* gcc_release (-b): Remove option.
[official-gcc.git] / gcc / local-alloc.c
blobc743ad63fe83c61a98fb373cf112efaf9a22f359
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
62 #include "config.h"
63 #include "system.h"
64 #include "rtl.h"
65 #include "tm_p.h"
66 #include "flags.h"
67 #include "hard-reg-set.h"
68 #include "basic-block.h"
69 #include "regs.h"
70 #include "function.h"
71 #include "insn-config.h"
72 #include "insn-attr.h"
73 #include "recog.h"
74 #include "output.h"
75 #include "toplev.h"
77 /* Next quantity number available for allocation. */
79 static int next_qty;
81 /* Information we maitain about each quantity. */
82 struct qty
84 /* The number of refs to quantity Q. */
86 int n_refs;
88 /* Insn number (counting from head of basic block)
89 where quantity Q was born. -1 if birth has not been recorded. */
91 int birth;
93 /* Insn number (counting from head of basic block)
94 where given quantity died. Due to the way tying is done,
95 and the fact that we consider in this pass only regs that die but once,
96 a quantity can die only once. Each quantity's life span
97 is a set of consecutive insns. -1 if death has not been recorded. */
99 int death;
101 /* Number of words needed to hold the data in given quantity.
102 This depends on its machine mode. It is used for these purposes:
103 1. It is used in computing the relative importances of qtys,
104 which determines the order in which we look for regs for them.
105 2. It is used in rules that prevent tying several registers of
106 different sizes in a way that is geometrically impossible
107 (see combine_regs). */
109 int size;
111 /* Number of times a reg tied to given qty lives across a CALL_INSN. */
113 int n_calls_crossed;
115 /* The register number of one pseudo register whose reg_qty value is Q.
116 This register should be the head of the chain
117 maintained in reg_next_in_qty. */
119 int first_reg;
121 /* Reg class contained in (smaller than) the preferred classes of all
122 the pseudo regs that are tied in given quantity.
123 This is the preferred class for allocating that quantity. */
125 enum reg_class min_class;
127 /* Register class within which we allocate given qty if we can't get
128 its preferred class. */
130 enum reg_class alternate_class;
132 /* This holds the mode of the registers that are tied to given qty,
133 or VOIDmode if registers with differing modes are tied together. */
135 enum machine_mode mode;
137 /* the hard reg number chosen for given quantity,
138 or -1 if none was found. */
140 short phys_reg;
142 /* Nonzero if this quantity has been used in a SUBREG in some
143 way that is illegal. */
145 char changes_mode;
149 static struct qty *qty;
151 /* These fields are kept separately to speedup their clearing. */
153 /* We maintain two hard register sets that indicate suggested hard registers
154 for each quantity. The first, phys_copy_sugg, contains hard registers
155 that are tied to the quantity by a simple copy. The second contains all
156 hard registers that are tied to the quantity via an arithmetic operation.
158 The former register set is given priority for allocation. This tends to
159 eliminate copy insns. */
161 /* Element Q is a set of hard registers that are suggested for quantity Q by
162 copy insns. */
164 static HARD_REG_SET *qty_phys_copy_sugg;
166 /* Element Q is a set of hard registers that are suggested for quantity Q by
167 arithmetic insns. */
169 static HARD_REG_SET *qty_phys_sugg;
171 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
173 static short *qty_phys_num_copy_sugg;
175 /* Element Q is the number of suggested registers in qty_phys_sugg. */
177 static short *qty_phys_num_sugg;
179 /* If (REG N) has been assigned a quantity number, is a register number
180 of another register assigned the same quantity number, or -1 for the
181 end of the chain. qty->first_reg point to the head of this chain. */
183 static int *reg_next_in_qty;
185 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
186 if it is >= 0,
187 of -1 if this register cannot be allocated by local-alloc,
188 or -2 if not known yet.
190 Note that if we see a use or death of pseudo register N with
191 reg_qty[N] == -2, register N must be local to the current block. If
192 it were used in more than one block, we would have reg_qty[N] == -1.
193 This relies on the fact that if reg_basic_block[N] is >= 0, register N
194 will not appear in any other block. We save a considerable number of
195 tests by exploiting this.
197 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
198 be referenced. */
200 static int *reg_qty;
202 /* The offset (in words) of register N within its quantity.
203 This can be nonzero if register N is SImode, and has been tied
204 to a subreg of a DImode register. */
206 static char *reg_offset;
208 /* Vector of substitutions of register numbers,
209 used to map pseudo regs into hardware regs.
210 This is set up as a result of register allocation.
211 Element N is the hard reg assigned to pseudo reg N,
212 or is -1 if no hard reg was assigned.
213 If N is a hard reg number, element N is N. */
215 short *reg_renumber;
217 /* Set of hard registers live at the current point in the scan
218 of the instructions in a basic block. */
220 static HARD_REG_SET regs_live;
222 /* Each set of hard registers indicates registers live at a particular
223 point in the basic block. For N even, regs_live_at[N] says which
224 hard registers are needed *after* insn N/2 (i.e., they may not
225 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
227 If an object is to conflict with the inputs of insn J but not the
228 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
229 if it is to conflict with the outputs of insn J but not the inputs of
230 insn J + 1, it is said to die at index J*2 + 1. */
232 static HARD_REG_SET *regs_live_at;
234 /* Communicate local vars `insn_number' and `insn'
235 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
236 static int this_insn_number;
237 static rtx this_insn;
239 struct equivalence
241 /* Set when an attempt should be made to replace a register
242 with the associated src entry. */
244 char replace;
246 /* Set when a REG_EQUIV note is found or created. Use to
247 keep track of what memory accesses might be created later,
248 e.g. by reload. */
250 rtx replacement;
252 rtx src;
254 /* Loop depth is used to recognize equivalences which appear
255 to be present within the same loop (or in an inner loop). */
257 int loop_depth;
259 /* The list of each instruction which initializes this register. */
261 rtx init_insns;
264 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
265 structure for that register. */
267 static struct equivalence *reg_equiv;
269 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
270 static int recorded_label_ref;
272 static void alloc_qty PARAMS ((int, enum machine_mode, int, int));
273 static void validate_equiv_mem_from_store PARAMS ((rtx, rtx, void *));
274 static int validate_equiv_mem PARAMS ((rtx, rtx, rtx));
275 static int equiv_init_varies_p PARAMS ((rtx));
276 static int equiv_init_movable_p PARAMS ((rtx, int));
277 static int contains_replace_regs PARAMS ((rtx));
278 static int memref_referenced_p PARAMS ((rtx, rtx));
279 static int memref_used_between_p PARAMS ((rtx, rtx, rtx));
280 static void update_equiv_regs PARAMS ((void));
281 static void no_equiv PARAMS ((rtx, rtx, void *));
282 static void block_alloc PARAMS ((int));
283 static int qty_sugg_compare PARAMS ((int, int));
284 static int qty_sugg_compare_1 PARAMS ((const PTR, const PTR));
285 static int qty_compare PARAMS ((int, int));
286 static int qty_compare_1 PARAMS ((const PTR, const PTR));
287 static int combine_regs PARAMS ((rtx, rtx, int, int, rtx, int));
288 static int reg_meets_class_p PARAMS ((int, enum reg_class));
289 static void update_qty_class PARAMS ((int, int));
290 static void reg_is_set PARAMS ((rtx, rtx, void *));
291 static void reg_is_born PARAMS ((rtx, int));
292 static void wipe_dead_reg PARAMS ((rtx, int));
293 static int find_free_reg PARAMS ((enum reg_class, enum machine_mode,
294 int, int, int, int, int));
295 static void mark_life PARAMS ((int, enum machine_mode, int));
296 static void post_mark_life PARAMS ((int, enum machine_mode, int, int, int));
297 static int no_conflict_p PARAMS ((rtx, rtx, rtx));
298 static int requires_inout PARAMS ((const char *));
300 /* Allocate a new quantity (new within current basic block)
301 for register number REGNO which is born at index BIRTH
302 within the block. MODE and SIZE are info on reg REGNO. */
304 static void
305 alloc_qty (regno, mode, size, birth)
306 int regno;
307 enum machine_mode mode;
308 int size, birth;
310 register int qtyno = next_qty++;
312 reg_qty[regno] = qtyno;
313 reg_offset[regno] = 0;
314 reg_next_in_qty[regno] = -1;
316 qty[qtyno].first_reg = regno;
317 qty[qtyno].size = size;
318 qty[qtyno].mode = mode;
319 qty[qtyno].birth = birth;
320 qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
321 qty[qtyno].min_class = reg_preferred_class (regno);
322 qty[qtyno].alternate_class = reg_alternate_class (regno);
323 qty[qtyno].n_refs = REG_N_REFS (regno);
324 qty[qtyno].changes_mode = REG_CHANGES_MODE (regno);
327 /* Main entry point of this file. */
330 local_alloc ()
332 register int b, i;
333 int max_qty;
335 /* We need to keep track of whether or not we recorded a LABEL_REF so
336 that we know if the jump optimizer needs to be rerun. */
337 recorded_label_ref = 0;
339 /* Leaf functions and non-leaf functions have different needs.
340 If defined, let the machine say what kind of ordering we
341 should use. */
342 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
343 ORDER_REGS_FOR_LOCAL_ALLOC;
344 #endif
346 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
347 registers. */
348 update_equiv_regs ();
350 /* This sets the maximum number of quantities we can have. Quantity
351 numbers start at zero and we can have one for each pseudo. */
352 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
354 /* Allocate vectors of temporary data.
355 See the declarations of these variables, above,
356 for what they mean. */
358 qty = (struct qty *) xmalloc (max_qty * sizeof (struct qty));
359 qty_phys_copy_sugg
360 = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
361 qty_phys_num_copy_sugg = (short *) xmalloc (max_qty * sizeof (short));
362 qty_phys_sugg = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
363 qty_phys_num_sugg = (short *) xmalloc (max_qty * sizeof (short));
365 reg_qty = (int *) xmalloc (max_regno * sizeof (int));
366 reg_offset = (char *) xmalloc (max_regno * sizeof (char));
367 reg_next_in_qty = (int *) xmalloc (max_regno * sizeof (int));
369 /* Allocate the reg_renumber array. */
370 allocate_reg_info (max_regno, FALSE, TRUE);
372 /* Determine which pseudo-registers can be allocated by local-alloc.
373 In general, these are the registers used only in a single block and
374 which only die once.
376 We need not be concerned with which block actually uses the register
377 since we will never see it outside that block. */
379 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
381 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1)
382 reg_qty[i] = -2;
383 else
384 reg_qty[i] = -1;
387 /* Force loop below to initialize entire quantity array. */
388 next_qty = max_qty;
390 /* Allocate each block's local registers, block by block. */
392 for (b = 0; b < n_basic_blocks; b++)
394 /* NEXT_QTY indicates which elements of the `qty_...'
395 vectors might need to be initialized because they were used
396 for the previous block; it is set to the entire array before
397 block 0. Initialize those, with explicit loop if there are few,
398 else with bzero and bcopy. Do not initialize vectors that are
399 explicit set by `alloc_qty'. */
401 if (next_qty < 6)
403 for (i = 0; i < next_qty; i++)
405 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
406 qty_phys_num_copy_sugg[i] = 0;
407 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
408 qty_phys_num_sugg[i] = 0;
411 else
413 #define CLEAR(vector) \
414 memset ((char *) (vector), 0, (sizeof (*(vector))) * next_qty);
416 CLEAR (qty_phys_copy_sugg);
417 CLEAR (qty_phys_num_copy_sugg);
418 CLEAR (qty_phys_sugg);
419 CLEAR (qty_phys_num_sugg);
422 next_qty = 0;
424 block_alloc (b);
427 free (qty);
428 free (qty_phys_copy_sugg);
429 free (qty_phys_num_copy_sugg);
430 free (qty_phys_sugg);
431 free (qty_phys_num_sugg);
433 free (reg_qty);
434 free (reg_offset);
435 free (reg_next_in_qty);
437 return recorded_label_ref;
440 /* Used for communication between the following two functions: contains
441 a MEM that we wish to ensure remains unchanged. */
442 static rtx equiv_mem;
444 /* Set nonzero if EQUIV_MEM is modified. */
445 static int equiv_mem_modified;
447 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
448 Called via note_stores. */
450 static void
451 validate_equiv_mem_from_store (dest, set, data)
452 rtx dest;
453 rtx set ATTRIBUTE_UNUSED;
454 void *data ATTRIBUTE_UNUSED;
456 if ((GET_CODE (dest) == REG
457 && reg_overlap_mentioned_p (dest, equiv_mem))
458 || (GET_CODE (dest) == MEM
459 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
460 equiv_mem_modified = 1;
463 /* Verify that no store between START and the death of REG invalidates
464 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
465 by storing into an overlapping memory location, or with a non-const
466 CALL_INSN.
468 Return 1 if MEMREF remains valid. */
470 static int
471 validate_equiv_mem (start, reg, memref)
472 rtx start;
473 rtx reg;
474 rtx memref;
476 rtx insn;
477 rtx note;
479 equiv_mem = memref;
480 equiv_mem_modified = 0;
482 /* If the memory reference has side effects or is volatile, it isn't a
483 valid equivalence. */
484 if (side_effects_p (memref))
485 return 0;
487 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
489 if (! INSN_P (insn))
490 continue;
492 if (find_reg_note (insn, REG_DEAD, reg))
493 return 1;
495 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
496 && ! CONST_CALL_P (insn))
497 return 0;
499 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
501 /* If a register mentioned in MEMREF is modified via an
502 auto-increment, we lose the equivalence. Do the same if one
503 dies; although we could extend the life, it doesn't seem worth
504 the trouble. */
506 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
507 if ((REG_NOTE_KIND (note) == REG_INC
508 || REG_NOTE_KIND (note) == REG_DEAD)
509 && GET_CODE (XEXP (note, 0)) == REG
510 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
511 return 0;
514 return 0;
517 /* Returns zero if X is known to be invariant. */
519 static int
520 equiv_init_varies_p (x)
521 rtx x;
523 register RTX_CODE code = GET_CODE (x);
524 register int i;
525 register const char *fmt;
527 switch (code)
529 case MEM:
530 return ! RTX_UNCHANGING_P (x) || equiv_init_varies_p (XEXP (x, 0));
532 case QUEUED:
533 return 1;
535 case CONST:
536 case CONST_INT:
537 case CONST_DOUBLE:
538 case SYMBOL_REF:
539 case LABEL_REF:
540 return 0;
542 case REG:
543 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
545 case ASM_OPERANDS:
546 if (MEM_VOLATILE_P (x))
547 return 1;
549 /* FALLTHROUGH */
551 default:
552 break;
555 fmt = GET_RTX_FORMAT (code);
556 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
557 if (fmt[i] == 'e')
559 if (equiv_init_varies_p (XEXP (x, i)))
560 return 1;
562 else if (fmt[i] == 'E')
564 int j;
565 for (j = 0; j < XVECLEN (x, i); j++)
566 if (equiv_init_varies_p (XVECEXP (x, i, j)))
567 return 1;
570 return 0;
573 /* Returns non-zero if X (used to initialize register REGNO) is movable.
574 X is only movable if the registers it uses have equivalent initializations
575 which appear to be within the same loop (or in an inner loop) and movable
576 or if they are not candidates for local_alloc and don't vary. */
578 static int
579 equiv_init_movable_p (x, regno)
580 rtx x;
581 int regno;
583 int i, j;
584 const char *fmt;
585 enum rtx_code code = GET_CODE (x);
587 switch (code)
589 case SET:
590 return equiv_init_movable_p (SET_SRC (x), regno);
592 case CC0:
593 case CLOBBER:
594 return 0;
596 case PRE_INC:
597 case PRE_DEC:
598 case POST_INC:
599 case POST_DEC:
600 case PRE_MODIFY:
601 case POST_MODIFY:
602 return 0;
604 case REG:
605 return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
606 && reg_equiv[REGNO (x)].replace)
607 || (REG_BASIC_BLOCK (REGNO (x)) < 0 && ! rtx_varies_p (x, 0));
609 case UNSPEC_VOLATILE:
610 return 0;
612 case ASM_OPERANDS:
613 if (MEM_VOLATILE_P (x))
614 return 0;
616 /* FALLTHROUGH */
618 default:
619 break;
622 fmt = GET_RTX_FORMAT (code);
623 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
624 switch (fmt[i])
626 case 'e':
627 if (! equiv_init_movable_p (XEXP (x, i), regno))
628 return 0;
629 break;
630 case 'E':
631 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
632 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
633 return 0;
634 break;
637 return 1;
640 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
642 static int
643 contains_replace_regs (x)
644 rtx x;
646 int i, j;
647 const char *fmt;
648 enum rtx_code code = GET_CODE (x);
650 switch (code)
652 case CONST_INT:
653 case CONST:
654 case LABEL_REF:
655 case SYMBOL_REF:
656 case CONST_DOUBLE:
657 case PC:
658 case CC0:
659 case HIGH:
660 case LO_SUM:
661 return 0;
663 case REG:
664 return reg_equiv[REGNO (x)].replace;
666 default:
667 break;
670 fmt = GET_RTX_FORMAT (code);
671 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
672 switch (fmt[i])
674 case 'e':
675 if (contains_replace_regs (XEXP (x, i)))
676 return 1;
677 break;
678 case 'E':
679 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
680 if (contains_replace_regs (XVECEXP (x, i, j)))
681 return 1;
682 break;
685 return 0;
688 /* TRUE if X references a memory location that would be affected by a store
689 to MEMREF. */
691 static int
692 memref_referenced_p (memref, x)
693 rtx x;
694 rtx memref;
696 int i, j;
697 const char *fmt;
698 enum rtx_code code = GET_CODE (x);
700 switch (code)
702 case CONST_INT:
703 case CONST:
704 case LABEL_REF:
705 case SYMBOL_REF:
706 case CONST_DOUBLE:
707 case PC:
708 case CC0:
709 case HIGH:
710 case LO_SUM:
711 return 0;
713 case REG:
714 return (reg_equiv[REGNO (x)].replacement
715 && memref_referenced_p (memref,
716 reg_equiv[REGNO (x)].replacement));
718 case MEM:
719 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
720 return 1;
721 break;
723 case SET:
724 /* If we are setting a MEM, it doesn't count (its address does), but any
725 other SET_DEST that has a MEM in it is referencing the MEM. */
726 if (GET_CODE (SET_DEST (x)) == MEM)
728 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
729 return 1;
731 else if (memref_referenced_p (memref, SET_DEST (x)))
732 return 1;
734 return memref_referenced_p (memref, SET_SRC (x));
736 default:
737 break;
740 fmt = GET_RTX_FORMAT (code);
741 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
742 switch (fmt[i])
744 case 'e':
745 if (memref_referenced_p (memref, XEXP (x, i)))
746 return 1;
747 break;
748 case 'E':
749 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
750 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
751 return 1;
752 break;
755 return 0;
758 /* TRUE if some insn in the range (START, END] references a memory location
759 that would be affected by a store to MEMREF. */
761 static int
762 memref_used_between_p (memref, start, end)
763 rtx memref;
764 rtx start;
765 rtx end;
767 rtx insn;
769 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
770 insn = NEXT_INSN (insn))
771 if (INSN_P (insn) && memref_referenced_p (memref, PATTERN (insn)))
772 return 1;
774 return 0;
777 /* Return nonzero if the rtx X is invariant over the current function. */
779 function_invariant_p (x)
780 rtx x;
782 if (CONSTANT_P (x))
783 return 1;
784 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
785 return 1;
786 if (GET_CODE (x) == PLUS
787 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
788 && CONSTANT_P (XEXP (x, 1)))
789 return 1;
790 return 0;
793 /* Find registers that are equivalent to a single value throughout the
794 compilation (either because they can be referenced in memory or are set once
795 from a single constant). Lower their priority for a register.
797 If such a register is only referenced once, try substituting its value
798 into the using insn. If it succeeds, we can eliminate the register
799 completely. */
801 static void
802 update_equiv_regs ()
804 rtx insn;
805 int block;
806 int loop_depth;
807 regset_head cleared_regs;
808 int clear_regnos = 0;
810 reg_equiv = (struct equivalence *) xcalloc (max_regno, sizeof *reg_equiv);
811 INIT_REG_SET (&cleared_regs);
813 init_alias_analysis ();
815 /* Scan the insns and find which registers have equivalences. Do this
816 in a separate scan of the insns because (due to -fcse-follow-jumps)
817 a register can be set below its use. */
818 loop_depth = 0;
819 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
821 rtx note;
822 rtx set;
823 rtx dest, src;
824 int regno;
826 if (GET_CODE (insn) == NOTE)
828 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
829 ++loop_depth;
830 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
832 if (! loop_depth)
833 abort ();
834 --loop_depth;
838 if (! INSN_P (insn))
839 continue;
841 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
842 if (REG_NOTE_KIND (note) == REG_INC)
843 no_equiv (XEXP (note, 0), note, NULL);
845 set = single_set (insn);
847 /* If this insn contains more (or less) than a single SET,
848 only mark all destinations as having no known equivalence. */
849 if (set == 0)
851 note_stores (PATTERN (insn), no_equiv, NULL);
852 continue;
854 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
856 int i;
858 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
860 rtx part = XVECEXP (PATTERN (insn), 0, i);
861 if (part != set)
862 note_stores (part, no_equiv, NULL);
866 dest = SET_DEST (set);
867 src = SET_SRC (set);
869 /* If this sets a MEM to the contents of a REG that is only used
870 in a single basic block, see if the register is always equivalent
871 to that memory location and if moving the store from INSN to the
872 insn that set REG is safe. If so, put a REG_EQUIV note on the
873 initializing insn.
875 Don't add a REG_EQUIV note if the insn already has one. The existing
876 REG_EQUIV is likely more useful than the one we are adding.
878 If one of the regs in the address has reg_equiv[REGNO].replace set,
879 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
880 optimization may move the set of this register immediately before
881 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
882 the mention in the REG_EQUIV note would be to an uninitialized
883 pseudo. */
884 /* ????? This test isn't good enough; we might see a MEM with a use of
885 a pseudo register before we see its setting insn that will cause
886 reg_equiv[].replace for that pseudo to be set.
887 Equivalences to MEMs should be made in another pass, after the
888 reg_equiv[].replace information has been gathered. */
890 if (GET_CODE (dest) == MEM && GET_CODE (src) == REG
891 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
892 && REG_BASIC_BLOCK (regno) >= 0
893 && REG_N_SETS (regno) == 1
894 && reg_equiv[regno].init_insns != 0
895 && reg_equiv[regno].init_insns != const0_rtx
896 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
897 REG_EQUIV, NULL_RTX)
898 && ! contains_replace_regs (XEXP (dest, 0)))
900 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
901 if (validate_equiv_mem (init_insn, src, dest)
902 && ! memref_used_between_p (dest, init_insn, insn))
903 REG_NOTES (init_insn)
904 = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
907 /* We only handle the case of a pseudo register being set
908 once, or always to the same value. */
909 /* ??? The mn10200 port breaks if we add equivalences for
910 values that need an ADDRESS_REGS register and set them equivalent
911 to a MEM of a pseudo. The actual problem is in the over-conservative
912 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
913 calculate_needs, but we traditionally work around this problem
914 here by rejecting equivalences when the destination is in a register
915 that's likely spilled. This is fragile, of course, since the
916 preferred class of a pseudo depends on all instructions that set
917 or use it. */
919 if (GET_CODE (dest) != REG
920 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
921 || reg_equiv[regno].init_insns == const0_rtx
922 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
923 && GET_CODE (src) == MEM))
925 /* This might be seting a SUBREG of a pseudo, a pseudo that is
926 also set somewhere else to a constant. */
927 note_stores (set, no_equiv, NULL);
928 continue;
931 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
933 /* cse sometimes generates function invariants, but doesn't put a
934 REG_EQUAL note on the insn. Since this note would be redundant,
935 there's no point creating it earlier than here. */
936 if (! note && ! rtx_varies_p (src, 0))
937 REG_NOTES (insn)
938 = note = gen_rtx_EXPR_LIST (REG_EQUAL, src, REG_NOTES (insn));
940 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
941 since it represents a function call */
942 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
943 note = NULL_RTX;
945 if (REG_N_SETS (regno) != 1
946 && (! note
947 || rtx_varies_p (XEXP (note, 0), 0)
948 || (reg_equiv[regno].replacement
949 && ! rtx_equal_p (XEXP (note, 0),
950 reg_equiv[regno].replacement))))
952 no_equiv (dest, set, NULL);
953 continue;
955 /* Record this insn as initializing this register. */
956 reg_equiv[regno].init_insns
957 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
959 /* If this register is known to be equal to a constant, record that
960 it is always equivalent to the constant. */
961 if (note && ! rtx_varies_p (XEXP (note, 0), 0))
962 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
964 /* If this insn introduces a "constant" register, decrease the priority
965 of that register. Record this insn if the register is only used once
966 more and the equivalence value is the same as our source.
968 The latter condition is checked for two reasons: First, it is an
969 indication that it may be more efficient to actually emit the insn
970 as written (if no registers are available, reload will substitute
971 the equivalence). Secondly, it avoids problems with any registers
972 dying in this insn whose death notes would be missed.
974 If we don't have a REG_EQUIV note, see if this insn is loading
975 a register used only in one basic block from a MEM. If so, and the
976 MEM remains unchanged for the life of the register, add a REG_EQUIV
977 note. */
979 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
981 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
982 && GET_CODE (SET_SRC (set)) == MEM
983 && validate_equiv_mem (insn, dest, SET_SRC (set)))
984 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
985 REG_NOTES (insn));
987 if (note)
989 int regno = REGNO (dest);
991 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
992 We might end up substituting the LABEL_REF for uses of the
993 pseudo here or later. That kind of transformation may turn an
994 indirect jump into a direct jump, in which case we must rerun the
995 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
996 if (GET_CODE (XEXP (note, 0)) == LABEL_REF
997 || (GET_CODE (XEXP (note, 0)) == CONST
998 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
999 && (GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0))
1000 == LABEL_REF)))
1001 recorded_label_ref = 1;
1003 reg_equiv[regno].replacement = XEXP (note, 0);
1004 reg_equiv[regno].src = src;
1005 reg_equiv[regno].loop_depth = loop_depth;
1007 /* Don't mess with things live during setjmp. */
1008 if (REG_LIVE_LENGTH (regno) >= 0)
1010 /* Note that the statement below does not affect the priority
1011 in local-alloc! */
1012 REG_LIVE_LENGTH (regno) *= 2;
1015 /* If the register is referenced exactly twice, meaning it is
1016 set once and used once, indicate that the reference may be
1017 replaced by the equivalence we computed above. Do this
1018 even if the register is only used in one block so that
1019 dependencies can be handled where the last register is
1020 used in a different block (i.e. HIGH / LO_SUM sequences)
1021 and to reduce the number of registers alive across calls.
1023 It would be nice to use "loop_depth * 2" in the compare
1024 below. Unfortunately, LOOP_DEPTH need not be constant within
1025 a basic block so this would be too complicated.
1027 This case normally occurs when a parameter is read from
1028 memory and then used exactly once, not in a loop. */
1030 if (REG_N_REFS (regno) == 2
1031 && (rtx_equal_p (XEXP (note, 0), src)
1032 || ! equiv_init_varies_p (src))
1033 && GET_CODE (insn) == INSN
1034 && equiv_init_movable_p (PATTERN (insn), regno))
1035 reg_equiv[regno].replace = 1;
1040 /* Now scan all regs killed in an insn to see if any of them are
1041 registers only used that once. If so, see if we can replace the
1042 reference with the equivalent from. If we can, delete the
1043 initializing reference and this register will go away. If we
1044 can't replace the reference, and the initialzing reference is
1045 within the same loop (or in an inner loop), then move the register
1046 initialization just before the use, so that they are in the same
1047 basic block.
1049 Skip this optimization if loop_depth isn't initially zero since
1050 that indicates a mismatch between loop begin and loop end notes
1051 (i.e. gcc.dg/noncompile/920721-2.c). */
1052 block = n_basic_blocks - 1;
1053 for (insn = (loop_depth == 0) ? get_last_insn () : NULL_RTX;
1054 insn; insn = PREV_INSN (insn))
1056 rtx link;
1058 if (! INSN_P (insn))
1060 if (GET_CODE (insn) == NOTE)
1062 if (NOTE_INSN_BASIC_BLOCK_P (insn))
1063 block = NOTE_BASIC_BLOCK (insn)->index - 1;
1064 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1066 if (! loop_depth)
1067 abort ();
1068 --loop_depth;
1070 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
1071 ++loop_depth;
1074 continue;
1077 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1079 if (REG_NOTE_KIND (link) == REG_DEAD
1080 /* Make sure this insn still refers to the register. */
1081 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1083 int regno = REGNO (XEXP (link, 0));
1084 rtx equiv_insn;
1086 if (! reg_equiv[regno].replace
1087 || reg_equiv[regno].loop_depth < loop_depth)
1088 continue;
1090 /* reg_equiv[REGNO].replace gets set only when
1091 REG_N_REFS[REGNO] is 2, i.e. the register is set
1092 once and used once. (If it were only set, but not used,
1093 flow would have deleted the setting insns.) Hence
1094 there can only be one insn in reg_equiv[REGNO].init_insns. */
1095 if (reg_equiv[regno].init_insns == NULL_RTX
1096 || XEXP (reg_equiv[regno].init_insns, 1) != NULL_RTX)
1097 abort ();
1098 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
1100 if (asm_noperands (PATTERN (equiv_insn)) < 0
1101 && validate_replace_rtx (regno_reg_rtx[regno],
1102 reg_equiv[regno].src, insn))
1104 rtx equiv_link;
1105 rtx last_link;
1106 rtx note;
1108 /* Find the last note. */
1109 for (last_link = link; XEXP (last_link, 1);
1110 last_link = XEXP (last_link, 1))
1113 /* Append the REG_DEAD notes from equiv_insn. */
1114 equiv_link = REG_NOTES (equiv_insn);
1115 while (equiv_link)
1117 note = equiv_link;
1118 equiv_link = XEXP (equiv_link, 1);
1119 if (REG_NOTE_KIND (note) == REG_DEAD)
1121 remove_note (equiv_insn, note);
1122 XEXP (last_link, 1) = note;
1123 XEXP (note, 1) = NULL_RTX;
1124 last_link = note;
1128 remove_death (regno, insn);
1129 REG_N_REFS (regno) = 0;
1130 PUT_CODE (equiv_insn, NOTE);
1131 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1132 NOTE_SOURCE_FILE (equiv_insn) = 0;
1134 reg_equiv[regno].init_insns
1135 = XEXP (reg_equiv[regno].init_insns, 1);
1137 /* Move the initialization of the register to just before
1138 INSN. Update the flow information. */
1139 else if (PREV_INSN (insn) != equiv_insn)
1141 rtx new_insn;
1143 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
1144 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
1145 REG_NOTES (equiv_insn) = 0;
1147 /* Make sure this insn is recognized before reload begins,
1148 otherwise eliminate_regs_in_insn will abort. */
1149 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
1151 PUT_CODE (equiv_insn, NOTE);
1152 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1153 NOTE_SOURCE_FILE (equiv_insn) = 0;
1155 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
1157 REG_BASIC_BLOCK (regno) = block >= 0 ? block : 0;
1158 REG_N_CALLS_CROSSED (regno) = 0;
1159 REG_LIVE_LENGTH (regno) = 2;
1161 if (block >= 0 && insn == BLOCK_HEAD (block))
1162 BLOCK_HEAD (block) = PREV_INSN (insn);
1164 /* Remember to clear REGNO from all basic block's live
1165 info. */
1166 SET_REGNO_REG_SET (&cleared_regs, regno);
1167 clear_regnos++;
1173 /* Clear all dead REGNOs from all basic block's live info. */
1174 if (clear_regnos)
1176 int j, l;
1177 if (clear_regnos > 8)
1179 for (l = 0; l < n_basic_blocks; l++)
1181 AND_COMPL_REG_SET (BASIC_BLOCK (l)->global_live_at_start,
1182 &cleared_regs);
1183 AND_COMPL_REG_SET (BASIC_BLOCK (l)->global_live_at_end,
1184 &cleared_regs);
1187 else
1188 EXECUTE_IF_SET_IN_REG_SET (&cleared_regs, 0, j,
1190 for (l = 0; l < n_basic_blocks; l++)
1192 CLEAR_REGNO_REG_SET (BASIC_BLOCK (l)->global_live_at_start, j);
1193 CLEAR_REGNO_REG_SET (BASIC_BLOCK (l)->global_live_at_end, j);
1198 /* Clean up. */
1199 end_alias_analysis ();
1200 CLEAR_REG_SET (&cleared_regs);
1201 free (reg_equiv);
1204 /* Mark REG as having no known equivalence.
1205 Some instructions might have been proceessed before and furnished
1206 with REG_EQUIV notes for this register; these notes will have to be
1207 removed.
1208 STORE is the piece of RTL that does the non-constant / conflicting
1209 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1210 but needs to be there because this function is called from note_stores. */
1211 static void
1212 no_equiv (reg, store, data)
1213 rtx reg, store ATTRIBUTE_UNUSED;
1214 void *data ATTRIBUTE_UNUSED;
1216 int regno;
1217 rtx list;
1219 if (GET_CODE (reg) != REG)
1220 return;
1221 regno = REGNO (reg);
1222 list = reg_equiv[regno].init_insns;
1223 if (list == const0_rtx)
1224 return;
1225 for (; list; list = XEXP (list, 1))
1227 rtx insn = XEXP (list, 0);
1228 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1230 reg_equiv[regno].init_insns = const0_rtx;
1231 reg_equiv[regno].replacement = NULL_RTX;
1234 /* Allocate hard regs to the pseudo regs used only within block number B.
1235 Only the pseudos that die but once can be handled. */
1237 static void
1238 block_alloc (b)
1239 int b;
1241 register int i, q;
1242 register rtx insn;
1243 rtx note;
1244 int insn_number = 0;
1245 int insn_count = 0;
1246 int max_uid = get_max_uid ();
1247 int *qty_order;
1248 int no_conflict_combined_regno = -1;
1250 /* Count the instructions in the basic block. */
1252 insn = BLOCK_END (b);
1253 while (1)
1255 if (GET_CODE (insn) != NOTE)
1256 if (++insn_count > max_uid)
1257 abort ();
1258 if (insn == BLOCK_HEAD (b))
1259 break;
1260 insn = PREV_INSN (insn);
1263 /* +2 to leave room for a post_mark_life at the last insn and for
1264 the birth of a CLOBBER in the first insn. */
1265 regs_live_at = (HARD_REG_SET *) xcalloc ((2 * insn_count + 2),
1266 sizeof (HARD_REG_SET));
1268 /* Initialize table of hardware registers currently live. */
1270 REG_SET_TO_HARD_REG_SET (regs_live, BASIC_BLOCK (b)->global_live_at_start);
1272 /* This loop scans the instructions of the basic block
1273 and assigns quantities to registers.
1274 It computes which registers to tie. */
1276 insn = BLOCK_HEAD (b);
1277 while (1)
1279 if (GET_CODE (insn) != NOTE)
1280 insn_number++;
1282 if (INSN_P (insn))
1284 register rtx link, set;
1285 register int win = 0;
1286 register rtx r0, r1 = NULL_RTX;
1287 int combined_regno = -1;
1288 int i;
1290 this_insn_number = insn_number;
1291 this_insn = insn;
1293 extract_insn (insn);
1294 which_alternative = -1;
1296 /* Is this insn suitable for tying two registers?
1297 If so, try doing that.
1298 Suitable insns are those with at least two operands and where
1299 operand 0 is an output that is a register that is not
1300 earlyclobber.
1302 We can tie operand 0 with some operand that dies in this insn.
1303 First look for operands that are required to be in the same
1304 register as operand 0. If we find such, only try tying that
1305 operand or one that can be put into that operand if the
1306 operation is commutative. If we don't find an operand
1307 that is required to be in the same register as operand 0,
1308 we can tie with any operand.
1310 Subregs in place of regs are also ok.
1312 If tying is done, WIN is set nonzero. */
1314 if (optimize
1315 && recog_data.n_operands > 1
1316 && recog_data.constraints[0][0] == '='
1317 && recog_data.constraints[0][1] != '&')
1319 /* If non-negative, is an operand that must match operand 0. */
1320 int must_match_0 = -1;
1321 /* Counts number of alternatives that require a match with
1322 operand 0. */
1323 int n_matching_alts = 0;
1325 for (i = 1; i < recog_data.n_operands; i++)
1327 const char *p = recog_data.constraints[i];
1328 int this_match = (requires_inout (p));
1330 n_matching_alts += this_match;
1331 if (this_match == recog_data.n_alternatives)
1332 must_match_0 = i;
1335 r0 = recog_data.operand[0];
1336 for (i = 1; i < recog_data.n_operands; i++)
1338 /* Skip this operand if we found an operand that
1339 must match operand 0 and this operand isn't it
1340 and can't be made to be it by commutativity. */
1342 if (must_match_0 >= 0 && i != must_match_0
1343 && ! (i == must_match_0 + 1
1344 && recog_data.constraints[i-1][0] == '%')
1345 && ! (i == must_match_0 - 1
1346 && recog_data.constraints[i][0] == '%'))
1347 continue;
1349 /* Likewise if each alternative has some operand that
1350 must match operand zero. In that case, skip any
1351 operand that doesn't list operand 0 since we know that
1352 the operand always conflicts with operand 0. We
1353 ignore commutatity in this case to keep things simple. */
1354 if (n_matching_alts == recog_data.n_alternatives
1355 && 0 == requires_inout (recog_data.constraints[i]))
1356 continue;
1358 r1 = recog_data.operand[i];
1360 /* If the operand is an address, find a register in it.
1361 There may be more than one register, but we only try one
1362 of them. */
1363 if (recog_data.constraints[i][0] == 'p')
1364 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1365 r1 = XEXP (r1, 0);
1367 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1369 /* We have two priorities for hard register preferences.
1370 If we have a move insn or an insn whose first input
1371 can only be in the same register as the output, give
1372 priority to an equivalence found from that insn. */
1373 int may_save_copy
1374 = (r1 == recog_data.operand[i] && must_match_0 >= 0);
1376 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1377 win = combine_regs (r1, r0, may_save_copy,
1378 insn_number, insn, 0);
1380 if (win)
1381 break;
1385 /* Recognize an insn sequence with an ultimate result
1386 which can safely overlap one of the inputs.
1387 The sequence begins with a CLOBBER of its result,
1388 and ends with an insn that copies the result to itself
1389 and has a REG_EQUAL note for an equivalent formula.
1390 That note indicates what the inputs are.
1391 The result and the input can overlap if each insn in
1392 the sequence either doesn't mention the input
1393 or has a REG_NO_CONFLICT note to inhibit the conflict.
1395 We do the combining test at the CLOBBER so that the
1396 destination register won't have had a quantity number
1397 assigned, since that would prevent combining. */
1399 if (optimize
1400 && GET_CODE (PATTERN (insn)) == CLOBBER
1401 && (r0 = XEXP (PATTERN (insn), 0),
1402 GET_CODE (r0) == REG)
1403 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1404 && XEXP (link, 0) != 0
1405 && GET_CODE (XEXP (link, 0)) == INSN
1406 && (set = single_set (XEXP (link, 0))) != 0
1407 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1408 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1409 NULL_RTX)) != 0)
1411 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1412 /* Check that we have such a sequence. */
1413 && no_conflict_p (insn, r0, r1))
1414 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1415 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1416 && (r1 = XEXP (XEXP (note, 0), 0),
1417 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1418 && no_conflict_p (insn, r0, r1))
1419 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1421 /* Here we care if the operation to be computed is
1422 commutative. */
1423 else if ((GET_CODE (XEXP (note, 0)) == EQ
1424 || GET_CODE (XEXP (note, 0)) == NE
1425 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1426 && (r1 = XEXP (XEXP (note, 0), 1),
1427 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1428 && no_conflict_p (insn, r0, r1))
1429 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1431 /* If we did combine something, show the register number
1432 in question so that we know to ignore its death. */
1433 if (win)
1434 no_conflict_combined_regno = REGNO (r1);
1437 /* If registers were just tied, set COMBINED_REGNO
1438 to the number of the register used in this insn
1439 that was tied to the register set in this insn.
1440 This register's qty should not be "killed". */
1442 if (win)
1444 while (GET_CODE (r1) == SUBREG)
1445 r1 = SUBREG_REG (r1);
1446 combined_regno = REGNO (r1);
1449 /* Mark the death of everything that dies in this instruction,
1450 except for anything that was just combined. */
1452 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1453 if (REG_NOTE_KIND (link) == REG_DEAD
1454 && GET_CODE (XEXP (link, 0)) == REG
1455 && combined_regno != (int) REGNO (XEXP (link, 0))
1456 && (no_conflict_combined_regno != (int) REGNO (XEXP (link, 0))
1457 || ! find_reg_note (insn, REG_NO_CONFLICT,
1458 XEXP (link, 0))))
1459 wipe_dead_reg (XEXP (link, 0), 0);
1461 /* Allocate qty numbers for all registers local to this block
1462 that are born (set) in this instruction.
1463 A pseudo that already has a qty is not changed. */
1465 note_stores (PATTERN (insn), reg_is_set, NULL);
1467 /* If anything is set in this insn and then unused, mark it as dying
1468 after this insn, so it will conflict with our outputs. This
1469 can't match with something that combined, and it doesn't matter
1470 if it did. Do this after the calls to reg_is_set since these
1471 die after, not during, the current insn. */
1473 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1474 if (REG_NOTE_KIND (link) == REG_UNUSED
1475 && GET_CODE (XEXP (link, 0)) == REG)
1476 wipe_dead_reg (XEXP (link, 0), 1);
1478 /* If this is an insn that has a REG_RETVAL note pointing at a
1479 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1480 block, so clear any register number that combined within it. */
1481 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1482 && GET_CODE (XEXP (note, 0)) == INSN
1483 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1484 no_conflict_combined_regno = -1;
1487 /* Set the registers live after INSN_NUMBER. Note that we never
1488 record the registers live before the block's first insn, since no
1489 pseudos we care about are live before that insn. */
1491 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1492 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1494 if (insn == BLOCK_END (b))
1495 break;
1497 insn = NEXT_INSN (insn);
1500 /* Now every register that is local to this basic block
1501 should have been given a quantity, or else -1 meaning ignore it.
1502 Every quantity should have a known birth and death.
1504 Order the qtys so we assign them registers in order of the
1505 number of suggested registers they need so we allocate those with
1506 the most restrictive needs first. */
1508 qty_order = (int *) xmalloc (next_qty * sizeof (int));
1509 for (i = 0; i < next_qty; i++)
1510 qty_order[i] = i;
1512 #define EXCHANGE(I1, I2) \
1513 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1515 switch (next_qty)
1517 case 3:
1518 /* Make qty_order[2] be the one to allocate last. */
1519 if (qty_sugg_compare (0, 1) > 0)
1520 EXCHANGE (0, 1);
1521 if (qty_sugg_compare (1, 2) > 0)
1522 EXCHANGE (2, 1);
1524 /* ... Fall through ... */
1525 case 2:
1526 /* Put the best one to allocate in qty_order[0]. */
1527 if (qty_sugg_compare (0, 1) > 0)
1528 EXCHANGE (0, 1);
1530 /* ... Fall through ... */
1532 case 1:
1533 case 0:
1534 /* Nothing to do here. */
1535 break;
1537 default:
1538 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1541 /* Try to put each quantity in a suggested physical register, if it has one.
1542 This may cause registers to be allocated that otherwise wouldn't be, but
1543 this seems acceptable in local allocation (unlike global allocation). */
1544 for (i = 0; i < next_qty; i++)
1546 q = qty_order[i];
1547 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1548 qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
1549 0, 1, qty[q].birth, qty[q].death);
1550 else
1551 qty[q].phys_reg = -1;
1554 /* Order the qtys so we assign them registers in order of
1555 decreasing length of life. Normally call qsort, but if we
1556 have only a very small number of quantities, sort them ourselves. */
1558 for (i = 0; i < next_qty; i++)
1559 qty_order[i] = i;
1561 #define EXCHANGE(I1, I2) \
1562 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1564 switch (next_qty)
1566 case 3:
1567 /* Make qty_order[2] be the one to allocate last. */
1568 if (qty_compare (0, 1) > 0)
1569 EXCHANGE (0, 1);
1570 if (qty_compare (1, 2) > 0)
1571 EXCHANGE (2, 1);
1573 /* ... Fall through ... */
1574 case 2:
1575 /* Put the best one to allocate in qty_order[0]. */
1576 if (qty_compare (0, 1) > 0)
1577 EXCHANGE (0, 1);
1579 /* ... Fall through ... */
1581 case 1:
1582 case 0:
1583 /* Nothing to do here. */
1584 break;
1586 default:
1587 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1590 /* Now for each qty that is not a hardware register,
1591 look for a hardware register to put it in.
1592 First try the register class that is cheapest for this qty,
1593 if there is more than one class. */
1595 for (i = 0; i < next_qty; i++)
1597 q = qty_order[i];
1598 if (qty[q].phys_reg < 0)
1600 #ifdef INSN_SCHEDULING
1601 /* These values represent the adjusted lifetime of a qty so
1602 that it conflicts with qtys which appear near the start/end
1603 of this qty's lifetime.
1605 The purpose behind extending the lifetime of this qty is to
1606 discourage the register allocator from creating false
1607 dependencies.
1609 The adjustment value is choosen to indicate that this qty
1610 conflicts with all the qtys in the instructions immediately
1611 before and after the lifetime of this qty.
1613 Experiments have shown that higher values tend to hurt
1614 overall code performance.
1616 If allocation using the extended lifetime fails we will try
1617 again with the qty's unadjusted lifetime. */
1618 int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
1619 int fake_death = MIN (insn_number * 2 + 1,
1620 qty[q].death + 2 - qty[q].death % 2);
1621 #endif
1623 if (N_REG_CLASSES > 1)
1625 #ifdef INSN_SCHEDULING
1626 /* We try to avoid using hard registers allocated to qtys which
1627 are born immediately after this qty or die immediately before
1628 this qty.
1630 This optimization is only appropriate when we will run
1631 a scheduling pass after reload and we are not optimizing
1632 for code size. */
1633 if (flag_schedule_insns_after_reload
1634 && !optimize_size
1635 && !SMALL_REGISTER_CLASSES)
1637 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1638 qty[q].mode, q, 0, 0,
1639 fake_birth, fake_death);
1640 if (qty[q].phys_reg >= 0)
1641 continue;
1643 #endif
1644 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1645 qty[q].mode, q, 0, 0,
1646 qty[q].birth, qty[q].death);
1647 if (qty[q].phys_reg >= 0)
1648 continue;
1651 #ifdef INSN_SCHEDULING
1652 /* Similarly, avoid false dependencies. */
1653 if (flag_schedule_insns_after_reload
1654 && !optimize_size
1655 && !SMALL_REGISTER_CLASSES
1656 && qty[q].alternate_class != NO_REGS)
1657 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1658 qty[q].mode, q, 0, 0,
1659 fake_birth, fake_death);
1660 #endif
1661 if (qty[q].alternate_class != NO_REGS)
1662 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1663 qty[q].mode, q, 0, 0,
1664 qty[q].birth, qty[q].death);
1668 /* Now propagate the register assignments
1669 to the pseudo regs belonging to the qtys. */
1671 for (q = 0; q < next_qty; q++)
1672 if (qty[q].phys_reg >= 0)
1674 for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
1675 reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
1678 /* Clean up. */
1679 free (regs_live_at);
1680 free (qty_order);
1683 /* Compare two quantities' priority for getting real registers.
1684 We give shorter-lived quantities higher priority.
1685 Quantities with more references are also preferred, as are quantities that
1686 require multiple registers. This is the identical prioritization as
1687 done by global-alloc.
1689 We used to give preference to registers with *longer* lives, but using
1690 the same algorithm in both local- and global-alloc can speed up execution
1691 of some programs by as much as a factor of three! */
1693 /* Note that the quotient will never be bigger than
1694 the value of floor_log2 times the maximum number of
1695 times a register can occur in one insn (surely less than 100).
1696 Multiplying this by 10000 can't overflow.
1697 QTY_CMP_PRI is also used by qty_sugg_compare. */
1699 #define QTY_CMP_PRI(q) \
1700 ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].n_refs * qty[q].size) \
1701 / (qty[q].death - qty[q].birth)) * 10000))
1703 static int
1704 qty_compare (q1, q2)
1705 int q1, q2;
1707 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1710 static int
1711 qty_compare_1 (q1p, q2p)
1712 const PTR q1p;
1713 const PTR q2p;
1715 register int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1716 register int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1718 if (tem != 0)
1719 return tem;
1721 /* If qtys are equally good, sort by qty number,
1722 so that the results of qsort leave nothing to chance. */
1723 return q1 - q2;
1726 /* Compare two quantities' priority for getting real registers. This version
1727 is called for quantities that have suggested hard registers. First priority
1728 goes to quantities that have copy preferences, then to those that have
1729 normal preferences. Within those groups, quantities with the lower
1730 number of preferences have the highest priority. Of those, we use the same
1731 algorithm as above. */
1733 #define QTY_CMP_SUGG(q) \
1734 (qty_phys_num_copy_sugg[q] \
1735 ? qty_phys_num_copy_sugg[q] \
1736 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1738 static int
1739 qty_sugg_compare (q1, q2)
1740 int q1, q2;
1742 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1744 if (tem != 0)
1745 return tem;
1747 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1750 static int
1751 qty_sugg_compare_1 (q1p, q2p)
1752 const PTR q1p;
1753 const PTR q2p;
1755 register int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1756 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1758 if (tem != 0)
1759 return tem;
1761 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1762 if (tem != 0)
1763 return tem;
1765 /* If qtys are equally good, sort by qty number,
1766 so that the results of qsort leave nothing to chance. */
1767 return q1 - q2;
1770 #undef QTY_CMP_SUGG
1771 #undef QTY_CMP_PRI
1773 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1774 Returns 1 if have done so, or 0 if cannot.
1776 Combining registers means marking them as having the same quantity
1777 and adjusting the offsets within the quantity if either of
1778 them is a SUBREG).
1780 We don't actually combine a hard reg with a pseudo; instead
1781 we just record the hard reg as the suggestion for the pseudo's quantity.
1782 If we really combined them, we could lose if the pseudo lives
1783 across an insn that clobbers the hard reg (eg, movstr).
1785 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1786 there is no REG_DEAD note on INSN. This occurs during the processing
1787 of REG_NO_CONFLICT blocks.
1789 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1790 SETREG or if the input and output must share a register.
1791 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1793 There are elaborate checks for the validity of combining. */
1795 static int
1796 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1797 rtx usedreg, setreg;
1798 int may_save_copy;
1799 int insn_number;
1800 rtx insn;
1801 int already_dead;
1803 register int ureg, sreg;
1804 register int offset = 0;
1805 int usize, ssize;
1806 register int sqty;
1808 /* Determine the numbers and sizes of registers being used. If a subreg
1809 is present that does not change the entire register, don't consider
1810 this a copy insn. */
1812 while (GET_CODE (usedreg) == SUBREG)
1814 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1815 may_save_copy = 0;
1816 offset += SUBREG_WORD (usedreg);
1817 usedreg = SUBREG_REG (usedreg);
1819 if (GET_CODE (usedreg) != REG)
1820 return 0;
1821 ureg = REGNO (usedreg);
1822 usize = REG_SIZE (usedreg);
1824 while (GET_CODE (setreg) == SUBREG)
1826 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1827 may_save_copy = 0;
1828 offset -= SUBREG_WORD (setreg);
1829 setreg = SUBREG_REG (setreg);
1831 if (GET_CODE (setreg) != REG)
1832 return 0;
1833 sreg = REGNO (setreg);
1834 ssize = REG_SIZE (setreg);
1836 /* If UREG is a pseudo-register that hasn't already been assigned a
1837 quantity number, it means that it is not local to this block or dies
1838 more than once. In either event, we can't do anything with it. */
1839 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1840 /* Do not combine registers unless one fits within the other. */
1841 || (offset > 0 && usize + offset > ssize)
1842 || (offset < 0 && usize + offset < ssize)
1843 /* Do not combine with a smaller already-assigned object
1844 if that smaller object is already combined with something bigger. */
1845 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1846 && usize < qty[reg_qty[ureg]].size)
1847 /* Can't combine if SREG is not a register we can allocate. */
1848 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1849 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1850 These have already been taken care of. This probably wouldn't
1851 combine anyway, but don't take any chances. */
1852 || (ureg >= FIRST_PSEUDO_REGISTER
1853 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1854 /* Don't tie something to itself. In most cases it would make no
1855 difference, but it would screw up if the reg being tied to itself
1856 also dies in this insn. */
1857 || ureg == sreg
1858 /* Don't try to connect two different hardware registers. */
1859 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1860 /* Don't connect two different machine modes if they have different
1861 implications as to which registers may be used. */
1862 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1863 return 0;
1865 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1866 qty_phys_sugg for the pseudo instead of tying them.
1868 Return "failure" so that the lifespan of UREG is terminated here;
1869 that way the two lifespans will be disjoint and nothing will prevent
1870 the pseudo reg from being given this hard reg. */
1872 if (ureg < FIRST_PSEUDO_REGISTER)
1874 /* Allocate a quantity number so we have a place to put our
1875 suggestions. */
1876 if (reg_qty[sreg] == -2)
1877 reg_is_born (setreg, 2 * insn_number);
1879 if (reg_qty[sreg] >= 0)
1881 if (may_save_copy
1882 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1884 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1885 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1887 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1889 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1890 qty_phys_num_sugg[reg_qty[sreg]]++;
1893 return 0;
1896 /* Similarly for SREG a hard register and UREG a pseudo register. */
1898 if (sreg < FIRST_PSEUDO_REGISTER)
1900 if (may_save_copy
1901 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1903 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1904 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1906 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1908 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1909 qty_phys_num_sugg[reg_qty[ureg]]++;
1911 return 0;
1914 /* At this point we know that SREG and UREG are both pseudos.
1915 Do nothing if SREG already has a quantity or is a register that we
1916 don't allocate. */
1917 if (reg_qty[sreg] >= -1
1918 /* If we are not going to let any regs live across calls,
1919 don't tie a call-crossing reg to a non-call-crossing reg. */
1920 || (current_function_has_nonlocal_label
1921 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1922 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1923 return 0;
1925 /* We don't already know about SREG, so tie it to UREG
1926 if this is the last use of UREG, provided the classes they want
1927 are compatible. */
1929 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1930 && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
1932 /* Add SREG to UREG's quantity. */
1933 sqty = reg_qty[ureg];
1934 reg_qty[sreg] = sqty;
1935 reg_offset[sreg] = reg_offset[ureg] + offset;
1936 reg_next_in_qty[sreg] = qty[sqty].first_reg;
1937 qty[sqty].first_reg = sreg;
1939 /* If SREG's reg class is smaller, set qty[SQTY].min_class. */
1940 update_qty_class (sqty, sreg);
1942 /* Update info about quantity SQTY. */
1943 qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
1944 qty[sqty].n_refs += REG_N_REFS (sreg);
1945 if (usize < ssize)
1947 register int i;
1949 for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
1950 reg_offset[i] -= offset;
1952 qty[sqty].size = ssize;
1953 qty[sqty].mode = GET_MODE (setreg);
1956 else
1957 return 0;
1959 return 1;
1962 /* Return 1 if the preferred class of REG allows it to be tied
1963 to a quantity or register whose class is CLASS.
1964 True if REG's reg class either contains or is contained in CLASS. */
1966 static int
1967 reg_meets_class_p (reg, class)
1968 int reg;
1969 enum reg_class class;
1971 register enum reg_class rclass = reg_preferred_class (reg);
1972 return (reg_class_subset_p (rclass, class)
1973 || reg_class_subset_p (class, rclass));
1976 /* Update the class of QTYNO assuming that REG is being tied to it. */
1978 static void
1979 update_qty_class (qtyno, reg)
1980 int qtyno;
1981 int reg;
1983 enum reg_class rclass = reg_preferred_class (reg);
1984 if (reg_class_subset_p (rclass, qty[qtyno].min_class))
1985 qty[qtyno].min_class = rclass;
1987 rclass = reg_alternate_class (reg);
1988 if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
1989 qty[qtyno].alternate_class = rclass;
1991 if (REG_CHANGES_MODE (reg))
1992 qty[qtyno].changes_mode = 1;
1995 /* Handle something which alters the value of an rtx REG.
1997 REG is whatever is set or clobbered. SETTER is the rtx that
1998 is modifying the register.
2000 If it is not really a register, we do nothing.
2001 The file-global variables `this_insn' and `this_insn_number'
2002 carry info from `block_alloc'. */
2004 static void
2005 reg_is_set (reg, setter, data)
2006 rtx reg;
2007 rtx setter;
2008 void *data ATTRIBUTE_UNUSED;
2010 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
2011 a hard register. These may actually not exist any more. */
2013 if (GET_CODE (reg) != SUBREG
2014 && GET_CODE (reg) != REG)
2015 return;
2017 /* Mark this register as being born. If it is used in a CLOBBER, mark
2018 it as being born halfway between the previous insn and this insn so that
2019 it conflicts with our inputs but not the outputs of the previous insn. */
2021 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
2024 /* Handle beginning of the life of register REG.
2025 BIRTH is the index at which this is happening. */
2027 static void
2028 reg_is_born (reg, birth)
2029 rtx reg;
2030 int birth;
2032 register int regno;
2034 if (GET_CODE (reg) == SUBREG)
2035 regno = REGNO (SUBREG_REG (reg)) + SUBREG_WORD (reg);
2036 else
2037 regno = REGNO (reg);
2039 if (regno < FIRST_PSEUDO_REGISTER)
2041 mark_life (regno, GET_MODE (reg), 1);
2043 /* If the register was to have been born earlier that the present
2044 insn, mark it as live where it is actually born. */
2045 if (birth < 2 * this_insn_number)
2046 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
2048 else
2050 if (reg_qty[regno] == -2)
2051 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
2053 /* If this register has a quantity number, show that it isn't dead. */
2054 if (reg_qty[regno] >= 0)
2055 qty[reg_qty[regno]].death = -1;
2059 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
2060 REG is an output that is dying (i.e., it is never used), otherwise it
2061 is an input (the normal case).
2062 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2064 static void
2065 wipe_dead_reg (reg, output_p)
2066 register rtx reg;
2067 int output_p;
2069 register int regno = REGNO (reg);
2071 /* If this insn has multiple results,
2072 and the dead reg is used in one of the results,
2073 extend its life to after this insn,
2074 so it won't get allocated together with any other result of this insn.
2076 It is unsafe to use !single_set here since it will ignore an unused
2077 output. Just because an output is unused does not mean the compiler
2078 can assume the side effect will not occur. Consider if REG appears
2079 in the address of an output and we reload the output. If we allocate
2080 REG to the same hard register as an unused output we could set the hard
2081 register before the output reload insn. */
2082 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
2083 && multiple_sets (this_insn))
2085 int i;
2086 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2088 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2089 if (GET_CODE (set) == SET
2090 && GET_CODE (SET_DEST (set)) != REG
2091 && !rtx_equal_p (reg, SET_DEST (set))
2092 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2093 output_p = 1;
2097 /* If this register is used in an auto-increment address, then extend its
2098 life to after this insn, so that it won't get allocated together with
2099 the result of this insn. */
2100 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
2101 output_p = 1;
2103 if (regno < FIRST_PSEUDO_REGISTER)
2105 mark_life (regno, GET_MODE (reg), 0);
2107 /* If a hard register is dying as an output, mark it as in use at
2108 the beginning of this insn (the above statement would cause this
2109 not to happen). */
2110 if (output_p)
2111 post_mark_life (regno, GET_MODE (reg), 1,
2112 2 * this_insn_number, 2 * this_insn_number + 1);
2115 else if (reg_qty[regno] >= 0)
2116 qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
2119 /* Find a block of SIZE words of hard regs in reg_class CLASS
2120 that can hold something of machine-mode MODE
2121 (but actually we test only the first of the block for holding MODE)
2122 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2123 and return the number of the first of them.
2124 Return -1 if such a block cannot be found.
2125 If QTYNO crosses calls, insist on a register preserved by calls,
2126 unless ACCEPT_CALL_CLOBBERED is nonzero.
2128 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
2129 register is available. If not, return -1. */
2131 static int
2132 find_free_reg (class, mode, qtyno, accept_call_clobbered, just_try_suggested,
2133 born_index, dead_index)
2134 enum reg_class class;
2135 enum machine_mode mode;
2136 int qtyno;
2137 int accept_call_clobbered;
2138 int just_try_suggested;
2139 int born_index, dead_index;
2141 register int i, ins;
2142 #ifdef HARD_REG_SET
2143 /* Declare it register if it's a scalar. */
2144 register
2145 #endif
2146 HARD_REG_SET used, first_used;
2147 #ifdef ELIMINABLE_REGS
2148 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
2149 #endif
2151 /* Validate our parameters. */
2152 if (born_index < 0 || born_index > dead_index)
2153 abort ();
2155 /* Don't let a pseudo live in a reg across a function call
2156 if we might get a nonlocal goto. */
2157 if (current_function_has_nonlocal_label
2158 && qty[qtyno].n_calls_crossed > 0)
2159 return -1;
2161 if (accept_call_clobbered)
2162 COPY_HARD_REG_SET (used, call_fixed_reg_set);
2163 else if (qty[qtyno].n_calls_crossed == 0)
2164 COPY_HARD_REG_SET (used, fixed_reg_set);
2165 else
2166 COPY_HARD_REG_SET (used, call_used_reg_set);
2168 if (accept_call_clobbered)
2169 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
2171 for (ins = born_index; ins < dead_index; ins++)
2172 IOR_HARD_REG_SET (used, regs_live_at[ins]);
2174 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2176 /* Don't use the frame pointer reg in local-alloc even if
2177 we may omit the frame pointer, because if we do that and then we
2178 need a frame pointer, reload won't know how to move the pseudo
2179 to another hard reg. It can move only regs made by global-alloc.
2181 This is true of any register that can be eliminated. */
2182 #ifdef ELIMINABLE_REGS
2183 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2184 SET_HARD_REG_BIT (used, eliminables[i].from);
2185 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2186 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2187 that it might be eliminated into. */
2188 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2189 #endif
2190 #else
2191 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2192 #endif
2194 #ifdef CLASS_CANNOT_CHANGE_MODE
2195 if (qty[qtyno].changes_mode)
2196 IOR_HARD_REG_SET (used,
2197 reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE]);
2198 #endif
2200 /* Normally, the registers that can be used for the first register in
2201 a multi-register quantity are the same as those that can be used for
2202 subsequent registers. However, if just trying suggested registers,
2203 restrict our consideration to them. If there are copy-suggested
2204 register, try them. Otherwise, try the arithmetic-suggested
2205 registers. */
2206 COPY_HARD_REG_SET (first_used, used);
2208 if (just_try_suggested)
2210 if (qty_phys_num_copy_sugg[qtyno] != 0)
2211 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
2212 else
2213 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
2216 /* If all registers are excluded, we can't do anything. */
2217 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2219 /* If at least one would be suitable, test each hard reg. */
2221 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2223 #ifdef REG_ALLOC_ORDER
2224 int regno = reg_alloc_order[i];
2225 #else
2226 int regno = i;
2227 #endif
2228 if (! TEST_HARD_REG_BIT (first_used, regno)
2229 && HARD_REGNO_MODE_OK (regno, mode)
2230 && (qty[qtyno].n_calls_crossed == 0
2231 || accept_call_clobbered
2232 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2234 register int j;
2235 register int size1 = HARD_REGNO_NREGS (regno, mode);
2236 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2237 if (j == size1)
2239 /* Mark that this register is in use between its birth and death
2240 insns. */
2241 post_mark_life (regno, mode, 1, born_index, dead_index);
2242 return regno;
2244 #ifndef REG_ALLOC_ORDER
2245 /* Skip starting points we know will lose. */
2246 i += j;
2247 #endif
2251 fail:
2252 /* If we are just trying suggested register, we have just tried copy-
2253 suggested registers, and there are arithmetic-suggested registers,
2254 try them. */
2256 /* If it would be profitable to allocate a call-clobbered register
2257 and save and restore it around calls, do that. */
2258 if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
2259 && qty_phys_num_sugg[qtyno] != 0)
2261 /* Don't try the copy-suggested regs again. */
2262 qty_phys_num_copy_sugg[qtyno] = 0;
2263 return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
2264 born_index, dead_index);
2267 /* We need not check to see if the current function has nonlocal
2268 labels because we don't put any pseudos that are live over calls in
2269 registers in that case. */
2271 if (! accept_call_clobbered
2272 && flag_caller_saves
2273 && ! just_try_suggested
2274 && qty[qtyno].n_calls_crossed != 0
2275 && CALLER_SAVE_PROFITABLE (qty[qtyno].n_refs,
2276 qty[qtyno].n_calls_crossed))
2278 i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
2279 if (i >= 0)
2280 caller_save_needed = 1;
2281 return i;
2283 return -1;
2286 /* Mark that REGNO with machine-mode MODE is live starting from the current
2287 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2288 is zero). */
2290 static void
2291 mark_life (regno, mode, life)
2292 register int regno;
2293 enum machine_mode mode;
2294 int life;
2296 register int j = HARD_REGNO_NREGS (regno, mode);
2297 if (life)
2298 while (--j >= 0)
2299 SET_HARD_REG_BIT (regs_live, regno + j);
2300 else
2301 while (--j >= 0)
2302 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2305 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2306 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2307 to insn number DEATH (exclusive). */
2309 static void
2310 post_mark_life (regno, mode, life, birth, death)
2311 int regno;
2312 enum machine_mode mode;
2313 int life, birth, death;
2315 register int j = HARD_REGNO_NREGS (regno, mode);
2316 #ifdef HARD_REG_SET
2317 /* Declare it register if it's a scalar. */
2318 register
2319 #endif
2320 HARD_REG_SET this_reg;
2322 CLEAR_HARD_REG_SET (this_reg);
2323 while (--j >= 0)
2324 SET_HARD_REG_BIT (this_reg, regno + j);
2326 if (life)
2327 while (birth < death)
2329 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2330 birth++;
2332 else
2333 while (birth < death)
2335 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2336 birth++;
2340 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2341 is the register being clobbered, and R1 is a register being used in
2342 the equivalent expression.
2344 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2345 in which it is used, return 1.
2347 Otherwise, return 0. */
2349 static int
2350 no_conflict_p (insn, r0, r1)
2351 rtx insn, r0 ATTRIBUTE_UNUSED, r1;
2353 int ok = 0;
2354 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2355 rtx p, last;
2357 /* If R1 is a hard register, return 0 since we handle this case
2358 when we scan the insns that actually use it. */
2360 if (note == 0
2361 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2362 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2363 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2364 return 0;
2366 last = XEXP (note, 0);
2368 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2369 if (INSN_P (p))
2371 if (find_reg_note (p, REG_DEAD, r1))
2372 ok = 1;
2374 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2375 some earlier optimization pass has inserted instructions into
2376 the sequence, and it is not safe to perform this optimization.
2377 Note that emit_no_conflict_block always ensures that this is
2378 true when these sequences are created. */
2379 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2380 return 0;
2383 return ok;
2386 /* Return the number of alternatives for which the constraint string P
2387 indicates that the operand must be equal to operand 0 and that no register
2388 is acceptable. */
2390 static int
2391 requires_inout (p)
2392 const char *p;
2394 char c;
2395 int found_zero = 0;
2396 int reg_allowed = 0;
2397 int num_matching_alts = 0;
2399 while ((c = *p++))
2400 switch (c)
2402 case '=': case '+': case '?':
2403 case '#': case '&': case '!':
2404 case '*': case '%':
2405 case '1': case '2': case '3': case '4': case '5':
2406 case '6': case '7': case '8': case '9':
2407 case 'm': case '<': case '>': case 'V': case 'o':
2408 case 'E': case 'F': case 'G': case 'H':
2409 case 's': case 'i': case 'n':
2410 case 'I': case 'J': case 'K': case 'L':
2411 case 'M': case 'N': case 'O': case 'P':
2412 case 'X':
2413 /* These don't say anything we care about. */
2414 break;
2416 case ',':
2417 if (found_zero && ! reg_allowed)
2418 num_matching_alts++;
2420 found_zero = reg_allowed = 0;
2421 break;
2423 case '0':
2424 found_zero = 1;
2425 break;
2427 default:
2428 if (REG_CLASS_FROM_LETTER (c) == NO_REGS)
2429 break;
2430 /* FALLTHRU */
2431 case 'p':
2432 case 'g': case 'r':
2433 reg_allowed = 1;
2434 break;
2437 if (found_zero && ! reg_allowed)
2438 num_matching_alts++;
2440 return num_matching_alts;
2443 void
2444 dump_local_alloc (file)
2445 FILE *file;
2447 register int i;
2448 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2449 if (reg_renumber[i] != -1)
2450 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);