first); )
1133 first = NEXT_INSN (first);
1134 if (!first)
1135 return 0;
1137 combine_attempts = 0;
1138 combine_merges = 0;
1139 combine_extras = 0;
1140 combine_successes = 0;
1142 rtl_hooks = combine_rtl_hooks;
1144 reg_stat.safe_grow_cleared (nregs);
1146 init_recog_no_volatile ();
1148 /* Allocate array for insn info. */
1149 max_uid_known = get_max_uid ();
1150 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1151 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1152 gcc_obstack_init (&insn_link_obstack);
1154 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1156 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1157 problems when, for example, we have j <<= 1 in a loop. */
1159 nonzero_sign_valid = 0;
1160 label_tick = label_tick_ebb_start = 1;
1162 /* Scan all SETs and see if we can deduce anything about what
1163 bits are known to be zero for some registers and how many copies
1164 of the sign bit are known to exist for those registers.
1166 Also set any known values so that we can use it while searching
1167 for what bits are known to be set. */
1169 setup_incoming_promotions (first);
1170 /* Allow the entry block and the first block to fall into the same EBB.
1171 Conceptually the incoming promotions are assigned to the entry block. */
1172 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1174 create_log_links ();
1175 FOR_EACH_BB_FN (this_basic_block, cfun)
1177 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1178 last_call_luid = 0;
1179 mem_last_set = -1;
1181 label_tick++;
1182 if (!single_pred_p (this_basic_block)
1183 || single_pred (this_basic_block) != last_bb)
1184 label_tick_ebb_start = label_tick;
1185 last_bb = this_basic_block;
1187 FOR_BB_INSNS (this_basic_block, insn)
1188 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1190 rtx links;
1192 subst_low_luid = DF_INSN_LUID (insn);
1193 subst_insn = insn;
1195 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1196 insn);
1197 record_dead_and_set_regs (insn);
1199 if (AUTO_INC_DEC)
1200 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1201 if (REG_NOTE_KIND (links) == REG_INC)
1202 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1203 insn);
1205 /* Record the current insn_rtx_cost of this instruction. */
1206 if (NONJUMP_INSN_P (insn))
1207 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1208 optimize_this_for_speed_p);
1209 if (dump_file)
1210 fprintf (dump_file, "insn_cost %d: %d\n",
1211 INSN_UID (insn), INSN_COST (insn));
1215 nonzero_sign_valid = 1;
1217 /* Now scan all the insns in forward order. */
1218 label_tick = label_tick_ebb_start = 1;
1219 init_reg_last ();
1220 setup_incoming_promotions (first);
1221 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1222 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1224 FOR_EACH_BB_FN (this_basic_block, cfun)
1226 rtx_insn *last_combined_insn = NULL;
1227 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1228 last_call_luid = 0;
1229 mem_last_set = -1;
1231 label_tick++;
1232 if (!single_pred_p (this_basic_block)
1233 || single_pred (this_basic_block) != last_bb)
1234 label_tick_ebb_start = label_tick;
1235 last_bb = this_basic_block;
1237 rtl_profile_for_bb (this_basic_block);
1238 for (insn = BB_HEAD (this_basic_block);
1239 insn != NEXT_INSN (BB_END (this_basic_block));
1240 insn = next ? next : NEXT_INSN (insn))
1242 next = 0;
1243 if (!NONDEBUG_INSN_P (insn))
1244 continue;
1246 while (last_combined_insn
1247 && last_combined_insn->deleted ())
1248 last_combined_insn = PREV_INSN (last_combined_insn);
1249 if (last_combined_insn == NULL_RTX
1250 || BARRIER_P (last_combined_insn)
1251 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1252 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1253 last_combined_insn = insn;
1255 /* See if we know about function return values before this
1256 insn based upon SUBREG flags. */
1257 check_promoted_subreg (insn, PATTERN (insn));
1259 /* See if we can find hardregs and subreg of pseudos in
1260 narrower modes. This could help turning TRUNCATEs
1261 into SUBREGs. */
1262 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1264 /* Try this insn with each insn it links back to. */
1266 FOR_EACH_LOG_LINK (links, insn)
1267 if ((next = try_combine (insn, links->insn, NULL,
1268 NULL, &new_direct_jump_p,
1269 last_combined_insn)) != 0)
1271 statistics_counter_event (cfun, "two-insn combine", 1);
1272 goto retry;
1275 /* Try each sequence of three linked insns ending with this one. */
1277 if (max_combine >= 3)
1278 FOR_EACH_LOG_LINK (links, insn)
1280 rtx_insn *link = links->insn;
1282 /* If the linked insn has been replaced by a note, then there
1283 is no point in pursuing this chain any further. */
1284 if (NOTE_P (link))
1285 continue;
1287 FOR_EACH_LOG_LINK (nextlinks, link)
1288 if ((next = try_combine (insn, link, nextlinks->insn,
1289 NULL, &new_direct_jump_p,
1290 last_combined_insn)) != 0)
1292 statistics_counter_event (cfun, "three-insn combine", 1);
1293 goto retry;
1297 /* Try to combine a jump insn that uses CC0
1298 with a preceding insn that sets CC0, and maybe with its
1299 logical predecessor as well.
1300 This is how we make decrement-and-branch insns.
1301 We need this special code because data flow connections
1302 via CC0 do not get entered in LOG_LINKS. */
1304 if (HAVE_cc0
1305 && JUMP_P (insn)
1306 && (prev = prev_nonnote_insn (insn)) != 0
1307 && NONJUMP_INSN_P (prev)
1308 && sets_cc0_p (PATTERN (prev)))
1310 if ((next = try_combine (insn, prev, NULL, NULL,
1311 &new_direct_jump_p,
1312 last_combined_insn)) != 0)
1313 goto retry;
1315 FOR_EACH_LOG_LINK (nextlinks, prev)
1316 if ((next = try_combine (insn, prev, nextlinks->insn,
1317 NULL, &new_direct_jump_p,
1318 last_combined_insn)) != 0)
1319 goto retry;
1322 /* Do the same for an insn that explicitly references CC0. */
1323 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1324 && (prev = prev_nonnote_insn (insn)) != 0
1325 && NONJUMP_INSN_P (prev)
1326 && sets_cc0_p (PATTERN (prev))
1327 && GET_CODE (PATTERN (insn)) == SET
1328 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1330 if ((next = try_combine (insn, prev, NULL, NULL,
1331 &new_direct_jump_p,
1332 last_combined_insn)) != 0)
1333 goto retry;
1335 FOR_EACH_LOG_LINK (nextlinks, prev)
1336 if ((next = try_combine (insn, prev, nextlinks->insn,
1337 NULL, &new_direct_jump_p,
1338 last_combined_insn)) != 0)
1339 goto retry;
1342 /* Finally, see if any of the insns that this insn links to
1343 explicitly references CC0. If so, try this insn, that insn,
1344 and its predecessor if it sets CC0. */
1345 if (HAVE_cc0)
1347 FOR_EACH_LOG_LINK (links, insn)
1348 if (NONJUMP_INSN_P (links->insn)
1349 && GET_CODE (PATTERN (links->insn)) == SET
1350 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1351 && (prev = prev_nonnote_insn (links->insn)) != 0
1352 && NONJUMP_INSN_P (prev)
1353 && sets_cc0_p (PATTERN (prev))
1354 && (next = try_combine (insn, links->insn,
1355 prev, NULL, &new_direct_jump_p,
1356 last_combined_insn)) != 0)
1357 goto retry;
1360 /* Try combining an insn with two different insns whose results it
1361 uses. */
1362 if (max_combine >= 3)
1363 FOR_EACH_LOG_LINK (links, insn)
1364 for (nextlinks = links->next; nextlinks;
1365 nextlinks = nextlinks->next)
1366 if ((next = try_combine (insn, links->insn,
1367 nextlinks->insn, NULL,
1368 &new_direct_jump_p,
1369 last_combined_insn)) != 0)
1372 statistics_counter_event (cfun, "three-insn combine", 1);
1373 goto retry;
1376 /* Try four-instruction combinations. */
1377 if (max_combine >= 4)
1378 FOR_EACH_LOG_LINK (links, insn)
1380 struct insn_link *next1;
1381 rtx_insn *link = links->insn;
1383 /* If the linked insn has been replaced by a note, then there
1384 is no point in pursuing this chain any further. */
1385 if (NOTE_P (link))
1386 continue;
1388 FOR_EACH_LOG_LINK (next1, link)
1390 rtx_insn *link1 = next1->insn;
1391 if (NOTE_P (link1))
1392 continue;
1393 /* I0 -> I1 -> I2 -> I3. */
1394 FOR_EACH_LOG_LINK (nextlinks, link1)
1395 if ((next = try_combine (insn, link, link1,
1396 nextlinks->insn,
1397 &new_direct_jump_p,
1398 last_combined_insn)) != 0)
1400 statistics_counter_event (cfun, "four-insn combine", 1);
1401 goto retry;
1403 /* I0, I1 -> I2, I2 -> I3. */
1404 for (nextlinks = next1->next; nextlinks;
1405 nextlinks = nextlinks->next)
1406 if ((next = try_combine (insn, link, link1,
1407 nextlinks->insn,
1408 &new_direct_jump_p,
1409 last_combined_insn)) != 0)
1411 statistics_counter_event (cfun, "four-insn combine", 1);
1412 goto retry;
1416 for (next1 = links->next; next1; next1 = next1->next)
1418 rtx_insn *link1 = next1->insn;
1419 if (NOTE_P (link1))
1420 continue;
1421 /* I0 -> I2; I1, I2 -> I3. */
1422 FOR_EACH_LOG_LINK (nextlinks, link)
1423 if ((next = try_combine (insn, link, link1,
1424 nextlinks->insn,
1425 &new_direct_jump_p,
1426 last_combined_insn)) != 0)
1428 statistics_counter_event (cfun, "four-insn combine", 1);
1429 goto retry;
1431 /* I0 -> I1; I1, I2 -> I3. */
1432 FOR_EACH_LOG_LINK (nextlinks, link1)
1433 if ((next = try_combine (insn, link, link1,
1434 nextlinks->insn,
1435 &new_direct_jump_p,
1436 last_combined_insn)) != 0)
1438 statistics_counter_event (cfun, "four-insn combine", 1);
1439 goto retry;
1444 /* Try this insn with each REG_EQUAL note it links back to. */
1445 FOR_EACH_LOG_LINK (links, insn)
1447 rtx set, note;
1448 rtx_insn *temp = links->insn;
1449 if ((set = single_set (temp)) != 0
1450 && (note = find_reg_equal_equiv_note (temp)) != 0
1451 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1452 /* Avoid using a register that may already been marked
1453 dead by an earlier instruction. */
1454 && ! unmentioned_reg_p (note, SET_SRC (set))
1455 && (GET_MODE (note) == VOIDmode
1456 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1457 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1459 /* Temporarily replace the set's source with the
1460 contents of the REG_EQUAL note. The insn will
1461 be deleted or recognized by try_combine. */
1462 rtx orig = SET_SRC (set);
1463 SET_SRC (set) = note;
1464 i2mod = temp;
1465 i2mod_old_rhs = copy_rtx (orig);
1466 i2mod_new_rhs = copy_rtx (note);
1467 next = try_combine (insn, i2mod, NULL, NULL,
1468 &new_direct_jump_p,
1469 last_combined_insn);
1470 i2mod = NULL;
1471 if (next)
1473 statistics_counter_event (cfun, "insn-with-note combine", 1);
1474 goto retry;
1476 SET_SRC (set) = orig;
1480 if (!NOTE_P (insn))
1481 record_dead_and_set_regs (insn);
1483 retry:
1488 default_rtl_profile ();
1489 clear_bb_flags ();
1490 new_direct_jump_p |= purge_all_dead_edges ();
1491 delete_noop_moves ();
1493 /* Clean up. */
1494 obstack_free (&insn_link_obstack, NULL);
1495 free (uid_log_links);
1496 free (uid_insn_cost);
1497 reg_stat.release ();
1500 struct undo *undo, *next;
1501 for (undo = undobuf.frees; undo; undo = next)
1503 next = undo->next;
1504 free (undo);
1506 undobuf.frees = 0;
1509 total_attempts += combine_attempts;
1510 total_merges += combine_merges;
1511 total_extras += combine_extras;
1512 total_successes += combine_successes;
1514 nonzero_sign_valid = 0;
1515 rtl_hooks = general_rtl_hooks;
1517 /* Make recognizer allow volatile MEMs again. */
1518 init_recog ();
1520 return new_direct_jump_p;
1523 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1525 static void
1526 init_reg_last (void)
1528 unsigned int i;
1529 reg_stat_type *p;
1531 FOR_EACH_VEC_ELT (reg_stat, i, p)
1532 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1535 /* Set up any promoted values for incoming argument registers. */
1537 static void
1538 setup_incoming_promotions (rtx_insn *first)
1540 tree arg;
1541 bool strictly_local = false;
1543 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1544 arg = DECL_CHAIN (arg))
1546 rtx x, reg = DECL_INCOMING_RTL (arg);
1547 int uns1, uns3;
1548 machine_mode mode1, mode2, mode3, mode4;
1550 /* Only continue if the incoming argument is in a register. */
1551 if (!REG_P (reg))
1552 continue;
1554 /* Determine, if possible, whether all call sites of the current
1555 function lie within the current compilation unit. (This does
1556 take into account the exporting of a function via taking its
1557 address, and so forth.) */
1558 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1560 /* The mode and signedness of the argument before any promotions happen
1561 (equal to the mode of the pseudo holding it at that stage). */
1562 mode1 = TYPE_MODE (TREE_TYPE (arg));
1563 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1565 /* The mode and signedness of the argument after any source language and
1566 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1567 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1568 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1570 /* The mode and signedness of the argument as it is actually passed,
1571 see assign_parm_setup_reg in function.c. */
1572 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1573 TREE_TYPE (cfun->decl), 0);
1575 /* The mode of the register in which the argument is being passed. */
1576 mode4 = GET_MODE (reg);
1578 /* Eliminate sign extensions in the callee when:
1579 (a) A mode promotion has occurred; */
1580 if (mode1 == mode3)
1581 continue;
1582 /* (b) The mode of the register is the same as the mode of
1583 the argument as it is passed; */
1584 if (mode3 != mode4)
1585 continue;
1586 /* (c) There's no language level extension; */
1587 if (mode1 == mode2)
1589 /* (c.1) All callers are from the current compilation unit. If that's
1590 the case we don't have to rely on an ABI, we only have to know
1591 what we're generating right now, and we know that we will do the
1592 mode1 to mode2 promotion with the given sign. */
1593 else if (!strictly_local)
1594 continue;
1595 /* (c.2) The combination of the two promotions is useful. This is
1596 true when the signs match, or if the first promotion is unsigned.
1597 In the later case, (sign_extend (zero_extend x)) is the same as
1598 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1599 else if (uns1)
1600 uns3 = true;
1601 else if (uns3)
1602 continue;
1604 /* Record that the value was promoted from mode1 to mode3,
1605 so that any sign extension at the head of the current
1606 function may be eliminated. */
1607 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1608 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1609 record_value_for_reg (reg, first, x);
1613 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1614 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1615 because some machines (maybe most) will actually do the sign-extension and
1616 this is the conservative approach.
1618 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1619 kludge. */
1621 static rtx
1622 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1624 if (GET_MODE_PRECISION (mode) < prec
1625 && CONST_INT_P (src)
1626 && INTVAL (src) > 0
1627 && val_signbit_known_set_p (mode, INTVAL (src)))
1628 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (mode));
1630 return src;
1633 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1634 and SET. */
1636 static void
1637 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1638 rtx x)
1640 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1641 unsigned HOST_WIDE_INT bits = 0;
1642 rtx reg_equal = NULL, src = SET_SRC (set);
1643 unsigned int num = 0;
1645 if (reg_equal_note)
1646 reg_equal = XEXP (reg_equal_note, 0);
1648 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1650 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1651 if (reg_equal)
1652 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1655 /* Don't call nonzero_bits if it cannot change anything. */
1656 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1658 bits = nonzero_bits (src, nonzero_bits_mode);
1659 if (reg_equal && bits)
1660 bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1661 rsp->nonzero_bits |= bits;
1664 /* Don't call num_sign_bit_copies if it cannot change anything. */
1665 if (rsp->sign_bit_copies != 1)
1667 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1668 if (reg_equal && num != GET_MODE_PRECISION (GET_MODE (x)))
1670 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1671 if (num == 0 || numeq > num)
1672 num = numeq;
1674 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1675 rsp->sign_bit_copies = num;
1679 /* Called via note_stores. If X is a pseudo that is narrower than
1680 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1682 If we are setting only a portion of X and we can't figure out what
1683 portion, assume all bits will be used since we don't know what will
1684 be happening.
1686 Similarly, set how many bits of X are known to be copies of the sign bit
1687 at all locations in the function. This is the smallest number implied
1688 by any set of X. */
1690 static void
1691 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1693 rtx_insn *insn = (rtx_insn *) data;
1695 if (REG_P (x)
1696 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1697 /* If this register is undefined at the start of the file, we can't
1698 say what its contents were. */
1699 && ! REGNO_REG_SET_P
1700 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1701 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1703 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1705 if (set == 0 || GET_CODE (set) == CLOBBER)
1707 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1708 rsp->sign_bit_copies = 1;
1709 return;
1712 /* If this register is being initialized using itself, and the
1713 register is uninitialized in this basic block, and there are
1714 no LOG_LINKS which set the register, then part of the
1715 register is uninitialized. In that case we can't assume
1716 anything about the number of nonzero bits.
1718 ??? We could do better if we checked this in
1719 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1720 could avoid making assumptions about the insn which initially
1721 sets the register, while still using the information in other
1722 insns. We would have to be careful to check every insn
1723 involved in the combination. */
1725 if (insn
1726 && reg_referenced_p (x, PATTERN (insn))
1727 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1728 REGNO (x)))
1730 struct insn_link *link;
1732 FOR_EACH_LOG_LINK (link, insn)
1733 if (dead_or_set_p (link->insn, x))
1734 break;
1735 if (!link)
1737 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1738 rsp->sign_bit_copies = 1;
1739 return;
1743 /* If this is a complex assignment, see if we can convert it into a
1744 simple assignment. */
1745 set = expand_field_assignment (set);
1747 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1748 set what we know about X. */
1750 if (SET_DEST (set) == x
1751 || (paradoxical_subreg_p (SET_DEST (set))
1752 && SUBREG_REG (SET_DEST (set)) == x))
1753 update_rsp_from_reg_equal (rsp, insn, set, x);
1754 else
1756 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1757 rsp->sign_bit_copies = 1;
1762 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1763 optionally insns that were previously combined into I3 or that will be
1764 combined into the merger of INSN and I3. The order is PRED, PRED2,
1765 INSN, SUCC, SUCC2, I3.
1767 Return 0 if the combination is not allowed for any reason.
1769 If the combination is allowed, *PDEST will be set to the single
1770 destination of INSN and *PSRC to the single source, and this function
1771 will return 1. */
1773 static int
1774 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1775 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1776 rtx *pdest, rtx *psrc)
1778 int i;
1779 const_rtx set = 0;
1780 rtx src, dest;
1781 rtx_insn *p;
1782 rtx link;
1783 bool all_adjacent = true;
1784 int (*is_volatile_p) (const_rtx);
1786 if (succ)
1788 if (succ2)
1790 if (next_active_insn (succ2) != i3)
1791 all_adjacent = false;
1792 if (next_active_insn (succ) != succ2)
1793 all_adjacent = false;
1795 else if (next_active_insn (succ) != i3)
1796 all_adjacent = false;
1797 if (next_active_insn (insn) != succ)
1798 all_adjacent = false;
1800 else if (next_active_insn (insn) != i3)
1801 all_adjacent = false;
1803 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1804 or a PARALLEL consisting of such a SET and CLOBBERs.
1806 If INSN has CLOBBER parallel parts, ignore them for our processing.
1807 By definition, these happen during the execution of the insn. When it
1808 is merged with another insn, all bets are off. If they are, in fact,
1809 needed and aren't also supplied in I3, they may be added by
1810 recog_for_combine. Otherwise, it won't match.
1812 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1813 note.
1815 Get the source and destination of INSN. If more than one, can't
1816 combine. */
1818 if (GET_CODE (PATTERN (insn)) == SET)
1819 set = PATTERN (insn);
1820 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1821 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1823 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1825 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1827 switch (GET_CODE (elt))
1829 /* This is important to combine floating point insns
1830 for the SH4 port. */
1831 case USE:
1832 /* Combining an isolated USE doesn't make sense.
1833 We depend here on combinable_i3pat to reject them. */
1834 /* The code below this loop only verifies that the inputs of
1835 the SET in INSN do not change. We call reg_set_between_p
1836 to verify that the REG in the USE does not change between
1837 I3 and INSN.
1838 If the USE in INSN was for a pseudo register, the matching
1839 insn pattern will likely match any register; combining this
1840 with any other USE would only be safe if we knew that the
1841 used registers have identical values, or if there was
1842 something to tell them apart, e.g. different modes. For
1843 now, we forgo such complicated tests and simply disallow
1844 combining of USES of pseudo registers with any other USE. */
1845 if (REG_P (XEXP (elt, 0))
1846 && GET_CODE (PATTERN (i3)) == PARALLEL)
1848 rtx i3pat = PATTERN (i3);
1849 int i = XVECLEN (i3pat, 0) - 1;
1850 unsigned int regno = REGNO (XEXP (elt, 0));
1854 rtx i3elt = XVECEXP (i3pat, 0, i);
1856 if (GET_CODE (i3elt) == USE
1857 && REG_P (XEXP (i3elt, 0))
1858 && (REGNO (XEXP (i3elt, 0)) == regno
1859 ? reg_set_between_p (XEXP (elt, 0),
1860 PREV_INSN (insn), i3)
1861 : regno >= FIRST_PSEUDO_REGISTER))
1862 return 0;
1864 while (--i >= 0);
1866 break;
1868 /* We can ignore CLOBBERs. */
1869 case CLOBBER:
1870 break;
1872 case SET:
1873 /* Ignore SETs whose result isn't used but not those that
1874 have side-effects. */
1875 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1876 && insn_nothrow_p (insn)
1877 && !side_effects_p (elt))
1878 break;
1880 /* If we have already found a SET, this is a second one and
1881 so we cannot combine with this insn. */
1882 if (set)
1883 return 0;
1885 set = elt;
1886 break;
1888 default:
1889 /* Anything else means we can't combine. */
1890 return 0;
1894 if (set == 0
1895 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1896 so don't do anything with it. */
1897 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1898 return 0;
1900 else
1901 return 0;
1903 if (set == 0)
1904 return 0;
1906 /* The simplification in expand_field_assignment may call back to
1907 get_last_value, so set safe guard here. */
1908 subst_low_luid = DF_INSN_LUID (insn);
1910 set = expand_field_assignment (set);
1911 src = SET_SRC (set), dest = SET_DEST (set);
1913 /* Do not eliminate user-specified register if it is in an
1914 asm input because we may break the register asm usage defined
1915 in GCC manual if allow to do so.
1916 Be aware that this may cover more cases than we expect but this
1917 should be harmless. */
1918 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1919 && extract_asm_operands (PATTERN (i3)))
1920 return 0;
1922 /* Don't eliminate a store in the stack pointer. */
1923 if (dest == stack_pointer_rtx
1924 /* Don't combine with an insn that sets a register to itself if it has
1925 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1926 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1927 /* Can't merge an ASM_OPERANDS. */
1928 || GET_CODE (src) == ASM_OPERANDS
1929 /* Can't merge a function call. */
1930 || GET_CODE (src) == CALL
1931 /* Don't eliminate a function call argument. */
1932 || (CALL_P (i3)
1933 && (find_reg_fusage (i3, USE, dest)
1934 || (REG_P (dest)
1935 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1936 && global_regs[REGNO (dest)])))
1937 /* Don't substitute into an incremented register. */
1938 || FIND_REG_INC_NOTE (i3, dest)
1939 || (succ && FIND_REG_INC_NOTE (succ, dest))
1940 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1941 /* Don't substitute into a non-local goto, this confuses CFG. */
1942 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1943 /* Make sure that DEST is not used after SUCC but before I3. */
1944 || (!all_adjacent
1945 && ((succ2
1946 && (reg_used_between_p (dest, succ2, i3)
1947 || reg_used_between_p (dest, succ, succ2)))
1948 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1949 /* Make sure that the value that is to be substituted for the register
1950 does not use any registers whose values alter in between. However,
1951 If the insns are adjacent, a use can't cross a set even though we
1952 think it might (this can happen for a sequence of insns each setting
1953 the same destination; last_set of that register might point to
1954 a NOTE). If INSN has a REG_EQUIV note, the register is always
1955 equivalent to the memory so the substitution is valid even if there
1956 are intervening stores. Also, don't move a volatile asm or
1957 UNSPEC_VOLATILE across any other insns. */
1958 || (! all_adjacent
1959 && (((!MEM_P (src)
1960 || ! find_reg_note (insn, REG_EQUIV, src))
1961 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1962 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1963 || GET_CODE (src) == UNSPEC_VOLATILE))
1964 /* Don't combine across a CALL_INSN, because that would possibly
1965 change whether the life span of some REGs crosses calls or not,
1966 and it is a pain to update that information.
1967 Exception: if source is a constant, moving it later can't hurt.
1968 Accept that as a special case. */
1969 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1970 return 0;
1972 /* DEST must either be a REG or CC0. */
1973 if (REG_P (dest))
1975 /* If register alignment is being enforced for multi-word items in all
1976 cases except for parameters, it is possible to have a register copy
1977 insn referencing a hard register that is not allowed to contain the
1978 mode being copied and which would not be valid as an operand of most
1979 insns. Eliminate this problem by not combining with such an insn.
1981 Also, on some machines we don't want to extend the life of a hard
1982 register. */
1984 if (REG_P (src)
1985 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1986 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1987 /* Don't extend the life of a hard register unless it is
1988 user variable (if we have few registers) or it can't
1989 fit into the desired register (meaning something special
1990 is going on).
1991 Also avoid substituting a return register into I3, because
1992 reload can't handle a conflict with constraints of other
1993 inputs. */
1994 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1995 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1996 return 0;
1998 else if (GET_CODE (dest) != CC0)
1999 return 0;
2002 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2003 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2004 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2006 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2008 /* If the clobber represents an earlyclobber operand, we must not
2009 substitute an expression containing the clobbered register.
2010 As we do not analyze the constraint strings here, we have to
2011 make the conservative assumption. However, if the register is
2012 a fixed hard reg, the clobber cannot represent any operand;
2013 we leave it up to the machine description to either accept or
2014 reject use-and-clobber patterns. */
2015 if (!REG_P (reg)
2016 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2017 || !fixed_regs[REGNO (reg)])
2018 if (reg_overlap_mentioned_p (reg, src))
2019 return 0;
2022 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2023 or not), reject, unless nothing volatile comes between it and I3 */
2025 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2027 /* Make sure neither succ nor succ2 contains a volatile reference. */
2028 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2029 return 0;
2030 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2031 return 0;
2032 /* We'll check insns between INSN and I3 below. */
2035 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2036 to be an explicit register variable, and was chosen for a reason. */
2038 if (GET_CODE (src) == ASM_OPERANDS
2039 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2040 return 0;
2042 /* If INSN contains volatile references (specifically volatile MEMs),
2043 we cannot combine across any other volatile references.
2044 Even if INSN doesn't contain volatile references, any intervening
2045 volatile insn might affect machine state. */
2047 is_volatile_p = volatile_refs_p (PATTERN (insn))
2048 ? volatile_refs_p
2049 : volatile_insn_p;
2051 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2052 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2053 return 0;
2055 /* If INSN contains an autoincrement or autodecrement, make sure that
2056 register is not used between there and I3, and not already used in
2057 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2058 Also insist that I3 not be a jump; if it were one
2059 and the incremented register were spilled, we would lose. */
2061 if (AUTO_INC_DEC)
2062 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2063 if (REG_NOTE_KIND (link) == REG_INC
2064 && (JUMP_P (i3)
2065 || reg_used_between_p (XEXP (link, 0), insn, i3)
2066 || (pred != NULL_RTX
2067 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2068 || (pred2 != NULL_RTX
2069 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2070 || (succ != NULL_RTX
2071 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2072 || (succ2 != NULL_RTX
2073 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2074 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2075 return 0;
2077 /* Don't combine an insn that follows a CC0-setting insn.
2078 An insn that uses CC0 must not be separated from the one that sets it.
2079 We do, however, allow I2 to follow a CC0-setting insn if that insn
2080 is passed as I1; in that case it will be deleted also.
2081 We also allow combining in this case if all the insns are adjacent
2082 because that would leave the two CC0 insns adjacent as well.
2083 It would be more logical to test whether CC0 occurs inside I1 or I2,
2084 but that would be much slower, and this ought to be equivalent. */
2086 if (HAVE_cc0)
2088 p = prev_nonnote_insn (insn);
2089 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2090 && ! all_adjacent)
2091 return 0;
2094 /* If we get here, we have passed all the tests and the combination is
2095 to be allowed. */
2097 *pdest = dest;
2098 *psrc = src;
2100 return 1;
2103 /* LOC is the location within I3 that contains its pattern or the component
2104 of a PARALLEL of the pattern. We validate that it is valid for combining.
2106 One problem is if I3 modifies its output, as opposed to replacing it
2107 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2108 doing so would produce an insn that is not equivalent to the original insns.
2110 Consider:
2112 (set (reg:DI 101) (reg:DI 100))
2113 (set (subreg:SI (reg:DI 101) 0) <foo>)
2115 This is NOT equivalent to:
2117 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2118 (set (reg:DI 101) (reg:DI 100))])
2120 Not only does this modify 100 (in which case it might still be valid
2121 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2123 We can also run into a problem if I2 sets a register that I1
2124 uses and I1 gets directly substituted into I3 (not via I2). In that
2125 case, we would be getting the wrong value of I2DEST into I3, so we
2126 must reject the combination. This case occurs when I2 and I1 both
2127 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2128 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2129 of a SET must prevent combination from occurring. The same situation
2130 can occur for I0, in which case I0_NOT_IN_SRC is set.
2132 Before doing the above check, we first try to expand a field assignment
2133 into a set of logical operations.
2135 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2136 we place a register that is both set and used within I3. If more than one
2137 such register is detected, we fail.
2139 Return 1 if the combination is valid, zero otherwise. */
2141 static int
2142 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2143 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2145 rtx x = *loc;
2147 if (GET_CODE (x) == SET)
2149 rtx set = x ;
2150 rtx dest = SET_DEST (set);
2151 rtx src = SET_SRC (set);
2152 rtx inner_dest = dest;
2153 rtx subdest;
2155 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2156 || GET_CODE (inner_dest) == SUBREG
2157 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2158 inner_dest = XEXP (inner_dest, 0);
2160 /* Check for the case where I3 modifies its output, as discussed
2161 above. We don't want to prevent pseudos from being combined
2162 into the address of a MEM, so only prevent the combination if
2163 i1 or i2 set the same MEM. */
2164 if ((inner_dest != dest &&
2165 (!MEM_P (inner_dest)
2166 || rtx_equal_p (i2dest, inner_dest)
2167 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2168 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2169 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2170 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2171 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2173 /* This is the same test done in can_combine_p except we can't test
2174 all_adjacent; we don't have to, since this instruction will stay
2175 in place, thus we are not considering increasing the lifetime of
2176 INNER_DEST.
2178 Also, if this insn sets a function argument, combining it with
2179 something that might need a spill could clobber a previous
2180 function argument; the all_adjacent test in can_combine_p also
2181 checks this; here, we do a more specific test for this case. */
2183 || (REG_P (inner_dest)
2184 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2185 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2186 GET_MODE (inner_dest))))
2187 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2188 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2189 return 0;
2191 /* If DEST is used in I3, it is being killed in this insn, so
2192 record that for later. We have to consider paradoxical
2193 subregs here, since they kill the whole register, but we
2194 ignore partial subregs, STRICT_LOW_PART, etc.
2195 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2196 STACK_POINTER_REGNUM, since these are always considered to be
2197 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2198 subdest = dest;
2199 if (GET_CODE (subdest) == SUBREG
2200 && (GET_MODE_SIZE (GET_MODE (subdest))
2201 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2202 subdest = SUBREG_REG (subdest);
2203 if (pi3dest_killed
2204 && REG_P (subdest)
2205 && reg_referenced_p (subdest, PATTERN (i3))
2206 && REGNO (subdest) != FRAME_POINTER_REGNUM
2207 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2208 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2209 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2210 || (REGNO (subdest) != ARG_POINTER_REGNUM
2211 || ! fixed_regs [REGNO (subdest)]))
2212 && REGNO (subdest) != STACK_POINTER_REGNUM)
2214 if (*pi3dest_killed)
2215 return 0;
2217 *pi3dest_killed = subdest;
2221 else if (GET_CODE (x) == PARALLEL)
2223 int i;
2225 for (i = 0; i < XVECLEN (x, 0); i++)
2226 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2227 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2228 return 0;
2231 return 1;
2234 /* Return 1 if X is an arithmetic expression that contains a multiplication
2235 and division. We don't count multiplications by powers of two here. */
2237 static int
2238 contains_muldiv (rtx x)
2240 switch (GET_CODE (x))
2242 case MOD: case DIV: case UMOD: case UDIV:
2243 return 1;
2245 case MULT:
2246 return ! (CONST_INT_P (XEXP (x, 1))
2247 && exact_log2 (UINTVAL (XEXP (x, 1))) >= 0);
2248 default:
2249 if (BINARY_P (x))
2250 return contains_muldiv (XEXP (x, 0))
2251 || contains_muldiv (XEXP (x, 1));
2253 if (UNARY_P (x))
2254 return contains_muldiv (XEXP (x, 0));
2256 return 0;
2260 /* Determine whether INSN can be used in a combination. Return nonzero if
2261 not. This is used in try_combine to detect early some cases where we
2262 can't perform combinations. */
2264 static int
2265 cant_combine_insn_p (rtx_insn *insn)
2267 rtx set;
2268 rtx src, dest;
2270 /* If this isn't really an insn, we can't do anything.
2271 This can occur when flow deletes an insn that it has merged into an
2272 auto-increment address. */
2273 if (! INSN_P (insn))
2274 return 1;
2276 /* Never combine loads and stores involving hard regs that are likely
2277 to be spilled. The register allocator can usually handle such
2278 reg-reg moves by tying. If we allow the combiner to make
2279 substitutions of likely-spilled regs, reload might die.
2280 As an exception, we allow combinations involving fixed regs; these are
2281 not available to the register allocator so there's no risk involved. */
2283 set = single_set (insn);
2284 if (! set)
2285 return 0;
2286 src = SET_SRC (set);
2287 dest = SET_DEST (set);
2288 if (GET_CODE (src) == SUBREG)
2289 src = SUBREG_REG (src);
2290 if (GET_CODE (dest) == SUBREG)
2291 dest = SUBREG_REG (dest);
2292 if (REG_P (src) && REG_P (dest)
2293 && ((HARD_REGISTER_P (src)
2294 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2295 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2296 || (HARD_REGISTER_P (dest)
2297 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2298 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2299 return 1;
2301 return 0;
2304 struct likely_spilled_retval_info
2306 unsigned regno, nregs;
2307 unsigned mask;
2310 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2311 hard registers that are known to be written to / clobbered in full. */
2312 static void
2313 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2315 struct likely_spilled_retval_info *const info =
2316 (struct likely_spilled_retval_info *) data;
2317 unsigned regno, nregs;
2318 unsigned new_mask;
2320 if (!REG_P (XEXP (set, 0)))
2321 return;
2322 regno = REGNO (x);
2323 if (regno >= info->regno + info->nregs)
2324 return;
2325 nregs = REG_NREGS (x);
2326 if (regno + nregs <= info->regno)
2327 return;
2328 new_mask = (2U << (nregs - 1)) - 1;
2329 if (regno < info->regno)
2330 new_mask >>= info->regno - regno;
2331 else
2332 new_mask <<= regno - info->regno;
2333 info->mask &= ~new_mask;
2336 /* Return nonzero iff part of the return value is live during INSN, and
2337 it is likely spilled. This can happen when more than one insn is needed
2338 to copy the return value, e.g. when we consider to combine into the
2339 second copy insn for a complex value. */
2341 static int
2342 likely_spilled_retval_p (rtx_insn *insn)
2344 rtx_insn *use = BB_END (this_basic_block);
2345 rtx reg;
2346 rtx_insn *p;
2347 unsigned regno, nregs;
2348 /* We assume here that no machine mode needs more than
2349 32 hard registers when the value overlaps with a register
2350 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2351 unsigned mask;
2352 struct likely_spilled_retval_info info;
2354 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2355 return 0;
2356 reg = XEXP (PATTERN (use), 0);
2357 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2358 return 0;
2359 regno = REGNO (reg);
2360 nregs = REG_NREGS (reg);
2361 if (nregs == 1)
2362 return 0;
2363 mask = (2U << (nregs - 1)) - 1;
2365 /* Disregard parts of the return value that are set later. */
2366 info.regno = regno;
2367 info.nregs = nregs;
2368 info.mask = mask;
2369 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2370 if (INSN_P (p))
2371 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2372 mask = info.mask;
2374 /* Check if any of the (probably) live return value registers is
2375 likely spilled. */
2376 nregs --;
2379 if ((mask & 1 << nregs)
2380 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2381 return 1;
2382 } while (nregs--);
2383 return 0;
2386 /* Adjust INSN after we made a change to its destination.
2388 Changing the destination can invalidate notes that say something about
2389 the results of the insn and a LOG_LINK pointing to the insn. */
2391 static void
2392 adjust_for_new_dest (rtx_insn *insn)
2394 /* For notes, be conservative and simply remove them. */
2395 remove_reg_equal_equiv_notes (insn);
2397 /* The new insn will have a destination that was previously the destination
2398 of an insn just above it. Call distribute_links to make a LOG_LINK from
2399 the next use of that destination. */
2401 rtx set = single_set (insn);
2402 gcc_assert (set);
2404 rtx reg = SET_DEST (set);
2406 while (GET_CODE (reg) == ZERO_EXTRACT
2407 || GET_CODE (reg) == STRICT_LOW_PART
2408 || GET_CODE (reg) == SUBREG)
2409 reg = XEXP (reg, 0);
2410 gcc_assert (REG_P (reg));
2412 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2414 df_insn_rescan (insn);
2417 /* Return TRUE if combine can reuse reg X in mode MODE.
2418 ADDED_SETS is nonzero if the original set is still required. */
2419 static bool
2420 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2422 unsigned int regno;
2424 if (!REG_P (x))
2425 return false;
2427 regno = REGNO (x);
2428 /* Allow hard registers if the new mode is legal, and occupies no more
2429 registers than the old mode. */
2430 if (regno < FIRST_PSEUDO_REGISTER)
2431 return (HARD_REGNO_MODE_OK (regno, mode)
2432 && REG_NREGS (x) >= hard_regno_nregs[regno][mode]);
2434 /* Or a pseudo that is only used once. */
2435 return (regno < reg_n_sets_max
2436 && REG_N_SETS (regno) == 1
2437 && !added_sets
2438 && !REG_USERVAR_P (x));
2442 /* Check whether X, the destination of a set, refers to part of
2443 the register specified by REG. */
2445 static bool
2446 reg_subword_p (rtx x, rtx reg)
2448 /* Check that reg is an integer mode register. */
2449 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2450 return false;
2452 if (GET_CODE (x) == STRICT_LOW_PART
2453 || GET_CODE (x) == ZERO_EXTRACT)
2454 x = XEXP (x, 0);
2456 return GET_CODE (x) == SUBREG
2457 && SUBREG_REG (x) == reg
2458 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2461 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2462 Note that the INSN should be deleted *after* removing dead edges, so
2463 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2464 but not for a (set (pc) (label_ref FOO)). */
2466 static void
2467 update_cfg_for_uncondjump (rtx_insn *insn)
2469 basic_block bb = BLOCK_FOR_INSN (insn);
2470 gcc_assert (BB_END (bb) == insn);
2472 purge_dead_edges (bb);
2474 delete_insn (insn);
2475 if (EDGE_COUNT (bb->succs) == 1)
2477 rtx_insn *insn;
2479 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2481 /* Remove barriers from the footer if there are any. */
2482 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2483 if (BARRIER_P (insn))
2485 if (PREV_INSN (insn))
2486 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2487 else
2488 BB_FOOTER (bb) = NEXT_INSN (insn);
2489 if (NEXT_INSN (insn))
2490 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2492 else if (LABEL_P (insn))
2493 break;
2497 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2498 by an arbitrary number of CLOBBERs. */
2499 static bool
2500 is_parallel_of_n_reg_sets (rtx pat, int n)
2502 if (GET_CODE (pat) != PARALLEL)
2503 return false;
2505 int len = XVECLEN (pat, 0);
2506 if (len < n)
2507 return false;
2509 int i;
2510 for (i = 0; i < n; i++)
2511 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2512 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2513 return false;
2514 for ( ; i < len; i++)
2515 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER
2516 || XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2517 return false;
2519 return true;
2522 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2523 CLOBBERs), can be split into individual SETs in that order, without
2524 changing semantics. */
2525 static bool
2526 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2528 if (!insn_nothrow_p (insn))
2529 return false;
2531 rtx pat = PATTERN (insn);
2533 int i, j;
2534 for (i = 0; i < n; i++)
2536 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2537 return false;
2539 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2541 for (j = i + 1; j < n; j++)
2542 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2543 return false;
2546 return true;
2549 /* Try to combine the insns I0, I1 and I2 into I3.
2550 Here I0, I1 and I2 appear earlier than I3.
2551 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2554 If we are combining more than two insns and the resulting insn is not
2555 recognized, try splitting it into two insns. If that happens, I2 and I3
2556 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2557 Otherwise, I0, I1 and I2 are pseudo-deleted.
2559 Return 0 if the combination does not work. Then nothing is changed.
2560 If we did the combination, return the insn at which combine should
2561 resume scanning.
2563 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2564 new direct jump instruction.
2566 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2567 been I3 passed to an earlier try_combine within the same basic
2568 block. */
2570 static rtx_insn *
2571 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2572 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2574 /* New patterns for I3 and I2, respectively. */
2575 rtx newpat, newi2pat = 0;
2576 rtvec newpat_vec_with_clobbers = 0;
2577 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2578 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2579 dead. */
2580 int added_sets_0, added_sets_1, added_sets_2;
2581 /* Total number of SETs to put into I3. */
2582 int total_sets;
2583 /* Nonzero if I2's or I1's body now appears in I3. */
2584 int i2_is_used = 0, i1_is_used = 0;
2585 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2586 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2587 /* Contains I3 if the destination of I3 is used in its source, which means
2588 that the old life of I3 is being killed. If that usage is placed into
2589 I2 and not in I3, a REG_DEAD note must be made. */
2590 rtx i3dest_killed = 0;
2591 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2592 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2593 /* Copy of SET_SRC of I1 and I0, if needed. */
2594 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2595 /* Set if I2DEST was reused as a scratch register. */
2596 bool i2scratch = false;
2597 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2598 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2599 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2600 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2601 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2602 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2603 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2604 /* Notes that must be added to REG_NOTES in I3 and I2. */
2605 rtx new_i3_notes, new_i2_notes;
2606 /* Notes that we substituted I3 into I2 instead of the normal case. */
2607 int i3_subst_into_i2 = 0;
2608 /* Notes that I1, I2 or I3 is a MULT operation. */
2609 int have_mult = 0;
2610 int swap_i2i3 = 0;
2611 int changed_i3_dest = 0;
2613 int maxreg;
2614 rtx_insn *temp_insn;
2615 rtx temp_expr;
2616 struct insn_link *link;
2617 rtx other_pat = 0;
2618 rtx new_other_notes;
2619 int i;
2621 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2622 never be). */
2623 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2624 return 0;
2626 /* Only try four-insn combinations when there's high likelihood of
2627 success. Look for simple insns, such as loads of constants or
2628 binary operations involving a constant. */
2629 if (i0)
2631 int i;
2632 int ngood = 0;
2633 int nshift = 0;
2634 rtx set0, set3;
2636 if (!flag_expensive_optimizations)
2637 return 0;
2639 for (i = 0; i < 4; i++)
2641 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2642 rtx set = single_set (insn);
2643 rtx src;
2644 if (!set)
2645 continue;
2646 src = SET_SRC (set);
2647 if (CONSTANT_P (src))
2649 ngood += 2;
2650 break;
2652 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2653 ngood++;
2654 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2655 || GET_CODE (src) == LSHIFTRT)
2656 nshift++;
2659 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2660 are likely manipulating its value. Ideally we'll be able to combine
2661 all four insns into a bitfield insertion of some kind.
2663 Note the source in I0 might be inside a sign/zero extension and the
2664 memory modes in I0 and I3 might be different. So extract the address
2665 from the destination of I3 and search for it in the source of I0.
2667 In the event that there's a match but the source/dest do not actually
2668 refer to the same memory, the worst that happens is we try some
2669 combinations that we wouldn't have otherwise. */
2670 if ((set0 = single_set (i0))
2671 /* Ensure the source of SET0 is a MEM, possibly buried inside
2672 an extension. */
2673 && (GET_CODE (SET_SRC (set0)) == MEM
2674 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2675 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2676 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2677 && (set3 = single_set (i3))
2678 /* Ensure the destination of SET3 is a MEM. */
2679 && GET_CODE (SET_DEST (set3)) == MEM
2680 /* Would it be better to extract the base address for the MEM
2681 in SET3 and look for that? I don't have cases where it matters
2682 but I could envision such cases. */
2683 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2684 ngood += 2;
2686 if (ngood < 2 && nshift < 2)
2687 return 0;
2690 /* Exit early if one of the insns involved can't be used for
2691 combinations. */
2692 if (CALL_P (i2)
2693 || (i1 && CALL_P (i1))
2694 || (i0 && CALL_P (i0))
2695 || cant_combine_insn_p (i3)
2696 || cant_combine_insn_p (i2)
2697 || (i1 && cant_combine_insn_p (i1))
2698 || (i0 && cant_combine_insn_p (i0))
2699 || likely_spilled_retval_p (i3))
2700 return 0;
2702 combine_attempts++;
2703 undobuf.other_insn = 0;
2705 /* Reset the hard register usage information. */
2706 CLEAR_HARD_REG_SET (newpat_used_regs);
2708 if (dump_file && (dump_flags & TDF_DETAILS))
2710 if (i0)
2711 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2712 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2713 else if (i1)
2714 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2715 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2716 else
2717 fprintf (dump_file, "\nTrying %d -> %d:\n",
2718 INSN_UID (i2), INSN_UID (i3));
2721 /* If multiple insns feed into one of I2 or I3, they can be in any
2722 order. To simplify the code below, reorder them in sequence. */
2723 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2724 std::swap (i0, i2);
2725 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2726 std::swap (i0, i1);
2727 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2728 std::swap (i1, i2);
2730 added_links_insn = 0;
2732 /* First check for one important special case that the code below will
2733 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2734 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2735 we may be able to replace that destination with the destination of I3.
2736 This occurs in the common code where we compute both a quotient and
2737 remainder into a structure, in which case we want to do the computation
2738 directly into the structure to avoid register-register copies.
2740 Note that this case handles both multiple sets in I2 and also cases
2741 where I2 has a number of CLOBBERs inside the PARALLEL.
2743 We make very conservative checks below and only try to handle the
2744 most common cases of this. For example, we only handle the case
2745 where I2 and I3 are adjacent to avoid making difficult register
2746 usage tests. */
2748 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2749 && REG_P (SET_SRC (PATTERN (i3)))
2750 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2751 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2752 && GET_CODE (PATTERN (i2)) == PARALLEL
2753 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2754 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2755 below would need to check what is inside (and reg_overlap_mentioned_p
2756 doesn't support those codes anyway). Don't allow those destinations;
2757 the resulting insn isn't likely to be recognized anyway. */
2758 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2759 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2760 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2761 SET_DEST (PATTERN (i3)))
2762 && next_active_insn (i2) == i3)
2764 rtx p2 = PATTERN (i2);
2766 /* Make sure that the destination of I3,
2767 which we are going to substitute into one output of I2,
2768 is not used within another output of I2. We must avoid making this:
2769 (parallel [(set (mem (reg 69)) ...)
2770 (set (reg 69) ...)])
2771 which is not well-defined as to order of actions.
2772 (Besides, reload can't handle output reloads for this.)
2774 The problem can also happen if the dest of I3 is a memory ref,
2775 if another dest in I2 is an indirect memory ref. */
2776 for (i = 0; i < XVECLEN (p2, 0); i++)
2777 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2778 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2779 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2780 SET_DEST (XVECEXP (p2, 0, i))))
2781 break;
2783 /* Make sure this PARALLEL is not an asm. We do not allow combining
2784 that usually (see can_combine_p), so do not here either. */
2785 for (i = 0; i < XVECLEN (p2, 0); i++)
2786 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2787 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2788 break;
2790 if (i == XVECLEN (p2, 0))
2791 for (i = 0; i < XVECLEN (p2, 0); i++)
2792 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2793 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2795 combine_merges++;
2797 subst_insn = i3;
2798 subst_low_luid = DF_INSN_LUID (i2);
2800 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2801 i2src = SET_SRC (XVECEXP (p2, 0, i));
2802 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2803 i2dest_killed = dead_or_set_p (i2, i2dest);
2805 /* Replace the dest in I2 with our dest and make the resulting
2806 insn the new pattern for I3. Then skip to where we validate
2807 the pattern. Everything was set up above. */
2808 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2809 newpat = p2;
2810 i3_subst_into_i2 = 1;
2811 goto validate_replacement;
2815 /* If I2 is setting a pseudo to a constant and I3 is setting some
2816 sub-part of it to another constant, merge them by making a new
2817 constant. */
2818 if (i1 == 0
2819 && (temp_expr = single_set (i2)) != 0
2820 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2821 && GET_CODE (PATTERN (i3)) == SET
2822 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2823 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2825 rtx dest = SET_DEST (PATTERN (i3));
2826 int offset = -1;
2827 int width = 0;
2829 if (GET_CODE (dest) == ZERO_EXTRACT)
2831 if (CONST_INT_P (XEXP (dest, 1))
2832 && CONST_INT_P (XEXP (dest, 2)))
2834 width = INTVAL (XEXP (dest, 1));
2835 offset = INTVAL (XEXP (dest, 2));
2836 dest = XEXP (dest, 0);
2837 if (BITS_BIG_ENDIAN)
2838 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2841 else
2843 if (GET_CODE (dest) == STRICT_LOW_PART)
2844 dest = XEXP (dest, 0);
2845 width = GET_MODE_PRECISION (GET_MODE (dest));
2846 offset = 0;
2849 if (offset >= 0)
2851 /* If this is the low part, we're done. */
2852 if (subreg_lowpart_p (dest))
2854 /* Handle the case where inner is twice the size of outer. */
2855 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp_expr)))
2856 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2857 offset += GET_MODE_PRECISION (GET_MODE (dest));
2858 /* Otherwise give up for now. */
2859 else
2860 offset = -1;
2863 if (offset >= 0)
2865 rtx inner = SET_SRC (PATTERN (i3));
2866 rtx outer = SET_SRC (temp_expr);
2868 wide_int o
2869 = wi::insert (std::make_pair (outer, GET_MODE (SET_DEST (temp_expr))),
2870 std::make_pair (inner, GET_MODE (dest)),
2871 offset, width);
2873 combine_merges++;
2874 subst_insn = i3;
2875 subst_low_luid = DF_INSN_LUID (i2);
2876 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2877 i2dest = SET_DEST (temp_expr);
2878 i2dest_killed = dead_or_set_p (i2, i2dest);
2880 /* Replace the source in I2 with the new constant and make the
2881 resulting insn the new pattern for I3. Then skip to where we
2882 validate the pattern. Everything was set up above. */
2883 SUBST (SET_SRC (temp_expr),
2884 immed_wide_int_const (o, GET_MODE (SET_DEST (temp_expr))));
2886 newpat = PATTERN (i2);
2888 /* The dest of I3 has been replaced with the dest of I2. */
2889 changed_i3_dest = 1;
2890 goto validate_replacement;
2894 /* If we have no I1 and I2 looks like:
2895 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2896 (set Y OP)])
2897 make up a dummy I1 that is
2898 (set Y OP)
2899 and change I2 to be
2900 (set (reg:CC X) (compare:CC Y (const_int 0)))
2902 (We can ignore any trailing CLOBBERs.)
2904 This undoes a previous combination and allows us to match a branch-and-
2905 decrement insn. */
2907 if (!HAVE_cc0 && i1 == 0
2908 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2909 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2910 == MODE_CC)
2911 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2912 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2913 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2914 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2915 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2916 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2918 /* We make I1 with the same INSN_UID as I2. This gives it
2919 the same DF_INSN_LUID for value tracking. Our fake I1 will
2920 never appear in the insn stream so giving it the same INSN_UID
2921 as I2 will not cause a problem. */
2923 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2924 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
2925 -1, NULL_RTX);
2926 INSN_UID (i1) = INSN_UID (i2);
2928 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2929 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2930 SET_DEST (PATTERN (i1)));
2931 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
2932 SUBST_LINK (LOG_LINKS (i2),
2933 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
2936 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2937 make those two SETs separate I1 and I2 insns, and make an I0 that is
2938 the original I1. */
2939 if (!HAVE_cc0 && i0 == 0
2940 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2941 && can_split_parallel_of_n_reg_sets (i2, 2)
2942 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2943 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2945 /* If there is no I1, there is no I0 either. */
2946 i0 = i1;
2948 /* We make I1 with the same INSN_UID as I2. This gives it
2949 the same DF_INSN_LUID for value tracking. Our fake I1 will
2950 never appear in the insn stream so giving it the same INSN_UID
2951 as I2 will not cause a problem. */
2953 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2954 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
2955 -1, NULL_RTX);
2956 INSN_UID (i1) = INSN_UID (i2);
2958 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
2961 /* Verify that I2 and I1 are valid for combining. */
2962 if (! can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src)
2963 || (i1 && ! can_combine_p (i1, i3, i0, NULL, i2, NULL,
2964 &i1dest, &i1src))
2965 || (i0 && ! can_combine_p (i0, i3, NULL, NULL, i1, i2,
2966 &i0dest, &i0src)))
2968 undo_all ();
2969 return 0;
2972 /* Record whether I2DEST is used in I2SRC and similarly for the other
2973 cases. Knowing this will help in register status updating below. */
2974 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2975 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2976 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2977 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2978 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2979 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2980 i2dest_killed = dead_or_set_p (i2, i2dest);
2981 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2982 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2984 /* For the earlier insns, determine which of the subsequent ones they
2985 feed. */
2986 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2987 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2988 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2989 : (!reg_overlap_mentioned_p (i1dest, i0dest)
2990 && reg_overlap_mentioned_p (i0dest, i2src))));
2992 /* Ensure that I3's pattern can be the destination of combines. */
2993 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2994 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
2995 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
2996 || (i1dest_in_i0src && !i0_feeds_i1_n)),
2997 &i3dest_killed))
2999 undo_all ();
3000 return 0;
3003 /* See if any of the insns is a MULT operation. Unless one is, we will
3004 reject a combination that is, since it must be slower. Be conservative
3005 here. */
3006 if (GET_CODE (i2src) == MULT
3007 || (i1 != 0 && GET_CODE (i1src) == MULT)
3008 || (i0 != 0 && GET_CODE (i0src) == MULT)
3009 || (GET_CODE (PATTERN (i3)) == SET
3010 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3011 have_mult = 1;
3013 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3014 We used to do this EXCEPT in one case: I3 has a post-inc in an
3015 output operand. However, that exception can give rise to insns like
3016 mov r3,(r3)+
3017 which is a famous insn on the PDP-11 where the value of r3 used as the
3018 source was model-dependent. Avoid this sort of thing. */
3020 #if 0
3021 if (!(GET_CODE (PATTERN (i3)) == SET
3022 && REG_P (SET_SRC (PATTERN (i3)))
3023 && MEM_P (SET_DEST (PATTERN (i3)))
3024 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3025 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3026 /* It's not the exception. */
3027 #endif
3028 if (AUTO_INC_DEC)
3030 rtx link;
3031 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3032 if (REG_NOTE_KIND (link) == REG_INC
3033 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3034 || (i1 != 0
3035 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3037 undo_all ();
3038 return 0;
3042 /* See if the SETs in I1 or I2 need to be kept around in the merged
3043 instruction: whenever the value set there is still needed past I3.
3044 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3046 For the SET in I1, we have two cases: if I1 and I2 independently feed
3047 into I3, the set in I1 needs to be kept around unless I1DEST dies
3048 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3049 in I1 needs to be kept around unless I1DEST dies or is set in either
3050 I2 or I3. The same considerations apply to I0. */
3052 added_sets_2 = !dead_or_set_p (i3, i2dest);
3054 if (i1)
3055 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3056 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3057 else
3058 added_sets_1 = 0;
3060 if (i0)
3061 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3062 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3063 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3064 && dead_or_set_p (i2, i0dest)));
3065 else
3066 added_sets_0 = 0;
3068 /* We are about to copy insns for the case where they need to be kept
3069 around. Check that they can be copied in the merged instruction. */
3071 if (targetm.cannot_copy_insn_p
3072 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3073 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3074 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3076 undo_all ();
3077 return 0;
3080 /* If the set in I2 needs to be kept around, we must make a copy of
3081 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3082 PATTERN (I2), we are only substituting for the original I1DEST, not into
3083 an already-substituted copy. This also prevents making self-referential
3084 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3085 I2DEST. */
3087 if (added_sets_2)
3089 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3090 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3091 else
3092 i2pat = copy_rtx (PATTERN (i2));
3095 if (added_sets_1)
3097 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3098 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3099 else
3100 i1pat = copy_rtx (PATTERN (i1));
3103 if (added_sets_0)
3105 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3106 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3107 else
3108 i0pat = copy_rtx (PATTERN (i0));
3111 combine_merges++;
3113 /* Substitute in the latest insn for the regs set by the earlier ones. */
3115 maxreg = max_reg_num ();
3117 subst_insn = i3;
3119 /* Many machines that don't use CC0 have insns that can both perform an
3120 arithmetic operation and set the condition code. These operations will
3121 be represented as a PARALLEL with the first element of the vector
3122 being a COMPARE of an arithmetic operation with the constant zero.
3123 The second element of the vector will set some pseudo to the result
3124 of the same arithmetic operation. If we simplify the COMPARE, we won't
3125 match such a pattern and so will generate an extra insn. Here we test
3126 for this case, where both the comparison and the operation result are
3127 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3128 I2SRC. Later we will make the PARALLEL that contains I2. */
3130 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3131 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3132 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3133 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3135 rtx newpat_dest;
3136 rtx *cc_use_loc = NULL;
3137 rtx_insn *cc_use_insn = NULL;
3138 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3139 machine_mode compare_mode, orig_compare_mode;
3140 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3142 newpat = PATTERN (i3);
3143 newpat_dest = SET_DEST (newpat);
3144 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3146 if (undobuf.other_insn == 0
3147 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3148 &cc_use_insn)))
3150 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3151 compare_code = simplify_compare_const (compare_code,
3152 GET_MODE (i2dest), op0, &op1);
3153 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3156 /* Do the rest only if op1 is const0_rtx, which may be the
3157 result of simplification. */
3158 if (op1 == const0_rtx)
3160 /* If a single use of the CC is found, prepare to modify it
3161 when SELECT_CC_MODE returns a new CC-class mode, or when
3162 the above simplify_compare_const() returned a new comparison
3163 operator. undobuf.other_insn is assigned the CC use insn
3164 when modifying it. */
3165 if (cc_use_loc)
3167 #ifdef SELECT_CC_MODE
3168 machine_mode new_mode
3169 = SELECT_CC_MODE (compare_code, op0, op1);
3170 if (new_mode != orig_compare_mode
3171 && can_change_dest_mode (SET_DEST (newpat),
3172 added_sets_2, new_mode))
3174 unsigned int regno = REGNO (newpat_dest);
3175 compare_mode = new_mode;
3176 if (regno < FIRST_PSEUDO_REGISTER)
3177 newpat_dest = gen_rtx_REG (compare_mode, regno);
3178 else
3180 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3181 newpat_dest = regno_reg_rtx[regno];
3184 #endif
3185 /* Cases for modifying the CC-using comparison. */
3186 if (compare_code != orig_compare_code
3187 /* ??? Do we need to verify the zero rtx? */
3188 && XEXP (*cc_use_loc, 1) == const0_rtx)
3190 /* Replace cc_use_loc with entire new RTX. */
3191 SUBST (*cc_use_loc,
3192 gen_rtx_fmt_ee (compare_code, compare_mode,
3193 newpat_dest, const0_rtx));
3194 undobuf.other_insn = cc_use_insn;
3196 else if (compare_mode != orig_compare_mode)
3198 /* Just replace the CC reg with a new mode. */
3199 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3200 undobuf.other_insn = cc_use_insn;
3204 /* Now we modify the current newpat:
3205 First, SET_DEST(newpat) is updated if the CC mode has been
3206 altered. For targets without SELECT_CC_MODE, this should be
3207 optimized away. */
3208 if (compare_mode != orig_compare_mode)
3209 SUBST (SET_DEST (newpat), newpat_dest);
3210 /* This is always done to propagate i2src into newpat. */
3211 SUBST (SET_SRC (newpat),
3212 gen_rtx_COMPARE (compare_mode, op0, op1));
3213 /* Create new version of i2pat if needed; the below PARALLEL
3214 creation needs this to work correctly. */
3215 if (! rtx_equal_p (i2src, op0))
3216 i2pat = gen_rtx_SET (i2dest, op0);
3217 i2_is_used = 1;
3221 if (i2_is_used == 0)
3223 /* It is possible that the source of I2 or I1 may be performing
3224 an unneeded operation, such as a ZERO_EXTEND of something
3225 that is known to have the high part zero. Handle that case
3226 by letting subst look at the inner insns.
3228 Another way to do this would be to have a function that tries
3229 to simplify a single insn instead of merging two or more
3230 insns. We don't do this because of the potential of infinite
3231 loops and because of the potential extra memory required.
3232 However, doing it the way we are is a bit of a kludge and
3233 doesn't catch all cases.
3235 But only do this if -fexpensive-optimizations since it slows
3236 things down and doesn't usually win.
3238 This is not done in the COMPARE case above because the
3239 unmodified I2PAT is used in the PARALLEL and so a pattern
3240 with a modified I2SRC would not match. */
3242 if (flag_expensive_optimizations)
3244 /* Pass pc_rtx so no substitutions are done, just
3245 simplifications. */
3246 if (i1)
3248 subst_low_luid = DF_INSN_LUID (i1);
3249 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3252 subst_low_luid = DF_INSN_LUID (i2);
3253 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3256 n_occurrences = 0; /* `subst' counts here */
3257 subst_low_luid = DF_INSN_LUID (i2);
3259 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3260 copy of I2SRC each time we substitute it, in order to avoid creating
3261 self-referential RTL when we will be substituting I1SRC for I1DEST
3262 later. Likewise if I0 feeds into I2, either directly or indirectly
3263 through I1, and I0DEST is in I0SRC. */
3264 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3265 (i1_feeds_i2_n && i1dest_in_i1src)
3266 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3267 && i0dest_in_i0src));
3268 substed_i2 = 1;
3270 /* Record whether I2's body now appears within I3's body. */
3271 i2_is_used = n_occurrences;
3274 /* If we already got a failure, don't try to do more. Otherwise, try to
3275 substitute I1 if we have it. */
3277 if (i1 && GET_CODE (newpat) != CLOBBER)
3279 /* Check that an autoincrement side-effect on I1 has not been lost.
3280 This happens if I1DEST is mentioned in I2 and dies there, and
3281 has disappeared from the new pattern. */
3282 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3283 && i1_feeds_i2_n
3284 && dead_or_set_p (i2, i1dest)
3285 && !reg_overlap_mentioned_p (i1dest, newpat))
3286 /* Before we can do this substitution, we must redo the test done
3287 above (see detailed comments there) that ensures I1DEST isn't
3288 mentioned in any SETs in NEWPAT that are field assignments. */
3289 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3290 0, 0, 0))
3292 undo_all ();
3293 return 0;
3296 n_occurrences = 0;
3297 subst_low_luid = DF_INSN_LUID (i1);
3299 /* If the following substitution will modify I1SRC, make a copy of it
3300 for the case where it is substituted for I1DEST in I2PAT later. */
3301 if (added_sets_2 && i1_feeds_i2_n)
3302 i1src_copy = copy_rtx (i1src);
3304 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3305 copy of I1SRC each time we substitute it, in order to avoid creating
3306 self-referential RTL when we will be substituting I0SRC for I0DEST
3307 later. */
3308 newpat = subst (newpat, i1dest, i1src, 0, 0,
3309 i0_feeds_i1_n && i0dest_in_i0src);
3310 substed_i1 = 1;
3312 /* Record whether I1's body now appears within I3's body. */
3313 i1_is_used = n_occurrences;
3316 /* Likewise for I0 if we have it. */
3318 if (i0 && GET_CODE (newpat) != CLOBBER)
3320 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3321 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3322 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3323 && !reg_overlap_mentioned_p (i0dest, newpat))
3324 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3325 0, 0, 0))
3327 undo_all ();
3328 return 0;
3331 /* If the following substitution will modify I0SRC, make a copy of it
3332 for the case where it is substituted for I0DEST in I1PAT later. */
3333 if (added_sets_1 && i0_feeds_i1_n)
3334 i0src_copy = copy_rtx (i0src);
3335 /* And a copy for I0DEST in I2PAT substitution. */
3336 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3337 || (i0_feeds_i2_n)))
3338 i0src_copy2 = copy_rtx (i0src);
3340 n_occurrences = 0;
3341 subst_low_luid = DF_INSN_LUID (i0);
3342 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3343 substed_i0 = 1;
3346 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3347 to count all the ways that I2SRC and I1SRC can be used. */
3348 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3349 && i2_is_used + added_sets_2 > 1)
3350 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3351 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3352 > 1))
3353 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3354 && (n_occurrences + added_sets_0
3355 + (added_sets_1 && i0_feeds_i1_n)
3356 + (added_sets_2 && i0_feeds_i2_n)
3357 > 1))
3358 /* Fail if we tried to make a new register. */
3359 || max_reg_num () != maxreg
3360 /* Fail if we couldn't do something and have a CLOBBER. */
3361 || GET_CODE (newpat) == CLOBBER
3362 /* Fail if this new pattern is a MULT and we didn't have one before
3363 at the outer level. */
3364 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3365 && ! have_mult))
3367 undo_all ();
3368 return 0;
3371 /* If the actions of the earlier insns must be kept
3372 in addition to substituting them into the latest one,
3373 we must make a new PARALLEL for the latest insn
3374 to hold additional the SETs. */
3376 if (added_sets_0 || added_sets_1 || added_sets_2)
3378 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3379 combine_extras++;
3381 if (GET_CODE (newpat) == PARALLEL)
3383 rtvec old = XVEC (newpat, 0);
3384 total_sets = XVECLEN (newpat, 0) + extra_sets;
3385 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3386 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3387 sizeof (old->elem[0]) * old->num_elem);
3389 else
3391 rtx old = newpat;
3392 total_sets = 1 + extra_sets;
3393 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3394 XVECEXP (newpat, 0, 0) = old;
3397 if (added_sets_0)
3398 XVECEXP (newpat, 0, --total_sets) = i0pat;
3400 if (added_sets_1)
3402 rtx t = i1pat;
3403 if (i0_feeds_i1_n)
3404 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3406 XVECEXP (newpat, 0, --total_sets) = t;
3408 if (added_sets_2)
3410 rtx t = i2pat;
3411 if (i1_feeds_i2_n)
3412 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3413 i0_feeds_i1_n && i0dest_in_i0src);
3414 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3415 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3417 XVECEXP (newpat, 0, --total_sets) = t;
3421 validate_replacement:
3423 /* Note which hard regs this insn has as inputs. */
3424 mark_used_regs_combine (newpat);
3426 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3427 consider splitting this pattern, we might need these clobbers. */
3428 if (i1 && GET_CODE (newpat) == PARALLEL
3429 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3431 int len = XVECLEN (newpat, 0);
3433 newpat_vec_with_clobbers = rtvec_alloc (len);
3434 for (i = 0; i < len; i++)
3435 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3438 /* We have recognized nothing yet. */
3439 insn_code_number = -1;
3441 /* See if this is a PARALLEL of two SETs where one SET's destination is
3442 a register that is unused and this isn't marked as an instruction that
3443 might trap in an EH region. In that case, we just need the other SET.
3444 We prefer this over the PARALLEL.
3446 This can occur when simplifying a divmod insn. We *must* test for this
3447 case here because the code below that splits two independent SETs doesn't
3448 handle this case correctly when it updates the register status.
3450 It's pointless doing this if we originally had two sets, one from
3451 i3, and one from i2. Combining then splitting the parallel results
3452 in the original i2 again plus an invalid insn (which we delete).
3453 The net effect is only to move instructions around, which makes
3454 debug info less accurate. */
3456 if (!(added_sets_2 && i1 == 0)
3457 && is_parallel_of_n_reg_sets (newpat, 2)
3458 && asm_noperands (newpat) < 0)
3460 rtx set0 = XVECEXP (newpat, 0, 0);
3461 rtx set1 = XVECEXP (newpat, 0, 1);
3462 rtx oldpat = newpat;
3464 if (((REG_P (SET_DEST (set1))
3465 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3466 || (GET_CODE (SET_DEST (set1)) == SUBREG
3467 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3468 && insn_nothrow_p (i3)
3469 && !side_effects_p (SET_SRC (set1)))
3471 newpat = set0;
3472 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3475 else if (((REG_P (SET_DEST (set0))
3476 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3477 || (GET_CODE (SET_DEST (set0)) == SUBREG
3478 && find_reg_note (i3, REG_UNUSED,
3479 SUBREG_REG (SET_DEST (set0)))))
3480 && insn_nothrow_p (i3)
3481 && !side_effects_p (SET_SRC (set0)))
3483 newpat = set1;
3484 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3486 if (insn_code_number >= 0)
3487 changed_i3_dest = 1;
3490 if (insn_code_number < 0)
3491 newpat = oldpat;
3494 /* Is the result of combination a valid instruction? */
3495 if (insn_code_number < 0)
3496 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3498 /* If we were combining three insns and the result is a simple SET
3499 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3500 insns. There are two ways to do this. It can be split using a
3501 machine-specific method (like when you have an addition of a large
3502 constant) or by combine in the function find_split_point. */
3504 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3505 && asm_noperands (newpat) < 0)
3507 rtx parallel, *split;
3508 rtx_insn *m_split_insn;
3510 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3511 use I2DEST as a scratch register will help. In the latter case,
3512 convert I2DEST to the mode of the source of NEWPAT if we can. */
3514 m_split_insn = combine_split_insns (newpat, i3);
3516 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3517 inputs of NEWPAT. */
3519 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3520 possible to try that as a scratch reg. This would require adding
3521 more code to make it work though. */
3523 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3525 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3527 /* First try to split using the original register as a
3528 scratch register. */
3529 parallel = gen_rtx_PARALLEL (VOIDmode,
3530 gen_rtvec (2, newpat,
3531 gen_rtx_CLOBBER (VOIDmode,
3532 i2dest)));
3533 m_split_insn = combine_split_insns (parallel, i3);
3535 /* If that didn't work, try changing the mode of I2DEST if
3536 we can. */
3537 if (m_split_insn == 0
3538 && new_mode != GET_MODE (i2dest)
3539 && new_mode != VOIDmode
3540 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3542 machine_mode old_mode = GET_MODE (i2dest);
3543 rtx ni2dest;
3545 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3546 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3547 else
3549 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3550 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3553 parallel = (gen_rtx_PARALLEL
3554 (VOIDmode,
3555 gen_rtvec (2, newpat,
3556 gen_rtx_CLOBBER (VOIDmode,
3557 ni2dest))));
3558 m_split_insn = combine_split_insns (parallel, i3);
3560 if (m_split_insn == 0
3561 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3563 struct undo *buf;
3565 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3566 buf = undobuf.undos;
3567 undobuf.undos = buf->next;
3568 buf->next = undobuf.frees;
3569 undobuf.frees = buf;
3573 i2scratch = m_split_insn != 0;
3576 /* If recog_for_combine has discarded clobbers, try to use them
3577 again for the split. */
3578 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3580 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3581 m_split_insn = combine_split_insns (parallel, i3);
3584 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3586 rtx m_split_pat = PATTERN (m_split_insn);
3587 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3588 if (insn_code_number >= 0)
3589 newpat = m_split_pat;
3591 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3592 && (next_nonnote_nondebug_insn (i2) == i3
3593 || ! use_crosses_set_p (PATTERN (m_split_insn), DF_INSN_LUID (i2))))
3595 rtx i2set, i3set;
3596 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3597 newi2pat = PATTERN (m_split_insn);
3599 i3set = single_set (NEXT_INSN (m_split_insn));
3600 i2set = single_set (m_split_insn);
3602 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3604 /* If I2 or I3 has multiple SETs, we won't know how to track
3605 register status, so don't use these insns. If I2's destination
3606 is used between I2 and I3, we also can't use these insns. */
3608 if (i2_code_number >= 0 && i2set && i3set
3609 && (next_nonnote_nondebug_insn (i2) == i3
3610 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3611 insn_code_number = recog_for_combine (&newi3pat, i3,
3612 &new_i3_notes);
3613 if (insn_code_number >= 0)
3614 newpat = newi3pat;
3616 /* It is possible that both insns now set the destination of I3.
3617 If so, we must show an extra use of it. */
3619 if (insn_code_number >= 0)
3621 rtx new_i3_dest = SET_DEST (i3set);
3622 rtx new_i2_dest = SET_DEST (i2set);
3624 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3625 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3626 || GET_CODE (new_i3_dest) == SUBREG)
3627 new_i3_dest = XEXP (new_i3_dest, 0);
3629 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3630 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3631 || GET_CODE (new_i2_dest) == SUBREG)
3632 new_i2_dest = XEXP (new_i2_dest, 0);
3634 if (REG_P (new_i3_dest)
3635 && REG_P (new_i2_dest)
3636 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3637 && REGNO (new_i2_dest) < reg_n_sets_max)
3638 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3642 /* If we can split it and use I2DEST, go ahead and see if that
3643 helps things be recognized. Verify that none of the registers
3644 are set between I2 and I3. */
3645 if (insn_code_number < 0
3646 && (split = find_split_point (&newpat, i3, false)) != 0
3647 && (!HAVE_cc0 || REG_P (i2dest))
3648 /* We need I2DEST in the proper mode. If it is a hard register
3649 or the only use of a pseudo, we can change its mode.
3650 Make sure we don't change a hard register to have a mode that
3651 isn't valid for it, or change the number of registers. */
3652 && (GET_MODE (*split) == GET_MODE (i2dest)
3653 || GET_MODE (*split) == VOIDmode
3654 || can_change_dest_mode (i2dest, added_sets_2,
3655 GET_MODE (*split)))
3656 && (next_nonnote_nondebug_insn (i2) == i3
3657 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3658 /* We can't overwrite I2DEST if its value is still used by
3659 NEWPAT. */
3660 && ! reg_referenced_p (i2dest, newpat))
3662 rtx newdest = i2dest;
3663 enum rtx_code split_code = GET_CODE (*split);
3664 machine_mode split_mode = GET_MODE (*split);
3665 bool subst_done = false;
3666 newi2pat = NULL_RTX;
3668 i2scratch = true;
3670 /* *SPLIT may be part of I2SRC, so make sure we have the
3671 original expression around for later debug processing.
3672 We should not need I2SRC any more in other cases. */
3673 if (MAY_HAVE_DEBUG_INSNS)
3674 i2src = copy_rtx (i2src);
3675 else
3676 i2src = NULL;
3678 /* Get NEWDEST as a register in the proper mode. We have already
3679 validated that we can do this. */
3680 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3682 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3683 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3684 else
3686 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3687 newdest = regno_reg_rtx[REGNO (i2dest)];
3691 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3692 an ASHIFT. This can occur if it was inside a PLUS and hence
3693 appeared to be a memory address. This is a kludge. */
3694 if (split_code == MULT
3695 && CONST_INT_P (XEXP (*split, 1))
3696 && INTVAL (XEXP (*split, 1)) > 0
3697 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3699 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3700 XEXP (*split, 0), GEN_INT (i)));
3701 /* Update split_code because we may not have a multiply
3702 anymore. */
3703 split_code = GET_CODE (*split);
3706 /* Similarly for (plus (mult FOO (const_int pow2))). */
3707 if (split_code == PLUS
3708 && GET_CODE (XEXP (*split, 0)) == MULT
3709 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3710 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3711 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3713 rtx nsplit = XEXP (*split, 0);
3714 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3715 XEXP (nsplit, 0), GEN_INT (i)));
3716 /* Update split_code because we may not have a multiply
3717 anymore. */
3718 split_code = GET_CODE (*split);
3721 #ifdef INSN_SCHEDULING
3722 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3723 be written as a ZERO_EXTEND. */
3724 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3726 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3727 what it really is. */
3728 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3729 == SIGN_EXTEND)
3730 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3731 SUBREG_REG (*split)));
3732 else
3733 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3734 SUBREG_REG (*split)));
3736 #endif
3738 /* Attempt to split binary operators using arithmetic identities. */
3739 if (BINARY_P (SET_SRC (newpat))
3740 && split_mode == GET_MODE (SET_SRC (newpat))
3741 && ! side_effects_p (SET_SRC (newpat)))
3743 rtx setsrc = SET_SRC (newpat);
3744 machine_mode mode = GET_MODE (setsrc);
3745 enum rtx_code code = GET_CODE (setsrc);
3746 rtx src_op0 = XEXP (setsrc, 0);
3747 rtx src_op1 = XEXP (setsrc, 1);
3749 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3750 if (rtx_equal_p (src_op0, src_op1))
3752 newi2pat = gen_rtx_SET (newdest, src_op0);
3753 SUBST (XEXP (setsrc, 0), newdest);
3754 SUBST (XEXP (setsrc, 1), newdest);
3755 subst_done = true;
3757 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3758 else if ((code == PLUS || code == MULT)
3759 && GET_CODE (src_op0) == code
3760 && GET_CODE (XEXP (src_op0, 0)) == code
3761 && (INTEGRAL_MODE_P (mode)
3762 || (FLOAT_MODE_P (mode)
3763 && flag_unsafe_math_optimizations)))
3765 rtx p = XEXP (XEXP (src_op0, 0), 0);
3766 rtx q = XEXP (XEXP (src_op0, 0), 1);
3767 rtx r = XEXP (src_op0, 1);
3768 rtx s = src_op1;
3770 /* Split both "((X op Y) op X) op Y" and
3771 "((X op Y) op Y) op X" as "T op T" where T is
3772 "X op Y". */
3773 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3774 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3776 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3777 SUBST (XEXP (setsrc, 0), newdest);
3778 SUBST (XEXP (setsrc, 1), newdest);
3779 subst_done = true;
3781 /* Split "((X op X) op Y) op Y)" as "T op T" where
3782 T is "X op Y". */
3783 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3785 rtx tmp = simplify_gen_binary (code, mode, p, r);
3786 newi2pat = gen_rtx_SET (newdest, tmp);
3787 SUBST (XEXP (setsrc, 0), newdest);
3788 SUBST (XEXP (setsrc, 1), newdest);
3789 subst_done = true;
3794 if (!subst_done)
3796 newi2pat = gen_rtx_SET (newdest, *split);
3797 SUBST (*split, newdest);
3800 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3802 /* recog_for_combine might have added CLOBBERs to newi2pat.
3803 Make sure NEWPAT does not depend on the clobbered regs. */
3804 if (GET_CODE (newi2pat) == PARALLEL)
3805 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3806 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3808 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3809 if (reg_overlap_mentioned_p (reg, newpat))
3811 undo_all ();
3812 return 0;
3816 /* If the split point was a MULT and we didn't have one before,
3817 don't use one now. */
3818 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3819 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3823 /* Check for a case where we loaded from memory in a narrow mode and
3824 then sign extended it, but we need both registers. In that case,
3825 we have a PARALLEL with both loads from the same memory location.
3826 We can split this into a load from memory followed by a register-register
3827 copy. This saves at least one insn, more if register allocation can
3828 eliminate the copy.
3830 We cannot do this if the destination of the first assignment is a
3831 condition code register or cc0. We eliminate this case by making sure
3832 the SET_DEST and SET_SRC have the same mode.
3834 We cannot do this if the destination of the second assignment is
3835 a register that we have already assumed is zero-extended. Similarly
3836 for a SUBREG of such a register. */
3838 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3839 && GET_CODE (newpat) == PARALLEL
3840 && XVECLEN (newpat, 0) == 2
3841 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3842 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3843 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3844 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3845 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3846 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3847 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3848 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3849 DF_INSN_LUID (i2))
3850 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3851 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3852 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3853 (REG_P (temp_expr)
3854 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3855 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3856 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3857 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3858 != GET_MODE_MASK (word_mode))))
3859 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3860 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3861 (REG_P (temp_expr)
3862 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3863 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3864 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3865 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3866 != GET_MODE_MASK (word_mode)))))
3867 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3868 SET_SRC (XVECEXP (newpat, 0, 1)))
3869 && ! find_reg_note (i3, REG_UNUSED,
3870 SET_DEST (XVECEXP (newpat, 0, 0))))
3872 rtx ni2dest;
3874 newi2pat = XVECEXP (newpat, 0, 0);
3875 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3876 newpat = XVECEXP (newpat, 0, 1);
3877 SUBST (SET_SRC (newpat),
3878 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3879 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3881 if (i2_code_number >= 0)
3882 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3884 if (insn_code_number >= 0)
3885 swap_i2i3 = 1;
3888 /* Similarly, check for a case where we have a PARALLEL of two independent
3889 SETs but we started with three insns. In this case, we can do the sets
3890 as two separate insns. This case occurs when some SET allows two
3891 other insns to combine, but the destination of that SET is still live.
3893 Also do this if we started with two insns and (at least) one of the
3894 resulting sets is a noop; this noop will be deleted later. */
3896 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3897 && GET_CODE (newpat) == PARALLEL
3898 && XVECLEN (newpat, 0) == 2
3899 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3900 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3901 && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
3902 || set_noop_p (XVECEXP (newpat, 0, 1)))
3903 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3904 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3905 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3906 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3907 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3908 XVECEXP (newpat, 0, 0))
3909 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3910 XVECEXP (newpat, 0, 1))
3911 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3912 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3914 rtx set0 = XVECEXP (newpat, 0, 0);
3915 rtx set1 = XVECEXP (newpat, 0, 1);
3917 /* Normally, it doesn't matter which of the two is done first,
3918 but the one that references cc0 can't be the second, and
3919 one which uses any regs/memory set in between i2 and i3 can't
3920 be first. The PARALLEL might also have been pre-existing in i3,
3921 so we need to make sure that we won't wrongly hoist a SET to i2
3922 that would conflict with a death note present in there. */
3923 if (!use_crosses_set_p (SET_SRC (set1), DF_INSN_LUID (i2))
3924 && !(REG_P (SET_DEST (set1))
3925 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
3926 && !(GET_CODE (SET_DEST (set1)) == SUBREG
3927 && find_reg_note (i2, REG_DEAD,
3928 SUBREG_REG (SET_DEST (set1))))
3929 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
3930 /* If I3 is a jump, ensure that set0 is a jump so that
3931 we do not create invalid RTL. */
3932 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
3935 newi2pat = set1;
3936 newpat = set0;
3938 else if (!use_crosses_set_p (SET_SRC (set0), DF_INSN_LUID (i2))
3939 && !(REG_P (SET_DEST (set0))
3940 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
3941 && !(GET_CODE (SET_DEST (set0)) == SUBREG
3942 && find_reg_note (i2, REG_DEAD,
3943 SUBREG_REG (SET_DEST (set0))))
3944 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
3945 /* If I3 is a jump, ensure that set1 is a jump so that
3946 we do not create invalid RTL. */
3947 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
3950 newi2pat = set0;
3951 newpat = set1;
3953 else
3955 undo_all ();
3956 return 0;
3959 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3961 if (i2_code_number >= 0)
3963 /* recog_for_combine might have added CLOBBERs to newi2pat.
3964 Make sure NEWPAT does not depend on the clobbered regs. */
3965 if (GET_CODE (newi2pat) == PARALLEL)
3967 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3968 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3970 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3971 if (reg_overlap_mentioned_p (reg, newpat))
3973 undo_all ();
3974 return 0;
3979 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3983 /* If it still isn't recognized, fail and change things back the way they
3984 were. */
3985 if ((insn_code_number < 0
3986 /* Is the result a reasonable ASM_OPERANDS? */
3987 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3989 undo_all ();
3990 return 0;
3993 /* If we had to change another insn, make sure it is valid also. */
3994 if (undobuf.other_insn)
3996 CLEAR_HARD_REG_SET (newpat_used_regs);
3998 other_pat = PATTERN (undobuf.other_insn);
3999 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4000 &new_other_notes);
4002 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4004 undo_all ();
4005 return 0;
4009 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4010 they are adjacent to each other or not. */
4011 if (HAVE_cc0)
4013 rtx_insn *p = prev_nonnote_insn (i3);
4014 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4015 && sets_cc0_p (newi2pat))
4017 undo_all ();
4018 return 0;
4022 /* Only allow this combination if insn_rtx_costs reports that the
4023 replacement instructions are cheaper than the originals. */
4024 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4026 undo_all ();
4027 return 0;
4030 if (MAY_HAVE_DEBUG_INSNS)
4032 struct undo *undo;
4034 for (undo = undobuf.undos; undo; undo = undo->next)
4035 if (undo->kind == UNDO_MODE)
4037 rtx reg = *undo->where.r;
4038 machine_mode new_mode = GET_MODE (reg);
4039 machine_mode old_mode = undo->old_contents.m;
4041 /* Temporarily revert mode back. */
4042 adjust_reg_mode (reg, old_mode);
4044 if (reg == i2dest && i2scratch)
4046 /* If we used i2dest as a scratch register with a
4047 different mode, substitute it for the original
4048 i2src while its original mode is temporarily
4049 restored, and then clear i2scratch so that we don't
4050 do it again later. */
4051 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4052 this_basic_block);
4053 i2scratch = false;
4054 /* Put back the new mode. */
4055 adjust_reg_mode (reg, new_mode);
4057 else
4059 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4060 rtx_insn *first, *last;
4062 if (reg == i2dest)
4064 first = i2;
4065 last = last_combined_insn;
4067 else
4069 first = i3;
4070 last = undobuf.other_insn;
4071 gcc_assert (last);
4072 if (DF_INSN_LUID (last)
4073 < DF_INSN_LUID (last_combined_insn))
4074 last = last_combined_insn;
4077 /* We're dealing with a reg that changed mode but not
4078 meaning, so we want to turn it into a subreg for
4079 the new mode. However, because of REG sharing and
4080 because its mode had already changed, we have to do
4081 it in two steps. First, replace any debug uses of
4082 reg, with its original mode temporarily restored,
4083 with this copy we have created; then, replace the
4084 copy with the SUBREG of the original shared reg,
4085 once again changed to the new mode. */
4086 propagate_for_debug (first, last, reg, tempreg,
4087 this_basic_block);
4088 adjust_reg_mode (reg, new_mode);
4089 propagate_for_debug (first, last, tempreg,
4090 lowpart_subreg (old_mode, reg, new_mode),
4091 this_basic_block);
4096 /* If we will be able to accept this, we have made a
4097 change to the destination of I3. This requires us to
4098 do a few adjustments. */
4100 if (changed_i3_dest)
4102 PATTERN (i3) = newpat;
4103 adjust_for_new_dest (i3);
4106 /* We now know that we can do this combination. Merge the insns and
4107 update the status of registers and LOG_LINKS. */
4109 if (undobuf.other_insn)
4111 rtx note, next;
4113 PATTERN (undobuf.other_insn) = other_pat;
4115 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4116 ensure that they are still valid. Then add any non-duplicate
4117 notes added by recog_for_combine. */
4118 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4120 next = XEXP (note, 1);
4122 if ((REG_NOTE_KIND (note) == REG_DEAD
4123 && !reg_referenced_p (XEXP (note, 0),
4124 PATTERN (undobuf.other_insn)))
4125 ||(REG_NOTE_KIND (note) == REG_UNUSED
4126 && !reg_set_p (XEXP (note, 0),
4127 PATTERN (undobuf.other_insn))))
4128 remove_note (undobuf.other_insn, note);
4131 distribute_notes (new_other_notes, undobuf.other_insn,
4132 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4133 NULL_RTX);
4136 if (swap_i2i3)
4138 rtx_insn *insn;
4139 struct insn_link *link;
4140 rtx ni2dest;
4142 /* I3 now uses what used to be its destination and which is now
4143 I2's destination. This requires us to do a few adjustments. */
4144 PATTERN (i3) = newpat;
4145 adjust_for_new_dest (i3);
4147 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4148 so we still will.
4150 However, some later insn might be using I2's dest and have
4151 a LOG_LINK pointing at I3. We must remove this link.
4152 The simplest way to remove the link is to point it at I1,
4153 which we know will be a NOTE. */
4155 /* newi2pat is usually a SET here; however, recog_for_combine might
4156 have added some clobbers. */
4157 if (GET_CODE (newi2pat) == PARALLEL)
4158 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4159 else
4160 ni2dest = SET_DEST (newi2pat);
4162 for (insn = NEXT_INSN (i3);
4163 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4164 || insn != BB_HEAD (this_basic_block->next_bb));
4165 insn = NEXT_INSN (insn))
4167 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
4169 FOR_EACH_LOG_LINK (link, insn)
4170 if (link->insn == i3)
4171 link->insn = i1;
4173 break;
4179 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4180 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4181 rtx midnotes = 0;
4182 int from_luid;
4183 /* Compute which registers we expect to eliminate. newi2pat may be setting
4184 either i3dest or i2dest, so we must check it. */
4185 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4186 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4187 || !i2dest_killed
4188 ? 0 : i2dest);
4189 /* For i1, we need to compute both local elimination and global
4190 elimination information with respect to newi2pat because i1dest
4191 may be the same as i3dest, in which case newi2pat may be setting
4192 i1dest. Global information is used when distributing REG_DEAD
4193 note for i2 and i3, in which case it does matter if newi2pat sets
4194 i1dest or not.
4196 Local information is used when distributing REG_DEAD note for i1,
4197 in which case it doesn't matter if newi2pat sets i1dest or not.
4198 See PR62151, if we have four insns combination:
4199 i0: r0 <- i0src
4200 i1: r1 <- i1src (using r0)
4201 REG_DEAD (r0)
4202 i2: r0 <- i2src (using r1)
4203 i3: r3 <- i3src (using r0)
4204 ix: using r0
4205 From i1's point of view, r0 is eliminated, no matter if it is set
4206 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4207 should be discarded.
4209 Note local information only affects cases in forms like "I1->I2->I3",
4210 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4211 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4212 i0dest anyway. */
4213 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4214 || !i1dest_killed
4215 ? 0 : i1dest);
4216 rtx elim_i1 = (local_elim_i1 == 0
4217 || (newi2pat && reg_set_p (i1dest, newi2pat))
4218 ? 0 : i1dest);
4219 /* Same case as i1. */
4220 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4221 ? 0 : i0dest);
4222 rtx elim_i0 = (local_elim_i0 == 0
4223 || (newi2pat && reg_set_p (i0dest, newi2pat))
4224 ? 0 : i0dest);
4226 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4227 clear them. */
4228 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4229 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4230 if (i1)
4231 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4232 if (i0)
4233 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4235 /* Ensure that we do not have something that should not be shared but
4236 occurs multiple times in the new insns. Check this by first
4237 resetting all the `used' flags and then copying anything is shared. */
4239 reset_used_flags (i3notes);
4240 reset_used_flags (i2notes);
4241 reset_used_flags (i1notes);
4242 reset_used_flags (i0notes);
4243 reset_used_flags (newpat);
4244 reset_used_flags (newi2pat);
4245 if (undobuf.other_insn)
4246 reset_used_flags (PATTERN (undobuf.other_insn));
4248 i3notes = copy_rtx_if_shared (i3notes);
4249 i2notes = copy_rtx_if_shared (i2notes);
4250 i1notes = copy_rtx_if_shared (i1notes);
4251 i0notes = copy_rtx_if_shared (i0notes);
4252 newpat = copy_rtx_if_shared (newpat);
4253 newi2pat = copy_rtx_if_shared (newi2pat);
4254 if (undobuf.other_insn)
4255 reset_used_flags (PATTERN (undobuf.other_insn));
4257 INSN_CODE (i3) = insn_code_number;
4258 PATTERN (i3) = newpat;
4260 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4262 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4264 reset_used_flags (call_usage);
4265 call_usage = copy_rtx (call_usage);
4267 if (substed_i2)
4269 /* I2SRC must still be meaningful at this point. Some splitting
4270 operations can invalidate I2SRC, but those operations do not
4271 apply to calls. */
4272 gcc_assert (i2src);
4273 replace_rtx (call_usage, i2dest, i2src);
4276 if (substed_i1)
4277 replace_rtx (call_usage, i1dest, i1src);
4278 if (substed_i0)
4279 replace_rtx (call_usage, i0dest, i0src);
4281 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4284 if (undobuf.other_insn)
4285 INSN_CODE (undobuf.other_insn) = other_code_number;
4287 /* We had one special case above where I2 had more than one set and
4288 we replaced a destination of one of those sets with the destination
4289 of I3. In that case, we have to update LOG_LINKS of insns later
4290 in this basic block. Note that this (expensive) case is rare.
4292 Also, in this case, we must pretend that all REG_NOTEs for I2
4293 actually came from I3, so that REG_UNUSED notes from I2 will be
4294 properly handled. */
4296 if (i3_subst_into_i2)
4298 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4299 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4300 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4301 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4302 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4303 && ! find_reg_note (i2, REG_UNUSED,
4304 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4305 for (temp_insn = NEXT_INSN (i2);
4306 temp_insn
4307 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4308 || BB_HEAD (this_basic_block) != temp_insn);
4309 temp_insn = NEXT_INSN (temp_insn))
4310 if (temp_insn != i3 && INSN_P (temp_insn))
4311 FOR_EACH_LOG_LINK (link, temp_insn)
4312 if (link->insn == i2)
4313 link->insn = i3;
4315 if (i3notes)
4317 rtx link = i3notes;
4318 while (XEXP (link, 1))
4319 link = XEXP (link, 1);
4320 XEXP (link, 1) = i2notes;
4322 else
4323 i3notes = i2notes;
4324 i2notes = 0;
4327 LOG_LINKS (i3) = NULL;
4328 REG_NOTES (i3) = 0;
4329 LOG_LINKS (i2) = NULL;
4330 REG_NOTES (i2) = 0;
4332 if (newi2pat)
4334 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4335 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4336 this_basic_block);
4337 INSN_CODE (i2) = i2_code_number;
4338 PATTERN (i2) = newi2pat;
4340 else
4342 if (MAY_HAVE_DEBUG_INSNS && i2src)
4343 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4344 this_basic_block);
4345 SET_INSN_DELETED (i2);
4348 if (i1)
4350 LOG_LINKS (i1) = NULL;
4351 REG_NOTES (i1) = 0;
4352 if (MAY_HAVE_DEBUG_INSNS)
4353 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4354 this_basic_block);
4355 SET_INSN_DELETED (i1);
4358 if (i0)
4360 LOG_LINKS (i0) = NULL;
4361 REG_NOTES (i0) = 0;
4362 if (MAY_HAVE_DEBUG_INSNS)
4363 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4364 this_basic_block);
4365 SET_INSN_DELETED (i0);
4368 /* Get death notes for everything that is now used in either I3 or
4369 I2 and used to die in a previous insn. If we built two new
4370 patterns, move from I1 to I2 then I2 to I3 so that we get the
4371 proper movement on registers that I2 modifies. */
4373 if (i0)
4374 from_luid = DF_INSN_LUID (i0);
4375 else if (i1)
4376 from_luid = DF_INSN_LUID (i1);
4377 else
4378 from_luid = DF_INSN_LUID (i2);
4379 if (newi2pat)
4380 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4381 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4383 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4384 if (i3notes)
4385 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4386 elim_i2, elim_i1, elim_i0);
4387 if (i2notes)
4388 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4389 elim_i2, elim_i1, elim_i0);
4390 if (i1notes)
4391 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4392 elim_i2, local_elim_i1, local_elim_i0);
4393 if (i0notes)
4394 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4395 elim_i2, elim_i1, local_elim_i0);
4396 if (midnotes)
4397 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4398 elim_i2, elim_i1, elim_i0);
4400 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4401 know these are REG_UNUSED and want them to go to the desired insn,
4402 so we always pass it as i3. */
4404 if (newi2pat && new_i2_notes)
4405 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4406 NULL_RTX);
4408 if (new_i3_notes)
4409 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4410 NULL_RTX);
4412 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4413 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4414 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4415 in that case, it might delete I2. Similarly for I2 and I1.
4416 Show an additional death due to the REG_DEAD note we make here. If
4417 we discard it in distribute_notes, we will decrement it again. */
4419 if (i3dest_killed)
4421 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4422 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4423 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4424 elim_i1, elim_i0);
4425 else
4426 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4427 elim_i2, elim_i1, elim_i0);
4430 if (i2dest_in_i2src)
4432 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4433 if (newi2pat && reg_set_p (i2dest, newi2pat))
4434 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4435 NULL_RTX, NULL_RTX);
4436 else
4437 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4438 NULL_RTX, NULL_RTX, NULL_RTX);
4441 if (i1dest_in_i1src)
4443 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4444 if (newi2pat && reg_set_p (i1dest, newi2pat))
4445 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4446 NULL_RTX, NULL_RTX);
4447 else
4448 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4449 NULL_RTX, NULL_RTX, NULL_RTX);
4452 if (i0dest_in_i0src)
4454 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4455 if (newi2pat && reg_set_p (i0dest, newi2pat))
4456 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4457 NULL_RTX, NULL_RTX);
4458 else
4459 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4460 NULL_RTX, NULL_RTX, NULL_RTX);
4463 distribute_links (i3links);
4464 distribute_links (i2links);
4465 distribute_links (i1links);
4466 distribute_links (i0links);
4468 if (REG_P (i2dest))
4470 struct insn_link *link;
4471 rtx_insn *i2_insn = 0;
4472 rtx i2_val = 0, set;
4474 /* The insn that used to set this register doesn't exist, and
4475 this life of the register may not exist either. See if one of
4476 I3's links points to an insn that sets I2DEST. If it does,
4477 that is now the last known value for I2DEST. If we don't update
4478 this and I2 set the register to a value that depended on its old
4479 contents, we will get confused. If this insn is used, thing
4480 will be set correctly in combine_instructions. */
4481 FOR_EACH_LOG_LINK (link, i3)
4482 if ((set = single_set (link->insn)) != 0
4483 && rtx_equal_p (i2dest, SET_DEST (set)))
4484 i2_insn = link->insn, i2_val = SET_SRC (set);
4486 record_value_for_reg (i2dest, i2_insn, i2_val);
4488 /* If the reg formerly set in I2 died only once and that was in I3,
4489 zero its use count so it won't make `reload' do any work. */
4490 if (! added_sets_2
4491 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4492 && ! i2dest_in_i2src
4493 && REGNO (i2dest) < reg_n_sets_max)
4494 INC_REG_N_SETS (REGNO (i2dest), -1);
4497 if (i1 && REG_P (i1dest))
4499 struct insn_link *link;
4500 rtx_insn *i1_insn = 0;
4501 rtx i1_val = 0, set;
4503 FOR_EACH_LOG_LINK (link, i3)
4504 if ((set = single_set (link->insn)) != 0
4505 && rtx_equal_p (i1dest, SET_DEST (set)))
4506 i1_insn = link->insn, i1_val = SET_SRC (set);
4508 record_value_for_reg (i1dest, i1_insn, i1_val);
4510 if (! added_sets_1
4511 && ! i1dest_in_i1src
4512 && REGNO (i1dest) < reg_n_sets_max)
4513 INC_REG_N_SETS (REGNO (i1dest), -1);
4516 if (i0 && REG_P (i0dest))
4518 struct insn_link *link;
4519 rtx_insn *i0_insn = 0;
4520 rtx i0_val = 0, set;
4522 FOR_EACH_LOG_LINK (link, i3)
4523 if ((set = single_set (link->insn)) != 0
4524 && rtx_equal_p (i0dest, SET_DEST (set)))
4525 i0_insn = link->insn, i0_val = SET_SRC (set);
4527 record_value_for_reg (i0dest, i0_insn, i0_val);
4529 if (! added_sets_0
4530 && ! i0dest_in_i0src
4531 && REGNO (i0dest) < reg_n_sets_max)
4532 INC_REG_N_SETS (REGNO (i0dest), -1);
4535 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4536 been made to this insn. The order is important, because newi2pat
4537 can affect nonzero_bits of newpat. */
4538 if (newi2pat)
4539 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4540 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4543 if (undobuf.other_insn != NULL_RTX)
4545 if (dump_file)
4547 fprintf (dump_file, "modifying other_insn ");
4548 dump_insn_slim (dump_file, undobuf.other_insn);
4550 df_insn_rescan (undobuf.other_insn);
4553 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4555 if (dump_file)
4557 fprintf (dump_file, "modifying insn i0 ");
4558 dump_insn_slim (dump_file, i0);
4560 df_insn_rescan (i0);
4563 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4565 if (dump_file)
4567 fprintf (dump_file, "modifying insn i1 ");
4568 dump_insn_slim (dump_file, i1);
4570 df_insn_rescan (i1);
4573 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4575 if (dump_file)
4577 fprintf (dump_file, "modifying insn i2 ");
4578 dump_insn_slim (dump_file, i2);
4580 df_insn_rescan (i2);
4583 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4585 if (dump_file)
4587 fprintf (dump_file, "modifying insn i3 ");
4588 dump_insn_slim (dump_file, i3);
4590 df_insn_rescan (i3);
4593 /* Set new_direct_jump_p if a new return or simple jump instruction
4594 has been created. Adjust the CFG accordingly. */
4595 if (returnjump_p (i3) || any_uncondjump_p (i3))
4597 *new_direct_jump_p = 1;
4598 mark_jump_label (PATTERN (i3), i3, 0);
4599 update_cfg_for_uncondjump (i3);
4602 if (undobuf.other_insn != NULL_RTX
4603 && (returnjump_p (undobuf.other_insn)
4604 || any_uncondjump_p (undobuf.other_insn)))
4606 *new_direct_jump_p = 1;
4607 update_cfg_for_uncondjump (undobuf.other_insn);
4610 /* A noop might also need cleaning up of CFG, if it comes from the
4611 simplification of a jump. */
4612 if (JUMP_P (i3)
4613 && GET_CODE (newpat) == SET
4614 && SET_SRC (newpat) == pc_rtx
4615 && SET_DEST (newpat) == pc_rtx)
4617 *new_direct_jump_p = 1;
4618 update_cfg_for_uncondjump (i3);
4621 if (undobuf.other_insn != NULL_RTX
4622 && JUMP_P (undobuf.other_insn)
4623 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4624 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4625 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4627 *new_direct_jump_p = 1;
4628 update_cfg_for_uncondjump (undobuf.other_insn);
4631 combine_successes++;
4632 undo_commit ();
4634 if (added_links_insn
4635 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4636 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4637 return added_links_insn;
4638 else
4639 return newi2pat ? i2 : i3;
4642 /* Get a marker for undoing to the current state. */
4644 static void *
4645 get_undo_marker (void)
4647 return undobuf.undos;
4650 /* Undo the modifications up to the marker. */
4652 static void
4653 undo_to_marker (void *marker)
4655 struct undo *undo, *next;
4657 for (undo = undobuf.undos; undo != marker; undo = next)
4659 gcc_assert (undo);
4661 next = undo->next;
4662 switch (undo->kind)
4664 case UNDO_RTX:
4665 *undo->where.r = undo->old_contents.r;
4666 break;
4667 case UNDO_INT:
4668 *undo->where.i = undo->old_contents.i;
4669 break;
4670 case UNDO_MODE:
4671 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4672 break;
4673 case UNDO_LINKS:
4674 *undo->where.l = undo->old_contents.l;
4675 break;
4676 default:
4677 gcc_unreachable ();
4680 undo->next = undobuf.frees;
4681 undobuf.frees = undo;
4684 undobuf.undos = (struct undo *) marker;
4687 /* Undo all the modifications recorded in undobuf. */
4689 static void
4690 undo_all (void)
4692 undo_to_marker (0);
4695 /* We've committed to accepting the changes we made. Move all
4696 of the undos to the free list. */
4698 static void
4699 undo_commit (void)
4701 struct undo *undo, *next;
4703 for (undo = undobuf.undos; undo; undo = next)
4705 next = undo->next;
4706 undo->next = undobuf.frees;
4707 undobuf.frees = undo;
4709 undobuf.undos = 0;
4712 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4713 where we have an arithmetic expression and return that point. LOC will
4714 be inside INSN.
4716 try_combine will call this function to see if an insn can be split into
4717 two insns. */
4719 static rtx *
4720 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4722 rtx x = *loc;
4723 enum rtx_code code = GET_CODE (x);
4724 rtx *split;
4725 unsigned HOST_WIDE_INT len = 0;
4726 HOST_WIDE_INT pos = 0;
4727 int unsignedp = 0;
4728 rtx inner = NULL_RTX;
4730 /* First special-case some codes. */
4731 switch (code)
4733 case SUBREG:
4734 #ifdef INSN_SCHEDULING
4735 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4736 point. */
4737 if (MEM_P (SUBREG_REG (x)))
4738 return loc;
4739 #endif
4740 return find_split_point (&SUBREG_REG (x), insn, false);
4742 case MEM:
4743 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4744 using LO_SUM and HIGH. */
4745 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4746 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4748 machine_mode address_mode = get_address_mode (x);
4750 SUBST (XEXP (x, 0),
4751 gen_rtx_LO_SUM (address_mode,
4752 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4753 XEXP (x, 0)));
4754 return &XEXP (XEXP (x, 0), 0);
4757 /* If we have a PLUS whose second operand is a constant and the
4758 address is not valid, perhaps will can split it up using
4759 the machine-specific way to split large constants. We use
4760 the first pseudo-reg (one of the virtual regs) as a placeholder;
4761 it will not remain in the result. */
4762 if (GET_CODE (XEXP (x, 0)) == PLUS
4763 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4764 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4765 MEM_ADDR_SPACE (x)))
4767 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4768 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4769 subst_insn);
4771 /* This should have produced two insns, each of which sets our
4772 placeholder. If the source of the second is a valid address,
4773 we can make put both sources together and make a split point
4774 in the middle. */
4776 if (seq
4777 && NEXT_INSN (seq) != NULL_RTX
4778 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4779 && NONJUMP_INSN_P (seq)
4780 && GET_CODE (PATTERN (seq)) == SET
4781 && SET_DEST (PATTERN (seq)) == reg
4782 && ! reg_mentioned_p (reg,
4783 SET_SRC (PATTERN (seq)))
4784 && NONJUMP_INSN_P (NEXT_INSN (seq))
4785 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4786 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4787 && memory_address_addr_space_p
4788 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4789 MEM_ADDR_SPACE (x)))
4791 rtx src1 = SET_SRC (PATTERN (seq));
4792 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4794 /* Replace the placeholder in SRC2 with SRC1. If we can
4795 find where in SRC2 it was placed, that can become our
4796 split point and we can replace this address with SRC2.
4797 Just try two obvious places. */
4799 src2 = replace_rtx (src2, reg, src1);
4800 split = 0;
4801 if (XEXP (src2, 0) == src1)
4802 split = &XEXP (src2, 0);
4803 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4804 && XEXP (XEXP (src2, 0), 0) == src1)
4805 split = &XEXP (XEXP (src2, 0), 0);
4807 if (split)
4809 SUBST (XEXP (x, 0), src2);
4810 return split;
4814 /* If that didn't work, perhaps the first operand is complex and
4815 needs to be computed separately, so make a split point there.
4816 This will occur on machines that just support REG + CONST
4817 and have a constant moved through some previous computation. */
4819 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4820 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4821 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4822 return &XEXP (XEXP (x, 0), 0);
4825 /* If we have a PLUS whose first operand is complex, try computing it
4826 separately by making a split there. */
4827 if (GET_CODE (XEXP (x, 0)) == PLUS
4828 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4829 MEM_ADDR_SPACE (x))
4830 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4831 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4832 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4833 return &XEXP (XEXP (x, 0), 0);
4834 break;
4836 case SET:
4837 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4838 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4839 we need to put the operand into a register. So split at that
4840 point. */
4842 if (SET_DEST (x) == cc0_rtx
4843 && GET_CODE (SET_SRC (x)) != COMPARE
4844 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4845 && !OBJECT_P (SET_SRC (x))
4846 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4847 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4848 return &SET_SRC (x);
4850 /* See if we can split SET_SRC as it stands. */
4851 split = find_split_point (&SET_SRC (x), insn, true);
4852 if (split && split != &SET_SRC (x))
4853 return split;
4855 /* See if we can split SET_DEST as it stands. */
4856 split = find_split_point (&SET_DEST (x), insn, false);
4857 if (split && split != &SET_DEST (x))
4858 return split;
4860 /* See if this is a bitfield assignment with everything constant. If
4861 so, this is an IOR of an AND, so split it into that. */
4862 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4863 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4864 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4865 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4866 && CONST_INT_P (SET_SRC (x))
4867 && ((INTVAL (XEXP (SET_DEST (x), 1))
4868 + INTVAL (XEXP (SET_DEST (x), 2)))
4869 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4870 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4872 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4873 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4874 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4875 rtx dest = XEXP (SET_DEST (x), 0);
4876 machine_mode mode = GET_MODE (dest);
4877 unsigned HOST_WIDE_INT mask
4878 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4879 rtx or_mask;
4881 if (BITS_BIG_ENDIAN)
4882 pos = GET_MODE_PRECISION (mode) - len - pos;
4884 or_mask = gen_int_mode (src << pos, mode);
4885 if (src == mask)
4886 SUBST (SET_SRC (x),
4887 simplify_gen_binary (IOR, mode, dest, or_mask));
4888 else
4890 rtx negmask = gen_int_mode (~(mask << pos), mode);
4891 SUBST (SET_SRC (x),
4892 simplify_gen_binary (IOR, mode,
4893 simplify_gen_binary (AND, mode,
4894 dest, negmask),
4895 or_mask));
4898 SUBST (SET_DEST (x), dest);
4900 split = find_split_point (&SET_SRC (x), insn, true);
4901 if (split && split != &SET_SRC (x))
4902 return split;
4905 /* Otherwise, see if this is an operation that we can split into two.
4906 If so, try to split that. */
4907 code = GET_CODE (SET_SRC (x));
4909 switch (code)
4911 case AND:
4912 /* If we are AND'ing with a large constant that is only a single
4913 bit and the result is only being used in a context where we
4914 need to know if it is zero or nonzero, replace it with a bit
4915 extraction. This will avoid the large constant, which might
4916 have taken more than one insn to make. If the constant were
4917 not a valid argument to the AND but took only one insn to make,
4918 this is no worse, but if it took more than one insn, it will
4919 be better. */
4921 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4922 && REG_P (XEXP (SET_SRC (x), 0))
4923 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4924 && REG_P (SET_DEST (x))
4925 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
4926 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4927 && XEXP (*split, 0) == SET_DEST (x)
4928 && XEXP (*split, 1) == const0_rtx)
4930 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4931 XEXP (SET_SRC (x), 0),
4932 pos, NULL_RTX, 1, 1, 0, 0);
4933 if (extraction != 0)
4935 SUBST (SET_SRC (x), extraction);
4936 return find_split_point (loc, insn, false);
4939 break;
4941 case NE:
4942 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4943 is known to be on, this can be converted into a NEG of a shift. */
4944 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4945 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4946 && 1 <= (pos = exact_log2
4947 (nonzero_bits (XEXP (SET_SRC (x), 0),
4948 GET_MODE (XEXP (SET_SRC (x), 0))))))
4950 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4952 SUBST (SET_SRC (x),
4953 gen_rtx_NEG (mode,
4954 gen_rtx_LSHIFTRT (mode,
4955 XEXP (SET_SRC (x), 0),
4956 GEN_INT (pos))));
4958 split = find_split_point (&SET_SRC (x), insn, true);
4959 if (split && split != &SET_SRC (x))
4960 return split;
4962 break;
4964 case SIGN_EXTEND:
4965 inner = XEXP (SET_SRC (x), 0);
4967 /* We can't optimize if either mode is a partial integer
4968 mode as we don't know how many bits are significant
4969 in those modes. */
4970 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4971 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4972 break;
4974 pos = 0;
4975 len = GET_MODE_PRECISION (GET_MODE (inner));
4976 unsignedp = 0;
4977 break;
4979 case SIGN_EXTRACT:
4980 case ZERO_EXTRACT:
4981 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4982 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4984 inner = XEXP (SET_SRC (x), 0);
4985 len = INTVAL (XEXP (SET_SRC (x), 1));
4986 pos = INTVAL (XEXP (SET_SRC (x), 2));
4988 if (BITS_BIG_ENDIAN)
4989 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
4990 unsignedp = (code == ZERO_EXTRACT);
4992 break;
4994 default:
4995 break;
4998 if (len && pos >= 0
4999 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
5001 machine_mode mode = GET_MODE (SET_SRC (x));
5003 /* For unsigned, we have a choice of a shift followed by an
5004 AND or two shifts. Use two shifts for field sizes where the
5005 constant might be too large. We assume here that we can
5006 always at least get 8-bit constants in an AND insn, which is
5007 true for every current RISC. */
5009 if (unsignedp && len <= 8)
5011 unsigned HOST_WIDE_INT mask
5012 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
5013 SUBST (SET_SRC (x),
5014 gen_rtx_AND (mode,
5015 gen_rtx_LSHIFTRT
5016 (mode, gen_lowpart (mode, inner),
5017 GEN_INT (pos)),
5018 gen_int_mode (mask, mode)));
5020 split = find_split_point (&SET_SRC (x), insn, true);
5021 if (split && split != &SET_SRC (x))
5022 return split;
5024 else
5026 SUBST (SET_SRC (x),
5027 gen_rtx_fmt_ee
5028 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5029 gen_rtx_ASHIFT (mode,
5030 gen_lowpart (mode, inner),
5031 GEN_INT (GET_MODE_PRECISION (mode)
5032 - len - pos)),
5033 GEN_INT (GET_MODE_PRECISION (mode) - len)));
5035 split = find_split_point (&SET_SRC (x), insn, true);
5036 if (split && split != &SET_SRC (x))
5037 return split;
5041 /* See if this is a simple operation with a constant as the second
5042 operand. It might be that this constant is out of range and hence
5043 could be used as a split point. */
5044 if (BINARY_P (SET_SRC (x))
5045 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5046 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5047 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5048 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5049 return &XEXP (SET_SRC (x), 1);
5051 /* Finally, see if this is a simple operation with its first operand
5052 not in a register. The operation might require this operand in a
5053 register, so return it as a split point. We can always do this
5054 because if the first operand were another operation, we would have
5055 already found it as a split point. */
5056 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5057 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5058 return &XEXP (SET_SRC (x), 0);
5060 return 0;
5062 case AND:
5063 case IOR:
5064 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5065 it is better to write this as (not (ior A B)) so we can split it.
5066 Similarly for IOR. */
5067 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5069 SUBST (*loc,
5070 gen_rtx_NOT (GET_MODE (x),
5071 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5072 GET_MODE (x),
5073 XEXP (XEXP (x, 0), 0),
5074 XEXP (XEXP (x, 1), 0))));
5075 return find_split_point (loc, insn, set_src);
5078 /* Many RISC machines have a large set of logical insns. If the
5079 second operand is a NOT, put it first so we will try to split the
5080 other operand first. */
5081 if (GET_CODE (XEXP (x, 1)) == NOT)
5083 rtx tem = XEXP (x, 0);
5084 SUBST (XEXP (x, 0), XEXP (x, 1));
5085 SUBST (XEXP (x, 1), tem);
5087 break;
5089 case PLUS:
5090 case MINUS:
5091 /* Canonicalization can produce (minus A (mult B C)), where C is a
5092 constant. It may be better to try splitting (plus (mult B -C) A)
5093 instead if this isn't a multiply by a power of two. */
5094 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5095 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5096 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
5098 machine_mode mode = GET_MODE (x);
5099 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5100 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5101 SUBST (*loc, gen_rtx_PLUS (mode,
5102 gen_rtx_MULT (mode,
5103 XEXP (XEXP (x, 1), 0),
5104 gen_int_mode (other_int,
5105 mode)),
5106 XEXP (x, 0)));
5107 return find_split_point (loc, insn, set_src);
5110 /* Split at a multiply-accumulate instruction. However if this is
5111 the SET_SRC, we likely do not have such an instruction and it's
5112 worthless to try this split. */
5113 if (!set_src
5114 && (GET_CODE (XEXP (x, 0)) == MULT
5115 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5116 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5117 return loc;
5119 default:
5120 break;
5123 /* Otherwise, select our actions depending on our rtx class. */
5124 switch (GET_RTX_CLASS (code))
5126 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5127 case RTX_TERNARY:
5128 split = find_split_point (&XEXP (x, 2), insn, false);
5129 if (split)
5130 return split;
5131 /* ... fall through ... */
5132 case RTX_BIN_ARITH:
5133 case RTX_COMM_ARITH:
5134 case RTX_COMPARE:
5135 case RTX_COMM_COMPARE:
5136 split = find_split_point (&XEXP (x, 1), insn, false);
5137 if (split)
5138 return split;
5139 /* ... fall through ... */
5140 case RTX_UNARY:
5141 /* Some machines have (and (shift ...) ...) insns. If X is not
5142 an AND, but XEXP (X, 0) is, use it as our split point. */
5143 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5144 return &XEXP (x, 0);
5146 split = find_split_point (&XEXP (x, 0), insn, false);
5147 if (split)
5148 return split;
5149 return loc;
5151 default:
5152 /* Otherwise, we don't have a split point. */
5153 return 0;
5157 /* Throughout X, replace FROM with TO, and return the result.
5158 The result is TO if X is FROM;
5159 otherwise the result is X, but its contents may have been modified.
5160 If they were modified, a record was made in undobuf so that
5161 undo_all will (among other things) return X to its original state.
5163 If the number of changes necessary is too much to record to undo,
5164 the excess changes are not made, so the result is invalid.
5165 The changes already made can still be undone.
5166 undobuf.num_undo is incremented for such changes, so by testing that
5167 the caller can tell whether the result is valid.
5169 `n_occurrences' is incremented each time FROM is replaced.
5171 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5173 IN_COND is nonzero if we are at the top level of a condition.
5175 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5176 by copying if `n_occurrences' is nonzero. */
5178 static rtx
5179 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5181 enum rtx_code code = GET_CODE (x);
5182 machine_mode op0_mode = VOIDmode;
5183 const char *fmt;
5184 int len, i;
5185 rtx new_rtx;
5187 /* Two expressions are equal if they are identical copies of a shared
5188 RTX or if they are both registers with the same register number
5189 and mode. */
5191 #define COMBINE_RTX_EQUAL_P(X,Y) \
5192 ((X) == (Y) \
5193 || (REG_P (X) && REG_P (Y) \
5194 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5196 /* Do not substitute into clobbers of regs -- this will never result in
5197 valid RTL. */
5198 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5199 return x;
5201 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5203 n_occurrences++;
5204 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5207 /* If X and FROM are the same register but different modes, they
5208 will not have been seen as equal above. However, the log links code
5209 will make a LOG_LINKS entry for that case. If we do nothing, we
5210 will try to rerecognize our original insn and, when it succeeds,
5211 we will delete the feeding insn, which is incorrect.
5213 So force this insn not to match in this (rare) case. */
5214 if (! in_dest && code == REG && REG_P (from)
5215 && reg_overlap_mentioned_p (x, from))
5216 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5218 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5219 of which may contain things that can be combined. */
5220 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5221 return x;
5223 /* It is possible to have a subexpression appear twice in the insn.
5224 Suppose that FROM is a register that appears within TO.
5225 Then, after that subexpression has been scanned once by `subst',
5226 the second time it is scanned, TO may be found. If we were
5227 to scan TO here, we would find FROM within it and create a
5228 self-referent rtl structure which is completely wrong. */
5229 if (COMBINE_RTX_EQUAL_P (x, to))
5230 return to;
5232 /* Parallel asm_operands need special attention because all of the
5233 inputs are shared across the arms. Furthermore, unsharing the
5234 rtl results in recognition failures. Failure to handle this case
5235 specially can result in circular rtl.
5237 Solve this by doing a normal pass across the first entry of the
5238 parallel, and only processing the SET_DESTs of the subsequent
5239 entries. Ug. */
5241 if (code == PARALLEL
5242 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5243 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5245 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5247 /* If this substitution failed, this whole thing fails. */
5248 if (GET_CODE (new_rtx) == CLOBBER
5249 && XEXP (new_rtx, 0) == const0_rtx)
5250 return new_rtx;
5252 SUBST (XVECEXP (x, 0, 0), new_rtx);
5254 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5256 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5258 if (!REG_P (dest)
5259 && GET_CODE (dest) != CC0
5260 && GET_CODE (dest) != PC)
5262 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5264 /* If this substitution failed, this whole thing fails. */
5265 if (GET_CODE (new_rtx) == CLOBBER
5266 && XEXP (new_rtx, 0) == const0_rtx)
5267 return new_rtx;
5269 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5273 else
5275 len = GET_RTX_LENGTH (code);
5276 fmt = GET_RTX_FORMAT (code);
5278 /* We don't need to process a SET_DEST that is a register, CC0,
5279 or PC, so set up to skip this common case. All other cases
5280 where we want to suppress replacing something inside a
5281 SET_SRC are handled via the IN_DEST operand. */
5282 if (code == SET
5283 && (REG_P (SET_DEST (x))
5284 || GET_CODE (SET_DEST (x)) == CC0
5285 || GET_CODE (SET_DEST (x)) == PC))
5286 fmt = "ie";
5288 /* Trying to simplify the operands of a widening MULT is not likely
5289 to create RTL matching a machine insn. */
5290 if (code == MULT
5291 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5292 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5293 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5294 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5295 && REG_P (XEXP (XEXP (x, 0), 0))
5296 && REG_P (XEXP (XEXP (x, 1), 0))
5297 && from == to)
5298 return x;
5301 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5302 constant. */
5303 if (fmt[0] == 'e')
5304 op0_mode = GET_MODE (XEXP (x, 0));
5306 for (i = 0; i < len; i++)
5308 if (fmt[i] == 'E')
5310 int j;
5311 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5313 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5315 new_rtx = (unique_copy && n_occurrences
5316 ? copy_rtx (to) : to);
5317 n_occurrences++;
5319 else
5321 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5322 unique_copy);
5324 /* If this substitution failed, this whole thing
5325 fails. */
5326 if (GET_CODE (new_rtx) == CLOBBER
5327 && XEXP (new_rtx, 0) == const0_rtx)
5328 return new_rtx;
5331 SUBST (XVECEXP (x, i, j), new_rtx);
5334 else if (fmt[i] == 'e')
5336 /* If this is a register being set, ignore it. */
5337 new_rtx = XEXP (x, i);
5338 if (in_dest
5339 && i == 0
5340 && (((code == SUBREG || code == ZERO_EXTRACT)
5341 && REG_P (new_rtx))
5342 || code == STRICT_LOW_PART))
5345 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5347 /* In general, don't install a subreg involving two
5348 modes not tieable. It can worsen register
5349 allocation, and can even make invalid reload
5350 insns, since the reg inside may need to be copied
5351 from in the outside mode, and that may be invalid
5352 if it is an fp reg copied in integer mode.
5354 We allow two exceptions to this: It is valid if
5355 it is inside another SUBREG and the mode of that
5356 SUBREG and the mode of the inside of TO is
5357 tieable and it is valid if X is a SET that copies
5358 FROM to CC0. */
5360 if (GET_CODE (to) == SUBREG
5361 && ! MODES_TIEABLE_P (GET_MODE (to),
5362 GET_MODE (SUBREG_REG (to)))
5363 && ! (code == SUBREG
5364 && MODES_TIEABLE_P (GET_MODE (x),
5365 GET_MODE (SUBREG_REG (to))))
5366 && (!HAVE_cc0
5367 || (! (code == SET
5368 && i == 1
5369 && XEXP (x, 0) == cc0_rtx))))
5370 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5372 if (code == SUBREG
5373 && REG_P (to)
5374 && REGNO (to) < FIRST_PSEUDO_REGISTER
5375 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5376 SUBREG_BYTE (x),
5377 GET_MODE (x)) < 0)
5378 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5380 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5381 n_occurrences++;
5383 else
5384 /* If we are in a SET_DEST, suppress most cases unless we
5385 have gone inside a MEM, in which case we want to
5386 simplify the address. We assume here that things that
5387 are actually part of the destination have their inner
5388 parts in the first expression. This is true for SUBREG,
5389 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5390 things aside from REG and MEM that should appear in a
5391 SET_DEST. */
5392 new_rtx = subst (XEXP (x, i), from, to,
5393 (((in_dest
5394 && (code == SUBREG || code == STRICT_LOW_PART
5395 || code == ZERO_EXTRACT))
5396 || code == SET)
5397 && i == 0),
5398 code == IF_THEN_ELSE && i == 0,
5399 unique_copy);
5401 /* If we found that we will have to reject this combination,
5402 indicate that by returning the CLOBBER ourselves, rather than
5403 an expression containing it. This will speed things up as
5404 well as prevent accidents where two CLOBBERs are considered
5405 to be equal, thus producing an incorrect simplification. */
5407 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5408 return new_rtx;
5410 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5412 machine_mode mode = GET_MODE (x);
5414 x = simplify_subreg (GET_MODE (x), new_rtx,
5415 GET_MODE (SUBREG_REG (x)),
5416 SUBREG_BYTE (x));
5417 if (! x)
5418 x = gen_rtx_CLOBBER (mode, const0_rtx);
5420 else if (CONST_SCALAR_INT_P (new_rtx)
5421 && GET_CODE (x) == ZERO_EXTEND)
5423 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5424 new_rtx, GET_MODE (XEXP (x, 0)));
5425 gcc_assert (x);
5427 else
5428 SUBST (XEXP (x, i), new_rtx);
5433 /* Check if we are loading something from the constant pool via float
5434 extension; in this case we would undo compress_float_constant
5435 optimization and degenerate constant load to an immediate value. */
5436 if (GET_CODE (x) == FLOAT_EXTEND
5437 && MEM_P (XEXP (x, 0))
5438 && MEM_READONLY_P (XEXP (x, 0)))
5440 rtx tmp = avoid_constant_pool_reference (x);
5441 if (x != tmp)
5442 return x;
5445 /* Try to simplify X. If the simplification changed the code, it is likely
5446 that further simplification will help, so loop, but limit the number
5447 of repetitions that will be performed. */
5449 for (i = 0; i < 4; i++)
5451 /* If X is sufficiently simple, don't bother trying to do anything
5452 with it. */
5453 if (code != CONST_INT && code != REG && code != CLOBBER)
5454 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5456 if (GET_CODE (x) == code)
5457 break;
5459 code = GET_CODE (x);
5461 /* We no longer know the original mode of operand 0 since we
5462 have changed the form of X) */
5463 op0_mode = VOIDmode;
5466 return x;
5469 /* Simplify X, a piece of RTL. We just operate on the expression at the
5470 outer level; call `subst' to simplify recursively. Return the new
5471 expression.
5473 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5474 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5475 of a condition. */
5477 static rtx
5478 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5479 int in_cond)
5481 enum rtx_code code = GET_CODE (x);
5482 machine_mode mode = GET_MODE (x);
5483 rtx temp;
5484 int i;
5486 /* If this is a commutative operation, put a constant last and a complex
5487 expression first. We don't need to do this for comparisons here. */
5488 if (COMMUTATIVE_ARITH_P (x)
5489 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5491 temp = XEXP (x, 0);
5492 SUBST (XEXP (x, 0), XEXP (x, 1));
5493 SUBST (XEXP (x, 1), temp);
5496 /* Try to fold this expression in case we have constants that weren't
5497 present before. */
5498 temp = 0;
5499 switch (GET_RTX_CLASS (code))
5501 case RTX_UNARY:
5502 if (op0_mode == VOIDmode)
5503 op0_mode = GET_MODE (XEXP (x, 0));
5504 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5505 break;
5506 case RTX_COMPARE:
5507 case RTX_COMM_COMPARE:
5509 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5510 if (cmp_mode == VOIDmode)
5512 cmp_mode = GET_MODE (XEXP (x, 1));
5513 if (cmp_mode == VOIDmode)
5514 cmp_mode = op0_mode;
5516 temp = simplify_relational_operation (code, mode, cmp_mode,
5517 XEXP (x, 0), XEXP (x, 1));
5519 break;
5520 case RTX_COMM_ARITH:
5521 case RTX_BIN_ARITH:
5522 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5523 break;
5524 case RTX_BITFIELD_OPS:
5525 case RTX_TERNARY:
5526 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5527 XEXP (x, 1), XEXP (x, 2));
5528 break;
5529 default:
5530 break;
5533 if (temp)
5535 x = temp;
5536 code = GET_CODE (temp);
5537 op0_mode = VOIDmode;
5538 mode = GET_MODE (temp);
5541 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5542 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5543 things. Check for cases where both arms are testing the same
5544 condition.
5546 Don't do anything if all operands are very simple. */
5548 if ((BINARY_P (x)
5549 && ((!OBJECT_P (XEXP (x, 0))
5550 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5551 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5552 || (!OBJECT_P (XEXP (x, 1))
5553 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5554 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5555 || (UNARY_P (x)
5556 && (!OBJECT_P (XEXP (x, 0))
5557 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5558 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5560 rtx cond, true_rtx, false_rtx;
5562 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5563 if (cond != 0
5564 /* If everything is a comparison, what we have is highly unlikely
5565 to be simpler, so don't use it. */
5566 && ! (COMPARISON_P (x)
5567 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5569 rtx cop1 = const0_rtx;
5570 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5572 if (cond_code == NE && COMPARISON_P (cond))
5573 return x;
5575 /* Simplify the alternative arms; this may collapse the true and
5576 false arms to store-flag values. Be careful to use copy_rtx
5577 here since true_rtx or false_rtx might share RTL with x as a
5578 result of the if_then_else_cond call above. */
5579 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5580 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5582 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5583 is unlikely to be simpler. */
5584 if (general_operand (true_rtx, VOIDmode)
5585 && general_operand (false_rtx, VOIDmode))
5587 enum rtx_code reversed;
5589 /* Restarting if we generate a store-flag expression will cause
5590 us to loop. Just drop through in this case. */
5592 /* If the result values are STORE_FLAG_VALUE and zero, we can
5593 just make the comparison operation. */
5594 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5595 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5596 cond, cop1);
5597 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5598 && ((reversed = reversed_comparison_code_parts
5599 (cond_code, cond, cop1, NULL))
5600 != UNKNOWN))
5601 x = simplify_gen_relational (reversed, mode, VOIDmode,
5602 cond, cop1);
5604 /* Likewise, we can make the negate of a comparison operation
5605 if the result values are - STORE_FLAG_VALUE and zero. */
5606 else if (CONST_INT_P (true_rtx)
5607 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5608 && false_rtx == const0_rtx)
5609 x = simplify_gen_unary (NEG, mode,
5610 simplify_gen_relational (cond_code,
5611 mode, VOIDmode,
5612 cond, cop1),
5613 mode);
5614 else if (CONST_INT_P (false_rtx)
5615 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5616 && true_rtx == const0_rtx
5617 && ((reversed = reversed_comparison_code_parts
5618 (cond_code, cond, cop1, NULL))
5619 != UNKNOWN))
5620 x = simplify_gen_unary (NEG, mode,
5621 simplify_gen_relational (reversed,
5622 mode, VOIDmode,
5623 cond, cop1),
5624 mode);
5625 else
5626 return gen_rtx_IF_THEN_ELSE (mode,
5627 simplify_gen_relational (cond_code,
5628 mode,
5629 VOIDmode,
5630 cond,
5631 cop1),
5632 true_rtx, false_rtx);
5634 code = GET_CODE (x);
5635 op0_mode = VOIDmode;
5640 /* First see if we can apply the inverse distributive law. */
5641 if (code == PLUS || code == MINUS
5642 || code == AND || code == IOR || code == XOR)
5644 x = apply_distributive_law (x);
5645 code = GET_CODE (x);
5646 op0_mode = VOIDmode;
5649 /* If CODE is an associative operation not otherwise handled, see if we
5650 can associate some operands. This can win if they are constants or
5651 if they are logically related (i.e. (a & b) & a). */
5652 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5653 || code == AND || code == IOR || code == XOR
5654 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5655 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5656 || (flag_associative_math && FLOAT_MODE_P (mode))))
5658 if (GET_CODE (XEXP (x, 0)) == code)
5660 rtx other = XEXP (XEXP (x, 0), 0);
5661 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5662 rtx inner_op1 = XEXP (x, 1);
5663 rtx inner;
5665 /* Make sure we pass the constant operand if any as the second
5666 one if this is a commutative operation. */
5667 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5668 std::swap (inner_op0, inner_op1);
5669 inner = simplify_binary_operation (code == MINUS ? PLUS
5670 : code == DIV ? MULT
5671 : code,
5672 mode, inner_op0, inner_op1);
5674 /* For commutative operations, try the other pair if that one
5675 didn't simplify. */
5676 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5678 other = XEXP (XEXP (x, 0), 1);
5679 inner = simplify_binary_operation (code, mode,
5680 XEXP (XEXP (x, 0), 0),
5681 XEXP (x, 1));
5684 if (inner)
5685 return simplify_gen_binary (code, mode, other, inner);
5689 /* A little bit of algebraic simplification here. */
5690 switch (code)
5692 case MEM:
5693 /* Ensure that our address has any ASHIFTs converted to MULT in case
5694 address-recognizing predicates are called later. */
5695 temp = make_compound_operation (XEXP (x, 0), MEM);
5696 SUBST (XEXP (x, 0), temp);
5697 break;
5699 case SUBREG:
5700 if (op0_mode == VOIDmode)
5701 op0_mode = GET_MODE (SUBREG_REG (x));
5703 /* See if this can be moved to simplify_subreg. */
5704 if (CONSTANT_P (SUBREG_REG (x))
5705 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5706 /* Don't call gen_lowpart if the inner mode
5707 is VOIDmode and we cannot simplify it, as SUBREG without
5708 inner mode is invalid. */
5709 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5710 || gen_lowpart_common (mode, SUBREG_REG (x))))
5711 return gen_lowpart (mode, SUBREG_REG (x));
5713 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5714 break;
5716 rtx temp;
5717 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5718 SUBREG_BYTE (x));
5719 if (temp)
5720 return temp;
5722 /* If op is known to have all lower bits zero, the result is zero. */
5723 if (!in_dest
5724 && SCALAR_INT_MODE_P (mode)
5725 && SCALAR_INT_MODE_P (op0_mode)
5726 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (op0_mode)
5727 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5728 && HWI_COMPUTABLE_MODE_P (op0_mode)
5729 && (nonzero_bits (SUBREG_REG (x), op0_mode)
5730 & GET_MODE_MASK (mode)) == 0)
5731 return CONST0_RTX (mode);
5734 /* Don't change the mode of the MEM if that would change the meaning
5735 of the address. */
5736 if (MEM_P (SUBREG_REG (x))
5737 && (MEM_VOLATILE_P (SUBREG_REG (x))
5738 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5739 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5740 return gen_rtx_CLOBBER (mode, const0_rtx);
5742 /* Note that we cannot do any narrowing for non-constants since
5743 we might have been counting on using the fact that some bits were
5744 zero. We now do this in the SET. */
5746 break;
5748 case NEG:
5749 temp = expand_compound_operation (XEXP (x, 0));
5751 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5752 replaced by (lshiftrt X C). This will convert
5753 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5755 if (GET_CODE (temp) == ASHIFTRT
5756 && CONST_INT_P (XEXP (temp, 1))
5757 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5758 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5759 INTVAL (XEXP (temp, 1)));
5761 /* If X has only a single bit that might be nonzero, say, bit I, convert
5762 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5763 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5764 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5765 or a SUBREG of one since we'd be making the expression more
5766 complex if it was just a register. */
5768 if (!REG_P (temp)
5769 && ! (GET_CODE (temp) == SUBREG
5770 && REG_P (SUBREG_REG (temp)))
5771 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5773 rtx temp1 = simplify_shift_const
5774 (NULL_RTX, ASHIFTRT, mode,
5775 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5776 GET_MODE_PRECISION (mode) - 1 - i),
5777 GET_MODE_PRECISION (mode) - 1 - i);
5779 /* If all we did was surround TEMP with the two shifts, we
5780 haven't improved anything, so don't use it. Otherwise,
5781 we are better off with TEMP1. */
5782 if (GET_CODE (temp1) != ASHIFTRT
5783 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5784 || XEXP (XEXP (temp1, 0), 0) != temp)
5785 return temp1;
5787 break;
5789 case TRUNCATE:
5790 /* We can't handle truncation to a partial integer mode here
5791 because we don't know the real bitsize of the partial
5792 integer mode. */
5793 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5794 break;
5796 if (HWI_COMPUTABLE_MODE_P (mode))
5797 SUBST (XEXP (x, 0),
5798 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5799 GET_MODE_MASK (mode), 0));
5801 /* We can truncate a constant value and return it. */
5802 if (CONST_INT_P (XEXP (x, 0)))
5803 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5805 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5806 whose value is a comparison can be replaced with a subreg if
5807 STORE_FLAG_VALUE permits. */
5808 if (HWI_COMPUTABLE_MODE_P (mode)
5809 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5810 && (temp = get_last_value (XEXP (x, 0)))
5811 && COMPARISON_P (temp))
5812 return gen_lowpart (mode, XEXP (x, 0));
5813 break;
5815 case CONST:
5816 /* (const (const X)) can become (const X). Do it this way rather than
5817 returning the inner CONST since CONST can be shared with a
5818 REG_EQUAL note. */
5819 if (GET_CODE (XEXP (x, 0)) == CONST)
5820 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5821 break;
5823 case LO_SUM:
5824 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5825 can add in an offset. find_split_point will split this address up
5826 again if it doesn't match. */
5827 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
5828 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5829 return XEXP (x, 1);
5830 break;
5832 case PLUS:
5833 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5834 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5835 bit-field and can be replaced by either a sign_extend or a
5836 sign_extract. The `and' may be a zero_extend and the two
5837 <c>, -<c> constants may be reversed. */
5838 if (GET_CODE (XEXP (x, 0)) == XOR
5839 && CONST_INT_P (XEXP (x, 1))
5840 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5841 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5842 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5843 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5844 && HWI_COMPUTABLE_MODE_P (mode)
5845 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5846 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5847 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5848 == ((unsigned HOST_WIDE_INT) 1 << (i + 1)) - 1))
5849 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5850 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5851 == (unsigned int) i + 1))))
5852 return simplify_shift_const
5853 (NULL_RTX, ASHIFTRT, mode,
5854 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5855 XEXP (XEXP (XEXP (x, 0), 0), 0),
5856 GET_MODE_PRECISION (mode) - (i + 1)),
5857 GET_MODE_PRECISION (mode) - (i + 1));
5859 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5860 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5861 the bitsize of the mode - 1. This allows simplification of
5862 "a = (b & 8) == 0;" */
5863 if (XEXP (x, 1) == constm1_rtx
5864 && !REG_P (XEXP (x, 0))
5865 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5866 && REG_P (SUBREG_REG (XEXP (x, 0))))
5867 && nonzero_bits (XEXP (x, 0), mode) == 1)
5868 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5869 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5870 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5871 GET_MODE_PRECISION (mode) - 1),
5872 GET_MODE_PRECISION (mode) - 1);
5874 /* If we are adding two things that have no bits in common, convert
5875 the addition into an IOR. This will often be further simplified,
5876 for example in cases like ((a & 1) + (a & 2)), which can
5877 become a & 3. */
5879 if (HWI_COMPUTABLE_MODE_P (mode)
5880 && (nonzero_bits (XEXP (x, 0), mode)
5881 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5883 /* Try to simplify the expression further. */
5884 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5885 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5887 /* If we could, great. If not, do not go ahead with the IOR
5888 replacement, since PLUS appears in many special purpose
5889 address arithmetic instructions. */
5890 if (GET_CODE (temp) != CLOBBER
5891 && (GET_CODE (temp) != IOR
5892 || ((XEXP (temp, 0) != XEXP (x, 0)
5893 || XEXP (temp, 1) != XEXP (x, 1))
5894 && (XEXP (temp, 0) != XEXP (x, 1)
5895 || XEXP (temp, 1) != XEXP (x, 0)))))
5896 return temp;
5898 break;
5900 case MINUS:
5901 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5902 (and <foo> (const_int pow2-1)) */
5903 if (GET_CODE (XEXP (x, 1)) == AND
5904 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5905 && exact_log2 (-UINTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5906 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5907 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5908 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5909 break;
5911 case MULT:
5912 /* If we have (mult (plus A B) C), apply the distributive law and then
5913 the inverse distributive law to see if things simplify. This
5914 occurs mostly in addresses, often when unrolling loops. */
5916 if (GET_CODE (XEXP (x, 0)) == PLUS)
5918 rtx result = distribute_and_simplify_rtx (x, 0);
5919 if (result)
5920 return result;
5923 /* Try simplify a*(b/c) as (a*b)/c. */
5924 if (FLOAT_MODE_P (mode) && flag_associative_math
5925 && GET_CODE (XEXP (x, 0)) == DIV)
5927 rtx tem = simplify_binary_operation (MULT, mode,
5928 XEXP (XEXP (x, 0), 0),
5929 XEXP (x, 1));
5930 if (tem)
5931 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5933 break;
5935 case UDIV:
5936 /* If this is a divide by a power of two, treat it as a shift if
5937 its first operand is a shift. */
5938 if (CONST_INT_P (XEXP (x, 1))
5939 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5940 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5941 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5942 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5943 || GET_CODE (XEXP (x, 0)) == ROTATE
5944 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5945 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5946 break;
5948 case EQ: case NE:
5949 case GT: case GTU: case GE: case GEU:
5950 case LT: case LTU: case LE: case LEU:
5951 case UNEQ: case LTGT:
5952 case UNGT: case UNGE:
5953 case UNLT: case UNLE:
5954 case UNORDERED: case ORDERED:
5955 /* If the first operand is a condition code, we can't do anything
5956 with it. */
5957 if (GET_CODE (XEXP (x, 0)) == COMPARE
5958 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5959 && ! CC0_P (XEXP (x, 0))))
5961 rtx op0 = XEXP (x, 0);
5962 rtx op1 = XEXP (x, 1);
5963 enum rtx_code new_code;
5965 if (GET_CODE (op0) == COMPARE)
5966 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5968 /* Simplify our comparison, if possible. */
5969 new_code = simplify_comparison (code, &op0, &op1);
5971 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5972 if only the low-order bit is possibly nonzero in X (such as when
5973 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5974 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5975 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5976 (plus X 1).
5978 Remove any ZERO_EXTRACT we made when thinking this was a
5979 comparison. It may now be simpler to use, e.g., an AND. If a
5980 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5981 the call to make_compound_operation in the SET case.
5983 Don't apply these optimizations if the caller would
5984 prefer a comparison rather than a value.
5985 E.g., for the condition in an IF_THEN_ELSE most targets need
5986 an explicit comparison. */
5988 if (in_cond)
5991 else if (STORE_FLAG_VALUE == 1
5992 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5993 && op1 == const0_rtx
5994 && mode == GET_MODE (op0)
5995 && nonzero_bits (op0, mode) == 1)
5996 return gen_lowpart (mode,
5997 expand_compound_operation (op0));
5999 else if (STORE_FLAG_VALUE == 1
6000 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6001 && op1 == const0_rtx
6002 && mode == GET_MODE (op0)
6003 && (num_sign_bit_copies (op0, mode)
6004 == GET_MODE_PRECISION (mode)))
6006 op0 = expand_compound_operation (op0);
6007 return simplify_gen_unary (NEG, mode,
6008 gen_lowpart (mode, op0),
6009 mode);
6012 else if (STORE_FLAG_VALUE == 1
6013 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6014 && op1 == const0_rtx
6015 && mode == GET_MODE (op0)
6016 && nonzero_bits (op0, mode) == 1)
6018 op0 = expand_compound_operation (op0);
6019 return simplify_gen_binary (XOR, mode,
6020 gen_lowpart (mode, op0),
6021 const1_rtx);
6024 else if (STORE_FLAG_VALUE == 1
6025 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6026 && op1 == const0_rtx
6027 && mode == GET_MODE (op0)
6028 && (num_sign_bit_copies (op0, mode)
6029 == GET_MODE_PRECISION (mode)))
6031 op0 = expand_compound_operation (op0);
6032 return plus_constant (mode, gen_lowpart (mode, op0), 1);
6035 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6036 those above. */
6037 if (in_cond)
6040 else if (STORE_FLAG_VALUE == -1
6041 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6042 && op1 == const0_rtx
6043 && mode == GET_MODE (op0)
6044 && (num_sign_bit_copies (op0, mode)
6045 == GET_MODE_PRECISION (mode)))
6046 return gen_lowpart (mode,
6047 expand_compound_operation (op0));
6049 else if (STORE_FLAG_VALUE == -1
6050 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6051 && op1 == const0_rtx
6052 && mode == GET_MODE (op0)
6053 && nonzero_bits (op0, mode) == 1)
6055 op0 = expand_compound_operation (op0);
6056 return simplify_gen_unary (NEG, mode,
6057 gen_lowpart (mode, op0),
6058 mode);
6061 else if (STORE_FLAG_VALUE == -1
6062 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6063 && op1 == const0_rtx
6064 && mode == GET_MODE (op0)
6065 && (num_sign_bit_copies (op0, mode)
6066 == GET_MODE_PRECISION (mode)))
6068 op0 = expand_compound_operation (op0);
6069 return simplify_gen_unary (NOT, mode,
6070 gen_lowpart (mode, op0),
6071 mode);
6074 /* If X is 0/1, (eq X 0) is X-1. */
6075 else if (STORE_FLAG_VALUE == -1
6076 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6077 && op1 == const0_rtx
6078 && mode == GET_MODE (op0)
6079 && nonzero_bits (op0, mode) == 1)
6081 op0 = expand_compound_operation (op0);
6082 return plus_constant (mode, gen_lowpart (mode, op0), -1);
6085 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6086 one bit that might be nonzero, we can convert (ne x 0) to
6087 (ashift x c) where C puts the bit in the sign bit. Remove any
6088 AND with STORE_FLAG_VALUE when we are done, since we are only
6089 going to test the sign bit. */
6090 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6091 && HWI_COMPUTABLE_MODE_P (mode)
6092 && val_signbit_p (mode, STORE_FLAG_VALUE)
6093 && op1 == const0_rtx
6094 && mode == GET_MODE (op0)
6095 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
6097 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6098 expand_compound_operation (op0),
6099 GET_MODE_PRECISION (mode) - 1 - i);
6100 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6101 return XEXP (x, 0);
6102 else
6103 return x;
6106 /* If the code changed, return a whole new comparison.
6107 We also need to avoid using SUBST in cases where
6108 simplify_comparison has widened a comparison with a CONST_INT,
6109 since in that case the wider CONST_INT may fail the sanity
6110 checks in do_SUBST. */
6111 if (new_code != code
6112 || (CONST_INT_P (op1)
6113 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6114 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6115 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6117 /* Otherwise, keep this operation, but maybe change its operands.
6118 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6119 SUBST (XEXP (x, 0), op0);
6120 SUBST (XEXP (x, 1), op1);
6122 break;
6124 case IF_THEN_ELSE:
6125 return simplify_if_then_else (x);
6127 case ZERO_EXTRACT:
6128 case SIGN_EXTRACT:
6129 case ZERO_EXTEND:
6130 case SIGN_EXTEND:
6131 /* If we are processing SET_DEST, we are done. */
6132 if (in_dest)
6133 return x;
6135 return expand_compound_operation (x);
6137 case SET:
6138 return simplify_set (x);
6140 case AND:
6141 case IOR:
6142 return simplify_logical (x);
6144 case ASHIFT:
6145 case LSHIFTRT:
6146 case ASHIFTRT:
6147 case ROTATE:
6148 case ROTATERT:
6149 /* If this is a shift by a constant amount, simplify it. */
6150 if (CONST_INT_P (XEXP (x, 1)))
6151 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6152 INTVAL (XEXP (x, 1)));
6154 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6155 SUBST (XEXP (x, 1),
6156 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6157 ((unsigned HOST_WIDE_INT) 1
6158 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
6159 - 1,
6160 0));
6161 break;
6163 default:
6164 break;
6167 return x;
6170 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6172 static rtx
6173 simplify_if_then_else (rtx x)
6175 machine_mode mode = GET_MODE (x);
6176 rtx cond = XEXP (x, 0);
6177 rtx true_rtx = XEXP (x, 1);
6178 rtx false_rtx = XEXP (x, 2);
6179 enum rtx_code true_code = GET_CODE (cond);
6180 int comparison_p = COMPARISON_P (cond);
6181 rtx temp;
6182 int i;
6183 enum rtx_code false_code;
6184 rtx reversed;
6186 /* Simplify storing of the truth value. */
6187 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6188 return simplify_gen_relational (true_code, mode, VOIDmode,
6189 XEXP (cond, 0), XEXP (cond, 1));
6191 /* Also when the truth value has to be reversed. */
6192 if (comparison_p
6193 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6194 && (reversed = reversed_comparison (cond, mode)))
6195 return reversed;
6197 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6198 in it is being compared against certain values. Get the true and false
6199 comparisons and see if that says anything about the value of each arm. */
6201 if (comparison_p
6202 && ((false_code = reversed_comparison_code (cond, NULL))
6203 != UNKNOWN)
6204 && REG_P (XEXP (cond, 0)))
6206 HOST_WIDE_INT nzb;
6207 rtx from = XEXP (cond, 0);
6208 rtx true_val = XEXP (cond, 1);
6209 rtx false_val = true_val;
6210 int swapped = 0;
6212 /* If FALSE_CODE is EQ, swap the codes and arms. */
6214 if (false_code == EQ)
6216 swapped = 1, true_code = EQ, false_code = NE;
6217 std::swap (true_rtx, false_rtx);
6220 /* If we are comparing against zero and the expression being tested has
6221 only a single bit that might be nonzero, that is its value when it is
6222 not equal to zero. Similarly if it is known to be -1 or 0. */
6224 if (true_code == EQ && true_val == const0_rtx
6225 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
6227 false_code = EQ;
6228 false_val = gen_int_mode (nzb, GET_MODE (from));
6230 else if (true_code == EQ && true_val == const0_rtx
6231 && (num_sign_bit_copies (from, GET_MODE (from))
6232 == GET_MODE_PRECISION (GET_MODE (from))))
6234 false_code = EQ;
6235 false_val = constm1_rtx;
6238 /* Now simplify an arm if we know the value of the register in the
6239 branch and it is used in the arm. Be careful due to the potential
6240 of locally-shared RTL. */
6242 if (reg_mentioned_p (from, true_rtx))
6243 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6244 from, true_val),
6245 pc_rtx, pc_rtx, 0, 0, 0);
6246 if (reg_mentioned_p (from, false_rtx))
6247 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6248 from, false_val),
6249 pc_rtx, pc_rtx, 0, 0, 0);
6251 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6252 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6254 true_rtx = XEXP (x, 1);
6255 false_rtx = XEXP (x, 2);
6256 true_code = GET_CODE (cond);
6259 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6260 reversed, do so to avoid needing two sets of patterns for
6261 subtract-and-branch insns. Similarly if we have a constant in the true
6262 arm, the false arm is the same as the first operand of the comparison, or
6263 the false arm is more complicated than the true arm. */
6265 if (comparison_p
6266 && reversed_comparison_code (cond, NULL) != UNKNOWN
6267 && (true_rtx == pc_rtx
6268 || (CONSTANT_P (true_rtx)
6269 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6270 || true_rtx == const0_rtx
6271 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6272 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6273 && !OBJECT_P (false_rtx))
6274 || reg_mentioned_p (true_rtx, false_rtx)
6275 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6277 true_code = reversed_comparison_code (cond, NULL);
6278 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6279 SUBST (XEXP (x, 1), false_rtx);
6280 SUBST (XEXP (x, 2), true_rtx);
6282 std::swap (true_rtx, false_rtx);
6283 cond = XEXP (x, 0);
6285 /* It is possible that the conditional has been simplified out. */
6286 true_code = GET_CODE (cond);
6287 comparison_p = COMPARISON_P (cond);
6290 /* If the two arms are identical, we don't need the comparison. */
6292 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6293 return true_rtx;
6295 /* Convert a == b ? b : a to "a". */
6296 if (true_code == EQ && ! side_effects_p (cond)
6297 && !HONOR_NANS (mode)
6298 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6299 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6300 return false_rtx;
6301 else if (true_code == NE && ! side_effects_p (cond)
6302 && !HONOR_NANS (mode)
6303 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6304 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6305 return true_rtx;
6307 /* Look for cases where we have (abs x) or (neg (abs X)). */
6309 if (GET_MODE_CLASS (mode) == MODE_INT
6310 && comparison_p
6311 && XEXP (cond, 1) == const0_rtx
6312 && GET_CODE (false_rtx) == NEG
6313 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6314 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6315 && ! side_effects_p (true_rtx))
6316 switch (true_code)
6318 case GT:
6319 case GE:
6320 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6321 case LT:
6322 case LE:
6323 return
6324 simplify_gen_unary (NEG, mode,
6325 simplify_gen_unary (ABS, mode, true_rtx, mode),
6326 mode);
6327 default:
6328 break;
6331 /* Look for MIN or MAX. */
6333 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6334 && comparison_p
6335 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6336 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6337 && ! side_effects_p (cond))
6338 switch (true_code)
6340 case GE:
6341 case GT:
6342 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6343 case LE:
6344 case LT:
6345 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6346 case GEU:
6347 case GTU:
6348 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6349 case LEU:
6350 case LTU:
6351 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6352 default:
6353 break;
6356 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6357 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6358 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6359 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6360 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6361 neither 1 or -1, but it isn't worth checking for. */
6363 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6364 && comparison_p
6365 && GET_MODE_CLASS (mode) == MODE_INT
6366 && ! side_effects_p (x))
6368 rtx t = make_compound_operation (true_rtx, SET);
6369 rtx f = make_compound_operation (false_rtx, SET);
6370 rtx cond_op0 = XEXP (cond, 0);
6371 rtx cond_op1 = XEXP (cond, 1);
6372 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6373 machine_mode m = mode;
6374 rtx z = 0, c1 = NULL_RTX;
6376 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6377 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6378 || GET_CODE (t) == ASHIFT
6379 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6380 && rtx_equal_p (XEXP (t, 0), f))
6381 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6383 /* If an identity-zero op is commutative, check whether there
6384 would be a match if we swapped the operands. */
6385 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6386 || GET_CODE (t) == XOR)
6387 && rtx_equal_p (XEXP (t, 1), f))
6388 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6389 else if (GET_CODE (t) == SIGN_EXTEND
6390 && (GET_CODE (XEXP (t, 0)) == PLUS
6391 || GET_CODE (XEXP (t, 0)) == MINUS
6392 || GET_CODE (XEXP (t, 0)) == IOR
6393 || GET_CODE (XEXP (t, 0)) == XOR
6394 || GET_CODE (XEXP (t, 0)) == ASHIFT
6395 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6396 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6397 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6398 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6399 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6400 && (num_sign_bit_copies (f, GET_MODE (f))
6401 > (unsigned int)
6402 (GET_MODE_PRECISION (mode)
6403 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6405 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6406 extend_op = SIGN_EXTEND;
6407 m = GET_MODE (XEXP (t, 0));
6409 else if (GET_CODE (t) == SIGN_EXTEND
6410 && (GET_CODE (XEXP (t, 0)) == PLUS
6411 || GET_CODE (XEXP (t, 0)) == IOR
6412 || GET_CODE (XEXP (t, 0)) == XOR)
6413 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6414 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6415 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6416 && (num_sign_bit_copies (f, GET_MODE (f))
6417 > (unsigned int)
6418 (GET_MODE_PRECISION (mode)
6419 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6421 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6422 extend_op = SIGN_EXTEND;
6423 m = GET_MODE (XEXP (t, 0));
6425 else if (GET_CODE (t) == ZERO_EXTEND
6426 && (GET_CODE (XEXP (t, 0)) == PLUS
6427 || GET_CODE (XEXP (t, 0)) == MINUS
6428 || GET_CODE (XEXP (t, 0)) == IOR
6429 || GET_CODE (XEXP (t, 0)) == XOR
6430 || GET_CODE (XEXP (t, 0)) == ASHIFT
6431 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6432 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6433 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6434 && HWI_COMPUTABLE_MODE_P (mode)
6435 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6436 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6437 && ((nonzero_bits (f, GET_MODE (f))
6438 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6439 == 0))
6441 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6442 extend_op = ZERO_EXTEND;
6443 m = GET_MODE (XEXP (t, 0));
6445 else if (GET_CODE (t) == ZERO_EXTEND
6446 && (GET_CODE (XEXP (t, 0)) == PLUS
6447 || GET_CODE (XEXP (t, 0)) == IOR
6448 || GET_CODE (XEXP (t, 0)) == XOR)
6449 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6450 && HWI_COMPUTABLE_MODE_P (mode)
6451 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6452 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6453 && ((nonzero_bits (f, GET_MODE (f))
6454 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6455 == 0))
6457 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6458 extend_op = ZERO_EXTEND;
6459 m = GET_MODE (XEXP (t, 0));
6462 if (z)
6464 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6465 cond_op0, cond_op1),
6466 pc_rtx, pc_rtx, 0, 0, 0);
6467 temp = simplify_gen_binary (MULT, m, temp,
6468 simplify_gen_binary (MULT, m, c1,
6469 const_true_rtx));
6470 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6471 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6473 if (extend_op != UNKNOWN)
6474 temp = simplify_gen_unary (extend_op, mode, temp, m);
6476 return temp;
6480 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6481 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6482 negation of a single bit, we can convert this operation to a shift. We
6483 can actually do this more generally, but it doesn't seem worth it. */
6485 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6486 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6487 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6488 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6489 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6490 == GET_MODE_PRECISION (mode))
6491 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6492 return
6493 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6494 gen_lowpart (mode, XEXP (cond, 0)), i);
6496 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6497 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6498 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6499 && GET_MODE (XEXP (cond, 0)) == mode
6500 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6501 == nonzero_bits (XEXP (cond, 0), mode)
6502 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6503 return XEXP (cond, 0);
6505 return x;
6508 /* Simplify X, a SET expression. Return the new expression. */
6510 static rtx
6511 simplify_set (rtx x)
6513 rtx src = SET_SRC (x);
6514 rtx dest = SET_DEST (x);
6515 machine_mode mode
6516 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6517 rtx_insn *other_insn;
6518 rtx *cc_use;
6520 /* (set (pc) (return)) gets written as (return). */
6521 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6522 return src;
6524 /* Now that we know for sure which bits of SRC we are using, see if we can
6525 simplify the expression for the object knowing that we only need the
6526 low-order bits. */
6528 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6530 src = force_to_mode (src, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
6531 SUBST (SET_SRC (x), src);
6534 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6535 the comparison result and try to simplify it unless we already have used
6536 undobuf.other_insn. */
6537 if ((GET_MODE_CLASS (mode) == MODE_CC
6538 || GET_CODE (src) == COMPARE
6539 || CC0_P (dest))
6540 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6541 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6542 && COMPARISON_P (*cc_use)
6543 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6545 enum rtx_code old_code = GET_CODE (*cc_use);
6546 enum rtx_code new_code;
6547 rtx op0, op1, tmp;
6548 int other_changed = 0;
6549 rtx inner_compare = NULL_RTX;
6550 machine_mode compare_mode = GET_MODE (dest);
6552 if (GET_CODE (src) == COMPARE)
6554 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6555 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6557 inner_compare = op0;
6558 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6561 else
6562 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6564 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6565 op0, op1);
6566 if (!tmp)
6567 new_code = old_code;
6568 else if (!CONSTANT_P (tmp))
6570 new_code = GET_CODE (tmp);
6571 op0 = XEXP (tmp, 0);
6572 op1 = XEXP (tmp, 1);
6574 else
6576 rtx pat = PATTERN (other_insn);
6577 undobuf.other_insn = other_insn;
6578 SUBST (*cc_use, tmp);
6580 /* Attempt to simplify CC user. */
6581 if (GET_CODE (pat) == SET)
6583 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6584 if (new_rtx != NULL_RTX)
6585 SUBST (SET_SRC (pat), new_rtx);
6588 /* Convert X into a no-op move. */
6589 SUBST (SET_DEST (x), pc_rtx);
6590 SUBST (SET_SRC (x), pc_rtx);
6591 return x;
6594 /* Simplify our comparison, if possible. */
6595 new_code = simplify_comparison (new_code, &op0, &op1);
6597 #ifdef SELECT_CC_MODE
6598 /* If this machine has CC modes other than CCmode, check to see if we
6599 need to use a different CC mode here. */
6600 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6601 compare_mode = GET_MODE (op0);
6602 else if (inner_compare
6603 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6604 && new_code == old_code
6605 && op0 == XEXP (inner_compare, 0)
6606 && op1 == XEXP (inner_compare, 1))
6607 compare_mode = GET_MODE (inner_compare);
6608 else
6609 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6611 /* If the mode changed, we have to change SET_DEST, the mode in the
6612 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6613 a hard register, just build new versions with the proper mode. If it
6614 is a pseudo, we lose unless it is only time we set the pseudo, in
6615 which case we can safely change its mode. */
6616 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6618 if (can_change_dest_mode (dest, 0, compare_mode))
6620 unsigned int regno = REGNO (dest);
6621 rtx new_dest;
6623 if (regno < FIRST_PSEUDO_REGISTER)
6624 new_dest = gen_rtx_REG (compare_mode, regno);
6625 else
6627 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6628 new_dest = regno_reg_rtx[regno];
6631 SUBST (SET_DEST (x), new_dest);
6632 SUBST (XEXP (*cc_use, 0), new_dest);
6633 other_changed = 1;
6635 dest = new_dest;
6638 #endif /* SELECT_CC_MODE */
6640 /* If the code changed, we have to build a new comparison in
6641 undobuf.other_insn. */
6642 if (new_code != old_code)
6644 int other_changed_previously = other_changed;
6645 unsigned HOST_WIDE_INT mask;
6646 rtx old_cc_use = *cc_use;
6648 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6649 dest, const0_rtx));
6650 other_changed = 1;
6652 /* If the only change we made was to change an EQ into an NE or
6653 vice versa, OP0 has only one bit that might be nonzero, and OP1
6654 is zero, check if changing the user of the condition code will
6655 produce a valid insn. If it won't, we can keep the original code
6656 in that insn by surrounding our operation with an XOR. */
6658 if (((old_code == NE && new_code == EQ)
6659 || (old_code == EQ && new_code == NE))
6660 && ! other_changed_previously && op1 == const0_rtx
6661 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6662 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6664 rtx pat = PATTERN (other_insn), note = 0;
6666 if ((recog_for_combine (&pat, other_insn, &note) < 0
6667 && ! check_asm_operands (pat)))
6669 *cc_use = old_cc_use;
6670 other_changed = 0;
6672 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6673 gen_int_mode (mask,
6674 GET_MODE (op0)));
6679 if (other_changed)
6680 undobuf.other_insn = other_insn;
6682 /* Don't generate a compare of a CC with 0, just use that CC. */
6683 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6685 SUBST (SET_SRC (x), op0);
6686 src = SET_SRC (x);
6688 /* Otherwise, if we didn't previously have the same COMPARE we
6689 want, create it from scratch. */
6690 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6691 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6693 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6694 src = SET_SRC (x);
6697 else
6699 /* Get SET_SRC in a form where we have placed back any
6700 compound expressions. Then do the checks below. */
6701 src = make_compound_operation (src, SET);
6702 SUBST (SET_SRC (x), src);
6705 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6706 and X being a REG or (subreg (reg)), we may be able to convert this to
6707 (set (subreg:m2 x) (op)).
6709 We can always do this if M1 is narrower than M2 because that means that
6710 we only care about the low bits of the result.
6712 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6713 perform a narrower operation than requested since the high-order bits will
6714 be undefined. On machine where it is defined, this transformation is safe
6715 as long as M1 and M2 have the same number of words. */
6717 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6718 && !OBJECT_P (SUBREG_REG (src))
6719 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6720 / UNITS_PER_WORD)
6721 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6722 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6723 && (WORD_REGISTER_OPERATIONS
6724 || (GET_MODE_SIZE (GET_MODE (src))
6725 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
6726 #ifdef CANNOT_CHANGE_MODE_CLASS
6727 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6728 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6729 GET_MODE (SUBREG_REG (src)),
6730 GET_MODE (src)))
6731 #endif
6732 && (REG_P (dest)
6733 || (GET_CODE (dest) == SUBREG
6734 && REG_P (SUBREG_REG (dest)))))
6736 SUBST (SET_DEST (x),
6737 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6738 dest));
6739 SUBST (SET_SRC (x), SUBREG_REG (src));
6741 src = SET_SRC (x), dest = SET_DEST (x);
6744 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6745 in SRC. */
6746 if (dest == cc0_rtx
6747 && GET_CODE (src) == SUBREG
6748 && subreg_lowpart_p (src)
6749 && (GET_MODE_PRECISION (GET_MODE (src))
6750 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6752 rtx inner = SUBREG_REG (src);
6753 machine_mode inner_mode = GET_MODE (inner);
6755 /* Here we make sure that we don't have a sign bit on. */
6756 if (val_signbit_known_clear_p (GET_MODE (src),
6757 nonzero_bits (inner, inner_mode)))
6759 SUBST (SET_SRC (x), inner);
6760 src = SET_SRC (x);
6764 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6765 would require a paradoxical subreg. Replace the subreg with a
6766 zero_extend to avoid the reload that would otherwise be required. */
6768 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6769 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6770 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6771 && SUBREG_BYTE (src) == 0
6772 && paradoxical_subreg_p (src)
6773 && MEM_P (SUBREG_REG (src)))
6775 SUBST (SET_SRC (x),
6776 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6777 GET_MODE (src), SUBREG_REG (src)));
6779 src = SET_SRC (x);
6782 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6783 are comparing an item known to be 0 or -1 against 0, use a logical
6784 operation instead. Check for one of the arms being an IOR of the other
6785 arm with some value. We compute three terms to be IOR'ed together. In
6786 practice, at most two will be nonzero. Then we do the IOR's. */
6788 if (GET_CODE (dest) != PC
6789 && GET_CODE (src) == IF_THEN_ELSE
6790 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6791 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6792 && XEXP (XEXP (src, 0), 1) == const0_rtx
6793 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6794 && (!HAVE_conditional_move
6795 || ! can_conditionally_move_p (GET_MODE (src)))
6796 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6797 GET_MODE (XEXP (XEXP (src, 0), 0)))
6798 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6799 && ! side_effects_p (src))
6801 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6802 ? XEXP (src, 1) : XEXP (src, 2));
6803 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6804 ? XEXP (src, 2) : XEXP (src, 1));
6805 rtx term1 = const0_rtx, term2, term3;
6807 if (GET_CODE (true_rtx) == IOR
6808 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6809 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6810 else if (GET_CODE (true_rtx) == IOR
6811 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6812 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6813 else if (GET_CODE (false_rtx) == IOR
6814 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6815 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6816 else if (GET_CODE (false_rtx) == IOR
6817 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6818 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6820 term2 = simplify_gen_binary (AND, GET_MODE (src),
6821 XEXP (XEXP (src, 0), 0), true_rtx);
6822 term3 = simplify_gen_binary (AND, GET_MODE (src),
6823 simplify_gen_unary (NOT, GET_MODE (src),
6824 XEXP (XEXP (src, 0), 0),
6825 GET_MODE (src)),
6826 false_rtx);
6828 SUBST (SET_SRC (x),
6829 simplify_gen_binary (IOR, GET_MODE (src),
6830 simplify_gen_binary (IOR, GET_MODE (src),
6831 term1, term2),
6832 term3));
6834 src = SET_SRC (x);
6837 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6838 whole thing fail. */
6839 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6840 return src;
6841 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6842 return dest;
6843 else
6844 /* Convert this into a field assignment operation, if possible. */
6845 return make_field_assignment (x);
6848 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6849 result. */
6851 static rtx
6852 simplify_logical (rtx x)
6854 machine_mode mode = GET_MODE (x);
6855 rtx op0 = XEXP (x, 0);
6856 rtx op1 = XEXP (x, 1);
6858 switch (GET_CODE (x))
6860 case AND:
6861 /* We can call simplify_and_const_int only if we don't lose
6862 any (sign) bits when converting INTVAL (op1) to
6863 "unsigned HOST_WIDE_INT". */
6864 if (CONST_INT_P (op1)
6865 && (HWI_COMPUTABLE_MODE_P (mode)
6866 || INTVAL (op1) > 0))
6868 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6869 if (GET_CODE (x) != AND)
6870 return x;
6872 op0 = XEXP (x, 0);
6873 op1 = XEXP (x, 1);
6876 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6877 apply the distributive law and then the inverse distributive
6878 law to see if things simplify. */
6879 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6881 rtx result = distribute_and_simplify_rtx (x, 0);
6882 if (result)
6883 return result;
6885 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6887 rtx result = distribute_and_simplify_rtx (x, 1);
6888 if (result)
6889 return result;
6891 break;
6893 case IOR:
6894 /* If we have (ior (and A B) C), apply the distributive law and then
6895 the inverse distributive law to see if things simplify. */
6897 if (GET_CODE (op0) == AND)
6899 rtx result = distribute_and_simplify_rtx (x, 0);
6900 if (result)
6901 return result;
6904 if (GET_CODE (op1) == AND)
6906 rtx result = distribute_and_simplify_rtx (x, 1);
6907 if (result)
6908 return result;
6910 break;
6912 default:
6913 gcc_unreachable ();
6916 return x;
6919 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6920 operations" because they can be replaced with two more basic operations.
6921 ZERO_EXTEND is also considered "compound" because it can be replaced with
6922 an AND operation, which is simpler, though only one operation.
6924 The function expand_compound_operation is called with an rtx expression
6925 and will convert it to the appropriate shifts and AND operations,
6926 simplifying at each stage.
6928 The function make_compound_operation is called to convert an expression
6929 consisting of shifts and ANDs into the equivalent compound expression.
6930 It is the inverse of this function, loosely speaking. */
6932 static rtx
6933 expand_compound_operation (rtx x)
6935 unsigned HOST_WIDE_INT pos = 0, len;
6936 int unsignedp = 0;
6937 unsigned int modewidth;
6938 rtx tem;
6940 switch (GET_CODE (x))
6942 case ZERO_EXTEND:
6943 unsignedp = 1;
6944 case SIGN_EXTEND:
6945 /* We can't necessarily use a const_int for a multiword mode;
6946 it depends on implicitly extending the value.
6947 Since we don't know the right way to extend it,
6948 we can't tell whether the implicit way is right.
6950 Even for a mode that is no wider than a const_int,
6951 we can't win, because we need to sign extend one of its bits through
6952 the rest of it, and we don't know which bit. */
6953 if (CONST_INT_P (XEXP (x, 0)))
6954 return x;
6956 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6957 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6958 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6959 reloaded. If not for that, MEM's would very rarely be safe.
6961 Reject MODEs bigger than a word, because we might not be able
6962 to reference a two-register group starting with an arbitrary register
6963 (and currently gen_lowpart might crash for a SUBREG). */
6965 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6966 return x;
6968 /* Reject MODEs that aren't scalar integers because turning vector
6969 or complex modes into shifts causes problems. */
6971 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6972 return x;
6974 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
6975 /* If the inner object has VOIDmode (the only way this can happen
6976 is if it is an ASM_OPERANDS), we can't do anything since we don't
6977 know how much masking to do. */
6978 if (len == 0)
6979 return x;
6981 break;
6983 case ZERO_EXTRACT:
6984 unsignedp = 1;
6986 /* ... fall through ... */
6988 case SIGN_EXTRACT:
6989 /* If the operand is a CLOBBER, just return it. */
6990 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6991 return XEXP (x, 0);
6993 if (!CONST_INT_P (XEXP (x, 1))
6994 || !CONST_INT_P (XEXP (x, 2))
6995 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6996 return x;
6998 /* Reject MODEs that aren't scalar integers because turning vector
6999 or complex modes into shifts causes problems. */
7001 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7002 return x;
7004 len = INTVAL (XEXP (x, 1));
7005 pos = INTVAL (XEXP (x, 2));
7007 /* This should stay within the object being extracted, fail otherwise. */
7008 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
7009 return x;
7011 if (BITS_BIG_ENDIAN)
7012 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
7014 break;
7016 default:
7017 return x;
7019 /* Convert sign extension to zero extension, if we know that the high
7020 bit is not set, as this is easier to optimize. It will be converted
7021 back to cheaper alternative in make_extraction. */
7022 if (GET_CODE (x) == SIGN_EXTEND
7023 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7024 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7025 & ~(((unsigned HOST_WIDE_INT)
7026 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
7027 >> 1))
7028 == 0)))
7030 machine_mode mode = GET_MODE (x);
7031 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7032 rtx temp2 = expand_compound_operation (temp);
7034 /* Make sure this is a profitable operation. */
7035 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7036 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7037 return temp2;
7038 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7039 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7040 return temp;
7041 else
7042 return x;
7045 /* We can optimize some special cases of ZERO_EXTEND. */
7046 if (GET_CODE (x) == ZERO_EXTEND)
7048 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7049 know that the last value didn't have any inappropriate bits
7050 set. */
7051 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7052 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7053 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7054 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
7055 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7056 return XEXP (XEXP (x, 0), 0);
7058 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7059 if (GET_CODE (XEXP (x, 0)) == SUBREG
7060 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7061 && subreg_lowpart_p (XEXP (x, 0))
7062 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7063 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
7064 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7065 return SUBREG_REG (XEXP (x, 0));
7067 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7068 is a comparison and STORE_FLAG_VALUE permits. This is like
7069 the first case, but it works even when GET_MODE (x) is larger
7070 than HOST_WIDE_INT. */
7071 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7072 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7073 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7074 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7075 <= HOST_BITS_PER_WIDE_INT)
7076 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7077 return XEXP (XEXP (x, 0), 0);
7079 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7080 if (GET_CODE (XEXP (x, 0)) == SUBREG
7081 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7082 && subreg_lowpart_p (XEXP (x, 0))
7083 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7084 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7085 <= HOST_BITS_PER_WIDE_INT)
7086 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7087 return SUBREG_REG (XEXP (x, 0));
7091 /* If we reach here, we want to return a pair of shifts. The inner
7092 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7093 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7094 logical depending on the value of UNSIGNEDP.
7096 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7097 converted into an AND of a shift.
7099 We must check for the case where the left shift would have a negative
7100 count. This can happen in a case like (x >> 31) & 255 on machines
7101 that can't shift by a constant. On those machines, we would first
7102 combine the shift with the AND to produce a variable-position
7103 extraction. Then the constant of 31 would be substituted in
7104 to produce such a position. */
7106 modewidth = GET_MODE_PRECISION (GET_MODE (x));
7107 if (modewidth >= pos + len)
7109 machine_mode mode = GET_MODE (x);
7110 tem = gen_lowpart (mode, XEXP (x, 0));
7111 if (!tem || GET_CODE (tem) == CLOBBER)
7112 return x;
7113 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7114 tem, modewidth - pos - len);
7115 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7116 mode, tem, modewidth - len);
7118 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7119 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
7120 simplify_shift_const (NULL_RTX, LSHIFTRT,
7121 GET_MODE (x),
7122 XEXP (x, 0), pos),
7123 ((unsigned HOST_WIDE_INT) 1 << len) - 1);
7124 else
7125 /* Any other cases we can't handle. */
7126 return x;
7128 /* If we couldn't do this for some reason, return the original
7129 expression. */
7130 if (GET_CODE (tem) == CLOBBER)
7131 return x;
7133 return tem;
7136 /* X is a SET which contains an assignment of one object into
7137 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7138 or certain SUBREGS). If possible, convert it into a series of
7139 logical operations.
7141 We half-heartedly support variable positions, but do not at all
7142 support variable lengths. */
7144 static const_rtx
7145 expand_field_assignment (const_rtx x)
7147 rtx inner;
7148 rtx pos; /* Always counts from low bit. */
7149 int len;
7150 rtx mask, cleared, masked;
7151 machine_mode compute_mode;
7153 /* Loop until we find something we can't simplify. */
7154 while (1)
7156 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7157 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7159 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7160 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7161 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7163 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7164 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7166 inner = XEXP (SET_DEST (x), 0);
7167 len = INTVAL (XEXP (SET_DEST (x), 1));
7168 pos = XEXP (SET_DEST (x), 2);
7170 /* A constant position should stay within the width of INNER. */
7171 if (CONST_INT_P (pos)
7172 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7173 break;
7175 if (BITS_BIG_ENDIAN)
7177 if (CONST_INT_P (pos))
7178 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7179 - INTVAL (pos));
7180 else if (GET_CODE (pos) == MINUS
7181 && CONST_INT_P (XEXP (pos, 1))
7182 && (INTVAL (XEXP (pos, 1))
7183 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7184 /* If position is ADJUST - X, new position is X. */
7185 pos = XEXP (pos, 0);
7186 else
7188 HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
7189 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7190 gen_int_mode (prec - len,
7191 GET_MODE (pos)),
7192 pos);
7197 /* A SUBREG between two modes that occupy the same numbers of words
7198 can be done by moving the SUBREG to the source. */
7199 else if (GET_CODE (SET_DEST (x)) == SUBREG
7200 /* We need SUBREGs to compute nonzero_bits properly. */
7201 && nonzero_sign_valid
7202 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
7203 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7204 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
7205 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
7207 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7208 gen_lowpart
7209 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7210 SET_SRC (x)));
7211 continue;
7213 else
7214 break;
7216 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7217 inner = SUBREG_REG (inner);
7219 compute_mode = GET_MODE (inner);
7221 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7222 if (! SCALAR_INT_MODE_P (compute_mode))
7224 machine_mode imode;
7226 /* Don't do anything for vector or complex integral types. */
7227 if (! FLOAT_MODE_P (compute_mode))
7228 break;
7230 /* Try to find an integral mode to pun with. */
7231 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
7232 if (imode == BLKmode)
7233 break;
7235 compute_mode = imode;
7236 inner = gen_lowpart (imode, inner);
7239 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7240 if (len >= HOST_BITS_PER_WIDE_INT)
7241 break;
7243 /* Now compute the equivalent expression. Make a copy of INNER
7244 for the SET_DEST in case it is a MEM into which we will substitute;
7245 we don't want shared RTL in that case. */
7246 mask = gen_int_mode (((unsigned HOST_WIDE_INT) 1 << len) - 1,
7247 compute_mode);
7248 cleared = simplify_gen_binary (AND, compute_mode,
7249 simplify_gen_unary (NOT, compute_mode,
7250 simplify_gen_binary (ASHIFT,
7251 compute_mode,
7252 mask, pos),
7253 compute_mode),
7254 inner);
7255 masked = simplify_gen_binary (ASHIFT, compute_mode,
7256 simplify_gen_binary (
7257 AND, compute_mode,
7258 gen_lowpart (compute_mode, SET_SRC (x)),
7259 mask),
7260 pos);
7262 x = gen_rtx_SET (copy_rtx (inner),
7263 simplify_gen_binary (IOR, compute_mode,
7264 cleared, masked));
7267 return x;
7270 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7271 it is an RTX that represents the (variable) starting position; otherwise,
7272 POS is the (constant) starting bit position. Both are counted from the LSB.
7274 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7276 IN_DEST is nonzero if this is a reference in the destination of a SET.
7277 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7278 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7279 be used.
7281 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7282 ZERO_EXTRACT should be built even for bits starting at bit 0.
7284 MODE is the desired mode of the result (if IN_DEST == 0).
7286 The result is an RTX for the extraction or NULL_RTX if the target
7287 can't handle it. */
7289 static rtx
7290 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7291 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7292 int in_dest, int in_compare)
7294 /* This mode describes the size of the storage area
7295 to fetch the overall value from. Within that, we
7296 ignore the POS lowest bits, etc. */
7297 machine_mode is_mode = GET_MODE (inner);
7298 machine_mode inner_mode;
7299 machine_mode wanted_inner_mode;
7300 machine_mode wanted_inner_reg_mode = word_mode;
7301 machine_mode pos_mode = word_mode;
7302 machine_mode extraction_mode = word_mode;
7303 machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7304 rtx new_rtx = 0;
7305 rtx orig_pos_rtx = pos_rtx;
7306 HOST_WIDE_INT orig_pos;
7308 if (pos_rtx && CONST_INT_P (pos_rtx))
7309 pos = INTVAL (pos_rtx), pos_rtx = 0;
7311 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7313 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7314 consider just the QI as the memory to extract from.
7315 The subreg adds or removes high bits; its mode is
7316 irrelevant to the meaning of this extraction,
7317 since POS and LEN count from the lsb. */
7318 if (MEM_P (SUBREG_REG (inner)))
7319 is_mode = GET_MODE (SUBREG_REG (inner));
7320 inner = SUBREG_REG (inner);
7322 else if (GET_CODE (inner) == ASHIFT
7323 && CONST_INT_P (XEXP (inner, 1))
7324 && pos_rtx == 0 && pos == 0
7325 && len > UINTVAL (XEXP (inner, 1)))
7327 /* We're extracting the least significant bits of an rtx
7328 (ashift X (const_int C)), where LEN > C. Extract the
7329 least significant (LEN - C) bits of X, giving an rtx
7330 whose mode is MODE, then shift it left C times. */
7331 new_rtx = make_extraction (mode, XEXP (inner, 0),
7332 0, 0, len - INTVAL (XEXP (inner, 1)),
7333 unsignedp, in_dest, in_compare);
7334 if (new_rtx != 0)
7335 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7337 else if (GET_CODE (inner) == TRUNCATE)
7338 inner = XEXP (inner, 0);
7340 inner_mode = GET_MODE (inner);
7342 /* See if this can be done without an extraction. We never can if the
7343 width of the field is not the same as that of some integer mode. For
7344 registers, we can only avoid the extraction if the position is at the
7345 low-order bit and this is either not in the destination or we have the
7346 appropriate STRICT_LOW_PART operation available.
7348 For MEM, we can avoid an extract if the field starts on an appropriate
7349 boundary and we can change the mode of the memory reference. */
7351 if (tmode != BLKmode
7352 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7353 && !MEM_P (inner)
7354 && (inner_mode == tmode
7355 || !REG_P (inner)
7356 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7357 || reg_truncated_to_mode (tmode, inner))
7358 && (! in_dest
7359 || (REG_P (inner)
7360 && have_insn_for (STRICT_LOW_PART, tmode))))
7361 || (MEM_P (inner) && pos_rtx == 0
7362 && (pos
7363 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7364 : BITS_PER_UNIT)) == 0
7365 /* We can't do this if we are widening INNER_MODE (it
7366 may not be aligned, for one thing). */
7367 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7368 && (inner_mode == tmode
7369 || (! mode_dependent_address_p (XEXP (inner, 0),
7370 MEM_ADDR_SPACE (inner))
7371 && ! MEM_VOLATILE_P (inner))))))
7373 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7374 field. If the original and current mode are the same, we need not
7375 adjust the offset. Otherwise, we do if bytes big endian.
7377 If INNER is not a MEM, get a piece consisting of just the field
7378 of interest (in this case POS % BITS_PER_WORD must be 0). */
7380 if (MEM_P (inner))
7382 HOST_WIDE_INT offset;
7384 /* POS counts from lsb, but make OFFSET count in memory order. */
7385 if (BYTES_BIG_ENDIAN)
7386 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7387 else
7388 offset = pos / BITS_PER_UNIT;
7390 new_rtx = adjust_address_nv (inner, tmode, offset);
7392 else if (REG_P (inner))
7394 if (tmode != inner_mode)
7396 /* We can't call gen_lowpart in a DEST since we
7397 always want a SUBREG (see below) and it would sometimes
7398 return a new hard register. */
7399 if (pos || in_dest)
7401 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7403 if (WORDS_BIG_ENDIAN
7404 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7405 final_word = ((GET_MODE_SIZE (inner_mode)
7406 - GET_MODE_SIZE (tmode))
7407 / UNITS_PER_WORD) - final_word;
7409 final_word *= UNITS_PER_WORD;
7410 if (BYTES_BIG_ENDIAN &&
7411 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7412 final_word += (GET_MODE_SIZE (inner_mode)
7413 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7415 /* Avoid creating invalid subregs, for example when
7416 simplifying (x>>32)&255. */
7417 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7418 return NULL_RTX;
7420 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7422 else
7423 new_rtx = gen_lowpart (tmode, inner);
7425 else
7426 new_rtx = inner;
7428 else
7429 new_rtx = force_to_mode (inner, tmode,
7430 len >= HOST_BITS_PER_WIDE_INT
7431 ? ~(unsigned HOST_WIDE_INT) 0
7432 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7435 /* If this extraction is going into the destination of a SET,
7436 make a STRICT_LOW_PART unless we made a MEM. */
7438 if (in_dest)
7439 return (MEM_P (new_rtx) ? new_rtx
7440 : (GET_CODE (new_rtx) != SUBREG
7441 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7442 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7444 if (mode == tmode)
7445 return new_rtx;
7447 if (CONST_SCALAR_INT_P (new_rtx))
7448 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7449 mode, new_rtx, tmode);
7451 /* If we know that no extraneous bits are set, and that the high
7452 bit is not set, convert the extraction to the cheaper of
7453 sign and zero extension, that are equivalent in these cases. */
7454 if (flag_expensive_optimizations
7455 && (HWI_COMPUTABLE_MODE_P (tmode)
7456 && ((nonzero_bits (new_rtx, tmode)
7457 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7458 == 0)))
7460 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7461 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7463 /* Prefer ZERO_EXTENSION, since it gives more information to
7464 backends. */
7465 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7466 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7467 return temp;
7468 return temp1;
7471 /* Otherwise, sign- or zero-extend unless we already are in the
7472 proper mode. */
7474 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7475 mode, new_rtx));
7478 /* Unless this is a COMPARE or we have a funny memory reference,
7479 don't do anything with zero-extending field extracts starting at
7480 the low-order bit since they are simple AND operations. */
7481 if (pos_rtx == 0 && pos == 0 && ! in_dest
7482 && ! in_compare && unsignedp)
7483 return 0;
7485 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7486 if the position is not a constant and the length is not 1. In all
7487 other cases, we would only be going outside our object in cases when
7488 an original shift would have been undefined. */
7489 if (MEM_P (inner)
7490 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7491 || (pos_rtx != 0 && len != 1)))
7492 return 0;
7494 enum extraction_pattern pattern = (in_dest ? EP_insv
7495 : unsignedp ? EP_extzv : EP_extv);
7497 /* If INNER is not from memory, we want it to have the mode of a register
7498 extraction pattern's structure operand, or word_mode if there is no
7499 such pattern. The same applies to extraction_mode and pos_mode
7500 and their respective operands.
7502 For memory, assume that the desired extraction_mode and pos_mode
7503 are the same as for a register operation, since at present we don't
7504 have named patterns for aligned memory structures. */
7505 struct extraction_insn insn;
7506 if (get_best_reg_extraction_insn (&insn, pattern,
7507 GET_MODE_BITSIZE (inner_mode), mode))
7509 wanted_inner_reg_mode = insn.struct_mode;
7510 pos_mode = insn.pos_mode;
7511 extraction_mode = insn.field_mode;
7514 /* Never narrow an object, since that might not be safe. */
7516 if (mode != VOIDmode
7517 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7518 extraction_mode = mode;
7520 if (!MEM_P (inner))
7521 wanted_inner_mode = wanted_inner_reg_mode;
7522 else
7524 /* Be careful not to go beyond the extracted object and maintain the
7525 natural alignment of the memory. */
7526 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7527 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7528 > GET_MODE_BITSIZE (wanted_inner_mode))
7530 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7531 gcc_assert (wanted_inner_mode != VOIDmode);
7535 orig_pos = pos;
7537 if (BITS_BIG_ENDIAN)
7539 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7540 BITS_BIG_ENDIAN style. If position is constant, compute new
7541 position. Otherwise, build subtraction.
7542 Note that POS is relative to the mode of the original argument.
7543 If it's a MEM we need to recompute POS relative to that.
7544 However, if we're extracting from (or inserting into) a register,
7545 we want to recompute POS relative to wanted_inner_mode. */
7546 int width = (MEM_P (inner)
7547 ? GET_MODE_BITSIZE (is_mode)
7548 : GET_MODE_BITSIZE (wanted_inner_mode));
7550 if (pos_rtx == 0)
7551 pos = width - len - pos;
7552 else
7553 pos_rtx
7554 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7555 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7556 pos_rtx);
7557 /* POS may be less than 0 now, but we check for that below.
7558 Note that it can only be less than 0 if !MEM_P (inner). */
7561 /* If INNER has a wider mode, and this is a constant extraction, try to
7562 make it smaller and adjust the byte to point to the byte containing
7563 the value. */
7564 if (wanted_inner_mode != VOIDmode
7565 && inner_mode != wanted_inner_mode
7566 && ! pos_rtx
7567 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7568 && MEM_P (inner)
7569 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7570 && ! MEM_VOLATILE_P (inner))
7572 int offset = 0;
7574 /* The computations below will be correct if the machine is big
7575 endian in both bits and bytes or little endian in bits and bytes.
7576 If it is mixed, we must adjust. */
7578 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7579 adjust OFFSET to compensate. */
7580 if (BYTES_BIG_ENDIAN
7581 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7582 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7584 /* We can now move to the desired byte. */
7585 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7586 * GET_MODE_SIZE (wanted_inner_mode);
7587 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7589 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7590 && is_mode != wanted_inner_mode)
7591 offset = (GET_MODE_SIZE (is_mode)
7592 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7594 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7597 /* If INNER is not memory, get it into the proper mode. If we are changing
7598 its mode, POS must be a constant and smaller than the size of the new
7599 mode. */
7600 else if (!MEM_P (inner))
7602 /* On the LHS, don't create paradoxical subregs implicitely truncating
7603 the register unless TRULY_NOOP_TRUNCATION. */
7604 if (in_dest
7605 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7606 wanted_inner_mode))
7607 return NULL_RTX;
7609 if (GET_MODE (inner) != wanted_inner_mode
7610 && (pos_rtx != 0
7611 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7612 return NULL_RTX;
7614 if (orig_pos < 0)
7615 return NULL_RTX;
7617 inner = force_to_mode (inner, wanted_inner_mode,
7618 pos_rtx
7619 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7620 ? ~(unsigned HOST_WIDE_INT) 0
7621 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7622 << orig_pos),
7626 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7627 have to zero extend. Otherwise, we can just use a SUBREG. */
7628 if (pos_rtx != 0
7629 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7631 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7632 GET_MODE (pos_rtx));
7634 /* If we know that no extraneous bits are set, and that the high
7635 bit is not set, convert extraction to cheaper one - either
7636 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7637 cases. */
7638 if (flag_expensive_optimizations
7639 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7640 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7641 & ~(((unsigned HOST_WIDE_INT)
7642 GET_MODE_MASK (GET_MODE (pos_rtx)))
7643 >> 1))
7644 == 0)))
7646 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7647 GET_MODE (pos_rtx));
7649 /* Prefer ZERO_EXTENSION, since it gives more information to
7650 backends. */
7651 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7652 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7653 temp = temp1;
7655 pos_rtx = temp;
7658 /* Make POS_RTX unless we already have it and it is correct. If we don't
7659 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7660 be a CONST_INT. */
7661 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7662 pos_rtx = orig_pos_rtx;
7664 else if (pos_rtx == 0)
7665 pos_rtx = GEN_INT (pos);
7667 /* Make the required operation. See if we can use existing rtx. */
7668 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7669 extraction_mode, inner, GEN_INT (len), pos_rtx);
7670 if (! in_dest)
7671 new_rtx = gen_lowpart (mode, new_rtx);
7673 return new_rtx;
7676 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7677 with any other operations in X. Return X without that shift if so. */
7679 static rtx
7680 extract_left_shift (rtx x, int count)
7682 enum rtx_code code = GET_CODE (x);
7683 machine_mode mode = GET_MODE (x);
7684 rtx tem;
7686 switch (code)
7688 case ASHIFT:
7689 /* This is the shift itself. If it is wide enough, we will return
7690 either the value being shifted if the shift count is equal to
7691 COUNT or a shift for the difference. */
7692 if (CONST_INT_P (XEXP (x, 1))
7693 && INTVAL (XEXP (x, 1)) >= count)
7694 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7695 INTVAL (XEXP (x, 1)) - count);
7696 break;
7698 case NEG: case NOT:
7699 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7700 return simplify_gen_unary (code, mode, tem, mode);
7702 break;
7704 case PLUS: case IOR: case XOR: case AND:
7705 /* If we can safely shift this constant and we find the inner shift,
7706 make a new operation. */
7707 if (CONST_INT_P (XEXP (x, 1))
7708 && (UINTVAL (XEXP (x, 1))
7709 & ((((unsigned HOST_WIDE_INT) 1 << count)) - 1)) == 0
7710 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7712 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7713 return simplify_gen_binary (code, mode, tem,
7714 gen_int_mode (val, mode));
7716 break;
7718 default:
7719 break;
7722 return 0;
7725 /* Look at the expression rooted at X. Look for expressions
7726 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7727 Form these expressions.
7729 Return the new rtx, usually just X.
7731 Also, for machines like the VAX that don't have logical shift insns,
7732 try to convert logical to arithmetic shift operations in cases where
7733 they are equivalent. This undoes the canonicalizations to logical
7734 shifts done elsewhere.
7736 We try, as much as possible, to re-use rtl expressions to save memory.
7738 IN_CODE says what kind of expression we are processing. Normally, it is
7739 SET. In a memory address it is MEM. When processing the arguments of
7740 a comparison or a COMPARE against zero, it is COMPARE. */
7743 make_compound_operation (rtx x, enum rtx_code in_code)
7745 enum rtx_code code = GET_CODE (x);
7746 machine_mode mode = GET_MODE (x);
7747 int mode_width = GET_MODE_PRECISION (mode);
7748 rtx rhs, lhs;
7749 enum rtx_code next_code;
7750 int i, j;
7751 rtx new_rtx = 0;
7752 rtx tem;
7753 const char *fmt;
7755 /* Select the code to be used in recursive calls. Once we are inside an
7756 address, we stay there. If we have a comparison, set to COMPARE,
7757 but once inside, go back to our default of SET. */
7759 next_code = (code == MEM ? MEM
7760 : ((code == COMPARE || COMPARISON_P (x))
7761 && XEXP (x, 1) == const0_rtx) ? COMPARE
7762 : in_code == COMPARE ? SET : in_code);
7764 /* Process depending on the code of this operation. If NEW is set
7765 nonzero, it will be returned. */
7767 switch (code)
7769 case ASHIFT:
7770 /* Convert shifts by constants into multiplications if inside
7771 an address. */
7772 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7773 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7774 && INTVAL (XEXP (x, 1)) >= 0
7775 && SCALAR_INT_MODE_P (mode))
7777 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7778 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7780 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7781 if (GET_CODE (new_rtx) == NEG)
7783 new_rtx = XEXP (new_rtx, 0);
7784 multval = -multval;
7786 multval = trunc_int_for_mode (multval, mode);
7787 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7789 break;
7791 case PLUS:
7792 lhs = XEXP (x, 0);
7793 rhs = XEXP (x, 1);
7794 lhs = make_compound_operation (lhs, next_code);
7795 rhs = make_compound_operation (rhs, next_code);
7796 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7797 && SCALAR_INT_MODE_P (mode))
7799 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7800 XEXP (lhs, 1));
7801 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7803 else if (GET_CODE (lhs) == MULT
7804 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7806 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7807 simplify_gen_unary (NEG, mode,
7808 XEXP (lhs, 1),
7809 mode));
7810 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7812 else
7814 SUBST (XEXP (x, 0), lhs);
7815 SUBST (XEXP (x, 1), rhs);
7816 goto maybe_swap;
7818 x = gen_lowpart (mode, new_rtx);
7819 goto maybe_swap;
7821 case MINUS:
7822 lhs = XEXP (x, 0);
7823 rhs = XEXP (x, 1);
7824 lhs = make_compound_operation (lhs, next_code);
7825 rhs = make_compound_operation (rhs, next_code);
7826 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7827 && SCALAR_INT_MODE_P (mode))
7829 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7830 XEXP (rhs, 1));
7831 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7833 else if (GET_CODE (rhs) == MULT
7834 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7836 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7837 simplify_gen_unary (NEG, mode,
7838 XEXP (rhs, 1),
7839 mode));
7840 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7842 else
7844 SUBST (XEXP (x, 0), lhs);
7845 SUBST (XEXP (x, 1), rhs);
7846 return x;
7848 return gen_lowpart (mode, new_rtx);
7850 case AND:
7851 /* If the second operand is not a constant, we can't do anything
7852 with it. */
7853 if (!CONST_INT_P (XEXP (x, 1)))
7854 break;
7856 /* If the constant is a power of two minus one and the first operand
7857 is a logical right shift, make an extraction. */
7858 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7859 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7861 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7862 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7863 0, in_code == COMPARE);
7866 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7867 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7868 && subreg_lowpart_p (XEXP (x, 0))
7869 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7870 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7872 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7873 next_code);
7874 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7875 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7876 0, in_code == COMPARE);
7878 /* If that didn't give anything, see if the AND simplifies on
7879 its own. */
7880 if (!new_rtx && i >= 0)
7882 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7883 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
7884 0, in_code == COMPARE);
7887 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7888 else if ((GET_CODE (XEXP (x, 0)) == XOR
7889 || GET_CODE (XEXP (x, 0)) == IOR)
7890 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7891 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7892 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7894 /* Apply the distributive law, and then try to make extractions. */
7895 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7896 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7897 XEXP (x, 1)),
7898 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7899 XEXP (x, 1)));
7900 new_rtx = make_compound_operation (new_rtx, in_code);
7903 /* If we are have (and (rotate X C) M) and C is larger than the number
7904 of bits in M, this is an extraction. */
7906 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7907 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7908 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7909 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7911 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7912 new_rtx = make_extraction (mode, new_rtx,
7913 (GET_MODE_PRECISION (mode)
7914 - INTVAL (XEXP (XEXP (x, 0), 1))),
7915 NULL_RTX, i, 1, 0, in_code == COMPARE);
7918 /* On machines without logical shifts, if the operand of the AND is
7919 a logical shift and our mask turns off all the propagated sign
7920 bits, we can replace the logical shift with an arithmetic shift. */
7921 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7922 && !have_insn_for (LSHIFTRT, mode)
7923 && have_insn_for (ASHIFTRT, mode)
7924 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7925 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7926 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7927 && mode_width <= HOST_BITS_PER_WIDE_INT)
7929 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7931 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7932 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7933 SUBST (XEXP (x, 0),
7934 gen_rtx_ASHIFTRT (mode,
7935 make_compound_operation
7936 (XEXP (XEXP (x, 0), 0), next_code),
7937 XEXP (XEXP (x, 0), 1)));
7940 /* If the constant is one less than a power of two, this might be
7941 representable by an extraction even if no shift is present.
7942 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7943 we are in a COMPARE. */
7944 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7945 new_rtx = make_extraction (mode,
7946 make_compound_operation (XEXP (x, 0),
7947 next_code),
7948 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7950 /* If we are in a comparison and this is an AND with a power of two,
7951 convert this into the appropriate bit extract. */
7952 else if (in_code == COMPARE
7953 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
7954 new_rtx = make_extraction (mode,
7955 make_compound_operation (XEXP (x, 0),
7956 next_code),
7957 i, NULL_RTX, 1, 1, 0, 1);
7959 break;
7961 case LSHIFTRT:
7962 /* If the sign bit is known to be zero, replace this with an
7963 arithmetic shift. */
7964 if (have_insn_for (ASHIFTRT, mode)
7965 && ! have_insn_for (LSHIFTRT, mode)
7966 && mode_width <= HOST_BITS_PER_WIDE_INT
7967 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7969 new_rtx = gen_rtx_ASHIFTRT (mode,
7970 make_compound_operation (XEXP (x, 0),
7971 next_code),
7972 XEXP (x, 1));
7973 break;
7976 /* ... fall through ... */
7978 case ASHIFTRT:
7979 lhs = XEXP (x, 0);
7980 rhs = XEXP (x, 1);
7982 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7983 this is a SIGN_EXTRACT. */
7984 if (CONST_INT_P (rhs)
7985 && GET_CODE (lhs) == ASHIFT
7986 && CONST_INT_P (XEXP (lhs, 1))
7987 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7988 && INTVAL (XEXP (lhs, 1)) >= 0
7989 && INTVAL (rhs) < mode_width)
7991 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7992 new_rtx = make_extraction (mode, new_rtx,
7993 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7994 NULL_RTX, mode_width - INTVAL (rhs),
7995 code == LSHIFTRT, 0, in_code == COMPARE);
7996 break;
7999 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8000 If so, try to merge the shifts into a SIGN_EXTEND. We could
8001 also do this for some cases of SIGN_EXTRACT, but it doesn't
8002 seem worth the effort; the case checked for occurs on Alpha. */
8004 if (!OBJECT_P (lhs)
8005 && ! (GET_CODE (lhs) == SUBREG
8006 && (OBJECT_P (SUBREG_REG (lhs))))
8007 && CONST_INT_P (rhs)
8008 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8009 && INTVAL (rhs) < mode_width
8010 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
8011 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
8012 0, NULL_RTX, mode_width - INTVAL (rhs),
8013 code == LSHIFTRT, 0, in_code == COMPARE);
8015 break;
8017 case SUBREG:
8018 /* Call ourselves recursively on the inner expression. If we are
8019 narrowing the object and it has a different RTL code from
8020 what it originally did, do this SUBREG as a force_to_mode. */
8022 rtx inner = SUBREG_REG (x), simplified;
8023 enum rtx_code subreg_code = in_code;
8025 /* If in_code is COMPARE, it isn't always safe to pass it through
8026 to the recursive make_compound_operation call. */
8027 if (subreg_code == COMPARE
8028 && (!subreg_lowpart_p (x)
8029 || GET_CODE (inner) == SUBREG
8030 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8031 is (const_int 0), rather than
8032 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0). */
8033 || (GET_CODE (inner) == AND
8034 && CONST_INT_P (XEXP (inner, 1))
8035 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8036 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8037 >= GET_MODE_BITSIZE (mode))))
8038 subreg_code = SET;
8040 tem = make_compound_operation (inner, subreg_code);
8042 simplified
8043 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8044 if (simplified)
8045 tem = simplified;
8047 if (GET_CODE (tem) != GET_CODE (inner)
8048 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8049 && subreg_lowpart_p (x))
8051 rtx newer
8052 = force_to_mode (tem, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
8054 /* If we have something other than a SUBREG, we might have
8055 done an expansion, so rerun ourselves. */
8056 if (GET_CODE (newer) != SUBREG)
8057 newer = make_compound_operation (newer, in_code);
8059 /* force_to_mode can expand compounds. If it just re-expanded the
8060 compound, use gen_lowpart to convert to the desired mode. */
8061 if (rtx_equal_p (newer, x)
8062 /* Likewise if it re-expanded the compound only partially.
8063 This happens for SUBREG of ZERO_EXTRACT if they extract
8064 the same number of bits. */
8065 || (GET_CODE (newer) == SUBREG
8066 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8067 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8068 && GET_CODE (inner) == AND
8069 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8070 return gen_lowpart (GET_MODE (x), tem);
8072 return newer;
8075 if (simplified)
8076 return tem;
8078 break;
8080 default:
8081 break;
8084 if (new_rtx)
8086 x = gen_lowpart (mode, new_rtx);
8087 code = GET_CODE (x);
8090 /* Now recursively process each operand of this operation. We need to
8091 handle ZERO_EXTEND specially so that we don't lose track of the
8092 inner mode. */
8093 if (GET_CODE (x) == ZERO_EXTEND)
8095 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8096 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8097 new_rtx, GET_MODE (XEXP (x, 0)));
8098 if (tem)
8099 return tem;
8100 SUBST (XEXP (x, 0), new_rtx);
8101 return x;
8104 fmt = GET_RTX_FORMAT (code);
8105 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8106 if (fmt[i] == 'e')
8108 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8109 SUBST (XEXP (x, i), new_rtx);
8111 else if (fmt[i] == 'E')
8112 for (j = 0; j < XVECLEN (x, i); j++)
8114 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8115 SUBST (XVECEXP (x, i, j), new_rtx);
8118 maybe_swap:
8119 /* If this is a commutative operation, the changes to the operands
8120 may have made it noncanonical. */
8121 if (COMMUTATIVE_ARITH_P (x)
8122 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
8124 tem = XEXP (x, 0);
8125 SUBST (XEXP (x, 0), XEXP (x, 1));
8126 SUBST (XEXP (x, 1), tem);
8129 return x;
8132 /* Given M see if it is a value that would select a field of bits
8133 within an item, but not the entire word. Return -1 if not.
8134 Otherwise, return the starting position of the field, where 0 is the
8135 low-order bit.
8137 *PLEN is set to the length of the field. */
8139 static int
8140 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8142 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8143 int pos = m ? ctz_hwi (m) : -1;
8144 int len = 0;
8146 if (pos >= 0)
8147 /* Now shift off the low-order zero bits and see if we have a
8148 power of two minus 1. */
8149 len = exact_log2 ((m >> pos) + 1);
8151 if (len <= 0)
8152 pos = -1;
8154 *plen = len;
8155 return pos;
8158 /* If X refers to a register that equals REG in value, replace these
8159 references with REG. */
8160 static rtx
8161 canon_reg_for_combine (rtx x, rtx reg)
8163 rtx op0, op1, op2;
8164 const char *fmt;
8165 int i;
8166 bool copied;
8168 enum rtx_code code = GET_CODE (x);
8169 switch (GET_RTX_CLASS (code))
8171 case RTX_UNARY:
8172 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8173 if (op0 != XEXP (x, 0))
8174 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8175 GET_MODE (reg));
8176 break;
8178 case RTX_BIN_ARITH:
8179 case RTX_COMM_ARITH:
8180 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8181 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8182 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8183 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8184 break;
8186 case RTX_COMPARE:
8187 case RTX_COMM_COMPARE:
8188 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8189 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8190 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8191 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8192 GET_MODE (op0), op0, op1);
8193 break;
8195 case RTX_TERNARY:
8196 case RTX_BITFIELD_OPS:
8197 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8198 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8199 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8200 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8201 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8202 GET_MODE (op0), op0, op1, op2);
8204 case RTX_OBJ:
8205 if (REG_P (x))
8207 if (rtx_equal_p (get_last_value (reg), x)
8208 || rtx_equal_p (reg, get_last_value (x)))
8209 return reg;
8210 else
8211 break;
8214 /* fall through */
8216 default:
8217 fmt = GET_RTX_FORMAT (code);
8218 copied = false;
8219 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8220 if (fmt[i] == 'e')
8222 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8223 if (op != XEXP (x, i))
8225 if (!copied)
8227 copied = true;
8228 x = copy_rtx (x);
8230 XEXP (x, i) = op;
8233 else if (fmt[i] == 'E')
8235 int j;
8236 for (j = 0; j < XVECLEN (x, i); j++)
8238 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8239 if (op != XVECEXP (x, i, j))
8241 if (!copied)
8243 copied = true;
8244 x = copy_rtx (x);
8246 XVECEXP (x, i, j) = op;
8251 break;
8254 return x;
8257 /* Return X converted to MODE. If the value is already truncated to
8258 MODE we can just return a subreg even though in the general case we
8259 would need an explicit truncation. */
8261 static rtx
8262 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8264 if (!CONST_INT_P (x)
8265 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8266 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8267 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8269 /* Bit-cast X into an integer mode. */
8270 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8271 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
8272 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
8273 x, GET_MODE (x));
8276 return gen_lowpart (mode, x);
8279 /* See if X can be simplified knowing that we will only refer to it in
8280 MODE and will only refer to those bits that are nonzero in MASK.
8281 If other bits are being computed or if masking operations are done
8282 that select a superset of the bits in MASK, they can sometimes be
8283 ignored.
8285 Return a possibly simplified expression, but always convert X to
8286 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8288 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8289 are all off in X. This is used when X will be complemented, by either
8290 NOT, NEG, or XOR. */
8292 static rtx
8293 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8294 int just_select)
8296 enum rtx_code code = GET_CODE (x);
8297 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8298 machine_mode op_mode;
8299 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8300 rtx op0, op1, temp;
8302 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8303 code below will do the wrong thing since the mode of such an
8304 expression is VOIDmode.
8306 Also do nothing if X is a CLOBBER; this can happen if X was
8307 the return value from a call to gen_lowpart. */
8308 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8309 return x;
8311 /* We want to perform the operation in its present mode unless we know
8312 that the operation is valid in MODE, in which case we do the operation
8313 in MODE. */
8314 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8315 && have_insn_for (code, mode))
8316 ? mode : GET_MODE (x));
8318 /* It is not valid to do a right-shift in a narrower mode
8319 than the one it came in with. */
8320 if ((code == LSHIFTRT || code == ASHIFTRT)
8321 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8322 op_mode = GET_MODE (x);
8324 /* Truncate MASK to fit OP_MODE. */
8325 if (op_mode)
8326 mask &= GET_MODE_MASK (op_mode);
8328 /* When we have an arithmetic operation, or a shift whose count we
8329 do not know, we need to assume that all bits up to the highest-order
8330 bit in MASK will be needed. This is how we form such a mask. */
8331 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
8332 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
8333 else
8334 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
8335 - 1);
8337 /* Determine what bits of X are guaranteed to be (non)zero. */
8338 nonzero = nonzero_bits (x, mode);
8340 /* If none of the bits in X are needed, return a zero. */
8341 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8342 x = const0_rtx;
8344 /* If X is a CONST_INT, return a new one. Do this here since the
8345 test below will fail. */
8346 if (CONST_INT_P (x))
8348 if (SCALAR_INT_MODE_P (mode))
8349 return gen_int_mode (INTVAL (x) & mask, mode);
8350 else
8352 x = GEN_INT (INTVAL (x) & mask);
8353 return gen_lowpart_common (mode, x);
8357 /* If X is narrower than MODE and we want all the bits in X's mode, just
8358 get X in the proper mode. */
8359 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8360 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8361 return gen_lowpart (mode, x);
8363 /* We can ignore the effect of a SUBREG if it narrows the mode or
8364 if the constant masks to zero all the bits the mode doesn't have. */
8365 if (GET_CODE (x) == SUBREG
8366 && subreg_lowpart_p (x)
8367 && ((GET_MODE_SIZE (GET_MODE (x))
8368 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8369 || (0 == (mask
8370 & GET_MODE_MASK (GET_MODE (x))
8371 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8372 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8374 /* The arithmetic simplifications here only work for scalar integer modes. */
8375 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8376 return gen_lowpart_or_truncate (mode, x);
8378 switch (code)
8380 case CLOBBER:
8381 /* If X is a (clobber (const_int)), return it since we know we are
8382 generating something that won't match. */
8383 return x;
8385 case SIGN_EXTEND:
8386 case ZERO_EXTEND:
8387 case ZERO_EXTRACT:
8388 case SIGN_EXTRACT:
8389 x = expand_compound_operation (x);
8390 if (GET_CODE (x) != code)
8391 return force_to_mode (x, mode, mask, next_select);
8392 break;
8394 case TRUNCATE:
8395 /* Similarly for a truncate. */
8396 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8398 case AND:
8399 /* If this is an AND with a constant, convert it into an AND
8400 whose constant is the AND of that constant with MASK. If it
8401 remains an AND of MASK, delete it since it is redundant. */
8403 if (CONST_INT_P (XEXP (x, 1)))
8405 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8406 mask & INTVAL (XEXP (x, 1)));
8408 /* If X is still an AND, see if it is an AND with a mask that
8409 is just some low-order bits. If so, and it is MASK, we don't
8410 need it. */
8412 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8413 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8414 == mask))
8415 x = XEXP (x, 0);
8417 /* If it remains an AND, try making another AND with the bits
8418 in the mode mask that aren't in MASK turned on. If the
8419 constant in the AND is wide enough, this might make a
8420 cheaper constant. */
8422 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8423 && GET_MODE_MASK (GET_MODE (x)) != mask
8424 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8426 unsigned HOST_WIDE_INT cval
8427 = UINTVAL (XEXP (x, 1))
8428 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8429 rtx y;
8431 y = simplify_gen_binary (AND, GET_MODE (x), XEXP (x, 0),
8432 gen_int_mode (cval, GET_MODE (x)));
8433 if (set_src_cost (y, GET_MODE (x), optimize_this_for_speed_p)
8434 < set_src_cost (x, GET_MODE (x), optimize_this_for_speed_p))
8435 x = y;
8438 break;
8441 goto binop;
8443 case PLUS:
8444 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8445 low-order bits (as in an alignment operation) and FOO is already
8446 aligned to that boundary, mask C1 to that boundary as well.
8447 This may eliminate that PLUS and, later, the AND. */
8450 unsigned int width = GET_MODE_PRECISION (mode);
8451 unsigned HOST_WIDE_INT smask = mask;
8453 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8454 number, sign extend it. */
8456 if (width < HOST_BITS_PER_WIDE_INT
8457 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8458 smask |= HOST_WIDE_INT_M1U << width;
8460 if (CONST_INT_P (XEXP (x, 1))
8461 && exact_log2 (- smask) >= 0
8462 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8463 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8464 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8465 (INTVAL (XEXP (x, 1)) & smask)),
8466 mode, smask, next_select);
8469 /* ... fall through ... */
8471 case MULT:
8472 /* Substituting into the operands of a widening MULT is not likely to
8473 create RTL matching a machine insn. */
8474 if (code == MULT
8475 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8476 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8477 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8478 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8479 && REG_P (XEXP (XEXP (x, 0), 0))
8480 && REG_P (XEXP (XEXP (x, 1), 0)))
8481 return gen_lowpart_or_truncate (mode, x);
8483 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8484 most significant bit in MASK since carries from those bits will
8485 affect the bits we are interested in. */
8486 mask = fuller_mask;
8487 goto binop;
8489 case MINUS:
8490 /* If X is (minus C Y) where C's least set bit is larger than any bit
8491 in the mask, then we may replace with (neg Y). */
8492 if (CONST_INT_P (XEXP (x, 0))
8493 && ((UINTVAL (XEXP (x, 0)) & -UINTVAL (XEXP (x, 0))) > mask))
8495 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8496 GET_MODE (x));
8497 return force_to_mode (x, mode, mask, next_select);
8500 /* Similarly, if C contains every bit in the fuller_mask, then we may
8501 replace with (not Y). */
8502 if (CONST_INT_P (XEXP (x, 0))
8503 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8505 x = simplify_gen_unary (NOT, GET_MODE (x),
8506 XEXP (x, 1), GET_MODE (x));
8507 return force_to_mode (x, mode, mask, next_select);
8510 mask = fuller_mask;
8511 goto binop;
8513 case IOR:
8514 case XOR:
8515 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8516 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8517 operation which may be a bitfield extraction. Ensure that the
8518 constant we form is not wider than the mode of X. */
8520 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8521 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8522 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8523 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8524 && CONST_INT_P (XEXP (x, 1))
8525 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8526 + floor_log2 (INTVAL (XEXP (x, 1))))
8527 < GET_MODE_PRECISION (GET_MODE (x)))
8528 && (UINTVAL (XEXP (x, 1))
8529 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8531 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8532 << INTVAL (XEXP (XEXP (x, 0), 1)),
8533 GET_MODE (x));
8534 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8535 XEXP (XEXP (x, 0), 0), temp);
8536 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8537 XEXP (XEXP (x, 0), 1));
8538 return force_to_mode (x, mode, mask, next_select);
8541 binop:
8542 /* For most binary operations, just propagate into the operation and
8543 change the mode if we have an operation of that mode. */
8545 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8546 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8548 /* If we ended up truncating both operands, truncate the result of the
8549 operation instead. */
8550 if (GET_CODE (op0) == TRUNCATE
8551 && GET_CODE (op1) == TRUNCATE)
8553 op0 = XEXP (op0, 0);
8554 op1 = XEXP (op1, 0);
8557 op0 = gen_lowpart_or_truncate (op_mode, op0);
8558 op1 = gen_lowpart_or_truncate (op_mode, op1);
8560 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8561 x = simplify_gen_binary (code, op_mode, op0, op1);
8562 break;
8564 case ASHIFT:
8565 /* For left shifts, do the same, but just for the first operand.
8566 However, we cannot do anything with shifts where we cannot
8567 guarantee that the counts are smaller than the size of the mode
8568 because such a count will have a different meaning in a
8569 wider mode. */
8571 if (! (CONST_INT_P (XEXP (x, 1))
8572 && INTVAL (XEXP (x, 1)) >= 0
8573 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8574 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8575 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8576 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8577 break;
8579 /* If the shift count is a constant and we can do arithmetic in
8580 the mode of the shift, refine which bits we need. Otherwise, use the
8581 conservative form of the mask. */
8582 if (CONST_INT_P (XEXP (x, 1))
8583 && INTVAL (XEXP (x, 1)) >= 0
8584 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8585 && HWI_COMPUTABLE_MODE_P (op_mode))
8586 mask >>= INTVAL (XEXP (x, 1));
8587 else
8588 mask = fuller_mask;
8590 op0 = gen_lowpart_or_truncate (op_mode,
8591 force_to_mode (XEXP (x, 0), op_mode,
8592 mask, next_select));
8594 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8595 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8596 break;
8598 case LSHIFTRT:
8599 /* Here we can only do something if the shift count is a constant,
8600 this shift constant is valid for the host, and we can do arithmetic
8601 in OP_MODE. */
8603 if (CONST_INT_P (XEXP (x, 1))
8604 && INTVAL (XEXP (x, 1)) >= 0
8605 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8606 && HWI_COMPUTABLE_MODE_P (op_mode))
8608 rtx inner = XEXP (x, 0);
8609 unsigned HOST_WIDE_INT inner_mask;
8611 /* Select the mask of the bits we need for the shift operand. */
8612 inner_mask = mask << INTVAL (XEXP (x, 1));
8614 /* We can only change the mode of the shift if we can do arithmetic
8615 in the mode of the shift and INNER_MASK is no wider than the
8616 width of X's mode. */
8617 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8618 op_mode = GET_MODE (x);
8620 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8622 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8623 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8626 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8627 shift and AND produces only copies of the sign bit (C2 is one less
8628 than a power of two), we can do this with just a shift. */
8630 if (GET_CODE (x) == LSHIFTRT
8631 && CONST_INT_P (XEXP (x, 1))
8632 /* The shift puts one of the sign bit copies in the least significant
8633 bit. */
8634 && ((INTVAL (XEXP (x, 1))
8635 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8636 >= GET_MODE_PRECISION (GET_MODE (x)))
8637 && exact_log2 (mask + 1) >= 0
8638 /* Number of bits left after the shift must be more than the mask
8639 needs. */
8640 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8641 <= GET_MODE_PRECISION (GET_MODE (x)))
8642 /* Must be more sign bit copies than the mask needs. */
8643 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8644 >= exact_log2 (mask + 1)))
8645 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8646 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8647 - exact_log2 (mask + 1)));
8649 goto shiftrt;
8651 case ASHIFTRT:
8652 /* If we are just looking for the sign bit, we don't need this shift at
8653 all, even if it has a variable count. */
8654 if (val_signbit_p (GET_MODE (x), mask))
8655 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8657 /* If this is a shift by a constant, get a mask that contains those bits
8658 that are not copies of the sign bit. We then have two cases: If
8659 MASK only includes those bits, this can be a logical shift, which may
8660 allow simplifications. If MASK is a single-bit field not within
8661 those bits, we are requesting a copy of the sign bit and hence can
8662 shift the sign bit to the appropriate location. */
8664 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8665 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8667 int i;
8669 /* If the considered data is wider than HOST_WIDE_INT, we can't
8670 represent a mask for all its bits in a single scalar.
8671 But we only care about the lower bits, so calculate these. */
8673 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8675 nonzero = ~(unsigned HOST_WIDE_INT) 0;
8677 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8678 is the number of bits a full-width mask would have set.
8679 We need only shift if these are fewer than nonzero can
8680 hold. If not, we must keep all bits set in nonzero. */
8682 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8683 < HOST_BITS_PER_WIDE_INT)
8684 nonzero >>= INTVAL (XEXP (x, 1))
8685 + HOST_BITS_PER_WIDE_INT
8686 - GET_MODE_PRECISION (GET_MODE (x)) ;
8688 else
8690 nonzero = GET_MODE_MASK (GET_MODE (x));
8691 nonzero >>= INTVAL (XEXP (x, 1));
8694 if ((mask & ~nonzero) == 0)
8696 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8697 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8698 if (GET_CODE (x) != ASHIFTRT)
8699 return force_to_mode (x, mode, mask, next_select);
8702 else if ((i = exact_log2 (mask)) >= 0)
8704 x = simplify_shift_const
8705 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8706 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8708 if (GET_CODE (x) != ASHIFTRT)
8709 return force_to_mode (x, mode, mask, next_select);
8713 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8714 even if the shift count isn't a constant. */
8715 if (mask == 1)
8716 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8717 XEXP (x, 0), XEXP (x, 1));
8719 shiftrt:
8721 /* If this is a zero- or sign-extension operation that just affects bits
8722 we don't care about, remove it. Be sure the call above returned
8723 something that is still a shift. */
8725 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8726 && CONST_INT_P (XEXP (x, 1))
8727 && INTVAL (XEXP (x, 1)) >= 0
8728 && (INTVAL (XEXP (x, 1))
8729 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8730 && GET_CODE (XEXP (x, 0)) == ASHIFT
8731 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8732 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8733 next_select);
8735 break;
8737 case ROTATE:
8738 case ROTATERT:
8739 /* If the shift count is constant and we can do computations
8740 in the mode of X, compute where the bits we care about are.
8741 Otherwise, we can't do anything. Don't change the mode of
8742 the shift or propagate MODE into the shift, though. */
8743 if (CONST_INT_P (XEXP (x, 1))
8744 && INTVAL (XEXP (x, 1)) >= 0)
8746 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8747 GET_MODE (x),
8748 gen_int_mode (mask, GET_MODE (x)),
8749 XEXP (x, 1));
8750 if (temp && CONST_INT_P (temp))
8751 x = simplify_gen_binary (code, GET_MODE (x),
8752 force_to_mode (XEXP (x, 0), GET_MODE (x),
8753 INTVAL (temp), next_select),
8754 XEXP (x, 1));
8756 break;
8758 case NEG:
8759 /* If we just want the low-order bit, the NEG isn't needed since it
8760 won't change the low-order bit. */
8761 if (mask == 1)
8762 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8764 /* We need any bits less significant than the most significant bit in
8765 MASK since carries from those bits will affect the bits we are
8766 interested in. */
8767 mask = fuller_mask;
8768 goto unop;
8770 case NOT:
8771 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8772 same as the XOR case above. Ensure that the constant we form is not
8773 wider than the mode of X. */
8775 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8776 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8777 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8778 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8779 < GET_MODE_PRECISION (GET_MODE (x)))
8780 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8782 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8783 GET_MODE (x));
8784 temp = simplify_gen_binary (XOR, GET_MODE (x),
8785 XEXP (XEXP (x, 0), 0), temp);
8786 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8787 temp, XEXP (XEXP (x, 0), 1));
8789 return force_to_mode (x, mode, mask, next_select);
8792 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8793 use the full mask inside the NOT. */
8794 mask = fuller_mask;
8796 unop:
8797 op0 = gen_lowpart_or_truncate (op_mode,
8798 force_to_mode (XEXP (x, 0), mode, mask,
8799 next_select));
8800 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8801 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8802 break;
8804 case NE:
8805 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8806 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8807 which is equal to STORE_FLAG_VALUE. */
8808 if ((mask & ~STORE_FLAG_VALUE) == 0
8809 && XEXP (x, 1) == const0_rtx
8810 && GET_MODE (XEXP (x, 0)) == mode
8811 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8812 && (nonzero_bits (XEXP (x, 0), mode)
8813 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8814 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8816 break;
8818 case IF_THEN_ELSE:
8819 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8820 written in a narrower mode. We play it safe and do not do so. */
8822 op0 = gen_lowpart_or_truncate (GET_MODE (x),
8823 force_to_mode (XEXP (x, 1), mode,
8824 mask, next_select));
8825 op1 = gen_lowpart_or_truncate (GET_MODE (x),
8826 force_to_mode (XEXP (x, 2), mode,
8827 mask, next_select));
8828 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
8829 x = simplify_gen_ternary (IF_THEN_ELSE, GET_MODE (x),
8830 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
8831 op0, op1);
8832 break;
8834 default:
8835 break;
8838 /* Ensure we return a value of the proper mode. */
8839 return gen_lowpart_or_truncate (mode, x);
8842 /* Return nonzero if X is an expression that has one of two values depending on
8843 whether some other value is zero or nonzero. In that case, we return the
8844 value that is being tested, *PTRUE is set to the value if the rtx being
8845 returned has a nonzero value, and *PFALSE is set to the other alternative.
8847 If we return zero, we set *PTRUE and *PFALSE to X. */
8849 static rtx
8850 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8852 machine_mode mode = GET_MODE (x);
8853 enum rtx_code code = GET_CODE (x);
8854 rtx cond0, cond1, true0, true1, false0, false1;
8855 unsigned HOST_WIDE_INT nz;
8857 /* If we are comparing a value against zero, we are done. */
8858 if ((code == NE || code == EQ)
8859 && XEXP (x, 1) == const0_rtx)
8861 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8862 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8863 return XEXP (x, 0);
8866 /* If this is a unary operation whose operand has one of two values, apply
8867 our opcode to compute those values. */
8868 else if (UNARY_P (x)
8869 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8871 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8872 *pfalse = simplify_gen_unary (code, mode, false0,
8873 GET_MODE (XEXP (x, 0)));
8874 return cond0;
8877 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8878 make can't possibly match and would suppress other optimizations. */
8879 else if (code == COMPARE)
8882 /* If this is a binary operation, see if either side has only one of two
8883 values. If either one does or if both do and they are conditional on
8884 the same value, compute the new true and false values. */
8885 else if (BINARY_P (x))
8887 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8888 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8890 if ((cond0 != 0 || cond1 != 0)
8891 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8893 /* If if_then_else_cond returned zero, then true/false are the
8894 same rtl. We must copy one of them to prevent invalid rtl
8895 sharing. */
8896 if (cond0 == 0)
8897 true0 = copy_rtx (true0);
8898 else if (cond1 == 0)
8899 true1 = copy_rtx (true1);
8901 if (COMPARISON_P (x))
8903 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8904 true0, true1);
8905 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8906 false0, false1);
8908 else
8910 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8911 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8914 return cond0 ? cond0 : cond1;
8917 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8918 operands is zero when the other is nonzero, and vice-versa,
8919 and STORE_FLAG_VALUE is 1 or -1. */
8921 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8922 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8923 || code == UMAX)
8924 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8926 rtx op0 = XEXP (XEXP (x, 0), 1);
8927 rtx op1 = XEXP (XEXP (x, 1), 1);
8929 cond0 = XEXP (XEXP (x, 0), 0);
8930 cond1 = XEXP (XEXP (x, 1), 0);
8932 if (COMPARISON_P (cond0)
8933 && COMPARISON_P (cond1)
8934 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8935 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8936 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8937 || ((swap_condition (GET_CODE (cond0))
8938 == reversed_comparison_code (cond1, NULL))
8939 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8940 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8941 && ! side_effects_p (x))
8943 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8944 *pfalse = simplify_gen_binary (MULT, mode,
8945 (code == MINUS
8946 ? simplify_gen_unary (NEG, mode,
8947 op1, mode)
8948 : op1),
8949 const_true_rtx);
8950 return cond0;
8954 /* Similarly for MULT, AND and UMIN, except that for these the result
8955 is always zero. */
8956 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8957 && (code == MULT || code == AND || code == UMIN)
8958 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8960 cond0 = XEXP (XEXP (x, 0), 0);
8961 cond1 = XEXP (XEXP (x, 1), 0);
8963 if (COMPARISON_P (cond0)
8964 && COMPARISON_P (cond1)
8965 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8966 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8967 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8968 || ((swap_condition (GET_CODE (cond0))
8969 == reversed_comparison_code (cond1, NULL))
8970 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8971 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8972 && ! side_effects_p (x))
8974 *ptrue = *pfalse = const0_rtx;
8975 return cond0;
8980 else if (code == IF_THEN_ELSE)
8982 /* If we have IF_THEN_ELSE already, extract the condition and
8983 canonicalize it if it is NE or EQ. */
8984 cond0 = XEXP (x, 0);
8985 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8986 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8987 return XEXP (cond0, 0);
8988 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8990 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8991 return XEXP (cond0, 0);
8993 else
8994 return cond0;
8997 /* If X is a SUBREG, we can narrow both the true and false values
8998 if the inner expression, if there is a condition. */
8999 else if (code == SUBREG
9000 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
9001 &true0, &false0)))
9003 true0 = simplify_gen_subreg (mode, true0,
9004 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9005 false0 = simplify_gen_subreg (mode, false0,
9006 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9007 if (true0 && false0)
9009 *ptrue = true0;
9010 *pfalse = false0;
9011 return cond0;
9015 /* If X is a constant, this isn't special and will cause confusions
9016 if we treat it as such. Likewise if it is equivalent to a constant. */
9017 else if (CONSTANT_P (x)
9018 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9021 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9022 will be least confusing to the rest of the compiler. */
9023 else if (mode == BImode)
9025 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9026 return x;
9029 /* If X is known to be either 0 or -1, those are the true and
9030 false values when testing X. */
9031 else if (x == constm1_rtx || x == const0_rtx
9032 || (mode != VOIDmode
9033 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
9035 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9036 return x;
9039 /* Likewise for 0 or a single bit. */
9040 else if (HWI_COMPUTABLE_MODE_P (mode)
9041 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
9043 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9044 return x;
9047 /* Otherwise fail; show no condition with true and false values the same. */
9048 *ptrue = *pfalse = x;
9049 return 0;
9052 /* Return the value of expression X given the fact that condition COND
9053 is known to be true when applied to REG as its first operand and VAL
9054 as its second. X is known to not be shared and so can be modified in
9055 place.
9057 We only handle the simplest cases, and specifically those cases that
9058 arise with IF_THEN_ELSE expressions. */
9060 static rtx
9061 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9063 enum rtx_code code = GET_CODE (x);
9064 const char *fmt;
9065 int i, j;
9067 if (side_effects_p (x))
9068 return x;
9070 /* If either operand of the condition is a floating point value,
9071 then we have to avoid collapsing an EQ comparison. */
9072 if (cond == EQ
9073 && rtx_equal_p (x, reg)
9074 && ! FLOAT_MODE_P (GET_MODE (x))
9075 && ! FLOAT_MODE_P (GET_MODE (val)))
9076 return val;
9078 if (cond == UNEQ && rtx_equal_p (x, reg))
9079 return val;
9081 /* If X is (abs REG) and we know something about REG's relationship
9082 with zero, we may be able to simplify this. */
9084 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9085 switch (cond)
9087 case GE: case GT: case EQ:
9088 return XEXP (x, 0);
9089 case LT: case LE:
9090 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9091 XEXP (x, 0),
9092 GET_MODE (XEXP (x, 0)));
9093 default:
9094 break;
9097 /* The only other cases we handle are MIN, MAX, and comparisons if the
9098 operands are the same as REG and VAL. */
9100 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9102 if (rtx_equal_p (XEXP (x, 0), val))
9104 std::swap (val, reg);
9105 cond = swap_condition (cond);
9108 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9110 if (COMPARISON_P (x))
9112 if (comparison_dominates_p (cond, code))
9113 return const_true_rtx;
9115 code = reversed_comparison_code (x, NULL);
9116 if (code != UNKNOWN
9117 && comparison_dominates_p (cond, code))
9118 return const0_rtx;
9119 else
9120 return x;
9122 else if (code == SMAX || code == SMIN
9123 || code == UMIN || code == UMAX)
9125 int unsignedp = (code == UMIN || code == UMAX);
9127 /* Do not reverse the condition when it is NE or EQ.
9128 This is because we cannot conclude anything about
9129 the value of 'SMAX (x, y)' when x is not equal to y,
9130 but we can when x equals y. */
9131 if ((code == SMAX || code == UMAX)
9132 && ! (cond == EQ || cond == NE))
9133 cond = reverse_condition (cond);
9135 switch (cond)
9137 case GE: case GT:
9138 return unsignedp ? x : XEXP (x, 1);
9139 case LE: case LT:
9140 return unsignedp ? x : XEXP (x, 0);
9141 case GEU: case GTU:
9142 return unsignedp ? XEXP (x, 1) : x;
9143 case LEU: case LTU:
9144 return unsignedp ? XEXP (x, 0) : x;
9145 default:
9146 break;
9151 else if (code == SUBREG)
9153 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9154 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9156 if (SUBREG_REG (x) != r)
9158 /* We must simplify subreg here, before we lose track of the
9159 original inner_mode. */
9160 new_rtx = simplify_subreg (GET_MODE (x), r,
9161 inner_mode, SUBREG_BYTE (x));
9162 if (new_rtx)
9163 return new_rtx;
9164 else
9165 SUBST (SUBREG_REG (x), r);
9168 return x;
9170 /* We don't have to handle SIGN_EXTEND here, because even in the
9171 case of replacing something with a modeless CONST_INT, a
9172 CONST_INT is already (supposed to be) a valid sign extension for
9173 its narrower mode, which implies it's already properly
9174 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9175 story is different. */
9176 else if (code == ZERO_EXTEND)
9178 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9179 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9181 if (XEXP (x, 0) != r)
9183 /* We must simplify the zero_extend here, before we lose
9184 track of the original inner_mode. */
9185 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9186 r, inner_mode);
9187 if (new_rtx)
9188 return new_rtx;
9189 else
9190 SUBST (XEXP (x, 0), r);
9193 return x;
9196 fmt = GET_RTX_FORMAT (code);
9197 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9199 if (fmt[i] == 'e')
9200 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9201 else if (fmt[i] == 'E')
9202 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9203 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9204 cond, reg, val));
9207 return x;
9210 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9211 assignment as a field assignment. */
9213 static int
9214 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9216 if (widen_x && GET_MODE (x) != GET_MODE (y))
9218 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (y)))
9219 return 0;
9220 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9221 return 0;
9222 /* For big endian, adjust the memory offset. */
9223 if (BYTES_BIG_ENDIAN)
9224 x = adjust_address_nv (x, GET_MODE (y),
9225 -subreg_lowpart_offset (GET_MODE (x),
9226 GET_MODE (y)));
9227 else
9228 x = adjust_address_nv (x, GET_MODE (y), 0);
9231 if (x == y || rtx_equal_p (x, y))
9232 return 1;
9234 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9235 return 0;
9237 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9238 Note that all SUBREGs of MEM are paradoxical; otherwise they
9239 would have been rewritten. */
9240 if (MEM_P (x) && GET_CODE (y) == SUBREG
9241 && MEM_P (SUBREG_REG (y))
9242 && rtx_equal_p (SUBREG_REG (y),
9243 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9244 return 1;
9246 if (MEM_P (y) && GET_CODE (x) == SUBREG
9247 && MEM_P (SUBREG_REG (x))
9248 && rtx_equal_p (SUBREG_REG (x),
9249 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9250 return 1;
9252 /* We used to see if get_last_value of X and Y were the same but that's
9253 not correct. In one direction, we'll cause the assignment to have
9254 the wrong destination and in the case, we'll import a register into this
9255 insn that might have already have been dead. So fail if none of the
9256 above cases are true. */
9257 return 0;
9260 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9261 Return that assignment if so.
9263 We only handle the most common cases. */
9265 static rtx
9266 make_field_assignment (rtx x)
9268 rtx dest = SET_DEST (x);
9269 rtx src = SET_SRC (x);
9270 rtx assign;
9271 rtx rhs, lhs;
9272 HOST_WIDE_INT c1;
9273 HOST_WIDE_INT pos;
9274 unsigned HOST_WIDE_INT len;
9275 rtx other;
9276 machine_mode mode;
9278 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9279 a clear of a one-bit field. We will have changed it to
9280 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9281 for a SUBREG. */
9283 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9284 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9285 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9286 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9288 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9289 1, 1, 1, 0);
9290 if (assign != 0)
9291 return gen_rtx_SET (assign, const0_rtx);
9292 return x;
9295 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9296 && subreg_lowpart_p (XEXP (src, 0))
9297 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9298 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9299 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9300 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9301 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9302 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9304 assign = make_extraction (VOIDmode, dest, 0,
9305 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9306 1, 1, 1, 0);
9307 if (assign != 0)
9308 return gen_rtx_SET (assign, const0_rtx);
9309 return x;
9312 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9313 one-bit field. */
9314 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9315 && XEXP (XEXP (src, 0), 0) == const1_rtx
9316 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9318 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9319 1, 1, 1, 0);
9320 if (assign != 0)
9321 return gen_rtx_SET (assign, const1_rtx);
9322 return x;
9325 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9326 SRC is an AND with all bits of that field set, then we can discard
9327 the AND. */
9328 if (GET_CODE (dest) == ZERO_EXTRACT
9329 && CONST_INT_P (XEXP (dest, 1))
9330 && GET_CODE (src) == AND
9331 && CONST_INT_P (XEXP (src, 1)))
9333 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9334 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9335 unsigned HOST_WIDE_INT ze_mask;
9337 if (width >= HOST_BITS_PER_WIDE_INT)
9338 ze_mask = -1;
9339 else
9340 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9342 /* Complete overlap. We can remove the source AND. */
9343 if ((and_mask & ze_mask) == ze_mask)
9344 return gen_rtx_SET (dest, XEXP (src, 0));
9346 /* Partial overlap. We can reduce the source AND. */
9347 if ((and_mask & ze_mask) != and_mask)
9349 mode = GET_MODE (src);
9350 src = gen_rtx_AND (mode, XEXP (src, 0),
9351 gen_int_mode (and_mask & ze_mask, mode));
9352 return gen_rtx_SET (dest, src);
9356 /* The other case we handle is assignments into a constant-position
9357 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9358 a mask that has all one bits except for a group of zero bits and
9359 OTHER is known to have zeros where C1 has ones, this is such an
9360 assignment. Compute the position and length from C1. Shift OTHER
9361 to the appropriate position, force it to the required mode, and
9362 make the extraction. Check for the AND in both operands. */
9364 /* One or more SUBREGs might obscure the constant-position field
9365 assignment. The first one we are likely to encounter is an outer
9366 narrowing SUBREG, which we can just strip for the purposes of
9367 identifying the constant-field assignment. */
9368 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src))
9369 src = SUBREG_REG (src);
9371 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9372 return x;
9374 rhs = expand_compound_operation (XEXP (src, 0));
9375 lhs = expand_compound_operation (XEXP (src, 1));
9377 if (GET_CODE (rhs) == AND
9378 && CONST_INT_P (XEXP (rhs, 1))
9379 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9380 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9381 /* The second SUBREG that might get in the way is a paradoxical
9382 SUBREG around the first operand of the AND. We want to
9383 pretend the operand is as wide as the destination here. We
9384 do this by adjusting the MEM to wider mode for the sole
9385 purpose of the call to rtx_equal_for_field_assignment_p. Also
9386 note this trick only works for MEMs. */
9387 else if (GET_CODE (rhs) == AND
9388 && paradoxical_subreg_p (XEXP (rhs, 0))
9389 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9390 && CONST_INT_P (XEXP (rhs, 1))
9391 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9392 dest, true))
9393 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9394 else if (GET_CODE (lhs) == AND
9395 && CONST_INT_P (XEXP (lhs, 1))
9396 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9397 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9398 /* The second SUBREG that might get in the way is a paradoxical
9399 SUBREG around the first operand of the AND. We want to
9400 pretend the operand is as wide as the destination here. We
9401 do this by adjusting the MEM to wider mode for the sole
9402 purpose of the call to rtx_equal_for_field_assignment_p. Also
9403 note this trick only works for MEMs. */
9404 else if (GET_CODE (lhs) == AND
9405 && paradoxical_subreg_p (XEXP (lhs, 0))
9406 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9407 && CONST_INT_P (XEXP (lhs, 1))
9408 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9409 dest, true))
9410 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9411 else
9412 return x;
9414 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9415 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9416 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9417 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9418 return x;
9420 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9421 if (assign == 0)
9422 return x;
9424 /* The mode to use for the source is the mode of the assignment, or of
9425 what is inside a possible STRICT_LOW_PART. */
9426 mode = (GET_CODE (assign) == STRICT_LOW_PART
9427 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9429 /* Shift OTHER right POS places and make it the source, restricting it
9430 to the proper length and mode. */
9432 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9433 GET_MODE (src),
9434 other, pos),
9435 dest);
9436 src = force_to_mode (src, mode,
9437 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9438 ? ~(unsigned HOST_WIDE_INT) 0
9439 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9442 /* If SRC is masked by an AND that does not make a difference in
9443 the value being stored, strip it. */
9444 if (GET_CODE (assign) == ZERO_EXTRACT
9445 && CONST_INT_P (XEXP (assign, 1))
9446 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9447 && GET_CODE (src) == AND
9448 && CONST_INT_P (XEXP (src, 1))
9449 && UINTVAL (XEXP (src, 1))
9450 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1)
9451 src = XEXP (src, 0);
9453 return gen_rtx_SET (assign, src);
9456 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9457 if so. */
9459 static rtx
9460 apply_distributive_law (rtx x)
9462 enum rtx_code code = GET_CODE (x);
9463 enum rtx_code inner_code;
9464 rtx lhs, rhs, other;
9465 rtx tem;
9467 /* Distributivity is not true for floating point as it can change the
9468 value. So we don't do it unless -funsafe-math-optimizations. */
9469 if (FLOAT_MODE_P (GET_MODE (x))
9470 && ! flag_unsafe_math_optimizations)
9471 return x;
9473 /* The outer operation can only be one of the following: */
9474 if (code != IOR && code != AND && code != XOR
9475 && code != PLUS && code != MINUS)
9476 return x;
9478 lhs = XEXP (x, 0);
9479 rhs = XEXP (x, 1);
9481 /* If either operand is a primitive we can't do anything, so get out
9482 fast. */
9483 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9484 return x;
9486 lhs = expand_compound_operation (lhs);
9487 rhs = expand_compound_operation (rhs);
9488 inner_code = GET_CODE (lhs);
9489 if (inner_code != GET_CODE (rhs))
9490 return x;
9492 /* See if the inner and outer operations distribute. */
9493 switch (inner_code)
9495 case LSHIFTRT:
9496 case ASHIFTRT:
9497 case AND:
9498 case IOR:
9499 /* These all distribute except over PLUS. */
9500 if (code == PLUS || code == MINUS)
9501 return x;
9502 break;
9504 case MULT:
9505 if (code != PLUS && code != MINUS)
9506 return x;
9507 break;
9509 case ASHIFT:
9510 /* This is also a multiply, so it distributes over everything. */
9511 break;
9513 /* This used to handle SUBREG, but this turned out to be counter-
9514 productive, since (subreg (op ...)) usually is not handled by
9515 insn patterns, and this "optimization" therefore transformed
9516 recognizable patterns into unrecognizable ones. Therefore the
9517 SUBREG case was removed from here.
9519 It is possible that distributing SUBREG over arithmetic operations
9520 leads to an intermediate result than can then be optimized further,
9521 e.g. by moving the outer SUBREG to the other side of a SET as done
9522 in simplify_set. This seems to have been the original intent of
9523 handling SUBREGs here.
9525 However, with current GCC this does not appear to actually happen,
9526 at least on major platforms. If some case is found where removing
9527 the SUBREG case here prevents follow-on optimizations, distributing
9528 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9530 default:
9531 return x;
9534 /* Set LHS and RHS to the inner operands (A and B in the example
9535 above) and set OTHER to the common operand (C in the example).
9536 There is only one way to do this unless the inner operation is
9537 commutative. */
9538 if (COMMUTATIVE_ARITH_P (lhs)
9539 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9540 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9541 else if (COMMUTATIVE_ARITH_P (lhs)
9542 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9543 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9544 else if (COMMUTATIVE_ARITH_P (lhs)
9545 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9546 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9547 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9548 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9549 else
9550 return x;
9552 /* Form the new inner operation, seeing if it simplifies first. */
9553 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9555 /* There is one exception to the general way of distributing:
9556 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9557 if (code == XOR && inner_code == IOR)
9559 inner_code = AND;
9560 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9563 /* We may be able to continuing distributing the result, so call
9564 ourselves recursively on the inner operation before forming the
9565 outer operation, which we return. */
9566 return simplify_gen_binary (inner_code, GET_MODE (x),
9567 apply_distributive_law (tem), other);
9570 /* See if X is of the form (* (+ A B) C), and if so convert to
9571 (+ (* A C) (* B C)) and try to simplify.
9573 Most of the time, this results in no change. However, if some of
9574 the operands are the same or inverses of each other, simplifications
9575 will result.
9577 For example, (and (ior A B) (not B)) can occur as the result of
9578 expanding a bit field assignment. When we apply the distributive
9579 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9580 which then simplifies to (and (A (not B))).
9582 Note that no checks happen on the validity of applying the inverse
9583 distributive law. This is pointless since we can do it in the
9584 few places where this routine is called.
9586 N is the index of the term that is decomposed (the arithmetic operation,
9587 i.e. (+ A B) in the first example above). !N is the index of the term that
9588 is distributed, i.e. of C in the first example above. */
9589 static rtx
9590 distribute_and_simplify_rtx (rtx x, int n)
9592 machine_mode mode;
9593 enum rtx_code outer_code, inner_code;
9594 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9596 /* Distributivity is not true for floating point as it can change the
9597 value. So we don't do it unless -funsafe-math-optimizations. */
9598 if (FLOAT_MODE_P (GET_MODE (x))
9599 && ! flag_unsafe_math_optimizations)
9600 return NULL_RTX;
9602 decomposed = XEXP (x, n);
9603 if (!ARITHMETIC_P (decomposed))
9604 return NULL_RTX;
9606 mode = GET_MODE (x);
9607 outer_code = GET_CODE (x);
9608 distributed = XEXP (x, !n);
9610 inner_code = GET_CODE (decomposed);
9611 inner_op0 = XEXP (decomposed, 0);
9612 inner_op1 = XEXP (decomposed, 1);
9614 /* Special case (and (xor B C) (not A)), which is equivalent to
9615 (xor (ior A B) (ior A C)) */
9616 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9618 distributed = XEXP (distributed, 0);
9619 outer_code = IOR;
9622 if (n == 0)
9624 /* Distribute the second term. */
9625 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9626 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9628 else
9630 /* Distribute the first term. */
9631 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9632 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9635 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9636 new_op0, new_op1));
9637 if (GET_CODE (tmp) != outer_code
9638 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
9639 < set_src_cost (x, mode, optimize_this_for_speed_p)))
9640 return tmp;
9642 return NULL_RTX;
9645 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9646 in MODE. Return an equivalent form, if different from (and VAROP
9647 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9649 static rtx
9650 simplify_and_const_int_1 (machine_mode mode, rtx varop,
9651 unsigned HOST_WIDE_INT constop)
9653 unsigned HOST_WIDE_INT nonzero;
9654 unsigned HOST_WIDE_INT orig_constop;
9655 rtx orig_varop;
9656 int i;
9658 orig_varop = varop;
9659 orig_constop = constop;
9660 if (GET_CODE (varop) == CLOBBER)
9661 return NULL_RTX;
9663 /* Simplify VAROP knowing that we will be only looking at some of the
9664 bits in it.
9666 Note by passing in CONSTOP, we guarantee that the bits not set in
9667 CONSTOP are not significant and will never be examined. We must
9668 ensure that is the case by explicitly masking out those bits
9669 before returning. */
9670 varop = force_to_mode (varop, mode, constop, 0);
9672 /* If VAROP is a CLOBBER, we will fail so return it. */
9673 if (GET_CODE (varop) == CLOBBER)
9674 return varop;
9676 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9677 to VAROP and return the new constant. */
9678 if (CONST_INT_P (varop))
9679 return gen_int_mode (INTVAL (varop) & constop, mode);
9681 /* See what bits may be nonzero in VAROP. Unlike the general case of
9682 a call to nonzero_bits, here we don't care about bits outside
9683 MODE. */
9685 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9687 /* Turn off all bits in the constant that are known to already be zero.
9688 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9689 which is tested below. */
9691 constop &= nonzero;
9693 /* If we don't have any bits left, return zero. */
9694 if (constop == 0)
9695 return const0_rtx;
9697 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9698 a power of two, we can replace this with an ASHIFT. */
9699 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9700 && (i = exact_log2 (constop)) >= 0)
9701 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9703 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9704 or XOR, then try to apply the distributive law. This may eliminate
9705 operations if either branch can be simplified because of the AND.
9706 It may also make some cases more complex, but those cases probably
9707 won't match a pattern either with or without this. */
9709 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9710 return
9711 gen_lowpart
9712 (mode,
9713 apply_distributive_law
9714 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9715 simplify_and_const_int (NULL_RTX,
9716 GET_MODE (varop),
9717 XEXP (varop, 0),
9718 constop),
9719 simplify_and_const_int (NULL_RTX,
9720 GET_MODE (varop),
9721 XEXP (varop, 1),
9722 constop))));
9724 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9725 the AND and see if one of the operands simplifies to zero. If so, we
9726 may eliminate it. */
9728 if (GET_CODE (varop) == PLUS
9729 && exact_log2 (constop + 1) >= 0)
9731 rtx o0, o1;
9733 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9734 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9735 if (o0 == const0_rtx)
9736 return o1;
9737 if (o1 == const0_rtx)
9738 return o0;
9741 /* Make a SUBREG if necessary. If we can't make it, fail. */
9742 varop = gen_lowpart (mode, varop);
9743 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9744 return NULL_RTX;
9746 /* If we are only masking insignificant bits, return VAROP. */
9747 if (constop == nonzero)
9748 return varop;
9750 if (varop == orig_varop && constop == orig_constop)
9751 return NULL_RTX;
9753 /* Otherwise, return an AND. */
9754 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9758 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9759 in MODE.
9761 Return an equivalent form, if different from X. Otherwise, return X. If
9762 X is zero, we are to always construct the equivalent form. */
9764 static rtx
9765 simplify_and_const_int (rtx x, machine_mode mode, rtx varop,
9766 unsigned HOST_WIDE_INT constop)
9768 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9769 if (tem)
9770 return tem;
9772 if (!x)
9773 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9774 gen_int_mode (constop, mode));
9775 if (GET_MODE (x) != mode)
9776 x = gen_lowpart (mode, x);
9777 return x;
9780 /* Given a REG, X, compute which bits in X can be nonzero.
9781 We don't care about bits outside of those defined in MODE.
9783 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9784 a shift, AND, or zero_extract, we can do better. */
9786 static rtx
9787 reg_nonzero_bits_for_combine (const_rtx x, machine_mode mode,
9788 const_rtx known_x ATTRIBUTE_UNUSED,
9789 machine_mode known_mode ATTRIBUTE_UNUSED,
9790 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9791 unsigned HOST_WIDE_INT *nonzero)
9793 rtx tem;
9794 reg_stat_type *rsp;
9796 /* If X is a register whose nonzero bits value is current, use it.
9797 Otherwise, if X is a register whose value we can find, use that
9798 value. Otherwise, use the previously-computed global nonzero bits
9799 for this register. */
9801 rsp = &reg_stat[REGNO (x)];
9802 if (rsp->last_set_value != 0
9803 && (rsp->last_set_mode == mode
9804 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9805 && GET_MODE_CLASS (mode) == MODE_INT))
9806 && ((rsp->last_set_label >= label_tick_ebb_start
9807 && rsp->last_set_label < label_tick)
9808 || (rsp->last_set_label == label_tick
9809 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9810 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9811 && REGNO (x) < reg_n_sets_max
9812 && REG_N_SETS (REGNO (x)) == 1
9813 && !REGNO_REG_SET_P
9814 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9815 REGNO (x)))))
9817 unsigned HOST_WIDE_INT mask = rsp->last_set_nonzero_bits;
9819 if (GET_MODE_PRECISION (rsp->last_set_mode) < GET_MODE_PRECISION (mode))
9820 /* We don't know anything about the upper bits. */
9821 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (rsp->last_set_mode);
9823 *nonzero &= mask;
9824 return NULL;
9827 tem = get_last_value (x);
9829 if (tem)
9831 if (SHORT_IMMEDIATES_SIGN_EXTEND)
9832 tem = sign_extend_short_imm (tem, GET_MODE (x),
9833 GET_MODE_PRECISION (mode));
9835 return tem;
9837 else if (nonzero_sign_valid && rsp->nonzero_bits)
9839 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9841 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
9842 /* We don't know anything about the upper bits. */
9843 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9845 *nonzero &= mask;
9848 return NULL;
9851 /* Return the number of bits at the high-order end of X that are known to
9852 be equal to the sign bit. X will be used in mode MODE; if MODE is
9853 VOIDmode, X will be used in its own mode. The returned value will always
9854 be between 1 and the number of bits in MODE. */
9856 static rtx
9857 reg_num_sign_bit_copies_for_combine (const_rtx x, machine_mode mode,
9858 const_rtx known_x ATTRIBUTE_UNUSED,
9859 machine_mode known_mode
9860 ATTRIBUTE_UNUSED,
9861 unsigned int known_ret ATTRIBUTE_UNUSED,
9862 unsigned int *result)
9864 rtx tem;
9865 reg_stat_type *rsp;
9867 rsp = &reg_stat[REGNO (x)];
9868 if (rsp->last_set_value != 0
9869 && rsp->last_set_mode == mode
9870 && ((rsp->last_set_label >= label_tick_ebb_start
9871 && rsp->last_set_label < label_tick)
9872 || (rsp->last_set_label == label_tick
9873 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9874 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9875 && REGNO (x) < reg_n_sets_max
9876 && REG_N_SETS (REGNO (x)) == 1
9877 && !REGNO_REG_SET_P
9878 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9879 REGNO (x)))))
9881 *result = rsp->last_set_sign_bit_copies;
9882 return NULL;
9885 tem = get_last_value (x);
9886 if (tem != 0)
9887 return tem;
9889 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9890 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
9891 *result = rsp->sign_bit_copies;
9893 return NULL;
9896 /* Return the number of "extended" bits there are in X, when interpreted
9897 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9898 unsigned quantities, this is the number of high-order zero bits.
9899 For signed quantities, this is the number of copies of the sign bit
9900 minus 1. In both case, this function returns the number of "spare"
9901 bits. For example, if two quantities for which this function returns
9902 at least 1 are added, the addition is known not to overflow.
9904 This function will always return 0 unless called during combine, which
9905 implies that it must be called from a define_split. */
9907 unsigned int
9908 extended_count (const_rtx x, machine_mode mode, int unsignedp)
9910 if (nonzero_sign_valid == 0)
9911 return 0;
9913 return (unsignedp
9914 ? (HWI_COMPUTABLE_MODE_P (mode)
9915 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
9916 - floor_log2 (nonzero_bits (x, mode)))
9917 : 0)
9918 : num_sign_bit_copies (x, mode) - 1);
9921 /* This function is called from `simplify_shift_const' to merge two
9922 outer operations. Specifically, we have already found that we need
9923 to perform operation *POP0 with constant *PCONST0 at the outermost
9924 position. We would now like to also perform OP1 with constant CONST1
9925 (with *POP0 being done last).
9927 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9928 the resulting operation. *PCOMP_P is set to 1 if we would need to
9929 complement the innermost operand, otherwise it is unchanged.
9931 MODE is the mode in which the operation will be done. No bits outside
9932 the width of this mode matter. It is assumed that the width of this mode
9933 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9935 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9936 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9937 result is simply *PCONST0.
9939 If the resulting operation cannot be expressed as one operation, we
9940 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9942 static int
9943 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
9945 enum rtx_code op0 = *pop0;
9946 HOST_WIDE_INT const0 = *pconst0;
9948 const0 &= GET_MODE_MASK (mode);
9949 const1 &= GET_MODE_MASK (mode);
9951 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9952 if (op0 == AND)
9953 const1 &= const0;
9955 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9956 if OP0 is SET. */
9958 if (op1 == UNKNOWN || op0 == SET)
9959 return 1;
9961 else if (op0 == UNKNOWN)
9962 op0 = op1, const0 = const1;
9964 else if (op0 == op1)
9966 switch (op0)
9968 case AND:
9969 const0 &= const1;
9970 break;
9971 case IOR:
9972 const0 |= const1;
9973 break;
9974 case XOR:
9975 const0 ^= const1;
9976 break;
9977 case PLUS:
9978 const0 += const1;
9979 break;
9980 case NEG:
9981 op0 = UNKNOWN;
9982 break;
9983 default:
9984 break;
9988 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9989 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9990 return 0;
9992 /* If the two constants aren't the same, we can't do anything. The
9993 remaining six cases can all be done. */
9994 else if (const0 != const1)
9995 return 0;
9997 else
9998 switch (op0)
10000 case IOR:
10001 if (op1 == AND)
10002 /* (a & b) | b == b */
10003 op0 = SET;
10004 else /* op1 == XOR */
10005 /* (a ^ b) | b == a | b */
10007 break;
10009 case XOR:
10010 if (op1 == AND)
10011 /* (a & b) ^ b == (~a) & b */
10012 op0 = AND, *pcomp_p = 1;
10013 else /* op1 == IOR */
10014 /* (a | b) ^ b == a & ~b */
10015 op0 = AND, const0 = ~const0;
10016 break;
10018 case AND:
10019 if (op1 == IOR)
10020 /* (a | b) & b == b */
10021 op0 = SET;
10022 else /* op1 == XOR */
10023 /* (a ^ b) & b) == (~a) & b */
10024 *pcomp_p = 1;
10025 break;
10026 default:
10027 break;
10030 /* Check for NO-OP cases. */
10031 const0 &= GET_MODE_MASK (mode);
10032 if (const0 == 0
10033 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10034 op0 = UNKNOWN;
10035 else if (const0 == 0 && op0 == AND)
10036 op0 = SET;
10037 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10038 && op0 == AND)
10039 op0 = UNKNOWN;
10041 *pop0 = op0;
10043 /* ??? Slightly redundant with the above mask, but not entirely.
10044 Moving this above means we'd have to sign-extend the mode mask
10045 for the final test. */
10046 if (op0 != UNKNOWN && op0 != NEG)
10047 *pconst0 = trunc_int_for_mode (const0, mode);
10049 return 1;
10052 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10053 the shift in. The original shift operation CODE is performed on OP in
10054 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10055 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10056 result of the shift is subject to operation OUTER_CODE with operand
10057 OUTER_CONST. */
10059 static machine_mode
10060 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10061 machine_mode orig_mode, machine_mode mode,
10062 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10064 if (orig_mode == mode)
10065 return mode;
10066 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10068 /* In general we can't perform in wider mode for right shift and rotate. */
10069 switch (code)
10071 case ASHIFTRT:
10072 /* We can still widen if the bits brought in from the left are identical
10073 to the sign bit of ORIG_MODE. */
10074 if (num_sign_bit_copies (op, mode)
10075 > (unsigned) (GET_MODE_PRECISION (mode)
10076 - GET_MODE_PRECISION (orig_mode)))
10077 return mode;
10078 return orig_mode;
10080 case LSHIFTRT:
10081 /* Similarly here but with zero bits. */
10082 if (HWI_COMPUTABLE_MODE_P (mode)
10083 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10084 return mode;
10086 /* We can also widen if the bits brought in will be masked off. This
10087 operation is performed in ORIG_MODE. */
10088 if (outer_code == AND)
10090 int care_bits = low_bitmask_len (orig_mode, outer_const);
10092 if (care_bits >= 0
10093 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10094 return mode;
10096 /* fall through */
10098 case ROTATE:
10099 return orig_mode;
10101 case ROTATERT:
10102 gcc_unreachable ();
10104 default:
10105 return mode;
10109 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10110 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10111 if we cannot simplify it. Otherwise, return a simplified value.
10113 The shift is normally computed in the widest mode we find in VAROP, as
10114 long as it isn't a different number of words than RESULT_MODE. Exceptions
10115 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10117 static rtx
10118 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10119 rtx varop, int orig_count)
10121 enum rtx_code orig_code = code;
10122 rtx orig_varop = varop;
10123 int count;
10124 machine_mode mode = result_mode;
10125 machine_mode shift_mode, tmode;
10126 unsigned int mode_words
10127 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
10128 /* We form (outer_op (code varop count) (outer_const)). */
10129 enum rtx_code outer_op = UNKNOWN;
10130 HOST_WIDE_INT outer_const = 0;
10131 int complement_p = 0;
10132 rtx new_rtx, x;
10134 /* Make sure and truncate the "natural" shift on the way in. We don't
10135 want to do this inside the loop as it makes it more difficult to
10136 combine shifts. */
10137 if (SHIFT_COUNT_TRUNCATED)
10138 orig_count &= GET_MODE_BITSIZE (mode) - 1;
10140 /* If we were given an invalid count, don't do anything except exactly
10141 what was requested. */
10143 if (orig_count < 0 || orig_count >= (int) GET_MODE_PRECISION (mode))
10144 return NULL_RTX;
10146 count = orig_count;
10148 /* Unless one of the branches of the `if' in this loop does a `continue',
10149 we will `break' the loop after the `if'. */
10151 while (count != 0)
10153 /* If we have an operand of (clobber (const_int 0)), fail. */
10154 if (GET_CODE (varop) == CLOBBER)
10155 return NULL_RTX;
10157 /* Convert ROTATERT to ROTATE. */
10158 if (code == ROTATERT)
10160 unsigned int bitsize = GET_MODE_PRECISION (result_mode);
10161 code = ROTATE;
10162 if (VECTOR_MODE_P (result_mode))
10163 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
10164 else
10165 count = bitsize - count;
10168 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
10169 mode, outer_op, outer_const);
10171 /* Handle cases where the count is greater than the size of the mode
10172 minus 1. For ASHIFT, use the size minus one as the count (this can
10173 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10174 take the count modulo the size. For other shifts, the result is
10175 zero.
10177 Since these shifts are being produced by the compiler by combining
10178 multiple operations, each of which are defined, we know what the
10179 result is supposed to be. */
10181 if (count > (GET_MODE_PRECISION (shift_mode) - 1))
10183 if (code == ASHIFTRT)
10184 count = GET_MODE_PRECISION (shift_mode) - 1;
10185 else if (code == ROTATE || code == ROTATERT)
10186 count %= GET_MODE_PRECISION (shift_mode);
10187 else
10189 /* We can't simply return zero because there may be an
10190 outer op. */
10191 varop = const0_rtx;
10192 count = 0;
10193 break;
10197 /* If we discovered we had to complement VAROP, leave. Making a NOT
10198 here would cause an infinite loop. */
10199 if (complement_p)
10200 break;
10202 /* An arithmetic right shift of a quantity known to be -1 or 0
10203 is a no-op. */
10204 if (code == ASHIFTRT
10205 && (num_sign_bit_copies (varop, shift_mode)
10206 == GET_MODE_PRECISION (shift_mode)))
10208 count = 0;
10209 break;
10212 /* If we are doing an arithmetic right shift and discarding all but
10213 the sign bit copies, this is equivalent to doing a shift by the
10214 bitsize minus one. Convert it into that shift because it will often
10215 allow other simplifications. */
10217 if (code == ASHIFTRT
10218 && (count + num_sign_bit_copies (varop, shift_mode)
10219 >= GET_MODE_PRECISION (shift_mode)))
10220 count = GET_MODE_PRECISION (shift_mode) - 1;
10222 /* We simplify the tests below and elsewhere by converting
10223 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10224 `make_compound_operation' will convert it to an ASHIFTRT for
10225 those machines (such as VAX) that don't have an LSHIFTRT. */
10226 if (code == ASHIFTRT
10227 && val_signbit_known_clear_p (shift_mode,
10228 nonzero_bits (varop, shift_mode)))
10229 code = LSHIFTRT;
10231 if (((code == LSHIFTRT
10232 && HWI_COMPUTABLE_MODE_P (shift_mode)
10233 && !(nonzero_bits (varop, shift_mode) >> count))
10234 || (code == ASHIFT
10235 && HWI_COMPUTABLE_MODE_P (shift_mode)
10236 && !((nonzero_bits (varop, shift_mode) << count)
10237 & GET_MODE_MASK (shift_mode))))
10238 && !side_effects_p (varop))
10239 varop = const0_rtx;
10241 switch (GET_CODE (varop))
10243 case SIGN_EXTEND:
10244 case ZERO_EXTEND:
10245 case SIGN_EXTRACT:
10246 case ZERO_EXTRACT:
10247 new_rtx = expand_compound_operation (varop);
10248 if (new_rtx != varop)
10250 varop = new_rtx;
10251 continue;
10253 break;
10255 case MEM:
10256 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10257 minus the width of a smaller mode, we can do this with a
10258 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10259 if ((code == ASHIFTRT || code == LSHIFTRT)
10260 && ! mode_dependent_address_p (XEXP (varop, 0),
10261 MEM_ADDR_SPACE (varop))
10262 && ! MEM_VOLATILE_P (varop)
10263 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
10264 MODE_INT, 1)) != BLKmode)
10266 new_rtx = adjust_address_nv (varop, tmode,
10267 BYTES_BIG_ENDIAN ? 0
10268 : count / BITS_PER_UNIT);
10270 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10271 : ZERO_EXTEND, mode, new_rtx);
10272 count = 0;
10273 continue;
10275 break;
10277 case SUBREG:
10278 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10279 the same number of words as what we've seen so far. Then store
10280 the widest mode in MODE. */
10281 if (subreg_lowpart_p (varop)
10282 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10283 > GET_MODE_SIZE (GET_MODE (varop)))
10284 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10285 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10286 == mode_words
10287 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
10288 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
10290 varop = SUBREG_REG (varop);
10291 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
10292 mode = GET_MODE (varop);
10293 continue;
10295 break;
10297 case MULT:
10298 /* Some machines use MULT instead of ASHIFT because MULT
10299 is cheaper. But it is still better on those machines to
10300 merge two shifts into one. */
10301 if (CONST_INT_P (XEXP (varop, 1))
10302 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10304 varop
10305 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10306 XEXP (varop, 0),
10307 GEN_INT (exact_log2 (
10308 UINTVAL (XEXP (varop, 1)))));
10309 continue;
10311 break;
10313 case UDIV:
10314 /* Similar, for when divides are cheaper. */
10315 if (CONST_INT_P (XEXP (varop, 1))
10316 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10318 varop
10319 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10320 XEXP (varop, 0),
10321 GEN_INT (exact_log2 (
10322 UINTVAL (XEXP (varop, 1)))));
10323 continue;
10325 break;
10327 case ASHIFTRT:
10328 /* If we are extracting just the sign bit of an arithmetic
10329 right shift, that shift is not needed. However, the sign
10330 bit of a wider mode may be different from what would be
10331 interpreted as the sign bit in a narrower mode, so, if
10332 the result is narrower, don't discard the shift. */
10333 if (code == LSHIFTRT
10334 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10335 && (GET_MODE_BITSIZE (result_mode)
10336 >= GET_MODE_BITSIZE (GET_MODE (varop))))
10338 varop = XEXP (varop, 0);
10339 continue;
10342 /* ... fall through ... */
10344 case LSHIFTRT:
10345 case ASHIFT:
10346 case ROTATE:
10347 /* Here we have two nested shifts. The result is usually the
10348 AND of a new shift with a mask. We compute the result below. */
10349 if (CONST_INT_P (XEXP (varop, 1))
10350 && INTVAL (XEXP (varop, 1)) >= 0
10351 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10352 && HWI_COMPUTABLE_MODE_P (result_mode)
10353 && HWI_COMPUTABLE_MODE_P (mode)
10354 && !VECTOR_MODE_P (result_mode))
10356 enum rtx_code first_code = GET_CODE (varop);
10357 unsigned int first_count = INTVAL (XEXP (varop, 1));
10358 unsigned HOST_WIDE_INT mask;
10359 rtx mask_rtx;
10361 /* We have one common special case. We can't do any merging if
10362 the inner code is an ASHIFTRT of a smaller mode. However, if
10363 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10364 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10365 we can convert it to
10366 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10367 This simplifies certain SIGN_EXTEND operations. */
10368 if (code == ASHIFT && first_code == ASHIFTRT
10369 && count == (GET_MODE_PRECISION (result_mode)
10370 - GET_MODE_PRECISION (GET_MODE (varop))))
10372 /* C3 has the low-order C1 bits zero. */
10374 mask = GET_MODE_MASK (mode)
10375 & ~(((unsigned HOST_WIDE_INT) 1 << first_count) - 1);
10377 varop = simplify_and_const_int (NULL_RTX, result_mode,
10378 XEXP (varop, 0), mask);
10379 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10380 varop, count);
10381 count = first_count;
10382 code = ASHIFTRT;
10383 continue;
10386 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10387 than C1 high-order bits equal to the sign bit, we can convert
10388 this to either an ASHIFT or an ASHIFTRT depending on the
10389 two counts.
10391 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10393 if (code == ASHIFTRT && first_code == ASHIFT
10394 && GET_MODE (varop) == shift_mode
10395 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10396 > first_count))
10398 varop = XEXP (varop, 0);
10399 count -= first_count;
10400 if (count < 0)
10402 count = -count;
10403 code = ASHIFT;
10406 continue;
10409 /* There are some cases we can't do. If CODE is ASHIFTRT,
10410 we can only do this if FIRST_CODE is also ASHIFTRT.
10412 We can't do the case when CODE is ROTATE and FIRST_CODE is
10413 ASHIFTRT.
10415 If the mode of this shift is not the mode of the outer shift,
10416 we can't do this if either shift is a right shift or ROTATE.
10418 Finally, we can't do any of these if the mode is too wide
10419 unless the codes are the same.
10421 Handle the case where the shift codes are the same
10422 first. */
10424 if (code == first_code)
10426 if (GET_MODE (varop) != result_mode
10427 && (code == ASHIFTRT || code == LSHIFTRT
10428 || code == ROTATE))
10429 break;
10431 count += first_count;
10432 varop = XEXP (varop, 0);
10433 continue;
10436 if (code == ASHIFTRT
10437 || (code == ROTATE && first_code == ASHIFTRT)
10438 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10439 || (GET_MODE (varop) != result_mode
10440 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10441 || first_code == ROTATE
10442 || code == ROTATE)))
10443 break;
10445 /* To compute the mask to apply after the shift, shift the
10446 nonzero bits of the inner shift the same way the
10447 outer shift will. */
10449 mask_rtx = gen_int_mode (nonzero_bits (varop, GET_MODE (varop)),
10450 result_mode);
10452 mask_rtx
10453 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10454 GEN_INT (count));
10456 /* Give up if we can't compute an outer operation to use. */
10457 if (mask_rtx == 0
10458 || !CONST_INT_P (mask_rtx)
10459 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10460 INTVAL (mask_rtx),
10461 result_mode, &complement_p))
10462 break;
10464 /* If the shifts are in the same direction, we add the
10465 counts. Otherwise, we subtract them. */
10466 if ((code == ASHIFTRT || code == LSHIFTRT)
10467 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10468 count += first_count;
10469 else
10470 count -= first_count;
10472 /* If COUNT is positive, the new shift is usually CODE,
10473 except for the two exceptions below, in which case it is
10474 FIRST_CODE. If the count is negative, FIRST_CODE should
10475 always be used */
10476 if (count > 0
10477 && ((first_code == ROTATE && code == ASHIFT)
10478 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10479 code = first_code;
10480 else if (count < 0)
10481 code = first_code, count = -count;
10483 varop = XEXP (varop, 0);
10484 continue;
10487 /* If we have (A << B << C) for any shift, we can convert this to
10488 (A << C << B). This wins if A is a constant. Only try this if
10489 B is not a constant. */
10491 else if (GET_CODE (varop) == code
10492 && CONST_INT_P (XEXP (varop, 0))
10493 && !CONST_INT_P (XEXP (varop, 1)))
10495 rtx new_rtx = simplify_const_binary_operation (code, mode,
10496 XEXP (varop, 0),
10497 GEN_INT (count));
10498 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10499 count = 0;
10500 continue;
10502 break;
10504 case NOT:
10505 if (VECTOR_MODE_P (mode))
10506 break;
10508 /* Make this fit the case below. */
10509 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10510 continue;
10512 case IOR:
10513 case AND:
10514 case XOR:
10515 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10516 with C the size of VAROP - 1 and the shift is logical if
10517 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10518 we have an (le X 0) operation. If we have an arithmetic shift
10519 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10520 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10522 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10523 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10524 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10525 && (code == LSHIFTRT || code == ASHIFTRT)
10526 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10527 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10529 count = 0;
10530 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10531 const0_rtx);
10533 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10534 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10536 continue;
10539 /* If we have (shift (logical)), move the logical to the outside
10540 to allow it to possibly combine with another logical and the
10541 shift to combine with another shift. This also canonicalizes to
10542 what a ZERO_EXTRACT looks like. Also, some machines have
10543 (and (shift)) insns. */
10545 if (CONST_INT_P (XEXP (varop, 1))
10546 /* We can't do this if we have (ashiftrt (xor)) and the
10547 constant has its sign bit set in shift_mode with shift_mode
10548 wider than result_mode. */
10549 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10550 && result_mode != shift_mode
10551 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10552 shift_mode))
10553 && (new_rtx = simplify_const_binary_operation
10554 (code, result_mode,
10555 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10556 GEN_INT (count))) != 0
10557 && CONST_INT_P (new_rtx)
10558 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10559 INTVAL (new_rtx), result_mode, &complement_p))
10561 varop = XEXP (varop, 0);
10562 continue;
10565 /* If we can't do that, try to simplify the shift in each arm of the
10566 logical expression, make a new logical expression, and apply
10567 the inverse distributive law. This also can't be done for
10568 (ashiftrt (xor)) where we've widened the shift and the constant
10569 changes the sign bit. */
10570 if (CONST_INT_P (XEXP (varop, 1))
10571 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10572 && result_mode != shift_mode
10573 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10574 shift_mode)))
10576 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10577 XEXP (varop, 0), count);
10578 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10579 XEXP (varop, 1), count);
10581 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10582 lhs, rhs);
10583 varop = apply_distributive_law (varop);
10585 count = 0;
10586 continue;
10588 break;
10590 case EQ:
10591 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10592 says that the sign bit can be tested, FOO has mode MODE, C is
10593 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10594 that may be nonzero. */
10595 if (code == LSHIFTRT
10596 && XEXP (varop, 1) == const0_rtx
10597 && GET_MODE (XEXP (varop, 0)) == result_mode
10598 && count == (GET_MODE_PRECISION (result_mode) - 1)
10599 && HWI_COMPUTABLE_MODE_P (result_mode)
10600 && STORE_FLAG_VALUE == -1
10601 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10602 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10603 &complement_p))
10605 varop = XEXP (varop, 0);
10606 count = 0;
10607 continue;
10609 break;
10611 case NEG:
10612 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10613 than the number of bits in the mode is equivalent to A. */
10614 if (code == LSHIFTRT
10615 && count == (GET_MODE_PRECISION (result_mode) - 1)
10616 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10618 varop = XEXP (varop, 0);
10619 count = 0;
10620 continue;
10623 /* NEG commutes with ASHIFT since it is multiplication. Move the
10624 NEG outside to allow shifts to combine. */
10625 if (code == ASHIFT
10626 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10627 &complement_p))
10629 varop = XEXP (varop, 0);
10630 continue;
10632 break;
10634 case PLUS:
10635 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10636 is one less than the number of bits in the mode is
10637 equivalent to (xor A 1). */
10638 if (code == LSHIFTRT
10639 && count == (GET_MODE_PRECISION (result_mode) - 1)
10640 && XEXP (varop, 1) == constm1_rtx
10641 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10642 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10643 &complement_p))
10645 count = 0;
10646 varop = XEXP (varop, 0);
10647 continue;
10650 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10651 that might be nonzero in BAR are those being shifted out and those
10652 bits are known zero in FOO, we can replace the PLUS with FOO.
10653 Similarly in the other operand order. This code occurs when
10654 we are computing the size of a variable-size array. */
10656 if ((code == ASHIFTRT || code == LSHIFTRT)
10657 && count < HOST_BITS_PER_WIDE_INT
10658 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10659 && (nonzero_bits (XEXP (varop, 1), result_mode)
10660 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10662 varop = XEXP (varop, 0);
10663 continue;
10665 else if ((code == ASHIFTRT || code == LSHIFTRT)
10666 && count < HOST_BITS_PER_WIDE_INT
10667 && HWI_COMPUTABLE_MODE_P (result_mode)
10668 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10669 >> count)
10670 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10671 & nonzero_bits (XEXP (varop, 1),
10672 result_mode)))
10674 varop = XEXP (varop, 1);
10675 continue;
10678 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10679 if (code == ASHIFT
10680 && CONST_INT_P (XEXP (varop, 1))
10681 && (new_rtx = simplify_const_binary_operation
10682 (ASHIFT, result_mode,
10683 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10684 GEN_INT (count))) != 0
10685 && CONST_INT_P (new_rtx)
10686 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10687 INTVAL (new_rtx), result_mode, &complement_p))
10689 varop = XEXP (varop, 0);
10690 continue;
10693 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10694 signbit', and attempt to change the PLUS to an XOR and move it to
10695 the outer operation as is done above in the AND/IOR/XOR case
10696 leg for shift(logical). See details in logical handling above
10697 for reasoning in doing so. */
10698 if (code == LSHIFTRT
10699 && CONST_INT_P (XEXP (varop, 1))
10700 && mode_signbit_p (result_mode, XEXP (varop, 1))
10701 && (new_rtx = simplify_const_binary_operation
10702 (code, result_mode,
10703 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10704 GEN_INT (count))) != 0
10705 && CONST_INT_P (new_rtx)
10706 && merge_outer_ops (&outer_op, &outer_const, XOR,
10707 INTVAL (new_rtx), result_mode, &complement_p))
10709 varop = XEXP (varop, 0);
10710 continue;
10713 break;
10715 case MINUS:
10716 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10717 with C the size of VAROP - 1 and the shift is logical if
10718 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10719 we have a (gt X 0) operation. If the shift is arithmetic with
10720 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10721 we have a (neg (gt X 0)) operation. */
10723 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10724 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10725 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10726 && (code == LSHIFTRT || code == ASHIFTRT)
10727 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10728 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10729 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10731 count = 0;
10732 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10733 const0_rtx);
10735 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10736 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10738 continue;
10740 break;
10742 case TRUNCATE:
10743 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10744 if the truncate does not affect the value. */
10745 if (code == LSHIFTRT
10746 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10747 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10748 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10749 >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop, 0)))
10750 - GET_MODE_PRECISION (GET_MODE (varop)))))
10752 rtx varop_inner = XEXP (varop, 0);
10754 varop_inner
10755 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10756 XEXP (varop_inner, 0),
10757 GEN_INT
10758 (count + INTVAL (XEXP (varop_inner, 1))));
10759 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10760 count = 0;
10761 continue;
10763 break;
10765 default:
10766 break;
10769 break;
10772 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10773 outer_op, outer_const);
10775 /* We have now finished analyzing the shift. The result should be
10776 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10777 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10778 to the result of the shift. OUTER_CONST is the relevant constant,
10779 but we must turn off all bits turned off in the shift. */
10781 if (outer_op == UNKNOWN
10782 && orig_code == code && orig_count == count
10783 && varop == orig_varop
10784 && shift_mode == GET_MODE (varop))
10785 return NULL_RTX;
10787 /* Make a SUBREG if necessary. If we can't make it, fail. */
10788 varop = gen_lowpart (shift_mode, varop);
10789 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10790 return NULL_RTX;
10792 /* If we have an outer operation and we just made a shift, it is
10793 possible that we could have simplified the shift were it not
10794 for the outer operation. So try to do the simplification
10795 recursively. */
10797 if (outer_op != UNKNOWN)
10798 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10799 else
10800 x = NULL_RTX;
10802 if (x == NULL_RTX)
10803 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10805 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10806 turn off all the bits that the shift would have turned off. */
10807 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10808 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10809 GET_MODE_MASK (result_mode) >> orig_count);
10811 /* Do the remainder of the processing in RESULT_MODE. */
10812 x = gen_lowpart_or_truncate (result_mode, x);
10814 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10815 operation. */
10816 if (complement_p)
10817 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10819 if (outer_op != UNKNOWN)
10821 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10822 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
10823 outer_const = trunc_int_for_mode (outer_const, result_mode);
10825 if (outer_op == AND)
10826 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10827 else if (outer_op == SET)
10829 /* This means that we have determined that the result is
10830 equivalent to a constant. This should be rare. */
10831 if (!side_effects_p (x))
10832 x = GEN_INT (outer_const);
10834 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10835 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10836 else
10837 x = simplify_gen_binary (outer_op, result_mode, x,
10838 GEN_INT (outer_const));
10841 return x;
10844 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10845 The result of the shift is RESULT_MODE. If we cannot simplify it,
10846 return X or, if it is NULL, synthesize the expression with
10847 simplify_gen_binary. Otherwise, return a simplified value.
10849 The shift is normally computed in the widest mode we find in VAROP, as
10850 long as it isn't a different number of words than RESULT_MODE. Exceptions
10851 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10853 static rtx
10854 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
10855 rtx varop, int count)
10857 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10858 if (tem)
10859 return tem;
10861 if (!x)
10862 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10863 if (GET_MODE (x) != result_mode)
10864 x = gen_lowpart (result_mode, x);
10865 return x;
10869 /* A subroutine of recog_for_combine. See there for arguments and
10870 return value. */
10872 static int
10873 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
10875 rtx pat = *pnewpat;
10876 rtx pat_without_clobbers;
10877 int insn_code_number;
10878 int num_clobbers_to_add = 0;
10879 int i;
10880 rtx notes = NULL_RTX;
10881 rtx old_notes, old_pat;
10882 int old_icode;
10884 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10885 we use to indicate that something didn't match. If we find such a
10886 thing, force rejection. */
10887 if (GET_CODE (pat) == PARALLEL)
10888 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10889 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10890 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10891 return -1;
10893 old_pat = PATTERN (insn);
10894 old_notes = REG_NOTES (insn);
10895 PATTERN (insn) = pat;
10896 REG_NOTES (insn) = NULL_RTX;
10898 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10899 if (dump_file && (dump_flags & TDF_DETAILS))
10901 if (insn_code_number < 0)
10902 fputs ("Failed to match this instruction:\n", dump_file);
10903 else
10904 fputs ("Successfully matched this instruction:\n", dump_file);
10905 print_rtl_single (dump_file, pat);
10908 /* If it isn't, there is the possibility that we previously had an insn
10909 that clobbered some register as a side effect, but the combined
10910 insn doesn't need to do that. So try once more without the clobbers
10911 unless this represents an ASM insn. */
10913 if (insn_code_number < 0 && ! check_asm_operands (pat)
10914 && GET_CODE (pat) == PARALLEL)
10916 int pos;
10918 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10919 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10921 if (i != pos)
10922 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10923 pos++;
10926 SUBST_INT (XVECLEN (pat, 0), pos);
10928 if (pos == 1)
10929 pat = XVECEXP (pat, 0, 0);
10931 PATTERN (insn) = pat;
10932 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10933 if (dump_file && (dump_flags & TDF_DETAILS))
10935 if (insn_code_number < 0)
10936 fputs ("Failed to match this instruction:\n", dump_file);
10937 else
10938 fputs ("Successfully matched this instruction:\n", dump_file);
10939 print_rtl_single (dump_file, pat);
10943 pat_without_clobbers = pat;
10945 PATTERN (insn) = old_pat;
10946 REG_NOTES (insn) = old_notes;
10948 /* Recognize all noop sets, these will be killed by followup pass. */
10949 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10950 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10952 /* If we had any clobbers to add, make a new pattern than contains
10953 them. Then check to make sure that all of them are dead. */
10954 if (num_clobbers_to_add)
10956 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10957 rtvec_alloc (GET_CODE (pat) == PARALLEL
10958 ? (XVECLEN (pat, 0)
10959 + num_clobbers_to_add)
10960 : num_clobbers_to_add + 1));
10962 if (GET_CODE (pat) == PARALLEL)
10963 for (i = 0; i < XVECLEN (pat, 0); i++)
10964 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10965 else
10966 XVECEXP (newpat, 0, 0) = pat;
10968 add_clobbers (newpat, insn_code_number);
10970 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10971 i < XVECLEN (newpat, 0); i++)
10973 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10974 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10975 return -1;
10976 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10978 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10979 notes = alloc_reg_note (REG_UNUSED,
10980 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10983 pat = newpat;
10986 if (insn_code_number >= 0
10987 && insn_code_number != NOOP_MOVE_INSN_CODE)
10989 old_pat = PATTERN (insn);
10990 old_notes = REG_NOTES (insn);
10991 old_icode = INSN_CODE (insn);
10992 PATTERN (insn) = pat;
10993 REG_NOTES (insn) = notes;
10995 /* Allow targets to reject combined insn. */
10996 if (!targetm.legitimate_combined_insn (insn))
10998 if (dump_file && (dump_flags & TDF_DETAILS))
10999 fputs ("Instruction not appropriate for target.",
11000 dump_file);
11002 /* Callers expect recog_for_combine to strip
11003 clobbers from the pattern on failure. */
11004 pat = pat_without_clobbers;
11005 notes = NULL_RTX;
11007 insn_code_number = -1;
11010 PATTERN (insn) = old_pat;
11011 REG_NOTES (insn) = old_notes;
11012 INSN_CODE (insn) = old_icode;
11015 *pnewpat = pat;
11016 *pnotes = notes;
11018 return insn_code_number;
11021 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11022 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11023 Return whether anything was so changed. */
11025 static bool
11026 change_zero_ext (rtx *src)
11028 bool changed = false;
11030 subrtx_ptr_iterator::array_type array;
11031 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11033 rtx x = **iter;
11034 machine_mode mode = GET_MODE (x);
11035 int size;
11037 if (GET_CODE (x) == ZERO_EXTRACT
11038 && CONST_INT_P (XEXP (x, 1))
11039 && CONST_INT_P (XEXP (x, 2))
11040 && GET_MODE (XEXP (x, 0)) == mode)
11042 size = INTVAL (XEXP (x, 1));
11044 int start = INTVAL (XEXP (x, 2));
11045 if (BITS_BIG_ENDIAN)
11046 start = GET_MODE_PRECISION (mode) - size - start;
11048 x = gen_rtx_LSHIFTRT (mode, XEXP (x, 0), GEN_INT (start));
11050 else if (GET_CODE (x) == ZERO_EXTEND
11051 && GET_CODE (XEXP (x, 0)) == SUBREG
11052 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
11053 && subreg_lowpart_p (XEXP (x, 0)))
11055 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11056 x = SUBREG_REG (XEXP (x, 0));
11058 else
11059 continue;
11061 unsigned HOST_WIDE_INT mask = 1;
11062 mask <<= size;
11063 mask--;
11065 x = gen_rtx_AND (mode, x, GEN_INT (mask));
11067 SUBST (**iter, x);
11068 changed = true;
11071 return changed;
11074 /* Like recog, but we receive the address of a pointer to a new pattern.
11075 We try to match the rtx that the pointer points to.
11076 If that fails, we may try to modify or replace the pattern,
11077 storing the replacement into the same pointer object.
11079 Modifications include deletion or addition of CLOBBERs. If the
11080 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11081 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11082 (and undo if that fails).
11084 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11085 the CLOBBERs are placed.
11087 The value is the final insn code from the pattern ultimately matched,
11088 or -1. */
11090 static int
11091 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11093 rtx pat = PATTERN (insn);
11094 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11095 if (insn_code_number >= 0 || check_asm_operands (pat))
11096 return insn_code_number;
11098 void *marker = get_undo_marker ();
11099 bool changed = false;
11101 if (GET_CODE (pat) == SET)
11102 changed = change_zero_ext (&SET_SRC (pat));
11103 else if (GET_CODE (pat) == PARALLEL)
11105 int i;
11106 for (i = 0; i < XVECLEN (pat, 0); i++)
11108 rtx set = XVECEXP (pat, 0, i);
11109 if (GET_CODE (set) == SET)
11110 changed |= change_zero_ext (&SET_SRC (set));
11114 if (changed)
11116 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11118 if (insn_code_number < 0)
11119 undo_to_marker (marker);
11122 return insn_code_number;
11125 /* Like gen_lowpart_general but for use by combine. In combine it
11126 is not possible to create any new pseudoregs. However, it is
11127 safe to create invalid memory addresses, because combine will
11128 try to recognize them and all they will do is make the combine
11129 attempt fail.
11131 If for some reason this cannot do its job, an rtx
11132 (clobber (const_int 0)) is returned.
11133 An insn containing that will not be recognized. */
11135 static rtx
11136 gen_lowpart_for_combine (machine_mode omode, rtx x)
11138 machine_mode imode = GET_MODE (x);
11139 unsigned int osize = GET_MODE_SIZE (omode);
11140 unsigned int isize = GET_MODE_SIZE (imode);
11141 rtx result;
11143 if (omode == imode)
11144 return x;
11146 /* We can only support MODE being wider than a word if X is a
11147 constant integer or has a mode the same size. */
11148 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
11149 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
11150 goto fail;
11152 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11153 won't know what to do. So we will strip off the SUBREG here and
11154 process normally. */
11155 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11157 x = SUBREG_REG (x);
11159 /* For use in case we fall down into the address adjustments
11160 further below, we need to adjust the known mode and size of
11161 x; imode and isize, since we just adjusted x. */
11162 imode = GET_MODE (x);
11164 if (imode == omode)
11165 return x;
11167 isize = GET_MODE_SIZE (imode);
11170 result = gen_lowpart_common (omode, x);
11172 if (result)
11173 return result;
11175 if (MEM_P (x))
11177 int offset = 0;
11179 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11180 address. */
11181 if (MEM_VOLATILE_P (x)
11182 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11183 goto fail;
11185 /* If we want to refer to something bigger than the original memref,
11186 generate a paradoxical subreg instead. That will force a reload
11187 of the original memref X. */
11188 if (isize < osize)
11189 return gen_rtx_SUBREG (omode, x, 0);
11191 if (WORDS_BIG_ENDIAN)
11192 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
11194 /* Adjust the address so that the address-after-the-data is
11195 unchanged. */
11196 if (BYTES_BIG_ENDIAN)
11197 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
11199 return adjust_address_nv (x, omode, offset);
11202 /* If X is a comparison operator, rewrite it in a new mode. This
11203 probably won't match, but may allow further simplifications. */
11204 else if (COMPARISON_P (x))
11205 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11207 /* If we couldn't simplify X any other way, just enclose it in a
11208 SUBREG. Normally, this SUBREG won't match, but some patterns may
11209 include an explicit SUBREG or we may simplify it further in combine. */
11210 else
11212 rtx res;
11214 if (imode == VOIDmode)
11216 imode = int_mode_for_mode (omode);
11217 x = gen_lowpart_common (imode, x);
11218 if (x == NULL)
11219 goto fail;
11221 res = lowpart_subreg (omode, x, imode);
11222 if (res)
11223 return res;
11226 fail:
11227 return gen_rtx_CLOBBER (omode, const0_rtx);
11230 /* Try to simplify a comparison between OP0 and a constant OP1,
11231 where CODE is the comparison code that will be tested, into a
11232 (CODE OP0 const0_rtx) form.
11234 The result is a possibly different comparison code to use.
11235 *POP1 may be updated. */
11237 static enum rtx_code
11238 simplify_compare_const (enum rtx_code code, machine_mode mode,
11239 rtx op0, rtx *pop1)
11241 unsigned int mode_width = GET_MODE_PRECISION (mode);
11242 HOST_WIDE_INT const_op = INTVAL (*pop1);
11244 /* Get the constant we are comparing against and turn off all bits
11245 not on in our mode. */
11246 if (mode != VOIDmode)
11247 const_op = trunc_int_for_mode (const_op, mode);
11249 /* If we are comparing against a constant power of two and the value
11250 being compared can only have that single bit nonzero (e.g., it was
11251 `and'ed with that bit), we can replace this with a comparison
11252 with zero. */
11253 if (const_op
11254 && (code == EQ || code == NE || code == GE || code == GEU
11255 || code == LT || code == LTU)
11256 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11257 && exact_log2 (const_op & GET_MODE_MASK (mode)) >= 0
11258 && (nonzero_bits (op0, mode)
11259 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (mode))))
11261 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11262 const_op = 0;
11265 /* Similarly, if we are comparing a value known to be either -1 or
11266 0 with -1, change it to the opposite comparison against zero. */
11267 if (const_op == -1
11268 && (code == EQ || code == NE || code == GT || code == LE
11269 || code == GEU || code == LTU)
11270 && num_sign_bit_copies (op0, mode) == mode_width)
11272 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11273 const_op = 0;
11276 /* Do some canonicalizations based on the comparison code. We prefer
11277 comparisons against zero and then prefer equality comparisons.
11278 If we can reduce the size of a constant, we will do that too. */
11279 switch (code)
11281 case LT:
11282 /* < C is equivalent to <= (C - 1) */
11283 if (const_op > 0)
11285 const_op -= 1;
11286 code = LE;
11287 /* ... fall through to LE case below. */
11289 else
11290 break;
11292 case LE:
11293 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11294 if (const_op < 0)
11296 const_op += 1;
11297 code = LT;
11300 /* If we are doing a <= 0 comparison on a value known to have
11301 a zero sign bit, we can replace this with == 0. */
11302 else if (const_op == 0
11303 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11304 && (nonzero_bits (op0, mode)
11305 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11306 == 0)
11307 code = EQ;
11308 break;
11310 case GE:
11311 /* >= C is equivalent to > (C - 1). */
11312 if (const_op > 0)
11314 const_op -= 1;
11315 code = GT;
11316 /* ... fall through to GT below. */
11318 else
11319 break;
11321 case GT:
11322 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11323 if (const_op < 0)
11325 const_op += 1;
11326 code = GE;
11329 /* If we are doing a > 0 comparison on a value known to have
11330 a zero sign bit, we can replace this with != 0. */
11331 else if (const_op == 0
11332 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11333 && (nonzero_bits (op0, mode)
11334 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11335 == 0)
11336 code = NE;
11337 break;
11339 case LTU:
11340 /* < C is equivalent to <= (C - 1). */
11341 if (const_op > 0)
11343 const_op -= 1;
11344 code = LEU;
11345 /* ... fall through ... */
11347 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11348 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11349 && (unsigned HOST_WIDE_INT) const_op
11350 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11352 const_op = 0;
11353 code = GE;
11354 break;
11356 else
11357 break;
11359 case LEU:
11360 /* unsigned <= 0 is equivalent to == 0 */
11361 if (const_op == 0)
11362 code = EQ;
11363 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11364 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11365 && (unsigned HOST_WIDE_INT) const_op
11366 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11368 const_op = 0;
11369 code = GE;
11371 break;
11373 case GEU:
11374 /* >= C is equivalent to > (C - 1). */
11375 if (const_op > 1)
11377 const_op -= 1;
11378 code = GTU;
11379 /* ... fall through ... */
11382 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11383 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11384 && (unsigned HOST_WIDE_INT) const_op
11385 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11387 const_op = 0;
11388 code = LT;
11389 break;
11391 else
11392 break;
11394 case GTU:
11395 /* unsigned > 0 is equivalent to != 0 */
11396 if (const_op == 0)
11397 code = NE;
11398 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11399 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11400 && (unsigned HOST_WIDE_INT) const_op
11401 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11403 const_op = 0;
11404 code = LT;
11406 break;
11408 default:
11409 break;
11412 *pop1 = GEN_INT (const_op);
11413 return code;
11416 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11417 comparison code that will be tested.
11419 The result is a possibly different comparison code to use. *POP0 and
11420 *POP1 may be updated.
11422 It is possible that we might detect that a comparison is either always
11423 true or always false. However, we do not perform general constant
11424 folding in combine, so this knowledge isn't useful. Such tautologies
11425 should have been detected earlier. Hence we ignore all such cases. */
11427 static enum rtx_code
11428 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11430 rtx op0 = *pop0;
11431 rtx op1 = *pop1;
11432 rtx tem, tem1;
11433 int i;
11434 machine_mode mode, tmode;
11436 /* Try a few ways of applying the same transformation to both operands. */
11437 while (1)
11439 #if !WORD_REGISTER_OPERATIONS
11440 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11441 so check specially. */
11442 if (code != GTU && code != GEU && code != LTU && code != LEU
11443 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11444 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11445 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11446 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11447 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11448 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11449 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11450 && CONST_INT_P (XEXP (op0, 1))
11451 && XEXP (op0, 1) == XEXP (op1, 1)
11452 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11453 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11454 && (INTVAL (XEXP (op0, 1))
11455 == (GET_MODE_PRECISION (GET_MODE (op0))
11456 - (GET_MODE_PRECISION
11457 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11459 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11460 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11462 #endif
11464 /* If both operands are the same constant shift, see if we can ignore the
11465 shift. We can if the shift is a rotate or if the bits shifted out of
11466 this shift are known to be zero for both inputs and if the type of
11467 comparison is compatible with the shift. */
11468 if (GET_CODE (op0) == GET_CODE (op1)
11469 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11470 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11471 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11472 && (code != GT && code != LT && code != GE && code != LE))
11473 || (GET_CODE (op0) == ASHIFTRT
11474 && (code != GTU && code != LTU
11475 && code != GEU && code != LEU)))
11476 && CONST_INT_P (XEXP (op0, 1))
11477 && INTVAL (XEXP (op0, 1)) >= 0
11478 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11479 && XEXP (op0, 1) == XEXP (op1, 1))
11481 machine_mode mode = GET_MODE (op0);
11482 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11483 int shift_count = INTVAL (XEXP (op0, 1));
11485 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11486 mask &= (mask >> shift_count) << shift_count;
11487 else if (GET_CODE (op0) == ASHIFT)
11488 mask = (mask & (mask << shift_count)) >> shift_count;
11490 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11491 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11492 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11493 else
11494 break;
11497 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11498 SUBREGs are of the same mode, and, in both cases, the AND would
11499 be redundant if the comparison was done in the narrower mode,
11500 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11501 and the operand's possibly nonzero bits are 0xffffff01; in that case
11502 if we only care about QImode, we don't need the AND). This case
11503 occurs if the output mode of an scc insn is not SImode and
11504 STORE_FLAG_VALUE == 1 (e.g., the 386).
11506 Similarly, check for a case where the AND's are ZERO_EXTEND
11507 operations from some narrower mode even though a SUBREG is not
11508 present. */
11510 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11511 && CONST_INT_P (XEXP (op0, 1))
11512 && CONST_INT_P (XEXP (op1, 1)))
11514 rtx inner_op0 = XEXP (op0, 0);
11515 rtx inner_op1 = XEXP (op1, 0);
11516 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11517 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11518 int changed = 0;
11520 if (paradoxical_subreg_p (inner_op0)
11521 && GET_CODE (inner_op1) == SUBREG
11522 && (GET_MODE (SUBREG_REG (inner_op0))
11523 == GET_MODE (SUBREG_REG (inner_op1)))
11524 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11525 <= HOST_BITS_PER_WIDE_INT)
11526 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11527 GET_MODE (SUBREG_REG (inner_op0)))))
11528 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11529 GET_MODE (SUBREG_REG (inner_op1))))))
11531 op0 = SUBREG_REG (inner_op0);
11532 op1 = SUBREG_REG (inner_op1);
11534 /* The resulting comparison is always unsigned since we masked
11535 off the original sign bit. */
11536 code = unsigned_condition (code);
11538 changed = 1;
11541 else if (c0 == c1)
11542 for (tmode = GET_CLASS_NARROWEST_MODE
11543 (GET_MODE_CLASS (GET_MODE (op0)));
11544 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11545 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11547 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
11548 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
11549 code = unsigned_condition (code);
11550 changed = 1;
11551 break;
11554 if (! changed)
11555 break;
11558 /* If both operands are NOT, we can strip off the outer operation
11559 and adjust the comparison code for swapped operands; similarly for
11560 NEG, except that this must be an equality comparison. */
11561 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11562 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11563 && (code == EQ || code == NE)))
11564 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11566 else
11567 break;
11570 /* If the first operand is a constant, swap the operands and adjust the
11571 comparison code appropriately, but don't do this if the second operand
11572 is already a constant integer. */
11573 if (swap_commutative_operands_p (op0, op1))
11575 std::swap (op0, op1);
11576 code = swap_condition (code);
11579 /* We now enter a loop during which we will try to simplify the comparison.
11580 For the most part, we only are concerned with comparisons with zero,
11581 but some things may really be comparisons with zero but not start
11582 out looking that way. */
11584 while (CONST_INT_P (op1))
11586 machine_mode mode = GET_MODE (op0);
11587 unsigned int mode_width = GET_MODE_PRECISION (mode);
11588 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11589 int equality_comparison_p;
11590 int sign_bit_comparison_p;
11591 int unsigned_comparison_p;
11592 HOST_WIDE_INT const_op;
11594 /* We only want to handle integral modes. This catches VOIDmode,
11595 CCmode, and the floating-point modes. An exception is that we
11596 can handle VOIDmode if OP0 is a COMPARE or a comparison
11597 operation. */
11599 if (GET_MODE_CLASS (mode) != MODE_INT
11600 && ! (mode == VOIDmode
11601 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11602 break;
11604 /* Try to simplify the compare to constant, possibly changing the
11605 comparison op, and/or changing op1 to zero. */
11606 code = simplify_compare_const (code, mode, op0, &op1);
11607 const_op = INTVAL (op1);
11609 /* Compute some predicates to simplify code below. */
11611 equality_comparison_p = (code == EQ || code == NE);
11612 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11613 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11614 || code == GEU);
11616 /* If this is a sign bit comparison and we can do arithmetic in
11617 MODE, say that we will only be needing the sign bit of OP0. */
11618 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11619 op0 = force_to_mode (op0, mode,
11620 (unsigned HOST_WIDE_INT) 1
11621 << (GET_MODE_PRECISION (mode) - 1),
11624 /* Now try cases based on the opcode of OP0. If none of the cases
11625 does a "continue", we exit this loop immediately after the
11626 switch. */
11628 switch (GET_CODE (op0))
11630 case ZERO_EXTRACT:
11631 /* If we are extracting a single bit from a variable position in
11632 a constant that has only a single bit set and are comparing it
11633 with zero, we can convert this into an equality comparison
11634 between the position and the location of the single bit. */
11635 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11636 have already reduced the shift count modulo the word size. */
11637 if (!SHIFT_COUNT_TRUNCATED
11638 && CONST_INT_P (XEXP (op0, 0))
11639 && XEXP (op0, 1) == const1_rtx
11640 && equality_comparison_p && const_op == 0
11641 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11643 if (BITS_BIG_ENDIAN)
11644 i = BITS_PER_WORD - 1 - i;
11646 op0 = XEXP (op0, 2);
11647 op1 = GEN_INT (i);
11648 const_op = i;
11650 /* Result is nonzero iff shift count is equal to I. */
11651 code = reverse_condition (code);
11652 continue;
11655 /* ... fall through ... */
11657 case SIGN_EXTRACT:
11658 tem = expand_compound_operation (op0);
11659 if (tem != op0)
11661 op0 = tem;
11662 continue;
11664 break;
11666 case NOT:
11667 /* If testing for equality, we can take the NOT of the constant. */
11668 if (equality_comparison_p
11669 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11671 op0 = XEXP (op0, 0);
11672 op1 = tem;
11673 continue;
11676 /* If just looking at the sign bit, reverse the sense of the
11677 comparison. */
11678 if (sign_bit_comparison_p)
11680 op0 = XEXP (op0, 0);
11681 code = (code == GE ? LT : GE);
11682 continue;
11684 break;
11686 case NEG:
11687 /* If testing for equality, we can take the NEG of the constant. */
11688 if (equality_comparison_p
11689 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11691 op0 = XEXP (op0, 0);
11692 op1 = tem;
11693 continue;
11696 /* The remaining cases only apply to comparisons with zero. */
11697 if (const_op != 0)
11698 break;
11700 /* When X is ABS or is known positive,
11701 (neg X) is < 0 if and only if X != 0. */
11703 if (sign_bit_comparison_p
11704 && (GET_CODE (XEXP (op0, 0)) == ABS
11705 || (mode_width <= HOST_BITS_PER_WIDE_INT
11706 && (nonzero_bits (XEXP (op0, 0), mode)
11707 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11708 == 0)))
11710 op0 = XEXP (op0, 0);
11711 code = (code == LT ? NE : EQ);
11712 continue;
11715 /* If we have NEG of something whose two high-order bits are the
11716 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11717 if (num_sign_bit_copies (op0, mode) >= 2)
11719 op0 = XEXP (op0, 0);
11720 code = swap_condition (code);
11721 continue;
11723 break;
11725 case ROTATE:
11726 /* If we are testing equality and our count is a constant, we
11727 can perform the inverse operation on our RHS. */
11728 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11729 && (tem = simplify_binary_operation (ROTATERT, mode,
11730 op1, XEXP (op0, 1))) != 0)
11732 op0 = XEXP (op0, 0);
11733 op1 = tem;
11734 continue;
11737 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11738 a particular bit. Convert it to an AND of a constant of that
11739 bit. This will be converted into a ZERO_EXTRACT. */
11740 if (const_op == 0 && sign_bit_comparison_p
11741 && CONST_INT_P (XEXP (op0, 1))
11742 && mode_width <= HOST_BITS_PER_WIDE_INT)
11744 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11745 ((unsigned HOST_WIDE_INT) 1
11746 << (mode_width - 1
11747 - INTVAL (XEXP (op0, 1)))));
11748 code = (code == LT ? NE : EQ);
11749 continue;
11752 /* Fall through. */
11754 case ABS:
11755 /* ABS is ignorable inside an equality comparison with zero. */
11756 if (const_op == 0 && equality_comparison_p)
11758 op0 = XEXP (op0, 0);
11759 continue;
11761 break;
11763 case SIGN_EXTEND:
11764 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11765 (compare FOO CONST) if CONST fits in FOO's mode and we
11766 are either testing inequality or have an unsigned
11767 comparison with ZERO_EXTEND or a signed comparison with
11768 SIGN_EXTEND. But don't do it if we don't have a compare
11769 insn of the given mode, since we'd have to revert it
11770 later on, and then we wouldn't know whether to sign- or
11771 zero-extend. */
11772 mode = GET_MODE (XEXP (op0, 0));
11773 if (GET_MODE_CLASS (mode) == MODE_INT
11774 && ! unsigned_comparison_p
11775 && HWI_COMPUTABLE_MODE_P (mode)
11776 && trunc_int_for_mode (const_op, mode) == const_op
11777 && have_insn_for (COMPARE, mode))
11779 op0 = XEXP (op0, 0);
11780 continue;
11782 break;
11784 case SUBREG:
11785 /* Check for the case where we are comparing A - C1 with C2, that is
11787 (subreg:MODE (plus (A) (-C1))) op (C2)
11789 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11790 comparison in the wider mode. One of the following two conditions
11791 must be true in order for this to be valid:
11793 1. The mode extension results in the same bit pattern being added
11794 on both sides and the comparison is equality or unsigned. As
11795 C2 has been truncated to fit in MODE, the pattern can only be
11796 all 0s or all 1s.
11798 2. The mode extension results in the sign bit being copied on
11799 each side.
11801 The difficulty here is that we have predicates for A but not for
11802 (A - C1) so we need to check that C1 is within proper bounds so
11803 as to perturbate A as little as possible. */
11805 if (mode_width <= HOST_BITS_PER_WIDE_INT
11806 && subreg_lowpart_p (op0)
11807 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
11808 && GET_CODE (SUBREG_REG (op0)) == PLUS
11809 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11811 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11812 rtx a = XEXP (SUBREG_REG (op0), 0);
11813 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11815 if ((c1 > 0
11816 && (unsigned HOST_WIDE_INT) c1
11817 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11818 && (equality_comparison_p || unsigned_comparison_p)
11819 /* (A - C1) zero-extends if it is positive and sign-extends
11820 if it is negative, C2 both zero- and sign-extends. */
11821 && ((0 == (nonzero_bits (a, inner_mode)
11822 & ~GET_MODE_MASK (mode))
11823 && const_op >= 0)
11824 /* (A - C1) sign-extends if it is positive and 1-extends
11825 if it is negative, C2 both sign- and 1-extends. */
11826 || (num_sign_bit_copies (a, inner_mode)
11827 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11828 - mode_width)
11829 && const_op < 0)))
11830 || ((unsigned HOST_WIDE_INT) c1
11831 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11832 /* (A - C1) always sign-extends, like C2. */
11833 && num_sign_bit_copies (a, inner_mode)
11834 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11835 - (mode_width - 1))))
11837 op0 = SUBREG_REG (op0);
11838 continue;
11842 /* If the inner mode is narrower and we are extracting the low part,
11843 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11844 if (subreg_lowpart_p (op0)
11845 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
11846 /* Fall through */ ;
11847 else
11848 break;
11850 /* ... fall through ... */
11852 case ZERO_EXTEND:
11853 mode = GET_MODE (XEXP (op0, 0));
11854 if (GET_MODE_CLASS (mode) == MODE_INT
11855 && (unsigned_comparison_p || equality_comparison_p)
11856 && HWI_COMPUTABLE_MODE_P (mode)
11857 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
11858 && const_op >= 0
11859 && have_insn_for (COMPARE, mode))
11861 op0 = XEXP (op0, 0);
11862 continue;
11864 break;
11866 case PLUS:
11867 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11868 this for equality comparisons due to pathological cases involving
11869 overflows. */
11870 if (equality_comparison_p
11871 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11872 op1, XEXP (op0, 1))))
11874 op0 = XEXP (op0, 0);
11875 op1 = tem;
11876 continue;
11879 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11880 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11881 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11883 op0 = XEXP (XEXP (op0, 0), 0);
11884 code = (code == LT ? EQ : NE);
11885 continue;
11887 break;
11889 case MINUS:
11890 /* We used to optimize signed comparisons against zero, but that
11891 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11892 arrive here as equality comparisons, or (GEU, LTU) are
11893 optimized away. No need to special-case them. */
11895 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11896 (eq B (minus A C)), whichever simplifies. We can only do
11897 this for equality comparisons due to pathological cases involving
11898 overflows. */
11899 if (equality_comparison_p
11900 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11901 XEXP (op0, 1), op1)))
11903 op0 = XEXP (op0, 0);
11904 op1 = tem;
11905 continue;
11908 if (equality_comparison_p
11909 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11910 XEXP (op0, 0), op1)))
11912 op0 = XEXP (op0, 1);
11913 op1 = tem;
11914 continue;
11917 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11918 of bits in X minus 1, is one iff X > 0. */
11919 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11920 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11921 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
11922 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11924 op0 = XEXP (op0, 1);
11925 code = (code == GE ? LE : GT);
11926 continue;
11928 break;
11930 case XOR:
11931 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11932 if C is zero or B is a constant. */
11933 if (equality_comparison_p
11934 && 0 != (tem = simplify_binary_operation (XOR, mode,
11935 XEXP (op0, 1), op1)))
11937 op0 = XEXP (op0, 0);
11938 op1 = tem;
11939 continue;
11941 break;
11943 case EQ: case NE:
11944 case UNEQ: case LTGT:
11945 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11946 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11947 case UNORDERED: case ORDERED:
11948 /* We can't do anything if OP0 is a condition code value, rather
11949 than an actual data value. */
11950 if (const_op != 0
11951 || CC0_P (XEXP (op0, 0))
11952 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11953 break;
11955 /* Get the two operands being compared. */
11956 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11957 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11958 else
11959 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11961 /* Check for the cases where we simply want the result of the
11962 earlier test or the opposite of that result. */
11963 if (code == NE || code == EQ
11964 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
11965 && (code == LT || code == GE)))
11967 enum rtx_code new_code;
11968 if (code == LT || code == NE)
11969 new_code = GET_CODE (op0);
11970 else
11971 new_code = reversed_comparison_code (op0, NULL);
11973 if (new_code != UNKNOWN)
11975 code = new_code;
11976 op0 = tem;
11977 op1 = tem1;
11978 continue;
11981 break;
11983 case IOR:
11984 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11985 iff X <= 0. */
11986 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11987 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11988 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11990 op0 = XEXP (op0, 1);
11991 code = (code == GE ? GT : LE);
11992 continue;
11994 break;
11996 case AND:
11997 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11998 will be converted to a ZERO_EXTRACT later. */
11999 if (const_op == 0 && equality_comparison_p
12000 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12001 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12003 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12004 XEXP (XEXP (op0, 0), 1));
12005 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12006 continue;
12009 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12010 zero and X is a comparison and C1 and C2 describe only bits set
12011 in STORE_FLAG_VALUE, we can compare with X. */
12012 if (const_op == 0 && equality_comparison_p
12013 && mode_width <= HOST_BITS_PER_WIDE_INT
12014 && CONST_INT_P (XEXP (op0, 1))
12015 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12016 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12017 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12018 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12020 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12021 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12022 if ((~STORE_FLAG_VALUE & mask) == 0
12023 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12024 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12025 && COMPARISON_P (tem))))
12027 op0 = XEXP (XEXP (op0, 0), 0);
12028 continue;
12032 /* If we are doing an equality comparison of an AND of a bit equal
12033 to the sign bit, replace this with a LT or GE comparison of
12034 the underlying value. */
12035 if (equality_comparison_p
12036 && const_op == 0
12037 && CONST_INT_P (XEXP (op0, 1))
12038 && mode_width <= HOST_BITS_PER_WIDE_INT
12039 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12040 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
12042 op0 = XEXP (op0, 0);
12043 code = (code == EQ ? GE : LT);
12044 continue;
12047 /* If this AND operation is really a ZERO_EXTEND from a narrower
12048 mode, the constant fits within that mode, and this is either an
12049 equality or unsigned comparison, try to do this comparison in
12050 the narrower mode.
12052 Note that in:
12054 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12055 -> (ne:DI (reg:SI 4) (const_int 0))
12057 unless TRULY_NOOP_TRUNCATION allows it or the register is
12058 known to hold a value of the required mode the
12059 transformation is invalid. */
12060 if ((equality_comparison_p || unsigned_comparison_p)
12061 && CONST_INT_P (XEXP (op0, 1))
12062 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12063 & GET_MODE_MASK (mode))
12064 + 1)) >= 0
12065 && const_op >> i == 0
12066 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
12068 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12069 continue;
12072 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12073 fits in both M1 and M2 and the SUBREG is either paradoxical
12074 or represents the low part, permute the SUBREG and the AND
12075 and try again. */
12076 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12077 && CONST_INT_P (XEXP (op0, 1)))
12079 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
12080 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12081 /* Require an integral mode, to avoid creating something like
12082 (AND:SF ...). */
12083 if (SCALAR_INT_MODE_P (tmode)
12084 /* It is unsafe to commute the AND into the SUBREG if the
12085 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12086 not defined. As originally written the upper bits
12087 have a defined value due to the AND operation.
12088 However, if we commute the AND inside the SUBREG then
12089 they no longer have defined values and the meaning of
12090 the code has been changed.
12091 Also C1 should not change value in the smaller mode,
12092 see PR67028 (a positive C1 can become negative in the
12093 smaller mode, so that the AND does no longer mask the
12094 upper bits). */
12095 && ((WORD_REGISTER_OPERATIONS
12096 && mode_width > GET_MODE_PRECISION (tmode)
12097 && mode_width <= BITS_PER_WORD
12098 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12099 || (mode_width <= GET_MODE_PRECISION (tmode)
12100 && subreg_lowpart_p (XEXP (op0, 0))))
12101 && mode_width <= HOST_BITS_PER_WIDE_INT
12102 && HWI_COMPUTABLE_MODE_P (tmode)
12103 && (c1 & ~mask) == 0
12104 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12105 && c1 != mask
12106 && c1 != GET_MODE_MASK (tmode))
12108 op0 = simplify_gen_binary (AND, tmode,
12109 SUBREG_REG (XEXP (op0, 0)),
12110 gen_int_mode (c1, tmode));
12111 op0 = gen_lowpart (mode, op0);
12112 continue;
12116 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12117 if (const_op == 0 && equality_comparison_p
12118 && XEXP (op0, 1) == const1_rtx
12119 && GET_CODE (XEXP (op0, 0)) == NOT)
12121 op0 = simplify_and_const_int (NULL_RTX, mode,
12122 XEXP (XEXP (op0, 0), 0), 1);
12123 code = (code == NE ? EQ : NE);
12124 continue;
12127 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12128 (eq (and (lshiftrt X) 1) 0).
12129 Also handle the case where (not X) is expressed using xor. */
12130 if (const_op == 0 && equality_comparison_p
12131 && XEXP (op0, 1) == const1_rtx
12132 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12134 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12135 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12137 if (GET_CODE (shift_op) == NOT
12138 || (GET_CODE (shift_op) == XOR
12139 && CONST_INT_P (XEXP (shift_op, 1))
12140 && CONST_INT_P (shift_count)
12141 && HWI_COMPUTABLE_MODE_P (mode)
12142 && (UINTVAL (XEXP (shift_op, 1))
12143 == (unsigned HOST_WIDE_INT) 1
12144 << INTVAL (shift_count))))
12147 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12148 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12149 code = (code == NE ? EQ : NE);
12150 continue;
12153 break;
12155 case ASHIFT:
12156 /* If we have (compare (ashift FOO N) (const_int C)) and
12157 the high order N bits of FOO (N+1 if an inequality comparison)
12158 are known to be zero, we can do this by comparing FOO with C
12159 shifted right N bits so long as the low-order N bits of C are
12160 zero. */
12161 if (CONST_INT_P (XEXP (op0, 1))
12162 && INTVAL (XEXP (op0, 1)) >= 0
12163 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12164 < HOST_BITS_PER_WIDE_INT)
12165 && (((unsigned HOST_WIDE_INT) const_op
12166 & (((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1)))
12167 - 1)) == 0)
12168 && mode_width <= HOST_BITS_PER_WIDE_INT
12169 && (nonzero_bits (XEXP (op0, 0), mode)
12170 & ~(mask >> (INTVAL (XEXP (op0, 1))
12171 + ! equality_comparison_p))) == 0)
12173 /* We must perform a logical shift, not an arithmetic one,
12174 as we want the top N bits of C to be zero. */
12175 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12177 temp >>= INTVAL (XEXP (op0, 1));
12178 op1 = gen_int_mode (temp, mode);
12179 op0 = XEXP (op0, 0);
12180 continue;
12183 /* If we are doing a sign bit comparison, it means we are testing
12184 a particular bit. Convert it to the appropriate AND. */
12185 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12186 && mode_width <= HOST_BITS_PER_WIDE_INT)
12188 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12189 ((unsigned HOST_WIDE_INT) 1
12190 << (mode_width - 1
12191 - INTVAL (XEXP (op0, 1)))));
12192 code = (code == LT ? NE : EQ);
12193 continue;
12196 /* If this an equality comparison with zero and we are shifting
12197 the low bit to the sign bit, we can convert this to an AND of the
12198 low-order bit. */
12199 if (const_op == 0 && equality_comparison_p
12200 && CONST_INT_P (XEXP (op0, 1))
12201 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12203 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12204 continue;
12206 break;
12208 case ASHIFTRT:
12209 /* If this is an equality comparison with zero, we can do this
12210 as a logical shift, which might be much simpler. */
12211 if (equality_comparison_p && const_op == 0
12212 && CONST_INT_P (XEXP (op0, 1)))
12214 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12215 XEXP (op0, 0),
12216 INTVAL (XEXP (op0, 1)));
12217 continue;
12220 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12221 do the comparison in a narrower mode. */
12222 if (! unsigned_comparison_p
12223 && CONST_INT_P (XEXP (op0, 1))
12224 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12225 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12226 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12227 MODE_INT, 1)) != BLKmode
12228 && (((unsigned HOST_WIDE_INT) const_op
12229 + (GET_MODE_MASK (tmode) >> 1) + 1)
12230 <= GET_MODE_MASK (tmode)))
12232 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12233 continue;
12236 /* Likewise if OP0 is a PLUS of a sign extension with a
12237 constant, which is usually represented with the PLUS
12238 between the shifts. */
12239 if (! unsigned_comparison_p
12240 && CONST_INT_P (XEXP (op0, 1))
12241 && GET_CODE (XEXP (op0, 0)) == PLUS
12242 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12243 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12244 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12245 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12246 MODE_INT, 1)) != BLKmode
12247 && (((unsigned HOST_WIDE_INT) const_op
12248 + (GET_MODE_MASK (tmode) >> 1) + 1)
12249 <= GET_MODE_MASK (tmode)))
12251 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12252 rtx add_const = XEXP (XEXP (op0, 0), 1);
12253 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
12254 add_const, XEXP (op0, 1));
12256 op0 = simplify_gen_binary (PLUS, tmode,
12257 gen_lowpart (tmode, inner),
12258 new_const);
12259 continue;
12262 /* ... fall through ... */
12263 case LSHIFTRT:
12264 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12265 the low order N bits of FOO are known to be zero, we can do this
12266 by comparing FOO with C shifted left N bits so long as no
12267 overflow occurs. Even if the low order N bits of FOO aren't known
12268 to be zero, if the comparison is >= or < we can use the same
12269 optimization and for > or <= by setting all the low
12270 order N bits in the comparison constant. */
12271 if (CONST_INT_P (XEXP (op0, 1))
12272 && INTVAL (XEXP (op0, 1)) > 0
12273 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12274 && mode_width <= HOST_BITS_PER_WIDE_INT
12275 && (((unsigned HOST_WIDE_INT) const_op
12276 + (GET_CODE (op0) != LSHIFTRT
12277 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12278 + 1)
12279 : 0))
12280 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12282 unsigned HOST_WIDE_INT low_bits
12283 = (nonzero_bits (XEXP (op0, 0), mode)
12284 & (((unsigned HOST_WIDE_INT) 1
12285 << INTVAL (XEXP (op0, 1))) - 1));
12286 if (low_bits == 0 || !equality_comparison_p)
12288 /* If the shift was logical, then we must make the condition
12289 unsigned. */
12290 if (GET_CODE (op0) == LSHIFTRT)
12291 code = unsigned_condition (code);
12293 const_op <<= INTVAL (XEXP (op0, 1));
12294 if (low_bits != 0
12295 && (code == GT || code == GTU
12296 || code == LE || code == LEU))
12297 const_op
12298 |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
12299 op1 = GEN_INT (const_op);
12300 op0 = XEXP (op0, 0);
12301 continue;
12305 /* If we are using this shift to extract just the sign bit, we
12306 can replace this with an LT or GE comparison. */
12307 if (const_op == 0
12308 && (equality_comparison_p || sign_bit_comparison_p)
12309 && CONST_INT_P (XEXP (op0, 1))
12310 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12312 op0 = XEXP (op0, 0);
12313 code = (code == NE || code == GT ? LT : GE);
12314 continue;
12316 break;
12318 default:
12319 break;
12322 break;
12325 /* Now make any compound operations involved in this comparison. Then,
12326 check for an outmost SUBREG on OP0 that is not doing anything or is
12327 paradoxical. The latter transformation must only be performed when
12328 it is known that the "extra" bits will be the same in op0 and op1 or
12329 that they don't matter. There are three cases to consider:
12331 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12332 care bits and we can assume they have any convenient value. So
12333 making the transformation is safe.
12335 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
12336 In this case the upper bits of op0 are undefined. We should not make
12337 the simplification in that case as we do not know the contents of
12338 those bits.
12340 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
12341 UNKNOWN. In that case we know those bits are zeros or ones. We must
12342 also be sure that they are the same as the upper bits of op1.
12344 We can never remove a SUBREG for a non-equality comparison because
12345 the sign bit is in a different place in the underlying object. */
12347 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
12348 op1 = make_compound_operation (op1, SET);
12350 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12351 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12352 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12353 && (code == NE || code == EQ))
12355 if (paradoxical_subreg_p (op0))
12357 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12358 implemented. */
12359 if (REG_P (SUBREG_REG (op0)))
12361 op0 = SUBREG_REG (op0);
12362 op1 = gen_lowpart (GET_MODE (op0), op1);
12365 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12366 <= HOST_BITS_PER_WIDE_INT)
12367 && (nonzero_bits (SUBREG_REG (op0),
12368 GET_MODE (SUBREG_REG (op0)))
12369 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12371 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12373 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12374 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12375 op0 = SUBREG_REG (op0), op1 = tem;
12379 /* We now do the opposite procedure: Some machines don't have compare
12380 insns in all modes. If OP0's mode is an integer mode smaller than a
12381 word and we can't do a compare in that mode, see if there is a larger
12382 mode for which we can do the compare. There are a number of cases in
12383 which we can use the wider mode. */
12385 mode = GET_MODE (op0);
12386 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
12387 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12388 && ! have_insn_for (COMPARE, mode))
12389 for (tmode = GET_MODE_WIDER_MODE (mode);
12390 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
12391 tmode = GET_MODE_WIDER_MODE (tmode))
12392 if (have_insn_for (COMPARE, tmode))
12394 int zero_extended;
12396 /* If this is a test for negative, we can make an explicit
12397 test of the sign bit. Test this first so we can use
12398 a paradoxical subreg to extend OP0. */
12400 if (op1 == const0_rtx && (code == LT || code == GE)
12401 && HWI_COMPUTABLE_MODE_P (mode))
12403 unsigned HOST_WIDE_INT sign
12404 = (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1);
12405 op0 = simplify_gen_binary (AND, tmode,
12406 gen_lowpart (tmode, op0),
12407 gen_int_mode (sign, tmode));
12408 code = (code == LT) ? NE : EQ;
12409 break;
12412 /* If the only nonzero bits in OP0 and OP1 are those in the
12413 narrower mode and this is an equality or unsigned comparison,
12414 we can use the wider mode. Similarly for sign-extended
12415 values, in which case it is true for all comparisons. */
12416 zero_extended = ((code == EQ || code == NE
12417 || code == GEU || code == GTU
12418 || code == LEU || code == LTU)
12419 && (nonzero_bits (op0, tmode)
12420 & ~GET_MODE_MASK (mode)) == 0
12421 && ((CONST_INT_P (op1)
12422 || (nonzero_bits (op1, tmode)
12423 & ~GET_MODE_MASK (mode)) == 0)));
12425 if (zero_extended
12426 || ((num_sign_bit_copies (op0, tmode)
12427 > (unsigned int) (GET_MODE_PRECISION (tmode)
12428 - GET_MODE_PRECISION (mode)))
12429 && (num_sign_bit_copies (op1, tmode)
12430 > (unsigned int) (GET_MODE_PRECISION (tmode)
12431 - GET_MODE_PRECISION (mode)))))
12433 /* If OP0 is an AND and we don't have an AND in MODE either,
12434 make a new AND in the proper mode. */
12435 if (GET_CODE (op0) == AND
12436 && !have_insn_for (AND, mode))
12437 op0 = simplify_gen_binary (AND, tmode,
12438 gen_lowpart (tmode,
12439 XEXP (op0, 0)),
12440 gen_lowpart (tmode,
12441 XEXP (op0, 1)));
12442 else
12444 if (zero_extended)
12446 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12447 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12449 else
12451 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12452 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12454 break;
12459 /* We may have changed the comparison operands. Re-canonicalize. */
12460 if (swap_commutative_operands_p (op0, op1))
12462 std::swap (op0, op1);
12463 code = swap_condition (code);
12466 /* If this machine only supports a subset of valid comparisons, see if we
12467 can convert an unsupported one into a supported one. */
12468 target_canonicalize_comparison (&code, &op0, &op1, 0);
12470 *pop0 = op0;
12471 *pop1 = op1;
12473 return code;
12476 /* Utility function for record_value_for_reg. Count number of
12477 rtxs in X. */
12478 static int
12479 count_rtxs (rtx x)
12481 enum rtx_code code = GET_CODE (x);
12482 const char *fmt;
12483 int i, j, ret = 1;
12485 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12486 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12488 rtx x0 = XEXP (x, 0);
12489 rtx x1 = XEXP (x, 1);
12491 if (x0 == x1)
12492 return 1 + 2 * count_rtxs (x0);
12494 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12495 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12496 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12497 return 2 + 2 * count_rtxs (x0)
12498 + count_rtxs (x == XEXP (x1, 0)
12499 ? XEXP (x1, 1) : XEXP (x1, 0));
12501 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12502 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12503 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12504 return 2 + 2 * count_rtxs (x1)
12505 + count_rtxs (x == XEXP (x0, 0)
12506 ? XEXP (x0, 1) : XEXP (x0, 0));
12509 fmt = GET_RTX_FORMAT (code);
12510 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12511 if (fmt[i] == 'e')
12512 ret += count_rtxs (XEXP (x, i));
12513 else if (fmt[i] == 'E')
12514 for (j = 0; j < XVECLEN (x, i); j++)
12515 ret += count_rtxs (XVECEXP (x, i, j));
12517 return ret;
12520 /* Utility function for following routine. Called when X is part of a value
12521 being stored into last_set_value. Sets last_set_table_tick
12522 for each register mentioned. Similar to mention_regs in cse.c */
12524 static void
12525 update_table_tick (rtx x)
12527 enum rtx_code code = GET_CODE (x);
12528 const char *fmt = GET_RTX_FORMAT (code);
12529 int i, j;
12531 if (code == REG)
12533 unsigned int regno = REGNO (x);
12534 unsigned int endregno = END_REGNO (x);
12535 unsigned int r;
12537 for (r = regno; r < endregno; r++)
12539 reg_stat_type *rsp = &reg_stat[r];
12540 rsp->last_set_table_tick = label_tick;
12543 return;
12546 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12547 if (fmt[i] == 'e')
12549 /* Check for identical subexpressions. If x contains
12550 identical subexpression we only have to traverse one of
12551 them. */
12552 if (i == 0 && ARITHMETIC_P (x))
12554 /* Note that at this point x1 has already been
12555 processed. */
12556 rtx x0 = XEXP (x, 0);
12557 rtx x1 = XEXP (x, 1);
12559 /* If x0 and x1 are identical then there is no need to
12560 process x0. */
12561 if (x0 == x1)
12562 break;
12564 /* If x0 is identical to a subexpression of x1 then while
12565 processing x1, x0 has already been processed. Thus we
12566 are done with x. */
12567 if (ARITHMETIC_P (x1)
12568 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12569 break;
12571 /* If x1 is identical to a subexpression of x0 then we
12572 still have to process the rest of x0. */
12573 if (ARITHMETIC_P (x0)
12574 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12576 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12577 break;
12581 update_table_tick (XEXP (x, i));
12583 else if (fmt[i] == 'E')
12584 for (j = 0; j < XVECLEN (x, i); j++)
12585 update_table_tick (XVECEXP (x, i, j));
12588 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12589 are saying that the register is clobbered and we no longer know its
12590 value. If INSN is zero, don't update reg_stat[].last_set; this is
12591 only permitted with VALUE also zero and is used to invalidate the
12592 register. */
12594 static void
12595 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
12597 unsigned int regno = REGNO (reg);
12598 unsigned int endregno = END_REGNO (reg);
12599 unsigned int i;
12600 reg_stat_type *rsp;
12602 /* If VALUE contains REG and we have a previous value for REG, substitute
12603 the previous value. */
12604 if (value && insn && reg_overlap_mentioned_p (reg, value))
12606 rtx tem;
12608 /* Set things up so get_last_value is allowed to see anything set up to
12609 our insn. */
12610 subst_low_luid = DF_INSN_LUID (insn);
12611 tem = get_last_value (reg);
12613 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12614 it isn't going to be useful and will take a lot of time to process,
12615 so just use the CLOBBER. */
12617 if (tem)
12619 if (ARITHMETIC_P (tem)
12620 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12621 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12622 tem = XEXP (tem, 0);
12623 else if (count_occurrences (value, reg, 1) >= 2)
12625 /* If there are two or more occurrences of REG in VALUE,
12626 prevent the value from growing too much. */
12627 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12628 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12631 value = replace_rtx (copy_rtx (value), reg, tem);
12635 /* For each register modified, show we don't know its value, that
12636 we don't know about its bitwise content, that its value has been
12637 updated, and that we don't know the location of the death of the
12638 register. */
12639 for (i = regno; i < endregno; i++)
12641 rsp = &reg_stat[i];
12643 if (insn)
12644 rsp->last_set = insn;
12646 rsp->last_set_value = 0;
12647 rsp->last_set_mode = VOIDmode;
12648 rsp->last_set_nonzero_bits = 0;
12649 rsp->last_set_sign_bit_copies = 0;
12650 rsp->last_death = 0;
12651 rsp->truncated_to_mode = VOIDmode;
12654 /* Mark registers that are being referenced in this value. */
12655 if (value)
12656 update_table_tick (value);
12658 /* Now update the status of each register being set.
12659 If someone is using this register in this block, set this register
12660 to invalid since we will get confused between the two lives in this
12661 basic block. This makes using this register always invalid. In cse, we
12662 scan the table to invalidate all entries using this register, but this
12663 is too much work for us. */
12665 for (i = regno; i < endregno; i++)
12667 rsp = &reg_stat[i];
12668 rsp->last_set_label = label_tick;
12669 if (!insn
12670 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12671 rsp->last_set_invalid = 1;
12672 else
12673 rsp->last_set_invalid = 0;
12676 /* The value being assigned might refer to X (like in "x++;"). In that
12677 case, we must replace it with (clobber (const_int 0)) to prevent
12678 infinite loops. */
12679 rsp = &reg_stat[regno];
12680 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12682 value = copy_rtx (value);
12683 if (!get_last_value_validate (&value, insn, label_tick, 1))
12684 value = 0;
12687 /* For the main register being modified, update the value, the mode, the
12688 nonzero bits, and the number of sign bit copies. */
12690 rsp->last_set_value = value;
12692 if (value)
12694 machine_mode mode = GET_MODE (reg);
12695 subst_low_luid = DF_INSN_LUID (insn);
12696 rsp->last_set_mode = mode;
12697 if (GET_MODE_CLASS (mode) == MODE_INT
12698 && HWI_COMPUTABLE_MODE_P (mode))
12699 mode = nonzero_bits_mode;
12700 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12701 rsp->last_set_sign_bit_copies
12702 = num_sign_bit_copies (value, GET_MODE (reg));
12706 /* Called via note_stores from record_dead_and_set_regs to handle one
12707 SET or CLOBBER in an insn. DATA is the instruction in which the
12708 set is occurring. */
12710 static void
12711 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12713 rtx_insn *record_dead_insn = (rtx_insn *) data;
12715 if (GET_CODE (dest) == SUBREG)
12716 dest = SUBREG_REG (dest);
12718 if (!record_dead_insn)
12720 if (REG_P (dest))
12721 record_value_for_reg (dest, NULL, NULL_RTX);
12722 return;
12725 if (REG_P (dest))
12727 /* If we are setting the whole register, we know its value. Otherwise
12728 show that we don't know the value. We can handle SUBREG in
12729 some cases. */
12730 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12731 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12732 else if (GET_CODE (setter) == SET
12733 && GET_CODE (SET_DEST (setter)) == SUBREG
12734 && SUBREG_REG (SET_DEST (setter)) == dest
12735 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
12736 && subreg_lowpart_p (SET_DEST (setter)))
12737 record_value_for_reg (dest, record_dead_insn,
12738 gen_lowpart (GET_MODE (dest),
12739 SET_SRC (setter)));
12740 else
12741 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12743 else if (MEM_P (dest)
12744 /* Ignore pushes, they clobber nothing. */
12745 && ! push_operand (dest, GET_MODE (dest)))
12746 mem_last_set = DF_INSN_LUID (record_dead_insn);
12749 /* Update the records of when each REG was most recently set or killed
12750 for the things done by INSN. This is the last thing done in processing
12751 INSN in the combiner loop.
12753 We update reg_stat[], in particular fields last_set, last_set_value,
12754 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12755 last_death, and also the similar information mem_last_set (which insn
12756 most recently modified memory) and last_call_luid (which insn was the
12757 most recent subroutine call). */
12759 static void
12760 record_dead_and_set_regs (rtx_insn *insn)
12762 rtx link;
12763 unsigned int i;
12765 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12767 if (REG_NOTE_KIND (link) == REG_DEAD
12768 && REG_P (XEXP (link, 0)))
12770 unsigned int regno = REGNO (XEXP (link, 0));
12771 unsigned int endregno = END_REGNO (XEXP (link, 0));
12773 for (i = regno; i < endregno; i++)
12775 reg_stat_type *rsp;
12777 rsp = &reg_stat[i];
12778 rsp->last_death = insn;
12781 else if (REG_NOTE_KIND (link) == REG_INC)
12782 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12785 if (CALL_P (insn))
12787 hard_reg_set_iterator hrsi;
12788 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
12790 reg_stat_type *rsp;
12792 rsp = &reg_stat[i];
12793 rsp->last_set_invalid = 1;
12794 rsp->last_set = insn;
12795 rsp->last_set_value = 0;
12796 rsp->last_set_mode = VOIDmode;
12797 rsp->last_set_nonzero_bits = 0;
12798 rsp->last_set_sign_bit_copies = 0;
12799 rsp->last_death = 0;
12800 rsp->truncated_to_mode = VOIDmode;
12803 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12805 /* We can't combine into a call pattern. Remember, though, that
12806 the return value register is set at this LUID. We could
12807 still replace a register with the return value from the
12808 wrong subroutine call! */
12809 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12811 else
12812 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12815 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12816 register present in the SUBREG, so for each such SUBREG go back and
12817 adjust nonzero and sign bit information of the registers that are
12818 known to have some zero/sign bits set.
12820 This is needed because when combine blows the SUBREGs away, the
12821 information on zero/sign bits is lost and further combines can be
12822 missed because of that. */
12824 static void
12825 record_promoted_value (rtx_insn *insn, rtx subreg)
12827 struct insn_link *links;
12828 rtx set;
12829 unsigned int regno = REGNO (SUBREG_REG (subreg));
12830 machine_mode mode = GET_MODE (subreg);
12832 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
12833 return;
12835 for (links = LOG_LINKS (insn); links;)
12837 reg_stat_type *rsp;
12839 insn = links->insn;
12840 set = single_set (insn);
12842 if (! set || !REG_P (SET_DEST (set))
12843 || REGNO (SET_DEST (set)) != regno
12844 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12846 links = links->next;
12847 continue;
12850 rsp = &reg_stat[regno];
12851 if (rsp->last_set == insn)
12853 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
12854 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12857 if (REG_P (SET_SRC (set)))
12859 regno = REGNO (SET_SRC (set));
12860 links = LOG_LINKS (insn);
12862 else
12863 break;
12867 /* Check if X, a register, is known to contain a value already
12868 truncated to MODE. In this case we can use a subreg to refer to
12869 the truncated value even though in the generic case we would need
12870 an explicit truncation. */
12872 static bool
12873 reg_truncated_to_mode (machine_mode mode, const_rtx x)
12875 reg_stat_type *rsp = &reg_stat[REGNO (x)];
12876 machine_mode truncated = rsp->truncated_to_mode;
12878 if (truncated == 0
12879 || rsp->truncation_label < label_tick_ebb_start)
12880 return false;
12881 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12882 return true;
12883 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
12884 return true;
12885 return false;
12888 /* If X is a hard reg or a subreg record the mode that the register is
12889 accessed in. For non-TRULY_NOOP_TRUNCATION targets we might be able
12890 to turn a truncate into a subreg using this information. Return true
12891 if traversing X is complete. */
12893 static bool
12894 record_truncated_value (rtx x)
12896 machine_mode truncated_mode;
12897 reg_stat_type *rsp;
12899 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12901 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12902 truncated_mode = GET_MODE (x);
12904 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12905 return true;
12907 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
12908 return true;
12910 x = SUBREG_REG (x);
12912 /* ??? For hard-regs we now record everything. We might be able to
12913 optimize this using last_set_mode. */
12914 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12915 truncated_mode = GET_MODE (x);
12916 else
12917 return false;
12919 rsp = &reg_stat[REGNO (x)];
12920 if (rsp->truncated_to_mode == 0
12921 || rsp->truncation_label < label_tick_ebb_start
12922 || (GET_MODE_SIZE (truncated_mode)
12923 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12925 rsp->truncated_to_mode = truncated_mode;
12926 rsp->truncation_label = label_tick;
12929 return true;
12932 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12933 the modes they are used in. This can help truning TRUNCATEs into
12934 SUBREGs. */
12936 static void
12937 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
12939 subrtx_var_iterator::array_type array;
12940 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
12941 if (record_truncated_value (*iter))
12942 iter.skip_subrtxes ();
12945 /* Scan X for promoted SUBREGs. For each one found,
12946 note what it implies to the registers used in it. */
12948 static void
12949 check_promoted_subreg (rtx_insn *insn, rtx x)
12951 if (GET_CODE (x) == SUBREG
12952 && SUBREG_PROMOTED_VAR_P (x)
12953 && REG_P (SUBREG_REG (x)))
12954 record_promoted_value (insn, x);
12955 else
12957 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12958 int i, j;
12960 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12961 switch (format[i])
12963 case 'e':
12964 check_promoted_subreg (insn, XEXP (x, i));
12965 break;
12966 case 'V':
12967 case 'E':
12968 if (XVEC (x, i) != 0)
12969 for (j = 0; j < XVECLEN (x, i); j++)
12970 check_promoted_subreg (insn, XVECEXP (x, i, j));
12971 break;
12976 /* Verify that all the registers and memory references mentioned in *LOC are
12977 still valid. *LOC was part of a value set in INSN when label_tick was
12978 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12979 the invalid references with (clobber (const_int 0)) and return 1. This
12980 replacement is useful because we often can get useful information about
12981 the form of a value (e.g., if it was produced by a shift that always
12982 produces -1 or 0) even though we don't know exactly what registers it
12983 was produced from. */
12985 static int
12986 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
12988 rtx x = *loc;
12989 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12990 int len = GET_RTX_LENGTH (GET_CODE (x));
12991 int i, j;
12993 if (REG_P (x))
12995 unsigned int regno = REGNO (x);
12996 unsigned int endregno = END_REGNO (x);
12997 unsigned int j;
12999 for (j = regno; j < endregno; j++)
13001 reg_stat_type *rsp = &reg_stat[j];
13002 if (rsp->last_set_invalid
13003 /* If this is a pseudo-register that was only set once and not
13004 live at the beginning of the function, it is always valid. */
13005 || (! (regno >= FIRST_PSEUDO_REGISTER
13006 && regno < reg_n_sets_max
13007 && REG_N_SETS (regno) == 1
13008 && (!REGNO_REG_SET_P
13009 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13010 regno)))
13011 && rsp->last_set_label > tick))
13013 if (replace)
13014 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13015 return replace;
13019 return 1;
13021 /* If this is a memory reference, make sure that there were no stores after
13022 it that might have clobbered the value. We don't have alias info, so we
13023 assume any store invalidates it. Moreover, we only have local UIDs, so
13024 we also assume that there were stores in the intervening basic blocks. */
13025 else if (MEM_P (x) && !MEM_READONLY_P (x)
13026 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13028 if (replace)
13029 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13030 return replace;
13033 for (i = 0; i < len; i++)
13035 if (fmt[i] == 'e')
13037 /* Check for identical subexpressions. If x contains
13038 identical subexpression we only have to traverse one of
13039 them. */
13040 if (i == 1 && ARITHMETIC_P (x))
13042 /* Note that at this point x0 has already been checked
13043 and found valid. */
13044 rtx x0 = XEXP (x, 0);
13045 rtx x1 = XEXP (x, 1);
13047 /* If x0 and x1 are identical then x is also valid. */
13048 if (x0 == x1)
13049 return 1;
13051 /* If x1 is identical to a subexpression of x0 then
13052 while checking x0, x1 has already been checked. Thus
13053 it is valid and so as x. */
13054 if (ARITHMETIC_P (x0)
13055 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13056 return 1;
13058 /* If x0 is identical to a subexpression of x1 then x is
13059 valid iff the rest of x1 is valid. */
13060 if (ARITHMETIC_P (x1)
13061 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13062 return
13063 get_last_value_validate (&XEXP (x1,
13064 x0 == XEXP (x1, 0) ? 1 : 0),
13065 insn, tick, replace);
13068 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13069 replace) == 0)
13070 return 0;
13072 else if (fmt[i] == 'E')
13073 for (j = 0; j < XVECLEN (x, i); j++)
13074 if (get_last_value_validate (&XVECEXP (x, i, j),
13075 insn, tick, replace) == 0)
13076 return 0;
13079 /* If we haven't found a reason for it to be invalid, it is valid. */
13080 return 1;
13083 /* Get the last value assigned to X, if known. Some registers
13084 in the value may be replaced with (clobber (const_int 0)) if their value
13085 is known longer known reliably. */
13087 static rtx
13088 get_last_value (const_rtx x)
13090 unsigned int regno;
13091 rtx value;
13092 reg_stat_type *rsp;
13094 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13095 then convert it to the desired mode. If this is a paradoxical SUBREG,
13096 we cannot predict what values the "extra" bits might have. */
13097 if (GET_CODE (x) == SUBREG
13098 && subreg_lowpart_p (x)
13099 && !paradoxical_subreg_p (x)
13100 && (value = get_last_value (SUBREG_REG (x))) != 0)
13101 return gen_lowpart (GET_MODE (x), value);
13103 if (!REG_P (x))
13104 return 0;
13106 regno = REGNO (x);
13107 rsp = &reg_stat[regno];
13108 value = rsp->last_set_value;
13110 /* If we don't have a value, or if it isn't for this basic block and
13111 it's either a hard register, set more than once, or it's a live
13112 at the beginning of the function, return 0.
13114 Because if it's not live at the beginning of the function then the reg
13115 is always set before being used (is never used without being set).
13116 And, if it's set only once, and it's always set before use, then all
13117 uses must have the same last value, even if it's not from this basic
13118 block. */
13120 if (value == 0
13121 || (rsp->last_set_label < label_tick_ebb_start
13122 && (regno < FIRST_PSEUDO_REGISTER
13123 || regno >= reg_n_sets_max
13124 || REG_N_SETS (regno) != 1
13125 || REGNO_REG_SET_P
13126 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13127 return 0;
13129 /* If the value was set in a later insn than the ones we are processing,
13130 we can't use it even if the register was only set once. */
13131 if (rsp->last_set_label == label_tick
13132 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13133 return 0;
13135 /* If the value has all its registers valid, return it. */
13136 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13137 return value;
13139 /* Otherwise, make a copy and replace any invalid register with
13140 (clobber (const_int 0)). If that fails for some reason, return 0. */
13142 value = copy_rtx (value);
13143 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13144 return value;
13146 return 0;
13149 /* Return nonzero if expression X refers to a REG or to memory
13150 that is set in an instruction more recent than FROM_LUID. */
13152 static int
13153 use_crosses_set_p (const_rtx x, int from_luid)
13155 const char *fmt;
13156 int i;
13157 enum rtx_code code = GET_CODE (x);
13159 if (code == REG)
13161 unsigned int regno = REGNO (x);
13162 unsigned endreg = END_REGNO (x);
13164 #ifdef PUSH_ROUNDING
13165 /* Don't allow uses of the stack pointer to be moved,
13166 because we don't know whether the move crosses a push insn. */
13167 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
13168 return 1;
13169 #endif
13170 for (; regno < endreg; regno++)
13172 reg_stat_type *rsp = &reg_stat[regno];
13173 if (rsp->last_set
13174 && rsp->last_set_label == label_tick
13175 && DF_INSN_LUID (rsp->last_set) > from_luid)
13176 return 1;
13178 return 0;
13181 if (code == MEM && mem_last_set > from_luid)
13182 return 1;
13184 fmt = GET_RTX_FORMAT (code);
13186 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13188 if (fmt[i] == 'E')
13190 int j;
13191 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13192 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
13193 return 1;
13195 else if (fmt[i] == 'e'
13196 && use_crosses_set_p (XEXP (x, i), from_luid))
13197 return 1;
13199 return 0;
13202 /* Define three variables used for communication between the following
13203 routines. */
13205 static unsigned int reg_dead_regno, reg_dead_endregno;
13206 static int reg_dead_flag;
13208 /* Function called via note_stores from reg_dead_at_p.
13210 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13211 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13213 static void
13214 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13216 unsigned int regno, endregno;
13218 if (!REG_P (dest))
13219 return;
13221 regno = REGNO (dest);
13222 endregno = END_REGNO (dest);
13223 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13224 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13227 /* Return nonzero if REG is known to be dead at INSN.
13229 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13230 referencing REG, it is dead. If we hit a SET referencing REG, it is
13231 live. Otherwise, see if it is live or dead at the start of the basic
13232 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13233 must be assumed to be always live. */
13235 static int
13236 reg_dead_at_p (rtx reg, rtx_insn *insn)
13238 basic_block block;
13239 unsigned int i;
13241 /* Set variables for reg_dead_at_p_1. */
13242 reg_dead_regno = REGNO (reg);
13243 reg_dead_endregno = END_REGNO (reg);
13245 reg_dead_flag = 0;
13247 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13248 we allow the machine description to decide whether use-and-clobber
13249 patterns are OK. */
13250 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13252 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13253 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13254 return 0;
13257 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13258 beginning of basic block. */
13259 block = BLOCK_FOR_INSN (insn);
13260 for (;;)
13262 if (INSN_P (insn))
13264 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13265 return 1;
13267 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13268 if (reg_dead_flag)
13269 return reg_dead_flag == 1 ? 1 : 0;
13271 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13272 return 1;
13275 if (insn == BB_HEAD (block))
13276 break;
13278 insn = PREV_INSN (insn);
13281 /* Look at live-in sets for the basic block that we were in. */
13282 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13283 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13284 return 0;
13286 return 1;
13289 /* Note hard registers in X that are used. */
13291 static void
13292 mark_used_regs_combine (rtx x)
13294 RTX_CODE code = GET_CODE (x);
13295 unsigned int regno;
13296 int i;
13298 switch (code)
13300 case LABEL_REF:
13301 case SYMBOL_REF:
13302 case CONST:
13303 CASE_CONST_ANY:
13304 case PC:
13305 case ADDR_VEC:
13306 case ADDR_DIFF_VEC:
13307 case ASM_INPUT:
13308 /* CC0 must die in the insn after it is set, so we don't need to take
13309 special note of it here. */
13310 case CC0:
13311 return;
13313 case CLOBBER:
13314 /* If we are clobbering a MEM, mark any hard registers inside the
13315 address as used. */
13316 if (MEM_P (XEXP (x, 0)))
13317 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13318 return;
13320 case REG:
13321 regno = REGNO (x);
13322 /* A hard reg in a wide mode may really be multiple registers.
13323 If so, mark all of them just like the first. */
13324 if (regno < FIRST_PSEUDO_REGISTER)
13326 /* None of this applies to the stack, frame or arg pointers. */
13327 if (regno == STACK_POINTER_REGNUM
13328 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13329 && regno == HARD_FRAME_POINTER_REGNUM)
13330 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13331 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13332 || regno == FRAME_POINTER_REGNUM)
13333 return;
13335 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13337 return;
13339 case SET:
13341 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13342 the address. */
13343 rtx testreg = SET_DEST (x);
13345 while (GET_CODE (testreg) == SUBREG
13346 || GET_CODE (testreg) == ZERO_EXTRACT
13347 || GET_CODE (testreg) == STRICT_LOW_PART)
13348 testreg = XEXP (testreg, 0);
13350 if (MEM_P (testreg))
13351 mark_used_regs_combine (XEXP (testreg, 0));
13353 mark_used_regs_combine (SET_SRC (x));
13355 return;
13357 default:
13358 break;
13361 /* Recursively scan the operands of this expression. */
13364 const char *fmt = GET_RTX_FORMAT (code);
13366 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13368 if (fmt[i] == 'e')
13369 mark_used_regs_combine (XEXP (x, i));
13370 else if (fmt[i] == 'E')
13372 int j;
13374 for (j = 0; j < XVECLEN (x, i); j++)
13375 mark_used_regs_combine (XVECEXP (x, i, j));
13381 /* Remove register number REGNO from the dead registers list of INSN.
13383 Return the note used to record the death, if there was one. */
13386 remove_death (unsigned int regno, rtx_insn *insn)
13388 rtx note = find_regno_note (insn, REG_DEAD, regno);
13390 if (note)
13391 remove_note (insn, note);
13393 return note;
13396 /* For each register (hardware or pseudo) used within expression X, if its
13397 death is in an instruction with luid between FROM_LUID (inclusive) and
13398 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13399 list headed by PNOTES.
13401 That said, don't move registers killed by maybe_kill_insn.
13403 This is done when X is being merged by combination into TO_INSN. These
13404 notes will then be distributed as needed. */
13406 static void
13407 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13408 rtx *pnotes)
13410 const char *fmt;
13411 int len, i;
13412 enum rtx_code code = GET_CODE (x);
13414 if (code == REG)
13416 unsigned int regno = REGNO (x);
13417 rtx_insn *where_dead = reg_stat[regno].last_death;
13419 /* Don't move the register if it gets killed in between from and to. */
13420 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13421 && ! reg_referenced_p (x, maybe_kill_insn))
13422 return;
13424 if (where_dead
13425 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13426 && DF_INSN_LUID (where_dead) >= from_luid
13427 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13429 rtx note = remove_death (regno, where_dead);
13431 /* It is possible for the call above to return 0. This can occur
13432 when last_death points to I2 or I1 that we combined with.
13433 In that case make a new note.
13435 We must also check for the case where X is a hard register
13436 and NOTE is a death note for a range of hard registers
13437 including X. In that case, we must put REG_DEAD notes for
13438 the remaining registers in place of NOTE. */
13440 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13441 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13442 > GET_MODE_SIZE (GET_MODE (x))))
13444 unsigned int deadregno = REGNO (XEXP (note, 0));
13445 unsigned int deadend = END_REGNO (XEXP (note, 0));
13446 unsigned int ourend = END_REGNO (x);
13447 unsigned int i;
13449 for (i = deadregno; i < deadend; i++)
13450 if (i < regno || i >= ourend)
13451 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13454 /* If we didn't find any note, or if we found a REG_DEAD note that
13455 covers only part of the given reg, and we have a multi-reg hard
13456 register, then to be safe we must check for REG_DEAD notes
13457 for each register other than the first. They could have
13458 their own REG_DEAD notes lying around. */
13459 else if ((note == 0
13460 || (note != 0
13461 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13462 < GET_MODE_SIZE (GET_MODE (x)))))
13463 && regno < FIRST_PSEUDO_REGISTER
13464 && REG_NREGS (x) > 1)
13466 unsigned int ourend = END_REGNO (x);
13467 unsigned int i, offset;
13468 rtx oldnotes = 0;
13470 if (note)
13471 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13472 else
13473 offset = 1;
13475 for (i = regno + offset; i < ourend; i++)
13476 move_deaths (regno_reg_rtx[i],
13477 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13480 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13482 XEXP (note, 1) = *pnotes;
13483 *pnotes = note;
13485 else
13486 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13489 return;
13492 else if (GET_CODE (x) == SET)
13494 rtx dest = SET_DEST (x);
13496 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13498 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13499 that accesses one word of a multi-word item, some
13500 piece of everything register in the expression is used by
13501 this insn, so remove any old death. */
13502 /* ??? So why do we test for equality of the sizes? */
13504 if (GET_CODE (dest) == ZERO_EXTRACT
13505 || GET_CODE (dest) == STRICT_LOW_PART
13506 || (GET_CODE (dest) == SUBREG
13507 && (((GET_MODE_SIZE (GET_MODE (dest))
13508 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13509 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13510 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13512 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13513 return;
13516 /* If this is some other SUBREG, we know it replaces the entire
13517 value, so use that as the destination. */
13518 if (GET_CODE (dest) == SUBREG)
13519 dest = SUBREG_REG (dest);
13521 /* If this is a MEM, adjust deaths of anything used in the address.
13522 For a REG (the only other possibility), the entire value is
13523 being replaced so the old value is not used in this insn. */
13525 if (MEM_P (dest))
13526 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13527 to_insn, pnotes);
13528 return;
13531 else if (GET_CODE (x) == CLOBBER)
13532 return;
13534 len = GET_RTX_LENGTH (code);
13535 fmt = GET_RTX_FORMAT (code);
13537 for (i = 0; i < len; i++)
13539 if (fmt[i] == 'E')
13541 int j;
13542 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13543 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13544 to_insn, pnotes);
13546 else if (fmt[i] == 'e')
13547 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13551 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13552 pattern of an insn. X must be a REG. */
13554 static int
13555 reg_bitfield_target_p (rtx x, rtx body)
13557 int i;
13559 if (GET_CODE (body) == SET)
13561 rtx dest = SET_DEST (body);
13562 rtx target;
13563 unsigned int regno, tregno, endregno, endtregno;
13565 if (GET_CODE (dest) == ZERO_EXTRACT)
13566 target = XEXP (dest, 0);
13567 else if (GET_CODE (dest) == STRICT_LOW_PART)
13568 target = SUBREG_REG (XEXP (dest, 0));
13569 else
13570 return 0;
13572 if (GET_CODE (target) == SUBREG)
13573 target = SUBREG_REG (target);
13575 if (!REG_P (target))
13576 return 0;
13578 tregno = REGNO (target), regno = REGNO (x);
13579 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13580 return target == x;
13582 endtregno = end_hard_regno (GET_MODE (target), tregno);
13583 endregno = end_hard_regno (GET_MODE (x), regno);
13585 return endregno > tregno && regno < endtregno;
13588 else if (GET_CODE (body) == PARALLEL)
13589 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13590 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13591 return 1;
13593 return 0;
13596 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13597 as appropriate. I3 and I2 are the insns resulting from the combination
13598 insns including FROM (I2 may be zero).
13600 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13601 not need REG_DEAD notes because they are being substituted for. This
13602 saves searching in the most common cases.
13604 Each note in the list is either ignored or placed on some insns, depending
13605 on the type of note. */
13607 static void
13608 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
13609 rtx elim_i2, rtx elim_i1, rtx elim_i0)
13611 rtx note, next_note;
13612 rtx tem_note;
13613 rtx_insn *tem_insn;
13615 for (note = notes; note; note = next_note)
13617 rtx_insn *place = 0, *place2 = 0;
13619 next_note = XEXP (note, 1);
13620 switch (REG_NOTE_KIND (note))
13622 case REG_BR_PROB:
13623 case REG_BR_PRED:
13624 /* Doesn't matter much where we put this, as long as it's somewhere.
13625 It is preferable to keep these notes on branches, which is most
13626 likely to be i3. */
13627 place = i3;
13628 break;
13630 case REG_NON_LOCAL_GOTO:
13631 if (JUMP_P (i3))
13632 place = i3;
13633 else
13635 gcc_assert (i2 && JUMP_P (i2));
13636 place = i2;
13638 break;
13640 case REG_EH_REGION:
13641 /* These notes must remain with the call or trapping instruction. */
13642 if (CALL_P (i3))
13643 place = i3;
13644 else if (i2 && CALL_P (i2))
13645 place = i2;
13646 else
13648 gcc_assert (cfun->can_throw_non_call_exceptions);
13649 if (may_trap_p (i3))
13650 place = i3;
13651 else if (i2 && may_trap_p (i2))
13652 place = i2;
13653 /* ??? Otherwise assume we've combined things such that we
13654 can now prove that the instructions can't trap. Drop the
13655 note in this case. */
13657 break;
13659 case REG_ARGS_SIZE:
13660 /* ??? How to distribute between i3-i1. Assume i3 contains the
13661 entire adjustment. Assert i3 contains at least some adjust. */
13662 if (!noop_move_p (i3))
13664 int old_size, args_size = INTVAL (XEXP (note, 0));
13665 /* fixup_args_size_notes looks at REG_NORETURN note,
13666 so ensure the note is placed there first. */
13667 if (CALL_P (i3))
13669 rtx *np;
13670 for (np = &next_note; *np; np = &XEXP (*np, 1))
13671 if (REG_NOTE_KIND (*np) == REG_NORETURN)
13673 rtx n = *np;
13674 *np = XEXP (n, 1);
13675 XEXP (n, 1) = REG_NOTES (i3);
13676 REG_NOTES (i3) = n;
13677 break;
13680 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
13681 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13682 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
13683 gcc_assert (old_size != args_size
13684 || (CALL_P (i3)
13685 && !ACCUMULATE_OUTGOING_ARGS
13686 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
13688 break;
13690 case REG_NORETURN:
13691 case REG_SETJMP:
13692 case REG_TM:
13693 case REG_CALL_DECL:
13694 /* These notes must remain with the call. It should not be
13695 possible for both I2 and I3 to be a call. */
13696 if (CALL_P (i3))
13697 place = i3;
13698 else
13700 gcc_assert (i2 && CALL_P (i2));
13701 place = i2;
13703 break;
13705 case REG_UNUSED:
13706 /* Any clobbers for i3 may still exist, and so we must process
13707 REG_UNUSED notes from that insn.
13709 Any clobbers from i2 or i1 can only exist if they were added by
13710 recog_for_combine. In that case, recog_for_combine created the
13711 necessary REG_UNUSED notes. Trying to keep any original
13712 REG_UNUSED notes from these insns can cause incorrect output
13713 if it is for the same register as the original i3 dest.
13714 In that case, we will notice that the register is set in i3,
13715 and then add a REG_UNUSED note for the destination of i3, which
13716 is wrong. However, it is possible to have REG_UNUSED notes from
13717 i2 or i1 for register which were both used and clobbered, so
13718 we keep notes from i2 or i1 if they will turn into REG_DEAD
13719 notes. */
13721 /* If this register is set or clobbered in I3, put the note there
13722 unless there is one already. */
13723 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13725 if (from_insn != i3)
13726 break;
13728 if (! (REG_P (XEXP (note, 0))
13729 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13730 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13731 place = i3;
13733 /* Otherwise, if this register is used by I3, then this register
13734 now dies here, so we must put a REG_DEAD note here unless there
13735 is one already. */
13736 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13737 && ! (REG_P (XEXP (note, 0))
13738 ? find_regno_note (i3, REG_DEAD,
13739 REGNO (XEXP (note, 0)))
13740 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13742 PUT_REG_NOTE_KIND (note, REG_DEAD);
13743 place = i3;
13745 break;
13747 case REG_EQUAL:
13748 case REG_EQUIV:
13749 case REG_NOALIAS:
13750 /* These notes say something about results of an insn. We can
13751 only support them if they used to be on I3 in which case they
13752 remain on I3. Otherwise they are ignored.
13754 If the note refers to an expression that is not a constant, we
13755 must also ignore the note since we cannot tell whether the
13756 equivalence is still true. It might be possible to do
13757 slightly better than this (we only have a problem if I2DEST
13758 or I1DEST is present in the expression), but it doesn't
13759 seem worth the trouble. */
13761 if (from_insn == i3
13762 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13763 place = i3;
13764 break;
13766 case REG_INC:
13767 /* These notes say something about how a register is used. They must
13768 be present on any use of the register in I2 or I3. */
13769 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13770 place = i3;
13772 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13774 if (place)
13775 place2 = i2;
13776 else
13777 place = i2;
13779 break;
13781 case REG_LABEL_TARGET:
13782 case REG_LABEL_OPERAND:
13783 /* This can show up in several ways -- either directly in the
13784 pattern, or hidden off in the constant pool with (or without?)
13785 a REG_EQUAL note. */
13786 /* ??? Ignore the without-reg_equal-note problem for now. */
13787 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13788 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13789 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
13790 && LABEL_REF_LABEL (XEXP (tem_note, 0)) == XEXP (note, 0)))
13791 place = i3;
13793 if (i2
13794 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13795 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13796 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
13797 && LABEL_REF_LABEL (XEXP (tem_note, 0)) == XEXP (note, 0))))
13799 if (place)
13800 place2 = i2;
13801 else
13802 place = i2;
13805 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13806 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13807 there. */
13808 if (place && JUMP_P (place)
13809 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13810 && (JUMP_LABEL (place) == NULL
13811 || JUMP_LABEL (place) == XEXP (note, 0)))
13813 rtx label = JUMP_LABEL (place);
13815 if (!label)
13816 JUMP_LABEL (place) = XEXP (note, 0);
13817 else if (LABEL_P (label))
13818 LABEL_NUSES (label)--;
13821 if (place2 && JUMP_P (place2)
13822 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13823 && (JUMP_LABEL (place2) == NULL
13824 || JUMP_LABEL (place2) == XEXP (note, 0)))
13826 rtx label = JUMP_LABEL (place2);
13828 if (!label)
13829 JUMP_LABEL (place2) = XEXP (note, 0);
13830 else if (LABEL_P (label))
13831 LABEL_NUSES (label)--;
13832 place2 = 0;
13834 break;
13836 case REG_NONNEG:
13837 /* This note says something about the value of a register prior
13838 to the execution of an insn. It is too much trouble to see
13839 if the note is still correct in all situations. It is better
13840 to simply delete it. */
13841 break;
13843 case REG_DEAD:
13844 /* If we replaced the right hand side of FROM_INSN with a
13845 REG_EQUAL note, the original use of the dying register
13846 will not have been combined into I3 and I2. In such cases,
13847 FROM_INSN is guaranteed to be the first of the combined
13848 instructions, so we simply need to search back before
13849 FROM_INSN for the previous use or set of this register,
13850 then alter the notes there appropriately.
13852 If the register is used as an input in I3, it dies there.
13853 Similarly for I2, if it is nonzero and adjacent to I3.
13855 If the register is not used as an input in either I3 or I2
13856 and it is not one of the registers we were supposed to eliminate,
13857 there are two possibilities. We might have a non-adjacent I2
13858 or we might have somehow eliminated an additional register
13859 from a computation. For example, we might have had A & B where
13860 we discover that B will always be zero. In this case we will
13861 eliminate the reference to A.
13863 In both cases, we must search to see if we can find a previous
13864 use of A and put the death note there. */
13866 if (from_insn
13867 && from_insn == i2mod
13868 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13869 tem_insn = from_insn;
13870 else
13872 if (from_insn
13873 && CALL_P (from_insn)
13874 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13875 place = from_insn;
13876 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13877 place = i3;
13878 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13879 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13880 place = i2;
13881 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13882 && !(i2mod
13883 && reg_overlap_mentioned_p (XEXP (note, 0),
13884 i2mod_old_rhs)))
13885 || rtx_equal_p (XEXP (note, 0), elim_i1)
13886 || rtx_equal_p (XEXP (note, 0), elim_i0))
13887 break;
13888 tem_insn = i3;
13889 /* If the new I2 sets the same register that is marked dead
13890 in the note, the note now should not be put on I2, as the
13891 note refers to a previous incarnation of the reg. */
13892 if (i2 != 0 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
13893 tem_insn = i2;
13896 if (place == 0)
13898 basic_block bb = this_basic_block;
13900 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
13902 if (!NONDEBUG_INSN_P (tem_insn))
13904 if (tem_insn == BB_HEAD (bb))
13905 break;
13906 continue;
13909 /* If the register is being set at TEM_INSN, see if that is all
13910 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
13911 into a REG_UNUSED note instead. Don't delete sets to
13912 global register vars. */
13913 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13914 || !global_regs[REGNO (XEXP (note, 0))])
13915 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
13917 rtx set = single_set (tem_insn);
13918 rtx inner_dest = 0;
13919 rtx_insn *cc0_setter = NULL;
13921 if (set != 0)
13922 for (inner_dest = SET_DEST (set);
13923 (GET_CODE (inner_dest) == STRICT_LOW_PART
13924 || GET_CODE (inner_dest) == SUBREG
13925 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13926 inner_dest = XEXP (inner_dest, 0))
13929 /* Verify that it was the set, and not a clobber that
13930 modified the register.
13932 CC0 targets must be careful to maintain setter/user
13933 pairs. If we cannot delete the setter due to side
13934 effects, mark the user with an UNUSED note instead
13935 of deleting it. */
13937 if (set != 0 && ! side_effects_p (SET_SRC (set))
13938 && rtx_equal_p (XEXP (note, 0), inner_dest)
13939 && (!HAVE_cc0
13940 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13941 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
13942 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
13944 /* Move the notes and links of TEM_INSN elsewhere.
13945 This might delete other dead insns recursively.
13946 First set the pattern to something that won't use
13947 any register. */
13948 rtx old_notes = REG_NOTES (tem_insn);
13950 PATTERN (tem_insn) = pc_rtx;
13951 REG_NOTES (tem_insn) = NULL;
13953 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
13954 NULL_RTX, NULL_RTX, NULL_RTX);
13955 distribute_links (LOG_LINKS (tem_insn));
13957 SET_INSN_DELETED (tem_insn);
13958 if (tem_insn == i2)
13959 i2 = NULL;
13961 /* Delete the setter too. */
13962 if (cc0_setter)
13964 PATTERN (cc0_setter) = pc_rtx;
13965 old_notes = REG_NOTES (cc0_setter);
13966 REG_NOTES (cc0_setter) = NULL;
13968 distribute_notes (old_notes, cc0_setter,
13969 cc0_setter, NULL,
13970 NULL_RTX, NULL_RTX, NULL_RTX);
13971 distribute_links (LOG_LINKS (cc0_setter));
13973 SET_INSN_DELETED (cc0_setter);
13974 if (cc0_setter == i2)
13975 i2 = NULL;
13978 else
13980 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13982 /* If there isn't already a REG_UNUSED note, put one
13983 here. Do not place a REG_DEAD note, even if
13984 the register is also used here; that would not
13985 match the algorithm used in lifetime analysis
13986 and can cause the consistency check in the
13987 scheduler to fail. */
13988 if (! find_regno_note (tem_insn, REG_UNUSED,
13989 REGNO (XEXP (note, 0))))
13990 place = tem_insn;
13991 break;
13994 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
13995 || (CALL_P (tem_insn)
13996 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
13998 place = tem_insn;
14000 /* If we are doing a 3->2 combination, and we have a
14001 register which formerly died in i3 and was not used
14002 by i2, which now no longer dies in i3 and is used in
14003 i2 but does not die in i2, and place is between i2
14004 and i3, then we may need to move a link from place to
14005 i2. */
14006 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14007 && from_insn
14008 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14009 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14011 struct insn_link *links = LOG_LINKS (place);
14012 LOG_LINKS (place) = NULL;
14013 distribute_links (links);
14015 break;
14018 if (tem_insn == BB_HEAD (bb))
14019 break;
14024 /* If the register is set or already dead at PLACE, we needn't do
14025 anything with this note if it is still a REG_DEAD note.
14026 We check here if it is set at all, not if is it totally replaced,
14027 which is what `dead_or_set_p' checks, so also check for it being
14028 set partially. */
14030 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14032 unsigned int regno = REGNO (XEXP (note, 0));
14033 reg_stat_type *rsp = &reg_stat[regno];
14035 if (dead_or_set_p (place, XEXP (note, 0))
14036 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14038 /* Unless the register previously died in PLACE, clear
14039 last_death. [I no longer understand why this is
14040 being done.] */
14041 if (rsp->last_death != place)
14042 rsp->last_death = 0;
14043 place = 0;
14045 else
14046 rsp->last_death = place;
14048 /* If this is a death note for a hard reg that is occupying
14049 multiple registers, ensure that we are still using all
14050 parts of the object. If we find a piece of the object
14051 that is unused, we must arrange for an appropriate REG_DEAD
14052 note to be added for it. However, we can't just emit a USE
14053 and tag the note to it, since the register might actually
14054 be dead; so we recourse, and the recursive call then finds
14055 the previous insn that used this register. */
14057 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14059 unsigned int endregno = END_REGNO (XEXP (note, 0));
14060 bool all_used = true;
14061 unsigned int i;
14063 for (i = regno; i < endregno; i++)
14064 if ((! refers_to_regno_p (i, PATTERN (place))
14065 && ! find_regno_fusage (place, USE, i))
14066 || dead_or_set_regno_p (place, i))
14068 all_used = false;
14069 break;
14072 if (! all_used)
14074 /* Put only REG_DEAD notes for pieces that are
14075 not already dead or set. */
14077 for (i = regno; i < endregno;
14078 i += hard_regno_nregs[i][reg_raw_mode[i]])
14080 rtx piece = regno_reg_rtx[i];
14081 basic_block bb = this_basic_block;
14083 if (! dead_or_set_p (place, piece)
14084 && ! reg_bitfield_target_p (piece,
14085 PATTERN (place)))
14087 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14088 NULL_RTX);
14090 distribute_notes (new_note, place, place,
14091 NULL, NULL_RTX, NULL_RTX,
14092 NULL_RTX);
14094 else if (! refers_to_regno_p (i, PATTERN (place))
14095 && ! find_regno_fusage (place, USE, i))
14096 for (tem_insn = PREV_INSN (place); ;
14097 tem_insn = PREV_INSN (tem_insn))
14099 if (!NONDEBUG_INSN_P (tem_insn))
14101 if (tem_insn == BB_HEAD (bb))
14102 break;
14103 continue;
14105 if (dead_or_set_p (tem_insn, piece)
14106 || reg_bitfield_target_p (piece,
14107 PATTERN (tem_insn)))
14109 add_reg_note (tem_insn, REG_UNUSED, piece);
14110 break;
14115 place = 0;
14119 break;
14121 default:
14122 /* Any other notes should not be present at this point in the
14123 compilation. */
14124 gcc_unreachable ();
14127 if (place)
14129 XEXP (note, 1) = REG_NOTES (place);
14130 REG_NOTES (place) = note;
14133 if (place2)
14134 add_shallow_copy_of_reg_note (place2, note);
14138 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14139 I3, I2, and I1 to new locations. This is also called to add a link
14140 pointing at I3 when I3's destination is changed. */
14142 static void
14143 distribute_links (struct insn_link *links)
14145 struct insn_link *link, *next_link;
14147 for (link = links; link; link = next_link)
14149 rtx_insn *place = 0;
14150 rtx_insn *insn;
14151 rtx set, reg;
14153 next_link = link->next;
14155 /* If the insn that this link points to is a NOTE, ignore it. */
14156 if (NOTE_P (link->insn))
14157 continue;
14159 set = 0;
14160 rtx pat = PATTERN (link->insn);
14161 if (GET_CODE (pat) == SET)
14162 set = pat;
14163 else if (GET_CODE (pat) == PARALLEL)
14165 int i;
14166 for (i = 0; i < XVECLEN (pat, 0); i++)
14168 set = XVECEXP (pat, 0, i);
14169 if (GET_CODE (set) != SET)
14170 continue;
14172 reg = SET_DEST (set);
14173 while (GET_CODE (reg) == ZERO_EXTRACT
14174 || GET_CODE (reg) == STRICT_LOW_PART
14175 || GET_CODE (reg) == SUBREG)
14176 reg = XEXP (reg, 0);
14178 if (!REG_P (reg))
14179 continue;
14181 if (REGNO (reg) == link->regno)
14182 break;
14184 if (i == XVECLEN (pat, 0))
14185 continue;
14187 else
14188 continue;
14190 reg = SET_DEST (set);
14192 while (GET_CODE (reg) == ZERO_EXTRACT
14193 || GET_CODE (reg) == STRICT_LOW_PART
14194 || GET_CODE (reg) == SUBREG)
14195 reg = XEXP (reg, 0);
14197 /* A LOG_LINK is defined as being placed on the first insn that uses
14198 a register and points to the insn that sets the register. Start
14199 searching at the next insn after the target of the link and stop
14200 when we reach a set of the register or the end of the basic block.
14202 Note that this correctly handles the link that used to point from
14203 I3 to I2. Also note that not much searching is typically done here
14204 since most links don't point very far away. */
14206 for (insn = NEXT_INSN (link->insn);
14207 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14208 || BB_HEAD (this_basic_block->next_bb) != insn));
14209 insn = NEXT_INSN (insn))
14210 if (DEBUG_INSN_P (insn))
14211 continue;
14212 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14214 if (reg_referenced_p (reg, PATTERN (insn)))
14215 place = insn;
14216 break;
14218 else if (CALL_P (insn)
14219 && find_reg_fusage (insn, USE, reg))
14221 place = insn;
14222 break;
14224 else if (INSN_P (insn) && reg_set_p (reg, insn))
14225 break;
14227 /* If we found a place to put the link, place it there unless there
14228 is already a link to the same insn as LINK at that point. */
14230 if (place)
14232 struct insn_link *link2;
14234 FOR_EACH_LOG_LINK (link2, place)
14235 if (link2->insn == link->insn && link2->regno == link->regno)
14236 break;
14238 if (link2 == NULL)
14240 link->next = LOG_LINKS (place);
14241 LOG_LINKS (place) = link;
14243 /* Set added_links_insn to the earliest insn we added a
14244 link to. */
14245 if (added_links_insn == 0
14246 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14247 added_links_insn = place;
14253 /* Check for any register or memory mentioned in EQUIV that is not
14254 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14255 of EXPR where some registers may have been replaced by constants. */
14257 static bool
14258 unmentioned_reg_p (rtx equiv, rtx expr)
14260 subrtx_iterator::array_type array;
14261 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14263 const_rtx x = *iter;
14264 if ((REG_P (x) || MEM_P (x))
14265 && !reg_mentioned_p (x, expr))
14266 return true;
14268 return false;
14271 DEBUG_FUNCTION void
14272 dump_combine_stats (FILE *file)
14274 fprintf
14275 (file,
14276 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14277 combine_attempts, combine_merges, combine_extras, combine_successes);
14280 void
14281 dump_combine_total_stats (FILE *file)
14283 fprintf
14284 (file,
14285 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14286 total_attempts, total_merges, total_extras, total_successes);
14289 /* Try combining insns through substitution. */
14290 static unsigned int
14291 rest_of_handle_combine (void)
14293 int rebuild_jump_labels_after_combine;
14295 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14296 df_note_add_problem ();
14297 df_analyze ();
14299 regstat_init_n_sets_and_refs ();
14300 reg_n_sets_max = max_reg_num ();
14302 rebuild_jump_labels_after_combine
14303 = combine_instructions (get_insns (), max_reg_num ());
14305 /* Combining insns may have turned an indirect jump into a
14306 direct jump. Rebuild the JUMP_LABEL fields of jumping
14307 instructions. */
14308 if (rebuild_jump_labels_after_combine)
14310 timevar_push (TV_JUMP);
14311 rebuild_jump_labels (get_insns ());
14312 cleanup_cfg (0);
14313 timevar_pop (TV_JUMP);
14316 regstat_free_n_sets_and_refs ();
14317 return 0;
14320 namespace {
14322 const pass_data pass_data_combine =
14324 RTL_PASS, /* type */
14325 "combine", /* name */
14326 OPTGROUP_NONE, /* optinfo_flags */
14327 TV_COMBINE, /* tv_id */
14328 PROP_cfglayout, /* properties_required */
14329 0, /* properties_provided */
14330 0, /* properties_destroyed */
14331 0, /* todo_flags_start */
14332 TODO_df_finish, /* todo_flags_finish */
14335 class pass_combine : public rtl_opt_pass
14337 public:
14338 pass_combine (gcc::context *ctxt)
14339 : rtl_opt_pass (pass_data_combine, ctxt)
14342 /* opt_pass methods: */
14343 virtual bool gate (function *) { return (optimize > 0); }
14344 virtual unsigned int execute (function *)
14346 return rest_of_handle_combine ();
14349 }; // class pass_combine
14351 } // anon namespace
14353 rtl_opt_pass *
14354 make_pass_combine (gcc::context *ctxt)
14356 return new pass_combine (ctxt);