1 /* Output Dwarf2 format symbol table information from the GNU C compiler.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
43 #include "hard-reg-set.h"
45 #include "insn-config.h"
53 #include "dwarf2out.h"
54 #include "dwarf2asm.h"
60 #include "diagnostic.h"
63 #include "langhooks.h"
64 #include "hashtable.h"
66 #ifdef DWARF2_DEBUGGING_INFO
67 static void dwarf2out_source_line
PARAMS ((unsigned int, const char *));
70 /* DWARF2 Abbreviation Glossary:
71 CFA = Canonical Frame Address
72 a fixed address on the stack which identifies a call frame.
73 We define it to be the value of SP just before the call insn.
74 The CFA register and offset, which may change during the course
75 of the function, are used to calculate its value at runtime.
76 CFI = Call Frame Instruction
77 an instruction for the DWARF2 abstract machine
78 CIE = Common Information Entry
79 information describing information common to one or more FDEs
80 DIE = Debugging Information Entry
81 FDE = Frame Description Entry
82 information describing the stack call frame, in particular,
83 how to restore registers
85 DW_CFA_... = DWARF2 CFA call frame instruction
86 DW_TAG_... = DWARF2 DIE tag */
88 /* Decide whether we want to emit frame unwind information for the current
94 return (write_symbols
== DWARF2_DEBUG
95 || write_symbols
== VMS_AND_DWARF2_DEBUG
96 #ifdef DWARF2_FRAME_INFO
99 #ifdef DWARF2_UNWIND_INFO
100 || flag_unwind_tables
101 || (flag_exceptions
&& ! USING_SJLJ_EXCEPTIONS
)
106 /* The size of the target's pointer type. */
108 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
111 /* Default version of targetm.eh_frame_section. Note this must appear
112 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro
116 default_eh_frame_section ()
118 #ifdef EH_FRAME_SECTION_NAME
119 named_section_flags (EH_FRAME_SECTION_NAME
, SECTION_WRITE
);
121 tree label
= get_file_function_name ('F');
124 ASM_OUTPUT_ALIGN (asm_out_file
, floor_log2 (PTR_SIZE
));
125 (*targetm
.asm_out
.globalize_label
) (asm_out_file
, IDENTIFIER_POINTER (label
));
126 ASM_OUTPUT_LABEL (asm_out_file
, IDENTIFIER_POINTER (label
));
130 /* Array of RTXes referenced by the debugging information, which therefore
131 must be kept around forever. */
132 static GTY(()) varray_type used_rtx_varray
;
134 /* A pointer to the base of a list of incomplete types which might be
135 completed at some later time. incomplete_types_list needs to be a VARRAY
136 because we want to tell the garbage collector about it. */
137 static GTY(()) varray_type incomplete_types
;
139 /* A pointer to the base of a table of references to declaration
140 scopes. This table is a display which tracks the nesting
141 of declaration scopes at the current scope and containing
142 scopes. This table is used to find the proper place to
143 define type declaration DIE's. */
144 static GTY(()) varray_type decl_scope_table
;
146 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
148 /* How to start an assembler comment. */
149 #ifndef ASM_COMMENT_START
150 #define ASM_COMMENT_START ";#"
153 typedef struct dw_cfi_struct
*dw_cfi_ref
;
154 typedef struct dw_fde_struct
*dw_fde_ref
;
155 typedef union dw_cfi_oprnd_struct
*dw_cfi_oprnd_ref
;
157 /* Call frames are described using a sequence of Call Frame
158 Information instructions. The register number, offset
159 and address fields are provided as possible operands;
160 their use is selected by the opcode field. */
162 typedef union dw_cfi_oprnd_struct
164 unsigned long dw_cfi_reg_num
;
165 long int dw_cfi_offset
;
166 const char *dw_cfi_addr
;
167 struct dw_loc_descr_struct
*dw_cfi_loc
;
171 typedef struct dw_cfi_struct
173 dw_cfi_ref dw_cfi_next
;
174 enum dwarf_call_frame_info dw_cfi_opc
;
175 dw_cfi_oprnd dw_cfi_oprnd1
;
176 dw_cfi_oprnd dw_cfi_oprnd2
;
180 /* This is how we define the location of the CFA. We use to handle it
181 as REG + OFFSET all the time, but now it can be more complex.
182 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
183 Instead of passing around REG and OFFSET, we pass a copy
184 of this structure. */
185 typedef struct cfa_loc
190 int indirect
; /* 1 if CFA is accessed via a dereference. */
193 /* All call frame descriptions (FDE's) in the GCC generated DWARF
194 refer to a single Common Information Entry (CIE), defined at
195 the beginning of the .debug_frame section. This use of a single
196 CIE obviates the need to keep track of multiple CIE's
197 in the DWARF generation routines below. */
199 typedef struct dw_fde_struct
201 const char *dw_fde_begin
;
202 const char *dw_fde_current_label
;
203 const char *dw_fde_end
;
204 dw_cfi_ref dw_fde_cfi
;
205 unsigned funcdef_number
;
206 unsigned all_throwers_are_sibcalls
: 1;
207 unsigned nothrow
: 1;
208 unsigned uses_eh_lsda
: 1;
212 /* Maximum size (in bytes) of an artificially generated label. */
213 #define MAX_ARTIFICIAL_LABEL_BYTES 30
215 /* The size of addresses as they appear in the Dwarf 2 data.
216 Some architectures use word addresses to refer to code locations,
217 but Dwarf 2 info always uses byte addresses. On such machines,
218 Dwarf 2 addresses need to be larger than the architecture's
220 #ifndef DWARF2_ADDR_SIZE
221 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
224 /* The size in bytes of a DWARF field indicating an offset or length
225 relative to a debug info section, specified to be 4 bytes in the
226 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
229 #ifndef DWARF_OFFSET_SIZE
230 #define DWARF_OFFSET_SIZE 4
233 #define DWARF_VERSION 2
235 /* Round SIZE up to the nearest BOUNDARY. */
236 #define DWARF_ROUND(SIZE,BOUNDARY) \
237 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
239 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
240 #ifndef DWARF_CIE_DATA_ALIGNMENT
241 #ifdef STACK_GROWS_DOWNWARD
242 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
244 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
248 /* A pointer to the base of a table that contains frame description
249 information for each routine. */
250 static dw_fde_ref fde_table
;
252 /* Number of elements currently allocated for fde_table. */
253 static unsigned fde_table_allocated
;
255 /* Number of elements in fde_table currently in use. */
256 static unsigned fde_table_in_use
;
258 /* Size (in elements) of increments by which we may expand the
260 #define FDE_TABLE_INCREMENT 256
262 /* A list of call frame insns for the CIE. */
263 static dw_cfi_ref cie_cfi_head
;
265 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
266 attribute that accelerates the lookup of the FDE associated
267 with the subprogram. This variable holds the table index of the FDE
268 associated with the current function (body) definition. */
269 static unsigned current_funcdef_fde
;
271 struct ht
*debug_str_hash
;
273 struct indirect_string_node
275 struct ht_identifier id
;
276 unsigned int refcount
;
281 /* Forward declarations for functions defined in this file. */
283 static char *stripattributes
PARAMS ((const char *));
284 static const char *dwarf_cfi_name
PARAMS ((unsigned));
285 static dw_cfi_ref new_cfi
PARAMS ((void));
286 static void add_cfi
PARAMS ((dw_cfi_ref
*, dw_cfi_ref
));
287 static void add_fde_cfi
PARAMS ((const char *, dw_cfi_ref
));
288 static void lookup_cfa_1
PARAMS ((dw_cfi_ref
,
290 static void lookup_cfa
PARAMS ((dw_cfa_location
*));
291 static void reg_save
PARAMS ((const char *, unsigned,
293 static void initial_return_save
PARAMS ((rtx
));
294 static long stack_adjust_offset
PARAMS ((rtx
));
295 static void output_cfi
PARAMS ((dw_cfi_ref
, dw_fde_ref
, int));
296 static void output_call_frame_info
PARAMS ((int));
297 static void dwarf2out_stack_adjust
PARAMS ((rtx
));
298 static void queue_reg_save
PARAMS ((const char *, rtx
, long));
299 static void flush_queued_reg_saves
PARAMS ((void));
300 static bool clobbers_queued_reg_save
PARAMS ((rtx
));
301 static void dwarf2out_frame_debug_expr
PARAMS ((rtx
, const char *));
303 /* Support for complex CFA locations. */
304 static void output_cfa_loc
PARAMS ((dw_cfi_ref
));
305 static void get_cfa_from_loc_descr
PARAMS ((dw_cfa_location
*,
306 struct dw_loc_descr_struct
*));
307 static struct dw_loc_descr_struct
*build_cfa_loc
308 PARAMS ((dw_cfa_location
*));
309 static void def_cfa_1
PARAMS ((const char *,
312 /* How to start an assembler comment. */
313 #ifndef ASM_COMMENT_START
314 #define ASM_COMMENT_START ";#"
317 /* Data and reference forms for relocatable data. */
318 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
319 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
321 #ifndef DEBUG_FRAME_SECTION
322 #define DEBUG_FRAME_SECTION ".debug_frame"
325 #ifndef FUNC_BEGIN_LABEL
326 #define FUNC_BEGIN_LABEL "LFB"
329 #ifndef FUNC_END_LABEL
330 #define FUNC_END_LABEL "LFE"
333 #define FRAME_BEGIN_LABEL "Lframe"
334 #define CIE_AFTER_SIZE_LABEL "LSCIE"
335 #define CIE_END_LABEL "LECIE"
336 #define FDE_LABEL "LSFDE"
337 #define FDE_AFTER_SIZE_LABEL "LASFDE"
338 #define FDE_END_LABEL "LEFDE"
339 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
340 #define LINE_NUMBER_END_LABEL "LELT"
341 #define LN_PROLOG_AS_LABEL "LASLTP"
342 #define LN_PROLOG_END_LABEL "LELTP"
343 #define DIE_LABEL_PREFIX "DW"
345 /* The DWARF 2 CFA column which tracks the return address. Normally this
346 is the column for PC, or the first column after all of the hard
348 #ifndef DWARF_FRAME_RETURN_COLUMN
350 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
352 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
356 /* The mapping from gcc register number to DWARF 2 CFA column number. By
357 default, we just provide columns for all registers. */
358 #ifndef DWARF_FRAME_REGNUM
359 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
362 /* The offset from the incoming value of %sp to the top of the stack frame
363 for the current function. */
364 #ifndef INCOMING_FRAME_SP_OFFSET
365 #define INCOMING_FRAME_SP_OFFSET 0
368 /* Hook used by __throw. */
371 expand_builtin_dwarf_fp_regnum ()
373 return GEN_INT (DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM
));
376 /* Return a pointer to a copy of the section string name S with all
377 attributes stripped off, and an asterisk prepended (for assemble_name). */
383 char *stripped
= xmalloc (strlen (s
) + 2);
388 while (*s
&& *s
!= ',')
395 /* Generate code to initialize the register size table. */
398 expand_builtin_init_dwarf_reg_sizes (address
)
402 enum machine_mode mode
= TYPE_MODE (char_type_node
);
403 rtx addr
= expand_expr (address
, NULL_RTX
, VOIDmode
, 0);
404 rtx mem
= gen_rtx_MEM (BLKmode
, addr
);
406 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
407 if (DWARF_FRAME_REGNUM (i
) < DWARF_FRAME_REGISTERS
)
409 HOST_WIDE_INT offset
= DWARF_FRAME_REGNUM (i
) * GET_MODE_SIZE (mode
);
410 HOST_WIDE_INT size
= GET_MODE_SIZE (reg_raw_mode
[i
]);
415 emit_move_insn (adjust_address (mem
, mode
, offset
), GEN_INT (size
));
419 /* Convert a DWARF call frame info. operation to its string name */
422 dwarf_cfi_name (cfi_opc
)
427 case DW_CFA_advance_loc
:
428 return "DW_CFA_advance_loc";
430 return "DW_CFA_offset";
432 return "DW_CFA_restore";
436 return "DW_CFA_set_loc";
437 case DW_CFA_advance_loc1
:
438 return "DW_CFA_advance_loc1";
439 case DW_CFA_advance_loc2
:
440 return "DW_CFA_advance_loc2";
441 case DW_CFA_advance_loc4
:
442 return "DW_CFA_advance_loc4";
443 case DW_CFA_offset_extended
:
444 return "DW_CFA_offset_extended";
445 case DW_CFA_restore_extended
:
446 return "DW_CFA_restore_extended";
447 case DW_CFA_undefined
:
448 return "DW_CFA_undefined";
449 case DW_CFA_same_value
:
450 return "DW_CFA_same_value";
451 case DW_CFA_register
:
452 return "DW_CFA_register";
453 case DW_CFA_remember_state
:
454 return "DW_CFA_remember_state";
455 case DW_CFA_restore_state
:
456 return "DW_CFA_restore_state";
458 return "DW_CFA_def_cfa";
459 case DW_CFA_def_cfa_register
:
460 return "DW_CFA_def_cfa_register";
461 case DW_CFA_def_cfa_offset
:
462 return "DW_CFA_def_cfa_offset";
465 case DW_CFA_def_cfa_expression
:
466 return "DW_CFA_def_cfa_expression";
467 case DW_CFA_expression
:
468 return "DW_CFA_expression";
469 case DW_CFA_offset_extended_sf
:
470 return "DW_CFA_offset_extended_sf";
471 case DW_CFA_def_cfa_sf
:
472 return "DW_CFA_def_cfa_sf";
473 case DW_CFA_def_cfa_offset_sf
:
474 return "DW_CFA_def_cfa_offset_sf";
476 /* SGI/MIPS specific */
477 case DW_CFA_MIPS_advance_loc8
:
478 return "DW_CFA_MIPS_advance_loc8";
481 case DW_CFA_GNU_window_save
:
482 return "DW_CFA_GNU_window_save";
483 case DW_CFA_GNU_args_size
:
484 return "DW_CFA_GNU_args_size";
485 case DW_CFA_GNU_negative_offset_extended
:
486 return "DW_CFA_GNU_negative_offset_extended";
489 return "DW_CFA_<unknown>";
493 /* Return a pointer to a newly allocated Call Frame Instruction. */
495 static inline dw_cfi_ref
498 dw_cfi_ref cfi
= (dw_cfi_ref
) xmalloc (sizeof (dw_cfi_node
));
500 cfi
->dw_cfi_next
= NULL
;
501 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= 0;
502 cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
= 0;
507 /* Add a Call Frame Instruction to list of instructions. */
510 add_cfi (list_head
, cfi
)
511 dw_cfi_ref
*list_head
;
516 /* Find the end of the chain. */
517 for (p
= list_head
; (*p
) != NULL
; p
= &(*p
)->dw_cfi_next
)
523 /* Generate a new label for the CFI info to refer to. */
526 dwarf2out_cfi_label ()
528 static char label
[20];
529 static unsigned long label_num
= 0;
531 ASM_GENERATE_INTERNAL_LABEL (label
, "LCFI", label_num
++);
532 ASM_OUTPUT_LABEL (asm_out_file
, label
);
536 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
537 or to the CIE if LABEL is NULL. */
540 add_fde_cfi (label
, cfi
)
546 dw_fde_ref fde
= &fde_table
[fde_table_in_use
- 1];
549 label
= dwarf2out_cfi_label ();
551 if (fde
->dw_fde_current_label
== NULL
552 || strcmp (label
, fde
->dw_fde_current_label
) != 0)
556 fde
->dw_fde_current_label
= label
= xstrdup (label
);
558 /* Set the location counter to the new label. */
560 xcfi
->dw_cfi_opc
= DW_CFA_advance_loc4
;
561 xcfi
->dw_cfi_oprnd1
.dw_cfi_addr
= label
;
562 add_cfi (&fde
->dw_fde_cfi
, xcfi
);
565 add_cfi (&fde
->dw_fde_cfi
, cfi
);
569 add_cfi (&cie_cfi_head
, cfi
);
572 /* Subroutine of lookup_cfa. */
575 lookup_cfa_1 (cfi
, loc
)
577 dw_cfa_location
*loc
;
579 switch (cfi
->dw_cfi_opc
)
581 case DW_CFA_def_cfa_offset
:
582 loc
->offset
= cfi
->dw_cfi_oprnd1
.dw_cfi_offset
;
584 case DW_CFA_def_cfa_register
:
585 loc
->reg
= cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
;
588 loc
->reg
= cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
;
589 loc
->offset
= cfi
->dw_cfi_oprnd2
.dw_cfi_offset
;
591 case DW_CFA_def_cfa_expression
:
592 get_cfa_from_loc_descr (loc
, cfi
->dw_cfi_oprnd1
.dw_cfi_loc
);
599 /* Find the previous value for the CFA. */
603 dw_cfa_location
*loc
;
607 loc
->reg
= (unsigned long) -1;
610 loc
->base_offset
= 0;
612 for (cfi
= cie_cfi_head
; cfi
; cfi
= cfi
->dw_cfi_next
)
613 lookup_cfa_1 (cfi
, loc
);
615 if (fde_table_in_use
)
617 dw_fde_ref fde
= &fde_table
[fde_table_in_use
- 1];
618 for (cfi
= fde
->dw_fde_cfi
; cfi
; cfi
= cfi
->dw_cfi_next
)
619 lookup_cfa_1 (cfi
, loc
);
623 /* The current rule for calculating the DWARF2 canonical frame address. */
624 static dw_cfa_location cfa
;
626 /* The register used for saving registers to the stack, and its offset
628 static dw_cfa_location cfa_store
;
630 /* The running total of the size of arguments pushed onto the stack. */
631 static long args_size
;
633 /* The last args_size we actually output. */
634 static long old_args_size
;
636 /* Entry point to update the canonical frame address (CFA).
637 LABEL is passed to add_fde_cfi. The value of CFA is now to be
638 calculated from REG+OFFSET. */
641 dwarf2out_def_cfa (label
, reg
, offset
)
651 def_cfa_1 (label
, &loc
);
654 /* This routine does the actual work. The CFA is now calculated from
655 the dw_cfa_location structure. */
658 def_cfa_1 (label
, loc_p
)
660 dw_cfa_location
*loc_p
;
663 dw_cfa_location old_cfa
, loc
;
668 if (cfa_store
.reg
== loc
.reg
&& loc
.indirect
== 0)
669 cfa_store
.offset
= loc
.offset
;
671 loc
.reg
= DWARF_FRAME_REGNUM (loc
.reg
);
672 lookup_cfa (&old_cfa
);
674 /* If nothing changed, no need to issue any call frame instructions. */
675 if (loc
.reg
== old_cfa
.reg
&& loc
.offset
== old_cfa
.offset
676 && loc
.indirect
== old_cfa
.indirect
677 && (loc
.indirect
== 0 || loc
.base_offset
== old_cfa
.base_offset
))
682 if (loc
.reg
== old_cfa
.reg
&& !loc
.indirect
)
684 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
685 indicating the CFA register did not change but the offset
687 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_offset
;
688 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
= loc
.offset
;
691 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
692 else if (loc
.offset
== old_cfa
.offset
&& old_cfa
.reg
!= (unsigned long) -1
695 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
696 indicating the CFA register has changed to <register> but the
697 offset has not changed. */
698 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_register
;
699 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= loc
.reg
;
703 else if (loc
.indirect
== 0)
705 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
706 indicating the CFA register has changed to <register> with
707 the specified offset. */
708 cfi
->dw_cfi_opc
= DW_CFA_def_cfa
;
709 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= loc
.reg
;
710 cfi
->dw_cfi_oprnd2
.dw_cfi_offset
= loc
.offset
;
714 /* Construct a DW_CFA_def_cfa_expression instruction to
715 calculate the CFA using a full location expression since no
716 register-offset pair is available. */
717 struct dw_loc_descr_struct
*loc_list
;
719 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_expression
;
720 loc_list
= build_cfa_loc (&loc
);
721 cfi
->dw_cfi_oprnd1
.dw_cfi_loc
= loc_list
;
724 add_fde_cfi (label
, cfi
);
727 /* Add the CFI for saving a register. REG is the CFA column number.
728 LABEL is passed to add_fde_cfi.
729 If SREG is -1, the register is saved at OFFSET from the CFA;
730 otherwise it is saved in SREG. */
733 reg_save (label
, reg
, sreg
, offset
)
739 dw_cfi_ref cfi
= new_cfi ();
741 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= reg
;
743 /* The following comparison is correct. -1 is used to indicate that
744 the value isn't a register number. */
745 if (sreg
== (unsigned int) -1)
748 /* The register number won't fit in 6 bits, so we have to use
750 cfi
->dw_cfi_opc
= DW_CFA_offset_extended
;
752 cfi
->dw_cfi_opc
= DW_CFA_offset
;
754 #ifdef ENABLE_CHECKING
756 /* If we get an offset that is not a multiple of
757 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
758 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
760 long check_offset
= offset
/ DWARF_CIE_DATA_ALIGNMENT
;
762 if (check_offset
* DWARF_CIE_DATA_ALIGNMENT
!= offset
)
766 offset
/= DWARF_CIE_DATA_ALIGNMENT
;
768 cfi
->dw_cfi_opc
= DW_CFA_offset_extended_sf
;
770 cfi
->dw_cfi_oprnd2
.dw_cfi_offset
= offset
;
772 else if (sreg
== reg
)
773 /* We could emit a DW_CFA_same_value in this case, but don't bother. */
777 cfi
->dw_cfi_opc
= DW_CFA_register
;
778 cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
= sreg
;
781 add_fde_cfi (label
, cfi
);
784 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
785 This CFI tells the unwinder that it needs to restore the window registers
786 from the previous frame's window save area.
788 ??? Perhaps we should note in the CIE where windows are saved (instead of
789 assuming 0(cfa)) and what registers are in the window. */
792 dwarf2out_window_save (label
)
795 dw_cfi_ref cfi
= new_cfi ();
797 cfi
->dw_cfi_opc
= DW_CFA_GNU_window_save
;
798 add_fde_cfi (label
, cfi
);
801 /* Add a CFI to update the running total of the size of arguments
802 pushed onto the stack. */
805 dwarf2out_args_size (label
, size
)
811 if (size
== old_args_size
)
814 old_args_size
= size
;
817 cfi
->dw_cfi_opc
= DW_CFA_GNU_args_size
;
818 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
= size
;
819 add_fde_cfi (label
, cfi
);
822 /* Entry point for saving a register to the stack. REG is the GCC register
823 number. LABEL and OFFSET are passed to reg_save. */
826 dwarf2out_reg_save (label
, reg
, offset
)
831 reg_save (label
, DWARF_FRAME_REGNUM (reg
), -1, offset
);
834 /* Entry point for saving the return address in the stack.
835 LABEL and OFFSET are passed to reg_save. */
838 dwarf2out_return_save (label
, offset
)
842 reg_save (label
, DWARF_FRAME_RETURN_COLUMN
, -1, offset
);
845 /* Entry point for saving the return address in a register.
846 LABEL and SREG are passed to reg_save. */
849 dwarf2out_return_reg (label
, sreg
)
853 reg_save (label
, DWARF_FRAME_RETURN_COLUMN
, sreg
, 0);
856 /* Record the initial position of the return address. RTL is
857 INCOMING_RETURN_ADDR_RTX. */
860 initial_return_save (rtl
)
863 unsigned int reg
= (unsigned int) -1;
864 HOST_WIDE_INT offset
= 0;
866 switch (GET_CODE (rtl
))
869 /* RA is in a register. */
870 reg
= DWARF_FRAME_REGNUM (REGNO (rtl
));
874 /* RA is on the stack. */
876 switch (GET_CODE (rtl
))
879 if (REGNO (rtl
) != STACK_POINTER_REGNUM
)
885 if (REGNO (XEXP (rtl
, 0)) != STACK_POINTER_REGNUM
)
887 offset
= INTVAL (XEXP (rtl
, 1));
891 if (REGNO (XEXP (rtl
, 0)) != STACK_POINTER_REGNUM
)
893 offset
= -INTVAL (XEXP (rtl
, 1));
903 /* The return address is at some offset from any value we can
904 actually load. For instance, on the SPARC it is in %i7+8. Just
905 ignore the offset for now; it doesn't matter for unwinding frames. */
906 if (GET_CODE (XEXP (rtl
, 1)) != CONST_INT
)
908 initial_return_save (XEXP (rtl
, 0));
915 reg_save (NULL
, DWARF_FRAME_RETURN_COLUMN
, reg
, offset
- cfa
.offset
);
918 /* Given a SET, calculate the amount of stack adjustment it
922 stack_adjust_offset (pattern
)
925 rtx src
= SET_SRC (pattern
);
926 rtx dest
= SET_DEST (pattern
);
927 HOST_WIDE_INT offset
= 0;
930 if (dest
== stack_pointer_rtx
)
932 /* (set (reg sp) (plus (reg sp) (const_int))) */
933 code
= GET_CODE (src
);
934 if (! (code
== PLUS
|| code
== MINUS
)
935 || XEXP (src
, 0) != stack_pointer_rtx
936 || GET_CODE (XEXP (src
, 1)) != CONST_INT
)
939 offset
= INTVAL (XEXP (src
, 1));
943 else if (GET_CODE (dest
) == MEM
)
945 /* (set (mem (pre_dec (reg sp))) (foo)) */
946 src
= XEXP (dest
, 0);
947 code
= GET_CODE (src
);
953 if (XEXP (src
, 0) == stack_pointer_rtx
)
955 rtx val
= XEXP (XEXP (src
, 1), 1);
956 /* We handle only adjustments by constant amount. */
957 if (GET_CODE (XEXP (src
, 1)) != PLUS
||
958 GET_CODE (val
) != CONST_INT
)
960 offset
= -INTVAL (val
);
967 if (XEXP (src
, 0) == stack_pointer_rtx
)
969 offset
= GET_MODE_SIZE (GET_MODE (dest
));
976 if (XEXP (src
, 0) == stack_pointer_rtx
)
978 offset
= -GET_MODE_SIZE (GET_MODE (dest
));
993 /* Check INSN to see if it looks like a push or a stack adjustment, and
994 make a note of it if it does. EH uses this information to find out how
995 much extra space it needs to pop off the stack. */
998 dwarf2out_stack_adjust (insn
)
1001 HOST_WIDE_INT offset
;
1005 if (!flag_asynchronous_unwind_tables
&& GET_CODE (insn
) == CALL_INSN
)
1007 /* Extract the size of the args from the CALL rtx itself. */
1008 insn
= PATTERN (insn
);
1009 if (GET_CODE (insn
) == PARALLEL
)
1010 insn
= XVECEXP (insn
, 0, 0);
1011 if (GET_CODE (insn
) == SET
)
1012 insn
= SET_SRC (insn
);
1013 if (GET_CODE (insn
) != CALL
)
1016 dwarf2out_args_size ("", INTVAL (XEXP (insn
, 1)));
1020 /* If only calls can throw, and we have a frame pointer,
1021 save up adjustments until we see the CALL_INSN. */
1022 else if (!flag_asynchronous_unwind_tables
&& cfa
.reg
!= STACK_POINTER_REGNUM
)
1025 if (GET_CODE (insn
) == BARRIER
)
1027 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1028 the compiler will have already emitted a stack adjustment, but
1029 doesn't bother for calls to noreturn functions. */
1030 #ifdef STACK_GROWS_DOWNWARD
1031 offset
= -args_size
;
1036 else if (GET_CODE (PATTERN (insn
)) == SET
)
1037 offset
= stack_adjust_offset (PATTERN (insn
));
1038 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
1039 || GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1041 /* There may be stack adjustments inside compound insns. Search
1043 for (offset
= 0, i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
1044 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == SET
)
1045 offset
+= stack_adjust_offset (XVECEXP (PATTERN (insn
), 0, i
));
1053 if (cfa
.reg
== STACK_POINTER_REGNUM
)
1054 cfa
.offset
+= offset
;
1056 #ifndef STACK_GROWS_DOWNWARD
1060 args_size
+= offset
;
1064 label
= dwarf2out_cfi_label ();
1065 def_cfa_1 (label
, &cfa
);
1066 dwarf2out_args_size (label
, args_size
);
1069 /* We delay emitting a register save until either (a) we reach the end
1070 of the prologue or (b) the register is clobbered. This clusters
1071 register saves so that there are fewer pc advances. */
1073 struct queued_reg_save
1075 struct queued_reg_save
*next
;
1080 static struct queued_reg_save
*queued_reg_saves
;
1081 static const char *last_reg_save_label
;
1084 queue_reg_save (label
, reg
, offset
)
1089 struct queued_reg_save
*q
= (struct queued_reg_save
*) xmalloc (sizeof (*q
));
1091 q
->next
= queued_reg_saves
;
1093 q
->cfa_offset
= offset
;
1094 queued_reg_saves
= q
;
1096 last_reg_save_label
= label
;
1100 flush_queued_reg_saves ()
1102 struct queued_reg_save
*q
, *next
;
1104 for (q
= queued_reg_saves
; q
; q
= next
)
1106 dwarf2out_reg_save (last_reg_save_label
, REGNO (q
->reg
), q
->cfa_offset
);
1111 queued_reg_saves
= NULL
;
1112 last_reg_save_label
= NULL
;
1116 clobbers_queued_reg_save (insn
)
1119 struct queued_reg_save
*q
;
1121 for (q
= queued_reg_saves
; q
; q
= q
->next
)
1122 if (modified_in_p (q
->reg
, insn
))
1129 /* A temporary register holding an integral value used in adjusting SP
1130 or setting up the store_reg. The "offset" field holds the integer
1131 value, not an offset. */
1132 static dw_cfa_location cfa_temp
;
1134 /* Record call frame debugging information for an expression EXPR,
1135 which either sets SP or FP (adjusting how we calculate the frame
1136 address) or saves a register to the stack. LABEL indicates the
1139 This function encodes a state machine mapping rtxes to actions on
1140 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1141 users need not read the source code.
1143 The High-Level Picture
1145 Changes in the register we use to calculate the CFA: Currently we
1146 assume that if you copy the CFA register into another register, we
1147 should take the other one as the new CFA register; this seems to
1148 work pretty well. If it's wrong for some target, it's simple
1149 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1151 Changes in the register we use for saving registers to the stack:
1152 This is usually SP, but not always. Again, we deduce that if you
1153 copy SP into another register (and SP is not the CFA register),
1154 then the new register is the one we will be using for register
1155 saves. This also seems to work.
1157 Register saves: There's not much guesswork about this one; if
1158 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1159 register save, and the register used to calculate the destination
1160 had better be the one we think we're using for this purpose.
1162 Except: If the register being saved is the CFA register, and the
1163 offset is non-zero, we are saving the CFA, so we assume we have to
1164 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1165 the intent is to save the value of SP from the previous frame.
1167 Invariants / Summaries of Rules
1169 cfa current rule for calculating the CFA. It usually
1170 consists of a register and an offset.
1171 cfa_store register used by prologue code to save things to the stack
1172 cfa_store.offset is the offset from the value of
1173 cfa_store.reg to the actual CFA
1174 cfa_temp register holding an integral value. cfa_temp.offset
1175 stores the value, which will be used to adjust the
1176 stack pointer. cfa_temp is also used like cfa_store,
1177 to track stores to the stack via fp or a temp reg.
1179 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1180 with cfa.reg as the first operand changes the cfa.reg and its
1181 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1184 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1185 expression yielding a constant. This sets cfa_temp.reg
1186 and cfa_temp.offset.
1188 Rule 5: Create a new register cfa_store used to save items to the
1191 Rules 10-14: Save a register to the stack. Define offset as the
1192 difference of the original location and cfa_store's
1193 location (or cfa_temp's location if cfa_temp is used).
1197 "{a,b}" indicates a choice of a xor b.
1198 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1201 (set <reg1> <reg2>:cfa.reg)
1202 effects: cfa.reg = <reg1>
1203 cfa.offset unchanged
1204 cfa_temp.reg = <reg1>
1205 cfa_temp.offset = cfa.offset
1208 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1209 {<const_int>,<reg>:cfa_temp.reg}))
1210 effects: cfa.reg = sp if fp used
1211 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1212 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1213 if cfa_store.reg==sp
1216 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1217 effects: cfa.reg = fp
1218 cfa_offset += +/- <const_int>
1221 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1222 constraints: <reg1> != fp
1224 effects: cfa.reg = <reg1>
1225 cfa_temp.reg = <reg1>
1226 cfa_temp.offset = cfa.offset
1229 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1230 constraints: <reg1> != fp
1232 effects: cfa_store.reg = <reg1>
1233 cfa_store.offset = cfa.offset - cfa_temp.offset
1236 (set <reg> <const_int>)
1237 effects: cfa_temp.reg = <reg>
1238 cfa_temp.offset = <const_int>
1241 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1242 effects: cfa_temp.reg = <reg1>
1243 cfa_temp.offset |= <const_int>
1246 (set <reg> (high <exp>))
1250 (set <reg> (lo_sum <exp> <const_int>))
1251 effects: cfa_temp.reg = <reg>
1252 cfa_temp.offset = <const_int>
1255 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1256 effects: cfa_store.offset -= <const_int>
1257 cfa.offset = cfa_store.offset if cfa.reg == sp
1259 cfa.base_offset = -cfa_store.offset
1262 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1263 effects: cfa_store.offset += -/+ mode_size(mem)
1264 cfa.offset = cfa_store.offset if cfa.reg == sp
1266 cfa.base_offset = -cfa_store.offset
1269 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1272 effects: cfa.reg = <reg1>
1273 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1276 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1277 effects: cfa.reg = <reg1>
1278 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1281 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1282 effects: cfa.reg = <reg1>
1283 cfa.base_offset = -cfa_temp.offset
1284 cfa_temp.offset -= mode_size(mem) */
1287 dwarf2out_frame_debug_expr (expr
, label
)
1292 HOST_WIDE_INT offset
;
1294 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1295 the PARALLEL independently. The first element is always processed if
1296 it is a SET. This is for backward compatibility. Other elements
1297 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1298 flag is set in them. */
1299 if (GET_CODE (expr
) == PARALLEL
|| GET_CODE (expr
) == SEQUENCE
)
1302 int limit
= XVECLEN (expr
, 0);
1304 for (par_index
= 0; par_index
< limit
; par_index
++)
1305 if (GET_CODE (XVECEXP (expr
, 0, par_index
)) == SET
1306 && (RTX_FRAME_RELATED_P (XVECEXP (expr
, 0, par_index
))
1308 dwarf2out_frame_debug_expr (XVECEXP (expr
, 0, par_index
), label
);
1313 if (GET_CODE (expr
) != SET
)
1316 src
= SET_SRC (expr
);
1317 dest
= SET_DEST (expr
);
1319 switch (GET_CODE (dest
))
1323 /* Update the CFA rule wrt SP or FP. Make sure src is
1324 relative to the current CFA register. */
1325 switch (GET_CODE (src
))
1327 /* Setting FP from SP. */
1329 if (cfa
.reg
== (unsigned) REGNO (src
))
1335 /* We used to require that dest be either SP or FP, but the
1336 ARM copies SP to a temporary register, and from there to
1337 FP. So we just rely on the backends to only set
1338 RTX_FRAME_RELATED_P on appropriate insns. */
1339 cfa
.reg
= REGNO (dest
);
1340 cfa_temp
.reg
= cfa
.reg
;
1341 cfa_temp
.offset
= cfa
.offset
;
1347 if (dest
== stack_pointer_rtx
)
1351 switch (GET_CODE (XEXP (src
, 1)))
1354 offset
= INTVAL (XEXP (src
, 1));
1357 if ((unsigned) REGNO (XEXP (src
, 1)) != cfa_temp
.reg
)
1359 offset
= cfa_temp
.offset
;
1365 if (XEXP (src
, 0) == hard_frame_pointer_rtx
)
1367 /* Restoring SP from FP in the epilogue. */
1368 if (cfa
.reg
!= (unsigned) HARD_FRAME_POINTER_REGNUM
)
1370 cfa
.reg
= STACK_POINTER_REGNUM
;
1372 else if (GET_CODE (src
) == LO_SUM
)
1373 /* Assume we've set the source reg of the LO_SUM from sp. */
1375 else if (XEXP (src
, 0) != stack_pointer_rtx
)
1378 if (GET_CODE (src
) != MINUS
)
1380 if (cfa
.reg
== STACK_POINTER_REGNUM
)
1381 cfa
.offset
+= offset
;
1382 if (cfa_store
.reg
== STACK_POINTER_REGNUM
)
1383 cfa_store
.offset
+= offset
;
1385 else if (dest
== hard_frame_pointer_rtx
)
1388 /* Either setting the FP from an offset of the SP,
1389 or adjusting the FP */
1390 if (! frame_pointer_needed
)
1393 if (GET_CODE (XEXP (src
, 0)) == REG
1394 && (unsigned) REGNO (XEXP (src
, 0)) == cfa
.reg
1395 && GET_CODE (XEXP (src
, 1)) == CONST_INT
)
1397 offset
= INTVAL (XEXP (src
, 1));
1398 if (GET_CODE (src
) != MINUS
)
1400 cfa
.offset
+= offset
;
1401 cfa
.reg
= HARD_FRAME_POINTER_REGNUM
;
1408 if (GET_CODE (src
) == MINUS
)
1412 if (GET_CODE (XEXP (src
, 0)) == REG
1413 && REGNO (XEXP (src
, 0)) == cfa
.reg
1414 && GET_CODE (XEXP (src
, 1)) == CONST_INT
)
1416 /* Setting a temporary CFA register that will be copied
1417 into the FP later on. */
1418 offset
= - INTVAL (XEXP (src
, 1));
1419 cfa
.offset
+= offset
;
1420 cfa
.reg
= REGNO (dest
);
1421 /* Or used to save regs to the stack. */
1422 cfa_temp
.reg
= cfa
.reg
;
1423 cfa_temp
.offset
= cfa
.offset
;
1427 else if (GET_CODE (XEXP (src
, 0)) == REG
1428 && REGNO (XEXP (src
, 0)) == cfa_temp
.reg
1429 && XEXP (src
, 1) == stack_pointer_rtx
)
1431 /* Setting a scratch register that we will use instead
1432 of SP for saving registers to the stack. */
1433 if (cfa
.reg
!= STACK_POINTER_REGNUM
)
1435 cfa_store
.reg
= REGNO (dest
);
1436 cfa_store
.offset
= cfa
.offset
- cfa_temp
.offset
;
1440 else if (GET_CODE (src
) == LO_SUM
1441 && GET_CODE (XEXP (src
, 1)) == CONST_INT
)
1443 cfa_temp
.reg
= REGNO (dest
);
1444 cfa_temp
.offset
= INTVAL (XEXP (src
, 1));
1453 cfa_temp
.reg
= REGNO (dest
);
1454 cfa_temp
.offset
= INTVAL (src
);
1459 if (GET_CODE (XEXP (src
, 0)) != REG
1460 || (unsigned) REGNO (XEXP (src
, 0)) != cfa_temp
.reg
1461 || GET_CODE (XEXP (src
, 1)) != CONST_INT
)
1464 if ((unsigned) REGNO (dest
) != cfa_temp
.reg
)
1465 cfa_temp
.reg
= REGNO (dest
);
1466 cfa_temp
.offset
|= INTVAL (XEXP (src
, 1));
1469 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1470 which will fill in all of the bits. */
1479 def_cfa_1 (label
, &cfa
);
1483 if (GET_CODE (src
) != REG
)
1486 /* Saving a register to the stack. Make sure dest is relative to the
1488 switch (GET_CODE (XEXP (dest
, 0)))
1493 /* We can't handle variable size modifications. */
1494 if (GET_CODE (XEXP (XEXP (XEXP (dest
, 0), 1), 1)) != CONST_INT
)
1496 offset
= -INTVAL (XEXP (XEXP (XEXP (dest
, 0), 1), 1));
1498 if (REGNO (XEXP (XEXP (dest
, 0), 0)) != STACK_POINTER_REGNUM
1499 || cfa_store
.reg
!= STACK_POINTER_REGNUM
)
1502 cfa_store
.offset
+= offset
;
1503 if (cfa
.reg
== STACK_POINTER_REGNUM
)
1504 cfa
.offset
= cfa_store
.offset
;
1506 offset
= -cfa_store
.offset
;
1512 offset
= GET_MODE_SIZE (GET_MODE (dest
));
1513 if (GET_CODE (XEXP (dest
, 0)) == PRE_INC
)
1516 if (REGNO (XEXP (XEXP (dest
, 0), 0)) != STACK_POINTER_REGNUM
1517 || cfa_store
.reg
!= STACK_POINTER_REGNUM
)
1520 cfa_store
.offset
+= offset
;
1521 if (cfa
.reg
== STACK_POINTER_REGNUM
)
1522 cfa
.offset
= cfa_store
.offset
;
1524 offset
= -cfa_store
.offset
;
1528 /* With an offset. */
1532 if (GET_CODE (XEXP (XEXP (dest
, 0), 1)) != CONST_INT
)
1534 offset
= INTVAL (XEXP (XEXP (dest
, 0), 1));
1535 if (GET_CODE (XEXP (dest
, 0)) == MINUS
)
1538 if (cfa_store
.reg
== (unsigned) REGNO (XEXP (XEXP (dest
, 0), 0)))
1539 offset
-= cfa_store
.offset
;
1540 else if (cfa_temp
.reg
== (unsigned) REGNO (XEXP (XEXP (dest
, 0), 0)))
1541 offset
-= cfa_temp
.offset
;
1547 /* Without an offset. */
1549 if (cfa_store
.reg
== (unsigned) REGNO (XEXP (dest
, 0)))
1550 offset
= -cfa_store
.offset
;
1551 else if (cfa_temp
.reg
== (unsigned) REGNO (XEXP (dest
, 0)))
1552 offset
= -cfa_temp
.offset
;
1559 if (cfa_temp
.reg
!= (unsigned) REGNO (XEXP (XEXP (dest
, 0), 0)))
1561 offset
= -cfa_temp
.offset
;
1562 cfa_temp
.offset
-= GET_MODE_SIZE (GET_MODE (dest
));
1569 if (REGNO (src
) != STACK_POINTER_REGNUM
1570 && REGNO (src
) != HARD_FRAME_POINTER_REGNUM
1571 && (unsigned) REGNO (src
) == cfa
.reg
)
1573 /* We're storing the current CFA reg into the stack. */
1575 if (cfa
.offset
== 0)
1577 /* If the source register is exactly the CFA, assume
1578 we're saving SP like any other register; this happens
1580 def_cfa_1 (label
, &cfa
);
1581 queue_reg_save (label
, stack_pointer_rtx
, offset
);
1586 /* Otherwise, we'll need to look in the stack to
1587 calculate the CFA. */
1588 rtx x
= XEXP (dest
, 0);
1590 if (GET_CODE (x
) != REG
)
1592 if (GET_CODE (x
) != REG
)
1595 cfa
.reg
= REGNO (x
);
1596 cfa
.base_offset
= offset
;
1598 def_cfa_1 (label
, &cfa
);
1603 def_cfa_1 (label
, &cfa
);
1604 queue_reg_save (label
, src
, offset
);
1612 /* Record call frame debugging information for INSN, which either
1613 sets SP or FP (adjusting how we calculate the frame address) or saves a
1614 register to the stack. If INSN is NULL_RTX, initialize our state. */
1617 dwarf2out_frame_debug (insn
)
1623 if (insn
== NULL_RTX
)
1625 /* Flush any queued register saves. */
1626 flush_queued_reg_saves ();
1628 /* Set up state for generating call frame debug info. */
1630 if (cfa
.reg
!= (unsigned long) DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM
))
1633 cfa
.reg
= STACK_POINTER_REGNUM
;
1636 cfa_temp
.offset
= 0;
1640 if (GET_CODE (insn
) != INSN
|| clobbers_queued_reg_save (insn
))
1641 flush_queued_reg_saves ();
1643 if (! RTX_FRAME_RELATED_P (insn
))
1645 if (!ACCUMULATE_OUTGOING_ARGS
)
1646 dwarf2out_stack_adjust (insn
);
1651 label
= dwarf2out_cfi_label ();
1652 src
= find_reg_note (insn
, REG_FRAME_RELATED_EXPR
, NULL_RTX
);
1654 insn
= XEXP (src
, 0);
1656 insn
= PATTERN (insn
);
1658 dwarf2out_frame_debug_expr (insn
, label
);
1661 /* Output a Call Frame Information opcode and its operand(s). */
1664 output_cfi (cfi
, fde
, for_eh
)
1669 if (cfi
->dw_cfi_opc
== DW_CFA_advance_loc
)
1670 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
1671 | (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
& 0x3f)),
1672 "DW_CFA_advance_loc 0x%lx",
1673 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
);
1674 else if (cfi
->dw_cfi_opc
== DW_CFA_offset
)
1676 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
1677 | (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
& 0x3f)),
1678 "DW_CFA_offset, column 0x%lx",
1679 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
);
1680 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
, NULL
);
1682 else if (cfi
->dw_cfi_opc
== DW_CFA_restore
)
1683 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
1684 | (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
& 0x3f)),
1685 "DW_CFA_restore, column 0x%lx",
1686 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
);
1689 dw2_asm_output_data (1, cfi
->dw_cfi_opc
,
1690 "%s", dwarf_cfi_name (cfi
->dw_cfi_opc
));
1692 switch (cfi
->dw_cfi_opc
)
1694 case DW_CFA_set_loc
:
1696 dw2_asm_output_encoded_addr_rtx (
1697 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1698 gen_rtx_SYMBOL_REF (Pmode
, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
),
1701 dw2_asm_output_addr (DWARF2_ADDR_SIZE
,
1702 cfi
->dw_cfi_oprnd1
.dw_cfi_addr
, NULL
);
1705 case DW_CFA_advance_loc1
:
1706 dw2_asm_output_delta (1, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
1707 fde
->dw_fde_current_label
, NULL
);
1708 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
1711 case DW_CFA_advance_loc2
:
1712 dw2_asm_output_delta (2, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
1713 fde
->dw_fde_current_label
, NULL
);
1714 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
1717 case DW_CFA_advance_loc4
:
1718 dw2_asm_output_delta (4, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
1719 fde
->dw_fde_current_label
, NULL
);
1720 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
1723 case DW_CFA_MIPS_advance_loc8
:
1724 dw2_asm_output_delta (8, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
1725 fde
->dw_fde_current_label
, NULL
);
1726 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
1729 case DW_CFA_offset_extended
:
1730 case DW_CFA_def_cfa
:
1731 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
,
1733 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
, NULL
);
1736 case DW_CFA_offset_extended_sf
:
1737 case DW_CFA_def_cfa_sf
:
1738 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
,
1740 dw2_asm_output_data_sleb128 (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
, NULL
);
1743 case DW_CFA_restore_extended
:
1744 case DW_CFA_undefined
:
1745 case DW_CFA_same_value
:
1746 case DW_CFA_def_cfa_register
:
1747 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
,
1751 case DW_CFA_register
:
1752 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
,
1754 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
,
1758 case DW_CFA_def_cfa_offset
:
1759 case DW_CFA_GNU_args_size
:
1760 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
, NULL
);
1763 case DW_CFA_def_cfa_offset_sf
:
1764 dw2_asm_output_data_sleb128 (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
, NULL
);
1767 case DW_CFA_GNU_window_save
:
1770 case DW_CFA_def_cfa_expression
:
1771 case DW_CFA_expression
:
1772 output_cfa_loc (cfi
);
1775 case DW_CFA_GNU_negative_offset_extended
:
1776 /* Obsoleted by DW_CFA_offset_extended_sf. */
1785 /* Output the call frame information used to used to record information
1786 that relates to calculating the frame pointer, and records the
1787 location of saved registers. */
1790 output_call_frame_info (for_eh
)
1796 char l1
[20], l2
[20], section_start_label
[20];
1797 int any_lsda_needed
= 0;
1798 char augmentation
[6];
1799 int augmentation_size
;
1800 int fde_encoding
= DW_EH_PE_absptr
;
1801 int per_encoding
= DW_EH_PE_absptr
;
1802 int lsda_encoding
= DW_EH_PE_absptr
;
1804 /* Don't emit a CIE if there won't be any FDEs. */
1805 if (fde_table_in_use
== 0)
1808 /* If we don't have any functions we'll want to unwind out of, don't emit any
1809 EH unwind information. */
1812 int any_eh_needed
= flag_asynchronous_unwind_tables
;
1814 for (i
= 0; i
< fde_table_in_use
; i
++)
1815 if (fde_table
[i
].uses_eh_lsda
)
1816 any_eh_needed
= any_lsda_needed
= 1;
1817 else if (! fde_table
[i
].nothrow
)
1820 if (! any_eh_needed
)
1824 /* We're going to be generating comments, so turn on app. */
1829 (*targetm
.asm_out
.eh_frame_section
) ();
1831 named_section_flags (DEBUG_FRAME_SECTION
, SECTION_DEBUG
);
1833 ASM_GENERATE_INTERNAL_LABEL (section_start_label
, FRAME_BEGIN_LABEL
, for_eh
);
1834 ASM_OUTPUT_LABEL (asm_out_file
, section_start_label
);
1836 /* Output the CIE. */
1837 ASM_GENERATE_INTERNAL_LABEL (l1
, CIE_AFTER_SIZE_LABEL
, for_eh
);
1838 ASM_GENERATE_INTERNAL_LABEL (l2
, CIE_END_LABEL
, for_eh
);
1839 dw2_asm_output_delta (for_eh
? 4 : DWARF_OFFSET_SIZE
, l2
, l1
,
1840 "Length of Common Information Entry");
1841 ASM_OUTPUT_LABEL (asm_out_file
, l1
);
1843 /* Now that the CIE pointer is PC-relative for EH,
1844 use 0 to identify the CIE. */
1845 dw2_asm_output_data ((for_eh
? 4 : DWARF_OFFSET_SIZE
),
1846 (for_eh
? 0 : DW_CIE_ID
),
1847 "CIE Identifier Tag");
1849 dw2_asm_output_data (1, DW_CIE_VERSION
, "CIE Version");
1851 augmentation
[0] = 0;
1852 augmentation_size
= 0;
1858 z Indicates that a uleb128 is present to size the
1859 augmentation section.
1860 L Indicates the encoding (and thus presence) of
1861 an LSDA pointer in the FDE augmentation.
1862 R Indicates a non-default pointer encoding for
1864 P Indicates the presence of an encoding + language
1865 personality routine in the CIE augmentation. */
1867 fde_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
1868 per_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
1869 lsda_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
1871 p
= augmentation
+ 1;
1872 if (eh_personality_libfunc
)
1875 augmentation_size
+= 1 + size_of_encoded_value (per_encoding
);
1877 if (any_lsda_needed
)
1880 augmentation_size
+= 1;
1882 if (fde_encoding
!= DW_EH_PE_absptr
)
1885 augmentation_size
+= 1;
1887 if (p
> augmentation
+ 1)
1889 augmentation
[0] = 'z';
1893 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
1894 if (eh_personality_libfunc
&& per_encoding
== DW_EH_PE_aligned
)
1896 int offset
= ( 4 /* Length */
1898 + 1 /* CIE version */
1899 + strlen (augmentation
) + 1 /* Augmentation */
1900 + size_of_uleb128 (1) /* Code alignment */
1901 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT
)
1903 + 1 /* Augmentation size */
1904 + 1 /* Personality encoding */ );
1905 int pad
= -offset
& (PTR_SIZE
- 1);
1907 augmentation_size
+= pad
;
1909 /* Augmentations should be small, so there's scarce need to
1910 iterate for a solution. Die if we exceed one uleb128 byte. */
1911 if (size_of_uleb128 (augmentation_size
) != 1)
1916 dw2_asm_output_nstring (augmentation
, -1, "CIE Augmentation");
1917 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
1918 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT
,
1919 "CIE Data Alignment Factor");
1920 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN
, "CIE RA Column");
1922 if (augmentation
[0])
1924 dw2_asm_output_data_uleb128 (augmentation_size
, "Augmentation size");
1925 if (eh_personality_libfunc
)
1927 dw2_asm_output_data (1, per_encoding
, "Personality (%s)",
1928 eh_data_format_name (per_encoding
));
1929 dw2_asm_output_encoded_addr_rtx (per_encoding
,
1930 eh_personality_libfunc
, NULL
);
1933 if (any_lsda_needed
)
1934 dw2_asm_output_data (1, lsda_encoding
, "LSDA Encoding (%s)",
1935 eh_data_format_name (lsda_encoding
));
1937 if (fde_encoding
!= DW_EH_PE_absptr
)
1938 dw2_asm_output_data (1, fde_encoding
, "FDE Encoding (%s)",
1939 eh_data_format_name (fde_encoding
));
1942 for (cfi
= cie_cfi_head
; cfi
!= NULL
; cfi
= cfi
->dw_cfi_next
)
1943 output_cfi (cfi
, NULL
, for_eh
);
1945 /* Pad the CIE out to an address sized boundary. */
1946 ASM_OUTPUT_ALIGN (asm_out_file
,
1947 floor_log2 (for_eh
? PTR_SIZE
: DWARF2_ADDR_SIZE
));
1948 ASM_OUTPUT_LABEL (asm_out_file
, l2
);
1950 /* Loop through all of the FDE's. */
1951 for (i
= 0; i
< fde_table_in_use
; i
++)
1953 fde
= &fde_table
[i
];
1955 /* Don't emit EH unwind info for leaf functions that don't need it. */
1956 if (!flag_asynchronous_unwind_tables
&& for_eh
1957 && (fde
->nothrow
|| fde
->all_throwers_are_sibcalls
)
1958 && !fde
->uses_eh_lsda
)
1961 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file
, FDE_LABEL
, for_eh
+ i
* 2);
1962 ASM_GENERATE_INTERNAL_LABEL (l1
, FDE_AFTER_SIZE_LABEL
, for_eh
+ i
* 2);
1963 ASM_GENERATE_INTERNAL_LABEL (l2
, FDE_END_LABEL
, for_eh
+ i
* 2);
1964 dw2_asm_output_delta (for_eh
? 4 : DWARF_OFFSET_SIZE
, l2
, l1
,
1966 ASM_OUTPUT_LABEL (asm_out_file
, l1
);
1969 dw2_asm_output_delta (4, l1
, section_start_label
, "FDE CIE offset");
1971 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, section_start_label
,
1976 dw2_asm_output_encoded_addr_rtx (fde_encoding
,
1977 gen_rtx_SYMBOL_REF (Pmode
, fde
->dw_fde_begin
),
1978 "FDE initial location");
1979 dw2_asm_output_delta (size_of_encoded_value (fde_encoding
),
1980 fde
->dw_fde_end
, fde
->dw_fde_begin
,
1981 "FDE address range");
1985 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, fde
->dw_fde_begin
,
1986 "FDE initial location");
1987 dw2_asm_output_delta (DWARF2_ADDR_SIZE
,
1988 fde
->dw_fde_end
, fde
->dw_fde_begin
,
1989 "FDE address range");
1992 if (augmentation
[0])
1994 if (any_lsda_needed
)
1996 int size
= size_of_encoded_value (lsda_encoding
);
1998 if (lsda_encoding
== DW_EH_PE_aligned
)
2000 int offset
= ( 4 /* Length */
2001 + 4 /* CIE offset */
2002 + 2 * size_of_encoded_value (fde_encoding
)
2003 + 1 /* Augmentation size */ );
2004 int pad
= -offset
& (PTR_SIZE
- 1);
2007 if (size_of_uleb128 (size
) != 1)
2011 dw2_asm_output_data_uleb128 (size
, "Augmentation size");
2013 if (fde
->uses_eh_lsda
)
2015 ASM_GENERATE_INTERNAL_LABEL (l1
, "LLSDA",
2016 fde
->funcdef_number
);
2017 dw2_asm_output_encoded_addr_rtx (
2018 lsda_encoding
, gen_rtx_SYMBOL_REF (Pmode
, l1
),
2019 "Language Specific Data Area");
2023 if (lsda_encoding
== DW_EH_PE_aligned
)
2024 ASM_OUTPUT_ALIGN (asm_out_file
, floor_log2 (PTR_SIZE
));
2026 (size_of_encoded_value (lsda_encoding
), 0,
2027 "Language Specific Data Area (none)");
2031 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2034 /* Loop through the Call Frame Instructions associated with
2036 fde
->dw_fde_current_label
= fde
->dw_fde_begin
;
2037 for (cfi
= fde
->dw_fde_cfi
; cfi
!= NULL
; cfi
= cfi
->dw_cfi_next
)
2038 output_cfi (cfi
, fde
, for_eh
);
2040 /* Pad the FDE out to an address sized boundary. */
2041 ASM_OUTPUT_ALIGN (asm_out_file
,
2042 floor_log2 ((for_eh
? PTR_SIZE
: DWARF2_ADDR_SIZE
)));
2043 ASM_OUTPUT_LABEL (asm_out_file
, l2
);
2046 if (for_eh
&& targetm
.terminate_dw2_eh_frame_info
)
2047 dw2_asm_output_data (4, 0, "End of Table");
2048 #ifdef MIPS_DEBUGGING_INFO
2049 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2050 get a value of 0. Putting .align 0 after the label fixes it. */
2051 ASM_OUTPUT_ALIGN (asm_out_file
, 0);
2054 /* Turn off app to make assembly quicker. */
2059 /* Output a marker (i.e. a label) for the beginning of a function, before
2063 dwarf2out_begin_prologue (line
, file
)
2064 unsigned int line ATTRIBUTE_UNUSED
;
2065 const char *file ATTRIBUTE_UNUSED
;
2067 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2070 current_function_func_begin_label
= 0;
2072 #ifdef IA64_UNWIND_INFO
2073 /* ??? current_function_func_begin_label is also used by except.c
2074 for call-site information. We must emit this label if it might
2076 if ((! flag_exceptions
|| USING_SJLJ_EXCEPTIONS
)
2077 && ! dwarf2out_do_frame ())
2080 if (! dwarf2out_do_frame ())
2084 function_section (current_function_decl
);
2085 ASM_GENERATE_INTERNAL_LABEL (label
, FUNC_BEGIN_LABEL
,
2086 current_function_funcdef_no
);
2087 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, FUNC_BEGIN_LABEL
,
2088 current_function_funcdef_no
);
2089 current_function_func_begin_label
= get_identifier (label
);
2091 #ifdef IA64_UNWIND_INFO
2092 /* We can elide the fde allocation if we're not emitting debug info. */
2093 if (! dwarf2out_do_frame ())
2097 /* Expand the fde table if necessary. */
2098 if (fde_table_in_use
== fde_table_allocated
)
2100 fde_table_allocated
+= FDE_TABLE_INCREMENT
;
2102 = (dw_fde_ref
) xrealloc (fde_table
,
2103 fde_table_allocated
* sizeof (dw_fde_node
));
2106 /* Record the FDE associated with this function. */
2107 current_funcdef_fde
= fde_table_in_use
;
2109 /* Add the new FDE at the end of the fde_table. */
2110 fde
= &fde_table
[fde_table_in_use
++];
2111 fde
->dw_fde_begin
= xstrdup (label
);
2112 fde
->dw_fde_current_label
= NULL
;
2113 fde
->dw_fde_end
= NULL
;
2114 fde
->dw_fde_cfi
= NULL
;
2115 fde
->funcdef_number
= current_function_funcdef_no
;
2116 fde
->nothrow
= current_function_nothrow
;
2117 fde
->uses_eh_lsda
= cfun
->uses_eh_lsda
;
2118 fde
->all_throwers_are_sibcalls
= cfun
->all_throwers_are_sibcalls
;
2120 args_size
= old_args_size
= 0;
2122 /* We only want to output line number information for the genuine dwarf2
2123 prologue case, not the eh frame case. */
2124 #ifdef DWARF2_DEBUGGING_INFO
2126 dwarf2out_source_line (line
, file
);
2130 /* Output a marker (i.e. a label) for the absolute end of the generated code
2131 for a function definition. This gets called *after* the epilogue code has
2135 dwarf2out_end_epilogue (line
, file
)
2136 unsigned int line ATTRIBUTE_UNUSED
;
2137 const char *file ATTRIBUTE_UNUSED
;
2140 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2142 /* Output a label to mark the endpoint of the code generated for this
2144 ASM_GENERATE_INTERNAL_LABEL (label
, FUNC_END_LABEL
,
2145 current_function_funcdef_no
);
2146 ASM_OUTPUT_LABEL (asm_out_file
, label
);
2147 fde
= &fde_table
[fde_table_in_use
- 1];
2148 fde
->dw_fde_end
= xstrdup (label
);
2152 dwarf2out_frame_init ()
2154 /* Allocate the initial hunk of the fde_table. */
2155 fde_table
= (dw_fde_ref
) xcalloc (FDE_TABLE_INCREMENT
, sizeof (dw_fde_node
));
2156 fde_table_allocated
= FDE_TABLE_INCREMENT
;
2157 fde_table_in_use
= 0;
2159 /* Generate the CFA instructions common to all FDE's. Do it now for the
2160 sake of lookup_cfa. */
2162 #ifdef DWARF2_UNWIND_INFO
2163 /* On entry, the Canonical Frame Address is at SP. */
2164 dwarf2out_def_cfa (NULL
, STACK_POINTER_REGNUM
, INCOMING_FRAME_SP_OFFSET
);
2165 initial_return_save (INCOMING_RETURN_ADDR_RTX
);
2170 dwarf2out_frame_finish ()
2172 /* Output call frame information. */
2173 if (write_symbols
== DWARF2_DEBUG
|| write_symbols
== VMS_AND_DWARF2_DEBUG
)
2174 output_call_frame_info (0);
2176 if (! USING_SJLJ_EXCEPTIONS
&& (flag_unwind_tables
|| flag_exceptions
))
2177 output_call_frame_info (1);
2180 /* And now, the subset of the debugging information support code necessary
2181 for emitting location expressions. */
2183 /* We need some way to distinguish DW_OP_addr with a direct symbol
2184 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2185 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2188 typedef struct dw_val_struct
*dw_val_ref
;
2189 typedef struct die_struct
*dw_die_ref
;
2190 typedef struct dw_loc_descr_struct
*dw_loc_descr_ref
;
2191 typedef struct dw_loc_list_struct
*dw_loc_list_ref
;
2193 /* Each DIE may have a series of attribute/value pairs. Values
2194 can take on several forms. The forms that are used in this
2195 implementation are listed below. */
2200 dw_val_class_offset
,
2202 dw_val_class_loc_list
,
2203 dw_val_class_range_list
,
2205 dw_val_class_unsigned_const
,
2206 dw_val_class_long_long
,
2209 dw_val_class_die_ref
,
2210 dw_val_class_fde_ref
,
2211 dw_val_class_lbl_id
,
2212 dw_val_class_lbl_offset
,
2217 /* Describe a double word constant value. */
2218 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2220 typedef struct dw_long_long_struct
2227 /* Describe a floating point constant value. */
2229 typedef struct dw_fp_struct
2236 /* The dw_val_node describes an attribute's value, as it is
2237 represented internally. */
2239 typedef struct dw_val_struct
2241 dw_val_class val_class
;
2245 long unsigned val_offset
;
2246 dw_loc_list_ref val_loc_list
;
2247 dw_loc_descr_ref val_loc
;
2249 long unsigned val_unsigned
;
2250 dw_long_long_const val_long_long
;
2251 dw_float_const val_float
;
2257 unsigned val_fde_index
;
2258 struct indirect_string_node
*val_str
;
2260 unsigned char val_flag
;
2266 /* Locations in memory are described using a sequence of stack machine
2269 typedef struct dw_loc_descr_struct
2271 dw_loc_descr_ref dw_loc_next
;
2272 enum dwarf_location_atom dw_loc_opc
;
2273 dw_val_node dw_loc_oprnd1
;
2274 dw_val_node dw_loc_oprnd2
;
2279 /* Location lists are ranges + location descriptions for that range,
2280 so you can track variables that are in different places over
2281 their entire life. */
2282 typedef struct dw_loc_list_struct
2284 dw_loc_list_ref dw_loc_next
;
2285 const char *begin
; /* Label for begin address of range */
2286 const char *end
; /* Label for end address of range */
2287 char *ll_symbol
; /* Label for beginning of location list.
2288 Only on head of list */
2289 const char *section
; /* Section this loclist is relative to */
2290 dw_loc_descr_ref expr
;
2293 static const char *dwarf_stack_op_name
PARAMS ((unsigned));
2294 static dw_loc_descr_ref new_loc_descr
PARAMS ((enum dwarf_location_atom
,
2297 static void add_loc_descr
PARAMS ((dw_loc_descr_ref
*,
2299 static unsigned long size_of_loc_descr
PARAMS ((dw_loc_descr_ref
));
2300 static unsigned long size_of_locs
PARAMS ((dw_loc_descr_ref
));
2301 static void output_loc_operands
PARAMS ((dw_loc_descr_ref
));
2302 static void output_loc_sequence
PARAMS ((dw_loc_descr_ref
));
2304 /* Convert a DWARF stack opcode into its string name. */
2307 dwarf_stack_op_name (op
)
2313 case INTERNAL_DW_OP_tls_addr
:
2314 return "DW_OP_addr";
2316 return "DW_OP_deref";
2318 return "DW_OP_const1u";
2320 return "DW_OP_const1s";
2322 return "DW_OP_const2u";
2324 return "DW_OP_const2s";
2326 return "DW_OP_const4u";
2328 return "DW_OP_const4s";
2330 return "DW_OP_const8u";
2332 return "DW_OP_const8s";
2334 return "DW_OP_constu";
2336 return "DW_OP_consts";
2340 return "DW_OP_drop";
2342 return "DW_OP_over";
2344 return "DW_OP_pick";
2346 return "DW_OP_swap";
2350 return "DW_OP_xderef";
2358 return "DW_OP_minus";
2370 return "DW_OP_plus";
2371 case DW_OP_plus_uconst
:
2372 return "DW_OP_plus_uconst";
2378 return "DW_OP_shra";
2396 return "DW_OP_skip";
2398 return "DW_OP_lit0";
2400 return "DW_OP_lit1";
2402 return "DW_OP_lit2";
2404 return "DW_OP_lit3";
2406 return "DW_OP_lit4";
2408 return "DW_OP_lit5";
2410 return "DW_OP_lit6";
2412 return "DW_OP_lit7";
2414 return "DW_OP_lit8";
2416 return "DW_OP_lit9";
2418 return "DW_OP_lit10";
2420 return "DW_OP_lit11";
2422 return "DW_OP_lit12";
2424 return "DW_OP_lit13";
2426 return "DW_OP_lit14";
2428 return "DW_OP_lit15";
2430 return "DW_OP_lit16";
2432 return "DW_OP_lit17";
2434 return "DW_OP_lit18";
2436 return "DW_OP_lit19";
2438 return "DW_OP_lit20";
2440 return "DW_OP_lit21";
2442 return "DW_OP_lit22";
2444 return "DW_OP_lit23";
2446 return "DW_OP_lit24";
2448 return "DW_OP_lit25";
2450 return "DW_OP_lit26";
2452 return "DW_OP_lit27";
2454 return "DW_OP_lit28";
2456 return "DW_OP_lit29";
2458 return "DW_OP_lit30";
2460 return "DW_OP_lit31";
2462 return "DW_OP_reg0";
2464 return "DW_OP_reg1";
2466 return "DW_OP_reg2";
2468 return "DW_OP_reg3";
2470 return "DW_OP_reg4";
2472 return "DW_OP_reg5";
2474 return "DW_OP_reg6";
2476 return "DW_OP_reg7";
2478 return "DW_OP_reg8";
2480 return "DW_OP_reg9";
2482 return "DW_OP_reg10";
2484 return "DW_OP_reg11";
2486 return "DW_OP_reg12";
2488 return "DW_OP_reg13";
2490 return "DW_OP_reg14";
2492 return "DW_OP_reg15";
2494 return "DW_OP_reg16";
2496 return "DW_OP_reg17";
2498 return "DW_OP_reg18";
2500 return "DW_OP_reg19";
2502 return "DW_OP_reg20";
2504 return "DW_OP_reg21";
2506 return "DW_OP_reg22";
2508 return "DW_OP_reg23";
2510 return "DW_OP_reg24";
2512 return "DW_OP_reg25";
2514 return "DW_OP_reg26";
2516 return "DW_OP_reg27";
2518 return "DW_OP_reg28";
2520 return "DW_OP_reg29";
2522 return "DW_OP_reg30";
2524 return "DW_OP_reg31";
2526 return "DW_OP_breg0";
2528 return "DW_OP_breg1";
2530 return "DW_OP_breg2";
2532 return "DW_OP_breg3";
2534 return "DW_OP_breg4";
2536 return "DW_OP_breg5";
2538 return "DW_OP_breg6";
2540 return "DW_OP_breg7";
2542 return "DW_OP_breg8";
2544 return "DW_OP_breg9";
2546 return "DW_OP_breg10";
2548 return "DW_OP_breg11";
2550 return "DW_OP_breg12";
2552 return "DW_OP_breg13";
2554 return "DW_OP_breg14";
2556 return "DW_OP_breg15";
2558 return "DW_OP_breg16";
2560 return "DW_OP_breg17";
2562 return "DW_OP_breg18";
2564 return "DW_OP_breg19";
2566 return "DW_OP_breg20";
2568 return "DW_OP_breg21";
2570 return "DW_OP_breg22";
2572 return "DW_OP_breg23";
2574 return "DW_OP_breg24";
2576 return "DW_OP_breg25";
2578 return "DW_OP_breg26";
2580 return "DW_OP_breg27";
2582 return "DW_OP_breg28";
2584 return "DW_OP_breg29";
2586 return "DW_OP_breg30";
2588 return "DW_OP_breg31";
2590 return "DW_OP_regx";
2592 return "DW_OP_fbreg";
2594 return "DW_OP_bregx";
2596 return "DW_OP_piece";
2597 case DW_OP_deref_size
:
2598 return "DW_OP_deref_size";
2599 case DW_OP_xderef_size
:
2600 return "DW_OP_xderef_size";
2603 case DW_OP_push_object_address
:
2604 return "DW_OP_push_object_address";
2606 return "DW_OP_call2";
2608 return "DW_OP_call4";
2609 case DW_OP_call_ref
:
2610 return "DW_OP_call_ref";
2611 case DW_OP_GNU_push_tls_address
:
2612 return "DW_OP_GNU_push_tls_address";
2614 return "OP_<unknown>";
2618 /* Return a pointer to a newly allocated location description. Location
2619 descriptions are simple expression terms that can be strung
2620 together to form more complicated location (address) descriptions. */
2622 static inline dw_loc_descr_ref
2623 new_loc_descr (op
, oprnd1
, oprnd2
)
2624 enum dwarf_location_atom op
;
2625 unsigned long oprnd1
;
2626 unsigned long oprnd2
;
2628 /* Use xcalloc here so we clear out all of the long_long constant in
2630 dw_loc_descr_ref descr
2631 = (dw_loc_descr_ref
) xcalloc (1, sizeof (dw_loc_descr_node
));
2633 descr
->dw_loc_opc
= op
;
2634 descr
->dw_loc_oprnd1
.val_class
= dw_val_class_unsigned_const
;
2635 descr
->dw_loc_oprnd1
.v
.val_unsigned
= oprnd1
;
2636 descr
->dw_loc_oprnd2
.val_class
= dw_val_class_unsigned_const
;
2637 descr
->dw_loc_oprnd2
.v
.val_unsigned
= oprnd2
;
2643 /* Add a location description term to a location description expression. */
2646 add_loc_descr (list_head
, descr
)
2647 dw_loc_descr_ref
*list_head
;
2648 dw_loc_descr_ref descr
;
2650 dw_loc_descr_ref
*d
;
2652 /* Find the end of the chain. */
2653 for (d
= list_head
; (*d
) != NULL
; d
= &(*d
)->dw_loc_next
)
2659 /* Return the size of a location descriptor. */
2661 static unsigned long
2662 size_of_loc_descr (loc
)
2663 dw_loc_descr_ref loc
;
2665 unsigned long size
= 1;
2667 switch (loc
->dw_loc_opc
)
2670 case INTERNAL_DW_OP_tls_addr
:
2671 size
+= DWARF2_ADDR_SIZE
;
2690 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
2693 size
+= size_of_sleb128 (loc
->dw_loc_oprnd1
.v
.val_int
);
2698 case DW_OP_plus_uconst
:
2699 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
2737 size
+= size_of_sleb128 (loc
->dw_loc_oprnd1
.v
.val_int
);
2740 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
2743 size
+= size_of_sleb128 (loc
->dw_loc_oprnd1
.v
.val_int
);
2746 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
2747 size
+= size_of_sleb128 (loc
->dw_loc_oprnd2
.v
.val_int
);
2750 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
2752 case DW_OP_deref_size
:
2753 case DW_OP_xderef_size
:
2762 case DW_OP_call_ref
:
2763 size
+= DWARF2_ADDR_SIZE
;
2772 /* Return the size of a series of location descriptors. */
2774 static unsigned long
2776 dw_loc_descr_ref loc
;
2780 for (size
= 0; loc
!= NULL
; loc
= loc
->dw_loc_next
)
2782 loc
->dw_loc_addr
= size
;
2783 size
+= size_of_loc_descr (loc
);
2789 /* Output location description stack opcode's operands (if any). */
2792 output_loc_operands (loc
)
2793 dw_loc_descr_ref loc
;
2795 dw_val_ref val1
= &loc
->dw_loc_oprnd1
;
2796 dw_val_ref val2
= &loc
->dw_loc_oprnd2
;
2798 switch (loc
->dw_loc_opc
)
2800 #ifdef DWARF2_DEBUGGING_INFO
2802 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE
, val1
->v
.val_addr
, NULL
);
2806 dw2_asm_output_data (2, val1
->v
.val_int
, NULL
);
2810 dw2_asm_output_data (4, val1
->v
.val_int
, NULL
);
2814 if (HOST_BITS_PER_LONG
< 64)
2816 dw2_asm_output_data (8, val1
->v
.val_int
, NULL
);
2823 if (val1
->val_class
== dw_val_class_loc
)
2824 offset
= val1
->v
.val_loc
->dw_loc_addr
- (loc
->dw_loc_addr
+ 3);
2828 dw2_asm_output_data (2, offset
, NULL
);
2841 /* We currently don't make any attempt to make sure these are
2842 aligned properly like we do for the main unwind info, so
2843 don't support emitting things larger than a byte if we're
2844 only doing unwinding. */
2849 dw2_asm_output_data (1, val1
->v
.val_int
, NULL
);
2852 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
2855 dw2_asm_output_data_sleb128 (val1
->v
.val_int
, NULL
);
2858 dw2_asm_output_data (1, val1
->v
.val_int
, NULL
);
2860 case DW_OP_plus_uconst
:
2861 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
2895 dw2_asm_output_data_sleb128 (val1
->v
.val_int
, NULL
);
2898 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
2901 dw2_asm_output_data_sleb128 (val1
->v
.val_int
, NULL
);
2904 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
2905 dw2_asm_output_data_sleb128 (val2
->v
.val_int
, NULL
);
2908 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
2910 case DW_OP_deref_size
:
2911 case DW_OP_xderef_size
:
2912 dw2_asm_output_data (1, val1
->v
.val_int
, NULL
);
2915 case INTERNAL_DW_OP_tls_addr
:
2916 #ifdef ASM_OUTPUT_DWARF_DTPREL
2917 ASM_OUTPUT_DWARF_DTPREL (asm_out_file
, DWARF2_ADDR_SIZE
,
2919 fputc ('\n', asm_out_file
);
2926 /* Other codes have no operands. */
2931 /* Output a sequence of location operations. */
2934 output_loc_sequence (loc
)
2935 dw_loc_descr_ref loc
;
2937 for (; loc
!= NULL
; loc
= loc
->dw_loc_next
)
2939 /* Output the opcode. */
2940 dw2_asm_output_data (1, loc
->dw_loc_opc
,
2941 "%s", dwarf_stack_op_name (loc
->dw_loc_opc
));
2943 /* Output the operand(s) (if any). */
2944 output_loc_operands (loc
);
2948 /* This routine will generate the correct assembly data for a location
2949 description based on a cfi entry with a complex address. */
2952 output_cfa_loc (cfi
)
2955 dw_loc_descr_ref loc
;
2958 /* Output the size of the block. */
2959 loc
= cfi
->dw_cfi_oprnd1
.dw_cfi_loc
;
2960 size
= size_of_locs (loc
);
2961 dw2_asm_output_data_uleb128 (size
, NULL
);
2963 /* Now output the operations themselves. */
2964 output_loc_sequence (loc
);
2967 /* This function builds a dwarf location descriptor sequence from
2968 a dw_cfa_location. */
2970 static struct dw_loc_descr_struct
*
2972 dw_cfa_location
*cfa
;
2974 struct dw_loc_descr_struct
*head
, *tmp
;
2976 if (cfa
->indirect
== 0)
2979 if (cfa
->base_offset
)
2982 head
= new_loc_descr (DW_OP_breg0
+ cfa
->reg
, cfa
->base_offset
, 0);
2984 head
= new_loc_descr (DW_OP_bregx
, cfa
->reg
, cfa
->base_offset
);
2986 else if (cfa
->reg
<= 31)
2987 head
= new_loc_descr (DW_OP_reg0
+ cfa
->reg
, 0, 0);
2989 head
= new_loc_descr (DW_OP_regx
, cfa
->reg
, 0);
2991 head
->dw_loc_oprnd1
.val_class
= dw_val_class_const
;
2992 tmp
= new_loc_descr (DW_OP_deref
, 0, 0);
2993 add_loc_descr (&head
, tmp
);
2994 if (cfa
->offset
!= 0)
2996 tmp
= new_loc_descr (DW_OP_plus_uconst
, cfa
->offset
, 0);
2997 add_loc_descr (&head
, tmp
);
3003 /* This function fills in aa dw_cfa_location structure from a dwarf location
3004 descriptor sequence. */
3007 get_cfa_from_loc_descr (cfa
, loc
)
3008 dw_cfa_location
*cfa
;
3009 struct dw_loc_descr_struct
*loc
;
3011 struct dw_loc_descr_struct
*ptr
;
3013 cfa
->base_offset
= 0;
3017 for (ptr
= loc
; ptr
!= NULL
; ptr
= ptr
->dw_loc_next
)
3019 enum dwarf_location_atom op
= ptr
->dw_loc_opc
;
3055 cfa
->reg
= op
- DW_OP_reg0
;
3058 cfa
->reg
= ptr
->dw_loc_oprnd1
.v
.val_int
;
3092 cfa
->reg
= op
- DW_OP_breg0
;
3093 cfa
->base_offset
= ptr
->dw_loc_oprnd1
.v
.val_int
;
3096 cfa
->reg
= ptr
->dw_loc_oprnd1
.v
.val_int
;
3097 cfa
->base_offset
= ptr
->dw_loc_oprnd2
.v
.val_int
;
3102 case DW_OP_plus_uconst
:
3103 cfa
->offset
= ptr
->dw_loc_oprnd1
.v
.val_unsigned
;
3106 internal_error ("DW_LOC_OP %s not implemented\n",
3107 dwarf_stack_op_name (ptr
->dw_loc_opc
));
3111 #endif /* .debug_frame support */
3113 /* And now, the support for symbolic debugging information. */
3114 #ifdef DWARF2_DEBUGGING_INFO
3116 /* .debug_str support. */
3117 static hashnode indirect_string_alloc
PARAMS ((hash_table
*));
3118 static int output_indirect_string
PARAMS ((struct cpp_reader
*,
3119 hashnode
, const PTR
));
3122 static void dwarf2out_init
PARAMS ((const char *));
3123 static void dwarf2out_finish
PARAMS ((const char *));
3124 static void dwarf2out_define
PARAMS ((unsigned int, const char *));
3125 static void dwarf2out_undef
PARAMS ((unsigned int, const char *));
3126 static void dwarf2out_start_source_file
PARAMS ((unsigned, const char *));
3127 static void dwarf2out_end_source_file
PARAMS ((unsigned));
3128 static void dwarf2out_begin_block
PARAMS ((unsigned, unsigned));
3129 static void dwarf2out_end_block
PARAMS ((unsigned, unsigned));
3130 static bool dwarf2out_ignore_block
PARAMS ((tree
));
3131 static void dwarf2out_global_decl
PARAMS ((tree
));
3132 static void dwarf2out_abstract_function
PARAMS ((tree
));
3134 /* The debug hooks structure. */
3136 const struct gcc_debug_hooks dwarf2_debug_hooks
=
3142 dwarf2out_start_source_file
,
3143 dwarf2out_end_source_file
,
3144 dwarf2out_begin_block
,
3145 dwarf2out_end_block
,
3146 dwarf2out_ignore_block
,
3147 dwarf2out_source_line
,
3148 dwarf2out_begin_prologue
,
3149 debug_nothing_int_charstar
, /* end_prologue */
3150 dwarf2out_end_epilogue
,
3151 debug_nothing_tree
, /* begin_function */
3152 debug_nothing_int
, /* end_function */
3153 dwarf2out_decl
, /* function_decl */
3154 dwarf2out_global_decl
,
3155 debug_nothing_tree
, /* deferred_inline_function */
3156 /* The DWARF 2 backend tries to reduce debugging bloat by not
3157 emitting the abstract description of inline functions until
3158 something tries to reference them. */
3159 dwarf2out_abstract_function
, /* outlining_inline_function */
3160 debug_nothing_rtx
/* label */
3163 /* NOTE: In the comments in this file, many references are made to
3164 "Debugging Information Entries". This term is abbreviated as `DIE'
3165 throughout the remainder of this file. */
3167 /* An internal representation of the DWARF output is built, and then
3168 walked to generate the DWARF debugging info. The walk of the internal
3169 representation is done after the entire program has been compiled.
3170 The types below are used to describe the internal representation. */
3172 /* Various DIE's use offsets relative to the beginning of the
3173 .debug_info section to refer to each other. */
3175 typedef long int dw_offset
;
3177 /* Define typedefs here to avoid circular dependencies. */
3179 typedef struct dw_attr_struct
*dw_attr_ref
;
3180 typedef struct dw_line_info_struct
*dw_line_info_ref
;
3181 typedef struct dw_separate_line_info_struct
*dw_separate_line_info_ref
;
3182 typedef struct pubname_struct
*pubname_ref
;
3183 typedef struct dw_ranges_struct
*dw_ranges_ref
;
3185 /* Each entry in the line_info_table maintains the file and
3186 line number associated with the label generated for that
3187 entry. The label gives the PC value associated with
3188 the line number entry. */
3190 typedef struct dw_line_info_struct
3192 unsigned long dw_file_num
;
3193 unsigned long dw_line_num
;
3197 /* Line information for functions in separate sections; each one gets its
3199 typedef struct dw_separate_line_info_struct
3201 unsigned long dw_file_num
;
3202 unsigned long dw_line_num
;
3203 unsigned long function
;
3205 dw_separate_line_info_entry
;
3207 /* Each DIE attribute has a field specifying the attribute kind,
3208 a link to the next attribute in the chain, and an attribute value.
3209 Attributes are typically linked below the DIE they modify. */
3211 typedef struct dw_attr_struct
3213 enum dwarf_attribute dw_attr
;
3214 dw_attr_ref dw_attr_next
;
3215 dw_val_node dw_attr_val
;
3219 /* The Debugging Information Entry (DIE) structure */
3221 typedef struct die_struct
3223 enum dwarf_tag die_tag
;
3225 dw_attr_ref die_attr
;
3226 dw_die_ref die_parent
;
3227 dw_die_ref die_child
;
3229 dw_offset die_offset
;
3230 unsigned long die_abbrev
;
3235 /* The pubname structure */
3237 typedef struct pubname_struct
3244 struct dw_ranges_struct
3249 /* The limbo die list structure. */
3250 typedef struct limbo_die_struct
3254 struct limbo_die_struct
*next
;
3258 /* How to start an assembler comment. */
3259 #ifndef ASM_COMMENT_START
3260 #define ASM_COMMENT_START ";#"
3263 /* Define a macro which returns non-zero for a TYPE_DECL which was
3264 implicitly generated for a tagged type.
3266 Note that unlike the gcc front end (which generates a NULL named
3267 TYPE_DECL node for each complete tagged type, each array type, and
3268 each function type node created) the g++ front end generates a
3269 _named_ TYPE_DECL node for each tagged type node created.
3270 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3271 generate a DW_TAG_typedef DIE for them. */
3273 #define TYPE_DECL_IS_STUB(decl) \
3274 (DECL_NAME (decl) == NULL_TREE \
3275 || (DECL_ARTIFICIAL (decl) \
3276 && is_tagged_type (TREE_TYPE (decl)) \
3277 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3278 /* This is necessary for stub decls that \
3279 appear in nested inline functions. */ \
3280 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3281 && (decl_ultimate_origin (decl) \
3282 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3284 /* Information concerning the compilation unit's programming
3285 language, and compiler version. */
3287 /* Fixed size portion of the DWARF compilation unit header. */
3288 #define DWARF_COMPILE_UNIT_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 3)
3290 /* Fixed size portion of public names info. */
3291 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3293 /* Fixed size portion of the address range info. */
3294 #define DWARF_ARANGES_HEADER_SIZE \
3295 (DWARF_ROUND (2 * DWARF_OFFSET_SIZE + 4, DWARF2_ADDR_SIZE * 2) \
3296 - DWARF_OFFSET_SIZE)
3298 /* Size of padding portion in the address range info. It must be
3299 aligned to twice the pointer size. */
3300 #define DWARF_ARANGES_PAD_SIZE \
3301 (DWARF_ROUND (2 * DWARF_OFFSET_SIZE + 4, DWARF2_ADDR_SIZE * 2) \
3302 - (2 * DWARF_OFFSET_SIZE + 4))
3304 /* Use assembler line directives if available. */
3305 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3306 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3307 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3309 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3313 /* Minimum line offset in a special line info. opcode.
3314 This value was chosen to give a reasonable range of values. */
3315 #define DWARF_LINE_BASE -10
3317 /* First special line opcode - leave room for the standard opcodes. */
3318 #define DWARF_LINE_OPCODE_BASE 10
3320 /* Range of line offsets in a special line info. opcode. */
3321 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3323 /* Flag that indicates the initial value of the is_stmt_start flag.
3324 In the present implementation, we do not mark any lines as
3325 the beginning of a source statement, because that information
3326 is not made available by the GCC front-end. */
3327 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3329 /* This location is used by calc_die_sizes() to keep track
3330 the offset of each DIE within the .debug_info section. */
3331 static unsigned long next_die_offset
;
3333 /* Record the root of the DIE's built for the current compilation unit. */
3334 static dw_die_ref comp_unit_die
;
3336 /* A list of DIEs with a NULL parent waiting to be relocated. */
3337 static limbo_die_node
*limbo_die_list
= 0;
3339 /* Structure used by lookup_filename to manage sets of filenames. */
3345 unsigned last_lookup_index
;
3348 /* Size (in elements) of increments by which we may expand the filename
3350 #define FILE_TABLE_INCREMENT 64
3352 /* Filenames referenced by this compilation unit. */
3353 static struct file_table file_table
;
3355 /* Local pointer to the name of the main input file. Initialized in
3357 static const char *primary_filename
;
3359 /* A pointer to the base of a table of references to DIE's that describe
3360 declarations. The table is indexed by DECL_UID() which is a unique
3361 number identifying each decl. */
3362 static dw_die_ref
*decl_die_table
;
3364 /* Number of elements currently allocated for the decl_die_table. */
3365 static unsigned decl_die_table_allocated
;
3367 /* Number of elements in decl_die_table currently in use. */
3368 static unsigned decl_die_table_in_use
;
3370 /* Size (in elements) of increments by which we may expand the
3372 #define DECL_DIE_TABLE_INCREMENT 256
3374 /* A pointer to the base of a list of references to DIE's that
3375 are uniquely identified by their tag, presence/absence of
3376 children DIE's, and list of attribute/value pairs. */
3377 static dw_die_ref
*abbrev_die_table
;
3379 /* Number of elements currently allocated for abbrev_die_table. */
3380 static unsigned abbrev_die_table_allocated
;
3382 /* Number of elements in type_die_table currently in use. */
3383 static unsigned abbrev_die_table_in_use
;
3385 /* Size (in elements) of increments by which we may expand the
3386 abbrev_die_table. */
3387 #define ABBREV_DIE_TABLE_INCREMENT 256
3389 /* A pointer to the base of a table that contains line information
3390 for each source code line in .text in the compilation unit. */
3391 static dw_line_info_ref line_info_table
;
3393 /* Number of elements currently allocated for line_info_table. */
3394 static unsigned line_info_table_allocated
;
3396 /* Number of elements in separate_line_info_table currently in use. */
3397 static unsigned separate_line_info_table_in_use
;
3399 /* A pointer to the base of a table that contains line information
3400 for each source code line outside of .text in the compilation unit. */
3401 static dw_separate_line_info_ref separate_line_info_table
;
3403 /* Number of elements currently allocated for separate_line_info_table. */
3404 static unsigned separate_line_info_table_allocated
;
3406 /* Number of elements in line_info_table currently in use. */
3407 static unsigned line_info_table_in_use
;
3409 /* Size (in elements) of increments by which we may expand the
3411 #define LINE_INFO_TABLE_INCREMENT 1024
3413 /* A pointer to the base of a table that contains a list of publicly
3414 accessible names. */
3415 static pubname_ref pubname_table
;
3417 /* Number of elements currently allocated for pubname_table. */
3418 static unsigned pubname_table_allocated
;
3420 /* Number of elements in pubname_table currently in use. */
3421 static unsigned pubname_table_in_use
;
3423 /* Size (in elements) of increments by which we may expand the
3425 #define PUBNAME_TABLE_INCREMENT 64
3427 /* Array of dies for which we should generate .debug_arange info. */
3428 static dw_die_ref
*arange_table
;
3430 /* Number of elements currently allocated for arange_table. */
3431 static unsigned arange_table_allocated
;
3433 /* Number of elements in arange_table currently in use. */
3434 static unsigned arange_table_in_use
;
3436 /* Size (in elements) of increments by which we may expand the
3438 #define ARANGE_TABLE_INCREMENT 64
3440 /* Array of dies for which we should generate .debug_ranges info. */
3441 static dw_ranges_ref ranges_table
;
3443 /* Number of elements currently allocated for ranges_table. */
3444 static unsigned ranges_table_allocated
;
3446 /* Number of elements in ranges_table currently in use. */
3447 static unsigned ranges_table_in_use
;
3449 /* Size (in elements) of increments by which we may expand the
3451 #define RANGES_TABLE_INCREMENT 64
3453 /* Whether we have location lists that need outputting */
3454 static unsigned have_location_lists
;
3456 /* Record whether the function being analyzed contains inlined functions. */
3457 static int current_function_has_inlines
;
3458 #if 0 && defined (MIPS_DEBUGGING_INFO)
3459 static int comp_unit_has_inlines
;
3462 /* Forward declarations for functions defined in this file. */
3464 static int is_pseudo_reg
PARAMS ((rtx
));
3465 static tree type_main_variant
PARAMS ((tree
));
3466 static int is_tagged_type
PARAMS ((tree
));
3467 static const char *dwarf_tag_name
PARAMS ((unsigned));
3468 static const char *dwarf_attr_name
PARAMS ((unsigned));
3469 static const char *dwarf_form_name
PARAMS ((unsigned));
3471 static const char *dwarf_type_encoding_name
PARAMS ((unsigned));
3473 static tree decl_ultimate_origin
PARAMS ((tree
));
3474 static tree block_ultimate_origin
PARAMS ((tree
));
3475 static tree decl_class_context
PARAMS ((tree
));
3476 static void add_dwarf_attr
PARAMS ((dw_die_ref
, dw_attr_ref
));
3477 static inline dw_val_class AT_class
PARAMS ((dw_attr_ref
));
3478 static void add_AT_flag
PARAMS ((dw_die_ref
,
3479 enum dwarf_attribute
,
3481 static inline unsigned AT_flag
PARAMS ((dw_attr_ref
));
3482 static void add_AT_int
PARAMS ((dw_die_ref
,
3483 enum dwarf_attribute
, long));
3484 static inline long int AT_int
PARAMS ((dw_attr_ref
));
3485 static void add_AT_unsigned
PARAMS ((dw_die_ref
,
3486 enum dwarf_attribute
,
3488 static inline unsigned long AT_unsigned
PARAMS ((dw_attr_ref
));
3489 static void add_AT_long_long
PARAMS ((dw_die_ref
,
3490 enum dwarf_attribute
,
3493 static void add_AT_float
PARAMS ((dw_die_ref
,
3494 enum dwarf_attribute
,
3496 static void add_AT_string
PARAMS ((dw_die_ref
,
3497 enum dwarf_attribute
,
3499 static inline const char *AT_string
PARAMS ((dw_attr_ref
));
3500 static int AT_string_form
PARAMS ((dw_attr_ref
));
3501 static void add_AT_die_ref
PARAMS ((dw_die_ref
,
3502 enum dwarf_attribute
,
3504 static inline dw_die_ref AT_ref
PARAMS ((dw_attr_ref
));
3505 static inline int AT_ref_external
PARAMS ((dw_attr_ref
));
3506 static inline void set_AT_ref_external
PARAMS ((dw_attr_ref
, int));
3507 static void add_AT_fde_ref
PARAMS ((dw_die_ref
,
3508 enum dwarf_attribute
,
3510 static void add_AT_loc
PARAMS ((dw_die_ref
,
3511 enum dwarf_attribute
,
3513 static inline dw_loc_descr_ref AT_loc
PARAMS ((dw_attr_ref
));
3514 static void add_AT_loc_list
PARAMS ((dw_die_ref
,
3515 enum dwarf_attribute
,
3517 static inline dw_loc_list_ref AT_loc_list
PARAMS ((dw_attr_ref
));
3518 static void add_AT_addr
PARAMS ((dw_die_ref
,
3519 enum dwarf_attribute
,
3521 static inline rtx AT_addr
PARAMS ((dw_attr_ref
));
3522 static void add_AT_lbl_id
PARAMS ((dw_die_ref
,
3523 enum dwarf_attribute
,
3525 static void add_AT_lbl_offset
PARAMS ((dw_die_ref
,
3526 enum dwarf_attribute
,
3528 static void add_AT_offset
PARAMS ((dw_die_ref
,
3529 enum dwarf_attribute
,
3531 static void add_AT_range_list
PARAMS ((dw_die_ref
,
3532 enum dwarf_attribute
,
3534 static inline const char *AT_lbl
PARAMS ((dw_attr_ref
));
3535 static dw_attr_ref get_AT
PARAMS ((dw_die_ref
,
3536 enum dwarf_attribute
));
3537 static const char *get_AT_low_pc
PARAMS ((dw_die_ref
));
3538 static const char *get_AT_hi_pc
PARAMS ((dw_die_ref
));
3539 static const char *get_AT_string
PARAMS ((dw_die_ref
,
3540 enum dwarf_attribute
));
3541 static int get_AT_flag
PARAMS ((dw_die_ref
,
3542 enum dwarf_attribute
));
3543 static unsigned get_AT_unsigned
PARAMS ((dw_die_ref
,
3544 enum dwarf_attribute
));
3545 static inline dw_die_ref get_AT_ref
PARAMS ((dw_die_ref
,
3546 enum dwarf_attribute
));
3547 static int is_c_family
PARAMS ((void));
3548 static int is_cxx
PARAMS ((void));
3549 static int is_java
PARAMS ((void));
3550 static int is_fortran
PARAMS ((void));
3551 static void remove_AT
PARAMS ((dw_die_ref
,
3552 enum dwarf_attribute
));
3553 static inline void free_die
PARAMS ((dw_die_ref
));
3554 static void remove_children
PARAMS ((dw_die_ref
));
3555 static void add_child_die
PARAMS ((dw_die_ref
, dw_die_ref
));
3556 static dw_die_ref new_die
PARAMS ((enum dwarf_tag
, dw_die_ref
,
3558 static dw_die_ref lookup_type_die
PARAMS ((tree
));
3559 static void equate_type_number_to_die
PARAMS ((tree
, dw_die_ref
));
3560 static dw_die_ref lookup_decl_die
PARAMS ((tree
));
3561 static void equate_decl_number_to_die
PARAMS ((tree
, dw_die_ref
));
3562 static void print_spaces
PARAMS ((FILE *));
3563 static void print_die
PARAMS ((dw_die_ref
, FILE *));
3564 static void print_dwarf_line_table
PARAMS ((FILE *));
3565 static void reverse_die_lists
PARAMS ((dw_die_ref
));
3566 static void reverse_all_dies
PARAMS ((dw_die_ref
));
3567 static dw_die_ref push_new_compile_unit
PARAMS ((dw_die_ref
, dw_die_ref
));
3568 static dw_die_ref pop_compile_unit
PARAMS ((dw_die_ref
));
3569 static void loc_checksum
PARAMS ((dw_loc_descr_ref
,
3571 static void attr_checksum
PARAMS ((dw_attr_ref
,
3573 static void die_checksum
PARAMS ((dw_die_ref
,
3575 static void compute_section_prefix
PARAMS ((dw_die_ref
));
3576 static int is_type_die
PARAMS ((dw_die_ref
));
3577 static int is_comdat_die
PARAMS ((dw_die_ref
));
3578 static int is_symbol_die
PARAMS ((dw_die_ref
));
3579 static void assign_symbol_names
PARAMS ((dw_die_ref
));
3580 static void break_out_includes
PARAMS ((dw_die_ref
));
3581 static void add_sibling_attributes
PARAMS ((dw_die_ref
));
3582 static void build_abbrev_table
PARAMS ((dw_die_ref
));
3583 static void output_location_lists
PARAMS ((dw_die_ref
));
3584 static int constant_size
PARAMS ((long unsigned));
3585 static unsigned long size_of_die
PARAMS ((dw_die_ref
));
3586 static void calc_die_sizes
PARAMS ((dw_die_ref
));
3587 static void mark_dies
PARAMS ((dw_die_ref
));
3588 static void unmark_dies
PARAMS ((dw_die_ref
));
3589 static unsigned long size_of_pubnames
PARAMS ((void));
3590 static unsigned long size_of_aranges
PARAMS ((void));
3591 static enum dwarf_form value_format
PARAMS ((dw_attr_ref
));
3592 static void output_value_format
PARAMS ((dw_attr_ref
));
3593 static void output_abbrev_section
PARAMS ((void));
3594 static void output_die_symbol
PARAMS ((dw_die_ref
));
3595 static void output_die
PARAMS ((dw_die_ref
));
3596 static void output_compilation_unit_header
PARAMS ((void));
3597 static void output_comp_unit
PARAMS ((dw_die_ref
));
3598 static const char *dwarf2_name
PARAMS ((tree
, int));
3599 static void add_pubname
PARAMS ((tree
, dw_die_ref
));
3600 static void output_pubnames
PARAMS ((void));
3601 static void add_arange
PARAMS ((tree
, dw_die_ref
));
3602 static void output_aranges
PARAMS ((void));
3603 static unsigned int add_ranges
PARAMS ((tree
));
3604 static void output_ranges
PARAMS ((void));
3605 static void output_line_info
PARAMS ((void));
3606 static void output_file_names
PARAMS ((void));
3607 static dw_die_ref base_type_die
PARAMS ((tree
));
3608 static tree root_type
PARAMS ((tree
));
3609 static int is_base_type
PARAMS ((tree
));
3610 static dw_die_ref modified_type_die
PARAMS ((tree
, int, int, dw_die_ref
));
3611 static int type_is_enum
PARAMS ((tree
));
3612 static unsigned int reg_number
PARAMS ((rtx
));
3613 static dw_loc_descr_ref reg_loc_descriptor
PARAMS ((rtx
));
3614 static dw_loc_descr_ref int_loc_descriptor
PARAMS ((HOST_WIDE_INT
));
3615 static dw_loc_descr_ref based_loc_descr
PARAMS ((unsigned, long));
3616 static int is_based_loc
PARAMS ((rtx
));
3617 static dw_loc_descr_ref mem_loc_descriptor
PARAMS ((rtx
, enum machine_mode mode
));
3618 static dw_loc_descr_ref concat_loc_descriptor
PARAMS ((rtx
, rtx
));
3619 static dw_loc_descr_ref loc_descriptor
PARAMS ((rtx
));
3620 static dw_loc_descr_ref loc_descriptor_from_tree
PARAMS ((tree
, int));
3621 static HOST_WIDE_INT ceiling
PARAMS ((HOST_WIDE_INT
, unsigned int));
3622 static tree field_type
PARAMS ((tree
));
3623 static unsigned int simple_type_align_in_bits
PARAMS ((tree
));
3624 static unsigned int simple_decl_align_in_bits
PARAMS ((tree
));
3625 static unsigned HOST_WIDE_INT simple_type_size_in_bits
PARAMS ((tree
));
3626 static HOST_WIDE_INT field_byte_offset
PARAMS ((tree
));
3627 static void add_AT_location_description
PARAMS ((dw_die_ref
,
3628 enum dwarf_attribute
,
3630 static void add_data_member_location_attribute
PARAMS ((dw_die_ref
, tree
));
3631 static void add_const_value_attribute
PARAMS ((dw_die_ref
, rtx
));
3632 static rtx rtl_for_decl_location
PARAMS ((tree
));
3633 static void add_location_or_const_value_attribute
PARAMS ((dw_die_ref
, tree
));
3634 static void tree_add_const_value_attribute
PARAMS ((dw_die_ref
, tree
));
3635 static void add_name_attribute
PARAMS ((dw_die_ref
, const char *));
3636 static void add_bound_info
PARAMS ((dw_die_ref
,
3637 enum dwarf_attribute
, tree
));
3638 static void add_subscript_info
PARAMS ((dw_die_ref
, tree
));
3639 static void add_byte_size_attribute
PARAMS ((dw_die_ref
, tree
));
3640 static void add_bit_offset_attribute
PARAMS ((dw_die_ref
, tree
));
3641 static void add_bit_size_attribute
PARAMS ((dw_die_ref
, tree
));
3642 static void add_prototyped_attribute
PARAMS ((dw_die_ref
, tree
));
3643 static void add_abstract_origin_attribute
PARAMS ((dw_die_ref
, tree
));
3644 static void add_pure_or_virtual_attribute
PARAMS ((dw_die_ref
, tree
));
3645 static void add_src_coords_attributes
PARAMS ((dw_die_ref
, tree
));
3646 static void add_name_and_src_coords_attributes
PARAMS ((dw_die_ref
, tree
));
3647 static void push_decl_scope
PARAMS ((tree
));
3648 static void pop_decl_scope
PARAMS ((void));
3649 static dw_die_ref scope_die_for
PARAMS ((tree
, dw_die_ref
));
3650 static inline int local_scope_p
PARAMS ((dw_die_ref
));
3651 static inline int class_scope_p
PARAMS ((dw_die_ref
));
3652 static void add_type_attribute
PARAMS ((dw_die_ref
, tree
, int, int,
3654 static const char *type_tag
PARAMS ((tree
));
3655 static tree member_declared_type
PARAMS ((tree
));
3657 static const char *decl_start_label
PARAMS ((tree
));
3659 static void gen_array_type_die
PARAMS ((tree
, dw_die_ref
));
3660 static void gen_set_type_die
PARAMS ((tree
, dw_die_ref
));
3662 static void gen_entry_point_die
PARAMS ((tree
, dw_die_ref
));
3664 static void gen_inlined_enumeration_type_die
PARAMS ((tree
, dw_die_ref
));
3665 static void gen_inlined_structure_type_die
PARAMS ((tree
, dw_die_ref
));
3666 static void gen_inlined_union_type_die
PARAMS ((tree
, dw_die_ref
));
3667 static void gen_enumeration_type_die
PARAMS ((tree
, dw_die_ref
));
3668 static dw_die_ref gen_formal_parameter_die
PARAMS ((tree
, dw_die_ref
));
3669 static void gen_unspecified_parameters_die
PARAMS ((tree
, dw_die_ref
));
3670 static void gen_formal_types_die
PARAMS ((tree
, dw_die_ref
));
3671 static void gen_subprogram_die
PARAMS ((tree
, dw_die_ref
));
3672 static void gen_variable_die
PARAMS ((tree
, dw_die_ref
));
3673 static void gen_label_die
PARAMS ((tree
, dw_die_ref
));
3674 static void gen_lexical_block_die
PARAMS ((tree
, dw_die_ref
, int));
3675 static void gen_inlined_subroutine_die
PARAMS ((tree
, dw_die_ref
, int));
3676 static void gen_field_die
PARAMS ((tree
, dw_die_ref
));
3677 static void gen_ptr_to_mbr_type_die
PARAMS ((tree
, dw_die_ref
));
3678 static dw_die_ref gen_compile_unit_die
PARAMS ((const char *));
3679 static void gen_string_type_die
PARAMS ((tree
, dw_die_ref
));
3680 static void gen_inheritance_die
PARAMS ((tree
, dw_die_ref
));
3681 static void gen_member_die
PARAMS ((tree
, dw_die_ref
));
3682 static void gen_struct_or_union_type_die
PARAMS ((tree
, dw_die_ref
));
3683 static void gen_subroutine_type_die
PARAMS ((tree
, dw_die_ref
));
3684 static void gen_typedef_die
PARAMS ((tree
, dw_die_ref
));
3685 static void gen_type_die
PARAMS ((tree
, dw_die_ref
));
3686 static void gen_tagged_type_instantiation_die
PARAMS ((tree
, dw_die_ref
));
3687 static void gen_block_die
PARAMS ((tree
, dw_die_ref
, int));
3688 static void decls_for_scope
PARAMS ((tree
, dw_die_ref
, int));
3689 static int is_redundant_typedef
PARAMS ((tree
));
3690 static void gen_decl_die
PARAMS ((tree
, dw_die_ref
));
3691 static unsigned lookup_filename
PARAMS ((const char *));
3692 static void init_file_table
PARAMS ((void));
3693 static void retry_incomplete_types
PARAMS ((void));
3694 static void gen_type_die_for_member
PARAMS ((tree
, tree
, dw_die_ref
));
3695 static void splice_child_die
PARAMS ((dw_die_ref
, dw_die_ref
));
3696 static int file_info_cmp
PARAMS ((const void *, const void *));
3697 static dw_loc_list_ref new_loc_list
PARAMS ((dw_loc_descr_ref
,
3698 const char *, const char *,
3699 const char *, unsigned));
3700 static void add_loc_descr_to_loc_list
PARAMS ((dw_loc_list_ref
*,
3702 const char *, const char *, const char *));
3703 static void output_loc_list
PARAMS ((dw_loc_list_ref
));
3704 static char *gen_internal_sym
PARAMS ((const char *));
3705 static void mark_limbo_die_list
PARAMS ((void *));
3707 /* Section names used to hold DWARF debugging information. */
3708 #ifndef DEBUG_INFO_SECTION
3709 #define DEBUG_INFO_SECTION ".debug_info"
3711 #ifndef DEBUG_ABBREV_SECTION
3712 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3714 #ifndef DEBUG_ARANGES_SECTION
3715 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3717 #ifndef DEBUG_MACINFO_SECTION
3718 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
3720 #ifndef DEBUG_LINE_SECTION
3721 #define DEBUG_LINE_SECTION ".debug_line"
3723 #ifndef DEBUG_LOC_SECTION
3724 #define DEBUG_LOC_SECTION ".debug_loc"
3726 #ifndef DEBUG_PUBNAMES_SECTION
3727 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
3729 #ifndef DEBUG_STR_SECTION
3730 #define DEBUG_STR_SECTION ".debug_str"
3732 #ifndef DEBUG_RANGES_SECTION
3733 #define DEBUG_RANGES_SECTION ".debug_ranges"
3736 /* Standard ELF section names for compiled code and data. */
3737 #ifndef TEXT_SECTION_NAME
3738 #define TEXT_SECTION_NAME ".text"
3741 /* Section flags for .debug_str section. */
3742 #ifdef HAVE_GAS_SHF_MERGE
3743 #define DEBUG_STR_SECTION_FLAGS \
3744 (SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1)
3746 #define DEBUG_STR_SECTION_FLAGS SECTION_DEBUG
3749 /* Labels we insert at beginning sections we can reference instead of
3750 the section names themselves. */
3752 #ifndef TEXT_SECTION_LABEL
3753 #define TEXT_SECTION_LABEL "Ltext"
3755 #ifndef DEBUG_LINE_SECTION_LABEL
3756 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3758 #ifndef DEBUG_INFO_SECTION_LABEL
3759 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3761 #ifndef DEBUG_ABBREV_SECTION_LABEL
3762 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3764 #ifndef DEBUG_LOC_SECTION_LABEL
3765 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3767 #ifndef DEBUG_RANGES_SECTION_LABEL
3768 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3770 #ifndef DEBUG_MACINFO_SECTION_LABEL
3771 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3774 /* Definitions of defaults for formats and names of various special
3775 (artificial) labels which may be generated within this file (when the -g
3776 options is used and DWARF_DEBUGGING_INFO is in effect.
3777 If necessary, these may be overridden from within the tm.h file, but
3778 typically, overriding these defaults is unnecessary. */
3780 static char text_end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3781 static char text_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3782 static char abbrev_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3783 static char debug_info_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3784 static char debug_line_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3785 static char macinfo_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3786 static char loc_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3787 static char ranges_section_label
[2 * MAX_ARTIFICIAL_LABEL_BYTES
];
3789 #ifndef TEXT_END_LABEL
3790 #define TEXT_END_LABEL "Letext"
3792 #ifndef BLOCK_BEGIN_LABEL
3793 #define BLOCK_BEGIN_LABEL "LBB"
3795 #ifndef BLOCK_END_LABEL
3796 #define BLOCK_END_LABEL "LBE"
3798 #ifndef LINE_CODE_LABEL
3799 #define LINE_CODE_LABEL "LM"
3801 #ifndef SEPARATE_LINE_CODE_LABEL
3802 #define SEPARATE_LINE_CODE_LABEL "LSM"
3805 /* We allow a language front-end to designate a function that is to be
3806 called to "demangle" any name before it it put into a DIE. */
3808 static const char *(*demangle_name_func
) PARAMS ((const char *));
3811 dwarf2out_set_demangle_name_func (func
)
3812 const char *(*func
) PARAMS ((const char *));
3814 demangle_name_func
= func
;
3817 /* Test if rtl node points to a pseudo register. */
3823 return ((GET_CODE (rtl
) == REG
&& REGNO (rtl
) >= FIRST_PSEUDO_REGISTER
)
3824 || (GET_CODE (rtl
) == SUBREG
3825 && REGNO (SUBREG_REG (rtl
)) >= FIRST_PSEUDO_REGISTER
));
3828 /* Return a reference to a type, with its const and volatile qualifiers
3832 type_main_variant (type
)
3835 type
= TYPE_MAIN_VARIANT (type
);
3837 /* ??? There really should be only one main variant among any group of
3838 variants of a given type (and all of the MAIN_VARIANT values for all
3839 members of the group should point to that one type) but sometimes the C
3840 front-end messes this up for array types, so we work around that bug
3842 if (TREE_CODE (type
) == ARRAY_TYPE
)
3843 while (type
!= TYPE_MAIN_VARIANT (type
))
3844 type
= TYPE_MAIN_VARIANT (type
);
3849 /* Return non-zero if the given type node represents a tagged type. */
3852 is_tagged_type (type
)
3855 enum tree_code code
= TREE_CODE (type
);
3857 return (code
== RECORD_TYPE
|| code
== UNION_TYPE
3858 || code
== QUAL_UNION_TYPE
|| code
== ENUMERAL_TYPE
);
3861 /* Convert a DIE tag into its string name. */
3864 dwarf_tag_name (tag
)
3869 case DW_TAG_padding
:
3870 return "DW_TAG_padding";
3871 case DW_TAG_array_type
:
3872 return "DW_TAG_array_type";
3873 case DW_TAG_class_type
:
3874 return "DW_TAG_class_type";
3875 case DW_TAG_entry_point
:
3876 return "DW_TAG_entry_point";
3877 case DW_TAG_enumeration_type
:
3878 return "DW_TAG_enumeration_type";
3879 case DW_TAG_formal_parameter
:
3880 return "DW_TAG_formal_parameter";
3881 case DW_TAG_imported_declaration
:
3882 return "DW_TAG_imported_declaration";
3884 return "DW_TAG_label";
3885 case DW_TAG_lexical_block
:
3886 return "DW_TAG_lexical_block";
3888 return "DW_TAG_member";
3889 case DW_TAG_pointer_type
:
3890 return "DW_TAG_pointer_type";
3891 case DW_TAG_reference_type
:
3892 return "DW_TAG_reference_type";
3893 case DW_TAG_compile_unit
:
3894 return "DW_TAG_compile_unit";
3895 case DW_TAG_string_type
:
3896 return "DW_TAG_string_type";
3897 case DW_TAG_structure_type
:
3898 return "DW_TAG_structure_type";
3899 case DW_TAG_subroutine_type
:
3900 return "DW_TAG_subroutine_type";
3901 case DW_TAG_typedef
:
3902 return "DW_TAG_typedef";
3903 case DW_TAG_union_type
:
3904 return "DW_TAG_union_type";
3905 case DW_TAG_unspecified_parameters
:
3906 return "DW_TAG_unspecified_parameters";
3907 case DW_TAG_variant
:
3908 return "DW_TAG_variant";
3909 case DW_TAG_common_block
:
3910 return "DW_TAG_common_block";
3911 case DW_TAG_common_inclusion
:
3912 return "DW_TAG_common_inclusion";
3913 case DW_TAG_inheritance
:
3914 return "DW_TAG_inheritance";
3915 case DW_TAG_inlined_subroutine
:
3916 return "DW_TAG_inlined_subroutine";
3918 return "DW_TAG_module";
3919 case DW_TAG_ptr_to_member_type
:
3920 return "DW_TAG_ptr_to_member_type";
3921 case DW_TAG_set_type
:
3922 return "DW_TAG_set_type";
3923 case DW_TAG_subrange_type
:
3924 return "DW_TAG_subrange_type";
3925 case DW_TAG_with_stmt
:
3926 return "DW_TAG_with_stmt";
3927 case DW_TAG_access_declaration
:
3928 return "DW_TAG_access_declaration";
3929 case DW_TAG_base_type
:
3930 return "DW_TAG_base_type";
3931 case DW_TAG_catch_block
:
3932 return "DW_TAG_catch_block";
3933 case DW_TAG_const_type
:
3934 return "DW_TAG_const_type";
3935 case DW_TAG_constant
:
3936 return "DW_TAG_constant";
3937 case DW_TAG_enumerator
:
3938 return "DW_TAG_enumerator";
3939 case DW_TAG_file_type
:
3940 return "DW_TAG_file_type";
3942 return "DW_TAG_friend";
3943 case DW_TAG_namelist
:
3944 return "DW_TAG_namelist";
3945 case DW_TAG_namelist_item
:
3946 return "DW_TAG_namelist_item";
3947 case DW_TAG_packed_type
:
3948 return "DW_TAG_packed_type";
3949 case DW_TAG_subprogram
:
3950 return "DW_TAG_subprogram";
3951 case DW_TAG_template_type_param
:
3952 return "DW_TAG_template_type_param";
3953 case DW_TAG_template_value_param
:
3954 return "DW_TAG_template_value_param";
3955 case DW_TAG_thrown_type
:
3956 return "DW_TAG_thrown_type";
3957 case DW_TAG_try_block
:
3958 return "DW_TAG_try_block";
3959 case DW_TAG_variant_part
:
3960 return "DW_TAG_variant_part";
3961 case DW_TAG_variable
:
3962 return "DW_TAG_variable";
3963 case DW_TAG_volatile_type
:
3964 return "DW_TAG_volatile_type";
3965 case DW_TAG_MIPS_loop
:
3966 return "DW_TAG_MIPS_loop";
3967 case DW_TAG_format_label
:
3968 return "DW_TAG_format_label";
3969 case DW_TAG_function_template
:
3970 return "DW_TAG_function_template";
3971 case DW_TAG_class_template
:
3972 return "DW_TAG_class_template";
3973 case DW_TAG_GNU_BINCL
:
3974 return "DW_TAG_GNU_BINCL";
3975 case DW_TAG_GNU_EINCL
:
3976 return "DW_TAG_GNU_EINCL";
3978 return "DW_TAG_<unknown>";
3982 /* Convert a DWARF attribute code into its string name. */
3985 dwarf_attr_name (attr
)
3991 return "DW_AT_sibling";
3992 case DW_AT_location
:
3993 return "DW_AT_location";
3995 return "DW_AT_name";
3996 case DW_AT_ordering
:
3997 return "DW_AT_ordering";
3998 case DW_AT_subscr_data
:
3999 return "DW_AT_subscr_data";
4000 case DW_AT_byte_size
:
4001 return "DW_AT_byte_size";
4002 case DW_AT_bit_offset
:
4003 return "DW_AT_bit_offset";
4004 case DW_AT_bit_size
:
4005 return "DW_AT_bit_size";
4006 case DW_AT_element_list
:
4007 return "DW_AT_element_list";
4008 case DW_AT_stmt_list
:
4009 return "DW_AT_stmt_list";
4011 return "DW_AT_low_pc";
4013 return "DW_AT_high_pc";
4014 case DW_AT_language
:
4015 return "DW_AT_language";
4017 return "DW_AT_member";
4019 return "DW_AT_discr";
4020 case DW_AT_discr_value
:
4021 return "DW_AT_discr_value";
4022 case DW_AT_visibility
:
4023 return "DW_AT_visibility";
4025 return "DW_AT_import";
4026 case DW_AT_string_length
:
4027 return "DW_AT_string_length";
4028 case DW_AT_common_reference
:
4029 return "DW_AT_common_reference";
4030 case DW_AT_comp_dir
:
4031 return "DW_AT_comp_dir";
4032 case DW_AT_const_value
:
4033 return "DW_AT_const_value";
4034 case DW_AT_containing_type
:
4035 return "DW_AT_containing_type";
4036 case DW_AT_default_value
:
4037 return "DW_AT_default_value";
4039 return "DW_AT_inline";
4040 case DW_AT_is_optional
:
4041 return "DW_AT_is_optional";
4042 case DW_AT_lower_bound
:
4043 return "DW_AT_lower_bound";
4044 case DW_AT_producer
:
4045 return "DW_AT_producer";
4046 case DW_AT_prototyped
:
4047 return "DW_AT_prototyped";
4048 case DW_AT_return_addr
:
4049 return "DW_AT_return_addr";
4050 case DW_AT_start_scope
:
4051 return "DW_AT_start_scope";
4052 case DW_AT_stride_size
:
4053 return "DW_AT_stride_size";
4054 case DW_AT_upper_bound
:
4055 return "DW_AT_upper_bound";
4056 case DW_AT_abstract_origin
:
4057 return "DW_AT_abstract_origin";
4058 case DW_AT_accessibility
:
4059 return "DW_AT_accessibility";
4060 case DW_AT_address_class
:
4061 return "DW_AT_address_class";
4062 case DW_AT_artificial
:
4063 return "DW_AT_artificial";
4064 case DW_AT_base_types
:
4065 return "DW_AT_base_types";
4066 case DW_AT_calling_convention
:
4067 return "DW_AT_calling_convention";
4069 return "DW_AT_count";
4070 case DW_AT_data_member_location
:
4071 return "DW_AT_data_member_location";
4072 case DW_AT_decl_column
:
4073 return "DW_AT_decl_column";
4074 case DW_AT_decl_file
:
4075 return "DW_AT_decl_file";
4076 case DW_AT_decl_line
:
4077 return "DW_AT_decl_line";
4078 case DW_AT_declaration
:
4079 return "DW_AT_declaration";
4080 case DW_AT_discr_list
:
4081 return "DW_AT_discr_list";
4082 case DW_AT_encoding
:
4083 return "DW_AT_encoding";
4084 case DW_AT_external
:
4085 return "DW_AT_external";
4086 case DW_AT_frame_base
:
4087 return "DW_AT_frame_base";
4089 return "DW_AT_friend";
4090 case DW_AT_identifier_case
:
4091 return "DW_AT_identifier_case";
4092 case DW_AT_macro_info
:
4093 return "DW_AT_macro_info";
4094 case DW_AT_namelist_items
:
4095 return "DW_AT_namelist_items";
4096 case DW_AT_priority
:
4097 return "DW_AT_priority";
4099 return "DW_AT_segment";
4100 case DW_AT_specification
:
4101 return "DW_AT_specification";
4102 case DW_AT_static_link
:
4103 return "DW_AT_static_link";
4105 return "DW_AT_type";
4106 case DW_AT_use_location
:
4107 return "DW_AT_use_location";
4108 case DW_AT_variable_parameter
:
4109 return "DW_AT_variable_parameter";
4110 case DW_AT_virtuality
:
4111 return "DW_AT_virtuality";
4112 case DW_AT_vtable_elem_location
:
4113 return "DW_AT_vtable_elem_location";
4115 case DW_AT_allocated
:
4116 return "DW_AT_allocated";
4117 case DW_AT_associated
:
4118 return "DW_AT_associated";
4119 case DW_AT_data_location
:
4120 return "DW_AT_data_location";
4122 return "DW_AT_stride";
4123 case DW_AT_entry_pc
:
4124 return "DW_AT_entry_pc";
4125 case DW_AT_use_UTF8
:
4126 return "DW_AT_use_UTF8";
4127 case DW_AT_extension
:
4128 return "DW_AT_extension";
4130 return "DW_AT_ranges";
4131 case DW_AT_trampoline
:
4132 return "DW_AT_trampoline";
4133 case DW_AT_call_column
:
4134 return "DW_AT_call_column";
4135 case DW_AT_call_file
:
4136 return "DW_AT_call_file";
4137 case DW_AT_call_line
:
4138 return "DW_AT_call_line";
4140 case DW_AT_MIPS_fde
:
4141 return "DW_AT_MIPS_fde";
4142 case DW_AT_MIPS_loop_begin
:
4143 return "DW_AT_MIPS_loop_begin";
4144 case DW_AT_MIPS_tail_loop_begin
:
4145 return "DW_AT_MIPS_tail_loop_begin";
4146 case DW_AT_MIPS_epilog_begin
:
4147 return "DW_AT_MIPS_epilog_begin";
4148 case DW_AT_MIPS_loop_unroll_factor
:
4149 return "DW_AT_MIPS_loop_unroll_factor";
4150 case DW_AT_MIPS_software_pipeline_depth
:
4151 return "DW_AT_MIPS_software_pipeline_depth";
4152 case DW_AT_MIPS_linkage_name
:
4153 return "DW_AT_MIPS_linkage_name";
4154 case DW_AT_MIPS_stride
:
4155 return "DW_AT_MIPS_stride";
4156 case DW_AT_MIPS_abstract_name
:
4157 return "DW_AT_MIPS_abstract_name";
4158 case DW_AT_MIPS_clone_origin
:
4159 return "DW_AT_MIPS_clone_origin";
4160 case DW_AT_MIPS_has_inlines
:
4161 return "DW_AT_MIPS_has_inlines";
4163 case DW_AT_sf_names
:
4164 return "DW_AT_sf_names";
4165 case DW_AT_src_info
:
4166 return "DW_AT_src_info";
4167 case DW_AT_mac_info
:
4168 return "DW_AT_mac_info";
4169 case DW_AT_src_coords
:
4170 return "DW_AT_src_coords";
4171 case DW_AT_body_begin
:
4172 return "DW_AT_body_begin";
4173 case DW_AT_body_end
:
4174 return "DW_AT_body_end";
4175 case DW_AT_GNU_vector
:
4176 return "DW_AT_GNU_vector";
4178 case DW_AT_VMS_rtnbeg_pd_address
:
4179 return "DW_AT_VMS_rtnbeg_pd_address";
4182 return "DW_AT_<unknown>";
4186 /* Convert a DWARF value form code into its string name. */
4189 dwarf_form_name (form
)
4195 return "DW_FORM_addr";
4196 case DW_FORM_block2
:
4197 return "DW_FORM_block2";
4198 case DW_FORM_block4
:
4199 return "DW_FORM_block4";
4201 return "DW_FORM_data2";
4203 return "DW_FORM_data4";
4205 return "DW_FORM_data8";
4206 case DW_FORM_string
:
4207 return "DW_FORM_string";
4209 return "DW_FORM_block";
4210 case DW_FORM_block1
:
4211 return "DW_FORM_block1";
4213 return "DW_FORM_data1";
4215 return "DW_FORM_flag";
4217 return "DW_FORM_sdata";
4219 return "DW_FORM_strp";
4221 return "DW_FORM_udata";
4222 case DW_FORM_ref_addr
:
4223 return "DW_FORM_ref_addr";
4225 return "DW_FORM_ref1";
4227 return "DW_FORM_ref2";
4229 return "DW_FORM_ref4";
4231 return "DW_FORM_ref8";
4232 case DW_FORM_ref_udata
:
4233 return "DW_FORM_ref_udata";
4234 case DW_FORM_indirect
:
4235 return "DW_FORM_indirect";
4237 return "DW_FORM_<unknown>";
4241 /* Convert a DWARF type code into its string name. */
4245 dwarf_type_encoding_name (enc
)
4250 case DW_ATE_address
:
4251 return "DW_ATE_address";
4252 case DW_ATE_boolean
:
4253 return "DW_ATE_boolean";
4254 case DW_ATE_complex_float
:
4255 return "DW_ATE_complex_float";
4257 return "DW_ATE_float";
4259 return "DW_ATE_signed";
4260 case DW_ATE_signed_char
:
4261 return "DW_ATE_signed_char";
4262 case DW_ATE_unsigned
:
4263 return "DW_ATE_unsigned";
4264 case DW_ATE_unsigned_char
:
4265 return "DW_ATE_unsigned_char";
4267 return "DW_ATE_<unknown>";
4272 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4273 instance of an inlined instance of a decl which is local to an inline
4274 function, so we have to trace all of the way back through the origin chain
4275 to find out what sort of node actually served as the original seed for the
4279 decl_ultimate_origin (decl
)
4282 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4283 nodes in the function to point to themselves; ignore that if
4284 we're trying to output the abstract instance of this function. */
4285 if (DECL_ABSTRACT (decl
) && DECL_ABSTRACT_ORIGIN (decl
) == decl
)
4288 #ifdef ENABLE_CHECKING
4289 if (DECL_FROM_INLINE (DECL_ORIGIN (decl
)))
4290 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4291 most distant ancestor, this should never happen. */
4295 return DECL_ABSTRACT_ORIGIN (decl
);
4298 /* Determine the "ultimate origin" of a block. The block may be an inlined
4299 instance of an inlined instance of a block which is local to an inline
4300 function, so we have to trace all of the way back through the origin chain
4301 to find out what sort of node actually served as the original seed for the
4305 block_ultimate_origin (block
)
4308 tree immediate_origin
= BLOCK_ABSTRACT_ORIGIN (block
);
4310 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4311 nodes in the function to point to themselves; ignore that if
4312 we're trying to output the abstract instance of this function. */
4313 if (BLOCK_ABSTRACT (block
) && immediate_origin
== block
)
4316 if (immediate_origin
== NULL_TREE
)
4321 tree lookahead
= immediate_origin
;
4325 ret_val
= lookahead
;
4326 lookahead
= (TREE_CODE (ret_val
) == BLOCK
4327 ? BLOCK_ABSTRACT_ORIGIN (ret_val
) : NULL
);
4329 while (lookahead
!= NULL
&& lookahead
!= ret_val
);
4335 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4336 of a virtual function may refer to a base class, so we check the 'this'
4340 decl_class_context (decl
)
4343 tree context
= NULL_TREE
;
4345 if (TREE_CODE (decl
) != FUNCTION_DECL
|| ! DECL_VINDEX (decl
))
4346 context
= DECL_CONTEXT (decl
);
4348 context
= TYPE_MAIN_VARIANT
4349 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl
)))));
4351 if (context
&& !TYPE_P (context
))
4352 context
= NULL_TREE
;
4357 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4358 addition order, and correct that in reverse_all_dies. */
4361 add_dwarf_attr (die
, attr
)
4365 if (die
!= NULL
&& attr
!= NULL
)
4367 attr
->dw_attr_next
= die
->die_attr
;
4368 die
->die_attr
= attr
;
4372 static inline dw_val_class
4376 return a
->dw_attr_val
.val_class
;
4379 /* Add a flag value attribute to a DIE. */
4382 add_AT_flag (die
, attr_kind
, flag
)
4384 enum dwarf_attribute attr_kind
;
4387 dw_attr_ref attr
= (dw_attr_ref
) xmalloc (sizeof (dw_attr_node
));
4389 attr
->dw_attr_next
= NULL
;
4390 attr
->dw_attr
= attr_kind
;
4391 attr
->dw_attr_val
.val_class
= dw_val_class_flag
;
4392 attr
->dw_attr_val
.v
.val_flag
= flag
;
4393 add_dwarf_attr (die
, attr
);
4396 static inline unsigned
4400 if (a
&& AT_class (a
) == dw_val_class_flag
)
4401 return a
->dw_attr_val
.v
.val_flag
;
4406 /* Add a signed integer attribute value to a DIE. */
4409 add_AT_int (die
, attr_kind
, int_val
)
4411 enum dwarf_attribute attr_kind
;
4414 dw_attr_ref attr
= (dw_attr_ref
) xmalloc (sizeof (dw_attr_node
));
4416 attr
->dw_attr_next
= NULL
;
4417 attr
->dw_attr
= attr_kind
;
4418 attr
->dw_attr_val
.val_class
= dw_val_class_const
;
4419 attr
->dw_attr_val
.v
.val_int
= int_val
;
4420 add_dwarf_attr (die
, attr
);
4423 static inline long int
4427 if (a
&& AT_class (a
) == dw_val_class_const
)
4428 return a
->dw_attr_val
.v
.val_int
;
4433 /* Add an unsigned integer attribute value to a DIE. */
4436 add_AT_unsigned (die
, attr_kind
, unsigned_val
)
4438 enum dwarf_attribute attr_kind
;
4439 unsigned long unsigned_val
;
4441 dw_attr_ref attr
= (dw_attr_ref
) xmalloc (sizeof (dw_attr_node
));
4443 attr
->dw_attr_next
= NULL
;
4444 attr
->dw_attr
= attr_kind
;
4445 attr
->dw_attr_val
.val_class
= dw_val_class_unsigned_const
;
4446 attr
->dw_attr_val
.v
.val_unsigned
= unsigned_val
;
4447 add_dwarf_attr (die
, attr
);
4450 static inline unsigned long
4454 if (a
&& AT_class (a
) == dw_val_class_unsigned_const
)
4455 return a
->dw_attr_val
.v
.val_unsigned
;
4460 /* Add an unsigned double integer attribute value to a DIE. */
4463 add_AT_long_long (die
, attr_kind
, val_hi
, val_low
)
4465 enum dwarf_attribute attr_kind
;
4466 unsigned long val_hi
;
4467 unsigned long val_low
;
4469 dw_attr_ref attr
= (dw_attr_ref
) xmalloc (sizeof (dw_attr_node
));
4471 attr
->dw_attr_next
= NULL
;
4472 attr
->dw_attr
= attr_kind
;
4473 attr
->dw_attr_val
.val_class
= dw_val_class_long_long
;
4474 attr
->dw_attr_val
.v
.val_long_long
.hi
= val_hi
;
4475 attr
->dw_attr_val
.v
.val_long_long
.low
= val_low
;
4476 add_dwarf_attr (die
, attr
);
4479 /* Add a floating point attribute value to a DIE and return it. */
4482 add_AT_float (die
, attr_kind
, length
, array
)
4484 enum dwarf_attribute attr_kind
;
4488 dw_attr_ref attr
= (dw_attr_ref
) xmalloc (sizeof (dw_attr_node
));
4490 attr
->dw_attr_next
= NULL
;
4491 attr
->dw_attr
= attr_kind
;
4492 attr
->dw_attr_val
.val_class
= dw_val_class_float
;
4493 attr
->dw_attr_val
.v
.val_float
.length
= length
;
4494 attr
->dw_attr_val
.v
.val_float
.array
= array
;
4495 add_dwarf_attr (die
, attr
);
4498 /* Add a string attribute value to a DIE. */
4501 add_AT_string (die
, attr_kind
, str
)
4503 enum dwarf_attribute attr_kind
;
4506 dw_attr_ref attr
= (dw_attr_ref
) xmalloc (sizeof (dw_attr_node
));
4507 struct indirect_string_node
*node
;
4509 if (! debug_str_hash
)
4511 debug_str_hash
= ht_create (10);
4512 debug_str_hash
->alloc_node
= indirect_string_alloc
;
4515 node
= (struct indirect_string_node
*)
4516 ht_lookup (debug_str_hash
, (const unsigned char *) str
,
4517 strlen (str
), HT_ALLOC
);
4520 attr
->dw_attr_next
= NULL
;
4521 attr
->dw_attr
= attr_kind
;
4522 attr
->dw_attr_val
.val_class
= dw_val_class_str
;
4523 attr
->dw_attr_val
.v
.val_str
= node
;
4524 add_dwarf_attr (die
, attr
);
4527 static inline const char *
4531 if (a
&& AT_class (a
) == dw_val_class_str
)
4532 return (const char *) HT_STR (&a
->dw_attr_val
.v
.val_str
->id
);
4537 /* Find out whether a string should be output inline in DIE
4538 or out-of-line in .debug_str section. */
4544 if (a
&& AT_class (a
) == dw_val_class_str
)
4546 struct indirect_string_node
*node
;
4548 extern int const_labelno
;
4551 node
= a
->dw_attr_val
.v
.val_str
;
4555 len
= HT_LEN (&node
->id
) + 1;
4557 /* If the string is shorter or equal to the size of the reference, it is
4558 always better to put it inline. */
4559 if (len
<= DWARF_OFFSET_SIZE
|| node
->refcount
== 0)
4560 return node
->form
= DW_FORM_string
;
4562 /* If we cannot expect the linker to merge strings in .debug_str
4563 section, only put it into .debug_str if it is worth even in this
4565 if ((DEBUG_STR_SECTION_FLAGS
& SECTION_MERGE
) == 0
4566 && (len
- DWARF_OFFSET_SIZE
) * node
->refcount
<= len
)
4567 return node
->form
= DW_FORM_string
;
4569 ASM_GENERATE_INTERNAL_LABEL (label
, "LC", const_labelno
);
4571 node
->label
= xstrdup (label
);
4573 return node
->form
= DW_FORM_strp
;
4579 /* Add a DIE reference attribute value to a DIE. */
4582 add_AT_die_ref (die
, attr_kind
, targ_die
)
4584 enum dwarf_attribute attr_kind
;
4585 dw_die_ref targ_die
;
4587 dw_attr_ref attr
= (dw_attr_ref
) xmalloc (sizeof (dw_attr_node
));
4589 attr
->dw_attr_next
= NULL
;
4590 attr
->dw_attr
= attr_kind
;
4591 attr
->dw_attr_val
.val_class
= dw_val_class_die_ref
;
4592 attr
->dw_attr_val
.v
.val_die_ref
.die
= targ_die
;
4593 attr
->dw_attr_val
.v
.val_die_ref
.external
= 0;
4594 add_dwarf_attr (die
, attr
);
4597 static inline dw_die_ref
4601 if (a
&& AT_class (a
) == dw_val_class_die_ref
)
4602 return a
->dw_attr_val
.v
.val_die_ref
.die
;
4611 if (a
&& AT_class (a
) == dw_val_class_die_ref
)
4612 return a
->dw_attr_val
.v
.val_die_ref
.external
;
4618 set_AT_ref_external (a
, i
)
4622 if (a
&& AT_class (a
) == dw_val_class_die_ref
)
4623 a
->dw_attr_val
.v
.val_die_ref
.external
= i
;
4628 /* Add an FDE reference attribute value to a DIE. */
4631 add_AT_fde_ref (die
, attr_kind
, targ_fde
)
4633 enum dwarf_attribute attr_kind
;
4636 dw_attr_ref attr
= (dw_attr_ref
) xmalloc (sizeof (dw_attr_node
));
4638 attr
->dw_attr_next
= NULL
;
4639 attr
->dw_attr
= attr_kind
;
4640 attr
->dw_attr_val
.val_class
= dw_val_class_fde_ref
;
4641 attr
->dw_attr_val
.v
.val_fde_index
= targ_fde
;
4642 add_dwarf_attr (die
, attr
);
4645 /* Add a location description attribute value to a DIE. */
4648 add_AT_loc (die
, attr_kind
, loc
)
4650 enum dwarf_attribute attr_kind
;
4651 dw_loc_descr_ref loc
;
4653 dw_attr_ref attr
= (dw_attr_ref
) xmalloc (sizeof (dw_attr_node
));
4655 attr
->dw_attr_next
= NULL
;
4656 attr
->dw_attr
= attr_kind
;
4657 attr
->dw_attr_val
.val_class
= dw_val_class_loc
;
4658 attr
->dw_attr_val
.v
.val_loc
= loc
;
4659 add_dwarf_attr (die
, attr
);
4662 static inline dw_loc_descr_ref
4666 if (a
&& AT_class (a
) == dw_val_class_loc
)
4667 return a
->dw_attr_val
.v
.val_loc
;
4673 add_AT_loc_list (die
, attr_kind
, loc_list
)
4675 enum dwarf_attribute attr_kind
;
4676 dw_loc_list_ref loc_list
;
4678 dw_attr_ref attr
= (dw_attr_ref
) xmalloc (sizeof (dw_attr_node
));
4680 attr
->dw_attr_next
= NULL
;
4681 attr
->dw_attr
= attr_kind
;
4682 attr
->dw_attr_val
.val_class
= dw_val_class_loc_list
;
4683 attr
->dw_attr_val
.v
.val_loc_list
= loc_list
;
4684 add_dwarf_attr (die
, attr
);
4685 have_location_lists
= 1;
4688 static inline dw_loc_list_ref
4692 if (a
&& AT_class (a
) == dw_val_class_loc_list
)
4693 return a
->dw_attr_val
.v
.val_loc_list
;
4698 /* Add an address constant attribute value to a DIE. */
4701 add_AT_addr (die
, attr_kind
, addr
)
4703 enum dwarf_attribute attr_kind
;
4706 dw_attr_ref attr
= (dw_attr_ref
) xmalloc (sizeof (dw_attr_node
));
4708 attr
->dw_attr_next
= NULL
;
4709 attr
->dw_attr
= attr_kind
;
4710 attr
->dw_attr_val
.val_class
= dw_val_class_addr
;
4711 attr
->dw_attr_val
.v
.val_addr
= addr
;
4712 add_dwarf_attr (die
, attr
);
4719 if (a
&& AT_class (a
) == dw_val_class_addr
)
4720 return a
->dw_attr_val
.v
.val_addr
;
4725 /* Add a label identifier attribute value to a DIE. */
4728 add_AT_lbl_id (die
, attr_kind
, lbl_id
)
4730 enum dwarf_attribute attr_kind
;
4733 dw_attr_ref attr
= (dw_attr_ref
) xmalloc (sizeof (dw_attr_node
));
4735 attr
->dw_attr_next
= NULL
;
4736 attr
->dw_attr
= attr_kind
;
4737 attr
->dw_attr_val
.val_class
= dw_val_class_lbl_id
;
4738 attr
->dw_attr_val
.v
.val_lbl_id
= xstrdup (lbl_id
);
4739 add_dwarf_attr (die
, attr
);
4742 /* Add a section offset attribute value to a DIE. */
4745 add_AT_lbl_offset (die
, attr_kind
, label
)
4747 enum dwarf_attribute attr_kind
;
4750 dw_attr_ref attr
= (dw_attr_ref
) xmalloc (sizeof (dw_attr_node
));
4752 attr
->dw_attr_next
= NULL
;
4753 attr
->dw_attr
= attr_kind
;
4754 attr
->dw_attr_val
.val_class
= dw_val_class_lbl_offset
;
4755 attr
->dw_attr_val
.v
.val_lbl_id
= xstrdup (label
);
4756 add_dwarf_attr (die
, attr
);
4759 /* Add an offset attribute value to a DIE. */
4762 add_AT_offset (die
, attr_kind
, offset
)
4764 enum dwarf_attribute attr_kind
;
4765 unsigned long offset
;
4767 dw_attr_ref attr
= (dw_attr_ref
) xmalloc (sizeof (dw_attr_node
));
4769 attr
->dw_attr_next
= NULL
;
4770 attr
->dw_attr
= attr_kind
;
4771 attr
->dw_attr_val
.val_class
= dw_val_class_offset
;
4772 attr
->dw_attr_val
.v
.val_offset
= offset
;
4773 add_dwarf_attr (die
, attr
);
4776 /* Add an range_list attribute value to a DIE. */
4779 add_AT_range_list (die
, attr_kind
, offset
)
4781 enum dwarf_attribute attr_kind
;
4782 unsigned long offset
;
4784 dw_attr_ref attr
= (dw_attr_ref
) xmalloc (sizeof (dw_attr_node
));
4786 attr
->dw_attr_next
= NULL
;
4787 attr
->dw_attr
= attr_kind
;
4788 attr
->dw_attr_val
.val_class
= dw_val_class_range_list
;
4789 attr
->dw_attr_val
.v
.val_offset
= offset
;
4790 add_dwarf_attr (die
, attr
);
4793 static inline const char *
4797 if (a
&& (AT_class (a
) == dw_val_class_lbl_id
4798 || AT_class (a
) == dw_val_class_lbl_offset
))
4799 return a
->dw_attr_val
.v
.val_lbl_id
;
4804 /* Get the attribute of type attr_kind. */
4806 static inline dw_attr_ref
4807 get_AT (die
, attr_kind
)
4809 enum dwarf_attribute attr_kind
;
4812 dw_die_ref spec
= NULL
;
4816 for (a
= die
->die_attr
; a
!= NULL
; a
= a
->dw_attr_next
)
4817 if (a
->dw_attr
== attr_kind
)
4819 else if (a
->dw_attr
== DW_AT_specification
4820 || a
->dw_attr
== DW_AT_abstract_origin
)
4824 return get_AT (spec
, attr_kind
);
4830 /* Return the "low pc" attribute value, typically associated with a subprogram
4831 DIE. Return null if the "low pc" attribute is either not present, or if it
4832 cannot be represented as an assembler label identifier. */
4834 static inline const char *
4838 dw_attr_ref a
= get_AT (die
, DW_AT_low_pc
);
4840 return a
? AT_lbl (a
) : NULL
;
4843 /* Return the "high pc" attribute value, typically associated with a subprogram
4844 DIE. Return null if the "high pc" attribute is either not present, or if it
4845 cannot be represented as an assembler label identifier. */
4847 static inline const char *
4851 dw_attr_ref a
= get_AT (die
, DW_AT_high_pc
);
4853 return a
? AT_lbl (a
) : NULL
;
4856 /* Return the value of the string attribute designated by ATTR_KIND, or
4857 NULL if it is not present. */
4859 static inline const char *
4860 get_AT_string (die
, attr_kind
)
4862 enum dwarf_attribute attr_kind
;
4864 dw_attr_ref a
= get_AT (die
, attr_kind
);
4866 return a
? AT_string (a
) : NULL
;
4869 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
4870 if it is not present. */
4873 get_AT_flag (die
, attr_kind
)
4875 enum dwarf_attribute attr_kind
;
4877 dw_attr_ref a
= get_AT (die
, attr_kind
);
4879 return a
? AT_flag (a
) : 0;
4882 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
4883 if it is not present. */
4885 static inline unsigned
4886 get_AT_unsigned (die
, attr_kind
)
4888 enum dwarf_attribute attr_kind
;
4890 dw_attr_ref a
= get_AT (die
, attr_kind
);
4892 return a
? AT_unsigned (a
) : 0;
4895 static inline dw_die_ref
4896 get_AT_ref (die
, attr_kind
)
4898 enum dwarf_attribute attr_kind
;
4900 dw_attr_ref a
= get_AT (die
, attr_kind
);
4902 return a
? AT_ref (a
) : NULL
;
4908 unsigned lang
= get_AT_unsigned (comp_unit_die
, DW_AT_language
);
4910 return (lang
== DW_LANG_C
|| lang
== DW_LANG_C89
4911 || lang
== DW_LANG_C_plus_plus
);
4917 return (get_AT_unsigned (comp_unit_die
, DW_AT_language
)
4918 == DW_LANG_C_plus_plus
);
4924 unsigned lang
= get_AT_unsigned (comp_unit_die
, DW_AT_language
);
4926 return (lang
== DW_LANG_Fortran77
|| lang
== DW_LANG_Fortran90
);
4932 unsigned lang
= get_AT_unsigned (comp_unit_die
, DW_AT_language
);
4934 return (lang
== DW_LANG_Java
);
4937 /* Free up the memory used by A. */
4939 static inline void free_AT
PARAMS ((dw_attr_ref
));
4944 switch (AT_class (a
))
4946 case dw_val_class_str
:
4947 if (a
->dw_attr_val
.v
.val_str
->refcount
)
4948 a
->dw_attr_val
.v
.val_str
->refcount
--;
4951 case dw_val_class_lbl_id
:
4952 case dw_val_class_lbl_offset
:
4953 free (a
->dw_attr_val
.v
.val_lbl_id
);
4956 case dw_val_class_float
:
4957 free (a
->dw_attr_val
.v
.val_float
.array
);
4967 /* Remove the specified attribute if present. */
4970 remove_AT (die
, attr_kind
)
4972 enum dwarf_attribute attr_kind
;
4975 dw_attr_ref removed
= NULL
;
4979 for (p
= &(die
->die_attr
); *p
; p
= &((*p
)->dw_attr_next
))
4980 if ((*p
)->dw_attr
== attr_kind
)
4983 *p
= (*p
)->dw_attr_next
;
4992 /* Free up the memory used by DIE. */
4998 remove_children (die
);
5002 /* Discard the children of this DIE. */
5005 remove_children (die
)
5008 dw_die_ref child_die
= die
->die_child
;
5010 die
->die_child
= NULL
;
5012 while (child_die
!= NULL
)
5014 dw_die_ref tmp_die
= child_die
;
5017 child_die
= child_die
->die_sib
;
5019 for (a
= tmp_die
->die_attr
; a
!= NULL
;)
5021 dw_attr_ref tmp_a
= a
;
5023 a
= a
->dw_attr_next
;
5031 /* Add a child DIE below its parent. We build the lists up in reverse
5032 addition order, and correct that in reverse_all_dies. */
5035 add_child_die (die
, child_die
)
5037 dw_die_ref child_die
;
5039 if (die
!= NULL
&& child_die
!= NULL
)
5041 if (die
== child_die
)
5044 child_die
->die_parent
= die
;
5045 child_die
->die_sib
= die
->die_child
;
5046 die
->die_child
= child_die
;
5050 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5051 is the specification, to the front of PARENT's list of children. */
5054 splice_child_die (parent
, child
)
5055 dw_die_ref parent
, child
;
5059 /* We want the declaration DIE from inside the class, not the
5060 specification DIE at toplevel. */
5061 if (child
->die_parent
!= parent
)
5063 dw_die_ref tmp
= get_AT_ref (child
, DW_AT_specification
);
5069 if (child
->die_parent
!= parent
5070 && child
->die_parent
!= get_AT_ref (parent
, DW_AT_specification
))
5073 for (p
= &(child
->die_parent
->die_child
); *p
; p
= &((*p
)->die_sib
))
5076 *p
= child
->die_sib
;
5080 child
->die_sib
= parent
->die_child
;
5081 parent
->die_child
= child
;
5084 /* Return a pointer to a newly created DIE node. */
5086 static inline dw_die_ref
5087 new_die (tag_value
, parent_die
, t
)
5088 enum dwarf_tag tag_value
;
5089 dw_die_ref parent_die
;
5092 dw_die_ref die
= (dw_die_ref
) xcalloc (1, sizeof (die_node
));
5094 die
->die_tag
= tag_value
;
5096 if (parent_die
!= NULL
)
5097 add_child_die (parent_die
, die
);
5100 limbo_die_node
*limbo_node
;
5102 limbo_node
= (limbo_die_node
*) xmalloc (sizeof (limbo_die_node
));
5103 limbo_node
->die
= die
;
5104 limbo_node
->created_for
= t
;
5105 limbo_node
->next
= limbo_die_list
;
5106 limbo_die_list
= limbo_node
;
5112 /* Return the DIE associated with the given type specifier. */
5114 static inline dw_die_ref
5115 lookup_type_die (type
)
5118 return TYPE_SYMTAB_DIE (type
);
5121 /* Equate a DIE to a given type specifier. */
5124 equate_type_number_to_die (type
, type_die
)
5126 dw_die_ref type_die
;
5128 TYPE_SYMTAB_DIE (type
) = type_die
;
5131 /* Return the DIE associated with a given declaration. */
5133 static inline dw_die_ref
5134 lookup_decl_die (decl
)
5137 unsigned decl_id
= DECL_UID (decl
);
5139 return (decl_id
< decl_die_table_in_use
? decl_die_table
[decl_id
] : NULL
);
5142 /* Equate a DIE to a particular declaration. */
5145 equate_decl_number_to_die (decl
, decl_die
)
5147 dw_die_ref decl_die
;
5149 unsigned int decl_id
= DECL_UID (decl
);
5150 unsigned int num_allocated
;
5152 if (decl_id
>= decl_die_table_allocated
)
5155 = ((decl_id
+ 1 + DECL_DIE_TABLE_INCREMENT
- 1)
5156 / DECL_DIE_TABLE_INCREMENT
)
5157 * DECL_DIE_TABLE_INCREMENT
;
5160 = (dw_die_ref
*) xrealloc (decl_die_table
,
5161 sizeof (dw_die_ref
) * num_allocated
);
5163 memset ((char *) &decl_die_table
[decl_die_table_allocated
], 0,
5164 (num_allocated
- decl_die_table_allocated
) * sizeof (dw_die_ref
));
5165 decl_die_table_allocated
= num_allocated
;
5168 if (decl_id
>= decl_die_table_in_use
)
5169 decl_die_table_in_use
= (decl_id
+ 1);
5171 decl_die_table
[decl_id
] = decl_die
;
5174 /* Keep track of the number of spaces used to indent the
5175 output of the debugging routines that print the structure of
5176 the DIE internal representation. */
5177 static int print_indent
;
5179 /* Indent the line the number of spaces given by print_indent. */
5182 print_spaces (outfile
)
5185 fprintf (outfile
, "%*s", print_indent
, "");
5188 /* Print the information associated with a given DIE, and its children.
5189 This routine is a debugging aid only. */
5192 print_die (die
, outfile
)
5199 print_spaces (outfile
);
5200 fprintf (outfile
, "DIE %4lu: %s\n",
5201 die
->die_offset
, dwarf_tag_name (die
->die_tag
));
5202 print_spaces (outfile
);
5203 fprintf (outfile
, " abbrev id: %lu", die
->die_abbrev
);
5204 fprintf (outfile
, " offset: %lu\n", die
->die_offset
);
5206 for (a
= die
->die_attr
; a
!= NULL
; a
= a
->dw_attr_next
)
5208 print_spaces (outfile
);
5209 fprintf (outfile
, " %s: ", dwarf_attr_name (a
->dw_attr
));
5211 switch (AT_class (a
))
5213 case dw_val_class_addr
:
5214 fprintf (outfile
, "address");
5216 case dw_val_class_offset
:
5217 fprintf (outfile
, "offset");
5219 case dw_val_class_loc
:
5220 fprintf (outfile
, "location descriptor");
5222 case dw_val_class_loc_list
:
5223 fprintf (outfile
, "location list -> label:%s",
5224 AT_loc_list (a
)->ll_symbol
);
5226 case dw_val_class_range_list
:
5227 fprintf (outfile
, "range list");
5229 case dw_val_class_const
:
5230 fprintf (outfile
, "%ld", AT_int (a
));
5232 case dw_val_class_unsigned_const
:
5233 fprintf (outfile
, "%lu", AT_unsigned (a
));
5235 case dw_val_class_long_long
:
5236 fprintf (outfile
, "constant (%lu,%lu)",
5237 a
->dw_attr_val
.v
.val_long_long
.hi
,
5238 a
->dw_attr_val
.v
.val_long_long
.low
);
5240 case dw_val_class_float
:
5241 fprintf (outfile
, "floating-point constant");
5243 case dw_val_class_flag
:
5244 fprintf (outfile
, "%u", AT_flag (a
));
5246 case dw_val_class_die_ref
:
5247 if (AT_ref (a
) != NULL
)
5249 if (AT_ref (a
)->die_symbol
)
5250 fprintf (outfile
, "die -> label: %s", AT_ref (a
)->die_symbol
);
5252 fprintf (outfile
, "die -> %lu", AT_ref (a
)->die_offset
);
5255 fprintf (outfile
, "die -> <null>");
5257 case dw_val_class_lbl_id
:
5258 case dw_val_class_lbl_offset
:
5259 fprintf (outfile
, "label: %s", AT_lbl (a
));
5261 case dw_val_class_str
:
5262 if (AT_string (a
) != NULL
)
5263 fprintf (outfile
, "\"%s\"", AT_string (a
));
5265 fprintf (outfile
, "<null>");
5271 fprintf (outfile
, "\n");
5274 if (die
->die_child
!= NULL
)
5277 for (c
= die
->die_child
; c
!= NULL
; c
= c
->die_sib
)
5278 print_die (c
, outfile
);
5282 if (print_indent
== 0)
5283 fprintf (outfile
, "\n");
5286 /* Print the contents of the source code line number correspondence table.
5287 This routine is a debugging aid only. */
5290 print_dwarf_line_table (outfile
)
5294 dw_line_info_ref line_info
;
5296 fprintf (outfile
, "\n\nDWARF source line information\n");
5297 for (i
= 1; i
< line_info_table_in_use
; i
++)
5299 line_info
= &line_info_table
[i
];
5300 fprintf (outfile
, "%5d: ", i
);
5301 fprintf (outfile
, "%-20s", file_table
.table
[line_info
->dw_file_num
]);
5302 fprintf (outfile
, "%6ld", line_info
->dw_line_num
);
5303 fprintf (outfile
, "\n");
5306 fprintf (outfile
, "\n\n");
5309 /* Print the information collected for a given DIE. */
5312 debug_dwarf_die (die
)
5315 print_die (die
, stderr
);
5318 /* Print all DWARF information collected for the compilation unit.
5319 This routine is a debugging aid only. */
5325 print_die (comp_unit_die
, stderr
);
5326 if (! DWARF2_ASM_LINE_DEBUG_INFO
)
5327 print_dwarf_line_table (stderr
);
5330 /* We build up the lists of children and attributes by pushing new ones
5331 onto the beginning of the list. Reverse the lists for DIE so that
5332 they are in order of addition. */
5335 reverse_die_lists (die
)
5338 dw_die_ref c
, cp
, cn
;
5339 dw_attr_ref a
, ap
, an
;
5341 for (a
= die
->die_attr
, ap
= 0; a
; a
= an
)
5343 an
= a
->dw_attr_next
;
5344 a
->dw_attr_next
= ap
;
5350 for (c
= die
->die_child
, cp
= 0; c
; c
= cn
)
5357 die
->die_child
= cp
;
5360 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5361 reverse all dies in add_sibling_attributes, which runs through all the dies,
5362 it would reverse all the dies. Now, however, since we don't call
5363 reverse_die_lists in add_sibling_attributes, we need a routine to
5364 recursively reverse all the dies. This is that routine. */
5367 reverse_all_dies (die
)
5372 reverse_die_lists (die
);
5374 for (c
= die
->die_child
; c
; c
= c
->die_sib
)
5375 reverse_all_dies (c
);
5378 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5379 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5380 DIE that marks the start of the DIEs for this include file. */
5383 push_new_compile_unit (old_unit
, bincl_die
)
5384 dw_die_ref old_unit
, bincl_die
;
5386 const char *filename
= get_AT_string (bincl_die
, DW_AT_name
);
5387 dw_die_ref new_unit
= gen_compile_unit_die (filename
);
5389 new_unit
->die_sib
= old_unit
;
5393 /* Close an include-file CU and reopen the enclosing one. */
5396 pop_compile_unit (old_unit
)
5397 dw_die_ref old_unit
;
5399 dw_die_ref new_unit
= old_unit
->die_sib
;
5401 old_unit
->die_sib
= NULL
;
5405 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5406 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5408 /* Calculate the checksum of a location expression. */
5411 loc_checksum (loc
, ctx
)
5412 dw_loc_descr_ref loc
;
5413 struct md5_ctx
*ctx
;
5415 CHECKSUM (loc
->dw_loc_opc
);
5416 CHECKSUM (loc
->dw_loc_oprnd1
);
5417 CHECKSUM (loc
->dw_loc_oprnd2
);
5420 /* Calculate the checksum of an attribute. */
5423 attr_checksum (at
, ctx
)
5425 struct md5_ctx
*ctx
;
5427 dw_loc_descr_ref loc
;
5430 CHECKSUM (at
->dw_attr
);
5432 /* We don't care about differences in file numbering. */
5433 if (at
->dw_attr
== DW_AT_decl_file
5434 /* Or that this was compiled with a different compiler snapshot; if
5435 the output is the same, that's what matters. */
5436 || at
->dw_attr
== DW_AT_producer
)
5439 switch (AT_class (at
))
5441 case dw_val_class_const
:
5442 CHECKSUM (at
->dw_attr_val
.v
.val_int
);
5444 case dw_val_class_unsigned_const
:
5445 CHECKSUM (at
->dw_attr_val
.v
.val_unsigned
);
5447 case dw_val_class_long_long
:
5448 CHECKSUM (at
->dw_attr_val
.v
.val_long_long
);
5450 case dw_val_class_float
:
5451 CHECKSUM (at
->dw_attr_val
.v
.val_float
);
5453 case dw_val_class_flag
:
5454 CHECKSUM (at
->dw_attr_val
.v
.val_flag
);
5456 case dw_val_class_str
:
5457 CHECKSUM_STRING (AT_string (at
));
5460 case dw_val_class_addr
:
5462 switch (GET_CODE (r
))
5465 CHECKSUM_STRING (XSTR (r
, 0));
5473 case dw_val_class_offset
:
5474 CHECKSUM (at
->dw_attr_val
.v
.val_offset
);
5477 case dw_val_class_loc
:
5478 for (loc
= AT_loc (at
); loc
; loc
= loc
->dw_loc_next
)
5479 loc_checksum (loc
, ctx
);
5482 case dw_val_class_die_ref
:
5483 if (AT_ref (at
)->die_offset
)
5484 CHECKSUM (AT_ref (at
)->die_offset
);
5485 /* FIXME else use target die name or something. */
5487 case dw_val_class_fde_ref
:
5488 case dw_val_class_lbl_id
:
5489 case dw_val_class_lbl_offset
:
5497 /* Calculate the checksum of a DIE. */
5500 die_checksum (die
, ctx
)
5502 struct md5_ctx
*ctx
;
5507 CHECKSUM (die
->die_tag
);
5509 for (a
= die
->die_attr
; a
; a
= a
->dw_attr_next
)
5510 attr_checksum (a
, ctx
);
5512 for (c
= die
->die_child
; c
; c
= c
->die_sib
)
5513 die_checksum (c
, ctx
);
5517 #undef CHECKSUM_STRING
5519 /* The prefix to attach to symbols on DIEs in the current comdat debug
5521 static char *comdat_symbol_id
;
5523 /* The index of the current symbol within the current comdat CU. */
5524 static unsigned int comdat_symbol_number
;
5526 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5527 children, and set comdat_symbol_id accordingly. */
5530 compute_section_prefix (unit_die
)
5531 dw_die_ref unit_die
;
5533 const char *base
= lbasename (get_AT_string (unit_die
, DW_AT_name
));
5534 char *name
= (char *) alloca (strlen (base
) + 64);
5537 unsigned char checksum
[16];
5540 /* Compute the checksum of the DIE, then append part of it as hex digits to
5541 the name filename of the unit. */
5543 md5_init_ctx (&ctx
);
5544 die_checksum (unit_die
, &ctx
);
5545 md5_finish_ctx (&ctx
, checksum
);
5547 sprintf (name
, "%s.", base
);
5548 clean_symbol_name (name
);
5550 p
= name
+ strlen (name
);
5551 for (i
= 0; i
< 4; i
++)
5553 sprintf (p
, "%.2x", checksum
[i
]);
5557 comdat_symbol_id
= unit_die
->die_symbol
= xstrdup (name
);
5558 comdat_symbol_number
= 0;
5561 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
5567 switch (die
->die_tag
)
5569 case DW_TAG_array_type
:
5570 case DW_TAG_class_type
:
5571 case DW_TAG_enumeration_type
:
5572 case DW_TAG_pointer_type
:
5573 case DW_TAG_reference_type
:
5574 case DW_TAG_string_type
:
5575 case DW_TAG_structure_type
:
5576 case DW_TAG_subroutine_type
:
5577 case DW_TAG_union_type
:
5578 case DW_TAG_ptr_to_member_type
:
5579 case DW_TAG_set_type
:
5580 case DW_TAG_subrange_type
:
5581 case DW_TAG_base_type
:
5582 case DW_TAG_const_type
:
5583 case DW_TAG_file_type
:
5584 case DW_TAG_packed_type
:
5585 case DW_TAG_volatile_type
:
5592 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
5593 Basically, we want to choose the bits that are likely to be shared between
5594 compilations (types) and leave out the bits that are specific to individual
5595 compilations (functions). */
5601 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
5602 we do for stabs. The advantage is a greater likelihood of sharing between
5603 objects that don't include headers in the same order (and therefore would
5604 put the base types in a different comdat). jason 8/28/00 */
5606 if (c
->die_tag
== DW_TAG_base_type
)
5609 if (c
->die_tag
== DW_TAG_pointer_type
5610 || c
->die_tag
== DW_TAG_reference_type
5611 || c
->die_tag
== DW_TAG_const_type
5612 || c
->die_tag
== DW_TAG_volatile_type
)
5614 dw_die_ref t
= get_AT_ref (c
, DW_AT_type
);
5616 return t
? is_comdat_die (t
) : 0;
5619 return is_type_die (c
);
5622 /* Returns 1 iff C is the sort of DIE that might be referred to from another
5623 compilation unit. */
5629 return (is_type_die (c
)
5630 || (get_AT (c
, DW_AT_declaration
)
5631 && !get_AT (c
, DW_AT_specification
)));
5635 gen_internal_sym (prefix
)
5639 static int label_num
;
5641 ASM_GENERATE_INTERNAL_LABEL (buf
, prefix
, label_num
++);
5642 return xstrdup (buf
);
5645 /* Assign symbols to all worthy DIEs under DIE. */
5648 assign_symbol_names (die
)
5653 if (is_symbol_die (die
))
5655 if (comdat_symbol_id
)
5657 char *p
= alloca (strlen (comdat_symbol_id
) + 64);
5659 sprintf (p
, "%s.%s.%x", DIE_LABEL_PREFIX
,
5660 comdat_symbol_id
, comdat_symbol_number
++);
5661 die
->die_symbol
= xstrdup (p
);
5664 die
->die_symbol
= gen_internal_sym ("LDIE");
5667 for (c
= die
->die_child
; c
!= NULL
; c
= c
->die_sib
)
5668 assign_symbol_names (c
);
5671 /* Traverse the DIE (which is always comp_unit_die), and set up
5672 additional compilation units for each of the include files we see
5673 bracketed by BINCL/EINCL. */
5676 break_out_includes (die
)
5680 dw_die_ref unit
= NULL
;
5681 limbo_die_node
*node
;
5683 for (ptr
= &(die
->die_child
); *ptr
;)
5685 dw_die_ref c
= *ptr
;
5687 if (c
->die_tag
== DW_TAG_GNU_BINCL
|| c
->die_tag
== DW_TAG_GNU_EINCL
5688 || (unit
&& is_comdat_die (c
)))
5690 /* This DIE is for a secondary CU; remove it from the main one. */
5693 if (c
->die_tag
== DW_TAG_GNU_BINCL
)
5695 unit
= push_new_compile_unit (unit
, c
);
5698 else if (c
->die_tag
== DW_TAG_GNU_EINCL
)
5700 unit
= pop_compile_unit (unit
);
5704 add_child_die (unit
, c
);
5708 /* Leave this DIE in the main CU. */
5709 ptr
= &(c
->die_sib
);
5715 /* We can only use this in debugging, since the frontend doesn't check
5716 to make sure that we leave every include file we enter. */
5721 assign_symbol_names (die
);
5722 for (node
= limbo_die_list
; node
; node
= node
->next
)
5724 compute_section_prefix (node
->die
);
5725 assign_symbol_names (node
->die
);
5729 /* Traverse the DIE and add a sibling attribute if it may have the
5730 effect of speeding up access to siblings. To save some space,
5731 avoid generating sibling attributes for DIE's without children. */
5734 add_sibling_attributes (die
)
5739 if (die
->die_tag
!= DW_TAG_compile_unit
5740 && die
->die_sib
&& die
->die_child
!= NULL
)
5741 /* Add the sibling link to the front of the attribute list. */
5742 add_AT_die_ref (die
, DW_AT_sibling
, die
->die_sib
);
5744 for (c
= die
->die_child
; c
!= NULL
; c
= c
->die_sib
)
5745 add_sibling_attributes (c
);
5748 /* Output all location lists for the DIE and its children. */
5751 output_location_lists (die
)
5757 for (d_attr
= die
->die_attr
; d_attr
; d_attr
= d_attr
->dw_attr_next
)
5758 if (AT_class (d_attr
) == dw_val_class_loc_list
)
5759 output_loc_list (AT_loc_list (d_attr
));
5761 for (c
= die
->die_child
; c
!= NULL
; c
= c
->die_sib
)
5762 output_location_lists (c
);
5766 /* The format of each DIE (and its attribute value pairs) is encoded in an
5767 abbreviation table. This routine builds the abbreviation table and assigns
5768 a unique abbreviation id for each abbreviation entry. The children of each
5769 die are visited recursively. */
5772 build_abbrev_table (die
)
5775 unsigned long abbrev_id
;
5776 unsigned int n_alloc
;
5778 dw_attr_ref d_attr
, a_attr
;
5780 /* Scan the DIE references, and mark as external any that refer to
5781 DIEs from other CUs (i.e. those which are not marked). */
5782 for (d_attr
= die
->die_attr
; d_attr
; d_attr
= d_attr
->dw_attr_next
)
5783 if (AT_class (d_attr
) == dw_val_class_die_ref
5784 && AT_ref (d_attr
)->die_mark
== 0)
5786 if (AT_ref (d_attr
)->die_symbol
== 0)
5789 set_AT_ref_external (d_attr
, 1);
5792 for (abbrev_id
= 1; abbrev_id
< abbrev_die_table_in_use
; ++abbrev_id
)
5794 dw_die_ref abbrev
= abbrev_die_table
[abbrev_id
];
5796 if (abbrev
->die_tag
== die
->die_tag
)
5798 if ((abbrev
->die_child
!= NULL
) == (die
->die_child
!= NULL
))
5800 a_attr
= abbrev
->die_attr
;
5801 d_attr
= die
->die_attr
;
5803 while (a_attr
!= NULL
&& d_attr
!= NULL
)
5805 if ((a_attr
->dw_attr
!= d_attr
->dw_attr
)
5806 || (value_format (a_attr
) != value_format (d_attr
)))
5809 a_attr
= a_attr
->dw_attr_next
;
5810 d_attr
= d_attr
->dw_attr_next
;
5813 if (a_attr
== NULL
&& d_attr
== NULL
)
5819 if (abbrev_id
>= abbrev_die_table_in_use
)
5821 if (abbrev_die_table_in_use
>= abbrev_die_table_allocated
)
5823 n_alloc
= abbrev_die_table_allocated
+ ABBREV_DIE_TABLE_INCREMENT
;
5825 = (dw_die_ref
*) xrealloc (abbrev_die_table
,
5826 sizeof (dw_die_ref
) * n_alloc
);
5828 memset ((char *) &abbrev_die_table
[abbrev_die_table_allocated
], 0,
5829 (n_alloc
- abbrev_die_table_allocated
) * sizeof (dw_die_ref
));
5830 abbrev_die_table_allocated
= n_alloc
;
5833 ++abbrev_die_table_in_use
;
5834 abbrev_die_table
[abbrev_id
] = die
;
5837 die
->die_abbrev
= abbrev_id
;
5838 for (c
= die
->die_child
; c
!= NULL
; c
= c
->die_sib
)
5839 build_abbrev_table (c
);
5842 /* Return the power-of-two number of bytes necessary to represent VALUE. */
5845 constant_size (value
)
5846 long unsigned value
;
5853 log
= floor_log2 (value
);
5856 log
= 1 << (floor_log2 (log
) + 1);
5861 /* Return the size of a DIE as it is represented in the
5862 .debug_info section. */
5864 static unsigned long
5868 unsigned long size
= 0;
5871 size
+= size_of_uleb128 (die
->die_abbrev
);
5872 for (a
= die
->die_attr
; a
!= NULL
; a
= a
->dw_attr_next
)
5874 switch (AT_class (a
))
5876 case dw_val_class_addr
:
5877 size
+= DWARF2_ADDR_SIZE
;
5879 case dw_val_class_offset
:
5880 size
+= DWARF_OFFSET_SIZE
;
5882 case dw_val_class_loc
:
5884 unsigned long lsize
= size_of_locs (AT_loc (a
));
5887 size
+= constant_size (lsize
);
5891 case dw_val_class_loc_list
:
5892 size
+= DWARF_OFFSET_SIZE
;
5894 case dw_val_class_range_list
:
5895 size
+= DWARF_OFFSET_SIZE
;
5897 case dw_val_class_const
:
5898 size
+= size_of_sleb128 (AT_int (a
));
5900 case dw_val_class_unsigned_const
:
5901 size
+= constant_size (AT_unsigned (a
));
5903 case dw_val_class_long_long
:
5904 size
+= 1 + 2*HOST_BITS_PER_LONG
/HOST_BITS_PER_CHAR
; /* block */
5906 case dw_val_class_float
:
5907 size
+= 1 + a
->dw_attr_val
.v
.val_float
.length
* 4; /* block */
5909 case dw_val_class_flag
:
5912 case dw_val_class_die_ref
:
5913 size
+= DWARF_OFFSET_SIZE
;
5915 case dw_val_class_fde_ref
:
5916 size
+= DWARF_OFFSET_SIZE
;
5918 case dw_val_class_lbl_id
:
5919 size
+= DWARF2_ADDR_SIZE
;
5921 case dw_val_class_lbl_offset
:
5922 size
+= DWARF_OFFSET_SIZE
;
5924 case dw_val_class_str
:
5925 if (AT_string_form (a
) == DW_FORM_strp
)
5926 size
+= DWARF_OFFSET_SIZE
;
5928 size
+= HT_LEN (&a
->dw_attr_val
.v
.val_str
->id
) + 1;
5938 /* Size the debugging information associated with a given DIE. Visits the
5939 DIE's children recursively. Updates the global variable next_die_offset, on
5940 each time through. Uses the current value of next_die_offset to update the
5941 die_offset field in each DIE. */
5944 calc_die_sizes (die
)
5949 die
->die_offset
= next_die_offset
;
5950 next_die_offset
+= size_of_die (die
);
5952 for (c
= die
->die_child
; c
!= NULL
; c
= c
->die_sib
)
5955 if (die
->die_child
!= NULL
)
5956 /* Count the null byte used to terminate sibling lists. */
5957 next_die_offset
+= 1;
5960 /* Set the marks for a die and its children. We do this so
5961 that we know whether or not a reference needs to use FORM_ref_addr; only
5962 DIEs in the same CU will be marked. We used to clear out the offset
5963 and use that as the flag, but ran into ordering problems. */
5972 for (c
= die
->die_child
; c
; c
= c
->die_sib
)
5976 /* Clear the marks for a die and its children. */
5985 for (c
= die
->die_child
; c
; c
= c
->die_sib
)
5989 /* Return the size of the .debug_pubnames table generated for the
5990 compilation unit. */
5992 static unsigned long
5998 size
= DWARF_PUBNAMES_HEADER_SIZE
;
5999 for (i
= 0; i
< pubname_table_in_use
; i
++)
6001 pubname_ref p
= &pubname_table
[i
];
6002 size
+= DWARF_OFFSET_SIZE
+ strlen (p
->name
) + 1;
6005 size
+= DWARF_OFFSET_SIZE
;
6009 /* Return the size of the information in the .debug_aranges section. */
6011 static unsigned long
6016 size
= DWARF_ARANGES_HEADER_SIZE
;
6018 /* Count the address/length pair for this compilation unit. */
6019 size
+= 2 * DWARF2_ADDR_SIZE
;
6020 size
+= 2 * DWARF2_ADDR_SIZE
* arange_table_in_use
;
6022 /* Count the two zero words used to terminated the address range table. */
6023 size
+= 2 * DWARF2_ADDR_SIZE
;
6027 /* Select the encoding of an attribute value. */
6029 static enum dwarf_form
6033 switch (a
->dw_attr_val
.val_class
)
6035 case dw_val_class_addr
:
6036 return DW_FORM_addr
;
6037 case dw_val_class_range_list
:
6038 case dw_val_class_offset
:
6039 if (DWARF_OFFSET_SIZE
== 4)
6040 return DW_FORM_data4
;
6041 if (DWARF_OFFSET_SIZE
== 8)
6042 return DW_FORM_data8
;
6044 case dw_val_class_loc_list
:
6045 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6046 .debug_loc section */
6047 return DW_FORM_data4
;
6048 case dw_val_class_loc
:
6049 switch (constant_size (size_of_locs (AT_loc (a
))))
6052 return DW_FORM_block1
;
6054 return DW_FORM_block2
;
6058 case dw_val_class_const
:
6059 return DW_FORM_sdata
;
6060 case dw_val_class_unsigned_const
:
6061 switch (constant_size (AT_unsigned (a
)))
6064 return DW_FORM_data1
;
6066 return DW_FORM_data2
;
6068 return DW_FORM_data4
;
6070 return DW_FORM_data8
;
6074 case dw_val_class_long_long
:
6075 return DW_FORM_block1
;
6076 case dw_val_class_float
:
6077 return DW_FORM_block1
;
6078 case dw_val_class_flag
:
6079 return DW_FORM_flag
;
6080 case dw_val_class_die_ref
:
6081 if (AT_ref_external (a
))
6082 return DW_FORM_ref_addr
;
6085 case dw_val_class_fde_ref
:
6086 return DW_FORM_data
;
6087 case dw_val_class_lbl_id
:
6088 return DW_FORM_addr
;
6089 case dw_val_class_lbl_offset
:
6090 return DW_FORM_data
;
6091 case dw_val_class_str
:
6092 return AT_string_form (a
);
6099 /* Output the encoding of an attribute value. */
6102 output_value_format (a
)
6105 enum dwarf_form form
= value_format (a
);
6107 dw2_asm_output_data_uleb128 (form
, "(%s)", dwarf_form_name (form
));
6110 /* Output the .debug_abbrev section which defines the DIE abbreviation
6114 output_abbrev_section ()
6116 unsigned long abbrev_id
;
6120 for (abbrev_id
= 1; abbrev_id
< abbrev_die_table_in_use
; ++abbrev_id
)
6122 dw_die_ref abbrev
= abbrev_die_table
[abbrev_id
];
6124 dw2_asm_output_data_uleb128 (abbrev_id
, "(abbrev code)");
6125 dw2_asm_output_data_uleb128 (abbrev
->die_tag
, "(TAG: %s)",
6126 dwarf_tag_name (abbrev
->die_tag
));
6128 if (abbrev
->die_child
!= NULL
)
6129 dw2_asm_output_data (1, DW_children_yes
, "DW_children_yes");
6131 dw2_asm_output_data (1, DW_children_no
, "DW_children_no");
6133 for (a_attr
= abbrev
->die_attr
; a_attr
!= NULL
;
6134 a_attr
= a_attr
->dw_attr_next
)
6136 dw2_asm_output_data_uleb128 (a_attr
->dw_attr
, "(%s)",
6137 dwarf_attr_name (a_attr
->dw_attr
));
6138 output_value_format (a_attr
);
6141 dw2_asm_output_data (1, 0, NULL
);
6142 dw2_asm_output_data (1, 0, NULL
);
6145 /* Terminate the table. */
6146 dw2_asm_output_data (1, 0, NULL
);
6149 /* Output a symbol we can use to refer to this DIE from another CU. */
6152 output_die_symbol (die
)
6155 char *sym
= die
->die_symbol
;
6160 if (strncmp (sym
, DIE_LABEL_PREFIX
, sizeof (DIE_LABEL_PREFIX
) - 1) == 0)
6161 /* We make these global, not weak; if the target doesn't support
6162 .linkonce, it doesn't support combining the sections, so debugging
6164 (*targetm
.asm_out
.globalize_label
) (asm_out_file
, sym
);
6166 ASM_OUTPUT_LABEL (asm_out_file
, sym
);
6169 /* Return a new location list, given the begin and end range, and the
6170 expression. gensym tells us whether to generate a new internal symbol for
6171 this location list node, which is done for the head of the list only. */
6173 static inline dw_loc_list_ref
6174 new_loc_list (expr
, begin
, end
, section
, gensym
)
6175 dw_loc_descr_ref expr
;
6178 const char *section
;
6181 dw_loc_list_ref retlist
6182 = (dw_loc_list_ref
) xcalloc (1, sizeof (dw_loc_list_node
));
6184 retlist
->begin
= begin
;
6186 retlist
->expr
= expr
;
6187 retlist
->section
= section
;
6189 retlist
->ll_symbol
= gen_internal_sym ("LLST");
6194 /* Add a location description expression to a location list */
6197 add_loc_descr_to_loc_list (list_head
, descr
, begin
, end
, section
)
6198 dw_loc_list_ref
*list_head
;
6199 dw_loc_descr_ref descr
;
6202 const char *section
;
6206 /* Find the end of the chain. */
6207 for (d
= list_head
; (*d
) != NULL
; d
= &(*d
)->dw_loc_next
)
6210 /* Add a new location list node to the list */
6211 *d
= new_loc_list (descr
, begin
, end
, section
, 0);
6214 /* Output the location list given to us */
6217 output_loc_list (list_head
)
6218 dw_loc_list_ref list_head
;
6220 dw_loc_list_ref curr
= list_head
;
6222 ASM_OUTPUT_LABEL (asm_out_file
, list_head
->ll_symbol
);
6224 /* ??? This shouldn't be needed now that we've forced the
6225 compilation unit base address to zero when there is code
6226 in more than one section. */
6227 if (strcmp (curr
->section
, ".text") == 0)
6229 /* dw2_asm_output_data will mask off any extra bits in the ~0. */
6230 dw2_asm_output_data (DWARF2_ADDR_SIZE
, ~(unsigned HOST_WIDE_INT
) 0,
6231 "Location list base address specifier fake entry");
6232 dw2_asm_output_offset (DWARF2_ADDR_SIZE
, curr
->section
,
6233 "Location list base address specifier base");
6236 for (curr
= list_head
; curr
!= NULL
; curr
= curr
->dw_loc_next
)
6240 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, curr
->begin
, curr
->section
,
6241 "Location list begin address (%s)",
6242 list_head
->ll_symbol
);
6243 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, curr
->end
, curr
->section
,
6244 "Location list end address (%s)",
6245 list_head
->ll_symbol
);
6246 size
= size_of_locs (curr
->expr
);
6248 /* Output the block length for this list of location operations. */
6251 dw2_asm_output_data (2, size
, "%s", "Location expression size");
6253 output_loc_sequence (curr
->expr
);
6256 dw2_asm_output_data (DWARF_OFFSET_SIZE
, 0,
6257 "Location list terminator begin (%s)",
6258 list_head
->ll_symbol
);
6259 dw2_asm_output_data (DWARF_OFFSET_SIZE
, 0,
6260 "Location list terminator end (%s)",
6261 list_head
->ll_symbol
);
6264 /* Output the DIE and its attributes. Called recursively to generate
6265 the definitions of each child DIE. */
6275 /* If someone in another CU might refer to us, set up a symbol for
6276 them to point to. */
6277 if (die
->die_symbol
)
6278 output_die_symbol (die
);
6280 dw2_asm_output_data_uleb128 (die
->die_abbrev
, "(DIE (0x%lx) %s)",
6281 die
->die_offset
, dwarf_tag_name (die
->die_tag
));
6283 for (a
= die
->die_attr
; a
!= NULL
; a
= a
->dw_attr_next
)
6285 const char *name
= dwarf_attr_name (a
->dw_attr
);
6287 switch (AT_class (a
))
6289 case dw_val_class_addr
:
6290 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE
, AT_addr (a
), "%s", name
);
6293 case dw_val_class_offset
:
6294 dw2_asm_output_data (DWARF_OFFSET_SIZE
, a
->dw_attr_val
.v
.val_offset
,
6298 case dw_val_class_range_list
:
6300 char *p
= strchr (ranges_section_label
, '\0');
6302 sprintf (p
, "+0x%lx", a
->dw_attr_val
.v
.val_offset
);
6303 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, ranges_section_label
,
6309 case dw_val_class_loc
:
6310 size
= size_of_locs (AT_loc (a
));
6312 /* Output the block length for this list of location operations. */
6313 dw2_asm_output_data (constant_size (size
), size
, "%s", name
);
6315 output_loc_sequence (AT_loc (a
));
6318 case dw_val_class_const
:
6319 /* ??? It would be slightly more efficient to use a scheme like is
6320 used for unsigned constants below, but gdb 4.x does not sign
6321 extend. Gdb 5.x does sign extend. */
6322 dw2_asm_output_data_sleb128 (AT_int (a
), "%s", name
);
6325 case dw_val_class_unsigned_const
:
6326 dw2_asm_output_data (constant_size (AT_unsigned (a
)),
6327 AT_unsigned (a
), "%s", name
);
6330 case dw_val_class_long_long
:
6332 unsigned HOST_WIDE_INT first
, second
;
6334 dw2_asm_output_data (1,
6335 2 * HOST_BITS_PER_LONG
/ HOST_BITS_PER_CHAR
,
6338 if (WORDS_BIG_ENDIAN
)
6340 first
= a
->dw_attr_val
.v
.val_long_long
.hi
;
6341 second
= a
->dw_attr_val
.v
.val_long_long
.low
;
6345 first
= a
->dw_attr_val
.v
.val_long_long
.low
;
6346 second
= a
->dw_attr_val
.v
.val_long_long
.hi
;
6349 dw2_asm_output_data (HOST_BITS_PER_LONG
/ HOST_BITS_PER_CHAR
,
6350 first
, "long long constant");
6351 dw2_asm_output_data (HOST_BITS_PER_LONG
/ HOST_BITS_PER_CHAR
,
6356 case dw_val_class_float
:
6360 dw2_asm_output_data (1, a
->dw_attr_val
.v
.val_float
.length
* 4,
6363 for (i
= 0; i
< a
->dw_attr_val
.v
.val_float
.length
; i
++)
6364 dw2_asm_output_data (4, a
->dw_attr_val
.v
.val_float
.array
[i
],
6365 "fp constant word %u", i
);
6369 case dw_val_class_flag
:
6370 dw2_asm_output_data (1, AT_flag (a
), "%s", name
);
6373 case dw_val_class_loc_list
:
6375 char *sym
= AT_loc_list (a
)->ll_symbol
;
6379 dw2_asm_output_delta (DWARF_OFFSET_SIZE
, sym
,
6380 loc_section_label
, "%s", name
);
6384 case dw_val_class_die_ref
:
6385 if (AT_ref_external (a
))
6387 char *sym
= AT_ref (a
)->die_symbol
;
6391 dw2_asm_output_offset (DWARF2_ADDR_SIZE
, sym
, "%s", name
);
6393 else if (AT_ref (a
)->die_offset
== 0)
6396 dw2_asm_output_data (DWARF_OFFSET_SIZE
, AT_ref (a
)->die_offset
,
6400 case dw_val_class_fde_ref
:
6404 ASM_GENERATE_INTERNAL_LABEL (l1
, FDE_LABEL
,
6405 a
->dw_attr_val
.v
.val_fde_index
* 2);
6406 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, l1
, "%s", name
);
6410 case dw_val_class_lbl_id
:
6411 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, AT_lbl (a
), "%s", name
);
6414 case dw_val_class_lbl_offset
:
6415 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, AT_lbl (a
), "%s", name
);
6418 case dw_val_class_str
:
6419 if (AT_string_form (a
) == DW_FORM_strp
)
6420 dw2_asm_output_offset (DWARF_OFFSET_SIZE
,
6421 a
->dw_attr_val
.v
.val_str
->label
,
6422 "%s: \"%s\"", name
, AT_string (a
));
6424 dw2_asm_output_nstring (AT_string (a
), -1, "%s", name
);
6432 for (c
= die
->die_child
; c
!= NULL
; c
= c
->die_sib
)
6435 /* Add null byte to terminate sibling list. */
6436 if (die
->die_child
!= NULL
)
6437 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6441 /* Output the compilation unit that appears at the beginning of the
6442 .debug_info section, and precedes the DIE descriptions. */
6445 output_compilation_unit_header ()
6447 dw2_asm_output_data (DWARF_OFFSET_SIZE
, next_die_offset
- DWARF_OFFSET_SIZE
,
6448 "Length of Compilation Unit Info");
6449 dw2_asm_output_data (2, DWARF_VERSION
, "DWARF version number");
6450 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, abbrev_section_label
,
6451 "Offset Into Abbrev. Section");
6452 dw2_asm_output_data (1, DWARF2_ADDR_SIZE
, "Pointer Size (in bytes)");
6455 /* Output the compilation unit DIE and its children. */
6458 output_comp_unit (die
)
6461 const char *secname
;
6463 /* Even if there are no children of this DIE, we must output the information
6464 about the compilation unit. Otherwise, on an empty translation unit, we
6465 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
6466 will then complain when examining the file. First mark all the DIEs in
6467 this CU so we know which get local refs. */
6470 build_abbrev_table (die
);
6472 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
6473 next_die_offset
= DWARF_COMPILE_UNIT_HEADER_SIZE
;
6474 calc_die_sizes (die
);
6476 if (die
->die_symbol
)
6478 char *tmp
= (char *) alloca (strlen (die
->die_symbol
) + 24);
6480 sprintf (tmp
, ".gnu.linkonce.wi.%s", die
->die_symbol
);
6482 die
->die_symbol
= NULL
;
6485 secname
= (const char *) DEBUG_INFO_SECTION
;
6487 /* Output debugging information. */
6488 named_section_flags (secname
, SECTION_DEBUG
);
6489 output_compilation_unit_header ();
6492 /* Leave the marks on the main CU, so we can check them in
6494 if (die
->die_symbol
)
6498 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
6499 output of lang_hooks.decl_printable_name for C++ looks like
6500 "A::f(int)". Let's drop the argument list, and maybe the scope. */
6503 dwarf2_name (decl
, scope
)
6507 return (*lang_hooks
.decl_printable_name
) (decl
, scope
? 1 : 0);
6510 /* Add a new entry to .debug_pubnames if appropriate. */
6513 add_pubname (decl
, die
)
6519 if (! TREE_PUBLIC (decl
))
6522 if (pubname_table_in_use
== pubname_table_allocated
)
6524 pubname_table_allocated
+= PUBNAME_TABLE_INCREMENT
;
6526 = (pubname_ref
) xrealloc (pubname_table
,
6527 (pubname_table_allocated
6528 * sizeof (pubname_entry
)));
6531 p
= &pubname_table
[pubname_table_in_use
++];
6533 p
->name
= xstrdup (dwarf2_name (decl
, 1));
6536 /* Output the public names table used to speed up access to externally
6537 visible names. For now, only generate entries for externally
6538 visible procedures. */
6544 unsigned long pubnames_length
= size_of_pubnames ();
6546 dw2_asm_output_data (DWARF_OFFSET_SIZE
, pubnames_length
,
6547 "Length of Public Names Info");
6548 dw2_asm_output_data (2, DWARF_VERSION
, "DWARF Version");
6549 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, debug_info_section_label
,
6550 "Offset of Compilation Unit Info");
6551 dw2_asm_output_data (DWARF_OFFSET_SIZE
, next_die_offset
,
6552 "Compilation Unit Length");
6554 for (i
= 0; i
< pubname_table_in_use
; i
++)
6556 pubname_ref pub
= &pubname_table
[i
];
6558 /* We shouldn't see pubnames for DIEs outside of the main CU. */
6559 if (pub
->die
->die_mark
== 0)
6562 dw2_asm_output_data (DWARF_OFFSET_SIZE
, pub
->die
->die_offset
,
6565 dw2_asm_output_nstring (pub
->name
, -1, "external name");
6568 dw2_asm_output_data (DWARF_OFFSET_SIZE
, 0, NULL
);
6571 /* Add a new entry to .debug_aranges if appropriate. */
6574 add_arange (decl
, die
)
6578 if (! DECL_SECTION_NAME (decl
))
6581 if (arange_table_in_use
== arange_table_allocated
)
6583 arange_table_allocated
+= ARANGE_TABLE_INCREMENT
;
6584 arange_table
= (dw_die_ref
*)
6585 xrealloc (arange_table
, arange_table_allocated
* sizeof (dw_die_ref
));
6588 arange_table
[arange_table_in_use
++] = die
;
6591 /* Output the information that goes into the .debug_aranges table.
6592 Namely, define the beginning and ending address range of the
6593 text section generated for this compilation unit. */
6599 unsigned long aranges_length
= size_of_aranges ();
6601 dw2_asm_output_data (DWARF_OFFSET_SIZE
, aranges_length
,
6602 "Length of Address Ranges Info");
6603 dw2_asm_output_data (2, DWARF_VERSION
, "DWARF Version");
6604 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, debug_info_section_label
,
6605 "Offset of Compilation Unit Info");
6606 dw2_asm_output_data (1, DWARF2_ADDR_SIZE
, "Size of Address");
6607 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
6609 /* We need to align to twice the pointer size here. */
6610 if (DWARF_ARANGES_PAD_SIZE
)
6612 /* Pad using a 2 byte words so that padding is correct for any
6614 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
6615 2 * DWARF2_ADDR_SIZE
);
6616 for (i
= 2; i
< (unsigned) DWARF_ARANGES_PAD_SIZE
; i
+= 2)
6617 dw2_asm_output_data (2, 0, NULL
);
6620 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, text_section_label
, "Address");
6621 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, text_end_label
,
6622 text_section_label
, "Length");
6624 for (i
= 0; i
< arange_table_in_use
; i
++)
6626 dw_die_ref die
= arange_table
[i
];
6628 /* We shouldn't see aranges for DIEs outside of the main CU. */
6629 if (die
->die_mark
== 0)
6632 if (die
->die_tag
== DW_TAG_subprogram
)
6634 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, get_AT_low_pc (die
),
6636 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, get_AT_hi_pc (die
),
6637 get_AT_low_pc (die
), "Length");
6641 /* A static variable; extract the symbol from DW_AT_location.
6642 Note that this code isn't currently hit, as we only emit
6643 aranges for functions (jason 9/23/99). */
6644 dw_attr_ref a
= get_AT (die
, DW_AT_location
);
6645 dw_loc_descr_ref loc
;
6647 if (! a
|| AT_class (a
) != dw_val_class_loc
)
6651 if (loc
->dw_loc_opc
!= DW_OP_addr
)
6654 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE
,
6655 loc
->dw_loc_oprnd1
.v
.val_addr
, "Address");
6656 dw2_asm_output_data (DWARF2_ADDR_SIZE
,
6657 get_AT_unsigned (die
, DW_AT_byte_size
),
6662 /* Output the terminator words. */
6663 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
6664 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
6667 /* Add a new entry to .debug_ranges. Return the offset at which it
6674 unsigned int in_use
= ranges_table_in_use
;
6676 if (in_use
== ranges_table_allocated
)
6678 ranges_table_allocated
+= RANGES_TABLE_INCREMENT
;
6679 ranges_table
= (dw_ranges_ref
)
6680 xrealloc (ranges_table
, (ranges_table_allocated
6681 * sizeof (struct dw_ranges_struct
)));
6684 ranges_table
[in_use
].block_num
= (block
? BLOCK_NUMBER (block
) : 0);
6685 ranges_table_in_use
= in_use
+ 1;
6687 return in_use
* 2 * DWARF2_ADDR_SIZE
;
6694 static const char *const start_fmt
= "Offset 0x%x";
6695 const char *fmt
= start_fmt
;
6697 for (i
= 0; i
< ranges_table_in_use
; i
++)
6699 int block_num
= ranges_table
[i
].block_num
;
6703 char blabel
[MAX_ARTIFICIAL_LABEL_BYTES
];
6704 char elabel
[MAX_ARTIFICIAL_LABEL_BYTES
];
6706 ASM_GENERATE_INTERNAL_LABEL (blabel
, BLOCK_BEGIN_LABEL
, block_num
);
6707 ASM_GENERATE_INTERNAL_LABEL (elabel
, BLOCK_END_LABEL
, block_num
);
6709 /* If all code is in the text section, then the compilation
6710 unit base address defaults to DW_AT_low_pc, which is the
6711 base of the text section. */
6712 if (separate_line_info_table_in_use
== 0)
6714 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, blabel
,
6716 fmt
, i
* 2 * DWARF2_ADDR_SIZE
);
6717 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, elabel
,
6718 text_section_label
, NULL
);
6721 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
6722 compilation unit base address to zero, which allows us to
6723 use absolute addresses, and not worry about whether the
6724 target supports cross-section arithmetic. */
6727 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, blabel
,
6728 fmt
, i
* 2 * DWARF2_ADDR_SIZE
);
6729 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, elabel
, NULL
);
6736 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
6737 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
6743 /* Data structure containing information about input files. */
6746 char *path
; /* Complete file name. */
6747 char *fname
; /* File name part. */
6748 int length
; /* Length of entire string. */
6749 int file_idx
; /* Index in input file table. */
6750 int dir_idx
; /* Index in directory table. */
6753 /* Data structure containing information about directories with source
6757 char *path
; /* Path including directory name. */
6758 int length
; /* Path length. */
6759 int prefix
; /* Index of directory entry which is a prefix. */
6760 int count
; /* Number of files in this directory. */
6761 int dir_idx
; /* Index of directory used as base. */
6762 int used
; /* Used in the end? */
6765 /* Callback function for file_info comparison. We sort by looking at
6766 the directories in the path. */
6769 file_info_cmp (p1
, p2
)
6773 const struct file_info
*s1
= p1
;
6774 const struct file_info
*s2
= p2
;
6778 /* Take care of file names without directories. We need to make sure that
6779 we return consistent values to qsort since some will get confused if
6780 we return the same value when identical operands are passed in opposite
6781 orders. So if neither has a directory, return 0 and otherwise return
6782 1 or -1 depending on which one has the directory. */
6783 if ((s1
->path
== s1
->fname
|| s2
->path
== s2
->fname
))
6784 return (s2
->path
== s2
->fname
) - (s1
->path
== s1
->fname
);
6786 cp1
= (unsigned char *) s1
->path
;
6787 cp2
= (unsigned char *) s2
->path
;
6793 /* Reached the end of the first path? If so, handle like above. */
6794 if ((cp1
== (unsigned char *) s1
->fname
)
6795 || (cp2
== (unsigned char *) s2
->fname
))
6796 return ((cp2
== (unsigned char *) s2
->fname
)
6797 - (cp1
== (unsigned char *) s1
->fname
));
6799 /* Character of current path component the same? */
6800 else if (*cp1
!= *cp2
)
6805 /* Output the directory table and the file name table. We try to minimize
6806 the total amount of memory needed. A heuristic is used to avoid large
6807 slowdowns with many input files. */
6810 output_file_names ()
6812 struct file_info
*files
;
6813 struct dir_info
*dirs
;
6822 /* Allocate the various arrays we need. */
6823 files
= (struct file_info
*) alloca (file_table
.in_use
6824 * sizeof (struct file_info
));
6825 dirs
= (struct dir_info
*) alloca (file_table
.in_use
6826 * sizeof (struct dir_info
));
6828 /* Sort the file names. */
6829 for (i
= 1; i
< (int) file_table
.in_use
; i
++)
6833 /* Skip all leading "./". */
6834 f
= file_table
.table
[i
];
6835 while (f
[0] == '.' && f
[1] == '/')
6838 /* Create a new array entry. */
6840 files
[i
].length
= strlen (f
);
6841 files
[i
].file_idx
= i
;
6843 /* Search for the file name part. */
6844 f
= strrchr (f
, '/');
6845 files
[i
].fname
= f
== NULL
? files
[i
].path
: f
+ 1;
6848 qsort (files
+ 1, file_table
.in_use
- 1, sizeof (files
[0]), file_info_cmp
);
6850 /* Find all the different directories used. */
6851 dirs
[0].path
= files
[1].path
;
6852 dirs
[0].length
= files
[1].fname
- files
[1].path
;
6853 dirs
[0].prefix
= -1;
6855 dirs
[0].dir_idx
= 0;
6857 files
[1].dir_idx
= 0;
6860 for (i
= 2; i
< (int) file_table
.in_use
; i
++)
6861 if (files
[i
].fname
- files
[i
].path
== dirs
[ndirs
- 1].length
6862 && memcmp (dirs
[ndirs
- 1].path
, files
[i
].path
,
6863 dirs
[ndirs
- 1].length
) == 0)
6865 /* Same directory as last entry. */
6866 files
[i
].dir_idx
= ndirs
- 1;
6867 ++dirs
[ndirs
- 1].count
;
6873 /* This is a new directory. */
6874 dirs
[ndirs
].path
= files
[i
].path
;
6875 dirs
[ndirs
].length
= files
[i
].fname
- files
[i
].path
;
6876 dirs
[ndirs
].count
= 1;
6877 dirs
[ndirs
].dir_idx
= ndirs
;
6878 dirs
[ndirs
].used
= 0;
6879 files
[i
].dir_idx
= ndirs
;
6881 /* Search for a prefix. */
6882 dirs
[ndirs
].prefix
= -1;
6883 for (j
= 0; j
< ndirs
; j
++)
6884 if (dirs
[j
].length
< dirs
[ndirs
].length
6885 && dirs
[j
].length
> 1
6886 && (dirs
[ndirs
].prefix
== -1
6887 || dirs
[j
].length
> dirs
[dirs
[ndirs
].prefix
].length
)
6888 && memcmp (dirs
[j
].path
, dirs
[ndirs
].path
, dirs
[j
].length
) == 0)
6889 dirs
[ndirs
].prefix
= j
;
6894 /* Now to the actual work. We have to find a subset of the directories which
6895 allow expressing the file name using references to the directory table
6896 with the least amount of characters. We do not do an exhaustive search
6897 where we would have to check out every combination of every single
6898 possible prefix. Instead we use a heuristic which provides nearly optimal
6899 results in most cases and never is much off. */
6900 saved
= (int *) alloca (ndirs
* sizeof (int));
6901 savehere
= (int *) alloca (ndirs
* sizeof (int));
6903 memset (saved
, '\0', ndirs
* sizeof (saved
[0]));
6904 for (i
= 0; i
< ndirs
; i
++)
6909 /* We can always save some space for the current directory. But this
6910 does not mean it will be enough to justify adding the directory. */
6911 savehere
[i
] = dirs
[i
].length
;
6912 total
= (savehere
[i
] - saved
[i
]) * dirs
[i
].count
;
6914 for (j
= i
+ 1; j
< ndirs
; j
++)
6917 if (saved
[j
] < dirs
[i
].length
)
6919 /* Determine whether the dirs[i] path is a prefix of the
6924 while (k
!= -1 && k
!= i
)
6929 /* Yes it is. We can possibly safe some memory but
6930 writing the filenames in dirs[j] relative to
6932 savehere
[j
] = dirs
[i
].length
;
6933 total
+= (savehere
[j
] - saved
[j
]) * dirs
[j
].count
;
6938 /* Check whether we can safe enough to justify adding the dirs[i]
6940 if (total
> dirs
[i
].length
+ 1)
6942 /* It's worthwhile adding. */
6943 for (j
= i
; j
< ndirs
; j
++)
6944 if (savehere
[j
] > 0)
6946 /* Remember how much we saved for this directory so far. */
6947 saved
[j
] = savehere
[j
];
6949 /* Remember the prefix directory. */
6950 dirs
[j
].dir_idx
= i
;
6955 /* We have to emit them in the order they appear in the file_table array
6956 since the index is used in the debug info generation. To do this
6957 efficiently we generate a back-mapping of the indices first. */
6958 backmap
= (int *) alloca (file_table
.in_use
* sizeof (int));
6959 for (i
= 1; i
< (int) file_table
.in_use
; i
++)
6961 backmap
[files
[i
].file_idx
] = i
;
6963 /* Mark this directory as used. */
6964 dirs
[dirs
[files
[i
].dir_idx
].dir_idx
].used
= 1;
6967 /* That was it. We are ready to emit the information. First emit the
6968 directory name table. We have to make sure the first actually emitted
6969 directory name has index one; zero is reserved for the current working
6970 directory. Make sure we do not confuse these indices with the one for the
6971 constructed table (even though most of the time they are identical). */
6973 idx_offset
= dirs
[0].length
> 0 ? 1 : 0;
6974 for (i
= 1 - idx_offset
; i
< ndirs
; i
++)
6975 if (dirs
[i
].used
!= 0)
6977 dirs
[i
].used
= idx
++;
6978 dw2_asm_output_nstring (dirs
[i
].path
, dirs
[i
].length
- 1,
6979 "Directory Entry: 0x%x", dirs
[i
].used
);
6982 dw2_asm_output_data (1, 0, "End directory table");
6984 /* Correct the index for the current working directory entry if it
6986 if (idx_offset
== 0)
6989 /* Now write all the file names. */
6990 for (i
= 1; i
< (int) file_table
.in_use
; i
++)
6992 int file_idx
= backmap
[i
];
6993 int dir_idx
= dirs
[files
[file_idx
].dir_idx
].dir_idx
;
6995 dw2_asm_output_nstring (files
[file_idx
].path
+ dirs
[dir_idx
].length
, -1,
6996 "File Entry: 0x%x", i
);
6998 /* Include directory index. */
6999 dw2_asm_output_data_uleb128 (dirs
[dir_idx
].used
, NULL
);
7001 /* Modification time. */
7002 dw2_asm_output_data_uleb128 (0, NULL
);
7004 /* File length in bytes. */
7005 dw2_asm_output_data_uleb128 (0, NULL
);
7008 dw2_asm_output_data (1, 0, "End file name table");
7012 /* Output the source line number correspondence information. This
7013 information goes into the .debug_line section. */
7018 char l1
[20], l2
[20], p1
[20], p2
[20];
7019 char line_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
7020 char prev_line_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
7023 unsigned long lt_index
;
7024 unsigned long current_line
;
7027 unsigned long current_file
;
7028 unsigned long function
;
7030 ASM_GENERATE_INTERNAL_LABEL (l1
, LINE_NUMBER_BEGIN_LABEL
, 0);
7031 ASM_GENERATE_INTERNAL_LABEL (l2
, LINE_NUMBER_END_LABEL
, 0);
7032 ASM_GENERATE_INTERNAL_LABEL (p1
, LN_PROLOG_AS_LABEL
, 0);
7033 ASM_GENERATE_INTERNAL_LABEL (p2
, LN_PROLOG_END_LABEL
, 0);
7035 dw2_asm_output_delta (DWARF_OFFSET_SIZE
, l2
, l1
,
7036 "Length of Source Line Info");
7037 ASM_OUTPUT_LABEL (asm_out_file
, l1
);
7039 dw2_asm_output_data (2, DWARF_VERSION
, "DWARF Version");
7040 dw2_asm_output_delta (DWARF_OFFSET_SIZE
, p2
, p1
, "Prolog Length");
7041 ASM_OUTPUT_LABEL (asm_out_file
, p1
);
7043 /* Define the architecture-dependent minimum instruction length (in
7044 bytes). In this implementation of DWARF, this field is used for
7045 information purposes only. Since GCC generates assembly language,
7046 we have no a priori knowledge of how many instruction bytes are
7047 generated for each source line, and therefore can use only the
7048 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7049 commands. Accordingly, we fix this as `1', which is "correct
7050 enough" for all architectures, and don't let the target override. */
7051 dw2_asm_output_data (1, 1,
7052 "Minimum Instruction Length");
7054 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START
,
7055 "Default is_stmt_start flag");
7056 dw2_asm_output_data (1, DWARF_LINE_BASE
,
7057 "Line Base Value (Special Opcodes)");
7058 dw2_asm_output_data (1, DWARF_LINE_RANGE
,
7059 "Line Range Value (Special Opcodes)");
7060 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE
,
7061 "Special Opcode Base");
7063 for (opc
= 1; opc
< DWARF_LINE_OPCODE_BASE
; opc
++)
7067 case DW_LNS_advance_pc
:
7068 case DW_LNS_advance_line
:
7069 case DW_LNS_set_file
:
7070 case DW_LNS_set_column
:
7071 case DW_LNS_fixed_advance_pc
:
7079 dw2_asm_output_data (1, n_op_args
, "opcode: 0x%x has %d args",
7083 /* Write out the information about the files we use. */
7084 output_file_names ();
7085 ASM_OUTPUT_LABEL (asm_out_file
, p2
);
7087 /* We used to set the address register to the first location in the text
7088 section here, but that didn't accomplish anything since we already
7089 have a line note for the opening brace of the first function. */
7091 /* Generate the line number to PC correspondence table, encoded as
7092 a series of state machine operations. */
7095 strcpy (prev_line_label
, text_section_label
);
7096 for (lt_index
= 1; lt_index
< line_info_table_in_use
; ++lt_index
)
7098 dw_line_info_ref line_info
= &line_info_table
[lt_index
];
7101 /* Disable this optimization for now; GDB wants to see two line notes
7102 at the beginning of a function so it can find the end of the
7105 /* Don't emit anything for redundant notes. Just updating the
7106 address doesn't accomplish anything, because we already assume
7107 that anything after the last address is this line. */
7108 if (line_info
->dw_line_num
== current_line
7109 && line_info
->dw_file_num
== current_file
)
7113 /* Emit debug info for the address of the current line.
7115 Unfortunately, we have little choice here currently, and must always
7116 use the most general form. GCC does not know the address delta
7117 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7118 attributes which will give an upper bound on the address range. We
7119 could perhaps use length attributes to determine when it is safe to
7120 use DW_LNS_fixed_advance_pc. */
7122 ASM_GENERATE_INTERNAL_LABEL (line_label
, LINE_CODE_LABEL
, lt_index
);
7125 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7126 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc
,
7127 "DW_LNS_fixed_advance_pc");
7128 dw2_asm_output_delta (2, line_label
, prev_line_label
, NULL
);
7132 /* This can handle any delta. This takes
7133 4+DWARF2_ADDR_SIZE bytes. */
7134 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7135 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
7136 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
7137 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, line_label
, NULL
);
7140 strcpy (prev_line_label
, line_label
);
7142 /* Emit debug info for the source file of the current line, if
7143 different from the previous line. */
7144 if (line_info
->dw_file_num
!= current_file
)
7146 current_file
= line_info
->dw_file_num
;
7147 dw2_asm_output_data (1, DW_LNS_set_file
, "DW_LNS_set_file");
7148 dw2_asm_output_data_uleb128 (current_file
, "(\"%s\")",
7149 file_table
.table
[current_file
]);
7152 /* Emit debug info for the current line number, choosing the encoding
7153 that uses the least amount of space. */
7154 if (line_info
->dw_line_num
!= current_line
)
7156 line_offset
= line_info
->dw_line_num
- current_line
;
7157 line_delta
= line_offset
- DWARF_LINE_BASE
;
7158 current_line
= line_info
->dw_line_num
;
7159 if (line_delta
>= 0 && line_delta
< (DWARF_LINE_RANGE
- 1))
7160 /* This can handle deltas from -10 to 234, using the current
7161 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7163 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE
+ line_delta
,
7164 "line %lu", current_line
);
7167 /* This can handle any delta. This takes at least 4 bytes,
7168 depending on the value being encoded. */
7169 dw2_asm_output_data (1, DW_LNS_advance_line
,
7170 "advance to line %lu", current_line
);
7171 dw2_asm_output_data_sleb128 (line_offset
, NULL
);
7172 dw2_asm_output_data (1, DW_LNS_copy
, "DW_LNS_copy");
7176 /* We still need to start a new row, so output a copy insn. */
7177 dw2_asm_output_data (1, DW_LNS_copy
, "DW_LNS_copy");
7180 /* Emit debug info for the address of the end of the function. */
7183 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc
,
7184 "DW_LNS_fixed_advance_pc");
7185 dw2_asm_output_delta (2, text_end_label
, prev_line_label
, NULL
);
7189 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7190 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
7191 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
7192 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, text_end_label
, NULL
);
7195 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7196 dw2_asm_output_data_uleb128 (1, NULL
);
7197 dw2_asm_output_data (1, DW_LNE_end_sequence
, NULL
);
7202 for (lt_index
= 0; lt_index
< separate_line_info_table_in_use
;)
7204 dw_separate_line_info_ref line_info
7205 = &separate_line_info_table
[lt_index
];
7208 /* Don't emit anything for redundant notes. */
7209 if (line_info
->dw_line_num
== current_line
7210 && line_info
->dw_file_num
== current_file
7211 && line_info
->function
== function
)
7215 /* Emit debug info for the address of the current line. If this is
7216 a new function, or the first line of a function, then we need
7217 to handle it differently. */
7218 ASM_GENERATE_INTERNAL_LABEL (line_label
, SEPARATE_LINE_CODE_LABEL
,
7220 if (function
!= line_info
->function
)
7222 function
= line_info
->function
;
7224 /* Set the address register to the first line in the function */
7225 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7226 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
7227 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
7228 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, line_label
, NULL
);
7232 /* ??? See the DW_LNS_advance_pc comment above. */
7235 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc
,
7236 "DW_LNS_fixed_advance_pc");
7237 dw2_asm_output_delta (2, line_label
, prev_line_label
, NULL
);
7241 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7242 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
7243 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
7244 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, line_label
, NULL
);
7248 strcpy (prev_line_label
, line_label
);
7250 /* Emit debug info for the source file of the current line, if
7251 different from the previous line. */
7252 if (line_info
->dw_file_num
!= current_file
)
7254 current_file
= line_info
->dw_file_num
;
7255 dw2_asm_output_data (1, DW_LNS_set_file
, "DW_LNS_set_file");
7256 dw2_asm_output_data_uleb128 (current_file
, "(\"%s\")",
7257 file_table
.table
[current_file
]);
7260 /* Emit debug info for the current line number, choosing the encoding
7261 that uses the least amount of space. */
7262 if (line_info
->dw_line_num
!= current_line
)
7264 line_offset
= line_info
->dw_line_num
- current_line
;
7265 line_delta
= line_offset
- DWARF_LINE_BASE
;
7266 current_line
= line_info
->dw_line_num
;
7267 if (line_delta
>= 0 && line_delta
< (DWARF_LINE_RANGE
- 1))
7268 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE
+ line_delta
,
7269 "line %lu", current_line
);
7272 dw2_asm_output_data (1, DW_LNS_advance_line
,
7273 "advance to line %lu", current_line
);
7274 dw2_asm_output_data_sleb128 (line_offset
, NULL
);
7275 dw2_asm_output_data (1, DW_LNS_copy
, "DW_LNS_copy");
7279 dw2_asm_output_data (1, DW_LNS_copy
, "DW_LNS_copy");
7287 /* If we're done with a function, end its sequence. */
7288 if (lt_index
== separate_line_info_table_in_use
7289 || separate_line_info_table
[lt_index
].function
!= function
)
7294 /* Emit debug info for the address of the end of the function. */
7295 ASM_GENERATE_INTERNAL_LABEL (line_label
, FUNC_END_LABEL
, function
);
7298 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc
,
7299 "DW_LNS_fixed_advance_pc");
7300 dw2_asm_output_delta (2, line_label
, prev_line_label
, NULL
);
7304 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7305 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
7306 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
7307 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, line_label
, NULL
);
7310 /* Output the marker for the end of this sequence. */
7311 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7312 dw2_asm_output_data_uleb128 (1, NULL
);
7313 dw2_asm_output_data (1, DW_LNE_end_sequence
, NULL
);
7317 /* Output the marker for the end of the line number info. */
7318 ASM_OUTPUT_LABEL (asm_out_file
, l2
);
7321 /* Given a pointer to a tree node for some base type, return a pointer to
7322 a DIE that describes the given type.
7324 This routine must only be called for GCC type nodes that correspond to
7325 Dwarf base (fundamental) types. */
7328 base_type_die (type
)
7331 dw_die_ref base_type_result
;
7332 const char *type_name
;
7333 enum dwarf_type encoding
;
7334 tree name
= TYPE_NAME (type
);
7336 if (TREE_CODE (type
) == ERROR_MARK
|| TREE_CODE (type
) == VOID_TYPE
)
7341 if (TREE_CODE (name
) == TYPE_DECL
)
7342 name
= DECL_NAME (name
);
7344 type_name
= IDENTIFIER_POINTER (name
);
7347 type_name
= "__unknown__";
7349 switch (TREE_CODE (type
))
7352 /* Carefully distinguish the C character types, without messing
7353 up if the language is not C. Note that we check only for the names
7354 that contain spaces; other names might occur by coincidence in other
7356 if (! (TYPE_PRECISION (type
) == CHAR_TYPE_SIZE
7357 && (type
== char_type_node
7358 || ! strcmp (type_name
, "signed char")
7359 || ! strcmp (type_name
, "unsigned char"))))
7361 if (TREE_UNSIGNED (type
))
7362 encoding
= DW_ATE_unsigned
;
7364 encoding
= DW_ATE_signed
;
7367 /* else fall through. */
7370 /* GNU Pascal/Ada CHAR type. Not used in C. */
7371 if (TREE_UNSIGNED (type
))
7372 encoding
= DW_ATE_unsigned_char
;
7374 encoding
= DW_ATE_signed_char
;
7378 encoding
= DW_ATE_float
;
7381 /* Dwarf2 doesn't know anything about complex ints, so use
7382 a user defined type for it. */
7384 if (TREE_CODE (TREE_TYPE (type
)) == REAL_TYPE
)
7385 encoding
= DW_ATE_complex_float
;
7387 encoding
= DW_ATE_lo_user
;
7391 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7392 encoding
= DW_ATE_boolean
;
7396 /* No other TREE_CODEs are Dwarf fundamental types. */
7400 base_type_result
= new_die (DW_TAG_base_type
, comp_unit_die
, type
);
7401 if (demangle_name_func
)
7402 type_name
= (*demangle_name_func
) (type_name
);
7404 add_AT_string (base_type_result
, DW_AT_name
, type_name
);
7405 add_AT_unsigned (base_type_result
, DW_AT_byte_size
,
7406 int_size_in_bytes (type
));
7407 add_AT_unsigned (base_type_result
, DW_AT_encoding
, encoding
);
7409 return base_type_result
;
7412 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7413 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7414 a given type is generally the same as the given type, except that if the
7415 given type is a pointer or reference type, then the root type of the given
7416 type is the root type of the "basis" type for the pointer or reference
7417 type. (This definition of the "root" type is recursive.) Also, the root
7418 type of a `const' qualified type or a `volatile' qualified type is the
7419 root type of the given type without the qualifiers. */
7425 if (TREE_CODE (type
) == ERROR_MARK
)
7426 return error_mark_node
;
7428 switch (TREE_CODE (type
))
7431 return error_mark_node
;
7434 case REFERENCE_TYPE
:
7435 return type_main_variant (root_type (TREE_TYPE (type
)));
7438 return type_main_variant (type
);
7442 /* Given a pointer to an arbitrary ..._TYPE tree node, return non-zero if the
7443 given input type is a Dwarf "fundamental" type. Otherwise return null. */
7449 switch (TREE_CODE (type
))
7464 case QUAL_UNION_TYPE
:
7469 case REFERENCE_TYPE
:
7483 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
7484 entry that chains various modifiers in front of the given type. */
7487 modified_type_die (type
, is_const_type
, is_volatile_type
, context_die
)
7490 int is_volatile_type
;
7491 dw_die_ref context_die
;
7493 enum tree_code code
= TREE_CODE (type
);
7494 dw_die_ref mod_type_die
= NULL
;
7495 dw_die_ref sub_die
= NULL
;
7496 tree item_type
= NULL
;
7498 if (code
!= ERROR_MARK
)
7500 tree qualified_type
;
7502 /* See if we already have the appropriately qualified variant of
7505 = get_qualified_type (type
,
7506 ((is_const_type
? TYPE_QUAL_CONST
: 0)
7508 ? TYPE_QUAL_VOLATILE
: 0)));
7510 /* If we do, then we can just use its DIE, if it exists. */
7513 mod_type_die
= lookup_type_die (qualified_type
);
7515 return mod_type_die
;
7518 /* Handle C typedef types. */
7519 if (qualified_type
&& TYPE_NAME (qualified_type
)
7520 && TREE_CODE (TYPE_NAME (qualified_type
)) == TYPE_DECL
7521 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type
)))
7523 tree type_name
= TYPE_NAME (qualified_type
);
7524 tree dtype
= TREE_TYPE (type_name
);
7526 if (qualified_type
== dtype
)
7528 /* For a named type, use the typedef. */
7529 gen_type_die (qualified_type
, context_die
);
7530 mod_type_die
= lookup_type_die (qualified_type
);
7532 else if (is_const_type
< TYPE_READONLY (dtype
)
7533 || is_volatile_type
< TYPE_VOLATILE (dtype
))
7534 /* cv-unqualified version of named type. Just use the unnamed
7535 type to which it refers. */
7537 = modified_type_die (DECL_ORIGINAL_TYPE (type_name
),
7538 is_const_type
, is_volatile_type
,
7541 /* Else cv-qualified version of named type; fall through. */
7547 else if (is_const_type
)
7549 mod_type_die
= new_die (DW_TAG_const_type
, comp_unit_die
, type
);
7550 sub_die
= modified_type_die (type
, 0, is_volatile_type
, context_die
);
7552 else if (is_volatile_type
)
7554 mod_type_die
= new_die (DW_TAG_volatile_type
, comp_unit_die
, type
);
7555 sub_die
= modified_type_die (type
, 0, 0, context_die
);
7557 else if (code
== POINTER_TYPE
)
7559 mod_type_die
= new_die (DW_TAG_pointer_type
, comp_unit_die
, type
);
7560 add_AT_unsigned (mod_type_die
, DW_AT_byte_size
, PTR_SIZE
);
7562 add_AT_unsigned (mod_type_die
, DW_AT_address_class
, 0);
7564 item_type
= TREE_TYPE (type
);
7566 else if (code
== REFERENCE_TYPE
)
7568 mod_type_die
= new_die (DW_TAG_reference_type
, comp_unit_die
, type
);
7569 add_AT_unsigned (mod_type_die
, DW_AT_byte_size
, PTR_SIZE
);
7571 add_AT_unsigned (mod_type_die
, DW_AT_address_class
, 0);
7573 item_type
= TREE_TYPE (type
);
7575 else if (is_base_type (type
))
7576 mod_type_die
= base_type_die (type
);
7579 gen_type_die (type
, context_die
);
7581 /* We have to get the type_main_variant here (and pass that to the
7582 `lookup_type_die' routine) because the ..._TYPE node we have
7583 might simply be a *copy* of some original type node (where the
7584 copy was created to help us keep track of typedef names) and
7585 that copy might have a different TYPE_UID from the original
7587 if (TREE_CODE (type
) != VECTOR_TYPE
)
7588 mod_type_die
= lookup_type_die (type_main_variant (type
));
7590 /* Vectors have the debugging information in the type,
7591 not the main variant. */
7592 mod_type_die
= lookup_type_die (type
);
7593 if (mod_type_die
== NULL
)
7597 /* We want to equate the qualified type to the die below. */
7598 type
= qualified_type
;
7602 equate_type_number_to_die (type
, mod_type_die
);
7604 /* We must do this after the equate_type_number_to_die call, in case
7605 this is a recursive type. This ensures that the modified_type_die
7606 recursion will terminate even if the type is recursive. Recursive
7607 types are possible in Ada. */
7608 sub_die
= modified_type_die (item_type
,
7609 TYPE_READONLY (item_type
),
7610 TYPE_VOLATILE (item_type
),
7613 if (sub_die
!= NULL
)
7614 add_AT_die_ref (mod_type_die
, DW_AT_type
, sub_die
);
7616 return mod_type_die
;
7619 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
7620 an enumerated type. */
7626 return TREE_CODE (type
) == ENUMERAL_TYPE
;
7629 /* Return the register number described by a given RTL node. */
7635 unsigned regno
= REGNO (rtl
);
7637 if (regno
>= FIRST_PSEUDO_REGISTER
)
7640 return DBX_REGISTER_NUMBER (regno
);
7643 /* Return a location descriptor that designates a machine register or
7644 zero if there is no such. */
7646 static dw_loc_descr_ref
7647 reg_loc_descriptor (rtl
)
7650 dw_loc_descr_ref loc_result
= NULL
;
7653 if (REGNO (rtl
) >= FIRST_PSEUDO_REGISTER
)
7656 reg
= reg_number (rtl
);
7658 loc_result
= new_loc_descr (DW_OP_reg0
+ reg
, 0, 0);
7660 loc_result
= new_loc_descr (DW_OP_regx
, reg
, 0);
7665 /* Return a location descriptor that designates a constant. */
7667 static dw_loc_descr_ref
7668 int_loc_descriptor (i
)
7671 enum dwarf_location_atom op
;
7673 /* Pick the smallest representation of a constant, rather than just
7674 defaulting to the LEB encoding. */
7678 op
= DW_OP_lit0
+ i
;
7681 else if (i
<= 0xffff)
7683 else if (HOST_BITS_PER_WIDE_INT
== 32
7693 else if (i
>= -0x8000)
7695 else if (HOST_BITS_PER_WIDE_INT
== 32
7696 || i
>= -0x80000000)
7702 return new_loc_descr (op
, i
, 0);
7705 /* Return a location descriptor that designates a base+offset location. */
7707 static dw_loc_descr_ref
7708 based_loc_descr (reg
, offset
)
7712 dw_loc_descr_ref loc_result
;
7713 /* For the "frame base", we use the frame pointer or stack pointer
7714 registers, since the RTL for local variables is relative to one of
7716 unsigned fp_reg
= DBX_REGISTER_NUMBER (frame_pointer_needed
7717 ? HARD_FRAME_POINTER_REGNUM
7718 : STACK_POINTER_REGNUM
);
7721 loc_result
= new_loc_descr (DW_OP_fbreg
, offset
, 0);
7723 loc_result
= new_loc_descr (DW_OP_breg0
+ reg
, offset
, 0);
7725 loc_result
= new_loc_descr (DW_OP_bregx
, reg
, offset
);
7730 /* Return true if this RTL expression describes a base+offset calculation. */
7736 return (GET_CODE (rtl
) == PLUS
7737 && ((GET_CODE (XEXP (rtl
, 0)) == REG
7738 && REGNO (XEXP (rtl
, 0)) < FIRST_PSEUDO_REGISTER
7739 && GET_CODE (XEXP (rtl
, 1)) == CONST_INT
)));
7742 /* The following routine converts the RTL for a variable or parameter
7743 (resident in memory) into an equivalent Dwarf representation of a
7744 mechanism for getting the address of that same variable onto the top of a
7745 hypothetical "address evaluation" stack.
7747 When creating memory location descriptors, we are effectively transforming
7748 the RTL for a memory-resident object into its Dwarf postfix expression
7749 equivalent. This routine recursively descends an RTL tree, turning
7750 it into Dwarf postfix code as it goes.
7752 MODE is the mode of the memory reference, needed to handle some
7753 autoincrement addressing modes.
7755 Return 0 if we can't represent the location. */
7757 static dw_loc_descr_ref
7758 mem_loc_descriptor (rtl
, mode
)
7760 enum machine_mode mode
;
7762 dw_loc_descr_ref mem_loc_result
= NULL
;
7764 /* Note that for a dynamically sized array, the location we will generate a
7765 description of here will be the lowest numbered location which is
7766 actually within the array. That's *not* necessarily the same as the
7767 zeroth element of the array. */
7769 #ifdef ASM_SIMPLIFY_DWARF_ADDR
7770 rtl
= ASM_SIMPLIFY_DWARF_ADDR (rtl
);
7773 switch (GET_CODE (rtl
))
7778 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
7779 just fall into the SUBREG code. */
7781 /* ... fall through ... */
7784 /* The case of a subreg may arise when we have a local (register)
7785 variable or a formal (register) parameter which doesn't quite fill
7786 up an entire register. For now, just assume that it is
7787 legitimate to make the Dwarf info refer to the whole register which
7788 contains the given subreg. */
7789 rtl
= SUBREG_REG (rtl
);
7791 /* ... fall through ... */
7794 /* Whenever a register number forms a part of the description of the
7795 method for calculating the (dynamic) address of a memory resident
7796 object, DWARF rules require the register number be referred to as
7797 a "base register". This distinction is not based in any way upon
7798 what category of register the hardware believes the given register
7799 belongs to. This is strictly DWARF terminology we're dealing with
7800 here. Note that in cases where the location of a memory-resident
7801 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
7802 OP_CONST (0)) the actual DWARF location descriptor that we generate
7803 may just be OP_BASEREG (basereg). This may look deceptively like
7804 the object in question was allocated to a register (rather than in
7805 memory) so DWARF consumers need to be aware of the subtle
7806 distinction between OP_REG and OP_BASEREG. */
7807 if (REGNO (rtl
) < FIRST_PSEUDO_REGISTER
)
7808 mem_loc_result
= based_loc_descr (reg_number (rtl
), 0);
7812 mem_loc_result
= mem_loc_descriptor (XEXP (rtl
, 0), GET_MODE (rtl
));
7813 if (mem_loc_result
!= 0)
7814 add_loc_descr (&mem_loc_result
, new_loc_descr (DW_OP_deref
, 0, 0));
7818 /* Some ports can transform a symbol ref into a label ref, because
7819 the symbol ref is too far away and has to be dumped into a constant
7823 /* Alternatively, the symbol in the constant pool might be referenced
7824 by a different symbol. */
7825 if (GET_CODE (rtl
) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (rtl
))
7828 rtx tmp
= get_pool_constant_mark (rtl
, &marked
);
7830 if (GET_CODE (tmp
) == SYMBOL_REF
)
7833 if (CONSTANT_POOL_ADDRESS_P (tmp
))
7834 get_pool_constant_mark (tmp
, &marked
);
7839 /* If all references to this pool constant were optimized away,
7840 it was not output and thus we can't represent it.
7841 FIXME: might try to use DW_OP_const_value here, though
7842 DW_OP_piece complicates it. */
7847 mem_loc_result
= new_loc_descr (DW_OP_addr
, 0, 0);
7848 mem_loc_result
->dw_loc_oprnd1
.val_class
= dw_val_class_addr
;
7849 mem_loc_result
->dw_loc_oprnd1
.v
.val_addr
= rtl
;
7850 VARRAY_PUSH_RTX (used_rtx_varray
, rtl
);
7854 /* Extract the PLUS expression nested inside and fall into
7856 rtl
= XEXP (rtl
, 1);
7861 /* Turn these into a PLUS expression and fall into the PLUS code
7863 rtl
= gen_rtx_PLUS (word_mode
, XEXP (rtl
, 0),
7864 GEN_INT (GET_CODE (rtl
) == PRE_INC
7865 ? GET_MODE_UNIT_SIZE (mode
)
7866 : -GET_MODE_UNIT_SIZE (mode
)));
7868 /* ... fall through ... */
7872 if (is_based_loc (rtl
))
7873 mem_loc_result
= based_loc_descr (reg_number (XEXP (rtl
, 0)),
7874 INTVAL (XEXP (rtl
, 1)));
7877 mem_loc_result
= mem_loc_descriptor (XEXP (rtl
, 0), mode
);
7878 if (mem_loc_result
== 0)
7881 if (GET_CODE (XEXP (rtl
, 1)) == CONST_INT
7882 && INTVAL (XEXP (rtl
, 1)) >= 0)
7883 add_loc_descr (&mem_loc_result
,
7884 new_loc_descr (DW_OP_plus_uconst
,
7885 INTVAL (XEXP (rtl
, 1)), 0));
7888 add_loc_descr (&mem_loc_result
,
7889 mem_loc_descriptor (XEXP (rtl
, 1), mode
));
7890 add_loc_descr (&mem_loc_result
,
7891 new_loc_descr (DW_OP_plus
, 0, 0));
7898 /* If a pseudo-reg is optimized away, it is possible for it to
7899 be replaced with a MEM containing a multiply. */
7900 dw_loc_descr_ref op0
= mem_loc_descriptor (XEXP (rtl
, 0), mode
);
7901 dw_loc_descr_ref op1
= mem_loc_descriptor (XEXP (rtl
, 1), mode
);
7903 if (op0
== 0 || op1
== 0)
7906 mem_loc_result
= op0
;
7907 add_loc_descr (&mem_loc_result
, op1
);
7908 add_loc_descr (&mem_loc_result
, new_loc_descr (DW_OP_mul
, 0, 0));
7913 mem_loc_result
= int_loc_descriptor (INTVAL (rtl
));
7917 /* If this is a MEM, return its address. Otherwise, we can't
7919 if (GET_CODE (XEXP (rtl
, 0)) == MEM
)
7920 return mem_loc_descriptor (XEXP (XEXP (rtl
, 0), 0), mode
);
7928 return mem_loc_result
;
7931 /* Return a descriptor that describes the concatenation of two locations.
7932 This is typically a complex variable. */
7934 static dw_loc_descr_ref
7935 concat_loc_descriptor (x0
, x1
)
7938 dw_loc_descr_ref cc_loc_result
= NULL
;
7939 dw_loc_descr_ref x0_ref
= loc_descriptor (x0
);
7940 dw_loc_descr_ref x1_ref
= loc_descriptor (x1
);
7942 if (x0_ref
== 0 || x1_ref
== 0)
7945 cc_loc_result
= x0_ref
;
7946 add_loc_descr (&cc_loc_result
,
7947 new_loc_descr (DW_OP_piece
,
7948 GET_MODE_SIZE (GET_MODE (x0
)), 0));
7950 add_loc_descr (&cc_loc_result
, x1_ref
);
7951 add_loc_descr (&cc_loc_result
,
7952 new_loc_descr (DW_OP_piece
,
7953 GET_MODE_SIZE (GET_MODE (x1
)), 0));
7955 return cc_loc_result
;
7958 /* Output a proper Dwarf location descriptor for a variable or parameter
7959 which is either allocated in a register or in a memory location. For a
7960 register, we just generate an OP_REG and the register number. For a
7961 memory location we provide a Dwarf postfix expression describing how to
7962 generate the (dynamic) address of the object onto the address stack.
7964 If we don't know how to describe it, return 0. */
7966 static dw_loc_descr_ref
7967 loc_descriptor (rtl
)
7970 dw_loc_descr_ref loc_result
= NULL
;
7972 switch (GET_CODE (rtl
))
7975 /* The case of a subreg may arise when we have a local (register)
7976 variable or a formal (register) parameter which doesn't quite fill
7977 up an entire register. For now, just assume that it is
7978 legitimate to make the Dwarf info refer to the whole register which
7979 contains the given subreg. */
7980 rtl
= SUBREG_REG (rtl
);
7982 /* ... fall through ... */
7985 loc_result
= reg_loc_descriptor (rtl
);
7989 loc_result
= mem_loc_descriptor (XEXP (rtl
, 0), GET_MODE (rtl
));
7993 loc_result
= concat_loc_descriptor (XEXP (rtl
, 0), XEXP (rtl
, 1));
8003 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8004 up particularly with variable length arrays. If ADDRESSP is nonzero, we are
8005 looking for an address. Otherwise, we return a value. If we can't make a
8006 descriptor, return 0. */
8008 static dw_loc_descr_ref
8009 loc_descriptor_from_tree (loc
, addressp
)
8013 dw_loc_descr_ref ret
, ret1
;
8015 int unsignedp
= TREE_UNSIGNED (TREE_TYPE (loc
));
8016 enum dwarf_location_atom op
;
8018 /* ??? Most of the time we do not take proper care for sign/zero
8019 extending the values properly. Hopefully this won't be a real
8022 switch (TREE_CODE (loc
))
8027 case WITH_RECORD_EXPR
:
8028 case PLACEHOLDER_EXPR
:
8029 /* This case involves extracting fields from an object to determine the
8030 position of other fields. We don't try to encode this here. The
8031 only user of this is Ada, which encodes the needed information using
8032 the names of types. */
8039 /* We can support this only if we can look through conversions and
8040 find an INDIRECT_EXPR. */
8041 for (loc
= TREE_OPERAND (loc
, 0);
8042 TREE_CODE (loc
) == CONVERT_EXPR
|| TREE_CODE (loc
) == NOP_EXPR
8043 || TREE_CODE (loc
) == NON_LVALUE_EXPR
8044 || TREE_CODE (loc
) == VIEW_CONVERT_EXPR
8045 || TREE_CODE (loc
) == SAVE_EXPR
;
8046 loc
= TREE_OPERAND (loc
, 0))
8049 return (TREE_CODE (loc
) == INDIRECT_REF
8050 ? loc_descriptor_from_tree (TREE_OPERAND (loc
, 0), addressp
)
8054 if (DECL_THREAD_LOCAL (loc
))
8058 #ifndef ASM_OUTPUT_DWARF_DTPREL
8059 /* If this is not defined, we have no way to emit the data. */
8063 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8064 look up addresses of objects in the current module. */
8065 if (! (*targetm
.binds_local_p
) (loc
))
8068 rtl
= rtl_for_decl_location (loc
);
8069 if (rtl
== NULL_RTX
)
8072 if (GET_CODE (rtl
) != MEM
)
8074 rtl
= XEXP (rtl
, 0);
8075 if (! CONSTANT_P (rtl
))
8078 ret
= new_loc_descr (INTERNAL_DW_OP_tls_addr
, 0, 0);
8079 ret
->dw_loc_oprnd1
.val_class
= dw_val_class_addr
;
8080 ret
->dw_loc_oprnd1
.v
.val_addr
= rtl
;
8082 ret1
= new_loc_descr (DW_OP_GNU_push_tls_address
, 0, 0);
8083 add_loc_descr (&ret
, ret1
);
8092 rtx rtl
= rtl_for_decl_location (loc
);
8094 if (rtl
== NULL_RTX
)
8096 else if (CONSTANT_P (rtl
))
8098 ret
= new_loc_descr (DW_OP_addr
, 0, 0);
8099 ret
->dw_loc_oprnd1
.val_class
= dw_val_class_addr
;
8100 ret
->dw_loc_oprnd1
.v
.val_addr
= rtl
;
8105 enum machine_mode mode
= GET_MODE (rtl
);
8107 if (GET_CODE (rtl
) == MEM
)
8110 rtl
= XEXP (rtl
, 0);
8113 ret
= mem_loc_descriptor (rtl
, mode
);
8119 ret
= loc_descriptor_from_tree (TREE_OPERAND (loc
, 0), 0);
8124 return loc_descriptor_from_tree (TREE_OPERAND (loc
, 1), addressp
);
8128 case NON_LVALUE_EXPR
:
8129 case VIEW_CONVERT_EXPR
:
8131 return loc_descriptor_from_tree (TREE_OPERAND (loc
, 0), addressp
);
8136 case ARRAY_RANGE_REF
:
8139 HOST_WIDE_INT bitsize
, bitpos
, bytepos
;
8140 enum machine_mode mode
;
8143 obj
= get_inner_reference (loc
, &bitsize
, &bitpos
, &offset
, &mode
,
8144 &unsignedp
, &volatilep
);
8149 ret
= loc_descriptor_from_tree (obj
, 1);
8151 || bitpos
% BITS_PER_UNIT
!= 0 || bitsize
% BITS_PER_UNIT
!= 0)
8154 if (offset
!= NULL_TREE
)
8156 /* Variable offset. */
8157 add_loc_descr (&ret
, loc_descriptor_from_tree (offset
, 0));
8158 add_loc_descr (&ret
, new_loc_descr (DW_OP_plus
, 0, 0));
8164 bytepos
= bitpos
/ BITS_PER_UNIT
;
8166 add_loc_descr (&ret
, new_loc_descr (DW_OP_plus_uconst
, bytepos
, 0));
8167 else if (bytepos
< 0)
8169 add_loc_descr (&ret
, int_loc_descriptor (bytepos
));
8170 add_loc_descr (&ret
, new_loc_descr (DW_OP_plus
, 0, 0));
8176 if (host_integerp (loc
, 0))
8177 ret
= int_loc_descriptor (tree_low_cst (loc
, 0));
8182 case TRUTH_AND_EXPR
:
8183 case TRUTH_ANDIF_EXPR
:
8188 case TRUTH_XOR_EXPR
:
8194 case TRUTH_ORIF_EXPR
:
8199 case TRUNC_DIV_EXPR
:
8207 case TRUNC_MOD_EXPR
:
8220 op
= (unsignedp
? DW_OP_shr
: DW_OP_shra
);
8224 if (TREE_CODE (TREE_OPERAND (loc
, 1)) == INTEGER_CST
8225 && host_integerp (TREE_OPERAND (loc
, 1), 0))
8227 ret
= loc_descriptor_from_tree (TREE_OPERAND (loc
, 0), 0);
8231 add_loc_descr (&ret
,
8232 new_loc_descr (DW_OP_plus_uconst
,
8233 tree_low_cst (TREE_OPERAND (loc
, 1),
8243 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc
, 0))))
8250 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc
, 0))))
8257 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc
, 0))))
8264 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc
, 0))))
8279 ret
= loc_descriptor_from_tree (TREE_OPERAND (loc
, 0), 0);
8280 ret1
= loc_descriptor_from_tree (TREE_OPERAND (loc
, 1), 0);
8281 if (ret
== 0 || ret1
== 0)
8284 add_loc_descr (&ret
, ret1
);
8285 add_loc_descr (&ret
, new_loc_descr (op
, 0, 0));
8288 case TRUTH_NOT_EXPR
:
8302 ret
= loc_descriptor_from_tree (TREE_OPERAND (loc
, 0), 0);
8306 add_loc_descr (&ret
, new_loc_descr (op
, 0, 0));
8310 loc
= build (COND_EXPR
, TREE_TYPE (loc
),
8311 build (LT_EXPR
, integer_type_node
,
8312 TREE_OPERAND (loc
, 0), TREE_OPERAND (loc
, 1)),
8313 TREE_OPERAND (loc
, 1), TREE_OPERAND (loc
, 0));
8315 /* ... fall through ... */
8319 dw_loc_descr_ref lhs
8320 = loc_descriptor_from_tree (TREE_OPERAND (loc
, 1), 0);
8321 dw_loc_descr_ref rhs
8322 = loc_descriptor_from_tree (TREE_OPERAND (loc
, 2), 0);
8323 dw_loc_descr_ref bra_node
, jump_node
, tmp
;
8325 ret
= loc_descriptor_from_tree (TREE_OPERAND (loc
, 0), 0);
8326 if (ret
== 0 || lhs
== 0 || rhs
== 0)
8329 bra_node
= new_loc_descr (DW_OP_bra
, 0, 0);
8330 add_loc_descr (&ret
, bra_node
);
8332 add_loc_descr (&ret
, rhs
);
8333 jump_node
= new_loc_descr (DW_OP_skip
, 0, 0);
8334 add_loc_descr (&ret
, jump_node
);
8336 add_loc_descr (&ret
, lhs
);
8337 bra_node
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
8338 bra_node
->dw_loc_oprnd1
.v
.val_loc
= lhs
;
8340 /* ??? Need a node to point the skip at. Use a nop. */
8341 tmp
= new_loc_descr (DW_OP_nop
, 0, 0);
8342 add_loc_descr (&ret
, tmp
);
8343 jump_node
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
8344 jump_node
->dw_loc_oprnd1
.v
.val_loc
= tmp
;
8352 /* Show if we can't fill the request for an address. */
8353 if (addressp
&& indirect_p
== 0)
8356 /* If we've got an address and don't want one, dereference. */
8357 if (!addressp
&& indirect_p
> 0)
8359 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (loc
));
8361 if (size
> DWARF2_ADDR_SIZE
|| size
== -1)
8363 else if (size
== DWARF2_ADDR_SIZE
)
8366 op
= DW_OP_deref_size
;
8368 add_loc_descr (&ret
, new_loc_descr (op
, size
, 0));
8374 /* Given a value, round it up to the lowest multiple of `boundary'
8375 which is not less than the value itself. */
8377 static inline HOST_WIDE_INT
8378 ceiling (value
, boundary
)
8379 HOST_WIDE_INT value
;
8380 unsigned int boundary
;
8382 return (((value
+ boundary
- 1) / boundary
) * boundary
);
8385 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
8386 pointer to the declared type for the relevant field variable, or return
8387 `integer_type_node' if the given node turns out to be an
8396 if (TREE_CODE (decl
) == ERROR_MARK
)
8397 return integer_type_node
;
8399 type
= DECL_BIT_FIELD_TYPE (decl
);
8400 if (type
== NULL_TREE
)
8401 type
= TREE_TYPE (decl
);
8406 /* Given a pointer to a tree node, return the alignment in bits for
8407 it, or else return BITS_PER_WORD if the node actually turns out to
8408 be an ERROR_MARK node. */
8410 static inline unsigned
8411 simple_type_align_in_bits (type
)
8414 return (TREE_CODE (type
) != ERROR_MARK
) ? TYPE_ALIGN (type
) : BITS_PER_WORD
;
8417 static inline unsigned
8418 simple_decl_align_in_bits (decl
)
8421 return (TREE_CODE (decl
) != ERROR_MARK
) ? DECL_ALIGN (decl
) : BITS_PER_WORD
;
8424 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8425 node, return the size in bits for the type if it is a constant, or else
8426 return the alignment for the type if the type's size is not constant, or
8427 else return BITS_PER_WORD if the type actually turns out to be an
8430 static inline unsigned HOST_WIDE_INT
8431 simple_type_size_in_bits (type
)
8435 if (TREE_CODE (type
) == ERROR_MARK
)
8436 return BITS_PER_WORD
;
8437 else if (TYPE_SIZE (type
) == NULL_TREE
)
8439 else if (host_integerp (TYPE_SIZE (type
), 1))
8440 return tree_low_cst (TYPE_SIZE (type
), 1);
8442 return TYPE_ALIGN (type
);
8445 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
8446 lowest addressed byte of the "containing object" for the given FIELD_DECL,
8447 or return 0 if we are unable to determine what that offset is, either
8448 because the argument turns out to be a pointer to an ERROR_MARK node, or
8449 because the offset is actually variable. (We can't handle the latter case
8452 static HOST_WIDE_INT
8453 field_byte_offset (decl
)
8456 unsigned int type_align_in_bits
;
8457 unsigned int decl_align_in_bits
;
8458 unsigned HOST_WIDE_INT type_size_in_bits
;
8459 HOST_WIDE_INT object_offset_in_bits
;
8461 tree field_size_tree
;
8462 HOST_WIDE_INT bitpos_int
;
8463 HOST_WIDE_INT deepest_bitpos
;
8464 unsigned HOST_WIDE_INT field_size_in_bits
;
8466 if (TREE_CODE (decl
) == ERROR_MARK
)
8468 else if (TREE_CODE (decl
) != FIELD_DECL
)
8471 type
= field_type (decl
);
8472 field_size_tree
= DECL_SIZE (decl
);
8474 /* The size could be unspecified if there was an error, or for
8475 a flexible array member. */
8476 if (! field_size_tree
)
8477 field_size_tree
= bitsize_zero_node
;
8479 /* We cannot yet cope with fields whose positions are variable, so
8480 for now, when we see such things, we simply return 0. Someday, we may
8481 be able to handle such cases, but it will be damn difficult. */
8482 if (! host_integerp (bit_position (decl
), 0))
8485 bitpos_int
= int_bit_position (decl
);
8487 /* If we don't know the size of the field, pretend it's a full word. */
8488 if (host_integerp (field_size_tree
, 1))
8489 field_size_in_bits
= tree_low_cst (field_size_tree
, 1);
8491 field_size_in_bits
= BITS_PER_WORD
;
8493 type_size_in_bits
= simple_type_size_in_bits (type
);
8494 type_align_in_bits
= simple_type_align_in_bits (type
);
8495 decl_align_in_bits
= simple_decl_align_in_bits (decl
);
8497 /* The GCC front-end doesn't make any attempt to keep track of the starting
8498 bit offset (relative to the start of the containing structure type) of the
8499 hypothetical "containing object" for a bit-field. Thus, when computing
8500 the byte offset value for the start of the "containing object" of a
8501 bit-field, we must deduce this information on our own. This can be rather
8502 tricky to do in some cases. For example, handling the following structure
8503 type definition when compiling for an i386/i486 target (which only aligns
8504 long long's to 32-bit boundaries) can be very tricky:
8506 struct S { int field1; long long field2:31; };
8508 Fortunately, there is a simple rule-of-thumb which can be used in such
8509 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
8510 structure shown above. It decides to do this based upon one simple rule
8511 for bit-field allocation. GCC allocates each "containing object" for each
8512 bit-field at the first (i.e. lowest addressed) legitimate alignment
8513 boundary (based upon the required minimum alignment for the declared type
8514 of the field) which it can possibly use, subject to the condition that
8515 there is still enough available space remaining in the containing object
8516 (when allocated at the selected point) to fully accommodate all of the
8517 bits of the bit-field itself.
8519 This simple rule makes it obvious why GCC allocates 8 bytes for each
8520 object of the structure type shown above. When looking for a place to
8521 allocate the "containing object" for `field2', the compiler simply tries
8522 to allocate a 64-bit "containing object" at each successive 32-bit
8523 boundary (starting at zero) until it finds a place to allocate that 64-
8524 bit field such that at least 31 contiguous (and previously unallocated)
8525 bits remain within that selected 64 bit field. (As it turns out, for the
8526 example above, the compiler finds it is OK to allocate the "containing
8527 object" 64-bit field at bit-offset zero within the structure type.)
8529 Here we attempt to work backwards from the limited set of facts we're
8530 given, and we try to deduce from those facts, where GCC must have believed
8531 that the containing object started (within the structure type). The value
8532 we deduce is then used (by the callers of this routine) to generate
8533 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
8534 and, in the case of DW_AT_location, regular fields as well). */
8536 /* Figure out the bit-distance from the start of the structure to the
8537 "deepest" bit of the bit-field. */
8538 deepest_bitpos
= bitpos_int
+ field_size_in_bits
;
8540 /* This is the tricky part. Use some fancy footwork to deduce where the
8541 lowest addressed bit of the containing object must be. */
8542 object_offset_in_bits
= deepest_bitpos
- type_size_in_bits
;
8544 /* Round up to type_align by default. This works best for bitfields. */
8545 object_offset_in_bits
+= type_align_in_bits
- 1;
8546 object_offset_in_bits
/= type_align_in_bits
;
8547 object_offset_in_bits
*= type_align_in_bits
;
8549 if (object_offset_in_bits
> bitpos_int
)
8551 /* Sigh, the decl must be packed. */
8552 object_offset_in_bits
= deepest_bitpos
- type_size_in_bits
;
8554 /* Round up to decl_align instead. */
8555 object_offset_in_bits
+= decl_align_in_bits
- 1;
8556 object_offset_in_bits
/= decl_align_in_bits
;
8557 object_offset_in_bits
*= decl_align_in_bits
;
8560 return object_offset_in_bits
/ BITS_PER_UNIT
;
8563 /* The following routines define various Dwarf attributes and any data
8564 associated with them. */
8566 /* Add a location description attribute value to a DIE.
8568 This emits location attributes suitable for whole variables and
8569 whole parameters. Note that the location attributes for struct fields are
8570 generated by the routine `data_member_location_attribute' below. */
8573 add_AT_location_description (die
, attr_kind
, descr
)
8575 enum dwarf_attribute attr_kind
;
8576 dw_loc_descr_ref descr
;
8579 add_AT_loc (die
, attr_kind
, descr
);
8582 /* Attach the specialized form of location attribute used for data members of
8583 struct and union types. In the special case of a FIELD_DECL node which
8584 represents a bit-field, the "offset" part of this special location
8585 descriptor must indicate the distance in bytes from the lowest-addressed
8586 byte of the containing struct or union type to the lowest-addressed byte of
8587 the "containing object" for the bit-field. (See the `field_byte_offset'
8590 For any given bit-field, the "containing object" is a hypothetical object
8591 (of some integral or enum type) within which the given bit-field lives. The
8592 type of this hypothetical "containing object" is always the same as the
8593 declared type of the individual bit-field itself (for GCC anyway... the
8594 DWARF spec doesn't actually mandate this). Note that it is the size (in
8595 bytes) of the hypothetical "containing object" which will be given in the
8596 DW_AT_byte_size attribute for this bit-field. (See the
8597 `byte_size_attribute' function below.) It is also used when calculating the
8598 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
8602 add_data_member_location_attribute (die
, decl
)
8607 dw_loc_descr_ref loc_descr
= 0;
8609 if (TREE_CODE (decl
) == TREE_VEC
)
8611 /* We're working on the TAG_inheritance for a base class. */
8612 if (TREE_VIA_VIRTUAL (decl
) && is_cxx ())
8614 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
8615 aren't at a fixed offset from all (sub)objects of the same
8616 type. We need to extract the appropriate offset from our
8617 vtable. The following dwarf expression means
8619 BaseAddr = ObAddr + *((*ObAddr) - Offset)
8621 This is specific to the V3 ABI, of course. */
8623 dw_loc_descr_ref tmp
;
8625 /* Make a copy of the object address. */
8626 tmp
= new_loc_descr (DW_OP_dup
, 0, 0);
8627 add_loc_descr (&loc_descr
, tmp
);
8629 /* Extract the vtable address. */
8630 tmp
= new_loc_descr (DW_OP_deref
, 0, 0);
8631 add_loc_descr (&loc_descr
, tmp
);
8633 /* Calculate the address of the offset. */
8634 offset
= tree_low_cst (BINFO_VPTR_FIELD (decl
), 0);
8638 tmp
= int_loc_descriptor (-offset
);
8639 add_loc_descr (&loc_descr
, tmp
);
8640 tmp
= new_loc_descr (DW_OP_minus
, 0, 0);
8641 add_loc_descr (&loc_descr
, tmp
);
8643 /* Extract the offset. */
8644 tmp
= new_loc_descr (DW_OP_deref
, 0, 0);
8645 add_loc_descr (&loc_descr
, tmp
);
8647 /* Add it to the object address. */
8648 tmp
= new_loc_descr (DW_OP_plus
, 0, 0);
8649 add_loc_descr (&loc_descr
, tmp
);
8652 offset
= tree_low_cst (BINFO_OFFSET (decl
), 0);
8655 offset
= field_byte_offset (decl
);
8659 enum dwarf_location_atom op
;
8661 /* The DWARF2 standard says that we should assume that the structure
8662 address is already on the stack, so we can specify a structure field
8663 address by using DW_OP_plus_uconst. */
8665 #ifdef MIPS_DEBUGGING_INFO
8666 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
8667 operator correctly. It works only if we leave the offset on the
8671 op
= DW_OP_plus_uconst
;
8674 loc_descr
= new_loc_descr (op
, offset
, 0);
8677 add_AT_loc (die
, DW_AT_data_member_location
, loc_descr
);
8680 /* Attach an DW_AT_const_value attribute for a variable or a parameter which
8681 does not have a "location" either in memory or in a register. These
8682 things can arise in GNU C when a constant is passed as an actual parameter
8683 to an inlined function. They can also arise in C++ where declared
8684 constants do not necessarily get memory "homes". */
8687 add_const_value_attribute (die
, rtl
)
8691 switch (GET_CODE (rtl
))
8694 /* Note that a CONST_INT rtx could represent either an integer
8695 or a floating-point constant. A CONST_INT is used whenever
8696 the constant will fit into a single word. In all such
8697 cases, the original mode of the constant value is wiped
8698 out, and the CONST_INT rtx is assigned VOIDmode. */
8700 HOST_WIDE_INT val
= INTVAL (rtl
);
8702 /* ??? We really should be using HOST_WIDE_INT throughout. */
8703 if (val
< 0 && (long) val
== val
)
8704 add_AT_int (die
, DW_AT_const_value
, (long) val
);
8705 else if ((unsigned long) val
== (unsigned HOST_WIDE_INT
) val
)
8706 add_AT_unsigned (die
, DW_AT_const_value
, (unsigned long) val
);
8709 #if HOST_BITS_PER_LONG * 2 == HOST_BITS_PER_WIDE_INT
8710 add_AT_long_long (die
, DW_AT_const_value
,
8711 val
>> HOST_BITS_PER_LONG
, val
);
8720 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
8721 floating-point constant. A CONST_DOUBLE is used whenever the
8722 constant requires more than one word in order to be adequately
8723 represented. We output CONST_DOUBLEs as blocks. */
8725 enum machine_mode mode
= GET_MODE (rtl
);
8727 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
8729 unsigned length
= GET_MODE_SIZE (mode
) / 4;
8730 long *array
= (long *) xmalloc (sizeof (long) * length
);
8733 REAL_VALUE_FROM_CONST_DOUBLE (rv
, rtl
);
8737 REAL_VALUE_TO_TARGET_SINGLE (rv
, array
[0]);
8741 REAL_VALUE_TO_TARGET_DOUBLE (rv
, array
);
8746 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv
, array
);
8753 add_AT_float (die
, DW_AT_const_value
, length
, array
);
8757 /* ??? We really should be using HOST_WIDE_INT throughout. */
8758 if (HOST_BITS_PER_LONG
!= HOST_BITS_PER_WIDE_INT
)
8761 add_AT_long_long (die
, DW_AT_const_value
,
8762 CONST_DOUBLE_HIGH (rtl
), CONST_DOUBLE_LOW (rtl
));
8768 add_AT_string (die
, DW_AT_const_value
, XSTR (rtl
, 0));
8774 add_AT_addr (die
, DW_AT_const_value
, rtl
);
8775 VARRAY_PUSH_RTX (used_rtx_varray
, rtl
);
8779 /* In cases where an inlined instance of an inline function is passed
8780 the address of an `auto' variable (which is local to the caller) we
8781 can get a situation where the DECL_RTL of the artificial local
8782 variable (for the inlining) which acts as a stand-in for the
8783 corresponding formal parameter (of the inline function) will look
8784 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
8785 exactly a compile-time constant expression, but it isn't the address
8786 of the (artificial) local variable either. Rather, it represents the
8787 *value* which the artificial local variable always has during its
8788 lifetime. We currently have no way to represent such quasi-constant
8789 values in Dwarf, so for now we just punt and generate nothing. */
8793 /* No other kinds of rtx should be possible here. */
8800 rtl_for_decl_location (decl
)
8805 /* Here we have to decide where we are going to say the parameter "lives"
8806 (as far as the debugger is concerned). We only have a couple of
8807 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
8809 DECL_RTL normally indicates where the parameter lives during most of the
8810 activation of the function. If optimization is enabled however, this
8811 could be either NULL or else a pseudo-reg. Both of those cases indicate
8812 that the parameter doesn't really live anywhere (as far as the code
8813 generation parts of GCC are concerned) during most of the function's
8814 activation. That will happen (for example) if the parameter is never
8815 referenced within the function.
8817 We could just generate a location descriptor here for all non-NULL
8818 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
8819 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
8820 where DECL_RTL is NULL or is a pseudo-reg.
8822 Note however that we can only get away with using DECL_INCOMING_RTL as
8823 a backup substitute for DECL_RTL in certain limited cases. In cases
8824 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
8825 we can be sure that the parameter was passed using the same type as it is
8826 declared to have within the function, and that its DECL_INCOMING_RTL
8827 points us to a place where a value of that type is passed.
8829 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
8830 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
8831 because in these cases DECL_INCOMING_RTL points us to a value of some
8832 type which is *different* from the type of the parameter itself. Thus,
8833 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
8834 such cases, the debugger would end up (for example) trying to fetch a
8835 `float' from a place which actually contains the first part of a
8836 `double'. That would lead to really incorrect and confusing
8837 output at debug-time.
8839 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
8840 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
8841 are a couple of exceptions however. On little-endian machines we can
8842 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
8843 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
8844 an integral type that is smaller than TREE_TYPE (decl). These cases arise
8845 when (on a little-endian machine) a non-prototyped function has a
8846 parameter declared to be of type `short' or `char'. In such cases,
8847 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
8848 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
8849 passed `int' value. If the debugger then uses that address to fetch
8850 a `short' or a `char' (on a little-endian machine) the result will be
8851 the correct data, so we allow for such exceptional cases below.
8853 Note that our goal here is to describe the place where the given formal
8854 parameter lives during most of the function's activation (i.e. between the
8855 end of the prologue and the start of the epilogue). We'll do that as best
8856 as we can. Note however that if the given formal parameter is modified
8857 sometime during the execution of the function, then a stack backtrace (at
8858 debug-time) will show the function as having been called with the *new*
8859 value rather than the value which was originally passed in. This happens
8860 rarely enough that it is not a major problem, but it *is* a problem, and
8863 A future version of dwarf2out.c may generate two additional attributes for
8864 any given DW_TAG_formal_parameter DIE which will describe the "passed
8865 type" and the "passed location" for the given formal parameter in addition
8866 to the attributes we now generate to indicate the "declared type" and the
8867 "active location" for each parameter. This additional set of attributes
8868 could be used by debuggers for stack backtraces. Separately, note that
8869 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
8870 This happens (for example) for inlined-instances of inline function formal
8871 parameters which are never referenced. This really shouldn't be
8872 happening. All PARM_DECL nodes should get valid non-NULL
8873 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate these
8874 values for inlined instances of inline function parameters, so when we see
8875 such cases, we are just out-of-luck for the time being (until integrate.c
8878 /* Use DECL_RTL as the "location" unless we find something better. */
8879 rtl
= DECL_RTL_IF_SET (decl
);
8881 /* When generating abstract instances, ignore everything except
8882 constants and symbols living in memory. */
8883 if (! reload_completed
)
8886 && (CONSTANT_P (rtl
)
8887 || (GET_CODE (rtl
) == MEM
8888 && CONSTANT_P (XEXP (rtl
, 0)))))
8890 #ifdef ASM_SIMPLIFY_DWARF_ADDR
8891 rtl
= ASM_SIMPLIFY_DWARF_ADDR (rtl
);
8897 else if (TREE_CODE (decl
) == PARM_DECL
)
8899 if (rtl
== NULL_RTX
|| is_pseudo_reg (rtl
))
8901 tree declared_type
= type_main_variant (TREE_TYPE (decl
));
8902 tree passed_type
= type_main_variant (DECL_ARG_TYPE (decl
));
8904 /* This decl represents a formal parameter which was optimized out.
8905 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
8906 all cases where (rtl == NULL_RTX) just below. */
8907 if (declared_type
== passed_type
)
8908 rtl
= DECL_INCOMING_RTL (decl
);
8909 else if (! BYTES_BIG_ENDIAN
8910 && TREE_CODE (declared_type
) == INTEGER_TYPE
8911 && (GET_MODE_SIZE (TYPE_MODE (declared_type
))
8912 <= GET_MODE_SIZE (TYPE_MODE (passed_type
))))
8913 rtl
= DECL_INCOMING_RTL (decl
);
8916 /* If the parm was passed in registers, but lives on the stack, then
8917 make a big endian correction if the mode of the type of the
8918 parameter is not the same as the mode of the rtl. */
8919 /* ??? This is the same series of checks that are made in dbxout.c before
8920 we reach the big endian correction code there. It isn't clear if all
8921 of these checks are necessary here, but keeping them all is the safe
8923 else if (GET_CODE (rtl
) == MEM
8924 && XEXP (rtl
, 0) != const0_rtx
8925 && ! CONSTANT_P (XEXP (rtl
, 0))
8926 /* Not passed in memory. */
8927 && GET_CODE (DECL_INCOMING_RTL (decl
)) != MEM
8928 /* Not passed by invisible reference. */
8929 && (GET_CODE (XEXP (rtl
, 0)) != REG
8930 || REGNO (XEXP (rtl
, 0)) == HARD_FRAME_POINTER_REGNUM
8931 || REGNO (XEXP (rtl
, 0)) == STACK_POINTER_REGNUM
8932 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
8933 || REGNO (XEXP (rtl
, 0)) == ARG_POINTER_REGNUM
8936 /* Big endian correction check. */
8938 && TYPE_MODE (TREE_TYPE (decl
)) != GET_MODE (rtl
)
8939 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl
)))
8942 int offset
= (UNITS_PER_WORD
8943 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl
))));
8945 rtl
= gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl
)),
8946 plus_constant (XEXP (rtl
, 0), offset
));
8950 if (rtl
!= NULL_RTX
)
8952 rtl
= eliminate_regs (rtl
, 0, NULL_RTX
);
8953 #ifdef LEAF_REG_REMAP
8954 if (current_function_uses_only_leaf_regs
)
8955 leaf_renumber_regs_insn (rtl
);
8959 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
8960 and will have been substituted directly into all expressions that use it.
8961 C does not have such a concept, but C++ and other languages do. */
8962 else if (TREE_CODE (decl
) == VAR_DECL
&& DECL_INITIAL (decl
))
8964 /* If a variable is initialized with a string constant without embedded
8965 zeros, build CONST_STRING. */
8966 if (TREE_CODE (DECL_INITIAL (decl
)) == STRING_CST
8967 && TREE_CODE (TREE_TYPE (decl
)) == ARRAY_TYPE
)
8969 tree arrtype
= TREE_TYPE (decl
);
8970 tree enttype
= TREE_TYPE (arrtype
);
8971 tree domain
= TYPE_DOMAIN (arrtype
);
8972 tree init
= DECL_INITIAL (decl
);
8973 enum machine_mode mode
= TYPE_MODE (enttype
);
8975 if (GET_MODE_CLASS (mode
) == MODE_INT
&& GET_MODE_SIZE (mode
) == 1
8977 && integer_zerop (TYPE_MIN_VALUE (domain
))
8978 && compare_tree_int (TYPE_MAX_VALUE (domain
),
8979 TREE_STRING_LENGTH (init
) - 1) == 0
8980 && ((size_t) TREE_STRING_LENGTH (init
)
8981 == strlen (TREE_STRING_POINTER (init
)) + 1))
8982 rtl
= gen_rtx_CONST_STRING (VOIDmode
, TREE_STRING_POINTER (init
));
8984 /* If the initializer is something that we know will expand into an
8985 immediate RTL constant, expand it now. Expanding anything else
8986 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
8987 else if (TREE_CODE (DECL_INITIAL (decl
)) == INTEGER_CST
8988 || TREE_CODE (DECL_INITIAL (decl
)) == REAL_CST
)
8990 rtl
= expand_expr (DECL_INITIAL (decl
), NULL_RTX
, VOIDmode
,
8991 EXPAND_INITIALIZER
);
8992 /* If expand_expr returns a MEM, it wasn't immediate. */
8993 if (rtl
&& GET_CODE (rtl
) == MEM
)
8998 #ifdef ASM_SIMPLIFY_DWARF_ADDR
9000 rtl
= ASM_SIMPLIFY_DWARF_ADDR (rtl
);
9003 /* If we don't look past the constant pool, we risk emitting a
9004 reference to a constant pool entry that isn't referenced from
9005 code, and thus is not emitted. */
9007 rtl
= avoid_constant_pool_reference (rtl
);
9012 /* Generate *either* an DW_AT_location attribute or else an DW_AT_const_value
9013 data attribute for a variable or a parameter. We generate the
9014 DW_AT_const_value attribute only in those cases where the given variable
9015 or parameter does not have a true "location" either in memory or in a
9016 register. This can happen (for example) when a constant is passed as an
9017 actual argument in a call to an inline function. (It's possible that
9018 these things can crop up in other ways also.) Note that one type of
9019 constant value which can be passed into an inlined function is a constant
9020 pointer. This can happen for example if an actual argument in an inlined
9021 function call evaluates to a compile-time constant address. */
9024 add_location_or_const_value_attribute (die
, decl
)
9029 dw_loc_descr_ref descr
;
9031 if (TREE_CODE (decl
) == ERROR_MARK
)
9033 else if (TREE_CODE (decl
) != VAR_DECL
&& TREE_CODE (decl
) != PARM_DECL
)
9036 rtl
= rtl_for_decl_location (decl
);
9037 if (rtl
== NULL_RTX
)
9040 switch (GET_CODE (rtl
))
9043 /* The address of a variable that was optimized away;
9044 don't emit anything. */
9054 /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
9055 add_const_value_attribute (die
, rtl
);
9059 if (TREE_CODE (decl
) == VAR_DECL
&& DECL_THREAD_LOCAL (decl
))
9061 /* Need loc_descriptor_from_tree since that's where we know
9062 how to handle TLS variables. Want the object's address
9063 since the top-level DW_AT_location assumes such. See
9064 the confusion in loc_descriptor for reference. */
9065 descr
= loc_descriptor_from_tree (decl
, 1);
9072 descr
= loc_descriptor (rtl
);
9074 add_AT_location_description (die
, DW_AT_location
, descr
);
9082 /* If we don't have a copy of this variable in memory for some reason (such
9083 as a C++ member constant that doesn't have an out-of-line definition),
9084 we should tell the debugger about the constant value. */
9087 tree_add_const_value_attribute (var_die
, decl
)
9091 tree init
= DECL_INITIAL (decl
);
9092 tree type
= TREE_TYPE (decl
);
9094 if (TREE_READONLY (decl
) && ! TREE_THIS_VOLATILE (decl
) && init
9095 && initializer_constant_valid_p (init
, type
) == null_pointer_node
)
9100 switch (TREE_CODE (type
))
9103 if (host_integerp (init
, 0))
9104 add_AT_unsigned (var_die
, DW_AT_const_value
,
9105 tree_low_cst (init
, 0));
9107 add_AT_long_long (var_die
, DW_AT_const_value
,
9108 TREE_INT_CST_HIGH (init
),
9109 TREE_INT_CST_LOW (init
));
9116 /* Generate an DW_AT_name attribute given some string value to be included as
9117 the value of the attribute. */
9120 add_name_attribute (die
, name_string
)
9122 const char *name_string
;
9124 if (name_string
!= NULL
&& *name_string
!= 0)
9126 if (demangle_name_func
)
9127 name_string
= (*demangle_name_func
) (name_string
);
9129 add_AT_string (die
, DW_AT_name
, name_string
);
9133 /* Given a tree node describing an array bound (either lower or upper) output
9134 a representation for that bound. */
9137 add_bound_info (subrange_die
, bound_attr
, bound
)
9138 dw_die_ref subrange_die
;
9139 enum dwarf_attribute bound_attr
;
9142 switch (TREE_CODE (bound
))
9147 /* All fixed-bounds are represented by INTEGER_CST nodes. */
9149 if (! host_integerp (bound
, 0)
9150 || (bound_attr
== DW_AT_lower_bound
9151 && (((is_c_family () || is_java ()) && integer_zerop (bound
))
9152 || (is_fortran () && integer_onep (bound
)))))
9153 /* use the default */
9156 add_AT_unsigned (subrange_die
, bound_attr
, tree_low_cst (bound
, 0));
9161 case NON_LVALUE_EXPR
:
9162 case VIEW_CONVERT_EXPR
:
9163 add_bound_info (subrange_die
, bound_attr
, TREE_OPERAND (bound
, 0));
9167 /* If optimization is turned on, the SAVE_EXPRs that describe how to
9168 access the upper bound values may be bogus. If they refer to a
9169 register, they may only describe how to get at these values at the
9170 points in the generated code right after they have just been
9171 computed. Worse yet, in the typical case, the upper bound values
9172 will not even *be* computed in the optimized code (though the
9173 number of elements will), so these SAVE_EXPRs are entirely
9174 bogus. In order to compensate for this fact, we check here to see
9175 if optimization is enabled, and if so, we don't add an attribute
9176 for the (unknown and unknowable) upper bound. This should not
9177 cause too much trouble for existing (stupid?) debuggers because
9178 they have to deal with empty upper bounds location descriptions
9179 anyway in order to be able to deal with incomplete array types.
9180 Of course an intelligent debugger (GDB?) should be able to
9181 comprehend that a missing upper bound specification in an array
9182 type used for a storage class `auto' local array variable
9183 indicates that the upper bound is both unknown (at compile- time)
9184 and unknowable (at run-time) due to optimization.
9186 We assume that a MEM rtx is safe because gcc wouldn't put the
9187 value there unless it was going to be used repeatedly in the
9188 function, i.e. for cleanups. */
9189 if (SAVE_EXPR_RTL (bound
)
9190 && (! optimize
|| GET_CODE (SAVE_EXPR_RTL (bound
)) == MEM
))
9192 dw_die_ref ctx
= lookup_decl_die (current_function_decl
);
9193 dw_die_ref decl_die
= new_die (DW_TAG_variable
, ctx
, bound
);
9194 rtx loc
= SAVE_EXPR_RTL (bound
);
9196 /* If the RTL for the SAVE_EXPR is memory, handle the case where
9197 it references an outer function's frame. */
9198 if (GET_CODE (loc
) == MEM
)
9200 rtx new_addr
= fix_lexical_addr (XEXP (loc
, 0), bound
);
9202 if (XEXP (loc
, 0) != new_addr
)
9203 loc
= gen_rtx_MEM (GET_MODE (loc
), new_addr
);
9206 add_AT_flag (decl_die
, DW_AT_artificial
, 1);
9207 add_type_attribute (decl_die
, TREE_TYPE (bound
), 1, 0, ctx
);
9208 add_AT_location_description (decl_die
, DW_AT_location
,
9209 loc_descriptor (loc
));
9210 add_AT_die_ref (subrange_die
, bound_attr
, decl_die
);
9213 /* Else leave out the attribute. */
9219 dw_die_ref decl_die
= lookup_decl_die (bound
);
9221 /* ??? Can this happen, or should the variable have been bound
9222 first? Probably it can, since I imagine that we try to create
9223 the types of parameters in the order in which they exist in
9224 the list, and won't have created a forward reference to a
9226 if (decl_die
!= NULL
)
9227 add_AT_die_ref (subrange_die
, bound_attr
, decl_die
);
9233 /* Otherwise try to create a stack operation procedure to
9234 evaluate the value of the array bound. */
9236 dw_die_ref ctx
, decl_die
;
9237 dw_loc_descr_ref loc
;
9239 loc
= loc_descriptor_from_tree (bound
, 0);
9243 if (current_function_decl
== 0)
9244 ctx
= comp_unit_die
;
9246 ctx
= lookup_decl_die (current_function_decl
);
9248 /* If we weren't able to find a context, it's most likely the case
9249 that we are processing the return type of the function. So
9250 make a SAVE_EXPR to point to it and have the limbo DIE code
9251 find the proper die. The save_expr function doesn't always
9252 make a SAVE_EXPR, so do it ourselves. */
9254 bound
= build (SAVE_EXPR
, TREE_TYPE (bound
), bound
,
9255 current_function_decl
, NULL_TREE
);
9257 decl_die
= new_die (DW_TAG_variable
, ctx
, bound
);
9258 add_AT_flag (decl_die
, DW_AT_artificial
, 1);
9259 add_type_attribute (decl_die
, TREE_TYPE (bound
), 1, 0, ctx
);
9260 add_AT_loc (decl_die
, DW_AT_location
, loc
);
9262 add_AT_die_ref (subrange_die
, bound_attr
, decl_die
);
9268 /* Note that the block of subscript information for an array type also
9269 includes information about the element type of type given array type. */
9272 add_subscript_info (type_die
, type
)
9273 dw_die_ref type_die
;
9276 #ifndef MIPS_DEBUGGING_INFO
9277 unsigned dimension_number
;
9280 dw_die_ref subrange_die
;
9282 /* The GNU compilers represent multidimensional array types as sequences of
9283 one dimensional array types whose element types are themselves array
9284 types. Here we squish that down, so that each multidimensional array
9285 type gets only one array_type DIE in the Dwarf debugging info. The draft
9286 Dwarf specification say that we are allowed to do this kind of
9287 compression in C (because there is no difference between an array or
9288 arrays and a multidimensional array in C) but for other source languages
9289 (e.g. Ada) we probably shouldn't do this. */
9291 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
9292 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
9293 We work around this by disabling this feature. See also
9294 gen_array_type_die. */
9295 #ifndef MIPS_DEBUGGING_INFO
9296 for (dimension_number
= 0;
9297 TREE_CODE (type
) == ARRAY_TYPE
;
9298 type
= TREE_TYPE (type
), dimension_number
++)
9301 tree domain
= TYPE_DOMAIN (type
);
9303 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
9304 and (in GNU C only) variable bounds. Handle all three forms
9306 subrange_die
= new_die (DW_TAG_subrange_type
, type_die
, NULL
);
9309 /* We have an array type with specified bounds. */
9310 lower
= TYPE_MIN_VALUE (domain
);
9311 upper
= TYPE_MAX_VALUE (domain
);
9313 /* define the index type. */
9314 if (TREE_TYPE (domain
))
9316 /* ??? This is probably an Ada unnamed subrange type. Ignore the
9317 TREE_TYPE field. We can't emit debug info for this
9318 because it is an unnamed integral type. */
9319 if (TREE_CODE (domain
) == INTEGER_TYPE
9320 && TYPE_NAME (domain
) == NULL_TREE
9321 && TREE_CODE (TREE_TYPE (domain
)) == INTEGER_TYPE
9322 && TYPE_NAME (TREE_TYPE (domain
)) == NULL_TREE
)
9325 add_type_attribute (subrange_die
, TREE_TYPE (domain
), 0, 0,
9329 /* ??? If upper is NULL, the array has unspecified length,
9330 but it does have a lower bound. This happens with Fortran
9332 Since the debugger is definitely going to need to know N
9333 to produce useful results, go ahead and output the lower
9334 bound solo, and hope the debugger can cope. */
9336 add_bound_info (subrange_die
, DW_AT_lower_bound
, lower
);
9338 add_bound_info (subrange_die
, DW_AT_upper_bound
, upper
);
9341 /* Otherwise we have an array type with an unspecified length. The
9342 DWARF-2 spec does not say how to handle this; let's just leave out the
9348 add_byte_size_attribute (die
, tree_node
)
9354 switch (TREE_CODE (tree_node
))
9362 case QUAL_UNION_TYPE
:
9363 size
= int_size_in_bytes (tree_node
);
9366 /* For a data member of a struct or union, the DW_AT_byte_size is
9367 generally given as the number of bytes normally allocated for an
9368 object of the *declared* type of the member itself. This is true
9369 even for bit-fields. */
9370 size
= simple_type_size_in_bits (field_type (tree_node
)) / BITS_PER_UNIT
;
9376 /* Note that `size' might be -1 when we get to this point. If it is, that
9377 indicates that the byte size of the entity in question is variable. We
9378 have no good way of expressing this fact in Dwarf at the present time,
9379 so just let the -1 pass on through. */
9380 add_AT_unsigned (die
, DW_AT_byte_size
, size
);
9383 /* For a FIELD_DECL node which represents a bit-field, output an attribute
9384 which specifies the distance in bits from the highest order bit of the
9385 "containing object" for the bit-field to the highest order bit of the
9388 For any given bit-field, the "containing object" is a hypothetical object
9389 (of some integral or enum type) within which the given bit-field lives. The
9390 type of this hypothetical "containing object" is always the same as the
9391 declared type of the individual bit-field itself. The determination of the
9392 exact location of the "containing object" for a bit-field is rather
9393 complicated. It's handled by the `field_byte_offset' function (above).
9395 Note that it is the size (in bytes) of the hypothetical "containing object"
9396 which will be given in the DW_AT_byte_size attribute for this bit-field.
9397 (See `byte_size_attribute' above). */
9400 add_bit_offset_attribute (die
, decl
)
9404 HOST_WIDE_INT object_offset_in_bytes
= field_byte_offset (decl
);
9405 tree type
= DECL_BIT_FIELD_TYPE (decl
);
9406 HOST_WIDE_INT bitpos_int
;
9407 HOST_WIDE_INT highest_order_object_bit_offset
;
9408 HOST_WIDE_INT highest_order_field_bit_offset
;
9409 HOST_WIDE_INT
unsigned bit_offset
;
9411 /* Must be a field and a bit field. */
9413 || TREE_CODE (decl
) != FIELD_DECL
)
9416 /* We can't yet handle bit-fields whose offsets are variable, so if we
9417 encounter such things, just return without generating any attribute
9418 whatsoever. Likewise for variable or too large size. */
9419 if (! host_integerp (bit_position (decl
), 0)
9420 || ! host_integerp (DECL_SIZE (decl
), 1))
9423 bitpos_int
= int_bit_position (decl
);
9425 /* Note that the bit offset is always the distance (in bits) from the
9426 highest-order bit of the "containing object" to the highest-order bit of
9427 the bit-field itself. Since the "high-order end" of any object or field
9428 is different on big-endian and little-endian machines, the computation
9429 below must take account of these differences. */
9430 highest_order_object_bit_offset
= object_offset_in_bytes
* BITS_PER_UNIT
;
9431 highest_order_field_bit_offset
= bitpos_int
;
9433 if (! BYTES_BIG_ENDIAN
)
9435 highest_order_field_bit_offset
+= tree_low_cst (DECL_SIZE (decl
), 0);
9436 highest_order_object_bit_offset
+= simple_type_size_in_bits (type
);
9440 = (! BYTES_BIG_ENDIAN
9441 ? highest_order_object_bit_offset
- highest_order_field_bit_offset
9442 : highest_order_field_bit_offset
- highest_order_object_bit_offset
);
9444 add_AT_unsigned (die
, DW_AT_bit_offset
, bit_offset
);
9447 /* For a FIELD_DECL node which represents a bit field, output an attribute
9448 which specifies the length in bits of the given field. */
9451 add_bit_size_attribute (die
, decl
)
9455 /* Must be a field and a bit field. */
9456 if (TREE_CODE (decl
) != FIELD_DECL
9457 || ! DECL_BIT_FIELD_TYPE (decl
))
9460 if (host_integerp (DECL_SIZE (decl
), 1))
9461 add_AT_unsigned (die
, DW_AT_bit_size
, tree_low_cst (DECL_SIZE (decl
), 1));
9464 /* If the compiled language is ANSI C, then add a 'prototyped'
9465 attribute, if arg types are given for the parameters of a function. */
9468 add_prototyped_attribute (die
, func_type
)
9472 if (get_AT_unsigned (comp_unit_die
, DW_AT_language
) == DW_LANG_C89
9473 && TYPE_ARG_TYPES (func_type
) != NULL
)
9474 add_AT_flag (die
, DW_AT_prototyped
, 1);
9477 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
9478 by looking in either the type declaration or object declaration
9482 add_abstract_origin_attribute (die
, origin
)
9486 dw_die_ref origin_die
= NULL
;
9488 if (TREE_CODE (origin
) != FUNCTION_DECL
)
9490 /* We may have gotten separated from the block for the inlined
9491 function, if we're in an exception handler or some such; make
9492 sure that the abstract function has been written out.
9494 Doing this for nested functions is wrong, however; functions are
9495 distinct units, and our context might not even be inline. */
9499 fn
= TYPE_STUB_DECL (fn
);
9501 fn
= decl_function_context (fn
);
9503 dwarf2out_abstract_function (fn
);
9506 if (DECL_P (origin
))
9507 origin_die
= lookup_decl_die (origin
);
9508 else if (TYPE_P (origin
))
9509 origin_die
= lookup_type_die (origin
);
9511 if (origin_die
== NULL
)
9514 add_AT_die_ref (die
, DW_AT_abstract_origin
, origin_die
);
9517 /* We do not currently support the pure_virtual attribute. */
9520 add_pure_or_virtual_attribute (die
, func_decl
)
9524 if (DECL_VINDEX (func_decl
))
9526 add_AT_unsigned (die
, DW_AT_virtuality
, DW_VIRTUALITY_virtual
);
9528 if (host_integerp (DECL_VINDEX (func_decl
), 0))
9529 add_AT_loc (die
, DW_AT_vtable_elem_location
,
9530 new_loc_descr (DW_OP_constu
,
9531 tree_low_cst (DECL_VINDEX (func_decl
), 0),
9534 /* GNU extension: Record what type this method came from originally. */
9535 if (debug_info_level
> DINFO_LEVEL_TERSE
)
9536 add_AT_die_ref (die
, DW_AT_containing_type
,
9537 lookup_type_die (DECL_CONTEXT (func_decl
)));
9541 /* Add source coordinate attributes for the given decl. */
9544 add_src_coords_attributes (die
, decl
)
9548 unsigned file_index
= lookup_filename (DECL_SOURCE_FILE (decl
));
9550 add_AT_unsigned (die
, DW_AT_decl_file
, file_index
);
9551 add_AT_unsigned (die
, DW_AT_decl_line
, DECL_SOURCE_LINE (decl
));
9554 /* Add an DW_AT_name attribute and source coordinate attribute for the
9555 given decl, but only if it actually has a name. */
9558 add_name_and_src_coords_attributes (die
, decl
)
9564 decl_name
= DECL_NAME (decl
);
9565 if (decl_name
!= NULL
&& IDENTIFIER_POINTER (decl_name
) != NULL
)
9567 add_name_attribute (die
, dwarf2_name (decl
, 0));
9568 if (! DECL_ARTIFICIAL (decl
))
9569 add_src_coords_attributes (die
, decl
);
9571 if ((TREE_CODE (decl
) == FUNCTION_DECL
|| TREE_CODE (decl
) == VAR_DECL
)
9572 && TREE_PUBLIC (decl
)
9573 && DECL_ASSEMBLER_NAME (decl
) != DECL_NAME (decl
)
9574 && !DECL_ABSTRACT (decl
))
9575 add_AT_string (die
, DW_AT_MIPS_linkage_name
,
9576 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl
)));
9579 #ifdef VMS_DEBUGGING_INFO
9580 /* Get the function's name, as described by its RTL. This may be different
9581 from the DECL_NAME name used in the source file. */
9582 if (TREE_CODE (decl
) == FUNCTION_DECL
&& TREE_ASM_WRITTEN (decl
))
9584 add_AT_addr (die
, DW_AT_VMS_rtnbeg_pd_address
,
9585 XEXP (DECL_RTL (decl
), 0));
9586 VARRAY_PUSH_RTX (used_rtx_varray
, XEXP (DECL_RTL (decl
), 0));
9591 /* Push a new declaration scope. */
9594 push_decl_scope (scope
)
9597 VARRAY_PUSH_TREE (decl_scope_table
, scope
);
9600 /* Pop a declaration scope. */
9605 if (VARRAY_ACTIVE_SIZE (decl_scope_table
) <= 0)
9608 VARRAY_POP (decl_scope_table
);
9611 /* Return the DIE for the scope that immediately contains this type.
9612 Non-named types get global scope. Named types nested in other
9613 types get their containing scope if it's open, or global scope
9614 otherwise. All other types (i.e. function-local named types) get
9615 the current active scope. */
9618 scope_die_for (t
, context_die
)
9620 dw_die_ref context_die
;
9622 dw_die_ref scope_die
= NULL
;
9623 tree containing_scope
;
9626 /* Non-types always go in the current scope. */
9630 containing_scope
= TYPE_CONTEXT (t
);
9632 /* Ignore namespaces for the moment. */
9633 if (containing_scope
&& TREE_CODE (containing_scope
) == NAMESPACE_DECL
)
9634 containing_scope
= NULL_TREE
;
9636 /* Ignore function type "scopes" from the C frontend. They mean that
9637 a tagged type is local to a parmlist of a function declarator, but
9638 that isn't useful to DWARF. */
9639 if (containing_scope
&& TREE_CODE (containing_scope
) == FUNCTION_TYPE
)
9640 containing_scope
= NULL_TREE
;
9642 if (containing_scope
== NULL_TREE
)
9643 scope_die
= comp_unit_die
;
9644 else if (TYPE_P (containing_scope
))
9646 /* For types, we can just look up the appropriate DIE. But
9647 first we check to see if we're in the middle of emitting it
9648 so we know where the new DIE should go. */
9649 for (i
= VARRAY_ACTIVE_SIZE (decl_scope_table
) - 1; i
>= 0; --i
)
9650 if (VARRAY_TREE (decl_scope_table
, i
) == containing_scope
)
9655 if (debug_info_level
> DINFO_LEVEL_TERSE
9656 && !TREE_ASM_WRITTEN (containing_scope
))
9659 /* If none of the current dies are suitable, we get file scope. */
9660 scope_die
= comp_unit_die
;
9663 scope_die
= lookup_type_die (containing_scope
);
9666 scope_die
= context_die
;
9671 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
9674 local_scope_p (context_die
)
9675 dw_die_ref context_die
;
9677 for (; context_die
; context_die
= context_die
->die_parent
)
9678 if (context_die
->die_tag
== DW_TAG_inlined_subroutine
9679 || context_die
->die_tag
== DW_TAG_subprogram
)
9685 /* Returns nonzero if CONTEXT_DIE is a class. */
9688 class_scope_p (context_die
)
9689 dw_die_ref context_die
;
9692 && (context_die
->die_tag
== DW_TAG_structure_type
9693 || context_die
->die_tag
== DW_TAG_union_type
));
9696 /* Many forms of DIEs require a "type description" attribute. This
9697 routine locates the proper "type descriptor" die for the type given
9698 by 'type', and adds an DW_AT_type attribute below the given die. */
9701 add_type_attribute (object_die
, type
, decl_const
, decl_volatile
, context_die
)
9702 dw_die_ref object_die
;
9706 dw_die_ref context_die
;
9708 enum tree_code code
= TREE_CODE (type
);
9709 dw_die_ref type_die
= NULL
;
9711 /* ??? If this type is an unnamed subrange type of an integral or
9712 floating-point type, use the inner type. This is because we have no
9713 support for unnamed types in base_type_die. This can happen if this is
9714 an Ada subrange type. Correct solution is emit a subrange type die. */
9715 if ((code
== INTEGER_TYPE
|| code
== REAL_TYPE
)
9716 && TREE_TYPE (type
) != 0 && TYPE_NAME (type
) == 0)
9717 type
= TREE_TYPE (type
), code
= TREE_CODE (type
);
9719 if (code
== ERROR_MARK
9720 /* Handle a special case. For functions whose return type is void, we
9721 generate *no* type attribute. (Note that no object may have type
9722 `void', so this only applies to function return types). */
9723 || code
== VOID_TYPE
)
9726 type_die
= modified_type_die (type
,
9727 decl_const
|| TYPE_READONLY (type
),
9728 decl_volatile
|| TYPE_VOLATILE (type
),
9731 if (type_die
!= NULL
)
9732 add_AT_die_ref (object_die
, DW_AT_type
, type_die
);
9735 /* Given a tree pointer to a struct, class, union, or enum type node, return
9736 a pointer to the (string) tag name for the given type, or zero if the type
9737 was declared without a tag. */
9743 const char *name
= 0;
9745 if (TYPE_NAME (type
) != 0)
9749 /* Find the IDENTIFIER_NODE for the type name. */
9750 if (TREE_CODE (TYPE_NAME (type
)) == IDENTIFIER_NODE
)
9751 t
= TYPE_NAME (type
);
9753 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
9754 a TYPE_DECL node, regardless of whether or not a `typedef' was
9756 else if (TREE_CODE (TYPE_NAME (type
)) == TYPE_DECL
9757 && ! DECL_IGNORED_P (TYPE_NAME (type
)))
9758 t
= DECL_NAME (TYPE_NAME (type
));
9760 /* Now get the name as a string, or invent one. */
9762 name
= IDENTIFIER_POINTER (t
);
9765 return (name
== 0 || *name
== '\0') ? 0 : name
;
9768 /* Return the type associated with a data member, make a special check
9769 for bit field types. */
9772 member_declared_type (member
)
9775 return (DECL_BIT_FIELD_TYPE (member
)
9776 ? DECL_BIT_FIELD_TYPE (member
) : TREE_TYPE (member
));
9779 /* Get the decl's label, as described by its RTL. This may be different
9780 from the DECL_NAME name used in the source file. */
9784 decl_start_label (decl
)
9790 x
= DECL_RTL (decl
);
9791 if (GET_CODE (x
) != MEM
)
9795 if (GET_CODE (x
) != SYMBOL_REF
)
9798 fnname
= XSTR (x
, 0);
9803 /* These routines generate the internal representation of the DIE's for
9804 the compilation unit. Debugging information is collected by walking
9805 the declaration trees passed in from dwarf2out_decl(). */
9808 gen_array_type_die (type
, context_die
)
9810 dw_die_ref context_die
;
9812 dw_die_ref scope_die
= scope_die_for (type
, context_die
);
9813 dw_die_ref array_die
;
9816 /* ??? The SGI dwarf reader fails for array of array of enum types unless
9817 the inner array type comes before the outer array type. Thus we must
9818 call gen_type_die before we call new_die. See below also. */
9819 #ifdef MIPS_DEBUGGING_INFO
9820 gen_type_die (TREE_TYPE (type
), context_die
);
9823 array_die
= new_die (DW_TAG_array_type
, scope_die
, type
);
9824 add_name_attribute (array_die
, type_tag (type
));
9825 equate_type_number_to_die (type
, array_die
);
9827 if (TREE_CODE (type
) == VECTOR_TYPE
)
9829 /* The frontend feeds us a representation for the vector as a struct
9830 containing an array. Pull out the array type. */
9831 type
= TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type
)));
9832 add_AT_flag (array_die
, DW_AT_GNU_vector
, 1);
9836 /* We default the array ordering. SDB will probably do
9837 the right things even if DW_AT_ordering is not present. It's not even
9838 an issue until we start to get into multidimensional arrays anyway. If
9839 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
9840 then we'll have to put the DW_AT_ordering attribute back in. (But if
9841 and when we find out that we need to put these in, we will only do so
9842 for multidimensional arrays. */
9843 add_AT_unsigned (array_die
, DW_AT_ordering
, DW_ORD_row_major
);
9846 #ifdef MIPS_DEBUGGING_INFO
9847 /* The SGI compilers handle arrays of unknown bound by setting
9848 AT_declaration and not emitting any subrange DIEs. */
9849 if (! TYPE_DOMAIN (type
))
9850 add_AT_unsigned (array_die
, DW_AT_declaration
, 1);
9853 add_subscript_info (array_die
, type
);
9855 /* Add representation of the type of the elements of this array type. */
9856 element_type
= TREE_TYPE (type
);
9858 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
9859 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
9860 We work around this by disabling this feature. See also
9861 add_subscript_info. */
9862 #ifndef MIPS_DEBUGGING_INFO
9863 while (TREE_CODE (element_type
) == ARRAY_TYPE
)
9864 element_type
= TREE_TYPE (element_type
);
9866 gen_type_die (element_type
, context_die
);
9869 add_type_attribute (array_die
, element_type
, 0, 0, context_die
);
9873 gen_set_type_die (type
, context_die
)
9875 dw_die_ref context_die
;
9878 = new_die (DW_TAG_set_type
, scope_die_for (type
, context_die
), type
);
9880 equate_type_number_to_die (type
, type_die
);
9881 add_type_attribute (type_die
, TREE_TYPE (type
), 0, 0, context_die
);
9886 gen_entry_point_die (decl
, context_die
)
9888 dw_die_ref context_die
;
9890 tree origin
= decl_ultimate_origin (decl
);
9891 dw_die_ref decl_die
= new_die (DW_TAG_entry_point
, context_die
, decl
);
9894 add_abstract_origin_attribute (decl_die
, origin
);
9897 add_name_and_src_coords_attributes (decl_die
, decl
);
9898 add_type_attribute (decl_die
, TREE_TYPE (TREE_TYPE (decl
)),
9902 if (DECL_ABSTRACT (decl
))
9903 equate_decl_number_to_die (decl
, decl_die
);
9905 add_AT_lbl_id (decl_die
, DW_AT_low_pc
, decl_start_label (decl
));
9909 /* Walk through the list of incomplete types again, trying once more to
9910 emit full debugging info for them. */
9913 retry_incomplete_types ()
9917 for (i
= VARRAY_ACTIVE_SIZE (incomplete_types
) - 1; i
>= 0; i
--)
9918 gen_type_die (VARRAY_TREE (incomplete_types
, i
), comp_unit_die
);
9921 /* Generate a DIE to represent an inlined instance of an enumeration type. */
9924 gen_inlined_enumeration_type_die (type
, context_die
)
9926 dw_die_ref context_die
;
9928 dw_die_ref type_die
= new_die (DW_TAG_enumeration_type
, context_die
, type
);
9930 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
9931 be incomplete and such types are not marked. */
9932 add_abstract_origin_attribute (type_die
, type
);
9935 /* Generate a DIE to represent an inlined instance of a structure type. */
9938 gen_inlined_structure_type_die (type
, context_die
)
9940 dw_die_ref context_die
;
9942 dw_die_ref type_die
= new_die (DW_TAG_structure_type
, context_die
, type
);
9944 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
9945 be incomplete and such types are not marked. */
9946 add_abstract_origin_attribute (type_die
, type
);
9949 /* Generate a DIE to represent an inlined instance of a union type. */
9952 gen_inlined_union_type_die (type
, context_die
)
9954 dw_die_ref context_die
;
9956 dw_die_ref type_die
= new_die (DW_TAG_union_type
, context_die
, type
);
9958 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
9959 be incomplete and such types are not marked. */
9960 add_abstract_origin_attribute (type_die
, type
);
9963 /* Generate a DIE to represent an enumeration type. Note that these DIEs
9964 include all of the information about the enumeration values also. Each
9965 enumerated type name/value is listed as a child of the enumerated type
9969 gen_enumeration_type_die (type
, context_die
)
9971 dw_die_ref context_die
;
9973 dw_die_ref type_die
= lookup_type_die (type
);
9975 if (type_die
== NULL
)
9977 type_die
= new_die (DW_TAG_enumeration_type
,
9978 scope_die_for (type
, context_die
), type
);
9979 equate_type_number_to_die (type
, type_die
);
9980 add_name_attribute (type_die
, type_tag (type
));
9982 else if (! TYPE_SIZE (type
))
9985 remove_AT (type_die
, DW_AT_declaration
);
9987 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
9988 given enum type is incomplete, do not generate the DW_AT_byte_size
9989 attribute or the DW_AT_element_list attribute. */
9990 if (TYPE_SIZE (type
))
9994 TREE_ASM_WRITTEN (type
) = 1;
9995 add_byte_size_attribute (type_die
, type
);
9996 if (TYPE_STUB_DECL (type
) != NULL_TREE
)
9997 add_src_coords_attributes (type_die
, TYPE_STUB_DECL (type
));
9999 /* If the first reference to this type was as the return type of an
10000 inline function, then it may not have a parent. Fix this now. */
10001 if (type_die
->die_parent
== NULL
)
10002 add_child_die (scope_die_for (type
, context_die
), type_die
);
10004 for (link
= TYPE_FIELDS (type
);
10005 link
!= NULL
; link
= TREE_CHAIN (link
))
10007 dw_die_ref enum_die
= new_die (DW_TAG_enumerator
, type_die
, link
);
10009 add_name_attribute (enum_die
,
10010 IDENTIFIER_POINTER (TREE_PURPOSE (link
)));
10012 if (host_integerp (TREE_VALUE (link
), 0))
10014 if (tree_int_cst_sgn (TREE_VALUE (link
)) < 0)
10015 add_AT_int (enum_die
, DW_AT_const_value
,
10016 tree_low_cst (TREE_VALUE (link
), 0));
10018 add_AT_unsigned (enum_die
, DW_AT_const_value
,
10019 tree_low_cst (TREE_VALUE (link
), 0));
10024 add_AT_flag (type_die
, DW_AT_declaration
, 1);
10027 /* Generate a DIE to represent either a real live formal parameter decl or to
10028 represent just the type of some formal parameter position in some function
10031 Note that this routine is a bit unusual because its argument may be a
10032 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
10033 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
10034 node. If it's the former then this function is being called to output a
10035 DIE to represent a formal parameter object (or some inlining thereof). If
10036 it's the latter, then this function is only being called to output a
10037 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
10038 argument type of some subprogram type. */
10041 gen_formal_parameter_die (node
, context_die
)
10043 dw_die_ref context_die
;
10045 dw_die_ref parm_die
10046 = new_die (DW_TAG_formal_parameter
, context_die
, node
);
10049 switch (TREE_CODE_CLASS (TREE_CODE (node
)))
10052 origin
= decl_ultimate_origin (node
);
10053 if (origin
!= NULL
)
10054 add_abstract_origin_attribute (parm_die
, origin
);
10057 add_name_and_src_coords_attributes (parm_die
, node
);
10058 add_type_attribute (parm_die
, TREE_TYPE (node
),
10059 TREE_READONLY (node
),
10060 TREE_THIS_VOLATILE (node
),
10062 if (DECL_ARTIFICIAL (node
))
10063 add_AT_flag (parm_die
, DW_AT_artificial
, 1);
10066 equate_decl_number_to_die (node
, parm_die
);
10067 if (! DECL_ABSTRACT (node
))
10068 add_location_or_const_value_attribute (parm_die
, node
);
10073 /* We were called with some kind of a ..._TYPE node. */
10074 add_type_attribute (parm_die
, node
, 0, 0, context_die
);
10084 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
10085 at the end of an (ANSI prototyped) formal parameters list. */
10088 gen_unspecified_parameters_die (decl_or_type
, context_die
)
10090 dw_die_ref context_die
;
10092 new_die (DW_TAG_unspecified_parameters
, context_die
, decl_or_type
);
10095 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
10096 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
10097 parameters as specified in some function type specification (except for
10098 those which appear as part of a function *definition*). */
10101 gen_formal_types_die (function_or_method_type
, context_die
)
10102 tree function_or_method_type
;
10103 dw_die_ref context_die
;
10106 tree formal_type
= NULL
;
10107 tree first_parm_type
;
10110 if (TREE_CODE (function_or_method_type
) == FUNCTION_DECL
)
10112 arg
= DECL_ARGUMENTS (function_or_method_type
);
10113 function_or_method_type
= TREE_TYPE (function_or_method_type
);
10118 first_parm_type
= TYPE_ARG_TYPES (function_or_method_type
);
10120 /* Make our first pass over the list of formal parameter types and output a
10121 DW_TAG_formal_parameter DIE for each one. */
10122 for (link
= first_parm_type
; link
; )
10124 dw_die_ref parm_die
;
10126 formal_type
= TREE_VALUE (link
);
10127 if (formal_type
== void_type_node
)
10130 /* Output a (nameless) DIE to represent the formal parameter itself. */
10131 parm_die
= gen_formal_parameter_die (formal_type
, context_die
);
10132 if ((TREE_CODE (function_or_method_type
) == METHOD_TYPE
10133 && link
== first_parm_type
)
10134 || (arg
&& DECL_ARTIFICIAL (arg
)))
10135 add_AT_flag (parm_die
, DW_AT_artificial
, 1);
10137 link
= TREE_CHAIN (link
);
10139 arg
= TREE_CHAIN (arg
);
10142 /* If this function type has an ellipsis, add a
10143 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
10144 if (formal_type
!= void_type_node
)
10145 gen_unspecified_parameters_die (function_or_method_type
, context_die
);
10147 /* Make our second (and final) pass over the list of formal parameter types
10148 and output DIEs to represent those types (as necessary). */
10149 for (link
= TYPE_ARG_TYPES (function_or_method_type
);
10150 link
&& TREE_VALUE (link
);
10151 link
= TREE_CHAIN (link
))
10152 gen_type_die (TREE_VALUE (link
), context_die
);
10155 /* We want to generate the DIE for TYPE so that we can generate the
10156 die for MEMBER, which has been defined; we will need to refer back
10157 to the member declaration nested within TYPE. If we're trying to
10158 generate minimal debug info for TYPE, processing TYPE won't do the
10159 trick; we need to attach the member declaration by hand. */
10162 gen_type_die_for_member (type
, member
, context_die
)
10164 dw_die_ref context_die
;
10166 gen_type_die (type
, context_die
);
10168 /* If we're trying to avoid duplicate debug info, we may not have
10169 emitted the member decl for this function. Emit it now. */
10170 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type
))
10171 && ! lookup_decl_die (member
))
10173 if (decl_ultimate_origin (member
))
10176 push_decl_scope (type
);
10177 if (TREE_CODE (member
) == FUNCTION_DECL
)
10178 gen_subprogram_die (member
, lookup_type_die (type
));
10180 gen_variable_die (member
, lookup_type_die (type
));
10186 /* Generate the DWARF2 info for the "abstract" instance of a function which we
10187 may later generate inlined and/or out-of-line instances of. */
10190 dwarf2out_abstract_function (decl
)
10193 dw_die_ref old_die
;
10196 int was_abstract
= DECL_ABSTRACT (decl
);
10198 /* Make sure we have the actual abstract inline, not a clone. */
10199 decl
= DECL_ORIGIN (decl
);
10201 old_die
= lookup_decl_die (decl
);
10202 if (old_die
&& get_AT_unsigned (old_die
, DW_AT_inline
))
10203 /* We've already generated the abstract instance. */
10206 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
10207 we don't get confused by DECL_ABSTRACT. */
10208 if (debug_info_level
> DINFO_LEVEL_TERSE
)
10210 context
= decl_class_context (decl
);
10212 gen_type_die_for_member
10213 (context
, decl
, decl_function_context (decl
) ? NULL
: comp_unit_die
);
10216 /* Pretend we've just finished compiling this function. */
10217 save_fn
= current_function_decl
;
10218 current_function_decl
= decl
;
10220 set_decl_abstract_flags (decl
, 1);
10221 dwarf2out_decl (decl
);
10222 if (! was_abstract
)
10223 set_decl_abstract_flags (decl
, 0);
10225 current_function_decl
= save_fn
;
10228 /* Generate a DIE to represent a declared function (either file-scope or
10232 gen_subprogram_die (decl
, context_die
)
10234 dw_die_ref context_die
;
10236 char label_id
[MAX_ARTIFICIAL_LABEL_BYTES
];
10237 tree origin
= decl_ultimate_origin (decl
);
10238 dw_die_ref subr_die
;
10242 dw_die_ref old_die
= lookup_decl_die (decl
);
10243 int declaration
= (current_function_decl
!= decl
10244 || class_scope_p (context_die
));
10246 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
10247 started to generate the abstract instance of an inline, decided to output
10248 its containing class, and proceeded to emit the declaration of the inline
10249 from the member list for the class. If so, DECLARATION takes priority;
10250 we'll get back to the abstract instance when done with the class. */
10252 /* The class-scope declaration DIE must be the primary DIE. */
10253 if (origin
&& declaration
&& class_scope_p (context_die
))
10260 if (origin
!= NULL
)
10262 if (declaration
&& ! local_scope_p (context_die
))
10265 /* Fixup die_parent for the abstract instance of a nested
10266 inline function. */
10267 if (old_die
&& old_die
->die_parent
== NULL
)
10268 add_child_die (context_die
, old_die
);
10270 subr_die
= new_die (DW_TAG_subprogram
, context_die
, decl
);
10271 add_abstract_origin_attribute (subr_die
, origin
);
10275 unsigned file_index
= lookup_filename (DECL_SOURCE_FILE (decl
));
10277 if (!get_AT_flag (old_die
, DW_AT_declaration
)
10278 /* We can have a normal definition following an inline one in the
10279 case of redefinition of GNU C extern inlines.
10280 It seems reasonable to use AT_specification in this case. */
10281 && !get_AT_unsigned (old_die
, DW_AT_inline
))
10283 /* ??? This can happen if there is a bug in the program, for
10284 instance, if it has duplicate function definitions. Ideally,
10285 we should detect this case and ignore it. For now, if we have
10286 already reported an error, any error at all, then assume that
10287 we got here because of an input error, not a dwarf2 bug. */
10293 /* If the definition comes from the same place as the declaration,
10294 maybe use the old DIE. We always want the DIE for this function
10295 that has the *_pc attributes to be under comp_unit_die so the
10296 debugger can find it. We also need to do this for abstract
10297 instances of inlines, since the spec requires the out-of-line copy
10298 to have the same parent. For local class methods, this doesn't
10299 apply; we just use the old DIE. */
10300 if ((old_die
->die_parent
== comp_unit_die
|| context_die
== NULL
)
10301 && (DECL_ARTIFICIAL (decl
)
10302 || (get_AT_unsigned (old_die
, DW_AT_decl_file
) == file_index
10303 && (get_AT_unsigned (old_die
, DW_AT_decl_line
)
10304 == (unsigned) DECL_SOURCE_LINE (decl
)))))
10306 subr_die
= old_die
;
10308 /* Clear out the declaration attribute and the parm types. */
10309 remove_AT (subr_die
, DW_AT_declaration
);
10310 remove_children (subr_die
);
10314 subr_die
= new_die (DW_TAG_subprogram
, context_die
, decl
);
10315 add_AT_die_ref (subr_die
, DW_AT_specification
, old_die
);
10316 if (get_AT_unsigned (old_die
, DW_AT_decl_file
) != file_index
)
10317 add_AT_unsigned (subr_die
, DW_AT_decl_file
, file_index
);
10318 if (get_AT_unsigned (old_die
, DW_AT_decl_line
)
10319 != (unsigned) DECL_SOURCE_LINE (decl
))
10321 (subr_die
, DW_AT_decl_line
, DECL_SOURCE_LINE (decl
));
10326 subr_die
= new_die (DW_TAG_subprogram
, context_die
, decl
);
10328 if (TREE_PUBLIC (decl
))
10329 add_AT_flag (subr_die
, DW_AT_external
, 1);
10331 add_name_and_src_coords_attributes (subr_die
, decl
);
10332 if (debug_info_level
> DINFO_LEVEL_TERSE
)
10334 add_prototyped_attribute (subr_die
, TREE_TYPE (decl
));
10335 add_type_attribute (subr_die
, TREE_TYPE (TREE_TYPE (decl
)),
10336 0, 0, context_die
);
10339 add_pure_or_virtual_attribute (subr_die
, decl
);
10340 if (DECL_ARTIFICIAL (decl
))
10341 add_AT_flag (subr_die
, DW_AT_artificial
, 1);
10343 if (TREE_PROTECTED (decl
))
10344 add_AT_unsigned (subr_die
, DW_AT_accessibility
, DW_ACCESS_protected
);
10345 else if (TREE_PRIVATE (decl
))
10346 add_AT_unsigned (subr_die
, DW_AT_accessibility
, DW_ACCESS_private
);
10351 if (!old_die
|| !get_AT_unsigned (old_die
, DW_AT_inline
))
10353 add_AT_flag (subr_die
, DW_AT_declaration
, 1);
10355 /* The first time we see a member function, it is in the context of
10356 the class to which it belongs. We make sure of this by emitting
10357 the class first. The next time is the definition, which is
10358 handled above. The two may come from the same source text. */
10359 if (DECL_CONTEXT (decl
) || DECL_ABSTRACT (decl
))
10360 equate_decl_number_to_die (decl
, subr_die
);
10363 else if (DECL_ABSTRACT (decl
))
10365 if (DECL_INLINE (decl
) && !flag_no_inline
)
10367 /* ??? Checking DECL_DEFER_OUTPUT is correct for static
10368 inline functions, but not for extern inline functions.
10369 We can't get this completely correct because information
10370 about whether the function was declared inline is not
10372 if (DECL_DEFER_OUTPUT (decl
))
10373 add_AT_unsigned (subr_die
, DW_AT_inline
, DW_INL_declared_inlined
);
10375 add_AT_unsigned (subr_die
, DW_AT_inline
, DW_INL_inlined
);
10378 add_AT_unsigned (subr_die
, DW_AT_inline
, DW_INL_declared_not_inlined
);
10380 equate_decl_number_to_die (decl
, subr_die
);
10382 else if (!DECL_EXTERNAL (decl
))
10384 if (!old_die
|| !get_AT_unsigned (old_die
, DW_AT_inline
))
10385 equate_decl_number_to_die (decl
, subr_die
);
10387 ASM_GENERATE_INTERNAL_LABEL (label_id
, FUNC_BEGIN_LABEL
,
10388 current_function_funcdef_no
);
10389 add_AT_lbl_id (subr_die
, DW_AT_low_pc
, label_id
);
10390 ASM_GENERATE_INTERNAL_LABEL (label_id
, FUNC_END_LABEL
,
10391 current_function_funcdef_no
);
10392 add_AT_lbl_id (subr_die
, DW_AT_high_pc
, label_id
);
10394 add_pubname (decl
, subr_die
);
10395 add_arange (decl
, subr_die
);
10397 #ifdef MIPS_DEBUGGING_INFO
10398 /* Add a reference to the FDE for this routine. */
10399 add_AT_fde_ref (subr_die
, DW_AT_MIPS_fde
, current_funcdef_fde
);
10402 /* Define the "frame base" location for this routine. We use the
10403 frame pointer or stack pointer registers, since the RTL for local
10404 variables is relative to one of them. */
10406 = frame_pointer_needed
? hard_frame_pointer_rtx
: stack_pointer_rtx
;
10407 add_AT_loc (subr_die
, DW_AT_frame_base
, reg_loc_descriptor (fp_reg
));
10410 /* ??? This fails for nested inline functions, because context_display
10411 is not part of the state saved/restored for inline functions. */
10412 if (current_function_needs_context
)
10413 add_AT_location_description (subr_die
, DW_AT_static_link
,
10414 loc_descriptor (lookup_static_chain (decl
)));
10418 /* Now output descriptions of the arguments for this function. This gets
10419 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
10420 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
10421 `...' at the end of the formal parameter list. In order to find out if
10422 there was a trailing ellipsis or not, we must instead look at the type
10423 associated with the FUNCTION_DECL. This will be a node of type
10424 FUNCTION_TYPE. If the chain of type nodes hanging off of this
10425 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
10426 an ellipsis at the end. */
10428 /* In the case where we are describing a mere function declaration, all we
10429 need to do here (and all we *can* do here) is to describe the *types* of
10430 its formal parameters. */
10431 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
10433 else if (declaration
)
10434 gen_formal_types_die (decl
, subr_die
);
10437 /* Generate DIEs to represent all known formal parameters */
10438 tree arg_decls
= DECL_ARGUMENTS (decl
);
10441 /* When generating DIEs, generate the unspecified_parameters DIE
10442 instead if we come across the arg "__builtin_va_alist" */
10443 for (parm
= arg_decls
; parm
; parm
= TREE_CHAIN (parm
))
10444 if (TREE_CODE (parm
) == PARM_DECL
)
10446 if (DECL_NAME (parm
)
10447 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm
)),
10448 "__builtin_va_alist"))
10449 gen_unspecified_parameters_die (parm
, subr_die
);
10451 gen_decl_die (parm
, subr_die
);
10454 /* Decide whether we need an unspecified_parameters DIE at the end.
10455 There are 2 more cases to do this for: 1) the ansi ... declaration -
10456 this is detectable when the end of the arg list is not a
10457 void_type_node 2) an unprototyped function declaration (not a
10458 definition). This just means that we have no info about the
10459 parameters at all. */
10460 fn_arg_types
= TYPE_ARG_TYPES (TREE_TYPE (decl
));
10461 if (fn_arg_types
!= NULL
)
10463 /* this is the prototyped case, check for ... */
10464 if (TREE_VALUE (tree_last (fn_arg_types
)) != void_type_node
)
10465 gen_unspecified_parameters_die (decl
, subr_die
);
10467 else if (DECL_INITIAL (decl
) == NULL_TREE
)
10468 gen_unspecified_parameters_die (decl
, subr_die
);
10471 /* Output Dwarf info for all of the stuff within the body of the function
10472 (if it has one - it may be just a declaration). */
10473 outer_scope
= DECL_INITIAL (decl
);
10475 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
10476 a function. This BLOCK actually represents the outermost binding contour
10477 for the function, i.e. the contour in which the function's formal
10478 parameters and labels get declared. Curiously, it appears that the front
10479 end doesn't actually put the PARM_DECL nodes for the current function onto
10480 the BLOCK_VARS list for this outer scope, but are strung off of the
10481 DECL_ARGUMENTS list for the function instead.
10483 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
10484 the LABEL_DECL nodes for the function however, and we output DWARF info
10485 for those in decls_for_scope. Just within the `outer_scope' there will be
10486 a BLOCK node representing the function's outermost pair of curly braces,
10487 and any blocks used for the base and member initializers of a C++
10488 constructor function. */
10489 if (! declaration
&& TREE_CODE (outer_scope
) != ERROR_MARK
)
10491 current_function_has_inlines
= 0;
10492 decls_for_scope (outer_scope
, subr_die
, 0);
10494 #if 0 && defined (MIPS_DEBUGGING_INFO)
10495 if (current_function_has_inlines
)
10497 add_AT_flag (subr_die
, DW_AT_MIPS_has_inlines
, 1);
10498 if (! comp_unit_has_inlines
)
10500 add_AT_flag (comp_unit_die
, DW_AT_MIPS_has_inlines
, 1);
10501 comp_unit_has_inlines
= 1;
10508 /* Generate a DIE to represent a declared data object. */
10511 gen_variable_die (decl
, context_die
)
10513 dw_die_ref context_die
;
10515 tree origin
= decl_ultimate_origin (decl
);
10516 dw_die_ref var_die
= new_die (DW_TAG_variable
, context_die
, decl
);
10518 dw_die_ref old_die
= lookup_decl_die (decl
);
10519 int declaration
= (DECL_EXTERNAL (decl
)
10520 || class_scope_p (context_die
));
10522 if (origin
!= NULL
)
10523 add_abstract_origin_attribute (var_die
, origin
);
10525 /* Loop unrolling can create multiple blocks that refer to the same
10526 static variable, so we must test for the DW_AT_declaration flag.
10528 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
10529 copy decls and set the DECL_ABSTRACT flag on them instead of
10532 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
10533 else if (old_die
&& TREE_STATIC (decl
)
10534 && get_AT_flag (old_die
, DW_AT_declaration
) == 1)
10536 /* This is a definition of a C++ class level static. */
10537 add_AT_die_ref (var_die
, DW_AT_specification
, old_die
);
10538 if (DECL_NAME (decl
))
10540 unsigned file_index
= lookup_filename (DECL_SOURCE_FILE (decl
));
10542 if (get_AT_unsigned (old_die
, DW_AT_decl_file
) != file_index
)
10543 add_AT_unsigned (var_die
, DW_AT_decl_file
, file_index
);
10545 if (get_AT_unsigned (old_die
, DW_AT_decl_line
)
10546 != (unsigned) DECL_SOURCE_LINE (decl
))
10548 add_AT_unsigned (var_die
, DW_AT_decl_line
,
10549 DECL_SOURCE_LINE (decl
));
10554 add_name_and_src_coords_attributes (var_die
, decl
);
10555 add_type_attribute (var_die
, TREE_TYPE (decl
), TREE_READONLY (decl
),
10556 TREE_THIS_VOLATILE (decl
), context_die
);
10558 if (TREE_PUBLIC (decl
))
10559 add_AT_flag (var_die
, DW_AT_external
, 1);
10561 if (DECL_ARTIFICIAL (decl
))
10562 add_AT_flag (var_die
, DW_AT_artificial
, 1);
10564 if (TREE_PROTECTED (decl
))
10565 add_AT_unsigned (var_die
, DW_AT_accessibility
, DW_ACCESS_protected
);
10566 else if (TREE_PRIVATE (decl
))
10567 add_AT_unsigned (var_die
, DW_AT_accessibility
, DW_ACCESS_private
);
10571 add_AT_flag (var_die
, DW_AT_declaration
, 1);
10573 if (class_scope_p (context_die
) || DECL_ABSTRACT (decl
))
10574 equate_decl_number_to_die (decl
, var_die
);
10576 if (! declaration
&& ! DECL_ABSTRACT (decl
))
10578 add_location_or_const_value_attribute (var_die
, decl
);
10579 add_pubname (decl
, var_die
);
10582 tree_add_const_value_attribute (var_die
, decl
);
10585 /* Generate a DIE to represent a label identifier. */
10588 gen_label_die (decl
, context_die
)
10590 dw_die_ref context_die
;
10592 tree origin
= decl_ultimate_origin (decl
);
10593 dw_die_ref lbl_die
= new_die (DW_TAG_label
, context_die
, decl
);
10595 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
10597 if (origin
!= NULL
)
10598 add_abstract_origin_attribute (lbl_die
, origin
);
10600 add_name_and_src_coords_attributes (lbl_die
, decl
);
10602 if (DECL_ABSTRACT (decl
))
10603 equate_decl_number_to_die (decl
, lbl_die
);
10606 insn
= DECL_RTL (decl
);
10608 /* Deleted labels are programmer specified labels which have been
10609 eliminated because of various optimisations. We still emit them
10610 here so that it is possible to put breakpoints on them. */
10611 if (GET_CODE (insn
) == CODE_LABEL
10612 || ((GET_CODE (insn
) == NOTE
10613 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_DELETED_LABEL
)))
10615 /* When optimization is enabled (via -O) some parts of the compiler
10616 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
10617 represent source-level labels which were explicitly declared by
10618 the user. This really shouldn't be happening though, so catch
10619 it if it ever does happen. */
10620 if (INSN_DELETED_P (insn
))
10623 ASM_GENERATE_INTERNAL_LABEL (label
, "L", CODE_LABEL_NUMBER (insn
));
10624 add_AT_lbl_id (lbl_die
, DW_AT_low_pc
, label
);
10629 /* Generate a DIE for a lexical block. */
10632 gen_lexical_block_die (stmt
, context_die
, depth
)
10634 dw_die_ref context_die
;
10637 dw_die_ref stmt_die
= new_die (DW_TAG_lexical_block
, context_die
, stmt
);
10638 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
10640 if (! BLOCK_ABSTRACT (stmt
))
10642 if (BLOCK_FRAGMENT_CHAIN (stmt
))
10646 add_AT_range_list (stmt_die
, DW_AT_ranges
, add_ranges (stmt
));
10648 chain
= BLOCK_FRAGMENT_CHAIN (stmt
);
10651 add_ranges (chain
);
10652 chain
= BLOCK_FRAGMENT_CHAIN (chain
);
10659 ASM_GENERATE_INTERNAL_LABEL (label
, BLOCK_BEGIN_LABEL
,
10660 BLOCK_NUMBER (stmt
));
10661 add_AT_lbl_id (stmt_die
, DW_AT_low_pc
, label
);
10662 ASM_GENERATE_INTERNAL_LABEL (label
, BLOCK_END_LABEL
,
10663 BLOCK_NUMBER (stmt
));
10664 add_AT_lbl_id (stmt_die
, DW_AT_high_pc
, label
);
10668 decls_for_scope (stmt
, stmt_die
, depth
);
10671 /* Generate a DIE for an inlined subprogram. */
10674 gen_inlined_subroutine_die (stmt
, context_die
, depth
)
10676 dw_die_ref context_die
;
10679 if (! BLOCK_ABSTRACT (stmt
))
10681 dw_die_ref subr_die
10682 = new_die (DW_TAG_inlined_subroutine
, context_die
, stmt
);
10683 tree decl
= block_ultimate_origin (stmt
);
10684 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
10686 /* Emit info for the abstract instance first, if we haven't yet. */
10687 dwarf2out_abstract_function (decl
);
10689 add_abstract_origin_attribute (subr_die
, decl
);
10690 ASM_GENERATE_INTERNAL_LABEL (label
, BLOCK_BEGIN_LABEL
,
10691 BLOCK_NUMBER (stmt
));
10692 add_AT_lbl_id (subr_die
, DW_AT_low_pc
, label
);
10693 ASM_GENERATE_INTERNAL_LABEL (label
, BLOCK_END_LABEL
,
10694 BLOCK_NUMBER (stmt
));
10695 add_AT_lbl_id (subr_die
, DW_AT_high_pc
, label
);
10696 decls_for_scope (stmt
, subr_die
, depth
);
10697 current_function_has_inlines
= 1;
10700 /* We may get here if we're the outer block of function A that was
10701 inlined into function B that was inlined into function C. When
10702 generating debugging info for C, dwarf2out_abstract_function(B)
10703 would mark all inlined blocks as abstract, including this one.
10704 So, we wouldn't (and shouldn't) expect labels to be generated
10705 for this one. Instead, just emit debugging info for
10706 declarations within the block. This is particularly important
10707 in the case of initializers of arguments passed from B to us:
10708 if they're statement expressions containing declarations, we
10709 wouldn't generate dies for their abstract variables, and then,
10710 when generating dies for the real variables, we'd die (pun
10712 gen_lexical_block_die (stmt
, context_die
, depth
);
10715 /* Generate a DIE for a field in a record, or structure. */
10718 gen_field_die (decl
, context_die
)
10720 dw_die_ref context_die
;
10722 dw_die_ref decl_die
= new_die (DW_TAG_member
, context_die
, decl
);
10724 add_name_and_src_coords_attributes (decl_die
, decl
);
10725 add_type_attribute (decl_die
, member_declared_type (decl
),
10726 TREE_READONLY (decl
), TREE_THIS_VOLATILE (decl
),
10729 if (DECL_BIT_FIELD_TYPE (decl
))
10731 add_byte_size_attribute (decl_die
, decl
);
10732 add_bit_size_attribute (decl_die
, decl
);
10733 add_bit_offset_attribute (decl_die
, decl
);
10736 if (TREE_CODE (DECL_FIELD_CONTEXT (decl
)) != UNION_TYPE
)
10737 add_data_member_location_attribute (decl_die
, decl
);
10739 if (DECL_ARTIFICIAL (decl
))
10740 add_AT_flag (decl_die
, DW_AT_artificial
, 1);
10742 if (TREE_PROTECTED (decl
))
10743 add_AT_unsigned (decl_die
, DW_AT_accessibility
, DW_ACCESS_protected
);
10744 else if (TREE_PRIVATE (decl
))
10745 add_AT_unsigned (decl_die
, DW_AT_accessibility
, DW_ACCESS_private
);
10749 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
10750 Use modified_type_die instead.
10751 We keep this code here just in case these types of DIEs may be needed to
10752 represent certain things in other languages (e.g. Pascal) someday. */
10755 gen_pointer_type_die (type
, context_die
)
10757 dw_die_ref context_die
;
10760 = new_die (DW_TAG_pointer_type
, scope_die_for (type
, context_die
), type
);
10762 equate_type_number_to_die (type
, ptr_die
);
10763 add_type_attribute (ptr_die
, TREE_TYPE (type
), 0, 0, context_die
);
10764 add_AT_unsigned (mod_type_die
, DW_AT_byte_size
, PTR_SIZE
);
10767 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
10768 Use modified_type_die instead.
10769 We keep this code here just in case these types of DIEs may be needed to
10770 represent certain things in other languages (e.g. Pascal) someday. */
10773 gen_reference_type_die (type
, context_die
)
10775 dw_die_ref context_die
;
10778 = new_die (DW_TAG_reference_type
, scope_die_for (type
, context_die
), type
);
10780 equate_type_number_to_die (type
, ref_die
);
10781 add_type_attribute (ref_die
, TREE_TYPE (type
), 0, 0, context_die
);
10782 add_AT_unsigned (mod_type_die
, DW_AT_byte_size
, PTR_SIZE
);
10786 /* Generate a DIE for a pointer to a member type. */
10789 gen_ptr_to_mbr_type_die (type
, context_die
)
10791 dw_die_ref context_die
;
10794 = new_die (DW_TAG_ptr_to_member_type
,
10795 scope_die_for (type
, context_die
), type
);
10797 equate_type_number_to_die (type
, ptr_die
);
10798 add_AT_die_ref (ptr_die
, DW_AT_containing_type
,
10799 lookup_type_die (TYPE_OFFSET_BASETYPE (type
)));
10800 add_type_attribute (ptr_die
, TREE_TYPE (type
), 0, 0, context_die
);
10803 /* Generate the DIE for the compilation unit. */
10806 gen_compile_unit_die (filename
)
10807 const char *filename
;
10810 char producer
[250];
10811 const char *wd
= getpwd ();
10812 const char *language_string
= lang_hooks
.name
;
10815 die
= new_die (DW_TAG_compile_unit
, NULL
, NULL
);
10816 add_name_attribute (die
, filename
);
10818 if (wd
!= NULL
&& filename
[0] != DIR_SEPARATOR
)
10819 add_AT_string (die
, DW_AT_comp_dir
, wd
);
10821 sprintf (producer
, "%s %s", language_string
, version_string
);
10823 #ifdef MIPS_DEBUGGING_INFO
10824 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
10825 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
10826 not appear in the producer string, the debugger reaches the conclusion
10827 that the object file is stripped and has no debugging information.
10828 To get the MIPS/SGI debugger to believe that there is debugging
10829 information in the object file, we add a -g to the producer string. */
10830 if (debug_info_level
> DINFO_LEVEL_TERSE
)
10831 strcat (producer
, " -g");
10834 add_AT_string (die
, DW_AT_producer
, producer
);
10836 if (strcmp (language_string
, "GNU C++") == 0)
10837 language
= DW_LANG_C_plus_plus
;
10838 else if (strcmp (language_string
, "GNU Ada") == 0)
10839 language
= DW_LANG_Ada83
;
10840 else if (strcmp (language_string
, "GNU F77") == 0)
10841 language
= DW_LANG_Fortran77
;
10842 else if (strcmp (language_string
, "GNU Pascal") == 0)
10843 language
= DW_LANG_Pascal83
;
10844 else if (strcmp (language_string
, "GNU Java") == 0)
10845 language
= DW_LANG_Java
;
10847 language
= DW_LANG_C89
;
10849 add_AT_unsigned (die
, DW_AT_language
, language
);
10853 /* Generate a DIE for a string type. */
10856 gen_string_type_die (type
, context_die
)
10858 dw_die_ref context_die
;
10860 dw_die_ref type_die
10861 = new_die (DW_TAG_string_type
, scope_die_for (type
, context_die
), type
);
10863 equate_type_number_to_die (type
, type_die
);
10865 /* ??? Fudge the string length attribute for now.
10866 TODO: add string length info. */
10868 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type
)));
10869 bound_representation (upper_bound
, 0, 'u');
10873 /* Generate the DIE for a base class. */
10876 gen_inheritance_die (binfo
, context_die
)
10878 dw_die_ref context_die
;
10880 dw_die_ref die
= new_die (DW_TAG_inheritance
, context_die
, binfo
);
10882 add_type_attribute (die
, BINFO_TYPE (binfo
), 0, 0, context_die
);
10883 add_data_member_location_attribute (die
, binfo
);
10885 if (TREE_VIA_VIRTUAL (binfo
))
10886 add_AT_unsigned (die
, DW_AT_virtuality
, DW_VIRTUALITY_virtual
);
10888 if (TREE_VIA_PUBLIC (binfo
))
10889 add_AT_unsigned (die
, DW_AT_accessibility
, DW_ACCESS_public
);
10890 else if (TREE_VIA_PROTECTED (binfo
))
10891 add_AT_unsigned (die
, DW_AT_accessibility
, DW_ACCESS_protected
);
10894 /* Generate a DIE for a class member. */
10897 gen_member_die (type
, context_die
)
10899 dw_die_ref context_die
;
10904 /* If this is not an incomplete type, output descriptions of each of its
10905 members. Note that as we output the DIEs necessary to represent the
10906 members of this record or union type, we will also be trying to output
10907 DIEs to represent the *types* of those members. However the `type'
10908 function (above) will specifically avoid generating type DIEs for member
10909 types *within* the list of member DIEs for this (containing) type except
10910 for those types (of members) which are explicitly marked as also being
10911 members of this (containing) type themselves. The g++ front- end can
10912 force any given type to be treated as a member of some other (containing)
10913 type by setting the TYPE_CONTEXT of the given (member) type to point to
10914 the TREE node representing the appropriate (containing) type. */
10916 /* First output info about the base classes. */
10917 if (TYPE_BINFO (type
) && TYPE_BINFO_BASETYPES (type
))
10919 tree bases
= TYPE_BINFO_BASETYPES (type
);
10920 int n_bases
= TREE_VEC_LENGTH (bases
);
10923 for (i
= 0; i
< n_bases
; i
++)
10924 gen_inheritance_die (TREE_VEC_ELT (bases
, i
), context_die
);
10927 /* Now output info about the data members and type members. */
10928 for (member
= TYPE_FIELDS (type
); member
; member
= TREE_CHAIN (member
))
10930 /* If we thought we were generating minimal debug info for TYPE
10931 and then changed our minds, some of the member declarations
10932 may have already been defined. Don't define them again, but
10933 do put them in the right order. */
10935 child
= lookup_decl_die (member
);
10937 splice_child_die (context_die
, child
);
10939 gen_decl_die (member
, context_die
);
10942 /* Now output info about the function members (if any). */
10943 for (member
= TYPE_METHODS (type
); member
; member
= TREE_CHAIN (member
))
10945 /* Don't include clones in the member list. */
10946 if (DECL_ABSTRACT_ORIGIN (member
))
10949 child
= lookup_decl_die (member
);
10951 splice_child_die (context_die
, child
);
10953 gen_decl_die (member
, context_die
);
10957 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
10958 is set, we pretend that the type was never defined, so we only get the
10959 member DIEs needed by later specification DIEs. */
10962 gen_struct_or_union_type_die (type
, context_die
)
10964 dw_die_ref context_die
;
10966 dw_die_ref type_die
= lookup_type_die (type
);
10967 dw_die_ref scope_die
= 0;
10969 int complete
= (TYPE_SIZE (type
)
10970 && (! TYPE_STUB_DECL (type
)
10971 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type
))));
10973 if (type_die
&& ! complete
)
10976 if (TYPE_CONTEXT (type
) != NULL_TREE
10977 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type
)))
10980 scope_die
= scope_die_for (type
, context_die
);
10982 if (! type_die
|| (nested
&& scope_die
== comp_unit_die
))
10983 /* First occurrence of type or toplevel definition of nested class. */
10985 dw_die_ref old_die
= type_die
;
10987 type_die
= new_die (TREE_CODE (type
) == RECORD_TYPE
10988 ? DW_TAG_structure_type
: DW_TAG_union_type
,
10990 equate_type_number_to_die (type
, type_die
);
10992 add_AT_die_ref (type_die
, DW_AT_specification
, old_die
);
10994 add_name_attribute (type_die
, type_tag (type
));
10997 remove_AT (type_die
, DW_AT_declaration
);
10999 /* If this type has been completed, then give it a byte_size attribute and
11000 then give a list of members. */
11003 /* Prevent infinite recursion in cases where the type of some member of
11004 this type is expressed in terms of this type itself. */
11005 TREE_ASM_WRITTEN (type
) = 1;
11006 add_byte_size_attribute (type_die
, type
);
11007 if (TYPE_STUB_DECL (type
) != NULL_TREE
)
11008 add_src_coords_attributes (type_die
, TYPE_STUB_DECL (type
));
11010 /* If the first reference to this type was as the return type of an
11011 inline function, then it may not have a parent. Fix this now. */
11012 if (type_die
->die_parent
== NULL
)
11013 add_child_die (scope_die
, type_die
);
11015 push_decl_scope (type
);
11016 gen_member_die (type
, type_die
);
11019 /* GNU extension: Record what type our vtable lives in. */
11020 if (TYPE_VFIELD (type
))
11022 tree vtype
= DECL_FCONTEXT (TYPE_VFIELD (type
));
11024 gen_type_die (vtype
, context_die
);
11025 add_AT_die_ref (type_die
, DW_AT_containing_type
,
11026 lookup_type_die (vtype
));
11031 add_AT_flag (type_die
, DW_AT_declaration
, 1);
11033 /* We don't need to do this for function-local types. */
11034 if (TYPE_STUB_DECL (type
)
11035 && ! decl_function_context (TYPE_STUB_DECL (type
)))
11036 VARRAY_PUSH_TREE (incomplete_types
, type
);
11040 /* Generate a DIE for a subroutine _type_. */
11043 gen_subroutine_type_die (type
, context_die
)
11045 dw_die_ref context_die
;
11047 tree return_type
= TREE_TYPE (type
);
11048 dw_die_ref subr_die
11049 = new_die (DW_TAG_subroutine_type
,
11050 scope_die_for (type
, context_die
), type
);
11052 equate_type_number_to_die (type
, subr_die
);
11053 add_prototyped_attribute (subr_die
, type
);
11054 add_type_attribute (subr_die
, return_type
, 0, 0, context_die
);
11055 gen_formal_types_die (type
, subr_die
);
11058 /* Generate a DIE for a type definition */
11061 gen_typedef_die (decl
, context_die
)
11063 dw_die_ref context_die
;
11065 dw_die_ref type_die
;
11068 if (TREE_ASM_WRITTEN (decl
))
11071 TREE_ASM_WRITTEN (decl
) = 1;
11072 type_die
= new_die (DW_TAG_typedef
, context_die
, decl
);
11073 origin
= decl_ultimate_origin (decl
);
11074 if (origin
!= NULL
)
11075 add_abstract_origin_attribute (type_die
, origin
);
11080 add_name_and_src_coords_attributes (type_die
, decl
);
11081 if (DECL_ORIGINAL_TYPE (decl
))
11083 type
= DECL_ORIGINAL_TYPE (decl
);
11085 if (type
== TREE_TYPE (decl
))
11088 equate_type_number_to_die (TREE_TYPE (decl
), type_die
);
11091 type
= TREE_TYPE (decl
);
11093 add_type_attribute (type_die
, type
, TREE_READONLY (decl
),
11094 TREE_THIS_VOLATILE (decl
), context_die
);
11097 if (DECL_ABSTRACT (decl
))
11098 equate_decl_number_to_die (decl
, type_die
);
11101 /* Generate a type description DIE. */
11104 gen_type_die (type
, context_die
)
11106 dw_die_ref context_die
;
11110 if (type
== NULL_TREE
|| type
== error_mark_node
)
11113 /* We are going to output a DIE to represent the unqualified version
11114 of this type (i.e. without any const or volatile qualifiers) so
11115 get the main variant (i.e. the unqualified version) of this type
11116 now. (Vectors are special because the debugging info is in the
11117 cloned type itself). */
11118 if (TREE_CODE (type
) != VECTOR_TYPE
)
11119 type
= type_main_variant (type
);
11121 if (TREE_ASM_WRITTEN (type
))
11124 if (TYPE_NAME (type
) && TREE_CODE (TYPE_NAME (type
)) == TYPE_DECL
11125 && DECL_ORIGINAL_TYPE (TYPE_NAME (type
)))
11127 /* Prevent broken recursion; we can't hand off to the same type. */
11128 if (DECL_ORIGINAL_TYPE (TYPE_NAME (type
)) == type
)
11131 TREE_ASM_WRITTEN (type
) = 1;
11132 gen_decl_die (TYPE_NAME (type
), context_die
);
11136 switch (TREE_CODE (type
))
11142 case REFERENCE_TYPE
:
11143 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
11144 ensures that the gen_type_die recursion will terminate even if the
11145 type is recursive. Recursive types are possible in Ada. */
11146 /* ??? We could perhaps do this for all types before the switch
11148 TREE_ASM_WRITTEN (type
) = 1;
11150 /* For these types, all that is required is that we output a DIE (or a
11151 set of DIEs) to represent the "basis" type. */
11152 gen_type_die (TREE_TYPE (type
), context_die
);
11156 /* This code is used for C++ pointer-to-data-member types.
11157 Output a description of the relevant class type. */
11158 gen_type_die (TYPE_OFFSET_BASETYPE (type
), context_die
);
11160 /* Output a description of the type of the object pointed to. */
11161 gen_type_die (TREE_TYPE (type
), context_die
);
11163 /* Now output a DIE to represent this pointer-to-data-member type
11165 gen_ptr_to_mbr_type_die (type
, context_die
);
11169 gen_type_die (TYPE_DOMAIN (type
), context_die
);
11170 gen_set_type_die (type
, context_die
);
11174 gen_type_die (TREE_TYPE (type
), context_die
);
11175 abort (); /* No way to represent these in Dwarf yet! */
11178 case FUNCTION_TYPE
:
11179 /* Force out return type (in case it wasn't forced out already). */
11180 gen_type_die (TREE_TYPE (type
), context_die
);
11181 gen_subroutine_type_die (type
, context_die
);
11185 /* Force out return type (in case it wasn't forced out already). */
11186 gen_type_die (TREE_TYPE (type
), context_die
);
11187 gen_subroutine_type_die (type
, context_die
);
11191 if (TYPE_STRING_FLAG (type
) && TREE_CODE (TREE_TYPE (type
)) == CHAR_TYPE
)
11193 gen_type_die (TREE_TYPE (type
), context_die
);
11194 gen_string_type_die (type
, context_die
);
11197 gen_array_type_die (type
, context_die
);
11201 gen_array_type_die (type
, context_die
);
11204 case ENUMERAL_TYPE
:
11207 case QUAL_UNION_TYPE
:
11208 /* If this is a nested type whose containing class hasn't been written
11209 out yet, writing it out will cover this one, too. This does not apply
11210 to instantiations of member class templates; they need to be added to
11211 the containing class as they are generated. FIXME: This hurts the
11212 idea of combining type decls from multiple TUs, since we can't predict
11213 what set of template instantiations we'll get. */
11214 if (TYPE_CONTEXT (type
)
11215 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type
))
11216 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type
)))
11218 gen_type_die (TYPE_CONTEXT (type
), context_die
);
11220 if (TREE_ASM_WRITTEN (type
))
11223 /* If that failed, attach ourselves to the stub. */
11224 push_decl_scope (TYPE_CONTEXT (type
));
11225 context_die
= lookup_type_die (TYPE_CONTEXT (type
));
11231 if (TREE_CODE (type
) == ENUMERAL_TYPE
)
11232 gen_enumeration_type_die (type
, context_die
);
11234 gen_struct_or_union_type_die (type
, context_die
);
11239 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
11240 it up if it is ever completed. gen_*_type_die will set it for us
11241 when appropriate. */
11250 /* No DIEs needed for fundamental types. */
11254 /* No Dwarf representation currently defined. */
11261 TREE_ASM_WRITTEN (type
) = 1;
11264 /* Generate a DIE for a tagged type instantiation. */
11267 gen_tagged_type_instantiation_die (type
, context_die
)
11269 dw_die_ref context_die
;
11271 if (type
== NULL_TREE
|| type
== error_mark_node
)
11274 /* We are going to output a DIE to represent the unqualified version of
11275 this type (i.e. without any const or volatile qualifiers) so make sure
11276 that we have the main variant (i.e. the unqualified version) of this
11278 if (type
!= type_main_variant (type
))
11281 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
11282 an instance of an unresolved type. */
11284 switch (TREE_CODE (type
))
11289 case ENUMERAL_TYPE
:
11290 gen_inlined_enumeration_type_die (type
, context_die
);
11294 gen_inlined_structure_type_die (type
, context_die
);
11298 case QUAL_UNION_TYPE
:
11299 gen_inlined_union_type_die (type
, context_die
);
11307 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
11308 things which are local to the given block. */
11311 gen_block_die (stmt
, context_die
, depth
)
11313 dw_die_ref context_die
;
11316 int must_output_die
= 0;
11319 enum tree_code origin_code
;
11321 /* Ignore blocks never really used to make RTL. */
11322 if (stmt
== NULL_TREE
|| !TREE_USED (stmt
)
11323 || (!TREE_ASM_WRITTEN (stmt
) && !BLOCK_ABSTRACT (stmt
)))
11326 /* If the block is one fragment of a non-contiguous block, do not
11327 process the variables, since they will have been done by the
11328 origin block. Do process subblocks. */
11329 if (BLOCK_FRAGMENT_ORIGIN (stmt
))
11333 for (sub
= BLOCK_SUBBLOCKS (stmt
); sub
; sub
= BLOCK_CHAIN (sub
))
11334 gen_block_die (sub
, context_die
, depth
+ 1);
11339 /* Determine the "ultimate origin" of this block. This block may be an
11340 inlined instance of an inlined instance of inline function, so we have
11341 to trace all of the way back through the origin chain to find out what
11342 sort of node actually served as the original seed for the creation of
11343 the current block. */
11344 origin
= block_ultimate_origin (stmt
);
11345 origin_code
= (origin
!= NULL
) ? TREE_CODE (origin
) : ERROR_MARK
;
11347 /* Determine if we need to output any Dwarf DIEs at all to represent this
11349 if (origin_code
== FUNCTION_DECL
)
11350 /* The outer scopes for inlinings *must* always be represented. We
11351 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
11352 must_output_die
= 1;
11355 /* In the case where the current block represents an inlining of the
11356 "body block" of an inline function, we must *NOT* output any DIE for
11357 this block because we have already output a DIE to represent the whole
11358 inlined function scope and the "body block" of any function doesn't
11359 really represent a different scope according to ANSI C rules. So we
11360 check here to make sure that this block does not represent a "body
11361 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
11362 if (! is_body_block (origin
? origin
: stmt
))
11364 /* Determine if this block directly contains any "significant"
11365 local declarations which we will need to output DIEs for. */
11366 if (debug_info_level
> DINFO_LEVEL_TERSE
)
11367 /* We are not in terse mode so *any* local declaration counts
11368 as being a "significant" one. */
11369 must_output_die
= (BLOCK_VARS (stmt
) != NULL
);
11371 /* We are in terse mode, so only local (nested) function
11372 definitions count as "significant" local declarations. */
11373 for (decl
= BLOCK_VARS (stmt
);
11374 decl
!= NULL
; decl
= TREE_CHAIN (decl
))
11375 if (TREE_CODE (decl
) == FUNCTION_DECL
11376 && DECL_INITIAL (decl
))
11378 must_output_die
= 1;
11384 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
11385 DIE for any block which contains no significant local declarations at
11386 all. Rather, in such cases we just call `decls_for_scope' so that any
11387 needed Dwarf info for any sub-blocks will get properly generated. Note
11388 that in terse mode, our definition of what constitutes a "significant"
11389 local declaration gets restricted to include only inlined function
11390 instances and local (nested) function definitions. */
11391 if (must_output_die
)
11393 if (origin_code
== FUNCTION_DECL
)
11394 gen_inlined_subroutine_die (stmt
, context_die
, depth
);
11396 gen_lexical_block_die (stmt
, context_die
, depth
);
11399 decls_for_scope (stmt
, context_die
, depth
);
11402 /* Generate all of the decls declared within a given scope and (recursively)
11403 all of its sub-blocks. */
11406 decls_for_scope (stmt
, context_die
, depth
)
11408 dw_die_ref context_die
;
11414 /* Ignore blocks never really used to make RTL. */
11415 if (stmt
== NULL_TREE
|| ! TREE_USED (stmt
))
11418 /* Output the DIEs to represent all of the data objects and typedefs
11419 declared directly within this block but not within any nested
11420 sub-blocks. Also, nested function and tag DIEs have been
11421 generated with a parent of NULL; fix that up now. */
11422 for (decl
= BLOCK_VARS (stmt
); decl
!= NULL
; decl
= TREE_CHAIN (decl
))
11426 if (TREE_CODE (decl
) == FUNCTION_DECL
)
11427 die
= lookup_decl_die (decl
);
11428 else if (TREE_CODE (decl
) == TYPE_DECL
&& TYPE_DECL_IS_STUB (decl
))
11429 die
= lookup_type_die (TREE_TYPE (decl
));
11433 if (die
!= NULL
&& die
->die_parent
== NULL
)
11434 add_child_die (context_die
, die
);
11436 gen_decl_die (decl
, context_die
);
11439 /* Output the DIEs to represent all sub-blocks (and the items declared
11440 therein) of this block. */
11441 for (subblocks
= BLOCK_SUBBLOCKS (stmt
);
11443 subblocks
= BLOCK_CHAIN (subblocks
))
11444 gen_block_die (subblocks
, context_die
, depth
+ 1);
11447 /* Is this a typedef we can avoid emitting? */
11450 is_redundant_typedef (decl
)
11453 if (TYPE_DECL_IS_STUB (decl
))
11456 if (DECL_ARTIFICIAL (decl
)
11457 && DECL_CONTEXT (decl
)
11458 && is_tagged_type (DECL_CONTEXT (decl
))
11459 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl
))) == TYPE_DECL
11460 && DECL_NAME (decl
) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl
))))
11461 /* Also ignore the artificial member typedef for the class name. */
11467 /* Generate Dwarf debug information for a decl described by DECL. */
11470 gen_decl_die (decl
, context_die
)
11472 dw_die_ref context_die
;
11476 if (DECL_P (decl
) && DECL_IGNORED_P (decl
))
11479 switch (TREE_CODE (decl
))
11485 /* The individual enumerators of an enum type get output when we output
11486 the Dwarf representation of the relevant enum type itself. */
11489 case FUNCTION_DECL
:
11490 /* Don't output any DIEs to represent mere function declarations,
11491 unless they are class members or explicit block externs. */
11492 if (DECL_INITIAL (decl
) == NULL_TREE
&& DECL_CONTEXT (decl
) == NULL_TREE
11493 && (current_function_decl
== NULL_TREE
|| DECL_ARTIFICIAL (decl
)))
11496 /* If we're emitting a clone, emit info for the abstract instance. */
11497 if (DECL_ORIGIN (decl
) != decl
)
11498 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl
));
11500 /* If we're emitting an out-of-line copy of an inline function,
11501 emit info for the abstract instance and set up to refer to it. */
11502 else if (DECL_INLINE (decl
) && ! DECL_ABSTRACT (decl
)
11503 && ! class_scope_p (context_die
)
11504 /* dwarf2out_abstract_function won't emit a die if this is just
11505 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
11506 that case, because that works only if we have a die. */
11507 && DECL_INITIAL (decl
) != NULL_TREE
)
11509 dwarf2out_abstract_function (decl
);
11510 set_decl_origin_self (decl
);
11513 /* Otherwise we're emitting the primary DIE for this decl. */
11514 else if (debug_info_level
> DINFO_LEVEL_TERSE
)
11516 /* Before we describe the FUNCTION_DECL itself, make sure that we
11517 have described its return type. */
11518 gen_type_die (TREE_TYPE (TREE_TYPE (decl
)), context_die
);
11520 /* And its virtual context. */
11521 if (DECL_VINDEX (decl
) != NULL_TREE
)
11522 gen_type_die (DECL_CONTEXT (decl
), context_die
);
11524 /* And its containing type. */
11525 origin
= decl_class_context (decl
);
11526 if (origin
!= NULL_TREE
)
11527 gen_type_die_for_member (origin
, decl
, context_die
);
11530 /* Now output a DIE to represent the function itself. */
11531 gen_subprogram_die (decl
, context_die
);
11535 /* If we are in terse mode, don't generate any DIEs to represent any
11536 actual typedefs. */
11537 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
11540 /* In the special case of a TYPE_DECL node representing the declaration
11541 of some type tag, if the given TYPE_DECL is marked as having been
11542 instantiated from some other (original) TYPE_DECL node (e.g. one which
11543 was generated within the original definition of an inline function) we
11544 have to generate a special (abbreviated) DW_TAG_structure_type,
11545 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
11546 if (TYPE_DECL_IS_STUB (decl
) && decl_ultimate_origin (decl
) != NULL_TREE
)
11548 gen_tagged_type_instantiation_die (TREE_TYPE (decl
), context_die
);
11552 if (is_redundant_typedef (decl
))
11553 gen_type_die (TREE_TYPE (decl
), context_die
);
11555 /* Output a DIE to represent the typedef itself. */
11556 gen_typedef_die (decl
, context_die
);
11560 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
11561 gen_label_die (decl
, context_die
);
11565 /* If we are in terse mode, don't generate any DIEs to represent any
11566 variable declarations or definitions. */
11567 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
11570 /* Output any DIEs that are needed to specify the type of this data
11572 gen_type_die (TREE_TYPE (decl
), context_die
);
11574 /* And its containing type. */
11575 origin
= decl_class_context (decl
);
11576 if (origin
!= NULL_TREE
)
11577 gen_type_die_for_member (origin
, decl
, context_die
);
11579 /* Now output the DIE to represent the data object itself. This gets
11580 complicated because of the possibility that the VAR_DECL really
11581 represents an inlined instance of a formal parameter for an inline
11583 origin
= decl_ultimate_origin (decl
);
11584 if (origin
!= NULL_TREE
&& TREE_CODE (origin
) == PARM_DECL
)
11585 gen_formal_parameter_die (decl
, context_die
);
11587 gen_variable_die (decl
, context_die
);
11591 /* Ignore the nameless fields that are used to skip bits but handle C++
11592 anonymous unions. */
11593 if (DECL_NAME (decl
) != NULL_TREE
11594 || TREE_CODE (TREE_TYPE (decl
)) == UNION_TYPE
)
11596 gen_type_die (member_declared_type (decl
), context_die
);
11597 gen_field_die (decl
, context_die
);
11602 gen_type_die (TREE_TYPE (decl
), context_die
);
11603 gen_formal_parameter_die (decl
, context_die
);
11606 case NAMESPACE_DECL
:
11607 /* Ignore for now. */
11616 mark_limbo_die_list (ptr
)
11617 void *ptr ATTRIBUTE_UNUSED
;
11619 limbo_die_node
*node
;
11620 for (node
= limbo_die_list
; node
; node
= node
->next
)
11621 ggc_mark_tree (node
->created_for
);
11624 /* Add Ada "use" clause information for SGI Workshop debugger. */
11627 dwarf2out_add_library_unit_info (filename
, context_list
)
11628 const char *filename
;
11629 const char *context_list
;
11631 unsigned int file_index
;
11633 if (filename
!= NULL
)
11635 dw_die_ref unit_die
= new_die (DW_TAG_module
, comp_unit_die
, NULL
);
11636 tree context_list_decl
11637 = build_decl (LABEL_DECL
, get_identifier (context_list
),
11640 TREE_PUBLIC (context_list_decl
) = TRUE
;
11641 add_name_attribute (unit_die
, context_list
);
11642 file_index
= lookup_filename (filename
);
11643 add_AT_unsigned (unit_die
, DW_AT_decl_file
, file_index
);
11644 add_pubname (context_list_decl
, unit_die
);
11648 /* Output debug information for global decl DECL. Called from toplev.c after
11649 compilation proper has finished. */
11652 dwarf2out_global_decl (decl
)
11655 /* Output DWARF2 information for file-scope tentative data object
11656 declarations, file-scope (extern) function declarations (which had no
11657 corresponding body) and file-scope tagged type declarations and
11658 definitions which have not yet been forced out. */
11659 if (TREE_CODE (decl
) != FUNCTION_DECL
|| !DECL_INITIAL (decl
))
11660 dwarf2out_decl (decl
);
11663 /* Write the debugging output for DECL. */
11666 dwarf2out_decl (decl
)
11669 dw_die_ref context_die
= comp_unit_die
;
11671 switch (TREE_CODE (decl
))
11676 case FUNCTION_DECL
:
11677 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of a
11678 builtin function. Explicit programmer-supplied declarations of
11679 these same functions should NOT be ignored however. */
11680 if (DECL_EXTERNAL (decl
) && DECL_BUILT_IN (decl
))
11683 /* What we would really like to do here is to filter out all mere
11684 file-scope declarations of file-scope functions which are never
11685 referenced later within this translation unit (and keep all of ones
11686 that *are* referenced later on) but we aren't clairvoyant, so we have
11687 no idea which functions will be referenced in the future (i.e. later
11688 on within the current translation unit). So here we just ignore all
11689 file-scope function declarations which are not also definitions. If
11690 and when the debugger needs to know something about these functions,
11691 it will have to hunt around and find the DWARF information associated
11692 with the definition of the function.
11694 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
11695 nodes represent definitions and which ones represent mere
11696 declarations. We have to check DECL_INITIAL instead. That's because
11697 the C front-end supports some weird semantics for "extern inline"
11698 function definitions. These can get inlined within the current
11699 translation unit (an thus, we need to generate Dwarf info for their
11700 abstract instances so that the Dwarf info for the concrete inlined
11701 instances can have something to refer to) but the compiler never
11702 generates any out-of-lines instances of such things (despite the fact
11703 that they *are* definitions).
11705 The important point is that the C front-end marks these "extern
11706 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
11707 them anyway. Note that the C++ front-end also plays some similar games
11708 for inline function definitions appearing within include files which
11709 also contain `#pragma interface' pragmas. */
11710 if (DECL_INITIAL (decl
) == NULL_TREE
)
11713 /* If we're a nested function, initially use a parent of NULL; if we're
11714 a plain function, this will be fixed up in decls_for_scope. If
11715 we're a method, it will be ignored, since we already have a DIE. */
11716 if (decl_function_context (decl
))
11717 context_die
= NULL
;
11721 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
11722 declaration and if the declaration was never even referenced from
11723 within this entire compilation unit. We suppress these DIEs in
11724 order to save space in the .debug section (by eliminating entries
11725 which are probably useless). Note that we must not suppress
11726 block-local extern declarations (whether used or not) because that
11727 would screw-up the debugger's name lookup mechanism and cause it to
11728 miss things which really ought to be in scope at a given point. */
11729 if (DECL_EXTERNAL (decl
) && !TREE_USED (decl
))
11732 /* If we are in terse mode, don't generate any DIEs to represent any
11733 variable declarations or definitions. */
11734 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
11739 /* Don't emit stubs for types unless they are needed by other DIEs. */
11740 if (TYPE_DECL_SUPPRESS_DEBUG (decl
))
11743 /* Don't bother trying to generate any DIEs to represent any of the
11744 normal built-in types for the language we are compiling. */
11745 if (DECL_SOURCE_LINE (decl
) == 0)
11747 /* OK, we need to generate one for `bool' so GDB knows what type
11748 comparisons have. */
11749 if ((get_AT_unsigned (comp_unit_die
, DW_AT_language
)
11750 == DW_LANG_C_plus_plus
)
11751 && TREE_CODE (TREE_TYPE (decl
)) == BOOLEAN_TYPE
11752 && ! DECL_IGNORED_P (decl
))
11753 modified_type_die (TREE_TYPE (decl
), 0, 0, NULL
);
11758 /* If we are in terse mode, don't generate any DIEs for types. */
11759 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
11762 /* If we're a function-scope tag, initially use a parent of NULL;
11763 this will be fixed up in decls_for_scope. */
11764 if (decl_function_context (decl
))
11765 context_die
= NULL
;
11773 gen_decl_die (decl
, context_die
);
11776 /* Output a marker (i.e. a label) for the beginning of the generated code for
11777 a lexical block. */
11780 dwarf2out_begin_block (line
, blocknum
)
11781 unsigned int line ATTRIBUTE_UNUSED
;
11782 unsigned int blocknum
;
11784 function_section (current_function_decl
);
11785 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, BLOCK_BEGIN_LABEL
, blocknum
);
11788 /* Output a marker (i.e. a label) for the end of the generated code for a
11792 dwarf2out_end_block (line
, blocknum
)
11793 unsigned int line ATTRIBUTE_UNUSED
;
11794 unsigned int blocknum
;
11796 function_section (current_function_decl
);
11797 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, BLOCK_END_LABEL
, blocknum
);
11800 /* Returns nonzero if it is appropriate not to emit any debugging
11801 information for BLOCK, because it doesn't contain any instructions.
11803 Don't allow this for blocks with nested functions or local classes
11804 as we would end up with orphans, and in the presence of scheduling
11805 we may end up calling them anyway. */
11808 dwarf2out_ignore_block (block
)
11813 for (decl
= BLOCK_VARS (block
); decl
; decl
= TREE_CHAIN (decl
))
11814 if (TREE_CODE (decl
) == FUNCTION_DECL
11815 || (TREE_CODE (decl
) == TYPE_DECL
&& TYPE_DECL_IS_STUB (decl
)))
11821 /* Lookup FILE_NAME (in the list of filenames that we know about here in
11822 dwarf2out.c) and return its "index". The index of each (known) filename is
11823 just a unique number which is associated with only that one filename. We
11824 need such numbers for the sake of generating labels (in the .debug_sfnames
11825 section) and references to those files numbers (in the .debug_srcinfo
11826 and.debug_macinfo sections). If the filename given as an argument is not
11827 found in our current list, add it to the list and assign it the next
11828 available unique index number. In order to speed up searches, we remember
11829 the index of the filename was looked up last. This handles the majority of
11833 lookup_filename (file_name
)
11834 const char *file_name
;
11838 /* ??? Why isn't DECL_SOURCE_FILE left null instead. */
11839 if (strcmp (file_name
, "<internal>") == 0
11840 || strcmp (file_name
, "<built-in>") == 0)
11843 /* Check to see if the file name that was searched on the previous
11844 call matches this file name. If so, return the index. */
11845 if (file_table
.last_lookup_index
!= 0)
11846 if (0 == strcmp (file_name
,
11847 file_table
.table
[file_table
.last_lookup_index
]))
11848 return file_table
.last_lookup_index
;
11850 /* Didn't match the previous lookup, search the table */
11851 for (i
= 1; i
< file_table
.in_use
; i
++)
11852 if (strcmp (file_name
, file_table
.table
[i
]) == 0)
11854 file_table
.last_lookup_index
= i
;
11858 /* Prepare to add a new table entry by making sure there is enough space in
11859 the table to do so. If not, expand the current table. */
11860 if (i
== file_table
.allocated
)
11862 file_table
.allocated
= i
+ FILE_TABLE_INCREMENT
;
11863 file_table
.table
= (char **)
11864 xrealloc (file_table
.table
, file_table
.allocated
* sizeof (char *));
11867 /* Add the new entry to the end of the filename table. */
11868 file_table
.table
[i
] = xstrdup (file_name
);
11869 file_table
.in_use
= i
+ 1;
11870 file_table
.last_lookup_index
= i
;
11872 if (DWARF2_ASM_LINE_DEBUG_INFO
)
11874 fprintf (asm_out_file
, "\t.file %u ", i
);
11875 output_quoted_string (asm_out_file
, file_name
);
11876 fputc ('\n', asm_out_file
);
11885 /* Allocate the initial hunk of the file_table. */
11886 file_table
.table
= (char **) xcalloc (FILE_TABLE_INCREMENT
, sizeof (char *));
11887 file_table
.allocated
= FILE_TABLE_INCREMENT
;
11889 /* Skip the first entry - file numbers begin at 1. */
11890 file_table
.in_use
= 1;
11891 file_table
.last_lookup_index
= 0;
11894 /* Output a label to mark the beginning of a source code line entry
11895 and record information relating to this source line, in
11896 'line_info_table' for later output of the .debug_line section. */
11899 dwarf2out_source_line (line
, filename
)
11901 const char *filename
;
11903 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
11905 function_section (current_function_decl
);
11907 /* If requested, emit something human-readable. */
11908 if (flag_debug_asm
)
11909 fprintf (asm_out_file
, "\t%s %s:%d\n", ASM_COMMENT_START
,
11912 if (DWARF2_ASM_LINE_DEBUG_INFO
)
11914 unsigned file_num
= lookup_filename (filename
);
11916 /* Emit the .loc directive understood by GNU as. */
11917 fprintf (asm_out_file
, "\t.loc %d %d 0\n", file_num
, line
);
11919 /* Indicate that line number info exists. */
11920 line_info_table_in_use
++;
11922 /* Indicate that multiple line number tables exist. */
11923 if (DECL_SECTION_NAME (current_function_decl
))
11924 separate_line_info_table_in_use
++;
11926 else if (DECL_SECTION_NAME (current_function_decl
))
11928 dw_separate_line_info_ref line_info
;
11929 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file
, SEPARATE_LINE_CODE_LABEL
,
11930 separate_line_info_table_in_use
);
11932 /* expand the line info table if necessary */
11933 if (separate_line_info_table_in_use
11934 == separate_line_info_table_allocated
)
11936 separate_line_info_table_allocated
+= LINE_INFO_TABLE_INCREMENT
;
11937 separate_line_info_table
11938 = (dw_separate_line_info_ref
)
11939 xrealloc (separate_line_info_table
,
11940 separate_line_info_table_allocated
11941 * sizeof (dw_separate_line_info_entry
));
11944 /* Add the new entry at the end of the line_info_table. */
11946 = &separate_line_info_table
[separate_line_info_table_in_use
++];
11947 line_info
->dw_file_num
= lookup_filename (filename
);
11948 line_info
->dw_line_num
= line
;
11949 line_info
->function
= current_function_funcdef_no
;
11953 dw_line_info_ref line_info
;
11955 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file
, LINE_CODE_LABEL
,
11956 line_info_table_in_use
);
11958 /* Expand the line info table if necessary. */
11959 if (line_info_table_in_use
== line_info_table_allocated
)
11961 line_info_table_allocated
+= LINE_INFO_TABLE_INCREMENT
;
11963 = (dw_line_info_ref
)
11964 xrealloc (line_info_table
,
11965 (line_info_table_allocated
11966 * sizeof (dw_line_info_entry
)));
11969 /* Add the new entry at the end of the line_info_table. */
11970 line_info
= &line_info_table
[line_info_table_in_use
++];
11971 line_info
->dw_file_num
= lookup_filename (filename
);
11972 line_info
->dw_line_num
= line
;
11977 /* Record the beginning of a new source file. */
11980 dwarf2out_start_source_file (lineno
, filename
)
11981 unsigned int lineno
;
11982 const char *filename
;
11984 if (flag_eliminate_dwarf2_dups
)
11986 /* Record the beginning of the file for break_out_includes. */
11987 dw_die_ref bincl_die
= new_die (DW_TAG_GNU_BINCL
, comp_unit_die
, NULL
);
11988 add_AT_string (bincl_die
, DW_AT_name
, filename
);
11991 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
11993 named_section_flags (DEBUG_MACINFO_SECTION
, SECTION_DEBUG
);
11994 dw2_asm_output_data (1, DW_MACINFO_start_file
, "Start new file");
11995 dw2_asm_output_data_uleb128 (lineno
, "Included from line number %d",
11997 dw2_asm_output_data_uleb128 (lookup_filename (filename
),
11998 "Filename we just started");
12002 /* Record the end of a source file. */
12005 dwarf2out_end_source_file (lineno
)
12006 unsigned int lineno ATTRIBUTE_UNUSED
;
12008 if (flag_eliminate_dwarf2_dups
)
12009 /* Record the end of the file for break_out_includes. */
12010 new_die (DW_TAG_GNU_EINCL
, comp_unit_die
, NULL
);
12012 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
12014 named_section_flags (DEBUG_MACINFO_SECTION
, SECTION_DEBUG
);
12015 dw2_asm_output_data (1, DW_MACINFO_end_file
, "End file");
12019 /* Called from debug_define in toplev.c. The `buffer' parameter contains
12020 the tail part of the directive line, i.e. the part which is past the
12021 initial whitespace, #, whitespace, directive-name, whitespace part. */
12024 dwarf2out_define (lineno
, buffer
)
12025 unsigned lineno ATTRIBUTE_UNUSED
;
12026 const char *buffer ATTRIBUTE_UNUSED
;
12028 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
12030 named_section_flags (DEBUG_MACINFO_SECTION
, SECTION_DEBUG
);
12031 dw2_asm_output_data (1, DW_MACINFO_define
, "Define macro");
12032 dw2_asm_output_data_uleb128 (lineno
, "At line number %d", lineno
);
12033 dw2_asm_output_nstring (buffer
, -1, "The macro");
12037 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
12038 the tail part of the directive line, i.e. the part which is past the
12039 initial whitespace, #, whitespace, directive-name, whitespace part. */
12042 dwarf2out_undef (lineno
, buffer
)
12043 unsigned lineno ATTRIBUTE_UNUSED
;
12044 const char *buffer ATTRIBUTE_UNUSED
;
12046 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
12048 named_section_flags (DEBUG_MACINFO_SECTION
, SECTION_DEBUG
);
12049 dw2_asm_output_data (1, DW_MACINFO_undef
, "Undefine macro");
12050 dw2_asm_output_data_uleb128 (lineno
, "At line number %d", lineno
);
12051 dw2_asm_output_nstring (buffer
, -1, "The macro");
12055 /* Set up for Dwarf output at the start of compilation. */
12058 dwarf2out_init (main_input_filename
)
12059 const char *main_input_filename
;
12061 init_file_table ();
12063 /* Remember the name of the primary input file. */
12064 primary_filename
= main_input_filename
;
12066 /* Add it to the file table first, under the assumption that we'll
12067 be emitting line number data for it first, which avoids having
12068 to add an initial DW_LNS_set_file. */
12069 lookup_filename (main_input_filename
);
12071 /* Allocate the initial hunk of the decl_die_table. */
12073 = (dw_die_ref
*) xcalloc (DECL_DIE_TABLE_INCREMENT
, sizeof (dw_die_ref
));
12074 decl_die_table_allocated
= DECL_DIE_TABLE_INCREMENT
;
12075 decl_die_table_in_use
= 0;
12077 /* Allocate the initial hunk of the decl_scope_table. */
12078 VARRAY_TREE_INIT (decl_scope_table
, 256, "decl_scope_table");
12080 /* Allocate the initial hunk of the abbrev_die_table. */
12082 = (dw_die_ref
*) xcalloc (ABBREV_DIE_TABLE_INCREMENT
,
12083 sizeof (dw_die_ref
));
12084 abbrev_die_table_allocated
= ABBREV_DIE_TABLE_INCREMENT
;
12085 /* Zero-th entry is allocated, but unused */
12086 abbrev_die_table_in_use
= 1;
12088 /* Allocate the initial hunk of the line_info_table. */
12090 = (dw_line_info_ref
) xcalloc (LINE_INFO_TABLE_INCREMENT
,
12091 sizeof (dw_line_info_entry
));
12092 line_info_table_allocated
= LINE_INFO_TABLE_INCREMENT
;
12094 /* Zero-th entry is allocated, but unused */
12095 line_info_table_in_use
= 1;
12097 /* Generate the initial DIE for the .debug section. Note that the (string)
12098 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
12099 will (typically) be a relative pathname and that this pathname should be
12100 taken as being relative to the directory from which the compiler was
12101 invoked when the given (base) source file was compiled. */
12102 comp_unit_die
= gen_compile_unit_die (main_input_filename
);
12104 VARRAY_TREE_INIT (incomplete_types
, 64, "incomplete_types");
12106 VARRAY_RTX_INIT (used_rtx_varray
, 32, "used_rtx_varray");
12108 ggc_add_root (&limbo_die_list
, 1, 1, mark_limbo_die_list
);
12110 ASM_GENERATE_INTERNAL_LABEL (text_end_label
, TEXT_END_LABEL
, 0);
12111 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label
,
12112 DEBUG_ABBREV_SECTION_LABEL
, 0);
12113 if (DWARF2_GENERATE_TEXT_SECTION_LABEL
)
12114 ASM_GENERATE_INTERNAL_LABEL (text_section_label
, TEXT_SECTION_LABEL
, 0);
12116 strcpy (text_section_label
, stripattributes (TEXT_SECTION_NAME
));
12118 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label
,
12119 DEBUG_INFO_SECTION_LABEL
, 0);
12120 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label
,
12121 DEBUG_LINE_SECTION_LABEL
, 0);
12122 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label
,
12123 DEBUG_RANGES_SECTION_LABEL
, 0);
12124 named_section_flags (DEBUG_ABBREV_SECTION
, SECTION_DEBUG
);
12125 ASM_OUTPUT_LABEL (asm_out_file
, abbrev_section_label
);
12126 named_section_flags (DEBUG_INFO_SECTION
, SECTION_DEBUG
);
12127 ASM_OUTPUT_LABEL (asm_out_file
, debug_info_section_label
);
12128 named_section_flags (DEBUG_LINE_SECTION
, SECTION_DEBUG
);
12129 ASM_OUTPUT_LABEL (asm_out_file
, debug_line_section_label
);
12131 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
12133 named_section_flags (DEBUG_MACINFO_SECTION
, SECTION_DEBUG
);
12134 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label
,
12135 DEBUG_MACINFO_SECTION_LABEL
, 0);
12136 ASM_OUTPUT_LABEL (asm_out_file
, macinfo_section_label
);
12139 if (DWARF2_GENERATE_TEXT_SECTION_LABEL
)
12142 ASM_OUTPUT_LABEL (asm_out_file
, text_section_label
);
12146 /* Allocate a string in .debug_str hash table. */
12149 indirect_string_alloc (tab
)
12150 hash_table
*tab ATTRIBUTE_UNUSED
;
12152 struct indirect_string_node
*node
;
12154 node
= xmalloc (sizeof (struct indirect_string_node
));
12155 node
->refcount
= 0;
12157 node
->label
= NULL
;
12159 return (hashnode
) node
;
12162 /* A helper function for dwarf2out_finish called through
12163 ht_forall. Emit one queued .debug_str string. */
12166 output_indirect_string (pfile
, h
, v
)
12167 struct cpp_reader
*pfile ATTRIBUTE_UNUSED
;
12169 const PTR v ATTRIBUTE_UNUSED
;
12171 struct indirect_string_node
*node
= (struct indirect_string_node
*) h
;
12173 if (node
->form
== DW_FORM_strp
)
12175 named_section_flags (DEBUG_STR_SECTION
, DEBUG_STR_SECTION_FLAGS
);
12176 ASM_OUTPUT_LABEL (asm_out_file
, node
->label
);
12177 assemble_string ((const char *) HT_STR (&node
->id
),
12178 HT_LEN (&node
->id
) + 1);
12184 /* Output stuff that dwarf requires at the end of every file,
12185 and generate the DWARF-2 debugging info. */
12188 dwarf2out_finish (input_filename
)
12189 const char *input_filename ATTRIBUTE_UNUSED
;
12191 limbo_die_node
*node
, *next_node
;
12192 dw_die_ref die
= 0;
12194 /* Traverse the limbo die list, and add parent/child links. The only
12195 dies without parents that should be here are concrete instances of
12196 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
12197 For concrete instances, we can get the parent die from the abstract
12199 for (node
= limbo_die_list
; node
; node
= next_node
)
12201 next_node
= node
->next
;
12204 if (die
->die_parent
== NULL
)
12206 dw_die_ref origin
= get_AT_ref (die
, DW_AT_abstract_origin
);
12210 add_child_die (origin
->die_parent
, die
);
12211 else if (die
== comp_unit_die
)
12213 /* If this was an expression for a bound involved in a function
12214 return type, it may be a SAVE_EXPR for which we weren't able
12215 to find a DIE previously. So try now. */
12216 else if (node
->created_for
12217 && TREE_CODE (node
->created_for
) == SAVE_EXPR
12218 && 0 != (origin
= (lookup_decl_die
12220 (node
->created_for
)))))
12221 add_child_die (origin
, die
);
12222 else if (errorcount
> 0 || sorrycount
> 0)
12223 /* It's OK to be confused by errors in the input. */
12224 add_child_die (comp_unit_die
, die
);
12225 else if (node
->created_for
12226 && ((DECL_P (node
->created_for
)
12227 && (context
= DECL_CONTEXT (node
->created_for
)))
12228 || (TYPE_P (node
->created_for
)
12229 && (context
= TYPE_CONTEXT (node
->created_for
))))
12230 && TREE_CODE (context
) == FUNCTION_DECL
)
12232 /* In certain situations, the lexical block containing a
12233 nested function can be optimized away, which results
12234 in the nested function die being orphaned. Likewise
12235 with the return type of that nested function. Force
12236 this to be a child of the containing function. */
12237 origin
= lookup_decl_die (context
);
12240 add_child_die (origin
, die
);
12249 limbo_die_list
= NULL
;
12251 /* Walk through the list of incomplete types again, trying once more to
12252 emit full debugging info for them. */
12253 retry_incomplete_types ();
12255 /* We need to reverse all the dies before break_out_includes, or
12256 we'll see the end of an include file before the beginning. */
12257 reverse_all_dies (comp_unit_die
);
12259 /* Generate separate CUs for each of the include files we've seen.
12260 They will go into limbo_die_list. */
12261 if (flag_eliminate_dwarf2_dups
)
12262 break_out_includes (comp_unit_die
);
12264 /* Traverse the DIE's and add add sibling attributes to those DIE's
12265 that have children. */
12266 add_sibling_attributes (comp_unit_die
);
12267 for (node
= limbo_die_list
; node
; node
= node
->next
)
12268 add_sibling_attributes (node
->die
);
12270 /* Output a terminator label for the .text section. */
12272 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file
, TEXT_END_LABEL
, 0);
12274 /* Output the source line correspondence table. We must do this
12275 even if there is no line information. Otherwise, on an empty
12276 translation unit, we will generate a present, but empty,
12277 .debug_info section. IRIX 6.5 `nm' will then complain when
12278 examining the file. */
12279 if (! DWARF2_ASM_LINE_DEBUG_INFO
)
12281 named_section_flags (DEBUG_LINE_SECTION
, SECTION_DEBUG
);
12282 output_line_info ();
12285 /* Output location list section if necessary. */
12286 if (have_location_lists
)
12288 /* Output the location lists info. */
12289 named_section_flags (DEBUG_LOC_SECTION
, SECTION_DEBUG
);
12290 ASM_GENERATE_INTERNAL_LABEL (loc_section_label
,
12291 DEBUG_LOC_SECTION_LABEL
, 0);
12292 ASM_OUTPUT_LABEL (asm_out_file
, loc_section_label
);
12293 output_location_lists (die
);
12294 have_location_lists
= 0;
12297 /* We can only use the low/high_pc attributes if all of the code was
12299 if (separate_line_info_table_in_use
== 0)
12301 add_AT_lbl_id (comp_unit_die
, DW_AT_low_pc
, text_section_label
);
12302 add_AT_lbl_id (comp_unit_die
, DW_AT_high_pc
, text_end_label
);
12305 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
12306 "base address". Use zero so that these addresses become absolute. */
12307 else if (have_location_lists
|| ranges_table_in_use
)
12308 add_AT_addr (comp_unit_die
, DW_AT_entry_pc
, const0_rtx
);
12310 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
12311 add_AT_lbl_offset (comp_unit_die
, DW_AT_stmt_list
,
12312 debug_line_section_label
);
12314 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
12315 add_AT_lbl_offset (comp_unit_die
, DW_AT_macro_info
, macinfo_section_label
);
12317 /* Output all of the compilation units. We put the main one last so that
12318 the offsets are available to output_pubnames. */
12319 for (node
= limbo_die_list
; node
; node
= node
->next
)
12320 output_comp_unit (node
->die
);
12322 output_comp_unit (comp_unit_die
);
12324 /* Output the abbreviation table. */
12325 named_section_flags (DEBUG_ABBREV_SECTION
, SECTION_DEBUG
);
12326 output_abbrev_section ();
12328 /* Output public names table if necessary. */
12329 if (pubname_table_in_use
)
12331 named_section_flags (DEBUG_PUBNAMES_SECTION
, SECTION_DEBUG
);
12332 output_pubnames ();
12335 /* Output the address range information. We only put functions in the arange
12336 table, so don't write it out if we don't have any. */
12337 if (fde_table_in_use
)
12339 named_section_flags (DEBUG_ARANGES_SECTION
, SECTION_DEBUG
);
12343 /* Output ranges section if necessary. */
12344 if (ranges_table_in_use
)
12346 named_section_flags (DEBUG_RANGES_SECTION
, SECTION_DEBUG
);
12347 ASM_OUTPUT_LABEL (asm_out_file
, ranges_section_label
);
12351 /* Have to end the primary source file. */
12352 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
12354 named_section_flags (DEBUG_MACINFO_SECTION
, SECTION_DEBUG
);
12355 dw2_asm_output_data (1, DW_MACINFO_end_file
, "End file");
12356 dw2_asm_output_data (1, 0, "End compilation unit");
12359 /* If we emitted any DW_FORM_strp form attribute, output the string
12361 if (debug_str_hash
)
12362 ht_forall (debug_str_hash
, output_indirect_string
, NULL
);
12366 /* This should never be used, but its address is needed for comparisons. */
12367 const struct gcc_debug_hooks dwarf2_debug_hooks
;
12369 #endif /* DWARF2_DEBUGGING_INFO */
12371 #include "gt-dwarf2out.h"