2017-06-14 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / mode-switching.c
blob15b813ff6f7e93e0d479e48c2aa991d03409fc50
1 /* CPU mode switching
2 Copyright (C) 1998-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "cfghooks.h"
27 #include "df.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "regs.h"
31 #include "emit-rtl.h"
32 #include "cfgrtl.h"
33 #include "cfganal.h"
34 #include "lcm.h"
35 #include "cfgcleanup.h"
36 #include "tree-pass.h"
38 /* We want target macros for the mode switching code to be able to refer
39 to instruction attribute values. */
40 #include "insn-attr.h"
42 #ifdef OPTIMIZE_MODE_SWITCHING
44 /* The algorithm for setting the modes consists of scanning the insn list
45 and finding all the insns which require a specific mode. Each insn gets
46 a unique struct seginfo element. These structures are inserted into a list
47 for each basic block. For each entity, there is an array of bb_info over
48 the flow graph basic blocks (local var 'bb_info'), which contains a list
49 of all insns within that basic block, in the order they are encountered.
51 For each entity, any basic block WITHOUT any insns requiring a specific
52 mode are given a single entry without a mode (each basic block in the
53 flow graph must have at least one entry in the segment table).
55 The LCM algorithm is then run over the flow graph to determine where to
56 place the sets to the highest-priority mode with respect to the first
57 insn in any one block. Any adjustments required to the transparency
58 vectors are made, then the next iteration starts for the next-lower
59 priority mode, till for each entity all modes are exhausted.
61 More details can be found in the code of optimize_mode_switching. */
63 /* This structure contains the information for each insn which requires
64 either single or double mode to be set.
65 MODE is the mode this insn must be executed in.
66 INSN_PTR is the insn to be executed (may be the note that marks the
67 beginning of a basic block).
68 BBNUM is the flow graph basic block this insn occurs in.
69 NEXT is the next insn in the same basic block. */
70 struct seginfo
72 int mode;
73 rtx_insn *insn_ptr;
74 int bbnum;
75 struct seginfo *next;
76 HARD_REG_SET regs_live;
79 struct bb_info
81 struct seginfo *seginfo;
82 int computing;
83 int mode_out;
84 int mode_in;
87 static struct seginfo * new_seginfo (int, rtx_insn *, int, HARD_REG_SET);
88 static void add_seginfo (struct bb_info *, struct seginfo *);
89 static void reg_dies (rtx, HARD_REG_SET *);
90 static void reg_becomes_live (rtx, const_rtx, void *);
92 /* Clear ode I from entity J in bitmap B. */
93 #define clear_mode_bit(b, j, i) \
94 bitmap_clear_bit (b, (j * max_num_modes) + i)
96 /* Test mode I from entity J in bitmap B. */
97 #define mode_bit_p(b, j, i) \
98 bitmap_bit_p (b, (j * max_num_modes) + i)
100 /* Set mode I from entity J in bitmal B. */
101 #define set_mode_bit(b, j, i) \
102 bitmap_set_bit (b, (j * max_num_modes) + i)
104 /* Emit modes segments from EDGE_LIST associated with entity E.
105 INFO gives mode availability for each mode. */
107 static bool
108 commit_mode_sets (struct edge_list *edge_list, int e, struct bb_info *info)
110 bool need_commit = false;
112 for (int ed = NUM_EDGES (edge_list) - 1; ed >= 0; ed--)
114 edge eg = INDEX_EDGE (edge_list, ed);
115 int mode;
117 if ((mode = (int)(intptr_t)(eg->aux)) != -1)
119 HARD_REG_SET live_at_edge;
120 basic_block src_bb = eg->src;
121 int cur_mode = info[src_bb->index].mode_out;
122 rtx_insn *mode_set;
124 REG_SET_TO_HARD_REG_SET (live_at_edge, df_get_live_out (src_bb));
126 rtl_profile_for_edge (eg);
127 start_sequence ();
129 targetm.mode_switching.emit (e, mode, cur_mode, live_at_edge);
131 mode_set = get_insns ();
132 end_sequence ();
133 default_rtl_profile ();
135 /* Do not bother to insert empty sequence. */
136 if (mode_set == NULL)
137 continue;
139 /* We should not get an abnormal edge here. */
140 gcc_assert (! (eg->flags & EDGE_ABNORMAL));
142 need_commit = true;
143 insert_insn_on_edge (mode_set, eg);
147 return need_commit;
150 /* Allocate a new BBINFO structure, initialized with the MODE, INSN,
151 and basic block BB parameters.
152 INSN may not be a NOTE_INSN_BASIC_BLOCK, unless it is an empty
153 basic block; that allows us later to insert instructions in a FIFO-like
154 manner. */
156 static struct seginfo *
157 new_seginfo (int mode, rtx_insn *insn, int bb, HARD_REG_SET regs_live)
159 struct seginfo *ptr;
161 gcc_assert (!NOTE_INSN_BASIC_BLOCK_P (insn)
162 || insn == BB_END (NOTE_BASIC_BLOCK (insn)));
163 ptr = XNEW (struct seginfo);
164 ptr->mode = mode;
165 ptr->insn_ptr = insn;
166 ptr->bbnum = bb;
167 ptr->next = NULL;
168 COPY_HARD_REG_SET (ptr->regs_live, regs_live);
169 return ptr;
172 /* Add a seginfo element to the end of a list.
173 HEAD is a pointer to the list beginning.
174 INFO is the structure to be linked in. */
176 static void
177 add_seginfo (struct bb_info *head, struct seginfo *info)
179 struct seginfo *ptr;
181 if (head->seginfo == NULL)
182 head->seginfo = info;
183 else
185 ptr = head->seginfo;
186 while (ptr->next != NULL)
187 ptr = ptr->next;
188 ptr->next = info;
192 /* Record in LIVE that register REG died. */
194 static void
195 reg_dies (rtx reg, HARD_REG_SET *live)
197 int regno;
199 if (!REG_P (reg))
200 return;
202 regno = REGNO (reg);
203 if (regno < FIRST_PSEUDO_REGISTER)
204 remove_from_hard_reg_set (live, GET_MODE (reg), regno);
207 /* Record in LIVE that register REG became live.
208 This is called via note_stores. */
210 static void
211 reg_becomes_live (rtx reg, const_rtx setter ATTRIBUTE_UNUSED, void *live)
213 int regno;
215 if (GET_CODE (reg) == SUBREG)
216 reg = SUBREG_REG (reg);
218 if (!REG_P (reg))
219 return;
221 regno = REGNO (reg);
222 if (regno < FIRST_PSEUDO_REGISTER)
223 add_to_hard_reg_set ((HARD_REG_SET *) live, GET_MODE (reg), regno);
226 /* Split the fallthrough edge to the exit block, so that we can note
227 that there NORMAL_MODE is required. Return the new block if it's
228 inserted before the exit block. Otherwise return null. */
230 static basic_block
231 create_pre_exit (int n_entities, int *entity_map, const int *num_modes)
233 edge eg;
234 edge_iterator ei;
235 basic_block pre_exit;
237 /* The only non-call predecessor at this stage is a block with a
238 fallthrough edge; there can be at most one, but there could be
239 none at all, e.g. when exit is called. */
240 pre_exit = 0;
241 FOR_EACH_EDGE (eg, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
242 if (eg->flags & EDGE_FALLTHRU)
244 basic_block src_bb = eg->src;
245 rtx_insn *last_insn;
246 rtx ret_reg;
248 gcc_assert (!pre_exit);
249 /* If this function returns a value at the end, we have to
250 insert the final mode switch before the return value copy
251 to its hard register. */
252 if (EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) == 1
253 && NONJUMP_INSN_P ((last_insn = BB_END (src_bb)))
254 && GET_CODE (PATTERN (last_insn)) == USE
255 && GET_CODE ((ret_reg = XEXP (PATTERN (last_insn), 0))) == REG)
257 int ret_start = REGNO (ret_reg);
258 int nregs = REG_NREGS (ret_reg);
259 int ret_end = ret_start + nregs;
260 bool short_block = false;
261 bool multi_reg_return = false;
262 bool forced_late_switch = false;
263 rtx_insn *before_return_copy;
267 rtx_insn *return_copy = PREV_INSN (last_insn);
268 rtx return_copy_pat, copy_reg;
269 int copy_start, copy_num;
270 int j;
272 if (NONDEBUG_INSN_P (return_copy))
274 /* When using SJLJ exceptions, the call to the
275 unregister function is inserted between the
276 clobber of the return value and the copy.
277 We do not want to split the block before this
278 or any other call; if we have not found the
279 copy yet, the copy must have been deleted. */
280 if (CALL_P (return_copy))
282 short_block = true;
283 break;
285 return_copy_pat = PATTERN (return_copy);
286 switch (GET_CODE (return_copy_pat))
288 case USE:
289 /* Skip USEs of multiple return registers.
290 __builtin_apply pattern is also handled here. */
291 if (GET_CODE (XEXP (return_copy_pat, 0)) == REG
292 && (targetm.calls.function_value_regno_p
293 (REGNO (XEXP (return_copy_pat, 0)))))
295 multi_reg_return = true;
296 last_insn = return_copy;
297 continue;
299 break;
301 case ASM_OPERANDS:
302 /* Skip barrier insns. */
303 if (!MEM_VOLATILE_P (return_copy_pat))
304 break;
306 /* Fall through. */
308 case ASM_INPUT:
309 case UNSPEC_VOLATILE:
310 last_insn = return_copy;
311 continue;
313 default:
314 break;
317 /* If the return register is not (in its entirety)
318 likely spilled, the return copy might be
319 partially or completely optimized away. */
320 return_copy_pat = single_set (return_copy);
321 if (!return_copy_pat)
323 return_copy_pat = PATTERN (return_copy);
324 if (GET_CODE (return_copy_pat) != CLOBBER)
325 break;
326 else if (!optimize)
328 /* This might be (clobber (reg [<result>]))
329 when not optimizing. Then check if
330 the previous insn is the clobber for
331 the return register. */
332 copy_reg = SET_DEST (return_copy_pat);
333 if (GET_CODE (copy_reg) == REG
334 && !HARD_REGISTER_NUM_P (REGNO (copy_reg)))
336 if (INSN_P (PREV_INSN (return_copy)))
338 return_copy = PREV_INSN (return_copy);
339 return_copy_pat = PATTERN (return_copy);
340 if (GET_CODE (return_copy_pat) != CLOBBER)
341 break;
346 copy_reg = SET_DEST (return_copy_pat);
347 if (GET_CODE (copy_reg) == REG)
348 copy_start = REGNO (copy_reg);
349 else if (GET_CODE (copy_reg) == SUBREG
350 && GET_CODE (SUBREG_REG (copy_reg)) == REG)
351 copy_start = REGNO (SUBREG_REG (copy_reg));
352 else
354 /* When control reaches end of non-void function,
355 there are no return copy insns at all. This
356 avoids an ice on that invalid function. */
357 if (ret_start + nregs == ret_end)
358 short_block = true;
359 break;
361 if (!targetm.calls.function_value_regno_p (copy_start))
362 copy_num = 0;
363 else
364 copy_num
365 = hard_regno_nregs[copy_start][GET_MODE (copy_reg)];
367 /* If the return register is not likely spilled, - as is
368 the case for floating point on SH4 - then it might
369 be set by an arithmetic operation that needs a
370 different mode than the exit block. */
371 for (j = n_entities - 1; j >= 0; j--)
373 int e = entity_map[j];
374 int mode =
375 targetm.mode_switching.needed (e, return_copy);
377 if (mode != num_modes[e]
378 && mode != targetm.mode_switching.exit (e))
379 break;
381 if (j >= 0)
383 /* __builtin_return emits a sequence of loads to all
384 return registers. One of them might require
385 another mode than MODE_EXIT, even if it is
386 unrelated to the return value, so we want to put
387 the final mode switch after it. */
388 if (multi_reg_return
389 && targetm.calls.function_value_regno_p
390 (copy_start))
391 forced_late_switch = true;
393 /* For the SH4, floating point loads depend on fpscr,
394 thus we might need to put the final mode switch
395 after the return value copy. That is still OK,
396 because a floating point return value does not
397 conflict with address reloads. */
398 if (copy_start >= ret_start
399 && copy_start + copy_num <= ret_end
400 && OBJECT_P (SET_SRC (return_copy_pat)))
401 forced_late_switch = true;
402 break;
404 if (copy_num == 0)
406 last_insn = return_copy;
407 continue;
410 if (copy_start >= ret_start
411 && copy_start + copy_num <= ret_end)
412 nregs -= copy_num;
413 else if (!multi_reg_return
414 || !targetm.calls.function_value_regno_p
415 (copy_start))
416 break;
417 last_insn = return_copy;
419 /* ??? Exception handling can lead to the return value
420 copy being already separated from the return value use,
421 as in unwind-dw2.c .
422 Similarly, conditionally returning without a value,
423 and conditionally using builtin_return can lead to an
424 isolated use. */
425 if (return_copy == BB_HEAD (src_bb))
427 short_block = true;
428 break;
430 last_insn = return_copy;
432 while (nregs);
434 /* If we didn't see a full return value copy, verify that there
435 is a plausible reason for this. If some, but not all of the
436 return register is likely spilled, we can expect that there
437 is a copy for the likely spilled part. */
438 gcc_assert (!nregs
439 || forced_late_switch
440 || short_block
441 || !(targetm.class_likely_spilled_p
442 (REGNO_REG_CLASS (ret_start)))
443 || (nregs
444 != hard_regno_nregs[ret_start][GET_MODE (ret_reg)])
445 /* For multi-hard-register floating point
446 values, sometimes the likely-spilled part
447 is ordinarily copied first, then the other
448 part is set with an arithmetic operation.
449 This doesn't actually cause reload
450 failures, so let it pass. */
451 || (GET_MODE_CLASS (GET_MODE (ret_reg)) != MODE_INT
452 && nregs != 1));
454 if (!NOTE_INSN_BASIC_BLOCK_P (last_insn))
456 before_return_copy
457 = emit_note_before (NOTE_INSN_DELETED, last_insn);
458 /* Instructions preceding LAST_INSN in the same block might
459 require a different mode than MODE_EXIT, so if we might
460 have such instructions, keep them in a separate block
461 from pre_exit. */
462 src_bb = split_block (src_bb,
463 PREV_INSN (before_return_copy))->dest;
465 else
466 before_return_copy = last_insn;
467 pre_exit = split_block (src_bb, before_return_copy)->src;
469 else
471 pre_exit = split_edge (eg);
475 return pre_exit;
478 /* Find all insns that need a particular mode setting, and insert the
479 necessary mode switches. Return true if we did work. */
481 static int
482 optimize_mode_switching (void)
484 int e;
485 basic_block bb;
486 bool need_commit = false;
487 static const int num_modes[] = NUM_MODES_FOR_MODE_SWITCHING;
488 #define N_ENTITIES ARRAY_SIZE (num_modes)
489 int entity_map[N_ENTITIES];
490 struct bb_info *bb_info[N_ENTITIES];
491 int i, j;
492 int n_entities = 0;
493 int max_num_modes = 0;
494 bool emitted ATTRIBUTE_UNUSED = false;
495 basic_block post_entry = 0;
496 basic_block pre_exit = 0;
497 struct edge_list *edge_list = 0;
499 /* These bitmaps are used for the LCM algorithm. */
500 sbitmap *kill, *del, *insert, *antic, *transp, *comp;
501 sbitmap *avin, *avout;
503 for (e = N_ENTITIES - 1; e >= 0; e--)
504 if (OPTIMIZE_MODE_SWITCHING (e))
506 int entry_exit_extra = 0;
508 /* Create the list of segments within each basic block.
509 If NORMAL_MODE is defined, allow for two extra
510 blocks split from the entry and exit block. */
511 if (targetm.mode_switching.entry && targetm.mode_switching.exit)
512 entry_exit_extra = 3;
514 bb_info[n_entities]
515 = XCNEWVEC (struct bb_info,
516 last_basic_block_for_fn (cfun) + entry_exit_extra);
517 entity_map[n_entities++] = e;
518 if (num_modes[e] > max_num_modes)
519 max_num_modes = num_modes[e];
522 if (! n_entities)
523 return 0;
525 /* Make sure if MODE_ENTRY is defined MODE_EXIT is defined. */
526 gcc_assert ((targetm.mode_switching.entry && targetm.mode_switching.exit)
527 || (!targetm.mode_switching.entry
528 && !targetm.mode_switching.exit));
530 if (targetm.mode_switching.entry && targetm.mode_switching.exit)
532 /* Split the edge from the entry block, so that we can note that
533 there NORMAL_MODE is supplied. */
534 post_entry = split_edge (single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
535 pre_exit = create_pre_exit (n_entities, entity_map, num_modes);
538 df_analyze ();
540 /* Create the bitmap vectors. */
541 antic = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
542 n_entities * max_num_modes);
543 transp = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
544 n_entities * max_num_modes);
545 comp = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
546 n_entities * max_num_modes);
547 avin = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
548 n_entities * max_num_modes);
549 avout = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
550 n_entities * max_num_modes);
551 kill = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
552 n_entities * max_num_modes);
554 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
555 bitmap_vector_clear (antic, last_basic_block_for_fn (cfun));
556 bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
558 for (j = n_entities - 1; j >= 0; j--)
560 int e = entity_map[j];
561 int no_mode = num_modes[e];
562 struct bb_info *info = bb_info[j];
563 rtx_insn *insn;
565 /* Determine what the first use (if any) need for a mode of entity E is.
566 This will be the mode that is anticipatable for this block.
567 Also compute the initial transparency settings. */
568 FOR_EACH_BB_FN (bb, cfun)
570 struct seginfo *ptr;
571 int last_mode = no_mode;
572 bool any_set_required = false;
573 HARD_REG_SET live_now;
575 info[bb->index].mode_out = info[bb->index].mode_in = no_mode;
577 REG_SET_TO_HARD_REG_SET (live_now, df_get_live_in (bb));
579 /* Pretend the mode is clobbered across abnormal edges. */
581 edge_iterator ei;
582 edge eg;
583 FOR_EACH_EDGE (eg, ei, bb->preds)
584 if (eg->flags & EDGE_COMPLEX)
585 break;
586 if (eg)
588 rtx_insn *ins_pos = BB_HEAD (bb);
589 if (LABEL_P (ins_pos))
590 ins_pos = NEXT_INSN (ins_pos);
591 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (ins_pos));
592 if (ins_pos != BB_END (bb))
593 ins_pos = NEXT_INSN (ins_pos);
594 ptr = new_seginfo (no_mode, ins_pos, bb->index, live_now);
595 add_seginfo (info + bb->index, ptr);
596 for (i = 0; i < no_mode; i++)
597 clear_mode_bit (transp[bb->index], j, i);
601 FOR_BB_INSNS (bb, insn)
603 if (INSN_P (insn))
605 int mode = targetm.mode_switching.needed (e, insn);
606 rtx link;
608 if (mode != no_mode && mode != last_mode)
610 any_set_required = true;
611 last_mode = mode;
612 ptr = new_seginfo (mode, insn, bb->index, live_now);
613 add_seginfo (info + bb->index, ptr);
614 for (i = 0; i < no_mode; i++)
615 clear_mode_bit (transp[bb->index], j, i);
618 if (targetm.mode_switching.after)
619 last_mode = targetm.mode_switching.after (e, last_mode,
620 insn);
622 /* Update LIVE_NOW. */
623 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
624 if (REG_NOTE_KIND (link) == REG_DEAD)
625 reg_dies (XEXP (link, 0), &live_now);
627 note_stores (PATTERN (insn), reg_becomes_live, &live_now);
628 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
629 if (REG_NOTE_KIND (link) == REG_UNUSED)
630 reg_dies (XEXP (link, 0), &live_now);
634 info[bb->index].computing = last_mode;
635 /* Check for blocks without ANY mode requirements.
636 N.B. because of MODE_AFTER, last_mode might still
637 be different from no_mode, in which case we need to
638 mark the block as nontransparent. */
639 if (!any_set_required)
641 ptr = new_seginfo (no_mode, BB_END (bb), bb->index, live_now);
642 add_seginfo (info + bb->index, ptr);
643 if (last_mode != no_mode)
644 for (i = 0; i < no_mode; i++)
645 clear_mode_bit (transp[bb->index], j, i);
648 if (targetm.mode_switching.entry && targetm.mode_switching.exit)
650 int mode = targetm.mode_switching.entry (e);
652 info[post_entry->index].mode_out =
653 info[post_entry->index].mode_in = no_mode;
654 if (pre_exit)
656 info[pre_exit->index].mode_out =
657 info[pre_exit->index].mode_in = no_mode;
660 if (mode != no_mode)
662 bb = post_entry;
664 /* By always making this nontransparent, we save
665 an extra check in make_preds_opaque. We also
666 need this to avoid confusing pre_edge_lcm when
667 antic is cleared but transp and comp are set. */
668 for (i = 0; i < no_mode; i++)
669 clear_mode_bit (transp[bb->index], j, i);
671 /* Insert a fake computing definition of MODE into entry
672 blocks which compute no mode. This represents the mode on
673 entry. */
674 info[bb->index].computing = mode;
676 if (pre_exit)
677 info[pre_exit->index].seginfo->mode =
678 targetm.mode_switching.exit (e);
682 /* Set the anticipatable and computing arrays. */
683 for (i = 0; i < no_mode; i++)
685 int m = targetm.mode_switching.priority (entity_map[j], i);
687 FOR_EACH_BB_FN (bb, cfun)
689 if (info[bb->index].seginfo->mode == m)
690 set_mode_bit (antic[bb->index], j, m);
692 if (info[bb->index].computing == m)
693 set_mode_bit (comp[bb->index], j, m);
698 /* Calculate the optimal locations for the
699 placement mode switches to modes with priority I. */
701 FOR_EACH_BB_FN (bb, cfun)
702 bitmap_not (kill[bb->index], transp[bb->index]);
704 edge_list = pre_edge_lcm_avs (n_entities * max_num_modes, transp, comp, antic,
705 kill, avin, avout, &insert, &del);
707 for (j = n_entities - 1; j >= 0; j--)
709 int no_mode = num_modes[entity_map[j]];
711 /* Insert all mode sets that have been inserted by lcm. */
713 for (int ed = NUM_EDGES (edge_list) - 1; ed >= 0; ed--)
715 edge eg = INDEX_EDGE (edge_list, ed);
717 eg->aux = (void *)(intptr_t)-1;
719 for (i = 0; i < no_mode; i++)
721 int m = targetm.mode_switching.priority (entity_map[j], i);
722 if (mode_bit_p (insert[ed], j, m))
724 eg->aux = (void *)(intptr_t)m;
725 break;
730 FOR_EACH_BB_FN (bb, cfun)
732 struct bb_info *info = bb_info[j];
733 int last_mode = no_mode;
735 /* intialize mode in availability for bb. */
736 for (i = 0; i < no_mode; i++)
737 if (mode_bit_p (avout[bb->index], j, i))
739 if (last_mode == no_mode)
740 last_mode = i;
741 if (last_mode != i)
743 last_mode = no_mode;
744 break;
747 info[bb->index].mode_out = last_mode;
749 /* intialize mode out availability for bb. */
750 last_mode = no_mode;
751 for (i = 0; i < no_mode; i++)
752 if (mode_bit_p (avin[bb->index], j, i))
754 if (last_mode == no_mode)
755 last_mode = i;
756 if (last_mode != i)
758 last_mode = no_mode;
759 break;
762 info[bb->index].mode_in = last_mode;
764 for (i = 0; i < no_mode; i++)
765 if (mode_bit_p (del[bb->index], j, i))
766 info[bb->index].seginfo->mode = no_mode;
769 /* Now output the remaining mode sets in all the segments. */
771 /* In case there was no mode inserted. the mode information on the edge
772 might not be complete.
773 Update mode info on edges and commit pending mode sets. */
774 need_commit |= commit_mode_sets (edge_list, entity_map[j], bb_info[j]);
776 /* Reset modes for next entity. */
777 clear_aux_for_edges ();
779 FOR_EACH_BB_FN (bb, cfun)
781 struct seginfo *ptr, *next;
782 int cur_mode = bb_info[j][bb->index].mode_in;
784 for (ptr = bb_info[j][bb->index].seginfo; ptr; ptr = next)
786 next = ptr->next;
787 if (ptr->mode != no_mode)
789 rtx_insn *mode_set;
791 rtl_profile_for_bb (bb);
792 start_sequence ();
794 targetm.mode_switching.emit (entity_map[j], ptr->mode,
795 cur_mode, ptr->regs_live);
796 mode_set = get_insns ();
797 end_sequence ();
799 /* modes kill each other inside a basic block. */
800 cur_mode = ptr->mode;
802 /* Insert MODE_SET only if it is nonempty. */
803 if (mode_set != NULL_RTX)
805 emitted = true;
806 if (NOTE_INSN_BASIC_BLOCK_P (ptr->insn_ptr))
807 /* We need to emit the insns in a FIFO-like manner,
808 i.e. the first to be emitted at our insertion
809 point ends up first in the instruction steam.
810 Because we made sure that NOTE_INSN_BASIC_BLOCK is
811 only used for initially empty basic blocks, we
812 can achieve this by appending at the end of
813 the block. */
814 emit_insn_after
815 (mode_set, BB_END (NOTE_BASIC_BLOCK (ptr->insn_ptr)));
816 else
817 emit_insn_before (mode_set, ptr->insn_ptr);
820 default_rtl_profile ();
823 free (ptr);
827 free (bb_info[j]);
830 free_edge_list (edge_list);
832 /* Finished. Free up all the things we've allocated. */
833 sbitmap_vector_free (del);
834 sbitmap_vector_free (insert);
835 sbitmap_vector_free (kill);
836 sbitmap_vector_free (antic);
837 sbitmap_vector_free (transp);
838 sbitmap_vector_free (comp);
839 sbitmap_vector_free (avin);
840 sbitmap_vector_free (avout);
842 if (need_commit)
843 commit_edge_insertions ();
845 if (targetm.mode_switching.entry && targetm.mode_switching.exit)
846 cleanup_cfg (CLEANUP_NO_INSN_DEL);
847 else if (!need_commit && !emitted)
848 return 0;
850 return 1;
853 #endif /* OPTIMIZE_MODE_SWITCHING */
855 namespace {
857 const pass_data pass_data_mode_switching =
859 RTL_PASS, /* type */
860 "mode_sw", /* name */
861 OPTGROUP_NONE, /* optinfo_flags */
862 TV_MODE_SWITCH, /* tv_id */
863 0, /* properties_required */
864 0, /* properties_provided */
865 0, /* properties_destroyed */
866 0, /* todo_flags_start */
867 TODO_df_finish, /* todo_flags_finish */
870 class pass_mode_switching : public rtl_opt_pass
872 public:
873 pass_mode_switching (gcc::context *ctxt)
874 : rtl_opt_pass (pass_data_mode_switching, ctxt)
877 /* opt_pass methods: */
878 /* The epiphany backend creates a second instance of this pass, so we need
879 a clone method. */
880 opt_pass * clone () { return new pass_mode_switching (m_ctxt); }
881 virtual bool gate (function *)
883 #ifdef OPTIMIZE_MODE_SWITCHING
884 return true;
885 #else
886 return false;
887 #endif
890 virtual unsigned int execute (function *)
892 #ifdef OPTIMIZE_MODE_SWITCHING
893 optimize_mode_switching ();
894 #endif /* OPTIMIZE_MODE_SWITCHING */
895 return 0;
898 }; // class pass_mode_switching
900 } // anon namespace
902 rtl_opt_pass *
903 make_pass_mode_switching (gcc::context *ctxt)
905 return new pass_mode_switching (ctxt);