natPlainSocketImplPosix.cc (create): Return if already created.
[official-gcc.git] / gcc / cse.c
blobcdc5ebe4ce3ce63f4aa15b2c2b85a788b4bdaa20
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 #include "config.h"
24 /* stdio.h must precede rtl.h for FFS. */
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "hard-reg-set.h"
31 #include "regs.h"
32 #include "basic-block.h"
33 #include "flags.h"
34 #include "real.h"
35 #include "insn-config.h"
36 #include "recog.h"
37 #include "function.h"
38 #include "expr.h"
39 #include "toplev.h"
40 #include "output.h"
41 #include "ggc.h"
42 #include "timevar.h"
43 #include "except.h"
44 #include "target.h"
45 #include "params.h"
46 #include "rtlhooks-def.h"
47 #include "tree-pass.h"
49 /* The basic idea of common subexpression elimination is to go
50 through the code, keeping a record of expressions that would
51 have the same value at the current scan point, and replacing
52 expressions encountered with the cheapest equivalent expression.
54 It is too complicated to keep track of the different possibilities
55 when control paths merge in this code; so, at each label, we forget all
56 that is known and start fresh. This can be described as processing each
57 extended basic block separately. We have a separate pass to perform
58 global CSE.
60 Note CSE can turn a conditional or computed jump into a nop or
61 an unconditional jump. When this occurs we arrange to run the jump
62 optimizer after CSE to delete the unreachable code.
64 We use two data structures to record the equivalent expressions:
65 a hash table for most expressions, and a vector of "quantity
66 numbers" to record equivalent (pseudo) registers.
68 The use of the special data structure for registers is desirable
69 because it is faster. It is possible because registers references
70 contain a fairly small number, the register number, taken from
71 a contiguously allocated series, and two register references are
72 identical if they have the same number. General expressions
73 do not have any such thing, so the only way to retrieve the
74 information recorded on an expression other than a register
75 is to keep it in a hash table.
77 Registers and "quantity numbers":
79 At the start of each basic block, all of the (hardware and pseudo)
80 registers used in the function are given distinct quantity
81 numbers to indicate their contents. During scan, when the code
82 copies one register into another, we copy the quantity number.
83 When a register is loaded in any other way, we allocate a new
84 quantity number to describe the value generated by this operation.
85 `REG_QTY (N)' records what quantity register N is currently thought
86 of as containing.
88 All real quantity numbers are greater than or equal to zero.
89 If register N has not been assigned a quantity, `REG_QTY (N)' will
90 equal -N - 1, which is always negative.
92 Quantity numbers below zero do not exist and none of the `qty_table'
93 entries should be referenced with a negative index.
95 We also maintain a bidirectional chain of registers for each
96 quantity number. The `qty_table` members `first_reg' and `last_reg',
97 and `reg_eqv_table' members `next' and `prev' hold these chains.
99 The first register in a chain is the one whose lifespan is least local.
100 Among equals, it is the one that was seen first.
101 We replace any equivalent register with that one.
103 If two registers have the same quantity number, it must be true that
104 REG expressions with qty_table `mode' must be in the hash table for both
105 registers and must be in the same class.
107 The converse is not true. Since hard registers may be referenced in
108 any mode, two REG expressions might be equivalent in the hash table
109 but not have the same quantity number if the quantity number of one
110 of the registers is not the same mode as those expressions.
112 Constants and quantity numbers
114 When a quantity has a known constant value, that value is stored
115 in the appropriate qty_table `const_rtx'. This is in addition to
116 putting the constant in the hash table as is usual for non-regs.
118 Whether a reg or a constant is preferred is determined by the configuration
119 macro CONST_COSTS and will often depend on the constant value. In any
120 event, expressions containing constants can be simplified, by fold_rtx.
122 When a quantity has a known nearly constant value (such as an address
123 of a stack slot), that value is stored in the appropriate qty_table
124 `const_rtx'.
126 Integer constants don't have a machine mode. However, cse
127 determines the intended machine mode from the destination
128 of the instruction that moves the constant. The machine mode
129 is recorded in the hash table along with the actual RTL
130 constant expression so that different modes are kept separate.
132 Other expressions:
134 To record known equivalences among expressions in general
135 we use a hash table called `table'. It has a fixed number of buckets
136 that contain chains of `struct table_elt' elements for expressions.
137 These chains connect the elements whose expressions have the same
138 hash codes.
140 Other chains through the same elements connect the elements which
141 currently have equivalent values.
143 Register references in an expression are canonicalized before hashing
144 the expression. This is done using `reg_qty' and qty_table `first_reg'.
145 The hash code of a register reference is computed using the quantity
146 number, not the register number.
148 When the value of an expression changes, it is necessary to remove from the
149 hash table not just that expression but all expressions whose values
150 could be different as a result.
152 1. If the value changing is in memory, except in special cases
153 ANYTHING referring to memory could be changed. That is because
154 nobody knows where a pointer does not point.
155 The function `invalidate_memory' removes what is necessary.
157 The special cases are when the address is constant or is
158 a constant plus a fixed register such as the frame pointer
159 or a static chain pointer. When such addresses are stored in,
160 we can tell exactly which other such addresses must be invalidated
161 due to overlap. `invalidate' does this.
162 All expressions that refer to non-constant
163 memory addresses are also invalidated. `invalidate_memory' does this.
165 2. If the value changing is a register, all expressions
166 containing references to that register, and only those,
167 must be removed.
169 Because searching the entire hash table for expressions that contain
170 a register is very slow, we try to figure out when it isn't necessary.
171 Precisely, this is necessary only when expressions have been
172 entered in the hash table using this register, and then the value has
173 changed, and then another expression wants to be added to refer to
174 the register's new value. This sequence of circumstances is rare
175 within any one basic block.
177 `REG_TICK' and `REG_IN_TABLE', accessors for members of
178 cse_reg_info, are used to detect this case. REG_TICK (i) is
179 incremented whenever a value is stored in register i.
180 REG_IN_TABLE (i) holds -1 if no references to register i have been
181 entered in the table; otherwise, it contains the value REG_TICK (i)
182 had when the references were entered. If we want to enter a
183 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
184 remove old references. Until we want to enter a new entry, the
185 mere fact that the two vectors don't match makes the entries be
186 ignored if anyone tries to match them.
188 Registers themselves are entered in the hash table as well as in
189 the equivalent-register chains. However, `REG_TICK' and
190 `REG_IN_TABLE' do not apply to expressions which are simple
191 register references. These expressions are removed from the table
192 immediately when they become invalid, and this can be done even if
193 we do not immediately search for all the expressions that refer to
194 the register.
196 A CLOBBER rtx in an instruction invalidates its operand for further
197 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
198 invalidates everything that resides in memory.
200 Related expressions:
202 Constant expressions that differ only by an additive integer
203 are called related. When a constant expression is put in
204 the table, the related expression with no constant term
205 is also entered. These are made to point at each other
206 so that it is possible to find out if there exists any
207 register equivalent to an expression related to a given expression. */
209 /* Length of qty_table vector. We know in advance we will not need
210 a quantity number this big. */
212 static int max_qty;
214 /* Next quantity number to be allocated.
215 This is 1 + the largest number needed so far. */
217 static int next_qty;
219 /* Per-qty information tracking.
221 `first_reg' and `last_reg' track the head and tail of the
222 chain of registers which currently contain this quantity.
224 `mode' contains the machine mode of this quantity.
226 `const_rtx' holds the rtx of the constant value of this
227 quantity, if known. A summations of the frame/arg pointer
228 and a constant can also be entered here. When this holds
229 a known value, `const_insn' is the insn which stored the
230 constant value.
232 `comparison_{code,const,qty}' are used to track when a
233 comparison between a quantity and some constant or register has
234 been passed. In such a case, we know the results of the comparison
235 in case we see it again. These members record a comparison that
236 is known to be true. `comparison_code' holds the rtx code of such
237 a comparison, else it is set to UNKNOWN and the other two
238 comparison members are undefined. `comparison_const' holds
239 the constant being compared against, or zero if the comparison
240 is not against a constant. `comparison_qty' holds the quantity
241 being compared against when the result is known. If the comparison
242 is not with a register, `comparison_qty' is -1. */
244 struct qty_table_elem
246 rtx const_rtx;
247 rtx const_insn;
248 rtx comparison_const;
249 int comparison_qty;
250 unsigned int first_reg, last_reg;
251 /* The sizes of these fields should match the sizes of the
252 code and mode fields of struct rtx_def (see rtl.h). */
253 ENUM_BITFIELD(rtx_code) comparison_code : 16;
254 ENUM_BITFIELD(machine_mode) mode : 8;
257 /* The table of all qtys, indexed by qty number. */
258 static struct qty_table_elem *qty_table;
260 /* Structure used to pass arguments via for_each_rtx to function
261 cse_change_cc_mode. */
262 struct change_cc_mode_args
264 rtx insn;
265 rtx newreg;
268 #ifdef HAVE_cc0
269 /* For machines that have a CC0, we do not record its value in the hash
270 table since its use is guaranteed to be the insn immediately following
271 its definition and any other insn is presumed to invalidate it.
273 Instead, we store below the current and last value assigned to CC0.
274 If it should happen to be a constant, it is stored in preference
275 to the actual assigned value. In case it is a constant, we store
276 the mode in which the constant should be interpreted. */
278 static rtx this_insn_cc0, prev_insn_cc0;
279 static enum machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
280 #endif
282 /* Insn being scanned. */
284 static rtx this_insn;
286 /* Index by register number, gives the number of the next (or
287 previous) register in the chain of registers sharing the same
288 value.
290 Or -1 if this register is at the end of the chain.
292 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
294 /* Per-register equivalence chain. */
295 struct reg_eqv_elem
297 int next, prev;
300 /* The table of all register equivalence chains. */
301 static struct reg_eqv_elem *reg_eqv_table;
303 struct cse_reg_info
305 /* The timestamp at which this register is initialized. */
306 unsigned int timestamp;
308 /* The quantity number of the register's current contents. */
309 int reg_qty;
311 /* The number of times the register has been altered in the current
312 basic block. */
313 int reg_tick;
315 /* The REG_TICK value at which rtx's containing this register are
316 valid in the hash table. If this does not equal the current
317 reg_tick value, such expressions existing in the hash table are
318 invalid. */
319 int reg_in_table;
321 /* The SUBREG that was set when REG_TICK was last incremented. Set
322 to -1 if the last store was to the whole register, not a subreg. */
323 unsigned int subreg_ticked;
326 /* A table of cse_reg_info indexed by register numbers. */
327 static struct cse_reg_info *cse_reg_info_table;
329 /* The size of the above table. */
330 static unsigned int cse_reg_info_table_size;
332 /* The index of the first entry that has not been initialized. */
333 static unsigned int cse_reg_info_table_first_uninitialized;
335 /* The timestamp at the beginning of the current run of
336 cse_extended_basic_block. We increment this variable at the beginning of
337 the current run of cse_extended_basic_block. The timestamp field of a
338 cse_reg_info entry matches the value of this variable if and only
339 if the entry has been initialized during the current run of
340 cse_extended_basic_block. */
341 static unsigned int cse_reg_info_timestamp;
343 /* A HARD_REG_SET containing all the hard registers for which there is
344 currently a REG expression in the hash table. Note the difference
345 from the above variables, which indicate if the REG is mentioned in some
346 expression in the table. */
348 static HARD_REG_SET hard_regs_in_table;
350 /* CUID of insn that starts the basic block currently being cse-processed. */
352 static int cse_basic_block_start;
354 /* CUID of insn that ends the basic block currently being cse-processed. */
356 static int cse_basic_block_end;
358 /* Vector mapping INSN_UIDs to cuids.
359 The cuids are like uids but increase monotonically always.
360 We use them to see whether a reg is used outside a given basic block. */
362 static int *uid_cuid;
364 /* Highest UID in UID_CUID. */
365 static int max_uid;
367 /* Get the cuid of an insn. */
369 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
371 /* Nonzero if cse has altered conditional jump insns
372 in such a way that jump optimization should be redone. */
374 static int cse_jumps_altered;
376 /* Nonzero if we put a LABEL_REF into the hash table for an INSN without a
377 REG_LABEL, we have to rerun jump after CSE to put in the note. */
378 static int recorded_label_ref;
380 /* canon_hash stores 1 in do_not_record
381 if it notices a reference to CC0, PC, or some other volatile
382 subexpression. */
384 static int do_not_record;
386 /* canon_hash stores 1 in hash_arg_in_memory
387 if it notices a reference to memory within the expression being hashed. */
389 static int hash_arg_in_memory;
391 /* The hash table contains buckets which are chains of `struct table_elt's,
392 each recording one expression's information.
393 That expression is in the `exp' field.
395 The canon_exp field contains a canonical (from the point of view of
396 alias analysis) version of the `exp' field.
398 Those elements with the same hash code are chained in both directions
399 through the `next_same_hash' and `prev_same_hash' fields.
401 Each set of expressions with equivalent values
402 are on a two-way chain through the `next_same_value'
403 and `prev_same_value' fields, and all point with
404 the `first_same_value' field at the first element in
405 that chain. The chain is in order of increasing cost.
406 Each element's cost value is in its `cost' field.
408 The `in_memory' field is nonzero for elements that
409 involve any reference to memory. These elements are removed
410 whenever a write is done to an unidentified location in memory.
411 To be safe, we assume that a memory address is unidentified unless
412 the address is either a symbol constant or a constant plus
413 the frame pointer or argument pointer.
415 The `related_value' field is used to connect related expressions
416 (that differ by adding an integer).
417 The related expressions are chained in a circular fashion.
418 `related_value' is zero for expressions for which this
419 chain is not useful.
421 The `cost' field stores the cost of this element's expression.
422 The `regcost' field stores the value returned by approx_reg_cost for
423 this element's expression.
425 The `is_const' flag is set if the element is a constant (including
426 a fixed address).
428 The `flag' field is used as a temporary during some search routines.
430 The `mode' field is usually the same as GET_MODE (`exp'), but
431 if `exp' is a CONST_INT and has no machine mode then the `mode'
432 field is the mode it was being used as. Each constant is
433 recorded separately for each mode it is used with. */
435 struct table_elt
437 rtx exp;
438 rtx canon_exp;
439 struct table_elt *next_same_hash;
440 struct table_elt *prev_same_hash;
441 struct table_elt *next_same_value;
442 struct table_elt *prev_same_value;
443 struct table_elt *first_same_value;
444 struct table_elt *related_value;
445 int cost;
446 int regcost;
447 /* The size of this field should match the size
448 of the mode field of struct rtx_def (see rtl.h). */
449 ENUM_BITFIELD(machine_mode) mode : 8;
450 char in_memory;
451 char is_const;
452 char flag;
455 /* We don't want a lot of buckets, because we rarely have very many
456 things stored in the hash table, and a lot of buckets slows
457 down a lot of loops that happen frequently. */
458 #define HASH_SHIFT 5
459 #define HASH_SIZE (1 << HASH_SHIFT)
460 #define HASH_MASK (HASH_SIZE - 1)
462 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
463 register (hard registers may require `do_not_record' to be set). */
465 #define HASH(X, M) \
466 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
467 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
468 : canon_hash (X, M)) & HASH_MASK)
470 /* Like HASH, but without side-effects. */
471 #define SAFE_HASH(X, M) \
472 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
473 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
474 : safe_hash (X, M)) & HASH_MASK)
476 /* Determine whether register number N is considered a fixed register for the
477 purpose of approximating register costs.
478 It is desirable to replace other regs with fixed regs, to reduce need for
479 non-fixed hard regs.
480 A reg wins if it is either the frame pointer or designated as fixed. */
481 #define FIXED_REGNO_P(N) \
482 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
483 || fixed_regs[N] || global_regs[N])
485 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
486 hard registers and pointers into the frame are the cheapest with a cost
487 of 0. Next come pseudos with a cost of one and other hard registers with
488 a cost of 2. Aside from these special cases, call `rtx_cost'. */
490 #define CHEAP_REGNO(N) \
491 (REGNO_PTR_FRAME_P(N) \
492 || (HARD_REGISTER_NUM_P (N) \
493 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
495 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET))
496 #define COST_IN(X,OUTER) (REG_P (X) ? 0 : notreg_cost (X, OUTER))
498 /* Get the number of times this register has been updated in this
499 basic block. */
501 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
503 /* Get the point at which REG was recorded in the table. */
505 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
507 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
508 SUBREG). */
510 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
512 /* Get the quantity number for REG. */
514 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
516 /* Determine if the quantity number for register X represents a valid index
517 into the qty_table. */
519 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
521 static struct table_elt *table[HASH_SIZE];
523 /* Chain of `struct table_elt's made so far for this function
524 but currently removed from the table. */
526 static struct table_elt *free_element_chain;
528 /* Set to the cost of a constant pool reference if one was found for a
529 symbolic constant. If this was found, it means we should try to
530 convert constants into constant pool entries if they don't fit in
531 the insn. */
533 static int constant_pool_entries_cost;
534 static int constant_pool_entries_regcost;
536 /* This data describes a block that will be processed by
537 cse_extended_basic_block. */
539 struct cse_basic_block_data
541 /* Lowest CUID value of insns in block. */
542 int low_cuid;
543 /* Highest CUID value of insns in block. */
544 int high_cuid;
545 /* Total number of SETs in block. */
546 int nsets;
547 /* Size of current branch path, if any. */
548 int path_size;
549 /* Current path, indicating which basic_blocks will be processed. */
550 struct branch_path
552 /* The basic block for this path entry. */
553 basic_block bb;
554 } *path;
557 /* A simple bitmap to track which basic blocks have been visited
558 already as part of an already processed extended basic block. */
559 static sbitmap cse_visited_basic_blocks;
561 static bool fixed_base_plus_p (rtx x);
562 static int notreg_cost (rtx, enum rtx_code);
563 static int approx_reg_cost_1 (rtx *, void *);
564 static int approx_reg_cost (rtx);
565 static int preferable (int, int, int, int);
566 static void new_basic_block (void);
567 static void make_new_qty (unsigned int, enum machine_mode);
568 static void make_regs_eqv (unsigned int, unsigned int);
569 static void delete_reg_equiv (unsigned int);
570 static int mention_regs (rtx);
571 static int insert_regs (rtx, struct table_elt *, int);
572 static void remove_from_table (struct table_elt *, unsigned);
573 static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
574 static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
575 static rtx lookup_as_function (rtx, enum rtx_code);
576 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
577 enum machine_mode);
578 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
579 static void invalidate (rtx, enum machine_mode);
580 static int cse_rtx_varies_p (rtx, int);
581 static void remove_invalid_refs (unsigned int);
582 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
583 enum machine_mode);
584 static void rehash_using_reg (rtx);
585 static void invalidate_memory (void);
586 static void invalidate_for_call (void);
587 static rtx use_related_value (rtx, struct table_elt *);
589 static inline unsigned canon_hash (rtx, enum machine_mode);
590 static inline unsigned safe_hash (rtx, enum machine_mode);
591 static unsigned hash_rtx_string (const char *);
593 static rtx canon_reg (rtx, rtx);
594 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
595 enum machine_mode *,
596 enum machine_mode *);
597 static rtx fold_rtx (rtx, rtx);
598 static rtx equiv_constant (rtx);
599 static void record_jump_equiv (rtx, bool);
600 static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
601 int);
602 static void cse_insn (rtx, rtx);
603 static void cse_prescan_path (struct cse_basic_block_data *);
604 static void invalidate_from_clobbers (rtx);
605 static rtx cse_process_notes (rtx, rtx);
606 static void cse_extended_basic_block (struct cse_basic_block_data *);
607 static void count_reg_usage (rtx, int *, rtx, int);
608 static int check_for_label_ref (rtx *, void *);
609 extern void dump_class (struct table_elt*);
610 static void get_cse_reg_info_1 (unsigned int regno);
611 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
612 static int check_dependence (rtx *, void *);
614 static void flush_hash_table (void);
615 static bool insn_live_p (rtx, int *);
616 static bool set_live_p (rtx, rtx, int *);
617 static bool dead_libcall_p (rtx, int *);
618 static int cse_change_cc_mode (rtx *, void *);
619 static void cse_change_cc_mode_insn (rtx, rtx);
620 static void cse_change_cc_mode_insns (rtx, rtx, rtx);
621 static enum machine_mode cse_cc_succs (basic_block, rtx, rtx, bool);
624 #undef RTL_HOOKS_GEN_LOWPART
625 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
627 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
629 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
630 virtual regs here because the simplify_*_operation routines are called
631 by integrate.c, which is called before virtual register instantiation. */
633 static bool
634 fixed_base_plus_p (rtx x)
636 switch (GET_CODE (x))
638 case REG:
639 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
640 return true;
641 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
642 return true;
643 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
644 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
645 return true;
646 return false;
648 case PLUS:
649 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
650 return false;
651 return fixed_base_plus_p (XEXP (x, 0));
653 default:
654 return false;
658 /* Dump the expressions in the equivalence class indicated by CLASSP.
659 This function is used only for debugging. */
660 void
661 dump_class (struct table_elt *classp)
663 struct table_elt *elt;
665 fprintf (stderr, "Equivalence chain for ");
666 print_rtl (stderr, classp->exp);
667 fprintf (stderr, ": \n");
669 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
671 print_rtl (stderr, elt->exp);
672 fprintf (stderr, "\n");
676 /* Subroutine of approx_reg_cost; called through for_each_rtx. */
678 static int
679 approx_reg_cost_1 (rtx *xp, void *data)
681 rtx x = *xp;
682 int *cost_p = data;
684 if (x && REG_P (x))
686 unsigned int regno = REGNO (x);
688 if (! CHEAP_REGNO (regno))
690 if (regno < FIRST_PSEUDO_REGISTER)
692 if (SMALL_REGISTER_CLASSES)
693 return 1;
694 *cost_p += 2;
696 else
697 *cost_p += 1;
701 return 0;
704 /* Return an estimate of the cost of the registers used in an rtx.
705 This is mostly the number of different REG expressions in the rtx;
706 however for some exceptions like fixed registers we use a cost of
707 0. If any other hard register reference occurs, return MAX_COST. */
709 static int
710 approx_reg_cost (rtx x)
712 int cost = 0;
714 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
715 return MAX_COST;
717 return cost;
720 /* Return a negative value if an rtx A, whose costs are given by COST_A
721 and REGCOST_A, is more desirable than an rtx B.
722 Return a positive value if A is less desirable, or 0 if the two are
723 equally good. */
724 static int
725 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
727 /* First, get rid of cases involving expressions that are entirely
728 unwanted. */
729 if (cost_a != cost_b)
731 if (cost_a == MAX_COST)
732 return 1;
733 if (cost_b == MAX_COST)
734 return -1;
737 /* Avoid extending lifetimes of hardregs. */
738 if (regcost_a != regcost_b)
740 if (regcost_a == MAX_COST)
741 return 1;
742 if (regcost_b == MAX_COST)
743 return -1;
746 /* Normal operation costs take precedence. */
747 if (cost_a != cost_b)
748 return cost_a - cost_b;
749 /* Only if these are identical consider effects on register pressure. */
750 if (regcost_a != regcost_b)
751 return regcost_a - regcost_b;
752 return 0;
755 /* Internal function, to compute cost when X is not a register; called
756 from COST macro to keep it simple. */
758 static int
759 notreg_cost (rtx x, enum rtx_code outer)
761 return ((GET_CODE (x) == SUBREG
762 && REG_P (SUBREG_REG (x))
763 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
764 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
765 && (GET_MODE_SIZE (GET_MODE (x))
766 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
767 && subreg_lowpart_p (x)
768 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
769 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
771 : rtx_cost (x, outer) * 2);
775 /* Initialize CSE_REG_INFO_TABLE. */
777 static void
778 init_cse_reg_info (unsigned int nregs)
780 /* Do we need to grow the table? */
781 if (nregs > cse_reg_info_table_size)
783 unsigned int new_size;
785 if (cse_reg_info_table_size < 2048)
787 /* Compute a new size that is a power of 2 and no smaller
788 than the large of NREGS and 64. */
789 new_size = (cse_reg_info_table_size
790 ? cse_reg_info_table_size : 64);
792 while (new_size < nregs)
793 new_size *= 2;
795 else
797 /* If we need a big table, allocate just enough to hold
798 NREGS registers. */
799 new_size = nregs;
802 /* Reallocate the table with NEW_SIZE entries. */
803 if (cse_reg_info_table)
804 free (cse_reg_info_table);
805 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
806 cse_reg_info_table_size = new_size;
807 cse_reg_info_table_first_uninitialized = 0;
810 /* Do we have all of the first NREGS entries initialized? */
811 if (cse_reg_info_table_first_uninitialized < nregs)
813 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
814 unsigned int i;
816 /* Put the old timestamp on newly allocated entries so that they
817 will all be considered out of date. We do not touch those
818 entries beyond the first NREGS entries to be nice to the
819 virtual memory. */
820 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
821 cse_reg_info_table[i].timestamp = old_timestamp;
823 cse_reg_info_table_first_uninitialized = nregs;
827 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
829 static void
830 get_cse_reg_info_1 (unsigned int regno)
832 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
833 entry will be considered to have been initialized. */
834 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
836 /* Initialize the rest of the entry. */
837 cse_reg_info_table[regno].reg_tick = 1;
838 cse_reg_info_table[regno].reg_in_table = -1;
839 cse_reg_info_table[regno].subreg_ticked = -1;
840 cse_reg_info_table[regno].reg_qty = -regno - 1;
843 /* Find a cse_reg_info entry for REGNO. */
845 static inline struct cse_reg_info *
846 get_cse_reg_info (unsigned int regno)
848 struct cse_reg_info *p = &cse_reg_info_table[regno];
850 /* If this entry has not been initialized, go ahead and initialize
851 it. */
852 if (p->timestamp != cse_reg_info_timestamp)
853 get_cse_reg_info_1 (regno);
855 return p;
858 /* Clear the hash table and initialize each register with its own quantity,
859 for a new basic block. */
861 static void
862 new_basic_block (void)
864 int i;
866 next_qty = 0;
868 /* Invalidate cse_reg_info_table. */
869 cse_reg_info_timestamp++;
871 /* Clear out hash table state for this pass. */
872 CLEAR_HARD_REG_SET (hard_regs_in_table);
874 /* The per-quantity values used to be initialized here, but it is
875 much faster to initialize each as it is made in `make_new_qty'. */
877 for (i = 0; i < HASH_SIZE; i++)
879 struct table_elt *first;
881 first = table[i];
882 if (first != NULL)
884 struct table_elt *last = first;
886 table[i] = NULL;
888 while (last->next_same_hash != NULL)
889 last = last->next_same_hash;
891 /* Now relink this hash entire chain into
892 the free element list. */
894 last->next_same_hash = free_element_chain;
895 free_element_chain = first;
899 #ifdef HAVE_cc0
900 prev_insn_cc0 = 0;
901 #endif
904 /* Say that register REG contains a quantity in mode MODE not in any
905 register before and initialize that quantity. */
907 static void
908 make_new_qty (unsigned int reg, enum machine_mode mode)
910 int q;
911 struct qty_table_elem *ent;
912 struct reg_eqv_elem *eqv;
914 gcc_assert (next_qty < max_qty);
916 q = REG_QTY (reg) = next_qty++;
917 ent = &qty_table[q];
918 ent->first_reg = reg;
919 ent->last_reg = reg;
920 ent->mode = mode;
921 ent->const_rtx = ent->const_insn = NULL_RTX;
922 ent->comparison_code = UNKNOWN;
924 eqv = &reg_eqv_table[reg];
925 eqv->next = eqv->prev = -1;
928 /* Make reg NEW equivalent to reg OLD.
929 OLD is not changing; NEW is. */
931 static void
932 make_regs_eqv (unsigned int new, unsigned int old)
934 unsigned int lastr, firstr;
935 int q = REG_QTY (old);
936 struct qty_table_elem *ent;
938 ent = &qty_table[q];
940 /* Nothing should become eqv until it has a "non-invalid" qty number. */
941 gcc_assert (REGNO_QTY_VALID_P (old));
943 REG_QTY (new) = q;
944 firstr = ent->first_reg;
945 lastr = ent->last_reg;
947 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
948 hard regs. Among pseudos, if NEW will live longer than any other reg
949 of the same qty, and that is beyond the current basic block,
950 make it the new canonical replacement for this qty. */
951 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
952 /* Certain fixed registers might be of the class NO_REGS. This means
953 that not only can they not be allocated by the compiler, but
954 they cannot be used in substitutions or canonicalizations
955 either. */
956 && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
957 && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
958 || (new >= FIRST_PSEUDO_REGISTER
959 && (firstr < FIRST_PSEUDO_REGISTER
960 || ((uid_cuid[REGNO_LAST_UID (new)] > cse_basic_block_end
961 || (uid_cuid[REGNO_FIRST_UID (new)]
962 < cse_basic_block_start))
963 && (uid_cuid[REGNO_LAST_UID (new)]
964 > uid_cuid[REGNO_LAST_UID (firstr)]))))))
966 reg_eqv_table[firstr].prev = new;
967 reg_eqv_table[new].next = firstr;
968 reg_eqv_table[new].prev = -1;
969 ent->first_reg = new;
971 else
973 /* If NEW is a hard reg (known to be non-fixed), insert at end.
974 Otherwise, insert before any non-fixed hard regs that are at the
975 end. Registers of class NO_REGS cannot be used as an
976 equivalent for anything. */
977 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
978 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
979 && new >= FIRST_PSEUDO_REGISTER)
980 lastr = reg_eqv_table[lastr].prev;
981 reg_eqv_table[new].next = reg_eqv_table[lastr].next;
982 if (reg_eqv_table[lastr].next >= 0)
983 reg_eqv_table[reg_eqv_table[lastr].next].prev = new;
984 else
985 qty_table[q].last_reg = new;
986 reg_eqv_table[lastr].next = new;
987 reg_eqv_table[new].prev = lastr;
991 /* Remove REG from its equivalence class. */
993 static void
994 delete_reg_equiv (unsigned int reg)
996 struct qty_table_elem *ent;
997 int q = REG_QTY (reg);
998 int p, n;
1000 /* If invalid, do nothing. */
1001 if (! REGNO_QTY_VALID_P (reg))
1002 return;
1004 ent = &qty_table[q];
1006 p = reg_eqv_table[reg].prev;
1007 n = reg_eqv_table[reg].next;
1009 if (n != -1)
1010 reg_eqv_table[n].prev = p;
1011 else
1012 ent->last_reg = p;
1013 if (p != -1)
1014 reg_eqv_table[p].next = n;
1015 else
1016 ent->first_reg = n;
1018 REG_QTY (reg) = -reg - 1;
1021 /* Remove any invalid expressions from the hash table
1022 that refer to any of the registers contained in expression X.
1024 Make sure that newly inserted references to those registers
1025 as subexpressions will be considered valid.
1027 mention_regs is not called when a register itself
1028 is being stored in the table.
1030 Return 1 if we have done something that may have changed the hash code
1031 of X. */
1033 static int
1034 mention_regs (rtx x)
1036 enum rtx_code code;
1037 int i, j;
1038 const char *fmt;
1039 int changed = 0;
1041 if (x == 0)
1042 return 0;
1044 code = GET_CODE (x);
1045 if (code == REG)
1047 unsigned int regno = REGNO (x);
1048 unsigned int endregno
1049 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
1050 : hard_regno_nregs[regno][GET_MODE (x)]);
1051 unsigned int i;
1053 for (i = regno; i < endregno; i++)
1055 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1056 remove_invalid_refs (i);
1058 REG_IN_TABLE (i) = REG_TICK (i);
1059 SUBREG_TICKED (i) = -1;
1062 return 0;
1065 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1066 pseudo if they don't use overlapping words. We handle only pseudos
1067 here for simplicity. */
1068 if (code == SUBREG && REG_P (SUBREG_REG (x))
1069 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1071 unsigned int i = REGNO (SUBREG_REG (x));
1073 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1075 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1076 the last store to this register really stored into this
1077 subreg, then remove the memory of this subreg.
1078 Otherwise, remove any memory of the entire register and
1079 all its subregs from the table. */
1080 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1081 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1082 remove_invalid_refs (i);
1083 else
1084 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1087 REG_IN_TABLE (i) = REG_TICK (i);
1088 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1089 return 0;
1092 /* If X is a comparison or a COMPARE and either operand is a register
1093 that does not have a quantity, give it one. This is so that a later
1094 call to record_jump_equiv won't cause X to be assigned a different
1095 hash code and not found in the table after that call.
1097 It is not necessary to do this here, since rehash_using_reg can
1098 fix up the table later, but doing this here eliminates the need to
1099 call that expensive function in the most common case where the only
1100 use of the register is in the comparison. */
1102 if (code == COMPARE || COMPARISON_P (x))
1104 if (REG_P (XEXP (x, 0))
1105 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1106 if (insert_regs (XEXP (x, 0), NULL, 0))
1108 rehash_using_reg (XEXP (x, 0));
1109 changed = 1;
1112 if (REG_P (XEXP (x, 1))
1113 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1114 if (insert_regs (XEXP (x, 1), NULL, 0))
1116 rehash_using_reg (XEXP (x, 1));
1117 changed = 1;
1121 fmt = GET_RTX_FORMAT (code);
1122 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1123 if (fmt[i] == 'e')
1124 changed |= mention_regs (XEXP (x, i));
1125 else if (fmt[i] == 'E')
1126 for (j = 0; j < XVECLEN (x, i); j++)
1127 changed |= mention_regs (XVECEXP (x, i, j));
1129 return changed;
1132 /* Update the register quantities for inserting X into the hash table
1133 with a value equivalent to CLASSP.
1134 (If the class does not contain a REG, it is irrelevant.)
1135 If MODIFIED is nonzero, X is a destination; it is being modified.
1136 Note that delete_reg_equiv should be called on a register
1137 before insert_regs is done on that register with MODIFIED != 0.
1139 Nonzero value means that elements of reg_qty have changed
1140 so X's hash code may be different. */
1142 static int
1143 insert_regs (rtx x, struct table_elt *classp, int modified)
1145 if (REG_P (x))
1147 unsigned int regno = REGNO (x);
1148 int qty_valid;
1150 /* If REGNO is in the equivalence table already but is of the
1151 wrong mode for that equivalence, don't do anything here. */
1153 qty_valid = REGNO_QTY_VALID_P (regno);
1154 if (qty_valid)
1156 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1158 if (ent->mode != GET_MODE (x))
1159 return 0;
1162 if (modified || ! qty_valid)
1164 if (classp)
1165 for (classp = classp->first_same_value;
1166 classp != 0;
1167 classp = classp->next_same_value)
1168 if (REG_P (classp->exp)
1169 && GET_MODE (classp->exp) == GET_MODE (x))
1171 unsigned c_regno = REGNO (classp->exp);
1173 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1175 /* Suppose that 5 is hard reg and 100 and 101 are
1176 pseudos. Consider
1178 (set (reg:si 100) (reg:si 5))
1179 (set (reg:si 5) (reg:si 100))
1180 (set (reg:di 101) (reg:di 5))
1182 We would now set REG_QTY (101) = REG_QTY (5), but the
1183 entry for 5 is in SImode. When we use this later in
1184 copy propagation, we get the register in wrong mode. */
1185 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1186 continue;
1188 make_regs_eqv (regno, c_regno);
1189 return 1;
1192 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1193 than REG_IN_TABLE to find out if there was only a single preceding
1194 invalidation - for the SUBREG - or another one, which would be
1195 for the full register. However, if we find here that REG_TICK
1196 indicates that the register is invalid, it means that it has
1197 been invalidated in a separate operation. The SUBREG might be used
1198 now (then this is a recursive call), or we might use the full REG
1199 now and a SUBREG of it later. So bump up REG_TICK so that
1200 mention_regs will do the right thing. */
1201 if (! modified
1202 && REG_IN_TABLE (regno) >= 0
1203 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1204 REG_TICK (regno)++;
1205 make_new_qty (regno, GET_MODE (x));
1206 return 1;
1209 return 0;
1212 /* If X is a SUBREG, we will likely be inserting the inner register in the
1213 table. If that register doesn't have an assigned quantity number at
1214 this point but does later, the insertion that we will be doing now will
1215 not be accessible because its hash code will have changed. So assign
1216 a quantity number now. */
1218 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1219 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1221 insert_regs (SUBREG_REG (x), NULL, 0);
1222 mention_regs (x);
1223 return 1;
1225 else
1226 return mention_regs (x);
1229 /* Look in or update the hash table. */
1231 /* Remove table element ELT from use in the table.
1232 HASH is its hash code, made using the HASH macro.
1233 It's an argument because often that is known in advance
1234 and we save much time not recomputing it. */
1236 static void
1237 remove_from_table (struct table_elt *elt, unsigned int hash)
1239 if (elt == 0)
1240 return;
1242 /* Mark this element as removed. See cse_insn. */
1243 elt->first_same_value = 0;
1245 /* Remove the table element from its equivalence class. */
1248 struct table_elt *prev = elt->prev_same_value;
1249 struct table_elt *next = elt->next_same_value;
1251 if (next)
1252 next->prev_same_value = prev;
1254 if (prev)
1255 prev->next_same_value = next;
1256 else
1258 struct table_elt *newfirst = next;
1259 while (next)
1261 next->first_same_value = newfirst;
1262 next = next->next_same_value;
1267 /* Remove the table element from its hash bucket. */
1270 struct table_elt *prev = elt->prev_same_hash;
1271 struct table_elt *next = elt->next_same_hash;
1273 if (next)
1274 next->prev_same_hash = prev;
1276 if (prev)
1277 prev->next_same_hash = next;
1278 else if (table[hash] == elt)
1279 table[hash] = next;
1280 else
1282 /* This entry is not in the proper hash bucket. This can happen
1283 when two classes were merged by `merge_equiv_classes'. Search
1284 for the hash bucket that it heads. This happens only very
1285 rarely, so the cost is acceptable. */
1286 for (hash = 0; hash < HASH_SIZE; hash++)
1287 if (table[hash] == elt)
1288 table[hash] = next;
1292 /* Remove the table element from its related-value circular chain. */
1294 if (elt->related_value != 0 && elt->related_value != elt)
1296 struct table_elt *p = elt->related_value;
1298 while (p->related_value != elt)
1299 p = p->related_value;
1300 p->related_value = elt->related_value;
1301 if (p->related_value == p)
1302 p->related_value = 0;
1305 /* Now add it to the free element chain. */
1306 elt->next_same_hash = free_element_chain;
1307 free_element_chain = elt;
1310 /* Look up X in the hash table and return its table element,
1311 or 0 if X is not in the table.
1313 MODE is the machine-mode of X, or if X is an integer constant
1314 with VOIDmode then MODE is the mode with which X will be used.
1316 Here we are satisfied to find an expression whose tree structure
1317 looks like X. */
1319 static struct table_elt *
1320 lookup (rtx x, unsigned int hash, enum machine_mode mode)
1322 struct table_elt *p;
1324 for (p = table[hash]; p; p = p->next_same_hash)
1325 if (mode == p->mode && ((x == p->exp && REG_P (x))
1326 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1327 return p;
1329 return 0;
1332 /* Like `lookup' but don't care whether the table element uses invalid regs.
1333 Also ignore discrepancies in the machine mode of a register. */
1335 static struct table_elt *
1336 lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
1338 struct table_elt *p;
1340 if (REG_P (x))
1342 unsigned int regno = REGNO (x);
1344 /* Don't check the machine mode when comparing registers;
1345 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1346 for (p = table[hash]; p; p = p->next_same_hash)
1347 if (REG_P (p->exp)
1348 && REGNO (p->exp) == regno)
1349 return p;
1351 else
1353 for (p = table[hash]; p; p = p->next_same_hash)
1354 if (mode == p->mode
1355 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1356 return p;
1359 return 0;
1362 /* Look for an expression equivalent to X and with code CODE.
1363 If one is found, return that expression. */
1365 static rtx
1366 lookup_as_function (rtx x, enum rtx_code code)
1368 struct table_elt *p
1369 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1371 /* If we are looking for a CONST_INT, the mode doesn't really matter, as
1372 long as we are narrowing. So if we looked in vain for a mode narrower
1373 than word_mode before, look for word_mode now. */
1374 if (p == 0 && code == CONST_INT
1375 && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
1377 x = copy_rtx (x);
1378 PUT_MODE (x, word_mode);
1379 p = lookup (x, SAFE_HASH (x, VOIDmode), word_mode);
1382 if (p == 0)
1383 return 0;
1385 for (p = p->first_same_value; p; p = p->next_same_value)
1386 if (GET_CODE (p->exp) == code
1387 /* Make sure this is a valid entry in the table. */
1388 && exp_equiv_p (p->exp, p->exp, 1, false))
1389 return p->exp;
1391 return 0;
1394 /* Insert X in the hash table, assuming HASH is its hash code
1395 and CLASSP is an element of the class it should go in
1396 (or 0 if a new class should be made).
1397 It is inserted at the proper position to keep the class in
1398 the order cheapest first.
1400 MODE is the machine-mode of X, or if X is an integer constant
1401 with VOIDmode then MODE is the mode with which X will be used.
1403 For elements of equal cheapness, the most recent one
1404 goes in front, except that the first element in the list
1405 remains first unless a cheaper element is added. The order of
1406 pseudo-registers does not matter, as canon_reg will be called to
1407 find the cheapest when a register is retrieved from the table.
1409 The in_memory field in the hash table element is set to 0.
1410 The caller must set it nonzero if appropriate.
1412 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1413 and if insert_regs returns a nonzero value
1414 you must then recompute its hash code before calling here.
1416 If necessary, update table showing constant values of quantities. */
1418 #define CHEAPER(X, Y) \
1419 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
1421 static struct table_elt *
1422 insert (rtx x, struct table_elt *classp, unsigned int hash, enum machine_mode mode)
1424 struct table_elt *elt;
1426 /* If X is a register and we haven't made a quantity for it,
1427 something is wrong. */
1428 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1430 /* If X is a hard register, show it is being put in the table. */
1431 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1433 unsigned int regno = REGNO (x);
1434 unsigned int endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
1435 unsigned int i;
1437 for (i = regno; i < endregno; i++)
1438 SET_HARD_REG_BIT (hard_regs_in_table, i);
1441 /* Put an element for X into the right hash bucket. */
1443 elt = free_element_chain;
1444 if (elt)
1445 free_element_chain = elt->next_same_hash;
1446 else
1447 elt = XNEW (struct table_elt);
1449 elt->exp = x;
1450 elt->canon_exp = NULL_RTX;
1451 elt->cost = COST (x);
1452 elt->regcost = approx_reg_cost (x);
1453 elt->next_same_value = 0;
1454 elt->prev_same_value = 0;
1455 elt->next_same_hash = table[hash];
1456 elt->prev_same_hash = 0;
1457 elt->related_value = 0;
1458 elt->in_memory = 0;
1459 elt->mode = mode;
1460 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1462 if (table[hash])
1463 table[hash]->prev_same_hash = elt;
1464 table[hash] = elt;
1466 /* Put it into the proper value-class. */
1467 if (classp)
1469 classp = classp->first_same_value;
1470 if (CHEAPER (elt, classp))
1471 /* Insert at the head of the class. */
1473 struct table_elt *p;
1474 elt->next_same_value = classp;
1475 classp->prev_same_value = elt;
1476 elt->first_same_value = elt;
1478 for (p = classp; p; p = p->next_same_value)
1479 p->first_same_value = elt;
1481 else
1483 /* Insert not at head of the class. */
1484 /* Put it after the last element cheaper than X. */
1485 struct table_elt *p, *next;
1487 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1488 p = next);
1490 /* Put it after P and before NEXT. */
1491 elt->next_same_value = next;
1492 if (next)
1493 next->prev_same_value = elt;
1495 elt->prev_same_value = p;
1496 p->next_same_value = elt;
1497 elt->first_same_value = classp;
1500 else
1501 elt->first_same_value = elt;
1503 /* If this is a constant being set equivalent to a register or a register
1504 being set equivalent to a constant, note the constant equivalence.
1506 If this is a constant, it cannot be equivalent to a different constant,
1507 and a constant is the only thing that can be cheaper than a register. So
1508 we know the register is the head of the class (before the constant was
1509 inserted).
1511 If this is a register that is not already known equivalent to a
1512 constant, we must check the entire class.
1514 If this is a register that is already known equivalent to an insn,
1515 update the qtys `const_insn' to show that `this_insn' is the latest
1516 insn making that quantity equivalent to the constant. */
1518 if (elt->is_const && classp && REG_P (classp->exp)
1519 && !REG_P (x))
1521 int exp_q = REG_QTY (REGNO (classp->exp));
1522 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1524 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1525 exp_ent->const_insn = this_insn;
1528 else if (REG_P (x)
1529 && classp
1530 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1531 && ! elt->is_const)
1533 struct table_elt *p;
1535 for (p = classp; p != 0; p = p->next_same_value)
1537 if (p->is_const && !REG_P (p->exp))
1539 int x_q = REG_QTY (REGNO (x));
1540 struct qty_table_elem *x_ent = &qty_table[x_q];
1542 x_ent->const_rtx
1543 = gen_lowpart (GET_MODE (x), p->exp);
1544 x_ent->const_insn = this_insn;
1545 break;
1550 else if (REG_P (x)
1551 && qty_table[REG_QTY (REGNO (x))].const_rtx
1552 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1553 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1555 /* If this is a constant with symbolic value,
1556 and it has a term with an explicit integer value,
1557 link it up with related expressions. */
1558 if (GET_CODE (x) == CONST)
1560 rtx subexp = get_related_value (x);
1561 unsigned subhash;
1562 struct table_elt *subelt, *subelt_prev;
1564 if (subexp != 0)
1566 /* Get the integer-free subexpression in the hash table. */
1567 subhash = SAFE_HASH (subexp, mode);
1568 subelt = lookup (subexp, subhash, mode);
1569 if (subelt == 0)
1570 subelt = insert (subexp, NULL, subhash, mode);
1571 /* Initialize SUBELT's circular chain if it has none. */
1572 if (subelt->related_value == 0)
1573 subelt->related_value = subelt;
1574 /* Find the element in the circular chain that precedes SUBELT. */
1575 subelt_prev = subelt;
1576 while (subelt_prev->related_value != subelt)
1577 subelt_prev = subelt_prev->related_value;
1578 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1579 This way the element that follows SUBELT is the oldest one. */
1580 elt->related_value = subelt_prev->related_value;
1581 subelt_prev->related_value = elt;
1585 return elt;
1588 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1589 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1590 the two classes equivalent.
1592 CLASS1 will be the surviving class; CLASS2 should not be used after this
1593 call.
1595 Any invalid entries in CLASS2 will not be copied. */
1597 static void
1598 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1600 struct table_elt *elt, *next, *new;
1602 /* Ensure we start with the head of the classes. */
1603 class1 = class1->first_same_value;
1604 class2 = class2->first_same_value;
1606 /* If they were already equal, forget it. */
1607 if (class1 == class2)
1608 return;
1610 for (elt = class2; elt; elt = next)
1612 unsigned int hash;
1613 rtx exp = elt->exp;
1614 enum machine_mode mode = elt->mode;
1616 next = elt->next_same_value;
1618 /* Remove old entry, make a new one in CLASS1's class.
1619 Don't do this for invalid entries as we cannot find their
1620 hash code (it also isn't necessary). */
1621 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1623 bool need_rehash = false;
1625 hash_arg_in_memory = 0;
1626 hash = HASH (exp, mode);
1628 if (REG_P (exp))
1630 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1631 delete_reg_equiv (REGNO (exp));
1634 remove_from_table (elt, hash);
1636 if (insert_regs (exp, class1, 0) || need_rehash)
1638 rehash_using_reg (exp);
1639 hash = HASH (exp, mode);
1641 new = insert (exp, class1, hash, mode);
1642 new->in_memory = hash_arg_in_memory;
1647 /* Flush the entire hash table. */
1649 static void
1650 flush_hash_table (void)
1652 int i;
1653 struct table_elt *p;
1655 for (i = 0; i < HASH_SIZE; i++)
1656 for (p = table[i]; p; p = table[i])
1658 /* Note that invalidate can remove elements
1659 after P in the current hash chain. */
1660 if (REG_P (p->exp))
1661 invalidate (p->exp, VOIDmode);
1662 else
1663 remove_from_table (p, i);
1667 /* Function called for each rtx to check whether true dependence exist. */
1668 struct check_dependence_data
1670 enum machine_mode mode;
1671 rtx exp;
1672 rtx addr;
1675 static int
1676 check_dependence (rtx *x, void *data)
1678 struct check_dependence_data *d = (struct check_dependence_data *) data;
1679 if (*x && MEM_P (*x))
1680 return canon_true_dependence (d->exp, d->mode, d->addr, *x,
1681 cse_rtx_varies_p);
1682 else
1683 return 0;
1686 /* Remove from the hash table, or mark as invalid, all expressions whose
1687 values could be altered by storing in X. X is a register, a subreg, or
1688 a memory reference with nonvarying address (because, when a memory
1689 reference with a varying address is stored in, all memory references are
1690 removed by invalidate_memory so specific invalidation is superfluous).
1691 FULL_MODE, if not VOIDmode, indicates that this much should be
1692 invalidated instead of just the amount indicated by the mode of X. This
1693 is only used for bitfield stores into memory.
1695 A nonvarying address may be just a register or just a symbol reference,
1696 or it may be either of those plus a numeric offset. */
1698 static void
1699 invalidate (rtx x, enum machine_mode full_mode)
1701 int i;
1702 struct table_elt *p;
1703 rtx addr;
1705 switch (GET_CODE (x))
1707 case REG:
1709 /* If X is a register, dependencies on its contents are recorded
1710 through the qty number mechanism. Just change the qty number of
1711 the register, mark it as invalid for expressions that refer to it,
1712 and remove it itself. */
1713 unsigned int regno = REGNO (x);
1714 unsigned int hash = HASH (x, GET_MODE (x));
1716 /* Remove REGNO from any quantity list it might be on and indicate
1717 that its value might have changed. If it is a pseudo, remove its
1718 entry from the hash table.
1720 For a hard register, we do the first two actions above for any
1721 additional hard registers corresponding to X. Then, if any of these
1722 registers are in the table, we must remove any REG entries that
1723 overlap these registers. */
1725 delete_reg_equiv (regno);
1726 REG_TICK (regno)++;
1727 SUBREG_TICKED (regno) = -1;
1729 if (regno >= FIRST_PSEUDO_REGISTER)
1731 /* Because a register can be referenced in more than one mode,
1732 we might have to remove more than one table entry. */
1733 struct table_elt *elt;
1735 while ((elt = lookup_for_remove (x, hash, GET_MODE (x))))
1736 remove_from_table (elt, hash);
1738 else
1740 HOST_WIDE_INT in_table
1741 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1742 unsigned int endregno
1743 = regno + hard_regno_nregs[regno][GET_MODE (x)];
1744 unsigned int tregno, tendregno, rn;
1745 struct table_elt *p, *next;
1747 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1749 for (rn = regno + 1; rn < endregno; rn++)
1751 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1752 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1753 delete_reg_equiv (rn);
1754 REG_TICK (rn)++;
1755 SUBREG_TICKED (rn) = -1;
1758 if (in_table)
1759 for (hash = 0; hash < HASH_SIZE; hash++)
1760 for (p = table[hash]; p; p = next)
1762 next = p->next_same_hash;
1764 if (!REG_P (p->exp)
1765 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1766 continue;
1768 tregno = REGNO (p->exp);
1769 tendregno
1770 = tregno + hard_regno_nregs[tregno][GET_MODE (p->exp)];
1771 if (tendregno > regno && tregno < endregno)
1772 remove_from_table (p, hash);
1776 return;
1778 case SUBREG:
1779 invalidate (SUBREG_REG (x), VOIDmode);
1780 return;
1782 case PARALLEL:
1783 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1784 invalidate (XVECEXP (x, 0, i), VOIDmode);
1785 return;
1787 case EXPR_LIST:
1788 /* This is part of a disjoint return value; extract the location in
1789 question ignoring the offset. */
1790 invalidate (XEXP (x, 0), VOIDmode);
1791 return;
1793 case MEM:
1794 addr = canon_rtx (get_addr (XEXP (x, 0)));
1795 /* Calculate the canonical version of X here so that
1796 true_dependence doesn't generate new RTL for X on each call. */
1797 x = canon_rtx (x);
1799 /* Remove all hash table elements that refer to overlapping pieces of
1800 memory. */
1801 if (full_mode == VOIDmode)
1802 full_mode = GET_MODE (x);
1804 for (i = 0; i < HASH_SIZE; i++)
1806 struct table_elt *next;
1808 for (p = table[i]; p; p = next)
1810 next = p->next_same_hash;
1811 if (p->in_memory)
1813 struct check_dependence_data d;
1815 /* Just canonicalize the expression once;
1816 otherwise each time we call invalidate
1817 true_dependence will canonicalize the
1818 expression again. */
1819 if (!p->canon_exp)
1820 p->canon_exp = canon_rtx (p->exp);
1821 d.exp = x;
1822 d.addr = addr;
1823 d.mode = full_mode;
1824 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1825 remove_from_table (p, i);
1829 return;
1831 default:
1832 gcc_unreachable ();
1836 /* Remove all expressions that refer to register REGNO,
1837 since they are already invalid, and we are about to
1838 mark that register valid again and don't want the old
1839 expressions to reappear as valid. */
1841 static void
1842 remove_invalid_refs (unsigned int regno)
1844 unsigned int i;
1845 struct table_elt *p, *next;
1847 for (i = 0; i < HASH_SIZE; i++)
1848 for (p = table[i]; p; p = next)
1850 next = p->next_same_hash;
1851 if (!REG_P (p->exp)
1852 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1853 remove_from_table (p, i);
1857 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1858 and mode MODE. */
1859 static void
1860 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
1861 enum machine_mode mode)
1863 unsigned int i;
1864 struct table_elt *p, *next;
1865 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
1867 for (i = 0; i < HASH_SIZE; i++)
1868 for (p = table[i]; p; p = next)
1870 rtx exp = p->exp;
1871 next = p->next_same_hash;
1873 if (!REG_P (exp)
1874 && (GET_CODE (exp) != SUBREG
1875 || !REG_P (SUBREG_REG (exp))
1876 || REGNO (SUBREG_REG (exp)) != regno
1877 || (((SUBREG_BYTE (exp)
1878 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
1879 && SUBREG_BYTE (exp) <= end))
1880 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1881 remove_from_table (p, i);
1885 /* Recompute the hash codes of any valid entries in the hash table that
1886 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
1888 This is called when we make a jump equivalence. */
1890 static void
1891 rehash_using_reg (rtx x)
1893 unsigned int i;
1894 struct table_elt *p, *next;
1895 unsigned hash;
1897 if (GET_CODE (x) == SUBREG)
1898 x = SUBREG_REG (x);
1900 /* If X is not a register or if the register is known not to be in any
1901 valid entries in the table, we have no work to do. */
1903 if (!REG_P (x)
1904 || REG_IN_TABLE (REGNO (x)) < 0
1905 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
1906 return;
1908 /* Scan all hash chains looking for valid entries that mention X.
1909 If we find one and it is in the wrong hash chain, move it. */
1911 for (i = 0; i < HASH_SIZE; i++)
1912 for (p = table[i]; p; p = next)
1914 next = p->next_same_hash;
1915 if (reg_mentioned_p (x, p->exp)
1916 && exp_equiv_p (p->exp, p->exp, 1, false)
1917 && i != (hash = SAFE_HASH (p->exp, p->mode)))
1919 if (p->next_same_hash)
1920 p->next_same_hash->prev_same_hash = p->prev_same_hash;
1922 if (p->prev_same_hash)
1923 p->prev_same_hash->next_same_hash = p->next_same_hash;
1924 else
1925 table[i] = p->next_same_hash;
1927 p->next_same_hash = table[hash];
1928 p->prev_same_hash = 0;
1929 if (table[hash])
1930 table[hash]->prev_same_hash = p;
1931 table[hash] = p;
1936 /* Remove from the hash table any expression that is a call-clobbered
1937 register. Also update their TICK values. */
1939 static void
1940 invalidate_for_call (void)
1942 unsigned int regno, endregno;
1943 unsigned int i;
1944 unsigned hash;
1945 struct table_elt *p, *next;
1946 int in_table = 0;
1948 /* Go through all the hard registers. For each that is clobbered in
1949 a CALL_INSN, remove the register from quantity chains and update
1950 reg_tick if defined. Also see if any of these registers is currently
1951 in the table. */
1953 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1954 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
1956 delete_reg_equiv (regno);
1957 if (REG_TICK (regno) >= 0)
1959 REG_TICK (regno)++;
1960 SUBREG_TICKED (regno) = -1;
1963 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
1966 /* In the case where we have no call-clobbered hard registers in the
1967 table, we are done. Otherwise, scan the table and remove any
1968 entry that overlaps a call-clobbered register. */
1970 if (in_table)
1971 for (hash = 0; hash < HASH_SIZE; hash++)
1972 for (p = table[hash]; p; p = next)
1974 next = p->next_same_hash;
1976 if (!REG_P (p->exp)
1977 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1978 continue;
1980 regno = REGNO (p->exp);
1981 endregno = regno + hard_regno_nregs[regno][GET_MODE (p->exp)];
1983 for (i = regno; i < endregno; i++)
1984 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1986 remove_from_table (p, hash);
1987 break;
1992 /* Given an expression X of type CONST,
1993 and ELT which is its table entry (or 0 if it
1994 is not in the hash table),
1995 return an alternate expression for X as a register plus integer.
1996 If none can be found, return 0. */
1998 static rtx
1999 use_related_value (rtx x, struct table_elt *elt)
2001 struct table_elt *relt = 0;
2002 struct table_elt *p, *q;
2003 HOST_WIDE_INT offset;
2005 /* First, is there anything related known?
2006 If we have a table element, we can tell from that.
2007 Otherwise, must look it up. */
2009 if (elt != 0 && elt->related_value != 0)
2010 relt = elt;
2011 else if (elt == 0 && GET_CODE (x) == CONST)
2013 rtx subexp = get_related_value (x);
2014 if (subexp != 0)
2015 relt = lookup (subexp,
2016 SAFE_HASH (subexp, GET_MODE (subexp)),
2017 GET_MODE (subexp));
2020 if (relt == 0)
2021 return 0;
2023 /* Search all related table entries for one that has an
2024 equivalent register. */
2026 p = relt;
2027 while (1)
2029 /* This loop is strange in that it is executed in two different cases.
2030 The first is when X is already in the table. Then it is searching
2031 the RELATED_VALUE list of X's class (RELT). The second case is when
2032 X is not in the table. Then RELT points to a class for the related
2033 value.
2035 Ensure that, whatever case we are in, that we ignore classes that have
2036 the same value as X. */
2038 if (rtx_equal_p (x, p->exp))
2039 q = 0;
2040 else
2041 for (q = p->first_same_value; q; q = q->next_same_value)
2042 if (REG_P (q->exp))
2043 break;
2045 if (q)
2046 break;
2048 p = p->related_value;
2050 /* We went all the way around, so there is nothing to be found.
2051 Alternatively, perhaps RELT was in the table for some other reason
2052 and it has no related values recorded. */
2053 if (p == relt || p == 0)
2054 break;
2057 if (q == 0)
2058 return 0;
2060 offset = (get_integer_term (x) - get_integer_term (p->exp));
2061 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2062 return plus_constant (q->exp, offset);
2065 /* Hash a string. Just add its bytes up. */
2066 static inline unsigned
2067 hash_rtx_string (const char *ps)
2069 unsigned hash = 0;
2070 const unsigned char *p = (const unsigned char *) ps;
2072 if (p)
2073 while (*p)
2074 hash += *p++;
2076 return hash;
2079 /* Hash an rtx. We are careful to make sure the value is never negative.
2080 Equivalent registers hash identically.
2081 MODE is used in hashing for CONST_INTs only;
2082 otherwise the mode of X is used.
2084 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2086 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2087 a MEM rtx which does not have the RTX_UNCHANGING_P bit set.
2089 Note that cse_insn knows that the hash code of a MEM expression
2090 is just (int) MEM plus the hash code of the address. */
2092 unsigned
2093 hash_rtx (rtx x, enum machine_mode mode, int *do_not_record_p,
2094 int *hash_arg_in_memory_p, bool have_reg_qty)
2096 int i, j;
2097 unsigned hash = 0;
2098 enum rtx_code code;
2099 const char *fmt;
2101 /* Used to turn recursion into iteration. We can't rely on GCC's
2102 tail-recursion elimination since we need to keep accumulating values
2103 in HASH. */
2104 repeat:
2105 if (x == 0)
2106 return hash;
2108 code = GET_CODE (x);
2109 switch (code)
2111 case REG:
2113 unsigned int regno = REGNO (x);
2115 if (!reload_completed)
2117 /* On some machines, we can't record any non-fixed hard register,
2118 because extending its life will cause reload problems. We
2119 consider ap, fp, sp, gp to be fixed for this purpose.
2121 We also consider CCmode registers to be fixed for this purpose;
2122 failure to do so leads to failure to simplify 0<100 type of
2123 conditionals.
2125 On all machines, we can't record any global registers.
2126 Nor should we record any register that is in a small
2127 class, as defined by CLASS_LIKELY_SPILLED_P. */
2128 bool record;
2130 if (regno >= FIRST_PSEUDO_REGISTER)
2131 record = true;
2132 else if (x == frame_pointer_rtx
2133 || x == hard_frame_pointer_rtx
2134 || x == arg_pointer_rtx
2135 || x == stack_pointer_rtx
2136 || x == pic_offset_table_rtx)
2137 record = true;
2138 else if (global_regs[regno])
2139 record = false;
2140 else if (fixed_regs[regno])
2141 record = true;
2142 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2143 record = true;
2144 else if (SMALL_REGISTER_CLASSES)
2145 record = false;
2146 else if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno)))
2147 record = false;
2148 else
2149 record = true;
2151 if (!record)
2153 *do_not_record_p = 1;
2154 return 0;
2158 hash += ((unsigned int) REG << 7);
2159 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2160 return hash;
2163 /* We handle SUBREG of a REG specially because the underlying
2164 reg changes its hash value with every value change; we don't
2165 want to have to forget unrelated subregs when one subreg changes. */
2166 case SUBREG:
2168 if (REG_P (SUBREG_REG (x)))
2170 hash += (((unsigned int) SUBREG << 7)
2171 + REGNO (SUBREG_REG (x))
2172 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2173 return hash;
2175 break;
2178 case CONST_INT:
2179 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2180 + (unsigned int) INTVAL (x));
2181 return hash;
2183 case CONST_DOUBLE:
2184 /* This is like the general case, except that it only counts
2185 the integers representing the constant. */
2186 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2187 if (GET_MODE (x) != VOIDmode)
2188 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2189 else
2190 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2191 + (unsigned int) CONST_DOUBLE_HIGH (x));
2192 return hash;
2194 case CONST_VECTOR:
2196 int units;
2197 rtx elt;
2199 units = CONST_VECTOR_NUNITS (x);
2201 for (i = 0; i < units; ++i)
2203 elt = CONST_VECTOR_ELT (x, i);
2204 hash += hash_rtx (elt, GET_MODE (elt), do_not_record_p,
2205 hash_arg_in_memory_p, have_reg_qty);
2208 return hash;
2211 /* Assume there is only one rtx object for any given label. */
2212 case LABEL_REF:
2213 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2214 differences and differences between each stage's debugging dumps. */
2215 hash += (((unsigned int) LABEL_REF << 7)
2216 + CODE_LABEL_NUMBER (XEXP (x, 0)));
2217 return hash;
2219 case SYMBOL_REF:
2221 /* Don't hash on the symbol's address to avoid bootstrap differences.
2222 Different hash values may cause expressions to be recorded in
2223 different orders and thus different registers to be used in the
2224 final assembler. This also avoids differences in the dump files
2225 between various stages. */
2226 unsigned int h = 0;
2227 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2229 while (*p)
2230 h += (h << 7) + *p++; /* ??? revisit */
2232 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2233 return hash;
2236 case MEM:
2237 /* We don't record if marked volatile or if BLKmode since we don't
2238 know the size of the move. */
2239 if (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)
2241 *do_not_record_p = 1;
2242 return 0;
2244 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2245 *hash_arg_in_memory_p = 1;
2247 /* Now that we have already found this special case,
2248 might as well speed it up as much as possible. */
2249 hash += (unsigned) MEM;
2250 x = XEXP (x, 0);
2251 goto repeat;
2253 case USE:
2254 /* A USE that mentions non-volatile memory needs special
2255 handling since the MEM may be BLKmode which normally
2256 prevents an entry from being made. Pure calls are
2257 marked by a USE which mentions BLKmode memory.
2258 See calls.c:emit_call_1. */
2259 if (MEM_P (XEXP (x, 0))
2260 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2262 hash += (unsigned) USE;
2263 x = XEXP (x, 0);
2265 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2266 *hash_arg_in_memory_p = 1;
2268 /* Now that we have already found this special case,
2269 might as well speed it up as much as possible. */
2270 hash += (unsigned) MEM;
2271 x = XEXP (x, 0);
2272 goto repeat;
2274 break;
2276 case PRE_DEC:
2277 case PRE_INC:
2278 case POST_DEC:
2279 case POST_INC:
2280 case PRE_MODIFY:
2281 case POST_MODIFY:
2282 case PC:
2283 case CC0:
2284 case CALL:
2285 case UNSPEC_VOLATILE:
2286 *do_not_record_p = 1;
2287 return 0;
2289 case ASM_OPERANDS:
2290 if (MEM_VOLATILE_P (x))
2292 *do_not_record_p = 1;
2293 return 0;
2295 else
2297 /* We don't want to take the filename and line into account. */
2298 hash += (unsigned) code + (unsigned) GET_MODE (x)
2299 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2300 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2301 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2303 if (ASM_OPERANDS_INPUT_LENGTH (x))
2305 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2307 hash += (hash_rtx (ASM_OPERANDS_INPUT (x, i),
2308 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2309 do_not_record_p, hash_arg_in_memory_p,
2310 have_reg_qty)
2311 + hash_rtx_string
2312 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2315 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2316 x = ASM_OPERANDS_INPUT (x, 0);
2317 mode = GET_MODE (x);
2318 goto repeat;
2321 return hash;
2323 break;
2325 default:
2326 break;
2329 i = GET_RTX_LENGTH (code) - 1;
2330 hash += (unsigned) code + (unsigned) GET_MODE (x);
2331 fmt = GET_RTX_FORMAT (code);
2332 for (; i >= 0; i--)
2334 switch (fmt[i])
2336 case 'e':
2337 /* If we are about to do the last recursive call
2338 needed at this level, change it into iteration.
2339 This function is called enough to be worth it. */
2340 if (i == 0)
2342 x = XEXP (x, i);
2343 goto repeat;
2346 hash += hash_rtx (XEXP (x, i), 0, do_not_record_p,
2347 hash_arg_in_memory_p, have_reg_qty);
2348 break;
2350 case 'E':
2351 for (j = 0; j < XVECLEN (x, i); j++)
2352 hash += hash_rtx (XVECEXP (x, i, j), 0, do_not_record_p,
2353 hash_arg_in_memory_p, have_reg_qty);
2354 break;
2356 case 's':
2357 hash += hash_rtx_string (XSTR (x, i));
2358 break;
2360 case 'i':
2361 hash += (unsigned int) XINT (x, i);
2362 break;
2364 case '0': case 't':
2365 /* Unused. */
2366 break;
2368 default:
2369 gcc_unreachable ();
2373 return hash;
2376 /* Hash an rtx X for cse via hash_rtx.
2377 Stores 1 in do_not_record if any subexpression is volatile.
2378 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2379 does not have the RTX_UNCHANGING_P bit set. */
2381 static inline unsigned
2382 canon_hash (rtx x, enum machine_mode mode)
2384 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2387 /* Like canon_hash but with no side effects, i.e. do_not_record
2388 and hash_arg_in_memory are not changed. */
2390 static inline unsigned
2391 safe_hash (rtx x, enum machine_mode mode)
2393 int dummy_do_not_record;
2394 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2397 /* Return 1 iff X and Y would canonicalize into the same thing,
2398 without actually constructing the canonicalization of either one.
2399 If VALIDATE is nonzero,
2400 we assume X is an expression being processed from the rtl
2401 and Y was found in the hash table. We check register refs
2402 in Y for being marked as valid.
2404 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2407 exp_equiv_p (rtx x, rtx y, int validate, bool for_gcse)
2409 int i, j;
2410 enum rtx_code code;
2411 const char *fmt;
2413 /* Note: it is incorrect to assume an expression is equivalent to itself
2414 if VALIDATE is nonzero. */
2415 if (x == y && !validate)
2416 return 1;
2418 if (x == 0 || y == 0)
2419 return x == y;
2421 code = GET_CODE (x);
2422 if (code != GET_CODE (y))
2423 return 0;
2425 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2426 if (GET_MODE (x) != GET_MODE (y))
2427 return 0;
2429 switch (code)
2431 case PC:
2432 case CC0:
2433 case CONST_INT:
2434 case CONST_DOUBLE:
2435 return x == y;
2437 case LABEL_REF:
2438 return XEXP (x, 0) == XEXP (y, 0);
2440 case SYMBOL_REF:
2441 return XSTR (x, 0) == XSTR (y, 0);
2443 case REG:
2444 if (for_gcse)
2445 return REGNO (x) == REGNO (y);
2446 else
2448 unsigned int regno = REGNO (y);
2449 unsigned int i;
2450 unsigned int endregno
2451 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
2452 : hard_regno_nregs[regno][GET_MODE (y)]);
2454 /* If the quantities are not the same, the expressions are not
2455 equivalent. If there are and we are not to validate, they
2456 are equivalent. Otherwise, ensure all regs are up-to-date. */
2458 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2459 return 0;
2461 if (! validate)
2462 return 1;
2464 for (i = regno; i < endregno; i++)
2465 if (REG_IN_TABLE (i) != REG_TICK (i))
2466 return 0;
2468 return 1;
2471 case MEM:
2472 if (for_gcse)
2474 /* A volatile mem should not be considered equivalent to any
2475 other. */
2476 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2477 return 0;
2479 /* Can't merge two expressions in different alias sets, since we
2480 can decide that the expression is transparent in a block when
2481 it isn't, due to it being set with the different alias set.
2483 Also, can't merge two expressions with different MEM_ATTRS.
2484 They could e.g. be two different entities allocated into the
2485 same space on the stack (see e.g. PR25130). In that case, the
2486 MEM addresses can be the same, even though the two MEMs are
2487 absolutely not equivalent.
2489 But because really all MEM attributes should be the same for
2490 equivalent MEMs, we just use the invariant that MEMs that have
2491 the same attributes share the same mem_attrs data structure. */
2492 if (MEM_ATTRS (x) != MEM_ATTRS (y))
2493 return 0;
2495 break;
2497 /* For commutative operations, check both orders. */
2498 case PLUS:
2499 case MULT:
2500 case AND:
2501 case IOR:
2502 case XOR:
2503 case NE:
2504 case EQ:
2505 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2506 validate, for_gcse)
2507 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2508 validate, for_gcse))
2509 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2510 validate, for_gcse)
2511 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2512 validate, for_gcse)));
2514 case ASM_OPERANDS:
2515 /* We don't use the generic code below because we want to
2516 disregard filename and line numbers. */
2518 /* A volatile asm isn't equivalent to any other. */
2519 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2520 return 0;
2522 if (GET_MODE (x) != GET_MODE (y)
2523 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2524 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2525 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2526 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2527 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2528 return 0;
2530 if (ASM_OPERANDS_INPUT_LENGTH (x))
2532 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2533 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2534 ASM_OPERANDS_INPUT (y, i),
2535 validate, for_gcse)
2536 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2537 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2538 return 0;
2541 return 1;
2543 default:
2544 break;
2547 /* Compare the elements. If any pair of corresponding elements
2548 fail to match, return 0 for the whole thing. */
2550 fmt = GET_RTX_FORMAT (code);
2551 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2553 switch (fmt[i])
2555 case 'e':
2556 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2557 validate, for_gcse))
2558 return 0;
2559 break;
2561 case 'E':
2562 if (XVECLEN (x, i) != XVECLEN (y, i))
2563 return 0;
2564 for (j = 0; j < XVECLEN (x, i); j++)
2565 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2566 validate, for_gcse))
2567 return 0;
2568 break;
2570 case 's':
2571 if (strcmp (XSTR (x, i), XSTR (y, i)))
2572 return 0;
2573 break;
2575 case 'i':
2576 if (XINT (x, i) != XINT (y, i))
2577 return 0;
2578 break;
2580 case 'w':
2581 if (XWINT (x, i) != XWINT (y, i))
2582 return 0;
2583 break;
2585 case '0':
2586 case 't':
2587 break;
2589 default:
2590 gcc_unreachable ();
2594 return 1;
2597 /* Return 1 if X has a value that can vary even between two
2598 executions of the program. 0 means X can be compared reliably
2599 against certain constants or near-constants. */
2601 static int
2602 cse_rtx_varies_p (rtx x, int from_alias)
2604 /* We need not check for X and the equivalence class being of the same
2605 mode because if X is equivalent to a constant in some mode, it
2606 doesn't vary in any mode. */
2608 if (REG_P (x)
2609 && REGNO_QTY_VALID_P (REGNO (x)))
2611 int x_q = REG_QTY (REGNO (x));
2612 struct qty_table_elem *x_ent = &qty_table[x_q];
2614 if (GET_MODE (x) == x_ent->mode
2615 && x_ent->const_rtx != NULL_RTX)
2616 return 0;
2619 if (GET_CODE (x) == PLUS
2620 && GET_CODE (XEXP (x, 1)) == CONST_INT
2621 && REG_P (XEXP (x, 0))
2622 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
2624 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2625 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2627 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2628 && x0_ent->const_rtx != NULL_RTX)
2629 return 0;
2632 /* This can happen as the result of virtual register instantiation, if
2633 the initial constant is too large to be a valid address. This gives
2634 us a three instruction sequence, load large offset into a register,
2635 load fp minus a constant into a register, then a MEM which is the
2636 sum of the two `constant' registers. */
2637 if (GET_CODE (x) == PLUS
2638 && REG_P (XEXP (x, 0))
2639 && REG_P (XEXP (x, 1))
2640 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2641 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
2643 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2644 int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
2645 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2646 struct qty_table_elem *x1_ent = &qty_table[x1_q];
2648 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2649 && x0_ent->const_rtx != NULL_RTX
2650 && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
2651 && x1_ent->const_rtx != NULL_RTX)
2652 return 0;
2655 return rtx_varies_p (x, from_alias);
2658 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2659 the result if necessary. INSN is as for canon_reg. */
2661 static void
2662 validate_canon_reg (rtx *xloc, rtx insn)
2664 rtx new = canon_reg (*xloc, insn);
2666 /* If replacing pseudo with hard reg or vice versa, ensure the
2667 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2668 if (insn != 0 && new != 0)
2669 validate_change (insn, xloc, new, 1);
2670 else
2671 *xloc = new;
2674 /* Canonicalize an expression:
2675 replace each register reference inside it
2676 with the "oldest" equivalent register.
2678 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2679 after we make our substitution. The calls are made with IN_GROUP nonzero
2680 so apply_change_group must be called upon the outermost return from this
2681 function (unless INSN is zero). The result of apply_change_group can
2682 generally be discarded since the changes we are making are optional. */
2684 static rtx
2685 canon_reg (rtx x, rtx insn)
2687 int i;
2688 enum rtx_code code;
2689 const char *fmt;
2691 if (x == 0)
2692 return x;
2694 code = GET_CODE (x);
2695 switch (code)
2697 case PC:
2698 case CC0:
2699 case CONST:
2700 case CONST_INT:
2701 case CONST_DOUBLE:
2702 case CONST_VECTOR:
2703 case SYMBOL_REF:
2704 case LABEL_REF:
2705 case ADDR_VEC:
2706 case ADDR_DIFF_VEC:
2707 return x;
2709 case REG:
2711 int first;
2712 int q;
2713 struct qty_table_elem *ent;
2715 /* Never replace a hard reg, because hard regs can appear
2716 in more than one machine mode, and we must preserve the mode
2717 of each occurrence. Also, some hard regs appear in
2718 MEMs that are shared and mustn't be altered. Don't try to
2719 replace any reg that maps to a reg of class NO_REGS. */
2720 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2721 || ! REGNO_QTY_VALID_P (REGNO (x)))
2722 return x;
2724 q = REG_QTY (REGNO (x));
2725 ent = &qty_table[q];
2726 first = ent->first_reg;
2727 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2728 : REGNO_REG_CLASS (first) == NO_REGS ? x
2729 : gen_rtx_REG (ent->mode, first));
2732 default:
2733 break;
2736 fmt = GET_RTX_FORMAT (code);
2737 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2739 int j;
2741 if (fmt[i] == 'e')
2742 validate_canon_reg (&XEXP (x, i), insn);
2743 else if (fmt[i] == 'E')
2744 for (j = 0; j < XVECLEN (x, i); j++)
2745 validate_canon_reg (&XVECEXP (x, i, j), insn);
2748 return x;
2751 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2752 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2753 what values are being compared.
2755 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2756 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2757 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2758 compared to produce cc0.
2760 The return value is the comparison operator and is either the code of
2761 A or the code corresponding to the inverse of the comparison. */
2763 static enum rtx_code
2764 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2765 enum machine_mode *pmode1, enum machine_mode *pmode2)
2767 rtx arg1, arg2;
2769 arg1 = *parg1, arg2 = *parg2;
2771 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2773 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2775 /* Set nonzero when we find something of interest. */
2776 rtx x = 0;
2777 int reverse_code = 0;
2778 struct table_elt *p = 0;
2780 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2781 On machines with CC0, this is the only case that can occur, since
2782 fold_rtx will return the COMPARE or item being compared with zero
2783 when given CC0. */
2785 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2786 x = arg1;
2788 /* If ARG1 is a comparison operator and CODE is testing for
2789 STORE_FLAG_VALUE, get the inner arguments. */
2791 else if (COMPARISON_P (arg1))
2793 #ifdef FLOAT_STORE_FLAG_VALUE
2794 REAL_VALUE_TYPE fsfv;
2795 #endif
2797 if (code == NE
2798 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2799 && code == LT && STORE_FLAG_VALUE == -1)
2800 #ifdef FLOAT_STORE_FLAG_VALUE
2801 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2802 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2803 REAL_VALUE_NEGATIVE (fsfv)))
2804 #endif
2806 x = arg1;
2807 else if (code == EQ
2808 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2809 && code == GE && STORE_FLAG_VALUE == -1)
2810 #ifdef FLOAT_STORE_FLAG_VALUE
2811 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2812 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2813 REAL_VALUE_NEGATIVE (fsfv)))
2814 #endif
2816 x = arg1, reverse_code = 1;
2819 /* ??? We could also check for
2821 (ne (and (eq (...) (const_int 1))) (const_int 0))
2823 and related forms, but let's wait until we see them occurring. */
2825 if (x == 0)
2826 /* Look up ARG1 in the hash table and see if it has an equivalence
2827 that lets us see what is being compared. */
2828 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2829 if (p)
2831 p = p->first_same_value;
2833 /* If what we compare is already known to be constant, that is as
2834 good as it gets.
2835 We need to break the loop in this case, because otherwise we
2836 can have an infinite loop when looking at a reg that is known
2837 to be a constant which is the same as a comparison of a reg
2838 against zero which appears later in the insn stream, which in
2839 turn is constant and the same as the comparison of the first reg
2840 against zero... */
2841 if (p->is_const)
2842 break;
2845 for (; p; p = p->next_same_value)
2847 enum machine_mode inner_mode = GET_MODE (p->exp);
2848 #ifdef FLOAT_STORE_FLAG_VALUE
2849 REAL_VALUE_TYPE fsfv;
2850 #endif
2852 /* If the entry isn't valid, skip it. */
2853 if (! exp_equiv_p (p->exp, p->exp, 1, false))
2854 continue;
2856 if (GET_CODE (p->exp) == COMPARE
2857 /* Another possibility is that this machine has a compare insn
2858 that includes the comparison code. In that case, ARG1 would
2859 be equivalent to a comparison operation that would set ARG1 to
2860 either STORE_FLAG_VALUE or zero. If this is an NE operation,
2861 ORIG_CODE is the actual comparison being done; if it is an EQ,
2862 we must reverse ORIG_CODE. On machine with a negative value
2863 for STORE_FLAG_VALUE, also look at LT and GE operations. */
2864 || ((code == NE
2865 || (code == LT
2866 && GET_MODE_CLASS (inner_mode) == MODE_INT
2867 && (GET_MODE_BITSIZE (inner_mode)
2868 <= HOST_BITS_PER_WIDE_INT)
2869 && (STORE_FLAG_VALUE
2870 & ((HOST_WIDE_INT) 1
2871 << (GET_MODE_BITSIZE (inner_mode) - 1))))
2872 #ifdef FLOAT_STORE_FLAG_VALUE
2873 || (code == LT
2874 && SCALAR_FLOAT_MODE_P (inner_mode)
2875 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2876 REAL_VALUE_NEGATIVE (fsfv)))
2877 #endif
2879 && COMPARISON_P (p->exp)))
2881 x = p->exp;
2882 break;
2884 else if ((code == EQ
2885 || (code == GE
2886 && GET_MODE_CLASS (inner_mode) == MODE_INT
2887 && (GET_MODE_BITSIZE (inner_mode)
2888 <= HOST_BITS_PER_WIDE_INT)
2889 && (STORE_FLAG_VALUE
2890 & ((HOST_WIDE_INT) 1
2891 << (GET_MODE_BITSIZE (inner_mode) - 1))))
2892 #ifdef FLOAT_STORE_FLAG_VALUE
2893 || (code == GE
2894 && SCALAR_FLOAT_MODE_P (inner_mode)
2895 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2896 REAL_VALUE_NEGATIVE (fsfv)))
2897 #endif
2899 && COMPARISON_P (p->exp))
2901 reverse_code = 1;
2902 x = p->exp;
2903 break;
2906 /* If this non-trapping address, e.g. fp + constant, the
2907 equivalent is a better operand since it may let us predict
2908 the value of the comparison. */
2909 else if (!rtx_addr_can_trap_p (p->exp))
2911 arg1 = p->exp;
2912 continue;
2916 /* If we didn't find a useful equivalence for ARG1, we are done.
2917 Otherwise, set up for the next iteration. */
2918 if (x == 0)
2919 break;
2921 /* If we need to reverse the comparison, make sure that that is
2922 possible -- we can't necessarily infer the value of GE from LT
2923 with floating-point operands. */
2924 if (reverse_code)
2926 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
2927 if (reversed == UNKNOWN)
2928 break;
2929 else
2930 code = reversed;
2932 else if (COMPARISON_P (x))
2933 code = GET_CODE (x);
2934 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
2937 /* Return our results. Return the modes from before fold_rtx
2938 because fold_rtx might produce const_int, and then it's too late. */
2939 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
2940 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
2942 return code;
2945 /* If X is a nontrivial arithmetic operation on an argument for which
2946 a constant value can be determined, return the result of operating
2947 on that value, as a constant. Otherwise, return X, possibly with
2948 one or more operands changed to a forward-propagated constant.
2950 If X is a register whose contents are known, we do NOT return
2951 those contents here; equiv_constant is called to perform that task.
2952 For SUBREGs and MEMs, we do that both here and in equiv_constant.
2954 INSN is the insn that we may be modifying. If it is 0, make a copy
2955 of X before modifying it. */
2957 static rtx
2958 fold_rtx (rtx x, rtx insn)
2960 enum rtx_code code;
2961 enum machine_mode mode;
2962 const char *fmt;
2963 int i;
2964 rtx new = 0;
2965 int changed = 0;
2967 /* Operands of X. */
2968 rtx folded_arg0;
2969 rtx folded_arg1;
2971 /* Constant equivalents of first three operands of X;
2972 0 when no such equivalent is known. */
2973 rtx const_arg0;
2974 rtx const_arg1;
2975 rtx const_arg2;
2977 /* The mode of the first operand of X. We need this for sign and zero
2978 extends. */
2979 enum machine_mode mode_arg0;
2981 if (x == 0)
2982 return x;
2984 /* Try to perform some initial simplifications on X. */
2985 code = GET_CODE (x);
2986 switch (code)
2988 case MEM:
2989 case SUBREG:
2990 if ((new = equiv_constant (x)) != NULL_RTX)
2991 return new;
2992 return x;
2994 case CONST:
2995 case CONST_INT:
2996 case CONST_DOUBLE:
2997 case CONST_VECTOR:
2998 case SYMBOL_REF:
2999 case LABEL_REF:
3000 case REG:
3001 case PC:
3002 /* No use simplifying an EXPR_LIST
3003 since they are used only for lists of args
3004 in a function call's REG_EQUAL note. */
3005 case EXPR_LIST:
3006 return x;
3008 #ifdef HAVE_cc0
3009 case CC0:
3010 return prev_insn_cc0;
3011 #endif
3013 case ASM_OPERANDS:
3014 if (insn)
3016 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3017 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3018 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3020 return x;
3022 #ifdef NO_FUNCTION_CSE
3023 case CALL:
3024 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3025 return x;
3026 break;
3027 #endif
3029 /* Anything else goes through the loop below. */
3030 default:
3031 break;
3034 mode = GET_MODE (x);
3035 const_arg0 = 0;
3036 const_arg1 = 0;
3037 const_arg2 = 0;
3038 mode_arg0 = VOIDmode;
3040 /* Try folding our operands.
3041 Then see which ones have constant values known. */
3043 fmt = GET_RTX_FORMAT (code);
3044 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3045 if (fmt[i] == 'e')
3047 rtx folded_arg = XEXP (x, i), const_arg;
3048 enum machine_mode mode_arg = GET_MODE (folded_arg);
3050 switch (GET_CODE (folded_arg))
3052 case MEM:
3053 case REG:
3054 case SUBREG:
3055 const_arg = equiv_constant (folded_arg);
3056 break;
3058 case CONST:
3059 case CONST_INT:
3060 case SYMBOL_REF:
3061 case LABEL_REF:
3062 case CONST_DOUBLE:
3063 case CONST_VECTOR:
3064 const_arg = folded_arg;
3065 break;
3067 #ifdef HAVE_cc0
3068 case CC0:
3069 folded_arg = prev_insn_cc0;
3070 mode_arg = prev_insn_cc0_mode;
3071 const_arg = equiv_constant (folded_arg);
3072 break;
3073 #endif
3075 default:
3076 folded_arg = fold_rtx (folded_arg, insn);
3077 const_arg = equiv_constant (folded_arg);
3078 break;
3081 /* For the first three operands, see if the operand
3082 is constant or equivalent to a constant. */
3083 switch (i)
3085 case 0:
3086 folded_arg0 = folded_arg;
3087 const_arg0 = const_arg;
3088 mode_arg0 = mode_arg;
3089 break;
3090 case 1:
3091 folded_arg1 = folded_arg;
3092 const_arg1 = const_arg;
3093 break;
3094 case 2:
3095 const_arg2 = const_arg;
3096 break;
3099 /* Pick the least expensive of the argument and an equivalent constant
3100 argument. */
3101 if (const_arg != 0
3102 && const_arg != folded_arg
3103 && COST_IN (const_arg, code) <= COST_IN (folded_arg, code)
3105 /* It's not safe to substitute the operand of a conversion
3106 operator with a constant, as the conversion's identity
3107 depends upon the mode of its operand. This optimization
3108 is handled by the call to simplify_unary_operation. */
3109 && (GET_RTX_CLASS (code) != RTX_UNARY
3110 || GET_MODE (const_arg) == mode_arg0
3111 || (code != ZERO_EXTEND
3112 && code != SIGN_EXTEND
3113 && code != TRUNCATE
3114 && code != FLOAT_TRUNCATE
3115 && code != FLOAT_EXTEND
3116 && code != FLOAT
3117 && code != FIX
3118 && code != UNSIGNED_FLOAT
3119 && code != UNSIGNED_FIX)))
3120 folded_arg = const_arg;
3122 if (folded_arg == XEXP (x, i))
3123 continue;
3125 if (insn == NULL_RTX && !changed)
3126 x = copy_rtx (x);
3127 changed = 1;
3128 validate_change (insn, &XEXP (x, i), folded_arg, 1);
3131 if (changed)
3133 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3134 consistent with the order in X. */
3135 if (canonicalize_change_group (insn, x))
3137 rtx tem;
3138 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3139 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3142 apply_change_group ();
3145 /* If X is an arithmetic operation, see if we can simplify it. */
3147 switch (GET_RTX_CLASS (code))
3149 case RTX_UNARY:
3151 int is_const = 0;
3153 /* We can't simplify extension ops unless we know the
3154 original mode. */
3155 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3156 && mode_arg0 == VOIDmode)
3157 break;
3159 /* If we had a CONST, strip it off and put it back later if we
3160 fold. */
3161 if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
3162 is_const = 1, const_arg0 = XEXP (const_arg0, 0);
3164 new = simplify_unary_operation (code, mode,
3165 const_arg0 ? const_arg0 : folded_arg0,
3166 mode_arg0);
3167 /* NEG of PLUS could be converted into MINUS, but that causes
3168 expressions of the form
3169 (CONST (MINUS (CONST_INT) (SYMBOL_REF)))
3170 which many ports mistakenly treat as LEGITIMATE_CONSTANT_P.
3171 FIXME: those ports should be fixed. */
3172 if (new != 0 && is_const
3173 && GET_CODE (new) == PLUS
3174 && (GET_CODE (XEXP (new, 0)) == SYMBOL_REF
3175 || GET_CODE (XEXP (new, 0)) == LABEL_REF)
3176 && GET_CODE (XEXP (new, 1)) == CONST_INT)
3177 new = gen_rtx_CONST (mode, new);
3179 break;
3181 case RTX_COMPARE:
3182 case RTX_COMM_COMPARE:
3183 /* See what items are actually being compared and set FOLDED_ARG[01]
3184 to those values and CODE to the actual comparison code. If any are
3185 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3186 do anything if both operands are already known to be constant. */
3188 /* ??? Vector mode comparisons are not supported yet. */
3189 if (VECTOR_MODE_P (mode))
3190 break;
3192 if (const_arg0 == 0 || const_arg1 == 0)
3194 struct table_elt *p0, *p1;
3195 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
3196 enum machine_mode mode_arg1;
3198 #ifdef FLOAT_STORE_FLAG_VALUE
3199 if (SCALAR_FLOAT_MODE_P (mode))
3201 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3202 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3203 false_rtx = CONST0_RTX (mode);
3205 #endif
3207 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3208 &mode_arg0, &mode_arg1);
3210 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3211 what kinds of things are being compared, so we can't do
3212 anything with this comparison. */
3214 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3215 break;
3217 const_arg0 = equiv_constant (folded_arg0);
3218 const_arg1 = equiv_constant (folded_arg1);
3220 /* If we do not now have two constants being compared, see
3221 if we can nevertheless deduce some things about the
3222 comparison. */
3223 if (const_arg0 == 0 || const_arg1 == 0)
3225 if (const_arg1 != NULL)
3227 rtx cheapest_simplification;
3228 int cheapest_cost;
3229 rtx simp_result;
3230 struct table_elt *p;
3232 /* See if we can find an equivalent of folded_arg0
3233 that gets us a cheaper expression, possibly a
3234 constant through simplifications. */
3235 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3236 mode_arg0);
3238 if (p != NULL)
3240 cheapest_simplification = x;
3241 cheapest_cost = COST (x);
3243 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3245 int cost;
3247 /* If the entry isn't valid, skip it. */
3248 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3249 continue;
3251 /* Try to simplify using this equivalence. */
3252 simp_result
3253 = simplify_relational_operation (code, mode,
3254 mode_arg0,
3255 p->exp,
3256 const_arg1);
3258 if (simp_result == NULL)
3259 continue;
3261 cost = COST (simp_result);
3262 if (cost < cheapest_cost)
3264 cheapest_cost = cost;
3265 cheapest_simplification = simp_result;
3269 /* If we have a cheaper expression now, use that
3270 and try folding it further, from the top. */
3271 if (cheapest_simplification != x)
3272 return fold_rtx (cheapest_simplification, insn);
3276 /* Some addresses are known to be nonzero. We don't know
3277 their sign, but equality comparisons are known. */
3278 if (const_arg1 == const0_rtx
3279 && nonzero_address_p (folded_arg0))
3281 if (code == EQ)
3282 return false_rtx;
3283 else if (code == NE)
3284 return true_rtx;
3287 /* See if the two operands are the same. */
3289 if (folded_arg0 == folded_arg1
3290 || (REG_P (folded_arg0)
3291 && REG_P (folded_arg1)
3292 && (REG_QTY (REGNO (folded_arg0))
3293 == REG_QTY (REGNO (folded_arg1))))
3294 || ((p0 = lookup (folded_arg0,
3295 SAFE_HASH (folded_arg0, mode_arg0),
3296 mode_arg0))
3297 && (p1 = lookup (folded_arg1,
3298 SAFE_HASH (folded_arg1, mode_arg0),
3299 mode_arg0))
3300 && p0->first_same_value == p1->first_same_value))
3302 /* Sadly two equal NaNs are not equivalent. */
3303 if (!HONOR_NANS (mode_arg0))
3304 return ((code == EQ || code == LE || code == GE
3305 || code == LEU || code == GEU || code == UNEQ
3306 || code == UNLE || code == UNGE
3307 || code == ORDERED)
3308 ? true_rtx : false_rtx);
3309 /* Take care for the FP compares we can resolve. */
3310 if (code == UNEQ || code == UNLE || code == UNGE)
3311 return true_rtx;
3312 if (code == LTGT || code == LT || code == GT)
3313 return false_rtx;
3316 /* If FOLDED_ARG0 is a register, see if the comparison we are
3317 doing now is either the same as we did before or the reverse
3318 (we only check the reverse if not floating-point). */
3319 else if (REG_P (folded_arg0))
3321 int qty = REG_QTY (REGNO (folded_arg0));
3323 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3325 struct qty_table_elem *ent = &qty_table[qty];
3327 if ((comparison_dominates_p (ent->comparison_code, code)
3328 || (! FLOAT_MODE_P (mode_arg0)
3329 && comparison_dominates_p (ent->comparison_code,
3330 reverse_condition (code))))
3331 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3332 || (const_arg1
3333 && rtx_equal_p (ent->comparison_const,
3334 const_arg1))
3335 || (REG_P (folded_arg1)
3336 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3337 return (comparison_dominates_p (ent->comparison_code, code)
3338 ? true_rtx : false_rtx);
3344 /* If we are comparing against zero, see if the first operand is
3345 equivalent to an IOR with a constant. If so, we may be able to
3346 determine the result of this comparison. */
3348 if (const_arg1 == const0_rtx)
3350 rtx y = lookup_as_function (folded_arg0, IOR);
3351 rtx inner_const;
3353 if (y != 0
3354 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3355 && GET_CODE (inner_const) == CONST_INT
3356 && INTVAL (inner_const) != 0)
3358 int sign_bitnum = GET_MODE_BITSIZE (mode_arg0) - 1;
3359 int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
3360 && (INTVAL (inner_const)
3361 & ((HOST_WIDE_INT) 1 << sign_bitnum)));
3362 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
3364 #ifdef FLOAT_STORE_FLAG_VALUE
3365 if (SCALAR_FLOAT_MODE_P (mode))
3367 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3368 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3369 false_rtx = CONST0_RTX (mode);
3371 #endif
3373 switch (code)
3375 case EQ:
3376 return false_rtx;
3377 case NE:
3378 return true_rtx;
3379 case LT: case LE:
3380 if (has_sign)
3381 return true_rtx;
3382 break;
3383 case GT: case GE:
3384 if (has_sign)
3385 return false_rtx;
3386 break;
3387 default:
3388 break;
3394 rtx op0 = const_arg0 ? const_arg0 : folded_arg0;
3395 rtx op1 = const_arg1 ? const_arg1 : folded_arg1;
3396 new = simplify_relational_operation (code, mode, mode_arg0, op0, op1);
3398 break;
3400 case RTX_BIN_ARITH:
3401 case RTX_COMM_ARITH:
3402 switch (code)
3404 case PLUS:
3405 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3406 with that LABEL_REF as its second operand. If so, the result is
3407 the first operand of that MINUS. This handles switches with an
3408 ADDR_DIFF_VEC table. */
3409 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3411 rtx y
3412 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3413 : lookup_as_function (folded_arg0, MINUS);
3415 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3416 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
3417 return XEXP (y, 0);
3419 /* Now try for a CONST of a MINUS like the above. */
3420 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3421 : lookup_as_function (folded_arg0, CONST))) != 0
3422 && GET_CODE (XEXP (y, 0)) == MINUS
3423 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3424 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
3425 return XEXP (XEXP (y, 0), 0);
3428 /* Likewise if the operands are in the other order. */
3429 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3431 rtx y
3432 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3433 : lookup_as_function (folded_arg1, MINUS);
3435 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3436 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
3437 return XEXP (y, 0);
3439 /* Now try for a CONST of a MINUS like the above. */
3440 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3441 : lookup_as_function (folded_arg1, CONST))) != 0
3442 && GET_CODE (XEXP (y, 0)) == MINUS
3443 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3444 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
3445 return XEXP (XEXP (y, 0), 0);
3448 /* If second operand is a register equivalent to a negative
3449 CONST_INT, see if we can find a register equivalent to the
3450 positive constant. Make a MINUS if so. Don't do this for
3451 a non-negative constant since we might then alternate between
3452 choosing positive and negative constants. Having the positive
3453 constant previously-used is the more common case. Be sure
3454 the resulting constant is non-negative; if const_arg1 were
3455 the smallest negative number this would overflow: depending
3456 on the mode, this would either just be the same value (and
3457 hence not save anything) or be incorrect. */
3458 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
3459 && INTVAL (const_arg1) < 0
3460 /* This used to test
3462 -INTVAL (const_arg1) >= 0
3464 But The Sun V5.0 compilers mis-compiled that test. So
3465 instead we test for the problematic value in a more direct
3466 manner and hope the Sun compilers get it correct. */
3467 && INTVAL (const_arg1) !=
3468 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
3469 && REG_P (folded_arg1))
3471 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3472 struct table_elt *p
3473 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3475 if (p)
3476 for (p = p->first_same_value; p; p = p->next_same_value)
3477 if (REG_P (p->exp))
3478 return simplify_gen_binary (MINUS, mode, folded_arg0,
3479 canon_reg (p->exp, NULL_RTX));
3481 goto from_plus;
3483 case MINUS:
3484 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3485 If so, produce (PLUS Z C2-C). */
3486 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
3488 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3489 if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
3490 return fold_rtx (plus_constant (copy_rtx (y),
3491 -INTVAL (const_arg1)),
3492 NULL_RTX);
3495 /* Fall through. */
3497 from_plus:
3498 case SMIN: case SMAX: case UMIN: case UMAX:
3499 case IOR: case AND: case XOR:
3500 case MULT:
3501 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3502 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3503 is known to be of similar form, we may be able to replace the
3504 operation with a combined operation. This may eliminate the
3505 intermediate operation if every use is simplified in this way.
3506 Note that the similar optimization done by combine.c only works
3507 if the intermediate operation's result has only one reference. */
3509 if (REG_P (folded_arg0)
3510 && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
3512 int is_shift
3513 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3514 rtx y, inner_const, new_const;
3515 enum rtx_code associate_code;
3517 if (is_shift
3518 && (INTVAL (const_arg1) >= GET_MODE_BITSIZE (mode)
3519 || INTVAL (const_arg1) < 0))
3521 if (SHIFT_COUNT_TRUNCATED)
3522 const_arg1 = GEN_INT (INTVAL (const_arg1)
3523 & (GET_MODE_BITSIZE (mode) - 1));
3524 else
3525 break;
3528 y = lookup_as_function (folded_arg0, code);
3529 if (y == 0)
3530 break;
3532 /* If we have compiled a statement like
3533 "if (x == (x & mask1))", and now are looking at
3534 "x & mask2", we will have a case where the first operand
3535 of Y is the same as our first operand. Unless we detect
3536 this case, an infinite loop will result. */
3537 if (XEXP (y, 0) == folded_arg0)
3538 break;
3540 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3541 if (!inner_const || GET_CODE (inner_const) != CONST_INT)
3542 break;
3544 /* Don't associate these operations if they are a PLUS with the
3545 same constant and it is a power of two. These might be doable
3546 with a pre- or post-increment. Similarly for two subtracts of
3547 identical powers of two with post decrement. */
3549 if (code == PLUS && const_arg1 == inner_const
3550 && ((HAVE_PRE_INCREMENT
3551 && exact_log2 (INTVAL (const_arg1)) >= 0)
3552 || (HAVE_POST_INCREMENT
3553 && exact_log2 (INTVAL (const_arg1)) >= 0)
3554 || (HAVE_PRE_DECREMENT
3555 && exact_log2 (- INTVAL (const_arg1)) >= 0)
3556 || (HAVE_POST_DECREMENT
3557 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
3558 break;
3560 if (is_shift
3561 && (INTVAL (inner_const) >= GET_MODE_BITSIZE (mode)
3562 || INTVAL (inner_const) < 0))
3564 if (SHIFT_COUNT_TRUNCATED)
3565 inner_const = GEN_INT (INTVAL (inner_const)
3566 & (GET_MODE_BITSIZE (mode) - 1));
3567 else
3568 break;
3571 /* Compute the code used to compose the constants. For example,
3572 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3574 associate_code = (is_shift || code == MINUS ? PLUS : code);
3576 new_const = simplify_binary_operation (associate_code, mode,
3577 const_arg1, inner_const);
3579 if (new_const == 0)
3580 break;
3582 /* If we are associating shift operations, don't let this
3583 produce a shift of the size of the object or larger.
3584 This could occur when we follow a sign-extend by a right
3585 shift on a machine that does a sign-extend as a pair
3586 of shifts. */
3588 if (is_shift
3589 && GET_CODE (new_const) == CONST_INT
3590 && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
3592 /* As an exception, we can turn an ASHIFTRT of this
3593 form into a shift of the number of bits - 1. */
3594 if (code == ASHIFTRT)
3595 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3596 else if (!side_effects_p (XEXP (y, 0)))
3597 return CONST0_RTX (mode);
3598 else
3599 break;
3602 y = copy_rtx (XEXP (y, 0));
3604 /* If Y contains our first operand (the most common way this
3605 can happen is if Y is a MEM), we would do into an infinite
3606 loop if we tried to fold it. So don't in that case. */
3608 if (! reg_mentioned_p (folded_arg0, y))
3609 y = fold_rtx (y, insn);
3611 return simplify_gen_binary (code, mode, y, new_const);
3613 break;
3615 case DIV: case UDIV:
3616 /* ??? The associative optimization performed immediately above is
3617 also possible for DIV and UDIV using associate_code of MULT.
3618 However, we would need extra code to verify that the
3619 multiplication does not overflow, that is, there is no overflow
3620 in the calculation of new_const. */
3621 break;
3623 default:
3624 break;
3627 new = simplify_binary_operation (code, mode,
3628 const_arg0 ? const_arg0 : folded_arg0,
3629 const_arg1 ? const_arg1 : folded_arg1);
3630 break;
3632 case RTX_OBJ:
3633 /* (lo_sum (high X) X) is simply X. */
3634 if (code == LO_SUM && const_arg0 != 0
3635 && GET_CODE (const_arg0) == HIGH
3636 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3637 return const_arg1;
3638 break;
3640 case RTX_TERNARY:
3641 case RTX_BITFIELD_OPS:
3642 new = simplify_ternary_operation (code, mode, mode_arg0,
3643 const_arg0 ? const_arg0 : folded_arg0,
3644 const_arg1 ? const_arg1 : folded_arg1,
3645 const_arg2 ? const_arg2 : XEXP (x, 2));
3646 break;
3648 default:
3649 break;
3652 return new ? new : x;
3655 /* Return a constant value currently equivalent to X.
3656 Return 0 if we don't know one. */
3658 static rtx
3659 equiv_constant (rtx x)
3661 if (REG_P (x)
3662 && REGNO_QTY_VALID_P (REGNO (x)))
3664 int x_q = REG_QTY (REGNO (x));
3665 struct qty_table_elem *x_ent = &qty_table[x_q];
3667 if (x_ent->const_rtx)
3668 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3671 if (x == 0 || CONSTANT_P (x))
3672 return x;
3674 if (GET_CODE (x) == SUBREG)
3676 rtx new;
3678 /* See if we previously assigned a constant value to this SUBREG. */
3679 if ((new = lookup_as_function (x, CONST_INT)) != 0
3680 || (new = lookup_as_function (x, CONST_DOUBLE)) != 0)
3681 return new;
3683 if (REG_P (SUBREG_REG (x))
3684 && (new = equiv_constant (SUBREG_REG (x))) != 0)
3685 return simplify_subreg (GET_MODE (x), SUBREG_REG (x),
3686 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
3688 return 0;
3691 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3692 the hash table in case its value was seen before. */
3694 if (MEM_P (x))
3696 struct table_elt *elt;
3698 x = avoid_constant_pool_reference (x);
3699 if (CONSTANT_P (x))
3700 return x;
3702 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3703 if (elt == 0)
3704 return 0;
3706 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3707 if (elt->is_const && CONSTANT_P (elt->exp))
3708 return elt->exp;
3711 return 0;
3714 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3715 "taken" branch.
3717 In certain cases, this can cause us to add an equivalence. For example,
3718 if we are following the taken case of
3719 if (i == 2)
3720 we can add the fact that `i' and '2' are now equivalent.
3722 In any case, we can record that this comparison was passed. If the same
3723 comparison is seen later, we will know its value. */
3725 static void
3726 record_jump_equiv (rtx insn, bool taken)
3728 int cond_known_true;
3729 rtx op0, op1;
3730 rtx set;
3731 enum machine_mode mode, mode0, mode1;
3732 int reversed_nonequality = 0;
3733 enum rtx_code code;
3735 /* Ensure this is the right kind of insn. */
3736 gcc_assert (any_condjump_p (insn));
3738 set = pc_set (insn);
3740 /* See if this jump condition is known true or false. */
3741 if (taken)
3742 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3743 else
3744 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3746 /* Get the type of comparison being done and the operands being compared.
3747 If we had to reverse a non-equality condition, record that fact so we
3748 know that it isn't valid for floating-point. */
3749 code = GET_CODE (XEXP (SET_SRC (set), 0));
3750 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3751 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3753 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3754 if (! cond_known_true)
3756 code = reversed_comparison_code_parts (code, op0, op1, insn);
3758 /* Don't remember if we can't find the inverse. */
3759 if (code == UNKNOWN)
3760 return;
3763 /* The mode is the mode of the non-constant. */
3764 mode = mode0;
3765 if (mode1 != VOIDmode)
3766 mode = mode1;
3768 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3771 /* Yet another form of subreg creation. In this case, we want something in
3772 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3774 static rtx
3775 record_jump_cond_subreg (enum machine_mode mode, rtx op)
3777 enum machine_mode op_mode = GET_MODE (op);
3778 if (op_mode == mode || op_mode == VOIDmode)
3779 return op;
3780 return lowpart_subreg (mode, op, op_mode);
3783 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3784 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3785 Make any useful entries we can with that information. Called from
3786 above function and called recursively. */
3788 static void
3789 record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
3790 rtx op1, int reversed_nonequality)
3792 unsigned op0_hash, op1_hash;
3793 int op0_in_memory, op1_in_memory;
3794 struct table_elt *op0_elt, *op1_elt;
3796 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3797 we know that they are also equal in the smaller mode (this is also
3798 true for all smaller modes whether or not there is a SUBREG, but
3799 is not worth testing for with no SUBREG). */
3801 /* Note that GET_MODE (op0) may not equal MODE. */
3802 if (code == EQ && GET_CODE (op0) == SUBREG
3803 && (GET_MODE_SIZE (GET_MODE (op0))
3804 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3806 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3807 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3808 if (tem)
3809 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3810 reversed_nonequality);
3813 if (code == EQ && GET_CODE (op1) == SUBREG
3814 && (GET_MODE_SIZE (GET_MODE (op1))
3815 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3817 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3818 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3819 if (tem)
3820 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3821 reversed_nonequality);
3824 /* Similarly, if this is an NE comparison, and either is a SUBREG
3825 making a smaller mode, we know the whole thing is also NE. */
3827 /* Note that GET_MODE (op0) may not equal MODE;
3828 if we test MODE instead, we can get an infinite recursion
3829 alternating between two modes each wider than MODE. */
3831 if (code == NE && GET_CODE (op0) == SUBREG
3832 && subreg_lowpart_p (op0)
3833 && (GET_MODE_SIZE (GET_MODE (op0))
3834 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3836 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3837 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3838 if (tem)
3839 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3840 reversed_nonequality);
3843 if (code == NE && GET_CODE (op1) == SUBREG
3844 && subreg_lowpart_p (op1)
3845 && (GET_MODE_SIZE (GET_MODE (op1))
3846 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3848 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3849 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3850 if (tem)
3851 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3852 reversed_nonequality);
3855 /* Hash both operands. */
3857 do_not_record = 0;
3858 hash_arg_in_memory = 0;
3859 op0_hash = HASH (op0, mode);
3860 op0_in_memory = hash_arg_in_memory;
3862 if (do_not_record)
3863 return;
3865 do_not_record = 0;
3866 hash_arg_in_memory = 0;
3867 op1_hash = HASH (op1, mode);
3868 op1_in_memory = hash_arg_in_memory;
3870 if (do_not_record)
3871 return;
3873 /* Look up both operands. */
3874 op0_elt = lookup (op0, op0_hash, mode);
3875 op1_elt = lookup (op1, op1_hash, mode);
3877 /* If both operands are already equivalent or if they are not in the
3878 table but are identical, do nothing. */
3879 if ((op0_elt != 0 && op1_elt != 0
3880 && op0_elt->first_same_value == op1_elt->first_same_value)
3881 || op0 == op1 || rtx_equal_p (op0, op1))
3882 return;
3884 /* If we aren't setting two things equal all we can do is save this
3885 comparison. Similarly if this is floating-point. In the latter
3886 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
3887 If we record the equality, we might inadvertently delete code
3888 whose intent was to change -0 to +0. */
3890 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
3892 struct qty_table_elem *ent;
3893 int qty;
3895 /* If we reversed a floating-point comparison, if OP0 is not a
3896 register, or if OP1 is neither a register or constant, we can't
3897 do anything. */
3899 if (!REG_P (op1))
3900 op1 = equiv_constant (op1);
3902 if ((reversed_nonequality && FLOAT_MODE_P (mode))
3903 || !REG_P (op0) || op1 == 0)
3904 return;
3906 /* Put OP0 in the hash table if it isn't already. This gives it a
3907 new quantity number. */
3908 if (op0_elt == 0)
3910 if (insert_regs (op0, NULL, 0))
3912 rehash_using_reg (op0);
3913 op0_hash = HASH (op0, mode);
3915 /* If OP0 is contained in OP1, this changes its hash code
3916 as well. Faster to rehash than to check, except
3917 for the simple case of a constant. */
3918 if (! CONSTANT_P (op1))
3919 op1_hash = HASH (op1,mode);
3922 op0_elt = insert (op0, NULL, op0_hash, mode);
3923 op0_elt->in_memory = op0_in_memory;
3926 qty = REG_QTY (REGNO (op0));
3927 ent = &qty_table[qty];
3929 ent->comparison_code = code;
3930 if (REG_P (op1))
3932 /* Look it up again--in case op0 and op1 are the same. */
3933 op1_elt = lookup (op1, op1_hash, mode);
3935 /* Put OP1 in the hash table so it gets a new quantity number. */
3936 if (op1_elt == 0)
3938 if (insert_regs (op1, NULL, 0))
3940 rehash_using_reg (op1);
3941 op1_hash = HASH (op1, mode);
3944 op1_elt = insert (op1, NULL, op1_hash, mode);
3945 op1_elt->in_memory = op1_in_memory;
3948 ent->comparison_const = NULL_RTX;
3949 ent->comparison_qty = REG_QTY (REGNO (op1));
3951 else
3953 ent->comparison_const = op1;
3954 ent->comparison_qty = -1;
3957 return;
3960 /* If either side is still missing an equivalence, make it now,
3961 then merge the equivalences. */
3963 if (op0_elt == 0)
3965 if (insert_regs (op0, NULL, 0))
3967 rehash_using_reg (op0);
3968 op0_hash = HASH (op0, mode);
3971 op0_elt = insert (op0, NULL, op0_hash, mode);
3972 op0_elt->in_memory = op0_in_memory;
3975 if (op1_elt == 0)
3977 if (insert_regs (op1, NULL, 0))
3979 rehash_using_reg (op1);
3980 op1_hash = HASH (op1, mode);
3983 op1_elt = insert (op1, NULL, op1_hash, mode);
3984 op1_elt->in_memory = op1_in_memory;
3987 merge_equiv_classes (op0_elt, op1_elt);
3990 /* CSE processing for one instruction.
3991 First simplify sources and addresses of all assignments
3992 in the instruction, using previously-computed equivalents values.
3993 Then install the new sources and destinations in the table
3994 of available values.
3996 If LIBCALL_INSN is nonzero, don't record any equivalence made in
3997 the insn. It means that INSN is inside libcall block. In this
3998 case LIBCALL_INSN is the corresponding insn with REG_LIBCALL. */
4000 /* Data on one SET contained in the instruction. */
4002 struct set
4004 /* The SET rtx itself. */
4005 rtx rtl;
4006 /* The SET_SRC of the rtx (the original value, if it is changing). */
4007 rtx src;
4008 /* The hash-table element for the SET_SRC of the SET. */
4009 struct table_elt *src_elt;
4010 /* Hash value for the SET_SRC. */
4011 unsigned src_hash;
4012 /* Hash value for the SET_DEST. */
4013 unsigned dest_hash;
4014 /* The SET_DEST, with SUBREG, etc., stripped. */
4015 rtx inner_dest;
4016 /* Nonzero if the SET_SRC is in memory. */
4017 char src_in_memory;
4018 /* Nonzero if the SET_SRC contains something
4019 whose value cannot be predicted and understood. */
4020 char src_volatile;
4021 /* Original machine mode, in case it becomes a CONST_INT.
4022 The size of this field should match the size of the mode
4023 field of struct rtx_def (see rtl.h). */
4024 ENUM_BITFIELD(machine_mode) mode : 8;
4025 /* A constant equivalent for SET_SRC, if any. */
4026 rtx src_const;
4027 /* Original SET_SRC value used for libcall notes. */
4028 rtx orig_src;
4029 /* Hash value of constant equivalent for SET_SRC. */
4030 unsigned src_const_hash;
4031 /* Table entry for constant equivalent for SET_SRC, if any. */
4032 struct table_elt *src_const_elt;
4033 /* Table entry for the destination address. */
4034 struct table_elt *dest_addr_elt;
4037 static void
4038 cse_insn (rtx insn, rtx libcall_insn)
4040 rtx x = PATTERN (insn);
4041 int i;
4042 rtx tem;
4043 int n_sets = 0;
4045 rtx src_eqv = 0;
4046 struct table_elt *src_eqv_elt = 0;
4047 int src_eqv_volatile = 0;
4048 int src_eqv_in_memory = 0;
4049 unsigned src_eqv_hash = 0;
4051 struct set *sets = (struct set *) 0;
4053 this_insn = insn;
4054 #ifdef HAVE_cc0
4055 /* Records what this insn does to set CC0. */
4056 this_insn_cc0 = 0;
4057 this_insn_cc0_mode = VOIDmode;
4058 #endif
4060 /* Find all the SETs and CLOBBERs in this instruction.
4061 Record all the SETs in the array `set' and count them.
4062 Also determine whether there is a CLOBBER that invalidates
4063 all memory references, or all references at varying addresses. */
4065 if (CALL_P (insn))
4067 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4069 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
4070 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
4071 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4075 if (GET_CODE (x) == SET)
4077 sets = alloca (sizeof (struct set));
4078 sets[0].rtl = x;
4080 /* Ignore SETs that are unconditional jumps.
4081 They never need cse processing, so this does not hurt.
4082 The reason is not efficiency but rather
4083 so that we can test at the end for instructions
4084 that have been simplified to unconditional jumps
4085 and not be misled by unchanged instructions
4086 that were unconditional jumps to begin with. */
4087 if (SET_DEST (x) == pc_rtx
4088 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4091 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4092 The hard function value register is used only once, to copy to
4093 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4094 Ensure we invalidate the destination register. On the 80386 no
4095 other code would invalidate it since it is a fixed_reg.
4096 We need not check the return of apply_change_group; see canon_reg. */
4098 else if (GET_CODE (SET_SRC (x)) == CALL)
4100 canon_reg (SET_SRC (x), insn);
4101 apply_change_group ();
4102 fold_rtx (SET_SRC (x), insn);
4103 invalidate (SET_DEST (x), VOIDmode);
4105 else
4106 n_sets = 1;
4108 else if (GET_CODE (x) == PARALLEL)
4110 int lim = XVECLEN (x, 0);
4112 sets = alloca (lim * sizeof (struct set));
4114 /* Find all regs explicitly clobbered in this insn,
4115 and ensure they are not replaced with any other regs
4116 elsewhere in this insn.
4117 When a reg that is clobbered is also used for input,
4118 we should presume that that is for a reason,
4119 and we should not substitute some other register
4120 which is not supposed to be clobbered.
4121 Therefore, this loop cannot be merged into the one below
4122 because a CALL may precede a CLOBBER and refer to the
4123 value clobbered. We must not let a canonicalization do
4124 anything in that case. */
4125 for (i = 0; i < lim; i++)
4127 rtx y = XVECEXP (x, 0, i);
4128 if (GET_CODE (y) == CLOBBER)
4130 rtx clobbered = XEXP (y, 0);
4132 if (REG_P (clobbered)
4133 || GET_CODE (clobbered) == SUBREG)
4134 invalidate (clobbered, VOIDmode);
4135 else if (GET_CODE (clobbered) == STRICT_LOW_PART
4136 || GET_CODE (clobbered) == ZERO_EXTRACT)
4137 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
4141 for (i = 0; i < lim; i++)
4143 rtx y = XVECEXP (x, 0, i);
4144 if (GET_CODE (y) == SET)
4146 /* As above, we ignore unconditional jumps and call-insns and
4147 ignore the result of apply_change_group. */
4148 if (GET_CODE (SET_SRC (y)) == CALL)
4150 canon_reg (SET_SRC (y), insn);
4151 apply_change_group ();
4152 fold_rtx (SET_SRC (y), insn);
4153 invalidate (SET_DEST (y), VOIDmode);
4155 else if (SET_DEST (y) == pc_rtx
4156 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4158 else
4159 sets[n_sets++].rtl = y;
4161 else if (GET_CODE (y) == CLOBBER)
4163 /* If we clobber memory, canon the address.
4164 This does nothing when a register is clobbered
4165 because we have already invalidated the reg. */
4166 if (MEM_P (XEXP (y, 0)))
4167 canon_reg (XEXP (y, 0), NULL_RTX);
4169 else if (GET_CODE (y) == USE
4170 && ! (REG_P (XEXP (y, 0))
4171 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4172 canon_reg (y, NULL_RTX);
4173 else if (GET_CODE (y) == CALL)
4175 /* The result of apply_change_group can be ignored; see
4176 canon_reg. */
4177 canon_reg (y, insn);
4178 apply_change_group ();
4179 fold_rtx (y, insn);
4183 else if (GET_CODE (x) == CLOBBER)
4185 if (MEM_P (XEXP (x, 0)))
4186 canon_reg (XEXP (x, 0), NULL_RTX);
4189 /* Canonicalize a USE of a pseudo register or memory location. */
4190 else if (GET_CODE (x) == USE
4191 && ! (REG_P (XEXP (x, 0))
4192 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4193 canon_reg (XEXP (x, 0), NULL_RTX);
4194 else if (GET_CODE (x) == CALL)
4196 /* The result of apply_change_group can be ignored; see canon_reg. */
4197 canon_reg (x, insn);
4198 apply_change_group ();
4199 fold_rtx (x, insn);
4202 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4203 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
4204 is handled specially for this case, and if it isn't set, then there will
4205 be no equivalence for the destination. */
4206 if (n_sets == 1 && REG_NOTES (insn) != 0
4207 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4208 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4209 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4211 src_eqv = fold_rtx (canon_reg (XEXP (tem, 0), NULL_RTX), insn);
4212 XEXP (tem, 0) = src_eqv;
4215 /* Canonicalize sources and addresses of destinations.
4216 We do this in a separate pass to avoid problems when a MATCH_DUP is
4217 present in the insn pattern. In that case, we want to ensure that
4218 we don't break the duplicate nature of the pattern. So we will replace
4219 both operands at the same time. Otherwise, we would fail to find an
4220 equivalent substitution in the loop calling validate_change below.
4222 We used to suppress canonicalization of DEST if it appears in SRC,
4223 but we don't do this any more. */
4225 for (i = 0; i < n_sets; i++)
4227 rtx dest = SET_DEST (sets[i].rtl);
4228 rtx src = SET_SRC (sets[i].rtl);
4229 rtx new = canon_reg (src, insn);
4231 sets[i].orig_src = src;
4232 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
4234 if (GET_CODE (dest) == ZERO_EXTRACT)
4236 validate_change (insn, &XEXP (dest, 1),
4237 canon_reg (XEXP (dest, 1), insn), 1);
4238 validate_change (insn, &XEXP (dest, 2),
4239 canon_reg (XEXP (dest, 2), insn), 1);
4242 while (GET_CODE (dest) == SUBREG
4243 || GET_CODE (dest) == ZERO_EXTRACT
4244 || GET_CODE (dest) == STRICT_LOW_PART)
4245 dest = XEXP (dest, 0);
4247 if (MEM_P (dest))
4248 canon_reg (dest, insn);
4251 /* Now that we have done all the replacements, we can apply the change
4252 group and see if they all work. Note that this will cause some
4253 canonicalizations that would have worked individually not to be applied
4254 because some other canonicalization didn't work, but this should not
4255 occur often.
4257 The result of apply_change_group can be ignored; see canon_reg. */
4259 apply_change_group ();
4261 /* Set sets[i].src_elt to the class each source belongs to.
4262 Detect assignments from or to volatile things
4263 and set set[i] to zero so they will be ignored
4264 in the rest of this function.
4266 Nothing in this loop changes the hash table or the register chains. */
4268 for (i = 0; i < n_sets; i++)
4270 rtx src, dest;
4271 rtx src_folded;
4272 struct table_elt *elt = 0, *p;
4273 enum machine_mode mode;
4274 rtx src_eqv_here;
4275 rtx src_const = 0;
4276 rtx src_related = 0;
4277 struct table_elt *src_const_elt = 0;
4278 int src_cost = MAX_COST;
4279 int src_eqv_cost = MAX_COST;
4280 int src_folded_cost = MAX_COST;
4281 int src_related_cost = MAX_COST;
4282 int src_elt_cost = MAX_COST;
4283 int src_regcost = MAX_COST;
4284 int src_eqv_regcost = MAX_COST;
4285 int src_folded_regcost = MAX_COST;
4286 int src_related_regcost = MAX_COST;
4287 int src_elt_regcost = MAX_COST;
4288 /* Set nonzero if we need to call force_const_mem on with the
4289 contents of src_folded before using it. */
4290 int src_folded_force_flag = 0;
4292 dest = SET_DEST (sets[i].rtl);
4293 src = SET_SRC (sets[i].rtl);
4295 /* If SRC is a constant that has no machine mode,
4296 hash it with the destination's machine mode.
4297 This way we can keep different modes separate. */
4299 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4300 sets[i].mode = mode;
4302 if (src_eqv)
4304 enum machine_mode eqvmode = mode;
4305 if (GET_CODE (dest) == STRICT_LOW_PART)
4306 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4307 do_not_record = 0;
4308 hash_arg_in_memory = 0;
4309 src_eqv_hash = HASH (src_eqv, eqvmode);
4311 /* Find the equivalence class for the equivalent expression. */
4313 if (!do_not_record)
4314 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4316 src_eqv_volatile = do_not_record;
4317 src_eqv_in_memory = hash_arg_in_memory;
4320 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4321 value of the INNER register, not the destination. So it is not
4322 a valid substitution for the source. But save it for later. */
4323 if (GET_CODE (dest) == STRICT_LOW_PART)
4324 src_eqv_here = 0;
4325 else
4326 src_eqv_here = src_eqv;
4328 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4329 simplified result, which may not necessarily be valid. */
4330 src_folded = fold_rtx (src, insn);
4332 #if 0
4333 /* ??? This caused bad code to be generated for the m68k port with -O2.
4334 Suppose src is (CONST_INT -1), and that after truncation src_folded
4335 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4336 At the end we will add src and src_const to the same equivalence
4337 class. We now have 3 and -1 on the same equivalence class. This
4338 causes later instructions to be mis-optimized. */
4339 /* If storing a constant in a bitfield, pre-truncate the constant
4340 so we will be able to record it later. */
4341 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4343 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4345 if (GET_CODE (src) == CONST_INT
4346 && GET_CODE (width) == CONST_INT
4347 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4348 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4349 src_folded
4350 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4351 << INTVAL (width)) - 1));
4353 #endif
4355 /* Compute SRC's hash code, and also notice if it
4356 should not be recorded at all. In that case,
4357 prevent any further processing of this assignment. */
4358 do_not_record = 0;
4359 hash_arg_in_memory = 0;
4361 sets[i].src = src;
4362 sets[i].src_hash = HASH (src, mode);
4363 sets[i].src_volatile = do_not_record;
4364 sets[i].src_in_memory = hash_arg_in_memory;
4366 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4367 a pseudo, do not record SRC. Using SRC as a replacement for
4368 anything else will be incorrect in that situation. Note that
4369 this usually occurs only for stack slots, in which case all the
4370 RTL would be referring to SRC, so we don't lose any optimization
4371 opportunities by not having SRC in the hash table. */
4373 if (MEM_P (src)
4374 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4375 && REG_P (dest)
4376 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4377 sets[i].src_volatile = 1;
4379 #if 0
4380 /* It is no longer clear why we used to do this, but it doesn't
4381 appear to still be needed. So let's try without it since this
4382 code hurts cse'ing widened ops. */
4383 /* If source is a paradoxical subreg (such as QI treated as an SI),
4384 treat it as volatile. It may do the work of an SI in one context
4385 where the extra bits are not being used, but cannot replace an SI
4386 in general. */
4387 if (GET_CODE (src) == SUBREG
4388 && (GET_MODE_SIZE (GET_MODE (src))
4389 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
4390 sets[i].src_volatile = 1;
4391 #endif
4393 /* Locate all possible equivalent forms for SRC. Try to replace
4394 SRC in the insn with each cheaper equivalent.
4396 We have the following types of equivalents: SRC itself, a folded
4397 version, a value given in a REG_EQUAL note, or a value related
4398 to a constant.
4400 Each of these equivalents may be part of an additional class
4401 of equivalents (if more than one is in the table, they must be in
4402 the same class; we check for this).
4404 If the source is volatile, we don't do any table lookups.
4406 We note any constant equivalent for possible later use in a
4407 REG_NOTE. */
4409 if (!sets[i].src_volatile)
4410 elt = lookup (src, sets[i].src_hash, mode);
4412 sets[i].src_elt = elt;
4414 if (elt && src_eqv_here && src_eqv_elt)
4416 if (elt->first_same_value != src_eqv_elt->first_same_value)
4418 /* The REG_EQUAL is indicating that two formerly distinct
4419 classes are now equivalent. So merge them. */
4420 merge_equiv_classes (elt, src_eqv_elt);
4421 src_eqv_hash = HASH (src_eqv, elt->mode);
4422 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4425 src_eqv_here = 0;
4428 else if (src_eqv_elt)
4429 elt = src_eqv_elt;
4431 /* Try to find a constant somewhere and record it in `src_const'.
4432 Record its table element, if any, in `src_const_elt'. Look in
4433 any known equivalences first. (If the constant is not in the
4434 table, also set `sets[i].src_const_hash'). */
4435 if (elt)
4436 for (p = elt->first_same_value; p; p = p->next_same_value)
4437 if (p->is_const)
4439 src_const = p->exp;
4440 src_const_elt = elt;
4441 break;
4444 if (src_const == 0
4445 && (CONSTANT_P (src_folded)
4446 /* Consider (minus (label_ref L1) (label_ref L2)) as
4447 "constant" here so we will record it. This allows us
4448 to fold switch statements when an ADDR_DIFF_VEC is used. */
4449 || (GET_CODE (src_folded) == MINUS
4450 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4451 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4452 src_const = src_folded, src_const_elt = elt;
4453 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4454 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4456 /* If we don't know if the constant is in the table, get its
4457 hash code and look it up. */
4458 if (src_const && src_const_elt == 0)
4460 sets[i].src_const_hash = HASH (src_const, mode);
4461 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4464 sets[i].src_const = src_const;
4465 sets[i].src_const_elt = src_const_elt;
4467 /* If the constant and our source are both in the table, mark them as
4468 equivalent. Otherwise, if a constant is in the table but the source
4469 isn't, set ELT to it. */
4470 if (src_const_elt && elt
4471 && src_const_elt->first_same_value != elt->first_same_value)
4472 merge_equiv_classes (elt, src_const_elt);
4473 else if (src_const_elt && elt == 0)
4474 elt = src_const_elt;
4476 /* See if there is a register linearly related to a constant
4477 equivalent of SRC. */
4478 if (src_const
4479 && (GET_CODE (src_const) == CONST
4480 || (src_const_elt && src_const_elt->related_value != 0)))
4482 src_related = use_related_value (src_const, src_const_elt);
4483 if (src_related)
4485 struct table_elt *src_related_elt
4486 = lookup (src_related, HASH (src_related, mode), mode);
4487 if (src_related_elt && elt)
4489 if (elt->first_same_value
4490 != src_related_elt->first_same_value)
4491 /* This can occur when we previously saw a CONST
4492 involving a SYMBOL_REF and then see the SYMBOL_REF
4493 twice. Merge the involved classes. */
4494 merge_equiv_classes (elt, src_related_elt);
4496 src_related = 0;
4497 src_related_elt = 0;
4499 else if (src_related_elt && elt == 0)
4500 elt = src_related_elt;
4504 /* See if we have a CONST_INT that is already in a register in a
4505 wider mode. */
4507 if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
4508 && GET_MODE_CLASS (mode) == MODE_INT
4509 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
4511 enum machine_mode wider_mode;
4513 for (wider_mode = GET_MODE_WIDER_MODE (mode);
4514 GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
4515 && src_related == 0;
4516 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4518 struct table_elt *const_elt
4519 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4521 if (const_elt == 0)
4522 continue;
4524 for (const_elt = const_elt->first_same_value;
4525 const_elt; const_elt = const_elt->next_same_value)
4526 if (REG_P (const_elt->exp))
4528 src_related = gen_lowpart (mode, const_elt->exp);
4529 break;
4534 /* Another possibility is that we have an AND with a constant in
4535 a mode narrower than a word. If so, it might have been generated
4536 as part of an "if" which would narrow the AND. If we already
4537 have done the AND in a wider mode, we can use a SUBREG of that
4538 value. */
4540 if (flag_expensive_optimizations && ! src_related
4541 && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
4542 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4544 enum machine_mode tmode;
4545 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4547 for (tmode = GET_MODE_WIDER_MODE (mode);
4548 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4549 tmode = GET_MODE_WIDER_MODE (tmode))
4551 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4552 struct table_elt *larger_elt;
4554 if (inner)
4556 PUT_MODE (new_and, tmode);
4557 XEXP (new_and, 0) = inner;
4558 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4559 if (larger_elt == 0)
4560 continue;
4562 for (larger_elt = larger_elt->first_same_value;
4563 larger_elt; larger_elt = larger_elt->next_same_value)
4564 if (REG_P (larger_elt->exp))
4566 src_related
4567 = gen_lowpart (mode, larger_elt->exp);
4568 break;
4571 if (src_related)
4572 break;
4577 #ifdef LOAD_EXTEND_OP
4578 /* See if a MEM has already been loaded with a widening operation;
4579 if it has, we can use a subreg of that. Many CISC machines
4580 also have such operations, but this is only likely to be
4581 beneficial on these machines. */
4583 if (flag_expensive_optimizations && src_related == 0
4584 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4585 && GET_MODE_CLASS (mode) == MODE_INT
4586 && MEM_P (src) && ! do_not_record
4587 && LOAD_EXTEND_OP (mode) != UNKNOWN)
4589 struct rtx_def memory_extend_buf;
4590 rtx memory_extend_rtx = &memory_extend_buf;
4591 enum machine_mode tmode;
4593 /* Set what we are trying to extend and the operation it might
4594 have been extended with. */
4595 memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
4596 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4597 XEXP (memory_extend_rtx, 0) = src;
4599 for (tmode = GET_MODE_WIDER_MODE (mode);
4600 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4601 tmode = GET_MODE_WIDER_MODE (tmode))
4603 struct table_elt *larger_elt;
4605 PUT_MODE (memory_extend_rtx, tmode);
4606 larger_elt = lookup (memory_extend_rtx,
4607 HASH (memory_extend_rtx, tmode), tmode);
4608 if (larger_elt == 0)
4609 continue;
4611 for (larger_elt = larger_elt->first_same_value;
4612 larger_elt; larger_elt = larger_elt->next_same_value)
4613 if (REG_P (larger_elt->exp))
4615 src_related = gen_lowpart (mode, larger_elt->exp);
4616 break;
4619 if (src_related)
4620 break;
4623 #endif /* LOAD_EXTEND_OP */
4625 if (src == src_folded)
4626 src_folded = 0;
4628 /* At this point, ELT, if nonzero, points to a class of expressions
4629 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4630 and SRC_RELATED, if nonzero, each contain additional equivalent
4631 expressions. Prune these latter expressions by deleting expressions
4632 already in the equivalence class.
4634 Check for an equivalent identical to the destination. If found,
4635 this is the preferred equivalent since it will likely lead to
4636 elimination of the insn. Indicate this by placing it in
4637 `src_related'. */
4639 if (elt)
4640 elt = elt->first_same_value;
4641 for (p = elt; p; p = p->next_same_value)
4643 enum rtx_code code = GET_CODE (p->exp);
4645 /* If the expression is not valid, ignore it. Then we do not
4646 have to check for validity below. In most cases, we can use
4647 `rtx_equal_p', since canonicalization has already been done. */
4648 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
4649 continue;
4651 /* Also skip paradoxical subregs, unless that's what we're
4652 looking for. */
4653 if (code == SUBREG
4654 && (GET_MODE_SIZE (GET_MODE (p->exp))
4655 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
4656 && ! (src != 0
4657 && GET_CODE (src) == SUBREG
4658 && GET_MODE (src) == GET_MODE (p->exp)
4659 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4660 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
4661 continue;
4663 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
4664 src = 0;
4665 else if (src_folded && GET_CODE (src_folded) == code
4666 && rtx_equal_p (src_folded, p->exp))
4667 src_folded = 0;
4668 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
4669 && rtx_equal_p (src_eqv_here, p->exp))
4670 src_eqv_here = 0;
4671 else if (src_related && GET_CODE (src_related) == code
4672 && rtx_equal_p (src_related, p->exp))
4673 src_related = 0;
4675 /* This is the same as the destination of the insns, we want
4676 to prefer it. Copy it to src_related. The code below will
4677 then give it a negative cost. */
4678 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
4679 src_related = dest;
4682 /* Find the cheapest valid equivalent, trying all the available
4683 possibilities. Prefer items not in the hash table to ones
4684 that are when they are equal cost. Note that we can never
4685 worsen an insn as the current contents will also succeed.
4686 If we find an equivalent identical to the destination, use it as best,
4687 since this insn will probably be eliminated in that case. */
4688 if (src)
4690 if (rtx_equal_p (src, dest))
4691 src_cost = src_regcost = -1;
4692 else
4694 src_cost = COST (src);
4695 src_regcost = approx_reg_cost (src);
4699 if (src_eqv_here)
4701 if (rtx_equal_p (src_eqv_here, dest))
4702 src_eqv_cost = src_eqv_regcost = -1;
4703 else
4705 src_eqv_cost = COST (src_eqv_here);
4706 src_eqv_regcost = approx_reg_cost (src_eqv_here);
4710 if (src_folded)
4712 if (rtx_equal_p (src_folded, dest))
4713 src_folded_cost = src_folded_regcost = -1;
4714 else
4716 src_folded_cost = COST (src_folded);
4717 src_folded_regcost = approx_reg_cost (src_folded);
4721 if (src_related)
4723 if (rtx_equal_p (src_related, dest))
4724 src_related_cost = src_related_regcost = -1;
4725 else
4727 src_related_cost = COST (src_related);
4728 src_related_regcost = approx_reg_cost (src_related);
4732 /* If this was an indirect jump insn, a known label will really be
4733 cheaper even though it looks more expensive. */
4734 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
4735 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
4737 /* Terminate loop when replacement made. This must terminate since
4738 the current contents will be tested and will always be valid. */
4739 while (1)
4741 rtx trial;
4743 /* Skip invalid entries. */
4744 while (elt && !REG_P (elt->exp)
4745 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
4746 elt = elt->next_same_value;
4748 /* A paradoxical subreg would be bad here: it'll be the right
4749 size, but later may be adjusted so that the upper bits aren't
4750 what we want. So reject it. */
4751 if (elt != 0
4752 && GET_CODE (elt->exp) == SUBREG
4753 && (GET_MODE_SIZE (GET_MODE (elt->exp))
4754 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
4755 /* It is okay, though, if the rtx we're trying to match
4756 will ignore any of the bits we can't predict. */
4757 && ! (src != 0
4758 && GET_CODE (src) == SUBREG
4759 && GET_MODE (src) == GET_MODE (elt->exp)
4760 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4761 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
4763 elt = elt->next_same_value;
4764 continue;
4767 if (elt)
4769 src_elt_cost = elt->cost;
4770 src_elt_regcost = elt->regcost;
4773 /* Find cheapest and skip it for the next time. For items
4774 of equal cost, use this order:
4775 src_folded, src, src_eqv, src_related and hash table entry. */
4776 if (src_folded
4777 && preferable (src_folded_cost, src_folded_regcost,
4778 src_cost, src_regcost) <= 0
4779 && preferable (src_folded_cost, src_folded_regcost,
4780 src_eqv_cost, src_eqv_regcost) <= 0
4781 && preferable (src_folded_cost, src_folded_regcost,
4782 src_related_cost, src_related_regcost) <= 0
4783 && preferable (src_folded_cost, src_folded_regcost,
4784 src_elt_cost, src_elt_regcost) <= 0)
4786 trial = src_folded, src_folded_cost = MAX_COST;
4787 if (src_folded_force_flag)
4789 rtx forced = force_const_mem (mode, trial);
4790 if (forced)
4791 trial = forced;
4794 else if (src
4795 && preferable (src_cost, src_regcost,
4796 src_eqv_cost, src_eqv_regcost) <= 0
4797 && preferable (src_cost, src_regcost,
4798 src_related_cost, src_related_regcost) <= 0
4799 && preferable (src_cost, src_regcost,
4800 src_elt_cost, src_elt_regcost) <= 0)
4801 trial = src, src_cost = MAX_COST;
4802 else if (src_eqv_here
4803 && preferable (src_eqv_cost, src_eqv_regcost,
4804 src_related_cost, src_related_regcost) <= 0
4805 && preferable (src_eqv_cost, src_eqv_regcost,
4806 src_elt_cost, src_elt_regcost) <= 0)
4807 trial = copy_rtx (src_eqv_here), src_eqv_cost = MAX_COST;
4808 else if (src_related
4809 && preferable (src_related_cost, src_related_regcost,
4810 src_elt_cost, src_elt_regcost) <= 0)
4811 trial = copy_rtx (src_related), src_related_cost = MAX_COST;
4812 else
4814 trial = copy_rtx (elt->exp);
4815 elt = elt->next_same_value;
4816 src_elt_cost = MAX_COST;
4819 /* We don't normally have an insn matching (set (pc) (pc)), so
4820 check for this separately here. We will delete such an
4821 insn below.
4823 For other cases such as a table jump or conditional jump
4824 where we know the ultimate target, go ahead and replace the
4825 operand. While that may not make a valid insn, we will
4826 reemit the jump below (and also insert any necessary
4827 barriers). */
4828 if (n_sets == 1 && dest == pc_rtx
4829 && (trial == pc_rtx
4830 || (GET_CODE (trial) == LABEL_REF
4831 && ! condjump_p (insn))))
4833 /* Don't substitute non-local labels, this confuses CFG. */
4834 if (GET_CODE (trial) == LABEL_REF
4835 && LABEL_REF_NONLOCAL_P (trial))
4836 continue;
4838 SET_SRC (sets[i].rtl) = trial;
4839 cse_jumps_altered = 1;
4840 break;
4843 /* Reject certain invalid forms of CONST that we create. */
4844 else if (CONSTANT_P (trial)
4845 && GET_CODE (trial) == CONST
4846 /* Reject cases that will cause decode_rtx_const to
4847 die. On the alpha when simplifying a switch, we
4848 get (const (truncate (minus (label_ref)
4849 (label_ref)))). */
4850 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
4851 /* Likewise on IA-64, except without the
4852 truncate. */
4853 || (GET_CODE (XEXP (trial, 0)) == MINUS
4854 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
4855 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
4856 /* Do nothing for this case. */
4859 /* Look for a substitution that makes a valid insn. */
4860 else if (validate_change (insn, &SET_SRC (sets[i].rtl), trial, 0))
4862 rtx new = canon_reg (SET_SRC (sets[i].rtl), insn);
4864 /* If we just made a substitution inside a libcall, then we
4865 need to make the same substitution in any notes attached
4866 to the RETVAL insn. */
4867 if (libcall_insn
4868 && (REG_P (sets[i].orig_src)
4869 || GET_CODE (sets[i].orig_src) == SUBREG
4870 || MEM_P (sets[i].orig_src)))
4872 rtx note = find_reg_equal_equiv_note (libcall_insn);
4873 if (note != 0)
4874 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0),
4875 sets[i].orig_src,
4876 copy_rtx (new));
4879 /* The result of apply_change_group can be ignored; see
4880 canon_reg. */
4882 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
4883 apply_change_group ();
4885 break;
4888 /* If we previously found constant pool entries for
4889 constants and this is a constant, try making a
4890 pool entry. Put it in src_folded unless we already have done
4891 this since that is where it likely came from. */
4893 else if (constant_pool_entries_cost
4894 && CONSTANT_P (trial)
4895 && (src_folded == 0
4896 || (!MEM_P (src_folded)
4897 && ! src_folded_force_flag))
4898 && GET_MODE_CLASS (mode) != MODE_CC
4899 && mode != VOIDmode)
4901 src_folded_force_flag = 1;
4902 src_folded = trial;
4903 src_folded_cost = constant_pool_entries_cost;
4904 src_folded_regcost = constant_pool_entries_regcost;
4908 src = SET_SRC (sets[i].rtl);
4910 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
4911 However, there is an important exception: If both are registers
4912 that are not the head of their equivalence class, replace SET_SRC
4913 with the head of the class. If we do not do this, we will have
4914 both registers live over a portion of the basic block. This way,
4915 their lifetimes will likely abut instead of overlapping. */
4916 if (REG_P (dest)
4917 && REGNO_QTY_VALID_P (REGNO (dest)))
4919 int dest_q = REG_QTY (REGNO (dest));
4920 struct qty_table_elem *dest_ent = &qty_table[dest_q];
4922 if (dest_ent->mode == GET_MODE (dest)
4923 && dest_ent->first_reg != REGNO (dest)
4924 && REG_P (src) && REGNO (src) == REGNO (dest)
4925 /* Don't do this if the original insn had a hard reg as
4926 SET_SRC or SET_DEST. */
4927 && (!REG_P (sets[i].src)
4928 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
4929 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
4930 /* We can't call canon_reg here because it won't do anything if
4931 SRC is a hard register. */
4933 int src_q = REG_QTY (REGNO (src));
4934 struct qty_table_elem *src_ent = &qty_table[src_q];
4935 int first = src_ent->first_reg;
4936 rtx new_src
4937 = (first >= FIRST_PSEUDO_REGISTER
4938 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
4940 /* We must use validate-change even for this, because this
4941 might be a special no-op instruction, suitable only to
4942 tag notes onto. */
4943 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
4945 src = new_src;
4946 /* If we had a constant that is cheaper than what we are now
4947 setting SRC to, use that constant. We ignored it when we
4948 thought we could make this into a no-op. */
4949 if (src_const && COST (src_const) < COST (src)
4950 && validate_change (insn, &SET_SRC (sets[i].rtl),
4951 src_const, 0))
4952 src = src_const;
4957 /* If we made a change, recompute SRC values. */
4958 if (src != sets[i].src)
4960 do_not_record = 0;
4961 hash_arg_in_memory = 0;
4962 sets[i].src = src;
4963 sets[i].src_hash = HASH (src, mode);
4964 sets[i].src_volatile = do_not_record;
4965 sets[i].src_in_memory = hash_arg_in_memory;
4966 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
4969 /* If this is a single SET, we are setting a register, and we have an
4970 equivalent constant, we want to add a REG_NOTE. We don't want
4971 to write a REG_EQUAL note for a constant pseudo since verifying that
4972 that pseudo hasn't been eliminated is a pain. Such a note also
4973 won't help anything.
4975 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
4976 which can be created for a reference to a compile time computable
4977 entry in a jump table. */
4979 if (n_sets == 1 && src_const && REG_P (dest)
4980 && !REG_P (src_const)
4981 && ! (GET_CODE (src_const) == CONST
4982 && GET_CODE (XEXP (src_const, 0)) == MINUS
4983 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
4984 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
4986 /* We only want a REG_EQUAL note if src_const != src. */
4987 if (! rtx_equal_p (src, src_const))
4989 /* Make sure that the rtx is not shared. */
4990 src_const = copy_rtx (src_const);
4992 /* Record the actual constant value in a REG_EQUAL note,
4993 making a new one if one does not already exist. */
4994 set_unique_reg_note (insn, REG_EQUAL, src_const);
4998 /* Now deal with the destination. */
4999 do_not_record = 0;
5001 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5002 while (GET_CODE (dest) == SUBREG
5003 || GET_CODE (dest) == ZERO_EXTRACT
5004 || GET_CODE (dest) == STRICT_LOW_PART)
5005 dest = XEXP (dest, 0);
5007 sets[i].inner_dest = dest;
5009 if (MEM_P (dest))
5011 #ifdef PUSH_ROUNDING
5012 /* Stack pushes invalidate the stack pointer. */
5013 rtx addr = XEXP (dest, 0);
5014 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5015 && XEXP (addr, 0) == stack_pointer_rtx)
5016 invalidate (stack_pointer_rtx, VOIDmode);
5017 #endif
5018 dest = fold_rtx (dest, insn);
5021 /* Compute the hash code of the destination now,
5022 before the effects of this instruction are recorded,
5023 since the register values used in the address computation
5024 are those before this instruction. */
5025 sets[i].dest_hash = HASH (dest, mode);
5027 /* Don't enter a bit-field in the hash table
5028 because the value in it after the store
5029 may not equal what was stored, due to truncation. */
5031 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5033 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5035 if (src_const != 0 && GET_CODE (src_const) == CONST_INT
5036 && GET_CODE (width) == CONST_INT
5037 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5038 && ! (INTVAL (src_const)
5039 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5040 /* Exception: if the value is constant,
5041 and it won't be truncated, record it. */
5043 else
5045 /* This is chosen so that the destination will be invalidated
5046 but no new value will be recorded.
5047 We must invalidate because sometimes constant
5048 values can be recorded for bitfields. */
5049 sets[i].src_elt = 0;
5050 sets[i].src_volatile = 1;
5051 src_eqv = 0;
5052 src_eqv_elt = 0;
5056 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5057 the insn. */
5058 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5060 /* One less use of the label this insn used to jump to. */
5061 delete_insn_and_edges (insn);
5062 cse_jumps_altered = 1;
5063 /* No more processing for this set. */
5064 sets[i].rtl = 0;
5067 /* If this SET is now setting PC to a label, we know it used to
5068 be a conditional or computed branch. */
5069 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5070 && !LABEL_REF_NONLOCAL_P (src))
5072 /* Now emit a BARRIER after the unconditional jump. */
5073 if (NEXT_INSN (insn) == 0
5074 || !BARRIER_P (NEXT_INSN (insn)))
5075 emit_barrier_after (insn);
5077 /* We reemit the jump in as many cases as possible just in
5078 case the form of an unconditional jump is significantly
5079 different than a computed jump or conditional jump.
5081 If this insn has multiple sets, then reemitting the
5082 jump is nontrivial. So instead we just force rerecognition
5083 and hope for the best. */
5084 if (n_sets == 1)
5086 rtx new, note;
5088 new = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
5089 JUMP_LABEL (new) = XEXP (src, 0);
5090 LABEL_NUSES (XEXP (src, 0))++;
5092 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5093 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5094 if (note)
5096 XEXP (note, 1) = NULL_RTX;
5097 REG_NOTES (new) = note;
5100 delete_insn_and_edges (insn);
5101 insn = new;
5103 /* Now emit a BARRIER after the unconditional jump. */
5104 if (NEXT_INSN (insn) == 0
5105 || !BARRIER_P (NEXT_INSN (insn)))
5106 emit_barrier_after (insn);
5108 else
5109 INSN_CODE (insn) = -1;
5111 /* Do not bother deleting any unreachable code,
5112 let jump/flow do that. */
5114 cse_jumps_altered = 1;
5115 sets[i].rtl = 0;
5118 /* If destination is volatile, invalidate it and then do no further
5119 processing for this assignment. */
5121 else if (do_not_record)
5123 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5124 invalidate (dest, VOIDmode);
5125 else if (MEM_P (dest))
5126 invalidate (dest, VOIDmode);
5127 else if (GET_CODE (dest) == STRICT_LOW_PART
5128 || GET_CODE (dest) == ZERO_EXTRACT)
5129 invalidate (XEXP (dest, 0), GET_MODE (dest));
5130 sets[i].rtl = 0;
5133 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5134 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5136 #ifdef HAVE_cc0
5137 /* If setting CC0, record what it was set to, or a constant, if it
5138 is equivalent to a constant. If it is being set to a floating-point
5139 value, make a COMPARE with the appropriate constant of 0. If we
5140 don't do this, later code can interpret this as a test against
5141 const0_rtx, which can cause problems if we try to put it into an
5142 insn as a floating-point operand. */
5143 if (dest == cc0_rtx)
5145 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5146 this_insn_cc0_mode = mode;
5147 if (FLOAT_MODE_P (mode))
5148 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5149 CONST0_RTX (mode));
5151 #endif
5154 /* Now enter all non-volatile source expressions in the hash table
5155 if they are not already present.
5156 Record their equivalence classes in src_elt.
5157 This way we can insert the corresponding destinations into
5158 the same classes even if the actual sources are no longer in them
5159 (having been invalidated). */
5161 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5162 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5164 struct table_elt *elt;
5165 struct table_elt *classp = sets[0].src_elt;
5166 rtx dest = SET_DEST (sets[0].rtl);
5167 enum machine_mode eqvmode = GET_MODE (dest);
5169 if (GET_CODE (dest) == STRICT_LOW_PART)
5171 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5172 classp = 0;
5174 if (insert_regs (src_eqv, classp, 0))
5176 rehash_using_reg (src_eqv);
5177 src_eqv_hash = HASH (src_eqv, eqvmode);
5179 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5180 elt->in_memory = src_eqv_in_memory;
5181 src_eqv_elt = elt;
5183 /* Check to see if src_eqv_elt is the same as a set source which
5184 does not yet have an elt, and if so set the elt of the set source
5185 to src_eqv_elt. */
5186 for (i = 0; i < n_sets; i++)
5187 if (sets[i].rtl && sets[i].src_elt == 0
5188 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5189 sets[i].src_elt = src_eqv_elt;
5192 for (i = 0; i < n_sets; i++)
5193 if (sets[i].rtl && ! sets[i].src_volatile
5194 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5196 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5198 /* REG_EQUAL in setting a STRICT_LOW_PART
5199 gives an equivalent for the entire destination register,
5200 not just for the subreg being stored in now.
5201 This is a more interesting equivalence, so we arrange later
5202 to treat the entire reg as the destination. */
5203 sets[i].src_elt = src_eqv_elt;
5204 sets[i].src_hash = src_eqv_hash;
5206 else
5208 /* Insert source and constant equivalent into hash table, if not
5209 already present. */
5210 struct table_elt *classp = src_eqv_elt;
5211 rtx src = sets[i].src;
5212 rtx dest = SET_DEST (sets[i].rtl);
5213 enum machine_mode mode
5214 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5216 /* It's possible that we have a source value known to be
5217 constant but don't have a REG_EQUAL note on the insn.
5218 Lack of a note will mean src_eqv_elt will be NULL. This
5219 can happen where we've generated a SUBREG to access a
5220 CONST_INT that is already in a register in a wider mode.
5221 Ensure that the source expression is put in the proper
5222 constant class. */
5223 if (!classp)
5224 classp = sets[i].src_const_elt;
5226 if (sets[i].src_elt == 0)
5228 /* Don't put a hard register source into the table if this is
5229 the last insn of a libcall. In this case, we only need
5230 to put src_eqv_elt in src_elt. */
5231 if (! find_reg_note (insn, REG_RETVAL, NULL_RTX))
5233 struct table_elt *elt;
5235 /* Note that these insert_regs calls cannot remove
5236 any of the src_elt's, because they would have failed to
5237 match if not still valid. */
5238 if (insert_regs (src, classp, 0))
5240 rehash_using_reg (src);
5241 sets[i].src_hash = HASH (src, mode);
5243 elt = insert (src, classp, sets[i].src_hash, mode);
5244 elt->in_memory = sets[i].src_in_memory;
5245 sets[i].src_elt = classp = elt;
5247 else
5248 sets[i].src_elt = classp;
5250 if (sets[i].src_const && sets[i].src_const_elt == 0
5251 && src != sets[i].src_const
5252 && ! rtx_equal_p (sets[i].src_const, src))
5253 sets[i].src_elt = insert (sets[i].src_const, classp,
5254 sets[i].src_const_hash, mode);
5257 else if (sets[i].src_elt == 0)
5258 /* If we did not insert the source into the hash table (e.g., it was
5259 volatile), note the equivalence class for the REG_EQUAL value, if any,
5260 so that the destination goes into that class. */
5261 sets[i].src_elt = src_eqv_elt;
5263 /* Record destination addresses in the hash table. This allows us to
5264 check if they are invalidated by other sets. */
5265 for (i = 0; i < n_sets; i++)
5267 if (sets[i].rtl)
5269 rtx x = sets[i].inner_dest;
5270 struct table_elt *elt;
5271 enum machine_mode mode;
5272 unsigned hash;
5274 if (MEM_P (x))
5276 x = XEXP (x, 0);
5277 mode = GET_MODE (x);
5278 hash = HASH (x, mode);
5279 elt = lookup (x, hash, mode);
5280 if (!elt)
5282 if (insert_regs (x, NULL, 0))
5284 rtx dest = SET_DEST (sets[i].rtl);
5286 rehash_using_reg (x);
5287 hash = HASH (x, mode);
5288 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5290 elt = insert (x, NULL, hash, mode);
5293 sets[i].dest_addr_elt = elt;
5295 else
5296 sets[i].dest_addr_elt = NULL;
5300 invalidate_from_clobbers (x);
5302 /* Some registers are invalidated by subroutine calls. Memory is
5303 invalidated by non-constant calls. */
5305 if (CALL_P (insn))
5307 if (! CONST_OR_PURE_CALL_P (insn))
5308 invalidate_memory ();
5309 invalidate_for_call ();
5312 /* Now invalidate everything set by this instruction.
5313 If a SUBREG or other funny destination is being set,
5314 sets[i].rtl is still nonzero, so here we invalidate the reg
5315 a part of which is being set. */
5317 for (i = 0; i < n_sets; i++)
5318 if (sets[i].rtl)
5320 /* We can't use the inner dest, because the mode associated with
5321 a ZERO_EXTRACT is significant. */
5322 rtx dest = SET_DEST (sets[i].rtl);
5324 /* Needed for registers to remove the register from its
5325 previous quantity's chain.
5326 Needed for memory if this is a nonvarying address, unless
5327 we have just done an invalidate_memory that covers even those. */
5328 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5329 invalidate (dest, VOIDmode);
5330 else if (MEM_P (dest))
5331 invalidate (dest, VOIDmode);
5332 else if (GET_CODE (dest) == STRICT_LOW_PART
5333 || GET_CODE (dest) == ZERO_EXTRACT)
5334 invalidate (XEXP (dest, 0), GET_MODE (dest));
5337 /* A volatile ASM invalidates everything. */
5338 if (NONJUMP_INSN_P (insn)
5339 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
5340 && MEM_VOLATILE_P (PATTERN (insn)))
5341 flush_hash_table ();
5343 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5344 the regs restored by the longjmp come from a later time
5345 than the setjmp. */
5346 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5348 flush_hash_table ();
5349 goto done;
5352 /* Make sure registers mentioned in destinations
5353 are safe for use in an expression to be inserted.
5354 This removes from the hash table
5355 any invalid entry that refers to one of these registers.
5357 We don't care about the return value from mention_regs because
5358 we are going to hash the SET_DEST values unconditionally. */
5360 for (i = 0; i < n_sets; i++)
5362 if (sets[i].rtl)
5364 rtx x = SET_DEST (sets[i].rtl);
5366 if (!REG_P (x))
5367 mention_regs (x);
5368 else
5370 /* We used to rely on all references to a register becoming
5371 inaccessible when a register changes to a new quantity,
5372 since that changes the hash code. However, that is not
5373 safe, since after HASH_SIZE new quantities we get a
5374 hash 'collision' of a register with its own invalid
5375 entries. And since SUBREGs have been changed not to
5376 change their hash code with the hash code of the register,
5377 it wouldn't work any longer at all. So we have to check
5378 for any invalid references lying around now.
5379 This code is similar to the REG case in mention_regs,
5380 but it knows that reg_tick has been incremented, and
5381 it leaves reg_in_table as -1 . */
5382 unsigned int regno = REGNO (x);
5383 unsigned int endregno
5384 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
5385 : hard_regno_nregs[regno][GET_MODE (x)]);
5386 unsigned int i;
5388 for (i = regno; i < endregno; i++)
5390 if (REG_IN_TABLE (i) >= 0)
5392 remove_invalid_refs (i);
5393 REG_IN_TABLE (i) = -1;
5400 /* We may have just removed some of the src_elt's from the hash table.
5401 So replace each one with the current head of the same class.
5402 Also check if destination addresses have been removed. */
5404 for (i = 0; i < n_sets; i++)
5405 if (sets[i].rtl)
5407 if (sets[i].dest_addr_elt
5408 && sets[i].dest_addr_elt->first_same_value == 0)
5410 /* The elt was removed, which means this destination is not
5411 valid after this instruction. */
5412 sets[i].rtl = NULL_RTX;
5414 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5415 /* If elt was removed, find current head of same class,
5416 or 0 if nothing remains of that class. */
5418 struct table_elt *elt = sets[i].src_elt;
5420 while (elt && elt->prev_same_value)
5421 elt = elt->prev_same_value;
5423 while (elt && elt->first_same_value == 0)
5424 elt = elt->next_same_value;
5425 sets[i].src_elt = elt ? elt->first_same_value : 0;
5429 /* Now insert the destinations into their equivalence classes. */
5431 for (i = 0; i < n_sets; i++)
5432 if (sets[i].rtl)
5434 rtx dest = SET_DEST (sets[i].rtl);
5435 struct table_elt *elt;
5437 /* Don't record value if we are not supposed to risk allocating
5438 floating-point values in registers that might be wider than
5439 memory. */
5440 if ((flag_float_store
5441 && MEM_P (dest)
5442 && FLOAT_MODE_P (GET_MODE (dest)))
5443 /* Don't record BLKmode values, because we don't know the
5444 size of it, and can't be sure that other BLKmode values
5445 have the same or smaller size. */
5446 || GET_MODE (dest) == BLKmode
5447 /* Don't record values of destinations set inside a libcall block
5448 since we might delete the libcall. Things should have been set
5449 up so we won't want to reuse such a value, but we play it safe
5450 here. */
5451 || libcall_insn
5452 /* If we didn't put a REG_EQUAL value or a source into the hash
5453 table, there is no point is recording DEST. */
5454 || sets[i].src_elt == 0
5455 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5456 or SIGN_EXTEND, don't record DEST since it can cause
5457 some tracking to be wrong.
5459 ??? Think about this more later. */
5460 || (GET_CODE (dest) == SUBREG
5461 && (GET_MODE_SIZE (GET_MODE (dest))
5462 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5463 && (GET_CODE (sets[i].src) == SIGN_EXTEND
5464 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
5465 continue;
5467 /* STRICT_LOW_PART isn't part of the value BEING set,
5468 and neither is the SUBREG inside it.
5469 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5470 if (GET_CODE (dest) == STRICT_LOW_PART)
5471 dest = SUBREG_REG (XEXP (dest, 0));
5473 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5474 /* Registers must also be inserted into chains for quantities. */
5475 if (insert_regs (dest, sets[i].src_elt, 1))
5477 /* If `insert_regs' changes something, the hash code must be
5478 recalculated. */
5479 rehash_using_reg (dest);
5480 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5483 elt = insert (dest, sets[i].src_elt,
5484 sets[i].dest_hash, GET_MODE (dest));
5486 elt->in_memory = (MEM_P (sets[i].inner_dest)
5487 && !MEM_READONLY_P (sets[i].inner_dest));
5489 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5490 narrower than M2, and both M1 and M2 are the same number of words,
5491 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5492 make that equivalence as well.
5494 However, BAR may have equivalences for which gen_lowpart
5495 will produce a simpler value than gen_lowpart applied to
5496 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5497 BAR's equivalences. If we don't get a simplified form, make
5498 the SUBREG. It will not be used in an equivalence, but will
5499 cause two similar assignments to be detected.
5501 Note the loop below will find SUBREG_REG (DEST) since we have
5502 already entered SRC and DEST of the SET in the table. */
5504 if (GET_CODE (dest) == SUBREG
5505 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5506 / UNITS_PER_WORD)
5507 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
5508 && (GET_MODE_SIZE (GET_MODE (dest))
5509 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5510 && sets[i].src_elt != 0)
5512 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5513 struct table_elt *elt, *classp = 0;
5515 for (elt = sets[i].src_elt->first_same_value; elt;
5516 elt = elt->next_same_value)
5518 rtx new_src = 0;
5519 unsigned src_hash;
5520 struct table_elt *src_elt;
5521 int byte = 0;
5523 /* Ignore invalid entries. */
5524 if (!REG_P (elt->exp)
5525 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5526 continue;
5528 /* We may have already been playing subreg games. If the
5529 mode is already correct for the destination, use it. */
5530 if (GET_MODE (elt->exp) == new_mode)
5531 new_src = elt->exp;
5532 else
5534 /* Calculate big endian correction for the SUBREG_BYTE.
5535 We have already checked that M1 (GET_MODE (dest))
5536 is not narrower than M2 (new_mode). */
5537 if (BYTES_BIG_ENDIAN)
5538 byte = (GET_MODE_SIZE (GET_MODE (dest))
5539 - GET_MODE_SIZE (new_mode));
5541 new_src = simplify_gen_subreg (new_mode, elt->exp,
5542 GET_MODE (dest), byte);
5545 /* The call to simplify_gen_subreg fails if the value
5546 is VOIDmode, yet we can't do any simplification, e.g.
5547 for EXPR_LISTs denoting function call results.
5548 It is invalid to construct a SUBREG with a VOIDmode
5549 SUBREG_REG, hence a zero new_src means we can't do
5550 this substitution. */
5551 if (! new_src)
5552 continue;
5554 src_hash = HASH (new_src, new_mode);
5555 src_elt = lookup (new_src, src_hash, new_mode);
5557 /* Put the new source in the hash table is if isn't
5558 already. */
5559 if (src_elt == 0)
5561 if (insert_regs (new_src, classp, 0))
5563 rehash_using_reg (new_src);
5564 src_hash = HASH (new_src, new_mode);
5566 src_elt = insert (new_src, classp, src_hash, new_mode);
5567 src_elt->in_memory = elt->in_memory;
5569 else if (classp && classp != src_elt->first_same_value)
5570 /* Show that two things that we've seen before are
5571 actually the same. */
5572 merge_equiv_classes (src_elt, classp);
5574 classp = src_elt->first_same_value;
5575 /* Ignore invalid entries. */
5576 while (classp
5577 && !REG_P (classp->exp)
5578 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
5579 classp = classp->next_same_value;
5584 /* Special handling for (set REG0 REG1) where REG0 is the
5585 "cheapest", cheaper than REG1. After cse, REG1 will probably not
5586 be used in the sequel, so (if easily done) change this insn to
5587 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
5588 that computed their value. Then REG1 will become a dead store
5589 and won't cloud the situation for later optimizations.
5591 Do not make this change if REG1 is a hard register, because it will
5592 then be used in the sequel and we may be changing a two-operand insn
5593 into a three-operand insn.
5595 Also do not do this if we are operating on a copy of INSN.
5597 Also don't do this if INSN ends a libcall; this would cause an unrelated
5598 register to be set in the middle of a libcall, and we then get bad code
5599 if the libcall is deleted. */
5601 if (n_sets == 1 && sets[0].rtl && REG_P (SET_DEST (sets[0].rtl))
5602 && NEXT_INSN (PREV_INSN (insn)) == insn
5603 && REG_P (SET_SRC (sets[0].rtl))
5604 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
5605 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
5607 int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
5608 struct qty_table_elem *src_ent = &qty_table[src_q];
5610 if ((src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
5611 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
5613 /* Scan for the previous nonnote insn, but stop at a basic
5614 block boundary. */
5615 rtx prev = insn;
5616 rtx bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
5619 prev = PREV_INSN (prev);
5621 while (prev != bb_head && NOTE_P (prev));
5623 /* Do not swap the registers around if the previous instruction
5624 attaches a REG_EQUIV note to REG1.
5626 ??? It's not entirely clear whether we can transfer a REG_EQUIV
5627 from the pseudo that originally shadowed an incoming argument
5628 to another register. Some uses of REG_EQUIV might rely on it
5629 being attached to REG1 rather than REG2.
5631 This section previously turned the REG_EQUIV into a REG_EQUAL
5632 note. We cannot do that because REG_EQUIV may provide an
5633 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
5634 if (NONJUMP_INSN_P (prev)
5635 && GET_CODE (PATTERN (prev)) == SET
5636 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
5637 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
5639 rtx dest = SET_DEST (sets[0].rtl);
5640 rtx src = SET_SRC (sets[0].rtl);
5641 rtx note;
5643 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
5644 validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
5645 validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
5646 apply_change_group ();
5648 /* If INSN has a REG_EQUAL note, and this note mentions
5649 REG0, then we must delete it, because the value in
5650 REG0 has changed. If the note's value is REG1, we must
5651 also delete it because that is now this insn's dest. */
5652 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5653 if (note != 0
5654 && (reg_mentioned_p (dest, XEXP (note, 0))
5655 || rtx_equal_p (src, XEXP (note, 0))))
5656 remove_note (insn, note);
5661 done:;
5664 /* Remove from the hash table all expressions that reference memory. */
5666 static void
5667 invalidate_memory (void)
5669 int i;
5670 struct table_elt *p, *next;
5672 for (i = 0; i < HASH_SIZE; i++)
5673 for (p = table[i]; p; p = next)
5675 next = p->next_same_hash;
5676 if (p->in_memory)
5677 remove_from_table (p, i);
5681 /* Perform invalidation on the basis of everything about an insn
5682 except for invalidating the actual places that are SET in it.
5683 This includes the places CLOBBERed, and anything that might
5684 alias with something that is SET or CLOBBERed.
5686 X is the pattern of the insn. */
5688 static void
5689 invalidate_from_clobbers (rtx x)
5691 if (GET_CODE (x) == CLOBBER)
5693 rtx ref = XEXP (x, 0);
5694 if (ref)
5696 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5697 || MEM_P (ref))
5698 invalidate (ref, VOIDmode);
5699 else if (GET_CODE (ref) == STRICT_LOW_PART
5700 || GET_CODE (ref) == ZERO_EXTRACT)
5701 invalidate (XEXP (ref, 0), GET_MODE (ref));
5704 else if (GET_CODE (x) == PARALLEL)
5706 int i;
5707 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
5709 rtx y = XVECEXP (x, 0, i);
5710 if (GET_CODE (y) == CLOBBER)
5712 rtx ref = XEXP (y, 0);
5713 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5714 || MEM_P (ref))
5715 invalidate (ref, VOIDmode);
5716 else if (GET_CODE (ref) == STRICT_LOW_PART
5717 || GET_CODE (ref) == ZERO_EXTRACT)
5718 invalidate (XEXP (ref, 0), GET_MODE (ref));
5724 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
5725 and replace any registers in them with either an equivalent constant
5726 or the canonical form of the register. If we are inside an address,
5727 only do this if the address remains valid.
5729 OBJECT is 0 except when within a MEM in which case it is the MEM.
5731 Return the replacement for X. */
5733 static rtx
5734 cse_process_notes (rtx x, rtx object)
5736 enum rtx_code code = GET_CODE (x);
5737 const char *fmt = GET_RTX_FORMAT (code);
5738 int i;
5740 switch (code)
5742 case CONST_INT:
5743 case CONST:
5744 case SYMBOL_REF:
5745 case LABEL_REF:
5746 case CONST_DOUBLE:
5747 case CONST_VECTOR:
5748 case PC:
5749 case CC0:
5750 case LO_SUM:
5751 return x;
5753 case MEM:
5754 validate_change (x, &XEXP (x, 0),
5755 cse_process_notes (XEXP (x, 0), x), 0);
5756 return x;
5758 case EXPR_LIST:
5759 case INSN_LIST:
5760 if (REG_NOTE_KIND (x) == REG_EQUAL)
5761 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX);
5762 if (XEXP (x, 1))
5763 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX);
5764 return x;
5766 case SIGN_EXTEND:
5767 case ZERO_EXTEND:
5768 case SUBREG:
5770 rtx new = cse_process_notes (XEXP (x, 0), object);
5771 /* We don't substitute VOIDmode constants into these rtx,
5772 since they would impede folding. */
5773 if (GET_MODE (new) != VOIDmode)
5774 validate_change (object, &XEXP (x, 0), new, 0);
5775 return x;
5778 case REG:
5779 i = REG_QTY (REGNO (x));
5781 /* Return a constant or a constant register. */
5782 if (REGNO_QTY_VALID_P (REGNO (x)))
5784 struct qty_table_elem *ent = &qty_table[i];
5786 if (ent->const_rtx != NULL_RTX
5787 && (CONSTANT_P (ent->const_rtx)
5788 || REG_P (ent->const_rtx)))
5790 rtx new = gen_lowpart (GET_MODE (x), ent->const_rtx);
5791 if (new)
5792 return copy_rtx (new);
5796 /* Otherwise, canonicalize this register. */
5797 return canon_reg (x, NULL_RTX);
5799 default:
5800 break;
5803 for (i = 0; i < GET_RTX_LENGTH (code); i++)
5804 if (fmt[i] == 'e')
5805 validate_change (object, &XEXP (x, i),
5806 cse_process_notes (XEXP (x, i), object), 0);
5808 return x;
5811 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
5813 DATA is a pointer to a struct cse_basic_block_data, that is used to
5814 describe the path.
5815 It is filled with a queue of basic blocks, starting with FIRST_BB
5816 and following a trace through the CFG.
5818 If all paths starting at FIRST_BB have been followed, or no new path
5819 starting at FIRST_BB can be constructed, this function returns FALSE.
5820 Otherwise, DATA->path is filled and the function returns TRUE indicating
5821 that a path to follow was found.
5823 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
5824 block in the path will be FIRST_BB. */
5826 static bool
5827 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
5828 int follow_jumps)
5830 basic_block bb;
5831 edge e;
5832 int path_size;
5834 SET_BIT (cse_visited_basic_blocks, first_bb->index);
5836 /* See if there is a previous path. */
5837 path_size = data->path_size;
5839 /* There is a previous path. Make sure it started with FIRST_BB. */
5840 if (path_size)
5841 gcc_assert (data->path[0].bb == first_bb);
5843 /* There was only one basic block in the last path. Clear the path and
5844 return, so that paths starting at another basic block can be tried. */
5845 if (path_size == 1)
5847 path_size = 0;
5848 goto done;
5851 /* If the path was empty from the beginning, construct a new path. */
5852 if (path_size == 0)
5853 data->path[path_size++].bb = first_bb;
5854 else
5856 /* Otherwise, path_size must be equal to or greater than 2, because
5857 a previous path exists that is at least two basic blocks long.
5859 Update the previous branch path, if any. If the last branch was
5860 previously along the branch edge, take the fallthrough edge now. */
5861 while (path_size >= 2)
5863 basic_block last_bb_in_path, previous_bb_in_path;
5864 edge e;
5866 --path_size;
5867 last_bb_in_path = data->path[path_size].bb;
5868 previous_bb_in_path = data->path[path_size - 1].bb;
5870 /* If we previously followed a path along the branch edge, try
5871 the fallthru edge now. */
5872 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
5873 && any_condjump_p (BB_END (previous_bb_in_path))
5874 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
5875 && e == BRANCH_EDGE (previous_bb_in_path))
5877 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
5878 if (bb != EXIT_BLOCK_PTR
5879 && single_pred_p (bb)
5880 /* We used to assert here that we would only see blocks
5881 that we have not visited yet. But we may end up
5882 visiting basic blocks twice if the CFG has changed
5883 in this run of cse_main, because when the CFG changes
5884 the topological sort of the CFG also changes. A basic
5885 blocks that previously had more than two predecessors
5886 may now have a single predecessor, and become part of
5887 a path that starts at another basic block.
5889 We still want to visit each basic block only once, so
5890 halt the path here if we have already visited BB. */
5891 && !TEST_BIT (cse_visited_basic_blocks, bb->index))
5893 SET_BIT (cse_visited_basic_blocks, bb->index);
5894 data->path[path_size++].bb = bb;
5895 break;
5899 data->path[path_size].bb = NULL;
5902 /* If only one block remains in the path, bail. */
5903 if (path_size == 1)
5905 path_size = 0;
5906 goto done;
5910 /* Extend the path if possible. */
5911 if (follow_jumps)
5913 bb = data->path[path_size - 1].bb;
5914 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
5916 if (single_succ_p (bb))
5917 e = single_succ_edge (bb);
5918 else if (EDGE_COUNT (bb->succs) == 2
5919 && any_condjump_p (BB_END (bb)))
5921 /* First try to follow the branch. If that doesn't lead
5922 to a useful path, follow the fallthru edge. */
5923 e = BRANCH_EDGE (bb);
5924 if (!single_pred_p (e->dest))
5925 e = FALLTHRU_EDGE (bb);
5927 else
5928 e = NULL;
5930 if (e && e->dest != EXIT_BLOCK_PTR
5931 && single_pred_p (e->dest)
5932 /* Avoid visiting basic blocks twice. The large comment
5933 above explains why this can happen. */
5934 && !TEST_BIT (cse_visited_basic_blocks, e->dest->index))
5936 basic_block bb2 = e->dest;
5937 SET_BIT (cse_visited_basic_blocks, bb2->index);
5938 data->path[path_size++].bb = bb2;
5939 bb = bb2;
5941 else
5942 bb = NULL;
5946 done:
5947 data->path_size = path_size;
5948 return path_size != 0;
5951 /* Dump the path in DATA to file F. NSETS is the number of sets
5952 in the path. */
5954 static void
5955 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
5957 int path_entry;
5959 fprintf (f, ";; Following path with %d sets: ", nsets);
5960 for (path_entry = 0; path_entry < data->path_size; path_entry++)
5961 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
5962 fputc ('\n', dump_file);
5963 fflush (f);
5967 /* Return true if BB has exception handling successor edges. */
5969 static bool
5970 have_eh_succ_edges (basic_block bb)
5972 edge e;
5973 edge_iterator ei;
5975 FOR_EACH_EDGE (e, ei, bb->succs)
5976 if (e->flags & EDGE_EH)
5977 return true;
5979 return false;
5983 /* Scan to the end of the path described by DATA. Return an estimate of
5984 the total number of SETs, and the lowest and highest insn CUID, of all
5985 insns in the path. */
5987 static void
5988 cse_prescan_path (struct cse_basic_block_data *data)
5990 int nsets = 0;
5991 int low_cuid = -1, high_cuid = -1; /* FIXME low_cuid not computed correctly */
5992 int path_size = data->path_size;
5993 int path_entry;
5995 /* Scan to end of each basic block in the path. */
5996 for (path_entry = 0; path_entry < path_size; path_entry++)
5998 basic_block bb;
5999 rtx insn;
6001 bb = data->path[path_entry].bb;
6003 FOR_BB_INSNS (bb, insn)
6005 if (!INSN_P (insn))
6006 continue;
6008 /* A PARALLEL can have lots of SETs in it,
6009 especially if it is really an ASM_OPERANDS. */
6010 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6011 nsets += XVECLEN (PATTERN (insn), 0);
6012 else
6013 nsets += 1;
6015 /* Ignore insns made by CSE in a previous traversal of this
6016 basic block. They cannot affect the boundaries of the
6017 basic block.
6018 FIXME: When we only visit each basic block at most once,
6019 this can go away. */
6020 if (INSN_UID (insn) <= max_uid && INSN_CUID (insn) > high_cuid)
6021 high_cuid = INSN_CUID (insn);
6022 if (INSN_UID (insn) <= max_uid && INSN_CUID (insn) < low_cuid)
6023 low_cuid = INSN_CUID (insn);
6027 data->low_cuid = low_cuid;
6028 data->high_cuid = high_cuid;
6029 data->nsets = nsets;
6032 /* Process a single extended basic block described by EBB_DATA. */
6034 static void
6035 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6037 int path_size = ebb_data->path_size;
6038 int path_entry;
6039 int num_insns = 0;
6041 /* Allocate the space needed by qty_table. */
6042 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6044 new_basic_block ();
6045 for (path_entry = 0; path_entry < path_size; path_entry++)
6047 basic_block bb;
6048 rtx insn;
6049 rtx libcall_insn = NULL_RTX;
6050 int no_conflict = 0;
6052 bb = ebb_data->path[path_entry].bb;
6053 FOR_BB_INSNS (bb, insn)
6055 /* If we have processed 1,000 insns, flush the hash table to
6056 avoid extreme quadratic behavior. We must not include NOTEs
6057 in the count since there may be more of them when generating
6058 debugging information. If we clear the table at different
6059 times, code generated with -g -O might be different than code
6060 generated with -O but not -g.
6062 FIXME: This is a real kludge and needs to be done some other
6063 way. */
6064 if (INSN_P (insn)
6065 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6067 flush_hash_table ();
6068 num_insns = 0;
6071 if (INSN_P (insn))
6073 /* Process notes first so we have all notes in canonical forms
6074 when looking for duplicate operations. */
6075 if (REG_NOTES (insn))
6076 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6077 NULL_RTX);
6079 /* Track when we are inside in LIBCALL block. Inside such
6080 a block we do not want to record destinations. The last
6081 insn of a LIBCALL block is not considered to be part of
6082 the block, since its destination is the result of the
6083 block and hence should be recorded. */
6084 if (REG_NOTES (insn) != 0)
6086 rtx p;
6088 if ((p = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
6089 libcall_insn = XEXP (p, 0);
6090 else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
6092 /* Keep libcall_insn for the last SET insn of
6093 a no-conflict block to prevent changing the
6094 destination. */
6095 if (!no_conflict)
6096 libcall_insn = NULL_RTX;
6097 else
6098 no_conflict = -1;
6100 else if (find_reg_note (insn, REG_NO_CONFLICT, NULL_RTX))
6101 no_conflict = 1;
6104 cse_insn (insn, libcall_insn);
6106 /* If we kept libcall_insn for a no-conflict bock,
6107 clear it here. */
6108 if (no_conflict == -1)
6110 libcall_insn = NULL_RTX;
6111 no_conflict = 0;
6114 /* If we haven't already found an insn where we added a LABEL_REF,
6115 check this one. */
6116 if (NONJUMP_INSN_P (insn) && ! recorded_label_ref
6117 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6118 (void *) insn))
6119 recorded_label_ref = 1;
6121 #ifdef HAVE_cc0
6122 /* If the previous insn set CC0 and this insn no longer
6123 references CC0, delete the previous insn. Here we use
6124 fact that nothing expects CC0 to be valid over an insn,
6125 which is true until the final pass. */
6127 rtx prev_insn, tem;
6129 prev_insn = PREV_INSN (insn);
6130 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6131 && (tem = single_set (prev_insn)) != 0
6132 && SET_DEST (tem) == cc0_rtx
6133 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6134 delete_insn (prev_insn);
6137 /* If this insn is not the last insn in the basic block,
6138 it will be PREV_INSN(insn) in the next iteration. If
6139 we recorded any CC0-related information for this insn,
6140 remember it. */
6141 if (insn != BB_END (bb))
6143 prev_insn_cc0 = this_insn_cc0;
6144 prev_insn_cc0_mode = this_insn_cc0_mode;
6146 #endif
6150 /* Make sure that libcalls don't span multiple basic blocks. */
6151 gcc_assert (libcall_insn == NULL_RTX);
6153 /* With non-call exceptions, we are not always able to update
6154 the CFG properly inside cse_insn. So clean up possibly
6155 redundant EH edges here. */
6156 if (flag_non_call_exceptions && have_eh_succ_edges (bb))
6157 purge_dead_edges (bb);
6159 /* If we changed a conditional jump, we may have terminated
6160 the path we are following. Check that by verifying that
6161 the edge we would take still exists. If the edge does
6162 not exist anymore, purge the remainder of the path.
6163 Note that this will cause us to return to the caller. */
6164 if (path_entry < path_size - 1)
6166 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6167 if (!find_edge (bb, next_bb))
6171 path_size--;
6173 /* If we truncate the path, we must also reset the
6174 visited bit on the remaining blocks in the path,
6175 or we will never visit them at all. */
6176 RESET_BIT (cse_visited_basic_blocks,
6177 ebb_data->path[path_size].bb->index);
6178 ebb_data->path[path_size].bb = NULL;
6180 while (path_size - 1 != path_entry);
6181 ebb_data->path_size = path_size;
6185 /* If this is a conditional jump insn, record any known
6186 equivalences due to the condition being tested. */
6187 insn = BB_END (bb);
6188 if (path_entry < path_size - 1
6189 && JUMP_P (insn)
6190 && single_set (insn)
6191 && any_condjump_p (insn))
6193 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6194 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6195 record_jump_equiv (insn, taken);
6198 #ifdef HAVE_cc0
6199 /* Clear the CC0-tracking related insns, they can't provide
6200 useful information across basic block boundaries. */
6201 prev_insn_cc0 = 0;
6202 #endif
6205 gcc_assert (next_qty <= max_qty);
6207 free (qty_table);
6210 /* Perform cse on the instructions of a function.
6211 F is the first instruction.
6212 NREGS is one plus the highest pseudo-reg number used in the instruction.
6214 Returns 1 if jump_optimize should be redone due to simplifications
6215 in conditional jump instructions. */
6218 cse_main (rtx f ATTRIBUTE_UNUSED, int nregs)
6220 struct cse_basic_block_data ebb_data;
6221 basic_block bb;
6222 int *rc_order = XNEWVEC (int, last_basic_block);
6223 int i, n_blocks;
6225 init_cse_reg_info (nregs);
6227 ebb_data.path = XNEWVEC (struct branch_path,
6228 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6230 cse_jumps_altered = 0;
6231 recorded_label_ref = 0;
6232 constant_pool_entries_cost = 0;
6233 constant_pool_entries_regcost = 0;
6234 ebb_data.path_size = 0;
6235 ebb_data.nsets = 0;
6236 rtl_hooks = cse_rtl_hooks;
6238 init_recog ();
6239 init_alias_analysis ();
6241 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6243 /* Set up the table of already visited basic blocks. */
6244 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block);
6245 sbitmap_zero (cse_visited_basic_blocks);
6247 /* Compute the mapping from uids to cuids.
6248 CUIDs are numbers assigned to insns, like uids, except that
6249 that cuids increase monotonically through the code. */
6250 max_uid = get_max_uid ();
6251 uid_cuid = XCNEWVEC (int, max_uid + 1);
6252 i = 0;
6253 FOR_EACH_BB (bb)
6255 rtx insn;
6256 FOR_BB_INSNS (bb, insn)
6257 INSN_CUID (insn) = ++i;
6260 /* Loop over basic blocks in reverse completion order (RPO),
6261 excluding the ENTRY and EXIT blocks. */
6262 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6263 i = 0;
6264 while (i < n_blocks)
6266 /* Find the first block in the RPO queue that we have not yet
6267 processed before. */
6270 bb = BASIC_BLOCK (rc_order[i++]);
6272 while (TEST_BIT (cse_visited_basic_blocks, bb->index)
6273 && i < n_blocks);
6275 /* Find all paths starting with BB, and process them. */
6276 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6278 /* Pre-scan the path. */
6279 cse_prescan_path (&ebb_data);
6281 /* If this basic block has no sets, skip it. */
6282 if (ebb_data.nsets == 0)
6283 continue;
6285 /* Get a reasonable estimate for the maximum number of qty's
6286 needed for this path. For this, we take the number of sets
6287 and multiply that by MAX_RECOG_OPERANDS. */
6288 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6289 cse_basic_block_start = ebb_data.low_cuid;
6290 cse_basic_block_end = ebb_data.high_cuid;
6292 /* Dump the path we're about to process. */
6293 if (dump_file)
6294 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6296 cse_extended_basic_block (&ebb_data);
6300 /* Clean up. */
6301 end_alias_analysis ();
6302 free (uid_cuid);
6303 free (reg_eqv_table);
6304 free (ebb_data.path);
6305 sbitmap_free (cse_visited_basic_blocks);
6306 free (rc_order);
6307 rtl_hooks = general_rtl_hooks;
6309 return cse_jumps_altered || recorded_label_ref;
6312 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for which
6313 there isn't a REG_LABEL note. Return one if so. DATA is the insn. */
6315 static int
6316 check_for_label_ref (rtx *rtl, void *data)
6318 rtx insn = (rtx) data;
6320 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL note for it,
6321 we must rerun jump since it needs to place the note. If this is a
6322 LABEL_REF for a CODE_LABEL that isn't in the insn chain, don't do this
6323 since no REG_LABEL will be added. */
6324 return (GET_CODE (*rtl) == LABEL_REF
6325 && ! LABEL_REF_NONLOCAL_P (*rtl)
6326 && LABEL_P (XEXP (*rtl, 0))
6327 && INSN_UID (XEXP (*rtl, 0)) != 0
6328 && ! find_reg_note (insn, REG_LABEL, XEXP (*rtl, 0)));
6331 /* Count the number of times registers are used (not set) in X.
6332 COUNTS is an array in which we accumulate the count, INCR is how much
6333 we count each register usage.
6335 Don't count a usage of DEST, which is the SET_DEST of a SET which
6336 contains X in its SET_SRC. This is because such a SET does not
6337 modify the liveness of DEST.
6338 DEST is set to pc_rtx for a trapping insn, which means that we must count
6339 uses of a SET_DEST regardless because the insn can't be deleted here. */
6341 static void
6342 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6344 enum rtx_code code;
6345 rtx note;
6346 const char *fmt;
6347 int i, j;
6349 if (x == 0)
6350 return;
6352 switch (code = GET_CODE (x))
6354 case REG:
6355 if (x != dest)
6356 counts[REGNO (x)] += incr;
6357 return;
6359 case PC:
6360 case CC0:
6361 case CONST:
6362 case CONST_INT:
6363 case CONST_DOUBLE:
6364 case CONST_VECTOR:
6365 case SYMBOL_REF:
6366 case LABEL_REF:
6367 return;
6369 case CLOBBER:
6370 /* If we are clobbering a MEM, mark any registers inside the address
6371 as being used. */
6372 if (MEM_P (XEXP (x, 0)))
6373 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6374 return;
6376 case SET:
6377 /* Unless we are setting a REG, count everything in SET_DEST. */
6378 if (!REG_P (SET_DEST (x)))
6379 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6380 count_reg_usage (SET_SRC (x), counts,
6381 dest ? dest : SET_DEST (x),
6382 incr);
6383 return;
6385 case CALL_INSN:
6386 case INSN:
6387 case JUMP_INSN:
6388 /* We expect dest to be NULL_RTX here. If the insn may trap, mark
6389 this fact by setting DEST to pc_rtx. */
6390 if (flag_non_call_exceptions && may_trap_p (PATTERN (x)))
6391 dest = pc_rtx;
6392 if (code == CALL_INSN)
6393 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6394 count_reg_usage (PATTERN (x), counts, dest, incr);
6396 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6397 use them. */
6399 note = find_reg_equal_equiv_note (x);
6400 if (note)
6402 rtx eqv = XEXP (note, 0);
6404 if (GET_CODE (eqv) == EXPR_LIST)
6405 /* This REG_EQUAL note describes the result of a function call.
6406 Process all the arguments. */
6409 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6410 eqv = XEXP (eqv, 1);
6412 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6413 else
6414 count_reg_usage (eqv, counts, dest, incr);
6416 return;
6418 case EXPR_LIST:
6419 if (REG_NOTE_KIND (x) == REG_EQUAL
6420 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6421 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6422 involving registers in the address. */
6423 || GET_CODE (XEXP (x, 0)) == CLOBBER)
6424 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6426 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6427 return;
6429 case ASM_OPERANDS:
6430 /* If the asm is volatile, then this insn cannot be deleted,
6431 and so the inputs *must* be live. */
6432 if (MEM_VOLATILE_P (x))
6433 dest = NULL_RTX;
6434 /* Iterate over just the inputs, not the constraints as well. */
6435 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6436 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6437 return;
6439 case INSN_LIST:
6440 gcc_unreachable ();
6442 default:
6443 break;
6446 fmt = GET_RTX_FORMAT (code);
6447 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6449 if (fmt[i] == 'e')
6450 count_reg_usage (XEXP (x, i), counts, dest, incr);
6451 else if (fmt[i] == 'E')
6452 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6453 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6457 /* Return true if set is live. */
6458 static bool
6459 set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6460 int *counts)
6462 #ifdef HAVE_cc0
6463 rtx tem;
6464 #endif
6466 if (set_noop_p (set))
6469 #ifdef HAVE_cc0
6470 else if (GET_CODE (SET_DEST (set)) == CC0
6471 && !side_effects_p (SET_SRC (set))
6472 && ((tem = next_nonnote_insn (insn)) == 0
6473 || !INSN_P (tem)
6474 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6475 return false;
6476 #endif
6477 else if (!REG_P (SET_DEST (set))
6478 || REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
6479 || counts[REGNO (SET_DEST (set))] != 0
6480 || side_effects_p (SET_SRC (set)))
6481 return true;
6482 return false;
6485 /* Return true if insn is live. */
6487 static bool
6488 insn_live_p (rtx insn, int *counts)
6490 int i;
6491 if (flag_non_call_exceptions && may_trap_p (PATTERN (insn)))
6492 return true;
6493 else if (GET_CODE (PATTERN (insn)) == SET)
6494 return set_live_p (PATTERN (insn), insn, counts);
6495 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6497 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6499 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6501 if (GET_CODE (elt) == SET)
6503 if (set_live_p (elt, insn, counts))
6504 return true;
6506 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6507 return true;
6509 return false;
6511 else
6512 return true;
6515 /* Return true if libcall is dead as a whole. */
6517 static bool
6518 dead_libcall_p (rtx insn, int *counts)
6520 rtx note, set, new;
6522 /* See if there's a REG_EQUAL note on this insn and try to
6523 replace the source with the REG_EQUAL expression.
6525 We assume that insns with REG_RETVALs can only be reg->reg
6526 copies at this point. */
6527 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
6528 if (!note)
6529 return false;
6531 set = single_set (insn);
6532 if (!set)
6533 return false;
6535 new = simplify_rtx (XEXP (note, 0));
6536 if (!new)
6537 new = XEXP (note, 0);
6539 /* While changing insn, we must update the counts accordingly. */
6540 count_reg_usage (insn, counts, NULL_RTX, -1);
6542 if (validate_change (insn, &SET_SRC (set), new, 0))
6544 count_reg_usage (insn, counts, NULL_RTX, 1);
6545 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
6546 remove_note (insn, note);
6547 return true;
6550 if (CONSTANT_P (new))
6552 new = force_const_mem (GET_MODE (SET_DEST (set)), new);
6553 if (new && validate_change (insn, &SET_SRC (set), new, 0))
6555 count_reg_usage (insn, counts, NULL_RTX, 1);
6556 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
6557 remove_note (insn, note);
6558 return true;
6562 count_reg_usage (insn, counts, NULL_RTX, 1);
6563 return false;
6566 /* Scan all the insns and delete any that are dead; i.e., they store a register
6567 that is never used or they copy a register to itself.
6569 This is used to remove insns made obviously dead by cse, loop or other
6570 optimizations. It improves the heuristics in loop since it won't try to
6571 move dead invariants out of loops or make givs for dead quantities. The
6572 remaining passes of the compilation are also sped up. */
6575 delete_trivially_dead_insns (rtx insns, int nreg)
6577 int *counts;
6578 rtx insn, prev;
6579 int in_libcall = 0, dead_libcall = 0;
6580 int ndead = 0;
6582 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
6583 /* First count the number of times each register is used. */
6584 counts = XCNEWVEC (int, nreg);
6585 for (insn = insns; insn; insn = NEXT_INSN (insn))
6586 if (INSN_P (insn))
6587 count_reg_usage (insn, counts, NULL_RTX, 1);
6589 /* Go from the last insn to the first and delete insns that only set unused
6590 registers or copy a register to itself. As we delete an insn, remove
6591 usage counts for registers it uses.
6593 The first jump optimization pass may leave a real insn as the last
6594 insn in the function. We must not skip that insn or we may end
6595 up deleting code that is not really dead. */
6596 for (insn = get_last_insn (); insn; insn = prev)
6598 int live_insn = 0;
6600 prev = PREV_INSN (insn);
6601 if (!INSN_P (insn))
6602 continue;
6604 /* Don't delete any insns that are part of a libcall block unless
6605 we can delete the whole libcall block.
6607 Flow or loop might get confused if we did that. Remember
6608 that we are scanning backwards. */
6609 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
6611 in_libcall = 1;
6612 live_insn = 1;
6613 dead_libcall = dead_libcall_p (insn, counts);
6615 else if (in_libcall)
6616 live_insn = ! dead_libcall;
6617 else
6618 live_insn = insn_live_p (insn, counts);
6620 /* If this is a dead insn, delete it and show registers in it aren't
6621 being used. */
6623 if (! live_insn)
6625 count_reg_usage (insn, counts, NULL_RTX, -1);
6626 delete_insn_and_edges (insn);
6627 ndead++;
6630 if (in_libcall && find_reg_note (insn, REG_LIBCALL, NULL_RTX))
6632 in_libcall = 0;
6633 dead_libcall = 0;
6637 if (dump_file && ndead)
6638 fprintf (dump_file, "Deleted %i trivially dead insns\n",
6639 ndead);
6640 /* Clean up. */
6641 free (counts);
6642 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
6643 return ndead;
6646 /* This function is called via for_each_rtx. The argument, NEWREG, is
6647 a condition code register with the desired mode. If we are looking
6648 at the same register in a different mode, replace it with
6649 NEWREG. */
6651 static int
6652 cse_change_cc_mode (rtx *loc, void *data)
6654 struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
6656 if (*loc
6657 && REG_P (*loc)
6658 && REGNO (*loc) == REGNO (args->newreg)
6659 && GET_MODE (*loc) != GET_MODE (args->newreg))
6661 validate_change (args->insn, loc, args->newreg, 1);
6663 return -1;
6665 return 0;
6668 /* Change the mode of any reference to the register REGNO (NEWREG) to
6669 GET_MODE (NEWREG) in INSN. */
6671 static void
6672 cse_change_cc_mode_insn (rtx insn, rtx newreg)
6674 struct change_cc_mode_args args;
6675 int success;
6677 if (!INSN_P (insn))
6678 return;
6680 args.insn = insn;
6681 args.newreg = newreg;
6683 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
6684 for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
6686 /* If the following assertion was triggered, there is most probably
6687 something wrong with the cc_modes_compatible back end function.
6688 CC modes only can be considered compatible if the insn - with the mode
6689 replaced by any of the compatible modes - can still be recognized. */
6690 success = apply_change_group ();
6691 gcc_assert (success);
6694 /* Change the mode of any reference to the register REGNO (NEWREG) to
6695 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
6696 any instruction which modifies NEWREG. */
6698 static void
6699 cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
6701 rtx insn;
6703 for (insn = start; insn != end; insn = NEXT_INSN (insn))
6705 if (! INSN_P (insn))
6706 continue;
6708 if (reg_set_p (newreg, insn))
6709 return;
6711 cse_change_cc_mode_insn (insn, newreg);
6715 /* BB is a basic block which finishes with CC_REG as a condition code
6716 register which is set to CC_SRC. Look through the successors of BB
6717 to find blocks which have a single predecessor (i.e., this one),
6718 and look through those blocks for an assignment to CC_REG which is
6719 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
6720 permitted to change the mode of CC_SRC to a compatible mode. This
6721 returns VOIDmode if no equivalent assignments were found.
6722 Otherwise it returns the mode which CC_SRC should wind up with.
6724 The main complexity in this function is handling the mode issues.
6725 We may have more than one duplicate which we can eliminate, and we
6726 try to find a mode which will work for multiple duplicates. */
6728 static enum machine_mode
6729 cse_cc_succs (basic_block bb, rtx cc_reg, rtx cc_src, bool can_change_mode)
6731 bool found_equiv;
6732 enum machine_mode mode;
6733 unsigned int insn_count;
6734 edge e;
6735 rtx insns[2];
6736 enum machine_mode modes[2];
6737 rtx last_insns[2];
6738 unsigned int i;
6739 rtx newreg;
6740 edge_iterator ei;
6742 /* We expect to have two successors. Look at both before picking
6743 the final mode for the comparison. If we have more successors
6744 (i.e., some sort of table jump, although that seems unlikely),
6745 then we require all beyond the first two to use the same
6746 mode. */
6748 found_equiv = false;
6749 mode = GET_MODE (cc_src);
6750 insn_count = 0;
6751 FOR_EACH_EDGE (e, ei, bb->succs)
6753 rtx insn;
6754 rtx end;
6756 if (e->flags & EDGE_COMPLEX)
6757 continue;
6759 if (EDGE_COUNT (e->dest->preds) != 1
6760 || e->dest == EXIT_BLOCK_PTR)
6761 continue;
6763 end = NEXT_INSN (BB_END (e->dest));
6764 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
6766 rtx set;
6768 if (! INSN_P (insn))
6769 continue;
6771 /* If CC_SRC is modified, we have to stop looking for
6772 something which uses it. */
6773 if (modified_in_p (cc_src, insn))
6774 break;
6776 /* Check whether INSN sets CC_REG to CC_SRC. */
6777 set = single_set (insn);
6778 if (set
6779 && REG_P (SET_DEST (set))
6780 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
6782 bool found;
6783 enum machine_mode set_mode;
6784 enum machine_mode comp_mode;
6786 found = false;
6787 set_mode = GET_MODE (SET_SRC (set));
6788 comp_mode = set_mode;
6789 if (rtx_equal_p (cc_src, SET_SRC (set)))
6790 found = true;
6791 else if (GET_CODE (cc_src) == COMPARE
6792 && GET_CODE (SET_SRC (set)) == COMPARE
6793 && mode != set_mode
6794 && rtx_equal_p (XEXP (cc_src, 0),
6795 XEXP (SET_SRC (set), 0))
6796 && rtx_equal_p (XEXP (cc_src, 1),
6797 XEXP (SET_SRC (set), 1)))
6800 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
6801 if (comp_mode != VOIDmode
6802 && (can_change_mode || comp_mode == mode))
6803 found = true;
6806 if (found)
6808 found_equiv = true;
6809 if (insn_count < ARRAY_SIZE (insns))
6811 insns[insn_count] = insn;
6812 modes[insn_count] = set_mode;
6813 last_insns[insn_count] = end;
6814 ++insn_count;
6816 if (mode != comp_mode)
6818 gcc_assert (can_change_mode);
6819 mode = comp_mode;
6821 /* The modified insn will be re-recognized later. */
6822 PUT_MODE (cc_src, mode);
6825 else
6827 if (set_mode != mode)
6829 /* We found a matching expression in the
6830 wrong mode, but we don't have room to
6831 store it in the array. Punt. This case
6832 should be rare. */
6833 break;
6835 /* INSN sets CC_REG to a value equal to CC_SRC
6836 with the right mode. We can simply delete
6837 it. */
6838 delete_insn (insn);
6841 /* We found an instruction to delete. Keep looking,
6842 in the hopes of finding a three-way jump. */
6843 continue;
6846 /* We found an instruction which sets the condition
6847 code, so don't look any farther. */
6848 break;
6851 /* If INSN sets CC_REG in some other way, don't look any
6852 farther. */
6853 if (reg_set_p (cc_reg, insn))
6854 break;
6857 /* If we fell off the bottom of the block, we can keep looking
6858 through successors. We pass CAN_CHANGE_MODE as false because
6859 we aren't prepared to handle compatibility between the
6860 further blocks and this block. */
6861 if (insn == end)
6863 enum machine_mode submode;
6865 submode = cse_cc_succs (e->dest, cc_reg, cc_src, false);
6866 if (submode != VOIDmode)
6868 gcc_assert (submode == mode);
6869 found_equiv = true;
6870 can_change_mode = false;
6875 if (! found_equiv)
6876 return VOIDmode;
6878 /* Now INSN_COUNT is the number of instructions we found which set
6879 CC_REG to a value equivalent to CC_SRC. The instructions are in
6880 INSNS. The modes used by those instructions are in MODES. */
6882 newreg = NULL_RTX;
6883 for (i = 0; i < insn_count; ++i)
6885 if (modes[i] != mode)
6887 /* We need to change the mode of CC_REG in INSNS[i] and
6888 subsequent instructions. */
6889 if (! newreg)
6891 if (GET_MODE (cc_reg) == mode)
6892 newreg = cc_reg;
6893 else
6894 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
6896 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
6897 newreg);
6900 delete_insn (insns[i]);
6903 return mode;
6906 /* If we have a fixed condition code register (or two), walk through
6907 the instructions and try to eliminate duplicate assignments. */
6909 static void
6910 cse_condition_code_reg (void)
6912 unsigned int cc_regno_1;
6913 unsigned int cc_regno_2;
6914 rtx cc_reg_1;
6915 rtx cc_reg_2;
6916 basic_block bb;
6918 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
6919 return;
6921 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
6922 if (cc_regno_2 != INVALID_REGNUM)
6923 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
6924 else
6925 cc_reg_2 = NULL_RTX;
6927 FOR_EACH_BB (bb)
6929 rtx last_insn;
6930 rtx cc_reg;
6931 rtx insn;
6932 rtx cc_src_insn;
6933 rtx cc_src;
6934 enum machine_mode mode;
6935 enum machine_mode orig_mode;
6937 /* Look for blocks which end with a conditional jump based on a
6938 condition code register. Then look for the instruction which
6939 sets the condition code register. Then look through the
6940 successor blocks for instructions which set the condition
6941 code register to the same value. There are other possible
6942 uses of the condition code register, but these are by far the
6943 most common and the ones which we are most likely to be able
6944 to optimize. */
6946 last_insn = BB_END (bb);
6947 if (!JUMP_P (last_insn))
6948 continue;
6950 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
6951 cc_reg = cc_reg_1;
6952 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
6953 cc_reg = cc_reg_2;
6954 else
6955 continue;
6957 cc_src_insn = NULL_RTX;
6958 cc_src = NULL_RTX;
6959 for (insn = PREV_INSN (last_insn);
6960 insn && insn != PREV_INSN (BB_HEAD (bb));
6961 insn = PREV_INSN (insn))
6963 rtx set;
6965 if (! INSN_P (insn))
6966 continue;
6967 set = single_set (insn);
6968 if (set
6969 && REG_P (SET_DEST (set))
6970 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
6972 cc_src_insn = insn;
6973 cc_src = SET_SRC (set);
6974 break;
6976 else if (reg_set_p (cc_reg, insn))
6977 break;
6980 if (! cc_src_insn)
6981 continue;
6983 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
6984 continue;
6986 /* Now CC_REG is a condition code register used for a
6987 conditional jump at the end of the block, and CC_SRC, in
6988 CC_SRC_INSN, is the value to which that condition code
6989 register is set, and CC_SRC is still meaningful at the end of
6990 the basic block. */
6992 orig_mode = GET_MODE (cc_src);
6993 mode = cse_cc_succs (bb, cc_reg, cc_src, true);
6994 if (mode != VOIDmode)
6996 gcc_assert (mode == GET_MODE (cc_src));
6997 if (mode != orig_mode)
6999 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7001 cse_change_cc_mode_insn (cc_src_insn, newreg);
7003 /* Do the same in the following insns that use the
7004 current value of CC_REG within BB. */
7005 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7006 NEXT_INSN (last_insn),
7007 newreg);
7014 /* Perform common subexpression elimination. Nonzero value from
7015 `cse_main' means that jumps were simplified and some code may now
7016 be unreachable, so do jump optimization again. */
7017 static bool
7018 gate_handle_cse (void)
7020 return optimize > 0;
7023 static unsigned int
7024 rest_of_handle_cse (void)
7026 int tem;
7027 if (dump_file)
7028 dump_flow_info (dump_file, dump_flags);
7030 reg_scan (get_insns (), max_reg_num ());
7032 tem = cse_main (get_insns (), max_reg_num ());
7034 /* If we are not running more CSE passes, then we are no longer
7035 expecting CSE to be run. But always rerun it in a cheap mode. */
7036 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7038 if (tem)
7039 rebuild_jump_labels (get_insns ());
7041 if (tem || optimize > 1)
7042 cleanup_cfg (CLEANUP_EXPENSIVE);
7044 return 0;
7047 struct tree_opt_pass pass_cse =
7049 "cse1", /* name */
7050 gate_handle_cse, /* gate */
7051 rest_of_handle_cse, /* execute */
7052 NULL, /* sub */
7053 NULL, /* next */
7054 0, /* static_pass_number */
7055 TV_CSE, /* tv_id */
7056 0, /* properties_required */
7057 0, /* properties_provided */
7058 0, /* properties_destroyed */
7059 0, /* todo_flags_start */
7060 TODO_dump_func |
7061 TODO_ggc_collect |
7062 TODO_verify_flow, /* todo_flags_finish */
7063 's' /* letter */
7067 static bool
7068 gate_handle_cse2 (void)
7070 return optimize > 0 && flag_rerun_cse_after_loop;
7073 /* Run second CSE pass after loop optimizations. */
7074 static unsigned int
7075 rest_of_handle_cse2 (void)
7077 int tem;
7079 if (dump_file)
7080 dump_flow_info (dump_file, dump_flags);
7082 tem = cse_main (get_insns (), max_reg_num ());
7084 /* Run a pass to eliminate duplicated assignments to condition code
7085 registers. We have to run this after bypass_jumps, because it
7086 makes it harder for that pass to determine whether a jump can be
7087 bypassed safely. */
7088 cse_condition_code_reg ();
7090 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7092 if (tem)
7094 timevar_push (TV_JUMP);
7095 rebuild_jump_labels (get_insns ());
7096 delete_dead_jumptables ();
7097 cleanup_cfg (CLEANUP_EXPENSIVE);
7098 timevar_pop (TV_JUMP);
7100 reg_scan (get_insns (), max_reg_num ());
7101 cse_not_expected = 1;
7102 return 0;
7106 struct tree_opt_pass pass_cse2 =
7108 "cse2", /* name */
7109 gate_handle_cse2, /* gate */
7110 rest_of_handle_cse2, /* execute */
7111 NULL, /* sub */
7112 NULL, /* next */
7113 0, /* static_pass_number */
7114 TV_CSE2, /* tv_id */
7115 0, /* properties_required */
7116 0, /* properties_provided */
7117 0, /* properties_destroyed */
7118 0, /* todo_flags_start */
7119 TODO_dump_func |
7120 TODO_ggc_collect |
7121 TODO_verify_flow, /* todo_flags_finish */
7122 't' /* letter */