c++: constexpr PMF conversion [PR105996]
[official-gcc.git] / gcc / gimple-range-gori.cc
blob3c0044881fb1d0dd765de7d6930676d7f90813d9
1 /* Gimple range GORI functions.
2 Copyright (C) 2017-2023 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
4 and Aldy Hernandez <aldyh@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "gimple-range.h"
32 // Return TRUE if GS is a logical && or || expression.
34 static inline bool
35 is_gimple_logical_p (const gimple *gs)
37 // Look for boolean and/or condition.
38 if (is_gimple_assign (gs))
39 switch (gimple_expr_code (gs))
41 case TRUTH_AND_EXPR:
42 case TRUTH_OR_EXPR:
43 return true;
45 case BIT_AND_EXPR:
46 case BIT_IOR_EXPR:
47 // Bitwise operations on single bits are logical too.
48 if (types_compatible_p (TREE_TYPE (gimple_assign_rhs1 (gs)),
49 boolean_type_node))
50 return true;
51 break;
53 default:
54 break;
56 return false;
59 /* RANGE_DEF_CHAIN is used to determine which SSA names in a block can
60 have range information calculated for them, and what the
61 dependencies on each other are.
63 Information for a basic block is calculated once and stored. It is
64 only calculated the first time a query is made, so if no queries
65 are made, there is little overhead.
67 The def_chain bitmap is indexed by SSA_NAME_VERSION. Bits are set
68 within this bitmap to indicate SSA names that are defined in the
69 SAME block and used to calculate this SSA name.
72 <bb 2> :
73 _1 = x_4(D) + -2;
74 _2 = _1 * 4;
75 j_7 = foo ();
76 q_5 = _2 + 3;
77 if (q_5 <= 13)
79 _1 : x_4(D)
80 _2 : 1 x_4(D)
81 q_5 : _1 _2 x_4(D)
83 This dump indicates the bits set in the def_chain vector.
84 as well as demonstrates the def_chain bits for the related ssa_names.
86 Checking the chain for _2 indicates that _1 and x_4 are used in
87 its evaluation.
89 Def chains also only include statements which are valid gimple
90 so a def chain will only span statements for which the range
91 engine implements operations for. */
94 // Construct a range_def_chain.
96 range_def_chain::range_def_chain ()
98 bitmap_obstack_initialize (&m_bitmaps);
99 m_def_chain.create (0);
100 m_def_chain.safe_grow_cleared (num_ssa_names);
101 m_logical_depth = 0;
104 // Destruct a range_def_chain.
106 range_def_chain::~range_def_chain ()
108 m_def_chain.release ();
109 bitmap_obstack_release (&m_bitmaps);
112 // Return true if NAME is in the def chain of DEF. If BB is provided,
113 // only return true if the defining statement of DEF is in BB.
115 bool
116 range_def_chain::in_chain_p (tree name, tree def)
118 gcc_checking_assert (gimple_range_ssa_p (def));
119 gcc_checking_assert (gimple_range_ssa_p (name));
121 // Get the definition chain for DEF.
122 bitmap chain = get_def_chain (def);
124 if (chain == NULL)
125 return false;
126 return bitmap_bit_p (chain, SSA_NAME_VERSION (name));
129 // Add either IMP or the import list B to the import set of DATA.
131 void
132 range_def_chain::set_import (struct rdc &data, tree imp, bitmap b)
134 // If there are no imports, just return
135 if (imp == NULL_TREE && !b)
136 return;
137 if (!data.m_import)
138 data.m_import = BITMAP_ALLOC (&m_bitmaps);
139 if (imp != NULL_TREE)
140 bitmap_set_bit (data.m_import, SSA_NAME_VERSION (imp));
141 else
142 bitmap_ior_into (data.m_import, b);
145 // Return the import list for NAME.
147 bitmap
148 range_def_chain::get_imports (tree name)
150 if (!has_def_chain (name))
151 get_def_chain (name);
152 bitmap i = m_def_chain[SSA_NAME_VERSION (name)].m_import;
153 return i;
156 // Return true if IMPORT is an import to NAMEs def chain.
158 bool
159 range_def_chain::chain_import_p (tree name, tree import)
161 bitmap b = get_imports (name);
162 if (b)
163 return bitmap_bit_p (b, SSA_NAME_VERSION (import));
164 return false;
167 // Build def_chains for NAME if it is in BB. Copy the def chain into RESULT.
169 void
170 range_def_chain::register_dependency (tree name, tree dep, basic_block bb)
172 if (!gimple_range_ssa_p (dep))
173 return;
175 unsigned v = SSA_NAME_VERSION (name);
176 if (v >= m_def_chain.length ())
177 m_def_chain.safe_grow_cleared (num_ssa_names + 1);
178 struct rdc &src = m_def_chain[v];
179 gimple *def_stmt = SSA_NAME_DEF_STMT (dep);
180 unsigned dep_v = SSA_NAME_VERSION (dep);
181 bitmap b;
183 // Set the direct dependency cache entries.
184 if (!src.ssa1)
185 src.ssa1 = dep;
186 else if (!src.ssa2 && src.ssa1 != dep)
187 src.ssa2 = dep;
189 // Don't calculate imports or export/dep chains if BB is not provided.
190 // This is usually the case for when the temporal cache wants the direct
191 // dependencies of a stmt.
192 if (!bb)
193 return;
195 if (!src.bm)
196 src.bm = BITMAP_ALLOC (&m_bitmaps);
198 // Add this operand into the result.
199 bitmap_set_bit (src.bm, dep_v);
201 if (gimple_bb (def_stmt) == bb && !is_a<gphi *>(def_stmt))
203 // Get the def chain for the operand.
204 b = get_def_chain (dep);
205 // If there was one, copy it into result. Access def_chain directly
206 // as the get_def_chain request above could reallocate the vector.
207 if (b)
208 bitmap_ior_into (m_def_chain[v].bm, b);
209 // And copy the import list.
210 set_import (m_def_chain[v], NULL_TREE, get_imports (dep));
212 else
213 // Originated outside the block, so it is an import.
214 set_import (src, dep, NULL);
217 bool
218 range_def_chain::def_chain_in_bitmap_p (tree name, bitmap b)
220 bitmap a = get_def_chain (name);
221 if (a && b)
222 return bitmap_intersect_p (a, b);
223 return false;
226 void
227 range_def_chain::add_def_chain_to_bitmap (bitmap b, tree name)
229 bitmap r = get_def_chain (name);
230 if (r)
231 bitmap_ior_into (b, r);
235 // Return TRUE if NAME has been processed for a def_chain.
237 inline bool
238 range_def_chain::has_def_chain (tree name)
240 // Ensure there is an entry in the internal vector.
241 unsigned v = SSA_NAME_VERSION (name);
242 if (v >= m_def_chain.length ())
243 m_def_chain.safe_grow_cleared (num_ssa_names + 1);
244 return (m_def_chain[v].ssa1 != 0);
249 // Calculate the def chain for NAME and all of its dependent
250 // operands. Only using names in the same BB. Return the bitmap of
251 // all names in the m_def_chain. This only works for supported range
252 // statements.
254 bitmap
255 range_def_chain::get_def_chain (tree name)
257 tree ssa[3];
258 unsigned v = SSA_NAME_VERSION (name);
260 // If it has already been processed, just return the cached value.
261 if (has_def_chain (name) && m_def_chain[v].bm)
262 return m_def_chain[v].bm;
264 // No definition chain for default defs.
265 if (SSA_NAME_IS_DEFAULT_DEF (name))
267 // A Default def is always an import.
268 set_import (m_def_chain[v], name, NULL);
269 return NULL;
272 gimple *stmt = SSA_NAME_DEF_STMT (name);
273 unsigned count = gimple_range_ssa_names (ssa, 3, stmt);
274 if (count == 0)
276 // Stmts not understood or with no operands are always imports.
277 set_import (m_def_chain[v], name, NULL);
278 return NULL;
281 // Terminate the def chains if we see too many cascading stmts.
282 if (m_logical_depth == param_ranger_logical_depth)
283 return NULL;
285 // Increase the depth if we have a pair of ssa-names.
286 if (count > 1)
287 m_logical_depth++;
289 for (unsigned x = 0; x < count; x++)
290 register_dependency (name, ssa[x], gimple_bb (stmt));
292 if (count > 1)
293 m_logical_depth--;
295 return m_def_chain[v].bm;
298 // Dump what we know for basic block BB to file F.
300 void
301 range_def_chain::dump (FILE *f, basic_block bb, const char *prefix)
303 unsigned x, y;
304 bitmap_iterator bi;
306 // Dump the def chain for each SSA_NAME defined in BB.
307 for (x = 1; x < num_ssa_names; x++)
309 tree name = ssa_name (x);
310 if (!name)
311 continue;
312 gimple *stmt = SSA_NAME_DEF_STMT (name);
313 if (!stmt || (bb && gimple_bb (stmt) != bb))
314 continue;
315 bitmap chain = (has_def_chain (name) ? get_def_chain (name) : NULL);
316 if (chain && !bitmap_empty_p (chain))
318 fprintf (f, prefix);
319 print_generic_expr (f, name, TDF_SLIM);
320 fprintf (f, " : ");
322 bitmap imports = get_imports (name);
323 EXECUTE_IF_SET_IN_BITMAP (chain, 0, y, bi)
325 print_generic_expr (f, ssa_name (y), TDF_SLIM);
326 if (imports && bitmap_bit_p (imports, y))
327 fprintf (f, "(I)");
328 fprintf (f, " ");
330 fprintf (f, "\n");
336 // -------------------------------------------------------------------
338 /* GORI_MAP is used to accumulate what SSA names in a block can
339 generate range information, and provides tools for the block ranger
340 to enable it to efficiently calculate these ranges.
342 GORI stands for "Generates Outgoing Range Information."
344 It utilizes the range_def_chain class to construct def_chains.
345 Information for a basic block is calculated once and stored. It is
346 only calculated the first time a query is made. If no queries are
347 made, there is little overhead.
349 one bitmap is maintained for each basic block:
350 m_outgoing : a set bit indicates a range can be generated for a name.
352 Generally speaking, the m_outgoing vector is the union of the
353 entire def_chain of all SSA names used in the last statement of the
354 block which generate ranges. */
357 // Initialize a gori-map structure.
359 gori_map::gori_map ()
361 m_outgoing.create (0);
362 m_outgoing.safe_grow_cleared (last_basic_block_for_fn (cfun));
363 m_incoming.create (0);
364 m_incoming.safe_grow_cleared (last_basic_block_for_fn (cfun));
365 m_maybe_variant = BITMAP_ALLOC (&m_bitmaps);
368 // Free any memory the GORI map allocated.
370 gori_map::~gori_map ()
372 m_incoming.release ();
373 m_outgoing.release ();
376 // Return the bitmap vector of all export from BB. Calculate if necessary.
378 bitmap
379 gori_map::exports (basic_block bb)
381 if (bb->index >= (signed int)m_outgoing.length () || !m_outgoing[bb->index])
382 calculate_gori (bb);
383 return m_outgoing[bb->index];
386 // Return the bitmap vector of all imports to BB. Calculate if necessary.
388 bitmap
389 gori_map::imports (basic_block bb)
391 if (bb->index >= (signed int)m_outgoing.length () || !m_outgoing[bb->index])
392 calculate_gori (bb);
393 return m_incoming[bb->index];
396 // Return true if NAME is can have ranges generated for it from basic
397 // block BB.
399 bool
400 gori_map::is_export_p (tree name, basic_block bb)
402 // If no BB is specified, test if it is exported anywhere in the IL.
403 if (!bb)
404 return bitmap_bit_p (m_maybe_variant, SSA_NAME_VERSION (name));
405 return bitmap_bit_p (exports (bb), SSA_NAME_VERSION (name));
408 // Set or clear the m_maybe_variant bit to determine if ranges will be tracked
409 // for NAME. A clear bit means they will NOT be tracked.
411 void
412 gori_map::set_range_invariant (tree name, bool invariant)
414 if (invariant)
415 bitmap_clear_bit (m_maybe_variant, SSA_NAME_VERSION (name));
416 else
417 bitmap_set_bit (m_maybe_variant, SSA_NAME_VERSION (name));
420 // Return true if NAME is an import to block BB.
422 bool
423 gori_map::is_import_p (tree name, basic_block bb)
425 // If no BB is specified, test if it is exported anywhere in the IL.
426 return bitmap_bit_p (imports (bb), SSA_NAME_VERSION (name));
429 // If NAME is non-NULL and defined in block BB, calculate the def
430 // chain and add it to m_outgoing.
432 void
433 gori_map::maybe_add_gori (tree name, basic_block bb)
435 if (name)
437 // Check if there is a def chain, regardless of the block.
438 add_def_chain_to_bitmap (m_outgoing[bb->index], name);
439 // Check for any imports.
440 bitmap imp = get_imports (name);
441 // If there were imports, add them so we can recompute
442 if (imp)
443 bitmap_ior_into (m_incoming[bb->index], imp);
444 // This name is always an import.
445 if (gimple_bb (SSA_NAME_DEF_STMT (name)) != bb)
446 bitmap_set_bit (m_incoming[bb->index], SSA_NAME_VERSION (name));
448 // Def chain doesn't include itself, and even if there isn't a
449 // def chain, this name should be added to exports.
450 bitmap_set_bit (m_outgoing[bb->index], SSA_NAME_VERSION (name));
454 // Calculate all the required information for BB.
456 void
457 gori_map::calculate_gori (basic_block bb)
459 tree name;
460 if (bb->index >= (signed int)m_outgoing.length ())
462 m_outgoing.safe_grow_cleared (last_basic_block_for_fn (cfun));
463 m_incoming.safe_grow_cleared (last_basic_block_for_fn (cfun));
465 gcc_checking_assert (m_outgoing[bb->index] == NULL);
466 m_outgoing[bb->index] = BITMAP_ALLOC (&m_bitmaps);
467 m_incoming[bb->index] = BITMAP_ALLOC (&m_bitmaps);
469 if (single_succ_p (bb))
470 return;
472 // If this block's last statement may generate range information, go
473 // calculate it.
474 gimple *stmt = gimple_outgoing_range_stmt_p (bb);
475 if (!stmt)
476 return;
477 if (is_a<gcond *> (stmt))
479 gcond *gc = as_a<gcond *>(stmt);
480 name = gimple_range_ssa_p (gimple_cond_lhs (gc));
481 maybe_add_gori (name, gimple_bb (stmt));
483 name = gimple_range_ssa_p (gimple_cond_rhs (gc));
484 maybe_add_gori (name, gimple_bb (stmt));
486 else
488 // Do not process switches if they are too large.
489 if (EDGE_COUNT (bb->succs) > (unsigned)param_evrp_switch_limit)
490 return;
491 gswitch *gs = as_a<gswitch *>(stmt);
492 name = gimple_range_ssa_p (gimple_switch_index (gs));
493 maybe_add_gori (name, gimple_bb (stmt));
495 // Add this bitmap to the aggregate list of all outgoing names.
496 bitmap_ior_into (m_maybe_variant, m_outgoing[bb->index]);
499 // Dump the table information for BB to file F.
501 void
502 gori_map::dump (FILE *f, basic_block bb, bool verbose)
504 // BB was not processed.
505 if (!m_outgoing[bb->index] || bitmap_empty_p (m_outgoing[bb->index]))
506 return;
508 tree name;
510 bitmap imp = imports (bb);
511 if (!bitmap_empty_p (imp))
513 if (verbose)
514 fprintf (f, "bb<%u> Imports: ",bb->index);
515 else
516 fprintf (f, "Imports: ");
517 FOR_EACH_GORI_IMPORT_NAME (*this, bb, name)
519 print_generic_expr (f, name, TDF_SLIM);
520 fprintf (f, " ");
522 fputc ('\n', f);
525 if (verbose)
526 fprintf (f, "bb<%u> Exports: ",bb->index);
527 else
528 fprintf (f, "Exports: ");
529 // Dump the export vector.
530 FOR_EACH_GORI_EXPORT_NAME (*this, bb, name)
532 print_generic_expr (f, name, TDF_SLIM);
533 fprintf (f, " ");
535 fputc ('\n', f);
537 range_def_chain::dump (f, bb, " ");
540 // Dump the entire GORI map structure to file F.
542 void
543 gori_map::dump (FILE *f)
545 basic_block bb;
546 FOR_EACH_BB_FN (bb, cfun)
547 dump (f, bb);
550 DEBUG_FUNCTION void
551 debug (gori_map &g)
553 g.dump (stderr);
556 // -------------------------------------------------------------------
558 // Construct a gori_compute object.
560 gori_compute::gori_compute (int not_executable_flag)
561 : outgoing (param_evrp_switch_limit), tracer ("GORI ")
563 m_not_executable_flag = not_executable_flag;
564 // Create a boolean_type true and false range.
565 m_bool_zero = int_range<2> (boolean_false_node, boolean_false_node);
566 m_bool_one = int_range<2> (boolean_true_node, boolean_true_node);
567 if (dump_file && (param_ranger_debug & RANGER_DEBUG_GORI))
568 tracer.enable_trace ();
571 // Given the switch S, return an evaluation in R for NAME when the lhs
572 // evaluates to LHS. Returning false means the name being looked for
573 // was not resolvable.
575 bool
576 gori_compute::compute_operand_range_switch (vrange &r, gswitch *s,
577 const vrange &lhs,
578 tree name, fur_source &src)
580 tree op1 = gimple_switch_index (s);
582 // If name matches, the range is simply the range from the edge.
583 // Empty ranges are viral as they are on a path which isn't
584 // executable.
585 if (op1 == name || lhs.undefined_p ())
587 r = lhs;
588 return true;
591 // If op1 is in the definition chain, pass lhs back.
592 if (gimple_range_ssa_p (op1) && in_chain_p (name, op1))
593 return compute_operand_range (r, SSA_NAME_DEF_STMT (op1), lhs, name, src);
595 return false;
599 // Return an evaluation for NAME as it would appear in STMT when the
600 // statement's lhs evaluates to LHS. If successful, return TRUE and
601 // store the evaluation in R, otherwise return FALSE.
603 bool
604 gori_compute::compute_operand_range (vrange &r, gimple *stmt,
605 const vrange &lhs, tree name,
606 fur_source &src, value_relation *rel)
608 value_relation vrel;
609 value_relation *vrel_ptr = rel;
610 // Empty ranges are viral as they are on an unexecutable path.
611 if (lhs.undefined_p ())
613 r.set_undefined ();
614 return true;
616 if (is_a<gswitch *> (stmt))
617 return compute_operand_range_switch (r, as_a<gswitch *> (stmt), lhs, name,
618 src);
619 gimple_range_op_handler handler (stmt);
620 if (!handler)
621 return false;
623 tree op1 = gimple_range_ssa_p (handler.operand1 ());
624 tree op2 = gimple_range_ssa_p (handler.operand2 ());
626 // If there is a relation, use it instead of any passed in. This will allow
627 // multiple relations to be processed in compound logicals.
628 if (op1 && op2)
630 relation_kind k = handler.op1_op2_relation (lhs);
631 // If there is no relation, and op1 == op2, create a relation.
632 if (!vrel_ptr && k == VREL_VARYING && op1 == op2)
633 k = VREL_EQ;
634 if (k != VREL_VARYING)
636 vrel.set_relation (k, op1, op2);
637 vrel_ptr = &vrel;
641 // Handle end of lookup first.
642 if (op1 == name)
643 return compute_operand1_range (r, handler, lhs, name, src, vrel_ptr);
644 if (op2 == name)
645 return compute_operand2_range (r, handler, lhs, name, src, vrel_ptr);
647 // NAME is not in this stmt, but one of the names in it ought to be
648 // derived from it.
649 bool op1_in_chain = op1 && in_chain_p (name, op1);
650 bool op2_in_chain = op2 && in_chain_p (name, op2);
652 // If neither operand is derived, then this stmt tells us nothing.
653 if (!op1_in_chain && !op2_in_chain)
654 return false;
656 bool res = false;
657 // If the lhs doesn't tell us anything only a relation can possibly enhance
658 // the result.
659 if (lhs.varying_p ())
661 if (!vrel_ptr)
662 return false;
663 // If there is a relation (ie: x != y) , it can only be relevant if
664 // a) both elements are in the defchain
665 // c = x > y // (x and y are in c's defchain)
666 if (op1_in_chain)
667 res = in_chain_p (vrel_ptr->op1 (), op1)
668 && in_chain_p (vrel_ptr->op2 (), op1);
669 if (!res && op2_in_chain)
670 res = in_chain_p (vrel_ptr->op1 (), op2)
671 || in_chain_p (vrel_ptr->op2 (), op2);
672 if (!res)
674 // or b) one relation element is in the defchain of the other and the
675 // other is the LHS of this stmt.
676 // x = y + 2
677 if (vrel_ptr->op1 () == handler.lhs ()
678 && (vrel_ptr->op2 () == op1 || vrel_ptr->op2 () == op2))
679 res = true;
680 else if (vrel_ptr->op2 () == handler.lhs ()
681 && (vrel_ptr->op1 () == op1 || vrel_ptr->op1 () == op2))
682 res = true;
684 if (!res)
685 return false;
688 // Process logicals as they have special handling.
689 if (is_gimple_logical_p (stmt))
691 // If the lhs doesn't tell us anything, neither will combining operands.
692 if (lhs.varying_p ())
693 return false;
695 unsigned idx;
696 if ((idx = tracer.header ("compute_operand ")))
698 print_generic_expr (dump_file, name, TDF_SLIM);
699 fprintf (dump_file, " with LHS = ");
700 lhs.dump (dump_file);
701 fprintf (dump_file, " at stmt ");
702 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
705 tree type = TREE_TYPE (name);
706 Value_Range op1_trange (type), op1_frange (type);
707 Value_Range op2_trange (type), op2_frange (type);
708 compute_logical_operands (op1_trange, op1_frange, handler,
709 as_a <irange> (lhs),
710 name, src, op1, op1_in_chain);
711 compute_logical_operands (op2_trange, op2_frange, handler,
712 as_a <irange> (lhs),
713 name, src, op2, op2_in_chain);
714 res = logical_combine (r,
715 gimple_expr_code (stmt),
716 as_a <irange> (lhs),
717 op1_trange, op1_frange, op2_trange, op2_frange);
718 if (idx)
719 tracer.trailer (idx, "compute_operand", res, name, r);
721 // Follow the appropriate operands now.
722 else if (op1_in_chain && op2_in_chain)
723 res = compute_operand1_and_operand2_range (r, handler, lhs, name, src,
724 vrel_ptr);
725 else if (op1_in_chain)
726 res = compute_operand1_range (r, handler, lhs, name, src, vrel_ptr);
727 else if (op2_in_chain)
728 res = compute_operand2_range (r, handler, lhs, name, src, vrel_ptr);
729 else
730 gcc_unreachable ();
732 // If neither operand is derived, this statement tells us nothing.
733 return res;
737 // Return TRUE if range R is either a true or false compatible range.
739 static bool
740 range_is_either_true_or_false (const irange &r)
742 if (r.undefined_p ())
743 return false;
745 // This is complicated by the fact that Ada has multi-bit booleans,
746 // so true can be ~[0, 0] (i.e. [1,MAX]).
747 tree type = r.type ();
748 gcc_checking_assert (range_compatible_p (type, boolean_type_node));
749 return (r.singleton_p () || !r.contains_p (build_zero_cst (type)));
752 // Evaluate a binary logical expression by combining the true and
753 // false ranges for each of the operands based on the result value in
754 // the LHS.
756 bool
757 gori_compute::logical_combine (vrange &r, enum tree_code code,
758 const irange &lhs,
759 const vrange &op1_true, const vrange &op1_false,
760 const vrange &op2_true, const vrange &op2_false)
762 if (op1_true.varying_p () && op1_false.varying_p ()
763 && op2_true.varying_p () && op2_false.varying_p ())
764 return false;
766 unsigned idx;
767 if ((idx = tracer.header ("logical_combine")))
769 switch (code)
771 case TRUTH_OR_EXPR:
772 case BIT_IOR_EXPR:
773 fprintf (dump_file, " || ");
774 break;
775 case TRUTH_AND_EXPR:
776 case BIT_AND_EXPR:
777 fprintf (dump_file, " && ");
778 break;
779 default:
780 break;
782 fprintf (dump_file, " with LHS = ");
783 lhs.dump (dump_file);
784 fputc ('\n', dump_file);
786 tracer.print (idx, "op1_true = ");
787 op1_true.dump (dump_file);
788 fprintf (dump_file, " op1_false = ");
789 op1_false.dump (dump_file);
790 fputc ('\n', dump_file);
791 tracer.print (idx, "op2_true = ");
792 op2_true.dump (dump_file);
793 fprintf (dump_file, " op2_false = ");
794 op2_false.dump (dump_file);
795 fputc ('\n', dump_file);
798 // This is not a simple fold of a logical expression, rather it
799 // determines ranges which flow through the logical expression.
801 // Assuming x_8 is an unsigned char, and relational statements:
802 // b_1 = x_8 < 20
803 // b_2 = x_8 > 5
804 // consider the logical expression and branch:
805 // c_2 = b_1 && b_2
806 // if (c_2)
808 // To determine the range of x_8 on either edge of the branch, one
809 // must first determine what the range of x_8 is when the boolean
810 // values of b_1 and b_2 are both true and false.
811 // b_1 TRUE x_8 = [0, 19]
812 // b_1 FALSE x_8 = [20, 255]
813 // b_2 TRUE x_8 = [6, 255]
814 // b_2 FALSE x_8 = [0,5].
816 // These ranges are then combined based on the expected outcome of
817 // the branch. The range on the TRUE side of the branch must satisfy
818 // b_1 == true && b_2 == true
820 // In terms of x_8, that means both x_8 == [0, 19] and x_8 = [6, 255]
821 // must be true. The range of x_8 on the true side must be the
822 // intersection of both ranges since both must be true. Thus the
823 // range of x_8 on the true side is [6, 19].
825 // To determine the ranges on the FALSE side, all 3 combinations of
826 // failing ranges must be considered, and combined as any of them
827 // can cause the false result.
829 // If the LHS can be TRUE or FALSE, then evaluate both a TRUE and
830 // FALSE results and combine them. If we fell back to VARYING any
831 // range restrictions that have been discovered up to this point
832 // would be lost.
833 if (!range_is_either_true_or_false (lhs))
835 bool res;
836 Value_Range r1 (r);
837 if (logical_combine (r1, code, m_bool_zero, op1_true, op1_false,
838 op2_true, op2_false)
839 && logical_combine (r, code, m_bool_one, op1_true, op1_false,
840 op2_true, op2_false))
842 r.union_ (r1);
843 res = true;
845 else
846 res = false;
847 if (idx && res)
849 tracer.print (idx, "logical_combine produced ");
850 r.dump (dump_file);
851 fputc ('\n', dump_file);
855 switch (code)
857 // A logical AND combines ranges from 2 boolean conditions.
858 // c_2 = b_1 && b_2
859 case TRUTH_AND_EXPR:
860 case BIT_AND_EXPR:
861 if (!lhs.zero_p ())
863 // The TRUE side is the intersection of the 2 true ranges.
864 r = op1_true;
865 r.intersect (op2_true);
867 else
869 // The FALSE side is the union of the other 3 cases.
870 Value_Range ff (op1_false);
871 ff.intersect (op2_false);
872 Value_Range tf (op1_true);
873 tf.intersect (op2_false);
874 Value_Range ft (op1_false);
875 ft.intersect (op2_true);
876 r = ff;
877 r.union_ (tf);
878 r.union_ (ft);
880 break;
881 // A logical OR combines ranges from 2 boolean conditions.
882 // c_2 = b_1 || b_2
883 case TRUTH_OR_EXPR:
884 case BIT_IOR_EXPR:
885 if (lhs.zero_p ())
887 // An OR operation will only take the FALSE path if both
888 // operands are false simultaneously, which means they should
889 // be intersected. !(x || y) == !x && !y
890 r = op1_false;
891 r.intersect (op2_false);
893 else
895 // The TRUE side of an OR operation will be the union of
896 // the other three combinations.
897 Value_Range tt (op1_true);
898 tt.intersect (op2_true);
899 Value_Range tf (op1_true);
900 tf.intersect (op2_false);
901 Value_Range ft (op1_false);
902 ft.intersect (op2_true);
903 r = tt;
904 r.union_ (tf);
905 r.union_ (ft);
907 break;
908 default:
909 gcc_unreachable ();
912 if (idx)
913 tracer.trailer (idx, "logical_combine", true, NULL_TREE, r);
914 return true;
918 // Given a logical STMT, calculate true and false ranges for each
919 // potential path of NAME, assuming NAME came through the OP chain if
920 // OP_IN_CHAIN is true.
922 void
923 gori_compute::compute_logical_operands (vrange &true_range, vrange &false_range,
924 gimple_range_op_handler &handler,
925 const irange &lhs,
926 tree name, fur_source &src,
927 tree op, bool op_in_chain)
929 gimple *stmt = handler.stmt ();
930 gimple *src_stmt = gimple_range_ssa_p (op) ? SSA_NAME_DEF_STMT (op) : NULL;
931 if (!op_in_chain || !src_stmt || chain_import_p (handler.lhs (), op))
933 // If op is not in the def chain, or defined in this block,
934 // use its known value on entry to the block.
935 src.get_operand (true_range, name);
936 false_range = true_range;
937 unsigned idx;
938 if ((idx = tracer.header ("logical_operand")))
940 print_generic_expr (dump_file, op, TDF_SLIM);
941 fprintf (dump_file, " not in computation chain. Queried.\n");
942 tracer.trailer (idx, "logical_operand", true, NULL_TREE, true_range);
944 return;
947 enum tree_code code = gimple_expr_code (stmt);
948 // Optimize [0 = x | y], since neither operand can ever be non-zero.
949 if ((code == BIT_IOR_EXPR || code == TRUTH_OR_EXPR) && lhs.zero_p ())
951 if (!compute_operand_range (false_range, src_stmt, m_bool_zero, name,
952 src))
953 src.get_operand (false_range, name);
954 true_range = false_range;
955 return;
958 // Optimize [1 = x & y], since neither operand can ever be zero.
959 if ((code == BIT_AND_EXPR || code == TRUTH_AND_EXPR) && lhs == m_bool_one)
961 if (!compute_operand_range (true_range, src_stmt, m_bool_one, name, src))
962 src.get_operand (true_range, name);
963 false_range = true_range;
964 return;
967 // Calculate ranges for true and false on both sides, since the false
968 // path is not always a simple inversion of the true side.
969 if (!compute_operand_range (true_range, src_stmt, m_bool_one, name, src))
970 src.get_operand (true_range, name);
971 if (!compute_operand_range (false_range, src_stmt, m_bool_zero, name, src))
972 src.get_operand (false_range, name);
976 // This routine will try to refine the ranges of OP1 and OP2 given a relation
977 // K between them. In order to perform this refinement, one of the operands
978 // must be in the definition chain of the other. The use is refined using
979 // op1/op2_range on the statement, and the definition is then recalculated
980 // using the relation.
982 bool
983 gori_compute::refine_using_relation (tree op1, vrange &op1_range,
984 tree op2, vrange &op2_range,
985 fur_source &src, relation_kind k)
987 gcc_checking_assert (TREE_CODE (op1) == SSA_NAME);
988 gcc_checking_assert (TREE_CODE (op2) == SSA_NAME);
990 if (k == VREL_VARYING || k == VREL_EQ || k == VREL_UNDEFINED)
991 return false;
993 bool change = false;
994 bool op1_def_p = in_chain_p (op2, op1);
995 if (!op1_def_p)
996 if (!in_chain_p (op1, op2))
997 return false;
999 tree def_op = op1_def_p ? op1 : op2;
1000 tree use_op = op1_def_p ? op2 : op1;
1002 if (!op1_def_p)
1003 k = relation_swap (k);
1005 // op1_def is true if we want to look up op1, otherwise we want op2.
1006 // if neither is the case, we returned in the above check.
1008 gimple *def_stmt = SSA_NAME_DEF_STMT (def_op);
1009 gimple_range_op_handler op_handler (def_stmt);
1010 if (!op_handler)
1011 return false;
1012 tree def_op1 = op_handler.operand1 ();
1013 tree def_op2 = op_handler.operand2 ();
1014 // if the def isn't binary, the relation will not be useful.
1015 if (!def_op2)
1016 return false;
1018 // Determine if op2 is directly referenced as an operand.
1019 if (def_op1 == use_op)
1021 // def_stmt has op1 in the 1st operand position.
1022 Value_Range other_op (TREE_TYPE (def_op2));
1023 src.get_operand (other_op, def_op2);
1025 // Using op1_range as the LHS, and relation REL, evaluate op2.
1026 tree type = TREE_TYPE (def_op1);
1027 Value_Range new_result (type);
1028 if (!op_handler.op1_range (new_result, type,
1029 op1_def_p ? op1_range : op2_range,
1030 other_op, relation_trio::lhs_op1 (k)))
1031 return false;
1032 if (op1_def_p)
1034 change |= op2_range.intersect (new_result);
1035 // Recalculate op2.
1036 if (op_handler.fold_range (new_result, type, op2_range, other_op))
1038 change |= op1_range.intersect (new_result);
1041 else
1043 change |= op1_range.intersect (new_result);
1044 // Recalculate op1.
1045 if (op_handler.fold_range (new_result, type, op1_range, other_op))
1047 change |= op2_range.intersect (new_result);
1051 else if (def_op2 == use_op)
1053 // def_stmt has op1 in the 1st operand position.
1054 Value_Range other_op (TREE_TYPE (def_op1));
1055 src.get_operand (other_op, def_op1);
1057 // Using op1_range as the LHS, and relation REL, evaluate op2.
1058 tree type = TREE_TYPE (def_op2);
1059 Value_Range new_result (type);
1060 if (!op_handler.op2_range (new_result, type,
1061 op1_def_p ? op1_range : op2_range,
1062 other_op, relation_trio::lhs_op2 (k)))
1063 return false;
1064 if (op1_def_p)
1066 change |= op2_range.intersect (new_result);
1067 // Recalculate op1.
1068 if (op_handler.fold_range (new_result, type, other_op, op2_range))
1070 change |= op1_range.intersect (new_result);
1073 else
1075 change |= op1_range.intersect (new_result);
1076 // Recalculate op2.
1077 if (op_handler.fold_range (new_result, type, other_op, op1_range))
1079 change |= op2_range.intersect (new_result);
1083 return change;
1086 // Calculate a range for NAME from the operand 1 position of STMT
1087 // assuming the result of the statement is LHS. Return the range in
1088 // R, or false if no range could be calculated.
1090 bool
1091 gori_compute::compute_operand1_range (vrange &r,
1092 gimple_range_op_handler &handler,
1093 const vrange &lhs, tree name,
1094 fur_source &src, value_relation *rel)
1096 gimple *stmt = handler.stmt ();
1097 tree op1 = handler.operand1 ();
1098 tree op2 = handler.operand2 ();
1099 tree lhs_name = gimple_get_lhs (stmt);
1101 relation_trio trio;
1102 if (rel)
1103 trio = rel->create_trio (lhs_name, op1, op2);
1105 Value_Range op1_range (TREE_TYPE (op1));
1106 Value_Range tmp (TREE_TYPE (op1));
1107 Value_Range op2_range (op2 ? TREE_TYPE (op2) : TREE_TYPE (op1));
1109 // Fetch the known range for op1 in this block.
1110 src.get_operand (op1_range, op1);
1112 // Now range-op calculate and put that result in r.
1113 if (op2)
1115 src.get_operand (op2_range, op2);
1116 relation_kind op_op = trio.op1_op2 ();
1117 if (op_op != VREL_VARYING)
1118 refine_using_relation (op1, op1_range, op2, op2_range, src, op_op);
1120 if (!handler.calc_op1 (tmp, lhs, op2_range, trio))
1121 return false;
1123 else
1125 // We pass op1_range to the unary operation. Normally it's a
1126 // hidden range_for_type parameter, but sometimes having the
1127 // actual range can result in better information.
1128 if (!handler.calc_op1 (tmp, lhs, op1_range, trio))
1129 return false;
1132 unsigned idx;
1133 if ((idx = tracer.header ("compute op 1 (")))
1135 print_generic_expr (dump_file, op1, TDF_SLIM);
1136 fprintf (dump_file, ") at ");
1137 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1138 tracer.print (idx, "LHS =");
1139 lhs.dump (dump_file);
1140 if (op2 && TREE_CODE (op2) == SSA_NAME)
1142 fprintf (dump_file, ", ");
1143 print_generic_expr (dump_file, op2, TDF_SLIM);
1144 fprintf (dump_file, " = ");
1145 op2_range.dump (dump_file);
1147 fprintf (dump_file, "\n");
1148 tracer.print (idx, "Computes ");
1149 print_generic_expr (dump_file, op1, TDF_SLIM);
1150 fprintf (dump_file, " = ");
1151 tmp.dump (dump_file);
1152 fprintf (dump_file, " intersect Known range : ");
1153 op1_range.dump (dump_file);
1154 fputc ('\n', dump_file);
1156 // Intersect the calculated result with the known result and return if done.
1157 if (op1 == name)
1159 tmp.intersect (op1_range);
1160 r = tmp;
1161 if (idx)
1162 tracer.trailer (idx, "produces ", true, name, r);
1163 return true;
1165 // If the calculation continues, we're using op1_range as the new LHS.
1166 op1_range.intersect (tmp);
1168 if (idx)
1169 tracer.trailer (idx, "produces ", true, op1, op1_range);
1170 gimple *src_stmt = SSA_NAME_DEF_STMT (op1);
1171 gcc_checking_assert (src_stmt);
1173 // Then feed this range back as the LHS of the defining statement.
1174 return compute_operand_range (r, src_stmt, op1_range, name, src, rel);
1178 // Calculate a range for NAME from the operand 2 position of S
1179 // assuming the result of the statement is LHS. Return the range in
1180 // R, or false if no range could be calculated.
1182 bool
1183 gori_compute::compute_operand2_range (vrange &r,
1184 gimple_range_op_handler &handler,
1185 const vrange &lhs, tree name,
1186 fur_source &src, value_relation *rel)
1188 gimple *stmt = handler.stmt ();
1189 tree op1 = handler.operand1 ();
1190 tree op2 = handler.operand2 ();
1191 tree lhs_name = gimple_get_lhs (stmt);
1193 Value_Range op1_range (TREE_TYPE (op1));
1194 Value_Range op2_range (TREE_TYPE (op2));
1195 Value_Range tmp (TREE_TYPE (op2));
1197 src.get_operand (op1_range, op1);
1198 src.get_operand (op2_range, op2);
1200 relation_trio trio;
1201 if (rel)
1202 trio = rel->create_trio (lhs_name, op1, op2);
1203 relation_kind op_op = trio.op1_op2 ();
1204 if (op_op != VREL_VARYING)
1205 refine_using_relation (op1, op1_range, op2, op2_range, src, op_op);
1207 // Intersect with range for op2 based on lhs and op1.
1208 if (!handler.calc_op2 (tmp, lhs, op1_range, trio))
1209 return false;
1211 unsigned idx;
1212 if ((idx = tracer.header ("compute op 2 (")))
1214 print_generic_expr (dump_file, op2, TDF_SLIM);
1215 fprintf (dump_file, ") at ");
1216 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1217 tracer.print (idx, "LHS = ");
1218 lhs.dump (dump_file);
1219 if (TREE_CODE (op1) == SSA_NAME)
1221 fprintf (dump_file, ", ");
1222 print_generic_expr (dump_file, op1, TDF_SLIM);
1223 fprintf (dump_file, " = ");
1224 op1_range.dump (dump_file);
1226 fprintf (dump_file, "\n");
1227 tracer.print (idx, "Computes ");
1228 print_generic_expr (dump_file, op2, TDF_SLIM);
1229 fprintf (dump_file, " = ");
1230 tmp.dump (dump_file);
1231 fprintf (dump_file, " intersect Known range : ");
1232 op2_range.dump (dump_file);
1233 fputc ('\n', dump_file);
1235 // Intersect the calculated result with the known result and return if done.
1236 if (op2 == name)
1238 tmp.intersect (op2_range);
1239 r = tmp;
1240 if (idx)
1241 tracer.trailer (idx, " produces ", true, NULL_TREE, r);
1242 return true;
1244 // If the calculation continues, we're using op2_range as the new LHS.
1245 op2_range.intersect (tmp);
1247 if (idx)
1248 tracer.trailer (idx, " produces ", true, op2, op2_range);
1249 gimple *src_stmt = SSA_NAME_DEF_STMT (op2);
1250 gcc_checking_assert (src_stmt);
1251 // gcc_checking_assert (!is_import_p (op2, find.bb));
1253 // Then feed this range back as the LHS of the defining statement.
1254 return compute_operand_range (r, src_stmt, op2_range, name, src, rel);
1257 // Calculate a range for NAME from both operand positions of S
1258 // assuming the result of the statement is LHS. Return the range in
1259 // R, or false if no range could be calculated.
1261 bool
1262 gori_compute::compute_operand1_and_operand2_range (vrange &r,
1263 gimple_range_op_handler
1264 &handler,
1265 const vrange &lhs,
1266 tree name,
1267 fur_source &src,
1268 value_relation *rel)
1270 Value_Range op_range (TREE_TYPE (name));
1272 // Calculate a good a range for op2. Since op1 == op2, this will
1273 // have already included whatever the actual range of name is.
1274 if (!compute_operand2_range (op_range, handler, lhs, name, src, rel))
1275 return false;
1277 // Now get the range thru op1.
1278 if (!compute_operand1_range (r, handler, lhs, name, src, rel))
1279 return false;
1281 // Both operands have to be simultaneously true, so perform an intersection.
1282 r.intersect (op_range);
1283 return true;
1286 // Return TRUE if NAME can be recomputed on any edge exiting BB. If any
1287 // direct dependent is exported, it may also change the computed value of NAME.
1289 bool
1290 gori_compute::may_recompute_p (tree name, basic_block bb)
1292 tree dep1 = depend1 (name);
1293 tree dep2 = depend2 (name);
1295 // If the first dependency is not set, there is no recomputation.
1296 if (!dep1)
1297 return false;
1299 // Don't recalculate PHIs or statements with side_effects.
1300 gimple *s = SSA_NAME_DEF_STMT (name);
1301 if (is_a<gphi *> (s) || gimple_has_side_effects (s))
1302 return false;
1304 // If edge is specified, check if NAME can be recalculated on that edge.
1305 if (bb)
1306 return ((is_export_p (dep1, bb))
1307 || (dep2 && is_export_p (dep2, bb)));
1309 return (is_export_p (dep1)) || (dep2 && is_export_p (dep2));
1312 // Return TRUE if NAME can be recomputed on edge E. If any direct dependent
1313 // is exported on edge E, it may change the computed value of NAME.
1315 bool
1316 gori_compute::may_recompute_p (tree name, edge e)
1318 gcc_checking_assert (e);
1319 return may_recompute_p (name, e->src);
1323 // Return TRUE if a range can be calculated or recomputed for NAME on any
1324 // edge exiting BB.
1326 bool
1327 gori_compute::has_edge_range_p (tree name, basic_block bb)
1329 // Check if NAME is an export or can be recomputed.
1330 if (bb)
1331 return is_export_p (name, bb) || may_recompute_p (name, bb);
1333 // If no block is specified, check for anywhere in the IL.
1334 return is_export_p (name) || may_recompute_p (name);
1337 // Return TRUE if a range can be calculated or recomputed for NAME on edge E.
1339 bool
1340 gori_compute::has_edge_range_p (tree name, edge e)
1342 gcc_checking_assert (e);
1343 return has_edge_range_p (name, e->src);
1346 // Calculate a range on edge E and return it in R. Try to evaluate a
1347 // range for NAME on this edge. Return FALSE if this is either not a
1348 // control edge or NAME is not defined by this edge.
1350 bool
1351 gori_compute::outgoing_edge_range_p (vrange &r, edge e, tree name,
1352 range_query &q)
1354 unsigned idx;
1356 if ((e->flags & m_not_executable_flag))
1358 r.set_undefined ();
1359 if (dump_file && (dump_flags & TDF_DETAILS))
1360 fprintf (dump_file, "Outgoing edge %d->%d unexecutable.\n",
1361 e->src->index, e->dest->index);
1362 return true;
1365 gcc_checking_assert (gimple_range_ssa_p (name));
1366 int_range_max lhs;
1367 // Determine if there is an outgoing edge.
1368 gimple *stmt = outgoing.edge_range_p (lhs, e);
1369 if (!stmt)
1370 return false;
1372 fur_stmt src (stmt, &q);
1373 // If NAME can be calculated on the edge, use that.
1374 if (is_export_p (name, e->src))
1376 bool res;
1377 if ((idx = tracer.header ("outgoing_edge")))
1379 fprintf (dump_file, " for ");
1380 print_generic_expr (dump_file, name, TDF_SLIM);
1381 fprintf (dump_file, " on edge %d->%d\n",
1382 e->src->index, e->dest->index);
1384 if ((res = compute_operand_range (r, stmt, lhs, name, src)))
1386 // Sometimes compatible types get interchanged. See PR97360.
1387 // Make sure we are returning the type of the thing we asked for.
1388 if (!r.undefined_p () && r.type () != TREE_TYPE (name))
1390 gcc_checking_assert (range_compatible_p (r.type (),
1391 TREE_TYPE (name)));
1392 range_cast (r, TREE_TYPE (name));
1395 if (idx)
1396 tracer.trailer (idx, "outgoing_edge", res, name, r);
1397 return res;
1399 // If NAME isn't exported, check if it can be recomputed.
1400 else if (may_recompute_p (name, e))
1402 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
1404 if ((idx = tracer.header ("recomputation")))
1406 fprintf (dump_file, " attempt on edge %d->%d for ",
1407 e->src->index, e->dest->index);
1408 print_gimple_stmt (dump_file, def_stmt, 0, TDF_SLIM);
1410 // Simply calculate DEF_STMT on edge E using the range query Q.
1411 fold_range (r, def_stmt, e, &q);
1412 if (idx)
1413 tracer.trailer (idx, "recomputation", true, name, r);
1414 return true;
1416 return false;
1419 // Given COND ? OP1 : OP2 with ranges R1 for OP1 and R2 for OP2, Use gori
1420 // to further resolve R1 and R2 if there are any dependencies between
1421 // OP1 and COND or OP2 and COND. All values can are to be calculated using SRC
1422 // as the origination source location for operands..
1423 // Effectively, use COND an the edge condition and solve for OP1 on the true
1424 // edge and OP2 on the false edge.
1426 bool
1427 gori_compute::condexpr_adjust (vrange &r1, vrange &r2, gimple *, tree cond,
1428 tree op1, tree op2, fur_source &src)
1430 tree ssa1 = gimple_range_ssa_p (op1);
1431 tree ssa2 = gimple_range_ssa_p (op2);
1432 if (!ssa1 && !ssa2)
1433 return false;
1434 if (TREE_CODE (cond) != SSA_NAME)
1435 return false;
1436 gassign *cond_def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (cond));
1437 if (!cond_def
1438 || TREE_CODE_CLASS (gimple_assign_rhs_code (cond_def)) != tcc_comparison)
1439 return false;
1440 tree type = TREE_TYPE (gimple_assign_rhs1 (cond_def));
1441 if (!range_compatible_p (type, TREE_TYPE (gimple_assign_rhs2 (cond_def))))
1442 return false;
1443 range_op_handler hand (gimple_assign_rhs_code (cond_def), type);
1444 if (!hand)
1445 return false;
1447 tree c1 = gimple_range_ssa_p (gimple_assign_rhs1 (cond_def));
1448 tree c2 = gimple_range_ssa_p (gimple_assign_rhs2 (cond_def));
1450 // Only solve if there is one SSA name in the condition.
1451 if ((!c1 && !c2) || (c1 && c2))
1452 return false;
1454 // Pick up the current values of each part of the condition.
1455 tree rhs1 = gimple_assign_rhs1 (cond_def);
1456 tree rhs2 = gimple_assign_rhs2 (cond_def);
1457 Value_Range cl (TREE_TYPE (rhs1));
1458 Value_Range cr (TREE_TYPE (rhs2));
1459 src.get_operand (cl, rhs1);
1460 src.get_operand (cr, rhs2);
1462 tree cond_name = c1 ? c1 : c2;
1463 gimple *def_stmt = SSA_NAME_DEF_STMT (cond_name);
1465 // Evaluate the value of COND_NAME on the true and false edges, using either
1466 // the op1 or op2 routines based on its location.
1467 Value_Range cond_true (type), cond_false (type);
1468 if (c1)
1470 if (!hand.op1_range (cond_false, type, m_bool_zero, cr))
1471 return false;
1472 if (!hand.op1_range (cond_true, type, m_bool_one, cr))
1473 return false;
1474 cond_false.intersect (cl);
1475 cond_true.intersect (cl);
1477 else
1479 if (!hand.op2_range (cond_false, type, m_bool_zero, cl))
1480 return false;
1481 if (!hand.op2_range (cond_true, type, m_bool_one, cl))
1482 return false;
1483 cond_false.intersect (cr);
1484 cond_true.intersect (cr);
1487 unsigned idx;
1488 if ((idx = tracer.header ("cond_expr evaluation : ")))
1490 fprintf (dump_file, " range1 = ");
1491 r1.dump (dump_file);
1492 fprintf (dump_file, ", range2 = ");
1493 r1.dump (dump_file);
1494 fprintf (dump_file, "\n");
1497 // Now solve for SSA1 or SSA2 if they are in the dependency chain.
1498 if (ssa1 && in_chain_p (ssa1, cond_name))
1500 Value_Range tmp1 (TREE_TYPE (ssa1));
1501 if (compute_operand_range (tmp1, def_stmt, cond_true, ssa1, src))
1502 r1.intersect (tmp1);
1504 if (ssa2 && in_chain_p (ssa2, cond_name))
1506 Value_Range tmp2 (TREE_TYPE (ssa2));
1507 if (compute_operand_range (tmp2, def_stmt, cond_false, ssa2, src))
1508 r2.intersect (tmp2);
1510 if (idx)
1512 tracer.print (idx, "outgoing: range1 = ");
1513 r1.dump (dump_file);
1514 fprintf (dump_file, ", range2 = ");
1515 r1.dump (dump_file);
1516 fprintf (dump_file, "\n");
1517 tracer.trailer (idx, "cond_expr", true, cond_name, cond_true);
1519 return true;
1522 // Dump what is known to GORI computes to listing file F.
1524 void
1525 gori_compute::dump (FILE *f)
1527 gori_map::dump (f);
1530 // ------------------------------------------------------------------------
1531 // GORI iterator. Although we have bitmap iterators, don't expose that it
1532 // is currently a bitmap. Use an export iterator to hide future changes.
1534 // Construct a basic iterator over an export bitmap.
1536 gori_export_iterator::gori_export_iterator (bitmap b)
1538 bm = b;
1539 if (b)
1540 bmp_iter_set_init (&bi, b, 1, &y);
1544 // Move to the next export bitmap spot.
1546 void
1547 gori_export_iterator::next ()
1549 bmp_iter_next (&bi, &y);
1553 // Fetch the name of the next export in the export list. Return NULL if
1554 // iteration is done.
1556 tree
1557 gori_export_iterator::get_name ()
1559 if (!bm)
1560 return NULL_TREE;
1562 while (bmp_iter_set (&bi, &y))
1564 tree t = ssa_name (y);
1565 if (t)
1566 return t;
1567 next ();
1569 return NULL_TREE;