[Ada] AI12-0307: uniform resolution rules for aggregates
[official-gcc.git] / gcc / ada / sem_res.adb
blob47c743d01ef7f56adece9421bb912fbd6b1a13ff
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ R E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2020, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Debug_A; use Debug_A;
31 with Einfo; use Einfo;
32 with Errout; use Errout;
33 with Expander; use Expander;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Tss; use Exp_Tss;
38 with Exp_Util; use Exp_Util;
39 with Freeze; use Freeze;
40 with Ghost; use Ghost;
41 with Inline; use Inline;
42 with Itypes; use Itypes;
43 with Lib; use Lib;
44 with Lib.Xref; use Lib.Xref;
45 with Namet; use Namet;
46 with Nmake; use Nmake;
47 with Nlists; use Nlists;
48 with Opt; use Opt;
49 with Output; use Output;
50 with Par_SCO; use Par_SCO;
51 with Restrict; use Restrict;
52 with Rident; use Rident;
53 with Rtsfind; use Rtsfind;
54 with Sem; use Sem;
55 with Sem_Aggr; use Sem_Aggr;
56 with Sem_Attr; use Sem_Attr;
57 with Sem_Aux; use Sem_Aux;
58 with Sem_Cat; use Sem_Cat;
59 with Sem_Ch3; use Sem_Ch3;
60 with Sem_Ch4; use Sem_Ch4;
61 with Sem_Ch6; use Sem_Ch6;
62 with Sem_Ch8; use Sem_Ch8;
63 with Sem_Ch13; use Sem_Ch13;
64 with Sem_Dim; use Sem_Dim;
65 with Sem_Disp; use Sem_Disp;
66 with Sem_Dist; use Sem_Dist;
67 with Sem_Elab; use Sem_Elab;
68 with Sem_Elim; use Sem_Elim;
69 with Sem_Eval; use Sem_Eval;
70 with Sem_Intr; use Sem_Intr;
71 with Sem_Mech; use Sem_Mech;
72 with Sem_Type; use Sem_Type;
73 with Sem_Util; use Sem_Util;
74 with Sem_Warn; use Sem_Warn;
75 with Sinfo; use Sinfo;
76 with Sinfo.CN; use Sinfo.CN;
77 with Snames; use Snames;
78 with Stand; use Stand;
79 with Stringt; use Stringt;
80 with Style; use Style;
81 with Targparm; use Targparm;
82 with Tbuild; use Tbuild;
83 with Uintp; use Uintp;
84 with Urealp; use Urealp;
86 package body Sem_Res is
88 -----------------------
89 -- Local Subprograms --
90 -----------------------
92 -- Second pass (top-down) type checking and overload resolution procedures
93 -- Typ is the type required by context. These procedures propagate the
94 -- type information recursively to the descendants of N. If the node is not
95 -- overloaded, its Etype is established in the first pass. If overloaded,
96 -- the Resolve routines set the correct type. For arithmetic operators, the
97 -- Etype is the base type of the context.
99 -- Note that Resolve_Attribute is separated off in Sem_Attr
101 procedure Check_Discriminant_Use (N : Node_Id);
102 -- Enforce the restrictions on the use of discriminants when constraining
103 -- a component of a discriminated type (record or concurrent type).
105 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
106 -- Given a node for an operator associated with type T, check that the
107 -- operator is visible. Operators all of whose operands are universal must
108 -- be checked for visibility during resolution because their type is not
109 -- determinable based on their operands.
111 procedure Check_Fully_Declared_Prefix
112 (Typ : Entity_Id;
113 Pref : Node_Id);
114 -- Check that the type of the prefix of a dereference is not incomplete
116 function Check_Infinite_Recursion (Call : Node_Id) return Boolean;
117 -- Given a call node, Call, which is known to occur immediately within the
118 -- subprogram being called, determines whether it is a detectable case of
119 -- an infinite recursion, and if so, outputs appropriate messages. Returns
120 -- True if an infinite recursion is detected, and False otherwise.
122 procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
123 -- N is the node for a logical operator. If the operator is predefined, and
124 -- the root type of the operands is Standard.Boolean, then a check is made
125 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
126 -- the style check for Style_Check_Boolean_And_Or.
128 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean;
129 -- N is either an indexed component or a selected component. This function
130 -- returns true if the prefix refers to an object that has an address
131 -- clause (the case in which we may want to issue a warning).
133 function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
134 -- Determine whether E is an access type declared by an access declaration,
135 -- and not an (anonymous) allocator type.
137 function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
138 -- Utility to check whether the entity for an operator is a predefined
139 -- operator, in which case the expression is left as an operator in the
140 -- tree (else it is rewritten into a call). An instance of an intrinsic
141 -- conversion operation may be given an operator name, but is not treated
142 -- like an operator. Note that an operator that is an imported back-end
143 -- builtin has convention Intrinsic, but is expected to be rewritten into
144 -- a call, so such an operator is not treated as predefined by this
145 -- predicate.
147 procedure Preanalyze_And_Resolve
148 (N : Node_Id;
149 T : Entity_Id;
150 With_Freezing : Boolean);
151 -- Subsidiary of public versions of Preanalyze_And_Resolve.
153 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
154 -- If a default expression in entry call N depends on the discriminants
155 -- of the task, it must be replaced with a reference to the discriminant
156 -- of the task being called.
158 procedure Resolve_Op_Concat_Arg
159 (N : Node_Id;
160 Arg : Node_Id;
161 Typ : Entity_Id;
162 Is_Comp : Boolean);
163 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
164 -- concatenation operator. The operand is either of the array type or of
165 -- the component type. If the operand is an aggregate, and the component
166 -- type is composite, this is ambiguous if component type has aggregates.
168 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
169 -- Does the first part of the work of Resolve_Op_Concat
171 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
172 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
173 -- has been resolved. See Resolve_Op_Concat for details.
175 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
176 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
177 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
178 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id);
179 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
180 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
181 procedure Resolve_Declare_Expression (N : Node_Id; Typ : Entity_Id);
182 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
183 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
184 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
185 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id);
186 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id);
187 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id);
188 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
189 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
190 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
191 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
192 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
193 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
194 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
195 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
196 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
197 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
198 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id);
199 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
200 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
201 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
202 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
203 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
204 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
205 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
206 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
207 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id);
208 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
209 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
210 procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
211 procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
213 function Operator_Kind
214 (Op_Name : Name_Id;
215 Is_Binary : Boolean) return Node_Kind;
216 -- Utility to map the name of an operator into the corresponding Node. Used
217 -- by other node rewriting procedures.
219 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
220 -- Resolve actuals of call, and add default expressions for missing ones.
221 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
222 -- called subprogram.
224 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
225 -- Called from Resolve_Call, when the prefix denotes an entry or element
226 -- of entry family. Actuals are resolved as for subprograms, and the node
227 -- is rebuilt as an entry call. Also called for protected operations. Typ
228 -- is the context type, which is used when the operation is a protected
229 -- function with no arguments, and the return value is indexed.
231 procedure Resolve_Implicit_Dereference (P : Node_Id);
232 -- Called when P is the prefix of an indexed component, or of a selected
233 -- component, or of a slice. If P is of an access type, we unconditionally
234 -- rewrite it as an explicit dereference. This ensures that the expander
235 -- and the code generator have a fully explicit tree to work with.
237 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
238 -- A call to a user-defined intrinsic operator is rewritten as a call to
239 -- the corresponding predefined operator, with suitable conversions. Note
240 -- that this applies only for intrinsic operators that denote predefined
241 -- operators, not ones that are intrinsic imports of back-end builtins.
243 procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
244 -- Ditto, for arithmetic unary operators
246 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
247 -- If an operator node resolves to a call to a user-defined operator,
248 -- rewrite the node as a function call.
250 procedure Make_Call_Into_Operator
251 (N : Node_Id;
252 Typ : Entity_Id;
253 Op_Id : Entity_Id);
254 -- Inverse transformation: if an operator is given in functional notation,
255 -- then after resolving the node, transform into an operator node, so that
256 -- operands are resolved properly. Recall that predefined operators do not
257 -- have a full signature and special resolution rules apply.
259 procedure Rewrite_Renamed_Operator
260 (N : Node_Id;
261 Op : Entity_Id;
262 Typ : Entity_Id);
263 -- An operator can rename another, e.g. in an instantiation. In that
264 -- case, the proper operator node must be constructed and resolved.
266 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
267 -- The String_Literal_Subtype is built for all strings that are not
268 -- operands of a static concatenation operation. If the argument is not
269 -- a N_String_Literal node, then the call has no effect.
271 procedure Set_Slice_Subtype (N : Node_Id);
272 -- Build subtype of array type, with the range specified by the slice
274 procedure Simplify_Type_Conversion (N : Node_Id);
275 -- Called after N has been resolved and evaluated, but before range checks
276 -- have been applied. This rewrites the conversion into a simpler form.
278 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
279 -- A universal_fixed expression in an universal context is unambiguous if
280 -- there is only one applicable fixed point type. Determining whether there
281 -- is only one requires a search over all visible entities, and happens
282 -- only in very pathological cases (see 6115-006).
284 -------------------------
285 -- Ambiguous_Character --
286 -------------------------
288 procedure Ambiguous_Character (C : Node_Id) is
289 E : Entity_Id;
291 begin
292 if Nkind (C) = N_Character_Literal then
293 Error_Msg_N ("ambiguous character literal", C);
295 -- First the ones in Standard
297 Error_Msg_N ("\\possible interpretation: Character!", C);
298 Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
300 -- Include Wide_Wide_Character in Ada 2005 mode
302 if Ada_Version >= Ada_2005 then
303 Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
304 end if;
306 -- Now any other types that match
308 E := Current_Entity (C);
309 while Present (E) loop
310 Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
311 E := Homonym (E);
312 end loop;
313 end if;
314 end Ambiguous_Character;
316 -------------------------
317 -- Analyze_And_Resolve --
318 -------------------------
320 procedure Analyze_And_Resolve (N : Node_Id) is
321 begin
322 Analyze (N);
323 Resolve (N);
324 end Analyze_And_Resolve;
326 procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
327 begin
328 Analyze (N);
329 Resolve (N, Typ);
330 end Analyze_And_Resolve;
332 -- Versions with check(s) suppressed
334 procedure Analyze_And_Resolve
335 (N : Node_Id;
336 Typ : Entity_Id;
337 Suppress : Check_Id)
339 Scop : constant Entity_Id := Current_Scope;
341 begin
342 if Suppress = All_Checks then
343 declare
344 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
345 begin
346 Scope_Suppress.Suppress := (others => True);
347 Analyze_And_Resolve (N, Typ);
348 Scope_Suppress.Suppress := Sva;
349 end;
351 else
352 declare
353 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
354 begin
355 Scope_Suppress.Suppress (Suppress) := True;
356 Analyze_And_Resolve (N, Typ);
357 Scope_Suppress.Suppress (Suppress) := Svg;
358 end;
359 end if;
361 if Current_Scope /= Scop
362 and then Scope_Is_Transient
363 then
364 -- This can only happen if a transient scope was created for an inner
365 -- expression, which will be removed upon completion of the analysis
366 -- of an enclosing construct. The transient scope must have the
367 -- suppress status of the enclosing environment, not of this Analyze
368 -- call.
370 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
371 Scope_Suppress;
372 end if;
373 end Analyze_And_Resolve;
375 procedure Analyze_And_Resolve
376 (N : Node_Id;
377 Suppress : Check_Id)
379 Scop : constant Entity_Id := Current_Scope;
381 begin
382 if Suppress = All_Checks then
383 declare
384 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
385 begin
386 Scope_Suppress.Suppress := (others => True);
387 Analyze_And_Resolve (N);
388 Scope_Suppress.Suppress := Sva;
389 end;
391 else
392 declare
393 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
394 begin
395 Scope_Suppress.Suppress (Suppress) := True;
396 Analyze_And_Resolve (N);
397 Scope_Suppress.Suppress (Suppress) := Svg;
398 end;
399 end if;
401 if Current_Scope /= Scop and then Scope_Is_Transient then
402 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
403 Scope_Suppress;
404 end if;
405 end Analyze_And_Resolve;
407 ----------------------------
408 -- Check_Discriminant_Use --
409 ----------------------------
411 procedure Check_Discriminant_Use (N : Node_Id) is
412 PN : constant Node_Id := Parent (N);
413 Disc : constant Entity_Id := Entity (N);
414 P : Node_Id;
415 D : Node_Id;
417 begin
418 -- Any use in a spec-expression is legal
420 if In_Spec_Expression then
421 null;
423 elsif Nkind (PN) = N_Range then
425 -- Discriminant cannot be used to constrain a scalar type
427 P := Parent (PN);
429 if Nkind (P) = N_Range_Constraint
430 and then Nkind (Parent (P)) = N_Subtype_Indication
431 and then Nkind (Parent (Parent (P))) = N_Component_Definition
432 then
433 Error_Msg_N ("discriminant cannot constrain scalar type", N);
435 elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
437 -- The following check catches the unusual case where a
438 -- discriminant appears within an index constraint that is part
439 -- of a larger expression within a constraint on a component,
440 -- e.g. "C : Int range 1 .. F (new A(1 .. D))". For now we only
441 -- check case of record components, and note that a similar check
442 -- should also apply in the case of discriminant constraints
443 -- below. ???
445 -- Note that the check for N_Subtype_Declaration below is to
446 -- detect the valid use of discriminants in the constraints of a
447 -- subtype declaration when this subtype declaration appears
448 -- inside the scope of a record type (which is syntactically
449 -- illegal, but which may be created as part of derived type
450 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
451 -- for more info.
453 if Ekind (Current_Scope) = E_Record_Type
454 and then Scope (Disc) = Current_Scope
455 and then not
456 (Nkind (Parent (P)) = N_Subtype_Indication
457 and then
458 Nkind (Parent (Parent (P))) in N_Component_Definition
459 | N_Subtype_Declaration
460 and then Paren_Count (N) = 0)
461 then
462 Error_Msg_N
463 ("discriminant must appear alone in component constraint", N);
464 return;
465 end if;
467 -- Detect a common error:
469 -- type R (D : Positive := 100) is record
470 -- Name : String (1 .. D);
471 -- end record;
473 -- The default value causes an object of type R to be allocated
474 -- with room for Positive'Last characters. The RM does not mandate
475 -- the allocation of the maximum size, but that is what GNAT does
476 -- so we should warn the programmer that there is a problem.
478 Check_Large : declare
479 SI : Node_Id;
480 T : Entity_Id;
481 TB : Node_Id;
482 CB : Entity_Id;
484 function Large_Storage_Type (T : Entity_Id) return Boolean;
485 -- Return True if type T has a large enough range that any
486 -- array whose index type covered the whole range of the type
487 -- would likely raise Storage_Error.
489 ------------------------
490 -- Large_Storage_Type --
491 ------------------------
493 function Large_Storage_Type (T : Entity_Id) return Boolean is
494 begin
495 -- The type is considered large if its bounds are known at
496 -- compile time and if it requires at least as many bits as
497 -- a Positive to store the possible values.
499 return Compile_Time_Known_Value (Type_Low_Bound (T))
500 and then Compile_Time_Known_Value (Type_High_Bound (T))
501 and then
502 Minimum_Size (T, Biased => True) >=
503 RM_Size (Standard_Positive);
504 end Large_Storage_Type;
506 -- Start of processing for Check_Large
508 begin
509 -- Check that the Disc has a large range
511 if not Large_Storage_Type (Etype (Disc)) then
512 goto No_Danger;
513 end if;
515 -- If the enclosing type is limited, we allocate only the
516 -- default value, not the maximum, and there is no need for
517 -- a warning.
519 if Is_Limited_Type (Scope (Disc)) then
520 goto No_Danger;
521 end if;
523 -- Check that it is the high bound
525 if N /= High_Bound (PN)
526 or else No (Discriminant_Default_Value (Disc))
527 then
528 goto No_Danger;
529 end if;
531 -- Check the array allows a large range at this bound. First
532 -- find the array
534 SI := Parent (P);
536 if Nkind (SI) /= N_Subtype_Indication then
537 goto No_Danger;
538 end if;
540 T := Entity (Subtype_Mark (SI));
542 if not Is_Array_Type (T) then
543 goto No_Danger;
544 end if;
546 -- Next, find the dimension
548 TB := First_Index (T);
549 CB := First (Constraints (P));
550 while True
551 and then Present (TB)
552 and then Present (CB)
553 and then CB /= PN
554 loop
555 Next_Index (TB);
556 Next (CB);
557 end loop;
559 if CB /= PN then
560 goto No_Danger;
561 end if;
563 -- Now, check the dimension has a large range
565 if not Large_Storage_Type (Etype (TB)) then
566 goto No_Danger;
567 end if;
569 -- Warn about the danger
571 Error_Msg_N
572 ("??creation of & object may raise Storage_Error!",
573 Scope (Disc));
575 <<No_Danger>>
576 null;
578 end Check_Large;
579 end if;
581 -- Legal case is in index or discriminant constraint
583 elsif Nkind (PN) in N_Index_Or_Discriminant_Constraint
584 | N_Discriminant_Association
585 then
586 if Paren_Count (N) > 0 then
587 Error_Msg_N
588 ("discriminant in constraint must appear alone", N);
590 elsif Nkind (N) = N_Expanded_Name
591 and then Comes_From_Source (N)
592 then
593 Error_Msg_N
594 ("discriminant must appear alone as a direct name", N);
595 end if;
597 return;
599 -- Otherwise, context is an expression. It should not be within (i.e. a
600 -- subexpression of) a constraint for a component.
602 else
603 D := PN;
604 P := Parent (PN);
605 while Nkind (P) not in
606 N_Component_Declaration | N_Subtype_Indication | N_Entry_Declaration
607 loop
608 D := P;
609 P := Parent (P);
610 exit when No (P);
611 end loop;
613 -- If the discriminant is used in an expression that is a bound of a
614 -- scalar type, an Itype is created and the bounds are attached to
615 -- its range, not to the original subtype indication. Such use is of
616 -- course a double fault.
618 if (Nkind (P) = N_Subtype_Indication
619 and then Nkind (Parent (P)) in N_Component_Definition
620 | N_Derived_Type_Definition
621 and then D = Constraint (P))
623 -- The constraint itself may be given by a subtype indication,
624 -- rather than by a more common discrete range.
626 or else (Nkind (P) = N_Subtype_Indication
627 and then
628 Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
629 or else Nkind (P) = N_Entry_Declaration
630 or else Nkind (D) = N_Defining_Identifier
631 then
632 Error_Msg_N
633 ("discriminant in constraint must appear alone", N);
634 end if;
635 end if;
636 end Check_Discriminant_Use;
638 --------------------------------
639 -- Check_For_Visible_Operator --
640 --------------------------------
642 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
643 begin
644 if Is_Invisible_Operator (N, T) then
645 Error_Msg_NE -- CODEFIX
646 ("operator for} is not directly visible!", N, First_Subtype (T));
647 Error_Msg_N -- CODEFIX
648 ("use clause would make operation legal!", N);
649 end if;
650 end Check_For_Visible_Operator;
652 ----------------------------------
653 -- Check_Fully_Declared_Prefix --
654 ----------------------------------
656 procedure Check_Fully_Declared_Prefix
657 (Typ : Entity_Id;
658 Pref : Node_Id)
660 begin
661 -- Check that the designated type of the prefix of a dereference is
662 -- not an incomplete type. This cannot be done unconditionally, because
663 -- dereferences of private types are legal in default expressions. This
664 -- case is taken care of in Check_Fully_Declared, called below. There
665 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
667 -- This consideration also applies to similar checks for allocators,
668 -- qualified expressions, and type conversions.
670 -- An additional exception concerns other per-object expressions that
671 -- are not directly related to component declarations, in particular
672 -- representation pragmas for tasks. These will be per-object
673 -- expressions if they depend on discriminants or some global entity.
674 -- If the task has access discriminants, the designated type may be
675 -- incomplete at the point the expression is resolved. This resolution
676 -- takes place within the body of the initialization procedure, where
677 -- the discriminant is replaced by its discriminal.
679 if Is_Entity_Name (Pref)
680 and then Ekind (Entity (Pref)) = E_In_Parameter
681 then
682 null;
684 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
685 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
686 -- Analyze_Object_Renaming, and Freeze_Entity.
688 elsif Ada_Version >= Ada_2005
689 and then Is_Entity_Name (Pref)
690 and then Is_Access_Type (Etype (Pref))
691 and then Ekind (Directly_Designated_Type (Etype (Pref))) =
692 E_Incomplete_Type
693 and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
694 then
695 null;
696 else
697 Check_Fully_Declared (Typ, Parent (Pref));
698 end if;
699 end Check_Fully_Declared_Prefix;
701 ------------------------------
702 -- Check_Infinite_Recursion --
703 ------------------------------
705 function Check_Infinite_Recursion (Call : Node_Id) return Boolean is
706 function Enclosing_Declaration_Or_Statement (N : Node_Id) return Node_Id;
707 -- Return the nearest enclosing declaration or statement that houses
708 -- arbitrary node N.
710 function Invoked_With_Different_Arguments (N : Node_Id) return Boolean;
711 -- Determine whether call N invokes the related enclosing subprogram
712 -- with actuals that differ from the subprogram's formals.
714 function Is_Conditional_Statement (N : Node_Id) return Boolean;
715 -- Determine whether arbitrary node N denotes a conditional construct
717 function Is_Control_Flow_Statement (N : Node_Id) return Boolean;
718 -- Determine whether arbitrary node N denotes a control flow statement
719 -- or a construct that may contains such a statement.
721 function Is_Immediately_Within_Body (N : Node_Id) return Boolean;
722 -- Determine whether arbitrary node N appears immediately within the
723 -- statements of an entry or subprogram body.
725 function Is_Raise_Idiom (N : Node_Id) return Boolean;
726 -- Determine whether arbitrary node N appears immediately within the
727 -- body of an entry or subprogram, and is preceded by a single raise
728 -- statement.
730 function Is_Raise_Statement (N : Node_Id) return Boolean;
731 -- Determine whether arbitrary node N denotes a raise statement
733 function Is_Sole_Statement (N : Node_Id) return Boolean;
734 -- Determine whether arbitrary node N is the sole source statement in
735 -- the body of the enclosing subprogram.
737 function Preceded_By_Control_Flow_Statement (N : Node_Id) return Boolean;
738 -- Determine whether arbitrary node N is preceded by a control flow
739 -- statement.
741 function Within_Conditional_Statement (N : Node_Id) return Boolean;
742 -- Determine whether arbitrary node N appears within a conditional
743 -- construct.
745 ----------------------------------------
746 -- Enclosing_Declaration_Or_Statement --
747 ----------------------------------------
749 function Enclosing_Declaration_Or_Statement
750 (N : Node_Id) return Node_Id
752 Par : Node_Id;
754 begin
755 Par := N;
756 while Present (Par) loop
757 if Is_Declaration (Par) or else Is_Statement (Par) then
758 return Par;
760 -- Prevent the search from going too far
762 elsif Is_Body_Or_Package_Declaration (Par) then
763 exit;
764 end if;
766 Par := Parent (Par);
767 end loop;
769 return N;
770 end Enclosing_Declaration_Or_Statement;
772 --------------------------------------
773 -- Invoked_With_Different_Arguments --
774 --------------------------------------
776 function Invoked_With_Different_Arguments (N : Node_Id) return Boolean is
777 Subp : constant Entity_Id := Entity (Name (N));
779 Actual : Node_Id;
780 Formal : Entity_Id;
782 begin
783 -- Determine whether the formals of the invoked subprogram are not
784 -- used as actuals in the call.
786 Actual := First_Actual (Call);
787 Formal := First_Formal (Subp);
788 while Present (Actual) and then Present (Formal) loop
790 -- The current actual does not match the current formal
792 if not (Is_Entity_Name (Actual)
793 and then Entity (Actual) = Formal)
794 then
795 return True;
796 end if;
798 Next_Actual (Actual);
799 Next_Formal (Formal);
800 end loop;
802 return False;
803 end Invoked_With_Different_Arguments;
805 ------------------------------
806 -- Is_Conditional_Statement --
807 ------------------------------
809 function Is_Conditional_Statement (N : Node_Id) return Boolean is
810 begin
811 return
812 Nkind (N) in N_And_Then
813 | N_Case_Expression
814 | N_Case_Statement
815 | N_If_Expression
816 | N_If_Statement
817 | N_Or_Else;
818 end Is_Conditional_Statement;
820 -------------------------------
821 -- Is_Control_Flow_Statement --
822 -------------------------------
824 function Is_Control_Flow_Statement (N : Node_Id) return Boolean is
825 begin
826 -- It is assumed that all statements may affect the control flow in
827 -- some way. A raise statement may be expanded into a non-statement
828 -- node.
830 return Is_Statement (N) or else Is_Raise_Statement (N);
831 end Is_Control_Flow_Statement;
833 --------------------------------
834 -- Is_Immediately_Within_Body --
835 --------------------------------
837 function Is_Immediately_Within_Body (N : Node_Id) return Boolean is
838 HSS : constant Node_Id := Parent (N);
840 begin
841 return
842 Nkind (HSS) = N_Handled_Sequence_Of_Statements
843 and then Nkind (Parent (HSS)) in N_Entry_Body | N_Subprogram_Body
844 and then Is_List_Member (N)
845 and then List_Containing (N) = Statements (HSS);
846 end Is_Immediately_Within_Body;
848 --------------------
849 -- Is_Raise_Idiom --
850 --------------------
852 function Is_Raise_Idiom (N : Node_Id) return Boolean is
853 Raise_Stmt : Node_Id;
854 Stmt : Node_Id;
856 begin
857 if Is_Immediately_Within_Body (N) then
859 -- Assume that no raise statement has been seen yet
861 Raise_Stmt := Empty;
863 -- Examine the statements preceding the input node, skipping
864 -- internally-generated constructs.
866 Stmt := Prev (N);
867 while Present (Stmt) loop
869 -- Multiple raise statements violate the idiom
871 if Is_Raise_Statement (Stmt) then
872 if Present (Raise_Stmt) then
873 return False;
874 end if;
876 Raise_Stmt := Stmt;
878 elsif Comes_From_Source (Stmt) then
879 exit;
880 end if;
882 Stmt := Prev (Stmt);
883 end loop;
885 -- At this point the node must be preceded by a raise statement,
886 -- and the raise statement has to be the sole statement within
887 -- the enclosing entry or subprogram body.
889 return
890 Present (Raise_Stmt) and then Is_Sole_Statement (Raise_Stmt);
891 end if;
893 return False;
894 end Is_Raise_Idiom;
896 ------------------------
897 -- Is_Raise_Statement --
898 ------------------------
900 function Is_Raise_Statement (N : Node_Id) return Boolean is
901 begin
902 -- A raise statement may be transfomed into a Raise_xxx_Error node
904 return
905 Nkind (N) = N_Raise_Statement
906 or else Nkind (N) in N_Raise_xxx_Error;
907 end Is_Raise_Statement;
909 -----------------------
910 -- Is_Sole_Statement --
911 -----------------------
913 function Is_Sole_Statement (N : Node_Id) return Boolean is
914 Stmt : Node_Id;
916 begin
917 -- The input node appears within the statements of an entry or
918 -- subprogram body. Examine the statements preceding the node.
920 if Is_Immediately_Within_Body (N) then
921 Stmt := Prev (N);
923 while Present (Stmt) loop
925 -- The statement is preceded by another statement or a source
926 -- construct. This indicates that the node does not appear by
927 -- itself.
929 if Is_Control_Flow_Statement (Stmt)
930 or else Comes_From_Source (Stmt)
931 then
932 return False;
933 end if;
935 Stmt := Prev (Stmt);
936 end loop;
938 return True;
939 end if;
941 -- The input node is within a construct nested inside the entry or
942 -- subprogram body.
944 return False;
945 end Is_Sole_Statement;
947 ----------------------------------------
948 -- Preceded_By_Control_Flow_Statement --
949 ----------------------------------------
951 function Preceded_By_Control_Flow_Statement
952 (N : Node_Id) return Boolean
954 Stmt : Node_Id;
956 begin
957 if Is_List_Member (N) then
958 Stmt := Prev (N);
960 -- Examine the statements preceding the input node
962 while Present (Stmt) loop
963 if Is_Control_Flow_Statement (Stmt) then
964 return True;
965 end if;
967 Stmt := Prev (Stmt);
968 end loop;
970 return False;
971 end if;
973 -- Assume that the node is part of some control flow statement
975 return True;
976 end Preceded_By_Control_Flow_Statement;
978 ----------------------------------
979 -- Within_Conditional_Statement --
980 ----------------------------------
982 function Within_Conditional_Statement (N : Node_Id) return Boolean is
983 Stmt : Node_Id;
985 begin
986 Stmt := Parent (N);
987 while Present (Stmt) loop
988 if Is_Conditional_Statement (Stmt) then
989 return True;
991 -- Prevent the search from going too far
993 elsif Is_Body_Or_Package_Declaration (Stmt) then
994 exit;
995 end if;
997 Stmt := Parent (Stmt);
998 end loop;
1000 return False;
1001 end Within_Conditional_Statement;
1003 -- Local variables
1005 Call_Context : constant Node_Id :=
1006 Enclosing_Declaration_Or_Statement (Call);
1008 -- Start of processing for Check_Infinite_Recursion
1010 begin
1011 -- The call is assumed to be safe when the enclosing subprogram is
1012 -- invoked with actuals other than its formals.
1014 -- procedure Proc (F1 : ...; F2 : ...; ...; FN : ...) is
1015 -- begin
1016 -- ...
1017 -- Proc (A1, A2, ..., AN);
1018 -- ...
1019 -- end Proc;
1021 if Invoked_With_Different_Arguments (Call) then
1022 return False;
1024 -- The call is assumed to be safe when the invocation of the enclosing
1025 -- subprogram depends on a conditional statement.
1027 -- procedure Proc (F1 : ...; F2 : ...; ...; FN : ...) is
1028 -- begin
1029 -- ...
1030 -- if Some_Condition then
1031 -- Proc (F1, F2, ..., FN);
1032 -- end if;
1033 -- ...
1034 -- end Proc;
1036 elsif Within_Conditional_Statement (Call) then
1037 return False;
1039 -- The context of the call is assumed to be safe when the invocation of
1040 -- the enclosing subprogram is preceded by some control flow statement.
1042 -- procedure Proc (F1 : ...; F2 : ...; ...; FN : ...) is
1043 -- begin
1044 -- ...
1045 -- if Some_Condition then
1046 -- ...
1047 -- end if;
1048 -- ...
1049 -- Proc (F1, F2, ..., FN);
1050 -- ...
1051 -- end Proc;
1053 elsif Preceded_By_Control_Flow_Statement (Call_Context) then
1054 return False;
1056 -- Detect an idiom where the context of the call is preceded by a single
1057 -- raise statement.
1059 -- procedure Proc (F1 : ...; F2 : ...; ...; FN : ...) is
1060 -- begin
1061 -- raise ...;
1062 -- Proc (F1, F2, ..., FN);
1063 -- end Proc;
1065 elsif Is_Raise_Idiom (Call_Context) then
1066 return False;
1067 end if;
1069 -- At this point it is certain that infinite recursion will take place
1070 -- as long as the call is executed. Detect a case where the context of
1071 -- the call is the sole source statement within the subprogram body.
1073 -- procedure Proc (F1 : ...; F2 : ...; ...; FN : ...) is
1074 -- begin
1075 -- Proc (F1, F2, ..., FN);
1076 -- end Proc;
1078 -- Install an explicit raise to prevent the infinite recursion.
1080 if Is_Sole_Statement (Call_Context) then
1081 Error_Msg_Warn := SPARK_Mode /= On;
1082 Error_Msg_N ("!infinite recursion<<", Call);
1083 Error_Msg_N ("\!Storage_Error [<<", Call);
1085 Insert_Action (Call,
1086 Make_Raise_Storage_Error (Sloc (Call),
1087 Reason => SE_Infinite_Recursion));
1089 -- Otherwise infinite recursion could take place, considering other flow
1090 -- control constructs such as gotos, exit statements, etc.
1092 else
1093 Error_Msg_Warn := SPARK_Mode /= On;
1094 Error_Msg_N ("!possible infinite recursion<<", Call);
1095 Error_Msg_N ("\!??Storage_Error ]<<", Call);
1096 end if;
1098 return True;
1099 end Check_Infinite_Recursion;
1101 ---------------------------------------
1102 -- Check_No_Direct_Boolean_Operators --
1103 ---------------------------------------
1105 procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
1106 begin
1107 if Scope (Entity (N)) = Standard_Standard
1108 and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
1109 then
1110 -- Restriction only applies to original source code
1112 if Comes_From_Source (N) then
1113 Check_Restriction (No_Direct_Boolean_Operators, N);
1114 end if;
1115 end if;
1117 -- Do style check (but skip if in instance, error is on template)
1119 if Style_Check then
1120 if not In_Instance then
1121 Check_Boolean_Operator (N);
1122 end if;
1123 end if;
1124 end Check_No_Direct_Boolean_Operators;
1126 ------------------------------
1127 -- Check_Parameterless_Call --
1128 ------------------------------
1130 procedure Check_Parameterless_Call (N : Node_Id) is
1131 Nam : Node_Id;
1133 function Prefix_Is_Access_Subp return Boolean;
1134 -- If the prefix is of an access_to_subprogram type, the node must be
1135 -- rewritten as a call. Ditto if the prefix is overloaded and all its
1136 -- interpretations are access to subprograms.
1138 ---------------------------
1139 -- Prefix_Is_Access_Subp --
1140 ---------------------------
1142 function Prefix_Is_Access_Subp return Boolean is
1143 I : Interp_Index;
1144 It : Interp;
1146 begin
1147 -- If the context is an attribute reference that can apply to
1148 -- functions, this is never a parameterless call (RM 4.1.4(6)).
1150 if Nkind (Parent (N)) = N_Attribute_Reference
1151 and then Attribute_Name (Parent (N))
1152 in Name_Address | Name_Code_Address | Name_Access
1153 then
1154 return False;
1155 end if;
1157 if not Is_Overloaded (N) then
1158 return
1159 Ekind (Etype (N)) = E_Subprogram_Type
1160 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
1161 else
1162 Get_First_Interp (N, I, It);
1163 while Present (It.Typ) loop
1164 if Ekind (It.Typ) /= E_Subprogram_Type
1165 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
1166 then
1167 return False;
1168 end if;
1170 Get_Next_Interp (I, It);
1171 end loop;
1173 return True;
1174 end if;
1175 end Prefix_Is_Access_Subp;
1177 -- Start of processing for Check_Parameterless_Call
1179 begin
1180 -- Defend against junk stuff if errors already detected
1182 if Total_Errors_Detected /= 0 then
1183 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
1184 return;
1185 elsif Nkind (N) in N_Has_Chars
1186 and then not Is_Valid_Name (Chars (N))
1187 then
1188 return;
1189 end if;
1191 Require_Entity (N);
1192 end if;
1194 -- If the context expects a value, and the name is a procedure, this is
1195 -- most likely a missing 'Access. Don't try to resolve the parameterless
1196 -- call, error will be caught when the outer call is analyzed.
1198 if Is_Entity_Name (N)
1199 and then Ekind (Entity (N)) = E_Procedure
1200 and then not Is_Overloaded (N)
1201 and then
1202 Nkind (Parent (N)) in N_Parameter_Association
1203 | N_Function_Call
1204 | N_Procedure_Call_Statement
1205 then
1206 return;
1207 end if;
1209 -- Rewrite as call if overloadable entity that is (or could be, in the
1210 -- overloaded case) a function call. If we know for sure that the entity
1211 -- is an enumeration literal, we do not rewrite it.
1213 -- If the entity is the name of an operator, it cannot be a call because
1214 -- operators cannot have default parameters. In this case, this must be
1215 -- a string whose contents coincide with an operator name. Set the kind
1216 -- of the node appropriately.
1218 if (Is_Entity_Name (N)
1219 and then Nkind (N) /= N_Operator_Symbol
1220 and then Is_Overloadable (Entity (N))
1221 and then (Ekind (Entity (N)) /= E_Enumeration_Literal
1222 or else Is_Overloaded (N)))
1224 -- Rewrite as call if it is an explicit dereference of an expression of
1225 -- a subprogram access type, and the subprogram type is not that of a
1226 -- procedure or entry.
1228 or else
1229 (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
1231 -- Rewrite as call if it is a selected component which is a function,
1232 -- this is the case of a call to a protected function (which may be
1233 -- overloaded with other protected operations).
1235 or else
1236 (Nkind (N) = N_Selected_Component
1237 and then (Ekind (Entity (Selector_Name (N))) = E_Function
1238 or else
1239 (Ekind (Entity (Selector_Name (N))) in
1240 E_Entry | E_Procedure
1241 and then Is_Overloaded (Selector_Name (N)))))
1243 -- If one of the above three conditions is met, rewrite as call. Apply
1244 -- the rewriting only once.
1246 then
1247 if Nkind (Parent (N)) /= N_Function_Call
1248 or else N /= Name (Parent (N))
1249 then
1251 -- This may be a prefixed call that was not fully analyzed, e.g.
1252 -- an actual in an instance.
1254 if Ada_Version >= Ada_2005
1255 and then Nkind (N) = N_Selected_Component
1256 and then Is_Dispatching_Operation (Entity (Selector_Name (N)))
1257 then
1258 Analyze_Selected_Component (N);
1260 if Nkind (N) /= N_Selected_Component then
1261 return;
1262 end if;
1263 end if;
1265 -- The node is the name of the parameterless call. Preserve its
1266 -- descendants, which may be complex expressions.
1268 Nam := Relocate_Node (N);
1270 -- If overloaded, overload set belongs to new copy
1272 Save_Interps (N, Nam);
1274 -- Change node to parameterless function call (note that the
1275 -- Parameter_Associations associations field is left set to Empty,
1276 -- its normal default value since there are no parameters)
1278 Change_Node (N, N_Function_Call);
1279 Set_Name (N, Nam);
1280 Set_Sloc (N, Sloc (Nam));
1281 Analyze_Call (N);
1282 end if;
1284 elsif Nkind (N) = N_Parameter_Association then
1285 Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1287 elsif Nkind (N) = N_Operator_Symbol then
1288 Change_Operator_Symbol_To_String_Literal (N);
1289 Set_Is_Overloaded (N, False);
1290 Set_Etype (N, Any_String);
1291 end if;
1292 end Check_Parameterless_Call;
1294 --------------------------------
1295 -- Is_Atomic_Ref_With_Address --
1296 --------------------------------
1298 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean is
1299 Pref : constant Node_Id := Prefix (N);
1301 begin
1302 if not Is_Entity_Name (Pref) then
1303 return False;
1305 else
1306 declare
1307 Pent : constant Entity_Id := Entity (Pref);
1308 Ptyp : constant Entity_Id := Etype (Pent);
1309 begin
1310 return not Is_Access_Type (Ptyp)
1311 and then (Is_Atomic (Ptyp) or else Is_Atomic (Pent))
1312 and then Present (Address_Clause (Pent));
1313 end;
1314 end if;
1315 end Is_Atomic_Ref_With_Address;
1317 -----------------------------
1318 -- Is_Definite_Access_Type --
1319 -----------------------------
1321 function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1322 Btyp : constant Entity_Id := Base_Type (E);
1323 begin
1324 return Ekind (Btyp) = E_Access_Type
1325 or else (Ekind (Btyp) = E_Access_Subprogram_Type
1326 and then Comes_From_Source (Btyp));
1327 end Is_Definite_Access_Type;
1329 ----------------------
1330 -- Is_Predefined_Op --
1331 ----------------------
1333 function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1334 begin
1335 -- Predefined operators are intrinsic subprograms
1337 if not Is_Intrinsic_Subprogram (Nam) then
1338 return False;
1339 end if;
1341 -- A call to a back-end builtin is never a predefined operator
1343 if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
1344 return False;
1345 end if;
1347 return not Is_Generic_Instance (Nam)
1348 and then Chars (Nam) in Any_Operator_Name
1349 and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
1350 end Is_Predefined_Op;
1352 -----------------------------
1353 -- Make_Call_Into_Operator --
1354 -----------------------------
1356 procedure Make_Call_Into_Operator
1357 (N : Node_Id;
1358 Typ : Entity_Id;
1359 Op_Id : Entity_Id)
1361 Op_Name : constant Name_Id := Chars (Op_Id);
1362 Act1 : Node_Id := First_Actual (N);
1363 Act2 : Node_Id := Next_Actual (Act1);
1364 Error : Boolean := False;
1365 Func : constant Entity_Id := Entity (Name (N));
1366 Is_Binary : constant Boolean := Present (Act2);
1367 Op_Node : Node_Id;
1368 Opnd_Type : Entity_Id := Empty;
1369 Orig_Type : Entity_Id := Empty;
1370 Pack : Entity_Id;
1372 type Kind_Test is access function (E : Entity_Id) return Boolean;
1374 function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1375 -- If the operand is not universal, and the operator is given by an
1376 -- expanded name, verify that the operand has an interpretation with a
1377 -- type defined in the given scope of the operator.
1379 function Type_In_P (Test : Kind_Test) return Entity_Id;
1380 -- Find a type of the given class in package Pack that contains the
1381 -- operator.
1383 ---------------------------
1384 -- Operand_Type_In_Scope --
1385 ---------------------------
1387 function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1388 Nod : constant Node_Id := Right_Opnd (Op_Node);
1389 I : Interp_Index;
1390 It : Interp;
1392 begin
1393 if not Is_Overloaded (Nod) then
1394 return Scope (Base_Type (Etype (Nod))) = S;
1396 else
1397 Get_First_Interp (Nod, I, It);
1398 while Present (It.Typ) loop
1399 if Scope (Base_Type (It.Typ)) = S then
1400 return True;
1401 end if;
1403 Get_Next_Interp (I, It);
1404 end loop;
1406 return False;
1407 end if;
1408 end Operand_Type_In_Scope;
1410 ---------------
1411 -- Type_In_P --
1412 ---------------
1414 function Type_In_P (Test : Kind_Test) return Entity_Id is
1415 E : Entity_Id;
1417 function In_Decl return Boolean;
1418 -- Verify that node is not part of the type declaration for the
1419 -- candidate type, which would otherwise be invisible.
1421 -------------
1422 -- In_Decl --
1423 -------------
1425 function In_Decl return Boolean is
1426 Decl_Node : constant Node_Id := Parent (E);
1427 N2 : Node_Id;
1429 begin
1430 N2 := N;
1432 if Etype (E) = Any_Type then
1433 return True;
1435 elsif No (Decl_Node) then
1436 return False;
1438 else
1439 while Present (N2)
1440 and then Nkind (N2) /= N_Compilation_Unit
1441 loop
1442 if N2 = Decl_Node then
1443 return True;
1444 else
1445 N2 := Parent (N2);
1446 end if;
1447 end loop;
1449 return False;
1450 end if;
1451 end In_Decl;
1453 -- Start of processing for Type_In_P
1455 begin
1456 -- If the context type is declared in the prefix package, this is the
1457 -- desired base type.
1459 if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
1460 return Base_Type (Typ);
1462 else
1463 E := First_Entity (Pack);
1464 while Present (E) loop
1465 if Test (E) and then not In_Decl then
1466 return E;
1467 end if;
1469 Next_Entity (E);
1470 end loop;
1472 return Empty;
1473 end if;
1474 end Type_In_P;
1476 -- Start of processing for Make_Call_Into_Operator
1478 begin
1479 Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1481 -- Ensure that the corresponding operator has the same parent as the
1482 -- original call. This guarantees that parent traversals performed by
1483 -- the ABE mechanism succeed.
1485 Set_Parent (Op_Node, Parent (N));
1487 -- Binary operator
1489 if Is_Binary then
1490 Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
1491 Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1492 Save_Interps (Act1, Left_Opnd (Op_Node));
1493 Save_Interps (Act2, Right_Opnd (Op_Node));
1494 Act1 := Left_Opnd (Op_Node);
1495 Act2 := Right_Opnd (Op_Node);
1497 -- Unary operator
1499 else
1500 Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1501 Save_Interps (Act1, Right_Opnd (Op_Node));
1502 Act1 := Right_Opnd (Op_Node);
1503 end if;
1505 -- If the operator is denoted by an expanded name, and the prefix is
1506 -- not Standard, but the operator is a predefined one whose scope is
1507 -- Standard, then this is an implicit_operator, inserted as an
1508 -- interpretation by the procedure of the same name. This procedure
1509 -- overestimates the presence of implicit operators, because it does
1510 -- not examine the type of the operands. Verify now that the operand
1511 -- type appears in the given scope. If right operand is universal,
1512 -- check the other operand. In the case of concatenation, either
1513 -- argument can be the component type, so check the type of the result.
1514 -- If both arguments are literals, look for a type of the right kind
1515 -- defined in the given scope. This elaborate nonsense is brought to
1516 -- you courtesy of b33302a. The type itself must be frozen, so we must
1517 -- find the type of the proper class in the given scope.
1519 -- A final wrinkle is the multiplication operator for fixed point types,
1520 -- which is defined in Standard only, and not in the scope of the
1521 -- fixed point type itself.
1523 if Nkind (Name (N)) = N_Expanded_Name then
1524 Pack := Entity (Prefix (Name (N)));
1526 -- If this is a package renaming, get renamed entity, which will be
1527 -- the scope of the operands if operaton is type-correct.
1529 if Present (Renamed_Entity (Pack)) then
1530 Pack := Renamed_Entity (Pack);
1531 end if;
1533 -- If the entity being called is defined in the given package, it is
1534 -- a renaming of a predefined operator, and known to be legal.
1536 if Scope (Entity (Name (N))) = Pack
1537 and then Pack /= Standard_Standard
1538 then
1539 null;
1541 -- Visibility does not need to be checked in an instance: if the
1542 -- operator was not visible in the generic it has been diagnosed
1543 -- already, else there is an implicit copy of it in the instance.
1545 elsif In_Instance then
1546 null;
1548 elsif Op_Name in Name_Op_Multiply | Name_Op_Divide
1549 and then Is_Fixed_Point_Type (Etype (Act1))
1550 and then Is_Fixed_Point_Type (Etype (Act2))
1551 then
1552 if Pack /= Standard_Standard then
1553 Error := True;
1554 end if;
1556 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1557 -- available.
1559 elsif Ada_Version >= Ada_2005
1560 and then Op_Name in Name_Op_Eq | Name_Op_Ne
1561 and then (Is_Anonymous_Access_Type (Etype (Act1))
1562 or else Is_Anonymous_Access_Type (Etype (Act2)))
1563 then
1564 null;
1566 else
1567 Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1569 if Op_Name = Name_Op_Concat then
1570 Opnd_Type := Base_Type (Typ);
1572 elsif (Scope (Opnd_Type) = Standard_Standard
1573 and then Is_Binary)
1574 or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1575 and then Is_Binary
1576 and then not Comes_From_Source (Opnd_Type))
1577 then
1578 Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1579 end if;
1581 if Scope (Opnd_Type) = Standard_Standard then
1583 -- Verify that the scope contains a type that corresponds to
1584 -- the given literal. Optimize the case where Pack is Standard.
1586 if Pack /= Standard_Standard then
1587 if Opnd_Type = Universal_Integer then
1588 Orig_Type := Type_In_P (Is_Integer_Type'Access);
1590 elsif Opnd_Type = Universal_Real then
1591 Orig_Type := Type_In_P (Is_Real_Type'Access);
1593 elsif Opnd_Type = Any_String then
1594 Orig_Type := Type_In_P (Is_String_Type'Access);
1596 elsif Opnd_Type = Any_Access then
1597 Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1599 elsif Opnd_Type = Any_Composite then
1600 Orig_Type := Type_In_P (Is_Composite_Type'Access);
1602 if Present (Orig_Type) then
1603 if Has_Private_Component (Orig_Type) then
1604 Orig_Type := Empty;
1605 else
1606 Set_Etype (Act1, Orig_Type);
1608 if Is_Binary then
1609 Set_Etype (Act2, Orig_Type);
1610 end if;
1611 end if;
1612 end if;
1614 else
1615 Orig_Type := Empty;
1616 end if;
1618 Error := No (Orig_Type);
1619 end if;
1621 elsif Ekind (Opnd_Type) = E_Allocator_Type
1622 and then No (Type_In_P (Is_Definite_Access_Type'Access))
1623 then
1624 Error := True;
1626 -- If the type is defined elsewhere, and the operator is not
1627 -- defined in the given scope (by a renaming declaration, e.g.)
1628 -- then this is an error as well. If an extension of System is
1629 -- present, and the type may be defined there, Pack must be
1630 -- System itself.
1632 elsif Scope (Opnd_Type) /= Pack
1633 and then Scope (Op_Id) /= Pack
1634 and then (No (System_Aux_Id)
1635 or else Scope (Opnd_Type) /= System_Aux_Id
1636 or else Pack /= Scope (System_Aux_Id))
1637 then
1638 if not Is_Overloaded (Right_Opnd (Op_Node)) then
1639 Error := True;
1640 else
1641 Error := not Operand_Type_In_Scope (Pack);
1642 end if;
1644 elsif Pack = Standard_Standard
1645 and then not Operand_Type_In_Scope (Standard_Standard)
1646 then
1647 Error := True;
1648 end if;
1649 end if;
1651 if Error then
1652 Error_Msg_Node_2 := Pack;
1653 Error_Msg_NE
1654 ("& not declared in&", N, Selector_Name (Name (N)));
1655 Set_Etype (N, Any_Type);
1656 return;
1658 -- Detect a mismatch between the context type and the result type
1659 -- in the named package, which is otherwise not detected if the
1660 -- operands are universal. Check is only needed if source entity is
1661 -- an operator, not a function that renames an operator.
1663 elsif Nkind (Parent (N)) /= N_Type_Conversion
1664 and then Ekind (Entity (Name (N))) = E_Operator
1665 and then Is_Numeric_Type (Typ)
1666 and then not Is_Universal_Numeric_Type (Typ)
1667 and then Scope (Base_Type (Typ)) /= Pack
1668 and then not In_Instance
1669 then
1670 if Is_Fixed_Point_Type (Typ)
1671 and then Op_Name in Name_Op_Multiply | Name_Op_Divide
1672 then
1673 -- Already checked above
1675 null;
1677 -- Operator may be defined in an extension of System
1679 elsif Present (System_Aux_Id)
1680 and then Present (Opnd_Type)
1681 and then Scope (Opnd_Type) = System_Aux_Id
1682 then
1683 null;
1685 else
1686 -- Could we use Wrong_Type here??? (this would require setting
1687 -- Etype (N) to the actual type found where Typ was expected).
1689 Error_Msg_NE ("expect }", N, Typ);
1690 end if;
1691 end if;
1692 end if;
1694 Set_Chars (Op_Node, Op_Name);
1696 if not Is_Private_Type (Etype (N)) then
1697 Set_Etype (Op_Node, Base_Type (Etype (N)));
1698 else
1699 Set_Etype (Op_Node, Etype (N));
1700 end if;
1702 -- If this is a call to a function that renames a predefined equality,
1703 -- the renaming declaration provides a type that must be used to
1704 -- resolve the operands. This must be done now because resolution of
1705 -- the equality node will not resolve any remaining ambiguity, and it
1706 -- assumes that the first operand is not overloaded.
1708 if Op_Name in Name_Op_Eq | Name_Op_Ne
1709 and then Ekind (Func) = E_Function
1710 and then Is_Overloaded (Act1)
1711 then
1712 Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1713 Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1714 end if;
1716 Set_Entity (Op_Node, Op_Id);
1717 Generate_Reference (Op_Id, N, ' ');
1719 -- Do rewrite setting Comes_From_Source on the result if the original
1720 -- call came from source. Although it is not strictly the case that the
1721 -- operator as such comes from the source, logically it corresponds
1722 -- exactly to the function call in the source, so it should be marked
1723 -- this way (e.g. to make sure that validity checks work fine).
1725 declare
1726 CS : constant Boolean := Comes_From_Source (N);
1727 begin
1728 Rewrite (N, Op_Node);
1729 Set_Comes_From_Source (N, CS);
1730 end;
1732 -- If this is an arithmetic operator and the result type is private,
1733 -- the operands and the result must be wrapped in conversion to
1734 -- expose the underlying numeric type and expand the proper checks,
1735 -- e.g. on division.
1737 if Is_Private_Type (Typ) then
1738 case Nkind (N) is
1739 when N_Op_Add
1740 | N_Op_Divide
1741 | N_Op_Expon
1742 | N_Op_Mod
1743 | N_Op_Multiply
1744 | N_Op_Rem
1745 | N_Op_Subtract
1747 Resolve_Intrinsic_Operator (N, Typ);
1749 when N_Op_Abs
1750 | N_Op_Minus
1751 | N_Op_Plus
1753 Resolve_Intrinsic_Unary_Operator (N, Typ);
1755 when others =>
1756 Resolve (N, Typ);
1757 end case;
1758 else
1759 Resolve (N, Typ);
1760 end if;
1761 end Make_Call_Into_Operator;
1763 -------------------
1764 -- Operator_Kind --
1765 -------------------
1767 function Operator_Kind
1768 (Op_Name : Name_Id;
1769 Is_Binary : Boolean) return Node_Kind
1771 Kind : Node_Kind;
1773 begin
1774 -- Use CASE statement or array???
1776 if Is_Binary then
1777 if Op_Name = Name_Op_And then
1778 Kind := N_Op_And;
1779 elsif Op_Name = Name_Op_Or then
1780 Kind := N_Op_Or;
1781 elsif Op_Name = Name_Op_Xor then
1782 Kind := N_Op_Xor;
1783 elsif Op_Name = Name_Op_Eq then
1784 Kind := N_Op_Eq;
1785 elsif Op_Name = Name_Op_Ne then
1786 Kind := N_Op_Ne;
1787 elsif Op_Name = Name_Op_Lt then
1788 Kind := N_Op_Lt;
1789 elsif Op_Name = Name_Op_Le then
1790 Kind := N_Op_Le;
1791 elsif Op_Name = Name_Op_Gt then
1792 Kind := N_Op_Gt;
1793 elsif Op_Name = Name_Op_Ge then
1794 Kind := N_Op_Ge;
1795 elsif Op_Name = Name_Op_Add then
1796 Kind := N_Op_Add;
1797 elsif Op_Name = Name_Op_Subtract then
1798 Kind := N_Op_Subtract;
1799 elsif Op_Name = Name_Op_Concat then
1800 Kind := N_Op_Concat;
1801 elsif Op_Name = Name_Op_Multiply then
1802 Kind := N_Op_Multiply;
1803 elsif Op_Name = Name_Op_Divide then
1804 Kind := N_Op_Divide;
1805 elsif Op_Name = Name_Op_Mod then
1806 Kind := N_Op_Mod;
1807 elsif Op_Name = Name_Op_Rem then
1808 Kind := N_Op_Rem;
1809 elsif Op_Name = Name_Op_Expon then
1810 Kind := N_Op_Expon;
1811 else
1812 raise Program_Error;
1813 end if;
1815 -- Unary operators
1817 else
1818 if Op_Name = Name_Op_Add then
1819 Kind := N_Op_Plus;
1820 elsif Op_Name = Name_Op_Subtract then
1821 Kind := N_Op_Minus;
1822 elsif Op_Name = Name_Op_Abs then
1823 Kind := N_Op_Abs;
1824 elsif Op_Name = Name_Op_Not then
1825 Kind := N_Op_Not;
1826 else
1827 raise Program_Error;
1828 end if;
1829 end if;
1831 return Kind;
1832 end Operator_Kind;
1834 ----------------------------
1835 -- Preanalyze_And_Resolve --
1836 ----------------------------
1838 procedure Preanalyze_And_Resolve
1839 (N : Node_Id;
1840 T : Entity_Id;
1841 With_Freezing : Boolean)
1843 Save_Full_Analysis : constant Boolean := Full_Analysis;
1844 Save_Must_Not_Freeze : constant Boolean := Must_Not_Freeze (N);
1845 Save_Preanalysis_Count : constant Nat :=
1846 Inside_Preanalysis_Without_Freezing;
1847 begin
1848 pragma Assert (Nkind (N) in N_Subexpr);
1850 if not With_Freezing then
1851 Set_Must_Not_Freeze (N);
1852 Inside_Preanalysis_Without_Freezing :=
1853 Inside_Preanalysis_Without_Freezing + 1;
1854 end if;
1856 Full_Analysis := False;
1857 Expander_Mode_Save_And_Set (False);
1859 -- Normally, we suppress all checks for this preanalysis. There is no
1860 -- point in processing them now, since they will be applied properly
1861 -- and in the proper location when the default expressions reanalyzed
1862 -- and reexpanded later on. We will also have more information at that
1863 -- point for possible suppression of individual checks.
1865 -- However, in SPARK mode, most expansion is suppressed, and this
1866 -- later reanalysis and reexpansion may not occur. SPARK mode does
1867 -- require the setting of checking flags for proof purposes, so we
1868 -- do the SPARK preanalysis without suppressing checks.
1870 -- This special handling for SPARK mode is required for example in the
1871 -- case of Ada 2012 constructs such as quantified expressions, which are
1872 -- expanded in two separate steps.
1874 if GNATprove_Mode then
1875 Analyze_And_Resolve (N, T);
1876 else
1877 Analyze_And_Resolve (N, T, Suppress => All_Checks);
1878 end if;
1880 Expander_Mode_Restore;
1881 Full_Analysis := Save_Full_Analysis;
1882 Set_Must_Not_Freeze (N, Save_Must_Not_Freeze);
1884 if not With_Freezing then
1885 Inside_Preanalysis_Without_Freezing :=
1886 Inside_Preanalysis_Without_Freezing - 1;
1887 end if;
1889 pragma Assert
1890 (Inside_Preanalysis_Without_Freezing = Save_Preanalysis_Count);
1891 end Preanalyze_And_Resolve;
1893 ----------------------------
1894 -- Preanalyze_And_Resolve --
1895 ----------------------------
1897 procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1898 begin
1899 Preanalyze_And_Resolve (N, T, With_Freezing => False);
1900 end Preanalyze_And_Resolve;
1902 -- Version without context type
1904 procedure Preanalyze_And_Resolve (N : Node_Id) is
1905 Save_Full_Analysis : constant Boolean := Full_Analysis;
1907 begin
1908 Full_Analysis := False;
1909 Expander_Mode_Save_And_Set (False);
1911 Analyze (N);
1912 Resolve (N, Etype (N), Suppress => All_Checks);
1914 Expander_Mode_Restore;
1915 Full_Analysis := Save_Full_Analysis;
1916 end Preanalyze_And_Resolve;
1918 ------------------------------------------
1919 -- Preanalyze_With_Freezing_And_Resolve --
1920 ------------------------------------------
1922 procedure Preanalyze_With_Freezing_And_Resolve
1923 (N : Node_Id;
1924 T : Entity_Id)
1926 begin
1927 Preanalyze_And_Resolve (N, T, With_Freezing => True);
1928 end Preanalyze_With_Freezing_And_Resolve;
1930 ----------------------------------
1931 -- Replace_Actual_Discriminants --
1932 ----------------------------------
1934 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1935 Loc : constant Source_Ptr := Sloc (N);
1936 Tsk : Node_Id := Empty;
1938 function Process_Discr (Nod : Node_Id) return Traverse_Result;
1939 -- Comment needed???
1941 -------------------
1942 -- Process_Discr --
1943 -------------------
1945 function Process_Discr (Nod : Node_Id) return Traverse_Result is
1946 Ent : Entity_Id;
1948 begin
1949 if Nkind (Nod) = N_Identifier then
1950 Ent := Entity (Nod);
1952 if Present (Ent)
1953 and then Ekind (Ent) = E_Discriminant
1954 then
1955 Rewrite (Nod,
1956 Make_Selected_Component (Loc,
1957 Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
1958 Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1960 Set_Etype (Nod, Etype (Ent));
1961 end if;
1963 end if;
1965 return OK;
1966 end Process_Discr;
1968 procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1970 -- Start of processing for Replace_Actual_Discriminants
1972 begin
1973 if Expander_Active then
1974 null;
1976 -- Allow the replacement of concurrent discriminants in GNATprove even
1977 -- though this is a light expansion activity. Note that generic units
1978 -- are not modified.
1980 elsif GNATprove_Mode and not Inside_A_Generic then
1981 null;
1983 else
1984 return;
1985 end if;
1987 if Nkind (Name (N)) = N_Selected_Component then
1988 Tsk := Prefix (Name (N));
1990 elsif Nkind (Name (N)) = N_Indexed_Component then
1991 Tsk := Prefix (Prefix (Name (N)));
1992 end if;
1994 if Present (Tsk) then
1995 Replace_Discrs (Default);
1996 end if;
1997 end Replace_Actual_Discriminants;
1999 -------------
2000 -- Resolve --
2001 -------------
2003 procedure Resolve (N : Node_Id; Typ : Entity_Id) is
2004 Ambiguous : Boolean := False;
2005 Ctx_Type : Entity_Id := Typ;
2006 Expr_Type : Entity_Id := Empty; -- prevent junk warning
2007 Err_Type : Entity_Id := Empty;
2008 Found : Boolean := False;
2009 From_Lib : Boolean;
2010 I : Interp_Index;
2011 I1 : Interp_Index := 0; -- prevent junk warning
2012 It : Interp;
2013 It1 : Interp;
2014 Seen : Entity_Id := Empty; -- prevent junk warning
2016 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
2017 -- Determine whether a node comes from a predefined library unit or
2018 -- Standard.
2020 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
2021 -- Try and fix up a literal so that it matches its expected type. New
2022 -- literals are manufactured if necessary to avoid cascaded errors.
2024 procedure Report_Ambiguous_Argument;
2025 -- Additional diagnostics when an ambiguous call has an ambiguous
2026 -- argument (typically a controlling actual).
2028 procedure Resolution_Failed;
2029 -- Called when attempt at resolving current expression fails
2031 ------------------------------------
2032 -- Comes_From_Predefined_Lib_Unit --
2033 -------------------------------------
2035 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
2036 begin
2037 return
2038 Sloc (Nod) = Standard_Location or else In_Predefined_Unit (Nod);
2039 end Comes_From_Predefined_Lib_Unit;
2041 --------------------
2042 -- Patch_Up_Value --
2043 --------------------
2045 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
2046 begin
2047 if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then
2048 Rewrite (N,
2049 Make_Real_Literal (Sloc (N),
2050 Realval => UR_From_Uint (Intval (N))));
2051 Set_Etype (N, Universal_Real);
2052 Set_Is_Static_Expression (N);
2054 elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then
2055 Rewrite (N,
2056 Make_Integer_Literal (Sloc (N),
2057 Intval => UR_To_Uint (Realval (N))));
2058 Set_Etype (N, Universal_Integer);
2059 Set_Is_Static_Expression (N);
2061 elsif Nkind (N) = N_String_Literal
2062 and then Is_Character_Type (Typ)
2063 then
2064 Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
2065 Rewrite (N,
2066 Make_Character_Literal (Sloc (N),
2067 Chars => Name_Find,
2068 Char_Literal_Value =>
2069 UI_From_Int (Character'Pos ('A'))));
2070 Set_Etype (N, Any_Character);
2071 Set_Is_Static_Expression (N);
2073 elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then
2074 Rewrite (N,
2075 Make_String_Literal (Sloc (N),
2076 Strval => End_String));
2078 elsif Nkind (N) = N_Range then
2079 Patch_Up_Value (Low_Bound (N), Typ);
2080 Patch_Up_Value (High_Bound (N), Typ);
2081 end if;
2082 end Patch_Up_Value;
2084 -------------------------------
2085 -- Report_Ambiguous_Argument --
2086 -------------------------------
2088 procedure Report_Ambiguous_Argument is
2089 Arg : constant Node_Id := First (Parameter_Associations (N));
2090 I : Interp_Index;
2091 It : Interp;
2093 begin
2094 if Nkind (Arg) = N_Function_Call
2095 and then Is_Entity_Name (Name (Arg))
2096 and then Is_Overloaded (Name (Arg))
2097 then
2098 Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
2100 -- Examine possible interpretations, and adapt the message
2101 -- for inherited subprograms declared by a type derivation.
2103 Get_First_Interp (Name (Arg), I, It);
2104 while Present (It.Nam) loop
2105 Error_Msg_Sloc := Sloc (It.Nam);
2107 if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
2108 Error_Msg_N ("interpretation (inherited) #!", Arg);
2109 else
2110 Error_Msg_N ("interpretation #!", Arg);
2111 end if;
2113 Get_Next_Interp (I, It);
2114 end loop;
2115 end if;
2117 -- Additional message and hint if the ambiguity involves an Ada2020
2118 -- container aggregate.
2120 Check_Ambiguous_Aggregate (N);
2121 end Report_Ambiguous_Argument;
2123 -----------------------
2124 -- Resolution_Failed --
2125 -----------------------
2127 procedure Resolution_Failed is
2128 begin
2129 Patch_Up_Value (N, Typ);
2131 -- Set the type to the desired one to minimize cascaded errors. Note
2132 -- that this is an approximation and does not work in all cases.
2134 Set_Etype (N, Typ);
2136 Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
2137 Set_Is_Overloaded (N, False);
2139 -- The caller will return without calling the expander, so we need
2140 -- to set the analyzed flag. Note that it is fine to set Analyzed
2141 -- to True even if we are in the middle of a shallow analysis,
2142 -- (see the spec of sem for more details) since this is an error
2143 -- situation anyway, and there is no point in repeating the
2144 -- analysis later (indeed it won't work to repeat it later, since
2145 -- we haven't got a clear resolution of which entity is being
2146 -- referenced.)
2148 Set_Analyzed (N, True);
2149 return;
2150 end Resolution_Failed;
2152 Literal_Aspect_Map :
2153 constant array (N_Numeric_Or_String_Literal) of Aspect_Id :=
2154 (N_Integer_Literal => Aspect_Integer_Literal,
2155 N_Real_Literal => Aspect_Real_Literal,
2156 N_String_Literal => Aspect_String_Literal);
2158 -- Start of processing for Resolve
2160 begin
2161 if N = Error then
2162 return;
2163 end if;
2165 -- Access attribute on remote subprogram cannot be used for a non-remote
2166 -- access-to-subprogram type.
2168 if Nkind (N) = N_Attribute_Reference
2169 and then Attribute_Name (N) in Name_Access
2170 | Name_Unrestricted_Access
2171 | Name_Unchecked_Access
2172 and then Comes_From_Source (N)
2173 and then Is_Entity_Name (Prefix (N))
2174 and then Is_Subprogram (Entity (Prefix (N)))
2175 and then Is_Remote_Call_Interface (Entity (Prefix (N)))
2176 and then not Is_Remote_Access_To_Subprogram_Type (Typ)
2177 then
2178 Error_Msg_N
2179 ("prefix must statically denote a non-remote subprogram", N);
2180 end if;
2182 From_Lib := Comes_From_Predefined_Lib_Unit (N);
2184 -- If the context is a Remote_Access_To_Subprogram, access attributes
2185 -- must be resolved with the corresponding fat pointer. There is no need
2186 -- to check for the attribute name since the return type of an
2187 -- attribute is never a remote type.
2189 if Nkind (N) = N_Attribute_Reference
2190 and then Comes_From_Source (N)
2191 and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ))
2192 then
2193 declare
2194 Attr : constant Attribute_Id :=
2195 Get_Attribute_Id (Attribute_Name (N));
2196 Pref : constant Node_Id := Prefix (N);
2197 Decl : Node_Id;
2198 Spec : Node_Id;
2199 Is_Remote : Boolean := True;
2201 begin
2202 -- Check that Typ is a remote access-to-subprogram type
2204 if Is_Remote_Access_To_Subprogram_Type (Typ) then
2206 -- Prefix (N) must statically denote a remote subprogram
2207 -- declared in a package specification.
2209 if Attr = Attribute_Access or else
2210 Attr = Attribute_Unchecked_Access or else
2211 Attr = Attribute_Unrestricted_Access
2212 then
2213 Decl := Unit_Declaration_Node (Entity (Pref));
2215 if Nkind (Decl) = N_Subprogram_Body then
2216 Spec := Corresponding_Spec (Decl);
2218 if Present (Spec) then
2219 Decl := Unit_Declaration_Node (Spec);
2220 end if;
2221 end if;
2223 Spec := Parent (Decl);
2225 if not Is_Entity_Name (Prefix (N))
2226 or else Nkind (Spec) /= N_Package_Specification
2227 or else
2228 not Is_Remote_Call_Interface (Defining_Entity (Spec))
2229 then
2230 Is_Remote := False;
2231 Error_Msg_N
2232 ("prefix must statically denote a remote subprogram ",
2234 end if;
2236 -- If we are generating code in distributed mode, perform
2237 -- semantic checks against corresponding remote entities.
2239 if Expander_Active
2240 and then Get_PCS_Name /= Name_No_DSA
2241 then
2242 Check_Subtype_Conformant
2243 (New_Id => Entity (Prefix (N)),
2244 Old_Id => Designated_Type
2245 (Corresponding_Remote_Type (Typ)),
2246 Err_Loc => N);
2248 if Is_Remote then
2249 Process_Remote_AST_Attribute (N, Typ);
2250 end if;
2251 end if;
2252 end if;
2253 end if;
2254 end;
2255 end if;
2257 Debug_A_Entry ("resolving ", N);
2259 if Debug_Flag_V then
2260 Write_Overloads (N);
2261 end if;
2263 if Comes_From_Source (N) then
2264 if Is_Fixed_Point_Type (Typ) then
2265 Check_Restriction (No_Fixed_Point, N);
2267 elsif Is_Floating_Point_Type (Typ)
2268 and then Typ /= Universal_Real
2269 and then Typ /= Any_Real
2270 then
2271 Check_Restriction (No_Floating_Point, N);
2272 end if;
2273 end if;
2275 -- Return if already analyzed
2277 if Analyzed (N) then
2278 Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
2279 Analyze_Dimension (N);
2280 return;
2282 -- Any case of Any_Type as the Etype value means that we had a
2283 -- previous error.
2285 elsif Etype (N) = Any_Type then
2286 Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
2287 return;
2288 end if;
2290 Check_Parameterless_Call (N);
2292 -- The resolution of an Expression_With_Actions is determined by
2293 -- its Expression, but if the node comes from source it is a
2294 -- Declare_Expression and requires scope management.
2296 if Nkind (N) = N_Expression_With_Actions then
2297 if Comes_From_Source (N)
2298 and then N = Original_Node (N)
2299 then
2300 Resolve_Declare_Expression (N, Typ);
2302 else
2303 Resolve (Expression (N), Typ);
2304 end if;
2306 Found := True;
2307 Expr_Type := Etype (Expression (N));
2309 -- If not overloaded, then we know the type, and all that needs doing
2310 -- is to check that this type is compatible with the context.
2312 elsif not Is_Overloaded (N) then
2313 Found := Covers (Typ, Etype (N));
2314 Expr_Type := Etype (N);
2316 -- In the overloaded case, we must select the interpretation that
2317 -- is compatible with the context (i.e. the type passed to Resolve)
2319 else
2320 -- Loop through possible interpretations
2322 Get_First_Interp (N, I, It);
2323 Interp_Loop : while Present (It.Typ) loop
2324 if Debug_Flag_V then
2325 Write_Str ("Interp: ");
2326 Write_Interp (It);
2327 end if;
2329 -- We are only interested in interpretations that are compatible
2330 -- with the expected type, any other interpretations are ignored.
2332 if not Covers (Typ, It.Typ) then
2333 if Debug_Flag_V then
2334 Write_Str (" interpretation incompatible with context");
2335 Write_Eol;
2336 end if;
2338 else
2339 -- Skip the current interpretation if it is disabled by an
2340 -- abstract operator. This action is performed only when the
2341 -- type against which we are resolving is the same as the
2342 -- type of the interpretation.
2344 if Ada_Version >= Ada_2005
2345 and then It.Typ = Typ
2346 and then Typ /= Universal_Integer
2347 and then Typ /= Universal_Real
2348 and then Present (It.Abstract_Op)
2349 then
2350 if Debug_Flag_V then
2351 Write_Line ("Skip.");
2352 end if;
2354 goto Continue;
2355 end if;
2357 -- First matching interpretation
2359 if not Found then
2360 Found := True;
2361 I1 := I;
2362 Seen := It.Nam;
2363 Expr_Type := It.Typ;
2365 -- Matching interpretation that is not the first, maybe an
2366 -- error, but there are some cases where preference rules are
2367 -- used to choose between the two possibilities. These and
2368 -- some more obscure cases are handled in Disambiguate.
2370 else
2371 -- If the current statement is part of a predefined library
2372 -- unit, then all interpretations which come from user level
2373 -- packages should not be considered. Check previous and
2374 -- current one.
2376 if From_Lib then
2377 if not Comes_From_Predefined_Lib_Unit (It.Nam) then
2378 goto Continue;
2380 elsif not Comes_From_Predefined_Lib_Unit (Seen) then
2382 -- Previous interpretation must be discarded
2384 I1 := I;
2385 Seen := It.Nam;
2386 Expr_Type := It.Typ;
2387 Set_Entity (N, Seen);
2388 goto Continue;
2389 end if;
2390 end if;
2392 -- Otherwise apply further disambiguation steps
2394 Error_Msg_Sloc := Sloc (Seen);
2395 It1 := Disambiguate (N, I1, I, Typ);
2397 -- Disambiguation has succeeded. Skip the remaining
2398 -- interpretations.
2400 if It1 /= No_Interp then
2401 Seen := It1.Nam;
2402 Expr_Type := It1.Typ;
2404 while Present (It.Typ) loop
2405 Get_Next_Interp (I, It);
2406 end loop;
2408 else
2409 -- Before we issue an ambiguity complaint, check for the
2410 -- case of a subprogram call where at least one of the
2411 -- arguments is Any_Type, and if so suppress the message,
2412 -- since it is a cascaded error. This can also happen for
2413 -- a generalized indexing operation.
2415 if Nkind (N) in N_Subprogram_Call
2416 or else (Nkind (N) = N_Indexed_Component
2417 and then Present (Generalized_Indexing (N)))
2418 then
2419 declare
2420 A : Node_Id;
2421 E : Node_Id;
2423 begin
2424 if Nkind (N) = N_Indexed_Component then
2425 Rewrite (N, Generalized_Indexing (N));
2426 end if;
2428 A := First_Actual (N);
2429 while Present (A) loop
2430 E := A;
2432 if Nkind (E) = N_Parameter_Association then
2433 E := Explicit_Actual_Parameter (E);
2434 end if;
2436 if Etype (E) = Any_Type then
2437 if Debug_Flag_V then
2438 Write_Str ("Any_Type in call");
2439 Write_Eol;
2440 end if;
2442 exit Interp_Loop;
2443 end if;
2445 Next_Actual (A);
2446 end loop;
2447 end;
2449 elsif Nkind (N) in N_Binary_Op
2450 and then (Etype (Left_Opnd (N)) = Any_Type
2451 or else Etype (Right_Opnd (N)) = Any_Type)
2452 then
2453 exit Interp_Loop;
2455 elsif Nkind (N) in N_Unary_Op
2456 and then Etype (Right_Opnd (N)) = Any_Type
2457 then
2458 exit Interp_Loop;
2459 end if;
2461 -- Not that special case, so issue message using the flag
2462 -- Ambiguous to control printing of the header message
2463 -- only at the start of an ambiguous set.
2465 if not Ambiguous then
2466 if Nkind (N) = N_Function_Call
2467 and then Nkind (Name (N)) = N_Explicit_Dereference
2468 then
2469 Error_Msg_N
2470 ("ambiguous expression (cannot resolve indirect "
2471 & "call)!", N);
2472 else
2473 Error_Msg_NE -- CODEFIX
2474 ("ambiguous expression (cannot resolve&)!",
2475 N, It.Nam);
2476 end if;
2478 Ambiguous := True;
2480 if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2481 Error_Msg_N
2482 ("\\possible interpretation (inherited)#!", N);
2483 else
2484 Error_Msg_N -- CODEFIX
2485 ("\\possible interpretation#!", N);
2486 end if;
2488 if Nkind (N) in N_Subprogram_Call
2489 and then Present (Parameter_Associations (N))
2490 then
2491 Report_Ambiguous_Argument;
2492 end if;
2493 end if;
2495 Error_Msg_Sloc := Sloc (It.Nam);
2497 -- By default, the error message refers to the candidate
2498 -- interpretation. But if it is a predefined operator, it
2499 -- is implicitly declared at the declaration of the type
2500 -- of the operand. Recover the sloc of that declaration
2501 -- for the error message.
2503 if Nkind (N) in N_Op
2504 and then Scope (It.Nam) = Standard_Standard
2505 and then not Is_Overloaded (Right_Opnd (N))
2506 and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2507 Standard_Standard
2508 then
2509 Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2511 if Comes_From_Source (Err_Type)
2512 and then Present (Parent (Err_Type))
2513 then
2514 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2515 end if;
2517 elsif Nkind (N) in N_Binary_Op
2518 and then Scope (It.Nam) = Standard_Standard
2519 and then not Is_Overloaded (Left_Opnd (N))
2520 and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2521 Standard_Standard
2522 then
2523 Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2525 if Comes_From_Source (Err_Type)
2526 and then Present (Parent (Err_Type))
2527 then
2528 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2529 end if;
2531 -- If this is an indirect call, use the subprogram_type
2532 -- in the message, to have a meaningful location. Also
2533 -- indicate if this is an inherited operation, created
2534 -- by a type declaration.
2536 elsif Nkind (N) = N_Function_Call
2537 and then Nkind (Name (N)) = N_Explicit_Dereference
2538 and then Is_Type (It.Nam)
2539 then
2540 Err_Type := It.Nam;
2541 Error_Msg_Sloc :=
2542 Sloc (Associated_Node_For_Itype (Err_Type));
2543 else
2544 Err_Type := Empty;
2545 end if;
2547 if Nkind (N) in N_Op
2548 and then Scope (It.Nam) = Standard_Standard
2549 and then Present (Err_Type)
2550 then
2551 -- Special-case the message for universal_fixed
2552 -- operators, which are not declared with the type
2553 -- of the operand, but appear forever in Standard.
2555 if It.Typ = Universal_Fixed
2556 and then Scope (It.Nam) = Standard_Standard
2557 then
2558 Error_Msg_N
2559 ("\\possible interpretation as universal_fixed "
2560 & "operation (RM 4.5.5 (19))", N);
2561 else
2562 Error_Msg_N
2563 ("\\possible interpretation (predefined)#!", N);
2564 end if;
2566 elsif
2567 Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2568 then
2569 Error_Msg_N
2570 ("\\possible interpretation (inherited)#!", N);
2571 else
2572 Error_Msg_N -- CODEFIX
2573 ("\\possible interpretation#!", N);
2574 end if;
2576 end if;
2577 end if;
2579 -- We have a matching interpretation, Expr_Type is the type
2580 -- from this interpretation, and Seen is the entity.
2582 -- For an operator, just set the entity name. The type will be
2583 -- set by the specific operator resolution routine.
2585 if Nkind (N) in N_Op then
2586 Set_Entity (N, Seen);
2587 Generate_Reference (Seen, N);
2589 elsif Nkind (N) in N_Case_Expression
2590 | N_Character_Literal
2591 | N_Delta_Aggregate
2592 | N_If_Expression
2593 then
2594 Set_Etype (N, Expr_Type);
2596 -- AI05-0139-2: Expression is overloaded because type has
2597 -- implicit dereference. The context may be the one that
2598 -- requires implicit dereferemce.
2600 elsif Has_Implicit_Dereference (Expr_Type) then
2601 Set_Etype (N, Expr_Type);
2602 Set_Is_Overloaded (N, False);
2604 -- If the expression is an entity, generate a reference
2605 -- to it, as this is not done for an overloaded construct
2606 -- during analysis.
2608 if Is_Entity_Name (N)
2609 and then Comes_From_Source (N)
2610 then
2611 Generate_Reference (Entity (N), N);
2613 -- Examine access discriminants of entity type,
2614 -- to check whether one of them yields the
2615 -- expected type.
2617 declare
2618 Disc : Entity_Id :=
2619 First_Discriminant (Etype (Entity (N)));
2621 begin
2622 while Present (Disc) loop
2623 exit when Is_Access_Type (Etype (Disc))
2624 and then Has_Implicit_Dereference (Disc)
2625 and then Designated_Type (Etype (Disc)) = Typ;
2627 Next_Discriminant (Disc);
2628 end loop;
2630 if Present (Disc) then
2631 Build_Explicit_Dereference (N, Disc);
2632 end if;
2633 end;
2634 end if;
2636 exit Interp_Loop;
2638 elsif Is_Overloaded (N)
2639 and then Present (It.Nam)
2640 and then Ekind (It.Nam) = E_Discriminant
2641 and then Has_Implicit_Dereference (It.Nam)
2642 then
2643 -- If the node is a general indexing, the dereference is
2644 -- is inserted when resolving the rewritten form, else
2645 -- insert it now.
2647 if Nkind (N) /= N_Indexed_Component
2648 or else No (Generalized_Indexing (N))
2649 then
2650 Build_Explicit_Dereference (N, It.Nam);
2651 end if;
2653 -- For an explicit dereference, attribute reference, range,
2654 -- short-circuit form (which is not an operator node), or call
2655 -- with a name that is an explicit dereference, there is
2656 -- nothing to be done at this point.
2658 elsif Nkind (N) in N_Attribute_Reference
2659 | N_And_Then
2660 | N_Explicit_Dereference
2661 | N_Identifier
2662 | N_Indexed_Component
2663 | N_Or_Else
2664 | N_Range
2665 | N_Selected_Component
2666 | N_Slice
2667 or else Nkind (Name (N)) = N_Explicit_Dereference
2668 then
2669 null;
2671 -- For procedure or function calls, set the type of the name,
2672 -- and also the entity pointer for the prefix.
2674 elsif Nkind (N) in N_Subprogram_Call
2675 and then Is_Entity_Name (Name (N))
2676 then
2677 Set_Etype (Name (N), Expr_Type);
2678 Set_Entity (Name (N), Seen);
2679 Generate_Reference (Seen, Name (N));
2681 elsif Nkind (N) = N_Function_Call
2682 and then Nkind (Name (N)) = N_Selected_Component
2683 then
2684 Set_Etype (Name (N), Expr_Type);
2685 Set_Entity (Selector_Name (Name (N)), Seen);
2686 Generate_Reference (Seen, Selector_Name (Name (N)));
2688 -- For all other cases, just set the type of the Name
2690 else
2691 Set_Etype (Name (N), Expr_Type);
2692 end if;
2694 end if;
2696 <<Continue>>
2698 -- Move to next interpretation
2700 exit Interp_Loop when No (It.Typ);
2702 Get_Next_Interp (I, It);
2703 end loop Interp_Loop;
2704 end if;
2706 -- At this stage Found indicates whether or not an acceptable
2707 -- interpretation exists. If not, then we have an error, except that if
2708 -- the context is Any_Type as a result of some other error, then we
2709 -- suppress the error report.
2711 if not Found then
2712 if Typ /= Any_Type then
2714 -- If type we are looking for is Void, then this is the procedure
2715 -- call case, and the error is simply that what we gave is not a
2716 -- procedure name (we think of procedure calls as expressions with
2717 -- types internally, but the user doesn't think of them this way).
2719 if Typ = Standard_Void_Type then
2721 -- Special case message if function used as a procedure
2723 if Nkind (N) = N_Procedure_Call_Statement
2724 and then Is_Entity_Name (Name (N))
2725 and then Ekind (Entity (Name (N))) = E_Function
2726 then
2727 Error_Msg_NE
2728 ("cannot use call to function & as a statement",
2729 Name (N), Entity (Name (N)));
2730 Error_Msg_N
2731 ("\return value of a function call cannot be ignored",
2732 Name (N));
2734 -- Otherwise give general message (not clear what cases this
2735 -- covers, but no harm in providing for them).
2737 else
2738 Error_Msg_N ("expect procedure name in procedure call", N);
2739 end if;
2741 Found := True;
2743 -- Otherwise we do have a subexpression with the wrong type
2745 -- Check for the case of an allocator which uses an access type
2746 -- instead of the designated type. This is a common error and we
2747 -- specialize the message, posting an error on the operand of the
2748 -- allocator, complaining that we expected the designated type of
2749 -- the allocator.
2751 elsif Nkind (N) = N_Allocator
2752 and then Is_Access_Type (Typ)
2753 and then Is_Access_Type (Etype (N))
2754 and then Designated_Type (Etype (N)) = Typ
2755 then
2756 Wrong_Type (Expression (N), Designated_Type (Typ));
2757 Found := True;
2759 -- Check for view mismatch on Null in instances, for which the
2760 -- view-swapping mechanism has no identifier.
2762 elsif (In_Instance or else In_Inlined_Body)
2763 and then (Nkind (N) = N_Null)
2764 and then Is_Private_Type (Typ)
2765 and then Is_Access_Type (Full_View (Typ))
2766 then
2767 Resolve (N, Full_View (Typ));
2768 Set_Etype (N, Typ);
2769 return;
2771 -- Check for an aggregate. Sometimes we can get bogus aggregates
2772 -- from misuse of parentheses, and we are about to complain about
2773 -- the aggregate without even looking inside it.
2775 -- Instead, if we have an aggregate of type Any_Composite, then
2776 -- analyze and resolve the component fields, and then only issue
2777 -- another message if we get no errors doing this (otherwise
2778 -- assume that the errors in the aggregate caused the problem).
2780 elsif Nkind (N) = N_Aggregate
2781 and then Etype (N) = Any_Composite
2782 then
2783 if Ada_Version >= Ada_2020
2784 and then Has_Aspect (Typ, Aspect_Aggregate)
2785 then
2786 Resolve_Container_Aggregate (N, Typ);
2788 if Expander_Active then
2789 Expand (N);
2790 end if;
2791 return;
2792 end if;
2794 -- Disable expansion in any case. If there is a type mismatch
2795 -- it may be fatal to try to expand the aggregate. The flag
2796 -- would otherwise be set to false when the error is posted.
2798 Expander_Active := False;
2800 declare
2801 procedure Check_Aggr (Aggr : Node_Id);
2802 -- Check one aggregate, and set Found to True if we have a
2803 -- definite error in any of its elements
2805 procedure Check_Elmt (Aelmt : Node_Id);
2806 -- Check one element of aggregate and set Found to True if
2807 -- we definitely have an error in the element.
2809 ----------------
2810 -- Check_Aggr --
2811 ----------------
2813 procedure Check_Aggr (Aggr : Node_Id) is
2814 Elmt : Node_Id;
2816 begin
2817 if Present (Expressions (Aggr)) then
2818 Elmt := First (Expressions (Aggr));
2819 while Present (Elmt) loop
2820 Check_Elmt (Elmt);
2821 Next (Elmt);
2822 end loop;
2823 end if;
2825 if Present (Component_Associations (Aggr)) then
2826 Elmt := First (Component_Associations (Aggr));
2827 while Present (Elmt) loop
2829 -- If this is a default-initialized component, then
2830 -- there is nothing to check. The box will be
2831 -- replaced by the appropriate call during late
2832 -- expansion.
2834 if Nkind (Elmt) /= N_Iterated_Component_Association
2835 and then not Box_Present (Elmt)
2836 then
2837 Check_Elmt (Expression (Elmt));
2838 end if;
2840 Next (Elmt);
2841 end loop;
2842 end if;
2843 end Check_Aggr;
2845 ----------------
2846 -- Check_Elmt --
2847 ----------------
2849 procedure Check_Elmt (Aelmt : Node_Id) is
2850 begin
2851 -- If we have a nested aggregate, go inside it (to
2852 -- attempt a naked analyze-resolve of the aggregate can
2853 -- cause undesirable cascaded errors). Do not resolve
2854 -- expression if it needs a type from context, as for
2855 -- integer * fixed expression.
2857 if Nkind (Aelmt) = N_Aggregate then
2858 Check_Aggr (Aelmt);
2860 else
2861 Analyze (Aelmt);
2863 if not Is_Overloaded (Aelmt)
2864 and then Etype (Aelmt) /= Any_Fixed
2865 then
2866 Resolve (Aelmt);
2867 end if;
2869 if Etype (Aelmt) = Any_Type then
2870 Found := True;
2871 end if;
2872 end if;
2873 end Check_Elmt;
2875 begin
2876 Check_Aggr (N);
2877 end;
2878 end if;
2880 -- Rewrite Literal as a call if the corresponding literal aspect
2881 -- is set.
2883 if Nkind (N) in N_Numeric_Or_String_Literal
2884 and then Present
2885 (Find_Aspect (Typ, Literal_Aspect_Map (Nkind (N))))
2886 then
2887 declare
2888 function Literal_Text (N : Node_Id) return String_Id;
2889 -- Returns the text of a literal node
2891 -------------------
2892 -- Literal_Text --
2893 -------------------
2895 function Literal_Text (N : Node_Id) return String_Id is
2896 begin
2897 pragma Assert (Nkind (N) in N_Numeric_Or_String_Literal);
2899 if Nkind (N) = N_String_Literal then
2900 return Strval (N);
2901 else
2902 return String_From_Numeric_Literal (N);
2903 end if;
2904 end Literal_Text;
2906 Lit_Aspect : constant Aspect_Id :=
2907 Literal_Aspect_Map (Nkind (N));
2909 Callee : constant Entity_Id :=
2910 Entity (Expression (Find_Aspect (Typ, Lit_Aspect)));
2912 Loc : constant Source_Ptr := Sloc (N);
2914 Name : constant Node_Id :=
2915 Make_Identifier (Loc, Chars (Callee));
2917 Param : constant Node_Id :=
2918 Make_String_Literal (Loc, Literal_Text (N));
2920 Params : constant List_Id := New_List (Param);
2922 Call : Node_Id :=
2923 Make_Function_Call
2924 (Sloc => Loc,
2925 Name => Name,
2926 Parameter_Associations => Params);
2927 begin
2928 Set_Entity (Name, Callee);
2929 Set_Is_Overloaded (Name, False);
2930 if Lit_Aspect = Aspect_String_Literal then
2931 Set_Etype (Param, Standard_Wide_Wide_String);
2932 else
2933 Set_Etype (Param, Standard_String);
2934 end if;
2935 Set_Etype (Call, Etype (Callee));
2937 -- Conversion needed in case of an inherited aspect
2938 -- of a derived type.
2940 -- ??? Need to do something different here for downward
2941 -- tagged conversion case (which is only possible in the
2942 -- case of a null extension); the current call to
2943 -- Convert_To results in an error message about an illegal
2944 -- downward conversion.
2946 Call := Convert_To (Typ, Call);
2948 Rewrite (N, Call);
2949 end;
2950 Analyze_And_Resolve (N, Typ);
2951 return;
2952 end if;
2954 -- Looks like we have a type error, but check for special case
2955 -- of Address wanted, integer found, with the configuration pragma
2956 -- Allow_Integer_Address active. If we have this case, introduce
2957 -- an unchecked conversion to allow the integer expression to be
2958 -- treated as an Address. The reverse case of integer wanted,
2959 -- Address found, is treated in an analogous manner.
2961 if Address_Integer_Convert_OK (Typ, Etype (N)) then
2962 Rewrite (N, Unchecked_Convert_To (Typ, Relocate_Node (N)));
2963 Analyze_And_Resolve (N, Typ);
2964 return;
2966 -- Under relaxed RM semantics silently replace occurrences of null
2967 -- by System.Null_Address.
2969 elsif Null_To_Null_Address_Convert_OK (N, Typ) then
2970 Replace_Null_By_Null_Address (N);
2971 Analyze_And_Resolve (N, Typ);
2972 return;
2973 end if;
2975 -- That special Allow_Integer_Address check did not apply, so we
2976 -- have a real type error. If an error message was issued already,
2977 -- Found got reset to True, so if it's still False, issue standard
2978 -- Wrong_Type message.
2980 if not Found then
2981 if Is_Overloaded (N) and then Nkind (N) = N_Function_Call then
2982 declare
2983 Subp_Name : Node_Id;
2985 begin
2986 if Is_Entity_Name (Name (N)) then
2987 Subp_Name := Name (N);
2989 elsif Nkind (Name (N)) = N_Selected_Component then
2991 -- Protected operation: retrieve operation name
2993 Subp_Name := Selector_Name (Name (N));
2995 else
2996 raise Program_Error;
2997 end if;
2999 Error_Msg_Node_2 := Typ;
3000 Error_Msg_NE
3001 ("no visible interpretation of& matches expected type&",
3002 N, Subp_Name);
3003 end;
3005 if All_Errors_Mode then
3006 declare
3007 Index : Interp_Index;
3008 It : Interp;
3010 begin
3011 Error_Msg_N ("\\possible interpretations:", N);
3013 Get_First_Interp (Name (N), Index, It);
3014 while Present (It.Nam) loop
3015 Error_Msg_Sloc := Sloc (It.Nam);
3016 Error_Msg_Node_2 := It.Nam;
3017 Error_Msg_NE
3018 ("\\ type& for & declared#", N, It.Typ);
3019 Get_Next_Interp (Index, It);
3020 end loop;
3021 end;
3023 else
3024 Error_Msg_N ("\use -gnatf for details", N);
3025 end if;
3027 else
3028 Wrong_Type (N, Typ);
3029 end if;
3030 end if;
3031 end if;
3033 Resolution_Failed;
3034 return;
3036 -- Test if we have more than one interpretation for the context
3038 elsif Ambiguous then
3039 Resolution_Failed;
3040 return;
3042 -- Only one interpretation
3044 else
3045 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
3046 -- the "+" on T is abstract, and the operands are of universal type,
3047 -- the above code will have (incorrectly) resolved the "+" to the
3048 -- universal one in Standard. Therefore check for this case and give
3049 -- an error. We can't do this earlier, because it would cause legal
3050 -- cases to get errors (when some other type has an abstract "+").
3052 if Ada_Version >= Ada_2005
3053 and then Nkind (N) in N_Op
3054 and then Is_Overloaded (N)
3055 and then Is_Universal_Numeric_Type (Etype (Entity (N)))
3056 then
3057 Get_First_Interp (N, I, It);
3058 while Present (It.Typ) loop
3059 if Present (It.Abstract_Op) and then
3060 Etype (It.Abstract_Op) = Typ
3061 then
3062 Error_Msg_NE
3063 ("cannot call abstract subprogram &!", N, It.Abstract_Op);
3064 return;
3065 end if;
3067 Get_Next_Interp (I, It);
3068 end loop;
3069 end if;
3071 -- Here we have an acceptable interpretation for the context
3073 -- Propagate type information and normalize tree for various
3074 -- predefined operations. If the context only imposes a class of
3075 -- types, rather than a specific type, propagate the actual type
3076 -- downward.
3078 if Typ = Any_Integer or else
3079 Typ = Any_Boolean or else
3080 Typ = Any_Modular or else
3081 Typ = Any_Real or else
3082 Typ = Any_Discrete
3083 then
3084 Ctx_Type := Expr_Type;
3086 -- Any_Fixed is legal in a real context only if a specific fixed-
3087 -- point type is imposed. If Norman Cohen can be confused by this,
3088 -- it deserves a separate message.
3090 if Typ = Any_Real
3091 and then Expr_Type = Any_Fixed
3092 then
3093 Error_Msg_N ("illegal context for mixed mode operation", N);
3094 Set_Etype (N, Universal_Real);
3095 Ctx_Type := Universal_Real;
3096 end if;
3097 end if;
3099 -- A user-defined operator is transformed into a function call at
3100 -- this point, so that further processing knows that operators are
3101 -- really operators (i.e. are predefined operators). User-defined
3102 -- operators that are intrinsic are just renamings of the predefined
3103 -- ones, and need not be turned into calls either, but if they rename
3104 -- a different operator, we must transform the node accordingly.
3105 -- Instantiations of Unchecked_Conversion are intrinsic but are
3106 -- treated as functions, even if given an operator designator.
3108 if Nkind (N) in N_Op
3109 and then Present (Entity (N))
3110 and then Ekind (Entity (N)) /= E_Operator
3111 then
3112 if not Is_Predefined_Op (Entity (N)) then
3113 Rewrite_Operator_As_Call (N, Entity (N));
3115 elsif Present (Alias (Entity (N)))
3116 and then
3117 Nkind (Parent (Parent (Entity (N)))) =
3118 N_Subprogram_Renaming_Declaration
3119 then
3120 Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
3122 -- If the node is rewritten, it will be fully resolved in
3123 -- Rewrite_Renamed_Operator.
3125 if Analyzed (N) then
3126 return;
3127 end if;
3128 end if;
3129 end if;
3131 case N_Subexpr'(Nkind (N)) is
3132 when N_Aggregate =>
3133 Resolve_Aggregate (N, Ctx_Type);
3135 when N_Allocator =>
3136 Resolve_Allocator (N, Ctx_Type);
3138 when N_Short_Circuit =>
3139 Resolve_Short_Circuit (N, Ctx_Type);
3141 when N_Attribute_Reference =>
3142 Resolve_Attribute (N, Ctx_Type);
3144 when N_Case_Expression =>
3145 Resolve_Case_Expression (N, Ctx_Type);
3147 when N_Character_Literal =>
3148 Resolve_Character_Literal (N, Ctx_Type);
3150 when N_Delta_Aggregate =>
3151 Resolve_Delta_Aggregate (N, Ctx_Type);
3153 when N_Expanded_Name =>
3154 Resolve_Entity_Name (N, Ctx_Type);
3156 when N_Explicit_Dereference =>
3157 Resolve_Explicit_Dereference (N, Ctx_Type);
3159 when N_Expression_With_Actions =>
3160 Resolve_Expression_With_Actions (N, Ctx_Type);
3162 when N_Extension_Aggregate =>
3163 Resolve_Extension_Aggregate (N, Ctx_Type);
3165 when N_Function_Call =>
3166 Resolve_Call (N, Ctx_Type);
3168 when N_Identifier =>
3169 Resolve_Entity_Name (N, Ctx_Type);
3171 when N_If_Expression =>
3172 Resolve_If_Expression (N, Ctx_Type);
3174 when N_Indexed_Component =>
3175 Resolve_Indexed_Component (N, Ctx_Type);
3177 when N_Integer_Literal =>
3178 Resolve_Integer_Literal (N, Ctx_Type);
3180 when N_Membership_Test =>
3181 Resolve_Membership_Op (N, Ctx_Type);
3183 when N_Null =>
3184 Resolve_Null (N, Ctx_Type);
3186 when N_Op_And
3187 | N_Op_Or
3188 | N_Op_Xor
3190 Resolve_Logical_Op (N, Ctx_Type);
3192 when N_Op_Eq
3193 | N_Op_Ne
3195 Resolve_Equality_Op (N, Ctx_Type);
3197 when N_Op_Ge
3198 | N_Op_Gt
3199 | N_Op_Le
3200 | N_Op_Lt
3202 Resolve_Comparison_Op (N, Ctx_Type);
3204 when N_Op_Not =>
3205 Resolve_Op_Not (N, Ctx_Type);
3207 when N_Op_Add
3208 | N_Op_Divide
3209 | N_Op_Mod
3210 | N_Op_Multiply
3211 | N_Op_Rem
3212 | N_Op_Subtract
3214 Resolve_Arithmetic_Op (N, Ctx_Type);
3216 when N_Op_Concat =>
3217 Resolve_Op_Concat (N, Ctx_Type);
3219 when N_Op_Expon =>
3220 Resolve_Op_Expon (N, Ctx_Type);
3222 when N_Op_Abs
3223 | N_Op_Minus
3224 | N_Op_Plus
3226 Resolve_Unary_Op (N, Ctx_Type);
3228 when N_Op_Shift =>
3229 Resolve_Shift (N, Ctx_Type);
3231 when N_Procedure_Call_Statement =>
3232 Resolve_Call (N, Ctx_Type);
3234 when N_Operator_Symbol =>
3235 Resolve_Operator_Symbol (N, Ctx_Type);
3237 when N_Qualified_Expression =>
3238 Resolve_Qualified_Expression (N, Ctx_Type);
3240 -- Why is the following null, needs a comment ???
3242 when N_Quantified_Expression =>
3243 null;
3245 when N_Raise_Expression =>
3246 Resolve_Raise_Expression (N, Ctx_Type);
3248 when N_Raise_xxx_Error =>
3249 Set_Etype (N, Ctx_Type);
3251 when N_Range =>
3252 Resolve_Range (N, Ctx_Type);
3254 when N_Real_Literal =>
3255 Resolve_Real_Literal (N, Ctx_Type);
3257 when N_Reference =>
3258 Resolve_Reference (N, Ctx_Type);
3260 when N_Selected_Component =>
3261 Resolve_Selected_Component (N, Ctx_Type);
3263 when N_Slice =>
3264 Resolve_Slice (N, Ctx_Type);
3266 when N_String_Literal =>
3267 Resolve_String_Literal (N, Ctx_Type);
3269 when N_Target_Name =>
3270 Resolve_Target_Name (N, Ctx_Type);
3272 when N_Type_Conversion =>
3273 Resolve_Type_Conversion (N, Ctx_Type);
3275 when N_Unchecked_Expression =>
3276 Resolve_Unchecked_Expression (N, Ctx_Type);
3278 when N_Unchecked_Type_Conversion =>
3279 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
3280 end case;
3282 -- Mark relevant use-type and use-package clauses as effective using
3283 -- the original node because constant folding may have occured and
3284 -- removed references that need to be examined.
3286 if Nkind (Original_Node (N)) in N_Op then
3287 Mark_Use_Clauses (Original_Node (N));
3288 end if;
3290 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
3291 -- expression of an anonymous access type that occurs in the context
3292 -- of a named general access type, except when the expression is that
3293 -- of a membership test. This ensures proper legality checking in
3294 -- terms of allowed conversions (expressions that would be illegal to
3295 -- convert implicitly are allowed in membership tests).
3297 if Ada_Version >= Ada_2012
3298 and then Ekind (Base_Type (Ctx_Type)) = E_General_Access_Type
3299 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
3300 and then Nkind (Parent (N)) not in N_Membership_Test
3301 then
3302 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
3303 Analyze_And_Resolve (N, Ctx_Type);
3304 end if;
3306 -- If the subexpression was replaced by a non-subexpression, then
3307 -- all we do is to expand it. The only legitimate case we know of
3308 -- is converting procedure call statement to entry call statements,
3309 -- but there may be others, so we are making this test general.
3311 if Nkind (N) not in N_Subexpr then
3312 Debug_A_Exit ("resolving ", N, " (done)");
3313 Expand (N);
3314 return;
3315 end if;
3317 -- The expression is definitely NOT overloaded at this point, so
3318 -- we reset the Is_Overloaded flag to avoid any confusion when
3319 -- reanalyzing the node.
3321 Set_Is_Overloaded (N, False);
3323 -- Freeze expression type, entity if it is a name, and designated
3324 -- type if it is an allocator (RM 13.14(10,11,13)).
3326 -- Now that the resolution of the type of the node is complete, and
3327 -- we did not detect an error, we can expand this node. We skip the
3328 -- expand call if we are in a default expression, see section
3329 -- "Handling of Default Expressions" in Sem spec.
3331 Debug_A_Exit ("resolving ", N, " (done)");
3333 -- We unconditionally freeze the expression, even if we are in
3334 -- default expression mode (the Freeze_Expression routine tests this
3335 -- flag and only freezes static types if it is set).
3337 -- Ada 2012 (AI05-177): The declaration of an expression function
3338 -- does not cause freezing, but we never reach here in that case.
3339 -- Here we are resolving the corresponding expanded body, so we do
3340 -- need to perform normal freezing.
3342 -- As elsewhere we do not emit freeze node within a generic. We make
3343 -- an exception for entities that are expressions, only to detect
3344 -- misuses of deferred constants and preserve the output of various
3345 -- tests.
3347 if not Inside_A_Generic or else Is_Entity_Name (N) then
3348 Freeze_Expression (N);
3349 end if;
3351 -- Now we can do the expansion
3353 Expand (N);
3354 end if;
3355 end Resolve;
3357 -------------
3358 -- Resolve --
3359 -------------
3361 -- Version with check(s) suppressed
3363 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
3364 begin
3365 if Suppress = All_Checks then
3366 declare
3367 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
3368 begin
3369 Scope_Suppress.Suppress := (others => True);
3370 Resolve (N, Typ);
3371 Scope_Suppress.Suppress := Sva;
3372 end;
3374 else
3375 declare
3376 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
3377 begin
3378 Scope_Suppress.Suppress (Suppress) := True;
3379 Resolve (N, Typ);
3380 Scope_Suppress.Suppress (Suppress) := Svg;
3381 end;
3382 end if;
3383 end Resolve;
3385 -------------
3386 -- Resolve --
3387 -------------
3389 -- Version with implicit type
3391 procedure Resolve (N : Node_Id) is
3392 begin
3393 Resolve (N, Etype (N));
3394 end Resolve;
3396 ---------------------
3397 -- Resolve_Actuals --
3398 ---------------------
3400 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
3401 Loc : constant Source_Ptr := Sloc (N);
3402 A : Node_Id;
3403 A_Id : Entity_Id;
3404 A_Typ : Entity_Id := Empty; -- init to avoid warning
3405 F : Entity_Id;
3406 F_Typ : Entity_Id;
3407 Prev : Node_Id := Empty;
3408 Orig_A : Node_Id;
3409 Real_F : Entity_Id := Empty; -- init to avoid warning
3411 Real_Subp : Entity_Id;
3412 -- If the subprogram being called is an inherited operation for
3413 -- a formal derived type in an instance, Real_Subp is the subprogram
3414 -- that will be called. It may have different formal names than the
3415 -- operation of the formal in the generic, so after actual is resolved
3416 -- the name of the actual in a named association must carry the name
3417 -- of the actual of the subprogram being called.
3419 procedure Check_Aliased_Parameter;
3420 -- Check rules on aliased parameters and related accessibility rules
3421 -- in (RM 3.10.2 (10.2-10.4)).
3423 procedure Check_Argument_Order;
3424 -- Performs a check for the case where the actuals are all simple
3425 -- identifiers that correspond to the formal names, but in the wrong
3426 -- order, which is considered suspicious and cause for a warning.
3428 procedure Check_Prefixed_Call;
3429 -- If the original node is an overloaded call in prefix notation,
3430 -- insert an 'Access or a dereference as needed over the first actual.
3431 -- Try_Object_Operation has already verified that there is a valid
3432 -- interpretation, but the form of the actual can only be determined
3433 -- once the primitive operation is identified.
3435 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id);
3436 -- Emit an error concerning the illegal usage of an effectively volatile
3437 -- object for reading in interfering context (SPARK RM 7.1.3(10)).
3439 procedure Insert_Default;
3440 -- If the actual is missing in a call, insert in the actuals list
3441 -- an instance of the default expression. The insertion is always
3442 -- a named association.
3444 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
3445 -- Check whether T1 and T2, or their full views, are derived from a
3446 -- common type. Used to enforce the restrictions on array conversions
3447 -- of AI95-00246.
3449 function Static_Concatenation (N : Node_Id) return Boolean;
3450 -- Predicate to determine whether an actual that is a concatenation
3451 -- will be evaluated statically and does not need a transient scope.
3452 -- This must be determined before the actual is resolved and expanded
3453 -- because if needed the transient scope must be introduced earlier.
3455 -----------------------------
3456 -- Check_Aliased_Parameter --
3457 -----------------------------
3459 procedure Check_Aliased_Parameter is
3460 Nominal_Subt : Entity_Id;
3462 begin
3463 if Is_Aliased (F) then
3464 if Is_Tagged_Type (A_Typ) then
3465 null;
3467 elsif Is_Aliased_View (A) then
3468 if Is_Constr_Subt_For_U_Nominal (A_Typ) then
3469 Nominal_Subt := Base_Type (A_Typ);
3470 else
3471 Nominal_Subt := A_Typ;
3472 end if;
3474 if Subtypes_Statically_Match (F_Typ, Nominal_Subt) then
3475 null;
3477 -- In a generic body assume the worst for generic formals:
3478 -- they can have a constrained partial view (AI05-041).
3480 elsif Has_Discriminants (F_Typ)
3481 and then not Is_Constrained (F_Typ)
3482 and then not Has_Constrained_Partial_View (F_Typ)
3483 and then not Is_Generic_Type (F_Typ)
3484 then
3485 null;
3487 else
3488 Error_Msg_NE ("untagged actual does not match "
3489 & "aliased formal&", A, F);
3490 end if;
3492 else
3493 Error_Msg_NE ("actual for aliased formal& must be "
3494 & "aliased object", A, F);
3495 end if;
3497 if Ekind (Nam) = E_Procedure then
3498 null;
3500 elsif Ekind (Etype (Nam)) = E_Anonymous_Access_Type then
3501 if Nkind (Parent (N)) = N_Type_Conversion
3502 and then Type_Access_Level (Etype (Parent (N))) <
3503 Object_Access_Level (A)
3504 then
3505 Error_Msg_N ("aliased actual has wrong accessibility", A);
3506 end if;
3508 elsif Nkind (Parent (N)) = N_Qualified_Expression
3509 and then Nkind (Parent (Parent (N))) = N_Allocator
3510 and then Type_Access_Level (Etype (Parent (Parent (N)))) <
3511 Object_Access_Level (A)
3512 then
3513 Error_Msg_N
3514 ("aliased actual in allocator has wrong accessibility", A);
3515 end if;
3516 end if;
3517 end Check_Aliased_Parameter;
3519 --------------------------
3520 -- Check_Argument_Order --
3521 --------------------------
3523 procedure Check_Argument_Order is
3524 begin
3525 -- Nothing to do if no parameters, or original node is neither a
3526 -- function call nor a procedure call statement (happens in the
3527 -- operator-transformed-to-function call case), or the call is to an
3528 -- operator symbol (which is usually in infix form), or the call does
3529 -- not come from source, or this warning is off.
3531 if not Warn_On_Parameter_Order
3532 or else No (Parameter_Associations (N))
3533 or else Nkind (Original_Node (N)) not in N_Subprogram_Call
3534 or else (Nkind (Name (N)) = N_Identifier
3535 and then Present (Entity (Name (N)))
3536 and then Nkind (Entity (Name (N))) =
3537 N_Defining_Operator_Symbol)
3538 or else not Comes_From_Source (N)
3539 then
3540 return;
3541 end if;
3543 declare
3544 Nargs : constant Nat := List_Length (Parameter_Associations (N));
3546 begin
3547 -- Nothing to do if only one parameter
3549 if Nargs < 2 then
3550 return;
3551 end if;
3553 -- Here if at least two arguments
3555 declare
3556 Actuals : array (1 .. Nargs) of Node_Id;
3557 Actual : Node_Id;
3558 Formal : Node_Id;
3560 Wrong_Order : Boolean := False;
3561 -- Set True if an out of order case is found
3563 begin
3564 -- Collect identifier names of actuals, fail if any actual is
3565 -- not a simple identifier, and record max length of name.
3567 Actual := First (Parameter_Associations (N));
3568 for J in Actuals'Range loop
3569 if Nkind (Actual) /= N_Identifier then
3570 return;
3571 else
3572 Actuals (J) := Actual;
3573 Next (Actual);
3574 end if;
3575 end loop;
3577 -- If we got this far, all actuals are identifiers and the list
3578 -- of their names is stored in the Actuals array.
3580 Formal := First_Formal (Nam);
3581 for J in Actuals'Range loop
3583 -- If we ran out of formals, that's odd, probably an error
3584 -- which will be detected elsewhere, but abandon the search.
3586 if No (Formal) then
3587 return;
3588 end if;
3590 -- If name matches and is in order OK
3592 if Chars (Formal) = Chars (Actuals (J)) then
3593 null;
3595 else
3596 -- If no match, see if it is elsewhere in list and if so
3597 -- flag potential wrong order if type is compatible.
3599 for K in Actuals'Range loop
3600 if Chars (Formal) = Chars (Actuals (K))
3601 and then
3602 Has_Compatible_Type (Actuals (K), Etype (Formal))
3603 then
3604 Wrong_Order := True;
3605 goto Continue;
3606 end if;
3607 end loop;
3609 -- No match
3611 return;
3612 end if;
3614 <<Continue>> Next_Formal (Formal);
3615 end loop;
3617 -- If Formals left over, also probably an error, skip warning
3619 if Present (Formal) then
3620 return;
3621 end if;
3623 -- Here we give the warning if something was out of order
3625 if Wrong_Order then
3626 Error_Msg_N
3627 ("?P?actuals for this call may be in wrong order", N);
3628 end if;
3629 end;
3630 end;
3631 end Check_Argument_Order;
3633 -------------------------
3634 -- Check_Prefixed_Call --
3635 -------------------------
3637 procedure Check_Prefixed_Call is
3638 Act : constant Node_Id := First_Actual (N);
3639 A_Type : constant Entity_Id := Etype (Act);
3640 F_Type : constant Entity_Id := Etype (First_Formal (Nam));
3641 Orig : constant Node_Id := Original_Node (N);
3642 New_A : Node_Id;
3644 begin
3645 -- Check whether the call is a prefixed call, with or without
3646 -- additional actuals.
3648 if Nkind (Orig) = N_Selected_Component
3649 or else
3650 (Nkind (Orig) = N_Indexed_Component
3651 and then Nkind (Prefix (Orig)) = N_Selected_Component
3652 and then Is_Entity_Name (Prefix (Prefix (Orig)))
3653 and then Is_Entity_Name (Act)
3654 and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
3655 then
3656 if Is_Access_Type (A_Type)
3657 and then not Is_Access_Type (F_Type)
3658 then
3659 -- Introduce dereference on object in prefix
3661 New_A :=
3662 Make_Explicit_Dereference (Sloc (Act),
3663 Prefix => Relocate_Node (Act));
3664 Rewrite (Act, New_A);
3665 Analyze (Act);
3667 elsif Is_Access_Type (F_Type)
3668 and then not Is_Access_Type (A_Type)
3669 then
3670 -- Introduce an implicit 'Access in prefix
3672 if not Is_Aliased_View (Act) then
3673 Error_Msg_NE
3674 ("object in prefixed call to& must be aliased "
3675 & "(RM 4.1.3 (13 1/2))",
3676 Prefix (Act), Nam);
3677 end if;
3679 Rewrite (Act,
3680 Make_Attribute_Reference (Loc,
3681 Attribute_Name => Name_Access,
3682 Prefix => Relocate_Node (Act)));
3683 end if;
3685 Analyze (Act);
3686 end if;
3687 end Check_Prefixed_Call;
3689 ---------------------------------------
3690 -- Flag_Effectively_Volatile_Objects --
3691 ---------------------------------------
3693 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id) is
3694 function Flag_Object (N : Node_Id) return Traverse_Result;
3695 -- Determine whether arbitrary node N denotes an effectively volatile
3696 -- object for reading and if it does, emit an error.
3698 -----------------
3699 -- Flag_Object --
3700 -----------------
3702 function Flag_Object (N : Node_Id) return Traverse_Result is
3703 Id : Entity_Id;
3705 begin
3706 -- Do not consider nested function calls because they have already
3707 -- been processed during their own resolution.
3709 if Nkind (N) = N_Function_Call then
3710 return Skip;
3712 elsif Is_Entity_Name (N) and then Present (Entity (N)) then
3713 Id := Entity (N);
3715 if Is_Object (Id)
3716 and then Is_Effectively_Volatile_For_Reading (Id)
3717 then
3718 Error_Msg_N
3719 ("volatile object cannot appear in this context (SPARK "
3720 & "RM 7.1.3(10))", N);
3721 return Skip;
3722 end if;
3723 end if;
3725 return OK;
3726 end Flag_Object;
3728 procedure Flag_Objects is new Traverse_Proc (Flag_Object);
3730 -- Start of processing for Flag_Effectively_Volatile_Objects
3732 begin
3733 Flag_Objects (Expr);
3734 end Flag_Effectively_Volatile_Objects;
3736 --------------------
3737 -- Insert_Default --
3738 --------------------
3740 procedure Insert_Default is
3741 Actval : Node_Id;
3742 Assoc : Node_Id;
3744 begin
3745 -- Missing argument in call, nothing to insert
3747 if No (Default_Value (F)) then
3748 return;
3750 else
3751 -- Note that we do a full New_Copy_Tree, so that any associated
3752 -- Itypes are properly copied. This may not be needed any more,
3753 -- but it does no harm as a safety measure. Defaults of a generic
3754 -- formal may be out of bounds of the corresponding actual (see
3755 -- cc1311b) and an additional check may be required.
3757 Actval :=
3758 New_Copy_Tree
3759 (Default_Value (F),
3760 New_Scope => Current_Scope,
3761 New_Sloc => Loc);
3763 -- Propagate dimension information, if any.
3765 Copy_Dimensions (Default_Value (F), Actval);
3767 if Is_Concurrent_Type (Scope (Nam))
3768 and then Has_Discriminants (Scope (Nam))
3769 then
3770 Replace_Actual_Discriminants (N, Actval);
3771 end if;
3773 if Is_Overloadable (Nam)
3774 and then Present (Alias (Nam))
3775 then
3776 if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
3777 and then not Is_Tagged_Type (Etype (F))
3778 then
3779 -- If default is a real literal, do not introduce a
3780 -- conversion whose effect may depend on the run-time
3781 -- size of universal real.
3783 if Nkind (Actval) = N_Real_Literal then
3784 Set_Etype (Actval, Base_Type (Etype (F)));
3785 else
3786 Actval := Unchecked_Convert_To (Etype (F), Actval);
3787 end if;
3788 end if;
3790 if Is_Scalar_Type (Etype (F)) then
3791 Enable_Range_Check (Actval);
3792 end if;
3794 Set_Parent (Actval, N);
3796 -- Resolve aggregates with their base type, to avoid scope
3797 -- anomalies: the subtype was first built in the subprogram
3798 -- declaration, and the current call may be nested.
3800 if Nkind (Actval) = N_Aggregate then
3801 Analyze_And_Resolve (Actval, Etype (F));
3802 else
3803 Analyze_And_Resolve (Actval, Etype (Actval));
3804 end if;
3806 else
3807 Set_Parent (Actval, N);
3809 -- See note above concerning aggregates
3811 if Nkind (Actval) = N_Aggregate
3812 and then Has_Discriminants (Etype (Actval))
3813 then
3814 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
3816 -- Resolve entities with their own type, which may differ from
3817 -- the type of a reference in a generic context (the view
3818 -- swapping mechanism did not anticipate the re-analysis of
3819 -- default values in calls).
3821 elsif Is_Entity_Name (Actval) then
3822 Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
3824 else
3825 Analyze_And_Resolve (Actval, Etype (Actval));
3826 end if;
3827 end if;
3829 -- If default is a tag indeterminate function call, propagate tag
3830 -- to obtain proper dispatching.
3832 if Is_Controlling_Formal (F)
3833 and then Nkind (Default_Value (F)) = N_Function_Call
3834 then
3835 Set_Is_Controlling_Actual (Actval);
3836 end if;
3837 end if;
3839 -- If the default expression raises constraint error, then just
3840 -- silently replace it with an N_Raise_Constraint_Error node, since
3841 -- we already gave the warning on the subprogram spec. If node is
3842 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3843 -- the warnings removal machinery.
3845 if Raises_Constraint_Error (Actval)
3846 and then Nkind (Actval) /= N_Raise_Constraint_Error
3847 then
3848 Rewrite (Actval,
3849 Make_Raise_Constraint_Error (Loc,
3850 Reason => CE_Range_Check_Failed));
3852 Set_Raises_Constraint_Error (Actval);
3853 Set_Etype (Actval, Etype (F));
3854 end if;
3856 Assoc :=
3857 Make_Parameter_Association (Loc,
3858 Explicit_Actual_Parameter => Actval,
3859 Selector_Name => Make_Identifier (Loc, Chars (F)));
3861 -- Case of insertion is first named actual
3863 if No (Prev)
3864 or else Nkind (Parent (Prev)) /= N_Parameter_Association
3865 then
3866 Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
3867 Set_First_Named_Actual (N, Actval);
3869 if No (Prev) then
3870 if No (Parameter_Associations (N)) then
3871 Set_Parameter_Associations (N, New_List (Assoc));
3872 else
3873 Append (Assoc, Parameter_Associations (N));
3874 end if;
3876 else
3877 Insert_After (Prev, Assoc);
3878 end if;
3880 -- Case of insertion is not first named actual
3882 else
3883 Set_Next_Named_Actual
3884 (Assoc, Next_Named_Actual (Parent (Prev)));
3885 Set_Next_Named_Actual (Parent (Prev), Actval);
3886 Append (Assoc, Parameter_Associations (N));
3887 end if;
3889 Mark_Rewrite_Insertion (Assoc);
3890 Mark_Rewrite_Insertion (Actval);
3892 Prev := Actval;
3893 end Insert_Default;
3895 -------------------
3896 -- Same_Ancestor --
3897 -------------------
3899 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
3900 FT1 : Entity_Id := T1;
3901 FT2 : Entity_Id := T2;
3903 begin
3904 if Is_Private_Type (T1)
3905 and then Present (Full_View (T1))
3906 then
3907 FT1 := Full_View (T1);
3908 end if;
3910 if Is_Private_Type (T2)
3911 and then Present (Full_View (T2))
3912 then
3913 FT2 := Full_View (T2);
3914 end if;
3916 return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
3917 end Same_Ancestor;
3919 --------------------------
3920 -- Static_Concatenation --
3921 --------------------------
3923 function Static_Concatenation (N : Node_Id) return Boolean is
3924 begin
3925 case Nkind (N) is
3926 when N_String_Literal =>
3927 return True;
3929 when N_Op_Concat =>
3931 -- Concatenation is static when both operands are static and
3932 -- the concatenation operator is a predefined one.
3934 return Scope (Entity (N)) = Standard_Standard
3935 and then
3936 Static_Concatenation (Left_Opnd (N))
3937 and then
3938 Static_Concatenation (Right_Opnd (N));
3940 when others =>
3941 if Is_Entity_Name (N) then
3942 declare
3943 Ent : constant Entity_Id := Entity (N);
3944 begin
3945 return Ekind (Ent) = E_Constant
3946 and then Present (Constant_Value (Ent))
3947 and then
3948 Is_OK_Static_Expression (Constant_Value (Ent));
3949 end;
3951 else
3952 return False;
3953 end if;
3954 end case;
3955 end Static_Concatenation;
3957 -- Start of processing for Resolve_Actuals
3959 begin
3960 Check_Argument_Order;
3962 if Is_Overloadable (Nam)
3963 and then Is_Inherited_Operation (Nam)
3964 and then In_Instance
3965 and then Present (Alias (Nam))
3966 and then Present (Overridden_Operation (Alias (Nam)))
3967 then
3968 Real_Subp := Alias (Nam);
3969 else
3970 Real_Subp := Empty;
3971 end if;
3973 if Present (First_Actual (N)) then
3974 Check_Prefixed_Call;
3975 end if;
3977 A := First_Actual (N);
3978 F := First_Formal (Nam);
3980 if Present (Real_Subp) then
3981 Real_F := First_Formal (Real_Subp);
3982 end if;
3984 while Present (F) loop
3985 if No (A) and then Needs_No_Actuals (Nam) then
3986 null;
3988 -- If we have an error in any actual or formal, indicated by a type
3989 -- of Any_Type, then abandon resolution attempt, and set result type
3990 -- to Any_Type. Skip this if the actual is a Raise_Expression, whose
3991 -- type is imposed from context.
3993 elsif (Present (A) and then Etype (A) = Any_Type)
3994 or else Etype (F) = Any_Type
3995 then
3996 if Nkind (A) /= N_Raise_Expression then
3997 Set_Etype (N, Any_Type);
3998 return;
3999 end if;
4000 end if;
4002 -- Case where actual is present
4004 -- If the actual is an entity, generate a reference to it now. We
4005 -- do this before the actual is resolved, because a formal of some
4006 -- protected subprogram, or a task discriminant, will be rewritten
4007 -- during expansion, and the source entity reference may be lost.
4009 if Present (A)
4010 and then Is_Entity_Name (A)
4011 and then Comes_From_Source (A)
4012 then
4013 -- Annotate the tree by creating a variable reference marker when
4014 -- the actual denotes a variable reference, in case the reference
4015 -- is folded or optimized away. The variable reference marker is
4016 -- automatically saved for later examination by the ABE Processing
4017 -- phase. The status of the reference is set as follows:
4019 -- status mode
4020 -- read IN, IN OUT
4021 -- write IN OUT, OUT
4023 if Needs_Variable_Reference_Marker
4024 (N => A,
4025 Calls_OK => True)
4026 then
4027 Build_Variable_Reference_Marker
4028 (N => A,
4029 Read => Ekind (F) /= E_Out_Parameter,
4030 Write => Ekind (F) /= E_In_Parameter);
4031 end if;
4033 Orig_A := Entity (A);
4035 if Present (Orig_A) then
4036 if Is_Formal (Orig_A)
4037 and then Ekind (F) /= E_In_Parameter
4038 then
4039 Generate_Reference (Orig_A, A, 'm');
4041 elsif not Is_Overloaded (A) then
4042 if Ekind (F) /= E_Out_Parameter then
4043 Generate_Reference (Orig_A, A);
4045 -- RM 6.4.1(12): For an out parameter that is passed by
4046 -- copy, the formal parameter object is created, and:
4048 -- * For an access type, the formal parameter is initialized
4049 -- from the value of the actual, without checking that the
4050 -- value satisfies any constraint, any predicate, or any
4051 -- exclusion of the null value.
4053 -- * For a scalar type that has the Default_Value aspect
4054 -- specified, the formal parameter is initialized from the
4055 -- value of the actual, without checking that the value
4056 -- satisfies any constraint or any predicate.
4057 -- I do not understand why this case is included??? this is
4058 -- not a case where an OUT parameter is treated as IN OUT.
4060 -- * For a composite type with discriminants or that has
4061 -- implicit initial values for any subcomponents, the
4062 -- behavior is as for an in out parameter passed by copy.
4064 -- Hence for these cases we generate the read reference now
4065 -- (the write reference will be generated later by
4066 -- Note_Possible_Modification).
4068 elsif Is_By_Copy_Type (Etype (F))
4069 and then
4070 (Is_Access_Type (Etype (F))
4071 or else
4072 (Is_Scalar_Type (Etype (F))
4073 and then
4074 Present (Default_Aspect_Value (Etype (F))))
4075 or else
4076 (Is_Composite_Type (Etype (F))
4077 and then (Has_Discriminants (Etype (F))
4078 or else Is_Partially_Initialized_Type
4079 (Etype (F)))))
4080 then
4081 Generate_Reference (Orig_A, A);
4082 end if;
4083 end if;
4084 end if;
4085 end if;
4087 if Present (A)
4088 and then (Nkind (Parent (A)) /= N_Parameter_Association
4089 or else Chars (Selector_Name (Parent (A))) = Chars (F))
4090 then
4091 -- If style checking mode on, check match of formal name
4093 if Style_Check then
4094 if Nkind (Parent (A)) = N_Parameter_Association then
4095 Check_Identifier (Selector_Name (Parent (A)), F);
4096 end if;
4097 end if;
4099 -- If the formal is Out or In_Out, do not resolve and expand the
4100 -- conversion, because it is subsequently expanded into explicit
4101 -- temporaries and assignments. However, the object of the
4102 -- conversion can be resolved. An exception is the case of tagged
4103 -- type conversion with a class-wide actual. In that case we want
4104 -- the tag check to occur and no temporary will be needed (no
4105 -- representation change can occur) and the parameter is passed by
4106 -- reference, so we go ahead and resolve the type conversion.
4107 -- Another exception is the case of reference to component or
4108 -- subcomponent of a bit-packed array, in which case we want to
4109 -- defer expansion to the point the in and out assignments are
4110 -- performed.
4112 if Ekind (F) /= E_In_Parameter
4113 and then Nkind (A) = N_Type_Conversion
4114 and then not Is_Class_Wide_Type (Etype (Expression (A)))
4115 and then not Is_Interface (Etype (A))
4116 then
4117 declare
4118 Expr_Typ : constant Entity_Id := Etype (Expression (A));
4120 begin
4121 -- Check RM 4.6 (24.2/2)
4123 if Is_Array_Type (Etype (F))
4124 and then Is_View_Conversion (A)
4125 then
4126 -- In a view conversion, the conversion must be legal in
4127 -- both directions, and thus both component types must be
4128 -- aliased, or neither (4.6 (8)).
4130 -- Check RM 4.6 (24.8/2)
4132 if Has_Aliased_Components (Expr_Typ) /=
4133 Has_Aliased_Components (Etype (F))
4134 then
4135 -- This normally illegal conversion is legal in an
4136 -- expanded instance body because of RM 12.3(11).
4137 -- At runtime, conversion must create a new object.
4139 if not In_Instance then
4140 Error_Msg_N
4141 ("both component types in a view conversion must"
4142 & " be aliased, or neither", A);
4143 end if;
4145 -- Check RM 4.6 (24/3)
4147 elsif not Same_Ancestor (Etype (F), Expr_Typ) then
4148 -- Check view conv between unrelated by ref array
4149 -- types.
4151 if Is_By_Reference_Type (Etype (F))
4152 or else Is_By_Reference_Type (Expr_Typ)
4153 then
4154 Error_Msg_N
4155 ("view conversion between unrelated by reference "
4156 & "array types not allowed ('A'I-00246)", A);
4158 -- In Ada 2005 mode, check view conversion component
4159 -- type cannot be private, tagged, or volatile. Note
4160 -- that we only apply this to source conversions. The
4161 -- generated code can contain conversions which are
4162 -- not subject to this test, and we cannot extract the
4163 -- component type in such cases since it is not
4164 -- present.
4166 elsif Comes_From_Source (A)
4167 and then Ada_Version >= Ada_2005
4168 then
4169 declare
4170 Comp_Type : constant Entity_Id :=
4171 Component_Type (Expr_Typ);
4172 begin
4173 if (Is_Private_Type (Comp_Type)
4174 and then not Is_Generic_Type (Comp_Type))
4175 or else Is_Tagged_Type (Comp_Type)
4176 or else Is_Volatile (Comp_Type)
4177 then
4178 Error_Msg_N
4179 ("component type of a view conversion " &
4180 "cannot be private, tagged, or volatile" &
4181 " (RM 4.6 (24))",
4182 Expression (A));
4183 end if;
4184 end;
4185 end if;
4186 end if;
4188 -- AI12-0074 & AI12-0377
4189 -- Check 6.4.1: If the mode is out, the actual parameter is
4190 -- a view conversion, and the type of the formal parameter
4191 -- is a scalar type, then either:
4192 -- - the target and operand type both do not have the
4193 -- Default_Value aspect specified; or
4194 -- - the target and operand type both have the
4195 -- Default_Value aspect specified, and there shall exist
4196 -- a type (other than a root numeric type) that is an
4197 -- ancestor of both the target type and the operand
4198 -- type.
4200 elsif Ekind (F) = E_Out_Parameter
4201 and then Is_Scalar_Type (Etype (F))
4202 then
4203 if Has_Default_Aspect (Etype (F)) /=
4204 Has_Default_Aspect (Expr_Typ)
4205 then
4206 Error_Msg_N
4207 ("view conversion requires Default_Value on both " &
4208 "types (RM 6.4.1)", A);
4209 elsif Has_Default_Aspect (Expr_Typ)
4210 and then not Same_Ancestor (Etype (F), Expr_Typ)
4211 then
4212 Error_Msg_N
4213 ("view conversion between unrelated types with "
4214 & "Default_Value not allowed (RM 6.4.1)", A);
4215 end if;
4216 end if;
4217 end;
4219 -- Resolve expression if conversion is all OK
4221 if (Conversion_OK (A)
4222 or else Valid_Conversion (A, Etype (A), Expression (A)))
4223 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
4224 then
4225 Resolve (Expression (A));
4226 end if;
4228 -- If the actual is a function call that returns a limited
4229 -- unconstrained object that needs finalization, create a
4230 -- transient scope for it, so that it can receive the proper
4231 -- finalization list.
4233 elsif Expander_Active
4234 and then Nkind (A) = N_Function_Call
4235 and then Is_Limited_Record (Etype (F))
4236 and then not Is_Constrained (Etype (F))
4237 and then (Needs_Finalization (Etype (F))
4238 or else Has_Task (Etype (F)))
4239 then
4240 Establish_Transient_Scope (A, Manage_Sec_Stack => False);
4241 Resolve (A, Etype (F));
4243 -- A small optimization: if one of the actuals is a concatenation
4244 -- create a block around a procedure call to recover stack space.
4245 -- This alleviates stack usage when several procedure calls in
4246 -- the same statement list use concatenation. We do not perform
4247 -- this wrapping for code statements, where the argument is a
4248 -- static string, and we want to preserve warnings involving
4249 -- sequences of such statements.
4251 elsif Expander_Active
4252 and then Nkind (A) = N_Op_Concat
4253 and then Nkind (N) = N_Procedure_Call_Statement
4254 and then not (Is_Intrinsic_Subprogram (Nam)
4255 and then Chars (Nam) = Name_Asm)
4256 and then not Static_Concatenation (A)
4257 then
4258 Establish_Transient_Scope (A, Manage_Sec_Stack => False);
4259 Resolve (A, Etype (F));
4261 else
4262 if Nkind (A) = N_Type_Conversion
4263 and then Is_Array_Type (Etype (F))
4264 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
4265 and then
4266 (Is_Limited_Type (Etype (F))
4267 or else Is_Limited_Type (Etype (Expression (A))))
4268 then
4269 Error_Msg_N
4270 ("conversion between unrelated limited array types not "
4271 & "allowed ('A'I-00246)", A);
4273 if Is_Limited_Type (Etype (F)) then
4274 Explain_Limited_Type (Etype (F), A);
4275 end if;
4277 if Is_Limited_Type (Etype (Expression (A))) then
4278 Explain_Limited_Type (Etype (Expression (A)), A);
4279 end if;
4280 end if;
4282 -- (Ada 2005: AI-251): If the actual is an allocator whose
4283 -- directly designated type is a class-wide interface, we build
4284 -- an anonymous access type to use it as the type of the
4285 -- allocator. Later, when the subprogram call is expanded, if
4286 -- the interface has a secondary dispatch table the expander
4287 -- will add a type conversion to force the correct displacement
4288 -- of the pointer.
4290 if Nkind (A) = N_Allocator then
4291 declare
4292 DDT : constant Entity_Id :=
4293 Directly_Designated_Type (Base_Type (Etype (F)));
4295 begin
4296 -- Displace the pointer to the object to reference its
4297 -- secondary dispatch table.
4299 if Is_Class_Wide_Type (DDT)
4300 and then Is_Interface (DDT)
4301 then
4302 Rewrite (A, Convert_To (Etype (F), Relocate_Node (A)));
4303 Analyze_And_Resolve (A, Etype (F),
4304 Suppress => Access_Check);
4305 end if;
4307 -- Ada 2005, AI-162:If the actual is an allocator, the
4308 -- innermost enclosing statement is the master of the
4309 -- created object. This needs to be done with expansion
4310 -- enabled only, otherwise the transient scope will not
4311 -- be removed in the expansion of the wrapped construct.
4313 if Expander_Active
4314 and then (Needs_Finalization (DDT)
4315 or else Has_Task (DDT))
4316 then
4317 Establish_Transient_Scope
4318 (A, Manage_Sec_Stack => False);
4319 end if;
4320 end;
4322 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4323 Check_Restriction (No_Access_Parameter_Allocators, A);
4324 end if;
4325 end if;
4327 -- (Ada 2005): The call may be to a primitive operation of a
4328 -- tagged synchronized type, declared outside of the type. In
4329 -- this case the controlling actual must be converted to its
4330 -- corresponding record type, which is the formal type. The
4331 -- actual may be a subtype, either because of a constraint or
4332 -- because it is a generic actual, so use base type to locate
4333 -- concurrent type.
4335 F_Typ := Base_Type (Etype (F));
4337 if Is_Tagged_Type (F_Typ)
4338 and then (Is_Concurrent_Type (F_Typ)
4339 or else Is_Concurrent_Record_Type (F_Typ))
4340 then
4341 -- If the actual is overloaded, look for an interpretation
4342 -- that has a synchronized type.
4344 if not Is_Overloaded (A) then
4345 A_Typ := Base_Type (Etype (A));
4347 else
4348 declare
4349 Index : Interp_Index;
4350 It : Interp;
4352 begin
4353 Get_First_Interp (A, Index, It);
4354 while Present (It.Typ) loop
4355 if Is_Concurrent_Type (It.Typ)
4356 or else Is_Concurrent_Record_Type (It.Typ)
4357 then
4358 A_Typ := Base_Type (It.Typ);
4359 exit;
4360 end if;
4362 Get_Next_Interp (Index, It);
4363 end loop;
4364 end;
4365 end if;
4367 declare
4368 Full_A_Typ : Entity_Id;
4370 begin
4371 if Present (Full_View (A_Typ)) then
4372 Full_A_Typ := Base_Type (Full_View (A_Typ));
4373 else
4374 Full_A_Typ := A_Typ;
4375 end if;
4377 -- Tagged synchronized type (case 1): the actual is a
4378 -- concurrent type.
4380 if Is_Concurrent_Type (A_Typ)
4381 and then Corresponding_Record_Type (A_Typ) = F_Typ
4382 then
4383 Rewrite (A,
4384 Unchecked_Convert_To
4385 (Corresponding_Record_Type (A_Typ), A));
4386 Resolve (A, Etype (F));
4388 -- Tagged synchronized type (case 2): the formal is a
4389 -- concurrent type.
4391 elsif Ekind (Full_A_Typ) = E_Record_Type
4392 and then Present
4393 (Corresponding_Concurrent_Type (Full_A_Typ))
4394 and then Is_Concurrent_Type (F_Typ)
4395 and then Present (Corresponding_Record_Type (F_Typ))
4396 and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
4397 then
4398 Resolve (A, Corresponding_Record_Type (F_Typ));
4400 -- Common case
4402 else
4403 Resolve (A, Etype (F));
4404 end if;
4405 end;
4407 -- Not a synchronized operation
4409 else
4410 Resolve (A, Etype (F));
4411 end if;
4412 end if;
4414 A_Typ := Etype (A);
4415 F_Typ := Etype (F);
4417 -- An actual cannot be an untagged formal incomplete type
4419 if Ekind (A_Typ) = E_Incomplete_Type
4420 and then not Is_Tagged_Type (A_Typ)
4421 and then Is_Generic_Type (A_Typ)
4422 then
4423 Error_Msg_N
4424 ("invalid use of untagged formal incomplete type", A);
4425 end if;
4427 -- has warnings suppressed, then we reset Never_Set_In_Source for
4428 -- the calling entity. The reason for this is to catch cases like
4429 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
4430 -- uses trickery to modify an IN parameter.
4432 if Ekind (F) = E_In_Parameter
4433 and then Is_Entity_Name (A)
4434 and then Present (Entity (A))
4435 and then Ekind (Entity (A)) = E_Variable
4436 and then Has_Warnings_Off (F_Typ)
4437 then
4438 Set_Never_Set_In_Source (Entity (A), False);
4439 end if;
4441 -- Perform error checks for IN and IN OUT parameters
4443 if Ekind (F) /= E_Out_Parameter then
4445 -- Check unset reference. For scalar parameters, it is clearly
4446 -- wrong to pass an uninitialized value as either an IN or
4447 -- IN-OUT parameter. For composites, it is also clearly an
4448 -- error to pass a completely uninitialized value as an IN
4449 -- parameter, but the case of IN OUT is trickier. We prefer
4450 -- not to give a warning here. For example, suppose there is
4451 -- a routine that sets some component of a record to False.
4452 -- It is perfectly reasonable to make this IN-OUT and allow
4453 -- either initialized or uninitialized records to be passed
4454 -- in this case.
4456 -- For partially initialized composite values, we also avoid
4457 -- warnings, since it is quite likely that we are passing a
4458 -- partially initialized value and only the initialized fields
4459 -- will in fact be read in the subprogram.
4461 if Is_Scalar_Type (A_Typ)
4462 or else (Ekind (F) = E_In_Parameter
4463 and then not Is_Partially_Initialized_Type (A_Typ))
4464 then
4465 Check_Unset_Reference (A);
4466 end if;
4468 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
4469 -- actual to a nested call, since this constitutes a reading of
4470 -- the parameter, which is not allowed.
4472 if Ada_Version = Ada_83
4473 and then Is_Entity_Name (A)
4474 and then Ekind (Entity (A)) = E_Out_Parameter
4475 then
4476 Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
4477 end if;
4478 end if;
4480 -- In -gnatd.q mode, forget that a given array is constant when
4481 -- it is passed as an IN parameter to a foreign-convention
4482 -- subprogram. This is in case the subprogram evilly modifies the
4483 -- object. Of course, correct code would use IN OUT.
4485 if Debug_Flag_Dot_Q
4486 and then Ekind (F) = E_In_Parameter
4487 and then Has_Foreign_Convention (Nam)
4488 and then Is_Array_Type (F_Typ)
4489 and then Nkind (A) in N_Has_Entity
4490 and then Present (Entity (A))
4491 then
4492 Set_Is_True_Constant (Entity (A), False);
4493 end if;
4495 -- Case of OUT or IN OUT parameter
4497 if Ekind (F) /= E_In_Parameter then
4499 -- For an Out parameter, check for useless assignment. Note
4500 -- that we can't set Last_Assignment this early, because we may
4501 -- kill current values in Resolve_Call, and that call would
4502 -- clobber the Last_Assignment field.
4504 -- Note: call Warn_On_Useless_Assignment before doing the check
4505 -- below for Is_OK_Variable_For_Out_Formal so that the setting
4506 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
4507 -- reflects the last assignment, not this one.
4509 if Ekind (F) = E_Out_Parameter then
4510 if Warn_On_Modified_As_Out_Parameter (F)
4511 and then Is_Entity_Name (A)
4512 and then Present (Entity (A))
4513 and then Comes_From_Source (N)
4514 then
4515 Warn_On_Useless_Assignment (Entity (A), A);
4516 end if;
4517 end if;
4519 -- Validate the form of the actual. Note that the call to
4520 -- Is_OK_Variable_For_Out_Formal generates the required
4521 -- reference in this case.
4523 -- A call to an initialization procedure for an aggregate
4524 -- component may initialize a nested component of a constant
4525 -- designated object. In this context the object is variable.
4527 if not Is_OK_Variable_For_Out_Formal (A)
4528 and then not Is_Init_Proc (Nam)
4529 then
4530 Error_Msg_NE ("actual for& must be a variable", A, F);
4532 if Is_Subprogram (Current_Scope) then
4533 if Is_Invariant_Procedure (Current_Scope)
4534 or else Is_Partial_Invariant_Procedure (Current_Scope)
4535 then
4536 Error_Msg_N
4537 ("function used in invariant cannot modify its "
4538 & "argument", F);
4540 elsif Is_Predicate_Function (Current_Scope) then
4541 Error_Msg_N
4542 ("function used in predicate cannot modify its "
4543 & "argument", F);
4544 end if;
4545 end if;
4546 end if;
4548 -- What's the following about???
4550 if Is_Entity_Name (A) then
4551 Kill_Checks (Entity (A));
4552 else
4553 Kill_All_Checks;
4554 end if;
4555 end if;
4557 if A_Typ = Any_Type then
4558 Set_Etype (N, Any_Type);
4559 return;
4560 end if;
4562 -- Apply appropriate constraint/predicate checks for IN [OUT] case
4564 if Ekind (F) in E_In_Parameter | E_In_Out_Parameter then
4566 -- Apply predicate tests except in certain special cases. Note
4567 -- that it might be more consistent to apply these only when
4568 -- expansion is active (in Exp_Ch6.Expand_Actuals), as we do
4569 -- for the outbound predicate tests ??? In any case indicate
4570 -- the function being called, for better warnings if the call
4571 -- leads to an infinite recursion.
4573 if Predicate_Tests_On_Arguments (Nam) then
4574 Apply_Predicate_Check (A, F_Typ, Nam);
4575 end if;
4577 -- Apply required constraint checks
4579 if Is_Scalar_Type (A_Typ) then
4580 Apply_Scalar_Range_Check (A, F_Typ);
4582 elsif Is_Array_Type (A_Typ) then
4583 Apply_Length_Check (A, F_Typ);
4585 elsif Is_Record_Type (F_Typ)
4586 and then Has_Discriminants (F_Typ)
4587 and then Is_Constrained (F_Typ)
4588 and then (not Is_Derived_Type (F_Typ)
4589 or else Comes_From_Source (Nam))
4590 then
4591 Apply_Discriminant_Check (A, F_Typ);
4593 -- For view conversions of a discriminated object, apply
4594 -- check to object itself, the conversion alreay has the
4595 -- proper type.
4597 if Nkind (A) = N_Type_Conversion
4598 and then Is_Constrained (Etype (Expression (A)))
4599 then
4600 Apply_Discriminant_Check (Expression (A), F_Typ);
4601 end if;
4603 elsif Is_Access_Type (F_Typ)
4604 and then Is_Array_Type (Designated_Type (F_Typ))
4605 and then Is_Constrained (Designated_Type (F_Typ))
4606 then
4607 Apply_Length_Check (A, F_Typ);
4609 elsif Is_Access_Type (F_Typ)
4610 and then Has_Discriminants (Designated_Type (F_Typ))
4611 and then Is_Constrained (Designated_Type (F_Typ))
4612 then
4613 Apply_Discriminant_Check (A, F_Typ);
4615 else
4616 Apply_Range_Check (A, F_Typ);
4617 end if;
4619 -- Ada 2005 (AI-231): Note that the controlling parameter case
4620 -- already existed in Ada 95, which is partially checked
4621 -- elsewhere (see Checks), and we don't want the warning
4622 -- message to differ.
4624 if Is_Access_Type (F_Typ)
4625 and then Can_Never_Be_Null (F_Typ)
4626 and then Known_Null (A)
4627 then
4628 if Is_Controlling_Formal (F) then
4629 Apply_Compile_Time_Constraint_Error
4630 (N => A,
4631 Msg => "null value not allowed here??",
4632 Reason => CE_Access_Check_Failed);
4634 elsif Ada_Version >= Ada_2005 then
4635 Apply_Compile_Time_Constraint_Error
4636 (N => A,
4637 Msg => "(Ada 2005) null not allowed in "
4638 & "null-excluding formal??",
4639 Reason => CE_Null_Not_Allowed);
4640 end if;
4641 end if;
4642 end if;
4644 -- Checks for OUT parameters and IN OUT parameters
4646 if Ekind (F) in E_Out_Parameter | E_In_Out_Parameter then
4648 -- If there is a type conversion, make sure the return value
4649 -- meets the constraints of the variable before the conversion.
4651 if Nkind (A) = N_Type_Conversion then
4652 if Is_Scalar_Type (A_Typ) then
4654 -- Special case here tailored to Exp_Ch6.Is_Legal_Copy,
4655 -- which would prevent the check from being generated.
4656 -- This is for Starlet only though, so long obsolete.
4658 if Mechanism (F) = By_Reference
4659 and then Ekind (Nam) = E_Procedure
4660 and then Is_Valued_Procedure (Nam)
4661 then
4662 null;
4663 else
4664 Apply_Scalar_Range_Check
4665 (Expression (A), Etype (Expression (A)), A_Typ);
4666 end if;
4668 -- In addition the return value must meet the constraints
4669 -- of the object type (see the comment below).
4671 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4673 else
4674 Apply_Range_Check
4675 (Expression (A), Etype (Expression (A)), A_Typ);
4676 end if;
4678 -- If no conversion, apply scalar range checks and length check
4679 -- based on the subtype of the actual (NOT that of the formal).
4680 -- This indicates that the check takes place on return from the
4681 -- call. During expansion the required constraint checks are
4682 -- inserted. In GNATprove mode, in the absence of expansion,
4683 -- the flag indicates that the returned value is valid.
4685 else
4686 if Is_Scalar_Type (F_Typ) then
4687 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4689 elsif Is_Array_Type (F_Typ)
4690 and then Ekind (F) = E_Out_Parameter
4691 then
4692 Apply_Length_Check (A, F_Typ);
4694 else
4695 Apply_Range_Check (A, A_Typ, F_Typ);
4696 end if;
4697 end if;
4699 -- Note: we do not apply the predicate checks for the case of
4700 -- OUT and IN OUT parameters. They are instead applied in the
4701 -- Expand_Actuals routine in Exp_Ch6.
4702 end if;
4704 -- An actual associated with an access parameter is implicitly
4705 -- converted to the anonymous access type of the formal and must
4706 -- satisfy the legality checks for access conversions.
4708 if Ekind (F_Typ) = E_Anonymous_Access_Type then
4709 if not Valid_Conversion (A, F_Typ, A) then
4710 Error_Msg_N
4711 ("invalid implicit conversion for access parameter", A);
4712 end if;
4714 -- If the actual is an access selected component of a variable,
4715 -- the call may modify its designated object. It is reasonable
4716 -- to treat this as a potential modification of the enclosing
4717 -- record, to prevent spurious warnings that it should be
4718 -- declared as a constant, because intuitively programmers
4719 -- regard the designated subcomponent as part of the record.
4721 if Nkind (A) = N_Selected_Component
4722 and then Is_Entity_Name (Prefix (A))
4723 and then not Is_Constant_Object (Entity (Prefix (A)))
4724 then
4725 Note_Possible_Modification (A, Sure => False);
4726 end if;
4727 end if;
4729 -- Check illegal cases of atomic/volatile actual (RM C.6(12,13))
4731 if (Is_By_Reference_Type (Etype (F)) or else Is_Aliased (F))
4732 and then Comes_From_Source (N)
4733 then
4734 if Is_Atomic_Object (A)
4735 and then not Is_Atomic (Etype (F))
4736 then
4737 Error_Msg_NE
4738 ("cannot pass atomic object to nonatomic formal&",
4739 A, F);
4740 Error_Msg_N
4741 ("\which is passed by reference (RM C.6(12))", A);
4743 elsif Is_Volatile_Object (A)
4744 and then not Is_Volatile (Etype (F))
4745 then
4746 Error_Msg_NE
4747 ("cannot pass volatile object to nonvolatile formal&",
4748 A, F);
4749 Error_Msg_N
4750 ("\which is passed by reference (RM C.6(12))", A);
4751 end if;
4753 if Ada_Version >= Ada_2020
4754 and then Is_Subcomponent_Of_Atomic_Object (A)
4755 and then not Is_Atomic_Object (A)
4756 then
4757 Error_Msg_N
4758 ("cannot pass nonatomic subcomponent of atomic object",
4760 Error_Msg_NE
4761 ("\to formal & which is passed by reference (RM C.6(13))",
4762 A, F);
4763 end if;
4764 end if;
4766 -- Check that subprograms don't have improper controlling
4767 -- arguments (RM 3.9.2 (9)).
4769 -- A primitive operation may have an access parameter of an
4770 -- incomplete tagged type, but a dispatching call is illegal
4771 -- if the type is still incomplete.
4773 if Is_Controlling_Formal (F) then
4774 Set_Is_Controlling_Actual (A);
4776 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4777 declare
4778 Desig : constant Entity_Id := Designated_Type (Etype (F));
4779 begin
4780 if Ekind (Desig) = E_Incomplete_Type
4781 and then No (Full_View (Desig))
4782 and then No (Non_Limited_View (Desig))
4783 then
4784 Error_Msg_NE
4785 ("premature use of incomplete type& "
4786 & "in dispatching call", A, Desig);
4787 end if;
4788 end;
4789 end if;
4791 elsif Nkind (A) = N_Explicit_Dereference then
4792 Validate_Remote_Access_To_Class_Wide_Type (A);
4793 end if;
4795 -- Apply legality rule 3.9.2 (9/1)
4797 if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
4798 and then not Is_Class_Wide_Type (F_Typ)
4799 and then not Is_Controlling_Formal (F)
4800 and then not In_Instance
4801 then
4802 Error_Msg_N ("class-wide argument not allowed here!", A);
4804 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4805 Error_Msg_Node_2 := F_Typ;
4806 Error_Msg_NE
4807 ("& is not a dispatching operation of &!", A, Nam);
4808 end if;
4810 -- Apply the checks described in 3.10.2(27): if the context is a
4811 -- specific access-to-object, the actual cannot be class-wide.
4812 -- Use base type to exclude access_to_subprogram cases.
4814 elsif Is_Access_Type (A_Typ)
4815 and then Is_Access_Type (F_Typ)
4816 and then not Is_Access_Subprogram_Type (Base_Type (F_Typ))
4817 and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
4818 or else (Nkind (A) = N_Attribute_Reference
4819 and then
4820 Is_Class_Wide_Type (Etype (Prefix (A)))))
4821 and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
4822 and then not Is_Controlling_Formal (F)
4824 -- Disable these checks for call to imported C++ subprograms
4826 and then not
4827 (Is_Entity_Name (Name (N))
4828 and then Is_Imported (Entity (Name (N)))
4829 and then Convention (Entity (Name (N))) = Convention_CPP)
4830 then
4831 Error_Msg_N
4832 ("access to class-wide argument not allowed here!", A);
4834 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4835 Error_Msg_Node_2 := Designated_Type (F_Typ);
4836 Error_Msg_NE
4837 ("& is not a dispatching operation of &!", A, Nam);
4838 end if;
4839 end if;
4841 Check_Aliased_Parameter;
4843 Eval_Actual (A);
4845 -- If it is a named association, treat the selector_name as a
4846 -- proper identifier, and mark the corresponding entity.
4848 if Nkind (Parent (A)) = N_Parameter_Association
4850 -- Ignore reference in SPARK mode, as it refers to an entity not
4851 -- in scope at the point of reference, so the reference should
4852 -- be ignored for computing effects of subprograms.
4854 and then not GNATprove_Mode
4855 then
4856 -- If subprogram is overridden, use name of formal that
4857 -- is being called.
4859 if Present (Real_Subp) then
4860 Set_Entity (Selector_Name (Parent (A)), Real_F);
4861 Set_Etype (Selector_Name (Parent (A)), Etype (Real_F));
4863 else
4864 Set_Entity (Selector_Name (Parent (A)), F);
4865 Generate_Reference (F, Selector_Name (Parent (A)));
4866 Set_Etype (Selector_Name (Parent (A)), F_Typ);
4867 Generate_Reference (F_Typ, N, ' ');
4868 end if;
4869 end if;
4871 Prev := A;
4873 if Ekind (F) /= E_Out_Parameter then
4874 Check_Unset_Reference (A);
4875 end if;
4877 -- The following checks are only relevant when SPARK_Mode is on as
4878 -- they are not standard Ada legality rule. Internally generated
4879 -- temporaries are ignored.
4881 if SPARK_Mode = On and then Comes_From_Source (A) then
4883 -- An effectively volatile object for reading may act as an
4884 -- actual when the corresponding formal is of a non-scalar
4885 -- effectively volatile type for reading (SPARK RM 7.1.3(10)).
4887 if not Is_Scalar_Type (Etype (F))
4888 and then Is_Effectively_Volatile_For_Reading (Etype (F))
4889 then
4890 null;
4892 -- An effectively volatile object for reading may act as an
4893 -- actual in a call to an instance of Unchecked_Conversion.
4894 -- (SPARK RM 7.1.3(10)).
4896 elsif Is_Unchecked_Conversion_Instance (Nam) then
4897 null;
4899 -- The actual denotes an object
4901 elsif Is_Effectively_Volatile_Object_For_Reading (A) then
4902 Error_Msg_N
4903 ("volatile object cannot act as actual in a call (SPARK "
4904 & "RM 7.1.3(10))", A);
4906 -- Otherwise the actual denotes an expression. Inspect the
4907 -- expression and flag each effectively volatile object
4908 -- for reading as illegal because it apprears within an
4909 -- interfering context. Note that this is usually done in
4910 -- Resolve_Entity_Name, but when the effectively volatile
4911 -- object for reading appears as an actual in a call, the
4912 -- call must be resolved first.
4914 else
4915 Flag_Effectively_Volatile_Objects (A);
4916 end if;
4918 -- An effectively volatile variable cannot act as an actual
4919 -- parameter in a procedure call when the variable has enabled
4920 -- property Effective_Reads and the corresponding formal is of
4921 -- mode IN (SPARK RM 7.1.3(10)).
4923 if Ekind (Nam) = E_Procedure
4924 and then Ekind (F) = E_In_Parameter
4925 and then Is_Entity_Name (A)
4926 then
4927 A_Id := Entity (A);
4929 if Ekind (A_Id) = E_Variable
4930 and then Is_Effectively_Volatile_For_Reading (Etype (A_Id))
4931 and then Effective_Reads_Enabled (A_Id)
4932 then
4933 Error_Msg_NE
4934 ("effectively volatile variable & cannot appear as "
4935 & "actual in procedure call", A, A_Id);
4937 Error_Msg_Name_1 := Name_Effective_Reads;
4938 Error_Msg_N ("\\variable has enabled property %", A);
4939 Error_Msg_N ("\\corresponding formal has mode IN", A);
4940 end if;
4941 end if;
4942 end if;
4944 -- A formal parameter of a specific tagged type whose related
4945 -- subprogram is subject to pragma Extensions_Visible with value
4946 -- "False" cannot act as an actual in a subprogram with value
4947 -- "True" (SPARK RM 6.1.7(3)).
4949 if Is_EVF_Expression (A)
4950 and then Extensions_Visible_Status (Nam) =
4951 Extensions_Visible_True
4952 then
4953 Error_Msg_N
4954 ("formal parameter cannot act as actual parameter when "
4955 & "Extensions_Visible is False", A);
4956 Error_Msg_NE
4957 ("\subprogram & has Extensions_Visible True", A, Nam);
4958 end if;
4960 -- The actual parameter of a Ghost subprogram whose formal is of
4961 -- mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(12)).
4963 if Comes_From_Source (Nam)
4964 and then Is_Ghost_Entity (Nam)
4965 and then Ekind (F) in E_In_Out_Parameter | E_Out_Parameter
4966 and then Is_Entity_Name (A)
4967 and then Present (Entity (A))
4968 and then not Is_Ghost_Entity (Entity (A))
4969 then
4970 Error_Msg_NE
4971 ("non-ghost variable & cannot appear as actual in call to "
4972 & "ghost procedure", A, Entity (A));
4974 if Ekind (F) = E_In_Out_Parameter then
4975 Error_Msg_N ("\corresponding formal has mode `IN OUT`", A);
4976 else
4977 Error_Msg_N ("\corresponding formal has mode OUT", A);
4978 end if;
4979 end if;
4981 Next_Actual (A);
4983 -- Case where actual is not present
4985 else
4986 Insert_Default;
4987 end if;
4989 Next_Formal (F);
4991 if Present (Real_Subp) then
4992 Next_Formal (Real_F);
4993 end if;
4994 end loop;
4995 end Resolve_Actuals;
4997 -----------------------
4998 -- Resolve_Allocator --
4999 -----------------------
5001 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
5002 Desig_T : constant Entity_Id := Designated_Type (Typ);
5003 E : constant Node_Id := Expression (N);
5004 Subtyp : Entity_Id;
5005 Discrim : Entity_Id;
5006 Constr : Node_Id;
5007 Aggr : Node_Id;
5008 Assoc : Node_Id := Empty;
5009 Disc_Exp : Node_Id;
5011 procedure Check_Allocator_Discrim_Accessibility
5012 (Disc_Exp : Node_Id;
5013 Alloc_Typ : Entity_Id);
5014 -- Check that accessibility level associated with an access discriminant
5015 -- initialized in an allocator by the expression Disc_Exp is not deeper
5016 -- than the level of the allocator type Alloc_Typ. An error message is
5017 -- issued if this condition is violated. Specialized checks are done for
5018 -- the cases of a constraint expression which is an access attribute or
5019 -- an access discriminant.
5021 procedure Check_Allocator_Discrim_Accessibility_Exprs
5022 (Curr_Exp : Node_Id;
5023 Alloc_Typ : Entity_Id);
5024 -- Dispatch checks performed by Check_Allocator_Discrim_Accessibility
5025 -- across all expressions within a given conditional expression.
5027 function In_Dispatching_Context return Boolean;
5028 -- If the allocator is an actual in a call, it is allowed to be class-
5029 -- wide when the context is not because it is a controlling actual.
5031 -------------------------------------------
5032 -- Check_Allocator_Discrim_Accessibility --
5033 -------------------------------------------
5035 procedure Check_Allocator_Discrim_Accessibility
5036 (Disc_Exp : Node_Id;
5037 Alloc_Typ : Entity_Id)
5039 begin
5040 if Type_Access_Level (Etype (Disc_Exp)) >
5041 Deepest_Type_Access_Level (Alloc_Typ)
5042 then
5043 Error_Msg_N
5044 ("operand type has deeper level than allocator type", Disc_Exp);
5046 -- When the expression is an Access attribute the level of the prefix
5047 -- object must not be deeper than that of the allocator's type.
5049 elsif Nkind (Disc_Exp) = N_Attribute_Reference
5050 and then Get_Attribute_Id (Attribute_Name (Disc_Exp)) =
5051 Attribute_Access
5052 and then Object_Access_Level (Prefix (Disc_Exp)) >
5053 Deepest_Type_Access_Level (Alloc_Typ)
5054 then
5055 Error_Msg_N
5056 ("prefix of attribute has deeper level than allocator type",
5057 Disc_Exp);
5059 -- When the expression is an access discriminant the check is against
5060 -- the level of the prefix object.
5062 elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
5063 and then Nkind (Disc_Exp) = N_Selected_Component
5064 and then Object_Access_Level (Prefix (Disc_Exp)) >
5065 Deepest_Type_Access_Level (Alloc_Typ)
5066 then
5067 Error_Msg_N
5068 ("access discriminant has deeper level than allocator type",
5069 Disc_Exp);
5071 -- All other cases are legal
5073 else
5074 null;
5075 end if;
5076 end Check_Allocator_Discrim_Accessibility;
5078 -------------------------------------------------
5079 -- Check_Allocator_Discrim_Accessibility_Exprs --
5080 -------------------------------------------------
5082 procedure Check_Allocator_Discrim_Accessibility_Exprs
5083 (Curr_Exp : Node_Id;
5084 Alloc_Typ : Entity_Id)
5086 Alt : Node_Id;
5087 Expr : Node_Id;
5088 Disc_Exp : constant Node_Id := Original_Node (Curr_Exp);
5089 begin
5090 -- When conditional expressions are constant folded we know at
5091 -- compile time which expression to check - so don't bother with
5092 -- the rest of the cases.
5094 if Nkind (Curr_Exp) = N_Attribute_Reference then
5095 Check_Allocator_Discrim_Accessibility (Curr_Exp, Alloc_Typ);
5097 -- Non-constant-folded if expressions
5099 elsif Nkind (Disc_Exp) = N_If_Expression then
5100 -- Check both expressions if they are still present in the face
5101 -- of expansion.
5103 Expr := Next (First (Expressions (Disc_Exp)));
5104 if Present (Expr) then
5105 Check_Allocator_Discrim_Accessibility_Exprs (Expr, Alloc_Typ);
5106 Next (Expr);
5107 if Present (Expr) then
5108 Check_Allocator_Discrim_Accessibility_Exprs
5109 (Expr, Alloc_Typ);
5110 end if;
5111 end if;
5113 -- Non-constant-folded case expressions
5115 elsif Nkind (Disc_Exp) = N_Case_Expression then
5116 -- Check all alternatives
5118 Alt := First (Alternatives (Disc_Exp));
5119 while Present (Alt) loop
5120 Check_Allocator_Discrim_Accessibility_Exprs
5121 (Expression (Alt), Alloc_Typ);
5123 Next (Alt);
5124 end loop;
5126 -- Base case, check the accessibility of the original node of the
5127 -- expression.
5129 else
5130 Check_Allocator_Discrim_Accessibility (Disc_Exp, Alloc_Typ);
5131 end if;
5132 end Check_Allocator_Discrim_Accessibility_Exprs;
5134 ----------------------------
5135 -- In_Dispatching_Context --
5136 ----------------------------
5138 function In_Dispatching_Context return Boolean is
5139 Par : constant Node_Id := Parent (N);
5141 begin
5142 return Nkind (Par) in N_Subprogram_Call
5143 and then Is_Entity_Name (Name (Par))
5144 and then Is_Dispatching_Operation (Entity (Name (Par)));
5145 end In_Dispatching_Context;
5147 -- Start of processing for Resolve_Allocator
5149 begin
5150 -- Replace general access with specific type
5152 if Ekind (Etype (N)) = E_Allocator_Type then
5153 Set_Etype (N, Base_Type (Typ));
5154 end if;
5156 if Is_Abstract_Type (Typ) then
5157 Error_Msg_N ("type of allocator cannot be abstract", N);
5158 end if;
5160 -- For qualified expression, resolve the expression using the given
5161 -- subtype (nothing to do for type mark, subtype indication)
5163 if Nkind (E) = N_Qualified_Expression then
5164 if Is_Class_Wide_Type (Etype (E))
5165 and then not Is_Class_Wide_Type (Desig_T)
5166 and then not In_Dispatching_Context
5167 then
5168 Error_Msg_N
5169 ("class-wide allocator not allowed for this access type", N);
5170 end if;
5172 -- Do a full resolution to apply constraint and predicate checks
5174 Resolve_Qualified_Expression (E, Etype (E));
5175 Check_Unset_Reference (Expression (E));
5177 -- Allocators generated by the build-in-place expansion mechanism
5178 -- are explicitly marked as coming from source but do not need to be
5179 -- checked for limited initialization. To exclude this case, ensure
5180 -- that the parent of the allocator is a source node.
5181 -- The return statement constructed for an Expression_Function does
5182 -- not come from source but requires a limited check.
5184 if Is_Limited_Type (Etype (E))
5185 and then Comes_From_Source (N)
5186 and then
5187 (Comes_From_Source (Parent (N))
5188 or else
5189 (Ekind (Current_Scope) = E_Function
5190 and then Nkind (Original_Node (Unit_Declaration_Node
5191 (Current_Scope))) = N_Expression_Function))
5192 and then not In_Instance_Body
5193 then
5194 if not OK_For_Limited_Init (Etype (E), Expression (E)) then
5195 if Nkind (Parent (N)) = N_Assignment_Statement then
5196 Error_Msg_N
5197 ("illegal expression for initialized allocator of a "
5198 & "limited type (RM 7.5 (2.7/2))", N);
5199 else
5200 Error_Msg_N
5201 ("initialization not allowed for limited types", N);
5202 end if;
5204 Explain_Limited_Type (Etype (E), N);
5205 end if;
5206 end if;
5208 -- Calls to build-in-place functions are not currently supported in
5209 -- allocators for access types associated with a simple storage pool.
5210 -- Supporting such allocators may require passing additional implicit
5211 -- parameters to build-in-place functions (or a significant revision
5212 -- of the current b-i-p implementation to unify the handling for
5213 -- multiple kinds of storage pools). ???
5215 if Is_Limited_View (Desig_T)
5216 and then Nkind (Expression (E)) = N_Function_Call
5217 then
5218 declare
5219 Pool : constant Entity_Id :=
5220 Associated_Storage_Pool (Root_Type (Typ));
5221 begin
5222 if Present (Pool)
5223 and then
5224 Present (Get_Rep_Pragma
5225 (Etype (Pool), Name_Simple_Storage_Pool_Type))
5226 then
5227 Error_Msg_N
5228 ("limited function calls not yet supported in simple "
5229 & "storage pool allocators", Expression (E));
5230 end if;
5231 end;
5232 end if;
5234 -- A special accessibility check is needed for allocators that
5235 -- constrain access discriminants. The level of the type of the
5236 -- expression used to constrain an access discriminant cannot be
5237 -- deeper than the type of the allocator (in contrast to access
5238 -- parameters, where the level of the actual can be arbitrary).
5240 -- We can't use Valid_Conversion to perform this check because in
5241 -- general the type of the allocator is unrelated to the type of
5242 -- the access discriminant.
5244 if Ekind (Typ) /= E_Anonymous_Access_Type
5245 or else Is_Local_Anonymous_Access (Typ)
5246 then
5247 Subtyp := Entity (Subtype_Mark (E));
5249 Aggr := Original_Node (Expression (E));
5251 if Has_Discriminants (Subtyp)
5252 and then Nkind (Aggr) in N_Aggregate | N_Extension_Aggregate
5253 then
5254 Discrim := First_Discriminant (Base_Type (Subtyp));
5256 -- Get the first component expression of the aggregate
5258 if Present (Expressions (Aggr)) then
5259 Disc_Exp := First (Expressions (Aggr));
5261 elsif Present (Component_Associations (Aggr)) then
5262 Assoc := First (Component_Associations (Aggr));
5264 if Present (Assoc) then
5265 Disc_Exp := Expression (Assoc);
5266 else
5267 Disc_Exp := Empty;
5268 end if;
5270 else
5271 Disc_Exp := Empty;
5272 end if;
5274 while Present (Discrim) and then Present (Disc_Exp) loop
5275 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
5276 Check_Allocator_Discrim_Accessibility_Exprs
5277 (Disc_Exp, Typ);
5278 end if;
5280 Next_Discriminant (Discrim);
5282 if Present (Discrim) then
5283 if Present (Assoc) then
5284 Next (Assoc);
5285 Disc_Exp := Expression (Assoc);
5287 elsif Present (Next (Disc_Exp)) then
5288 Next (Disc_Exp);
5290 else
5291 Assoc := First (Component_Associations (Aggr));
5293 if Present (Assoc) then
5294 Disc_Exp := Expression (Assoc);
5295 else
5296 Disc_Exp := Empty;
5297 end if;
5298 end if;
5299 end if;
5300 end loop;
5301 end if;
5302 end if;
5304 -- For a subtype mark or subtype indication, freeze the subtype
5306 else
5307 Freeze_Expression (E);
5309 if Is_Access_Constant (Typ) and then not No_Initialization (N) then
5310 Error_Msg_N
5311 ("initialization required for access-to-constant allocator", N);
5312 end if;
5314 -- A special accessibility check is needed for allocators that
5315 -- constrain access discriminants. The level of the type of the
5316 -- expression used to constrain an access discriminant cannot be
5317 -- deeper than the type of the allocator (in contrast to access
5318 -- parameters, where the level of the actual can be arbitrary).
5319 -- We can't use Valid_Conversion to perform this check because
5320 -- in general the type of the allocator is unrelated to the type
5321 -- of the access discriminant.
5323 if Nkind (Original_Node (E)) = N_Subtype_Indication
5324 and then (Ekind (Typ) /= E_Anonymous_Access_Type
5325 or else Is_Local_Anonymous_Access (Typ))
5326 then
5327 Subtyp := Entity (Subtype_Mark (Original_Node (E)));
5329 if Has_Discriminants (Subtyp) then
5330 Discrim := First_Discriminant (Base_Type (Subtyp));
5331 Constr := First (Constraints (Constraint (Original_Node (E))));
5332 while Present (Discrim) and then Present (Constr) loop
5333 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
5334 if Nkind (Constr) = N_Discriminant_Association then
5335 Disc_Exp := Expression (Constr);
5336 else
5337 Disc_Exp := Constr;
5338 end if;
5340 Check_Allocator_Discrim_Accessibility_Exprs
5341 (Disc_Exp, Typ);
5342 end if;
5344 Next_Discriminant (Discrim);
5345 Next (Constr);
5346 end loop;
5347 end if;
5348 end if;
5349 end if;
5351 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
5352 -- check that the level of the type of the created object is not deeper
5353 -- than the level of the allocator's access type, since extensions can
5354 -- now occur at deeper levels than their ancestor types. This is a
5355 -- static accessibility level check; a run-time check is also needed in
5356 -- the case of an initialized allocator with a class-wide argument (see
5357 -- Expand_Allocator_Expression).
5359 if Ada_Version >= Ada_2005
5360 and then Is_Class_Wide_Type (Desig_T)
5361 then
5362 declare
5363 Exp_Typ : Entity_Id;
5365 begin
5366 if Nkind (E) = N_Qualified_Expression then
5367 Exp_Typ := Etype (E);
5368 elsif Nkind (E) = N_Subtype_Indication then
5369 Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
5370 else
5371 Exp_Typ := Entity (E);
5372 end if;
5374 if Type_Access_Level (Exp_Typ) >
5375 Deepest_Type_Access_Level (Typ)
5376 then
5377 if In_Instance_Body then
5378 Error_Msg_Warn := SPARK_Mode /= On;
5379 Error_Msg_N
5380 ("type in allocator has deeper level than designated "
5381 & "class-wide type<<", E);
5382 Error_Msg_N ("\Program_Error [<<", E);
5384 Rewrite (N,
5385 Make_Raise_Program_Error (Sloc (N),
5386 Reason => PE_Accessibility_Check_Failed));
5387 Set_Etype (N, Typ);
5389 -- Do not apply Ada 2005 accessibility checks on a class-wide
5390 -- allocator if the type given in the allocator is a formal
5391 -- type. A run-time check will be performed in the instance.
5393 elsif not Is_Generic_Type (Exp_Typ) then
5394 Error_Msg_N
5395 ("type in allocator has deeper level than designated "
5396 & "class-wide type", E);
5397 end if;
5398 end if;
5399 end;
5400 end if;
5402 -- Check for allocation from an empty storage pool. But do not complain
5403 -- if it's a return statement for a build-in-place function, because the
5404 -- allocator is there just in case the caller uses an allocator. If the
5405 -- caller does use an allocator, it will be caught at the call site.
5407 if No_Pool_Assigned (Typ)
5408 and then not Alloc_For_BIP_Return (N)
5409 then
5410 Error_Msg_N ("allocation from empty storage pool!", N);
5412 -- If the context is an unchecked conversion, as may happen within an
5413 -- inlined subprogram, the allocator is being resolved with its own
5414 -- anonymous type. In that case, if the target type has a specific
5415 -- storage pool, it must be inherited explicitly by the allocator type.
5417 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
5418 and then No (Associated_Storage_Pool (Typ))
5419 then
5420 Set_Associated_Storage_Pool
5421 (Typ, Associated_Storage_Pool (Etype (Parent (N))));
5422 end if;
5424 if Ekind (Etype (N)) = E_Anonymous_Access_Type then
5425 Check_Restriction (No_Anonymous_Allocators, N);
5426 end if;
5428 -- Check that an allocator with task parts isn't for a nested access
5429 -- type when restriction No_Task_Hierarchy applies.
5431 if not Is_Library_Level_Entity (Base_Type (Typ))
5432 and then Has_Task (Base_Type (Desig_T))
5433 then
5434 Check_Restriction (No_Task_Hierarchy, N);
5435 end if;
5437 -- An illegal allocator may be rewritten as a raise Program_Error
5438 -- statement.
5440 if Nkind (N) = N_Allocator then
5442 -- Avoid coextension processing for an allocator that is the
5443 -- expansion of a build-in-place function call.
5445 if Nkind (Original_Node (N)) = N_Allocator
5446 and then Nkind (Expression (Original_Node (N))) =
5447 N_Qualified_Expression
5448 and then Nkind (Expression (Expression (Original_Node (N)))) =
5449 N_Function_Call
5450 and then Is_Expanded_Build_In_Place_Call
5451 (Expression (Expression (Original_Node (N))))
5452 then
5453 null; -- b-i-p function call case
5455 else
5456 -- An anonymous access discriminant is the definition of a
5457 -- coextension.
5459 if Ekind (Typ) = E_Anonymous_Access_Type
5460 and then Nkind (Associated_Node_For_Itype (Typ)) =
5461 N_Discriminant_Specification
5462 then
5463 declare
5464 Discr : constant Entity_Id :=
5465 Defining_Identifier (Associated_Node_For_Itype (Typ));
5467 begin
5468 Check_Restriction (No_Coextensions, N);
5470 -- Ada 2012 AI05-0052: If the designated type of the
5471 -- allocator is limited, then the allocator shall not
5472 -- be used to define the value of an access discriminant
5473 -- unless the discriminated type is immutably limited.
5475 if Ada_Version >= Ada_2012
5476 and then Is_Limited_Type (Desig_T)
5477 and then not Is_Limited_View (Scope (Discr))
5478 then
5479 Error_Msg_N
5480 ("only immutably limited types can have anonymous "
5481 & "access discriminants designating a limited type",
5483 end if;
5484 end;
5486 -- Avoid marking an allocator as a dynamic coextension if it is
5487 -- within a static construct.
5489 if not Is_Static_Coextension (N) then
5490 Set_Is_Dynamic_Coextension (N);
5492 -- Finalization and deallocation of coextensions utilizes an
5493 -- approximate implementation which does not directly adhere
5494 -- to the semantic rules. Warn on potential issues involving
5495 -- coextensions.
5497 if Is_Controlled (Desig_T) then
5498 Error_Msg_N
5499 ("??coextension will not be finalized when its "
5500 & "associated owner is deallocated or finalized", N);
5501 else
5502 Error_Msg_N
5503 ("??coextension will not be deallocated when its "
5504 & "associated owner is deallocated", N);
5505 end if;
5506 end if;
5508 -- Cleanup for potential static coextensions
5510 else
5511 Set_Is_Dynamic_Coextension (N, False);
5512 Set_Is_Static_Coextension (N, False);
5514 -- Anonymous access-to-controlled objects are not finalized on
5515 -- time because this involves run-time ownership and currently
5516 -- this property is not available. In rare cases the object may
5517 -- not be finalized at all. Warn on potential issues involving
5518 -- anonymous access-to-controlled objects.
5520 if Ekind (Typ) = E_Anonymous_Access_Type
5521 and then Is_Controlled_Active (Desig_T)
5522 then
5523 Error_Msg_N
5524 ("??object designated by anonymous access object might "
5525 & "not be finalized until its enclosing library unit "
5526 & "goes out of scope", N);
5527 Error_Msg_N ("\use named access type instead", N);
5528 end if;
5529 end if;
5530 end if;
5531 end if;
5533 -- Report a simple error: if the designated object is a local task,
5534 -- its body has not been seen yet, and its activation will fail an
5535 -- elaboration check.
5537 if Is_Task_Type (Desig_T)
5538 and then Scope (Base_Type (Desig_T)) = Current_Scope
5539 and then Is_Compilation_Unit (Current_Scope)
5540 and then Ekind (Current_Scope) = E_Package
5541 and then not In_Package_Body (Current_Scope)
5542 then
5543 Error_Msg_Warn := SPARK_Mode /= On;
5544 Error_Msg_N ("cannot activate task before body seen<<", N);
5545 Error_Msg_N ("\Program_Error [<<", N);
5546 end if;
5548 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
5549 -- type with a task component on a subpool. This action must raise
5550 -- Program_Error at runtime.
5552 if Ada_Version >= Ada_2012
5553 and then Nkind (N) = N_Allocator
5554 and then Present (Subpool_Handle_Name (N))
5555 and then Has_Task (Desig_T)
5556 then
5557 Error_Msg_Warn := SPARK_Mode /= On;
5558 Error_Msg_N ("cannot allocate task on subpool<<", N);
5559 Error_Msg_N ("\Program_Error [<<", N);
5561 Rewrite (N,
5562 Make_Raise_Program_Error (Sloc (N),
5563 Reason => PE_Explicit_Raise));
5564 Set_Etype (N, Typ);
5565 end if;
5566 end Resolve_Allocator;
5568 ---------------------------
5569 -- Resolve_Arithmetic_Op --
5570 ---------------------------
5572 -- Used for resolving all arithmetic operators except exponentiation
5574 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
5575 L : constant Node_Id := Left_Opnd (N);
5576 R : constant Node_Id := Right_Opnd (N);
5577 TL : constant Entity_Id := Base_Type (Etype (L));
5578 TR : constant Entity_Id := Base_Type (Etype (R));
5579 T : Entity_Id;
5580 Rop : Node_Id;
5582 B_Typ : constant Entity_Id := Base_Type (Typ);
5583 -- We do the resolution using the base type, because intermediate values
5584 -- in expressions always are of the base type, not a subtype of it.
5586 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
5587 -- Returns True if N is in a context that expects "any real type"
5589 function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
5590 -- Return True iff given type is Integer or universal real/integer
5592 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
5593 -- Choose type of integer literal in fixed-point operation to conform
5594 -- to available fixed-point type. T is the type of the other operand,
5595 -- which is needed to determine the expected type of N.
5597 procedure Set_Operand_Type (N : Node_Id);
5598 -- Set operand type to T if universal
5600 -------------------------------
5601 -- Expected_Type_Is_Any_Real --
5602 -------------------------------
5604 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
5605 begin
5606 -- N is the expression after "delta" in a fixed_point_definition;
5607 -- see RM-3.5.9(6):
5609 return Nkind (Parent (N)) in N_Ordinary_Fixed_Point_Definition
5610 | N_Decimal_Fixed_Point_Definition
5612 -- N is one of the bounds in a real_range_specification;
5613 -- see RM-3.5.7(5):
5615 | N_Real_Range_Specification
5617 -- N is the expression of a delta_constraint;
5618 -- see RM-J.3(3):
5620 | N_Delta_Constraint;
5621 end Expected_Type_Is_Any_Real;
5623 -----------------------------
5624 -- Is_Integer_Or_Universal --
5625 -----------------------------
5627 function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
5628 T : Entity_Id;
5629 Index : Interp_Index;
5630 It : Interp;
5632 begin
5633 if not Is_Overloaded (N) then
5634 T := Etype (N);
5635 return Base_Type (T) = Base_Type (Standard_Integer)
5636 or else T = Universal_Integer
5637 or else T = Universal_Real;
5638 else
5639 Get_First_Interp (N, Index, It);
5640 while Present (It.Typ) loop
5641 if Base_Type (It.Typ) = Base_Type (Standard_Integer)
5642 or else It.Typ = Universal_Integer
5643 or else It.Typ = Universal_Real
5644 then
5645 return True;
5646 end if;
5648 Get_Next_Interp (Index, It);
5649 end loop;
5650 end if;
5652 return False;
5653 end Is_Integer_Or_Universal;
5655 ----------------------------
5656 -- Set_Mixed_Mode_Operand --
5657 ----------------------------
5659 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
5660 Index : Interp_Index;
5661 It : Interp;
5663 begin
5664 if Universal_Interpretation (N) = Universal_Integer then
5666 -- A universal integer literal is resolved as standard integer
5667 -- except in the case of a fixed-point result, where we leave it
5668 -- as universal (to be handled by Exp_Fixd later on)
5670 if Is_Fixed_Point_Type (T) then
5671 Resolve (N, Universal_Integer);
5672 else
5673 Resolve (N, Standard_Integer);
5674 end if;
5676 elsif Universal_Interpretation (N) = Universal_Real
5677 and then (T = Base_Type (Standard_Integer)
5678 or else T = Universal_Integer
5679 or else T = Universal_Real)
5680 then
5681 -- A universal real can appear in a fixed-type context. We resolve
5682 -- the literal with that context, even though this might raise an
5683 -- exception prematurely (the other operand may be zero).
5685 Resolve (N, B_Typ);
5687 elsif Etype (N) = Base_Type (Standard_Integer)
5688 and then T = Universal_Real
5689 and then Is_Overloaded (N)
5690 then
5691 -- Integer arg in mixed-mode operation. Resolve with universal
5692 -- type, in case preference rule must be applied.
5694 Resolve (N, Universal_Integer);
5696 elsif Etype (N) = T and then B_Typ /= Universal_Fixed then
5698 -- If the operand is part of a fixed multiplication operation,
5699 -- a conversion will be applied to each operand, so resolve it
5700 -- with its own type.
5702 if Nkind (Parent (N)) in N_Op_Divide | N_Op_Multiply then
5703 Resolve (N);
5705 else
5706 -- Not a mixed-mode operation, resolve with context
5708 Resolve (N, B_Typ);
5709 end if;
5711 elsif Etype (N) = Any_Fixed then
5713 -- N may itself be a mixed-mode operation, so use context type
5715 Resolve (N, B_Typ);
5717 elsif Is_Fixed_Point_Type (T)
5718 and then B_Typ = Universal_Fixed
5719 and then Is_Overloaded (N)
5720 then
5721 -- Must be (fixed * fixed) operation, operand must have one
5722 -- compatible interpretation.
5724 Resolve (N, Any_Fixed);
5726 elsif Is_Fixed_Point_Type (B_Typ)
5727 and then (T = Universal_Real or else Is_Fixed_Point_Type (T))
5728 and then Is_Overloaded (N)
5729 then
5730 -- C * F(X) in a fixed context, where C is a real literal or a
5731 -- fixed-point expression. F must have either a fixed type
5732 -- interpretation or an integer interpretation, but not both.
5734 Get_First_Interp (N, Index, It);
5735 while Present (It.Typ) loop
5736 if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
5737 if Analyzed (N) then
5738 Error_Msg_N ("ambiguous operand in fixed operation", N);
5739 else
5740 Resolve (N, Standard_Integer);
5741 end if;
5743 elsif Is_Fixed_Point_Type (It.Typ) then
5744 if Analyzed (N) then
5745 Error_Msg_N ("ambiguous operand in fixed operation", N);
5746 else
5747 Resolve (N, It.Typ);
5748 end if;
5749 end if;
5751 Get_Next_Interp (Index, It);
5752 end loop;
5754 -- Reanalyze the literal with the fixed type of the context. If
5755 -- context is Universal_Fixed, we are within a conversion, leave
5756 -- the literal as a universal real because there is no usable
5757 -- fixed type, and the target of the conversion plays no role in
5758 -- the resolution.
5760 declare
5761 Op2 : Node_Id;
5762 T2 : Entity_Id;
5764 begin
5765 if N = L then
5766 Op2 := R;
5767 else
5768 Op2 := L;
5769 end if;
5771 if B_Typ = Universal_Fixed
5772 and then Nkind (Op2) = N_Real_Literal
5773 then
5774 T2 := Universal_Real;
5775 else
5776 T2 := B_Typ;
5777 end if;
5779 Set_Analyzed (Op2, False);
5780 Resolve (Op2, T2);
5781 end;
5783 -- A universal real conditional expression can appear in a fixed-type
5784 -- context and must be resolved with that context to facilitate the
5785 -- code generation in the back end. However, If the context is
5786 -- Universal_fixed (i.e. as an operand of a multiplication/division
5787 -- involving a fixed-point operand) the conditional expression must
5788 -- resolve to a unique visible fixed_point type, normally Duration.
5790 elsif Nkind (N) in N_Case_Expression | N_If_Expression
5791 and then Etype (N) = Universal_Real
5792 and then Is_Fixed_Point_Type (B_Typ)
5793 then
5794 if B_Typ = Universal_Fixed then
5795 Resolve (N, Unique_Fixed_Point_Type (N));
5797 else
5798 Resolve (N, B_Typ);
5799 end if;
5801 else
5802 Resolve (N);
5803 end if;
5804 end Set_Mixed_Mode_Operand;
5806 ----------------------
5807 -- Set_Operand_Type --
5808 ----------------------
5810 procedure Set_Operand_Type (N : Node_Id) is
5811 begin
5812 if Etype (N) = Universal_Integer
5813 or else Etype (N) = Universal_Real
5814 then
5815 Set_Etype (N, T);
5816 end if;
5817 end Set_Operand_Type;
5819 -- Start of processing for Resolve_Arithmetic_Op
5821 begin
5822 if Comes_From_Source (N)
5823 and then Ekind (Entity (N)) = E_Function
5824 and then Is_Imported (Entity (N))
5825 and then Is_Intrinsic_Subprogram (Entity (N))
5826 then
5827 Resolve_Intrinsic_Operator (N, Typ);
5828 return;
5830 -- Special-case for mixed-mode universal expressions or fixed point type
5831 -- operation: each argument is resolved separately. The same treatment
5832 -- is required if one of the operands of a fixed point operation is
5833 -- universal real, since in this case we don't do a conversion to a
5834 -- specific fixed-point type (instead the expander handles the case).
5836 -- Set the type of the node to its universal interpretation because
5837 -- legality checks on an exponentiation operand need the context.
5839 elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
5840 and then Present (Universal_Interpretation (L))
5841 and then Present (Universal_Interpretation (R))
5842 then
5843 Set_Etype (N, B_Typ);
5844 Resolve (L, Universal_Interpretation (L));
5845 Resolve (R, Universal_Interpretation (R));
5847 elsif (B_Typ = Universal_Real
5848 or else Etype (N) = Universal_Fixed
5849 or else (Etype (N) = Any_Fixed
5850 and then Is_Fixed_Point_Type (B_Typ))
5851 or else (Is_Fixed_Point_Type (B_Typ)
5852 and then (Is_Integer_Or_Universal (L)
5853 or else
5854 Is_Integer_Or_Universal (R))))
5855 and then Nkind (N) in N_Op_Multiply | N_Op_Divide
5856 then
5857 if TL = Universal_Integer or else TR = Universal_Integer then
5858 Check_For_Visible_Operator (N, B_Typ);
5859 end if;
5861 -- If context is a fixed type and one operand is integer, the other
5862 -- is resolved with the type of the context.
5864 if Is_Fixed_Point_Type (B_Typ)
5865 and then (Base_Type (TL) = Base_Type (Standard_Integer)
5866 or else TL = Universal_Integer)
5867 then
5868 Resolve (R, B_Typ);
5869 Resolve (L, TL);
5871 elsif Is_Fixed_Point_Type (B_Typ)
5872 and then (Base_Type (TR) = Base_Type (Standard_Integer)
5873 or else TR = Universal_Integer)
5874 then
5875 Resolve (L, B_Typ);
5876 Resolve (R, TR);
5878 -- If both operands are universal and the context is a floating
5879 -- point type, the operands are resolved to the type of the context.
5881 elsif Is_Floating_Point_Type (B_Typ) then
5882 Resolve (L, B_Typ);
5883 Resolve (R, B_Typ);
5885 else
5886 Set_Mixed_Mode_Operand (L, TR);
5887 Set_Mixed_Mode_Operand (R, TL);
5888 end if;
5890 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
5891 -- multiplying operators from being used when the expected type is
5892 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
5893 -- some cases where the expected type is actually Any_Real;
5894 -- Expected_Type_Is_Any_Real takes care of that case.
5896 if Etype (N) = Universal_Fixed
5897 or else Etype (N) = Any_Fixed
5898 then
5899 if B_Typ = Universal_Fixed
5900 and then not Expected_Type_Is_Any_Real (N)
5901 and then Nkind (Parent (N)) not in
5902 N_Type_Conversion | N_Unchecked_Type_Conversion
5903 then
5904 Error_Msg_N ("type cannot be determined from context!", N);
5905 Error_Msg_N ("\explicit conversion to result type required", N);
5907 Set_Etype (L, Any_Type);
5908 Set_Etype (R, Any_Type);
5910 else
5911 if Ada_Version = Ada_83
5912 and then Etype (N) = Universal_Fixed
5913 and then Nkind (Parent (N)) not in
5914 N_Type_Conversion | N_Unchecked_Type_Conversion
5915 then
5916 Error_Msg_N
5917 ("(Ada 83) fixed-point operation needs explicit "
5918 & "conversion", N);
5919 end if;
5921 -- The expected type is "any real type" in contexts like
5923 -- type T is delta <universal_fixed-expression> ...
5925 -- in which case we need to set the type to Universal_Real
5926 -- so that static expression evaluation will work properly.
5928 if Expected_Type_Is_Any_Real (N) then
5929 Set_Etype (N, Universal_Real);
5930 else
5931 Set_Etype (N, B_Typ);
5932 end if;
5933 end if;
5935 elsif Is_Fixed_Point_Type (B_Typ)
5936 and then (Is_Integer_Or_Universal (L)
5937 or else Nkind (L) = N_Real_Literal
5938 or else Nkind (R) = N_Real_Literal
5939 or else Is_Integer_Or_Universal (R))
5940 then
5941 Set_Etype (N, B_Typ);
5943 elsif Etype (N) = Any_Fixed then
5945 -- If no previous errors, this is only possible if one operand is
5946 -- overloaded and the context is universal. Resolve as such.
5948 Set_Etype (N, B_Typ);
5949 end if;
5951 else
5952 if (TL = Universal_Integer or else TL = Universal_Real)
5953 and then
5954 (TR = Universal_Integer or else TR = Universal_Real)
5955 then
5956 Check_For_Visible_Operator (N, B_Typ);
5957 end if;
5959 -- If the context is Universal_Fixed and the operands are also
5960 -- universal fixed, this is an error, unless there is only one
5961 -- applicable fixed_point type (usually Duration).
5963 if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
5964 T := Unique_Fixed_Point_Type (N);
5966 if T = Any_Type then
5967 Set_Etype (N, T);
5968 return;
5969 else
5970 Resolve (L, T);
5971 Resolve (R, T);
5972 end if;
5974 else
5975 Resolve (L, B_Typ);
5976 Resolve (R, B_Typ);
5977 end if;
5979 -- If one of the arguments was resolved to a non-universal type.
5980 -- label the result of the operation itself with the same type.
5981 -- Do the same for the universal argument, if any.
5983 T := Intersect_Types (L, R);
5984 Set_Etype (N, Base_Type (T));
5985 Set_Operand_Type (L);
5986 Set_Operand_Type (R);
5987 end if;
5989 Generate_Operator_Reference (N, Typ);
5990 Analyze_Dimension (N);
5991 Eval_Arithmetic_Op (N);
5993 -- Set overflow and division checking bit
5995 if Nkind (N) in N_Op then
5996 if not Overflow_Checks_Suppressed (Etype (N)) then
5997 Enable_Overflow_Check (N);
5998 end if;
6000 -- Give warning if explicit division by zero
6002 if Nkind (N) in N_Op_Divide | N_Op_Rem | N_Op_Mod
6003 and then not Division_Checks_Suppressed (Etype (N))
6004 then
6005 Rop := Right_Opnd (N);
6007 if Compile_Time_Known_Value (Rop)
6008 and then ((Is_Integer_Type (Etype (Rop))
6009 and then Expr_Value (Rop) = Uint_0)
6010 or else
6011 (Is_Real_Type (Etype (Rop))
6012 and then Expr_Value_R (Rop) = Ureal_0))
6013 then
6014 -- Specialize the warning message according to the operation.
6015 -- When SPARK_Mode is On, force a warning instead of an error
6016 -- in that case, as this likely corresponds to deactivated
6017 -- code. The following warnings are for the case
6019 case Nkind (N) is
6020 when N_Op_Divide =>
6022 -- For division, we have two cases, for float division
6023 -- of an unconstrained float type, on a machine where
6024 -- Machine_Overflows is false, we don't get an exception
6025 -- at run-time, but rather an infinity or Nan. The Nan
6026 -- case is pretty obscure, so just warn about infinities.
6028 if Is_Floating_Point_Type (Typ)
6029 and then not Is_Constrained (Typ)
6030 and then not Machine_Overflows_On_Target
6031 then
6032 Error_Msg_N
6033 ("float division by zero, may generate "
6034 & "'+'/'- infinity??", Right_Opnd (N));
6036 -- For all other cases, we get a Constraint_Error
6038 else
6039 Apply_Compile_Time_Constraint_Error
6040 (N, "division by zero??", CE_Divide_By_Zero,
6041 Loc => Sloc (Right_Opnd (N)),
6042 Warn => SPARK_Mode = On);
6043 end if;
6045 when N_Op_Rem =>
6046 Apply_Compile_Time_Constraint_Error
6047 (N, "rem with zero divisor??", CE_Divide_By_Zero,
6048 Loc => Sloc (Right_Opnd (N)),
6049 Warn => SPARK_Mode = On);
6051 when N_Op_Mod =>
6052 Apply_Compile_Time_Constraint_Error
6053 (N, "mod with zero divisor??", CE_Divide_By_Zero,
6054 Loc => Sloc (Right_Opnd (N)),
6055 Warn => SPARK_Mode = On);
6057 -- Division by zero can only happen with division, rem,
6058 -- and mod operations.
6060 when others =>
6061 raise Program_Error;
6062 end case;
6064 -- In GNATprove mode, we enable the division check so that
6065 -- GNATprove will issue a message if it cannot be proved.
6067 if GNATprove_Mode then
6068 Activate_Division_Check (N);
6069 end if;
6071 -- Otherwise just set the flag to check at run time
6073 else
6074 Activate_Division_Check (N);
6075 end if;
6076 end if;
6078 -- If Restriction No_Implicit_Conditionals is active, then it is
6079 -- violated if either operand can be negative for mod, or for rem
6080 -- if both operands can be negative.
6082 if Restriction_Check_Required (No_Implicit_Conditionals)
6083 and then Nkind (N) in N_Op_Rem | N_Op_Mod
6084 then
6085 declare
6086 Lo : Uint;
6087 Hi : Uint;
6088 OK : Boolean;
6090 LNeg : Boolean;
6091 RNeg : Boolean;
6092 -- Set if corresponding operand might be negative
6094 begin
6095 Determine_Range
6096 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
6097 LNeg := (not OK) or else Lo < 0;
6099 Determine_Range
6100 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
6101 RNeg := (not OK) or else Lo < 0;
6103 -- Check if we will be generating conditionals. There are two
6104 -- cases where that can happen, first for REM, the only case
6105 -- is largest negative integer mod -1, where the division can
6106 -- overflow, but we still have to give the right result. The
6107 -- front end generates a test for this annoying case. Here we
6108 -- just test if both operands can be negative (that's what the
6109 -- expander does, so we match its logic here).
6111 -- The second case is mod where either operand can be negative.
6112 -- In this case, the back end has to generate additional tests.
6114 if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
6115 or else
6116 (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
6117 then
6118 Check_Restriction (No_Implicit_Conditionals, N);
6119 end if;
6120 end;
6121 end if;
6122 end if;
6124 Check_Unset_Reference (L);
6125 Check_Unset_Reference (R);
6126 end Resolve_Arithmetic_Op;
6128 ------------------
6129 -- Resolve_Call --
6130 ------------------
6132 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
6133 Loc : constant Source_Ptr := Sloc (N);
6134 Subp : constant Node_Id := Name (N);
6135 Body_Id : Entity_Id;
6136 I : Interp_Index;
6137 It : Interp;
6138 Nam : Entity_Id;
6139 Nam_Decl : Node_Id;
6140 Nam_UA : Entity_Id;
6141 Norm_OK : Boolean;
6142 Rtype : Entity_Id;
6143 Scop : Entity_Id;
6145 begin
6146 -- Preserve relevant elaboration-related attributes of the context which
6147 -- are no longer available or very expensive to recompute once analysis,
6148 -- resolution, and expansion are over.
6150 Mark_Elaboration_Attributes
6151 (N_Id => N,
6152 Checks => True,
6153 Modes => True,
6154 Warnings => True);
6156 -- The context imposes a unique interpretation with type Typ on a
6157 -- procedure or function call. Find the entity of the subprogram that
6158 -- yields the expected type, and propagate the corresponding formal
6159 -- constraints on the actuals. The caller has established that an
6160 -- interpretation exists, and emitted an error if not unique.
6162 -- First deal with the case of a call to an access-to-subprogram,
6163 -- dereference made explicit in Analyze_Call.
6165 if Ekind (Etype (Subp)) = E_Subprogram_Type then
6166 if not Is_Overloaded (Subp) then
6167 Nam := Etype (Subp);
6169 else
6170 -- Find the interpretation whose type (a subprogram type) has a
6171 -- return type that is compatible with the context. Analysis of
6172 -- the node has established that one exists.
6174 Nam := Empty;
6176 Get_First_Interp (Subp, I, It);
6177 while Present (It.Typ) loop
6178 if Covers (Typ, Etype (It.Typ)) then
6179 Nam := It.Typ;
6180 exit;
6181 end if;
6183 Get_Next_Interp (I, It);
6184 end loop;
6186 if No (Nam) then
6187 raise Program_Error;
6188 end if;
6189 end if;
6191 -- If the prefix is not an entity, then resolve it
6193 if not Is_Entity_Name (Subp) then
6194 Resolve (Subp, Nam);
6195 end if;
6197 -- For an indirect call, we always invalidate checks, since we do not
6198 -- know whether the subprogram is local or global. Yes we could do
6199 -- better here, e.g. by knowing that there are no local subprograms,
6200 -- but it does not seem worth the effort. Similarly, we kill all
6201 -- knowledge of current constant values.
6203 Kill_Current_Values;
6205 -- If this is a procedure call which is really an entry call, do
6206 -- the conversion of the procedure call to an entry call. Protected
6207 -- operations use the same circuitry because the name in the call
6208 -- can be an arbitrary expression with special resolution rules.
6210 elsif Nkind (Subp) in N_Selected_Component | N_Indexed_Component
6211 or else (Is_Entity_Name (Subp) and then Is_Entry (Entity (Subp)))
6212 then
6213 Resolve_Entry_Call (N, Typ);
6215 if Legacy_Elaboration_Checks then
6216 Check_Elab_Call (N);
6217 end if;
6219 -- Annotate the tree by creating a call marker in case the original
6220 -- call is transformed by expansion. The call marker is automatically
6221 -- saved for later examination by the ABE Processing phase.
6223 Build_Call_Marker (N);
6225 -- Kill checks and constant values, as above for indirect case
6226 -- Who knows what happens when another task is activated?
6228 Kill_Current_Values;
6229 return;
6231 -- Normal subprogram call with name established in Resolve
6233 elsif not (Is_Type (Entity (Subp))) then
6234 Nam := Entity (Subp);
6235 Set_Entity_With_Checks (Subp, Nam);
6237 -- Otherwise we must have the case of an overloaded call
6239 else
6240 pragma Assert (Is_Overloaded (Subp));
6242 -- Initialize Nam to prevent warning (we know it will be assigned
6243 -- in the loop below, but the compiler does not know that).
6245 Nam := Empty;
6247 Get_First_Interp (Subp, I, It);
6248 while Present (It.Typ) loop
6249 if Covers (Typ, It.Typ) then
6250 Nam := It.Nam;
6251 Set_Entity_With_Checks (Subp, Nam);
6252 exit;
6253 end if;
6255 Get_Next_Interp (I, It);
6256 end loop;
6257 end if;
6259 -- Check that a call to Current_Task does not occur in an entry body
6261 if Is_RTE (Nam, RE_Current_Task) then
6262 declare
6263 P : Node_Id;
6265 begin
6266 P := N;
6267 loop
6268 P := Parent (P);
6270 -- Exclude calls that occur within the default of a formal
6271 -- parameter of the entry, since those are evaluated outside
6272 -- of the body.
6274 exit when No (P) or else Nkind (P) = N_Parameter_Specification;
6276 if Nkind (P) = N_Entry_Body
6277 or else (Nkind (P) = N_Subprogram_Body
6278 and then Is_Entry_Barrier_Function (P))
6279 then
6280 Rtype := Etype (N);
6281 Error_Msg_Warn := SPARK_Mode /= On;
6282 Error_Msg_NE
6283 ("& should not be used in entry body (RM C.7(17))<<",
6284 N, Nam);
6285 Error_Msg_NE ("\Program_Error [<<", N, Nam);
6286 Rewrite (N,
6287 Make_Raise_Program_Error (Loc,
6288 Reason => PE_Current_Task_In_Entry_Body));
6289 Set_Etype (N, Rtype);
6290 return;
6291 end if;
6292 end loop;
6293 end;
6294 end if;
6296 -- Check that a procedure call does not occur in the context of the
6297 -- entry call statement of a conditional or timed entry call. Note that
6298 -- the case of a call to a subprogram renaming of an entry will also be
6299 -- rejected. The test for N not being an N_Entry_Call_Statement is
6300 -- defensive, covering the possibility that the processing of entry
6301 -- calls might reach this point due to later modifications of the code
6302 -- above.
6304 if Nkind (Parent (N)) = N_Entry_Call_Alternative
6305 and then Nkind (N) /= N_Entry_Call_Statement
6306 and then Entry_Call_Statement (Parent (N)) = N
6307 then
6308 if Ada_Version < Ada_2005 then
6309 Error_Msg_N ("entry call required in select statement", N);
6311 -- Ada 2005 (AI-345): If a procedure_call_statement is used
6312 -- for a procedure_or_entry_call, the procedure_name or
6313 -- procedure_prefix of the procedure_call_statement shall denote
6314 -- an entry renamed by a procedure, or (a view of) a primitive
6315 -- subprogram of a limited interface whose first parameter is
6316 -- a controlling parameter.
6318 elsif Nkind (N) = N_Procedure_Call_Statement
6319 and then not Is_Renamed_Entry (Nam)
6320 and then not Is_Controlling_Limited_Procedure (Nam)
6321 then
6322 Error_Msg_N
6323 ("entry call or dispatching primitive of interface required", N);
6324 end if;
6325 end if;
6327 -- Check that this is not a call to a protected procedure or entry from
6328 -- within a protected function.
6330 Check_Internal_Protected_Use (N, Nam);
6332 -- Freeze the subprogram name if not in a spec-expression. Note that
6333 -- we freeze procedure calls as well as function calls. Procedure calls
6334 -- are not frozen according to the rules (RM 13.14(14)) because it is
6335 -- impossible to have a procedure call to a non-frozen procedure in
6336 -- pure Ada, but in the code that we generate in the expander, this
6337 -- rule needs extending because we can generate procedure calls that
6338 -- need freezing.
6340 -- In Ada 2012, expression functions may be called within pre/post
6341 -- conditions of subsequent functions or expression functions. Such
6342 -- calls do not freeze when they appear within generated bodies,
6343 -- (including the body of another expression function) which would
6344 -- place the freeze node in the wrong scope. An expression function
6345 -- is frozen in the usual fashion, by the appearance of a real body,
6346 -- or at the end of a declarative part. However an implicit call to
6347 -- an expression function may appear when it is part of a default
6348 -- expression in a call to an initialization procedure, and must be
6349 -- frozen now, even if the body is inserted at a later point.
6350 -- Otherwise, the call freezes the expression if expander is active,
6351 -- for example as part of an object declaration.
6353 if Is_Entity_Name (Subp)
6354 and then not In_Spec_Expression
6355 and then not Is_Expression_Function_Or_Completion (Current_Scope)
6356 and then
6357 (not Is_Expression_Function_Or_Completion (Entity (Subp))
6358 or else Expander_Active)
6359 then
6360 if Is_Expression_Function (Entity (Subp)) then
6362 -- Force freeze of expression function in call
6364 Set_Comes_From_Source (Subp, True);
6365 Set_Must_Not_Freeze (Subp, False);
6366 end if;
6368 Freeze_Expression (Subp);
6369 end if;
6371 -- For a predefined operator, the type of the result is the type imposed
6372 -- by context, except for a predefined operation on universal fixed.
6373 -- Otherwise the type of the call is the type returned by the subprogram
6374 -- being called.
6376 if Is_Predefined_Op (Nam) then
6377 if Etype (N) /= Universal_Fixed then
6378 Set_Etype (N, Typ);
6379 end if;
6381 -- If the subprogram returns an array type, and the context requires the
6382 -- component type of that array type, the node is really an indexing of
6383 -- the parameterless call. Resolve as such. A pathological case occurs
6384 -- when the type of the component is an access to the array type. In
6385 -- this case the call is truly ambiguous. If the call is to an intrinsic
6386 -- subprogram, it can't be an indexed component. This check is necessary
6387 -- because if it's Unchecked_Conversion, and we have "type T_Ptr is
6388 -- access T;" and "type T is array (...) of T_Ptr;" (i.e. an array of
6389 -- pointers to the same array), the compiler gets confused and does an
6390 -- infinite recursion.
6392 elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
6393 and then
6394 ((Is_Array_Type (Etype (Nam))
6395 and then Covers (Typ, Component_Type (Etype (Nam))))
6396 or else
6397 (Is_Access_Type (Etype (Nam))
6398 and then Is_Array_Type (Designated_Type (Etype (Nam)))
6399 and then
6400 Covers (Typ, Component_Type (Designated_Type (Etype (Nam))))
6401 and then not Is_Intrinsic_Subprogram (Entity (Subp))))
6402 then
6403 declare
6404 Index_Node : Node_Id;
6405 New_Subp : Node_Id;
6406 Ret_Type : constant Entity_Id := Etype (Nam);
6408 begin
6409 -- If this is a parameterless call there is no ambiguity and the
6410 -- call has the type of the function.
6412 if No (First_Actual (N)) then
6413 Set_Etype (N, Etype (Nam));
6415 if Present (First_Formal (Nam)) then
6416 Resolve_Actuals (N, Nam);
6417 end if;
6419 -- Annotate the tree by creating a call marker in case the
6420 -- original call is transformed by expansion. The call marker
6421 -- is automatically saved for later examination by the ABE
6422 -- Processing phase.
6424 Build_Call_Marker (N);
6426 elsif Is_Access_Type (Ret_Type)
6428 and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
6429 then
6430 Error_Msg_N
6431 ("cannot disambiguate function call and indexing", N);
6432 else
6433 New_Subp := Relocate_Node (Subp);
6435 -- The called entity may be an explicit dereference, in which
6436 -- case there is no entity to set.
6438 if Nkind (New_Subp) /= N_Explicit_Dereference then
6439 Set_Entity (Subp, Nam);
6440 end if;
6442 if (Is_Array_Type (Ret_Type)
6443 and then Component_Type (Ret_Type) /= Any_Type)
6444 or else
6445 (Is_Access_Type (Ret_Type)
6446 and then
6447 Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
6448 then
6449 if Needs_No_Actuals (Nam) then
6451 -- Indexed call to a parameterless function
6453 Index_Node :=
6454 Make_Indexed_Component (Loc,
6455 Prefix =>
6456 Make_Function_Call (Loc, Name => New_Subp),
6457 Expressions => Parameter_Associations (N));
6458 else
6459 -- An Ada 2005 prefixed call to a primitive operation
6460 -- whose first parameter is the prefix. This prefix was
6461 -- prepended to the parameter list, which is actually a
6462 -- list of indexes. Remove the prefix in order to build
6463 -- the proper indexed component.
6465 Index_Node :=
6466 Make_Indexed_Component (Loc,
6467 Prefix =>
6468 Make_Function_Call (Loc,
6469 Name => New_Subp,
6470 Parameter_Associations =>
6471 New_List
6472 (Remove_Head (Parameter_Associations (N)))),
6473 Expressions => Parameter_Associations (N));
6474 end if;
6476 -- Preserve the parenthesis count of the node
6478 Set_Paren_Count (Index_Node, Paren_Count (N));
6480 -- Since we are correcting a node classification error made
6481 -- by the parser, we call Replace rather than Rewrite.
6483 Replace (N, Index_Node);
6485 Set_Etype (Prefix (N), Ret_Type);
6486 Set_Etype (N, Typ);
6488 if Legacy_Elaboration_Checks then
6489 Check_Elab_Call (Prefix (N));
6490 end if;
6492 -- Annotate the tree by creating a call marker in case
6493 -- the original call is transformed by expansion. The call
6494 -- marker is automatically saved for later examination by
6495 -- the ABE Processing phase.
6497 Build_Call_Marker (Prefix (N));
6499 Resolve_Indexed_Component (N, Typ);
6500 end if;
6501 end if;
6503 return;
6504 end;
6506 else
6507 -- If the called function is not declared in the main unit and it
6508 -- returns the limited view of type then use the available view (as
6509 -- is done in Try_Object_Operation) to prevent back-end confusion;
6510 -- for the function entity itself. The call must appear in a context
6511 -- where the nonlimited view is available. If the function entity is
6512 -- in the extended main unit then no action is needed, because the
6513 -- back end handles this case. In either case the type of the call
6514 -- is the nonlimited view.
6516 if From_Limited_With (Etype (Nam))
6517 and then Present (Available_View (Etype (Nam)))
6518 then
6519 Set_Etype (N, Available_View (Etype (Nam)));
6521 if not In_Extended_Main_Code_Unit (Nam) then
6522 Set_Etype (Nam, Available_View (Etype (Nam)));
6523 end if;
6525 else
6526 Set_Etype (N, Etype (Nam));
6527 end if;
6528 end if;
6530 -- In the case where the call is to an overloaded subprogram, Analyze
6531 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
6532 -- such a case Normalize_Actuals needs to be called once more to order
6533 -- the actuals correctly. Otherwise the call will have the ordering
6534 -- given by the last overloaded subprogram whether this is the correct
6535 -- one being called or not.
6537 if Is_Overloaded (Subp) then
6538 Normalize_Actuals (N, Nam, False, Norm_OK);
6539 pragma Assert (Norm_OK);
6540 end if;
6542 -- In any case, call is fully resolved now. Reset Overload flag, to
6543 -- prevent subsequent overload resolution if node is analyzed again
6545 Set_Is_Overloaded (Subp, False);
6546 Set_Is_Overloaded (N, False);
6548 -- A Ghost entity must appear in a specific context
6550 if Is_Ghost_Entity (Nam) and then Comes_From_Source (N) then
6551 Check_Ghost_Context (Nam, N);
6552 end if;
6554 -- If we are calling the current subprogram from immediately within its
6555 -- body, then that is the case where we can sometimes detect cases of
6556 -- infinite recursion statically. Do not try this in case restriction
6557 -- No_Recursion is in effect anyway, and do it only for source calls.
6559 if Comes_From_Source (N) then
6560 Scop := Current_Scope;
6562 -- Issue warning for possible infinite recursion in the absence
6563 -- of the No_Recursion restriction.
6565 if Same_Or_Aliased_Subprograms (Nam, Scop)
6566 and then not Restriction_Active (No_Recursion)
6567 and then not Is_Static_Function (Scop)
6568 and then Check_Infinite_Recursion (N)
6569 then
6570 -- Here we detected and flagged an infinite recursion, so we do
6571 -- not need to test the case below for further warnings. Also we
6572 -- are all done if we now have a raise SE node.
6574 if Nkind (N) = N_Raise_Storage_Error then
6575 return;
6576 end if;
6578 -- If call is to immediately containing subprogram, then check for
6579 -- the case of a possible run-time detectable infinite recursion.
6581 else
6582 Scope_Loop : while Scop /= Standard_Standard loop
6583 if Same_Or_Aliased_Subprograms (Nam, Scop) then
6585 -- Ada 202x (AI12-0075): Static functions are never allowed
6586 -- to make a recursive call, as specified by 6.8(5.4/5).
6588 if Is_Static_Function (Scop) then
6589 Error_Msg_N
6590 ("recursive call not allowed in static expression "
6591 & "function", N);
6593 Set_Error_Posted (Scop);
6595 exit Scope_Loop;
6596 end if;
6598 -- Although in general case, recursion is not statically
6599 -- checkable, the case of calling an immediately containing
6600 -- subprogram is easy to catch.
6602 if not Is_Ignored_Ghost_Entity (Nam) then
6603 Check_Restriction (No_Recursion, N);
6604 end if;
6606 -- If the recursive call is to a parameterless subprogram,
6607 -- then even if we can't statically detect infinite
6608 -- recursion, this is pretty suspicious, and we output a
6609 -- warning. Furthermore, we will try later to detect some
6610 -- cases here at run time by expanding checking code (see
6611 -- Detect_Infinite_Recursion in package Exp_Ch6).
6613 -- If the recursive call is within a handler, do not emit a
6614 -- warning, because this is a common idiom: loop until input
6615 -- is correct, catch illegal input in handler and restart.
6617 if No (First_Formal (Nam))
6618 and then Etype (Nam) = Standard_Void_Type
6619 and then not Error_Posted (N)
6620 and then Nkind (Parent (N)) /= N_Exception_Handler
6621 then
6622 -- For the case of a procedure call. We give the message
6623 -- only if the call is the first statement in a sequence
6624 -- of statements, or if all previous statements are
6625 -- simple assignments. This is simply a heuristic to
6626 -- decrease false positives, without losing too many good
6627 -- warnings. The idea is that these previous statements
6628 -- may affect global variables the procedure depends on.
6629 -- We also exclude raise statements, that may arise from
6630 -- constraint checks and are probably unrelated to the
6631 -- intended control flow.
6633 if Nkind (N) = N_Procedure_Call_Statement
6634 and then Is_List_Member (N)
6635 then
6636 declare
6637 P : Node_Id;
6638 begin
6639 P := Prev (N);
6640 while Present (P) loop
6641 if Nkind (P) not in N_Assignment_Statement
6642 | N_Raise_Constraint_Error
6643 then
6644 exit Scope_Loop;
6645 end if;
6647 Prev (P);
6648 end loop;
6649 end;
6650 end if;
6652 -- Do not give warning if we are in a conditional context
6654 declare
6655 K : constant Node_Kind := Nkind (Parent (N));
6656 begin
6657 if (K = N_Loop_Statement
6658 and then Present (Iteration_Scheme (Parent (N))))
6659 or else K = N_If_Statement
6660 or else K = N_Elsif_Part
6661 or else K = N_Case_Statement_Alternative
6662 then
6663 exit Scope_Loop;
6664 end if;
6665 end;
6667 -- Here warning is to be issued
6669 Set_Has_Recursive_Call (Nam);
6670 Error_Msg_Warn := SPARK_Mode /= On;
6671 Error_Msg_N ("possible infinite recursion<<!", N);
6672 Error_Msg_N ("\Storage_Error ]<<!", N);
6673 end if;
6675 exit Scope_Loop;
6676 end if;
6678 Scop := Scope (Scop);
6679 end loop Scope_Loop;
6680 end if;
6681 end if;
6683 -- Check obsolescent reference to Ada.Characters.Handling subprogram
6685 Check_Obsolescent_2005_Entity (Nam, Subp);
6687 -- If subprogram name is a predefined operator, it was given in
6688 -- functional notation. Replace call node with operator node, so
6689 -- that actuals can be resolved appropriately.
6691 if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
6692 Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
6693 return;
6695 elsif Present (Alias (Nam))
6696 and then Is_Predefined_Op (Alias (Nam))
6697 then
6698 Resolve_Actuals (N, Nam);
6699 Make_Call_Into_Operator (N, Typ, Alias (Nam));
6700 return;
6701 end if;
6703 -- Create a transient scope if the resulting type requires it
6705 -- There are several notable exceptions:
6707 -- a) In init procs, the transient scope overhead is not needed, and is
6708 -- even incorrect when the call is a nested initialization call for a
6709 -- component whose expansion may generate adjust calls. However, if the
6710 -- call is some other procedure call within an initialization procedure
6711 -- (for example a call to Create_Task in the init_proc of the task
6712 -- run-time record) a transient scope must be created around this call.
6714 -- b) Enumeration literal pseudo-calls need no transient scope
6716 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
6717 -- functions) do not use the secondary stack even though the return
6718 -- type may be unconstrained.
6720 -- d) Calls to a build-in-place function, since such functions may
6721 -- allocate their result directly in a target object, and cases where
6722 -- the result does get allocated in the secondary stack are checked for
6723 -- within the specialized Exp_Ch6 procedures for expanding those
6724 -- build-in-place calls.
6726 -- e) Calls to inlinable expression functions do not use the secondary
6727 -- stack (since the call will be replaced by its returned object).
6729 -- f) If the subprogram is marked Inline_Always, then even if it returns
6730 -- an unconstrained type the call does not require use of the secondary
6731 -- stack. However, inlining will only take place if the body to inline
6732 -- is already present. It may not be available if e.g. the subprogram is
6733 -- declared in a child instance.
6735 -- g) If the subprogram is a static expression function and the call is
6736 -- a static call (the actuals are all static expressions), then we never
6737 -- want to create a transient scope (this could occur in the case of a
6738 -- static string-returning call).
6740 if Is_Inlined (Nam)
6741 and then Has_Pragma_Inline (Nam)
6742 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
6743 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
6744 then
6745 null;
6747 elsif Ekind (Nam) = E_Enumeration_Literal
6748 or else Is_Build_In_Place_Function (Nam)
6749 or else Is_Intrinsic_Subprogram (Nam)
6750 or else Is_Inlinable_Expression_Function (Nam)
6751 or else Is_Static_Function_Call (N)
6752 then
6753 null;
6755 -- A return statement from an ignored Ghost function does not use the
6756 -- secondary stack (or any other one).
6758 elsif Expander_Active
6759 and then Ekind (Nam) in E_Function | E_Subprogram_Type
6760 and then Requires_Transient_Scope (Etype (Nam))
6761 and then not Is_Ignored_Ghost_Entity (Nam)
6762 then
6763 Establish_Transient_Scope (N, Manage_Sec_Stack => True);
6765 -- If the call appears within the bounds of a loop, it will be
6766 -- rewritten and reanalyzed, nothing left to do here.
6768 if Nkind (N) /= N_Function_Call then
6769 return;
6770 end if;
6771 end if;
6773 -- A protected function cannot be called within the definition of the
6774 -- enclosing protected type, unless it is part of a pre/postcondition
6775 -- on another protected operation. This may appear in the entry wrapper
6776 -- created for an entry with preconditions.
6778 if Is_Protected_Type (Scope (Nam))
6779 and then In_Open_Scopes (Scope (Nam))
6780 and then not Has_Completion (Scope (Nam))
6781 and then not In_Spec_Expression
6782 and then not Is_Entry_Wrapper (Current_Scope)
6783 then
6784 Error_Msg_NE
6785 ("& cannot be called before end of protected definition", N, Nam);
6786 end if;
6788 -- Propagate interpretation to actuals, and add default expressions
6789 -- where needed.
6791 if Present (First_Formal (Nam)) then
6792 Resolve_Actuals (N, Nam);
6794 -- Overloaded literals are rewritten as function calls, for purpose of
6795 -- resolution. After resolution, we can replace the call with the
6796 -- literal itself.
6798 elsif Ekind (Nam) = E_Enumeration_Literal then
6799 Copy_Node (Subp, N);
6800 Resolve_Entity_Name (N, Typ);
6802 -- Avoid validation, since it is a static function call
6804 Generate_Reference (Nam, Subp);
6805 return;
6806 end if;
6808 -- If the subprogram is not global, then kill all saved values and
6809 -- checks. This is a bit conservative, since in many cases we could do
6810 -- better, but it is not worth the effort. Similarly, we kill constant
6811 -- values. However we do not need to do this for internal entities
6812 -- (unless they are inherited user-defined subprograms), since they
6813 -- are not in the business of molesting local values.
6815 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
6816 -- kill all checks and values for calls to global subprograms. This
6817 -- takes care of the case where an access to a local subprogram is
6818 -- taken, and could be passed directly or indirectly and then called
6819 -- from almost any context.
6821 -- Note: we do not do this step till after resolving the actuals. That
6822 -- way we still take advantage of the current value information while
6823 -- scanning the actuals.
6825 -- We suppress killing values if we are processing the nodes associated
6826 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
6827 -- type kills all the values as part of analyzing the code that
6828 -- initializes the dispatch tables.
6830 if Inside_Freezing_Actions = 0
6831 and then (not Is_Library_Level_Entity (Nam)
6832 or else Suppress_Value_Tracking_On_Call
6833 (Nearest_Dynamic_Scope (Current_Scope)))
6834 and then (Comes_From_Source (Nam)
6835 or else (Present (Alias (Nam))
6836 and then Comes_From_Source (Alias (Nam))))
6837 then
6838 Kill_Current_Values;
6839 end if;
6841 -- If we are warning about unread OUT parameters, this is the place to
6842 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
6843 -- after the above call to Kill_Current_Values (since that call clears
6844 -- the Last_Assignment field of all local variables).
6846 if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
6847 and then Comes_From_Source (N)
6848 and then In_Extended_Main_Source_Unit (N)
6849 then
6850 declare
6851 F : Entity_Id;
6852 A : Node_Id;
6854 begin
6855 F := First_Formal (Nam);
6856 A := First_Actual (N);
6857 while Present (F) and then Present (A) loop
6858 if Ekind (F) in E_Out_Parameter | E_In_Out_Parameter
6859 and then Warn_On_Modified_As_Out_Parameter (F)
6860 and then Is_Entity_Name (A)
6861 and then Present (Entity (A))
6862 and then Comes_From_Source (N)
6863 and then Safe_To_Capture_Value (N, Entity (A))
6864 then
6865 Set_Last_Assignment (Entity (A), A);
6866 end if;
6868 Next_Formal (F);
6869 Next_Actual (A);
6870 end loop;
6871 end;
6872 end if;
6874 -- If the subprogram is a primitive operation, check whether or not
6875 -- it is a correct dispatching call.
6877 if Is_Overloadable (Nam)
6878 and then Is_Dispatching_Operation (Nam)
6879 then
6880 Check_Dispatching_Call (N);
6882 elsif Ekind (Nam) /= E_Subprogram_Type
6883 and then Is_Abstract_Subprogram (Nam)
6884 and then not In_Instance
6885 then
6886 Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
6887 end if;
6889 -- If this is a dispatching call, generate the appropriate reference,
6890 -- for better source navigation in GNAT Studio.
6892 if Is_Overloadable (Nam)
6893 and then Present (Controlling_Argument (N))
6894 then
6895 Generate_Reference (Nam, Subp, 'R');
6897 -- Normal case, not a dispatching call: generate a call reference
6899 else
6900 Generate_Reference (Nam, Subp, 's');
6901 end if;
6903 if Is_Intrinsic_Subprogram (Nam) then
6904 Check_Intrinsic_Call (N);
6905 end if;
6907 -- Check for violation of restriction No_Specific_Termination_Handlers
6908 -- and warn on a potentially blocking call to Abort_Task.
6910 if Restriction_Check_Required (No_Specific_Termination_Handlers)
6911 and then (Is_RTE (Nam, RE_Set_Specific_Handler)
6912 or else
6913 Is_RTE (Nam, RE_Specific_Handler))
6914 then
6915 Check_Restriction (No_Specific_Termination_Handlers, N);
6917 elsif Is_RTE (Nam, RE_Abort_Task) then
6918 Check_Potentially_Blocking_Operation (N);
6919 end if;
6921 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
6922 -- timing event violates restriction No_Relative_Delay (AI-0211). We
6923 -- need to check the second argument to determine whether it is an
6924 -- absolute or relative timing event.
6926 if Restriction_Check_Required (No_Relative_Delay)
6927 and then Is_RTE (Nam, RE_Set_Handler)
6928 and then Is_RTE (Etype (Next_Actual (First_Actual (N))), RE_Time_Span)
6929 then
6930 Check_Restriction (No_Relative_Delay, N);
6931 end if;
6933 -- Issue an error for a call to an eliminated subprogram. This routine
6934 -- will not perform the check if the call appears within a default
6935 -- expression.
6937 Check_For_Eliminated_Subprogram (Subp, Nam);
6939 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
6940 -- class-wide and the call dispatches on result in a context that does
6941 -- not provide a tag, the call raises Program_Error.
6943 if Nkind (N) = N_Function_Call
6944 and then In_Instance
6945 and then Is_Generic_Actual_Type (Typ)
6946 and then Is_Class_Wide_Type (Typ)
6947 and then Has_Controlling_Result (Nam)
6948 and then Nkind (Parent (N)) = N_Object_Declaration
6949 then
6950 -- Verify that none of the formals are controlling
6952 declare
6953 Call_OK : Boolean := False;
6954 F : Entity_Id;
6956 begin
6957 F := First_Formal (Nam);
6958 while Present (F) loop
6959 if Is_Controlling_Formal (F) then
6960 Call_OK := True;
6961 exit;
6962 end if;
6964 Next_Formal (F);
6965 end loop;
6967 if not Call_OK then
6968 Error_Msg_Warn := SPARK_Mode /= On;
6969 Error_Msg_N ("!cannot determine tag of result<<", N);
6970 Error_Msg_N ("\Program_Error [<<!", N);
6971 Insert_Action (N,
6972 Make_Raise_Program_Error (Sloc (N),
6973 Reason => PE_Explicit_Raise));
6974 end if;
6975 end;
6976 end if;
6978 -- Check for calling a function with OUT or IN OUT parameter when the
6979 -- calling context (us right now) is not Ada 2012, so does not allow
6980 -- OUT or IN OUT parameters in function calls. Functions declared in
6981 -- a predefined unit are OK, as they may be called indirectly from a
6982 -- user-declared instantiation.
6984 if Ada_Version < Ada_2012
6985 and then Ekind (Nam) = E_Function
6986 and then Has_Out_Or_In_Out_Parameter (Nam)
6987 and then not In_Predefined_Unit (Nam)
6988 then
6989 Error_Msg_NE ("& has at least one OUT or `IN OUT` parameter", N, Nam);
6990 Error_Msg_N ("\call to this function only allowed in Ada 2012", N);
6991 end if;
6993 -- Check the dimensions of the actuals in the call. For function calls,
6994 -- propagate the dimensions from the returned type to N.
6996 Analyze_Dimension_Call (N, Nam);
6998 -- All done, evaluate call and deal with elaboration issues
7000 Eval_Call (N);
7002 if Legacy_Elaboration_Checks then
7003 Check_Elab_Call (N);
7004 end if;
7006 -- Annotate the tree by creating a call marker in case the original call
7007 -- is transformed by expansion. The call marker is automatically saved
7008 -- for later examination by the ABE Processing phase.
7010 Build_Call_Marker (N);
7012 Mark_Use_Clauses (Subp);
7014 Warn_On_Overlapping_Actuals (Nam, N);
7016 -- Ada 202x (AI12-0075): If the call is a static call to a static
7017 -- expression function, then we want to "inline" the call, replacing
7018 -- it with the folded static result. This is not done if the checking
7019 -- for a potentially static expression is enabled or if an error has
7020 -- been posted on the call (which may be due to the check for recursive
7021 -- calls, in which case we don't want to fall into infinite recursion
7022 -- when doing the inlining).
7024 if not Checking_Potentially_Static_Expression
7025 and then Is_Static_Function_Call (N)
7026 and then not Is_Intrinsic_Subprogram (Ultimate_Alias (Nam))
7027 and then not Error_Posted (Ultimate_Alias (Nam))
7028 then
7029 Inline_Static_Function_Call (N, Ultimate_Alias (Nam));
7031 -- In GNATprove mode, expansion is disabled, but we want to inline some
7032 -- subprograms to facilitate formal verification. Indirect calls through
7033 -- a subprogram type or within a generic cannot be inlined. Inlining is
7034 -- performed only for calls subject to SPARK_Mode on.
7036 elsif GNATprove_Mode
7037 and then SPARK_Mode = On
7038 and then Is_Overloadable (Nam)
7039 and then not Inside_A_Generic
7040 then
7041 Nam_UA := Ultimate_Alias (Nam);
7042 Nam_Decl := Unit_Declaration_Node (Nam_UA);
7044 if Nkind (Nam_Decl) = N_Subprogram_Declaration then
7045 Body_Id := Corresponding_Body (Nam_Decl);
7047 -- Nothing to do if the subprogram is not eligible for inlining in
7048 -- GNATprove mode, or inlining is disabled with switch -gnatdm
7050 if not Is_Inlined_Always (Nam_UA)
7051 or else not Can_Be_Inlined_In_GNATprove_Mode (Nam_UA, Body_Id)
7052 or else Debug_Flag_M
7053 then
7054 null;
7056 -- Calls cannot be inlined inside assertions, as GNATprove treats
7057 -- assertions as logic expressions. Only issue a message when the
7058 -- body has been seen, otherwise this leads to spurious messages
7059 -- on expression functions.
7061 elsif In_Assertion_Expr /= 0 then
7062 if Present (Body_Id) then
7063 Cannot_Inline
7064 ("cannot inline & (in assertion expression)?", N, Nam_UA);
7065 end if;
7067 -- Calls cannot be inlined inside default expressions
7069 elsif In_Default_Expr then
7070 Cannot_Inline
7071 ("cannot inline & (in default expression)?", N, Nam_UA);
7073 -- Calls cannot be inlined inside quantified expressions, which
7074 -- are left in expression form for GNATprove. Since these
7075 -- expressions are only preanalyzed, we need to detect the failure
7076 -- to inline outside of the case for Full_Analysis below.
7078 elsif In_Quantified_Expression (N) then
7079 Cannot_Inline
7080 ("cannot inline & (in quantified expression)?", N, Nam_UA);
7082 -- Inlining should not be performed during preanalysis
7084 elsif Full_Analysis then
7086 -- Do not inline calls inside expression functions or functions
7087 -- generated by the front end for subtype predicates, as this
7088 -- would prevent interpreting them as logical formulas in
7089 -- GNATprove. Only issue a message when the body has been seen,
7090 -- otherwise this leads to spurious messages on callees that
7091 -- are themselves expression functions.
7093 if Present (Current_Subprogram)
7094 and then
7095 (Is_Expression_Function_Or_Completion (Current_Subprogram)
7096 or else Is_Predicate_Function (Current_Subprogram)
7097 or else Is_Invariant_Procedure (Current_Subprogram)
7098 or else Is_DIC_Procedure (Current_Subprogram))
7099 then
7100 if Present (Body_Id)
7101 and then Present (Body_To_Inline (Nam_Decl))
7102 then
7103 if Is_Predicate_Function (Current_Subprogram) then
7104 Cannot_Inline
7105 ("cannot inline & (inside predicate)?",
7106 N, Nam_UA);
7108 elsif Is_Invariant_Procedure (Current_Subprogram) then
7109 Cannot_Inline
7110 ("cannot inline & (inside invariant)?",
7111 N, Nam_UA);
7113 elsif Is_DIC_Procedure (Current_Subprogram) then
7114 Cannot_Inline
7115 ("cannot inline & (inside Default_Initial_Condition)?",
7116 N, Nam_UA);
7118 else
7119 Cannot_Inline
7120 ("cannot inline & (inside expression function)?",
7121 N, Nam_UA);
7122 end if;
7123 end if;
7125 -- Cannot inline a call inside the definition of a record type,
7126 -- typically inside the constraints of the type. Calls in
7127 -- default expressions are also not inlined, but this is
7128 -- filtered out above when testing In_Default_Expr.
7130 elsif Is_Record_Type (Current_Scope) then
7131 Cannot_Inline
7132 ("cannot inline & (inside record type)?", N, Nam_UA);
7134 -- With the one-pass inlining technique, a call cannot be
7135 -- inlined if the corresponding body has not been seen yet.
7137 elsif No (Body_Id) then
7138 Cannot_Inline
7139 ("cannot inline & (body not seen yet)?", N, Nam_UA);
7141 -- Nothing to do if there is no body to inline, indicating that
7142 -- the subprogram is not suitable for inlining in GNATprove
7143 -- mode.
7145 elsif No (Body_To_Inline (Nam_Decl)) then
7146 null;
7148 -- Calls cannot be inlined inside potentially unevaluated
7149 -- expressions, as this would create complex actions inside
7150 -- expressions, that are not handled by GNATprove.
7152 elsif Is_Potentially_Unevaluated (N) then
7153 Cannot_Inline
7154 ("cannot inline & (in potentially unevaluated context)?",
7155 N, Nam_UA);
7157 -- Calls cannot be inlined inside the conditions of while
7158 -- loops, as this would create complex actions inside
7159 -- the condition, that are not handled by GNATprove.
7161 elsif In_While_Loop_Condition (N) then
7162 Cannot_Inline
7163 ("cannot inline & (in while loop condition)?", N, Nam_UA);
7165 -- Do not inline calls which would possibly lead to missing a
7166 -- type conversion check on an input parameter.
7168 elsif not Call_Can_Be_Inlined_In_GNATprove_Mode (N, Nam) then
7169 Cannot_Inline
7170 ("cannot inline & (possible check on input parameters)?",
7171 N, Nam_UA);
7173 -- Otherwise, inline the call, issuing an info message when
7174 -- -gnatd_f is set.
7176 else
7177 if Debug_Flag_Underscore_F then
7178 Error_Msg_NE
7179 ("info: analyzing call to & in context?", N, Nam_UA);
7180 end if;
7182 Expand_Inlined_Call (N, Nam_UA, Nam);
7183 end if;
7184 end if;
7185 end if;
7186 end if;
7187 end Resolve_Call;
7189 -----------------------------
7190 -- Resolve_Case_Expression --
7191 -----------------------------
7193 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
7194 Alt : Node_Id;
7195 Alt_Expr : Node_Id;
7196 Alt_Typ : Entity_Id;
7197 Is_Dyn : Boolean;
7199 begin
7200 Alt := First (Alternatives (N));
7201 while Present (Alt) loop
7202 Alt_Expr := Expression (Alt);
7204 if Error_Posted (Alt_Expr) then
7205 return;
7206 end if;
7208 Resolve (Alt_Expr, Typ);
7209 Alt_Typ := Etype (Alt_Expr);
7211 -- When the expression is of a scalar subtype different from the
7212 -- result subtype, then insert a conversion to ensure the generation
7213 -- of a constraint check.
7215 if Is_Scalar_Type (Alt_Typ) and then Alt_Typ /= Typ then
7216 Rewrite (Alt_Expr, Convert_To (Typ, Alt_Expr));
7217 Analyze_And_Resolve (Alt_Expr, Typ);
7218 end if;
7220 Next (Alt);
7221 end loop;
7223 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
7224 -- dynamically tagged must be known statically.
7226 if Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
7227 Alt := First (Alternatives (N));
7228 Is_Dyn := Is_Dynamically_Tagged (Expression (Alt));
7230 while Present (Alt) loop
7231 if Is_Dynamically_Tagged (Expression (Alt)) /= Is_Dyn then
7232 Error_Msg_N
7233 ("all or none of the dependent expressions can be "
7234 & "dynamically tagged", N);
7235 end if;
7237 Next (Alt);
7238 end loop;
7239 end if;
7241 Set_Etype (N, Typ);
7242 Eval_Case_Expression (N);
7243 Analyze_Dimension (N);
7244 end Resolve_Case_Expression;
7246 -------------------------------
7247 -- Resolve_Character_Literal --
7248 -------------------------------
7250 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
7251 B_Typ : constant Entity_Id := Base_Type (Typ);
7252 C : Entity_Id;
7254 begin
7255 -- Verify that the character does belong to the type of the context
7257 Set_Etype (N, B_Typ);
7258 Eval_Character_Literal (N);
7260 -- Wide_Wide_Character literals must always be defined, since the set
7261 -- of wide wide character literals is complete, i.e. if a character
7262 -- literal is accepted by the parser, then it is OK for wide wide
7263 -- character (out of range character literals are rejected).
7265 if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
7266 return;
7268 -- Always accept character literal for type Any_Character, which
7269 -- occurs in error situations and in comparisons of literals, both
7270 -- of which should accept all literals.
7272 elsif B_Typ = Any_Character then
7273 return;
7275 -- For Standard.Character or a type derived from it, check that the
7276 -- literal is in range.
7278 elsif Root_Type (B_Typ) = Standard_Character then
7279 if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
7280 return;
7281 end if;
7283 -- For Standard.Wide_Character or a type derived from it, check that the
7284 -- literal is in range.
7286 elsif Root_Type (B_Typ) = Standard_Wide_Character then
7287 if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
7288 return;
7289 end if;
7291 -- If the entity is already set, this has already been resolved in a
7292 -- generic context, or comes from expansion. Nothing else to do.
7294 elsif Present (Entity (N)) then
7295 return;
7297 -- Otherwise we have a user defined character type, and we can use the
7298 -- standard visibility mechanisms to locate the referenced entity.
7300 else
7301 C := Current_Entity (N);
7302 while Present (C) loop
7303 if Etype (C) = B_Typ then
7304 Set_Entity_With_Checks (N, C);
7305 Generate_Reference (C, N);
7306 return;
7307 end if;
7309 C := Homonym (C);
7310 end loop;
7311 end if;
7313 -- If we fall through, then the literal does not match any of the
7314 -- entries of the enumeration type. This isn't just a constraint error
7315 -- situation, it is an illegality (see RM 4.2).
7317 Error_Msg_NE
7318 ("character not defined for }", N, First_Subtype (B_Typ));
7319 end Resolve_Character_Literal;
7321 ---------------------------
7322 -- Resolve_Comparison_Op --
7323 ---------------------------
7325 -- Context requires a boolean type, and plays no role in resolution.
7326 -- Processing identical to that for equality operators. The result type is
7327 -- the base type, which matters when pathological subtypes of booleans with
7328 -- limited ranges are used.
7330 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
7331 L : constant Node_Id := Left_Opnd (N);
7332 R : constant Node_Id := Right_Opnd (N);
7333 T : Entity_Id;
7335 begin
7336 -- If this is an intrinsic operation which is not predefined, use the
7337 -- types of its declared arguments to resolve the possibly overloaded
7338 -- operands. Otherwise the operands are unambiguous and specify the
7339 -- expected type.
7341 if Scope (Entity (N)) /= Standard_Standard then
7342 T := Etype (First_Entity (Entity (N)));
7344 else
7345 T := Find_Unique_Type (L, R);
7347 if T = Any_Fixed then
7348 T := Unique_Fixed_Point_Type (L);
7349 end if;
7350 end if;
7352 Set_Etype (N, Base_Type (Typ));
7353 Generate_Reference (T, N, ' ');
7355 -- Skip remaining processing if already set to Any_Type
7357 if T = Any_Type then
7358 return;
7359 end if;
7361 -- Deal with other error cases
7363 if T = Any_String or else
7364 T = Any_Composite or else
7365 T = Any_Character
7366 then
7367 if T = Any_Character then
7368 Ambiguous_Character (L);
7369 else
7370 Error_Msg_N ("ambiguous operands for comparison", N);
7371 end if;
7373 Set_Etype (N, Any_Type);
7374 return;
7375 end if;
7377 -- Resolve the operands if types OK
7379 Resolve (L, T);
7380 Resolve (R, T);
7381 Check_Unset_Reference (L);
7382 Check_Unset_Reference (R);
7383 Generate_Operator_Reference (N, T);
7384 Check_Low_Bound_Tested (N);
7386 -- Check comparison on unordered enumeration
7388 if Bad_Unordered_Enumeration_Reference (N, Etype (L)) then
7389 Error_Msg_Sloc := Sloc (Etype (L));
7390 Error_Msg_NE
7391 ("comparison on unordered enumeration type& declared#?U?",
7392 N, Etype (L));
7393 end if;
7395 Analyze_Dimension (N);
7397 -- Evaluate the relation (note we do this after the above check since
7398 -- this Eval call may change N to True/False. Skip this evaluation
7399 -- inside assertions, in order to keep assertions as written by users
7400 -- for tools that rely on these, e.g. GNATprove for loop invariants.
7401 -- Except evaluation is still performed even inside assertions for
7402 -- comparisons between values of universal type, which are useless
7403 -- for static analysis tools, and not supported even by GNATprove.
7405 if In_Assertion_Expr = 0
7406 or else (Is_Universal_Numeric_Type (Etype (L))
7407 and then
7408 Is_Universal_Numeric_Type (Etype (R)))
7409 then
7410 Eval_Relational_Op (N);
7411 end if;
7412 end Resolve_Comparison_Op;
7414 --------------------------------
7415 -- Resolve_Declare_Expression --
7416 --------------------------------
7418 procedure Resolve_Declare_Expression
7419 (N : Node_Id;
7420 Typ : Entity_Id)
7422 Decl : Node_Id;
7423 begin
7424 -- Install the scope created for local declarations, if
7425 -- any. The syntax allows a Declare_Expression with no
7426 -- declarations, in analogy with block statements.
7427 -- Note that that scope has no explicit declaration, but
7428 -- appears as the scope of all entities declared therein.
7430 Decl := First (Actions (N));
7432 while Present (Decl) loop
7433 exit when Nkind (Decl)
7434 in N_Object_Declaration | N_Object_Renaming_Declaration;
7435 Next (Decl);
7436 end loop;
7438 if Present (Decl) then
7439 Push_Scope (Scope (Defining_Identifier (Decl)));
7441 declare
7442 E : Entity_Id := First_Entity (Current_Scope);
7444 begin
7445 while Present (E) loop
7446 Set_Current_Entity (E);
7447 Set_Is_Immediately_Visible (E);
7448 Next_Entity (E);
7449 end loop;
7450 end;
7452 Resolve (Expression (N), Typ);
7453 End_Scope;
7455 else
7456 Resolve (Expression (N), Typ);
7457 end if;
7458 end Resolve_Declare_Expression;
7460 -----------------------------------------
7461 -- Resolve_Discrete_Subtype_Indication --
7462 -----------------------------------------
7464 procedure Resolve_Discrete_Subtype_Indication
7465 (N : Node_Id;
7466 Typ : Entity_Id)
7468 R : Node_Id;
7469 S : Entity_Id;
7471 begin
7472 Analyze (Subtype_Mark (N));
7473 S := Entity (Subtype_Mark (N));
7475 if Nkind (Constraint (N)) /= N_Range_Constraint then
7476 Error_Msg_N ("expect range constraint for discrete type", N);
7477 Set_Etype (N, Any_Type);
7479 else
7480 R := Range_Expression (Constraint (N));
7482 if R = Error then
7483 return;
7484 end if;
7486 Analyze (R);
7488 if Base_Type (S) /= Base_Type (Typ) then
7489 Error_Msg_NE
7490 ("expect subtype of }", N, First_Subtype (Typ));
7492 -- Rewrite the constraint as a range of Typ
7493 -- to allow compilation to proceed further.
7495 Set_Etype (N, Typ);
7496 Rewrite (Low_Bound (R),
7497 Make_Attribute_Reference (Sloc (Low_Bound (R)),
7498 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
7499 Attribute_Name => Name_First));
7500 Rewrite (High_Bound (R),
7501 Make_Attribute_Reference (Sloc (High_Bound (R)),
7502 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
7503 Attribute_Name => Name_First));
7505 else
7506 Resolve (R, Typ);
7507 Set_Etype (N, Etype (R));
7509 -- Additionally, we must check that the bounds are compatible
7510 -- with the given subtype, which might be different from the
7511 -- type of the context.
7513 Apply_Range_Check (R, S);
7515 -- ??? If the above check statically detects a Constraint_Error
7516 -- it replaces the offending bound(s) of the range R with a
7517 -- Constraint_Error node. When the itype which uses these bounds
7518 -- is frozen the resulting call to Duplicate_Subexpr generates
7519 -- a new temporary for the bounds.
7521 -- Unfortunately there are other itypes that are also made depend
7522 -- on these bounds, so when Duplicate_Subexpr is called they get
7523 -- a forward reference to the newly created temporaries and Gigi
7524 -- aborts on such forward references. This is probably sign of a
7525 -- more fundamental problem somewhere else in either the order of
7526 -- itype freezing or the way certain itypes are constructed.
7528 -- To get around this problem we call Remove_Side_Effects right
7529 -- away if either bounds of R are a Constraint_Error.
7531 declare
7532 L : constant Node_Id := Low_Bound (R);
7533 H : constant Node_Id := High_Bound (R);
7535 begin
7536 if Nkind (L) = N_Raise_Constraint_Error then
7537 Remove_Side_Effects (L);
7538 end if;
7540 if Nkind (H) = N_Raise_Constraint_Error then
7541 Remove_Side_Effects (H);
7542 end if;
7543 end;
7545 Check_Unset_Reference (Low_Bound (R));
7546 Check_Unset_Reference (High_Bound (R));
7547 end if;
7548 end if;
7549 end Resolve_Discrete_Subtype_Indication;
7551 -------------------------
7552 -- Resolve_Entity_Name --
7553 -------------------------
7555 -- Used to resolve identifiers and expanded names
7557 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
7558 function Is_Assignment_Or_Object_Expression
7559 (Context : Node_Id;
7560 Expr : Node_Id) return Boolean;
7561 -- Determine whether node Context denotes an assignment statement or an
7562 -- object declaration whose expression is node Expr.
7564 function Is_Attribute_Expression (Expr : Node_Id) return Boolean;
7565 -- Determine whether Expr is part of an N_Attribute_Reference
7566 -- expression.
7568 ----------------------------------------
7569 -- Is_Assignment_Or_Object_Expression --
7570 ----------------------------------------
7572 function Is_Assignment_Or_Object_Expression
7573 (Context : Node_Id;
7574 Expr : Node_Id) return Boolean
7576 begin
7577 if Nkind (Context) in
7578 N_Assignment_Statement | N_Object_Declaration
7579 and then Expression (Context) = Expr
7580 then
7581 return True;
7583 -- Check whether a construct that yields a name is the expression of
7584 -- an assignment statement or an object declaration.
7586 elsif (Nkind (Context) in N_Attribute_Reference
7587 | N_Explicit_Dereference
7588 | N_Indexed_Component
7589 | N_Selected_Component
7590 | N_Slice
7591 and then Prefix (Context) = Expr)
7592 or else
7593 (Nkind (Context) in N_Type_Conversion
7594 | N_Unchecked_Type_Conversion
7595 and then Expression (Context) = Expr)
7596 then
7597 return
7598 Is_Assignment_Or_Object_Expression
7599 (Context => Parent (Context),
7600 Expr => Context);
7602 -- Otherwise the context is not an assignment statement or an object
7603 -- declaration.
7605 else
7606 return False;
7607 end if;
7608 end Is_Assignment_Or_Object_Expression;
7610 -----------------------------
7611 -- Is_Attribute_Expression --
7612 -----------------------------
7614 function Is_Attribute_Expression (Expr : Node_Id) return Boolean is
7615 N : Node_Id := Expr;
7616 begin
7617 while Present (N) loop
7618 if Nkind (N) = N_Attribute_Reference then
7619 return True;
7620 end if;
7622 N := Parent (N);
7623 end loop;
7625 return False;
7626 end Is_Attribute_Expression;
7628 -- Local variables
7630 E : constant Entity_Id := Entity (N);
7631 Par : Node_Id;
7633 -- Start of processing for Resolve_Entity_Name
7635 begin
7636 -- If garbage from errors, set to Any_Type and return
7638 if No (E) and then Total_Errors_Detected /= 0 then
7639 Set_Etype (N, Any_Type);
7640 return;
7641 end if;
7643 -- Replace named numbers by corresponding literals. Note that this is
7644 -- the one case where Resolve_Entity_Name must reset the Etype, since
7645 -- it is currently marked as universal.
7647 if Ekind (E) = E_Named_Integer then
7648 Set_Etype (N, Typ);
7649 Eval_Named_Integer (N);
7651 elsif Ekind (E) = E_Named_Real then
7652 Set_Etype (N, Typ);
7653 Eval_Named_Real (N);
7655 -- For enumeration literals, we need to make sure that a proper style
7656 -- check is done, since such literals are overloaded, and thus we did
7657 -- not do a style check during the first phase of analysis.
7659 elsif Ekind (E) = E_Enumeration_Literal then
7660 Set_Entity_With_Checks (N, E);
7661 Eval_Entity_Name (N);
7663 -- Case of (sub)type name appearing in a context where an expression
7664 -- is expected. This is legal if occurrence is a current instance.
7665 -- See RM 8.6 (17/3).
7667 elsif Is_Type (E) then
7668 if Is_Current_Instance (N) then
7669 null;
7671 -- Any other use is an error
7673 else
7674 Error_Msg_N
7675 ("invalid use of subtype mark in expression or call", N);
7676 end if;
7678 -- Check discriminant use if entity is discriminant in current scope,
7679 -- i.e. discriminant of record or concurrent type currently being
7680 -- analyzed. Uses in corresponding body are unrestricted.
7682 elsif Ekind (E) = E_Discriminant
7683 and then Scope (E) = Current_Scope
7684 and then not Has_Completion (Current_Scope)
7685 then
7686 Check_Discriminant_Use (N);
7688 -- A parameterless generic function cannot appear in a context that
7689 -- requires resolution.
7691 elsif Ekind (E) = E_Generic_Function then
7692 Error_Msg_N ("illegal use of generic function", N);
7694 -- In Ada 83 an OUT parameter cannot be read, but attributes of
7695 -- array types (i.e. bounds and length) are legal.
7697 elsif Ekind (E) = E_Out_Parameter
7698 and then (Is_Scalar_Type (Etype (E))
7699 or else not Is_Attribute_Expression (Parent (N)))
7701 and then (Nkind (Parent (N)) in N_Op
7702 or else Nkind (Parent (N)) = N_Explicit_Dereference
7703 or else Is_Assignment_Or_Object_Expression
7704 (Context => Parent (N),
7705 Expr => N))
7706 then
7707 if Ada_Version = Ada_83 then
7708 Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
7709 end if;
7711 -- In all other cases, just do the possible static evaluation
7713 else
7714 -- A deferred constant that appears in an expression must have a
7715 -- completion, unless it has been removed by in-place expansion of
7716 -- an aggregate. A constant that is a renaming does not need
7717 -- initialization.
7719 if Ekind (E) = E_Constant
7720 and then Comes_From_Source (E)
7721 and then No (Constant_Value (E))
7722 and then Is_Frozen (Etype (E))
7723 and then not In_Spec_Expression
7724 and then not Is_Imported (E)
7725 and then Nkind (Parent (E)) /= N_Object_Renaming_Declaration
7726 then
7727 if No_Initialization (Parent (E))
7728 or else (Present (Full_View (E))
7729 and then No_Initialization (Parent (Full_View (E))))
7730 then
7731 null;
7732 else
7733 Error_Msg_N
7734 ("deferred constant is frozen before completion", N);
7735 end if;
7736 end if;
7738 Eval_Entity_Name (N);
7739 end if;
7741 Par := Parent (N);
7743 -- When the entity appears in a parameter association, retrieve the
7744 -- related subprogram call.
7746 if Nkind (Par) = N_Parameter_Association then
7747 Par := Parent (Par);
7748 end if;
7750 if Comes_From_Source (N) then
7752 -- The following checks are only relevant when SPARK_Mode is on as
7753 -- they are not standard Ada legality rules.
7755 if SPARK_Mode = On then
7757 -- An effectively volatile object for reading must appear in
7758 -- non-interfering context (SPARK RM 7.1.3(10)).
7760 if Is_Object (E)
7761 and then Is_Effectively_Volatile_For_Reading (E)
7762 and then not Is_OK_Volatile_Context (Par, N)
7763 then
7764 SPARK_Msg_N
7765 ("volatile object cannot appear in this context "
7766 & "(SPARK RM 7.1.3(10))", N);
7767 end if;
7769 -- Check for possible elaboration issues with respect to reads of
7770 -- variables. The act of renaming the variable is not considered a
7771 -- read as it simply establishes an alias.
7773 if Legacy_Elaboration_Checks
7774 and then Ekind (E) = E_Variable
7775 and then Dynamic_Elaboration_Checks
7776 and then Nkind (Par) /= N_Object_Renaming_Declaration
7777 then
7778 Check_Elab_Call (N);
7779 end if;
7780 end if;
7782 -- The variable may eventually become a constituent of a single
7783 -- protected/task type. Record the reference now and verify its
7784 -- legality when analyzing the contract of the variable
7785 -- (SPARK RM 9.3).
7787 if Ekind (E) = E_Variable then
7788 Record_Possible_Part_Of_Reference (E, N);
7789 end if;
7791 -- A Ghost entity must appear in a specific context
7793 if Is_Ghost_Entity (E) then
7794 Check_Ghost_Context (E, N);
7795 end if;
7796 end if;
7798 -- We may be resolving an entity within expanded code, so a reference to
7799 -- an entity should be ignored when calculating effective use clauses to
7800 -- avoid inappropriate marking.
7802 if Comes_From_Source (N) then
7803 Mark_Use_Clauses (E);
7804 end if;
7805 end Resolve_Entity_Name;
7807 -------------------
7808 -- Resolve_Entry --
7809 -------------------
7811 procedure Resolve_Entry (Entry_Name : Node_Id) is
7812 Loc : constant Source_Ptr := Sloc (Entry_Name);
7813 Nam : Entity_Id;
7814 New_N : Node_Id;
7815 S : Entity_Id;
7816 Tsk : Entity_Id;
7817 E_Name : Node_Id;
7818 Index : Node_Id;
7820 function Actual_Index_Type (E : Entity_Id) return Entity_Id;
7821 -- If the bounds of the entry family being called depend on task
7822 -- discriminants, build a new index subtype where a discriminant is
7823 -- replaced with the value of the discriminant of the target task.
7824 -- The target task is the prefix of the entry name in the call.
7826 -----------------------
7827 -- Actual_Index_Type --
7828 -----------------------
7830 function Actual_Index_Type (E : Entity_Id) return Entity_Id is
7831 Typ : constant Entity_Id := Entry_Index_Type (E);
7832 Tsk : constant Entity_Id := Scope (E);
7833 Lo : constant Node_Id := Type_Low_Bound (Typ);
7834 Hi : constant Node_Id := Type_High_Bound (Typ);
7835 New_T : Entity_Id;
7837 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
7838 -- If the bound is given by a discriminant, replace with a reference
7839 -- to the discriminant of the same name in the target task. If the
7840 -- entry name is the target of a requeue statement and the entry is
7841 -- in the current protected object, the bound to be used is the
7842 -- discriminal of the object (see Apply_Range_Check for details of
7843 -- the transformation).
7845 -----------------------------
7846 -- Actual_Discriminant_Ref --
7847 -----------------------------
7849 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
7850 Typ : constant Entity_Id := Etype (Bound);
7851 Ref : Node_Id;
7853 begin
7854 Remove_Side_Effects (Bound);
7856 if not Is_Entity_Name (Bound)
7857 or else Ekind (Entity (Bound)) /= E_Discriminant
7858 then
7859 return Bound;
7861 elsif Is_Protected_Type (Tsk)
7862 and then In_Open_Scopes (Tsk)
7863 and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
7864 then
7865 -- Note: here Bound denotes a discriminant of the corresponding
7866 -- record type tskV, whose discriminal is a formal of the
7867 -- init-proc tskVIP. What we want is the body discriminal,
7868 -- which is associated to the discriminant of the original
7869 -- concurrent type tsk.
7871 return New_Occurrence_Of
7872 (Find_Body_Discriminal (Entity (Bound)), Loc);
7874 else
7875 Ref :=
7876 Make_Selected_Component (Loc,
7877 Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
7878 Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
7879 Analyze (Ref);
7880 Resolve (Ref, Typ);
7881 return Ref;
7882 end if;
7883 end Actual_Discriminant_Ref;
7885 -- Start of processing for Actual_Index_Type
7887 begin
7888 if not Has_Discriminants (Tsk)
7889 or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi))
7890 then
7891 return Entry_Index_Type (E);
7893 else
7894 New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
7895 Set_Etype (New_T, Base_Type (Typ));
7896 Set_Size_Info (New_T, Typ);
7897 Set_RM_Size (New_T, RM_Size (Typ));
7898 Set_Scalar_Range (New_T,
7899 Make_Range (Sloc (Entry_Name),
7900 Low_Bound => Actual_Discriminant_Ref (Lo),
7901 High_Bound => Actual_Discriminant_Ref (Hi)));
7903 return New_T;
7904 end if;
7905 end Actual_Index_Type;
7907 -- Start of processing for Resolve_Entry
7909 begin
7910 -- Find name of entry being called, and resolve prefix of name with its
7911 -- own type. The prefix can be overloaded, and the name and signature of
7912 -- the entry must be taken into account.
7914 if Nkind (Entry_Name) = N_Indexed_Component then
7916 -- Case of dealing with entry family within the current tasks
7918 E_Name := Prefix (Entry_Name);
7920 else
7921 E_Name := Entry_Name;
7922 end if;
7924 if Is_Entity_Name (E_Name) then
7926 -- Entry call to an entry (or entry family) in the current task. This
7927 -- is legal even though the task will deadlock. Rewrite as call to
7928 -- current task.
7930 -- This can also be a call to an entry in an enclosing task. If this
7931 -- is a single task, we have to retrieve its name, because the scope
7932 -- of the entry is the task type, not the object. If the enclosing
7933 -- task is a task type, the identity of the task is given by its own
7934 -- self variable.
7936 -- Finally this can be a requeue on an entry of the same task or
7937 -- protected object.
7939 S := Scope (Entity (E_Name));
7941 for J in reverse 0 .. Scope_Stack.Last loop
7942 if Is_Task_Type (Scope_Stack.Table (J).Entity)
7943 and then not Comes_From_Source (S)
7944 then
7945 -- S is an enclosing task or protected object. The concurrent
7946 -- declaration has been converted into a type declaration, and
7947 -- the object itself has an object declaration that follows
7948 -- the type in the same declarative part.
7950 Tsk := Next_Entity (S);
7951 while Etype (Tsk) /= S loop
7952 Next_Entity (Tsk);
7953 end loop;
7955 S := Tsk;
7956 exit;
7958 elsif S = Scope_Stack.Table (J).Entity then
7960 -- Call to current task. Will be transformed into call to Self
7962 exit;
7964 end if;
7965 end loop;
7967 New_N :=
7968 Make_Selected_Component (Loc,
7969 Prefix => New_Occurrence_Of (S, Loc),
7970 Selector_Name =>
7971 New_Occurrence_Of (Entity (E_Name), Loc));
7972 Rewrite (E_Name, New_N);
7973 Analyze (E_Name);
7975 elsif Nkind (Entry_Name) = N_Selected_Component
7976 and then Is_Overloaded (Prefix (Entry_Name))
7977 then
7978 -- Use the entry name (which must be unique at this point) to find
7979 -- the prefix that returns the corresponding task/protected type.
7981 declare
7982 Pref : constant Node_Id := Prefix (Entry_Name);
7983 Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
7984 I : Interp_Index;
7985 It : Interp;
7987 begin
7988 Get_First_Interp (Pref, I, It);
7989 while Present (It.Typ) loop
7990 if Scope (Ent) = It.Typ then
7991 Set_Etype (Pref, It.Typ);
7992 exit;
7993 end if;
7995 Get_Next_Interp (I, It);
7996 end loop;
7997 end;
7998 end if;
8000 if Nkind (Entry_Name) = N_Selected_Component then
8001 Resolve (Prefix (Entry_Name));
8002 Resolve_Implicit_Dereference (Prefix (Entry_Name));
8004 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
8005 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
8006 Resolve (Prefix (Prefix (Entry_Name)));
8007 Resolve_Implicit_Dereference (Prefix (Prefix (Entry_Name)));
8009 -- We do not resolve the prefix because an Entry_Family has no type,
8010 -- although it has the semantics of an array since it can be indexed.
8011 -- In order to perform the associated range check, we would need to
8012 -- build an array type on the fly and set it on the prefix, but this
8013 -- would be wasteful since only the index type matters. Therefore we
8014 -- attach this index type directly, so that Actual_Index_Expression
8015 -- can pick it up later in order to generate the range check.
8017 Set_Etype (Prefix (Entry_Name), Actual_Index_Type (Nam));
8019 Index := First (Expressions (Entry_Name));
8020 Resolve (Index, Entry_Index_Type (Nam));
8022 -- Generate a reference for the index when it denotes an entity
8024 if Is_Entity_Name (Index) then
8025 Generate_Reference (Entity (Index), Nam);
8026 end if;
8028 -- Up to this point the expression could have been the actual in a
8029 -- simple entry call, and be given by a named association.
8031 if Nkind (Index) = N_Parameter_Association then
8032 Error_Msg_N ("expect expression for entry index", Index);
8033 else
8034 Apply_Scalar_Range_Check (Index, Etype (Prefix (Entry_Name)));
8035 end if;
8036 end if;
8037 end Resolve_Entry;
8039 ------------------------
8040 -- Resolve_Entry_Call --
8041 ------------------------
8043 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
8044 Entry_Name : constant Node_Id := Name (N);
8045 Loc : constant Source_Ptr := Sloc (Entry_Name);
8047 Nam : Entity_Id;
8048 Norm_OK : Boolean;
8049 Obj : Node_Id;
8050 Was_Over : Boolean;
8052 begin
8053 -- We kill all checks here, because it does not seem worth the effort to
8054 -- do anything better, an entry call is a big operation.
8056 Kill_All_Checks;
8058 -- Processing of the name is similar for entry calls and protected
8059 -- operation calls. Once the entity is determined, we can complete
8060 -- the resolution of the actuals.
8062 -- The selector may be overloaded, in the case of a protected object
8063 -- with overloaded functions. The type of the context is used for
8064 -- resolution.
8066 if Nkind (Entry_Name) = N_Selected_Component
8067 and then Is_Overloaded (Selector_Name (Entry_Name))
8068 and then Typ /= Standard_Void_Type
8069 then
8070 declare
8071 I : Interp_Index;
8072 It : Interp;
8074 begin
8075 Get_First_Interp (Selector_Name (Entry_Name), I, It);
8076 while Present (It.Typ) loop
8077 if Covers (Typ, It.Typ) then
8078 Set_Entity (Selector_Name (Entry_Name), It.Nam);
8079 Set_Etype (Entry_Name, It.Typ);
8081 Generate_Reference (It.Typ, N, ' ');
8082 end if;
8084 Get_Next_Interp (I, It);
8085 end loop;
8086 end;
8087 end if;
8089 Resolve_Entry (Entry_Name);
8091 if Nkind (Entry_Name) = N_Selected_Component then
8093 -- Simple entry or protected operation call
8095 Nam := Entity (Selector_Name (Entry_Name));
8096 Obj := Prefix (Entry_Name);
8098 if Is_Subprogram (Nam) then
8099 Check_For_Eliminated_Subprogram (Entry_Name, Nam);
8100 end if;
8102 Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
8104 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
8106 -- Call to member of entry family
8108 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
8109 Obj := Prefix (Prefix (Entry_Name));
8110 Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
8111 end if;
8113 -- We cannot in general check the maximum depth of protected entry calls
8114 -- at compile time. But we can tell that any protected entry call at all
8115 -- violates a specified nesting depth of zero.
8117 if Is_Protected_Type (Scope (Nam)) then
8118 Check_Restriction (Max_Entry_Queue_Length, N);
8119 end if;
8121 -- Use context type to disambiguate a protected function that can be
8122 -- called without actuals and that returns an array type, and where the
8123 -- argument list may be an indexing of the returned value.
8125 if Ekind (Nam) = E_Function
8126 and then Needs_No_Actuals (Nam)
8127 and then Present (Parameter_Associations (N))
8128 and then
8129 ((Is_Array_Type (Etype (Nam))
8130 and then Covers (Typ, Component_Type (Etype (Nam))))
8132 or else (Is_Access_Type (Etype (Nam))
8133 and then Is_Array_Type (Designated_Type (Etype (Nam)))
8134 and then
8135 Covers
8136 (Typ,
8137 Component_Type (Designated_Type (Etype (Nam))))))
8138 then
8139 declare
8140 Index_Node : Node_Id;
8142 begin
8143 Index_Node :=
8144 Make_Indexed_Component (Loc,
8145 Prefix =>
8146 Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)),
8147 Expressions => Parameter_Associations (N));
8149 -- Since we are correcting a node classification error made by the
8150 -- parser, we call Replace rather than Rewrite.
8152 Replace (N, Index_Node);
8153 Set_Etype (Prefix (N), Etype (Nam));
8154 Set_Etype (N, Typ);
8155 Resolve_Indexed_Component (N, Typ);
8156 return;
8157 end;
8158 end if;
8160 if Is_Entry (Nam)
8161 and then Present (Contract_Wrapper (Nam))
8162 and then Current_Scope /= Contract_Wrapper (Nam)
8163 then
8164 -- Note the entity being called before rewriting the call, so that
8165 -- it appears used at this point.
8167 Generate_Reference (Nam, Entry_Name, 'r');
8169 -- Rewrite as call to the precondition wrapper, adding the task
8170 -- object to the list of actuals. If the call is to a member of an
8171 -- entry family, include the index as well.
8173 declare
8174 New_Call : Node_Id;
8175 New_Actuals : List_Id;
8177 begin
8178 New_Actuals := New_List (Obj);
8180 if Nkind (Entry_Name) = N_Indexed_Component then
8181 Append_To (New_Actuals,
8182 New_Copy_Tree (First (Expressions (Entry_Name))));
8183 end if;
8185 Append_List (Parameter_Associations (N), New_Actuals);
8186 New_Call :=
8187 Make_Procedure_Call_Statement (Loc,
8188 Name =>
8189 New_Occurrence_Of (Contract_Wrapper (Nam), Loc),
8190 Parameter_Associations => New_Actuals);
8191 Rewrite (N, New_Call);
8193 -- Preanalyze and resolve new call. Current procedure is called
8194 -- from Resolve_Call, after which expansion will take place.
8196 Preanalyze_And_Resolve (N);
8197 return;
8198 end;
8199 end if;
8201 -- The operation name may have been overloaded. Order the actuals
8202 -- according to the formals of the resolved entity, and set the return
8203 -- type to that of the operation.
8205 if Was_Over then
8206 Normalize_Actuals (N, Nam, False, Norm_OK);
8207 pragma Assert (Norm_OK);
8208 Set_Etype (N, Etype (Nam));
8210 -- Reset the Is_Overloaded flag, since resolution is now completed
8212 -- Simple entry call
8214 if Nkind (Entry_Name) = N_Selected_Component then
8215 Set_Is_Overloaded (Selector_Name (Entry_Name), False);
8217 -- Call to a member of an entry family
8219 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
8220 Set_Is_Overloaded (Selector_Name (Prefix (Entry_Name)), False);
8221 end if;
8222 end if;
8224 Resolve_Actuals (N, Nam);
8225 Check_Internal_Protected_Use (N, Nam);
8227 -- Create a call reference to the entry
8229 Generate_Reference (Nam, Entry_Name, 's');
8231 if Is_Entry (Nam) then
8232 Check_Potentially_Blocking_Operation (N);
8233 end if;
8235 -- Verify that a procedure call cannot masquerade as an entry
8236 -- call where an entry call is expected.
8238 if Ekind (Nam) = E_Procedure then
8239 if Nkind (Parent (N)) = N_Entry_Call_Alternative
8240 and then N = Entry_Call_Statement (Parent (N))
8241 then
8242 Error_Msg_N ("entry call required in select statement", N);
8244 elsif Nkind (Parent (N)) = N_Triggering_Alternative
8245 and then N = Triggering_Statement (Parent (N))
8246 then
8247 Error_Msg_N ("triggering statement cannot be procedure call", N);
8249 elsif Ekind (Scope (Nam)) = E_Task_Type
8250 and then not In_Open_Scopes (Scope (Nam))
8251 then
8252 Error_Msg_N ("task has no entry with this name", Entry_Name);
8253 end if;
8254 end if;
8256 -- After resolution, entry calls and protected procedure calls are
8257 -- changed into entry calls, for expansion. The structure of the node
8258 -- does not change, so it can safely be done in place. Protected
8259 -- function calls must keep their structure because they are
8260 -- subexpressions.
8262 if Ekind (Nam) /= E_Function then
8264 -- A protected operation that is not a function may modify the
8265 -- corresponding object, and cannot apply to a constant. If this
8266 -- is an internal call, the prefix is the type itself.
8268 if Is_Protected_Type (Scope (Nam))
8269 and then not Is_Variable (Obj)
8270 and then (not Is_Entity_Name (Obj)
8271 or else not Is_Type (Entity (Obj)))
8272 then
8273 Error_Msg_N
8274 ("prefix of protected procedure or entry call must be variable",
8275 Entry_Name);
8276 end if;
8278 declare
8279 Entry_Call : Node_Id;
8281 begin
8282 Entry_Call :=
8283 Make_Entry_Call_Statement (Loc,
8284 Name => Entry_Name,
8285 Parameter_Associations => Parameter_Associations (N));
8287 -- Inherit relevant attributes from the original call
8289 Set_First_Named_Actual
8290 (Entry_Call, First_Named_Actual (N));
8292 Set_Is_Elaboration_Checks_OK_Node
8293 (Entry_Call, Is_Elaboration_Checks_OK_Node (N));
8295 Set_Is_Elaboration_Warnings_OK_Node
8296 (Entry_Call, Is_Elaboration_Warnings_OK_Node (N));
8298 Set_Is_SPARK_Mode_On_Node
8299 (Entry_Call, Is_SPARK_Mode_On_Node (N));
8301 Rewrite (N, Entry_Call);
8302 Set_Analyzed (N, True);
8303 end;
8305 -- Protected functions can return on the secondary stack, in which case
8306 -- we must trigger the transient scope mechanism.
8308 elsif Expander_Active
8309 and then Requires_Transient_Scope (Etype (Nam))
8310 then
8311 Establish_Transient_Scope (N, Manage_Sec_Stack => True);
8312 end if;
8314 -- Now we know that this is not a call to a function that returns an
8315 -- array type; moreover, we know the name of the called entry. Detect
8316 -- overlapping actuals, just like for a subprogram call.
8318 Warn_On_Overlapping_Actuals (Nam, N);
8320 end Resolve_Entry_Call;
8322 -------------------------
8323 -- Resolve_Equality_Op --
8324 -------------------------
8326 -- Both arguments must have the same type, and the boolean context does
8327 -- not participate in the resolution. The first pass verifies that the
8328 -- interpretation is not ambiguous, and the type of the left argument is
8329 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
8330 -- are strings or aggregates, allocators, or Null, they are ambiguous even
8331 -- though they carry a single (universal) type. Diagnose this case here.
8333 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
8334 L : constant Node_Id := Left_Opnd (N);
8335 R : constant Node_Id := Right_Opnd (N);
8336 T : Entity_Id := Find_Unique_Type (L, R);
8338 procedure Check_If_Expression (Cond : Node_Id);
8339 -- The resolution rule for if expressions requires that each such must
8340 -- have a unique type. This means that if several dependent expressions
8341 -- are of a non-null anonymous access type, and the context does not
8342 -- impose an expected type (as can be the case in an equality operation)
8343 -- the expression must be rejected.
8345 procedure Explain_Redundancy (N : Node_Id);
8346 -- Attempt to explain the nature of a redundant comparison with True. If
8347 -- the expression N is too complex, this routine issues a general error
8348 -- message.
8350 function Find_Unique_Access_Type return Entity_Id;
8351 -- In the case of allocators and access attributes, the context must
8352 -- provide an indication of the specific access type to be used. If
8353 -- one operand is of such a "generic" access type, check whether there
8354 -- is a specific visible access type that has the same designated type.
8355 -- This is semantically dubious, and of no interest to any real code,
8356 -- but c48008a makes it all worthwhile.
8358 -------------------------
8359 -- Check_If_Expression --
8360 -------------------------
8362 procedure Check_If_Expression (Cond : Node_Id) is
8363 Then_Expr : Node_Id;
8364 Else_Expr : Node_Id;
8366 begin
8367 if Nkind (Cond) = N_If_Expression then
8368 Then_Expr := Next (First (Expressions (Cond)));
8369 Else_Expr := Next (Then_Expr);
8371 if Nkind (Then_Expr) /= N_Null
8372 and then Nkind (Else_Expr) /= N_Null
8373 then
8374 Error_Msg_N ("cannot determine type of if expression", Cond);
8375 end if;
8376 end if;
8377 end Check_If_Expression;
8379 ------------------------
8380 -- Explain_Redundancy --
8381 ------------------------
8383 procedure Explain_Redundancy (N : Node_Id) is
8384 Error : Name_Id;
8385 Val : Node_Id;
8386 Val_Id : Entity_Id;
8388 begin
8389 Val := N;
8391 -- Strip the operand down to an entity
8393 loop
8394 if Nkind (Val) = N_Selected_Component then
8395 Val := Selector_Name (Val);
8396 else
8397 exit;
8398 end if;
8399 end loop;
8401 -- The construct denotes an entity
8403 if Is_Entity_Name (Val) and then Present (Entity (Val)) then
8404 Val_Id := Entity (Val);
8406 -- Do not generate an error message when the comparison is done
8407 -- against the enumeration literal Standard.True.
8409 if Ekind (Val_Id) /= E_Enumeration_Literal then
8411 -- Build a customized error message
8413 Name_Len := 0;
8414 Add_Str_To_Name_Buffer ("?r?");
8416 if Ekind (Val_Id) = E_Component then
8417 Add_Str_To_Name_Buffer ("component ");
8419 elsif Ekind (Val_Id) = E_Constant then
8420 Add_Str_To_Name_Buffer ("constant ");
8422 elsif Ekind (Val_Id) = E_Discriminant then
8423 Add_Str_To_Name_Buffer ("discriminant ");
8425 elsif Is_Formal (Val_Id) then
8426 Add_Str_To_Name_Buffer ("parameter ");
8428 elsif Ekind (Val_Id) = E_Variable then
8429 Add_Str_To_Name_Buffer ("variable ");
8430 end if;
8432 Add_Str_To_Name_Buffer ("& is always True!");
8433 Error := Name_Find;
8435 Error_Msg_NE (Get_Name_String (Error), Val, Val_Id);
8436 end if;
8438 -- The construct is too complex to disect, issue a general message
8440 else
8441 Error_Msg_N ("?r?expression is always True!", Val);
8442 end if;
8443 end Explain_Redundancy;
8445 -----------------------------
8446 -- Find_Unique_Access_Type --
8447 -----------------------------
8449 function Find_Unique_Access_Type return Entity_Id is
8450 Acc : Entity_Id;
8451 E : Entity_Id;
8452 S : Entity_Id;
8454 begin
8455 if Ekind (Etype (R)) in E_Allocator_Type | E_Access_Attribute_Type
8456 then
8457 Acc := Designated_Type (Etype (R));
8459 elsif Ekind (Etype (L)) in E_Allocator_Type | E_Access_Attribute_Type
8460 then
8461 Acc := Designated_Type (Etype (L));
8462 else
8463 return Empty;
8464 end if;
8466 S := Current_Scope;
8467 while S /= Standard_Standard loop
8468 E := First_Entity (S);
8469 while Present (E) loop
8470 if Is_Type (E)
8471 and then Is_Access_Type (E)
8472 and then Ekind (E) /= E_Allocator_Type
8473 and then Designated_Type (E) = Base_Type (Acc)
8474 then
8475 return E;
8476 end if;
8478 Next_Entity (E);
8479 end loop;
8481 S := Scope (S);
8482 end loop;
8484 return Empty;
8485 end Find_Unique_Access_Type;
8487 -- Start of processing for Resolve_Equality_Op
8489 begin
8490 Set_Etype (N, Base_Type (Typ));
8491 Generate_Reference (T, N, ' ');
8493 if T = Any_Fixed then
8494 T := Unique_Fixed_Point_Type (L);
8495 end if;
8497 if T /= Any_Type then
8498 if T = Any_String or else
8499 T = Any_Composite or else
8500 T = Any_Character
8501 then
8502 if T = Any_Character then
8503 Ambiguous_Character (L);
8504 else
8505 Error_Msg_N ("ambiguous operands for equality", N);
8506 end if;
8508 Set_Etype (N, Any_Type);
8509 return;
8511 elsif T = Any_Access
8512 or else Ekind (T) in E_Allocator_Type | E_Access_Attribute_Type
8513 then
8514 T := Find_Unique_Access_Type;
8516 if No (T) then
8517 Error_Msg_N ("ambiguous operands for equality", N);
8518 Set_Etype (N, Any_Type);
8519 return;
8520 end if;
8522 -- If expressions must have a single type, and if the context does
8523 -- not impose one the dependent expressions cannot be anonymous
8524 -- access types.
8526 -- Why no similar processing for case expressions???
8528 elsif Ada_Version >= Ada_2012
8529 and then Is_Anonymous_Access_Type (Etype (L))
8530 and then Is_Anonymous_Access_Type (Etype (R))
8531 then
8532 Check_If_Expression (L);
8533 Check_If_Expression (R);
8534 end if;
8536 Resolve (L, T);
8537 Resolve (R, T);
8539 -- If the unique type is a class-wide type then it will be expanded
8540 -- into a dispatching call to the predefined primitive. Therefore we
8541 -- check here for potential violation of such restriction.
8543 if Is_Class_Wide_Type (T) then
8544 Check_Restriction (No_Dispatching_Calls, N);
8545 end if;
8547 -- Only warn for redundant equality comparison to True for objects
8548 -- (e.g. "X = True") and operations (e.g. "(X < Y) = True"). For
8549 -- other expressions, it may be a matter of preference to write
8550 -- "Expr = True" or "Expr".
8552 if Warn_On_Redundant_Constructs
8553 and then Comes_From_Source (N)
8554 and then Comes_From_Source (R)
8555 and then Is_Entity_Name (R)
8556 and then Entity (R) = Standard_True
8557 and then
8558 ((Is_Entity_Name (L) and then Is_Object (Entity (L)))
8559 or else
8560 Nkind (L) in N_Op)
8561 then
8562 Error_Msg_N -- CODEFIX
8563 ("?r?comparison with True is redundant!", N);
8564 Explain_Redundancy (Original_Node (R));
8565 end if;
8567 -- If the equality is overloaded and the operands have resolved
8568 -- properly, set the proper equality operator on the node. The
8569 -- current setting is the first one found during analysis, which
8570 -- is not necessarily the one to which the node has resolved.
8572 if Is_Overloaded (N) then
8573 declare
8574 I : Interp_Index;
8575 It : Interp;
8577 begin
8578 Get_First_Interp (N, I, It);
8580 -- If the equality is user-defined, the type of the operands
8581 -- matches that of the formals. For a predefined operator,
8582 -- it is the scope that matters, given that the predefined
8583 -- equality has Any_Type formals. In either case the result
8584 -- type (most often Boolean) must match the context. The scope
8585 -- is either that of the type, if there is a generated equality
8586 -- (when there is an equality for the component type), or else
8587 -- Standard otherwise.
8589 while Present (It.Typ) loop
8590 if Etype (It.Nam) = Typ
8591 and then
8592 (Etype (First_Entity (It.Nam)) = Etype (L)
8593 or else Scope (It.Nam) = Standard_Standard
8594 or else Scope (It.Nam) = Scope (T))
8595 then
8596 Set_Entity (N, It.Nam);
8598 Set_Is_Overloaded (N, False);
8599 exit;
8600 end if;
8602 Get_Next_Interp (I, It);
8603 end loop;
8605 -- If expansion is active and this is an inherited operation,
8606 -- replace it with its ancestor. This must not be done during
8607 -- preanalysis because the type may not be frozen yet, as when
8608 -- the context is a precondition or postcondition.
8610 if Present (Alias (Entity (N))) and then Expander_Active then
8611 Set_Entity (N, Alias (Entity (N)));
8612 end if;
8613 end;
8614 end if;
8616 Check_Unset_Reference (L);
8617 Check_Unset_Reference (R);
8618 Generate_Operator_Reference (N, T);
8619 Check_Low_Bound_Tested (N);
8621 -- If this is an inequality, it may be the implicit inequality
8622 -- created for a user-defined operation, in which case the corres-
8623 -- ponding equality operation is not intrinsic, and the operation
8624 -- cannot be constant-folded. Else fold.
8626 if Nkind (N) = N_Op_Eq
8627 or else Comes_From_Source (Entity (N))
8628 or else Ekind (Entity (N)) = E_Operator
8629 or else Is_Intrinsic_Subprogram
8630 (Corresponding_Equality (Entity (N)))
8631 then
8632 Analyze_Dimension (N);
8633 Eval_Relational_Op (N);
8635 elsif Nkind (N) = N_Op_Ne
8636 and then Is_Abstract_Subprogram (Entity (N))
8637 then
8638 Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
8639 end if;
8641 -- Ada 2005: If one operand is an anonymous access type, convert the
8642 -- other operand to it, to ensure that the underlying types match in
8643 -- the back-end. Same for access_to_subprogram, and the conversion
8644 -- verifies that the types are subtype conformant.
8646 -- We apply the same conversion in the case one of the operands is a
8647 -- private subtype of the type of the other.
8649 -- Why the Expander_Active test here ???
8651 if Expander_Active
8652 and then
8653 (Ekind (T) in E_Anonymous_Access_Type
8654 | E_Anonymous_Access_Subprogram_Type
8655 or else Is_Private_Type (T))
8656 then
8657 if Etype (L) /= T then
8658 Rewrite (L,
8659 Make_Unchecked_Type_Conversion (Sloc (L),
8660 Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
8661 Expression => Relocate_Node (L)));
8662 Analyze_And_Resolve (L, T);
8663 end if;
8665 if (Etype (R)) /= T then
8666 Rewrite (R,
8667 Make_Unchecked_Type_Conversion (Sloc (R),
8668 Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
8669 Expression => Relocate_Node (R)));
8670 Analyze_And_Resolve (R, T);
8671 end if;
8672 end if;
8673 end if;
8674 end Resolve_Equality_Op;
8676 ----------------------------------
8677 -- Resolve_Explicit_Dereference --
8678 ----------------------------------
8680 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
8681 Loc : constant Source_Ptr := Sloc (N);
8682 New_N : Node_Id;
8683 P : constant Node_Id := Prefix (N);
8685 P_Typ : Entity_Id;
8686 -- The candidate prefix type, if overloaded
8688 I : Interp_Index;
8689 It : Interp;
8691 begin
8692 Check_Fully_Declared_Prefix (Typ, P);
8693 P_Typ := Empty;
8695 -- A useful optimization: check whether the dereference denotes an
8696 -- element of a container, and if so rewrite it as a call to the
8697 -- corresponding Element function.
8699 -- Disabled for now, on advice of ARG. A more restricted form of the
8700 -- predicate might be acceptable ???
8702 -- if Is_Container_Element (N) then
8703 -- return;
8704 -- end if;
8706 if Is_Overloaded (P) then
8708 -- Use the context type to select the prefix that has the correct
8709 -- designated type. Keep the first match, which will be the inner-
8710 -- most.
8712 Get_First_Interp (P, I, It);
8714 while Present (It.Typ) loop
8715 if Is_Access_Type (It.Typ)
8716 and then Covers (Typ, Designated_Type (It.Typ))
8717 then
8718 if No (P_Typ) then
8719 P_Typ := It.Typ;
8720 end if;
8722 -- Remove access types that do not match, but preserve access
8723 -- to subprogram interpretations, in case a further dereference
8724 -- is needed (see below).
8726 elsif Ekind (It.Typ) /= E_Access_Subprogram_Type then
8727 Remove_Interp (I);
8728 end if;
8730 Get_Next_Interp (I, It);
8731 end loop;
8733 if Present (P_Typ) then
8734 Resolve (P, P_Typ);
8735 Set_Etype (N, Designated_Type (P_Typ));
8737 else
8738 -- If no interpretation covers the designated type of the prefix,
8739 -- this is the pathological case where not all implementations of
8740 -- the prefix allow the interpretation of the node as a call. Now
8741 -- that the expected type is known, Remove other interpretations
8742 -- from prefix, rewrite it as a call, and resolve again, so that
8743 -- the proper call node is generated.
8745 Get_First_Interp (P, I, It);
8746 while Present (It.Typ) loop
8747 if Ekind (It.Typ) /= E_Access_Subprogram_Type then
8748 Remove_Interp (I);
8749 end if;
8751 Get_Next_Interp (I, It);
8752 end loop;
8754 New_N :=
8755 Make_Function_Call (Loc,
8756 Name =>
8757 Make_Explicit_Dereference (Loc,
8758 Prefix => P),
8759 Parameter_Associations => New_List);
8761 Save_Interps (N, New_N);
8762 Rewrite (N, New_N);
8763 Analyze_And_Resolve (N, Typ);
8764 return;
8765 end if;
8767 -- If not overloaded, resolve P with its own type
8769 else
8770 Resolve (P);
8771 end if;
8773 -- If the prefix might be null, add an access check
8775 if Is_Access_Type (Etype (P))
8776 and then not Can_Never_Be_Null (Etype (P))
8777 then
8778 Apply_Access_Check (N);
8779 end if;
8781 -- If the designated type is a packed unconstrained array type, and the
8782 -- explicit dereference is not in the context of an attribute reference,
8783 -- then we must compute and set the actual subtype, since it is needed
8784 -- by Gigi. The reason we exclude the attribute case is that this is
8785 -- handled fine by Gigi, and in fact we use such attributes to build the
8786 -- actual subtype. We also exclude generated code (which builds actual
8787 -- subtypes directly if they are needed).
8789 if Is_Array_Type (Etype (N))
8790 and then Is_Packed (Etype (N))
8791 and then not Is_Constrained (Etype (N))
8792 and then Nkind (Parent (N)) /= N_Attribute_Reference
8793 and then Comes_From_Source (N)
8794 then
8795 Set_Etype (N, Get_Actual_Subtype (N));
8796 end if;
8798 Analyze_Dimension (N);
8800 -- Note: No Eval processing is required for an explicit dereference,
8801 -- because such a name can never be static.
8803 end Resolve_Explicit_Dereference;
8805 -------------------------------------
8806 -- Resolve_Expression_With_Actions --
8807 -------------------------------------
8809 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
8811 function OK_For_Static (Act : Node_Id) return Boolean;
8812 -- True if Act is an action of a declare_expression that is allowed in a
8813 -- static declare_expression.
8815 function All_OK_For_Static return Boolean;
8816 -- True if all actions of N are allowed in a static declare_expression.
8818 function Get_Literal (Expr : Node_Id) return Node_Id;
8819 -- Expr is an expression with compile-time-known value. This returns the
8820 -- literal node that reprsents that value.
8822 function OK_For_Static (Act : Node_Id) return Boolean is
8823 begin
8824 case Nkind (Act) is
8825 when N_Object_Declaration =>
8826 if Constant_Present (Act)
8827 and then Is_Static_Expression (Expression (Act))
8828 then
8829 return True;
8830 end if;
8832 when N_Object_Renaming_Declaration =>
8833 if Statically_Names_Object (Name (Act)) then
8834 return True;
8835 end if;
8837 when others =>
8838 -- No other declarations, nor even pragmas, are allowed in a
8839 -- declare expression, so if we see something else, it must be
8840 -- an internally generated expression_with_actions.
8841 null;
8842 end case;
8844 return False;
8845 end OK_For_Static;
8847 function All_OK_For_Static return Boolean is
8848 Act : Node_Id := First (Actions (N));
8849 begin
8850 while Present (Act) loop
8851 if not OK_For_Static (Act) then
8852 return False;
8853 end if;
8855 Next (Act);
8856 end loop;
8858 return True;
8859 end All_OK_For_Static;
8861 function Get_Literal (Expr : Node_Id) return Node_Id is
8862 pragma Assert (Compile_Time_Known_Value (Expr));
8863 Result : Node_Id;
8864 begin
8865 case Nkind (Expr) is
8866 when N_Has_Entity =>
8867 if Ekind (Entity (Expr)) = E_Enumeration_Literal then
8868 Result := Expr;
8869 else
8870 Result := Constant_Value (Entity (Expr));
8871 end if;
8872 when N_Numeric_Or_String_Literal =>
8873 Result := Expr;
8874 when others =>
8875 raise Program_Error;
8876 end case;
8878 pragma Assert
8879 (Nkind (Result) in N_Numeric_Or_String_Literal
8880 or else Ekind (Entity (Result)) = E_Enumeration_Literal);
8881 return Result;
8882 end Get_Literal;
8884 Loc : constant Source_Ptr := Sloc (N);
8886 begin
8887 Set_Etype (N, Typ);
8889 if Is_Empty_List (Actions (N)) then
8890 pragma Assert (All_OK_For_Static); null;
8891 end if;
8893 -- If the value of the expression is known at compile time, and all
8894 -- of the actions (if any) are suitable, then replace the declare
8895 -- expression with its expression. This allows the declare expression
8896 -- as a whole to be static if appropriate. See AI12-0368.
8898 if Compile_Time_Known_Value (Expression (N)) then
8899 if Is_Empty_List (Actions (N)) then
8900 Rewrite (N, Expression (N));
8901 elsif All_OK_For_Static then
8902 Rewrite
8903 (N, New_Copy_Tree
8904 (Get_Literal (Expression (N)), New_Sloc => Loc));
8905 end if;
8906 end if;
8907 end Resolve_Expression_With_Actions;
8909 ----------------------------------
8910 -- Resolve_Generalized_Indexing --
8911 ----------------------------------
8913 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id) is
8914 Indexing : constant Node_Id := Generalized_Indexing (N);
8915 begin
8916 Rewrite (N, Indexing);
8917 Resolve (N, Typ);
8918 end Resolve_Generalized_Indexing;
8920 ---------------------------
8921 -- Resolve_If_Expression --
8922 ---------------------------
8924 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id) is
8925 procedure Apply_Check (Expr : Node_Id);
8926 -- When a dependent expression is of a subtype different from
8927 -- the context subtype, then insert a qualification to ensure
8928 -- the generation of a constraint check. This was previously
8929 -- for scalar types. For array types apply a length check, given
8930 -- that the context in general allows sliding, while a qualified
8931 -- expression forces equality of bounds.
8933 -----------------
8934 -- Apply_Check --
8935 -----------------
8937 procedure Apply_Check (Expr : Node_Id) is
8938 Expr_Typ : constant Entity_Id := Etype (Expr);
8939 Loc : constant Source_Ptr := Sloc (Expr);
8941 begin
8942 if Expr_Typ = Typ
8943 or else Is_Tagged_Type (Typ)
8944 or else Is_Access_Type (Typ)
8945 or else not Is_Constrained (Typ)
8946 or else Inside_A_Generic
8947 then
8948 null;
8950 elsif Is_Array_Type (Typ) then
8951 Apply_Length_Check (Expr, Typ);
8953 else
8954 Rewrite (Expr,
8955 Make_Qualified_Expression (Loc,
8956 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
8957 Expression => Relocate_Node (Expr)));
8959 Analyze_And_Resolve (Expr, Typ);
8960 end if;
8961 end Apply_Check;
8963 -- Local variables
8965 Condition : constant Node_Id := First (Expressions (N));
8966 Else_Expr : Node_Id;
8967 Then_Expr : Node_Id;
8969 -- Start of processing for Resolve_If_Expression
8971 begin
8972 -- Defend against malformed expressions
8974 if No (Condition) then
8975 return;
8976 end if;
8978 Then_Expr := Next (Condition);
8980 if No (Then_Expr) then
8981 return;
8982 end if;
8984 Else_Expr := Next (Then_Expr);
8986 Resolve (Condition, Any_Boolean);
8987 Resolve (Then_Expr, Typ);
8988 Apply_Check (Then_Expr);
8990 -- If ELSE expression present, just resolve using the determined type
8991 -- If type is universal, resolve to any member of the class.
8993 if Present (Else_Expr) then
8994 if Typ = Universal_Integer then
8995 Resolve (Else_Expr, Any_Integer);
8997 elsif Typ = Universal_Real then
8998 Resolve (Else_Expr, Any_Real);
9000 else
9001 Resolve (Else_Expr, Typ);
9002 end if;
9004 Apply_Check (Else_Expr);
9006 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
9007 -- dynamically tagged must be known statically.
9009 if Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
9010 if Is_Dynamically_Tagged (Then_Expr) /=
9011 Is_Dynamically_Tagged (Else_Expr)
9012 then
9013 Error_Msg_N ("all or none of the dependent expressions "
9014 & "can be dynamically tagged", N);
9015 end if;
9016 end if;
9018 -- If no ELSE expression is present, root type must be Standard.Boolean
9019 -- and we provide a Standard.True result converted to the appropriate
9020 -- Boolean type (in case it is a derived boolean type).
9022 elsif Root_Type (Typ) = Standard_Boolean then
9023 Else_Expr :=
9024 Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
9025 Analyze_And_Resolve (Else_Expr, Typ);
9026 Append_To (Expressions (N), Else_Expr);
9028 else
9029 Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
9030 Append_To (Expressions (N), Error);
9031 end if;
9033 Set_Etype (N, Typ);
9035 if not Error_Posted (N) then
9036 Eval_If_Expression (N);
9037 end if;
9039 Analyze_Dimension (N);
9040 end Resolve_If_Expression;
9042 ----------------------------------
9043 -- Resolve_Implicit_Dereference --
9044 ----------------------------------
9046 procedure Resolve_Implicit_Dereference (P : Node_Id) is
9047 Desig_Typ : Entity_Id;
9049 begin
9050 -- In an instance the proper view may not always be correct for
9051 -- private types, see e.g. Sem_Type.Covers for similar handling.
9053 if Is_Private_Type (Etype (P))
9054 and then Present (Full_View (Etype (P)))
9055 and then Is_Access_Type (Full_View (Etype (P)))
9056 and then In_Instance
9057 then
9058 Set_Etype (P, Full_View (Etype (P)));
9059 end if;
9061 if Is_Access_Type (Etype (P)) then
9062 Desig_Typ := Implicitly_Designated_Type (Etype (P));
9063 Insert_Explicit_Dereference (P);
9064 Analyze_And_Resolve (P, Desig_Typ);
9065 end if;
9066 end Resolve_Implicit_Dereference;
9068 -------------------------------
9069 -- Resolve_Indexed_Component --
9070 -------------------------------
9072 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
9073 Name : constant Node_Id := Prefix (N);
9074 Expr : Node_Id;
9075 Array_Type : Entity_Id := Empty; -- to prevent junk warning
9076 Index : Node_Id;
9078 begin
9079 if Present (Generalized_Indexing (N)) then
9080 Resolve_Generalized_Indexing (N, Typ);
9081 return;
9082 end if;
9084 if Is_Overloaded (Name) then
9086 -- Use the context type to select the prefix that yields the correct
9087 -- component type.
9089 declare
9090 I : Interp_Index;
9091 It : Interp;
9092 I1 : Interp_Index := 0;
9093 P : constant Node_Id := Prefix (N);
9094 Found : Boolean := False;
9096 begin
9097 Get_First_Interp (P, I, It);
9098 while Present (It.Typ) loop
9099 if (Is_Array_Type (It.Typ)
9100 and then Covers (Typ, Component_Type (It.Typ)))
9101 or else (Is_Access_Type (It.Typ)
9102 and then Is_Array_Type (Designated_Type (It.Typ))
9103 and then
9104 Covers
9105 (Typ,
9106 Component_Type (Designated_Type (It.Typ))))
9107 then
9108 if Found then
9109 It := Disambiguate (P, I1, I, Any_Type);
9111 if It = No_Interp then
9112 Error_Msg_N ("ambiguous prefix for indexing", N);
9113 Set_Etype (N, Typ);
9114 return;
9116 else
9117 Found := True;
9118 Array_Type := It.Typ;
9119 I1 := I;
9120 end if;
9122 else
9123 Found := True;
9124 Array_Type := It.Typ;
9125 I1 := I;
9126 end if;
9127 end if;
9129 Get_Next_Interp (I, It);
9130 end loop;
9131 end;
9133 else
9134 Array_Type := Etype (Name);
9135 end if;
9137 Resolve (Name, Array_Type);
9138 Array_Type := Get_Actual_Subtype_If_Available (Name);
9140 -- If the prefix's type is an access type, get to the real array type.
9141 -- Note: we do not apply an access check because an explicit dereference
9142 -- will be introduced later, and the check will happen there.
9144 if Is_Access_Type (Array_Type) then
9145 Array_Type := Implicitly_Designated_Type (Array_Type);
9146 end if;
9148 -- If name was overloaded, set component type correctly now.
9149 -- If a misplaced call to an entry family (which has no index types)
9150 -- return. Error will be diagnosed from calling context.
9152 if Is_Array_Type (Array_Type) then
9153 Set_Etype (N, Component_Type (Array_Type));
9154 else
9155 return;
9156 end if;
9158 Index := First_Index (Array_Type);
9159 Expr := First (Expressions (N));
9161 -- The prefix may have resolved to a string literal, in which case its
9162 -- etype has a special representation. This is only possible currently
9163 -- if the prefix is a static concatenation, written in functional
9164 -- notation.
9166 if Ekind (Array_Type) = E_String_Literal_Subtype then
9167 Resolve (Expr, Standard_Positive);
9169 else
9170 while Present (Index) and then Present (Expr) loop
9171 Resolve (Expr, Etype (Index));
9172 Check_Unset_Reference (Expr);
9174 Apply_Scalar_Range_Check (Expr, Etype (Index));
9176 Next_Index (Index);
9177 Next (Expr);
9178 end loop;
9179 end if;
9181 Resolve_Implicit_Dereference (Prefix (N));
9182 Analyze_Dimension (N);
9184 -- Do not generate the warning on suspicious index if we are analyzing
9185 -- package Ada.Tags; otherwise we will report the warning with the
9186 -- Prims_Ptr field of the dispatch table.
9188 if Scope (Etype (Prefix (N))) = Standard_Standard
9189 or else not
9190 Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
9191 Ada_Tags)
9192 then
9193 Warn_On_Suspicious_Index (Name, First (Expressions (N)));
9194 Eval_Indexed_Component (N);
9195 end if;
9197 -- If the array type is atomic and the component is not, then this is
9198 -- worth a warning before Ada 2020, since we have a situation where the
9199 -- access to the component may cause extra read/writes of the atomic
9200 -- object, or partial word accesses, both of which may be unexpected.
9202 if Nkind (N) = N_Indexed_Component
9203 and then Is_Atomic_Ref_With_Address (N)
9204 and then not (Has_Atomic_Components (Array_Type)
9205 or else (Is_Entity_Name (Prefix (N))
9206 and then Has_Atomic_Components
9207 (Entity (Prefix (N)))))
9208 and then not Is_Atomic (Component_Type (Array_Type))
9209 and then Ada_Version < Ada_2020
9210 then
9211 Error_Msg_N
9212 ("??access to non-atomic component of atomic array", Prefix (N));
9213 Error_Msg_N
9214 ("??\may cause unexpected accesses to atomic object", Prefix (N));
9215 end if;
9216 end Resolve_Indexed_Component;
9218 -----------------------------
9219 -- Resolve_Integer_Literal --
9220 -----------------------------
9222 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
9223 begin
9224 Set_Etype (N, Typ);
9225 Eval_Integer_Literal (N);
9226 end Resolve_Integer_Literal;
9228 --------------------------------
9229 -- Resolve_Intrinsic_Operator --
9230 --------------------------------
9232 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
9233 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
9234 Op : Entity_Id;
9235 Arg1 : Node_Id;
9236 Arg2 : Node_Id;
9238 function Convert_Operand (Opnd : Node_Id) return Node_Id;
9239 -- If the operand is a literal, it cannot be the expression in a
9240 -- conversion. Use a qualified expression instead.
9242 ---------------------
9243 -- Convert_Operand --
9244 ---------------------
9246 function Convert_Operand (Opnd : Node_Id) return Node_Id is
9247 Loc : constant Source_Ptr := Sloc (Opnd);
9248 Res : Node_Id;
9250 begin
9251 if Nkind (Opnd) in N_Integer_Literal | N_Real_Literal then
9252 Res :=
9253 Make_Qualified_Expression (Loc,
9254 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
9255 Expression => Relocate_Node (Opnd));
9256 Analyze (Res);
9258 else
9259 Res := Unchecked_Convert_To (Btyp, Opnd);
9260 end if;
9262 return Res;
9263 end Convert_Operand;
9265 -- Start of processing for Resolve_Intrinsic_Operator
9267 begin
9268 -- We must preserve the original entity in a generic setting, so that
9269 -- the legality of the operation can be verified in an instance.
9271 if not Expander_Active then
9272 return;
9273 end if;
9275 Op := Entity (N);
9276 while Scope (Op) /= Standard_Standard loop
9277 Op := Homonym (Op);
9278 pragma Assert (Present (Op));
9279 end loop;
9281 Set_Entity (N, Op);
9282 Set_Is_Overloaded (N, False);
9284 -- If the result or operand types are private, rewrite with unchecked
9285 -- conversions on the operands and the result, to expose the proper
9286 -- underlying numeric type.
9288 if Is_Private_Type (Typ)
9289 or else Is_Private_Type (Etype (Left_Opnd (N)))
9290 or else Is_Private_Type (Etype (Right_Opnd (N)))
9291 then
9292 Arg1 := Convert_Operand (Left_Opnd (N));
9294 if Nkind (N) = N_Op_Expon then
9295 Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
9296 else
9297 Arg2 := Convert_Operand (Right_Opnd (N));
9298 end if;
9300 if Nkind (Arg1) = N_Type_Conversion then
9301 Save_Interps (Left_Opnd (N), Expression (Arg1));
9302 end if;
9304 if Nkind (Arg2) = N_Type_Conversion then
9305 Save_Interps (Right_Opnd (N), Expression (Arg2));
9306 end if;
9308 Set_Left_Opnd (N, Arg1);
9309 Set_Right_Opnd (N, Arg2);
9311 Set_Etype (N, Btyp);
9312 Rewrite (N, Unchecked_Convert_To (Typ, N));
9313 Resolve (N, Typ);
9315 elsif Typ /= Etype (Left_Opnd (N))
9316 or else Typ /= Etype (Right_Opnd (N))
9317 then
9318 -- Add explicit conversion where needed, and save interpretations in
9319 -- case operands are overloaded.
9321 Arg1 := Convert_To (Typ, Left_Opnd (N));
9322 Arg2 := Convert_To (Typ, Right_Opnd (N));
9324 if Nkind (Arg1) = N_Type_Conversion then
9325 Save_Interps (Left_Opnd (N), Expression (Arg1));
9326 else
9327 Save_Interps (Left_Opnd (N), Arg1);
9328 end if;
9330 if Nkind (Arg2) = N_Type_Conversion then
9331 Save_Interps (Right_Opnd (N), Expression (Arg2));
9332 else
9333 Save_Interps (Right_Opnd (N), Arg2);
9334 end if;
9336 Rewrite (Left_Opnd (N), Arg1);
9337 Rewrite (Right_Opnd (N), Arg2);
9338 Analyze (Arg1);
9339 Analyze (Arg2);
9340 Resolve_Arithmetic_Op (N, Typ);
9342 else
9343 Resolve_Arithmetic_Op (N, Typ);
9344 end if;
9345 end Resolve_Intrinsic_Operator;
9347 --------------------------------------
9348 -- Resolve_Intrinsic_Unary_Operator --
9349 --------------------------------------
9351 procedure Resolve_Intrinsic_Unary_Operator
9352 (N : Node_Id;
9353 Typ : Entity_Id)
9355 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
9356 Op : Entity_Id;
9357 Arg2 : Node_Id;
9359 begin
9360 Op := Entity (N);
9361 while Scope (Op) /= Standard_Standard loop
9362 Op := Homonym (Op);
9363 pragma Assert (Present (Op));
9364 end loop;
9366 Set_Entity (N, Op);
9368 if Is_Private_Type (Typ) then
9369 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
9370 Save_Interps (Right_Opnd (N), Expression (Arg2));
9372 Set_Right_Opnd (N, Arg2);
9374 Set_Etype (N, Btyp);
9375 Rewrite (N, Unchecked_Convert_To (Typ, N));
9376 Resolve (N, Typ);
9378 else
9379 Resolve_Unary_Op (N, Typ);
9380 end if;
9381 end Resolve_Intrinsic_Unary_Operator;
9383 ------------------------
9384 -- Resolve_Logical_Op --
9385 ------------------------
9387 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
9388 B_Typ : Entity_Id;
9390 begin
9391 Check_No_Direct_Boolean_Operators (N);
9393 -- Predefined operations on scalar types yield the base type. On the
9394 -- other hand, logical operations on arrays yield the type of the
9395 -- arguments (and the context).
9397 if Is_Array_Type (Typ) then
9398 B_Typ := Typ;
9399 else
9400 B_Typ := Base_Type (Typ);
9401 end if;
9403 -- The following test is required because the operands of the operation
9404 -- may be literals, in which case the resulting type appears to be
9405 -- compatible with a signed integer type, when in fact it is compatible
9406 -- only with modular types. If the context itself is universal, the
9407 -- operation is illegal.
9409 if not Valid_Boolean_Arg (Typ) then
9410 Error_Msg_N ("invalid context for logical operation", N);
9411 Set_Etype (N, Any_Type);
9412 return;
9414 elsif Typ = Any_Modular then
9415 Error_Msg_N
9416 ("no modular type available in this context", N);
9417 Set_Etype (N, Any_Type);
9418 return;
9420 elsif Is_Modular_Integer_Type (Typ)
9421 and then Etype (Left_Opnd (N)) = Universal_Integer
9422 and then Etype (Right_Opnd (N)) = Universal_Integer
9423 then
9424 Check_For_Visible_Operator (N, B_Typ);
9425 end if;
9427 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
9428 -- is active and the result type is standard Boolean (do not mess with
9429 -- ops that return a nonstandard Boolean type, because something strange
9430 -- is going on).
9432 -- Note: you might expect this replacement to be done during expansion,
9433 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
9434 -- is used, no part of the right operand of an "and" or "or" operator
9435 -- should be executed if the left operand would short-circuit the
9436 -- evaluation of the corresponding "and then" or "or else". If we left
9437 -- the replacement to expansion time, then run-time checks associated
9438 -- with such operands would be evaluated unconditionally, due to being
9439 -- before the condition prior to the rewriting as short-circuit forms
9440 -- during expansion.
9442 if Short_Circuit_And_Or
9443 and then B_Typ = Standard_Boolean
9444 and then Nkind (N) in N_Op_And | N_Op_Or
9445 then
9446 -- Mark the corresponding putative SCO operator as truly a logical
9447 -- (and short-circuit) operator.
9449 if Generate_SCO and then Comes_From_Source (N) then
9450 Set_SCO_Logical_Operator (N);
9451 end if;
9453 if Nkind (N) = N_Op_And then
9454 Rewrite (N,
9455 Make_And_Then (Sloc (N),
9456 Left_Opnd => Relocate_Node (Left_Opnd (N)),
9457 Right_Opnd => Relocate_Node (Right_Opnd (N))));
9458 Analyze_And_Resolve (N, B_Typ);
9460 -- Case of OR changed to OR ELSE
9462 else
9463 Rewrite (N,
9464 Make_Or_Else (Sloc (N),
9465 Left_Opnd => Relocate_Node (Left_Opnd (N)),
9466 Right_Opnd => Relocate_Node (Right_Opnd (N))));
9467 Analyze_And_Resolve (N, B_Typ);
9468 end if;
9470 -- Return now, since analysis of the rewritten ops will take care of
9471 -- other reference bookkeeping and expression folding.
9473 return;
9474 end if;
9476 Resolve (Left_Opnd (N), B_Typ);
9477 Resolve (Right_Opnd (N), B_Typ);
9479 Check_Unset_Reference (Left_Opnd (N));
9480 Check_Unset_Reference (Right_Opnd (N));
9482 Set_Etype (N, B_Typ);
9483 Generate_Operator_Reference (N, B_Typ);
9484 Eval_Logical_Op (N);
9485 end Resolve_Logical_Op;
9487 ---------------------------
9488 -- Resolve_Membership_Op --
9489 ---------------------------
9491 -- The context can only be a boolean type, and does not determine the
9492 -- arguments. Arguments should be unambiguous, but the preference rule for
9493 -- universal types applies.
9495 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
9496 pragma Warnings (Off, Typ);
9498 L : constant Node_Id := Left_Opnd (N);
9499 R : constant Node_Id := Right_Opnd (N);
9500 T : Entity_Id;
9502 procedure Resolve_Set_Membership;
9503 -- Analysis has determined a unique type for the left operand. Use it as
9504 -- the basis to resolve the disjuncts.
9506 ----------------------------
9507 -- Resolve_Set_Membership --
9508 ----------------------------
9510 procedure Resolve_Set_Membership is
9511 Alt : Node_Id;
9513 begin
9514 -- If the left operand is overloaded, find type compatible with not
9515 -- overloaded alternative of the right operand.
9517 Alt := First (Alternatives (N));
9518 if Is_Overloaded (L) then
9519 T := Empty;
9520 while Present (Alt) loop
9521 if not Is_Overloaded (Alt) then
9522 T := Intersect_Types (L, Alt);
9523 exit;
9524 else
9525 Next (Alt);
9526 end if;
9527 end loop;
9529 -- Unclear how to resolve expression if all alternatives are also
9530 -- overloaded.
9532 if No (T) then
9533 Error_Msg_N ("ambiguous expression", N);
9534 end if;
9536 else
9537 T := Intersect_Types (L, Alt);
9538 end if;
9540 Resolve (L, T);
9542 Alt := First (Alternatives (N));
9543 while Present (Alt) loop
9545 -- Alternative is an expression, a range
9546 -- or a subtype mark.
9548 if not Is_Entity_Name (Alt)
9549 or else not Is_Type (Entity (Alt))
9550 then
9551 Resolve (Alt, T);
9552 end if;
9554 Next (Alt);
9555 end loop;
9557 -- Check for duplicates for discrete case
9559 if Is_Discrete_Type (T) then
9560 declare
9561 type Ent is record
9562 Alt : Node_Id;
9563 Val : Uint;
9564 end record;
9566 Alts : array (0 .. List_Length (Alternatives (N))) of Ent;
9567 Nalts : Nat;
9569 begin
9570 -- Loop checking duplicates. This is quadratic, but giant sets
9571 -- are unlikely in this context so it's a reasonable choice.
9573 Nalts := 0;
9574 Alt := First (Alternatives (N));
9575 while Present (Alt) loop
9576 if Is_OK_Static_Expression (Alt)
9577 and then Nkind (Alt) in N_Integer_Literal
9578 | N_Character_Literal
9579 | N_Has_Entity
9580 then
9581 Nalts := Nalts + 1;
9582 Alts (Nalts) := (Alt, Expr_Value (Alt));
9584 for J in 1 .. Nalts - 1 loop
9585 if Alts (J).Val = Alts (Nalts).Val then
9586 Error_Msg_Sloc := Sloc (Alts (J).Alt);
9587 Error_Msg_N ("duplicate of value given#??", Alt);
9588 end if;
9589 end loop;
9590 end if;
9592 Next (Alt);
9593 end loop;
9594 end;
9595 end if;
9597 -- RM 4.5.2 (28.1/3) specifies that for types other than records or
9598 -- limited types, evaluation of a membership test uses the predefined
9599 -- equality for the type. This may be confusing to users, and the
9600 -- following warning appears useful for the most common case.
9602 if Is_Scalar_Type (Etype (L))
9603 and then Present (Get_User_Defined_Eq (Etype (L)))
9604 then
9605 Error_Msg_NE
9606 ("membership test on& uses predefined equality?", N, Etype (L));
9607 Error_Msg_N
9608 ("\even if user-defined equality exists (RM 4.5.2 (28.1/3)?", N);
9609 end if;
9610 end Resolve_Set_Membership;
9612 -- Start of processing for Resolve_Membership_Op
9614 begin
9615 if L = Error or else R = Error then
9616 return;
9617 end if;
9619 if Present (Alternatives (N)) then
9620 Resolve_Set_Membership;
9621 goto SM_Exit;
9623 elsif not Is_Overloaded (R)
9624 and then
9625 (Etype (R) = Universal_Integer
9626 or else
9627 Etype (R) = Universal_Real)
9628 and then Is_Overloaded (L)
9629 then
9630 T := Etype (R);
9632 -- Ada 2005 (AI-251): Support the following case:
9634 -- type I is interface;
9635 -- type T is tagged ...
9637 -- function Test (O : I'Class) is
9638 -- begin
9639 -- return O in T'Class.
9640 -- end Test;
9642 -- In this case we have nothing else to do. The membership test will be
9643 -- done at run time.
9645 elsif Ada_Version >= Ada_2005
9646 and then Is_Class_Wide_Type (Etype (L))
9647 and then Is_Interface (Etype (L))
9648 and then not Is_Interface (Etype (R))
9649 then
9650 return;
9651 else
9652 T := Intersect_Types (L, R);
9653 end if;
9655 -- If mixed-mode operations are present and operands are all literal,
9656 -- the only interpretation involves Duration, which is probably not
9657 -- the intention of the programmer.
9659 if T = Any_Fixed then
9660 T := Unique_Fixed_Point_Type (N);
9662 if T = Any_Type then
9663 return;
9664 end if;
9665 end if;
9667 Resolve (L, T);
9668 Check_Unset_Reference (L);
9670 if Nkind (R) = N_Range
9671 and then not Is_Scalar_Type (T)
9672 then
9673 Error_Msg_N ("scalar type required for range", R);
9674 end if;
9676 if Is_Entity_Name (R) then
9677 Freeze_Expression (R);
9678 else
9679 Resolve (R, T);
9680 Check_Unset_Reference (R);
9681 end if;
9683 -- Here after resolving membership operation
9685 <<SM_Exit>>
9687 Eval_Membership_Op (N);
9688 end Resolve_Membership_Op;
9690 ------------------
9691 -- Resolve_Null --
9692 ------------------
9694 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
9695 Loc : constant Source_Ptr := Sloc (N);
9697 begin
9698 -- Handle restriction against anonymous null access values This
9699 -- restriction can be turned off using -gnatdj.
9701 -- Ada 2005 (AI-231): Remove restriction
9703 if Ada_Version < Ada_2005
9704 and then not Debug_Flag_J
9705 and then Ekind (Typ) = E_Anonymous_Access_Type
9706 and then Comes_From_Source (N)
9707 then
9708 -- In the common case of a call which uses an explicitly null value
9709 -- for an access parameter, give specialized error message.
9711 if Nkind (Parent (N)) in N_Subprogram_Call then
9712 Error_Msg_N
9713 ("null is not allowed as argument for an access parameter", N);
9715 -- Standard message for all other cases (are there any?)
9717 else
9718 Error_Msg_N
9719 ("null cannot be of an anonymous access type", N);
9720 end if;
9721 end if;
9723 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
9724 -- assignment to a null-excluding object.
9726 if Ada_Version >= Ada_2005
9727 and then Can_Never_Be_Null (Typ)
9728 and then Nkind (Parent (N)) = N_Assignment_Statement
9729 then
9730 if Inside_Init_Proc then
9732 -- Decide whether to generate an if_statement around our
9733 -- null-excluding check to avoid them on certain internal object
9734 -- declarations by looking at the type the current Init_Proc
9735 -- belongs to.
9737 -- Generate:
9738 -- if T1b_skip_null_excluding_check then
9739 -- [constraint_error "access check failed"]
9740 -- end if;
9742 if Needs_Conditional_Null_Excluding_Check
9743 (Etype (First_Formal (Enclosing_Init_Proc)))
9744 then
9745 Insert_Action (N,
9746 Make_If_Statement (Loc,
9747 Condition =>
9748 Make_Identifier (Loc,
9749 New_External_Name
9750 (Chars (Typ), "_skip_null_excluding_check")),
9751 Then_Statements =>
9752 New_List (
9753 Make_Raise_Constraint_Error (Loc,
9754 Reason => CE_Access_Check_Failed))));
9756 -- Otherwise, simply create the check
9758 else
9759 Insert_Action (N,
9760 Make_Raise_Constraint_Error (Loc,
9761 Reason => CE_Access_Check_Failed));
9762 end if;
9763 else
9764 Insert_Action
9765 (Compile_Time_Constraint_Error (N,
9766 "(Ada 2005) null not allowed in null-excluding objects??"),
9767 Make_Raise_Constraint_Error (Loc,
9768 Reason => CE_Access_Check_Failed));
9769 end if;
9770 end if;
9772 -- In a distributed context, null for a remote access to subprogram may
9773 -- need to be replaced with a special record aggregate. In this case,
9774 -- return after having done the transformation.
9776 if (Ekind (Typ) = E_Record_Type
9777 or else Is_Remote_Access_To_Subprogram_Type (Typ))
9778 and then Remote_AST_Null_Value (N, Typ)
9779 then
9780 return;
9781 end if;
9783 -- The null literal takes its type from the context
9785 Set_Etype (N, Typ);
9786 end Resolve_Null;
9788 -----------------------
9789 -- Resolve_Op_Concat --
9790 -----------------------
9792 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
9794 -- We wish to avoid deep recursion, because concatenations are often
9795 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
9796 -- operands nonrecursively until we find something that is not a simple
9797 -- concatenation (A in this case). We resolve that, and then walk back
9798 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
9799 -- to do the rest of the work at each level. The Parent pointers allow
9800 -- us to avoid recursion, and thus avoid running out of memory. See also
9801 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
9803 NN : Node_Id := N;
9804 Op1 : Node_Id;
9806 begin
9807 -- The following code is equivalent to:
9809 -- Resolve_Op_Concat_First (NN, Typ);
9810 -- Resolve_Op_Concat_Arg (N, ...);
9811 -- Resolve_Op_Concat_Rest (N, Typ);
9813 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
9814 -- operand is a concatenation.
9816 -- Walk down left operands
9818 loop
9819 Resolve_Op_Concat_First (NN, Typ);
9820 Op1 := Left_Opnd (NN);
9821 exit when not (Nkind (Op1) = N_Op_Concat
9822 and then not Is_Array_Type (Component_Type (Typ))
9823 and then Entity (Op1) = Entity (NN));
9824 NN := Op1;
9825 end loop;
9827 -- Now (given the above example) NN is A&B and Op1 is A
9829 -- First resolve Op1 ...
9831 Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN));
9833 -- ... then walk NN back up until we reach N (where we started), calling
9834 -- Resolve_Op_Concat_Rest along the way.
9836 loop
9837 Resolve_Op_Concat_Rest (NN, Typ);
9838 exit when NN = N;
9839 NN := Parent (NN);
9840 end loop;
9841 end Resolve_Op_Concat;
9843 ---------------------------
9844 -- Resolve_Op_Concat_Arg --
9845 ---------------------------
9847 procedure Resolve_Op_Concat_Arg
9848 (N : Node_Id;
9849 Arg : Node_Id;
9850 Typ : Entity_Id;
9851 Is_Comp : Boolean)
9853 Btyp : constant Entity_Id := Base_Type (Typ);
9854 Ctyp : constant Entity_Id := Component_Type (Typ);
9856 begin
9857 if In_Instance then
9858 if Is_Comp
9859 or else (not Is_Overloaded (Arg)
9860 and then Etype (Arg) /= Any_Composite
9861 and then Covers (Ctyp, Etype (Arg)))
9862 then
9863 Resolve (Arg, Ctyp);
9864 else
9865 Resolve (Arg, Btyp);
9866 end if;
9868 -- If both Array & Array and Array & Component are visible, there is a
9869 -- potential ambiguity that must be reported.
9871 elsif Has_Compatible_Type (Arg, Ctyp) then
9872 if Nkind (Arg) = N_Aggregate
9873 and then Is_Composite_Type (Ctyp)
9874 then
9875 if Is_Private_Type (Ctyp) then
9876 Resolve (Arg, Btyp);
9878 -- If the operation is user-defined and not overloaded use its
9879 -- profile. The operation may be a renaming, in which case it has
9880 -- been rewritten, and we want the original profile.
9882 elsif not Is_Overloaded (N)
9883 and then Comes_From_Source (Entity (Original_Node (N)))
9884 and then Ekind (Entity (Original_Node (N))) = E_Function
9885 then
9886 Resolve (Arg,
9887 Etype
9888 (Next_Formal (First_Formal (Entity (Original_Node (N))))));
9889 return;
9891 -- Otherwise an aggregate may match both the array type and the
9892 -- component type.
9894 else
9895 Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
9896 Set_Etype (Arg, Any_Type);
9897 end if;
9899 else
9900 if Is_Overloaded (Arg)
9901 and then Has_Compatible_Type (Arg, Typ)
9902 and then Etype (Arg) /= Any_Type
9903 then
9904 declare
9905 I : Interp_Index;
9906 It : Interp;
9907 Func : Entity_Id;
9909 begin
9910 Get_First_Interp (Arg, I, It);
9911 Func := It.Nam;
9912 Get_Next_Interp (I, It);
9914 -- Special-case the error message when the overloading is
9915 -- caused by a function that yields an array and can be
9916 -- called without parameters.
9918 if It.Nam = Func then
9919 Error_Msg_Sloc := Sloc (Func);
9920 Error_Msg_N ("ambiguous call to function#", Arg);
9921 Error_Msg_NE
9922 ("\\interpretation as call yields&", Arg, Typ);
9923 Error_Msg_NE
9924 ("\\interpretation as indexing of call yields&",
9925 Arg, Component_Type (Typ));
9927 else
9928 Error_Msg_N ("ambiguous operand for concatenation!", Arg);
9930 Get_First_Interp (Arg, I, It);
9931 while Present (It.Nam) loop
9932 Error_Msg_Sloc := Sloc (It.Nam);
9934 if Base_Type (It.Typ) = Btyp
9935 or else
9936 Base_Type (It.Typ) = Base_Type (Ctyp)
9937 then
9938 Error_Msg_N -- CODEFIX
9939 ("\\possible interpretation#", Arg);
9940 end if;
9942 Get_Next_Interp (I, It);
9943 end loop;
9944 end if;
9945 end;
9946 end if;
9948 Resolve (Arg, Component_Type (Typ));
9950 if Nkind (Arg) = N_String_Literal then
9951 Set_Etype (Arg, Component_Type (Typ));
9952 end if;
9954 if Arg = Left_Opnd (N) then
9955 Set_Is_Component_Left_Opnd (N);
9956 else
9957 Set_Is_Component_Right_Opnd (N);
9958 end if;
9959 end if;
9961 else
9962 Resolve (Arg, Btyp);
9963 end if;
9965 Check_Unset_Reference (Arg);
9966 end Resolve_Op_Concat_Arg;
9968 -----------------------------
9969 -- Resolve_Op_Concat_First --
9970 -----------------------------
9972 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
9973 Btyp : constant Entity_Id := Base_Type (Typ);
9974 Op1 : constant Node_Id := Left_Opnd (N);
9975 Op2 : constant Node_Id := Right_Opnd (N);
9977 begin
9978 -- The parser folds an enormous sequence of concatenations of string
9979 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
9980 -- in the right operand. If the expression resolves to a predefined "&"
9981 -- operator, all is well. Otherwise, the parser's folding is wrong, so
9982 -- we give an error. See P_Simple_Expression in Par.Ch4.
9984 if Nkind (Op2) = N_String_Literal
9985 and then Is_Folded_In_Parser (Op2)
9986 and then Ekind (Entity (N)) = E_Function
9987 then
9988 pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
9989 and then String_Length (Strval (Op1)) = 0);
9990 Error_Msg_N ("too many user-defined concatenations", N);
9991 return;
9992 end if;
9994 Set_Etype (N, Btyp);
9996 if Is_Limited_Composite (Btyp) then
9997 Error_Msg_N ("concatenation not available for limited array", N);
9998 Explain_Limited_Type (Btyp, N);
9999 end if;
10000 end Resolve_Op_Concat_First;
10002 ----------------------------
10003 -- Resolve_Op_Concat_Rest --
10004 ----------------------------
10006 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
10007 Op1 : constant Node_Id := Left_Opnd (N);
10008 Op2 : constant Node_Id := Right_Opnd (N);
10010 begin
10011 Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N));
10013 Generate_Operator_Reference (N, Typ);
10015 if Is_String_Type (Typ) then
10016 Eval_Concatenation (N);
10017 end if;
10019 -- If this is not a static concatenation, but the result is a string
10020 -- type (and not an array of strings) ensure that static string operands
10021 -- have their subtypes properly constructed.
10023 if Nkind (N) /= N_String_Literal
10024 and then Is_Character_Type (Component_Type (Typ))
10025 then
10026 Set_String_Literal_Subtype (Op1, Typ);
10027 Set_String_Literal_Subtype (Op2, Typ);
10028 end if;
10029 end Resolve_Op_Concat_Rest;
10031 ----------------------
10032 -- Resolve_Op_Expon --
10033 ----------------------
10035 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
10036 B_Typ : constant Entity_Id := Base_Type (Typ);
10038 begin
10039 -- Catch attempts to do fixed-point exponentiation with universal
10040 -- operands, which is a case where the illegality is not caught during
10041 -- normal operator analysis. This is not done in preanalysis mode
10042 -- since the tree is not fully decorated during preanalysis.
10044 if Full_Analysis then
10045 if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
10046 Error_Msg_N ("exponentiation not available for fixed point", N);
10047 return;
10049 elsif Nkind (Parent (N)) in N_Op
10050 and then Present (Etype (Parent (N)))
10051 and then Is_Fixed_Point_Type (Etype (Parent (N)))
10052 and then Etype (N) = Universal_Real
10053 and then Comes_From_Source (N)
10054 then
10055 Error_Msg_N ("exponentiation not available for fixed point", N);
10056 return;
10057 end if;
10058 end if;
10060 if Comes_From_Source (N)
10061 and then Ekind (Entity (N)) = E_Function
10062 and then Is_Imported (Entity (N))
10063 and then Is_Intrinsic_Subprogram (Entity (N))
10064 then
10065 Resolve_Intrinsic_Operator (N, Typ);
10066 return;
10067 end if;
10069 if Etype (Left_Opnd (N)) = Universal_Integer
10070 or else Etype (Left_Opnd (N)) = Universal_Real
10071 then
10072 Check_For_Visible_Operator (N, B_Typ);
10073 end if;
10075 -- We do the resolution using the base type, because intermediate values
10076 -- in expressions are always of the base type, not a subtype of it.
10078 Resolve (Left_Opnd (N), B_Typ);
10079 Resolve (Right_Opnd (N), Standard_Integer);
10081 -- For integer types, right argument must be in Natural range
10083 if Is_Integer_Type (Typ) then
10084 Apply_Scalar_Range_Check (Right_Opnd (N), Standard_Natural);
10085 end if;
10087 Check_Unset_Reference (Left_Opnd (N));
10088 Check_Unset_Reference (Right_Opnd (N));
10090 Set_Etype (N, B_Typ);
10091 Generate_Operator_Reference (N, B_Typ);
10093 Analyze_Dimension (N);
10095 if Ada_Version >= Ada_2012 and then Has_Dimension_System (B_Typ) then
10096 -- Evaluate the exponentiation operator for dimensioned type
10098 Eval_Op_Expon_For_Dimensioned_Type (N, B_Typ);
10099 else
10100 Eval_Op_Expon (N);
10101 end if;
10103 -- Set overflow checking bit. Much cleverer code needed here eventually
10104 -- and perhaps the Resolve routines should be separated for the various
10105 -- arithmetic operations, since they will need different processing. ???
10107 if Nkind (N) in N_Op then
10108 if not Overflow_Checks_Suppressed (Etype (N)) then
10109 Enable_Overflow_Check (N);
10110 end if;
10111 end if;
10112 end Resolve_Op_Expon;
10114 --------------------
10115 -- Resolve_Op_Not --
10116 --------------------
10118 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
10119 B_Typ : Entity_Id;
10121 function Parent_Is_Boolean return Boolean;
10122 -- This function determines if the parent node is a boolean operator or
10123 -- operation (comparison op, membership test, or short circuit form) and
10124 -- the not in question is the left operand of this operation. Note that
10125 -- if the not is in parens, then false is returned.
10127 -----------------------
10128 -- Parent_Is_Boolean --
10129 -----------------------
10131 function Parent_Is_Boolean return Boolean is
10132 begin
10133 if Paren_Count (N) /= 0 then
10134 return False;
10136 else
10137 case Nkind (Parent (N)) is
10138 when N_And_Then
10139 | N_In
10140 | N_Not_In
10141 | N_Op_And
10142 | N_Op_Eq
10143 | N_Op_Ge
10144 | N_Op_Gt
10145 | N_Op_Le
10146 | N_Op_Lt
10147 | N_Op_Ne
10148 | N_Op_Or
10149 | N_Op_Xor
10150 | N_Or_Else
10152 return Left_Opnd (Parent (N)) = N;
10154 when others =>
10155 return False;
10156 end case;
10157 end if;
10158 end Parent_Is_Boolean;
10160 -- Start of processing for Resolve_Op_Not
10162 begin
10163 -- Predefined operations on scalar types yield the base type. On the
10164 -- other hand, logical operations on arrays yield the type of the
10165 -- arguments (and the context).
10167 if Is_Array_Type (Typ) then
10168 B_Typ := Typ;
10169 else
10170 B_Typ := Base_Type (Typ);
10171 end if;
10173 -- Straightforward case of incorrect arguments
10175 if not Valid_Boolean_Arg (Typ) then
10176 Error_Msg_N ("invalid operand type for operator&", N);
10177 Set_Etype (N, Any_Type);
10178 return;
10180 -- Special case of probable missing parens
10182 elsif Typ = Universal_Integer or else Typ = Any_Modular then
10183 if Parent_Is_Boolean then
10184 Error_Msg_N
10185 ("operand of not must be enclosed in parentheses",
10186 Right_Opnd (N));
10187 else
10188 Error_Msg_N
10189 ("no modular type available in this context", N);
10190 end if;
10192 Set_Etype (N, Any_Type);
10193 return;
10195 -- OK resolution of NOT
10197 else
10198 -- Warn if non-boolean types involved. This is a case like not a < b
10199 -- where a and b are modular, where we will get (not a) < b and most
10200 -- likely not (a < b) was intended.
10202 if Warn_On_Questionable_Missing_Parens
10203 and then not Is_Boolean_Type (Typ)
10204 and then Parent_Is_Boolean
10205 then
10206 Error_Msg_N ("?q?not expression should be parenthesized here!", N);
10207 end if;
10209 -- Warn on double negation if checking redundant constructs
10211 if Warn_On_Redundant_Constructs
10212 and then Comes_From_Source (N)
10213 and then Comes_From_Source (Right_Opnd (N))
10214 and then Root_Type (Typ) = Standard_Boolean
10215 and then Nkind (Right_Opnd (N)) = N_Op_Not
10216 then
10217 Error_Msg_N ("redundant double negation?r?", N);
10218 end if;
10220 -- Complete resolution and evaluation of NOT
10221 -- If argument is an equality and expected type is boolean, that
10222 -- expected type has no effect on resolution, and there are
10223 -- special rules for resolution of Eq, Neq in the presence of
10224 -- overloaded operands, so we directly call its resolution routines.
10226 declare
10227 Opnd : constant Node_Id := Right_Opnd (N);
10228 Op_Id : Entity_Id;
10230 begin
10231 if B_Typ = Standard_Boolean
10232 and then Nkind (Opnd) in N_Op_Eq | N_Op_Ne
10233 and then Is_Overloaded (Opnd)
10234 then
10235 Resolve_Equality_Op (Opnd, B_Typ);
10236 Op_Id := Entity (Opnd);
10238 if Ekind (Op_Id) = E_Function
10239 and then not Is_Intrinsic_Subprogram (Op_Id)
10240 then
10241 Rewrite_Operator_As_Call (Opnd, Op_Id);
10242 end if;
10244 if not Inside_A_Generic or else Is_Entity_Name (Opnd) then
10245 Freeze_Expression (Opnd);
10246 end if;
10248 Expand (Opnd);
10250 else
10251 Resolve (Opnd, B_Typ);
10252 end if;
10254 Check_Unset_Reference (Opnd);
10255 end;
10257 Set_Etype (N, B_Typ);
10258 Generate_Operator_Reference (N, B_Typ);
10259 Eval_Op_Not (N);
10260 end if;
10261 end Resolve_Op_Not;
10263 -----------------------------
10264 -- Resolve_Operator_Symbol --
10265 -----------------------------
10267 -- Nothing to be done, all resolved already
10269 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
10270 pragma Warnings (Off, N);
10271 pragma Warnings (Off, Typ);
10273 begin
10274 null;
10275 end Resolve_Operator_Symbol;
10277 ----------------------------------
10278 -- Resolve_Qualified_Expression --
10279 ----------------------------------
10281 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
10282 pragma Warnings (Off, Typ);
10284 Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
10285 Expr : constant Node_Id := Expression (N);
10287 begin
10288 Resolve (Expr, Target_Typ);
10290 -- A qualified expression requires an exact match of the type, class-
10291 -- wide matching is not allowed. However, if the qualifying type is
10292 -- specific and the expression has a class-wide type, it may still be
10293 -- okay, since it can be the result of the expansion of a call to a
10294 -- dispatching function, so we also have to check class-wideness of the
10295 -- type of the expression's original node.
10297 if (Is_Class_Wide_Type (Target_Typ)
10298 or else
10299 (Is_Class_Wide_Type (Etype (Expr))
10300 and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
10301 and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
10302 then
10303 Wrong_Type (Expr, Target_Typ);
10304 end if;
10306 -- If the target type is unconstrained, then we reset the type of the
10307 -- result from the type of the expression. For other cases, the actual
10308 -- subtype of the expression is the target type. But we avoid doing it
10309 -- for an allocator since this is not needed and might be problematic.
10311 if Is_Composite_Type (Target_Typ)
10312 and then not Is_Constrained (Target_Typ)
10313 and then Nkind (Parent (N)) /= N_Allocator
10314 then
10315 Set_Etype (N, Etype (Expr));
10316 end if;
10318 Analyze_Dimension (N);
10319 Eval_Qualified_Expression (N);
10321 -- If we still have a qualified expression after the static evaluation,
10322 -- then apply a scalar range check if needed. The reason that we do this
10323 -- after the Eval call is that otherwise, the application of the range
10324 -- check may convert an illegal static expression and result in warning
10325 -- rather than giving an error (e.g Integer'(Integer'Last + 1)).
10327 if Nkind (N) = N_Qualified_Expression
10328 and then Is_Scalar_Type (Target_Typ)
10329 then
10330 Apply_Scalar_Range_Check (Expr, Target_Typ);
10331 end if;
10333 -- AI12-0100: Once the qualified expression is resolved, check whether
10334 -- operand statisfies a static predicate of the target subtype, if any.
10335 -- In the static expression case, a predicate check failure is an error.
10337 if Has_Predicates (Target_Typ) then
10338 Check_Expression_Against_Static_Predicate
10339 (Expr, Target_Typ, Static_Failure_Is_Error => True);
10340 end if;
10341 end Resolve_Qualified_Expression;
10343 ------------------------------
10344 -- Resolve_Raise_Expression --
10345 ------------------------------
10347 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id) is
10348 begin
10349 if Typ = Raise_Type then
10350 Error_Msg_N ("cannot find unique type for raise expression", N);
10351 Set_Etype (N, Any_Type);
10352 else
10353 Set_Etype (N, Typ);
10354 end if;
10355 end Resolve_Raise_Expression;
10357 -------------------
10358 -- Resolve_Range --
10359 -------------------
10361 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
10362 L : constant Node_Id := Low_Bound (N);
10363 H : constant Node_Id := High_Bound (N);
10365 function First_Last_Ref return Boolean;
10366 -- Returns True if N is of the form X'First .. X'Last where X is the
10367 -- same entity for both attributes.
10369 --------------------
10370 -- First_Last_Ref --
10371 --------------------
10373 function First_Last_Ref return Boolean is
10374 Lorig : constant Node_Id := Original_Node (L);
10375 Horig : constant Node_Id := Original_Node (H);
10377 begin
10378 if Nkind (Lorig) = N_Attribute_Reference
10379 and then Nkind (Horig) = N_Attribute_Reference
10380 and then Attribute_Name (Lorig) = Name_First
10381 and then Attribute_Name (Horig) = Name_Last
10382 then
10383 declare
10384 PL : constant Node_Id := Prefix (Lorig);
10385 PH : constant Node_Id := Prefix (Horig);
10386 begin
10387 if Is_Entity_Name (PL)
10388 and then Is_Entity_Name (PH)
10389 and then Entity (PL) = Entity (PH)
10390 then
10391 return True;
10392 end if;
10393 end;
10394 end if;
10396 return False;
10397 end First_Last_Ref;
10399 -- Start of processing for Resolve_Range
10401 begin
10402 Set_Etype (N, Typ);
10404 Resolve (L, Typ);
10405 Resolve (H, Typ);
10407 -- Reanalyze the lower bound after both bounds have been analyzed, so
10408 -- that the range is known to be static or not by now. This may trigger
10409 -- more compile-time evaluation, which is useful for static analysis
10410 -- with GNATprove. This is not needed for compilation or static analysis
10411 -- with CodePeer, as full expansion does that evaluation then.
10413 if GNATprove_Mode then
10414 Set_Analyzed (L, False);
10415 Resolve (L, Typ);
10416 end if;
10418 -- Check for inappropriate range on unordered enumeration type
10420 if Bad_Unordered_Enumeration_Reference (N, Typ)
10422 -- Exclude X'First .. X'Last if X is the same entity for both
10424 and then not First_Last_Ref
10425 then
10426 Error_Msg_Sloc := Sloc (Typ);
10427 Error_Msg_NE
10428 ("subrange of unordered enumeration type& declared#?U?", N, Typ);
10429 end if;
10431 Check_Unset_Reference (L);
10432 Check_Unset_Reference (H);
10434 -- We have to check the bounds for being within the base range as
10435 -- required for a non-static context. Normally this is automatic and
10436 -- done as part of evaluating expressions, but the N_Range node is an
10437 -- exception, since in GNAT we consider this node to be a subexpression,
10438 -- even though in Ada it is not. The circuit in Sem_Eval could check for
10439 -- this, but that would put the test on the main evaluation path for
10440 -- expressions.
10442 Check_Non_Static_Context (L);
10443 Check_Non_Static_Context (H);
10445 -- Check for an ambiguous range over character literals. This will
10446 -- happen with a membership test involving only literals.
10448 if Typ = Any_Character then
10449 Ambiguous_Character (L);
10450 Set_Etype (N, Any_Type);
10451 return;
10452 end if;
10454 -- If bounds are static, constant-fold them, so size computations are
10455 -- identical between front-end and back-end. Do not perform this
10456 -- transformation while analyzing generic units, as type information
10457 -- would be lost when reanalyzing the constant node in the instance.
10459 if Is_Discrete_Type (Typ) and then Expander_Active then
10460 if Is_OK_Static_Expression (L) then
10461 Fold_Uint (L, Expr_Value (L), Is_OK_Static_Expression (L));
10462 end if;
10464 if Is_OK_Static_Expression (H) then
10465 Fold_Uint (H, Expr_Value (H), Is_OK_Static_Expression (H));
10466 end if;
10467 end if;
10468 end Resolve_Range;
10470 --------------------------
10471 -- Resolve_Real_Literal --
10472 --------------------------
10474 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
10475 Actual_Typ : constant Entity_Id := Etype (N);
10477 begin
10478 -- Special processing for fixed-point literals to make sure that the
10479 -- value is an exact multiple of small where this is required. We skip
10480 -- this for the universal real case, and also for generic types.
10482 if Is_Fixed_Point_Type (Typ)
10483 and then Typ /= Universal_Fixed
10484 and then Typ /= Any_Fixed
10485 and then not Is_Generic_Type (Typ)
10486 then
10487 declare
10488 Val : constant Ureal := Realval (N);
10489 Cintr : constant Ureal := Val / Small_Value (Typ);
10490 Cint : constant Uint := UR_Trunc (Cintr);
10491 Den : constant Uint := Norm_Den (Cintr);
10492 Stat : Boolean;
10494 begin
10495 -- Case of literal is not an exact multiple of the Small
10497 if Den /= 1 then
10499 -- For a source program literal for a decimal fixed-point type,
10500 -- this is statically illegal (RM 4.9(36)).
10502 if Is_Decimal_Fixed_Point_Type (Typ)
10503 and then Actual_Typ = Universal_Real
10504 and then Comes_From_Source (N)
10505 then
10506 Error_Msg_N ("value has extraneous low order digits", N);
10507 end if;
10509 -- Generate a warning if literal from source
10511 if Is_OK_Static_Expression (N)
10512 and then Warn_On_Bad_Fixed_Value
10513 then
10514 Error_Msg_N
10515 ("?b?static fixed-point value is not a multiple of Small!",
10517 end if;
10519 -- Replace literal by a value that is the exact representation
10520 -- of a value of the type, i.e. a multiple of the small value,
10521 -- by truncation, since Machine_Rounds is false for all GNAT
10522 -- fixed-point types (RM 4.9(38)).
10524 Stat := Is_OK_Static_Expression (N);
10525 Rewrite (N,
10526 Make_Real_Literal (Sloc (N),
10527 Realval => Small_Value (Typ) * Cint));
10529 Set_Is_Static_Expression (N, Stat);
10530 end if;
10532 -- In all cases, set the corresponding integer field
10534 Set_Corresponding_Integer_Value (N, Cint);
10535 end;
10536 end if;
10538 -- Now replace the actual type by the expected type as usual
10540 Set_Etype (N, Typ);
10541 Eval_Real_Literal (N);
10542 end Resolve_Real_Literal;
10544 -----------------------
10545 -- Resolve_Reference --
10546 -----------------------
10548 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
10549 P : constant Node_Id := Prefix (N);
10551 begin
10552 -- Replace general access with specific type
10554 if Ekind (Etype (N)) = E_Allocator_Type then
10555 Set_Etype (N, Base_Type (Typ));
10556 end if;
10558 Resolve (P, Designated_Type (Etype (N)));
10560 -- If we are taking the reference of a volatile entity, then treat it as
10561 -- a potential modification of this entity. This is too conservative,
10562 -- but necessary because remove side effects can cause transformations
10563 -- of normal assignments into reference sequences that otherwise fail to
10564 -- notice the modification.
10566 if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
10567 Note_Possible_Modification (P, Sure => False);
10568 end if;
10569 end Resolve_Reference;
10571 --------------------------------
10572 -- Resolve_Selected_Component --
10573 --------------------------------
10575 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
10576 Comp : Entity_Id;
10577 Comp1 : Entity_Id := Empty; -- prevent junk warning
10578 P : constant Node_Id := Prefix (N);
10579 S : constant Node_Id := Selector_Name (N);
10580 T : Entity_Id := Etype (P);
10581 I : Interp_Index;
10582 I1 : Interp_Index := 0; -- prevent junk warning
10583 It : Interp;
10584 It1 : Interp;
10585 Found : Boolean;
10587 function Init_Component return Boolean;
10588 -- Check whether this is the initialization of a component within an
10589 -- init proc (by assignment or call to another init proc). If true,
10590 -- there is no need for a discriminant check.
10592 --------------------
10593 -- Init_Component --
10594 --------------------
10596 function Init_Component return Boolean is
10597 begin
10598 return Inside_Init_Proc
10599 and then Nkind (Prefix (N)) = N_Identifier
10600 and then Chars (Prefix (N)) = Name_uInit
10601 and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
10602 end Init_Component;
10604 -- Start of processing for Resolve_Selected_Component
10606 begin
10607 if Is_Overloaded (P) then
10609 -- Use the context type to select the prefix that has a selector
10610 -- of the correct name and type.
10612 Found := False;
10613 Get_First_Interp (P, I, It);
10615 Search : while Present (It.Typ) loop
10616 if Is_Access_Type (It.Typ) then
10617 T := Designated_Type (It.Typ);
10618 else
10619 T := It.Typ;
10620 end if;
10622 -- Locate selected component. For a private prefix the selector
10623 -- can denote a discriminant.
10625 if Is_Record_Type (T) or else Is_Private_Type (T) then
10627 -- The visible components of a class-wide type are those of
10628 -- the root type.
10630 if Is_Class_Wide_Type (T) then
10631 T := Etype (T);
10632 end if;
10634 Comp := First_Entity (T);
10635 while Present (Comp) loop
10636 if Chars (Comp) = Chars (S)
10637 and then Covers (Typ, Etype (Comp))
10638 then
10639 if not Found then
10640 Found := True;
10641 I1 := I;
10642 It1 := It;
10643 Comp1 := Comp;
10645 else
10646 It := Disambiguate (P, I1, I, Any_Type);
10648 if It = No_Interp then
10649 Error_Msg_N
10650 ("ambiguous prefix for selected component", N);
10651 Set_Etype (N, Typ);
10652 return;
10654 else
10655 It1 := It;
10657 -- There may be an implicit dereference. Retrieve
10658 -- designated record type.
10660 if Is_Access_Type (It1.Typ) then
10661 T := Designated_Type (It1.Typ);
10662 else
10663 T := It1.Typ;
10664 end if;
10666 if Scope (Comp1) /= T then
10668 -- Resolution chooses the new interpretation.
10669 -- Find the component with the right name.
10671 Comp1 := First_Entity (T);
10672 while Present (Comp1)
10673 and then Chars (Comp1) /= Chars (S)
10674 loop
10675 Next_Entity (Comp1);
10676 end loop;
10677 end if;
10679 exit Search;
10680 end if;
10681 end if;
10682 end if;
10684 Next_Entity (Comp);
10685 end loop;
10686 end if;
10688 Get_Next_Interp (I, It);
10689 end loop Search;
10691 -- There must be a legal interpretation at this point
10693 pragma Assert (Found);
10694 Resolve (P, It1.Typ);
10696 -- In general the expected type is the type of the context, not the
10697 -- type of the candidate selected component.
10699 Set_Etype (N, Typ);
10700 Set_Entity_With_Checks (S, Comp1);
10702 -- The type of the context and that of the component are
10703 -- compatible and in general identical, but if they are anonymous
10704 -- access-to-subprogram types, the relevant type is that of the
10705 -- component. This matters in Unnest_Subprograms mode, where the
10706 -- relevant context is the one in which the type is declared, not
10707 -- the point of use. This determines what activation record to use.
10709 if Ekind (Typ) = E_Anonymous_Access_Subprogram_Type then
10710 Set_Etype (N, Etype (Comp1));
10712 -- When the type of the component is an access to a class-wide type
10713 -- the relevant type is that of the component (since in such case we
10714 -- may need to generate implicit type conversions or dispatching
10715 -- calls).
10717 elsif Is_Access_Type (Typ)
10718 and then not Is_Class_Wide_Type (Designated_Type (Typ))
10719 and then Is_Class_Wide_Type (Designated_Type (Etype (Comp1)))
10720 then
10721 Set_Etype (N, Etype (Comp1));
10722 end if;
10724 else
10725 -- Resolve prefix with its type
10727 Resolve (P, T);
10728 end if;
10730 -- Generate cross-reference. We needed to wait until full overloading
10731 -- resolution was complete to do this, since otherwise we can't tell if
10732 -- we are an lvalue or not.
10734 if May_Be_Lvalue (N) then
10735 Generate_Reference (Entity (S), S, 'm');
10736 else
10737 Generate_Reference (Entity (S), S, 'r');
10738 end if;
10740 -- If the prefix's type is an access type, get to the real record type.
10741 -- Note: we do not apply an access check because an explicit dereference
10742 -- will be introduced later, and the check will happen there.
10744 if Is_Access_Type (Etype (P)) then
10745 T := Implicitly_Designated_Type (Etype (P));
10746 Check_Fully_Declared_Prefix (T, P);
10748 else
10749 T := Etype (P);
10751 -- If the prefix is an entity it may have a deferred reference set
10752 -- during analysis of the selected component. After resolution we
10753 -- can transform it into a proper reference. This prevents spurious
10754 -- warnings on useless assignments when the same selected component
10755 -- is the actual for an out parameter in a subsequent call.
10757 if Is_Entity_Name (P)
10758 and then Has_Deferred_Reference (Entity (P))
10759 then
10760 if May_Be_Lvalue (N) then
10761 Generate_Reference (Entity (P), P, 'm');
10762 else
10763 Generate_Reference (Entity (P), P, 'r');
10764 end if;
10765 end if;
10766 end if;
10768 -- Set flag for expander if discriminant check required on a component
10769 -- appearing within a variant.
10771 if Has_Discriminants (T)
10772 and then Ekind (Entity (S)) = E_Component
10773 and then Present (Original_Record_Component (Entity (S)))
10774 and then Ekind (Original_Record_Component (Entity (S))) = E_Component
10775 and then
10776 Is_Declared_Within_Variant (Original_Record_Component (Entity (S)))
10777 and then not Discriminant_Checks_Suppressed (T)
10778 and then not Init_Component
10779 then
10780 Set_Do_Discriminant_Check (N);
10781 end if;
10783 if Ekind (Entity (S)) = E_Void then
10784 Error_Msg_N ("premature use of component", S);
10785 end if;
10787 -- If the prefix is a record conversion, this may be a renamed
10788 -- discriminant whose bounds differ from those of the original
10789 -- one, so we must ensure that a range check is performed.
10791 if Nkind (P) = N_Type_Conversion
10792 and then Ekind (Entity (S)) = E_Discriminant
10793 and then Is_Discrete_Type (Typ)
10794 then
10795 Set_Etype (N, Base_Type (Typ));
10796 end if;
10798 -- Note: No Eval processing is required, because the prefix is of a
10799 -- record type, or protected type, and neither can possibly be static.
10801 -- If the record type is atomic and the component is not, then this is
10802 -- worth a warning before Ada 2020, since we have a situation where the
10803 -- access to the component may cause extra read/writes of the atomic
10804 -- object, or partial word accesses, both of which may be unexpected.
10806 if Nkind (N) = N_Selected_Component
10807 and then Is_Atomic_Ref_With_Address (N)
10808 and then not Is_Atomic (Entity (S))
10809 and then not Is_Atomic (Etype (Entity (S)))
10810 and then Ada_Version < Ada_2020
10811 then
10812 Error_Msg_N
10813 ("??access to non-atomic component of atomic record",
10814 Prefix (N));
10815 Error_Msg_N
10816 ("\??may cause unexpected accesses to atomic object",
10817 Prefix (N));
10818 end if;
10820 Resolve_Implicit_Dereference (Prefix (N));
10821 Analyze_Dimension (N);
10822 end Resolve_Selected_Component;
10824 -------------------
10825 -- Resolve_Shift --
10826 -------------------
10828 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
10829 B_Typ : constant Entity_Id := Base_Type (Typ);
10830 L : constant Node_Id := Left_Opnd (N);
10831 R : constant Node_Id := Right_Opnd (N);
10833 begin
10834 -- We do the resolution using the base type, because intermediate values
10835 -- in expressions always are of the base type, not a subtype of it.
10837 Resolve (L, B_Typ);
10838 Resolve (R, Standard_Natural);
10840 Check_Unset_Reference (L);
10841 Check_Unset_Reference (R);
10843 Set_Etype (N, B_Typ);
10844 Generate_Operator_Reference (N, B_Typ);
10845 Eval_Shift (N);
10846 end Resolve_Shift;
10848 ---------------------------
10849 -- Resolve_Short_Circuit --
10850 ---------------------------
10852 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
10853 B_Typ : constant Entity_Id := Base_Type (Typ);
10854 L : constant Node_Id := Left_Opnd (N);
10855 R : constant Node_Id := Right_Opnd (N);
10857 begin
10858 -- Ensure all actions associated with the left operand (e.g.
10859 -- finalization of transient objects) are fully evaluated locally within
10860 -- an expression with actions. This is particularly helpful for coverage
10861 -- analysis. However this should not happen in generics or if option
10862 -- Minimize_Expression_With_Actions is set.
10864 if Expander_Active and not Minimize_Expression_With_Actions then
10865 declare
10866 Reloc_L : constant Node_Id := Relocate_Node (L);
10867 begin
10868 Save_Interps (Old_N => L, New_N => Reloc_L);
10870 Rewrite (L,
10871 Make_Expression_With_Actions (Sloc (L),
10872 Actions => New_List,
10873 Expression => Reloc_L));
10875 -- Set Comes_From_Source on L to preserve warnings for unset
10876 -- reference.
10878 Preserve_Comes_From_Source (L, Reloc_L);
10879 end;
10880 end if;
10882 Resolve (L, B_Typ);
10883 Resolve (R, B_Typ);
10885 -- Check for issuing warning for always False assert/check, this happens
10886 -- when assertions are turned off, in which case the pragma Assert/Check
10887 -- was transformed into:
10889 -- if False and then <condition> then ...
10891 -- and we detect this pattern
10893 if Warn_On_Assertion_Failure
10894 and then Is_Entity_Name (R)
10895 and then Entity (R) = Standard_False
10896 and then Nkind (Parent (N)) = N_If_Statement
10897 and then Nkind (N) = N_And_Then
10898 and then Is_Entity_Name (L)
10899 and then Entity (L) = Standard_False
10900 then
10901 declare
10902 Orig : constant Node_Id := Original_Node (Parent (N));
10904 begin
10905 -- Special handling of Asssert pragma
10907 if Nkind (Orig) = N_Pragma
10908 and then Pragma_Name (Orig) = Name_Assert
10909 then
10910 declare
10911 Expr : constant Node_Id :=
10912 Original_Node
10913 (Expression
10914 (First (Pragma_Argument_Associations (Orig))));
10916 begin
10917 -- Don't warn if original condition is explicit False,
10918 -- since obviously the failure is expected in this case.
10920 if Is_Entity_Name (Expr)
10921 and then Entity (Expr) = Standard_False
10922 then
10923 null;
10925 -- Issue warning. We do not want the deletion of the
10926 -- IF/AND-THEN to take this message with it. We achieve this
10927 -- by making sure that the expanded code points to the Sloc
10928 -- of the expression, not the original pragma.
10930 else
10931 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
10932 -- The source location of the expression is not usually
10933 -- the best choice here. For example, it gets located on
10934 -- the last AND keyword in a chain of boolean expressiond
10935 -- AND'ed together. It is best to put the message on the
10936 -- first character of the assertion, which is the effect
10937 -- of the First_Node call here.
10939 Error_Msg_F
10940 ("?A?assertion would fail at run time!",
10941 Expression
10942 (First (Pragma_Argument_Associations (Orig))));
10943 end if;
10944 end;
10946 -- Similar processing for Check pragma
10948 elsif Nkind (Orig) = N_Pragma
10949 and then Pragma_Name (Orig) = Name_Check
10950 then
10951 -- Don't want to warn if original condition is explicit False
10953 declare
10954 Expr : constant Node_Id :=
10955 Original_Node
10956 (Expression
10957 (Next (First (Pragma_Argument_Associations (Orig)))));
10958 begin
10959 if Is_Entity_Name (Expr)
10960 and then Entity (Expr) = Standard_False
10961 then
10962 null;
10964 -- Post warning
10966 else
10967 -- Again use Error_Msg_F rather than Error_Msg_N, see
10968 -- comment above for an explanation of why we do this.
10970 Error_Msg_F
10971 ("?A?check would fail at run time!",
10972 Expression
10973 (Last (Pragma_Argument_Associations (Orig))));
10974 end if;
10975 end;
10976 end if;
10977 end;
10978 end if;
10980 -- Continue with processing of short circuit
10982 Check_Unset_Reference (L);
10983 Check_Unset_Reference (R);
10985 Set_Etype (N, B_Typ);
10986 Eval_Short_Circuit (N);
10987 end Resolve_Short_Circuit;
10989 -------------------
10990 -- Resolve_Slice --
10991 -------------------
10993 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
10994 Drange : constant Node_Id := Discrete_Range (N);
10995 Name : constant Node_Id := Prefix (N);
10996 Array_Type : Entity_Id := Empty;
10997 Dexpr : Node_Id := Empty;
10998 Index_Type : Entity_Id;
11000 begin
11001 if Is_Overloaded (Name) then
11003 -- Use the context type to select the prefix that yields the correct
11004 -- array type.
11006 declare
11007 I : Interp_Index;
11008 I1 : Interp_Index := 0;
11009 It : Interp;
11010 P : constant Node_Id := Prefix (N);
11011 Found : Boolean := False;
11013 begin
11014 Get_First_Interp (P, I, It);
11015 while Present (It.Typ) loop
11016 if (Is_Array_Type (It.Typ)
11017 and then Covers (Typ, It.Typ))
11018 or else (Is_Access_Type (It.Typ)
11019 and then Is_Array_Type (Designated_Type (It.Typ))
11020 and then Covers (Typ, Designated_Type (It.Typ)))
11021 then
11022 if Found then
11023 It := Disambiguate (P, I1, I, Any_Type);
11025 if It = No_Interp then
11026 Error_Msg_N ("ambiguous prefix for slicing", N);
11027 Set_Etype (N, Typ);
11028 return;
11029 else
11030 Found := True;
11031 Array_Type := It.Typ;
11032 I1 := I;
11033 end if;
11034 else
11035 Found := True;
11036 Array_Type := It.Typ;
11037 I1 := I;
11038 end if;
11039 end if;
11041 Get_Next_Interp (I, It);
11042 end loop;
11043 end;
11045 else
11046 Array_Type := Etype (Name);
11047 end if;
11049 Resolve (Name, Array_Type);
11051 -- If the prefix's type is an access type, get to the real array type.
11052 -- Note: we do not apply an access check because an explicit dereference
11053 -- will be introduced later, and the check will happen there.
11055 if Is_Access_Type (Array_Type) then
11056 Array_Type := Implicitly_Designated_Type (Array_Type);
11058 -- If the prefix is an access to an unconstrained array, we must use
11059 -- the actual subtype of the object to perform the index checks. The
11060 -- object denoted by the prefix is implicit in the node, so we build
11061 -- an explicit representation for it in order to compute the actual
11062 -- subtype.
11064 if not Is_Constrained (Array_Type) then
11065 Remove_Side_Effects (Prefix (N));
11067 declare
11068 Obj : constant Node_Id :=
11069 Make_Explicit_Dereference (Sloc (N),
11070 Prefix => New_Copy_Tree (Prefix (N)));
11071 begin
11072 Set_Etype (Obj, Array_Type);
11073 Set_Parent (Obj, Parent (N));
11074 Array_Type := Get_Actual_Subtype (Obj);
11075 end;
11076 end if;
11078 elsif Is_Entity_Name (Name)
11079 or else Nkind (Name) = N_Explicit_Dereference
11080 or else (Nkind (Name) = N_Function_Call
11081 and then not Is_Constrained (Etype (Name)))
11082 then
11083 Array_Type := Get_Actual_Subtype (Name);
11085 -- If the name is a selected component that depends on discriminants,
11086 -- build an actual subtype for it. This can happen only when the name
11087 -- itself is overloaded; otherwise the actual subtype is created when
11088 -- the selected component is analyzed.
11090 elsif Nkind (Name) = N_Selected_Component
11091 and then Full_Analysis
11092 and then Depends_On_Discriminant (First_Index (Array_Type))
11093 then
11094 declare
11095 Act_Decl : constant Node_Id :=
11096 Build_Actual_Subtype_Of_Component (Array_Type, Name);
11097 begin
11098 Insert_Action (N, Act_Decl);
11099 Array_Type := Defining_Identifier (Act_Decl);
11100 end;
11102 -- Maybe this should just be "else", instead of checking for the
11103 -- specific case of slice??? This is needed for the case where the
11104 -- prefix is an Image attribute, which gets expanded to a slice, and so
11105 -- has a constrained subtype which we want to use for the slice range
11106 -- check applied below (the range check won't get done if the
11107 -- unconstrained subtype of the 'Image is used).
11109 elsif Nkind (Name) = N_Slice then
11110 Array_Type := Etype (Name);
11111 end if;
11113 -- Obtain the type of the array index
11115 if Ekind (Array_Type) = E_String_Literal_Subtype then
11116 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
11117 else
11118 Index_Type := Etype (First_Index (Array_Type));
11119 end if;
11121 -- If name was overloaded, set slice type correctly now
11123 Set_Etype (N, Array_Type);
11125 -- Handle the generation of a range check that compares the array index
11126 -- against the discrete_range. The check is not applied to internally
11127 -- built nodes associated with the expansion of dispatch tables. Check
11128 -- that Ada.Tags has already been loaded to avoid extra dependencies on
11129 -- the unit.
11131 if Tagged_Type_Expansion
11132 and then RTU_Loaded (Ada_Tags)
11133 and then Nkind (Prefix (N)) = N_Selected_Component
11134 and then Present (Entity (Selector_Name (Prefix (N))))
11135 and then Entity (Selector_Name (Prefix (N))) =
11136 RTE_Record_Component (RE_Prims_Ptr)
11137 then
11138 null;
11140 -- The discrete_range is specified by a subtype indication. Create a
11141 -- shallow copy and inherit the type, parent and source location from
11142 -- the discrete_range. This ensures that the range check is inserted
11143 -- relative to the slice and that the runtime exception points to the
11144 -- proper construct.
11146 elsif Is_Entity_Name (Drange) then
11147 Dexpr := New_Copy (Scalar_Range (Entity (Drange)));
11149 Set_Etype (Dexpr, Etype (Drange));
11150 Set_Parent (Dexpr, Parent (Drange));
11151 Set_Sloc (Dexpr, Sloc (Drange));
11153 -- The discrete_range is a regular range. Resolve the bounds and remove
11154 -- their side effects.
11156 else
11157 Resolve (Drange, Base_Type (Index_Type));
11159 if Nkind (Drange) = N_Range then
11160 Force_Evaluation (Low_Bound (Drange));
11161 Force_Evaluation (High_Bound (Drange));
11163 Dexpr := Drange;
11164 end if;
11165 end if;
11167 if Present (Dexpr) then
11168 Apply_Range_Check (Dexpr, Index_Type);
11169 end if;
11171 Set_Slice_Subtype (N);
11173 -- Check bad use of type with predicates
11175 declare
11176 Subt : Entity_Id;
11178 begin
11179 if Nkind (Drange) = N_Subtype_Indication
11180 and then Has_Predicates (Entity (Subtype_Mark (Drange)))
11181 then
11182 Subt := Entity (Subtype_Mark (Drange));
11183 else
11184 Subt := Etype (Drange);
11185 end if;
11187 if Has_Predicates (Subt) then
11188 Bad_Predicated_Subtype_Use
11189 ("subtype& has predicate, not allowed in slice", Drange, Subt);
11190 end if;
11191 end;
11193 -- Otherwise here is where we check suspicious indexes
11195 if Nkind (Drange) = N_Range then
11196 Warn_On_Suspicious_Index (Name, Low_Bound (Drange));
11197 Warn_On_Suspicious_Index (Name, High_Bound (Drange));
11198 end if;
11200 Resolve_Implicit_Dereference (Prefix (N));
11201 Analyze_Dimension (N);
11202 Eval_Slice (N);
11203 end Resolve_Slice;
11205 ----------------------------
11206 -- Resolve_String_Literal --
11207 ----------------------------
11209 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
11210 C_Typ : constant Entity_Id := Component_Type (Typ);
11211 R_Typ : constant Entity_Id := Root_Type (C_Typ);
11212 Loc : constant Source_Ptr := Sloc (N);
11213 Str : constant String_Id := Strval (N);
11214 Strlen : constant Nat := String_Length (Str);
11215 Subtype_Id : Entity_Id;
11216 Need_Check : Boolean;
11218 begin
11219 -- For a string appearing in a concatenation, defer creation of the
11220 -- string_literal_subtype until the end of the resolution of the
11221 -- concatenation, because the literal may be constant-folded away. This
11222 -- is a useful optimization for long concatenation expressions.
11224 -- If the string is an aggregate built for a single character (which
11225 -- happens in a non-static context) or a is null string to which special
11226 -- checks may apply, we build the subtype. Wide strings must also get a
11227 -- string subtype if they come from a one character aggregate. Strings
11228 -- generated by attributes might be static, but it is often hard to
11229 -- determine whether the enclosing context is static, so we generate
11230 -- subtypes for them as well, thus losing some rarer optimizations ???
11231 -- Same for strings that come from a static conversion.
11233 Need_Check :=
11234 (Strlen = 0 and then Typ /= Standard_String)
11235 or else Nkind (Parent (N)) /= N_Op_Concat
11236 or else (N /= Left_Opnd (Parent (N))
11237 and then N /= Right_Opnd (Parent (N)))
11238 or else ((Typ = Standard_Wide_String
11239 or else Typ = Standard_Wide_Wide_String)
11240 and then Nkind (Original_Node (N)) /= N_String_Literal);
11242 -- If the resolving type is itself a string literal subtype, we can just
11243 -- reuse it, since there is no point in creating another.
11245 if Ekind (Typ) = E_String_Literal_Subtype then
11246 Subtype_Id := Typ;
11248 elsif Nkind (Parent (N)) = N_Op_Concat
11249 and then not Need_Check
11250 and then Nkind (Original_Node (N)) not in N_Character_Literal
11251 | N_Attribute_Reference
11252 | N_Qualified_Expression
11253 | N_Type_Conversion
11254 then
11255 Subtype_Id := Typ;
11257 -- Do not generate a string literal subtype for the default expression
11258 -- of a formal parameter in GNATprove mode. This is because the string
11259 -- subtype is associated with the freezing actions of the subprogram,
11260 -- however freezing is disabled in GNATprove mode and as a result the
11261 -- subtype is unavailable.
11263 elsif GNATprove_Mode
11264 and then Nkind (Parent (N)) = N_Parameter_Specification
11265 then
11266 Subtype_Id := Typ;
11268 -- Otherwise we must create a string literal subtype. Note that the
11269 -- whole idea of string literal subtypes is simply to avoid the need
11270 -- for building a full fledged array subtype for each literal.
11272 else
11273 Set_String_Literal_Subtype (N, Typ);
11274 Subtype_Id := Etype (N);
11275 end if;
11277 if Nkind (Parent (N)) /= N_Op_Concat
11278 or else Need_Check
11279 then
11280 Set_Etype (N, Subtype_Id);
11281 Eval_String_Literal (N);
11282 end if;
11284 if Is_Limited_Composite (Typ)
11285 or else Is_Private_Composite (Typ)
11286 then
11287 Error_Msg_N ("string literal not available for private array", N);
11288 Set_Etype (N, Any_Type);
11289 return;
11290 end if;
11292 -- The validity of a null string has been checked in the call to
11293 -- Eval_String_Literal.
11295 if Strlen = 0 then
11296 return;
11298 -- Always accept string literal with component type Any_Character, which
11299 -- occurs in error situations and in comparisons of literals, both of
11300 -- which should accept all literals.
11302 elsif R_Typ = Any_Character then
11303 return;
11305 -- If the type is bit-packed, then we always transform the string
11306 -- literal into a full fledged aggregate.
11308 elsif Is_Bit_Packed_Array (Typ) then
11309 null;
11311 -- Deal with cases of Wide_Wide_String, Wide_String, and String
11313 else
11314 -- For Standard.Wide_Wide_String, or any other type whose component
11315 -- type is Standard.Wide_Wide_Character, we know that all the
11316 -- characters in the string must be acceptable, since the parser
11317 -- accepted the characters as valid character literals.
11319 if R_Typ = Standard_Wide_Wide_Character then
11320 null;
11322 -- For the case of Standard.String, or any other type whose component
11323 -- type is Standard.Character, we must make sure that there are no
11324 -- wide characters in the string, i.e. that it is entirely composed
11325 -- of characters in range of type Character.
11327 -- If the string literal is the result of a static concatenation, the
11328 -- test has already been performed on the components, and need not be
11329 -- repeated.
11331 elsif R_Typ = Standard_Character
11332 and then Nkind (Original_Node (N)) /= N_Op_Concat
11333 then
11334 for J in 1 .. Strlen loop
11335 if not In_Character_Range (Get_String_Char (Str, J)) then
11337 -- If we are out of range, post error. This is one of the
11338 -- very few places that we place the flag in the middle of
11339 -- a token, right under the offending wide character. Not
11340 -- quite clear if this is right wrt wide character encoding
11341 -- sequences, but it's only an error message.
11343 Error_Msg
11344 ("literal out of range of type Standard.Character",
11345 Source_Ptr (Int (Loc) + J));
11346 return;
11347 end if;
11348 end loop;
11350 -- For the case of Standard.Wide_String, or any other type whose
11351 -- component type is Standard.Wide_Character, we must make sure that
11352 -- there are no wide characters in the string, i.e. that it is
11353 -- entirely composed of characters in range of type Wide_Character.
11355 -- If the string literal is the result of a static concatenation,
11356 -- the test has already been performed on the components, and need
11357 -- not be repeated.
11359 elsif R_Typ = Standard_Wide_Character
11360 and then Nkind (Original_Node (N)) /= N_Op_Concat
11361 then
11362 for J in 1 .. Strlen loop
11363 if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
11365 -- If we are out of range, post error. This is one of the
11366 -- very few places that we place the flag in the middle of
11367 -- a token, right under the offending wide character.
11369 -- This is not quite right, because characters in general
11370 -- will take more than one character position ???
11372 Error_Msg
11373 ("literal out of range of type Standard.Wide_Character",
11374 Source_Ptr (Int (Loc) + J));
11375 return;
11376 end if;
11377 end loop;
11379 -- If the root type is not a standard character, then we will convert
11380 -- the string into an aggregate and will let the aggregate code do
11381 -- the checking. Standard Wide_Wide_Character is also OK here.
11383 else
11384 null;
11385 end if;
11387 -- See if the component type of the array corresponding to the string
11388 -- has compile time known bounds. If yes we can directly check
11389 -- whether the evaluation of the string will raise constraint error.
11390 -- Otherwise we need to transform the string literal into the
11391 -- corresponding character aggregate and let the aggregate code do
11392 -- the checking. We use the same transformation if the component
11393 -- type has a static predicate, which will be applied to each
11394 -- character when the aggregate is resolved.
11396 if Is_Standard_Character_Type (R_Typ) then
11398 -- Check for the case of full range, where we are definitely OK
11400 if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
11401 return;
11402 end if;
11404 -- Here the range is not the complete base type range, so check
11406 declare
11407 Comp_Typ_Lo : constant Node_Id :=
11408 Type_Low_Bound (Component_Type (Typ));
11409 Comp_Typ_Hi : constant Node_Id :=
11410 Type_High_Bound (Component_Type (Typ));
11412 Char_Val : Uint;
11414 begin
11415 if Compile_Time_Known_Value (Comp_Typ_Lo)
11416 and then Compile_Time_Known_Value (Comp_Typ_Hi)
11417 then
11418 for J in 1 .. Strlen loop
11419 Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
11421 if Char_Val < Expr_Value (Comp_Typ_Lo)
11422 or else Char_Val > Expr_Value (Comp_Typ_Hi)
11423 then
11424 Apply_Compile_Time_Constraint_Error
11425 (N, "character out of range??",
11426 CE_Range_Check_Failed,
11427 Loc => Source_Ptr (Int (Loc) + J));
11428 end if;
11429 end loop;
11431 if not Has_Static_Predicate (C_Typ) then
11432 return;
11433 end if;
11434 end if;
11435 end;
11436 end if;
11437 end if;
11439 -- If we got here we meed to transform the string literal into the
11440 -- equivalent qualified positional array aggregate. This is rather
11441 -- heavy artillery for this situation, but it is hard work to avoid.
11443 declare
11444 Lits : constant List_Id := New_List;
11445 P : Source_Ptr := Loc + 1;
11446 C : Char_Code;
11448 begin
11449 -- Build the character literals, we give them source locations that
11450 -- correspond to the string positions, which is a bit tricky given
11451 -- the possible presence of wide character escape sequences.
11453 for J in 1 .. Strlen loop
11454 C := Get_String_Char (Str, J);
11455 Set_Character_Literal_Name (C);
11457 Append_To (Lits,
11458 Make_Character_Literal (P,
11459 Chars => Name_Find,
11460 Char_Literal_Value => UI_From_CC (C)));
11462 if In_Character_Range (C) then
11463 P := P + 1;
11465 -- Should we have a call to Skip_Wide here ???
11467 -- ??? else
11468 -- Skip_Wide (P);
11470 end if;
11471 end loop;
11473 Rewrite (N,
11474 Make_Qualified_Expression (Loc,
11475 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
11476 Expression =>
11477 Make_Aggregate (Loc, Expressions => Lits)));
11479 Analyze_And_Resolve (N, Typ);
11480 end;
11481 end Resolve_String_Literal;
11483 -------------------------
11484 -- Resolve_Target_Name --
11485 -------------------------
11487 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id) is
11488 begin
11489 Set_Etype (N, Typ);
11490 end Resolve_Target_Name;
11492 -----------------------------
11493 -- Resolve_Type_Conversion --
11494 -----------------------------
11496 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
11497 Conv_OK : constant Boolean := Conversion_OK (N);
11498 Operand : constant Node_Id := Expression (N);
11499 Operand_Typ : constant Entity_Id := Etype (Operand);
11500 Target_Typ : constant Entity_Id := Etype (N);
11501 Rop : Node_Id;
11502 Orig_N : Node_Id;
11503 Orig_T : Node_Id;
11505 Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
11506 -- Set to False to suppress cases where we want to suppress the test
11507 -- for redundancy to avoid possible false positives on this warning.
11509 begin
11510 if not Conv_OK
11511 and then not Valid_Conversion (N, Target_Typ, Operand)
11512 then
11513 return;
11514 end if;
11516 -- If the Operand Etype is Universal_Fixed, then the conversion is
11517 -- never redundant. We need this check because by the time we have
11518 -- finished the rather complex transformation, the conversion looks
11519 -- redundant when it is not.
11521 if Operand_Typ = Universal_Fixed then
11522 Test_Redundant := False;
11524 -- If the operand is marked as Any_Fixed, then special processing is
11525 -- required. This is also a case where we suppress the test for a
11526 -- redundant conversion, since most certainly it is not redundant.
11528 elsif Operand_Typ = Any_Fixed then
11529 Test_Redundant := False;
11531 -- Mixed-mode operation involving a literal. Context must be a fixed
11532 -- type which is applied to the literal subsequently.
11534 -- Multiplication and division involving two fixed type operands must
11535 -- yield a universal real because the result is computed in arbitrary
11536 -- precision.
11538 if Is_Fixed_Point_Type (Typ)
11539 and then Nkind (Operand) in N_Op_Divide | N_Op_Multiply
11540 and then Etype (Left_Opnd (Operand)) = Any_Fixed
11541 and then Etype (Right_Opnd (Operand)) = Any_Fixed
11542 then
11543 Set_Etype (Operand, Universal_Real);
11545 elsif Is_Numeric_Type (Typ)
11546 and then Nkind (Operand) in N_Op_Multiply | N_Op_Divide
11547 and then (Etype (Right_Opnd (Operand)) = Universal_Real
11548 or else
11549 Etype (Left_Opnd (Operand)) = Universal_Real)
11550 then
11551 -- Return if expression is ambiguous
11553 if Unique_Fixed_Point_Type (N) = Any_Type then
11554 return;
11556 -- If nothing else, the available fixed type is Duration
11558 else
11559 Set_Etype (Operand, Standard_Duration);
11560 end if;
11562 -- Resolve the real operand with largest available precision
11564 if Etype (Right_Opnd (Operand)) = Universal_Real then
11565 Rop := New_Copy_Tree (Right_Opnd (Operand));
11566 else
11567 Rop := New_Copy_Tree (Left_Opnd (Operand));
11568 end if;
11570 Resolve (Rop, Universal_Real);
11572 -- If the operand is a literal (it could be a non-static and
11573 -- illegal exponentiation) check whether the use of Duration
11574 -- is potentially inaccurate.
11576 if Nkind (Rop) = N_Real_Literal
11577 and then Realval (Rop) /= Ureal_0
11578 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
11579 then
11580 Error_Msg_N
11581 ("??universal real operand can only "
11582 & "be interpreted as Duration!", Rop);
11583 Error_Msg_N
11584 ("\??precision will be lost in the conversion!", Rop);
11585 end if;
11587 elsif Is_Numeric_Type (Typ)
11588 and then Nkind (Operand) in N_Op
11589 and then Unique_Fixed_Point_Type (N) /= Any_Type
11590 then
11591 Set_Etype (Operand, Standard_Duration);
11593 else
11594 Error_Msg_N ("invalid context for mixed mode operation", N);
11595 Set_Etype (Operand, Any_Type);
11596 return;
11597 end if;
11598 end if;
11600 Resolve (Operand);
11602 Analyze_Dimension (N);
11604 -- Note: we do the Eval_Type_Conversion call before applying the
11605 -- required checks for a subtype conversion. This is important, since
11606 -- both are prepared under certain circumstances to change the type
11607 -- conversion to a constraint error node, but in the case of
11608 -- Eval_Type_Conversion this may reflect an illegality in the static
11609 -- case, and we would miss the illegality (getting only a warning
11610 -- message), if we applied the type conversion checks first.
11612 Eval_Type_Conversion (N);
11614 -- Even when evaluation is not possible, we may be able to simplify the
11615 -- conversion or its expression. This needs to be done before applying
11616 -- checks, since otherwise the checks may use the original expression
11617 -- and defeat the simplifications. This is specifically the case for
11618 -- elimination of the floating-point Truncation attribute in
11619 -- float-to-int conversions.
11621 Simplify_Type_Conversion (N);
11623 -- If after evaluation we still have a type conversion, then we may need
11624 -- to apply checks required for a subtype conversion.
11626 -- Skip these type conversion checks if universal fixed operands
11627 -- are involved, since range checks are handled separately for
11628 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
11630 if Nkind (N) = N_Type_Conversion
11631 and then not Is_Generic_Type (Root_Type (Target_Typ))
11632 and then Target_Typ /= Universal_Fixed
11633 and then Operand_Typ /= Universal_Fixed
11634 then
11635 Apply_Type_Conversion_Checks (N);
11636 end if;
11638 -- Issue warning for conversion of simple object to its own type. We
11639 -- have to test the original nodes, since they may have been rewritten
11640 -- by various optimizations.
11642 Orig_N := Original_Node (N);
11644 -- Here we test for a redundant conversion if the warning mode is
11645 -- active (and was not locally reset), and we have a type conversion
11646 -- from source not appearing in a generic instance.
11648 if Test_Redundant
11649 and then Nkind (Orig_N) = N_Type_Conversion
11650 and then Comes_From_Source (Orig_N)
11651 and then not In_Instance
11652 then
11653 Orig_N := Original_Node (Expression (Orig_N));
11654 Orig_T := Target_Typ;
11656 -- If the node is part of a larger expression, the Target_Type
11657 -- may not be the original type of the node if the context is a
11658 -- condition. Recover original type to see if conversion is needed.
11660 if Is_Boolean_Type (Orig_T)
11661 and then Nkind (Parent (N)) in N_Op
11662 then
11663 Orig_T := Etype (Parent (N));
11664 end if;
11666 -- If we have an entity name, then give the warning if the entity
11667 -- is the right type, or if it is a loop parameter covered by the
11668 -- original type (that's needed because loop parameters have an
11669 -- odd subtype coming from the bounds).
11671 if (Is_Entity_Name (Orig_N)
11672 and then Present (Entity (Orig_N))
11673 and then
11674 (Etype (Entity (Orig_N)) = Orig_T
11675 or else
11676 (Ekind (Entity (Orig_N)) = E_Loop_Parameter
11677 and then Covers (Orig_T, Etype (Entity (Orig_N))))))
11679 -- If not an entity, then type of expression must match
11681 or else Etype (Orig_N) = Orig_T
11682 then
11683 -- One more check, do not give warning if the analyzed conversion
11684 -- has an expression with non-static bounds, and the bounds of the
11685 -- target are static. This avoids junk warnings in cases where the
11686 -- conversion is necessary to establish staticness, for example in
11687 -- a case statement.
11689 if not Is_OK_Static_Subtype (Operand_Typ)
11690 and then Is_OK_Static_Subtype (Target_Typ)
11691 then
11692 null;
11694 -- Finally, if this type conversion occurs in a context requiring
11695 -- a prefix, and the expression is a qualified expression then the
11696 -- type conversion is not redundant, since a qualified expression
11697 -- is not a prefix, whereas a type conversion is. For example, "X
11698 -- := T'(Funx(...)).Y;" is illegal because a selected component
11699 -- requires a prefix, but a type conversion makes it legal: "X :=
11700 -- T(T'(Funx(...))).Y;"
11702 -- In Ada 2012, a qualified expression is a name, so this idiom is
11703 -- no longer needed, but we still suppress the warning because it
11704 -- seems unfriendly for warnings to pop up when you switch to the
11705 -- newer language version.
11707 elsif Nkind (Orig_N) = N_Qualified_Expression
11708 and then Nkind (Parent (N)) in N_Attribute_Reference
11709 | N_Indexed_Component
11710 | N_Selected_Component
11711 | N_Slice
11712 | N_Explicit_Dereference
11713 then
11714 null;
11716 -- Never warn on conversion to Long_Long_Integer'Base since
11717 -- that is most likely an artifact of the extended overflow
11718 -- checking and comes from complex expanded code.
11720 elsif Orig_T = Base_Type (Standard_Long_Long_Integer) then
11721 null;
11723 -- Here we give the redundant conversion warning. If it is an
11724 -- entity, give the name of the entity in the message. If not,
11725 -- just mention the expression.
11727 else
11728 if Is_Entity_Name (Orig_N) then
11729 Error_Msg_Node_2 := Orig_T;
11730 Error_Msg_NE -- CODEFIX
11731 ("?r?redundant conversion, & is of type &!",
11732 N, Entity (Orig_N));
11733 else
11734 Error_Msg_NE
11735 ("?r?redundant conversion, expression is of type&!",
11736 N, Orig_T);
11737 end if;
11738 end if;
11739 end if;
11740 end if;
11742 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
11743 -- No need to perform any interface conversion if the type of the
11744 -- expression coincides with the target type.
11746 if Ada_Version >= Ada_2005
11747 and then Expander_Active
11748 and then Operand_Typ /= Target_Typ
11749 then
11750 declare
11751 Opnd : Entity_Id := Operand_Typ;
11752 Target : Entity_Id := Target_Typ;
11754 begin
11755 -- If the type of the operand is a limited view, use nonlimited
11756 -- view when available. If it is a class-wide type, recover the
11757 -- class-wide type of the nonlimited view.
11759 if From_Limited_With (Opnd)
11760 and then Has_Non_Limited_View (Opnd)
11761 then
11762 Opnd := Non_Limited_View (Opnd);
11763 Set_Etype (Expression (N), Opnd);
11764 end if;
11766 -- It seems that Non_Limited_View should also be applied for
11767 -- Target when it has a limited view, but that leads to missing
11768 -- error checks on interface conversions further below. ???
11770 if Is_Access_Type (Opnd) then
11771 Opnd := Designated_Type (Opnd);
11773 -- If the type of the operand is a limited view, use nonlimited
11774 -- view when available. If it is a class-wide type, recover the
11775 -- class-wide type of the nonlimited view.
11777 if From_Limited_With (Opnd)
11778 and then Has_Non_Limited_View (Opnd)
11779 then
11780 Opnd := Non_Limited_View (Opnd);
11781 end if;
11782 end if;
11784 if Is_Access_Type (Target_Typ) then
11785 Target := Designated_Type (Target);
11787 -- If the target type is a limited view, use nonlimited view
11788 -- when available.
11790 if From_Limited_With (Target)
11791 and then Has_Non_Limited_View (Target)
11792 then
11793 Target := Non_Limited_View (Target);
11794 end if;
11795 end if;
11797 if Opnd = Target then
11798 null;
11800 -- Conversion from interface type
11802 -- It seems that it would be better for the error checks below
11803 -- to be performed as part of Validate_Conversion (and maybe some
11804 -- of the error checks above could be moved as well?). ???
11806 elsif Is_Interface (Opnd) then
11808 -- Ada 2005 (AI-217): Handle entities from limited views
11810 if From_Limited_With (Opnd) then
11811 Error_Msg_Qual_Level := 99;
11812 Error_Msg_NE -- CODEFIX
11813 ("missing WITH clause on package &", N,
11814 Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
11815 Error_Msg_N
11816 ("type conversions require visibility of the full view",
11819 elsif From_Limited_With (Target)
11820 and then not
11821 (Is_Access_Type (Target_Typ)
11822 and then Present (Non_Limited_View (Etype (Target))))
11823 then
11824 Error_Msg_Qual_Level := 99;
11825 Error_Msg_NE -- CODEFIX
11826 ("missing WITH clause on package &", N,
11827 Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
11828 Error_Msg_N
11829 ("type conversions require visibility of the full view",
11832 else
11833 Expand_Interface_Conversion (N);
11834 end if;
11836 -- Conversion to interface type
11838 elsif Is_Interface (Target) then
11840 -- Handle subtypes
11842 if Ekind (Opnd) in E_Protected_Subtype | E_Task_Subtype then
11843 Opnd := Etype (Opnd);
11844 end if;
11846 if Is_Class_Wide_Type (Opnd)
11847 or else Interface_Present_In_Ancestor
11848 (Typ => Opnd,
11849 Iface => Target)
11850 then
11851 Expand_Interface_Conversion (N);
11852 else
11853 Error_Msg_Name_1 := Chars (Etype (Target));
11854 Error_Msg_Name_2 := Chars (Opnd);
11855 Error_Msg_N
11856 ("wrong interface conversion (% is not a progenitor "
11857 & "of %)", N);
11858 end if;
11859 end if;
11860 end;
11861 end if;
11863 -- Ada 2012: Once the type conversion is resolved, check whether the
11864 -- operand statisfies a static predicate of the target subtype, if any.
11865 -- In the static expression case, a predicate check failure is an error.
11867 if Has_Predicates (Target_Typ) then
11868 Check_Expression_Against_Static_Predicate
11869 (N, Target_Typ, Static_Failure_Is_Error => True);
11870 end if;
11872 -- If at this stage we have a fixed point to integer conversion, make
11873 -- sure that the Do_Range_Check flag is set which is not always done
11874 -- by exp_fixd.adb.
11876 if Nkind (N) = N_Type_Conversion
11877 and then Is_Integer_Type (Target_Typ)
11878 and then Is_Fixed_Point_Type (Operand_Typ)
11879 and then not Range_Checks_Suppressed (Target_Typ)
11880 and then not Range_Checks_Suppressed (Operand_Typ)
11881 then
11882 Set_Do_Range_Check (Operand);
11883 end if;
11885 -- Generating C code a type conversion of an access to constrained
11886 -- array type to access to unconstrained array type involves building
11887 -- a fat pointer which in general cannot be generated on the fly. We
11888 -- remove side effects in order to store the result of the conversion
11889 -- into a temporary.
11891 if Modify_Tree_For_C
11892 and then Nkind (N) = N_Type_Conversion
11893 and then Nkind (Parent (N)) /= N_Object_Declaration
11894 and then Is_Access_Type (Etype (N))
11895 and then Is_Array_Type (Designated_Type (Etype (N)))
11896 and then not Is_Constrained (Designated_Type (Etype (N)))
11897 and then Is_Constrained (Designated_Type (Etype (Expression (N))))
11898 then
11899 Remove_Side_Effects (N);
11900 end if;
11901 end Resolve_Type_Conversion;
11903 ----------------------
11904 -- Resolve_Unary_Op --
11905 ----------------------
11907 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
11908 B_Typ : constant Entity_Id := Base_Type (Typ);
11909 R : constant Node_Id := Right_Opnd (N);
11910 OK : Boolean;
11911 Lo : Uint;
11912 Hi : Uint;
11914 begin
11915 -- Deal with intrinsic unary operators
11917 if Comes_From_Source (N)
11918 and then Ekind (Entity (N)) = E_Function
11919 and then Is_Imported (Entity (N))
11920 and then Is_Intrinsic_Subprogram (Entity (N))
11921 then
11922 Resolve_Intrinsic_Unary_Operator (N, Typ);
11923 return;
11924 end if;
11926 -- Deal with universal cases
11928 if Etype (R) = Universal_Integer
11929 or else
11930 Etype (R) = Universal_Real
11931 then
11932 Check_For_Visible_Operator (N, B_Typ);
11933 end if;
11935 Set_Etype (N, B_Typ);
11936 Resolve (R, B_Typ);
11938 -- Generate warning for expressions like abs (x mod 2)
11940 if Warn_On_Redundant_Constructs
11941 and then Nkind (N) = N_Op_Abs
11942 then
11943 Determine_Range (Right_Opnd (N), OK, Lo, Hi);
11945 if OK and then Hi >= Lo and then Lo >= 0 then
11946 Error_Msg_N -- CODEFIX
11947 ("?r?abs applied to known non-negative value has no effect", N);
11948 end if;
11949 end if;
11951 -- Deal with reference generation
11953 Check_Unset_Reference (R);
11954 Generate_Operator_Reference (N, B_Typ);
11955 Analyze_Dimension (N);
11956 Eval_Unary_Op (N);
11958 -- Set overflow checking bit. Much cleverer code needed here eventually
11959 -- and perhaps the Resolve routines should be separated for the various
11960 -- arithmetic operations, since they will need different processing ???
11962 if Nkind (N) in N_Op then
11963 if not Overflow_Checks_Suppressed (Etype (N)) then
11964 Enable_Overflow_Check (N);
11965 end if;
11966 end if;
11968 -- Generate warning for expressions like -5 mod 3 for integers. No need
11969 -- to worry in the floating-point case, since parens do not affect the
11970 -- result so there is no point in giving in a warning.
11972 declare
11973 Norig : constant Node_Id := Original_Node (N);
11974 Rorig : Node_Id;
11975 Val : Uint;
11976 HB : Uint;
11977 LB : Uint;
11978 Lval : Uint;
11979 Opnd : Node_Id;
11981 begin
11982 if Warn_On_Questionable_Missing_Parens
11983 and then Comes_From_Source (Norig)
11984 and then Is_Integer_Type (Typ)
11985 and then Nkind (Norig) = N_Op_Minus
11986 then
11987 Rorig := Original_Node (Right_Opnd (Norig));
11989 -- We are looking for cases where the right operand is not
11990 -- parenthesized, and is a binary operator, multiply, divide, or
11991 -- mod. These are the cases where the grouping can affect results.
11993 if Paren_Count (Rorig) = 0
11994 and then Nkind (Rorig) in N_Op_Mod | N_Op_Multiply | N_Op_Divide
11995 then
11996 -- For mod, we always give the warning, since the value is
11997 -- affected by the parenthesization (e.g. (-5) mod 315 /=
11998 -- -(5 mod 315)). But for the other cases, the only concern is
11999 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
12000 -- overflows, but (-2) * 64 does not). So we try to give the
12001 -- message only when overflow is possible.
12003 if Nkind (Rorig) /= N_Op_Mod
12004 and then Compile_Time_Known_Value (R)
12005 then
12006 Val := Expr_Value (R);
12008 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
12009 HB := Expr_Value (Type_High_Bound (Typ));
12010 else
12011 HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
12012 end if;
12014 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
12015 LB := Expr_Value (Type_Low_Bound (Typ));
12016 else
12017 LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
12018 end if;
12020 -- Note that the test below is deliberately excluding the
12021 -- largest negative number, since that is a potentially
12022 -- troublesome case (e.g. -2 * x, where the result is the
12023 -- largest negative integer has an overflow with 2 * x).
12025 if Val > LB and then Val <= HB then
12026 return;
12027 end if;
12028 end if;
12030 -- For the multiplication case, the only case we have to worry
12031 -- about is when (-a)*b is exactly the largest negative number
12032 -- so that -(a*b) can cause overflow. This can only happen if
12033 -- a is a power of 2, and more generally if any operand is a
12034 -- constant that is not a power of 2, then the parentheses
12035 -- cannot affect whether overflow occurs. We only bother to
12036 -- test the left most operand
12038 -- Loop looking at left operands for one that has known value
12040 Opnd := Rorig;
12041 Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
12042 if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
12043 Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
12045 -- Operand value of 0 or 1 skips warning
12047 if Lval <= 1 then
12048 return;
12050 -- Otherwise check power of 2, if power of 2, warn, if
12051 -- anything else, skip warning.
12053 else
12054 while Lval /= 2 loop
12055 if Lval mod 2 = 1 then
12056 return;
12057 else
12058 Lval := Lval / 2;
12059 end if;
12060 end loop;
12062 exit Opnd_Loop;
12063 end if;
12064 end if;
12066 -- Keep looking at left operands
12068 Opnd := Left_Opnd (Opnd);
12069 end loop Opnd_Loop;
12071 -- For rem or "/" we can only have a problematic situation
12072 -- if the divisor has a value of minus one or one. Otherwise
12073 -- overflow is impossible (divisor > 1) or we have a case of
12074 -- division by zero in any case.
12076 if Nkind (Rorig) in N_Op_Divide | N_Op_Rem
12077 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
12078 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
12079 then
12080 return;
12081 end if;
12083 -- If we fall through warning should be issued
12085 -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
12087 Error_Msg_N
12088 ("??unary minus expression should be parenthesized here!", N);
12089 end if;
12090 end if;
12091 end;
12092 end Resolve_Unary_Op;
12094 ----------------------------------
12095 -- Resolve_Unchecked_Expression --
12096 ----------------------------------
12098 procedure Resolve_Unchecked_Expression
12099 (N : Node_Id;
12100 Typ : Entity_Id)
12102 begin
12103 Resolve (Expression (N), Typ, Suppress => All_Checks);
12104 Set_Etype (N, Typ);
12105 end Resolve_Unchecked_Expression;
12107 ---------------------------------------
12108 -- Resolve_Unchecked_Type_Conversion --
12109 ---------------------------------------
12111 procedure Resolve_Unchecked_Type_Conversion
12112 (N : Node_Id;
12113 Typ : Entity_Id)
12115 pragma Warnings (Off, Typ);
12117 Operand : constant Node_Id := Expression (N);
12118 Opnd_Type : constant Entity_Id := Etype (Operand);
12120 begin
12121 -- Resolve operand using its own type
12123 Resolve (Operand, Opnd_Type);
12125 -- If the expression is a conversion to universal integer of an
12126 -- an expression with an integer type, then we can eliminate the
12127 -- intermediate conversion to universal integer.
12129 if Nkind (Operand) = N_Type_Conversion
12130 and then Entity (Subtype_Mark (Operand)) = Universal_Integer
12131 and then Is_Integer_Type (Etype (Expression (Operand)))
12132 then
12133 Rewrite (Operand, Relocate_Node (Expression (Operand)));
12134 Analyze_And_Resolve (Operand);
12135 end if;
12137 -- In an inlined context, the unchecked conversion may be applied
12138 -- to a literal, in which case its type is the type of the context.
12139 -- (In other contexts conversions cannot apply to literals).
12141 if In_Inlined_Body
12142 and then (Opnd_Type = Any_Character or else
12143 Opnd_Type = Any_Integer or else
12144 Opnd_Type = Any_Real)
12145 then
12146 Set_Etype (Operand, Typ);
12147 end if;
12149 Analyze_Dimension (N);
12150 Eval_Unchecked_Conversion (N);
12151 end Resolve_Unchecked_Type_Conversion;
12153 ------------------------------
12154 -- Rewrite_Operator_As_Call --
12155 ------------------------------
12157 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
12158 Loc : constant Source_Ptr := Sloc (N);
12159 Actuals : constant List_Id := New_List;
12160 New_N : Node_Id;
12162 begin
12163 if Nkind (N) in N_Binary_Op then
12164 Append (Left_Opnd (N), Actuals);
12165 end if;
12167 Append (Right_Opnd (N), Actuals);
12169 New_N :=
12170 Make_Function_Call (Sloc => Loc,
12171 Name => New_Occurrence_Of (Nam, Loc),
12172 Parameter_Associations => Actuals);
12174 Preserve_Comes_From_Source (New_N, N);
12175 Preserve_Comes_From_Source (Name (New_N), N);
12176 Rewrite (N, New_N);
12177 Set_Etype (N, Etype (Nam));
12178 end Rewrite_Operator_As_Call;
12180 ------------------------------
12181 -- Rewrite_Renamed_Operator --
12182 ------------------------------
12184 procedure Rewrite_Renamed_Operator
12185 (N : Node_Id;
12186 Op : Entity_Id;
12187 Typ : Entity_Id)
12189 Nam : constant Name_Id := Chars (Op);
12190 Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
12191 Op_Node : Node_Id;
12193 begin
12194 -- Do not perform this transformation within a pre/postcondition,
12195 -- because the expression will be reanalyzed, and the transformation
12196 -- might affect the visibility of the operator, e.g. in an instance.
12197 -- Note that fully analyzed and expanded pre/postconditions appear as
12198 -- pragma Check equivalents.
12200 if In_Pre_Post_Condition (N) then
12201 return;
12202 end if;
12204 -- Likewise when an expression function is being preanalyzed, since the
12205 -- expression will be reanalyzed as part of the generated body.
12207 if In_Spec_Expression then
12208 declare
12209 S : constant Entity_Id := Current_Scope_No_Loops;
12210 begin
12211 if Ekind (S) = E_Function
12212 and then Nkind (Original_Node (Unit_Declaration_Node (S))) =
12213 N_Expression_Function
12214 then
12215 return;
12216 end if;
12217 end;
12218 end if;
12220 -- Rewrite the operator node using the real operator, not its renaming.
12221 -- Exclude user-defined intrinsic operations of the same name, which are
12222 -- treated separately and rewritten as calls.
12224 if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
12225 Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
12226 Set_Chars (Op_Node, Nam);
12227 Set_Etype (Op_Node, Etype (N));
12228 Set_Entity (Op_Node, Op);
12229 Set_Right_Opnd (Op_Node, Right_Opnd (N));
12231 -- Indicate that both the original entity and its renaming are
12232 -- referenced at this point.
12234 Generate_Reference (Entity (N), N);
12235 Generate_Reference (Op, N);
12237 if Is_Binary then
12238 Set_Left_Opnd (Op_Node, Left_Opnd (N));
12239 end if;
12241 Rewrite (N, Op_Node);
12243 -- If the context type is private, add the appropriate conversions so
12244 -- that the operator is applied to the full view. This is done in the
12245 -- routines that resolve intrinsic operators.
12247 if Is_Intrinsic_Subprogram (Op) and then Is_Private_Type (Typ) then
12248 case Nkind (N) is
12249 when N_Op_Add
12250 | N_Op_Divide
12251 | N_Op_Expon
12252 | N_Op_Mod
12253 | N_Op_Multiply
12254 | N_Op_Rem
12255 | N_Op_Subtract
12257 Resolve_Intrinsic_Operator (N, Typ);
12259 when N_Op_Abs
12260 | N_Op_Minus
12261 | N_Op_Plus
12263 Resolve_Intrinsic_Unary_Operator (N, Typ);
12265 when others =>
12266 Resolve (N, Typ);
12267 end case;
12268 end if;
12270 elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then
12272 -- Operator renames a user-defined operator of the same name. Use the
12273 -- original operator in the node, which is the one Gigi knows about.
12275 Set_Entity (N, Op);
12276 Set_Is_Overloaded (N, False);
12277 end if;
12278 end Rewrite_Renamed_Operator;
12280 -----------------------
12281 -- Set_Slice_Subtype --
12282 -----------------------
12284 -- Build an implicit subtype declaration to represent the type delivered by
12285 -- the slice. This is an abbreviated version of an array subtype. We define
12286 -- an index subtype for the slice, using either the subtype name or the
12287 -- discrete range of the slice. To be consistent with index usage elsewhere
12288 -- we create a list header to hold the single index. This list is not
12289 -- otherwise attached to the syntax tree.
12291 procedure Set_Slice_Subtype (N : Node_Id) is
12292 Loc : constant Source_Ptr := Sloc (N);
12293 Index_List : constant List_Id := New_List;
12294 Index : Node_Id;
12295 Index_Subtype : Entity_Id;
12296 Index_Type : Entity_Id;
12297 Slice_Subtype : Entity_Id;
12298 Drange : constant Node_Id := Discrete_Range (N);
12300 begin
12301 Index_Type := Base_Type (Etype (Drange));
12303 if Is_Entity_Name (Drange) then
12304 Index_Subtype := Entity (Drange);
12306 else
12307 -- We force the evaluation of a range. This is definitely needed in
12308 -- the renamed case, and seems safer to do unconditionally. Note in
12309 -- any case that since we will create and insert an Itype referring
12310 -- to this range, we must make sure any side effect removal actions
12311 -- are inserted before the Itype definition.
12313 if Nkind (Drange) = N_Range then
12314 Force_Evaluation (Low_Bound (Drange));
12315 Force_Evaluation (High_Bound (Drange));
12317 -- If the discrete range is given by a subtype indication, the
12318 -- type of the slice is the base of the subtype mark.
12320 elsif Nkind (Drange) = N_Subtype_Indication then
12321 declare
12322 R : constant Node_Id := Range_Expression (Constraint (Drange));
12323 begin
12324 Index_Type := Base_Type (Entity (Subtype_Mark (Drange)));
12325 Force_Evaluation (Low_Bound (R));
12326 Force_Evaluation (High_Bound (R));
12327 end;
12328 end if;
12330 Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
12332 -- Take a new copy of Drange (where bounds have been rewritten to
12333 -- reference side-effect-free names). Using a separate tree ensures
12334 -- that further expansion (e.g. while rewriting a slice assignment
12335 -- into a FOR loop) does not attempt to remove side effects on the
12336 -- bounds again (which would cause the bounds in the index subtype
12337 -- definition to refer to temporaries before they are defined) (the
12338 -- reason is that some names are considered side effect free here
12339 -- for the subtype, but not in the context of a loop iteration
12340 -- scheme).
12342 Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
12343 Set_Parent (Scalar_Range (Index_Subtype), Index_Subtype);
12344 Set_Etype (Index_Subtype, Index_Type);
12345 Set_Size_Info (Index_Subtype, Index_Type);
12346 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
12347 Set_Is_Constrained (Index_Subtype);
12348 end if;
12350 Slice_Subtype := Create_Itype (E_Array_Subtype, N);
12352 Index := New_Occurrence_Of (Index_Subtype, Loc);
12353 Set_Etype (Index, Index_Subtype);
12354 Append (Index, Index_List);
12356 Set_First_Index (Slice_Subtype, Index);
12357 Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
12358 Set_Is_Constrained (Slice_Subtype, True);
12360 Check_Compile_Time_Size (Slice_Subtype);
12362 -- The Etype of the existing Slice node is reset to this slice subtype.
12363 -- Its bounds are obtained from its first index.
12365 Set_Etype (N, Slice_Subtype);
12367 -- For bit-packed slice subtypes, freeze immediately (except in the case
12368 -- of being in a "spec expression" where we never freeze when we first
12369 -- see the expression).
12371 if Is_Bit_Packed_Array (Slice_Subtype) and not In_Spec_Expression then
12372 Freeze_Itype (Slice_Subtype, N);
12374 -- For all other cases insert an itype reference in the slice's actions
12375 -- so that the itype is frozen at the proper place in the tree (i.e. at
12376 -- the point where actions for the slice are analyzed). Note that this
12377 -- is different from freezing the itype immediately, which might be
12378 -- premature (e.g. if the slice is within a transient scope). This needs
12379 -- to be done only if expansion is enabled.
12381 elsif Expander_Active then
12382 Ensure_Defined (Typ => Slice_Subtype, N => N);
12383 end if;
12384 end Set_Slice_Subtype;
12386 --------------------------------
12387 -- Set_String_Literal_Subtype --
12388 --------------------------------
12390 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
12391 Loc : constant Source_Ptr := Sloc (N);
12392 Low_Bound : constant Node_Id :=
12393 Type_Low_Bound (Etype (First_Index (Typ)));
12394 Subtype_Id : Entity_Id;
12396 begin
12397 if Nkind (N) /= N_String_Literal then
12398 return;
12399 end if;
12401 Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
12402 Set_String_Literal_Length (Subtype_Id, UI_From_Int
12403 (String_Length (Strval (N))));
12404 Set_Etype (Subtype_Id, Base_Type (Typ));
12405 Set_Is_Constrained (Subtype_Id);
12406 Set_Etype (N, Subtype_Id);
12408 -- The low bound is set from the low bound of the corresponding index
12409 -- type. Note that we do not store the high bound in the string literal
12410 -- subtype, but it can be deduced if necessary from the length and the
12411 -- low bound.
12413 if Is_OK_Static_Expression (Low_Bound) then
12414 Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
12416 -- If the lower bound is not static we create a range for the string
12417 -- literal, using the index type and the known length of the literal.
12418 -- If the length is 1, then the upper bound is set to a mere copy of
12419 -- the lower bound; or else, if the index type is a signed integer,
12420 -- then the upper bound is computed as Low_Bound + L - 1; otherwise,
12421 -- the upper bound is computed as T'Val (T'Pos (Low_Bound) + L - 1).
12423 else
12424 declare
12425 Length : constant Nat := String_Length (Strval (N));
12426 Index_List : constant List_Id := New_List;
12427 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
12428 Array_Subtype : Entity_Id;
12429 Drange : Node_Id;
12430 High_Bound : Node_Id;
12431 Index : Node_Id;
12432 Index_Subtype : Entity_Id;
12434 begin
12435 if Length = 1 then
12436 High_Bound := New_Copy_Tree (Low_Bound);
12438 elsif Is_Signed_Integer_Type (Index_Type) then
12439 High_Bound :=
12440 Make_Op_Add (Loc,
12441 Left_Opnd => New_Copy_Tree (Low_Bound),
12442 Right_Opnd => Make_Integer_Literal (Loc, Length - 1));
12444 else
12445 High_Bound :=
12446 Make_Attribute_Reference (Loc,
12447 Attribute_Name => Name_Val,
12448 Prefix =>
12449 New_Occurrence_Of (Index_Type, Loc),
12450 Expressions => New_List (
12451 Make_Op_Add (Loc,
12452 Left_Opnd =>
12453 Make_Attribute_Reference (Loc,
12454 Attribute_Name => Name_Pos,
12455 Prefix =>
12456 New_Occurrence_Of (Index_Type, Loc),
12457 Expressions =>
12458 New_List (New_Copy_Tree (Low_Bound))),
12459 Right_Opnd =>
12460 Make_Integer_Literal (Loc, Length - 1))));
12461 end if;
12463 if Is_Integer_Type (Index_Type) then
12464 Set_String_Literal_Low_Bound
12465 (Subtype_Id, Make_Integer_Literal (Loc, 1));
12467 else
12468 -- If the index type is an enumeration type, build bounds
12469 -- expression with attributes.
12471 Set_String_Literal_Low_Bound
12472 (Subtype_Id,
12473 Make_Attribute_Reference (Loc,
12474 Attribute_Name => Name_First,
12475 Prefix =>
12476 New_Occurrence_Of (Base_Type (Index_Type), Loc)));
12477 end if;
12479 Analyze_And_Resolve
12480 (String_Literal_Low_Bound (Subtype_Id), Base_Type (Index_Type));
12482 -- Build bona fide subtype for the string, and wrap it in an
12483 -- unchecked conversion, because the back end expects the
12484 -- String_Literal_Subtype to have a static lower bound.
12486 Index_Subtype :=
12487 Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
12488 Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
12489 Set_Scalar_Range (Index_Subtype, Drange);
12490 Set_Parent (Drange, N);
12491 Analyze_And_Resolve (Drange, Index_Type);
12493 -- In this context, the Index_Type may already have a constraint,
12494 -- so use common base type on string subtype. The base type may
12495 -- be used when generating attributes of the string, for example
12496 -- in the context of a slice assignment.
12498 Set_Etype (Index_Subtype, Base_Type (Index_Type));
12499 Set_Size_Info (Index_Subtype, Index_Type);
12500 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
12502 Array_Subtype := Create_Itype (E_Array_Subtype, N);
12504 Index := New_Occurrence_Of (Index_Subtype, Loc);
12505 Set_Etype (Index, Index_Subtype);
12506 Append (Index, Index_List);
12508 Set_First_Index (Array_Subtype, Index);
12509 Set_Etype (Array_Subtype, Base_Type (Typ));
12510 Set_Is_Constrained (Array_Subtype, True);
12512 Rewrite (N,
12513 Make_Unchecked_Type_Conversion (Loc,
12514 Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
12515 Expression => Relocate_Node (N)));
12516 Set_Etype (N, Array_Subtype);
12517 end;
12518 end if;
12519 end Set_String_Literal_Subtype;
12521 ------------------------------
12522 -- Simplify_Type_Conversion --
12523 ------------------------------
12525 procedure Simplify_Type_Conversion (N : Node_Id) is
12526 begin
12527 if Nkind (N) = N_Type_Conversion then
12528 declare
12529 Operand : constant Node_Id := Expression (N);
12530 Target_Typ : constant Entity_Id := Etype (N);
12531 Opnd_Typ : constant Entity_Id := Etype (Operand);
12533 begin
12534 -- Special processing if the conversion is the expression of a
12535 -- Rounding or Truncation attribute reference. In this case we
12536 -- replace:
12538 -- ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x))
12540 -- by
12542 -- ityp (x)
12544 -- with the Float_Truncate flag set to False or True respectively,
12545 -- which is more efficient. We reuse Rounding for Machine_Rounding
12546 -- as System.Fat_Gen, which is a permissible behavior.
12548 if Is_Floating_Point_Type (Opnd_Typ)
12549 and then
12550 (Is_Integer_Type (Target_Typ)
12551 or else (Is_Fixed_Point_Type (Target_Typ)
12552 and then Conversion_OK (N)))
12553 and then Nkind (Operand) = N_Attribute_Reference
12554 and then Attribute_Name (Operand) in Name_Rounding
12555 | Name_Machine_Rounding
12556 | Name_Truncation
12557 then
12558 declare
12559 Truncate : constant Boolean :=
12560 Attribute_Name (Operand) = Name_Truncation;
12561 begin
12562 Rewrite (Operand,
12563 Relocate_Node (First (Expressions (Operand))));
12564 Set_Float_Truncate (N, Truncate);
12565 end;
12567 -- Special processing for the conversion of an integer literal to
12568 -- a dynamic type: we first convert the literal to the root type
12569 -- and then convert the result to the target type, the goal being
12570 -- to avoid doing range checks in universal integer.
12572 elsif Is_Integer_Type (Target_Typ)
12573 and then not Is_Generic_Type (Root_Type (Target_Typ))
12574 and then Nkind (Operand) = N_Integer_Literal
12575 and then Opnd_Typ = Universal_Integer
12576 then
12577 Convert_To_And_Rewrite (Root_Type (Target_Typ), Operand);
12578 Analyze_And_Resolve (Operand);
12580 -- If the expression is a conversion to universal integer of an
12581 -- an expression with an integer type, then we can eliminate the
12582 -- intermediate conversion to universal integer.
12584 elsif Nkind (Operand) = N_Type_Conversion
12585 and then Entity (Subtype_Mark (Operand)) = Universal_Integer
12586 and then Is_Integer_Type (Etype (Expression (Operand)))
12587 then
12588 Rewrite (Operand, Relocate_Node (Expression (Operand)));
12589 Analyze_And_Resolve (Operand);
12590 end if;
12591 end;
12592 end if;
12593 end Simplify_Type_Conversion;
12595 -----------------------------
12596 -- Unique_Fixed_Point_Type --
12597 -----------------------------
12599 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
12600 procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id);
12601 -- Give error messages for true ambiguity. Messages are posted on node
12602 -- N, and entities T1, T2 are the possible interpretations.
12604 -----------------------
12605 -- Fixed_Point_Error --
12606 -----------------------
12608 procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id) is
12609 begin
12610 Error_Msg_N ("ambiguous universal_fixed_expression", N);
12611 Error_Msg_NE ("\\possible interpretation as}", N, T1);
12612 Error_Msg_NE ("\\possible interpretation as}", N, T2);
12613 end Fixed_Point_Error;
12615 -- Local variables
12617 ErrN : Node_Id;
12618 Item : Node_Id;
12619 Scop : Entity_Id;
12620 T1 : Entity_Id;
12621 T2 : Entity_Id;
12623 -- Start of processing for Unique_Fixed_Point_Type
12625 begin
12626 -- The operations on Duration are visible, so Duration is always a
12627 -- possible interpretation.
12629 T1 := Standard_Duration;
12631 -- Look for fixed-point types in enclosing scopes
12633 Scop := Current_Scope;
12634 while Scop /= Standard_Standard loop
12635 T2 := First_Entity (Scop);
12636 while Present (T2) loop
12637 if Is_Fixed_Point_Type (T2)
12638 and then Current_Entity (T2) = T2
12639 and then Scope (Base_Type (T2)) = Scop
12640 then
12641 if Present (T1) then
12642 Fixed_Point_Error (T1, T2);
12643 return Any_Type;
12644 else
12645 T1 := T2;
12646 end if;
12647 end if;
12649 Next_Entity (T2);
12650 end loop;
12652 Scop := Scope (Scop);
12653 end loop;
12655 -- Look for visible fixed type declarations in the context
12657 Item := First (Context_Items (Cunit (Current_Sem_Unit)));
12658 while Present (Item) loop
12659 if Nkind (Item) = N_With_Clause then
12660 Scop := Entity (Name (Item));
12661 T2 := First_Entity (Scop);
12662 while Present (T2) loop
12663 if Is_Fixed_Point_Type (T2)
12664 and then Scope (Base_Type (T2)) = Scop
12665 and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2))
12666 then
12667 if Present (T1) then
12668 Fixed_Point_Error (T1, T2);
12669 return Any_Type;
12670 else
12671 T1 := T2;
12672 end if;
12673 end if;
12675 Next_Entity (T2);
12676 end loop;
12677 end if;
12679 Next (Item);
12680 end loop;
12682 if Nkind (N) = N_Real_Literal then
12683 Error_Msg_NE ("??real literal interpreted as }!", N, T1);
12685 else
12686 -- When the context is a type conversion, issue the warning on the
12687 -- expression of the conversion because it is the actual operation.
12689 if Nkind (N) in N_Type_Conversion | N_Unchecked_Type_Conversion then
12690 ErrN := Expression (N);
12691 else
12692 ErrN := N;
12693 end if;
12695 Error_Msg_NE
12696 ("??universal_fixed expression interpreted as }!", ErrN, T1);
12697 end if;
12699 return T1;
12700 end Unique_Fixed_Point_Type;
12702 ----------------------
12703 -- Valid_Conversion --
12704 ----------------------
12706 function Valid_Conversion
12707 (N : Node_Id;
12708 Target : Entity_Id;
12709 Operand : Node_Id;
12710 Report_Errs : Boolean := True) return Boolean
12712 Target_Type : constant Entity_Id := Base_Type (Target);
12713 Opnd_Type : Entity_Id := Etype (Operand);
12714 Inc_Ancestor : Entity_Id;
12716 function Conversion_Check
12717 (Valid : Boolean;
12718 Msg : String) return Boolean;
12719 -- Little routine to post Msg if Valid is False, returns Valid value
12721 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id);
12722 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
12724 procedure Conversion_Error_NE
12725 (Msg : String;
12726 N : Node_Or_Entity_Id;
12727 E : Node_Or_Entity_Id);
12728 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
12730 function In_Instance_Code return Boolean;
12731 -- Return True if expression is within an instance but is not in one of
12732 -- the actuals of the instantiation. Type conversions within an instance
12733 -- are not rechecked because type visbility may lead to spurious errors,
12734 -- but conversions in an actual for a formal object must be checked.
12736 function Is_Discrim_Of_Bad_Access_Conversion_Argument
12737 (Expr : Node_Id) return Boolean;
12738 -- Implicit anonymous-to-named access type conversions are not allowed
12739 -- if the "statically deeper than" relationship does not apply to the
12740 -- type of the conversion operand. See RM 8.6(28.1) and AARM 8.6(28.d).
12741 -- We deal with most such cases elsewhere so that we can emit more
12742 -- specific error messages (e.g., if the operand is an access parameter
12743 -- or a saooaaat (stand-alone object of an anonymous access type)), but
12744 -- here is where we catch the case where the operand is an access
12745 -- discriminant selected from a dereference of another such "bad"
12746 -- conversion argument.
12748 function Valid_Tagged_Conversion
12749 (Target_Type : Entity_Id;
12750 Opnd_Type : Entity_Id) return Boolean;
12751 -- Specifically test for validity of tagged conversions
12753 function Valid_Array_Conversion return Boolean;
12754 -- Check index and component conformance, and accessibility levels if
12755 -- the component types are anonymous access types (Ada 2005).
12757 ----------------------
12758 -- Conversion_Check --
12759 ----------------------
12761 function Conversion_Check
12762 (Valid : Boolean;
12763 Msg : String) return Boolean
12765 begin
12766 if not Valid
12768 -- A generic unit has already been analyzed and we have verified
12769 -- that a particular conversion is OK in that context. Since the
12770 -- instance is reanalyzed without relying on the relationships
12771 -- established during the analysis of the generic, it is possible
12772 -- to end up with inconsistent views of private types. Do not emit
12773 -- the error message in such cases. The rest of the machinery in
12774 -- Valid_Conversion still ensures the proper compatibility of
12775 -- target and operand types.
12777 and then not In_Instance_Code
12778 then
12779 Conversion_Error_N (Msg, Operand);
12780 end if;
12782 return Valid;
12783 end Conversion_Check;
12785 ------------------------
12786 -- Conversion_Error_N --
12787 ------------------------
12789 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id) is
12790 begin
12791 if Report_Errs then
12792 Error_Msg_N (Msg, N);
12793 end if;
12794 end Conversion_Error_N;
12796 -------------------------
12797 -- Conversion_Error_NE --
12798 -------------------------
12800 procedure Conversion_Error_NE
12801 (Msg : String;
12802 N : Node_Or_Entity_Id;
12803 E : Node_Or_Entity_Id)
12805 begin
12806 if Report_Errs then
12807 Error_Msg_NE (Msg, N, E);
12808 end if;
12809 end Conversion_Error_NE;
12811 ----------------------
12812 -- In_Instance_Code --
12813 ----------------------
12815 function In_Instance_Code return Boolean is
12816 Par : Node_Id;
12818 begin
12819 if not In_Instance then
12820 return False;
12822 else
12823 Par := Parent (N);
12824 while Present (Par) loop
12826 -- The expression is part of an actual object if it appears in
12827 -- the generated object declaration in the instance.
12829 if Nkind (Par) = N_Object_Declaration
12830 and then Present (Corresponding_Generic_Association (Par))
12831 then
12832 return False;
12834 else
12835 exit when
12836 Nkind (Par) in N_Statement_Other_Than_Procedure_Call
12837 or else Nkind (Par) in N_Subprogram_Call
12838 or else Nkind (Par) in N_Declaration;
12839 end if;
12841 Par := Parent (Par);
12842 end loop;
12844 -- Otherwise the expression appears within the instantiated unit
12846 return True;
12847 end if;
12848 end In_Instance_Code;
12850 --------------------------------------------------
12851 -- Is_Discrim_Of_Bad_Access_Conversion_Argument --
12852 --------------------------------------------------
12854 function Is_Discrim_Of_Bad_Access_Conversion_Argument
12855 (Expr : Node_Id) return Boolean
12857 Exp_Type : Entity_Id := Base_Type (Etype (Expr));
12858 pragma Assert (Is_Access_Type (Exp_Type));
12860 Associated_Node : Node_Id;
12861 Deref_Prefix : Node_Id;
12862 begin
12863 if not Is_Anonymous_Access_Type (Exp_Type) then
12864 return False;
12865 end if;
12867 pragma Assert (Is_Itype (Exp_Type));
12868 Associated_Node := Associated_Node_For_Itype (Exp_Type);
12870 if Nkind (Associated_Node) /= N_Discriminant_Specification then
12871 return False; -- not the type of an access discriminant
12872 end if;
12874 -- return False if Expr not of form <prefix>.all.Some_Component
12876 if (Nkind (Expr) /= N_Selected_Component)
12877 or else (Nkind (Prefix (Expr)) /= N_Explicit_Dereference)
12878 then
12879 -- conditional expressions, declare expressions ???
12880 return False;
12881 end if;
12883 Deref_Prefix := Prefix (Prefix (Expr));
12884 Exp_Type := Base_Type (Etype (Deref_Prefix));
12886 -- The "statically deeper relationship" does not apply
12887 -- to generic formal access types, so a prefix of such
12888 -- a type is a "bad" prefix.
12890 if Is_Generic_Formal (Exp_Type) then
12891 return True;
12893 -- The "statically deeper relationship" does apply to
12894 -- any other named access type.
12896 elsif not Is_Anonymous_Access_Type (Exp_Type) then
12897 return False;
12898 end if;
12900 pragma Assert (Is_Itype (Exp_Type));
12901 Associated_Node := Associated_Node_For_Itype (Exp_Type);
12903 -- The "statically deeper relationship" applies to some
12904 -- anonymous access types and not to others. Return
12905 -- True for the cases where it does not apply. Also check
12906 -- recursively for the
12907 -- <prefix>.all.Access_Discrim.all.Access_Discrim case,
12908 -- where the correct result depends on <prefix>.
12910 return Nkind (Associated_Node) in
12911 N_Procedure_Specification | -- access parameter
12912 N_Function_Specification | -- access parameter
12913 N_Object_Declaration -- saooaaat
12914 or else Is_Discrim_Of_Bad_Access_Conversion_Argument (Deref_Prefix);
12915 end Is_Discrim_Of_Bad_Access_Conversion_Argument;
12917 ----------------------------
12918 -- Valid_Array_Conversion --
12919 ----------------------------
12921 function Valid_Array_Conversion return Boolean is
12922 Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
12923 Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
12925 Opnd_Index : Node_Id;
12926 Opnd_Index_Type : Entity_Id;
12928 Target_Comp_Type : constant Entity_Id :=
12929 Component_Type (Target_Type);
12930 Target_Comp_Base : constant Entity_Id :=
12931 Base_Type (Target_Comp_Type);
12933 Target_Index : Node_Id;
12934 Target_Index_Type : Entity_Id;
12936 begin
12937 -- Error if wrong number of dimensions
12940 Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
12941 then
12942 Conversion_Error_N
12943 ("incompatible number of dimensions for conversion", Operand);
12944 return False;
12946 -- Number of dimensions matches
12948 else
12949 -- Loop through indexes of the two arrays
12951 Target_Index := First_Index (Target_Type);
12952 Opnd_Index := First_Index (Opnd_Type);
12953 while Present (Target_Index) and then Present (Opnd_Index) loop
12954 Target_Index_Type := Etype (Target_Index);
12955 Opnd_Index_Type := Etype (Opnd_Index);
12957 -- Error if index types are incompatible
12959 if not (Is_Integer_Type (Target_Index_Type)
12960 and then Is_Integer_Type (Opnd_Index_Type))
12961 and then (Root_Type (Target_Index_Type)
12962 /= Root_Type (Opnd_Index_Type))
12963 then
12964 Conversion_Error_N
12965 ("incompatible index types for array conversion",
12966 Operand);
12967 return False;
12968 end if;
12970 Next_Index (Target_Index);
12971 Next_Index (Opnd_Index);
12972 end loop;
12974 -- If component types have same base type, all set
12976 if Target_Comp_Base = Opnd_Comp_Base then
12977 null;
12979 -- Here if base types of components are not the same. The only
12980 -- time this is allowed is if we have anonymous access types.
12982 -- The conversion of arrays of anonymous access types can lead
12983 -- to dangling pointers. AI-392 formalizes the accessibility
12984 -- checks that must be applied to such conversions to prevent
12985 -- out-of-scope references.
12987 elsif Ekind (Target_Comp_Base) in
12988 E_Anonymous_Access_Type
12989 | E_Anonymous_Access_Subprogram_Type
12990 and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
12991 and then
12992 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
12993 then
12994 if Type_Access_Level (Target_Type) <
12995 Deepest_Type_Access_Level (Opnd_Type)
12996 then
12997 if In_Instance_Body then
12998 Error_Msg_Warn := SPARK_Mode /= On;
12999 Conversion_Error_N
13000 ("source array type has deeper accessibility "
13001 & "level than target<<", Operand);
13002 Conversion_Error_N ("\Program_Error [<<", Operand);
13003 Rewrite (N,
13004 Make_Raise_Program_Error (Sloc (N),
13005 Reason => PE_Accessibility_Check_Failed));
13006 Set_Etype (N, Target_Type);
13007 return False;
13009 -- Conversion not allowed because of accessibility levels
13011 else
13012 Conversion_Error_N
13013 ("source array type has deeper accessibility "
13014 & "level than target", Operand);
13015 return False;
13016 end if;
13018 else
13019 null;
13020 end if;
13022 -- All other cases where component base types do not match
13024 else
13025 Conversion_Error_N
13026 ("incompatible component types for array conversion",
13027 Operand);
13028 return False;
13029 end if;
13031 -- Check that component subtypes statically match. For numeric
13032 -- types this means that both must be either constrained or
13033 -- unconstrained. For enumeration types the bounds must match.
13034 -- All of this is checked in Subtypes_Statically_Match.
13036 if not Subtypes_Statically_Match
13037 (Target_Comp_Type, Opnd_Comp_Type)
13038 then
13039 Conversion_Error_N
13040 ("component subtypes must statically match", Operand);
13041 return False;
13042 end if;
13043 end if;
13045 return True;
13046 end Valid_Array_Conversion;
13048 -----------------------------
13049 -- Valid_Tagged_Conversion --
13050 -----------------------------
13052 function Valid_Tagged_Conversion
13053 (Target_Type : Entity_Id;
13054 Opnd_Type : Entity_Id) return Boolean
13056 begin
13057 -- Upward conversions are allowed (RM 4.6(22))
13059 if Covers (Target_Type, Opnd_Type)
13060 or else Is_Ancestor (Target_Type, Opnd_Type)
13061 then
13062 return True;
13064 -- Downward conversion are allowed if the operand is class-wide
13065 -- (RM 4.6(23)).
13067 elsif Is_Class_Wide_Type (Opnd_Type)
13068 and then Covers (Opnd_Type, Target_Type)
13069 then
13070 return True;
13072 elsif Covers (Opnd_Type, Target_Type)
13073 or else Is_Ancestor (Opnd_Type, Target_Type)
13074 then
13075 return
13076 Conversion_Check (False,
13077 "downward conversion of tagged objects not allowed");
13079 -- Ada 2005 (AI-251): The conversion to/from interface types is
13080 -- always valid. The types involved may be class-wide (sub)types.
13082 elsif Is_Interface (Etype (Base_Type (Target_Type)))
13083 or else Is_Interface (Etype (Base_Type (Opnd_Type)))
13084 then
13085 return True;
13087 -- If the operand is a class-wide type obtained through a limited_
13088 -- with clause, and the context includes the nonlimited view, use
13089 -- it to determine whether the conversion is legal.
13091 elsif Is_Class_Wide_Type (Opnd_Type)
13092 and then From_Limited_With (Opnd_Type)
13093 and then Present (Non_Limited_View (Etype (Opnd_Type)))
13094 and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
13095 then
13096 return True;
13098 elsif Is_Access_Type (Opnd_Type)
13099 and then Is_Interface (Directly_Designated_Type (Opnd_Type))
13100 then
13101 return True;
13103 else
13104 Conversion_Error_NE
13105 ("invalid tagged conversion, not compatible with}",
13106 N, First_Subtype (Opnd_Type));
13107 return False;
13108 end if;
13109 end Valid_Tagged_Conversion;
13111 -- Start of processing for Valid_Conversion
13113 begin
13114 Check_Parameterless_Call (Operand);
13116 if Is_Overloaded (Operand) then
13117 declare
13118 I : Interp_Index;
13119 I1 : Interp_Index;
13120 It : Interp;
13121 It1 : Interp;
13122 N1 : Entity_Id;
13123 T1 : Entity_Id;
13125 begin
13126 -- Remove procedure calls, which syntactically cannot appear in
13127 -- this context, but which cannot be removed by type checking,
13128 -- because the context does not impose a type.
13130 -- The node may be labelled overloaded, but still contain only one
13131 -- interpretation because others were discarded earlier. If this
13132 -- is the case, retain the single interpretation if legal.
13134 Get_First_Interp (Operand, I, It);
13135 Opnd_Type := It.Typ;
13136 Get_Next_Interp (I, It);
13138 if Present (It.Typ)
13139 and then Opnd_Type /= Standard_Void_Type
13140 then
13141 -- More than one candidate interpretation is available
13143 Get_First_Interp (Operand, I, It);
13144 while Present (It.Typ) loop
13145 if It.Typ = Standard_Void_Type then
13146 Remove_Interp (I);
13147 end if;
13149 -- When compiling for a system where Address is of a visible
13150 -- integer type, spurious ambiguities can be produced when
13151 -- arithmetic operations have a literal operand and return
13152 -- System.Address or a descendant of it. These ambiguities
13153 -- are usually resolved by the context, but for conversions
13154 -- there is no context type and the removal of the spurious
13155 -- operations must be done explicitly here.
13157 if not Address_Is_Private
13158 and then Is_Descendant_Of_Address (It.Typ)
13159 then
13160 Remove_Interp (I);
13161 end if;
13163 Get_Next_Interp (I, It);
13164 end loop;
13165 end if;
13167 Get_First_Interp (Operand, I, It);
13168 I1 := I;
13169 It1 := It;
13171 if No (It.Typ) then
13172 Conversion_Error_N ("illegal operand in conversion", Operand);
13173 return False;
13174 end if;
13176 Get_Next_Interp (I, It);
13178 if Present (It.Typ) then
13179 N1 := It1.Nam;
13180 T1 := It1.Typ;
13181 It1 := Disambiguate (Operand, I1, I, Any_Type);
13183 if It1 = No_Interp then
13184 Conversion_Error_N
13185 ("ambiguous operand in conversion", Operand);
13187 -- If the interpretation involves a standard operator, use
13188 -- the location of the type, which may be user-defined.
13190 if Sloc (It.Nam) = Standard_Location then
13191 Error_Msg_Sloc := Sloc (It.Typ);
13192 else
13193 Error_Msg_Sloc := Sloc (It.Nam);
13194 end if;
13196 Conversion_Error_N -- CODEFIX
13197 ("\\possible interpretation#!", Operand);
13199 if Sloc (N1) = Standard_Location then
13200 Error_Msg_Sloc := Sloc (T1);
13201 else
13202 Error_Msg_Sloc := Sloc (N1);
13203 end if;
13205 Conversion_Error_N -- CODEFIX
13206 ("\\possible interpretation#!", Operand);
13208 return False;
13209 end if;
13210 end if;
13212 Set_Etype (Operand, It1.Typ);
13213 Opnd_Type := It1.Typ;
13214 end;
13215 end if;
13217 -- Deal with conversion of integer type to address if the pragma
13218 -- Allow_Integer_Address is in effect. We convert the conversion to
13219 -- an unchecked conversion in this case and we are all done.
13221 if Address_Integer_Convert_OK (Opnd_Type, Target_Type) then
13222 Rewrite (N, Unchecked_Convert_To (Target_Type, Expression (N)));
13223 Analyze_And_Resolve (N, Target_Type);
13224 return True;
13225 end if;
13227 -- If we are within a child unit, check whether the type of the
13228 -- expression has an ancestor in a parent unit, in which case it
13229 -- belongs to its derivation class even if the ancestor is private.
13230 -- See RM 7.3.1 (5.2/3).
13232 Inc_Ancestor := Get_Incomplete_View_Of_Ancestor (Opnd_Type);
13234 -- Numeric types
13236 if Is_Numeric_Type (Target_Type) then
13238 -- A universal fixed expression can be converted to any numeric type
13240 if Opnd_Type = Universal_Fixed then
13241 return True;
13243 -- Also no need to check when in an instance or inlined body, because
13244 -- the legality has been established when the template was analyzed.
13245 -- Furthermore, numeric conversions may occur where only a private
13246 -- view of the operand type is visible at the instantiation point.
13247 -- This results in a spurious error if we check that the operand type
13248 -- is a numeric type.
13250 -- Note: in a previous version of this unit, the following tests were
13251 -- applied only for generated code (Comes_From_Source set to False),
13252 -- but in fact the test is required for source code as well, since
13253 -- this situation can arise in source code.
13255 elsif In_Instance_Code or else In_Inlined_Body then
13256 return True;
13258 -- Otherwise we need the conversion check
13260 else
13261 return Conversion_Check
13262 (Is_Numeric_Type (Opnd_Type)
13263 or else
13264 (Present (Inc_Ancestor)
13265 and then Is_Numeric_Type (Inc_Ancestor)),
13266 "illegal operand for numeric conversion");
13267 end if;
13269 -- Array types
13271 elsif Is_Array_Type (Target_Type) then
13272 if not Is_Array_Type (Opnd_Type)
13273 or else Opnd_Type = Any_Composite
13274 or else Opnd_Type = Any_String
13275 then
13276 Conversion_Error_N
13277 ("illegal operand for array conversion", Operand);
13278 return False;
13280 else
13281 return Valid_Array_Conversion;
13282 end if;
13284 -- Ada 2005 (AI-251): Internally generated conversions of access to
13285 -- interface types added to force the displacement of the pointer to
13286 -- reference the corresponding dispatch table.
13288 elsif not Comes_From_Source (N)
13289 and then Is_Access_Type (Target_Type)
13290 and then Is_Interface (Designated_Type (Target_Type))
13291 then
13292 return True;
13294 -- Ada 2005 (AI-251): Anonymous access types where target references an
13295 -- interface type.
13297 elsif Is_Access_Type (Opnd_Type)
13298 and then Ekind (Target_Type) in
13299 E_General_Access_Type | E_Anonymous_Access_Type
13300 and then Is_Interface (Directly_Designated_Type (Target_Type))
13301 then
13302 -- Check the static accessibility rule of 4.6(17). Note that the
13303 -- check is not enforced when within an instance body, since the
13304 -- RM requires such cases to be caught at run time.
13306 -- If the operand is a rewriting of an allocator no check is needed
13307 -- because there are no accessibility issues.
13309 if Nkind (Original_Node (N)) = N_Allocator then
13310 null;
13312 elsif Ekind (Target_Type) /= E_Anonymous_Access_Type then
13313 if Type_Access_Level (Opnd_Type) >
13314 Deepest_Type_Access_Level (Target_Type)
13315 then
13316 -- In an instance, this is a run-time check, but one we know
13317 -- will fail, so generate an appropriate warning. The raise
13318 -- will be generated by Expand_N_Type_Conversion.
13320 if In_Instance_Body then
13321 Error_Msg_Warn := SPARK_Mode /= On;
13322 Conversion_Error_N
13323 ("cannot convert local pointer to non-local access type<<",
13324 Operand);
13325 Conversion_Error_N ("\Program_Error [<<", Operand);
13327 else
13328 Conversion_Error_N
13329 ("cannot convert local pointer to non-local access type",
13330 Operand);
13331 return False;
13332 end if;
13334 -- Special accessibility checks are needed in the case of access
13335 -- discriminants declared for a limited type.
13337 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
13338 and then not Is_Local_Anonymous_Access (Opnd_Type)
13339 then
13340 -- When the operand is a selected access discriminant the check
13341 -- needs to be made against the level of the object denoted by
13342 -- the prefix of the selected name (Object_Access_Level handles
13343 -- checking the prefix of the operand for this case).
13345 if Nkind (Operand) = N_Selected_Component
13346 and then Object_Access_Level (Operand) >
13347 Deepest_Type_Access_Level (Target_Type)
13348 then
13349 -- In an instance, this is a run-time check, but one we know
13350 -- will fail, so generate an appropriate warning. The raise
13351 -- will be generated by Expand_N_Type_Conversion.
13353 if In_Instance_Body then
13354 Error_Msg_Warn := SPARK_Mode /= On;
13355 Conversion_Error_N
13356 ("cannot convert access discriminant to non-local "
13357 & "access type<<", Operand);
13358 Conversion_Error_N ("\Program_Error [<<", Operand);
13360 -- Real error if not in instance body
13362 else
13363 Conversion_Error_N
13364 ("cannot convert access discriminant to non-local "
13365 & "access type", Operand);
13366 return False;
13367 end if;
13368 end if;
13370 -- The case of a reference to an access discriminant from
13371 -- within a limited type declaration (which will appear as
13372 -- a discriminal) is always illegal because the level of the
13373 -- discriminant is considered to be deeper than any (nameable)
13374 -- access type.
13376 if Is_Entity_Name (Operand)
13377 and then not Is_Local_Anonymous_Access (Opnd_Type)
13378 and then
13379 Ekind (Entity (Operand)) in E_In_Parameter | E_Constant
13380 and then Present (Discriminal_Link (Entity (Operand)))
13381 then
13382 Conversion_Error_N
13383 ("discriminant has deeper accessibility level than target",
13384 Operand);
13385 return False;
13386 end if;
13387 end if;
13388 end if;
13390 return True;
13392 -- General and anonymous access types
13394 elsif Ekind (Target_Type) in
13395 E_General_Access_Type | E_Anonymous_Access_Type
13396 and then
13397 Conversion_Check
13398 (Is_Access_Type (Opnd_Type)
13399 and then
13400 Ekind (Opnd_Type) not in
13401 E_Access_Subprogram_Type |
13402 E_Access_Protected_Subprogram_Type,
13403 "must be an access-to-object type")
13404 then
13405 if Is_Access_Constant (Opnd_Type)
13406 and then not Is_Access_Constant (Target_Type)
13407 then
13408 Conversion_Error_N
13409 ("access-to-constant operand type not allowed", Operand);
13410 return False;
13411 end if;
13413 -- Check the static accessibility rule of 4.6(17). Note that the
13414 -- check is not enforced when within an instance body, since the RM
13415 -- requires such cases to be caught at run time.
13417 if Ekind (Target_Type) /= E_Anonymous_Access_Type
13418 or else Is_Local_Anonymous_Access (Target_Type)
13419 or else Nkind (Associated_Node_For_Itype (Target_Type)) =
13420 N_Object_Declaration
13421 then
13422 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
13423 -- conversions from an anonymous access type to a named general
13424 -- access type. Such conversions are not allowed in the case of
13425 -- access parameters and stand-alone objects of an anonymous
13426 -- access type. The implicit conversion case is recognized by
13427 -- testing that Comes_From_Source is False and that it's been
13428 -- rewritten. The Comes_From_Source test isn't sufficient because
13429 -- nodes in inlined calls to predefined library routines can have
13430 -- Comes_From_Source set to False. (Is there a better way to test
13431 -- for implicit conversions???).
13433 -- Do not treat a rewritten 'Old attribute reference like other
13434 -- rewrite substitutions. This makes a difference, for example,
13435 -- in the case where we are generating the expansion of a
13436 -- membership test of the form
13437 -- Saooaaat'Old in Named_Access_Type
13438 -- because in this case Valid_Conversion needs to return True
13439 -- (otherwise the expansion will be False - see the call site
13440 -- in exp_ch4.adb).
13442 if Ada_Version >= Ada_2012
13443 and then not Comes_From_Source (N)
13444 and then Is_Rewrite_Substitution (N)
13445 and then not Is_Attribute_Old (Original_Node (N))
13446 and then Ekind (Base_Type (Target_Type)) = E_General_Access_Type
13447 and then Ekind (Opnd_Type) = E_Anonymous_Access_Type
13448 then
13449 if Is_Itype (Opnd_Type) then
13451 -- Implicit conversions aren't allowed for objects of an
13452 -- anonymous access type, since such objects have nonstatic
13453 -- levels in Ada 2012.
13455 if Nkind (Associated_Node_For_Itype (Opnd_Type)) =
13456 N_Object_Declaration
13457 then
13458 Conversion_Error_N
13459 ("implicit conversion of stand-alone anonymous "
13460 & "access object not allowed", Operand);
13461 return False;
13463 -- Implicit conversions aren't allowed for anonymous access
13464 -- parameters. We exclude anonymous access results as well
13465 -- as universal_access "=".
13467 elsif not Is_Local_Anonymous_Access (Opnd_Type)
13468 and then Nkind (Associated_Node_For_Itype (Opnd_Type)) in
13469 N_Function_Specification |
13470 N_Procedure_Specification
13471 and then Nkind (Parent (N)) not in N_Op_Eq | N_Op_Ne
13472 then
13473 Conversion_Error_N
13474 ("implicit conversion of anonymous access parameter "
13475 & "not allowed", Operand);
13476 return False;
13478 -- Detect access discriminant values that are illegal
13479 -- implicit anonymous-to-named access conversion operands.
13481 elsif Is_Discrim_Of_Bad_Access_Conversion_Argument (Operand)
13482 then
13483 Conversion_Error_N
13484 ("implicit conversion of anonymous access value "
13485 & "not allowed", Operand);
13486 return False;
13488 -- In other cases, the level of the operand's type must be
13489 -- statically less deep than that of the target type, else
13490 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
13492 elsif Type_Access_Level (Opnd_Type) >
13493 Deepest_Type_Access_Level (Target_Type)
13494 then
13495 Conversion_Error_N
13496 ("implicit conversion of anonymous access value "
13497 & "violates accessibility", Operand);
13498 return False;
13499 end if;
13500 end if;
13502 -- Check if the operand is deeper than the target type, taking
13503 -- care to avoid the case where we are converting a result of a
13504 -- function returning an anonymous access type since the "master
13505 -- of the call" would be target type of the conversion unless
13506 -- the target type is anonymous access as well - see RM 3.10.2
13507 -- (10.3/3).
13509 elsif Type_Access_Level (Opnd_Type) >
13510 Deepest_Type_Access_Level (Target_Type)
13511 and then (Nkind (Associated_Node_For_Itype (Opnd_Type)) /=
13512 N_Function_Specification
13513 or else Ekind (Target_Type) in
13514 Anonymous_Access_Kind)
13515 then
13516 -- In an instance, this is a run-time check, but one we know
13517 -- will fail, so generate an appropriate warning. The raise
13518 -- will be generated by Expand_N_Type_Conversion.
13520 if In_Instance_Body then
13521 Error_Msg_Warn := SPARK_Mode /= On;
13522 Conversion_Error_N
13523 ("cannot convert local pointer to non-local access type<<",
13524 Operand);
13525 Conversion_Error_N ("\Program_Error [<<", Operand);
13527 -- If not in an instance body, this is a real error
13529 else
13530 -- Avoid generation of spurious error message
13532 if not Error_Posted (N) then
13533 Conversion_Error_N
13534 ("cannot convert local pointer to non-local access type",
13535 Operand);
13536 end if;
13538 return False;
13539 end if;
13541 -- Special accessibility checks are needed in the case of access
13542 -- discriminants declared for a limited type.
13544 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
13545 and then not Is_Local_Anonymous_Access (Opnd_Type)
13546 then
13547 -- When the operand is a selected access discriminant the check
13548 -- needs to be made against the level of the object denoted by
13549 -- the prefix of the selected name (Object_Access_Level handles
13550 -- checking the prefix of the operand for this case).
13552 if Nkind (Operand) = N_Selected_Component
13553 and then Object_Access_Level (Operand) >
13554 Deepest_Type_Access_Level (Target_Type)
13555 then
13556 -- In an instance, this is a run-time check, but one we know
13557 -- will fail, so generate an appropriate warning. The raise
13558 -- will be generated by Expand_N_Type_Conversion.
13560 if In_Instance_Body then
13561 Error_Msg_Warn := SPARK_Mode /= On;
13562 Conversion_Error_N
13563 ("cannot convert access discriminant to non-local "
13564 & "access type<<", Operand);
13565 Conversion_Error_N ("\Program_Error [<<", Operand);
13567 -- If not in an instance body, this is a real error
13569 else
13570 Conversion_Error_N
13571 ("cannot convert access discriminant to non-local "
13572 & "access type", Operand);
13573 return False;
13574 end if;
13575 end if;
13577 -- The case of a reference to an access discriminant from
13578 -- within a limited type declaration (which will appear as
13579 -- a discriminal) is always illegal because the level of the
13580 -- discriminant is considered to be deeper than any (nameable)
13581 -- access type.
13583 if Is_Entity_Name (Operand)
13584 and then
13585 Ekind (Entity (Operand)) in E_In_Parameter | E_Constant
13586 and then Present (Discriminal_Link (Entity (Operand)))
13587 then
13588 Conversion_Error_N
13589 ("discriminant has deeper accessibility level than target",
13590 Operand);
13591 return False;
13592 end if;
13593 end if;
13594 end if;
13596 -- In the presence of limited_with clauses we have to use nonlimited
13597 -- views, if available.
13599 Check_Limited : declare
13600 function Full_Designated_Type (T : Entity_Id) return Entity_Id;
13601 -- Helper function to handle limited views
13603 --------------------------
13604 -- Full_Designated_Type --
13605 --------------------------
13607 function Full_Designated_Type (T : Entity_Id) return Entity_Id is
13608 Desig : constant Entity_Id := Designated_Type (T);
13610 begin
13611 -- Handle the limited view of a type
13613 if From_Limited_With (Desig)
13614 and then Has_Non_Limited_View (Desig)
13615 then
13616 return Available_View (Desig);
13617 else
13618 return Desig;
13619 end if;
13620 end Full_Designated_Type;
13622 -- Local Declarations
13624 Target : constant Entity_Id := Full_Designated_Type (Target_Type);
13625 Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
13627 Same_Base : constant Boolean :=
13628 Base_Type (Target) = Base_Type (Opnd);
13630 -- Start of processing for Check_Limited
13632 begin
13633 if Is_Tagged_Type (Target) then
13634 return Valid_Tagged_Conversion (Target, Opnd);
13636 else
13637 if not Same_Base then
13638 Conversion_Error_NE
13639 ("target designated type not compatible with }",
13640 N, Base_Type (Opnd));
13641 return False;
13643 -- Ada 2005 AI-384: legality rule is symmetric in both
13644 -- designated types. The conversion is legal (with possible
13645 -- constraint check) if either designated type is
13646 -- unconstrained.
13648 elsif Subtypes_Statically_Match (Target, Opnd)
13649 or else
13650 (Has_Discriminants (Target)
13651 and then
13652 (not Is_Constrained (Opnd)
13653 or else not Is_Constrained (Target)))
13654 then
13655 -- Special case, if Value_Size has been used to make the
13656 -- sizes different, the conversion is not allowed even
13657 -- though the subtypes statically match.
13659 if Known_Static_RM_Size (Target)
13660 and then Known_Static_RM_Size (Opnd)
13661 and then RM_Size (Target) /= RM_Size (Opnd)
13662 then
13663 Conversion_Error_NE
13664 ("target designated subtype not compatible with }",
13665 N, Opnd);
13666 Conversion_Error_NE
13667 ("\because sizes of the two designated subtypes differ",
13668 N, Opnd);
13669 return False;
13671 -- Normal case where conversion is allowed
13673 else
13674 return True;
13675 end if;
13677 else
13678 Error_Msg_NE
13679 ("target designated subtype not compatible with }",
13680 N, Opnd);
13681 return False;
13682 end if;
13683 end if;
13684 end Check_Limited;
13686 -- Access to subprogram types. If the operand is an access parameter,
13687 -- the type has a deeper accessibility that any master, and cannot be
13688 -- assigned. We must make an exception if the conversion is part of an
13689 -- assignment and the target is the return object of an extended return
13690 -- statement, because in that case the accessibility check takes place
13691 -- after the return.
13693 elsif Is_Access_Subprogram_Type (Target_Type)
13695 -- Note: this test of Opnd_Type is there to prevent entering this
13696 -- branch in the case of a remote access to subprogram type, which
13697 -- is internally represented as an E_Record_Type.
13699 and then Is_Access_Type (Opnd_Type)
13700 then
13701 if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
13702 and then Is_Entity_Name (Operand)
13703 and then Ekind (Entity (Operand)) = E_In_Parameter
13704 and then
13705 (Nkind (Parent (N)) /= N_Assignment_Statement
13706 or else not Is_Entity_Name (Name (Parent (N)))
13707 or else not Is_Return_Object (Entity (Name (Parent (N)))))
13708 then
13709 Conversion_Error_N
13710 ("illegal attempt to store anonymous access to subprogram",
13711 Operand);
13712 Conversion_Error_N
13713 ("\value has deeper accessibility than any master "
13714 & "(RM 3.10.2 (13))",
13715 Operand);
13717 Error_Msg_NE
13718 ("\use named access type for& instead of access parameter",
13719 Operand, Entity (Operand));
13720 end if;
13722 -- Check that the designated types are subtype conformant
13724 Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
13725 Old_Id => Designated_Type (Opnd_Type),
13726 Err_Loc => N);
13728 -- Check the static accessibility rule of 4.6(20)
13730 if Type_Access_Level (Opnd_Type) >
13731 Deepest_Type_Access_Level (Target_Type)
13732 then
13733 Conversion_Error_N
13734 ("operand type has deeper accessibility level than target",
13735 Operand);
13737 -- Check that if the operand type is declared in a generic body,
13738 -- then the target type must be declared within that same body
13739 -- (enforces last sentence of 4.6(20)).
13741 elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
13742 declare
13743 O_Gen : constant Node_Id :=
13744 Enclosing_Generic_Body (Opnd_Type);
13746 T_Gen : Node_Id;
13748 begin
13749 T_Gen := Enclosing_Generic_Body (Target_Type);
13750 while Present (T_Gen) and then T_Gen /= O_Gen loop
13751 T_Gen := Enclosing_Generic_Body (T_Gen);
13752 end loop;
13754 if T_Gen /= O_Gen then
13755 Conversion_Error_N
13756 ("target type must be declared in same generic body "
13757 & "as operand type", N);
13758 end if;
13759 end;
13760 end if;
13762 return True;
13764 -- Remote access to subprogram types
13766 elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
13767 and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
13768 then
13769 -- It is valid to convert from one RAS type to another provided
13770 -- that their specification statically match.
13772 -- Note: at this point, remote access to subprogram types have been
13773 -- expanded to their E_Record_Type representation, and we need to
13774 -- go back to the original access type definition using the
13775 -- Corresponding_Remote_Type attribute in order to check that the
13776 -- designated profiles match.
13778 pragma Assert (Ekind (Target_Type) = E_Record_Type);
13779 pragma Assert (Ekind (Opnd_Type) = E_Record_Type);
13781 Check_Subtype_Conformant
13782 (New_Id =>
13783 Designated_Type (Corresponding_Remote_Type (Target_Type)),
13784 Old_Id =>
13785 Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
13786 Err_Loc =>
13788 return True;
13790 -- If it was legal in the generic, it's legal in the instance
13792 elsif In_Instance_Body then
13793 return True;
13795 -- If both are tagged types, check legality of view conversions
13797 elsif Is_Tagged_Type (Target_Type)
13798 and then
13799 Is_Tagged_Type (Opnd_Type)
13800 then
13801 return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
13803 -- Types derived from the same root type are convertible
13805 elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
13806 return True;
13808 -- In an instance or an inlined body, there may be inconsistent views of
13809 -- the same type, or of types derived from a common root.
13811 elsif (In_Instance or In_Inlined_Body)
13812 and then
13813 Root_Type (Underlying_Type (Target_Type)) =
13814 Root_Type (Underlying_Type (Opnd_Type))
13815 then
13816 return True;
13818 -- Special check for common access type error case
13820 elsif Ekind (Target_Type) = E_Access_Type
13821 and then Is_Access_Type (Opnd_Type)
13822 then
13823 Conversion_Error_N ("target type must be general access type!", N);
13824 Conversion_Error_NE -- CODEFIX
13825 ("add ALL to }!", N, Target_Type);
13826 return False;
13828 -- Here we have a real conversion error
13830 else
13831 -- Check for missing regular with_clause when only a limited view of
13832 -- target is available.
13834 if From_Limited_With (Opnd_Type) and then In_Package_Body then
13835 Conversion_Error_NE
13836 ("invalid conversion, not compatible with limited view of }",
13837 N, Opnd_Type);
13838 Conversion_Error_NE
13839 ("\add with_clause for& to current unit!", N, Scope (Opnd_Type));
13841 elsif Is_Access_Type (Opnd_Type)
13842 and then From_Limited_With (Designated_Type (Opnd_Type))
13843 and then In_Package_Body
13844 then
13845 Conversion_Error_NE
13846 ("invalid conversion, not compatible with }", N, Opnd_Type);
13847 Conversion_Error_NE
13848 ("\add with_clause for& to current unit!",
13849 N, Scope (Designated_Type (Opnd_Type)));
13851 else
13852 Conversion_Error_NE
13853 ("invalid conversion, not compatible with }", N, Opnd_Type);
13854 end if;
13856 return False;
13857 end if;
13858 end Valid_Conversion;
13860 end Sem_Res;